perf/x86: Add sysfs entry to freeze counters on SMI
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
392
0764771d 393/*
cdd6c482 394 * perf event paranoia level:
0fbdea19
IM
395 * -1 - not paranoid at all
396 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 397 * 1 - disallow cpu events for unpriv
0fbdea19 398 * 2 - disallow kernel profiling for unpriv
0764771d 399 */
0161028b 400int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 401
20443384
FW
402/* Minimum for 512 kiB + 1 user control page */
403int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
404
405/*
cdd6c482 406 * max perf event sample rate
df58ab24 407 */
14c63f17
DH
408#define DEFAULT_MAX_SAMPLE_RATE 100000
409#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
410#define DEFAULT_CPU_TIME_MAX_PERCENT 25
411
412int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
413
414static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
415static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
416
d9494cb4
PZ
417static int perf_sample_allowed_ns __read_mostly =
418 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 419
18ab2cd3 420static void update_perf_cpu_limits(void)
14c63f17
DH
421{
422 u64 tmp = perf_sample_period_ns;
423
424 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
425 tmp = div_u64(tmp, 100);
426 if (!tmp)
427 tmp = 1;
428
429 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 430}
163ec435 431
9e630205
SE
432static int perf_rotate_context(struct perf_cpu_context *cpuctx);
433
163ec435
PZ
434int perf_proc_update_handler(struct ctl_table *table, int write,
435 void __user *buffer, size_t *lenp,
436 loff_t *ppos)
437{
723478c8 438 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
439
440 if (ret || !write)
441 return ret;
442
ab7fdefb
KL
443 /*
444 * If throttling is disabled don't allow the write:
445 */
446 if (sysctl_perf_cpu_time_max_percent == 100 ||
447 sysctl_perf_cpu_time_max_percent == 0)
448 return -EINVAL;
449
163ec435 450 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
451 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
452 update_perf_cpu_limits();
453
454 return 0;
455}
456
457int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
458
459int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
460 void __user *buffer, size_t *lenp,
461 loff_t *ppos)
462{
1572e45a 463 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
464
465 if (ret || !write)
466 return ret;
467
b303e7c1
PZ
468 if (sysctl_perf_cpu_time_max_percent == 100 ||
469 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
470 printk(KERN_WARNING
471 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
472 WRITE_ONCE(perf_sample_allowed_ns, 0);
473 } else {
474 update_perf_cpu_limits();
475 }
163ec435
PZ
476
477 return 0;
478}
1ccd1549 479
14c63f17
DH
480/*
481 * perf samples are done in some very critical code paths (NMIs).
482 * If they take too much CPU time, the system can lock up and not
483 * get any real work done. This will drop the sample rate when
484 * we detect that events are taking too long.
485 */
486#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 487static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 488
91a612ee
PZ
489static u64 __report_avg;
490static u64 __report_allowed;
491
6a02ad66 492static void perf_duration_warn(struct irq_work *w)
14c63f17 493{
0d87d7ec 494 printk_ratelimited(KERN_INFO
91a612ee
PZ
495 "perf: interrupt took too long (%lld > %lld), lowering "
496 "kernel.perf_event_max_sample_rate to %d\n",
497 __report_avg, __report_allowed,
498 sysctl_perf_event_sample_rate);
6a02ad66
PZ
499}
500
501static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
502
503void perf_sample_event_took(u64 sample_len_ns)
504{
91a612ee
PZ
505 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
506 u64 running_len;
507 u64 avg_len;
508 u32 max;
14c63f17 509
91a612ee 510 if (max_len == 0)
14c63f17
DH
511 return;
512
91a612ee
PZ
513 /* Decay the counter by 1 average sample. */
514 running_len = __this_cpu_read(running_sample_length);
515 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
516 running_len += sample_len_ns;
517 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
518
519 /*
91a612ee
PZ
520 * Note: this will be biased artifically low until we have
521 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
522 * from having to maintain a count.
523 */
91a612ee
PZ
524 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
525 if (avg_len <= max_len)
14c63f17
DH
526 return;
527
91a612ee
PZ
528 __report_avg = avg_len;
529 __report_allowed = max_len;
14c63f17 530
91a612ee
PZ
531 /*
532 * Compute a throttle threshold 25% below the current duration.
533 */
534 avg_len += avg_len / 4;
535 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
536 if (avg_len < max)
537 max /= (u32)avg_len;
538 else
539 max = 1;
14c63f17 540
91a612ee
PZ
541 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
542 WRITE_ONCE(max_samples_per_tick, max);
543
544 sysctl_perf_event_sample_rate = max * HZ;
545 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 546
cd578abb 547 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 548 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 549 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 550 __report_avg, __report_allowed,
cd578abb
PZ
551 sysctl_perf_event_sample_rate);
552 }
14c63f17
DH
553}
554
cdd6c482 555static atomic64_t perf_event_id;
a96bbc16 556
0b3fcf17
SE
557static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
558 enum event_type_t event_type);
559
560static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
561 enum event_type_t event_type,
562 struct task_struct *task);
563
564static void update_context_time(struct perf_event_context *ctx);
565static u64 perf_event_time(struct perf_event *event);
0b3fcf17 566
cdd6c482 567void __weak perf_event_print_debug(void) { }
0793a61d 568
84c79910 569extern __weak const char *perf_pmu_name(void)
0793a61d 570{
84c79910 571 return "pmu";
0793a61d
TG
572}
573
0b3fcf17
SE
574static inline u64 perf_clock(void)
575{
576 return local_clock();
577}
578
34f43927
PZ
579static inline u64 perf_event_clock(struct perf_event *event)
580{
581 return event->clock();
582}
583
e5d1367f
SE
584#ifdef CONFIG_CGROUP_PERF
585
e5d1367f
SE
586static inline bool
587perf_cgroup_match(struct perf_event *event)
588{
589 struct perf_event_context *ctx = event->ctx;
590 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
591
ef824fa1
TH
592 /* @event doesn't care about cgroup */
593 if (!event->cgrp)
594 return true;
595
596 /* wants specific cgroup scope but @cpuctx isn't associated with any */
597 if (!cpuctx->cgrp)
598 return false;
599
600 /*
601 * Cgroup scoping is recursive. An event enabled for a cgroup is
602 * also enabled for all its descendant cgroups. If @cpuctx's
603 * cgroup is a descendant of @event's (the test covers identity
604 * case), it's a match.
605 */
606 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
607 event->cgrp->css.cgroup);
e5d1367f
SE
608}
609
e5d1367f
SE
610static inline void perf_detach_cgroup(struct perf_event *event)
611{
4e2ba650 612 css_put(&event->cgrp->css);
e5d1367f
SE
613 event->cgrp = NULL;
614}
615
616static inline int is_cgroup_event(struct perf_event *event)
617{
618 return event->cgrp != NULL;
619}
620
621static inline u64 perf_cgroup_event_time(struct perf_event *event)
622{
623 struct perf_cgroup_info *t;
624
625 t = per_cpu_ptr(event->cgrp->info, event->cpu);
626 return t->time;
627}
628
629static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
630{
631 struct perf_cgroup_info *info;
632 u64 now;
633
634 now = perf_clock();
635
636 info = this_cpu_ptr(cgrp->info);
637
638 info->time += now - info->timestamp;
639 info->timestamp = now;
640}
641
642static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
643{
644 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
645 if (cgrp_out)
646 __update_cgrp_time(cgrp_out);
647}
648
649static inline void update_cgrp_time_from_event(struct perf_event *event)
650{
3f7cce3c
SE
651 struct perf_cgroup *cgrp;
652
e5d1367f 653 /*
3f7cce3c
SE
654 * ensure we access cgroup data only when needed and
655 * when we know the cgroup is pinned (css_get)
e5d1367f 656 */
3f7cce3c 657 if (!is_cgroup_event(event))
e5d1367f
SE
658 return;
659
614e4c4e 660 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
661 /*
662 * Do not update time when cgroup is not active
663 */
664 if (cgrp == event->cgrp)
665 __update_cgrp_time(event->cgrp);
e5d1367f
SE
666}
667
668static inline void
3f7cce3c
SE
669perf_cgroup_set_timestamp(struct task_struct *task,
670 struct perf_event_context *ctx)
e5d1367f
SE
671{
672 struct perf_cgroup *cgrp;
673 struct perf_cgroup_info *info;
674
3f7cce3c
SE
675 /*
676 * ctx->lock held by caller
677 * ensure we do not access cgroup data
678 * unless we have the cgroup pinned (css_get)
679 */
680 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
681 return;
682
614e4c4e 683 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 684 info = this_cpu_ptr(cgrp->info);
3f7cce3c 685 info->timestamp = ctx->timestamp;
e5d1367f
SE
686}
687
058fe1c0
DCC
688static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
689
e5d1367f
SE
690#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
691#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
692
693/*
694 * reschedule events based on the cgroup constraint of task.
695 *
696 * mode SWOUT : schedule out everything
697 * mode SWIN : schedule in based on cgroup for next
698 */
18ab2cd3 699static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
700{
701 struct perf_cpu_context *cpuctx;
058fe1c0 702 struct list_head *list;
e5d1367f
SE
703 unsigned long flags;
704
705 /*
058fe1c0
DCC
706 * Disable interrupts and preemption to avoid this CPU's
707 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
708 */
709 local_irq_save(flags);
710
058fe1c0
DCC
711 list = this_cpu_ptr(&cgrp_cpuctx_list);
712 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
713 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 714
058fe1c0
DCC
715 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
716 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 717
058fe1c0
DCC
718 if (mode & PERF_CGROUP_SWOUT) {
719 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
720 /*
721 * must not be done before ctxswout due
722 * to event_filter_match() in event_sched_out()
723 */
724 cpuctx->cgrp = NULL;
725 }
e5d1367f 726
058fe1c0
DCC
727 if (mode & PERF_CGROUP_SWIN) {
728 WARN_ON_ONCE(cpuctx->cgrp);
729 /*
730 * set cgrp before ctxsw in to allow
731 * event_filter_match() to not have to pass
732 * task around
733 * we pass the cpuctx->ctx to perf_cgroup_from_task()
734 * because cgorup events are only per-cpu
735 */
736 cpuctx->cgrp = perf_cgroup_from_task(task,
737 &cpuctx->ctx);
738 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 739 }
058fe1c0
DCC
740 perf_pmu_enable(cpuctx->ctx.pmu);
741 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
742 }
743
e5d1367f
SE
744 local_irq_restore(flags);
745}
746
a8d757ef
SE
747static inline void perf_cgroup_sched_out(struct task_struct *task,
748 struct task_struct *next)
e5d1367f 749{
a8d757ef
SE
750 struct perf_cgroup *cgrp1;
751 struct perf_cgroup *cgrp2 = NULL;
752
ddaaf4e2 753 rcu_read_lock();
a8d757ef
SE
754 /*
755 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
756 * we do not need to pass the ctx here because we know
757 * we are holding the rcu lock
a8d757ef 758 */
614e4c4e 759 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 760 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
761
762 /*
763 * only schedule out current cgroup events if we know
764 * that we are switching to a different cgroup. Otherwise,
765 * do no touch the cgroup events.
766 */
767 if (cgrp1 != cgrp2)
768 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
769
770 rcu_read_unlock();
e5d1367f
SE
771}
772
a8d757ef
SE
773static inline void perf_cgroup_sched_in(struct task_struct *prev,
774 struct task_struct *task)
e5d1367f 775{
a8d757ef
SE
776 struct perf_cgroup *cgrp1;
777 struct perf_cgroup *cgrp2 = NULL;
778
ddaaf4e2 779 rcu_read_lock();
a8d757ef
SE
780 /*
781 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
782 * we do not need to pass the ctx here because we know
783 * we are holding the rcu lock
a8d757ef 784 */
614e4c4e 785 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 786 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
787
788 /*
789 * only need to schedule in cgroup events if we are changing
790 * cgroup during ctxsw. Cgroup events were not scheduled
791 * out of ctxsw out if that was not the case.
792 */
793 if (cgrp1 != cgrp2)
794 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
795
796 rcu_read_unlock();
e5d1367f
SE
797}
798
799static inline int perf_cgroup_connect(int fd, struct perf_event *event,
800 struct perf_event_attr *attr,
801 struct perf_event *group_leader)
802{
803 struct perf_cgroup *cgrp;
804 struct cgroup_subsys_state *css;
2903ff01
AV
805 struct fd f = fdget(fd);
806 int ret = 0;
e5d1367f 807
2903ff01 808 if (!f.file)
e5d1367f
SE
809 return -EBADF;
810
b583043e 811 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 812 &perf_event_cgrp_subsys);
3db272c0
LZ
813 if (IS_ERR(css)) {
814 ret = PTR_ERR(css);
815 goto out;
816 }
e5d1367f
SE
817
818 cgrp = container_of(css, struct perf_cgroup, css);
819 event->cgrp = cgrp;
820
821 /*
822 * all events in a group must monitor
823 * the same cgroup because a task belongs
824 * to only one perf cgroup at a time
825 */
826 if (group_leader && group_leader->cgrp != cgrp) {
827 perf_detach_cgroup(event);
828 ret = -EINVAL;
e5d1367f 829 }
3db272c0 830out:
2903ff01 831 fdput(f);
e5d1367f
SE
832 return ret;
833}
834
835static inline void
836perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
837{
838 struct perf_cgroup_info *t;
839 t = per_cpu_ptr(event->cgrp->info, event->cpu);
840 event->shadow_ctx_time = now - t->timestamp;
841}
842
843static inline void
844perf_cgroup_defer_enabled(struct perf_event *event)
845{
846 /*
847 * when the current task's perf cgroup does not match
848 * the event's, we need to remember to call the
849 * perf_mark_enable() function the first time a task with
850 * a matching perf cgroup is scheduled in.
851 */
852 if (is_cgroup_event(event) && !perf_cgroup_match(event))
853 event->cgrp_defer_enabled = 1;
854}
855
856static inline void
857perf_cgroup_mark_enabled(struct perf_event *event,
858 struct perf_event_context *ctx)
859{
860 struct perf_event *sub;
861 u64 tstamp = perf_event_time(event);
862
863 if (!event->cgrp_defer_enabled)
864 return;
865
866 event->cgrp_defer_enabled = 0;
867
868 event->tstamp_enabled = tstamp - event->total_time_enabled;
869 list_for_each_entry(sub, &event->sibling_list, group_entry) {
870 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
871 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
872 sub->cgrp_defer_enabled = 0;
873 }
874 }
875}
db4a8356
DCC
876
877/*
878 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
879 * cleared when last cgroup event is removed.
880 */
881static inline void
882list_update_cgroup_event(struct perf_event *event,
883 struct perf_event_context *ctx, bool add)
884{
885 struct perf_cpu_context *cpuctx;
058fe1c0 886 struct list_head *cpuctx_entry;
db4a8356
DCC
887
888 if (!is_cgroup_event(event))
889 return;
890
891 if (add && ctx->nr_cgroups++)
892 return;
893 else if (!add && --ctx->nr_cgroups)
894 return;
895 /*
896 * Because cgroup events are always per-cpu events,
897 * this will always be called from the right CPU.
898 */
899 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
900 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
901 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
902 if (add) {
903 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
904 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
905 cpuctx->cgrp = event->cgrp;
906 } else {
907 list_del(cpuctx_entry);
8fc31ce8 908 cpuctx->cgrp = NULL;
058fe1c0 909 }
db4a8356
DCC
910}
911
e5d1367f
SE
912#else /* !CONFIG_CGROUP_PERF */
913
914static inline bool
915perf_cgroup_match(struct perf_event *event)
916{
917 return true;
918}
919
920static inline void perf_detach_cgroup(struct perf_event *event)
921{}
922
923static inline int is_cgroup_event(struct perf_event *event)
924{
925 return 0;
926}
927
928static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
929{
930 return 0;
931}
932
933static inline void update_cgrp_time_from_event(struct perf_event *event)
934{
935}
936
937static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
938{
939}
940
a8d757ef
SE
941static inline void perf_cgroup_sched_out(struct task_struct *task,
942 struct task_struct *next)
e5d1367f
SE
943{
944}
945
a8d757ef
SE
946static inline void perf_cgroup_sched_in(struct task_struct *prev,
947 struct task_struct *task)
e5d1367f
SE
948{
949}
950
951static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
952 struct perf_event_attr *attr,
953 struct perf_event *group_leader)
954{
955 return -EINVAL;
956}
957
958static inline void
3f7cce3c
SE
959perf_cgroup_set_timestamp(struct task_struct *task,
960 struct perf_event_context *ctx)
e5d1367f
SE
961{
962}
963
964void
965perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
966{
967}
968
969static inline void
970perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
971{
972}
973
974static inline u64 perf_cgroup_event_time(struct perf_event *event)
975{
976 return 0;
977}
978
979static inline void
980perf_cgroup_defer_enabled(struct perf_event *event)
981{
982}
983
984static inline void
985perf_cgroup_mark_enabled(struct perf_event *event,
986 struct perf_event_context *ctx)
987{
988}
db4a8356
DCC
989
990static inline void
991list_update_cgroup_event(struct perf_event *event,
992 struct perf_event_context *ctx, bool add)
993{
994}
995
e5d1367f
SE
996#endif
997
9e630205
SE
998/*
999 * set default to be dependent on timer tick just
1000 * like original code
1001 */
1002#define PERF_CPU_HRTIMER (1000 / HZ)
1003/*
8a1115ff 1004 * function must be called with interrupts disabled
9e630205 1005 */
272325c4 1006static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1007{
1008 struct perf_cpu_context *cpuctx;
9e630205
SE
1009 int rotations = 0;
1010
1011 WARN_ON(!irqs_disabled());
1012
1013 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1014 rotations = perf_rotate_context(cpuctx);
1015
4cfafd30
PZ
1016 raw_spin_lock(&cpuctx->hrtimer_lock);
1017 if (rotations)
9e630205 1018 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1019 else
1020 cpuctx->hrtimer_active = 0;
1021 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1022
4cfafd30 1023 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1024}
1025
272325c4 1026static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1027{
272325c4 1028 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1029 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1030 u64 interval;
9e630205
SE
1031
1032 /* no multiplexing needed for SW PMU */
1033 if (pmu->task_ctx_nr == perf_sw_context)
1034 return;
1035
62b85639
SE
1036 /*
1037 * check default is sane, if not set then force to
1038 * default interval (1/tick)
1039 */
272325c4
PZ
1040 interval = pmu->hrtimer_interval_ms;
1041 if (interval < 1)
1042 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1043
272325c4 1044 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1045
4cfafd30
PZ
1046 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1047 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1048 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1049}
1050
272325c4 1051static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1052{
272325c4 1053 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1054 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1055 unsigned long flags;
9e630205
SE
1056
1057 /* not for SW PMU */
1058 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1059 return 0;
9e630205 1060
4cfafd30
PZ
1061 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1062 if (!cpuctx->hrtimer_active) {
1063 cpuctx->hrtimer_active = 1;
1064 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1065 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1066 }
1067 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1068
272325c4 1069 return 0;
9e630205
SE
1070}
1071
33696fc0 1072void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1073{
33696fc0
PZ
1074 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1075 if (!(*count)++)
1076 pmu->pmu_disable(pmu);
9e35ad38 1077}
9e35ad38 1078
33696fc0 1079void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1080{
33696fc0
PZ
1081 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1082 if (!--(*count))
1083 pmu->pmu_enable(pmu);
9e35ad38 1084}
9e35ad38 1085
2fde4f94 1086static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1087
1088/*
2fde4f94
MR
1089 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1090 * perf_event_task_tick() are fully serialized because they're strictly cpu
1091 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1092 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1093 */
2fde4f94 1094static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1095{
2fde4f94 1096 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1097
e9d2b064 1098 WARN_ON(!irqs_disabled());
b5ab4cd5 1099
2fde4f94
MR
1100 WARN_ON(!list_empty(&ctx->active_ctx_list));
1101
1102 list_add(&ctx->active_ctx_list, head);
1103}
1104
1105static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1106{
1107 WARN_ON(!irqs_disabled());
1108
1109 WARN_ON(list_empty(&ctx->active_ctx_list));
1110
1111 list_del_init(&ctx->active_ctx_list);
9e35ad38 1112}
9e35ad38 1113
cdd6c482 1114static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1115{
e5289d4a 1116 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1117}
1118
4af57ef2
YZ
1119static void free_ctx(struct rcu_head *head)
1120{
1121 struct perf_event_context *ctx;
1122
1123 ctx = container_of(head, struct perf_event_context, rcu_head);
1124 kfree(ctx->task_ctx_data);
1125 kfree(ctx);
1126}
1127
cdd6c482 1128static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1129{
564c2b21
PM
1130 if (atomic_dec_and_test(&ctx->refcount)) {
1131 if (ctx->parent_ctx)
1132 put_ctx(ctx->parent_ctx);
63b6da39 1133 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1134 put_task_struct(ctx->task);
4af57ef2 1135 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1136 }
a63eaf34
PM
1137}
1138
f63a8daa
PZ
1139/*
1140 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1141 * perf_pmu_migrate_context() we need some magic.
1142 *
1143 * Those places that change perf_event::ctx will hold both
1144 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1145 *
8b10c5e2
PZ
1146 * Lock ordering is by mutex address. There are two other sites where
1147 * perf_event_context::mutex nests and those are:
1148 *
1149 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1150 * perf_event_exit_event()
1151 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1152 *
1153 * - perf_event_init_context() [ parent, 0 ]
1154 * inherit_task_group()
1155 * inherit_group()
1156 * inherit_event()
1157 * perf_event_alloc()
1158 * perf_init_event()
1159 * perf_try_init_event() [ child , 1 ]
1160 *
1161 * While it appears there is an obvious deadlock here -- the parent and child
1162 * nesting levels are inverted between the two. This is in fact safe because
1163 * life-time rules separate them. That is an exiting task cannot fork, and a
1164 * spawning task cannot (yet) exit.
1165 *
1166 * But remember that that these are parent<->child context relations, and
1167 * migration does not affect children, therefore these two orderings should not
1168 * interact.
f63a8daa
PZ
1169 *
1170 * The change in perf_event::ctx does not affect children (as claimed above)
1171 * because the sys_perf_event_open() case will install a new event and break
1172 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1173 * concerned with cpuctx and that doesn't have children.
1174 *
1175 * The places that change perf_event::ctx will issue:
1176 *
1177 * perf_remove_from_context();
1178 * synchronize_rcu();
1179 * perf_install_in_context();
1180 *
1181 * to affect the change. The remove_from_context() + synchronize_rcu() should
1182 * quiesce the event, after which we can install it in the new location. This
1183 * means that only external vectors (perf_fops, prctl) can perturb the event
1184 * while in transit. Therefore all such accessors should also acquire
1185 * perf_event_context::mutex to serialize against this.
1186 *
1187 * However; because event->ctx can change while we're waiting to acquire
1188 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1189 * function.
1190 *
1191 * Lock order:
79c9ce57 1192 * cred_guard_mutex
f63a8daa
PZ
1193 * task_struct::perf_event_mutex
1194 * perf_event_context::mutex
f63a8daa 1195 * perf_event::child_mutex;
07c4a776 1196 * perf_event_context::lock
f63a8daa
PZ
1197 * perf_event::mmap_mutex
1198 * mmap_sem
1199 */
a83fe28e
PZ
1200static struct perf_event_context *
1201perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1202{
1203 struct perf_event_context *ctx;
1204
1205again:
1206 rcu_read_lock();
1207 ctx = ACCESS_ONCE(event->ctx);
1208 if (!atomic_inc_not_zero(&ctx->refcount)) {
1209 rcu_read_unlock();
1210 goto again;
1211 }
1212 rcu_read_unlock();
1213
a83fe28e 1214 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1215 if (event->ctx != ctx) {
1216 mutex_unlock(&ctx->mutex);
1217 put_ctx(ctx);
1218 goto again;
1219 }
1220
1221 return ctx;
1222}
1223
a83fe28e
PZ
1224static inline struct perf_event_context *
1225perf_event_ctx_lock(struct perf_event *event)
1226{
1227 return perf_event_ctx_lock_nested(event, 0);
1228}
1229
f63a8daa
PZ
1230static void perf_event_ctx_unlock(struct perf_event *event,
1231 struct perf_event_context *ctx)
1232{
1233 mutex_unlock(&ctx->mutex);
1234 put_ctx(ctx);
1235}
1236
211de6eb
PZ
1237/*
1238 * This must be done under the ctx->lock, such as to serialize against
1239 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1240 * calling scheduler related locks and ctx->lock nests inside those.
1241 */
1242static __must_check struct perf_event_context *
1243unclone_ctx(struct perf_event_context *ctx)
71a851b4 1244{
211de6eb
PZ
1245 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1246
1247 lockdep_assert_held(&ctx->lock);
1248
1249 if (parent_ctx)
71a851b4 1250 ctx->parent_ctx = NULL;
5a3126d4 1251 ctx->generation++;
211de6eb
PZ
1252
1253 return parent_ctx;
71a851b4
PZ
1254}
1255
6844c09d
ACM
1256static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1257{
1258 /*
1259 * only top level events have the pid namespace they were created in
1260 */
1261 if (event->parent)
1262 event = event->parent;
1263
1264 return task_tgid_nr_ns(p, event->ns);
1265}
1266
1267static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1268{
1269 /*
1270 * only top level events have the pid namespace they were created in
1271 */
1272 if (event->parent)
1273 event = event->parent;
1274
1275 return task_pid_nr_ns(p, event->ns);
1276}
1277
7f453c24 1278/*
cdd6c482 1279 * If we inherit events we want to return the parent event id
7f453c24
PZ
1280 * to userspace.
1281 */
cdd6c482 1282static u64 primary_event_id(struct perf_event *event)
7f453c24 1283{
cdd6c482 1284 u64 id = event->id;
7f453c24 1285
cdd6c482
IM
1286 if (event->parent)
1287 id = event->parent->id;
7f453c24
PZ
1288
1289 return id;
1290}
1291
25346b93 1292/*
cdd6c482 1293 * Get the perf_event_context for a task and lock it.
63b6da39 1294 *
25346b93
PM
1295 * This has to cope with with the fact that until it is locked,
1296 * the context could get moved to another task.
1297 */
cdd6c482 1298static struct perf_event_context *
8dc85d54 1299perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1300{
cdd6c482 1301 struct perf_event_context *ctx;
25346b93 1302
9ed6060d 1303retry:
058ebd0e
PZ
1304 /*
1305 * One of the few rules of preemptible RCU is that one cannot do
1306 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1307 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1308 * rcu_read_unlock_special().
1309 *
1310 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1311 * side critical section has interrupts disabled.
058ebd0e 1312 */
2fd59077 1313 local_irq_save(*flags);
058ebd0e 1314 rcu_read_lock();
8dc85d54 1315 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1316 if (ctx) {
1317 /*
1318 * If this context is a clone of another, it might
1319 * get swapped for another underneath us by
cdd6c482 1320 * perf_event_task_sched_out, though the
25346b93
PM
1321 * rcu_read_lock() protects us from any context
1322 * getting freed. Lock the context and check if it
1323 * got swapped before we could get the lock, and retry
1324 * if so. If we locked the right context, then it
1325 * can't get swapped on us any more.
1326 */
2fd59077 1327 raw_spin_lock(&ctx->lock);
8dc85d54 1328 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1329 raw_spin_unlock(&ctx->lock);
058ebd0e 1330 rcu_read_unlock();
2fd59077 1331 local_irq_restore(*flags);
25346b93
PM
1332 goto retry;
1333 }
b49a9e7e 1334
63b6da39
PZ
1335 if (ctx->task == TASK_TOMBSTONE ||
1336 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1337 raw_spin_unlock(&ctx->lock);
b49a9e7e 1338 ctx = NULL;
828b6f0e
PZ
1339 } else {
1340 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1341 }
25346b93
PM
1342 }
1343 rcu_read_unlock();
2fd59077
PM
1344 if (!ctx)
1345 local_irq_restore(*flags);
25346b93
PM
1346 return ctx;
1347}
1348
1349/*
1350 * Get the context for a task and increment its pin_count so it
1351 * can't get swapped to another task. This also increments its
1352 * reference count so that the context can't get freed.
1353 */
8dc85d54
PZ
1354static struct perf_event_context *
1355perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1356{
cdd6c482 1357 struct perf_event_context *ctx;
25346b93
PM
1358 unsigned long flags;
1359
8dc85d54 1360 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1361 if (ctx) {
1362 ++ctx->pin_count;
e625cce1 1363 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1364 }
1365 return ctx;
1366}
1367
cdd6c482 1368static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1369{
1370 unsigned long flags;
1371
e625cce1 1372 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1373 --ctx->pin_count;
e625cce1 1374 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1375}
1376
f67218c3
PZ
1377/*
1378 * Update the record of the current time in a context.
1379 */
1380static void update_context_time(struct perf_event_context *ctx)
1381{
1382 u64 now = perf_clock();
1383
1384 ctx->time += now - ctx->timestamp;
1385 ctx->timestamp = now;
1386}
1387
4158755d
SE
1388static u64 perf_event_time(struct perf_event *event)
1389{
1390 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1391
1392 if (is_cgroup_event(event))
1393 return perf_cgroup_event_time(event);
1394
4158755d
SE
1395 return ctx ? ctx->time : 0;
1396}
1397
f67218c3
PZ
1398/*
1399 * Update the total_time_enabled and total_time_running fields for a event.
1400 */
1401static void update_event_times(struct perf_event *event)
1402{
1403 struct perf_event_context *ctx = event->ctx;
1404 u64 run_end;
1405
3cbaa590
PZ
1406 lockdep_assert_held(&ctx->lock);
1407
f67218c3
PZ
1408 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1409 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1410 return;
3cbaa590 1411
e5d1367f
SE
1412 /*
1413 * in cgroup mode, time_enabled represents
1414 * the time the event was enabled AND active
1415 * tasks were in the monitored cgroup. This is
1416 * independent of the activity of the context as
1417 * there may be a mix of cgroup and non-cgroup events.
1418 *
1419 * That is why we treat cgroup events differently
1420 * here.
1421 */
1422 if (is_cgroup_event(event))
46cd6a7f 1423 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1424 else if (ctx->is_active)
1425 run_end = ctx->time;
acd1d7c1
PZ
1426 else
1427 run_end = event->tstamp_stopped;
1428
1429 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1430
1431 if (event->state == PERF_EVENT_STATE_INACTIVE)
1432 run_end = event->tstamp_stopped;
1433 else
4158755d 1434 run_end = perf_event_time(event);
f67218c3
PZ
1435
1436 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1437
f67218c3
PZ
1438}
1439
96c21a46
PZ
1440/*
1441 * Update total_time_enabled and total_time_running for all events in a group.
1442 */
1443static void update_group_times(struct perf_event *leader)
1444{
1445 struct perf_event *event;
1446
1447 update_event_times(leader);
1448 list_for_each_entry(event, &leader->sibling_list, group_entry)
1449 update_event_times(event);
1450}
1451
487f05e1
AS
1452static enum event_type_t get_event_type(struct perf_event *event)
1453{
1454 struct perf_event_context *ctx = event->ctx;
1455 enum event_type_t event_type;
1456
1457 lockdep_assert_held(&ctx->lock);
1458
1459 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1460 if (!ctx->task)
1461 event_type |= EVENT_CPU;
1462
1463 return event_type;
1464}
1465
889ff015
FW
1466static struct list_head *
1467ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1468{
1469 if (event->attr.pinned)
1470 return &ctx->pinned_groups;
1471 else
1472 return &ctx->flexible_groups;
1473}
1474
fccc714b 1475/*
cdd6c482 1476 * Add a event from the lists for its context.
fccc714b
PZ
1477 * Must be called with ctx->mutex and ctx->lock held.
1478 */
04289bb9 1479static void
cdd6c482 1480list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1481{
c994d613
PZ
1482 lockdep_assert_held(&ctx->lock);
1483
8a49542c
PZ
1484 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1485 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1486
1487 /*
8a49542c
PZ
1488 * If we're a stand alone event or group leader, we go to the context
1489 * list, group events are kept attached to the group so that
1490 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1491 */
8a49542c 1492 if (event->group_leader == event) {
889ff015
FW
1493 struct list_head *list;
1494
4ff6a8de 1495 event->group_caps = event->event_caps;
d6f962b5 1496
889ff015
FW
1497 list = ctx_group_list(event, ctx);
1498 list_add_tail(&event->group_entry, list);
5c148194 1499 }
592903cd 1500
db4a8356 1501 list_update_cgroup_event(event, ctx, true);
e5d1367f 1502
cdd6c482
IM
1503 list_add_rcu(&event->event_entry, &ctx->event_list);
1504 ctx->nr_events++;
1505 if (event->attr.inherit_stat)
bfbd3381 1506 ctx->nr_stat++;
5a3126d4
PZ
1507
1508 ctx->generation++;
04289bb9
IM
1509}
1510
0231bb53
JO
1511/*
1512 * Initialize event state based on the perf_event_attr::disabled.
1513 */
1514static inline void perf_event__state_init(struct perf_event *event)
1515{
1516 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1517 PERF_EVENT_STATE_INACTIVE;
1518}
1519
a723968c 1520static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1521{
1522 int entry = sizeof(u64); /* value */
1523 int size = 0;
1524 int nr = 1;
1525
1526 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1527 size += sizeof(u64);
1528
1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1530 size += sizeof(u64);
1531
1532 if (event->attr.read_format & PERF_FORMAT_ID)
1533 entry += sizeof(u64);
1534
1535 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1536 nr += nr_siblings;
c320c7b7
ACM
1537 size += sizeof(u64);
1538 }
1539
1540 size += entry * nr;
1541 event->read_size = size;
1542}
1543
a723968c 1544static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1545{
1546 struct perf_sample_data *data;
c320c7b7
ACM
1547 u16 size = 0;
1548
c320c7b7
ACM
1549 if (sample_type & PERF_SAMPLE_IP)
1550 size += sizeof(data->ip);
1551
6844c09d
ACM
1552 if (sample_type & PERF_SAMPLE_ADDR)
1553 size += sizeof(data->addr);
1554
1555 if (sample_type & PERF_SAMPLE_PERIOD)
1556 size += sizeof(data->period);
1557
c3feedf2
AK
1558 if (sample_type & PERF_SAMPLE_WEIGHT)
1559 size += sizeof(data->weight);
1560
6844c09d
ACM
1561 if (sample_type & PERF_SAMPLE_READ)
1562 size += event->read_size;
1563
d6be9ad6
SE
1564 if (sample_type & PERF_SAMPLE_DATA_SRC)
1565 size += sizeof(data->data_src.val);
1566
fdfbbd07
AK
1567 if (sample_type & PERF_SAMPLE_TRANSACTION)
1568 size += sizeof(data->txn);
1569
6844c09d
ACM
1570 event->header_size = size;
1571}
1572
a723968c
PZ
1573/*
1574 * Called at perf_event creation and when events are attached/detached from a
1575 * group.
1576 */
1577static void perf_event__header_size(struct perf_event *event)
1578{
1579 __perf_event_read_size(event,
1580 event->group_leader->nr_siblings);
1581 __perf_event_header_size(event, event->attr.sample_type);
1582}
1583
6844c09d
ACM
1584static void perf_event__id_header_size(struct perf_event *event)
1585{
1586 struct perf_sample_data *data;
1587 u64 sample_type = event->attr.sample_type;
1588 u16 size = 0;
1589
c320c7b7
ACM
1590 if (sample_type & PERF_SAMPLE_TID)
1591 size += sizeof(data->tid_entry);
1592
1593 if (sample_type & PERF_SAMPLE_TIME)
1594 size += sizeof(data->time);
1595
ff3d527c
AH
1596 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1597 size += sizeof(data->id);
1598
c320c7b7
ACM
1599 if (sample_type & PERF_SAMPLE_ID)
1600 size += sizeof(data->id);
1601
1602 if (sample_type & PERF_SAMPLE_STREAM_ID)
1603 size += sizeof(data->stream_id);
1604
1605 if (sample_type & PERF_SAMPLE_CPU)
1606 size += sizeof(data->cpu_entry);
1607
6844c09d 1608 event->id_header_size = size;
c320c7b7
ACM
1609}
1610
a723968c
PZ
1611static bool perf_event_validate_size(struct perf_event *event)
1612{
1613 /*
1614 * The values computed here will be over-written when we actually
1615 * attach the event.
1616 */
1617 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1618 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1619 perf_event__id_header_size(event);
1620
1621 /*
1622 * Sum the lot; should not exceed the 64k limit we have on records.
1623 * Conservative limit to allow for callchains and other variable fields.
1624 */
1625 if (event->read_size + event->header_size +
1626 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1627 return false;
1628
1629 return true;
1630}
1631
8a49542c
PZ
1632static void perf_group_attach(struct perf_event *event)
1633{
c320c7b7 1634 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1635
a76a82a3
PZ
1636 lockdep_assert_held(&event->ctx->lock);
1637
74c3337c
PZ
1638 /*
1639 * We can have double attach due to group movement in perf_event_open.
1640 */
1641 if (event->attach_state & PERF_ATTACH_GROUP)
1642 return;
1643
8a49542c
PZ
1644 event->attach_state |= PERF_ATTACH_GROUP;
1645
1646 if (group_leader == event)
1647 return;
1648
652884fe
PZ
1649 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1650
4ff6a8de 1651 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1652
1653 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1654 group_leader->nr_siblings++;
c320c7b7
ACM
1655
1656 perf_event__header_size(group_leader);
1657
1658 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1659 perf_event__header_size(pos);
8a49542c
PZ
1660}
1661
a63eaf34 1662/*
cdd6c482 1663 * Remove a event from the lists for its context.
fccc714b 1664 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1665 */
04289bb9 1666static void
cdd6c482 1667list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1668{
652884fe
PZ
1669 WARN_ON_ONCE(event->ctx != ctx);
1670 lockdep_assert_held(&ctx->lock);
1671
8a49542c
PZ
1672 /*
1673 * We can have double detach due to exit/hot-unplug + close.
1674 */
1675 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1676 return;
8a49542c
PZ
1677
1678 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1679
db4a8356 1680 list_update_cgroup_event(event, ctx, false);
e5d1367f 1681
cdd6c482
IM
1682 ctx->nr_events--;
1683 if (event->attr.inherit_stat)
bfbd3381 1684 ctx->nr_stat--;
8bc20959 1685
cdd6c482 1686 list_del_rcu(&event->event_entry);
04289bb9 1687
8a49542c
PZ
1688 if (event->group_leader == event)
1689 list_del_init(&event->group_entry);
5c148194 1690
96c21a46 1691 update_group_times(event);
b2e74a26
SE
1692
1693 /*
1694 * If event was in error state, then keep it
1695 * that way, otherwise bogus counts will be
1696 * returned on read(). The only way to get out
1697 * of error state is by explicit re-enabling
1698 * of the event
1699 */
1700 if (event->state > PERF_EVENT_STATE_OFF)
1701 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1702
1703 ctx->generation++;
050735b0
PZ
1704}
1705
8a49542c 1706static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1707{
1708 struct perf_event *sibling, *tmp;
8a49542c
PZ
1709 struct list_head *list = NULL;
1710
a76a82a3
PZ
1711 lockdep_assert_held(&event->ctx->lock);
1712
8a49542c
PZ
1713 /*
1714 * We can have double detach due to exit/hot-unplug + close.
1715 */
1716 if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 return;
1718
1719 event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721 /*
1722 * If this is a sibling, remove it from its group.
1723 */
1724 if (event->group_leader != event) {
1725 list_del_init(&event->group_entry);
1726 event->group_leader->nr_siblings--;
c320c7b7 1727 goto out;
8a49542c
PZ
1728 }
1729
1730 if (!list_empty(&event->group_entry))
1731 list = &event->group_entry;
2e2af50b 1732
04289bb9 1733 /*
cdd6c482
IM
1734 * If this was a group event with sibling events then
1735 * upgrade the siblings to singleton events by adding them
8a49542c 1736 * to whatever list we are on.
04289bb9 1737 */
cdd6c482 1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1739 if (list)
1740 list_move_tail(&sibling->group_entry, list);
04289bb9 1741 sibling->group_leader = sibling;
d6f962b5
FW
1742
1743 /* Inherit group flags from the previous leader */
4ff6a8de 1744 sibling->group_caps = event->group_caps;
652884fe
PZ
1745
1746 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1747 }
c320c7b7
ACM
1748
1749out:
1750 perf_event__header_size(event->group_leader);
1751
1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 perf_event__header_size(tmp);
04289bb9
IM
1754}
1755
fadfe7be
JO
1756static bool is_orphaned_event(struct perf_event *event)
1757{
a69b0ca4 1758 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1759}
1760
2c81a647 1761static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1762{
1763 struct pmu *pmu = event->pmu;
1764 return pmu->filter_match ? pmu->filter_match(event) : 1;
1765}
1766
2c81a647
MR
1767/*
1768 * Check whether we should attempt to schedule an event group based on
1769 * PMU-specific filtering. An event group can consist of HW and SW events,
1770 * potentially with a SW leader, so we must check all the filters, to
1771 * determine whether a group is schedulable:
1772 */
1773static inline int pmu_filter_match(struct perf_event *event)
1774{
1775 struct perf_event *child;
1776
1777 if (!__pmu_filter_match(event))
1778 return 0;
1779
1780 list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 if (!__pmu_filter_match(child))
1782 return 0;
1783 }
1784
1785 return 1;
1786}
1787
fa66f07a
SE
1788static inline int
1789event_filter_match(struct perf_event *event)
1790{
0b8f1e2e
PZ
1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1793}
1794
9ffcfa6f
SE
1795static void
1796event_sched_out(struct perf_event *event,
3b6f9e5c 1797 struct perf_cpu_context *cpuctx,
cdd6c482 1798 struct perf_event_context *ctx)
3b6f9e5c 1799{
4158755d 1800 u64 tstamp = perf_event_time(event);
fa66f07a 1801 u64 delta;
652884fe
PZ
1802
1803 WARN_ON_ONCE(event->ctx != ctx);
1804 lockdep_assert_held(&ctx->lock);
1805
fa66f07a
SE
1806 /*
1807 * An event which could not be activated because of
1808 * filter mismatch still needs to have its timings
1809 * maintained, otherwise bogus information is return
1810 * via read() for time_enabled, time_running:
1811 */
0b8f1e2e
PZ
1812 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1813 !event_filter_match(event)) {
e5d1367f 1814 delta = tstamp - event->tstamp_stopped;
fa66f07a 1815 event->tstamp_running += delta;
4158755d 1816 event->tstamp_stopped = tstamp;
fa66f07a
SE
1817 }
1818
cdd6c482 1819 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1820 return;
3b6f9e5c 1821
44377277
AS
1822 perf_pmu_disable(event->pmu);
1823
28a967c3
PZ
1824 event->tstamp_stopped = tstamp;
1825 event->pmu->del(event, 0);
1826 event->oncpu = -1;
cdd6c482
IM
1827 event->state = PERF_EVENT_STATE_INACTIVE;
1828 if (event->pending_disable) {
1829 event->pending_disable = 0;
1830 event->state = PERF_EVENT_STATE_OFF;
970892a9 1831 }
3b6f9e5c 1832
cdd6c482 1833 if (!is_software_event(event))
3b6f9e5c 1834 cpuctx->active_oncpu--;
2fde4f94
MR
1835 if (!--ctx->nr_active)
1836 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1837 if (event->attr.freq && event->attr.sample_freq)
1838 ctx->nr_freq--;
cdd6c482 1839 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1840 cpuctx->exclusive = 0;
44377277
AS
1841
1842 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1843}
1844
d859e29f 1845static void
cdd6c482 1846group_sched_out(struct perf_event *group_event,
d859e29f 1847 struct perf_cpu_context *cpuctx,
cdd6c482 1848 struct perf_event_context *ctx)
d859e29f 1849{
cdd6c482 1850 struct perf_event *event;
fa66f07a 1851 int state = group_event->state;
d859e29f 1852
3f005e7d
MR
1853 perf_pmu_disable(ctx->pmu);
1854
cdd6c482 1855 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1856
1857 /*
1858 * Schedule out siblings (if any):
1859 */
cdd6c482
IM
1860 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1861 event_sched_out(event, cpuctx, ctx);
d859e29f 1862
3f005e7d
MR
1863 perf_pmu_enable(ctx->pmu);
1864
fa66f07a 1865 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1866 cpuctx->exclusive = 0;
1867}
1868
45a0e07a 1869#define DETACH_GROUP 0x01UL
0017960f 1870
0793a61d 1871/*
cdd6c482 1872 * Cross CPU call to remove a performance event
0793a61d 1873 *
cdd6c482 1874 * We disable the event on the hardware level first. After that we
0793a61d
TG
1875 * remove it from the context list.
1876 */
fae3fde6
PZ
1877static void
1878__perf_remove_from_context(struct perf_event *event,
1879 struct perf_cpu_context *cpuctx,
1880 struct perf_event_context *ctx,
1881 void *info)
0793a61d 1882{
45a0e07a 1883 unsigned long flags = (unsigned long)info;
0793a61d 1884
cdd6c482 1885 event_sched_out(event, cpuctx, ctx);
45a0e07a 1886 if (flags & DETACH_GROUP)
46ce0fe9 1887 perf_group_detach(event);
cdd6c482 1888 list_del_event(event, ctx);
39a43640
PZ
1889
1890 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1891 ctx->is_active = 0;
39a43640
PZ
1892 if (ctx->task) {
1893 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1894 cpuctx->task_ctx = NULL;
1895 }
64ce3126 1896 }
0793a61d
TG
1897}
1898
0793a61d 1899/*
cdd6c482 1900 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1901 *
cdd6c482
IM
1902 * If event->ctx is a cloned context, callers must make sure that
1903 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1904 * remains valid. This is OK when called from perf_release since
1905 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1906 * When called from perf_event_exit_task, it's OK because the
c93f7669 1907 * context has been detached from its task.
0793a61d 1908 */
45a0e07a 1909static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1910{
a76a82a3
PZ
1911 struct perf_event_context *ctx = event->ctx;
1912
1913 lockdep_assert_held(&ctx->mutex);
0793a61d 1914
45a0e07a 1915 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1916
1917 /*
1918 * The above event_function_call() can NO-OP when it hits
1919 * TASK_TOMBSTONE. In that case we must already have been detached
1920 * from the context (by perf_event_exit_event()) but the grouping
1921 * might still be in-tact.
1922 */
1923 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1924 if ((flags & DETACH_GROUP) &&
1925 (event->attach_state & PERF_ATTACH_GROUP)) {
1926 /*
1927 * Since in that case we cannot possibly be scheduled, simply
1928 * detach now.
1929 */
1930 raw_spin_lock_irq(&ctx->lock);
1931 perf_group_detach(event);
1932 raw_spin_unlock_irq(&ctx->lock);
1933 }
0793a61d
TG
1934}
1935
d859e29f 1936/*
cdd6c482 1937 * Cross CPU call to disable a performance event
d859e29f 1938 */
fae3fde6
PZ
1939static void __perf_event_disable(struct perf_event *event,
1940 struct perf_cpu_context *cpuctx,
1941 struct perf_event_context *ctx,
1942 void *info)
7b648018 1943{
fae3fde6
PZ
1944 if (event->state < PERF_EVENT_STATE_INACTIVE)
1945 return;
7b648018 1946
fae3fde6
PZ
1947 update_context_time(ctx);
1948 update_cgrp_time_from_event(event);
1949 update_group_times(event);
1950 if (event == event->group_leader)
1951 group_sched_out(event, cpuctx, ctx);
1952 else
1953 event_sched_out(event, cpuctx, ctx);
1954 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1955}
1956
d859e29f 1957/*
cdd6c482 1958 * Disable a event.
c93f7669 1959 *
cdd6c482
IM
1960 * If event->ctx is a cloned context, callers must make sure that
1961 * every task struct that event->ctx->task could possibly point to
c93f7669 1962 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1963 * perf_event_for_each_child or perf_event_for_each because they
1964 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1965 * goes to exit will block in perf_event_exit_event().
1966 *
cdd6c482 1967 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1968 * is the current context on this CPU and preemption is disabled,
cdd6c482 1969 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1970 */
f63a8daa 1971static void _perf_event_disable(struct perf_event *event)
d859e29f 1972{
cdd6c482 1973 struct perf_event_context *ctx = event->ctx;
d859e29f 1974
e625cce1 1975 raw_spin_lock_irq(&ctx->lock);
7b648018 1976 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1977 raw_spin_unlock_irq(&ctx->lock);
7b648018 1978 return;
53cfbf59 1979 }
e625cce1 1980 raw_spin_unlock_irq(&ctx->lock);
7b648018 1981
fae3fde6
PZ
1982 event_function_call(event, __perf_event_disable, NULL);
1983}
1984
1985void perf_event_disable_local(struct perf_event *event)
1986{
1987 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1988}
f63a8daa
PZ
1989
1990/*
1991 * Strictly speaking kernel users cannot create groups and therefore this
1992 * interface does not need the perf_event_ctx_lock() magic.
1993 */
1994void perf_event_disable(struct perf_event *event)
1995{
1996 struct perf_event_context *ctx;
1997
1998 ctx = perf_event_ctx_lock(event);
1999 _perf_event_disable(event);
2000 perf_event_ctx_unlock(event, ctx);
2001}
dcfce4a0 2002EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2003
5aab90ce
JO
2004void perf_event_disable_inatomic(struct perf_event *event)
2005{
2006 event->pending_disable = 1;
2007 irq_work_queue(&event->pending);
2008}
2009
e5d1367f
SE
2010static void perf_set_shadow_time(struct perf_event *event,
2011 struct perf_event_context *ctx,
2012 u64 tstamp)
2013{
2014 /*
2015 * use the correct time source for the time snapshot
2016 *
2017 * We could get by without this by leveraging the
2018 * fact that to get to this function, the caller
2019 * has most likely already called update_context_time()
2020 * and update_cgrp_time_xx() and thus both timestamp
2021 * are identical (or very close). Given that tstamp is,
2022 * already adjusted for cgroup, we could say that:
2023 * tstamp - ctx->timestamp
2024 * is equivalent to
2025 * tstamp - cgrp->timestamp.
2026 *
2027 * Then, in perf_output_read(), the calculation would
2028 * work with no changes because:
2029 * - event is guaranteed scheduled in
2030 * - no scheduled out in between
2031 * - thus the timestamp would be the same
2032 *
2033 * But this is a bit hairy.
2034 *
2035 * So instead, we have an explicit cgroup call to remain
2036 * within the time time source all along. We believe it
2037 * is cleaner and simpler to understand.
2038 */
2039 if (is_cgroup_event(event))
2040 perf_cgroup_set_shadow_time(event, tstamp);
2041 else
2042 event->shadow_ctx_time = tstamp - ctx->timestamp;
2043}
2044
4fe757dd
PZ
2045#define MAX_INTERRUPTS (~0ULL)
2046
2047static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2048static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2049
235c7fc7 2050static int
9ffcfa6f 2051event_sched_in(struct perf_event *event,
235c7fc7 2052 struct perf_cpu_context *cpuctx,
6e37738a 2053 struct perf_event_context *ctx)
235c7fc7 2054{
4158755d 2055 u64 tstamp = perf_event_time(event);
44377277 2056 int ret = 0;
4158755d 2057
63342411
PZ
2058 lockdep_assert_held(&ctx->lock);
2059
cdd6c482 2060 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2061 return 0;
2062
95ff4ca2
AS
2063 WRITE_ONCE(event->oncpu, smp_processor_id());
2064 /*
2065 * Order event::oncpu write to happen before the ACTIVE state
2066 * is visible.
2067 */
2068 smp_wmb();
2069 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2070
2071 /*
2072 * Unthrottle events, since we scheduled we might have missed several
2073 * ticks already, also for a heavily scheduling task there is little
2074 * guarantee it'll get a tick in a timely manner.
2075 */
2076 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2077 perf_log_throttle(event, 1);
2078 event->hw.interrupts = 0;
2079 }
2080
235c7fc7
IM
2081 /*
2082 * The new state must be visible before we turn it on in the hardware:
2083 */
2084 smp_wmb();
2085
44377277
AS
2086 perf_pmu_disable(event->pmu);
2087
72f669c0
SL
2088 perf_set_shadow_time(event, ctx, tstamp);
2089
ec0d7729
AS
2090 perf_log_itrace_start(event);
2091
a4eaf7f1 2092 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2093 event->state = PERF_EVENT_STATE_INACTIVE;
2094 event->oncpu = -1;
44377277
AS
2095 ret = -EAGAIN;
2096 goto out;
235c7fc7
IM
2097 }
2098
00a2916f
PZ
2099 event->tstamp_running += tstamp - event->tstamp_stopped;
2100
cdd6c482 2101 if (!is_software_event(event))
3b6f9e5c 2102 cpuctx->active_oncpu++;
2fde4f94
MR
2103 if (!ctx->nr_active++)
2104 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2105 if (event->attr.freq && event->attr.sample_freq)
2106 ctx->nr_freq++;
235c7fc7 2107
cdd6c482 2108 if (event->attr.exclusive)
3b6f9e5c
PM
2109 cpuctx->exclusive = 1;
2110
44377277
AS
2111out:
2112 perf_pmu_enable(event->pmu);
2113
2114 return ret;
235c7fc7
IM
2115}
2116
6751b71e 2117static int
cdd6c482 2118group_sched_in(struct perf_event *group_event,
6751b71e 2119 struct perf_cpu_context *cpuctx,
6e37738a 2120 struct perf_event_context *ctx)
6751b71e 2121{
6bde9b6c 2122 struct perf_event *event, *partial_group = NULL;
4a234593 2123 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2124 u64 now = ctx->time;
2125 bool simulate = false;
6751b71e 2126
cdd6c482 2127 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2128 return 0;
2129
fbbe0701 2130 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2131
9ffcfa6f 2132 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2133 pmu->cancel_txn(pmu);
272325c4 2134 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2135 return -EAGAIN;
90151c35 2136 }
6751b71e
PM
2137
2138 /*
2139 * Schedule in siblings as one group (if any):
2140 */
cdd6c482 2141 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2142 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2143 partial_group = event;
6751b71e
PM
2144 goto group_error;
2145 }
2146 }
2147
9ffcfa6f 2148 if (!pmu->commit_txn(pmu))
6e85158c 2149 return 0;
9ffcfa6f 2150
6751b71e
PM
2151group_error:
2152 /*
2153 * Groups can be scheduled in as one unit only, so undo any
2154 * partial group before returning:
d7842da4
SE
2155 * The events up to the failed event are scheduled out normally,
2156 * tstamp_stopped will be updated.
2157 *
2158 * The failed events and the remaining siblings need to have
2159 * their timings updated as if they had gone thru event_sched_in()
2160 * and event_sched_out(). This is required to get consistent timings
2161 * across the group. This also takes care of the case where the group
2162 * could never be scheduled by ensuring tstamp_stopped is set to mark
2163 * the time the event was actually stopped, such that time delta
2164 * calculation in update_event_times() is correct.
6751b71e 2165 */
cdd6c482
IM
2166 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2167 if (event == partial_group)
d7842da4
SE
2168 simulate = true;
2169
2170 if (simulate) {
2171 event->tstamp_running += now - event->tstamp_stopped;
2172 event->tstamp_stopped = now;
2173 } else {
2174 event_sched_out(event, cpuctx, ctx);
2175 }
6751b71e 2176 }
9ffcfa6f 2177 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2178
ad5133b7 2179 pmu->cancel_txn(pmu);
90151c35 2180
272325c4 2181 perf_mux_hrtimer_restart(cpuctx);
9e630205 2182
6751b71e
PM
2183 return -EAGAIN;
2184}
2185
3b6f9e5c 2186/*
cdd6c482 2187 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2188 */
cdd6c482 2189static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2190 struct perf_cpu_context *cpuctx,
2191 int can_add_hw)
2192{
2193 /*
cdd6c482 2194 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2195 */
4ff6a8de 2196 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2197 return 1;
2198 /*
2199 * If an exclusive group is already on, no other hardware
cdd6c482 2200 * events can go on.
3b6f9e5c
PM
2201 */
2202 if (cpuctx->exclusive)
2203 return 0;
2204 /*
2205 * If this group is exclusive and there are already
cdd6c482 2206 * events on the CPU, it can't go on.
3b6f9e5c 2207 */
cdd6c482 2208 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2209 return 0;
2210 /*
2211 * Otherwise, try to add it if all previous groups were able
2212 * to go on.
2213 */
2214 return can_add_hw;
2215}
2216
cdd6c482
IM
2217static void add_event_to_ctx(struct perf_event *event,
2218 struct perf_event_context *ctx)
53cfbf59 2219{
4158755d
SE
2220 u64 tstamp = perf_event_time(event);
2221
cdd6c482 2222 list_add_event(event, ctx);
8a49542c 2223 perf_group_attach(event);
4158755d
SE
2224 event->tstamp_enabled = tstamp;
2225 event->tstamp_running = tstamp;
2226 event->tstamp_stopped = tstamp;
53cfbf59
PM
2227}
2228
bd2afa49
PZ
2229static void ctx_sched_out(struct perf_event_context *ctx,
2230 struct perf_cpu_context *cpuctx,
2231 enum event_type_t event_type);
2c29ef0f
PZ
2232static void
2233ctx_sched_in(struct perf_event_context *ctx,
2234 struct perf_cpu_context *cpuctx,
2235 enum event_type_t event_type,
2236 struct task_struct *task);
fe4b04fa 2237
bd2afa49 2238static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2239 struct perf_event_context *ctx,
2240 enum event_type_t event_type)
bd2afa49
PZ
2241{
2242 if (!cpuctx->task_ctx)
2243 return;
2244
2245 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2246 return;
2247
487f05e1 2248 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2249}
2250
dce5855b
PZ
2251static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2252 struct perf_event_context *ctx,
2253 struct task_struct *task)
2254{
2255 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2256 if (ctx)
2257 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2258 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2259 if (ctx)
2260 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2261}
2262
487f05e1
AS
2263/*
2264 * We want to maintain the following priority of scheduling:
2265 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2266 * - task pinned (EVENT_PINNED)
2267 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2268 * - task flexible (EVENT_FLEXIBLE).
2269 *
2270 * In order to avoid unscheduling and scheduling back in everything every
2271 * time an event is added, only do it for the groups of equal priority and
2272 * below.
2273 *
2274 * This can be called after a batch operation on task events, in which case
2275 * event_type is a bit mask of the types of events involved. For CPU events,
2276 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2277 */
3e349507 2278static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2279 struct perf_event_context *task_ctx,
2280 enum event_type_t event_type)
0017960f 2281{
487f05e1
AS
2282 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2283 bool cpu_event = !!(event_type & EVENT_CPU);
2284
2285 /*
2286 * If pinned groups are involved, flexible groups also need to be
2287 * scheduled out.
2288 */
2289 if (event_type & EVENT_PINNED)
2290 event_type |= EVENT_FLEXIBLE;
2291
3e349507
PZ
2292 perf_pmu_disable(cpuctx->ctx.pmu);
2293 if (task_ctx)
487f05e1
AS
2294 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2295
2296 /*
2297 * Decide which cpu ctx groups to schedule out based on the types
2298 * of events that caused rescheduling:
2299 * - EVENT_CPU: schedule out corresponding groups;
2300 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2301 * - otherwise, do nothing more.
2302 */
2303 if (cpu_event)
2304 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2305 else if (ctx_event_type & EVENT_PINNED)
2306 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2307
3e349507
PZ
2308 perf_event_sched_in(cpuctx, task_ctx, current);
2309 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2310}
2311
0793a61d 2312/*
cdd6c482 2313 * Cross CPU call to install and enable a performance event
682076ae 2314 *
a096309b
PZ
2315 * Very similar to remote_function() + event_function() but cannot assume that
2316 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2317 */
fe4b04fa 2318static int __perf_install_in_context(void *info)
0793a61d 2319{
a096309b
PZ
2320 struct perf_event *event = info;
2321 struct perf_event_context *ctx = event->ctx;
108b02cf 2322 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2323 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2324 bool reprogram = true;
a096309b 2325 int ret = 0;
0793a61d 2326
63b6da39 2327 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2328 if (ctx->task) {
b58f6b0d
PZ
2329 raw_spin_lock(&ctx->lock);
2330 task_ctx = ctx;
a096309b 2331
63cae12b 2332 reprogram = (ctx->task == current);
b58f6b0d 2333
39a43640 2334 /*
63cae12b
PZ
2335 * If the task is running, it must be running on this CPU,
2336 * otherwise we cannot reprogram things.
2337 *
2338 * If its not running, we don't care, ctx->lock will
2339 * serialize against it becoming runnable.
39a43640 2340 */
63cae12b
PZ
2341 if (task_curr(ctx->task) && !reprogram) {
2342 ret = -ESRCH;
2343 goto unlock;
2344 }
a096309b 2345
63cae12b 2346 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2347 } else if (task_ctx) {
2348 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2349 }
b58f6b0d 2350
63cae12b 2351 if (reprogram) {
a096309b
PZ
2352 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2353 add_event_to_ctx(event, ctx);
487f05e1 2354 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2355 } else {
2356 add_event_to_ctx(event, ctx);
2357 }
2358
63b6da39 2359unlock:
2c29ef0f 2360 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2361
a096309b 2362 return ret;
0793a61d
TG
2363}
2364
2365/*
a096309b
PZ
2366 * Attach a performance event to a context.
2367 *
2368 * Very similar to event_function_call, see comment there.
0793a61d
TG
2369 */
2370static void
cdd6c482
IM
2371perf_install_in_context(struct perf_event_context *ctx,
2372 struct perf_event *event,
0793a61d
TG
2373 int cpu)
2374{
a096309b 2375 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2376
fe4b04fa
PZ
2377 lockdep_assert_held(&ctx->mutex);
2378
0cda4c02
YZ
2379 if (event->cpu != -1)
2380 event->cpu = cpu;
c3f00c70 2381
0b8f1e2e
PZ
2382 /*
2383 * Ensures that if we can observe event->ctx, both the event and ctx
2384 * will be 'complete'. See perf_iterate_sb_cpu().
2385 */
2386 smp_store_release(&event->ctx, ctx);
2387
a096309b
PZ
2388 if (!task) {
2389 cpu_function_call(cpu, __perf_install_in_context, event);
2390 return;
2391 }
2392
2393 /*
2394 * Should not happen, we validate the ctx is still alive before calling.
2395 */
2396 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2397 return;
2398
39a43640
PZ
2399 /*
2400 * Installing events is tricky because we cannot rely on ctx->is_active
2401 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2402 *
2403 * Instead we use task_curr(), which tells us if the task is running.
2404 * However, since we use task_curr() outside of rq::lock, we can race
2405 * against the actual state. This means the result can be wrong.
2406 *
2407 * If we get a false positive, we retry, this is harmless.
2408 *
2409 * If we get a false negative, things are complicated. If we are after
2410 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2411 * value must be correct. If we're before, it doesn't matter since
2412 * perf_event_context_sched_in() will program the counter.
2413 *
2414 * However, this hinges on the remote context switch having observed
2415 * our task->perf_event_ctxp[] store, such that it will in fact take
2416 * ctx::lock in perf_event_context_sched_in().
2417 *
2418 * We do this by task_function_call(), if the IPI fails to hit the task
2419 * we know any future context switch of task must see the
2420 * perf_event_ctpx[] store.
39a43640 2421 */
63cae12b 2422
63b6da39 2423 /*
63cae12b
PZ
2424 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2425 * task_cpu() load, such that if the IPI then does not find the task
2426 * running, a future context switch of that task must observe the
2427 * store.
63b6da39 2428 */
63cae12b
PZ
2429 smp_mb();
2430again:
2431 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2432 return;
2433
2434 raw_spin_lock_irq(&ctx->lock);
2435 task = ctx->task;
84c4e620 2436 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2437 /*
2438 * Cannot happen because we already checked above (which also
2439 * cannot happen), and we hold ctx->mutex, which serializes us
2440 * against perf_event_exit_task_context().
2441 */
63b6da39
PZ
2442 raw_spin_unlock_irq(&ctx->lock);
2443 return;
2444 }
39a43640 2445 /*
63cae12b
PZ
2446 * If the task is not running, ctx->lock will avoid it becoming so,
2447 * thus we can safely install the event.
39a43640 2448 */
63cae12b
PZ
2449 if (task_curr(task)) {
2450 raw_spin_unlock_irq(&ctx->lock);
2451 goto again;
2452 }
2453 add_event_to_ctx(event, ctx);
2454 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2455}
2456
fa289bec 2457/*
cdd6c482 2458 * Put a event into inactive state and update time fields.
fa289bec
PM
2459 * Enabling the leader of a group effectively enables all
2460 * the group members that aren't explicitly disabled, so we
2461 * have to update their ->tstamp_enabled also.
2462 * Note: this works for group members as well as group leaders
2463 * since the non-leader members' sibling_lists will be empty.
2464 */
1d9b482e 2465static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2466{
cdd6c482 2467 struct perf_event *sub;
4158755d 2468 u64 tstamp = perf_event_time(event);
fa289bec 2469
cdd6c482 2470 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2471 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2472 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2473 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2474 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2475 }
fa289bec
PM
2476}
2477
d859e29f 2478/*
cdd6c482 2479 * Cross CPU call to enable a performance event
d859e29f 2480 */
fae3fde6
PZ
2481static void __perf_event_enable(struct perf_event *event,
2482 struct perf_cpu_context *cpuctx,
2483 struct perf_event_context *ctx,
2484 void *info)
04289bb9 2485{
cdd6c482 2486 struct perf_event *leader = event->group_leader;
fae3fde6 2487 struct perf_event_context *task_ctx;
04289bb9 2488
6e801e01
PZ
2489 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2491 return;
3cbed429 2492
bd2afa49
PZ
2493 if (ctx->is_active)
2494 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2495
1d9b482e 2496 __perf_event_mark_enabled(event);
04289bb9 2497
fae3fde6
PZ
2498 if (!ctx->is_active)
2499 return;
2500
e5d1367f 2501 if (!event_filter_match(event)) {
bd2afa49 2502 if (is_cgroup_event(event))
e5d1367f 2503 perf_cgroup_defer_enabled(event);
bd2afa49 2504 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2505 return;
e5d1367f 2506 }
f4c4176f 2507
04289bb9 2508 /*
cdd6c482 2509 * If the event is in a group and isn't the group leader,
d859e29f 2510 * then don't put it on unless the group is on.
04289bb9 2511 */
bd2afa49
PZ
2512 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2513 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2514 return;
bd2afa49 2515 }
fe4b04fa 2516
fae3fde6
PZ
2517 task_ctx = cpuctx->task_ctx;
2518 if (ctx->task)
2519 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2520
487f05e1 2521 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2522}
2523
d859e29f 2524/*
cdd6c482 2525 * Enable a event.
c93f7669 2526 *
cdd6c482
IM
2527 * If event->ctx is a cloned context, callers must make sure that
2528 * every task struct that event->ctx->task could possibly point to
c93f7669 2529 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2530 * perf_event_for_each_child or perf_event_for_each as described
2531 * for perf_event_disable.
d859e29f 2532 */
f63a8daa 2533static void _perf_event_enable(struct perf_event *event)
d859e29f 2534{
cdd6c482 2535 struct perf_event_context *ctx = event->ctx;
d859e29f 2536
7b648018 2537 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2538 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2539 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2540 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2541 return;
2542 }
2543
d859e29f 2544 /*
cdd6c482 2545 * If the event is in error state, clear that first.
7b648018
PZ
2546 *
2547 * That way, if we see the event in error state below, we know that it
2548 * has gone back into error state, as distinct from the task having
2549 * been scheduled away before the cross-call arrived.
d859e29f 2550 */
cdd6c482
IM
2551 if (event->state == PERF_EVENT_STATE_ERROR)
2552 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2553 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2554
fae3fde6 2555 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2556}
f63a8daa
PZ
2557
2558/*
2559 * See perf_event_disable();
2560 */
2561void perf_event_enable(struct perf_event *event)
2562{
2563 struct perf_event_context *ctx;
2564
2565 ctx = perf_event_ctx_lock(event);
2566 _perf_event_enable(event);
2567 perf_event_ctx_unlock(event, ctx);
2568}
dcfce4a0 2569EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2570
375637bc
AS
2571struct stop_event_data {
2572 struct perf_event *event;
2573 unsigned int restart;
2574};
2575
95ff4ca2
AS
2576static int __perf_event_stop(void *info)
2577{
375637bc
AS
2578 struct stop_event_data *sd = info;
2579 struct perf_event *event = sd->event;
95ff4ca2 2580
375637bc 2581 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2582 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2583 return 0;
2584
2585 /* matches smp_wmb() in event_sched_in() */
2586 smp_rmb();
2587
2588 /*
2589 * There is a window with interrupts enabled before we get here,
2590 * so we need to check again lest we try to stop another CPU's event.
2591 */
2592 if (READ_ONCE(event->oncpu) != smp_processor_id())
2593 return -EAGAIN;
2594
2595 event->pmu->stop(event, PERF_EF_UPDATE);
2596
375637bc
AS
2597 /*
2598 * May race with the actual stop (through perf_pmu_output_stop()),
2599 * but it is only used for events with AUX ring buffer, and such
2600 * events will refuse to restart because of rb::aux_mmap_count==0,
2601 * see comments in perf_aux_output_begin().
2602 *
2603 * Since this is happening on a event-local CPU, no trace is lost
2604 * while restarting.
2605 */
2606 if (sd->restart)
c9bbdd48 2607 event->pmu->start(event, 0);
375637bc 2608
95ff4ca2
AS
2609 return 0;
2610}
2611
767ae086 2612static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2613{
2614 struct stop_event_data sd = {
2615 .event = event,
767ae086 2616 .restart = restart,
375637bc
AS
2617 };
2618 int ret = 0;
2619
2620 do {
2621 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2622 return 0;
2623
2624 /* matches smp_wmb() in event_sched_in() */
2625 smp_rmb();
2626
2627 /*
2628 * We only want to restart ACTIVE events, so if the event goes
2629 * inactive here (event->oncpu==-1), there's nothing more to do;
2630 * fall through with ret==-ENXIO.
2631 */
2632 ret = cpu_function_call(READ_ONCE(event->oncpu),
2633 __perf_event_stop, &sd);
2634 } while (ret == -EAGAIN);
2635
2636 return ret;
2637}
2638
2639/*
2640 * In order to contain the amount of racy and tricky in the address filter
2641 * configuration management, it is a two part process:
2642 *
2643 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2644 * we update the addresses of corresponding vmas in
2645 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2646 * (p2) when an event is scheduled in (pmu::add), it calls
2647 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2648 * if the generation has changed since the previous call.
2649 *
2650 * If (p1) happens while the event is active, we restart it to force (p2).
2651 *
2652 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2653 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2654 * ioctl;
2655 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2656 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2657 * for reading;
2658 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2659 * of exec.
2660 */
2661void perf_event_addr_filters_sync(struct perf_event *event)
2662{
2663 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2664
2665 if (!has_addr_filter(event))
2666 return;
2667
2668 raw_spin_lock(&ifh->lock);
2669 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2670 event->pmu->addr_filters_sync(event);
2671 event->hw.addr_filters_gen = event->addr_filters_gen;
2672 }
2673 raw_spin_unlock(&ifh->lock);
2674}
2675EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2676
f63a8daa 2677static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2678{
2023b359 2679 /*
cdd6c482 2680 * not supported on inherited events
2023b359 2681 */
2e939d1d 2682 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2683 return -EINVAL;
2684
cdd6c482 2685 atomic_add(refresh, &event->event_limit);
f63a8daa 2686 _perf_event_enable(event);
2023b359
PZ
2687
2688 return 0;
79f14641 2689}
f63a8daa
PZ
2690
2691/*
2692 * See perf_event_disable()
2693 */
2694int perf_event_refresh(struct perf_event *event, int refresh)
2695{
2696 struct perf_event_context *ctx;
2697 int ret;
2698
2699 ctx = perf_event_ctx_lock(event);
2700 ret = _perf_event_refresh(event, refresh);
2701 perf_event_ctx_unlock(event, ctx);
2702
2703 return ret;
2704}
26ca5c11 2705EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2706
5b0311e1
FW
2707static void ctx_sched_out(struct perf_event_context *ctx,
2708 struct perf_cpu_context *cpuctx,
2709 enum event_type_t event_type)
235c7fc7 2710{
db24d33e 2711 int is_active = ctx->is_active;
c994d613 2712 struct perf_event *event;
235c7fc7 2713
c994d613 2714 lockdep_assert_held(&ctx->lock);
235c7fc7 2715
39a43640
PZ
2716 if (likely(!ctx->nr_events)) {
2717 /*
2718 * See __perf_remove_from_context().
2719 */
2720 WARN_ON_ONCE(ctx->is_active);
2721 if (ctx->task)
2722 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2723 return;
39a43640
PZ
2724 }
2725
db24d33e 2726 ctx->is_active &= ~event_type;
3cbaa590
PZ
2727 if (!(ctx->is_active & EVENT_ALL))
2728 ctx->is_active = 0;
2729
63e30d3e
PZ
2730 if (ctx->task) {
2731 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2732 if (!ctx->is_active)
2733 cpuctx->task_ctx = NULL;
2734 }
facc4307 2735
8fdc6539
PZ
2736 /*
2737 * Always update time if it was set; not only when it changes.
2738 * Otherwise we can 'forget' to update time for any but the last
2739 * context we sched out. For example:
2740 *
2741 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2742 * ctx_sched_out(.event_type = EVENT_PINNED)
2743 *
2744 * would only update time for the pinned events.
2745 */
3cbaa590
PZ
2746 if (is_active & EVENT_TIME) {
2747 /* update (and stop) ctx time */
2748 update_context_time(ctx);
2749 update_cgrp_time_from_cpuctx(cpuctx);
2750 }
2751
8fdc6539
PZ
2752 is_active ^= ctx->is_active; /* changed bits */
2753
3cbaa590 2754 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2755 return;
5b0311e1 2756
075e0b00 2757 perf_pmu_disable(ctx->pmu);
3cbaa590 2758 if (is_active & EVENT_PINNED) {
889ff015
FW
2759 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2760 group_sched_out(event, cpuctx, ctx);
9ed6060d 2761 }
889ff015 2762
3cbaa590 2763 if (is_active & EVENT_FLEXIBLE) {
889ff015 2764 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2765 group_sched_out(event, cpuctx, ctx);
9ed6060d 2766 }
1b9a644f 2767 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2768}
2769
564c2b21 2770/*
5a3126d4
PZ
2771 * Test whether two contexts are equivalent, i.e. whether they have both been
2772 * cloned from the same version of the same context.
2773 *
2774 * Equivalence is measured using a generation number in the context that is
2775 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2776 * and list_del_event().
564c2b21 2777 */
cdd6c482
IM
2778static int context_equiv(struct perf_event_context *ctx1,
2779 struct perf_event_context *ctx2)
564c2b21 2780{
211de6eb
PZ
2781 lockdep_assert_held(&ctx1->lock);
2782 lockdep_assert_held(&ctx2->lock);
2783
5a3126d4
PZ
2784 /* Pinning disables the swap optimization */
2785 if (ctx1->pin_count || ctx2->pin_count)
2786 return 0;
2787
2788 /* If ctx1 is the parent of ctx2 */
2789 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2790 return 1;
2791
2792 /* If ctx2 is the parent of ctx1 */
2793 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2794 return 1;
2795
2796 /*
2797 * If ctx1 and ctx2 have the same parent; we flatten the parent
2798 * hierarchy, see perf_event_init_context().
2799 */
2800 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2801 ctx1->parent_gen == ctx2->parent_gen)
2802 return 1;
2803
2804 /* Unmatched */
2805 return 0;
564c2b21
PM
2806}
2807
cdd6c482
IM
2808static void __perf_event_sync_stat(struct perf_event *event,
2809 struct perf_event *next_event)
bfbd3381
PZ
2810{
2811 u64 value;
2812
cdd6c482 2813 if (!event->attr.inherit_stat)
bfbd3381
PZ
2814 return;
2815
2816 /*
cdd6c482 2817 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2818 * because we're in the middle of a context switch and have IRQs
2819 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2820 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2821 * don't need to use it.
2822 */
cdd6c482
IM
2823 switch (event->state) {
2824 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2825 event->pmu->read(event);
2826 /* fall-through */
bfbd3381 2827
cdd6c482
IM
2828 case PERF_EVENT_STATE_INACTIVE:
2829 update_event_times(event);
bfbd3381
PZ
2830 break;
2831
2832 default:
2833 break;
2834 }
2835
2836 /*
cdd6c482 2837 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2838 * values when we flip the contexts.
2839 */
e7850595
PZ
2840 value = local64_read(&next_event->count);
2841 value = local64_xchg(&event->count, value);
2842 local64_set(&next_event->count, value);
bfbd3381 2843
cdd6c482
IM
2844 swap(event->total_time_enabled, next_event->total_time_enabled);
2845 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2846
bfbd3381 2847 /*
19d2e755 2848 * Since we swizzled the values, update the user visible data too.
bfbd3381 2849 */
cdd6c482
IM
2850 perf_event_update_userpage(event);
2851 perf_event_update_userpage(next_event);
bfbd3381
PZ
2852}
2853
cdd6c482
IM
2854static void perf_event_sync_stat(struct perf_event_context *ctx,
2855 struct perf_event_context *next_ctx)
bfbd3381 2856{
cdd6c482 2857 struct perf_event *event, *next_event;
bfbd3381
PZ
2858
2859 if (!ctx->nr_stat)
2860 return;
2861
02ffdbc8
PZ
2862 update_context_time(ctx);
2863
cdd6c482
IM
2864 event = list_first_entry(&ctx->event_list,
2865 struct perf_event, event_entry);
bfbd3381 2866
cdd6c482
IM
2867 next_event = list_first_entry(&next_ctx->event_list,
2868 struct perf_event, event_entry);
bfbd3381 2869
cdd6c482
IM
2870 while (&event->event_entry != &ctx->event_list &&
2871 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2872
cdd6c482 2873 __perf_event_sync_stat(event, next_event);
bfbd3381 2874
cdd6c482
IM
2875 event = list_next_entry(event, event_entry);
2876 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2877 }
2878}
2879
fe4b04fa
PZ
2880static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2881 struct task_struct *next)
0793a61d 2882{
8dc85d54 2883 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2884 struct perf_event_context *next_ctx;
5a3126d4 2885 struct perf_event_context *parent, *next_parent;
108b02cf 2886 struct perf_cpu_context *cpuctx;
c93f7669 2887 int do_switch = 1;
0793a61d 2888
108b02cf
PZ
2889 if (likely(!ctx))
2890 return;
10989fb2 2891
108b02cf
PZ
2892 cpuctx = __get_cpu_context(ctx);
2893 if (!cpuctx->task_ctx)
0793a61d
TG
2894 return;
2895
c93f7669 2896 rcu_read_lock();
8dc85d54 2897 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2898 if (!next_ctx)
2899 goto unlock;
2900
2901 parent = rcu_dereference(ctx->parent_ctx);
2902 next_parent = rcu_dereference(next_ctx->parent_ctx);
2903
2904 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2905 if (!parent && !next_parent)
5a3126d4
PZ
2906 goto unlock;
2907
2908 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2909 /*
2910 * Looks like the two contexts are clones, so we might be
2911 * able to optimize the context switch. We lock both
2912 * contexts and check that they are clones under the
2913 * lock (including re-checking that neither has been
2914 * uncloned in the meantime). It doesn't matter which
2915 * order we take the locks because no other cpu could
2916 * be trying to lock both of these tasks.
2917 */
e625cce1
TG
2918 raw_spin_lock(&ctx->lock);
2919 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2920 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2921 WRITE_ONCE(ctx->task, next);
2922 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2923
2924 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2925
63b6da39
PZ
2926 /*
2927 * RCU_INIT_POINTER here is safe because we've not
2928 * modified the ctx and the above modification of
2929 * ctx->task and ctx->task_ctx_data are immaterial
2930 * since those values are always verified under
2931 * ctx->lock which we're now holding.
2932 */
2933 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2934 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2935
c93f7669 2936 do_switch = 0;
bfbd3381 2937
cdd6c482 2938 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2939 }
e625cce1
TG
2940 raw_spin_unlock(&next_ctx->lock);
2941 raw_spin_unlock(&ctx->lock);
564c2b21 2942 }
5a3126d4 2943unlock:
c93f7669 2944 rcu_read_unlock();
564c2b21 2945
c93f7669 2946 if (do_switch) {
facc4307 2947 raw_spin_lock(&ctx->lock);
487f05e1 2948 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2949 raw_spin_unlock(&ctx->lock);
c93f7669 2950 }
0793a61d
TG
2951}
2952
e48c1788
PZ
2953static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2954
ba532500
YZ
2955void perf_sched_cb_dec(struct pmu *pmu)
2956{
e48c1788
PZ
2957 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2958
ba532500 2959 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2960
2961 if (!--cpuctx->sched_cb_usage)
2962 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2963}
2964
e48c1788 2965
ba532500
YZ
2966void perf_sched_cb_inc(struct pmu *pmu)
2967{
e48c1788
PZ
2968 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2969
2970 if (!cpuctx->sched_cb_usage++)
2971 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2972
ba532500
YZ
2973 this_cpu_inc(perf_sched_cb_usages);
2974}
2975
2976/*
2977 * This function provides the context switch callback to the lower code
2978 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2979 *
2980 * This callback is relevant even to per-cpu events; for example multi event
2981 * PEBS requires this to provide PID/TID information. This requires we flush
2982 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2983 */
2984static void perf_pmu_sched_task(struct task_struct *prev,
2985 struct task_struct *next,
2986 bool sched_in)
2987{
2988 struct perf_cpu_context *cpuctx;
2989 struct pmu *pmu;
ba532500
YZ
2990
2991 if (prev == next)
2992 return;
2993
e48c1788 2994 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2995 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2996
e48c1788
PZ
2997 if (WARN_ON_ONCE(!pmu->sched_task))
2998 continue;
ba532500 2999
e48c1788
PZ
3000 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3001 perf_pmu_disable(pmu);
ba532500 3002
e48c1788 3003 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3004
e48c1788
PZ
3005 perf_pmu_enable(pmu);
3006 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3007 }
ba532500
YZ
3008}
3009
45ac1403
AH
3010static void perf_event_switch(struct task_struct *task,
3011 struct task_struct *next_prev, bool sched_in);
3012
8dc85d54
PZ
3013#define for_each_task_context_nr(ctxn) \
3014 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3015
3016/*
3017 * Called from scheduler to remove the events of the current task,
3018 * with interrupts disabled.
3019 *
3020 * We stop each event and update the event value in event->count.
3021 *
3022 * This does not protect us against NMI, but disable()
3023 * sets the disabled bit in the control field of event _before_
3024 * accessing the event control register. If a NMI hits, then it will
3025 * not restart the event.
3026 */
ab0cce56
JO
3027void __perf_event_task_sched_out(struct task_struct *task,
3028 struct task_struct *next)
8dc85d54
PZ
3029{
3030 int ctxn;
3031
ba532500
YZ
3032 if (__this_cpu_read(perf_sched_cb_usages))
3033 perf_pmu_sched_task(task, next, false);
3034
45ac1403
AH
3035 if (atomic_read(&nr_switch_events))
3036 perf_event_switch(task, next, false);
3037
8dc85d54
PZ
3038 for_each_task_context_nr(ctxn)
3039 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3040
3041 /*
3042 * if cgroup events exist on this CPU, then we need
3043 * to check if we have to switch out PMU state.
3044 * cgroup event are system-wide mode only
3045 */
4a32fea9 3046 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3047 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3048}
3049
5b0311e1
FW
3050/*
3051 * Called with IRQs disabled
3052 */
3053static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3054 enum event_type_t event_type)
3055{
3056 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3057}
3058
235c7fc7 3059static void
5b0311e1 3060ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3061 struct perf_cpu_context *cpuctx)
0793a61d 3062{
cdd6c482 3063 struct perf_event *event;
0793a61d 3064
889ff015
FW
3065 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3066 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3067 continue;
5632ab12 3068 if (!event_filter_match(event))
3b6f9e5c
PM
3069 continue;
3070
e5d1367f
SE
3071 /* may need to reset tstamp_enabled */
3072 if (is_cgroup_event(event))
3073 perf_cgroup_mark_enabled(event, ctx);
3074
8c9ed8e1 3075 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3076 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3077
3078 /*
3079 * If this pinned group hasn't been scheduled,
3080 * put it in error state.
3081 */
cdd6c482
IM
3082 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3083 update_group_times(event);
3084 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3085 }
3b6f9e5c 3086 }
5b0311e1
FW
3087}
3088
3089static void
3090ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3091 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3092{
3093 struct perf_event *event;
3094 int can_add_hw = 1;
3b6f9e5c 3095
889ff015
FW
3096 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3097 /* Ignore events in OFF or ERROR state */
3098 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3099 continue;
04289bb9
IM
3100 /*
3101 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3102 * of events:
04289bb9 3103 */
5632ab12 3104 if (!event_filter_match(event))
0793a61d
TG
3105 continue;
3106
e5d1367f
SE
3107 /* may need to reset tstamp_enabled */
3108 if (is_cgroup_event(event))
3109 perf_cgroup_mark_enabled(event, ctx);
3110
9ed6060d 3111 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3112 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3113 can_add_hw = 0;
9ed6060d 3114 }
0793a61d 3115 }
5b0311e1
FW
3116}
3117
3118static void
3119ctx_sched_in(struct perf_event_context *ctx,
3120 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3121 enum event_type_t event_type,
3122 struct task_struct *task)
5b0311e1 3123{
db24d33e 3124 int is_active = ctx->is_active;
c994d613
PZ
3125 u64 now;
3126
3127 lockdep_assert_held(&ctx->lock);
e5d1367f 3128
5b0311e1 3129 if (likely(!ctx->nr_events))
facc4307 3130 return;
5b0311e1 3131
3cbaa590 3132 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3133 if (ctx->task) {
3134 if (!is_active)
3135 cpuctx->task_ctx = ctx;
3136 else
3137 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3138 }
3139
3cbaa590
PZ
3140 is_active ^= ctx->is_active; /* changed bits */
3141
3142 if (is_active & EVENT_TIME) {
3143 /* start ctx time */
3144 now = perf_clock();
3145 ctx->timestamp = now;
3146 perf_cgroup_set_timestamp(task, ctx);
3147 }
3148
5b0311e1
FW
3149 /*
3150 * First go through the list and put on any pinned groups
3151 * in order to give them the best chance of going on.
3152 */
3cbaa590 3153 if (is_active & EVENT_PINNED)
6e37738a 3154 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3155
3156 /* Then walk through the lower prio flexible groups */
3cbaa590 3157 if (is_active & EVENT_FLEXIBLE)
6e37738a 3158 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3159}
3160
329c0e01 3161static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3162 enum event_type_t event_type,
3163 struct task_struct *task)
329c0e01
FW
3164{
3165 struct perf_event_context *ctx = &cpuctx->ctx;
3166
e5d1367f 3167 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3168}
3169
e5d1367f
SE
3170static void perf_event_context_sched_in(struct perf_event_context *ctx,
3171 struct task_struct *task)
235c7fc7 3172{
108b02cf 3173 struct perf_cpu_context *cpuctx;
235c7fc7 3174
108b02cf 3175 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3176 if (cpuctx->task_ctx == ctx)
3177 return;
3178
facc4307 3179 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3180 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3181 /*
3182 * We want to keep the following priority order:
3183 * cpu pinned (that don't need to move), task pinned,
3184 * cpu flexible, task flexible.
fe45bafb
AS
3185 *
3186 * However, if task's ctx is not carrying any pinned
3187 * events, no need to flip the cpuctx's events around.
329c0e01 3188 */
fe45bafb
AS
3189 if (!list_empty(&ctx->pinned_groups))
3190 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3191 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3192 perf_pmu_enable(ctx->pmu);
3193 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3194}
3195
8dc85d54
PZ
3196/*
3197 * Called from scheduler to add the events of the current task
3198 * with interrupts disabled.
3199 *
3200 * We restore the event value and then enable it.
3201 *
3202 * This does not protect us against NMI, but enable()
3203 * sets the enabled bit in the control field of event _before_
3204 * accessing the event control register. If a NMI hits, then it will
3205 * keep the event running.
3206 */
ab0cce56
JO
3207void __perf_event_task_sched_in(struct task_struct *prev,
3208 struct task_struct *task)
8dc85d54
PZ
3209{
3210 struct perf_event_context *ctx;
3211 int ctxn;
3212
7e41d177
PZ
3213 /*
3214 * If cgroup events exist on this CPU, then we need to check if we have
3215 * to switch in PMU state; cgroup event are system-wide mode only.
3216 *
3217 * Since cgroup events are CPU events, we must schedule these in before
3218 * we schedule in the task events.
3219 */
3220 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3221 perf_cgroup_sched_in(prev, task);
3222
8dc85d54
PZ
3223 for_each_task_context_nr(ctxn) {
3224 ctx = task->perf_event_ctxp[ctxn];
3225 if (likely(!ctx))
3226 continue;
3227
e5d1367f 3228 perf_event_context_sched_in(ctx, task);
8dc85d54 3229 }
d010b332 3230
45ac1403
AH
3231 if (atomic_read(&nr_switch_events))
3232 perf_event_switch(task, prev, true);
3233
ba532500
YZ
3234 if (__this_cpu_read(perf_sched_cb_usages))
3235 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3236}
3237
abd50713
PZ
3238static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3239{
3240 u64 frequency = event->attr.sample_freq;
3241 u64 sec = NSEC_PER_SEC;
3242 u64 divisor, dividend;
3243
3244 int count_fls, nsec_fls, frequency_fls, sec_fls;
3245
3246 count_fls = fls64(count);
3247 nsec_fls = fls64(nsec);
3248 frequency_fls = fls64(frequency);
3249 sec_fls = 30;
3250
3251 /*
3252 * We got @count in @nsec, with a target of sample_freq HZ
3253 * the target period becomes:
3254 *
3255 * @count * 10^9
3256 * period = -------------------
3257 * @nsec * sample_freq
3258 *
3259 */
3260
3261 /*
3262 * Reduce accuracy by one bit such that @a and @b converge
3263 * to a similar magnitude.
3264 */
fe4b04fa 3265#define REDUCE_FLS(a, b) \
abd50713
PZ
3266do { \
3267 if (a##_fls > b##_fls) { \
3268 a >>= 1; \
3269 a##_fls--; \
3270 } else { \
3271 b >>= 1; \
3272 b##_fls--; \
3273 } \
3274} while (0)
3275
3276 /*
3277 * Reduce accuracy until either term fits in a u64, then proceed with
3278 * the other, so that finally we can do a u64/u64 division.
3279 */
3280 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3281 REDUCE_FLS(nsec, frequency);
3282 REDUCE_FLS(sec, count);
3283 }
3284
3285 if (count_fls + sec_fls > 64) {
3286 divisor = nsec * frequency;
3287
3288 while (count_fls + sec_fls > 64) {
3289 REDUCE_FLS(count, sec);
3290 divisor >>= 1;
3291 }
3292
3293 dividend = count * sec;
3294 } else {
3295 dividend = count * sec;
3296
3297 while (nsec_fls + frequency_fls > 64) {
3298 REDUCE_FLS(nsec, frequency);
3299 dividend >>= 1;
3300 }
3301
3302 divisor = nsec * frequency;
3303 }
3304
f6ab91ad
PZ
3305 if (!divisor)
3306 return dividend;
3307
abd50713
PZ
3308 return div64_u64(dividend, divisor);
3309}
3310
e050e3f0
SE
3311static DEFINE_PER_CPU(int, perf_throttled_count);
3312static DEFINE_PER_CPU(u64, perf_throttled_seq);
3313
f39d47ff 3314static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3315{
cdd6c482 3316 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3317 s64 period, sample_period;
bd2b5b12
PZ
3318 s64 delta;
3319
abd50713 3320 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3321
3322 delta = (s64)(period - hwc->sample_period);
3323 delta = (delta + 7) / 8; /* low pass filter */
3324
3325 sample_period = hwc->sample_period + delta;
3326
3327 if (!sample_period)
3328 sample_period = 1;
3329
bd2b5b12 3330 hwc->sample_period = sample_period;
abd50713 3331
e7850595 3332 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3333 if (disable)
3334 event->pmu->stop(event, PERF_EF_UPDATE);
3335
e7850595 3336 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3337
3338 if (disable)
3339 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3340 }
bd2b5b12
PZ
3341}
3342
e050e3f0
SE
3343/*
3344 * combine freq adjustment with unthrottling to avoid two passes over the
3345 * events. At the same time, make sure, having freq events does not change
3346 * the rate of unthrottling as that would introduce bias.
3347 */
3348static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3349 int needs_unthr)
60db5e09 3350{
cdd6c482
IM
3351 struct perf_event *event;
3352 struct hw_perf_event *hwc;
e050e3f0 3353 u64 now, period = TICK_NSEC;
abd50713 3354 s64 delta;
60db5e09 3355
e050e3f0
SE
3356 /*
3357 * only need to iterate over all events iff:
3358 * - context have events in frequency mode (needs freq adjust)
3359 * - there are events to unthrottle on this cpu
3360 */
3361 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3362 return;
3363
e050e3f0 3364 raw_spin_lock(&ctx->lock);
f39d47ff 3365 perf_pmu_disable(ctx->pmu);
e050e3f0 3366
03541f8b 3367 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3368 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3369 continue;
3370
5632ab12 3371 if (!event_filter_match(event))
5d27c23d
PZ
3372 continue;
3373
44377277
AS
3374 perf_pmu_disable(event->pmu);
3375
cdd6c482 3376 hwc = &event->hw;
6a24ed6c 3377
ae23bff1 3378 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3379 hwc->interrupts = 0;
cdd6c482 3380 perf_log_throttle(event, 1);
a4eaf7f1 3381 event->pmu->start(event, 0);
a78ac325
PZ
3382 }
3383
cdd6c482 3384 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3385 goto next;
60db5e09 3386
e050e3f0
SE
3387 /*
3388 * stop the event and update event->count
3389 */
3390 event->pmu->stop(event, PERF_EF_UPDATE);
3391
e7850595 3392 now = local64_read(&event->count);
abd50713
PZ
3393 delta = now - hwc->freq_count_stamp;
3394 hwc->freq_count_stamp = now;
60db5e09 3395
e050e3f0
SE
3396 /*
3397 * restart the event
3398 * reload only if value has changed
f39d47ff
SE
3399 * we have stopped the event so tell that
3400 * to perf_adjust_period() to avoid stopping it
3401 * twice.
e050e3f0 3402 */
abd50713 3403 if (delta > 0)
f39d47ff 3404 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3405
3406 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3407 next:
3408 perf_pmu_enable(event->pmu);
60db5e09 3409 }
e050e3f0 3410
f39d47ff 3411 perf_pmu_enable(ctx->pmu);
e050e3f0 3412 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3413}
3414
235c7fc7 3415/*
cdd6c482 3416 * Round-robin a context's events:
235c7fc7 3417 */
cdd6c482 3418static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3419{
dddd3379
TG
3420 /*
3421 * Rotate the first entry last of non-pinned groups. Rotation might be
3422 * disabled by the inheritance code.
3423 */
3424 if (!ctx->rotate_disable)
3425 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3426}
3427
9e630205 3428static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3429{
8dc85d54 3430 struct perf_event_context *ctx = NULL;
2fde4f94 3431 int rotate = 0;
7fc23a53 3432
b5ab4cd5 3433 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3434 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3435 rotate = 1;
3436 }
235c7fc7 3437
8dc85d54 3438 ctx = cpuctx->task_ctx;
b5ab4cd5 3439 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3440 if (ctx->nr_events != ctx->nr_active)
3441 rotate = 1;
3442 }
9717e6cd 3443
e050e3f0 3444 if (!rotate)
0f5a2601
PZ
3445 goto done;
3446
facc4307 3447 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3448 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3449
e050e3f0
SE
3450 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3451 if (ctx)
3452 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3453
e050e3f0
SE
3454 rotate_ctx(&cpuctx->ctx);
3455 if (ctx)
3456 rotate_ctx(ctx);
235c7fc7 3457
e050e3f0 3458 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3459
0f5a2601
PZ
3460 perf_pmu_enable(cpuctx->ctx.pmu);
3461 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3462done:
9e630205
SE
3463
3464 return rotate;
e9d2b064
PZ
3465}
3466
3467void perf_event_task_tick(void)
3468{
2fde4f94
MR
3469 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3470 struct perf_event_context *ctx, *tmp;
e050e3f0 3471 int throttled;
b5ab4cd5 3472
e9d2b064
PZ
3473 WARN_ON(!irqs_disabled());
3474
e050e3f0
SE
3475 __this_cpu_inc(perf_throttled_seq);
3476 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3477 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3478
2fde4f94 3479 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3480 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3481}
3482
889ff015
FW
3483static int event_enable_on_exec(struct perf_event *event,
3484 struct perf_event_context *ctx)
3485{
3486 if (!event->attr.enable_on_exec)
3487 return 0;
3488
3489 event->attr.enable_on_exec = 0;
3490 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3491 return 0;
3492
1d9b482e 3493 __perf_event_mark_enabled(event);
889ff015
FW
3494
3495 return 1;
3496}
3497
57e7986e 3498/*
cdd6c482 3499 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3500 * This expects task == current.
3501 */
c1274499 3502static void perf_event_enable_on_exec(int ctxn)
57e7986e 3503{
c1274499 3504 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3505 enum event_type_t event_type = 0;
3e349507 3506 struct perf_cpu_context *cpuctx;
cdd6c482 3507 struct perf_event *event;
57e7986e
PM
3508 unsigned long flags;
3509 int enabled = 0;
3510
3511 local_irq_save(flags);
c1274499 3512 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3513 if (!ctx || !ctx->nr_events)
57e7986e
PM
3514 goto out;
3515
3e349507
PZ
3516 cpuctx = __get_cpu_context(ctx);
3517 perf_ctx_lock(cpuctx, ctx);
7fce2509 3518 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3519 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3520 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3521 event_type |= get_event_type(event);
3522 }
57e7986e
PM
3523
3524 /*
3e349507 3525 * Unclone and reschedule this context if we enabled any event.
57e7986e 3526 */
3e349507 3527 if (enabled) {
211de6eb 3528 clone_ctx = unclone_ctx(ctx);
487f05e1 3529 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3530 } else {
3531 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3532 }
3533 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3534
9ed6060d 3535out:
57e7986e 3536 local_irq_restore(flags);
211de6eb
PZ
3537
3538 if (clone_ctx)
3539 put_ctx(clone_ctx);
57e7986e
PM
3540}
3541
0492d4c5
PZ
3542struct perf_read_data {
3543 struct perf_event *event;
3544 bool group;
7d88962e 3545 int ret;
0492d4c5
PZ
3546};
3547
451d24d1 3548static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3549{
d6a2f903
DCC
3550 u16 local_pkg, event_pkg;
3551
3552 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3553 int local_cpu = smp_processor_id();
3554
3555 event_pkg = topology_physical_package_id(event_cpu);
3556 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3557
3558 if (event_pkg == local_pkg)
3559 return local_cpu;
3560 }
3561
3562 return event_cpu;
3563}
3564
0793a61d 3565/*
cdd6c482 3566 * Cross CPU call to read the hardware event
0793a61d 3567 */
cdd6c482 3568static void __perf_event_read(void *info)
0793a61d 3569{
0492d4c5
PZ
3570 struct perf_read_data *data = info;
3571 struct perf_event *sub, *event = data->event;
cdd6c482 3572 struct perf_event_context *ctx = event->ctx;
108b02cf 3573 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3574 struct pmu *pmu = event->pmu;
621a01ea 3575
e1ac3614
PM
3576 /*
3577 * If this is a task context, we need to check whether it is
3578 * the current task context of this cpu. If not it has been
3579 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3580 * event->count would have been updated to a recent sample
3581 * when the event was scheduled out.
e1ac3614
PM
3582 */
3583 if (ctx->task && cpuctx->task_ctx != ctx)
3584 return;
3585
e625cce1 3586 raw_spin_lock(&ctx->lock);
e5d1367f 3587 if (ctx->is_active) {
542e72fc 3588 update_context_time(ctx);
e5d1367f
SE
3589 update_cgrp_time_from_event(event);
3590 }
0492d4c5 3591
cdd6c482 3592 update_event_times(event);
4a00c16e
SB
3593 if (event->state != PERF_EVENT_STATE_ACTIVE)
3594 goto unlock;
0492d4c5 3595
4a00c16e
SB
3596 if (!data->group) {
3597 pmu->read(event);
3598 data->ret = 0;
0492d4c5 3599 goto unlock;
4a00c16e
SB
3600 }
3601
3602 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3603
3604 pmu->read(event);
0492d4c5
PZ
3605
3606 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3607 update_event_times(sub);
4a00c16e
SB
3608 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3609 /*
3610 * Use sibling's PMU rather than @event's since
3611 * sibling could be on different (eg: software) PMU.
3612 */
0492d4c5 3613 sub->pmu->read(sub);
4a00c16e 3614 }
0492d4c5 3615 }
4a00c16e
SB
3616
3617 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3618
3619unlock:
e625cce1 3620 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3621}
3622
b5e58793
PZ
3623static inline u64 perf_event_count(struct perf_event *event)
3624{
eacd3ecc
MF
3625 if (event->pmu->count)
3626 return event->pmu->count(event);
3627
3628 return __perf_event_count(event);
b5e58793
PZ
3629}
3630
ffe8690c
KX
3631/*
3632 * NMI-safe method to read a local event, that is an event that
3633 * is:
3634 * - either for the current task, or for this CPU
3635 * - does not have inherit set, for inherited task events
3636 * will not be local and we cannot read them atomically
3637 * - must not have a pmu::count method
3638 */
3639u64 perf_event_read_local(struct perf_event *event)
3640{
3641 unsigned long flags;
3642 u64 val;
3643
3644 /*
3645 * Disabling interrupts avoids all counter scheduling (context
3646 * switches, timer based rotation and IPIs).
3647 */
3648 local_irq_save(flags);
3649
3650 /* If this is a per-task event, it must be for current */
3651 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3652 event->hw.target != current);
3653
3654 /* If this is a per-CPU event, it must be for this CPU */
3655 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3656 event->cpu != smp_processor_id());
3657
3658 /*
3659 * It must not be an event with inherit set, we cannot read
3660 * all child counters from atomic context.
3661 */
3662 WARN_ON_ONCE(event->attr.inherit);
3663
3664 /*
3665 * It must not have a pmu::count method, those are not
3666 * NMI safe.
3667 */
3668 WARN_ON_ONCE(event->pmu->count);
3669
3670 /*
3671 * If the event is currently on this CPU, its either a per-task event,
3672 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3673 * oncpu == -1).
3674 */
3675 if (event->oncpu == smp_processor_id())
3676 event->pmu->read(event);
3677
3678 val = local64_read(&event->count);
3679 local_irq_restore(flags);
3680
3681 return val;
3682}
3683
7d88962e 3684static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3685{
451d24d1 3686 int event_cpu, ret = 0;
7d88962e 3687
0793a61d 3688 /*
cdd6c482
IM
3689 * If event is enabled and currently active on a CPU, update the
3690 * value in the event structure:
0793a61d 3691 */
cdd6c482 3692 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3693 struct perf_read_data data = {
3694 .event = event,
3695 .group = group,
7d88962e 3696 .ret = 0,
0492d4c5 3697 };
d6a2f903 3698
451d24d1
PZ
3699 event_cpu = READ_ONCE(event->oncpu);
3700 if ((unsigned)event_cpu >= nr_cpu_ids)
3701 return 0;
3702
3703 preempt_disable();
3704 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3705
58763148
PZ
3706 /*
3707 * Purposely ignore the smp_call_function_single() return
3708 * value.
3709 *
451d24d1 3710 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3711 * scheduled out and that will have updated the event count.
3712 *
3713 * Therefore, either way, we'll have an up-to-date event count
3714 * after this.
3715 */
451d24d1
PZ
3716 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3717 preempt_enable();
58763148 3718 ret = data.ret;
cdd6c482 3719 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3720 struct perf_event_context *ctx = event->ctx;
3721 unsigned long flags;
3722
e625cce1 3723 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3724 /*
3725 * may read while context is not active
3726 * (e.g., thread is blocked), in that case
3727 * we cannot update context time
3728 */
e5d1367f 3729 if (ctx->is_active) {
c530ccd9 3730 update_context_time(ctx);
e5d1367f
SE
3731 update_cgrp_time_from_event(event);
3732 }
0492d4c5
PZ
3733 if (group)
3734 update_group_times(event);
3735 else
3736 update_event_times(event);
e625cce1 3737 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3738 }
7d88962e
SB
3739
3740 return ret;
0793a61d
TG
3741}
3742
a63eaf34 3743/*
cdd6c482 3744 * Initialize the perf_event context in a task_struct:
a63eaf34 3745 */
eb184479 3746static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3747{
e625cce1 3748 raw_spin_lock_init(&ctx->lock);
a63eaf34 3749 mutex_init(&ctx->mutex);
2fde4f94 3750 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3751 INIT_LIST_HEAD(&ctx->pinned_groups);
3752 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3753 INIT_LIST_HEAD(&ctx->event_list);
3754 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3755}
3756
3757static struct perf_event_context *
3758alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3759{
3760 struct perf_event_context *ctx;
3761
3762 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3763 if (!ctx)
3764 return NULL;
3765
3766 __perf_event_init_context(ctx);
3767 if (task) {
3768 ctx->task = task;
3769 get_task_struct(task);
0793a61d 3770 }
eb184479
PZ
3771 ctx->pmu = pmu;
3772
3773 return ctx;
a63eaf34
PM
3774}
3775
2ebd4ffb
MH
3776static struct task_struct *
3777find_lively_task_by_vpid(pid_t vpid)
3778{
3779 struct task_struct *task;
0793a61d
TG
3780
3781 rcu_read_lock();
2ebd4ffb 3782 if (!vpid)
0793a61d
TG
3783 task = current;
3784 else
2ebd4ffb 3785 task = find_task_by_vpid(vpid);
0793a61d
TG
3786 if (task)
3787 get_task_struct(task);
3788 rcu_read_unlock();
3789
3790 if (!task)
3791 return ERR_PTR(-ESRCH);
3792
2ebd4ffb 3793 return task;
2ebd4ffb
MH
3794}
3795
fe4b04fa
PZ
3796/*
3797 * Returns a matching context with refcount and pincount.
3798 */
108b02cf 3799static struct perf_event_context *
4af57ef2
YZ
3800find_get_context(struct pmu *pmu, struct task_struct *task,
3801 struct perf_event *event)
0793a61d 3802{
211de6eb 3803 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3804 struct perf_cpu_context *cpuctx;
4af57ef2 3805 void *task_ctx_data = NULL;
25346b93 3806 unsigned long flags;
8dc85d54 3807 int ctxn, err;
4af57ef2 3808 int cpu = event->cpu;
0793a61d 3809
22a4ec72 3810 if (!task) {
cdd6c482 3811 /* Must be root to operate on a CPU event: */
0764771d 3812 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3813 return ERR_PTR(-EACCES);
3814
0793a61d 3815 /*
cdd6c482 3816 * We could be clever and allow to attach a event to an
0793a61d
TG
3817 * offline CPU and activate it when the CPU comes up, but
3818 * that's for later.
3819 */
f6325e30 3820 if (!cpu_online(cpu))
0793a61d
TG
3821 return ERR_PTR(-ENODEV);
3822
108b02cf 3823 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3824 ctx = &cpuctx->ctx;
c93f7669 3825 get_ctx(ctx);
fe4b04fa 3826 ++ctx->pin_count;
0793a61d 3827
0793a61d
TG
3828 return ctx;
3829 }
3830
8dc85d54
PZ
3831 err = -EINVAL;
3832 ctxn = pmu->task_ctx_nr;
3833 if (ctxn < 0)
3834 goto errout;
3835
4af57ef2
YZ
3836 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3837 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3838 if (!task_ctx_data) {
3839 err = -ENOMEM;
3840 goto errout;
3841 }
3842 }
3843
9ed6060d 3844retry:
8dc85d54 3845 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3846 if (ctx) {
211de6eb 3847 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3848 ++ctx->pin_count;
4af57ef2
YZ
3849
3850 if (task_ctx_data && !ctx->task_ctx_data) {
3851 ctx->task_ctx_data = task_ctx_data;
3852 task_ctx_data = NULL;
3853 }
e625cce1 3854 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3855
3856 if (clone_ctx)
3857 put_ctx(clone_ctx);
9137fb28 3858 } else {
eb184479 3859 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3860 err = -ENOMEM;
3861 if (!ctx)
3862 goto errout;
eb184479 3863
4af57ef2
YZ
3864 if (task_ctx_data) {
3865 ctx->task_ctx_data = task_ctx_data;
3866 task_ctx_data = NULL;
3867 }
3868
dbe08d82
ON
3869 err = 0;
3870 mutex_lock(&task->perf_event_mutex);
3871 /*
3872 * If it has already passed perf_event_exit_task().
3873 * we must see PF_EXITING, it takes this mutex too.
3874 */
3875 if (task->flags & PF_EXITING)
3876 err = -ESRCH;
3877 else if (task->perf_event_ctxp[ctxn])
3878 err = -EAGAIN;
fe4b04fa 3879 else {
9137fb28 3880 get_ctx(ctx);
fe4b04fa 3881 ++ctx->pin_count;
dbe08d82 3882 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3883 }
dbe08d82
ON
3884 mutex_unlock(&task->perf_event_mutex);
3885
3886 if (unlikely(err)) {
9137fb28 3887 put_ctx(ctx);
dbe08d82
ON
3888
3889 if (err == -EAGAIN)
3890 goto retry;
3891 goto errout;
a63eaf34
PM
3892 }
3893 }
3894
4af57ef2 3895 kfree(task_ctx_data);
0793a61d 3896 return ctx;
c93f7669 3897
9ed6060d 3898errout:
4af57ef2 3899 kfree(task_ctx_data);
c93f7669 3900 return ERR_PTR(err);
0793a61d
TG
3901}
3902
6fb2915d 3903static void perf_event_free_filter(struct perf_event *event);
2541517c 3904static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3905
cdd6c482 3906static void free_event_rcu(struct rcu_head *head)
592903cd 3907{
cdd6c482 3908 struct perf_event *event;
592903cd 3909
cdd6c482
IM
3910 event = container_of(head, struct perf_event, rcu_head);
3911 if (event->ns)
3912 put_pid_ns(event->ns);
6fb2915d 3913 perf_event_free_filter(event);
cdd6c482 3914 kfree(event);
592903cd
PZ
3915}
3916
b69cf536
PZ
3917static void ring_buffer_attach(struct perf_event *event,
3918 struct ring_buffer *rb);
925d519a 3919
f2fb6bef
KL
3920static void detach_sb_event(struct perf_event *event)
3921{
3922 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3923
3924 raw_spin_lock(&pel->lock);
3925 list_del_rcu(&event->sb_list);
3926 raw_spin_unlock(&pel->lock);
3927}
3928
a4f144eb 3929static bool is_sb_event(struct perf_event *event)
f2fb6bef 3930{
a4f144eb
DCC
3931 struct perf_event_attr *attr = &event->attr;
3932
f2fb6bef 3933 if (event->parent)
a4f144eb 3934 return false;
f2fb6bef
KL
3935
3936 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3937 return false;
f2fb6bef 3938
a4f144eb
DCC
3939 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3940 attr->comm || attr->comm_exec ||
3941 attr->task ||
3942 attr->context_switch)
3943 return true;
3944 return false;
3945}
3946
3947static void unaccount_pmu_sb_event(struct perf_event *event)
3948{
3949 if (is_sb_event(event))
3950 detach_sb_event(event);
f2fb6bef
KL
3951}
3952
4beb31f3 3953static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3954{
4beb31f3
FW
3955 if (event->parent)
3956 return;
3957
4beb31f3
FW
3958 if (is_cgroup_event(event))
3959 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3960}
925d519a 3961
555e0c1e
FW
3962#ifdef CONFIG_NO_HZ_FULL
3963static DEFINE_SPINLOCK(nr_freq_lock);
3964#endif
3965
3966static void unaccount_freq_event_nohz(void)
3967{
3968#ifdef CONFIG_NO_HZ_FULL
3969 spin_lock(&nr_freq_lock);
3970 if (atomic_dec_and_test(&nr_freq_events))
3971 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3972 spin_unlock(&nr_freq_lock);
3973#endif
3974}
3975
3976static void unaccount_freq_event(void)
3977{
3978 if (tick_nohz_full_enabled())
3979 unaccount_freq_event_nohz();
3980 else
3981 atomic_dec(&nr_freq_events);
3982}
3983
4beb31f3
FW
3984static void unaccount_event(struct perf_event *event)
3985{
25432ae9
PZ
3986 bool dec = false;
3987
4beb31f3
FW
3988 if (event->parent)
3989 return;
3990
3991 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3992 dec = true;
4beb31f3
FW
3993 if (event->attr.mmap || event->attr.mmap_data)
3994 atomic_dec(&nr_mmap_events);
3995 if (event->attr.comm)
3996 atomic_dec(&nr_comm_events);
e4222673
HB
3997 if (event->attr.namespaces)
3998 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3999 if (event->attr.task)
4000 atomic_dec(&nr_task_events);
948b26b6 4001 if (event->attr.freq)
555e0c1e 4002 unaccount_freq_event();
45ac1403 4003 if (event->attr.context_switch) {
25432ae9 4004 dec = true;
45ac1403
AH
4005 atomic_dec(&nr_switch_events);
4006 }
4beb31f3 4007 if (is_cgroup_event(event))
25432ae9 4008 dec = true;
4beb31f3 4009 if (has_branch_stack(event))
25432ae9
PZ
4010 dec = true;
4011
9107c89e
PZ
4012 if (dec) {
4013 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4014 schedule_delayed_work(&perf_sched_work, HZ);
4015 }
4beb31f3
FW
4016
4017 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4018
4019 unaccount_pmu_sb_event(event);
4beb31f3 4020}
925d519a 4021
9107c89e
PZ
4022static void perf_sched_delayed(struct work_struct *work)
4023{
4024 mutex_lock(&perf_sched_mutex);
4025 if (atomic_dec_and_test(&perf_sched_count))
4026 static_branch_disable(&perf_sched_events);
4027 mutex_unlock(&perf_sched_mutex);
4028}
4029
bed5b25a
AS
4030/*
4031 * The following implement mutual exclusion of events on "exclusive" pmus
4032 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4033 * at a time, so we disallow creating events that might conflict, namely:
4034 *
4035 * 1) cpu-wide events in the presence of per-task events,
4036 * 2) per-task events in the presence of cpu-wide events,
4037 * 3) two matching events on the same context.
4038 *
4039 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4040 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4041 */
4042static int exclusive_event_init(struct perf_event *event)
4043{
4044 struct pmu *pmu = event->pmu;
4045
4046 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4047 return 0;
4048
4049 /*
4050 * Prevent co-existence of per-task and cpu-wide events on the
4051 * same exclusive pmu.
4052 *
4053 * Negative pmu::exclusive_cnt means there are cpu-wide
4054 * events on this "exclusive" pmu, positive means there are
4055 * per-task events.
4056 *
4057 * Since this is called in perf_event_alloc() path, event::ctx
4058 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4059 * to mean "per-task event", because unlike other attach states it
4060 * never gets cleared.
4061 */
4062 if (event->attach_state & PERF_ATTACH_TASK) {
4063 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4064 return -EBUSY;
4065 } else {
4066 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4067 return -EBUSY;
4068 }
4069
4070 return 0;
4071}
4072
4073static void exclusive_event_destroy(struct perf_event *event)
4074{
4075 struct pmu *pmu = event->pmu;
4076
4077 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4078 return;
4079
4080 /* see comment in exclusive_event_init() */
4081 if (event->attach_state & PERF_ATTACH_TASK)
4082 atomic_dec(&pmu->exclusive_cnt);
4083 else
4084 atomic_inc(&pmu->exclusive_cnt);
4085}
4086
4087static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4088{
3bf6215a 4089 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4090 (e1->cpu == e2->cpu ||
4091 e1->cpu == -1 ||
4092 e2->cpu == -1))
4093 return true;
4094 return false;
4095}
4096
4097/* Called under the same ctx::mutex as perf_install_in_context() */
4098static bool exclusive_event_installable(struct perf_event *event,
4099 struct perf_event_context *ctx)
4100{
4101 struct perf_event *iter_event;
4102 struct pmu *pmu = event->pmu;
4103
4104 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4105 return true;
4106
4107 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4108 if (exclusive_event_match(iter_event, event))
4109 return false;
4110 }
4111
4112 return true;
4113}
4114
375637bc
AS
4115static void perf_addr_filters_splice(struct perf_event *event,
4116 struct list_head *head);
4117
683ede43 4118static void _free_event(struct perf_event *event)
f1600952 4119{
e360adbe 4120 irq_work_sync(&event->pending);
925d519a 4121
4beb31f3 4122 unaccount_event(event);
9ee318a7 4123
76369139 4124 if (event->rb) {
9bb5d40c
PZ
4125 /*
4126 * Can happen when we close an event with re-directed output.
4127 *
4128 * Since we have a 0 refcount, perf_mmap_close() will skip
4129 * over us; possibly making our ring_buffer_put() the last.
4130 */
4131 mutex_lock(&event->mmap_mutex);
b69cf536 4132 ring_buffer_attach(event, NULL);
9bb5d40c 4133 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4134 }
4135
e5d1367f
SE
4136 if (is_cgroup_event(event))
4137 perf_detach_cgroup(event);
4138
a0733e69
PZ
4139 if (!event->parent) {
4140 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4141 put_callchain_buffers();
4142 }
4143
4144 perf_event_free_bpf_prog(event);
375637bc
AS
4145 perf_addr_filters_splice(event, NULL);
4146 kfree(event->addr_filters_offs);
a0733e69
PZ
4147
4148 if (event->destroy)
4149 event->destroy(event);
4150
4151 if (event->ctx)
4152 put_ctx(event->ctx);
4153
62a92c8f
AS
4154 exclusive_event_destroy(event);
4155 module_put(event->pmu->module);
a0733e69
PZ
4156
4157 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4158}
4159
683ede43
PZ
4160/*
4161 * Used to free events which have a known refcount of 1, such as in error paths
4162 * where the event isn't exposed yet and inherited events.
4163 */
4164static void free_event(struct perf_event *event)
0793a61d 4165{
683ede43
PZ
4166 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4167 "unexpected event refcount: %ld; ptr=%p\n",
4168 atomic_long_read(&event->refcount), event)) {
4169 /* leak to avoid use-after-free */
4170 return;
4171 }
0793a61d 4172
683ede43 4173 _free_event(event);
0793a61d
TG
4174}
4175
a66a3052 4176/*
f8697762 4177 * Remove user event from the owner task.
a66a3052 4178 */
f8697762 4179static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4180{
8882135b 4181 struct task_struct *owner;
fb0459d7 4182
8882135b 4183 rcu_read_lock();
8882135b 4184 /*
f47c02c0
PZ
4185 * Matches the smp_store_release() in perf_event_exit_task(). If we
4186 * observe !owner it means the list deletion is complete and we can
4187 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4188 * owner->perf_event_mutex.
4189 */
f47c02c0 4190 owner = lockless_dereference(event->owner);
8882135b
PZ
4191 if (owner) {
4192 /*
4193 * Since delayed_put_task_struct() also drops the last
4194 * task reference we can safely take a new reference
4195 * while holding the rcu_read_lock().
4196 */
4197 get_task_struct(owner);
4198 }
4199 rcu_read_unlock();
4200
4201 if (owner) {
f63a8daa
PZ
4202 /*
4203 * If we're here through perf_event_exit_task() we're already
4204 * holding ctx->mutex which would be an inversion wrt. the
4205 * normal lock order.
4206 *
4207 * However we can safely take this lock because its the child
4208 * ctx->mutex.
4209 */
4210 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4211
8882135b
PZ
4212 /*
4213 * We have to re-check the event->owner field, if it is cleared
4214 * we raced with perf_event_exit_task(), acquiring the mutex
4215 * ensured they're done, and we can proceed with freeing the
4216 * event.
4217 */
f47c02c0 4218 if (event->owner) {
8882135b 4219 list_del_init(&event->owner_entry);
f47c02c0
PZ
4220 smp_store_release(&event->owner, NULL);
4221 }
8882135b
PZ
4222 mutex_unlock(&owner->perf_event_mutex);
4223 put_task_struct(owner);
4224 }
f8697762
JO
4225}
4226
f8697762
JO
4227static void put_event(struct perf_event *event)
4228{
f8697762
JO
4229 if (!atomic_long_dec_and_test(&event->refcount))
4230 return;
4231
c6e5b732
PZ
4232 _free_event(event);
4233}
4234
4235/*
4236 * Kill an event dead; while event:refcount will preserve the event
4237 * object, it will not preserve its functionality. Once the last 'user'
4238 * gives up the object, we'll destroy the thing.
4239 */
4240int perf_event_release_kernel(struct perf_event *event)
4241{
a4f4bb6d 4242 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4243 struct perf_event *child, *tmp;
4244
a4f4bb6d
PZ
4245 /*
4246 * If we got here through err_file: fput(event_file); we will not have
4247 * attached to a context yet.
4248 */
4249 if (!ctx) {
4250 WARN_ON_ONCE(event->attach_state &
4251 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4252 goto no_ctx;
4253 }
4254
f8697762
JO
4255 if (!is_kernel_event(event))
4256 perf_remove_from_owner(event);
8882135b 4257
5fa7c8ec 4258 ctx = perf_event_ctx_lock(event);
a83fe28e 4259 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4260 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4261
a69b0ca4 4262 raw_spin_lock_irq(&ctx->lock);
683ede43 4263 /*
d8a8cfc7 4264 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4265 * anymore.
683ede43 4266 *
a69b0ca4
PZ
4267 * Anybody acquiring event->child_mutex after the below loop _must_
4268 * also see this, most importantly inherit_event() which will avoid
4269 * placing more children on the list.
683ede43 4270 *
c6e5b732
PZ
4271 * Thus this guarantees that we will in fact observe and kill _ALL_
4272 * child events.
683ede43 4273 */
a69b0ca4
PZ
4274 event->state = PERF_EVENT_STATE_DEAD;
4275 raw_spin_unlock_irq(&ctx->lock);
4276
4277 perf_event_ctx_unlock(event, ctx);
683ede43 4278
c6e5b732
PZ
4279again:
4280 mutex_lock(&event->child_mutex);
4281 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4282
c6e5b732
PZ
4283 /*
4284 * Cannot change, child events are not migrated, see the
4285 * comment with perf_event_ctx_lock_nested().
4286 */
4287 ctx = lockless_dereference(child->ctx);
4288 /*
4289 * Since child_mutex nests inside ctx::mutex, we must jump
4290 * through hoops. We start by grabbing a reference on the ctx.
4291 *
4292 * Since the event cannot get freed while we hold the
4293 * child_mutex, the context must also exist and have a !0
4294 * reference count.
4295 */
4296 get_ctx(ctx);
4297
4298 /*
4299 * Now that we have a ctx ref, we can drop child_mutex, and
4300 * acquire ctx::mutex without fear of it going away. Then we
4301 * can re-acquire child_mutex.
4302 */
4303 mutex_unlock(&event->child_mutex);
4304 mutex_lock(&ctx->mutex);
4305 mutex_lock(&event->child_mutex);
4306
4307 /*
4308 * Now that we hold ctx::mutex and child_mutex, revalidate our
4309 * state, if child is still the first entry, it didn't get freed
4310 * and we can continue doing so.
4311 */
4312 tmp = list_first_entry_or_null(&event->child_list,
4313 struct perf_event, child_list);
4314 if (tmp == child) {
4315 perf_remove_from_context(child, DETACH_GROUP);
4316 list_del(&child->child_list);
4317 free_event(child);
4318 /*
4319 * This matches the refcount bump in inherit_event();
4320 * this can't be the last reference.
4321 */
4322 put_event(event);
4323 }
4324
4325 mutex_unlock(&event->child_mutex);
4326 mutex_unlock(&ctx->mutex);
4327 put_ctx(ctx);
4328 goto again;
4329 }
4330 mutex_unlock(&event->child_mutex);
4331
a4f4bb6d
PZ
4332no_ctx:
4333 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4334 return 0;
4335}
4336EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4337
8b10c5e2
PZ
4338/*
4339 * Called when the last reference to the file is gone.
4340 */
a6fa941d
AV
4341static int perf_release(struct inode *inode, struct file *file)
4342{
c6e5b732 4343 perf_event_release_kernel(file->private_data);
a6fa941d 4344 return 0;
fb0459d7 4345}
fb0459d7 4346
59ed446f 4347u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4348{
cdd6c482 4349 struct perf_event *child;
e53c0994
PZ
4350 u64 total = 0;
4351
59ed446f
PZ
4352 *enabled = 0;
4353 *running = 0;
4354
6f10581a 4355 mutex_lock(&event->child_mutex);
01add3ea 4356
7d88962e 4357 (void)perf_event_read(event, false);
01add3ea
SB
4358 total += perf_event_count(event);
4359
59ed446f
PZ
4360 *enabled += event->total_time_enabled +
4361 atomic64_read(&event->child_total_time_enabled);
4362 *running += event->total_time_running +
4363 atomic64_read(&event->child_total_time_running);
4364
4365 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4366 (void)perf_event_read(child, false);
01add3ea 4367 total += perf_event_count(child);
59ed446f
PZ
4368 *enabled += child->total_time_enabled;
4369 *running += child->total_time_running;
4370 }
6f10581a 4371 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4372
4373 return total;
4374}
fb0459d7 4375EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4376
7d88962e 4377static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4378 u64 read_format, u64 *values)
3dab77fb 4379{
fa8c2693
PZ
4380 struct perf_event *sub;
4381 int n = 1; /* skip @nr */
7d88962e 4382 int ret;
f63a8daa 4383
7d88962e
SB
4384 ret = perf_event_read(leader, true);
4385 if (ret)
4386 return ret;
abf4868b 4387
fa8c2693
PZ
4388 /*
4389 * Since we co-schedule groups, {enabled,running} times of siblings
4390 * will be identical to those of the leader, so we only publish one
4391 * set.
4392 */
4393 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4394 values[n++] += leader->total_time_enabled +
4395 atomic64_read(&leader->child_total_time_enabled);
4396 }
3dab77fb 4397
fa8c2693
PZ
4398 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4399 values[n++] += leader->total_time_running +
4400 atomic64_read(&leader->child_total_time_running);
4401 }
4402
4403 /*
4404 * Write {count,id} tuples for every sibling.
4405 */
4406 values[n++] += perf_event_count(leader);
abf4868b
PZ
4407 if (read_format & PERF_FORMAT_ID)
4408 values[n++] = primary_event_id(leader);
3dab77fb 4409
fa8c2693
PZ
4410 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4411 values[n++] += perf_event_count(sub);
4412 if (read_format & PERF_FORMAT_ID)
4413 values[n++] = primary_event_id(sub);
4414 }
7d88962e
SB
4415
4416 return 0;
fa8c2693 4417}
3dab77fb 4418
fa8c2693
PZ
4419static int perf_read_group(struct perf_event *event,
4420 u64 read_format, char __user *buf)
4421{
4422 struct perf_event *leader = event->group_leader, *child;
4423 struct perf_event_context *ctx = leader->ctx;
7d88962e 4424 int ret;
fa8c2693 4425 u64 *values;
3dab77fb 4426
fa8c2693 4427 lockdep_assert_held(&ctx->mutex);
3dab77fb 4428
fa8c2693
PZ
4429 values = kzalloc(event->read_size, GFP_KERNEL);
4430 if (!values)
4431 return -ENOMEM;
3dab77fb 4432
fa8c2693
PZ
4433 values[0] = 1 + leader->nr_siblings;
4434
4435 /*
4436 * By locking the child_mutex of the leader we effectively
4437 * lock the child list of all siblings.. XXX explain how.
4438 */
4439 mutex_lock(&leader->child_mutex);
abf4868b 4440
7d88962e
SB
4441 ret = __perf_read_group_add(leader, read_format, values);
4442 if (ret)
4443 goto unlock;
4444
4445 list_for_each_entry(child, &leader->child_list, child_list) {
4446 ret = __perf_read_group_add(child, read_format, values);
4447 if (ret)
4448 goto unlock;
4449 }
abf4868b 4450
fa8c2693 4451 mutex_unlock(&leader->child_mutex);
abf4868b 4452
7d88962e 4453 ret = event->read_size;
fa8c2693
PZ
4454 if (copy_to_user(buf, values, event->read_size))
4455 ret = -EFAULT;
7d88962e 4456 goto out;
fa8c2693 4457
7d88962e
SB
4458unlock:
4459 mutex_unlock(&leader->child_mutex);
4460out:
fa8c2693 4461 kfree(values);
abf4868b 4462 return ret;
3dab77fb
PZ
4463}
4464
b15f495b 4465static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4466 u64 read_format, char __user *buf)
4467{
59ed446f 4468 u64 enabled, running;
3dab77fb
PZ
4469 u64 values[4];
4470 int n = 0;
4471
59ed446f
PZ
4472 values[n++] = perf_event_read_value(event, &enabled, &running);
4473 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4474 values[n++] = enabled;
4475 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4476 values[n++] = running;
3dab77fb 4477 if (read_format & PERF_FORMAT_ID)
cdd6c482 4478 values[n++] = primary_event_id(event);
3dab77fb
PZ
4479
4480 if (copy_to_user(buf, values, n * sizeof(u64)))
4481 return -EFAULT;
4482
4483 return n * sizeof(u64);
4484}
4485
dc633982
JO
4486static bool is_event_hup(struct perf_event *event)
4487{
4488 bool no_children;
4489
a69b0ca4 4490 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4491 return false;
4492
4493 mutex_lock(&event->child_mutex);
4494 no_children = list_empty(&event->child_list);
4495 mutex_unlock(&event->child_mutex);
4496 return no_children;
4497}
4498
0793a61d 4499/*
cdd6c482 4500 * Read the performance event - simple non blocking version for now
0793a61d
TG
4501 */
4502static ssize_t
b15f495b 4503__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4504{
cdd6c482 4505 u64 read_format = event->attr.read_format;
3dab77fb 4506 int ret;
0793a61d 4507
3b6f9e5c 4508 /*
cdd6c482 4509 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4510 * error state (i.e. because it was pinned but it couldn't be
4511 * scheduled on to the CPU at some point).
4512 */
cdd6c482 4513 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4514 return 0;
4515
c320c7b7 4516 if (count < event->read_size)
3dab77fb
PZ
4517 return -ENOSPC;
4518
cdd6c482 4519 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4520 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4521 ret = perf_read_group(event, read_format, buf);
3dab77fb 4522 else
b15f495b 4523 ret = perf_read_one(event, read_format, buf);
0793a61d 4524
3dab77fb 4525 return ret;
0793a61d
TG
4526}
4527
0793a61d
TG
4528static ssize_t
4529perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4530{
cdd6c482 4531 struct perf_event *event = file->private_data;
f63a8daa
PZ
4532 struct perf_event_context *ctx;
4533 int ret;
0793a61d 4534
f63a8daa 4535 ctx = perf_event_ctx_lock(event);
b15f495b 4536 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4537 perf_event_ctx_unlock(event, ctx);
4538
4539 return ret;
0793a61d
TG
4540}
4541
4542static unsigned int perf_poll(struct file *file, poll_table *wait)
4543{
cdd6c482 4544 struct perf_event *event = file->private_data;
76369139 4545 struct ring_buffer *rb;
61b67684 4546 unsigned int events = POLLHUP;
c7138f37 4547
e708d7ad 4548 poll_wait(file, &event->waitq, wait);
179033b3 4549
dc633982 4550 if (is_event_hup(event))
179033b3 4551 return events;
c7138f37 4552
10c6db11 4553 /*
9bb5d40c
PZ
4554 * Pin the event->rb by taking event->mmap_mutex; otherwise
4555 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4556 */
4557 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4558 rb = event->rb;
4559 if (rb)
76369139 4560 events = atomic_xchg(&rb->poll, 0);
10c6db11 4561 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4562 return events;
4563}
4564
f63a8daa 4565static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4566{
7d88962e 4567 (void)perf_event_read(event, false);
e7850595 4568 local64_set(&event->count, 0);
cdd6c482 4569 perf_event_update_userpage(event);
3df5edad
PZ
4570}
4571
c93f7669 4572/*
cdd6c482
IM
4573 * Holding the top-level event's child_mutex means that any
4574 * descendant process that has inherited this event will block
8ba289b8 4575 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4576 * task existence requirements of perf_event_enable/disable.
c93f7669 4577 */
cdd6c482
IM
4578static void perf_event_for_each_child(struct perf_event *event,
4579 void (*func)(struct perf_event *))
3df5edad 4580{
cdd6c482 4581 struct perf_event *child;
3df5edad 4582
cdd6c482 4583 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4584
cdd6c482
IM
4585 mutex_lock(&event->child_mutex);
4586 func(event);
4587 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4588 func(child);
cdd6c482 4589 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4590}
4591
cdd6c482
IM
4592static void perf_event_for_each(struct perf_event *event,
4593 void (*func)(struct perf_event *))
3df5edad 4594{
cdd6c482
IM
4595 struct perf_event_context *ctx = event->ctx;
4596 struct perf_event *sibling;
3df5edad 4597
f63a8daa
PZ
4598 lockdep_assert_held(&ctx->mutex);
4599
cdd6c482 4600 event = event->group_leader;
75f937f2 4601
cdd6c482 4602 perf_event_for_each_child(event, func);
cdd6c482 4603 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4604 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4605}
4606
fae3fde6
PZ
4607static void __perf_event_period(struct perf_event *event,
4608 struct perf_cpu_context *cpuctx,
4609 struct perf_event_context *ctx,
4610 void *info)
c7999c6f 4611{
fae3fde6 4612 u64 value = *((u64 *)info);
c7999c6f 4613 bool active;
08247e31 4614
cdd6c482 4615 if (event->attr.freq) {
cdd6c482 4616 event->attr.sample_freq = value;
08247e31 4617 } else {
cdd6c482
IM
4618 event->attr.sample_period = value;
4619 event->hw.sample_period = value;
08247e31 4620 }
bad7192b
PZ
4621
4622 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4623 if (active) {
4624 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4625 /*
4626 * We could be throttled; unthrottle now to avoid the tick
4627 * trying to unthrottle while we already re-started the event.
4628 */
4629 if (event->hw.interrupts == MAX_INTERRUPTS) {
4630 event->hw.interrupts = 0;
4631 perf_log_throttle(event, 1);
4632 }
bad7192b
PZ
4633 event->pmu->stop(event, PERF_EF_UPDATE);
4634 }
4635
4636 local64_set(&event->hw.period_left, 0);
4637
4638 if (active) {
4639 event->pmu->start(event, PERF_EF_RELOAD);
4640 perf_pmu_enable(ctx->pmu);
4641 }
c7999c6f
PZ
4642}
4643
4644static int perf_event_period(struct perf_event *event, u64 __user *arg)
4645{
c7999c6f
PZ
4646 u64 value;
4647
4648 if (!is_sampling_event(event))
4649 return -EINVAL;
4650
4651 if (copy_from_user(&value, arg, sizeof(value)))
4652 return -EFAULT;
4653
4654 if (!value)
4655 return -EINVAL;
4656
4657 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4658 return -EINVAL;
4659
fae3fde6 4660 event_function_call(event, __perf_event_period, &value);
08247e31 4661
c7999c6f 4662 return 0;
08247e31
PZ
4663}
4664
ac9721f3
PZ
4665static const struct file_operations perf_fops;
4666
2903ff01 4667static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4668{
2903ff01
AV
4669 struct fd f = fdget(fd);
4670 if (!f.file)
4671 return -EBADF;
ac9721f3 4672
2903ff01
AV
4673 if (f.file->f_op != &perf_fops) {
4674 fdput(f);
4675 return -EBADF;
ac9721f3 4676 }
2903ff01
AV
4677 *p = f;
4678 return 0;
ac9721f3
PZ
4679}
4680
4681static int perf_event_set_output(struct perf_event *event,
4682 struct perf_event *output_event);
6fb2915d 4683static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4684static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4685
f63a8daa 4686static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4687{
cdd6c482 4688 void (*func)(struct perf_event *);
3df5edad 4689 u32 flags = arg;
d859e29f
PM
4690
4691 switch (cmd) {
cdd6c482 4692 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4693 func = _perf_event_enable;
d859e29f 4694 break;
cdd6c482 4695 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4696 func = _perf_event_disable;
79f14641 4697 break;
cdd6c482 4698 case PERF_EVENT_IOC_RESET:
f63a8daa 4699 func = _perf_event_reset;
6de6a7b9 4700 break;
3df5edad 4701
cdd6c482 4702 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4703 return _perf_event_refresh(event, arg);
08247e31 4704
cdd6c482
IM
4705 case PERF_EVENT_IOC_PERIOD:
4706 return perf_event_period(event, (u64 __user *)arg);
08247e31 4707
cf4957f1
JO
4708 case PERF_EVENT_IOC_ID:
4709 {
4710 u64 id = primary_event_id(event);
4711
4712 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4713 return -EFAULT;
4714 return 0;
4715 }
4716
cdd6c482 4717 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4718 {
ac9721f3 4719 int ret;
ac9721f3 4720 if (arg != -1) {
2903ff01
AV
4721 struct perf_event *output_event;
4722 struct fd output;
4723 ret = perf_fget_light(arg, &output);
4724 if (ret)
4725 return ret;
4726 output_event = output.file->private_data;
4727 ret = perf_event_set_output(event, output_event);
4728 fdput(output);
4729 } else {
4730 ret = perf_event_set_output(event, NULL);
ac9721f3 4731 }
ac9721f3
PZ
4732 return ret;
4733 }
a4be7c27 4734
6fb2915d
LZ
4735 case PERF_EVENT_IOC_SET_FILTER:
4736 return perf_event_set_filter(event, (void __user *)arg);
4737
2541517c
AS
4738 case PERF_EVENT_IOC_SET_BPF:
4739 return perf_event_set_bpf_prog(event, arg);
4740
86e7972f
WN
4741 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4742 struct ring_buffer *rb;
4743
4744 rcu_read_lock();
4745 rb = rcu_dereference(event->rb);
4746 if (!rb || !rb->nr_pages) {
4747 rcu_read_unlock();
4748 return -EINVAL;
4749 }
4750 rb_toggle_paused(rb, !!arg);
4751 rcu_read_unlock();
4752 return 0;
4753 }
d859e29f 4754 default:
3df5edad 4755 return -ENOTTY;
d859e29f 4756 }
3df5edad
PZ
4757
4758 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4759 perf_event_for_each(event, func);
3df5edad 4760 else
cdd6c482 4761 perf_event_for_each_child(event, func);
3df5edad
PZ
4762
4763 return 0;
d859e29f
PM
4764}
4765
f63a8daa
PZ
4766static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4767{
4768 struct perf_event *event = file->private_data;
4769 struct perf_event_context *ctx;
4770 long ret;
4771
4772 ctx = perf_event_ctx_lock(event);
4773 ret = _perf_ioctl(event, cmd, arg);
4774 perf_event_ctx_unlock(event, ctx);
4775
4776 return ret;
4777}
4778
b3f20785
PM
4779#ifdef CONFIG_COMPAT
4780static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4781 unsigned long arg)
4782{
4783 switch (_IOC_NR(cmd)) {
4784 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4785 case _IOC_NR(PERF_EVENT_IOC_ID):
4786 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4787 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4788 cmd &= ~IOCSIZE_MASK;
4789 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4790 }
4791 break;
4792 }
4793 return perf_ioctl(file, cmd, arg);
4794}
4795#else
4796# define perf_compat_ioctl NULL
4797#endif
4798
cdd6c482 4799int perf_event_task_enable(void)
771d7cde 4800{
f63a8daa 4801 struct perf_event_context *ctx;
cdd6c482 4802 struct perf_event *event;
771d7cde 4803
cdd6c482 4804 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4805 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806 ctx = perf_event_ctx_lock(event);
4807 perf_event_for_each_child(event, _perf_event_enable);
4808 perf_event_ctx_unlock(event, ctx);
4809 }
cdd6c482 4810 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4811
4812 return 0;
4813}
4814
cdd6c482 4815int perf_event_task_disable(void)
771d7cde 4816{
f63a8daa 4817 struct perf_event_context *ctx;
cdd6c482 4818 struct perf_event *event;
771d7cde 4819
cdd6c482 4820 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4821 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4822 ctx = perf_event_ctx_lock(event);
4823 perf_event_for_each_child(event, _perf_event_disable);
4824 perf_event_ctx_unlock(event, ctx);
4825 }
cdd6c482 4826 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4827
4828 return 0;
4829}
4830
cdd6c482 4831static int perf_event_index(struct perf_event *event)
194002b2 4832{
a4eaf7f1
PZ
4833 if (event->hw.state & PERF_HES_STOPPED)
4834 return 0;
4835
cdd6c482 4836 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4837 return 0;
4838
35edc2a5 4839 return event->pmu->event_idx(event);
194002b2
PZ
4840}
4841
c4794295 4842static void calc_timer_values(struct perf_event *event,
e3f3541c 4843 u64 *now,
7f310a5d
EM
4844 u64 *enabled,
4845 u64 *running)
c4794295 4846{
e3f3541c 4847 u64 ctx_time;
c4794295 4848
e3f3541c
PZ
4849 *now = perf_clock();
4850 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4851 *enabled = ctx_time - event->tstamp_enabled;
4852 *running = ctx_time - event->tstamp_running;
4853}
4854
fa731587
PZ
4855static void perf_event_init_userpage(struct perf_event *event)
4856{
4857 struct perf_event_mmap_page *userpg;
4858 struct ring_buffer *rb;
4859
4860 rcu_read_lock();
4861 rb = rcu_dereference(event->rb);
4862 if (!rb)
4863 goto unlock;
4864
4865 userpg = rb->user_page;
4866
4867 /* Allow new userspace to detect that bit 0 is deprecated */
4868 userpg->cap_bit0_is_deprecated = 1;
4869 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4870 userpg->data_offset = PAGE_SIZE;
4871 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4872
4873unlock:
4874 rcu_read_unlock();
4875}
4876
c1317ec2
AL
4877void __weak arch_perf_update_userpage(
4878 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4879{
4880}
4881
38ff667b
PZ
4882/*
4883 * Callers need to ensure there can be no nesting of this function, otherwise
4884 * the seqlock logic goes bad. We can not serialize this because the arch
4885 * code calls this from NMI context.
4886 */
cdd6c482 4887void perf_event_update_userpage(struct perf_event *event)
37d81828 4888{
cdd6c482 4889 struct perf_event_mmap_page *userpg;
76369139 4890 struct ring_buffer *rb;
e3f3541c 4891 u64 enabled, running, now;
38ff667b
PZ
4892
4893 rcu_read_lock();
5ec4c599
PZ
4894 rb = rcu_dereference(event->rb);
4895 if (!rb)
4896 goto unlock;
4897
0d641208
EM
4898 /*
4899 * compute total_time_enabled, total_time_running
4900 * based on snapshot values taken when the event
4901 * was last scheduled in.
4902 *
4903 * we cannot simply called update_context_time()
4904 * because of locking issue as we can be called in
4905 * NMI context
4906 */
e3f3541c 4907 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4908
76369139 4909 userpg = rb->user_page;
7b732a75
PZ
4910 /*
4911 * Disable preemption so as to not let the corresponding user-space
4912 * spin too long if we get preempted.
4913 */
4914 preempt_disable();
37d81828 4915 ++userpg->lock;
92f22a38 4916 barrier();
cdd6c482 4917 userpg->index = perf_event_index(event);
b5e58793 4918 userpg->offset = perf_event_count(event);
365a4038 4919 if (userpg->index)
e7850595 4920 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4921
0d641208 4922 userpg->time_enabled = enabled +
cdd6c482 4923 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4924
0d641208 4925 userpg->time_running = running +
cdd6c482 4926 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4927
c1317ec2 4928 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4929
92f22a38 4930 barrier();
37d81828 4931 ++userpg->lock;
7b732a75 4932 preempt_enable();
38ff667b 4933unlock:
7b732a75 4934 rcu_read_unlock();
37d81828
PM
4935}
4936
11bac800 4937static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4938{
11bac800 4939 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4940 struct ring_buffer *rb;
906010b2
PZ
4941 int ret = VM_FAULT_SIGBUS;
4942
4943 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4944 if (vmf->pgoff == 0)
4945 ret = 0;
4946 return ret;
4947 }
4948
4949 rcu_read_lock();
76369139
FW
4950 rb = rcu_dereference(event->rb);
4951 if (!rb)
906010b2
PZ
4952 goto unlock;
4953
4954 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4955 goto unlock;
4956
76369139 4957 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4958 if (!vmf->page)
4959 goto unlock;
4960
4961 get_page(vmf->page);
11bac800 4962 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4963 vmf->page->index = vmf->pgoff;
4964
4965 ret = 0;
4966unlock:
4967 rcu_read_unlock();
4968
4969 return ret;
4970}
4971
10c6db11
PZ
4972static void ring_buffer_attach(struct perf_event *event,
4973 struct ring_buffer *rb)
4974{
b69cf536 4975 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4976 unsigned long flags;
4977
b69cf536
PZ
4978 if (event->rb) {
4979 /*
4980 * Should be impossible, we set this when removing
4981 * event->rb_entry and wait/clear when adding event->rb_entry.
4982 */
4983 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4984
b69cf536 4985 old_rb = event->rb;
b69cf536
PZ
4986 spin_lock_irqsave(&old_rb->event_lock, flags);
4987 list_del_rcu(&event->rb_entry);
4988 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4989
2f993cf0
ON
4990 event->rcu_batches = get_state_synchronize_rcu();
4991 event->rcu_pending = 1;
b69cf536 4992 }
10c6db11 4993
b69cf536 4994 if (rb) {
2f993cf0
ON
4995 if (event->rcu_pending) {
4996 cond_synchronize_rcu(event->rcu_batches);
4997 event->rcu_pending = 0;
4998 }
4999
b69cf536
PZ
5000 spin_lock_irqsave(&rb->event_lock, flags);
5001 list_add_rcu(&event->rb_entry, &rb->event_list);
5002 spin_unlock_irqrestore(&rb->event_lock, flags);
5003 }
5004
767ae086
AS
5005 /*
5006 * Avoid racing with perf_mmap_close(AUX): stop the event
5007 * before swizzling the event::rb pointer; if it's getting
5008 * unmapped, its aux_mmap_count will be 0 and it won't
5009 * restart. See the comment in __perf_pmu_output_stop().
5010 *
5011 * Data will inevitably be lost when set_output is done in
5012 * mid-air, but then again, whoever does it like this is
5013 * not in for the data anyway.
5014 */
5015 if (has_aux(event))
5016 perf_event_stop(event, 0);
5017
b69cf536
PZ
5018 rcu_assign_pointer(event->rb, rb);
5019
5020 if (old_rb) {
5021 ring_buffer_put(old_rb);
5022 /*
5023 * Since we detached before setting the new rb, so that we
5024 * could attach the new rb, we could have missed a wakeup.
5025 * Provide it now.
5026 */
5027 wake_up_all(&event->waitq);
5028 }
10c6db11
PZ
5029}
5030
5031static void ring_buffer_wakeup(struct perf_event *event)
5032{
5033 struct ring_buffer *rb;
5034
5035 rcu_read_lock();
5036 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5037 if (rb) {
5038 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5039 wake_up_all(&event->waitq);
5040 }
10c6db11
PZ
5041 rcu_read_unlock();
5042}
5043
fdc26706 5044struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5045{
76369139 5046 struct ring_buffer *rb;
7b732a75 5047
ac9721f3 5048 rcu_read_lock();
76369139
FW
5049 rb = rcu_dereference(event->rb);
5050 if (rb) {
5051 if (!atomic_inc_not_zero(&rb->refcount))
5052 rb = NULL;
ac9721f3
PZ
5053 }
5054 rcu_read_unlock();
5055
76369139 5056 return rb;
ac9721f3
PZ
5057}
5058
fdc26706 5059void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5060{
76369139 5061 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5062 return;
7b732a75 5063
9bb5d40c 5064 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5065
76369139 5066 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5067}
5068
5069static void perf_mmap_open(struct vm_area_struct *vma)
5070{
cdd6c482 5071 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5072
cdd6c482 5073 atomic_inc(&event->mmap_count);
9bb5d40c 5074 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5075
45bfb2e5
PZ
5076 if (vma->vm_pgoff)
5077 atomic_inc(&event->rb->aux_mmap_count);
5078
1e0fb9ec
AL
5079 if (event->pmu->event_mapped)
5080 event->pmu->event_mapped(event);
7b732a75
PZ
5081}
5082
95ff4ca2
AS
5083static void perf_pmu_output_stop(struct perf_event *event);
5084
9bb5d40c
PZ
5085/*
5086 * A buffer can be mmap()ed multiple times; either directly through the same
5087 * event, or through other events by use of perf_event_set_output().
5088 *
5089 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5090 * the buffer here, where we still have a VM context. This means we need
5091 * to detach all events redirecting to us.
5092 */
7b732a75
PZ
5093static void perf_mmap_close(struct vm_area_struct *vma)
5094{
cdd6c482 5095 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5096
b69cf536 5097 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5098 struct user_struct *mmap_user = rb->mmap_user;
5099 int mmap_locked = rb->mmap_locked;
5100 unsigned long size = perf_data_size(rb);
789f90fc 5101
1e0fb9ec
AL
5102 if (event->pmu->event_unmapped)
5103 event->pmu->event_unmapped(event);
5104
45bfb2e5
PZ
5105 /*
5106 * rb->aux_mmap_count will always drop before rb->mmap_count and
5107 * event->mmap_count, so it is ok to use event->mmap_mutex to
5108 * serialize with perf_mmap here.
5109 */
5110 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5111 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5112 /*
5113 * Stop all AUX events that are writing to this buffer,
5114 * so that we can free its AUX pages and corresponding PMU
5115 * data. Note that after rb::aux_mmap_count dropped to zero,
5116 * they won't start any more (see perf_aux_output_begin()).
5117 */
5118 perf_pmu_output_stop(event);
5119
5120 /* now it's safe to free the pages */
45bfb2e5
PZ
5121 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5122 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5123
95ff4ca2 5124 /* this has to be the last one */
45bfb2e5 5125 rb_free_aux(rb);
95ff4ca2
AS
5126 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5127
45bfb2e5
PZ
5128 mutex_unlock(&event->mmap_mutex);
5129 }
5130
9bb5d40c
PZ
5131 atomic_dec(&rb->mmap_count);
5132
5133 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5134 goto out_put;
9bb5d40c 5135
b69cf536 5136 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5137 mutex_unlock(&event->mmap_mutex);
5138
5139 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5140 if (atomic_read(&rb->mmap_count))
5141 goto out_put;
ac9721f3 5142
9bb5d40c
PZ
5143 /*
5144 * No other mmap()s, detach from all other events that might redirect
5145 * into the now unreachable buffer. Somewhat complicated by the
5146 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5147 */
5148again:
5149 rcu_read_lock();
5150 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5151 if (!atomic_long_inc_not_zero(&event->refcount)) {
5152 /*
5153 * This event is en-route to free_event() which will
5154 * detach it and remove it from the list.
5155 */
5156 continue;
5157 }
5158 rcu_read_unlock();
789f90fc 5159
9bb5d40c
PZ
5160 mutex_lock(&event->mmap_mutex);
5161 /*
5162 * Check we didn't race with perf_event_set_output() which can
5163 * swizzle the rb from under us while we were waiting to
5164 * acquire mmap_mutex.
5165 *
5166 * If we find a different rb; ignore this event, a next
5167 * iteration will no longer find it on the list. We have to
5168 * still restart the iteration to make sure we're not now
5169 * iterating the wrong list.
5170 */
b69cf536
PZ
5171 if (event->rb == rb)
5172 ring_buffer_attach(event, NULL);
5173
cdd6c482 5174 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5175 put_event(event);
ac9721f3 5176
9bb5d40c
PZ
5177 /*
5178 * Restart the iteration; either we're on the wrong list or
5179 * destroyed its integrity by doing a deletion.
5180 */
5181 goto again;
7b732a75 5182 }
9bb5d40c
PZ
5183 rcu_read_unlock();
5184
5185 /*
5186 * It could be there's still a few 0-ref events on the list; they'll
5187 * get cleaned up by free_event() -- they'll also still have their
5188 * ref on the rb and will free it whenever they are done with it.
5189 *
5190 * Aside from that, this buffer is 'fully' detached and unmapped,
5191 * undo the VM accounting.
5192 */
5193
5194 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5195 vma->vm_mm->pinned_vm -= mmap_locked;
5196 free_uid(mmap_user);
5197
b69cf536 5198out_put:
9bb5d40c 5199 ring_buffer_put(rb); /* could be last */
37d81828
PM
5200}
5201
f0f37e2f 5202static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5203 .open = perf_mmap_open,
45bfb2e5 5204 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5205 .fault = perf_mmap_fault,
5206 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5207};
5208
5209static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5210{
cdd6c482 5211 struct perf_event *event = file->private_data;
22a4f650 5212 unsigned long user_locked, user_lock_limit;
789f90fc 5213 struct user_struct *user = current_user();
22a4f650 5214 unsigned long locked, lock_limit;
45bfb2e5 5215 struct ring_buffer *rb = NULL;
7b732a75
PZ
5216 unsigned long vma_size;
5217 unsigned long nr_pages;
45bfb2e5 5218 long user_extra = 0, extra = 0;
d57e34fd 5219 int ret = 0, flags = 0;
37d81828 5220
c7920614
PZ
5221 /*
5222 * Don't allow mmap() of inherited per-task counters. This would
5223 * create a performance issue due to all children writing to the
76369139 5224 * same rb.
c7920614
PZ
5225 */
5226 if (event->cpu == -1 && event->attr.inherit)
5227 return -EINVAL;
5228
43a21ea8 5229 if (!(vma->vm_flags & VM_SHARED))
37d81828 5230 return -EINVAL;
7b732a75
PZ
5231
5232 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5233
5234 if (vma->vm_pgoff == 0) {
5235 nr_pages = (vma_size / PAGE_SIZE) - 1;
5236 } else {
5237 /*
5238 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5239 * mapped, all subsequent mappings should have the same size
5240 * and offset. Must be above the normal perf buffer.
5241 */
5242 u64 aux_offset, aux_size;
5243
5244 if (!event->rb)
5245 return -EINVAL;
5246
5247 nr_pages = vma_size / PAGE_SIZE;
5248
5249 mutex_lock(&event->mmap_mutex);
5250 ret = -EINVAL;
5251
5252 rb = event->rb;
5253 if (!rb)
5254 goto aux_unlock;
5255
5256 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5257 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5258
5259 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5260 goto aux_unlock;
5261
5262 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5263 goto aux_unlock;
5264
5265 /* already mapped with a different offset */
5266 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5267 goto aux_unlock;
5268
5269 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5270 goto aux_unlock;
5271
5272 /* already mapped with a different size */
5273 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5274 goto aux_unlock;
5275
5276 if (!is_power_of_2(nr_pages))
5277 goto aux_unlock;
5278
5279 if (!atomic_inc_not_zero(&rb->mmap_count))
5280 goto aux_unlock;
5281
5282 if (rb_has_aux(rb)) {
5283 atomic_inc(&rb->aux_mmap_count);
5284 ret = 0;
5285 goto unlock;
5286 }
5287
5288 atomic_set(&rb->aux_mmap_count, 1);
5289 user_extra = nr_pages;
5290
5291 goto accounting;
5292 }
7b732a75 5293
7730d865 5294 /*
76369139 5295 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5296 * can do bitmasks instead of modulo.
5297 */
2ed11312 5298 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5299 return -EINVAL;
5300
7b732a75 5301 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5302 return -EINVAL;
5303
cdd6c482 5304 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5305again:
cdd6c482 5306 mutex_lock(&event->mmap_mutex);
76369139 5307 if (event->rb) {
9bb5d40c 5308 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5309 ret = -EINVAL;
9bb5d40c
PZ
5310 goto unlock;
5311 }
5312
5313 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5314 /*
5315 * Raced against perf_mmap_close() through
5316 * perf_event_set_output(). Try again, hope for better
5317 * luck.
5318 */
5319 mutex_unlock(&event->mmap_mutex);
5320 goto again;
5321 }
5322
ebb3c4c4
PZ
5323 goto unlock;
5324 }
5325
789f90fc 5326 user_extra = nr_pages + 1;
45bfb2e5
PZ
5327
5328accounting:
cdd6c482 5329 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5330
5331 /*
5332 * Increase the limit linearly with more CPUs:
5333 */
5334 user_lock_limit *= num_online_cpus();
5335
789f90fc 5336 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5337
789f90fc
PZ
5338 if (user_locked > user_lock_limit)
5339 extra = user_locked - user_lock_limit;
7b732a75 5340
78d7d407 5341 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5342 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5343 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5344
459ec28a
IM
5345 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5346 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5347 ret = -EPERM;
5348 goto unlock;
5349 }
7b732a75 5350
45bfb2e5 5351 WARN_ON(!rb && event->rb);
906010b2 5352
d57e34fd 5353 if (vma->vm_flags & VM_WRITE)
76369139 5354 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5355
76369139 5356 if (!rb) {
45bfb2e5
PZ
5357 rb = rb_alloc(nr_pages,
5358 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5359 event->cpu, flags);
26cb63ad 5360
45bfb2e5
PZ
5361 if (!rb) {
5362 ret = -ENOMEM;
5363 goto unlock;
5364 }
43a21ea8 5365
45bfb2e5
PZ
5366 atomic_set(&rb->mmap_count, 1);
5367 rb->mmap_user = get_current_user();
5368 rb->mmap_locked = extra;
26cb63ad 5369
45bfb2e5 5370 ring_buffer_attach(event, rb);
ac9721f3 5371
45bfb2e5
PZ
5372 perf_event_init_userpage(event);
5373 perf_event_update_userpage(event);
5374 } else {
1a594131
AS
5375 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5376 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5377 if (!ret)
5378 rb->aux_mmap_locked = extra;
5379 }
9a0f05cb 5380
ebb3c4c4 5381unlock:
45bfb2e5
PZ
5382 if (!ret) {
5383 atomic_long_add(user_extra, &user->locked_vm);
5384 vma->vm_mm->pinned_vm += extra;
5385
ac9721f3 5386 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5387 } else if (rb) {
5388 atomic_dec(&rb->mmap_count);
5389 }
5390aux_unlock:
cdd6c482 5391 mutex_unlock(&event->mmap_mutex);
37d81828 5392
9bb5d40c
PZ
5393 /*
5394 * Since pinned accounting is per vm we cannot allow fork() to copy our
5395 * vma.
5396 */
26cb63ad 5397 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5398 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5399
1e0fb9ec
AL
5400 if (event->pmu->event_mapped)
5401 event->pmu->event_mapped(event);
5402
7b732a75 5403 return ret;
37d81828
PM
5404}
5405
3c446b3d
PZ
5406static int perf_fasync(int fd, struct file *filp, int on)
5407{
496ad9aa 5408 struct inode *inode = file_inode(filp);
cdd6c482 5409 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5410 int retval;
5411
5955102c 5412 inode_lock(inode);
cdd6c482 5413 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5414 inode_unlock(inode);
3c446b3d
PZ
5415
5416 if (retval < 0)
5417 return retval;
5418
5419 return 0;
5420}
5421
0793a61d 5422static const struct file_operations perf_fops = {
3326c1ce 5423 .llseek = no_llseek,
0793a61d
TG
5424 .release = perf_release,
5425 .read = perf_read,
5426 .poll = perf_poll,
d859e29f 5427 .unlocked_ioctl = perf_ioctl,
b3f20785 5428 .compat_ioctl = perf_compat_ioctl,
37d81828 5429 .mmap = perf_mmap,
3c446b3d 5430 .fasync = perf_fasync,
0793a61d
TG
5431};
5432
925d519a 5433/*
cdd6c482 5434 * Perf event wakeup
925d519a
PZ
5435 *
5436 * If there's data, ensure we set the poll() state and publish everything
5437 * to user-space before waking everybody up.
5438 */
5439
fed66e2c
PZ
5440static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5441{
5442 /* only the parent has fasync state */
5443 if (event->parent)
5444 event = event->parent;
5445 return &event->fasync;
5446}
5447
cdd6c482 5448void perf_event_wakeup(struct perf_event *event)
925d519a 5449{
10c6db11 5450 ring_buffer_wakeup(event);
4c9e2542 5451
cdd6c482 5452 if (event->pending_kill) {
fed66e2c 5453 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5454 event->pending_kill = 0;
4c9e2542 5455 }
925d519a
PZ
5456}
5457
e360adbe 5458static void perf_pending_event(struct irq_work *entry)
79f14641 5459{
cdd6c482
IM
5460 struct perf_event *event = container_of(entry,
5461 struct perf_event, pending);
d525211f
PZ
5462 int rctx;
5463
5464 rctx = perf_swevent_get_recursion_context();
5465 /*
5466 * If we 'fail' here, that's OK, it means recursion is already disabled
5467 * and we won't recurse 'further'.
5468 */
79f14641 5469
cdd6c482
IM
5470 if (event->pending_disable) {
5471 event->pending_disable = 0;
fae3fde6 5472 perf_event_disable_local(event);
79f14641
PZ
5473 }
5474
cdd6c482
IM
5475 if (event->pending_wakeup) {
5476 event->pending_wakeup = 0;
5477 perf_event_wakeup(event);
79f14641 5478 }
d525211f
PZ
5479
5480 if (rctx >= 0)
5481 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5482}
5483
39447b38
ZY
5484/*
5485 * We assume there is only KVM supporting the callbacks.
5486 * Later on, we might change it to a list if there is
5487 * another virtualization implementation supporting the callbacks.
5488 */
5489struct perf_guest_info_callbacks *perf_guest_cbs;
5490
5491int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5492{
5493 perf_guest_cbs = cbs;
5494 return 0;
5495}
5496EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5497
5498int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5499{
5500 perf_guest_cbs = NULL;
5501 return 0;
5502}
5503EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5504
4018994f
JO
5505static void
5506perf_output_sample_regs(struct perf_output_handle *handle,
5507 struct pt_regs *regs, u64 mask)
5508{
5509 int bit;
29dd3288 5510 DECLARE_BITMAP(_mask, 64);
4018994f 5511
29dd3288
MS
5512 bitmap_from_u64(_mask, mask);
5513 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5514 u64 val;
5515
5516 val = perf_reg_value(regs, bit);
5517 perf_output_put(handle, val);
5518 }
5519}
5520
60e2364e 5521static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5522 struct pt_regs *regs,
5523 struct pt_regs *regs_user_copy)
4018994f 5524{
88a7c26a
AL
5525 if (user_mode(regs)) {
5526 regs_user->abi = perf_reg_abi(current);
2565711f 5527 regs_user->regs = regs;
88a7c26a
AL
5528 } else if (current->mm) {
5529 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5530 } else {
5531 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5532 regs_user->regs = NULL;
4018994f
JO
5533 }
5534}
5535
60e2364e
SE
5536static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5537 struct pt_regs *regs)
5538{
5539 regs_intr->regs = regs;
5540 regs_intr->abi = perf_reg_abi(current);
5541}
5542
5543
c5ebcedb
JO
5544/*
5545 * Get remaining task size from user stack pointer.
5546 *
5547 * It'd be better to take stack vma map and limit this more
5548 * precisly, but there's no way to get it safely under interrupt,
5549 * so using TASK_SIZE as limit.
5550 */
5551static u64 perf_ustack_task_size(struct pt_regs *regs)
5552{
5553 unsigned long addr = perf_user_stack_pointer(regs);
5554
5555 if (!addr || addr >= TASK_SIZE)
5556 return 0;
5557
5558 return TASK_SIZE - addr;
5559}
5560
5561static u16
5562perf_sample_ustack_size(u16 stack_size, u16 header_size,
5563 struct pt_regs *regs)
5564{
5565 u64 task_size;
5566
5567 /* No regs, no stack pointer, no dump. */
5568 if (!regs)
5569 return 0;
5570
5571 /*
5572 * Check if we fit in with the requested stack size into the:
5573 * - TASK_SIZE
5574 * If we don't, we limit the size to the TASK_SIZE.
5575 *
5576 * - remaining sample size
5577 * If we don't, we customize the stack size to
5578 * fit in to the remaining sample size.
5579 */
5580
5581 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5582 stack_size = min(stack_size, (u16) task_size);
5583
5584 /* Current header size plus static size and dynamic size. */
5585 header_size += 2 * sizeof(u64);
5586
5587 /* Do we fit in with the current stack dump size? */
5588 if ((u16) (header_size + stack_size) < header_size) {
5589 /*
5590 * If we overflow the maximum size for the sample,
5591 * we customize the stack dump size to fit in.
5592 */
5593 stack_size = USHRT_MAX - header_size - sizeof(u64);
5594 stack_size = round_up(stack_size, sizeof(u64));
5595 }
5596
5597 return stack_size;
5598}
5599
5600static void
5601perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5602 struct pt_regs *regs)
5603{
5604 /* Case of a kernel thread, nothing to dump */
5605 if (!regs) {
5606 u64 size = 0;
5607 perf_output_put(handle, size);
5608 } else {
5609 unsigned long sp;
5610 unsigned int rem;
5611 u64 dyn_size;
5612
5613 /*
5614 * We dump:
5615 * static size
5616 * - the size requested by user or the best one we can fit
5617 * in to the sample max size
5618 * data
5619 * - user stack dump data
5620 * dynamic size
5621 * - the actual dumped size
5622 */
5623
5624 /* Static size. */
5625 perf_output_put(handle, dump_size);
5626
5627 /* Data. */
5628 sp = perf_user_stack_pointer(regs);
5629 rem = __output_copy_user(handle, (void *) sp, dump_size);
5630 dyn_size = dump_size - rem;
5631
5632 perf_output_skip(handle, rem);
5633
5634 /* Dynamic size. */
5635 perf_output_put(handle, dyn_size);
5636 }
5637}
5638
c980d109
ACM
5639static void __perf_event_header__init_id(struct perf_event_header *header,
5640 struct perf_sample_data *data,
5641 struct perf_event *event)
6844c09d
ACM
5642{
5643 u64 sample_type = event->attr.sample_type;
5644
5645 data->type = sample_type;
5646 header->size += event->id_header_size;
5647
5648 if (sample_type & PERF_SAMPLE_TID) {
5649 /* namespace issues */
5650 data->tid_entry.pid = perf_event_pid(event, current);
5651 data->tid_entry.tid = perf_event_tid(event, current);
5652 }
5653
5654 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5655 data->time = perf_event_clock(event);
6844c09d 5656
ff3d527c 5657 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5658 data->id = primary_event_id(event);
5659
5660 if (sample_type & PERF_SAMPLE_STREAM_ID)
5661 data->stream_id = event->id;
5662
5663 if (sample_type & PERF_SAMPLE_CPU) {
5664 data->cpu_entry.cpu = raw_smp_processor_id();
5665 data->cpu_entry.reserved = 0;
5666 }
5667}
5668
76369139
FW
5669void perf_event_header__init_id(struct perf_event_header *header,
5670 struct perf_sample_data *data,
5671 struct perf_event *event)
c980d109
ACM
5672{
5673 if (event->attr.sample_id_all)
5674 __perf_event_header__init_id(header, data, event);
5675}
5676
5677static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5678 struct perf_sample_data *data)
5679{
5680 u64 sample_type = data->type;
5681
5682 if (sample_type & PERF_SAMPLE_TID)
5683 perf_output_put(handle, data->tid_entry);
5684
5685 if (sample_type & PERF_SAMPLE_TIME)
5686 perf_output_put(handle, data->time);
5687
5688 if (sample_type & PERF_SAMPLE_ID)
5689 perf_output_put(handle, data->id);
5690
5691 if (sample_type & PERF_SAMPLE_STREAM_ID)
5692 perf_output_put(handle, data->stream_id);
5693
5694 if (sample_type & PERF_SAMPLE_CPU)
5695 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5696
5697 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5698 perf_output_put(handle, data->id);
c980d109
ACM
5699}
5700
76369139
FW
5701void perf_event__output_id_sample(struct perf_event *event,
5702 struct perf_output_handle *handle,
5703 struct perf_sample_data *sample)
c980d109
ACM
5704{
5705 if (event->attr.sample_id_all)
5706 __perf_event__output_id_sample(handle, sample);
5707}
5708
3dab77fb 5709static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5710 struct perf_event *event,
5711 u64 enabled, u64 running)
3dab77fb 5712{
cdd6c482 5713 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5714 u64 values[4];
5715 int n = 0;
5716
b5e58793 5717 values[n++] = perf_event_count(event);
3dab77fb 5718 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5719 values[n++] = enabled +
cdd6c482 5720 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5721 }
5722 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5723 values[n++] = running +
cdd6c482 5724 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5725 }
5726 if (read_format & PERF_FORMAT_ID)
cdd6c482 5727 values[n++] = primary_event_id(event);
3dab77fb 5728
76369139 5729 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5730}
5731
5732/*
cdd6c482 5733 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5734 */
5735static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5736 struct perf_event *event,
5737 u64 enabled, u64 running)
3dab77fb 5738{
cdd6c482
IM
5739 struct perf_event *leader = event->group_leader, *sub;
5740 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5741 u64 values[5];
5742 int n = 0;
5743
5744 values[n++] = 1 + leader->nr_siblings;
5745
5746 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5747 values[n++] = enabled;
3dab77fb
PZ
5748
5749 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5750 values[n++] = running;
3dab77fb 5751
cdd6c482 5752 if (leader != event)
3dab77fb
PZ
5753 leader->pmu->read(leader);
5754
b5e58793 5755 values[n++] = perf_event_count(leader);
3dab77fb 5756 if (read_format & PERF_FORMAT_ID)
cdd6c482 5757 values[n++] = primary_event_id(leader);
3dab77fb 5758
76369139 5759 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5760
65abc865 5761 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5762 n = 0;
5763
6f5ab001
JO
5764 if ((sub != event) &&
5765 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5766 sub->pmu->read(sub);
5767
b5e58793 5768 values[n++] = perf_event_count(sub);
3dab77fb 5769 if (read_format & PERF_FORMAT_ID)
cdd6c482 5770 values[n++] = primary_event_id(sub);
3dab77fb 5771
76369139 5772 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5773 }
5774}
5775
eed01528
SE
5776#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5777 PERF_FORMAT_TOTAL_TIME_RUNNING)
5778
3dab77fb 5779static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5780 struct perf_event *event)
3dab77fb 5781{
e3f3541c 5782 u64 enabled = 0, running = 0, now;
eed01528
SE
5783 u64 read_format = event->attr.read_format;
5784
5785 /*
5786 * compute total_time_enabled, total_time_running
5787 * based on snapshot values taken when the event
5788 * was last scheduled in.
5789 *
5790 * we cannot simply called update_context_time()
5791 * because of locking issue as we are called in
5792 * NMI context
5793 */
c4794295 5794 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5795 calc_timer_values(event, &now, &enabled, &running);
eed01528 5796
cdd6c482 5797 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5798 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5799 else
eed01528 5800 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5801}
5802
5622f295
MM
5803void perf_output_sample(struct perf_output_handle *handle,
5804 struct perf_event_header *header,
5805 struct perf_sample_data *data,
cdd6c482 5806 struct perf_event *event)
5622f295
MM
5807{
5808 u64 sample_type = data->type;
5809
5810 perf_output_put(handle, *header);
5811
ff3d527c
AH
5812 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5813 perf_output_put(handle, data->id);
5814
5622f295
MM
5815 if (sample_type & PERF_SAMPLE_IP)
5816 perf_output_put(handle, data->ip);
5817
5818 if (sample_type & PERF_SAMPLE_TID)
5819 perf_output_put(handle, data->tid_entry);
5820
5821 if (sample_type & PERF_SAMPLE_TIME)
5822 perf_output_put(handle, data->time);
5823
5824 if (sample_type & PERF_SAMPLE_ADDR)
5825 perf_output_put(handle, data->addr);
5826
5827 if (sample_type & PERF_SAMPLE_ID)
5828 perf_output_put(handle, data->id);
5829
5830 if (sample_type & PERF_SAMPLE_STREAM_ID)
5831 perf_output_put(handle, data->stream_id);
5832
5833 if (sample_type & PERF_SAMPLE_CPU)
5834 perf_output_put(handle, data->cpu_entry);
5835
5836 if (sample_type & PERF_SAMPLE_PERIOD)
5837 perf_output_put(handle, data->period);
5838
5839 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5840 perf_output_read(handle, event);
5622f295
MM
5841
5842 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5843 if (data->callchain) {
5844 int size = 1;
5845
5846 if (data->callchain)
5847 size += data->callchain->nr;
5848
5849 size *= sizeof(u64);
5850
76369139 5851 __output_copy(handle, data->callchain, size);
5622f295
MM
5852 } else {
5853 u64 nr = 0;
5854 perf_output_put(handle, nr);
5855 }
5856 }
5857
5858 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5859 struct perf_raw_record *raw = data->raw;
5860
5861 if (raw) {
5862 struct perf_raw_frag *frag = &raw->frag;
5863
5864 perf_output_put(handle, raw->size);
5865 do {
5866 if (frag->copy) {
5867 __output_custom(handle, frag->copy,
5868 frag->data, frag->size);
5869 } else {
5870 __output_copy(handle, frag->data,
5871 frag->size);
5872 }
5873 if (perf_raw_frag_last(frag))
5874 break;
5875 frag = frag->next;
5876 } while (1);
5877 if (frag->pad)
5878 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5879 } else {
5880 struct {
5881 u32 size;
5882 u32 data;
5883 } raw = {
5884 .size = sizeof(u32),
5885 .data = 0,
5886 };
5887 perf_output_put(handle, raw);
5888 }
5889 }
a7ac67ea 5890
bce38cd5
SE
5891 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5892 if (data->br_stack) {
5893 size_t size;
5894
5895 size = data->br_stack->nr
5896 * sizeof(struct perf_branch_entry);
5897
5898 perf_output_put(handle, data->br_stack->nr);
5899 perf_output_copy(handle, data->br_stack->entries, size);
5900 } else {
5901 /*
5902 * we always store at least the value of nr
5903 */
5904 u64 nr = 0;
5905 perf_output_put(handle, nr);
5906 }
5907 }
4018994f
JO
5908
5909 if (sample_type & PERF_SAMPLE_REGS_USER) {
5910 u64 abi = data->regs_user.abi;
5911
5912 /*
5913 * If there are no regs to dump, notice it through
5914 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5915 */
5916 perf_output_put(handle, abi);
5917
5918 if (abi) {
5919 u64 mask = event->attr.sample_regs_user;
5920 perf_output_sample_regs(handle,
5921 data->regs_user.regs,
5922 mask);
5923 }
5924 }
c5ebcedb 5925
a5cdd40c 5926 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5927 perf_output_sample_ustack(handle,
5928 data->stack_user_size,
5929 data->regs_user.regs);
a5cdd40c 5930 }
c3feedf2
AK
5931
5932 if (sample_type & PERF_SAMPLE_WEIGHT)
5933 perf_output_put(handle, data->weight);
d6be9ad6
SE
5934
5935 if (sample_type & PERF_SAMPLE_DATA_SRC)
5936 perf_output_put(handle, data->data_src.val);
a5cdd40c 5937
fdfbbd07
AK
5938 if (sample_type & PERF_SAMPLE_TRANSACTION)
5939 perf_output_put(handle, data->txn);
5940
60e2364e
SE
5941 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5942 u64 abi = data->regs_intr.abi;
5943 /*
5944 * If there are no regs to dump, notice it through
5945 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5946 */
5947 perf_output_put(handle, abi);
5948
5949 if (abi) {
5950 u64 mask = event->attr.sample_regs_intr;
5951
5952 perf_output_sample_regs(handle,
5953 data->regs_intr.regs,
5954 mask);
5955 }
5956 }
5957
a5cdd40c
PZ
5958 if (!event->attr.watermark) {
5959 int wakeup_events = event->attr.wakeup_events;
5960
5961 if (wakeup_events) {
5962 struct ring_buffer *rb = handle->rb;
5963 int events = local_inc_return(&rb->events);
5964
5965 if (events >= wakeup_events) {
5966 local_sub(wakeup_events, &rb->events);
5967 local_inc(&rb->wakeup);
5968 }
5969 }
5970 }
5622f295
MM
5971}
5972
5973void perf_prepare_sample(struct perf_event_header *header,
5974 struct perf_sample_data *data,
cdd6c482 5975 struct perf_event *event,
5622f295 5976 struct pt_regs *regs)
7b732a75 5977{
cdd6c482 5978 u64 sample_type = event->attr.sample_type;
7b732a75 5979
cdd6c482 5980 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5981 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5982
5983 header->misc = 0;
5984 header->misc |= perf_misc_flags(regs);
6fab0192 5985
c980d109 5986 __perf_event_header__init_id(header, data, event);
6844c09d 5987
c320c7b7 5988 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5989 data->ip = perf_instruction_pointer(regs);
5990
b23f3325 5991 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5992 int size = 1;
394ee076 5993
e6dab5ff 5994 data->callchain = perf_callchain(event, regs);
5622f295
MM
5995
5996 if (data->callchain)
5997 size += data->callchain->nr;
5998
5999 header->size += size * sizeof(u64);
394ee076
PZ
6000 }
6001
3a43ce68 6002 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6003 struct perf_raw_record *raw = data->raw;
6004 int size;
6005
6006 if (raw) {
6007 struct perf_raw_frag *frag = &raw->frag;
6008 u32 sum = 0;
6009
6010 do {
6011 sum += frag->size;
6012 if (perf_raw_frag_last(frag))
6013 break;
6014 frag = frag->next;
6015 } while (1);
6016
6017 size = round_up(sum + sizeof(u32), sizeof(u64));
6018 raw->size = size - sizeof(u32);
6019 frag->pad = raw->size - sum;
6020 } else {
6021 size = sizeof(u64);
6022 }
a044560c 6023
7e3f977e 6024 header->size += size;
7f453c24 6025 }
bce38cd5
SE
6026
6027 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6028 int size = sizeof(u64); /* nr */
6029 if (data->br_stack) {
6030 size += data->br_stack->nr
6031 * sizeof(struct perf_branch_entry);
6032 }
6033 header->size += size;
6034 }
4018994f 6035
2565711f 6036 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6037 perf_sample_regs_user(&data->regs_user, regs,
6038 &data->regs_user_copy);
2565711f 6039
4018994f
JO
6040 if (sample_type & PERF_SAMPLE_REGS_USER) {
6041 /* regs dump ABI info */
6042 int size = sizeof(u64);
6043
4018994f
JO
6044 if (data->regs_user.regs) {
6045 u64 mask = event->attr.sample_regs_user;
6046 size += hweight64(mask) * sizeof(u64);
6047 }
6048
6049 header->size += size;
6050 }
c5ebcedb
JO
6051
6052 if (sample_type & PERF_SAMPLE_STACK_USER) {
6053 /*
6054 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6055 * processed as the last one or have additional check added
6056 * in case new sample type is added, because we could eat
6057 * up the rest of the sample size.
6058 */
c5ebcedb
JO
6059 u16 stack_size = event->attr.sample_stack_user;
6060 u16 size = sizeof(u64);
6061
c5ebcedb 6062 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6063 data->regs_user.regs);
c5ebcedb
JO
6064
6065 /*
6066 * If there is something to dump, add space for the dump
6067 * itself and for the field that tells the dynamic size,
6068 * which is how many have been actually dumped.
6069 */
6070 if (stack_size)
6071 size += sizeof(u64) + stack_size;
6072
6073 data->stack_user_size = stack_size;
6074 header->size += size;
6075 }
60e2364e
SE
6076
6077 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6078 /* regs dump ABI info */
6079 int size = sizeof(u64);
6080
6081 perf_sample_regs_intr(&data->regs_intr, regs);
6082
6083 if (data->regs_intr.regs) {
6084 u64 mask = event->attr.sample_regs_intr;
6085
6086 size += hweight64(mask) * sizeof(u64);
6087 }
6088
6089 header->size += size;
6090 }
5622f295 6091}
7f453c24 6092
9ecda41a
WN
6093static void __always_inline
6094__perf_event_output(struct perf_event *event,
6095 struct perf_sample_data *data,
6096 struct pt_regs *regs,
6097 int (*output_begin)(struct perf_output_handle *,
6098 struct perf_event *,
6099 unsigned int))
5622f295
MM
6100{
6101 struct perf_output_handle handle;
6102 struct perf_event_header header;
689802b2 6103
927c7a9e
FW
6104 /* protect the callchain buffers */
6105 rcu_read_lock();
6106
cdd6c482 6107 perf_prepare_sample(&header, data, event, regs);
5c148194 6108
9ecda41a 6109 if (output_begin(&handle, event, header.size))
927c7a9e 6110 goto exit;
0322cd6e 6111
cdd6c482 6112 perf_output_sample(&handle, &header, data, event);
f413cdb8 6113
8a057d84 6114 perf_output_end(&handle);
927c7a9e
FW
6115
6116exit:
6117 rcu_read_unlock();
0322cd6e
PZ
6118}
6119
9ecda41a
WN
6120void
6121perf_event_output_forward(struct perf_event *event,
6122 struct perf_sample_data *data,
6123 struct pt_regs *regs)
6124{
6125 __perf_event_output(event, data, regs, perf_output_begin_forward);
6126}
6127
6128void
6129perf_event_output_backward(struct perf_event *event,
6130 struct perf_sample_data *data,
6131 struct pt_regs *regs)
6132{
6133 __perf_event_output(event, data, regs, perf_output_begin_backward);
6134}
6135
6136void
6137perf_event_output(struct perf_event *event,
6138 struct perf_sample_data *data,
6139 struct pt_regs *regs)
6140{
6141 __perf_event_output(event, data, regs, perf_output_begin);
6142}
6143
38b200d6 6144/*
cdd6c482 6145 * read event_id
38b200d6
PZ
6146 */
6147
6148struct perf_read_event {
6149 struct perf_event_header header;
6150
6151 u32 pid;
6152 u32 tid;
38b200d6
PZ
6153};
6154
6155static void
cdd6c482 6156perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6157 struct task_struct *task)
6158{
6159 struct perf_output_handle handle;
c980d109 6160 struct perf_sample_data sample;
dfc65094 6161 struct perf_read_event read_event = {
38b200d6 6162 .header = {
cdd6c482 6163 .type = PERF_RECORD_READ,
38b200d6 6164 .misc = 0,
c320c7b7 6165 .size = sizeof(read_event) + event->read_size,
38b200d6 6166 },
cdd6c482
IM
6167 .pid = perf_event_pid(event, task),
6168 .tid = perf_event_tid(event, task),
38b200d6 6169 };
3dab77fb 6170 int ret;
38b200d6 6171
c980d109 6172 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6173 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6174 if (ret)
6175 return;
6176
dfc65094 6177 perf_output_put(&handle, read_event);
cdd6c482 6178 perf_output_read(&handle, event);
c980d109 6179 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6180
38b200d6
PZ
6181 perf_output_end(&handle);
6182}
6183
aab5b71e 6184typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6185
6186static void
aab5b71e
PZ
6187perf_iterate_ctx(struct perf_event_context *ctx,
6188 perf_iterate_f output,
b73e4fef 6189 void *data, bool all)
52d857a8
JO
6190{
6191 struct perf_event *event;
6192
6193 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6194 if (!all) {
6195 if (event->state < PERF_EVENT_STATE_INACTIVE)
6196 continue;
6197 if (!event_filter_match(event))
6198 continue;
6199 }
6200
67516844 6201 output(event, data);
52d857a8
JO
6202 }
6203}
6204
aab5b71e 6205static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6206{
6207 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6208 struct perf_event *event;
6209
6210 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6211 /*
6212 * Skip events that are not fully formed yet; ensure that
6213 * if we observe event->ctx, both event and ctx will be
6214 * complete enough. See perf_install_in_context().
6215 */
6216 if (!smp_load_acquire(&event->ctx))
6217 continue;
6218
f2fb6bef
KL
6219 if (event->state < PERF_EVENT_STATE_INACTIVE)
6220 continue;
6221 if (!event_filter_match(event))
6222 continue;
6223 output(event, data);
6224 }
6225}
6226
aab5b71e
PZ
6227/*
6228 * Iterate all events that need to receive side-band events.
6229 *
6230 * For new callers; ensure that account_pmu_sb_event() includes
6231 * your event, otherwise it might not get delivered.
6232 */
52d857a8 6233static void
aab5b71e 6234perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6235 struct perf_event_context *task_ctx)
6236{
52d857a8 6237 struct perf_event_context *ctx;
52d857a8
JO
6238 int ctxn;
6239
aab5b71e
PZ
6240 rcu_read_lock();
6241 preempt_disable();
6242
4e93ad60 6243 /*
aab5b71e
PZ
6244 * If we have task_ctx != NULL we only notify the task context itself.
6245 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6246 * context.
6247 */
6248 if (task_ctx) {
aab5b71e
PZ
6249 perf_iterate_ctx(task_ctx, output, data, false);
6250 goto done;
4e93ad60
JO
6251 }
6252
aab5b71e 6253 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6254
6255 for_each_task_context_nr(ctxn) {
52d857a8
JO
6256 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6257 if (ctx)
aab5b71e 6258 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6259 }
aab5b71e 6260done:
f2fb6bef 6261 preempt_enable();
52d857a8 6262 rcu_read_unlock();
95ff4ca2
AS
6263}
6264
375637bc
AS
6265/*
6266 * Clear all file-based filters at exec, they'll have to be
6267 * re-instated when/if these objects are mmapped again.
6268 */
6269static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6270{
6271 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6272 struct perf_addr_filter *filter;
6273 unsigned int restart = 0, count = 0;
6274 unsigned long flags;
6275
6276 if (!has_addr_filter(event))
6277 return;
6278
6279 raw_spin_lock_irqsave(&ifh->lock, flags);
6280 list_for_each_entry(filter, &ifh->list, entry) {
6281 if (filter->inode) {
6282 event->addr_filters_offs[count] = 0;
6283 restart++;
6284 }
6285
6286 count++;
6287 }
6288
6289 if (restart)
6290 event->addr_filters_gen++;
6291 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6292
6293 if (restart)
767ae086 6294 perf_event_stop(event, 1);
375637bc
AS
6295}
6296
6297void perf_event_exec(void)
6298{
6299 struct perf_event_context *ctx;
6300 int ctxn;
6301
6302 rcu_read_lock();
6303 for_each_task_context_nr(ctxn) {
6304 ctx = current->perf_event_ctxp[ctxn];
6305 if (!ctx)
6306 continue;
6307
6308 perf_event_enable_on_exec(ctxn);
6309
aab5b71e 6310 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6311 true);
6312 }
6313 rcu_read_unlock();
6314}
6315
95ff4ca2
AS
6316struct remote_output {
6317 struct ring_buffer *rb;
6318 int err;
6319};
6320
6321static void __perf_event_output_stop(struct perf_event *event, void *data)
6322{
6323 struct perf_event *parent = event->parent;
6324 struct remote_output *ro = data;
6325 struct ring_buffer *rb = ro->rb;
375637bc
AS
6326 struct stop_event_data sd = {
6327 .event = event,
6328 };
95ff4ca2
AS
6329
6330 if (!has_aux(event))
6331 return;
6332
6333 if (!parent)
6334 parent = event;
6335
6336 /*
6337 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6338 * ring-buffer, but it will be the child that's actually using it.
6339 *
6340 * We are using event::rb to determine if the event should be stopped,
6341 * however this may race with ring_buffer_attach() (through set_output),
6342 * which will make us skip the event that actually needs to be stopped.
6343 * So ring_buffer_attach() has to stop an aux event before re-assigning
6344 * its rb pointer.
95ff4ca2
AS
6345 */
6346 if (rcu_dereference(parent->rb) == rb)
375637bc 6347 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6348}
6349
6350static int __perf_pmu_output_stop(void *info)
6351{
6352 struct perf_event *event = info;
6353 struct pmu *pmu = event->pmu;
8b6a3fe8 6354 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6355 struct remote_output ro = {
6356 .rb = event->rb,
6357 };
6358
6359 rcu_read_lock();
aab5b71e 6360 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6361 if (cpuctx->task_ctx)
aab5b71e 6362 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6363 &ro, false);
95ff4ca2
AS
6364 rcu_read_unlock();
6365
6366 return ro.err;
6367}
6368
6369static void perf_pmu_output_stop(struct perf_event *event)
6370{
6371 struct perf_event *iter;
6372 int err, cpu;
6373
6374restart:
6375 rcu_read_lock();
6376 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6377 /*
6378 * For per-CPU events, we need to make sure that neither they
6379 * nor their children are running; for cpu==-1 events it's
6380 * sufficient to stop the event itself if it's active, since
6381 * it can't have children.
6382 */
6383 cpu = iter->cpu;
6384 if (cpu == -1)
6385 cpu = READ_ONCE(iter->oncpu);
6386
6387 if (cpu == -1)
6388 continue;
6389
6390 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6391 if (err == -EAGAIN) {
6392 rcu_read_unlock();
6393 goto restart;
6394 }
6395 }
6396 rcu_read_unlock();
52d857a8
JO
6397}
6398
60313ebe 6399/*
9f498cc5
PZ
6400 * task tracking -- fork/exit
6401 *
13d7a241 6402 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6403 */
6404
9f498cc5 6405struct perf_task_event {
3a80b4a3 6406 struct task_struct *task;
cdd6c482 6407 struct perf_event_context *task_ctx;
60313ebe
PZ
6408
6409 struct {
6410 struct perf_event_header header;
6411
6412 u32 pid;
6413 u32 ppid;
9f498cc5
PZ
6414 u32 tid;
6415 u32 ptid;
393b2ad8 6416 u64 time;
cdd6c482 6417 } event_id;
60313ebe
PZ
6418};
6419
67516844
JO
6420static int perf_event_task_match(struct perf_event *event)
6421{
13d7a241
SE
6422 return event->attr.comm || event->attr.mmap ||
6423 event->attr.mmap2 || event->attr.mmap_data ||
6424 event->attr.task;
67516844
JO
6425}
6426
cdd6c482 6427static void perf_event_task_output(struct perf_event *event,
52d857a8 6428 void *data)
60313ebe 6429{
52d857a8 6430 struct perf_task_event *task_event = data;
60313ebe 6431 struct perf_output_handle handle;
c980d109 6432 struct perf_sample_data sample;
9f498cc5 6433 struct task_struct *task = task_event->task;
c980d109 6434 int ret, size = task_event->event_id.header.size;
8bb39f9a 6435
67516844
JO
6436 if (!perf_event_task_match(event))
6437 return;
6438
c980d109 6439 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6440
c980d109 6441 ret = perf_output_begin(&handle, event,
a7ac67ea 6442 task_event->event_id.header.size);
ef60777c 6443 if (ret)
c980d109 6444 goto out;
60313ebe 6445
cdd6c482
IM
6446 task_event->event_id.pid = perf_event_pid(event, task);
6447 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6448
cdd6c482
IM
6449 task_event->event_id.tid = perf_event_tid(event, task);
6450 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6451
34f43927
PZ
6452 task_event->event_id.time = perf_event_clock(event);
6453
cdd6c482 6454 perf_output_put(&handle, task_event->event_id);
393b2ad8 6455
c980d109
ACM
6456 perf_event__output_id_sample(event, &handle, &sample);
6457
60313ebe 6458 perf_output_end(&handle);
c980d109
ACM
6459out:
6460 task_event->event_id.header.size = size;
60313ebe
PZ
6461}
6462
cdd6c482
IM
6463static void perf_event_task(struct task_struct *task,
6464 struct perf_event_context *task_ctx,
3a80b4a3 6465 int new)
60313ebe 6466{
9f498cc5 6467 struct perf_task_event task_event;
60313ebe 6468
cdd6c482
IM
6469 if (!atomic_read(&nr_comm_events) &&
6470 !atomic_read(&nr_mmap_events) &&
6471 !atomic_read(&nr_task_events))
60313ebe
PZ
6472 return;
6473
9f498cc5 6474 task_event = (struct perf_task_event){
3a80b4a3
PZ
6475 .task = task,
6476 .task_ctx = task_ctx,
cdd6c482 6477 .event_id = {
60313ebe 6478 .header = {
cdd6c482 6479 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6480 .misc = 0,
cdd6c482 6481 .size = sizeof(task_event.event_id),
60313ebe 6482 },
573402db
PZ
6483 /* .pid */
6484 /* .ppid */
9f498cc5
PZ
6485 /* .tid */
6486 /* .ptid */
34f43927 6487 /* .time */
60313ebe
PZ
6488 },
6489 };
6490
aab5b71e 6491 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6492 &task_event,
6493 task_ctx);
9f498cc5
PZ
6494}
6495
cdd6c482 6496void perf_event_fork(struct task_struct *task)
9f498cc5 6497{
cdd6c482 6498 perf_event_task(task, NULL, 1);
e4222673 6499 perf_event_namespaces(task);
60313ebe
PZ
6500}
6501
8d1b2d93
PZ
6502/*
6503 * comm tracking
6504 */
6505
6506struct perf_comm_event {
22a4f650
IM
6507 struct task_struct *task;
6508 char *comm;
8d1b2d93
PZ
6509 int comm_size;
6510
6511 struct {
6512 struct perf_event_header header;
6513
6514 u32 pid;
6515 u32 tid;
cdd6c482 6516 } event_id;
8d1b2d93
PZ
6517};
6518
67516844
JO
6519static int perf_event_comm_match(struct perf_event *event)
6520{
6521 return event->attr.comm;
6522}
6523
cdd6c482 6524static void perf_event_comm_output(struct perf_event *event,
52d857a8 6525 void *data)
8d1b2d93 6526{
52d857a8 6527 struct perf_comm_event *comm_event = data;
8d1b2d93 6528 struct perf_output_handle handle;
c980d109 6529 struct perf_sample_data sample;
cdd6c482 6530 int size = comm_event->event_id.header.size;
c980d109
ACM
6531 int ret;
6532
67516844
JO
6533 if (!perf_event_comm_match(event))
6534 return;
6535
c980d109
ACM
6536 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6537 ret = perf_output_begin(&handle, event,
a7ac67ea 6538 comm_event->event_id.header.size);
8d1b2d93
PZ
6539
6540 if (ret)
c980d109 6541 goto out;
8d1b2d93 6542
cdd6c482
IM
6543 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6544 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6545
cdd6c482 6546 perf_output_put(&handle, comm_event->event_id);
76369139 6547 __output_copy(&handle, comm_event->comm,
8d1b2d93 6548 comm_event->comm_size);
c980d109
ACM
6549
6550 perf_event__output_id_sample(event, &handle, &sample);
6551
8d1b2d93 6552 perf_output_end(&handle);
c980d109
ACM
6553out:
6554 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6555}
6556
cdd6c482 6557static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6558{
413ee3b4 6559 char comm[TASK_COMM_LEN];
8d1b2d93 6560 unsigned int size;
8d1b2d93 6561
413ee3b4 6562 memset(comm, 0, sizeof(comm));
96b02d78 6563 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6564 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6565
6566 comm_event->comm = comm;
6567 comm_event->comm_size = size;
6568
cdd6c482 6569 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6570
aab5b71e 6571 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6572 comm_event,
6573 NULL);
8d1b2d93
PZ
6574}
6575
82b89778 6576void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6577{
9ee318a7
PZ
6578 struct perf_comm_event comm_event;
6579
cdd6c482 6580 if (!atomic_read(&nr_comm_events))
9ee318a7 6581 return;
a63eaf34 6582
9ee318a7 6583 comm_event = (struct perf_comm_event){
8d1b2d93 6584 .task = task,
573402db
PZ
6585 /* .comm */
6586 /* .comm_size */
cdd6c482 6587 .event_id = {
573402db 6588 .header = {
cdd6c482 6589 .type = PERF_RECORD_COMM,
82b89778 6590 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6591 /* .size */
6592 },
6593 /* .pid */
6594 /* .tid */
8d1b2d93
PZ
6595 },
6596 };
6597
cdd6c482 6598 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6599}
6600
e4222673
HB
6601/*
6602 * namespaces tracking
6603 */
6604
6605struct perf_namespaces_event {
6606 struct task_struct *task;
6607
6608 struct {
6609 struct perf_event_header header;
6610
6611 u32 pid;
6612 u32 tid;
6613 u64 nr_namespaces;
6614 struct perf_ns_link_info link_info[NR_NAMESPACES];
6615 } event_id;
6616};
6617
6618static int perf_event_namespaces_match(struct perf_event *event)
6619{
6620 return event->attr.namespaces;
6621}
6622
6623static void perf_event_namespaces_output(struct perf_event *event,
6624 void *data)
6625{
6626 struct perf_namespaces_event *namespaces_event = data;
6627 struct perf_output_handle handle;
6628 struct perf_sample_data sample;
6629 int ret;
6630
6631 if (!perf_event_namespaces_match(event))
6632 return;
6633
6634 perf_event_header__init_id(&namespaces_event->event_id.header,
6635 &sample, event);
6636 ret = perf_output_begin(&handle, event,
6637 namespaces_event->event_id.header.size);
6638 if (ret)
6639 return;
6640
6641 namespaces_event->event_id.pid = perf_event_pid(event,
6642 namespaces_event->task);
6643 namespaces_event->event_id.tid = perf_event_tid(event,
6644 namespaces_event->task);
6645
6646 perf_output_put(&handle, namespaces_event->event_id);
6647
6648 perf_event__output_id_sample(event, &handle, &sample);
6649
6650 perf_output_end(&handle);
6651}
6652
6653static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6654 struct task_struct *task,
6655 const struct proc_ns_operations *ns_ops)
6656{
6657 struct path ns_path;
6658 struct inode *ns_inode;
6659 void *error;
6660
6661 error = ns_get_path(&ns_path, task, ns_ops);
6662 if (!error) {
6663 ns_inode = ns_path.dentry->d_inode;
6664 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6665 ns_link_info->ino = ns_inode->i_ino;
6666 }
6667}
6668
6669void perf_event_namespaces(struct task_struct *task)
6670{
6671 struct perf_namespaces_event namespaces_event;
6672 struct perf_ns_link_info *ns_link_info;
6673
6674 if (!atomic_read(&nr_namespaces_events))
6675 return;
6676
6677 namespaces_event = (struct perf_namespaces_event){
6678 .task = task,
6679 .event_id = {
6680 .header = {
6681 .type = PERF_RECORD_NAMESPACES,
6682 .misc = 0,
6683 .size = sizeof(namespaces_event.event_id),
6684 },
6685 /* .pid */
6686 /* .tid */
6687 .nr_namespaces = NR_NAMESPACES,
6688 /* .link_info[NR_NAMESPACES] */
6689 },
6690 };
6691
6692 ns_link_info = namespaces_event.event_id.link_info;
6693
6694 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6695 task, &mntns_operations);
6696
6697#ifdef CONFIG_USER_NS
6698 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6699 task, &userns_operations);
6700#endif
6701#ifdef CONFIG_NET_NS
6702 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6703 task, &netns_operations);
6704#endif
6705#ifdef CONFIG_UTS_NS
6706 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6707 task, &utsns_operations);
6708#endif
6709#ifdef CONFIG_IPC_NS
6710 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6711 task, &ipcns_operations);
6712#endif
6713#ifdef CONFIG_PID_NS
6714 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6715 task, &pidns_operations);
6716#endif
6717#ifdef CONFIG_CGROUPS
6718 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6719 task, &cgroupns_operations);
6720#endif
6721
6722 perf_iterate_sb(perf_event_namespaces_output,
6723 &namespaces_event,
6724 NULL);
6725}
6726
0a4a9391
PZ
6727/*
6728 * mmap tracking
6729 */
6730
6731struct perf_mmap_event {
089dd79d
PZ
6732 struct vm_area_struct *vma;
6733
6734 const char *file_name;
6735 int file_size;
13d7a241
SE
6736 int maj, min;
6737 u64 ino;
6738 u64 ino_generation;
f972eb63 6739 u32 prot, flags;
0a4a9391
PZ
6740
6741 struct {
6742 struct perf_event_header header;
6743
6744 u32 pid;
6745 u32 tid;
6746 u64 start;
6747 u64 len;
6748 u64 pgoff;
cdd6c482 6749 } event_id;
0a4a9391
PZ
6750};
6751
67516844
JO
6752static int perf_event_mmap_match(struct perf_event *event,
6753 void *data)
6754{
6755 struct perf_mmap_event *mmap_event = data;
6756 struct vm_area_struct *vma = mmap_event->vma;
6757 int executable = vma->vm_flags & VM_EXEC;
6758
6759 return (!executable && event->attr.mmap_data) ||
13d7a241 6760 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6761}
6762
cdd6c482 6763static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6764 void *data)
0a4a9391 6765{
52d857a8 6766 struct perf_mmap_event *mmap_event = data;
0a4a9391 6767 struct perf_output_handle handle;
c980d109 6768 struct perf_sample_data sample;
cdd6c482 6769 int size = mmap_event->event_id.header.size;
c980d109 6770 int ret;
0a4a9391 6771
67516844
JO
6772 if (!perf_event_mmap_match(event, data))
6773 return;
6774
13d7a241
SE
6775 if (event->attr.mmap2) {
6776 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6777 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6778 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6779 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6780 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6781 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6782 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6783 }
6784
c980d109
ACM
6785 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6786 ret = perf_output_begin(&handle, event,
a7ac67ea 6787 mmap_event->event_id.header.size);
0a4a9391 6788 if (ret)
c980d109 6789 goto out;
0a4a9391 6790
cdd6c482
IM
6791 mmap_event->event_id.pid = perf_event_pid(event, current);
6792 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6793
cdd6c482 6794 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6795
6796 if (event->attr.mmap2) {
6797 perf_output_put(&handle, mmap_event->maj);
6798 perf_output_put(&handle, mmap_event->min);
6799 perf_output_put(&handle, mmap_event->ino);
6800 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6801 perf_output_put(&handle, mmap_event->prot);
6802 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6803 }
6804
76369139 6805 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6806 mmap_event->file_size);
c980d109
ACM
6807
6808 perf_event__output_id_sample(event, &handle, &sample);
6809
78d613eb 6810 perf_output_end(&handle);
c980d109
ACM
6811out:
6812 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6813}
6814
cdd6c482 6815static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6816{
089dd79d
PZ
6817 struct vm_area_struct *vma = mmap_event->vma;
6818 struct file *file = vma->vm_file;
13d7a241
SE
6819 int maj = 0, min = 0;
6820 u64 ino = 0, gen = 0;
f972eb63 6821 u32 prot = 0, flags = 0;
0a4a9391
PZ
6822 unsigned int size;
6823 char tmp[16];
6824 char *buf = NULL;
2c42cfbf 6825 char *name;
413ee3b4 6826
0b3589be
PZ
6827 if (vma->vm_flags & VM_READ)
6828 prot |= PROT_READ;
6829 if (vma->vm_flags & VM_WRITE)
6830 prot |= PROT_WRITE;
6831 if (vma->vm_flags & VM_EXEC)
6832 prot |= PROT_EXEC;
6833
6834 if (vma->vm_flags & VM_MAYSHARE)
6835 flags = MAP_SHARED;
6836 else
6837 flags = MAP_PRIVATE;
6838
6839 if (vma->vm_flags & VM_DENYWRITE)
6840 flags |= MAP_DENYWRITE;
6841 if (vma->vm_flags & VM_MAYEXEC)
6842 flags |= MAP_EXECUTABLE;
6843 if (vma->vm_flags & VM_LOCKED)
6844 flags |= MAP_LOCKED;
6845 if (vma->vm_flags & VM_HUGETLB)
6846 flags |= MAP_HUGETLB;
6847
0a4a9391 6848 if (file) {
13d7a241
SE
6849 struct inode *inode;
6850 dev_t dev;
3ea2f2b9 6851
2c42cfbf 6852 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6853 if (!buf) {
c7e548b4
ON
6854 name = "//enomem";
6855 goto cpy_name;
0a4a9391 6856 }
413ee3b4 6857 /*
3ea2f2b9 6858 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6859 * need to add enough zero bytes after the string to handle
6860 * the 64bit alignment we do later.
6861 */
9bf39ab2 6862 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6863 if (IS_ERR(name)) {
c7e548b4
ON
6864 name = "//toolong";
6865 goto cpy_name;
0a4a9391 6866 }
13d7a241
SE
6867 inode = file_inode(vma->vm_file);
6868 dev = inode->i_sb->s_dev;
6869 ino = inode->i_ino;
6870 gen = inode->i_generation;
6871 maj = MAJOR(dev);
6872 min = MINOR(dev);
f972eb63 6873
c7e548b4 6874 goto got_name;
0a4a9391 6875 } else {
fbe26abe
JO
6876 if (vma->vm_ops && vma->vm_ops->name) {
6877 name = (char *) vma->vm_ops->name(vma);
6878 if (name)
6879 goto cpy_name;
6880 }
6881
2c42cfbf 6882 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6883 if (name)
6884 goto cpy_name;
089dd79d 6885
32c5fb7e 6886 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6887 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6888 name = "[heap]";
6889 goto cpy_name;
32c5fb7e
ON
6890 }
6891 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6892 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6893 name = "[stack]";
6894 goto cpy_name;
089dd79d
PZ
6895 }
6896
c7e548b4
ON
6897 name = "//anon";
6898 goto cpy_name;
0a4a9391
PZ
6899 }
6900
c7e548b4
ON
6901cpy_name:
6902 strlcpy(tmp, name, sizeof(tmp));
6903 name = tmp;
0a4a9391 6904got_name:
2c42cfbf
PZ
6905 /*
6906 * Since our buffer works in 8 byte units we need to align our string
6907 * size to a multiple of 8. However, we must guarantee the tail end is
6908 * zero'd out to avoid leaking random bits to userspace.
6909 */
6910 size = strlen(name)+1;
6911 while (!IS_ALIGNED(size, sizeof(u64)))
6912 name[size++] = '\0';
0a4a9391
PZ
6913
6914 mmap_event->file_name = name;
6915 mmap_event->file_size = size;
13d7a241
SE
6916 mmap_event->maj = maj;
6917 mmap_event->min = min;
6918 mmap_event->ino = ino;
6919 mmap_event->ino_generation = gen;
f972eb63
PZ
6920 mmap_event->prot = prot;
6921 mmap_event->flags = flags;
0a4a9391 6922
2fe85427
SE
6923 if (!(vma->vm_flags & VM_EXEC))
6924 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6925
cdd6c482 6926 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6927
aab5b71e 6928 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6929 mmap_event,
6930 NULL);
665c2142 6931
0a4a9391
PZ
6932 kfree(buf);
6933}
6934
375637bc
AS
6935/*
6936 * Check whether inode and address range match filter criteria.
6937 */
6938static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6939 struct file *file, unsigned long offset,
6940 unsigned long size)
6941{
45063097 6942 if (filter->inode != file_inode(file))
375637bc
AS
6943 return false;
6944
6945 if (filter->offset > offset + size)
6946 return false;
6947
6948 if (filter->offset + filter->size < offset)
6949 return false;
6950
6951 return true;
6952}
6953
6954static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6955{
6956 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6957 struct vm_area_struct *vma = data;
6958 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6959 struct file *file = vma->vm_file;
6960 struct perf_addr_filter *filter;
6961 unsigned int restart = 0, count = 0;
6962
6963 if (!has_addr_filter(event))
6964 return;
6965
6966 if (!file)
6967 return;
6968
6969 raw_spin_lock_irqsave(&ifh->lock, flags);
6970 list_for_each_entry(filter, &ifh->list, entry) {
6971 if (perf_addr_filter_match(filter, file, off,
6972 vma->vm_end - vma->vm_start)) {
6973 event->addr_filters_offs[count] = vma->vm_start;
6974 restart++;
6975 }
6976
6977 count++;
6978 }
6979
6980 if (restart)
6981 event->addr_filters_gen++;
6982 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6983
6984 if (restart)
767ae086 6985 perf_event_stop(event, 1);
375637bc
AS
6986}
6987
6988/*
6989 * Adjust all task's events' filters to the new vma
6990 */
6991static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6992{
6993 struct perf_event_context *ctx;
6994 int ctxn;
6995
12b40a23
MP
6996 /*
6997 * Data tracing isn't supported yet and as such there is no need
6998 * to keep track of anything that isn't related to executable code:
6999 */
7000 if (!(vma->vm_flags & VM_EXEC))
7001 return;
7002
375637bc
AS
7003 rcu_read_lock();
7004 for_each_task_context_nr(ctxn) {
7005 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7006 if (!ctx)
7007 continue;
7008
aab5b71e 7009 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7010 }
7011 rcu_read_unlock();
7012}
7013
3af9e859 7014void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7015{
9ee318a7
PZ
7016 struct perf_mmap_event mmap_event;
7017
cdd6c482 7018 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7019 return;
7020
7021 mmap_event = (struct perf_mmap_event){
089dd79d 7022 .vma = vma,
573402db
PZ
7023 /* .file_name */
7024 /* .file_size */
cdd6c482 7025 .event_id = {
573402db 7026 .header = {
cdd6c482 7027 .type = PERF_RECORD_MMAP,
39447b38 7028 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7029 /* .size */
7030 },
7031 /* .pid */
7032 /* .tid */
089dd79d
PZ
7033 .start = vma->vm_start,
7034 .len = vma->vm_end - vma->vm_start,
3a0304e9 7035 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7036 },
13d7a241
SE
7037 /* .maj (attr_mmap2 only) */
7038 /* .min (attr_mmap2 only) */
7039 /* .ino (attr_mmap2 only) */
7040 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7041 /* .prot (attr_mmap2 only) */
7042 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7043 };
7044
375637bc 7045 perf_addr_filters_adjust(vma);
cdd6c482 7046 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7047}
7048
68db7e98
AS
7049void perf_event_aux_event(struct perf_event *event, unsigned long head,
7050 unsigned long size, u64 flags)
7051{
7052 struct perf_output_handle handle;
7053 struct perf_sample_data sample;
7054 struct perf_aux_event {
7055 struct perf_event_header header;
7056 u64 offset;
7057 u64 size;
7058 u64 flags;
7059 } rec = {
7060 .header = {
7061 .type = PERF_RECORD_AUX,
7062 .misc = 0,
7063 .size = sizeof(rec),
7064 },
7065 .offset = head,
7066 .size = size,
7067 .flags = flags,
7068 };
7069 int ret;
7070
7071 perf_event_header__init_id(&rec.header, &sample, event);
7072 ret = perf_output_begin(&handle, event, rec.header.size);
7073
7074 if (ret)
7075 return;
7076
7077 perf_output_put(&handle, rec);
7078 perf_event__output_id_sample(event, &handle, &sample);
7079
7080 perf_output_end(&handle);
7081}
7082
f38b0dbb
KL
7083/*
7084 * Lost/dropped samples logging
7085 */
7086void perf_log_lost_samples(struct perf_event *event, u64 lost)
7087{
7088 struct perf_output_handle handle;
7089 struct perf_sample_data sample;
7090 int ret;
7091
7092 struct {
7093 struct perf_event_header header;
7094 u64 lost;
7095 } lost_samples_event = {
7096 .header = {
7097 .type = PERF_RECORD_LOST_SAMPLES,
7098 .misc = 0,
7099 .size = sizeof(lost_samples_event),
7100 },
7101 .lost = lost,
7102 };
7103
7104 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7105
7106 ret = perf_output_begin(&handle, event,
7107 lost_samples_event.header.size);
7108 if (ret)
7109 return;
7110
7111 perf_output_put(&handle, lost_samples_event);
7112 perf_event__output_id_sample(event, &handle, &sample);
7113 perf_output_end(&handle);
7114}
7115
45ac1403
AH
7116/*
7117 * context_switch tracking
7118 */
7119
7120struct perf_switch_event {
7121 struct task_struct *task;
7122 struct task_struct *next_prev;
7123
7124 struct {
7125 struct perf_event_header header;
7126 u32 next_prev_pid;
7127 u32 next_prev_tid;
7128 } event_id;
7129};
7130
7131static int perf_event_switch_match(struct perf_event *event)
7132{
7133 return event->attr.context_switch;
7134}
7135
7136static void perf_event_switch_output(struct perf_event *event, void *data)
7137{
7138 struct perf_switch_event *se = data;
7139 struct perf_output_handle handle;
7140 struct perf_sample_data sample;
7141 int ret;
7142
7143 if (!perf_event_switch_match(event))
7144 return;
7145
7146 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7147 if (event->ctx->task) {
7148 se->event_id.header.type = PERF_RECORD_SWITCH;
7149 se->event_id.header.size = sizeof(se->event_id.header);
7150 } else {
7151 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7152 se->event_id.header.size = sizeof(se->event_id);
7153 se->event_id.next_prev_pid =
7154 perf_event_pid(event, se->next_prev);
7155 se->event_id.next_prev_tid =
7156 perf_event_tid(event, se->next_prev);
7157 }
7158
7159 perf_event_header__init_id(&se->event_id.header, &sample, event);
7160
7161 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7162 if (ret)
7163 return;
7164
7165 if (event->ctx->task)
7166 perf_output_put(&handle, se->event_id.header);
7167 else
7168 perf_output_put(&handle, se->event_id);
7169
7170 perf_event__output_id_sample(event, &handle, &sample);
7171
7172 perf_output_end(&handle);
7173}
7174
7175static void perf_event_switch(struct task_struct *task,
7176 struct task_struct *next_prev, bool sched_in)
7177{
7178 struct perf_switch_event switch_event;
7179
7180 /* N.B. caller checks nr_switch_events != 0 */
7181
7182 switch_event = (struct perf_switch_event){
7183 .task = task,
7184 .next_prev = next_prev,
7185 .event_id = {
7186 .header = {
7187 /* .type */
7188 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7189 /* .size */
7190 },
7191 /* .next_prev_pid */
7192 /* .next_prev_tid */
7193 },
7194 };
7195
aab5b71e 7196 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7197 &switch_event,
7198 NULL);
7199}
7200
a78ac325
PZ
7201/*
7202 * IRQ throttle logging
7203 */
7204
cdd6c482 7205static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7206{
7207 struct perf_output_handle handle;
c980d109 7208 struct perf_sample_data sample;
a78ac325
PZ
7209 int ret;
7210
7211 struct {
7212 struct perf_event_header header;
7213 u64 time;
cca3f454 7214 u64 id;
7f453c24 7215 u64 stream_id;
a78ac325
PZ
7216 } throttle_event = {
7217 .header = {
cdd6c482 7218 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7219 .misc = 0,
7220 .size = sizeof(throttle_event),
7221 },
34f43927 7222 .time = perf_event_clock(event),
cdd6c482
IM
7223 .id = primary_event_id(event),
7224 .stream_id = event->id,
a78ac325
PZ
7225 };
7226
966ee4d6 7227 if (enable)
cdd6c482 7228 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7229
c980d109
ACM
7230 perf_event_header__init_id(&throttle_event.header, &sample, event);
7231
7232 ret = perf_output_begin(&handle, event,
a7ac67ea 7233 throttle_event.header.size);
a78ac325
PZ
7234 if (ret)
7235 return;
7236
7237 perf_output_put(&handle, throttle_event);
c980d109 7238 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7239 perf_output_end(&handle);
7240}
7241
ec0d7729
AS
7242static void perf_log_itrace_start(struct perf_event *event)
7243{
7244 struct perf_output_handle handle;
7245 struct perf_sample_data sample;
7246 struct perf_aux_event {
7247 struct perf_event_header header;
7248 u32 pid;
7249 u32 tid;
7250 } rec;
7251 int ret;
7252
7253 if (event->parent)
7254 event = event->parent;
7255
7256 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7257 event->hw.itrace_started)
7258 return;
7259
ec0d7729
AS
7260 rec.header.type = PERF_RECORD_ITRACE_START;
7261 rec.header.misc = 0;
7262 rec.header.size = sizeof(rec);
7263 rec.pid = perf_event_pid(event, current);
7264 rec.tid = perf_event_tid(event, current);
7265
7266 perf_event_header__init_id(&rec.header, &sample, event);
7267 ret = perf_output_begin(&handle, event, rec.header.size);
7268
7269 if (ret)
7270 return;
7271
7272 perf_output_put(&handle, rec);
7273 perf_event__output_id_sample(event, &handle, &sample);
7274
7275 perf_output_end(&handle);
7276}
7277
475113d9
JO
7278static int
7279__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7280{
cdd6c482 7281 struct hw_perf_event *hwc = &event->hw;
79f14641 7282 int ret = 0;
475113d9 7283 u64 seq;
96398826 7284
e050e3f0
SE
7285 seq = __this_cpu_read(perf_throttled_seq);
7286 if (seq != hwc->interrupts_seq) {
7287 hwc->interrupts_seq = seq;
7288 hwc->interrupts = 1;
7289 } else {
7290 hwc->interrupts++;
7291 if (unlikely(throttle
7292 && hwc->interrupts >= max_samples_per_tick)) {
7293 __this_cpu_inc(perf_throttled_count);
555e0c1e 7294 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7295 hwc->interrupts = MAX_INTERRUPTS;
7296 perf_log_throttle(event, 0);
a78ac325
PZ
7297 ret = 1;
7298 }
e050e3f0 7299 }
60db5e09 7300
cdd6c482 7301 if (event->attr.freq) {
def0a9b2 7302 u64 now = perf_clock();
abd50713 7303 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7304
abd50713 7305 hwc->freq_time_stamp = now;
bd2b5b12 7306
abd50713 7307 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7308 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7309 }
7310
475113d9
JO
7311 return ret;
7312}
7313
7314int perf_event_account_interrupt(struct perf_event *event)
7315{
7316 return __perf_event_account_interrupt(event, 1);
7317}
7318
7319/*
7320 * Generic event overflow handling, sampling.
7321 */
7322
7323static int __perf_event_overflow(struct perf_event *event,
7324 int throttle, struct perf_sample_data *data,
7325 struct pt_regs *regs)
7326{
7327 int events = atomic_read(&event->event_limit);
7328 int ret = 0;
7329
7330 /*
7331 * Non-sampling counters might still use the PMI to fold short
7332 * hardware counters, ignore those.
7333 */
7334 if (unlikely(!is_sampling_event(event)))
7335 return 0;
7336
7337 ret = __perf_event_account_interrupt(event, throttle);
7338
2023b359
PZ
7339 /*
7340 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7341 * events
2023b359
PZ
7342 */
7343
cdd6c482
IM
7344 event->pending_kill = POLL_IN;
7345 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7346 ret = 1;
cdd6c482 7347 event->pending_kill = POLL_HUP;
5aab90ce
JO
7348
7349 perf_event_disable_inatomic(event);
79f14641
PZ
7350 }
7351
aa6a5f3c 7352 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7353
fed66e2c 7354 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7355 event->pending_wakeup = 1;
7356 irq_work_queue(&event->pending);
f506b3dc
PZ
7357 }
7358
79f14641 7359 return ret;
f6c7d5fe
PZ
7360}
7361
a8b0ca17 7362int perf_event_overflow(struct perf_event *event,
5622f295
MM
7363 struct perf_sample_data *data,
7364 struct pt_regs *regs)
850bc73f 7365{
a8b0ca17 7366 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7367}
7368
15dbf27c 7369/*
cdd6c482 7370 * Generic software event infrastructure
15dbf27c
PZ
7371 */
7372
b28ab83c
PZ
7373struct swevent_htable {
7374 struct swevent_hlist *swevent_hlist;
7375 struct mutex hlist_mutex;
7376 int hlist_refcount;
7377
7378 /* Recursion avoidance in each contexts */
7379 int recursion[PERF_NR_CONTEXTS];
7380};
7381
7382static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7383
7b4b6658 7384/*
cdd6c482
IM
7385 * We directly increment event->count and keep a second value in
7386 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7387 * is kept in the range [-sample_period, 0] so that we can use the
7388 * sign as trigger.
7389 */
7390
ab573844 7391u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7392{
cdd6c482 7393 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7394 u64 period = hwc->last_period;
7395 u64 nr, offset;
7396 s64 old, val;
7397
7398 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7399
7400again:
e7850595 7401 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7402 if (val < 0)
7403 return 0;
15dbf27c 7404
7b4b6658
PZ
7405 nr = div64_u64(period + val, period);
7406 offset = nr * period;
7407 val -= offset;
e7850595 7408 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7409 goto again;
15dbf27c 7410
7b4b6658 7411 return nr;
15dbf27c
PZ
7412}
7413
0cff784a 7414static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7415 struct perf_sample_data *data,
5622f295 7416 struct pt_regs *regs)
15dbf27c 7417{
cdd6c482 7418 struct hw_perf_event *hwc = &event->hw;
850bc73f 7419 int throttle = 0;
15dbf27c 7420
0cff784a
PZ
7421 if (!overflow)
7422 overflow = perf_swevent_set_period(event);
15dbf27c 7423
7b4b6658
PZ
7424 if (hwc->interrupts == MAX_INTERRUPTS)
7425 return;
15dbf27c 7426
7b4b6658 7427 for (; overflow; overflow--) {
a8b0ca17 7428 if (__perf_event_overflow(event, throttle,
5622f295 7429 data, regs)) {
7b4b6658
PZ
7430 /*
7431 * We inhibit the overflow from happening when
7432 * hwc->interrupts == MAX_INTERRUPTS.
7433 */
7434 break;
7435 }
cf450a73 7436 throttle = 1;
7b4b6658 7437 }
15dbf27c
PZ
7438}
7439
a4eaf7f1 7440static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7441 struct perf_sample_data *data,
5622f295 7442 struct pt_regs *regs)
7b4b6658 7443{
cdd6c482 7444 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7445
e7850595 7446 local64_add(nr, &event->count);
d6d020e9 7447
0cff784a
PZ
7448 if (!regs)
7449 return;
7450
6c7e550f 7451 if (!is_sampling_event(event))
7b4b6658 7452 return;
d6d020e9 7453
5d81e5cf
AV
7454 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7455 data->period = nr;
7456 return perf_swevent_overflow(event, 1, data, regs);
7457 } else
7458 data->period = event->hw.last_period;
7459
0cff784a 7460 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7461 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7462
e7850595 7463 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7464 return;
df1a132b 7465
a8b0ca17 7466 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7467}
7468
f5ffe02e
FW
7469static int perf_exclude_event(struct perf_event *event,
7470 struct pt_regs *regs)
7471{
a4eaf7f1 7472 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7473 return 1;
a4eaf7f1 7474
f5ffe02e
FW
7475 if (regs) {
7476 if (event->attr.exclude_user && user_mode(regs))
7477 return 1;
7478
7479 if (event->attr.exclude_kernel && !user_mode(regs))
7480 return 1;
7481 }
7482
7483 return 0;
7484}
7485
cdd6c482 7486static int perf_swevent_match(struct perf_event *event,
1c432d89 7487 enum perf_type_id type,
6fb2915d
LZ
7488 u32 event_id,
7489 struct perf_sample_data *data,
7490 struct pt_regs *regs)
15dbf27c 7491{
cdd6c482 7492 if (event->attr.type != type)
a21ca2ca 7493 return 0;
f5ffe02e 7494
cdd6c482 7495 if (event->attr.config != event_id)
15dbf27c
PZ
7496 return 0;
7497
f5ffe02e
FW
7498 if (perf_exclude_event(event, regs))
7499 return 0;
15dbf27c
PZ
7500
7501 return 1;
7502}
7503
76e1d904
FW
7504static inline u64 swevent_hash(u64 type, u32 event_id)
7505{
7506 u64 val = event_id | (type << 32);
7507
7508 return hash_64(val, SWEVENT_HLIST_BITS);
7509}
7510
49f135ed
FW
7511static inline struct hlist_head *
7512__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7513{
49f135ed
FW
7514 u64 hash = swevent_hash(type, event_id);
7515
7516 return &hlist->heads[hash];
7517}
76e1d904 7518
49f135ed
FW
7519/* For the read side: events when they trigger */
7520static inline struct hlist_head *
b28ab83c 7521find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7522{
7523 struct swevent_hlist *hlist;
76e1d904 7524
b28ab83c 7525 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7526 if (!hlist)
7527 return NULL;
7528
49f135ed
FW
7529 return __find_swevent_head(hlist, type, event_id);
7530}
7531
7532/* For the event head insertion and removal in the hlist */
7533static inline struct hlist_head *
b28ab83c 7534find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7535{
7536 struct swevent_hlist *hlist;
7537 u32 event_id = event->attr.config;
7538 u64 type = event->attr.type;
7539
7540 /*
7541 * Event scheduling is always serialized against hlist allocation
7542 * and release. Which makes the protected version suitable here.
7543 * The context lock guarantees that.
7544 */
b28ab83c 7545 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7546 lockdep_is_held(&event->ctx->lock));
7547 if (!hlist)
7548 return NULL;
7549
7550 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7551}
7552
7553static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7554 u64 nr,
76e1d904
FW
7555 struct perf_sample_data *data,
7556 struct pt_regs *regs)
15dbf27c 7557{
4a32fea9 7558 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7559 struct perf_event *event;
76e1d904 7560 struct hlist_head *head;
15dbf27c 7561
76e1d904 7562 rcu_read_lock();
b28ab83c 7563 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7564 if (!head)
7565 goto end;
7566
b67bfe0d 7567 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7568 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7569 perf_swevent_event(event, nr, data, regs);
15dbf27c 7570 }
76e1d904
FW
7571end:
7572 rcu_read_unlock();
15dbf27c
PZ
7573}
7574
86038c5e
PZI
7575DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7576
4ed7c92d 7577int perf_swevent_get_recursion_context(void)
96f6d444 7578{
4a32fea9 7579 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7580
b28ab83c 7581 return get_recursion_context(swhash->recursion);
96f6d444 7582}
645e8cc0 7583EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7584
98b5c2c6 7585void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7586{
4a32fea9 7587 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7588
b28ab83c 7589 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7590}
15dbf27c 7591
86038c5e 7592void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7593{
a4234bfc 7594 struct perf_sample_data data;
4ed7c92d 7595
86038c5e 7596 if (WARN_ON_ONCE(!regs))
4ed7c92d 7597 return;
a4234bfc 7598
fd0d000b 7599 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7600 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7601}
7602
7603void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7604{
7605 int rctx;
7606
7607 preempt_disable_notrace();
7608 rctx = perf_swevent_get_recursion_context();
7609 if (unlikely(rctx < 0))
7610 goto fail;
7611
7612 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7613
7614 perf_swevent_put_recursion_context(rctx);
86038c5e 7615fail:
1c024eca 7616 preempt_enable_notrace();
b8e83514
PZ
7617}
7618
cdd6c482 7619static void perf_swevent_read(struct perf_event *event)
15dbf27c 7620{
15dbf27c
PZ
7621}
7622
a4eaf7f1 7623static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7624{
4a32fea9 7625 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7626 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7627 struct hlist_head *head;
7628
6c7e550f 7629 if (is_sampling_event(event)) {
7b4b6658 7630 hwc->last_period = hwc->sample_period;
cdd6c482 7631 perf_swevent_set_period(event);
7b4b6658 7632 }
76e1d904 7633
a4eaf7f1
PZ
7634 hwc->state = !(flags & PERF_EF_START);
7635
b28ab83c 7636 head = find_swevent_head(swhash, event);
12ca6ad2 7637 if (WARN_ON_ONCE(!head))
76e1d904
FW
7638 return -EINVAL;
7639
7640 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7641 perf_event_update_userpage(event);
76e1d904 7642
15dbf27c
PZ
7643 return 0;
7644}
7645
a4eaf7f1 7646static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7647{
76e1d904 7648 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7649}
7650
a4eaf7f1 7651static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7652{
a4eaf7f1 7653 event->hw.state = 0;
d6d020e9 7654}
aa9c4c0f 7655
a4eaf7f1 7656static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7657{
a4eaf7f1 7658 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7659}
7660
49f135ed
FW
7661/* Deref the hlist from the update side */
7662static inline struct swevent_hlist *
b28ab83c 7663swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7664{
b28ab83c
PZ
7665 return rcu_dereference_protected(swhash->swevent_hlist,
7666 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7667}
7668
b28ab83c 7669static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7670{
b28ab83c 7671 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7672
49f135ed 7673 if (!hlist)
76e1d904
FW
7674 return;
7675
70691d4a 7676 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7677 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7678}
7679
3b364d7b 7680static void swevent_hlist_put_cpu(int cpu)
76e1d904 7681{
b28ab83c 7682 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7683
b28ab83c 7684 mutex_lock(&swhash->hlist_mutex);
76e1d904 7685
b28ab83c
PZ
7686 if (!--swhash->hlist_refcount)
7687 swevent_hlist_release(swhash);
76e1d904 7688
b28ab83c 7689 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7690}
7691
3b364d7b 7692static void swevent_hlist_put(void)
76e1d904
FW
7693{
7694 int cpu;
7695
76e1d904 7696 for_each_possible_cpu(cpu)
3b364d7b 7697 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7698}
7699
3b364d7b 7700static int swevent_hlist_get_cpu(int cpu)
76e1d904 7701{
b28ab83c 7702 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7703 int err = 0;
7704
b28ab83c 7705 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7706 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7707 struct swevent_hlist *hlist;
7708
7709 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7710 if (!hlist) {
7711 err = -ENOMEM;
7712 goto exit;
7713 }
b28ab83c 7714 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7715 }
b28ab83c 7716 swhash->hlist_refcount++;
9ed6060d 7717exit:
b28ab83c 7718 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7719
7720 return err;
7721}
7722
3b364d7b 7723static int swevent_hlist_get(void)
76e1d904 7724{
3b364d7b 7725 int err, cpu, failed_cpu;
76e1d904 7726
76e1d904
FW
7727 get_online_cpus();
7728 for_each_possible_cpu(cpu) {
3b364d7b 7729 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7730 if (err) {
7731 failed_cpu = cpu;
7732 goto fail;
7733 }
7734 }
7735 put_online_cpus();
7736
7737 return 0;
9ed6060d 7738fail:
76e1d904
FW
7739 for_each_possible_cpu(cpu) {
7740 if (cpu == failed_cpu)
7741 break;
3b364d7b 7742 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7743 }
7744
7745 put_online_cpus();
7746 return err;
7747}
7748
c5905afb 7749struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7750
b0a873eb
PZ
7751static void sw_perf_event_destroy(struct perf_event *event)
7752{
7753 u64 event_id = event->attr.config;
95476b64 7754
b0a873eb
PZ
7755 WARN_ON(event->parent);
7756
c5905afb 7757 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7758 swevent_hlist_put();
b0a873eb
PZ
7759}
7760
7761static int perf_swevent_init(struct perf_event *event)
7762{
8176cced 7763 u64 event_id = event->attr.config;
b0a873eb
PZ
7764
7765 if (event->attr.type != PERF_TYPE_SOFTWARE)
7766 return -ENOENT;
7767
2481c5fa
SE
7768 /*
7769 * no branch sampling for software events
7770 */
7771 if (has_branch_stack(event))
7772 return -EOPNOTSUPP;
7773
b0a873eb
PZ
7774 switch (event_id) {
7775 case PERF_COUNT_SW_CPU_CLOCK:
7776 case PERF_COUNT_SW_TASK_CLOCK:
7777 return -ENOENT;
7778
7779 default:
7780 break;
7781 }
7782
ce677831 7783 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7784 return -ENOENT;
7785
7786 if (!event->parent) {
7787 int err;
7788
3b364d7b 7789 err = swevent_hlist_get();
b0a873eb
PZ
7790 if (err)
7791 return err;
7792
c5905afb 7793 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7794 event->destroy = sw_perf_event_destroy;
7795 }
7796
7797 return 0;
7798}
7799
7800static struct pmu perf_swevent = {
89a1e187 7801 .task_ctx_nr = perf_sw_context,
95476b64 7802
34f43927
PZ
7803 .capabilities = PERF_PMU_CAP_NO_NMI,
7804
b0a873eb 7805 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7806 .add = perf_swevent_add,
7807 .del = perf_swevent_del,
7808 .start = perf_swevent_start,
7809 .stop = perf_swevent_stop,
1c024eca 7810 .read = perf_swevent_read,
1c024eca
PZ
7811};
7812
b0a873eb
PZ
7813#ifdef CONFIG_EVENT_TRACING
7814
1c024eca
PZ
7815static int perf_tp_filter_match(struct perf_event *event,
7816 struct perf_sample_data *data)
7817{
7e3f977e 7818 void *record = data->raw->frag.data;
1c024eca 7819
b71b437e
PZ
7820 /* only top level events have filters set */
7821 if (event->parent)
7822 event = event->parent;
7823
1c024eca
PZ
7824 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7825 return 1;
7826 return 0;
7827}
7828
7829static int perf_tp_event_match(struct perf_event *event,
7830 struct perf_sample_data *data,
7831 struct pt_regs *regs)
7832{
a0f7d0f7
FW
7833 if (event->hw.state & PERF_HES_STOPPED)
7834 return 0;
580d607c
PZ
7835 /*
7836 * All tracepoints are from kernel-space.
7837 */
7838 if (event->attr.exclude_kernel)
1c024eca
PZ
7839 return 0;
7840
7841 if (!perf_tp_filter_match(event, data))
7842 return 0;
7843
7844 return 1;
7845}
7846
85b67bcb
AS
7847void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7848 struct trace_event_call *call, u64 count,
7849 struct pt_regs *regs, struct hlist_head *head,
7850 struct task_struct *task)
7851{
7852 struct bpf_prog *prog = call->prog;
7853
7854 if (prog) {
7855 *(struct pt_regs **)raw_data = regs;
7856 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7857 perf_swevent_put_recursion_context(rctx);
7858 return;
7859 }
7860 }
7861 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7862 rctx, task);
7863}
7864EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7865
1e1dcd93 7866void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7867 struct pt_regs *regs, struct hlist_head *head, int rctx,
7868 struct task_struct *task)
95476b64
FW
7869{
7870 struct perf_sample_data data;
1c024eca 7871 struct perf_event *event;
1c024eca 7872
95476b64 7873 struct perf_raw_record raw = {
7e3f977e
DB
7874 .frag = {
7875 .size = entry_size,
7876 .data = record,
7877 },
95476b64
FW
7878 };
7879
1e1dcd93 7880 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7881 data.raw = &raw;
7882
1e1dcd93
AS
7883 perf_trace_buf_update(record, event_type);
7884
b67bfe0d 7885 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7886 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7887 perf_swevent_event(event, count, &data, regs);
4f41c013 7888 }
ecc55f84 7889
e6dab5ff
AV
7890 /*
7891 * If we got specified a target task, also iterate its context and
7892 * deliver this event there too.
7893 */
7894 if (task && task != current) {
7895 struct perf_event_context *ctx;
7896 struct trace_entry *entry = record;
7897
7898 rcu_read_lock();
7899 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7900 if (!ctx)
7901 goto unlock;
7902
7903 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7904 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7905 continue;
7906 if (event->attr.config != entry->type)
7907 continue;
7908 if (perf_tp_event_match(event, &data, regs))
7909 perf_swevent_event(event, count, &data, regs);
7910 }
7911unlock:
7912 rcu_read_unlock();
7913 }
7914
ecc55f84 7915 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7916}
7917EXPORT_SYMBOL_GPL(perf_tp_event);
7918
cdd6c482 7919static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7920{
1c024eca 7921 perf_trace_destroy(event);
e077df4f
PZ
7922}
7923
b0a873eb 7924static int perf_tp_event_init(struct perf_event *event)
e077df4f 7925{
76e1d904
FW
7926 int err;
7927
b0a873eb
PZ
7928 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7929 return -ENOENT;
7930
2481c5fa
SE
7931 /*
7932 * no branch sampling for tracepoint events
7933 */
7934 if (has_branch_stack(event))
7935 return -EOPNOTSUPP;
7936
1c024eca
PZ
7937 err = perf_trace_init(event);
7938 if (err)
b0a873eb 7939 return err;
e077df4f 7940
cdd6c482 7941 event->destroy = tp_perf_event_destroy;
e077df4f 7942
b0a873eb
PZ
7943 return 0;
7944}
7945
7946static struct pmu perf_tracepoint = {
89a1e187
PZ
7947 .task_ctx_nr = perf_sw_context,
7948
b0a873eb 7949 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7950 .add = perf_trace_add,
7951 .del = perf_trace_del,
7952 .start = perf_swevent_start,
7953 .stop = perf_swevent_stop,
b0a873eb 7954 .read = perf_swevent_read,
b0a873eb
PZ
7955};
7956
7957static inline void perf_tp_register(void)
7958{
2e80a82a 7959 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7960}
6fb2915d 7961
6fb2915d
LZ
7962static void perf_event_free_filter(struct perf_event *event)
7963{
7964 ftrace_profile_free_filter(event);
7965}
7966
aa6a5f3c
AS
7967#ifdef CONFIG_BPF_SYSCALL
7968static void bpf_overflow_handler(struct perf_event *event,
7969 struct perf_sample_data *data,
7970 struct pt_regs *regs)
7971{
7972 struct bpf_perf_event_data_kern ctx = {
7973 .data = data,
7974 .regs = regs,
7975 };
7976 int ret = 0;
7977
7978 preempt_disable();
7979 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7980 goto out;
7981 rcu_read_lock();
88575199 7982 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7983 rcu_read_unlock();
7984out:
7985 __this_cpu_dec(bpf_prog_active);
7986 preempt_enable();
7987 if (!ret)
7988 return;
7989
7990 event->orig_overflow_handler(event, data, regs);
7991}
7992
7993static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7994{
7995 struct bpf_prog *prog;
7996
7997 if (event->overflow_handler_context)
7998 /* hw breakpoint or kernel counter */
7999 return -EINVAL;
8000
8001 if (event->prog)
8002 return -EEXIST;
8003
8004 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8005 if (IS_ERR(prog))
8006 return PTR_ERR(prog);
8007
8008 event->prog = prog;
8009 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8010 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8011 return 0;
8012}
8013
8014static void perf_event_free_bpf_handler(struct perf_event *event)
8015{
8016 struct bpf_prog *prog = event->prog;
8017
8018 if (!prog)
8019 return;
8020
8021 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8022 event->prog = NULL;
8023 bpf_prog_put(prog);
8024}
8025#else
8026static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8027{
8028 return -EOPNOTSUPP;
8029}
8030static void perf_event_free_bpf_handler(struct perf_event *event)
8031{
8032}
8033#endif
8034
2541517c
AS
8035static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8036{
98b5c2c6 8037 bool is_kprobe, is_tracepoint;
2541517c
AS
8038 struct bpf_prog *prog;
8039
aa6a5f3c
AS
8040 if (event->attr.type == PERF_TYPE_HARDWARE ||
8041 event->attr.type == PERF_TYPE_SOFTWARE)
8042 return perf_event_set_bpf_handler(event, prog_fd);
8043
2541517c
AS
8044 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8045 return -EINVAL;
8046
8047 if (event->tp_event->prog)
8048 return -EEXIST;
8049
98b5c2c6
AS
8050 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8051 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8052 if (!is_kprobe && !is_tracepoint)
8053 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8054 return -EINVAL;
8055
8056 prog = bpf_prog_get(prog_fd);
8057 if (IS_ERR(prog))
8058 return PTR_ERR(prog);
8059
98b5c2c6
AS
8060 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8061 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8062 /* valid fd, but invalid bpf program type */
8063 bpf_prog_put(prog);
8064 return -EINVAL;
8065 }
8066
32bbe007
AS
8067 if (is_tracepoint) {
8068 int off = trace_event_get_offsets(event->tp_event);
8069
8070 if (prog->aux->max_ctx_offset > off) {
8071 bpf_prog_put(prog);
8072 return -EACCES;
8073 }
8074 }
2541517c
AS
8075 event->tp_event->prog = prog;
8076
8077 return 0;
8078}
8079
8080static void perf_event_free_bpf_prog(struct perf_event *event)
8081{
8082 struct bpf_prog *prog;
8083
aa6a5f3c
AS
8084 perf_event_free_bpf_handler(event);
8085
2541517c
AS
8086 if (!event->tp_event)
8087 return;
8088
8089 prog = event->tp_event->prog;
8090 if (prog) {
8091 event->tp_event->prog = NULL;
1aacde3d 8092 bpf_prog_put(prog);
2541517c
AS
8093 }
8094}
8095
e077df4f 8096#else
6fb2915d 8097
b0a873eb 8098static inline void perf_tp_register(void)
e077df4f 8099{
e077df4f 8100}
6fb2915d 8101
6fb2915d
LZ
8102static void perf_event_free_filter(struct perf_event *event)
8103{
8104}
8105
2541517c
AS
8106static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8107{
8108 return -ENOENT;
8109}
8110
8111static void perf_event_free_bpf_prog(struct perf_event *event)
8112{
8113}
07b139c8 8114#endif /* CONFIG_EVENT_TRACING */
e077df4f 8115
24f1e32c 8116#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8117void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8118{
f5ffe02e
FW
8119 struct perf_sample_data sample;
8120 struct pt_regs *regs = data;
8121
fd0d000b 8122 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8123
a4eaf7f1 8124 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8125 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8126}
8127#endif
8128
375637bc
AS
8129/*
8130 * Allocate a new address filter
8131 */
8132static struct perf_addr_filter *
8133perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8134{
8135 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8136 struct perf_addr_filter *filter;
8137
8138 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8139 if (!filter)
8140 return NULL;
8141
8142 INIT_LIST_HEAD(&filter->entry);
8143 list_add_tail(&filter->entry, filters);
8144
8145 return filter;
8146}
8147
8148static void free_filters_list(struct list_head *filters)
8149{
8150 struct perf_addr_filter *filter, *iter;
8151
8152 list_for_each_entry_safe(filter, iter, filters, entry) {
8153 if (filter->inode)
8154 iput(filter->inode);
8155 list_del(&filter->entry);
8156 kfree(filter);
8157 }
8158}
8159
8160/*
8161 * Free existing address filters and optionally install new ones
8162 */
8163static void perf_addr_filters_splice(struct perf_event *event,
8164 struct list_head *head)
8165{
8166 unsigned long flags;
8167 LIST_HEAD(list);
8168
8169 if (!has_addr_filter(event))
8170 return;
8171
8172 /* don't bother with children, they don't have their own filters */
8173 if (event->parent)
8174 return;
8175
8176 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8177
8178 list_splice_init(&event->addr_filters.list, &list);
8179 if (head)
8180 list_splice(head, &event->addr_filters.list);
8181
8182 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8183
8184 free_filters_list(&list);
8185}
8186
8187/*
8188 * Scan through mm's vmas and see if one of them matches the
8189 * @filter; if so, adjust filter's address range.
8190 * Called with mm::mmap_sem down for reading.
8191 */
8192static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8193 struct mm_struct *mm)
8194{
8195 struct vm_area_struct *vma;
8196
8197 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8198 struct file *file = vma->vm_file;
8199 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8200 unsigned long vma_size = vma->vm_end - vma->vm_start;
8201
8202 if (!file)
8203 continue;
8204
8205 if (!perf_addr_filter_match(filter, file, off, vma_size))
8206 continue;
8207
8208 return vma->vm_start;
8209 }
8210
8211 return 0;
8212}
8213
8214/*
8215 * Update event's address range filters based on the
8216 * task's existing mappings, if any.
8217 */
8218static void perf_event_addr_filters_apply(struct perf_event *event)
8219{
8220 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8221 struct task_struct *task = READ_ONCE(event->ctx->task);
8222 struct perf_addr_filter *filter;
8223 struct mm_struct *mm = NULL;
8224 unsigned int count = 0;
8225 unsigned long flags;
8226
8227 /*
8228 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8229 * will stop on the parent's child_mutex that our caller is also holding
8230 */
8231 if (task == TASK_TOMBSTONE)
8232 return;
8233
6ce77bfd
AS
8234 if (!ifh->nr_file_filters)
8235 return;
8236
375637bc
AS
8237 mm = get_task_mm(event->ctx->task);
8238 if (!mm)
8239 goto restart;
8240
8241 down_read(&mm->mmap_sem);
8242
8243 raw_spin_lock_irqsave(&ifh->lock, flags);
8244 list_for_each_entry(filter, &ifh->list, entry) {
8245 event->addr_filters_offs[count] = 0;
8246
99f5bc9b
MP
8247 /*
8248 * Adjust base offset if the filter is associated to a binary
8249 * that needs to be mapped:
8250 */
8251 if (filter->inode)
375637bc
AS
8252 event->addr_filters_offs[count] =
8253 perf_addr_filter_apply(filter, mm);
8254
8255 count++;
8256 }
8257
8258 event->addr_filters_gen++;
8259 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8260
8261 up_read(&mm->mmap_sem);
8262
8263 mmput(mm);
8264
8265restart:
767ae086 8266 perf_event_stop(event, 1);
375637bc
AS
8267}
8268
8269/*
8270 * Address range filtering: limiting the data to certain
8271 * instruction address ranges. Filters are ioctl()ed to us from
8272 * userspace as ascii strings.
8273 *
8274 * Filter string format:
8275 *
8276 * ACTION RANGE_SPEC
8277 * where ACTION is one of the
8278 * * "filter": limit the trace to this region
8279 * * "start": start tracing from this address
8280 * * "stop": stop tracing at this address/region;
8281 * RANGE_SPEC is
8282 * * for kernel addresses: <start address>[/<size>]
8283 * * for object files: <start address>[/<size>]@</path/to/object/file>
8284 *
8285 * if <size> is not specified, the range is treated as a single address.
8286 */
8287enum {
e96271f3 8288 IF_ACT_NONE = -1,
375637bc
AS
8289 IF_ACT_FILTER,
8290 IF_ACT_START,
8291 IF_ACT_STOP,
8292 IF_SRC_FILE,
8293 IF_SRC_KERNEL,
8294 IF_SRC_FILEADDR,
8295 IF_SRC_KERNELADDR,
8296};
8297
8298enum {
8299 IF_STATE_ACTION = 0,
8300 IF_STATE_SOURCE,
8301 IF_STATE_END,
8302};
8303
8304static const match_table_t if_tokens = {
8305 { IF_ACT_FILTER, "filter" },
8306 { IF_ACT_START, "start" },
8307 { IF_ACT_STOP, "stop" },
8308 { IF_SRC_FILE, "%u/%u@%s" },
8309 { IF_SRC_KERNEL, "%u/%u" },
8310 { IF_SRC_FILEADDR, "%u@%s" },
8311 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8312 { IF_ACT_NONE, NULL },
375637bc
AS
8313};
8314
8315/*
8316 * Address filter string parser
8317 */
8318static int
8319perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8320 struct list_head *filters)
8321{
8322 struct perf_addr_filter *filter = NULL;
8323 char *start, *orig, *filename = NULL;
8324 struct path path;
8325 substring_t args[MAX_OPT_ARGS];
8326 int state = IF_STATE_ACTION, token;
8327 unsigned int kernel = 0;
8328 int ret = -EINVAL;
8329
8330 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8331 if (!fstr)
8332 return -ENOMEM;
8333
8334 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8335 ret = -EINVAL;
8336
8337 if (!*start)
8338 continue;
8339
8340 /* filter definition begins */
8341 if (state == IF_STATE_ACTION) {
8342 filter = perf_addr_filter_new(event, filters);
8343 if (!filter)
8344 goto fail;
8345 }
8346
8347 token = match_token(start, if_tokens, args);
8348 switch (token) {
8349 case IF_ACT_FILTER:
8350 case IF_ACT_START:
8351 filter->filter = 1;
8352
8353 case IF_ACT_STOP:
8354 if (state != IF_STATE_ACTION)
8355 goto fail;
8356
8357 state = IF_STATE_SOURCE;
8358 break;
8359
8360 case IF_SRC_KERNELADDR:
8361 case IF_SRC_KERNEL:
8362 kernel = 1;
8363
8364 case IF_SRC_FILEADDR:
8365 case IF_SRC_FILE:
8366 if (state != IF_STATE_SOURCE)
8367 goto fail;
8368
8369 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8370 filter->range = 1;
8371
8372 *args[0].to = 0;
8373 ret = kstrtoul(args[0].from, 0, &filter->offset);
8374 if (ret)
8375 goto fail;
8376
8377 if (filter->range) {
8378 *args[1].to = 0;
8379 ret = kstrtoul(args[1].from, 0, &filter->size);
8380 if (ret)
8381 goto fail;
8382 }
8383
4059ffd0
MP
8384 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8385 int fpos = filter->range ? 2 : 1;
8386
8387 filename = match_strdup(&args[fpos]);
375637bc
AS
8388 if (!filename) {
8389 ret = -ENOMEM;
8390 goto fail;
8391 }
8392 }
8393
8394 state = IF_STATE_END;
8395 break;
8396
8397 default:
8398 goto fail;
8399 }
8400
8401 /*
8402 * Filter definition is fully parsed, validate and install it.
8403 * Make sure that it doesn't contradict itself or the event's
8404 * attribute.
8405 */
8406 if (state == IF_STATE_END) {
9ccbfbb1 8407 ret = -EINVAL;
375637bc
AS
8408 if (kernel && event->attr.exclude_kernel)
8409 goto fail;
8410
8411 if (!kernel) {
8412 if (!filename)
8413 goto fail;
8414
6ce77bfd
AS
8415 /*
8416 * For now, we only support file-based filters
8417 * in per-task events; doing so for CPU-wide
8418 * events requires additional context switching
8419 * trickery, since same object code will be
8420 * mapped at different virtual addresses in
8421 * different processes.
8422 */
8423 ret = -EOPNOTSUPP;
8424 if (!event->ctx->task)
8425 goto fail_free_name;
8426
375637bc
AS
8427 /* look up the path and grab its inode */
8428 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8429 if (ret)
8430 goto fail_free_name;
8431
8432 filter->inode = igrab(d_inode(path.dentry));
8433 path_put(&path);
8434 kfree(filename);
8435 filename = NULL;
8436
8437 ret = -EINVAL;
8438 if (!filter->inode ||
8439 !S_ISREG(filter->inode->i_mode))
8440 /* free_filters_list() will iput() */
8441 goto fail;
6ce77bfd
AS
8442
8443 event->addr_filters.nr_file_filters++;
375637bc
AS
8444 }
8445
8446 /* ready to consume more filters */
8447 state = IF_STATE_ACTION;
8448 filter = NULL;
8449 }
8450 }
8451
8452 if (state != IF_STATE_ACTION)
8453 goto fail;
8454
8455 kfree(orig);
8456
8457 return 0;
8458
8459fail_free_name:
8460 kfree(filename);
8461fail:
8462 free_filters_list(filters);
8463 kfree(orig);
8464
8465 return ret;
8466}
8467
8468static int
8469perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8470{
8471 LIST_HEAD(filters);
8472 int ret;
8473
8474 /*
8475 * Since this is called in perf_ioctl() path, we're already holding
8476 * ctx::mutex.
8477 */
8478 lockdep_assert_held(&event->ctx->mutex);
8479
8480 if (WARN_ON_ONCE(event->parent))
8481 return -EINVAL;
8482
375637bc
AS
8483 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8484 if (ret)
6ce77bfd 8485 goto fail_clear_files;
375637bc
AS
8486
8487 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8488 if (ret)
8489 goto fail_free_filters;
375637bc
AS
8490
8491 /* remove existing filters, if any */
8492 perf_addr_filters_splice(event, &filters);
8493
8494 /* install new filters */
8495 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8496
6ce77bfd
AS
8497 return ret;
8498
8499fail_free_filters:
8500 free_filters_list(&filters);
8501
8502fail_clear_files:
8503 event->addr_filters.nr_file_filters = 0;
8504
375637bc
AS
8505 return ret;
8506}
8507
c796bbbe
AS
8508static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8509{
8510 char *filter_str;
8511 int ret = -EINVAL;
8512
375637bc
AS
8513 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8514 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8515 !has_addr_filter(event))
c796bbbe
AS
8516 return -EINVAL;
8517
8518 filter_str = strndup_user(arg, PAGE_SIZE);
8519 if (IS_ERR(filter_str))
8520 return PTR_ERR(filter_str);
8521
8522 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8523 event->attr.type == PERF_TYPE_TRACEPOINT)
8524 ret = ftrace_profile_set_filter(event, event->attr.config,
8525 filter_str);
375637bc
AS
8526 else if (has_addr_filter(event))
8527 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8528
8529 kfree(filter_str);
8530 return ret;
8531}
8532
b0a873eb
PZ
8533/*
8534 * hrtimer based swevent callback
8535 */
f29ac756 8536
b0a873eb 8537static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8538{
b0a873eb
PZ
8539 enum hrtimer_restart ret = HRTIMER_RESTART;
8540 struct perf_sample_data data;
8541 struct pt_regs *regs;
8542 struct perf_event *event;
8543 u64 period;
f29ac756 8544
b0a873eb 8545 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8546
8547 if (event->state != PERF_EVENT_STATE_ACTIVE)
8548 return HRTIMER_NORESTART;
8549
b0a873eb 8550 event->pmu->read(event);
f344011c 8551
fd0d000b 8552 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8553 regs = get_irq_regs();
8554
8555 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8556 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8557 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8558 ret = HRTIMER_NORESTART;
8559 }
24f1e32c 8560
b0a873eb
PZ
8561 period = max_t(u64, 10000, event->hw.sample_period);
8562 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8563
b0a873eb 8564 return ret;
f29ac756
PZ
8565}
8566
b0a873eb 8567static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8568{
b0a873eb 8569 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8570 s64 period;
8571
8572 if (!is_sampling_event(event))
8573 return;
f5ffe02e 8574
5d508e82
FBH
8575 period = local64_read(&hwc->period_left);
8576 if (period) {
8577 if (period < 0)
8578 period = 10000;
fa407f35 8579
5d508e82
FBH
8580 local64_set(&hwc->period_left, 0);
8581 } else {
8582 period = max_t(u64, 10000, hwc->sample_period);
8583 }
3497d206
TG
8584 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8585 HRTIMER_MODE_REL_PINNED);
24f1e32c 8586}
b0a873eb
PZ
8587
8588static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8589{
b0a873eb
PZ
8590 struct hw_perf_event *hwc = &event->hw;
8591
6c7e550f 8592 if (is_sampling_event(event)) {
b0a873eb 8593 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8594 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8595
8596 hrtimer_cancel(&hwc->hrtimer);
8597 }
24f1e32c
FW
8598}
8599
ba3dd36c
PZ
8600static void perf_swevent_init_hrtimer(struct perf_event *event)
8601{
8602 struct hw_perf_event *hwc = &event->hw;
8603
8604 if (!is_sampling_event(event))
8605 return;
8606
8607 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8608 hwc->hrtimer.function = perf_swevent_hrtimer;
8609
8610 /*
8611 * Since hrtimers have a fixed rate, we can do a static freq->period
8612 * mapping and avoid the whole period adjust feedback stuff.
8613 */
8614 if (event->attr.freq) {
8615 long freq = event->attr.sample_freq;
8616
8617 event->attr.sample_period = NSEC_PER_SEC / freq;
8618 hwc->sample_period = event->attr.sample_period;
8619 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8620 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8621 event->attr.freq = 0;
8622 }
8623}
8624
b0a873eb
PZ
8625/*
8626 * Software event: cpu wall time clock
8627 */
8628
8629static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8630{
b0a873eb
PZ
8631 s64 prev;
8632 u64 now;
8633
a4eaf7f1 8634 now = local_clock();
b0a873eb
PZ
8635 prev = local64_xchg(&event->hw.prev_count, now);
8636 local64_add(now - prev, &event->count);
24f1e32c 8637}
24f1e32c 8638
a4eaf7f1 8639static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8640{
a4eaf7f1 8641 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8642 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8643}
8644
a4eaf7f1 8645static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8646{
b0a873eb
PZ
8647 perf_swevent_cancel_hrtimer(event);
8648 cpu_clock_event_update(event);
8649}
f29ac756 8650
a4eaf7f1
PZ
8651static int cpu_clock_event_add(struct perf_event *event, int flags)
8652{
8653 if (flags & PERF_EF_START)
8654 cpu_clock_event_start(event, flags);
6a694a60 8655 perf_event_update_userpage(event);
a4eaf7f1
PZ
8656
8657 return 0;
8658}
8659
8660static void cpu_clock_event_del(struct perf_event *event, int flags)
8661{
8662 cpu_clock_event_stop(event, flags);
8663}
8664
b0a873eb
PZ
8665static void cpu_clock_event_read(struct perf_event *event)
8666{
8667 cpu_clock_event_update(event);
8668}
f344011c 8669
b0a873eb
PZ
8670static int cpu_clock_event_init(struct perf_event *event)
8671{
8672 if (event->attr.type != PERF_TYPE_SOFTWARE)
8673 return -ENOENT;
8674
8675 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8676 return -ENOENT;
8677
2481c5fa
SE
8678 /*
8679 * no branch sampling for software events
8680 */
8681 if (has_branch_stack(event))
8682 return -EOPNOTSUPP;
8683
ba3dd36c
PZ
8684 perf_swevent_init_hrtimer(event);
8685
b0a873eb 8686 return 0;
f29ac756
PZ
8687}
8688
b0a873eb 8689static struct pmu perf_cpu_clock = {
89a1e187
PZ
8690 .task_ctx_nr = perf_sw_context,
8691
34f43927
PZ
8692 .capabilities = PERF_PMU_CAP_NO_NMI,
8693
b0a873eb 8694 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8695 .add = cpu_clock_event_add,
8696 .del = cpu_clock_event_del,
8697 .start = cpu_clock_event_start,
8698 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8699 .read = cpu_clock_event_read,
8700};
8701
8702/*
8703 * Software event: task time clock
8704 */
8705
8706static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8707{
b0a873eb
PZ
8708 u64 prev;
8709 s64 delta;
5c92d124 8710
b0a873eb
PZ
8711 prev = local64_xchg(&event->hw.prev_count, now);
8712 delta = now - prev;
8713 local64_add(delta, &event->count);
8714}
5c92d124 8715
a4eaf7f1 8716static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8717{
a4eaf7f1 8718 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8719 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8720}
8721
a4eaf7f1 8722static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8723{
8724 perf_swevent_cancel_hrtimer(event);
8725 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8726}
8727
8728static int task_clock_event_add(struct perf_event *event, int flags)
8729{
8730 if (flags & PERF_EF_START)
8731 task_clock_event_start(event, flags);
6a694a60 8732 perf_event_update_userpage(event);
b0a873eb 8733
a4eaf7f1
PZ
8734 return 0;
8735}
8736
8737static void task_clock_event_del(struct perf_event *event, int flags)
8738{
8739 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8740}
8741
8742static void task_clock_event_read(struct perf_event *event)
8743{
768a06e2
PZ
8744 u64 now = perf_clock();
8745 u64 delta = now - event->ctx->timestamp;
8746 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8747
8748 task_clock_event_update(event, time);
8749}
8750
8751static int task_clock_event_init(struct perf_event *event)
6fb2915d 8752{
b0a873eb
PZ
8753 if (event->attr.type != PERF_TYPE_SOFTWARE)
8754 return -ENOENT;
8755
8756 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8757 return -ENOENT;
8758
2481c5fa
SE
8759 /*
8760 * no branch sampling for software events
8761 */
8762 if (has_branch_stack(event))
8763 return -EOPNOTSUPP;
8764
ba3dd36c
PZ
8765 perf_swevent_init_hrtimer(event);
8766
b0a873eb 8767 return 0;
6fb2915d
LZ
8768}
8769
b0a873eb 8770static struct pmu perf_task_clock = {
89a1e187
PZ
8771 .task_ctx_nr = perf_sw_context,
8772
34f43927
PZ
8773 .capabilities = PERF_PMU_CAP_NO_NMI,
8774
b0a873eb 8775 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8776 .add = task_clock_event_add,
8777 .del = task_clock_event_del,
8778 .start = task_clock_event_start,
8779 .stop = task_clock_event_stop,
b0a873eb
PZ
8780 .read = task_clock_event_read,
8781};
6fb2915d 8782
ad5133b7 8783static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8784{
e077df4f 8785}
6fb2915d 8786
fbbe0701
SB
8787static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8788{
8789}
8790
ad5133b7 8791static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8792{
ad5133b7 8793 return 0;
6fb2915d
LZ
8794}
8795
18ab2cd3 8796static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8797
8798static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8799{
fbbe0701
SB
8800 __this_cpu_write(nop_txn_flags, flags);
8801
8802 if (flags & ~PERF_PMU_TXN_ADD)
8803 return;
8804
ad5133b7 8805 perf_pmu_disable(pmu);
6fb2915d
LZ
8806}
8807
ad5133b7
PZ
8808static int perf_pmu_commit_txn(struct pmu *pmu)
8809{
fbbe0701
SB
8810 unsigned int flags = __this_cpu_read(nop_txn_flags);
8811
8812 __this_cpu_write(nop_txn_flags, 0);
8813
8814 if (flags & ~PERF_PMU_TXN_ADD)
8815 return 0;
8816
ad5133b7
PZ
8817 perf_pmu_enable(pmu);
8818 return 0;
8819}
e077df4f 8820
ad5133b7 8821static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8822{
fbbe0701
SB
8823 unsigned int flags = __this_cpu_read(nop_txn_flags);
8824
8825 __this_cpu_write(nop_txn_flags, 0);
8826
8827 if (flags & ~PERF_PMU_TXN_ADD)
8828 return;
8829
ad5133b7 8830 perf_pmu_enable(pmu);
24f1e32c
FW
8831}
8832
35edc2a5
PZ
8833static int perf_event_idx_default(struct perf_event *event)
8834{
c719f560 8835 return 0;
35edc2a5
PZ
8836}
8837
8dc85d54
PZ
8838/*
8839 * Ensures all contexts with the same task_ctx_nr have the same
8840 * pmu_cpu_context too.
8841 */
9e317041 8842static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8843{
8dc85d54 8844 struct pmu *pmu;
b326e956 8845
8dc85d54
PZ
8846 if (ctxn < 0)
8847 return NULL;
24f1e32c 8848
8dc85d54
PZ
8849 list_for_each_entry(pmu, &pmus, entry) {
8850 if (pmu->task_ctx_nr == ctxn)
8851 return pmu->pmu_cpu_context;
8852 }
24f1e32c 8853
8dc85d54 8854 return NULL;
24f1e32c
FW
8855}
8856
51676957
PZ
8857static void free_pmu_context(struct pmu *pmu)
8858{
8dc85d54 8859 mutex_lock(&pmus_lock);
51676957 8860 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8861 mutex_unlock(&pmus_lock);
24f1e32c 8862}
6e855cd4
AS
8863
8864/*
8865 * Let userspace know that this PMU supports address range filtering:
8866 */
8867static ssize_t nr_addr_filters_show(struct device *dev,
8868 struct device_attribute *attr,
8869 char *page)
8870{
8871 struct pmu *pmu = dev_get_drvdata(dev);
8872
8873 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8874}
8875DEVICE_ATTR_RO(nr_addr_filters);
8876
2e80a82a 8877static struct idr pmu_idr;
d6d020e9 8878
abe43400
PZ
8879static ssize_t
8880type_show(struct device *dev, struct device_attribute *attr, char *page)
8881{
8882 struct pmu *pmu = dev_get_drvdata(dev);
8883
8884 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8885}
90826ca7 8886static DEVICE_ATTR_RO(type);
abe43400 8887
62b85639
SE
8888static ssize_t
8889perf_event_mux_interval_ms_show(struct device *dev,
8890 struct device_attribute *attr,
8891 char *page)
8892{
8893 struct pmu *pmu = dev_get_drvdata(dev);
8894
8895 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8896}
8897
272325c4
PZ
8898static DEFINE_MUTEX(mux_interval_mutex);
8899
62b85639
SE
8900static ssize_t
8901perf_event_mux_interval_ms_store(struct device *dev,
8902 struct device_attribute *attr,
8903 const char *buf, size_t count)
8904{
8905 struct pmu *pmu = dev_get_drvdata(dev);
8906 int timer, cpu, ret;
8907
8908 ret = kstrtoint(buf, 0, &timer);
8909 if (ret)
8910 return ret;
8911
8912 if (timer < 1)
8913 return -EINVAL;
8914
8915 /* same value, noting to do */
8916 if (timer == pmu->hrtimer_interval_ms)
8917 return count;
8918
272325c4 8919 mutex_lock(&mux_interval_mutex);
62b85639
SE
8920 pmu->hrtimer_interval_ms = timer;
8921
8922 /* update all cpuctx for this PMU */
272325c4
PZ
8923 get_online_cpus();
8924 for_each_online_cpu(cpu) {
62b85639
SE
8925 struct perf_cpu_context *cpuctx;
8926 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8927 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8928
272325c4
PZ
8929 cpu_function_call(cpu,
8930 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8931 }
272325c4
PZ
8932 put_online_cpus();
8933 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8934
8935 return count;
8936}
90826ca7 8937static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8938
90826ca7
GKH
8939static struct attribute *pmu_dev_attrs[] = {
8940 &dev_attr_type.attr,
8941 &dev_attr_perf_event_mux_interval_ms.attr,
8942 NULL,
abe43400 8943};
90826ca7 8944ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8945
8946static int pmu_bus_running;
8947static struct bus_type pmu_bus = {
8948 .name = "event_source",
90826ca7 8949 .dev_groups = pmu_dev_groups,
abe43400
PZ
8950};
8951
8952static void pmu_dev_release(struct device *dev)
8953{
8954 kfree(dev);
8955}
8956
8957static int pmu_dev_alloc(struct pmu *pmu)
8958{
8959 int ret = -ENOMEM;
8960
8961 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8962 if (!pmu->dev)
8963 goto out;
8964
0c9d42ed 8965 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8966 device_initialize(pmu->dev);
8967 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8968 if (ret)
8969 goto free_dev;
8970
8971 dev_set_drvdata(pmu->dev, pmu);
8972 pmu->dev->bus = &pmu_bus;
8973 pmu->dev->release = pmu_dev_release;
8974 ret = device_add(pmu->dev);
8975 if (ret)
8976 goto free_dev;
8977
6e855cd4
AS
8978 /* For PMUs with address filters, throw in an extra attribute: */
8979 if (pmu->nr_addr_filters)
8980 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8981
8982 if (ret)
8983 goto del_dev;
8984
abe43400
PZ
8985out:
8986 return ret;
8987
6e855cd4
AS
8988del_dev:
8989 device_del(pmu->dev);
8990
abe43400
PZ
8991free_dev:
8992 put_device(pmu->dev);
8993 goto out;
8994}
8995
547e9fd7 8996static struct lock_class_key cpuctx_mutex;
facc4307 8997static struct lock_class_key cpuctx_lock;
547e9fd7 8998
03d8e80b 8999int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9000{
108b02cf 9001 int cpu, ret;
24f1e32c 9002
b0a873eb 9003 mutex_lock(&pmus_lock);
33696fc0
PZ
9004 ret = -ENOMEM;
9005 pmu->pmu_disable_count = alloc_percpu(int);
9006 if (!pmu->pmu_disable_count)
9007 goto unlock;
f29ac756 9008
2e80a82a
PZ
9009 pmu->type = -1;
9010 if (!name)
9011 goto skip_type;
9012 pmu->name = name;
9013
9014 if (type < 0) {
0e9c3be2
TH
9015 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9016 if (type < 0) {
9017 ret = type;
2e80a82a
PZ
9018 goto free_pdc;
9019 }
9020 }
9021 pmu->type = type;
9022
abe43400
PZ
9023 if (pmu_bus_running) {
9024 ret = pmu_dev_alloc(pmu);
9025 if (ret)
9026 goto free_idr;
9027 }
9028
2e80a82a 9029skip_type:
26657848
PZ
9030 if (pmu->task_ctx_nr == perf_hw_context) {
9031 static int hw_context_taken = 0;
9032
5101ef20
MR
9033 /*
9034 * Other than systems with heterogeneous CPUs, it never makes
9035 * sense for two PMUs to share perf_hw_context. PMUs which are
9036 * uncore must use perf_invalid_context.
9037 */
9038 if (WARN_ON_ONCE(hw_context_taken &&
9039 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9040 pmu->task_ctx_nr = perf_invalid_context;
9041
9042 hw_context_taken = 1;
9043 }
9044
8dc85d54
PZ
9045 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9046 if (pmu->pmu_cpu_context)
9047 goto got_cpu_context;
f29ac756 9048
c4814202 9049 ret = -ENOMEM;
108b02cf
PZ
9050 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9051 if (!pmu->pmu_cpu_context)
abe43400 9052 goto free_dev;
f344011c 9053
108b02cf
PZ
9054 for_each_possible_cpu(cpu) {
9055 struct perf_cpu_context *cpuctx;
9056
9057 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9058 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9059 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9060 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9061 cpuctx->ctx.pmu = pmu;
9e630205 9062
272325c4 9063 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9064 }
76e1d904 9065
8dc85d54 9066got_cpu_context:
ad5133b7
PZ
9067 if (!pmu->start_txn) {
9068 if (pmu->pmu_enable) {
9069 /*
9070 * If we have pmu_enable/pmu_disable calls, install
9071 * transaction stubs that use that to try and batch
9072 * hardware accesses.
9073 */
9074 pmu->start_txn = perf_pmu_start_txn;
9075 pmu->commit_txn = perf_pmu_commit_txn;
9076 pmu->cancel_txn = perf_pmu_cancel_txn;
9077 } else {
fbbe0701 9078 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9079 pmu->commit_txn = perf_pmu_nop_int;
9080 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9081 }
5c92d124 9082 }
15dbf27c 9083
ad5133b7
PZ
9084 if (!pmu->pmu_enable) {
9085 pmu->pmu_enable = perf_pmu_nop_void;
9086 pmu->pmu_disable = perf_pmu_nop_void;
9087 }
9088
35edc2a5
PZ
9089 if (!pmu->event_idx)
9090 pmu->event_idx = perf_event_idx_default;
9091
b0a873eb 9092 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9093 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9094 ret = 0;
9095unlock:
b0a873eb
PZ
9096 mutex_unlock(&pmus_lock);
9097
33696fc0 9098 return ret;
108b02cf 9099
abe43400
PZ
9100free_dev:
9101 device_del(pmu->dev);
9102 put_device(pmu->dev);
9103
2e80a82a
PZ
9104free_idr:
9105 if (pmu->type >= PERF_TYPE_MAX)
9106 idr_remove(&pmu_idr, pmu->type);
9107
108b02cf
PZ
9108free_pdc:
9109 free_percpu(pmu->pmu_disable_count);
9110 goto unlock;
f29ac756 9111}
c464c76e 9112EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9113
b0a873eb 9114void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9115{
0933840a
JO
9116 int remove_device;
9117
b0a873eb 9118 mutex_lock(&pmus_lock);
0933840a 9119 remove_device = pmu_bus_running;
b0a873eb
PZ
9120 list_del_rcu(&pmu->entry);
9121 mutex_unlock(&pmus_lock);
5c92d124 9122
0475f9ea 9123 /*
cde8e884
PZ
9124 * We dereference the pmu list under both SRCU and regular RCU, so
9125 * synchronize against both of those.
0475f9ea 9126 */
b0a873eb 9127 synchronize_srcu(&pmus_srcu);
cde8e884 9128 synchronize_rcu();
d6d020e9 9129
33696fc0 9130 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9131 if (pmu->type >= PERF_TYPE_MAX)
9132 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9133 if (remove_device) {
9134 if (pmu->nr_addr_filters)
9135 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9136 device_del(pmu->dev);
9137 put_device(pmu->dev);
9138 }
51676957 9139 free_pmu_context(pmu);
b0a873eb 9140}
c464c76e 9141EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9142
cc34b98b
MR
9143static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9144{
ccd41c86 9145 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9146 int ret;
9147
9148 if (!try_module_get(pmu->module))
9149 return -ENODEV;
ccd41c86
PZ
9150
9151 if (event->group_leader != event) {
8b10c5e2
PZ
9152 /*
9153 * This ctx->mutex can nest when we're called through
9154 * inheritance. See the perf_event_ctx_lock_nested() comment.
9155 */
9156 ctx = perf_event_ctx_lock_nested(event->group_leader,
9157 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9158 BUG_ON(!ctx);
9159 }
9160
cc34b98b
MR
9161 event->pmu = pmu;
9162 ret = pmu->event_init(event);
ccd41c86
PZ
9163
9164 if (ctx)
9165 perf_event_ctx_unlock(event->group_leader, ctx);
9166
cc34b98b
MR
9167 if (ret)
9168 module_put(pmu->module);
9169
9170 return ret;
9171}
9172
18ab2cd3 9173static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
9174{
9175 struct pmu *pmu = NULL;
9176 int idx;
940c5b29 9177 int ret;
b0a873eb
PZ
9178
9179 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9180
40999312
KL
9181 /* Try parent's PMU first: */
9182 if (event->parent && event->parent->pmu) {
9183 pmu = event->parent->pmu;
9184 ret = perf_try_init_event(pmu, event);
9185 if (!ret)
9186 goto unlock;
9187 }
9188
2e80a82a
PZ
9189 rcu_read_lock();
9190 pmu = idr_find(&pmu_idr, event->attr.type);
9191 rcu_read_unlock();
940c5b29 9192 if (pmu) {
cc34b98b 9193 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9194 if (ret)
9195 pmu = ERR_PTR(ret);
2e80a82a 9196 goto unlock;
940c5b29 9197 }
2e80a82a 9198
b0a873eb 9199 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9200 ret = perf_try_init_event(pmu, event);
b0a873eb 9201 if (!ret)
e5f4d339 9202 goto unlock;
76e1d904 9203
b0a873eb
PZ
9204 if (ret != -ENOENT) {
9205 pmu = ERR_PTR(ret);
e5f4d339 9206 goto unlock;
f344011c 9207 }
5c92d124 9208 }
e5f4d339
PZ
9209 pmu = ERR_PTR(-ENOENT);
9210unlock:
b0a873eb 9211 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9212
4aeb0b42 9213 return pmu;
5c92d124
IM
9214}
9215
f2fb6bef
KL
9216static void attach_sb_event(struct perf_event *event)
9217{
9218 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9219
9220 raw_spin_lock(&pel->lock);
9221 list_add_rcu(&event->sb_list, &pel->list);
9222 raw_spin_unlock(&pel->lock);
9223}
9224
aab5b71e
PZ
9225/*
9226 * We keep a list of all !task (and therefore per-cpu) events
9227 * that need to receive side-band records.
9228 *
9229 * This avoids having to scan all the various PMU per-cpu contexts
9230 * looking for them.
9231 */
f2fb6bef
KL
9232static void account_pmu_sb_event(struct perf_event *event)
9233{
a4f144eb 9234 if (is_sb_event(event))
f2fb6bef
KL
9235 attach_sb_event(event);
9236}
9237
4beb31f3
FW
9238static void account_event_cpu(struct perf_event *event, int cpu)
9239{
9240 if (event->parent)
9241 return;
9242
4beb31f3
FW
9243 if (is_cgroup_event(event))
9244 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9245}
9246
555e0c1e
FW
9247/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9248static void account_freq_event_nohz(void)
9249{
9250#ifdef CONFIG_NO_HZ_FULL
9251 /* Lock so we don't race with concurrent unaccount */
9252 spin_lock(&nr_freq_lock);
9253 if (atomic_inc_return(&nr_freq_events) == 1)
9254 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9255 spin_unlock(&nr_freq_lock);
9256#endif
9257}
9258
9259static void account_freq_event(void)
9260{
9261 if (tick_nohz_full_enabled())
9262 account_freq_event_nohz();
9263 else
9264 atomic_inc(&nr_freq_events);
9265}
9266
9267
766d6c07
FW
9268static void account_event(struct perf_event *event)
9269{
25432ae9
PZ
9270 bool inc = false;
9271
4beb31f3
FW
9272 if (event->parent)
9273 return;
9274
766d6c07 9275 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9276 inc = true;
766d6c07
FW
9277 if (event->attr.mmap || event->attr.mmap_data)
9278 atomic_inc(&nr_mmap_events);
9279 if (event->attr.comm)
9280 atomic_inc(&nr_comm_events);
e4222673
HB
9281 if (event->attr.namespaces)
9282 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9283 if (event->attr.task)
9284 atomic_inc(&nr_task_events);
555e0c1e
FW
9285 if (event->attr.freq)
9286 account_freq_event();
45ac1403
AH
9287 if (event->attr.context_switch) {
9288 atomic_inc(&nr_switch_events);
25432ae9 9289 inc = true;
45ac1403 9290 }
4beb31f3 9291 if (has_branch_stack(event))
25432ae9 9292 inc = true;
4beb31f3 9293 if (is_cgroup_event(event))
25432ae9
PZ
9294 inc = true;
9295
9107c89e
PZ
9296 if (inc) {
9297 if (atomic_inc_not_zero(&perf_sched_count))
9298 goto enabled;
9299
9300 mutex_lock(&perf_sched_mutex);
9301 if (!atomic_read(&perf_sched_count)) {
9302 static_branch_enable(&perf_sched_events);
9303 /*
9304 * Guarantee that all CPUs observe they key change and
9305 * call the perf scheduling hooks before proceeding to
9306 * install events that need them.
9307 */
9308 synchronize_sched();
9309 }
9310 /*
9311 * Now that we have waited for the sync_sched(), allow further
9312 * increments to by-pass the mutex.
9313 */
9314 atomic_inc(&perf_sched_count);
9315 mutex_unlock(&perf_sched_mutex);
9316 }
9317enabled:
4beb31f3
FW
9318
9319 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9320
9321 account_pmu_sb_event(event);
766d6c07
FW
9322}
9323
0793a61d 9324/*
cdd6c482 9325 * Allocate and initialize a event structure
0793a61d 9326 */
cdd6c482 9327static struct perf_event *
c3f00c70 9328perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9329 struct task_struct *task,
9330 struct perf_event *group_leader,
9331 struct perf_event *parent_event,
4dc0da86 9332 perf_overflow_handler_t overflow_handler,
79dff51e 9333 void *context, int cgroup_fd)
0793a61d 9334{
51b0fe39 9335 struct pmu *pmu;
cdd6c482
IM
9336 struct perf_event *event;
9337 struct hw_perf_event *hwc;
90983b16 9338 long err = -EINVAL;
0793a61d 9339
66832eb4
ON
9340 if ((unsigned)cpu >= nr_cpu_ids) {
9341 if (!task || cpu != -1)
9342 return ERR_PTR(-EINVAL);
9343 }
9344
c3f00c70 9345 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9346 if (!event)
d5d2bc0d 9347 return ERR_PTR(-ENOMEM);
0793a61d 9348
04289bb9 9349 /*
cdd6c482 9350 * Single events are their own group leaders, with an
04289bb9
IM
9351 * empty sibling list:
9352 */
9353 if (!group_leader)
cdd6c482 9354 group_leader = event;
04289bb9 9355
cdd6c482
IM
9356 mutex_init(&event->child_mutex);
9357 INIT_LIST_HEAD(&event->child_list);
fccc714b 9358
cdd6c482
IM
9359 INIT_LIST_HEAD(&event->group_entry);
9360 INIT_LIST_HEAD(&event->event_entry);
9361 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9362 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9363 INIT_LIST_HEAD(&event->active_entry);
375637bc 9364 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9365 INIT_HLIST_NODE(&event->hlist_entry);
9366
10c6db11 9367
cdd6c482 9368 init_waitqueue_head(&event->waitq);
e360adbe 9369 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9370
cdd6c482 9371 mutex_init(&event->mmap_mutex);
375637bc 9372 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9373
a6fa941d 9374 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9375 event->cpu = cpu;
9376 event->attr = *attr;
9377 event->group_leader = group_leader;
9378 event->pmu = NULL;
cdd6c482 9379 event->oncpu = -1;
a96bbc16 9380
cdd6c482 9381 event->parent = parent_event;
b84fbc9f 9382
17cf22c3 9383 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9384 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9385
cdd6c482 9386 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9387
d580ff86
PZ
9388 if (task) {
9389 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9390 /*
50f16a8b
PZ
9391 * XXX pmu::event_init needs to know what task to account to
9392 * and we cannot use the ctx information because we need the
9393 * pmu before we get a ctx.
d580ff86 9394 */
50f16a8b 9395 event->hw.target = task;
d580ff86
PZ
9396 }
9397
34f43927
PZ
9398 event->clock = &local_clock;
9399 if (parent_event)
9400 event->clock = parent_event->clock;
9401
4dc0da86 9402 if (!overflow_handler && parent_event) {
b326e956 9403 overflow_handler = parent_event->overflow_handler;
4dc0da86 9404 context = parent_event->overflow_handler_context;
f1e4ba5b 9405#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9406 if (overflow_handler == bpf_overflow_handler) {
9407 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9408
9409 if (IS_ERR(prog)) {
9410 err = PTR_ERR(prog);
9411 goto err_ns;
9412 }
9413 event->prog = prog;
9414 event->orig_overflow_handler =
9415 parent_event->orig_overflow_handler;
9416 }
9417#endif
4dc0da86 9418 }
66832eb4 9419
1879445d
WN
9420 if (overflow_handler) {
9421 event->overflow_handler = overflow_handler;
9422 event->overflow_handler_context = context;
9ecda41a
WN
9423 } else if (is_write_backward(event)){
9424 event->overflow_handler = perf_event_output_backward;
9425 event->overflow_handler_context = NULL;
1879445d 9426 } else {
9ecda41a 9427 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9428 event->overflow_handler_context = NULL;
9429 }
97eaf530 9430
0231bb53 9431 perf_event__state_init(event);
a86ed508 9432
4aeb0b42 9433 pmu = NULL;
b8e83514 9434
cdd6c482 9435 hwc = &event->hw;
bd2b5b12 9436 hwc->sample_period = attr->sample_period;
0d48696f 9437 if (attr->freq && attr->sample_freq)
bd2b5b12 9438 hwc->sample_period = 1;
eced1dfc 9439 hwc->last_period = hwc->sample_period;
bd2b5b12 9440
e7850595 9441 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9442
2023b359 9443 /*
cdd6c482 9444 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9445 */
3dab77fb 9446 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9447 goto err_ns;
a46a2300
YZ
9448
9449 if (!has_branch_stack(event))
9450 event->attr.branch_sample_type = 0;
2023b359 9451
79dff51e
MF
9452 if (cgroup_fd != -1) {
9453 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9454 if (err)
9455 goto err_ns;
9456 }
9457
b0a873eb 9458 pmu = perf_init_event(event);
4aeb0b42 9459 if (!pmu)
90983b16
FW
9460 goto err_ns;
9461 else if (IS_ERR(pmu)) {
4aeb0b42 9462 err = PTR_ERR(pmu);
90983b16 9463 goto err_ns;
621a01ea 9464 }
d5d2bc0d 9465
bed5b25a
AS
9466 err = exclusive_event_init(event);
9467 if (err)
9468 goto err_pmu;
9469
375637bc
AS
9470 if (has_addr_filter(event)) {
9471 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9472 sizeof(unsigned long),
9473 GFP_KERNEL);
9474 if (!event->addr_filters_offs)
9475 goto err_per_task;
9476
9477 /* force hw sync on the address filters */
9478 event->addr_filters_gen = 1;
9479 }
9480
cdd6c482 9481 if (!event->parent) {
927c7a9e 9482 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9483 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9484 if (err)
375637bc 9485 goto err_addr_filters;
d010b332 9486 }
f344011c 9487 }
9ee318a7 9488
927a5570
AS
9489 /* symmetric to unaccount_event() in _free_event() */
9490 account_event(event);
9491
cdd6c482 9492 return event;
90983b16 9493
375637bc
AS
9494err_addr_filters:
9495 kfree(event->addr_filters_offs);
9496
bed5b25a
AS
9497err_per_task:
9498 exclusive_event_destroy(event);
9499
90983b16
FW
9500err_pmu:
9501 if (event->destroy)
9502 event->destroy(event);
c464c76e 9503 module_put(pmu->module);
90983b16 9504err_ns:
79dff51e
MF
9505 if (is_cgroup_event(event))
9506 perf_detach_cgroup(event);
90983b16
FW
9507 if (event->ns)
9508 put_pid_ns(event->ns);
9509 kfree(event);
9510
9511 return ERR_PTR(err);
0793a61d
TG
9512}
9513
cdd6c482
IM
9514static int perf_copy_attr(struct perf_event_attr __user *uattr,
9515 struct perf_event_attr *attr)
974802ea 9516{
974802ea 9517 u32 size;
cdf8073d 9518 int ret;
974802ea
PZ
9519
9520 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9521 return -EFAULT;
9522
9523 /*
9524 * zero the full structure, so that a short copy will be nice.
9525 */
9526 memset(attr, 0, sizeof(*attr));
9527
9528 ret = get_user(size, &uattr->size);
9529 if (ret)
9530 return ret;
9531
9532 if (size > PAGE_SIZE) /* silly large */
9533 goto err_size;
9534
9535 if (!size) /* abi compat */
9536 size = PERF_ATTR_SIZE_VER0;
9537
9538 if (size < PERF_ATTR_SIZE_VER0)
9539 goto err_size;
9540
9541 /*
9542 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9543 * ensure all the unknown bits are 0 - i.e. new
9544 * user-space does not rely on any kernel feature
9545 * extensions we dont know about yet.
974802ea
PZ
9546 */
9547 if (size > sizeof(*attr)) {
cdf8073d
IS
9548 unsigned char __user *addr;
9549 unsigned char __user *end;
9550 unsigned char val;
974802ea 9551
cdf8073d
IS
9552 addr = (void __user *)uattr + sizeof(*attr);
9553 end = (void __user *)uattr + size;
974802ea 9554
cdf8073d 9555 for (; addr < end; addr++) {
974802ea
PZ
9556 ret = get_user(val, addr);
9557 if (ret)
9558 return ret;
9559 if (val)
9560 goto err_size;
9561 }
b3e62e35 9562 size = sizeof(*attr);
974802ea
PZ
9563 }
9564
9565 ret = copy_from_user(attr, uattr, size);
9566 if (ret)
9567 return -EFAULT;
9568
cd757645 9569 if (attr->__reserved_1)
974802ea
PZ
9570 return -EINVAL;
9571
9572 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9573 return -EINVAL;
9574
9575 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9576 return -EINVAL;
9577
bce38cd5
SE
9578 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9579 u64 mask = attr->branch_sample_type;
9580
9581 /* only using defined bits */
9582 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9583 return -EINVAL;
9584
9585 /* at least one branch bit must be set */
9586 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9587 return -EINVAL;
9588
bce38cd5
SE
9589 /* propagate priv level, when not set for branch */
9590 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9591
9592 /* exclude_kernel checked on syscall entry */
9593 if (!attr->exclude_kernel)
9594 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9595
9596 if (!attr->exclude_user)
9597 mask |= PERF_SAMPLE_BRANCH_USER;
9598
9599 if (!attr->exclude_hv)
9600 mask |= PERF_SAMPLE_BRANCH_HV;
9601 /*
9602 * adjust user setting (for HW filter setup)
9603 */
9604 attr->branch_sample_type = mask;
9605 }
e712209a
SE
9606 /* privileged levels capture (kernel, hv): check permissions */
9607 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9608 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9609 return -EACCES;
bce38cd5 9610 }
4018994f 9611
c5ebcedb 9612 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9613 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9614 if (ret)
9615 return ret;
9616 }
9617
9618 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9619 if (!arch_perf_have_user_stack_dump())
9620 return -ENOSYS;
9621
9622 /*
9623 * We have __u32 type for the size, but so far
9624 * we can only use __u16 as maximum due to the
9625 * __u16 sample size limit.
9626 */
9627 if (attr->sample_stack_user >= USHRT_MAX)
9628 ret = -EINVAL;
9629 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9630 ret = -EINVAL;
9631 }
4018994f 9632
60e2364e
SE
9633 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9634 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9635out:
9636 return ret;
9637
9638err_size:
9639 put_user(sizeof(*attr), &uattr->size);
9640 ret = -E2BIG;
9641 goto out;
9642}
9643
ac9721f3
PZ
9644static int
9645perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9646{
b69cf536 9647 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9648 int ret = -EINVAL;
9649
ac9721f3 9650 if (!output_event)
a4be7c27
PZ
9651 goto set;
9652
ac9721f3
PZ
9653 /* don't allow circular references */
9654 if (event == output_event)
a4be7c27
PZ
9655 goto out;
9656
0f139300
PZ
9657 /*
9658 * Don't allow cross-cpu buffers
9659 */
9660 if (output_event->cpu != event->cpu)
9661 goto out;
9662
9663 /*
76369139 9664 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9665 */
9666 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9667 goto out;
9668
34f43927
PZ
9669 /*
9670 * Mixing clocks in the same buffer is trouble you don't need.
9671 */
9672 if (output_event->clock != event->clock)
9673 goto out;
9674
9ecda41a
WN
9675 /*
9676 * Either writing ring buffer from beginning or from end.
9677 * Mixing is not allowed.
9678 */
9679 if (is_write_backward(output_event) != is_write_backward(event))
9680 goto out;
9681
45bfb2e5
PZ
9682 /*
9683 * If both events generate aux data, they must be on the same PMU
9684 */
9685 if (has_aux(event) && has_aux(output_event) &&
9686 event->pmu != output_event->pmu)
9687 goto out;
9688
a4be7c27 9689set:
cdd6c482 9690 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9691 /* Can't redirect output if we've got an active mmap() */
9692 if (atomic_read(&event->mmap_count))
9693 goto unlock;
a4be7c27 9694
ac9721f3 9695 if (output_event) {
76369139
FW
9696 /* get the rb we want to redirect to */
9697 rb = ring_buffer_get(output_event);
9698 if (!rb)
ac9721f3 9699 goto unlock;
a4be7c27
PZ
9700 }
9701
b69cf536 9702 ring_buffer_attach(event, rb);
9bb5d40c 9703
a4be7c27 9704 ret = 0;
ac9721f3
PZ
9705unlock:
9706 mutex_unlock(&event->mmap_mutex);
9707
a4be7c27 9708out:
a4be7c27
PZ
9709 return ret;
9710}
9711
f63a8daa
PZ
9712static void mutex_lock_double(struct mutex *a, struct mutex *b)
9713{
9714 if (b < a)
9715 swap(a, b);
9716
9717 mutex_lock(a);
9718 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9719}
9720
34f43927
PZ
9721static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9722{
9723 bool nmi_safe = false;
9724
9725 switch (clk_id) {
9726 case CLOCK_MONOTONIC:
9727 event->clock = &ktime_get_mono_fast_ns;
9728 nmi_safe = true;
9729 break;
9730
9731 case CLOCK_MONOTONIC_RAW:
9732 event->clock = &ktime_get_raw_fast_ns;
9733 nmi_safe = true;
9734 break;
9735
9736 case CLOCK_REALTIME:
9737 event->clock = &ktime_get_real_ns;
9738 break;
9739
9740 case CLOCK_BOOTTIME:
9741 event->clock = &ktime_get_boot_ns;
9742 break;
9743
9744 case CLOCK_TAI:
9745 event->clock = &ktime_get_tai_ns;
9746 break;
9747
9748 default:
9749 return -EINVAL;
9750 }
9751
9752 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9753 return -EINVAL;
9754
9755 return 0;
9756}
9757
321027c1
PZ
9758/*
9759 * Variation on perf_event_ctx_lock_nested(), except we take two context
9760 * mutexes.
9761 */
9762static struct perf_event_context *
9763__perf_event_ctx_lock_double(struct perf_event *group_leader,
9764 struct perf_event_context *ctx)
9765{
9766 struct perf_event_context *gctx;
9767
9768again:
9769 rcu_read_lock();
9770 gctx = READ_ONCE(group_leader->ctx);
9771 if (!atomic_inc_not_zero(&gctx->refcount)) {
9772 rcu_read_unlock();
9773 goto again;
9774 }
9775 rcu_read_unlock();
9776
9777 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9778
9779 if (group_leader->ctx != gctx) {
9780 mutex_unlock(&ctx->mutex);
9781 mutex_unlock(&gctx->mutex);
9782 put_ctx(gctx);
9783 goto again;
9784 }
9785
9786 return gctx;
9787}
9788
0793a61d 9789/**
cdd6c482 9790 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9791 *
cdd6c482 9792 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9793 * @pid: target pid
9f66a381 9794 * @cpu: target cpu
cdd6c482 9795 * @group_fd: group leader event fd
0793a61d 9796 */
cdd6c482
IM
9797SYSCALL_DEFINE5(perf_event_open,
9798 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9799 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9800{
b04243ef
PZ
9801 struct perf_event *group_leader = NULL, *output_event = NULL;
9802 struct perf_event *event, *sibling;
cdd6c482 9803 struct perf_event_attr attr;
f63a8daa 9804 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9805 struct file *event_file = NULL;
2903ff01 9806 struct fd group = {NULL, 0};
38a81da2 9807 struct task_struct *task = NULL;
89a1e187 9808 struct pmu *pmu;
ea635c64 9809 int event_fd;
b04243ef 9810 int move_group = 0;
dc86cabe 9811 int err;
a21b0b35 9812 int f_flags = O_RDWR;
79dff51e 9813 int cgroup_fd = -1;
0793a61d 9814
2743a5b0 9815 /* for future expandability... */
e5d1367f 9816 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9817 return -EINVAL;
9818
dc86cabe
IM
9819 err = perf_copy_attr(attr_uptr, &attr);
9820 if (err)
9821 return err;
eab656ae 9822
0764771d
PZ
9823 if (!attr.exclude_kernel) {
9824 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9825 return -EACCES;
9826 }
9827
e4222673
HB
9828 if (attr.namespaces) {
9829 if (!capable(CAP_SYS_ADMIN))
9830 return -EACCES;
9831 }
9832
df58ab24 9833 if (attr.freq) {
cdd6c482 9834 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9835 return -EINVAL;
0819b2e3
PZ
9836 } else {
9837 if (attr.sample_period & (1ULL << 63))
9838 return -EINVAL;
df58ab24
PZ
9839 }
9840
97c79a38
ACM
9841 if (!attr.sample_max_stack)
9842 attr.sample_max_stack = sysctl_perf_event_max_stack;
9843
e5d1367f
SE
9844 /*
9845 * In cgroup mode, the pid argument is used to pass the fd
9846 * opened to the cgroup directory in cgroupfs. The cpu argument
9847 * designates the cpu on which to monitor threads from that
9848 * cgroup.
9849 */
9850 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9851 return -EINVAL;
9852
a21b0b35
YD
9853 if (flags & PERF_FLAG_FD_CLOEXEC)
9854 f_flags |= O_CLOEXEC;
9855
9856 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9857 if (event_fd < 0)
9858 return event_fd;
9859
ac9721f3 9860 if (group_fd != -1) {
2903ff01
AV
9861 err = perf_fget_light(group_fd, &group);
9862 if (err)
d14b12d7 9863 goto err_fd;
2903ff01 9864 group_leader = group.file->private_data;
ac9721f3
PZ
9865 if (flags & PERF_FLAG_FD_OUTPUT)
9866 output_event = group_leader;
9867 if (flags & PERF_FLAG_FD_NO_GROUP)
9868 group_leader = NULL;
9869 }
9870
e5d1367f 9871 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9872 task = find_lively_task_by_vpid(pid);
9873 if (IS_ERR(task)) {
9874 err = PTR_ERR(task);
9875 goto err_group_fd;
9876 }
9877 }
9878
1f4ee503
PZ
9879 if (task && group_leader &&
9880 group_leader->attr.inherit != attr.inherit) {
9881 err = -EINVAL;
9882 goto err_task;
9883 }
9884
fbfc623f
YZ
9885 get_online_cpus();
9886
79c9ce57
PZ
9887 if (task) {
9888 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9889 if (err)
9890 goto err_cpus;
9891
9892 /*
9893 * Reuse ptrace permission checks for now.
9894 *
9895 * We must hold cred_guard_mutex across this and any potential
9896 * perf_install_in_context() call for this new event to
9897 * serialize against exec() altering our credentials (and the
9898 * perf_event_exit_task() that could imply).
9899 */
9900 err = -EACCES;
9901 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9902 goto err_cred;
9903 }
9904
79dff51e
MF
9905 if (flags & PERF_FLAG_PID_CGROUP)
9906 cgroup_fd = pid;
9907
4dc0da86 9908 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9909 NULL, NULL, cgroup_fd);
d14b12d7
SE
9910 if (IS_ERR(event)) {
9911 err = PTR_ERR(event);
79c9ce57 9912 goto err_cred;
d14b12d7
SE
9913 }
9914
53b25335
VW
9915 if (is_sampling_event(event)) {
9916 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9917 err = -EOPNOTSUPP;
53b25335
VW
9918 goto err_alloc;
9919 }
9920 }
9921
89a1e187
PZ
9922 /*
9923 * Special case software events and allow them to be part of
9924 * any hardware group.
9925 */
9926 pmu = event->pmu;
b04243ef 9927
34f43927
PZ
9928 if (attr.use_clockid) {
9929 err = perf_event_set_clock(event, attr.clockid);
9930 if (err)
9931 goto err_alloc;
9932 }
9933
4ff6a8de
DCC
9934 if (pmu->task_ctx_nr == perf_sw_context)
9935 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9936
b04243ef
PZ
9937 if (group_leader &&
9938 (is_software_event(event) != is_software_event(group_leader))) {
9939 if (is_software_event(event)) {
9940 /*
9941 * If event and group_leader are not both a software
9942 * event, and event is, then group leader is not.
9943 *
9944 * Allow the addition of software events to !software
9945 * groups, this is safe because software events never
9946 * fail to schedule.
9947 */
9948 pmu = group_leader->pmu;
9949 } else if (is_software_event(group_leader) &&
4ff6a8de 9950 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9951 /*
9952 * In case the group is a pure software group, and we
9953 * try to add a hardware event, move the whole group to
9954 * the hardware context.
9955 */
9956 move_group = 1;
9957 }
9958 }
89a1e187
PZ
9959
9960 /*
9961 * Get the target context (task or percpu):
9962 */
4af57ef2 9963 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9964 if (IS_ERR(ctx)) {
9965 err = PTR_ERR(ctx);
c6be5a5c 9966 goto err_alloc;
89a1e187
PZ
9967 }
9968
bed5b25a
AS
9969 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9970 err = -EBUSY;
9971 goto err_context;
9972 }
9973
ccff286d 9974 /*
cdd6c482 9975 * Look up the group leader (we will attach this event to it):
04289bb9 9976 */
ac9721f3 9977 if (group_leader) {
dc86cabe 9978 err = -EINVAL;
04289bb9 9979
04289bb9 9980 /*
ccff286d
IM
9981 * Do not allow a recursive hierarchy (this new sibling
9982 * becoming part of another group-sibling):
9983 */
9984 if (group_leader->group_leader != group_leader)
c3f00c70 9985 goto err_context;
34f43927
PZ
9986
9987 /* All events in a group should have the same clock */
9988 if (group_leader->clock != event->clock)
9989 goto err_context;
9990
ccff286d
IM
9991 /*
9992 * Do not allow to attach to a group in a different
9993 * task or CPU context:
04289bb9 9994 */
b04243ef 9995 if (move_group) {
c3c87e77
PZ
9996 /*
9997 * Make sure we're both on the same task, or both
9998 * per-cpu events.
9999 */
10000 if (group_leader->ctx->task != ctx->task)
10001 goto err_context;
10002
10003 /*
10004 * Make sure we're both events for the same CPU;
10005 * grouping events for different CPUs is broken; since
10006 * you can never concurrently schedule them anyhow.
10007 */
10008 if (group_leader->cpu != event->cpu)
b04243ef
PZ
10009 goto err_context;
10010 } else {
10011 if (group_leader->ctx != ctx)
10012 goto err_context;
10013 }
10014
3b6f9e5c
PM
10015 /*
10016 * Only a group leader can be exclusive or pinned
10017 */
0d48696f 10018 if (attr.exclusive || attr.pinned)
c3f00c70 10019 goto err_context;
ac9721f3
PZ
10020 }
10021
10022 if (output_event) {
10023 err = perf_event_set_output(event, output_event);
10024 if (err)
c3f00c70 10025 goto err_context;
ac9721f3 10026 }
0793a61d 10027
a21b0b35
YD
10028 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10029 f_flags);
ea635c64
AV
10030 if (IS_ERR(event_file)) {
10031 err = PTR_ERR(event_file);
201c2f85 10032 event_file = NULL;
c3f00c70 10033 goto err_context;
ea635c64 10034 }
9b51f66d 10035
b04243ef 10036 if (move_group) {
321027c1
PZ
10037 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10038
84c4e620
PZ
10039 if (gctx->task == TASK_TOMBSTONE) {
10040 err = -ESRCH;
10041 goto err_locked;
10042 }
321027c1
PZ
10043
10044 /*
10045 * Check if we raced against another sys_perf_event_open() call
10046 * moving the software group underneath us.
10047 */
10048 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10049 /*
10050 * If someone moved the group out from under us, check
10051 * if this new event wound up on the same ctx, if so
10052 * its the regular !move_group case, otherwise fail.
10053 */
10054 if (gctx != ctx) {
10055 err = -EINVAL;
10056 goto err_locked;
10057 } else {
10058 perf_event_ctx_unlock(group_leader, gctx);
10059 move_group = 0;
10060 }
10061 }
f55fc2a5
PZ
10062 } else {
10063 mutex_lock(&ctx->mutex);
10064 }
10065
84c4e620
PZ
10066 if (ctx->task == TASK_TOMBSTONE) {
10067 err = -ESRCH;
10068 goto err_locked;
10069 }
10070
a723968c
PZ
10071 if (!perf_event_validate_size(event)) {
10072 err = -E2BIG;
10073 goto err_locked;
10074 }
10075
f55fc2a5
PZ
10076 /*
10077 * Must be under the same ctx::mutex as perf_install_in_context(),
10078 * because we need to serialize with concurrent event creation.
10079 */
10080 if (!exclusive_event_installable(event, ctx)) {
10081 /* exclusive and group stuff are assumed mutually exclusive */
10082 WARN_ON_ONCE(move_group);
f63a8daa 10083
f55fc2a5
PZ
10084 err = -EBUSY;
10085 goto err_locked;
10086 }
f63a8daa 10087
f55fc2a5
PZ
10088 WARN_ON_ONCE(ctx->parent_ctx);
10089
79c9ce57
PZ
10090 /*
10091 * This is the point on no return; we cannot fail hereafter. This is
10092 * where we start modifying current state.
10093 */
10094
f55fc2a5 10095 if (move_group) {
f63a8daa
PZ
10096 /*
10097 * See perf_event_ctx_lock() for comments on the details
10098 * of swizzling perf_event::ctx.
10099 */
45a0e07a 10100 perf_remove_from_context(group_leader, 0);
279b5165 10101 put_ctx(gctx);
0231bb53 10102
b04243ef
PZ
10103 list_for_each_entry(sibling, &group_leader->sibling_list,
10104 group_entry) {
45a0e07a 10105 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10106 put_ctx(gctx);
10107 }
b04243ef 10108
f63a8daa
PZ
10109 /*
10110 * Wait for everybody to stop referencing the events through
10111 * the old lists, before installing it on new lists.
10112 */
0cda4c02 10113 synchronize_rcu();
f63a8daa 10114
8f95b435
PZI
10115 /*
10116 * Install the group siblings before the group leader.
10117 *
10118 * Because a group leader will try and install the entire group
10119 * (through the sibling list, which is still in-tact), we can
10120 * end up with siblings installed in the wrong context.
10121 *
10122 * By installing siblings first we NO-OP because they're not
10123 * reachable through the group lists.
10124 */
b04243ef
PZ
10125 list_for_each_entry(sibling, &group_leader->sibling_list,
10126 group_entry) {
8f95b435 10127 perf_event__state_init(sibling);
9fc81d87 10128 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10129 get_ctx(ctx);
10130 }
8f95b435
PZI
10131
10132 /*
10133 * Removing from the context ends up with disabled
10134 * event. What we want here is event in the initial
10135 * startup state, ready to be add into new context.
10136 */
10137 perf_event__state_init(group_leader);
10138 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10139 get_ctx(ctx);
bed5b25a
AS
10140 }
10141
f73e22ab
PZ
10142 /*
10143 * Precalculate sample_data sizes; do while holding ctx::mutex such
10144 * that we're serialized against further additions and before
10145 * perf_install_in_context() which is the point the event is active and
10146 * can use these values.
10147 */
10148 perf_event__header_size(event);
10149 perf_event__id_header_size(event);
10150
78cd2c74
PZ
10151 event->owner = current;
10152
e2d37cd2 10153 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10154 perf_unpin_context(ctx);
f63a8daa 10155
f55fc2a5 10156 if (move_group)
321027c1 10157 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10158 mutex_unlock(&ctx->mutex);
9b51f66d 10159
79c9ce57
PZ
10160 if (task) {
10161 mutex_unlock(&task->signal->cred_guard_mutex);
10162 put_task_struct(task);
10163 }
10164
fbfc623f
YZ
10165 put_online_cpus();
10166
cdd6c482
IM
10167 mutex_lock(&current->perf_event_mutex);
10168 list_add_tail(&event->owner_entry, &current->perf_event_list);
10169 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10170
8a49542c
PZ
10171 /*
10172 * Drop the reference on the group_event after placing the
10173 * new event on the sibling_list. This ensures destruction
10174 * of the group leader will find the pointer to itself in
10175 * perf_group_detach().
10176 */
2903ff01 10177 fdput(group);
ea635c64
AV
10178 fd_install(event_fd, event_file);
10179 return event_fd;
0793a61d 10180
f55fc2a5
PZ
10181err_locked:
10182 if (move_group)
321027c1 10183 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10184 mutex_unlock(&ctx->mutex);
10185/* err_file: */
10186 fput(event_file);
c3f00c70 10187err_context:
fe4b04fa 10188 perf_unpin_context(ctx);
ea635c64 10189 put_ctx(ctx);
c6be5a5c 10190err_alloc:
13005627
PZ
10191 /*
10192 * If event_file is set, the fput() above will have called ->release()
10193 * and that will take care of freeing the event.
10194 */
10195 if (!event_file)
10196 free_event(event);
79c9ce57
PZ
10197err_cred:
10198 if (task)
10199 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10200err_cpus:
fbfc623f 10201 put_online_cpus();
1f4ee503 10202err_task:
e7d0bc04
PZ
10203 if (task)
10204 put_task_struct(task);
89a1e187 10205err_group_fd:
2903ff01 10206 fdput(group);
ea635c64
AV
10207err_fd:
10208 put_unused_fd(event_fd);
dc86cabe 10209 return err;
0793a61d
TG
10210}
10211
fb0459d7
AV
10212/**
10213 * perf_event_create_kernel_counter
10214 *
10215 * @attr: attributes of the counter to create
10216 * @cpu: cpu in which the counter is bound
38a81da2 10217 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10218 */
10219struct perf_event *
10220perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10221 struct task_struct *task,
4dc0da86
AK
10222 perf_overflow_handler_t overflow_handler,
10223 void *context)
fb0459d7 10224{
fb0459d7 10225 struct perf_event_context *ctx;
c3f00c70 10226 struct perf_event *event;
fb0459d7 10227 int err;
d859e29f 10228
fb0459d7
AV
10229 /*
10230 * Get the target context (task or percpu):
10231 */
d859e29f 10232
4dc0da86 10233 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10234 overflow_handler, context, -1);
c3f00c70
PZ
10235 if (IS_ERR(event)) {
10236 err = PTR_ERR(event);
10237 goto err;
10238 }
d859e29f 10239
f8697762 10240 /* Mark owner so we could distinguish it from user events. */
63b6da39 10241 event->owner = TASK_TOMBSTONE;
f8697762 10242
4af57ef2 10243 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10244 if (IS_ERR(ctx)) {
10245 err = PTR_ERR(ctx);
c3f00c70 10246 goto err_free;
d859e29f 10247 }
fb0459d7 10248
fb0459d7
AV
10249 WARN_ON_ONCE(ctx->parent_ctx);
10250 mutex_lock(&ctx->mutex);
84c4e620
PZ
10251 if (ctx->task == TASK_TOMBSTONE) {
10252 err = -ESRCH;
10253 goto err_unlock;
10254 }
10255
bed5b25a 10256 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10257 err = -EBUSY;
84c4e620 10258 goto err_unlock;
bed5b25a
AS
10259 }
10260
fb0459d7 10261 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10262 perf_unpin_context(ctx);
fb0459d7
AV
10263 mutex_unlock(&ctx->mutex);
10264
fb0459d7
AV
10265 return event;
10266
84c4e620
PZ
10267err_unlock:
10268 mutex_unlock(&ctx->mutex);
10269 perf_unpin_context(ctx);
10270 put_ctx(ctx);
c3f00c70
PZ
10271err_free:
10272 free_event(event);
10273err:
c6567f64 10274 return ERR_PTR(err);
9b51f66d 10275}
fb0459d7 10276EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10277
0cda4c02
YZ
10278void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10279{
10280 struct perf_event_context *src_ctx;
10281 struct perf_event_context *dst_ctx;
10282 struct perf_event *event, *tmp;
10283 LIST_HEAD(events);
10284
10285 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10286 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10287
f63a8daa
PZ
10288 /*
10289 * See perf_event_ctx_lock() for comments on the details
10290 * of swizzling perf_event::ctx.
10291 */
10292 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10293 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10294 event_entry) {
45a0e07a 10295 perf_remove_from_context(event, 0);
9a545de0 10296 unaccount_event_cpu(event, src_cpu);
0cda4c02 10297 put_ctx(src_ctx);
9886167d 10298 list_add(&event->migrate_entry, &events);
0cda4c02 10299 }
0cda4c02 10300
8f95b435
PZI
10301 /*
10302 * Wait for the events to quiesce before re-instating them.
10303 */
0cda4c02
YZ
10304 synchronize_rcu();
10305
8f95b435
PZI
10306 /*
10307 * Re-instate events in 2 passes.
10308 *
10309 * Skip over group leaders and only install siblings on this first
10310 * pass, siblings will not get enabled without a leader, however a
10311 * leader will enable its siblings, even if those are still on the old
10312 * context.
10313 */
10314 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10315 if (event->group_leader == event)
10316 continue;
10317
10318 list_del(&event->migrate_entry);
10319 if (event->state >= PERF_EVENT_STATE_OFF)
10320 event->state = PERF_EVENT_STATE_INACTIVE;
10321 account_event_cpu(event, dst_cpu);
10322 perf_install_in_context(dst_ctx, event, dst_cpu);
10323 get_ctx(dst_ctx);
10324 }
10325
10326 /*
10327 * Once all the siblings are setup properly, install the group leaders
10328 * to make it go.
10329 */
9886167d
PZ
10330 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10331 list_del(&event->migrate_entry);
0cda4c02
YZ
10332 if (event->state >= PERF_EVENT_STATE_OFF)
10333 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10334 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10335 perf_install_in_context(dst_ctx, event, dst_cpu);
10336 get_ctx(dst_ctx);
10337 }
10338 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10339 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10340}
10341EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10342
cdd6c482 10343static void sync_child_event(struct perf_event *child_event,
38b200d6 10344 struct task_struct *child)
d859e29f 10345{
cdd6c482 10346 struct perf_event *parent_event = child_event->parent;
8bc20959 10347 u64 child_val;
d859e29f 10348
cdd6c482
IM
10349 if (child_event->attr.inherit_stat)
10350 perf_event_read_event(child_event, child);
38b200d6 10351
b5e58793 10352 child_val = perf_event_count(child_event);
d859e29f
PM
10353
10354 /*
10355 * Add back the child's count to the parent's count:
10356 */
a6e6dea6 10357 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10358 atomic64_add(child_event->total_time_enabled,
10359 &parent_event->child_total_time_enabled);
10360 atomic64_add(child_event->total_time_running,
10361 &parent_event->child_total_time_running);
d859e29f
PM
10362}
10363
9b51f66d 10364static void
8ba289b8
PZ
10365perf_event_exit_event(struct perf_event *child_event,
10366 struct perf_event_context *child_ctx,
10367 struct task_struct *child)
9b51f66d 10368{
8ba289b8
PZ
10369 struct perf_event *parent_event = child_event->parent;
10370
1903d50c
PZ
10371 /*
10372 * Do not destroy the 'original' grouping; because of the context
10373 * switch optimization the original events could've ended up in a
10374 * random child task.
10375 *
10376 * If we were to destroy the original group, all group related
10377 * operations would cease to function properly after this random
10378 * child dies.
10379 *
10380 * Do destroy all inherited groups, we don't care about those
10381 * and being thorough is better.
10382 */
32132a3d
PZ
10383 raw_spin_lock_irq(&child_ctx->lock);
10384 WARN_ON_ONCE(child_ctx->is_active);
10385
8ba289b8 10386 if (parent_event)
32132a3d
PZ
10387 perf_group_detach(child_event);
10388 list_del_event(child_event, child_ctx);
a69b0ca4 10389 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10390 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10391
9b51f66d 10392 /*
8ba289b8 10393 * Parent events are governed by their filedesc, retain them.
9b51f66d 10394 */
8ba289b8 10395 if (!parent_event) {
179033b3 10396 perf_event_wakeup(child_event);
8ba289b8 10397 return;
4bcf349a 10398 }
8ba289b8
PZ
10399 /*
10400 * Child events can be cleaned up.
10401 */
10402
10403 sync_child_event(child_event, child);
10404
10405 /*
10406 * Remove this event from the parent's list
10407 */
10408 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10409 mutex_lock(&parent_event->child_mutex);
10410 list_del_init(&child_event->child_list);
10411 mutex_unlock(&parent_event->child_mutex);
10412
10413 /*
10414 * Kick perf_poll() for is_event_hup().
10415 */
10416 perf_event_wakeup(parent_event);
10417 free_event(child_event);
10418 put_event(parent_event);
9b51f66d
IM
10419}
10420
8dc85d54 10421static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10422{
211de6eb 10423 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10424 struct perf_event *child_event, *next;
63b6da39
PZ
10425
10426 WARN_ON_ONCE(child != current);
9b51f66d 10427
6a3351b6 10428 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10429 if (!child_ctx)
9b51f66d
IM
10430 return;
10431
ad3a37de 10432 /*
6a3351b6
PZ
10433 * In order to reduce the amount of tricky in ctx tear-down, we hold
10434 * ctx::mutex over the entire thing. This serializes against almost
10435 * everything that wants to access the ctx.
10436 *
10437 * The exception is sys_perf_event_open() /
10438 * perf_event_create_kernel_count() which does find_get_context()
10439 * without ctx::mutex (it cannot because of the move_group double mutex
10440 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10441 */
6a3351b6 10442 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10443
10444 /*
6a3351b6
PZ
10445 * In a single ctx::lock section, de-schedule the events and detach the
10446 * context from the task such that we cannot ever get it scheduled back
10447 * in.
c93f7669 10448 */
6a3351b6 10449 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10450 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10451
71a851b4 10452 /*
63b6da39
PZ
10453 * Now that the context is inactive, destroy the task <-> ctx relation
10454 * and mark the context dead.
71a851b4 10455 */
63b6da39
PZ
10456 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10457 put_ctx(child_ctx); /* cannot be last */
10458 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10459 put_task_struct(current); /* cannot be last */
4a1c0f26 10460
211de6eb 10461 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10462 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10463
211de6eb
PZ
10464 if (clone_ctx)
10465 put_ctx(clone_ctx);
4a1c0f26 10466
9f498cc5 10467 /*
cdd6c482
IM
10468 * Report the task dead after unscheduling the events so that we
10469 * won't get any samples after PERF_RECORD_EXIT. We can however still
10470 * get a few PERF_RECORD_READ events.
9f498cc5 10471 */
cdd6c482 10472 perf_event_task(child, child_ctx, 0);
a63eaf34 10473
ebf905fc 10474 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10475 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10476
a63eaf34
PM
10477 mutex_unlock(&child_ctx->mutex);
10478
10479 put_ctx(child_ctx);
9b51f66d
IM
10480}
10481
8dc85d54
PZ
10482/*
10483 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10484 *
10485 * Can be called with cred_guard_mutex held when called from
10486 * install_exec_creds().
8dc85d54
PZ
10487 */
10488void perf_event_exit_task(struct task_struct *child)
10489{
8882135b 10490 struct perf_event *event, *tmp;
8dc85d54
PZ
10491 int ctxn;
10492
8882135b
PZ
10493 mutex_lock(&child->perf_event_mutex);
10494 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10495 owner_entry) {
10496 list_del_init(&event->owner_entry);
10497
10498 /*
10499 * Ensure the list deletion is visible before we clear
10500 * the owner, closes a race against perf_release() where
10501 * we need to serialize on the owner->perf_event_mutex.
10502 */
f47c02c0 10503 smp_store_release(&event->owner, NULL);
8882135b
PZ
10504 }
10505 mutex_unlock(&child->perf_event_mutex);
10506
8dc85d54
PZ
10507 for_each_task_context_nr(ctxn)
10508 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10509
10510 /*
10511 * The perf_event_exit_task_context calls perf_event_task
10512 * with child's task_ctx, which generates EXIT events for
10513 * child contexts and sets child->perf_event_ctxp[] to NULL.
10514 * At this point we need to send EXIT events to cpu contexts.
10515 */
10516 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10517}
10518
889ff015
FW
10519static void perf_free_event(struct perf_event *event,
10520 struct perf_event_context *ctx)
10521{
10522 struct perf_event *parent = event->parent;
10523
10524 if (WARN_ON_ONCE(!parent))
10525 return;
10526
10527 mutex_lock(&parent->child_mutex);
10528 list_del_init(&event->child_list);
10529 mutex_unlock(&parent->child_mutex);
10530
a6fa941d 10531 put_event(parent);
889ff015 10532
652884fe 10533 raw_spin_lock_irq(&ctx->lock);
8a49542c 10534 perf_group_detach(event);
889ff015 10535 list_del_event(event, ctx);
652884fe 10536 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10537 free_event(event);
10538}
10539
bbbee908 10540/*
652884fe 10541 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10542 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10543 *
10544 * Not all locks are strictly required, but take them anyway to be nice and
10545 * help out with the lockdep assertions.
bbbee908 10546 */
cdd6c482 10547void perf_event_free_task(struct task_struct *task)
bbbee908 10548{
8dc85d54 10549 struct perf_event_context *ctx;
cdd6c482 10550 struct perf_event *event, *tmp;
8dc85d54 10551 int ctxn;
bbbee908 10552
8dc85d54
PZ
10553 for_each_task_context_nr(ctxn) {
10554 ctx = task->perf_event_ctxp[ctxn];
10555 if (!ctx)
10556 continue;
bbbee908 10557
8dc85d54 10558 mutex_lock(&ctx->mutex);
e552a838
PZ
10559 raw_spin_lock_irq(&ctx->lock);
10560 /*
10561 * Destroy the task <-> ctx relation and mark the context dead.
10562 *
10563 * This is important because even though the task hasn't been
10564 * exposed yet the context has been (through child_list).
10565 */
10566 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10567 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10568 put_task_struct(task); /* cannot be last */
10569 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10570
15121c78 10571 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10572 perf_free_event(event, ctx);
bbbee908 10573
8dc85d54 10574 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10575 put_ctx(ctx);
10576 }
889ff015
FW
10577}
10578
4e231c79
PZ
10579void perf_event_delayed_put(struct task_struct *task)
10580{
10581 int ctxn;
10582
10583 for_each_task_context_nr(ctxn)
10584 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10585}
10586
e03e7ee3 10587struct file *perf_event_get(unsigned int fd)
ffe8690c 10588{
e03e7ee3 10589 struct file *file;
ffe8690c 10590
e03e7ee3
AS
10591 file = fget_raw(fd);
10592 if (!file)
10593 return ERR_PTR(-EBADF);
ffe8690c 10594
e03e7ee3
AS
10595 if (file->f_op != &perf_fops) {
10596 fput(file);
10597 return ERR_PTR(-EBADF);
10598 }
ffe8690c 10599
e03e7ee3 10600 return file;
ffe8690c
KX
10601}
10602
10603const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10604{
10605 if (!event)
10606 return ERR_PTR(-EINVAL);
10607
10608 return &event->attr;
10609}
10610
97dee4f3 10611/*
d8a8cfc7
PZ
10612 * Inherit a event from parent task to child task.
10613 *
10614 * Returns:
10615 * - valid pointer on success
10616 * - NULL for orphaned events
10617 * - IS_ERR() on error
97dee4f3
PZ
10618 */
10619static struct perf_event *
10620inherit_event(struct perf_event *parent_event,
10621 struct task_struct *parent,
10622 struct perf_event_context *parent_ctx,
10623 struct task_struct *child,
10624 struct perf_event *group_leader,
10625 struct perf_event_context *child_ctx)
10626{
1929def9 10627 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10628 struct perf_event *child_event;
cee010ec 10629 unsigned long flags;
97dee4f3
PZ
10630
10631 /*
10632 * Instead of creating recursive hierarchies of events,
10633 * we link inherited events back to the original parent,
10634 * which has a filp for sure, which we use as the reference
10635 * count:
10636 */
10637 if (parent_event->parent)
10638 parent_event = parent_event->parent;
10639
10640 child_event = perf_event_alloc(&parent_event->attr,
10641 parent_event->cpu,
d580ff86 10642 child,
97dee4f3 10643 group_leader, parent_event,
79dff51e 10644 NULL, NULL, -1);
97dee4f3
PZ
10645 if (IS_ERR(child_event))
10646 return child_event;
a6fa941d 10647
c6e5b732
PZ
10648 /*
10649 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10650 * must be under the same lock in order to serialize against
10651 * perf_event_release_kernel(), such that either we must observe
10652 * is_orphaned_event() or they will observe us on the child_list.
10653 */
10654 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10655 if (is_orphaned_event(parent_event) ||
10656 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10657 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10658 free_event(child_event);
10659 return NULL;
10660 }
10661
97dee4f3
PZ
10662 get_ctx(child_ctx);
10663
10664 /*
10665 * Make the child state follow the state of the parent event,
10666 * not its attr.disabled bit. We hold the parent's mutex,
10667 * so we won't race with perf_event_{en, dis}able_family.
10668 */
1929def9 10669 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10670 child_event->state = PERF_EVENT_STATE_INACTIVE;
10671 else
10672 child_event->state = PERF_EVENT_STATE_OFF;
10673
10674 if (parent_event->attr.freq) {
10675 u64 sample_period = parent_event->hw.sample_period;
10676 struct hw_perf_event *hwc = &child_event->hw;
10677
10678 hwc->sample_period = sample_period;
10679 hwc->last_period = sample_period;
10680
10681 local64_set(&hwc->period_left, sample_period);
10682 }
10683
10684 child_event->ctx = child_ctx;
10685 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10686 child_event->overflow_handler_context
10687 = parent_event->overflow_handler_context;
97dee4f3 10688
614b6780
TG
10689 /*
10690 * Precalculate sample_data sizes
10691 */
10692 perf_event__header_size(child_event);
6844c09d 10693 perf_event__id_header_size(child_event);
614b6780 10694
97dee4f3
PZ
10695 /*
10696 * Link it up in the child's context:
10697 */
cee010ec 10698 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10699 add_event_to_ctx(child_event, child_ctx);
cee010ec 10700 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10701
97dee4f3
PZ
10702 /*
10703 * Link this into the parent event's child list
10704 */
97dee4f3
PZ
10705 list_add_tail(&child_event->child_list, &parent_event->child_list);
10706 mutex_unlock(&parent_event->child_mutex);
10707
10708 return child_event;
10709}
10710
d8a8cfc7
PZ
10711/*
10712 * Inherits an event group.
10713 *
10714 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10715 * This matches with perf_event_release_kernel() removing all child events.
10716 *
10717 * Returns:
10718 * - 0 on success
10719 * - <0 on error
10720 */
97dee4f3
PZ
10721static int inherit_group(struct perf_event *parent_event,
10722 struct task_struct *parent,
10723 struct perf_event_context *parent_ctx,
10724 struct task_struct *child,
10725 struct perf_event_context *child_ctx)
10726{
10727 struct perf_event *leader;
10728 struct perf_event *sub;
10729 struct perf_event *child_ctr;
10730
10731 leader = inherit_event(parent_event, parent, parent_ctx,
10732 child, NULL, child_ctx);
10733 if (IS_ERR(leader))
10734 return PTR_ERR(leader);
d8a8cfc7
PZ
10735 /*
10736 * @leader can be NULL here because of is_orphaned_event(). In this
10737 * case inherit_event() will create individual events, similar to what
10738 * perf_group_detach() would do anyway.
10739 */
97dee4f3
PZ
10740 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10741 child_ctr = inherit_event(sub, parent, parent_ctx,
10742 child, leader, child_ctx);
10743 if (IS_ERR(child_ctr))
10744 return PTR_ERR(child_ctr);
10745 }
10746 return 0;
889ff015
FW
10747}
10748
d8a8cfc7
PZ
10749/*
10750 * Creates the child task context and tries to inherit the event-group.
10751 *
10752 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10753 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10754 * consistent with perf_event_release_kernel() removing all child events.
10755 *
10756 * Returns:
10757 * - 0 on success
10758 * - <0 on error
10759 */
889ff015
FW
10760static int
10761inherit_task_group(struct perf_event *event, struct task_struct *parent,
10762 struct perf_event_context *parent_ctx,
8dc85d54 10763 struct task_struct *child, int ctxn,
889ff015
FW
10764 int *inherited_all)
10765{
10766 int ret;
8dc85d54 10767 struct perf_event_context *child_ctx;
889ff015
FW
10768
10769 if (!event->attr.inherit) {
10770 *inherited_all = 0;
10771 return 0;
bbbee908
PZ
10772 }
10773
fe4b04fa 10774 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10775 if (!child_ctx) {
10776 /*
10777 * This is executed from the parent task context, so
10778 * inherit events that have been marked for cloning.
10779 * First allocate and initialize a context for the
10780 * child.
10781 */
734df5ab 10782 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10783 if (!child_ctx)
10784 return -ENOMEM;
bbbee908 10785
8dc85d54 10786 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10787 }
10788
10789 ret = inherit_group(event, parent, parent_ctx,
10790 child, child_ctx);
10791
10792 if (ret)
10793 *inherited_all = 0;
10794
10795 return ret;
bbbee908
PZ
10796}
10797
9b51f66d 10798/*
cdd6c482 10799 * Initialize the perf_event context in task_struct
9b51f66d 10800 */
985c8dcb 10801static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10802{
889ff015 10803 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10804 struct perf_event_context *cloned_ctx;
10805 struct perf_event *event;
9b51f66d 10806 struct task_struct *parent = current;
564c2b21 10807 int inherited_all = 1;
dddd3379 10808 unsigned long flags;
6ab423e0 10809 int ret = 0;
9b51f66d 10810
8dc85d54 10811 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10812 return 0;
10813
ad3a37de 10814 /*
25346b93
PM
10815 * If the parent's context is a clone, pin it so it won't get
10816 * swapped under us.
ad3a37de 10817 */
8dc85d54 10818 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10819 if (!parent_ctx)
10820 return 0;
25346b93 10821
ad3a37de
PM
10822 /*
10823 * No need to check if parent_ctx != NULL here; since we saw
10824 * it non-NULL earlier, the only reason for it to become NULL
10825 * is if we exit, and since we're currently in the middle of
10826 * a fork we can't be exiting at the same time.
10827 */
ad3a37de 10828
9b51f66d
IM
10829 /*
10830 * Lock the parent list. No need to lock the child - not PID
10831 * hashed yet and not running, so nobody can access it.
10832 */
d859e29f 10833 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10834
10835 /*
10836 * We dont have to disable NMIs - we are only looking at
10837 * the list, not manipulating it:
10838 */
889ff015 10839 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10840 ret = inherit_task_group(event, parent, parent_ctx,
10841 child, ctxn, &inherited_all);
889ff015 10842 if (ret)
e7cc4865 10843 goto out_unlock;
889ff015 10844 }
b93f7978 10845
dddd3379
TG
10846 /*
10847 * We can't hold ctx->lock when iterating the ->flexible_group list due
10848 * to allocations, but we need to prevent rotation because
10849 * rotate_ctx() will change the list from interrupt context.
10850 */
10851 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10852 parent_ctx->rotate_disable = 1;
10853 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10854
889ff015 10855 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10856 ret = inherit_task_group(event, parent, parent_ctx,
10857 child, ctxn, &inherited_all);
889ff015 10858 if (ret)
e7cc4865 10859 goto out_unlock;
564c2b21
PM
10860 }
10861
dddd3379
TG
10862 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10863 parent_ctx->rotate_disable = 0;
dddd3379 10864
8dc85d54 10865 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10866
05cbaa28 10867 if (child_ctx && inherited_all) {
564c2b21
PM
10868 /*
10869 * Mark the child context as a clone of the parent
10870 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10871 *
10872 * Note that if the parent is a clone, the holding of
10873 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10874 */
c5ed5145 10875 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10876 if (cloned_ctx) {
10877 child_ctx->parent_ctx = cloned_ctx;
25346b93 10878 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10879 } else {
10880 child_ctx->parent_ctx = parent_ctx;
10881 child_ctx->parent_gen = parent_ctx->generation;
10882 }
10883 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10884 }
10885
c5ed5145 10886 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10887out_unlock:
d859e29f 10888 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10889
25346b93 10890 perf_unpin_context(parent_ctx);
fe4b04fa 10891 put_ctx(parent_ctx);
ad3a37de 10892
6ab423e0 10893 return ret;
9b51f66d
IM
10894}
10895
8dc85d54
PZ
10896/*
10897 * Initialize the perf_event context in task_struct
10898 */
10899int perf_event_init_task(struct task_struct *child)
10900{
10901 int ctxn, ret;
10902
8550d7cb
ON
10903 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10904 mutex_init(&child->perf_event_mutex);
10905 INIT_LIST_HEAD(&child->perf_event_list);
10906
8dc85d54
PZ
10907 for_each_task_context_nr(ctxn) {
10908 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10909 if (ret) {
10910 perf_event_free_task(child);
8dc85d54 10911 return ret;
6c72e350 10912 }
8dc85d54
PZ
10913 }
10914
10915 return 0;
10916}
10917
220b140b
PM
10918static void __init perf_event_init_all_cpus(void)
10919{
b28ab83c 10920 struct swevent_htable *swhash;
220b140b 10921 int cpu;
220b140b
PM
10922
10923 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10924 swhash = &per_cpu(swevent_htable, cpu);
10925 mutex_init(&swhash->hlist_mutex);
2fde4f94 10926 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10927
10928 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10929 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10930
058fe1c0
DCC
10931#ifdef CONFIG_CGROUP_PERF
10932 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10933#endif
e48c1788 10934 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10935 }
10936}
10937
00e16c3d 10938int perf_event_init_cpu(unsigned int cpu)
0793a61d 10939{
108b02cf 10940 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10941
b28ab83c 10942 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10943 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10944 struct swevent_hlist *hlist;
10945
b28ab83c
PZ
10946 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10947 WARN_ON(!hlist);
10948 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10949 }
b28ab83c 10950 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10951 return 0;
0793a61d
TG
10952}
10953
2965faa5 10954#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10955static void __perf_event_exit_context(void *__info)
0793a61d 10956{
108b02cf 10957 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10958 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10959 struct perf_event *event;
0793a61d 10960
fae3fde6
PZ
10961 raw_spin_lock(&ctx->lock);
10962 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10963 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10964 raw_spin_unlock(&ctx->lock);
0793a61d 10965}
108b02cf
PZ
10966
10967static void perf_event_exit_cpu_context(int cpu)
10968{
10969 struct perf_event_context *ctx;
10970 struct pmu *pmu;
10971 int idx;
10972
10973 idx = srcu_read_lock(&pmus_srcu);
10974 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10975 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10976
10977 mutex_lock(&ctx->mutex);
10978 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10979 mutex_unlock(&ctx->mutex);
10980 }
10981 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10982}
00e16c3d
TG
10983#else
10984
10985static void perf_event_exit_cpu_context(int cpu) { }
10986
10987#endif
108b02cf 10988
00e16c3d 10989int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10990{
e3703f8c 10991 perf_event_exit_cpu_context(cpu);
00e16c3d 10992 return 0;
0793a61d 10993}
0793a61d 10994
c277443c
PZ
10995static int
10996perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10997{
10998 int cpu;
10999
11000 for_each_online_cpu(cpu)
11001 perf_event_exit_cpu(cpu);
11002
11003 return NOTIFY_OK;
11004}
11005
11006/*
11007 * Run the perf reboot notifier at the very last possible moment so that
11008 * the generic watchdog code runs as long as possible.
11009 */
11010static struct notifier_block perf_reboot_notifier = {
11011 .notifier_call = perf_reboot,
11012 .priority = INT_MIN,
11013};
11014
cdd6c482 11015void __init perf_event_init(void)
0793a61d 11016{
3c502e7a
JW
11017 int ret;
11018
2e80a82a
PZ
11019 idr_init(&pmu_idr);
11020
220b140b 11021 perf_event_init_all_cpus();
b0a873eb 11022 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11023 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11024 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11025 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11026 perf_tp_register();
00e16c3d 11027 perf_event_init_cpu(smp_processor_id());
c277443c 11028 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11029
11030 ret = init_hw_breakpoint();
11031 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11032
b01c3a00
JO
11033 /*
11034 * Build time assertion that we keep the data_head at the intended
11035 * location. IOW, validation we got the __reserved[] size right.
11036 */
11037 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11038 != 1024);
0793a61d 11039}
abe43400 11040
fd979c01
CS
11041ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11042 char *page)
11043{
11044 struct perf_pmu_events_attr *pmu_attr =
11045 container_of(attr, struct perf_pmu_events_attr, attr);
11046
11047 if (pmu_attr->event_str)
11048 return sprintf(page, "%s\n", pmu_attr->event_str);
11049
11050 return 0;
11051}
675965b0 11052EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11053
abe43400
PZ
11054static int __init perf_event_sysfs_init(void)
11055{
11056 struct pmu *pmu;
11057 int ret;
11058
11059 mutex_lock(&pmus_lock);
11060
11061 ret = bus_register(&pmu_bus);
11062 if (ret)
11063 goto unlock;
11064
11065 list_for_each_entry(pmu, &pmus, entry) {
11066 if (!pmu->name || pmu->type < 0)
11067 continue;
11068
11069 ret = pmu_dev_alloc(pmu);
11070 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11071 }
11072 pmu_bus_running = 1;
11073 ret = 0;
11074
11075unlock:
11076 mutex_unlock(&pmus_lock);
11077
11078 return ret;
11079}
11080device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11081
11082#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11083static struct cgroup_subsys_state *
11084perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11085{
11086 struct perf_cgroup *jc;
e5d1367f 11087
1b15d055 11088 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11089 if (!jc)
11090 return ERR_PTR(-ENOMEM);
11091
e5d1367f
SE
11092 jc->info = alloc_percpu(struct perf_cgroup_info);
11093 if (!jc->info) {
11094 kfree(jc);
11095 return ERR_PTR(-ENOMEM);
11096 }
11097
e5d1367f
SE
11098 return &jc->css;
11099}
11100
eb95419b 11101static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11102{
eb95419b
TH
11103 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11104
e5d1367f
SE
11105 free_percpu(jc->info);
11106 kfree(jc);
11107}
11108
11109static int __perf_cgroup_move(void *info)
11110{
11111 struct task_struct *task = info;
ddaaf4e2 11112 rcu_read_lock();
e5d1367f 11113 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11114 rcu_read_unlock();
e5d1367f
SE
11115 return 0;
11116}
11117
1f7dd3e5 11118static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11119{
bb9d97b6 11120 struct task_struct *task;
1f7dd3e5 11121 struct cgroup_subsys_state *css;
bb9d97b6 11122
1f7dd3e5 11123 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11124 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11125}
11126
073219e9 11127struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11128 .css_alloc = perf_cgroup_css_alloc,
11129 .css_free = perf_cgroup_css_free,
bb9d97b6 11130 .attach = perf_cgroup_attach,
968ebff1
TH
11131 /*
11132 * Implicitly enable on dfl hierarchy so that perf events can
11133 * always be filtered by cgroup2 path as long as perf_event
11134 * controller is not mounted on a legacy hierarchy.
11135 */
11136 .implicit_on_dfl = true,
e5d1367f
SE
11137};
11138#endif /* CONFIG_CGROUP_PERF */