perf/x86/intel/lbr: Create kmem_cache for the LBR context data
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b 30#include <linux/hardirq.h>
03911132 31#include <linux/hugetlb.h>
b9cacc7b 32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
6eef8a71 53#include <linux/min_heap.h>
0793a61d 54
76369139
FW
55#include "internal.h"
56
4e193bd4
TB
57#include <asm/irq_regs.h>
58
272325c4
PZ
59typedef int (*remote_function_f)(void *);
60
fe4b04fa 61struct remote_function_call {
e7e7ee2e 62 struct task_struct *p;
272325c4 63 remote_function_f func;
e7e7ee2e
IM
64 void *info;
65 int ret;
fe4b04fa
PZ
66};
67
68static void remote_function(void *data)
69{
70 struct remote_function_call *tfc = data;
71 struct task_struct *p = tfc->p;
72
73 if (p) {
0da4cf3e
PZ
74 /* -EAGAIN */
75 if (task_cpu(p) != smp_processor_id())
76 return;
77
78 /*
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
81 */
82
83 tfc->ret = -ESRCH; /* No such (running) process */
84 if (p != current)
fe4b04fa
PZ
85 return;
86 }
87
88 tfc->ret = tfc->func(tfc->info);
89}
90
91/**
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
96 *
97 * Calls the function @func when the task is currently running. This might
2ed6edd3
BR
98 * be on the current CPU, which just calls the function directly. This will
99 * retry due to any failures in smp_call_function_single(), such as if the
100 * task_cpu() goes offline concurrently.
fe4b04fa 101 *
2ed6edd3 102 * returns @func return value or -ESRCH when the process isn't running
fe4b04fa
PZ
103 */
104static int
272325c4 105task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
106{
107 struct remote_function_call data = {
e7e7ee2e
IM
108 .p = p,
109 .func = func,
110 .info = info,
0da4cf3e 111 .ret = -EAGAIN,
fe4b04fa 112 };
0da4cf3e 113 int ret;
fe4b04fa 114
2ed6edd3
BR
115 for (;;) {
116 ret = smp_call_function_single(task_cpu(p), remote_function,
117 &data, 1);
118 ret = !ret ? data.ret : -EAGAIN;
119
120 if (ret != -EAGAIN)
121 break;
122
123 cond_resched();
124 }
fe4b04fa 125
0da4cf3e 126 return ret;
fe4b04fa
PZ
127}
128
129/**
130 * cpu_function_call - call a function on the cpu
131 * @func: the function to be called
132 * @info: the function call argument
133 *
134 * Calls the function @func on the remote cpu.
135 *
136 * returns: @func return value or -ENXIO when the cpu is offline
137 */
272325c4 138static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
139{
140 struct remote_function_call data = {
e7e7ee2e
IM
141 .p = NULL,
142 .func = func,
143 .info = info,
144 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
145 };
146
147 smp_call_function_single(cpu, remote_function, &data, 1);
148
149 return data.ret;
150}
151
fae3fde6
PZ
152static inline struct perf_cpu_context *
153__get_cpu_context(struct perf_event_context *ctx)
154{
155 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156}
157
158static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
0017960f 160{
fae3fde6
PZ
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164}
165
166static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168{
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172}
173
63b6da39
PZ
174#define TASK_TOMBSTONE ((void *)-1L)
175
176static bool is_kernel_event(struct perf_event *event)
177{
f47c02c0 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
179}
180
39a43640
PZ
181/*
182 * On task ctx scheduling...
183 *
184 * When !ctx->nr_events a task context will not be scheduled. This means
185 * we can disable the scheduler hooks (for performance) without leaving
186 * pending task ctx state.
187 *
188 * This however results in two special cases:
189 *
190 * - removing the last event from a task ctx; this is relatively straight
191 * forward and is done in __perf_remove_from_context.
192 *
193 * - adding the first event to a task ctx; this is tricky because we cannot
194 * rely on ctx->is_active and therefore cannot use event_function_call().
195 * See perf_install_in_context().
196 *
39a43640
PZ
197 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198 */
199
fae3fde6
PZ
200typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201 struct perf_event_context *, void *);
202
203struct event_function_struct {
204 struct perf_event *event;
205 event_f func;
206 void *data;
207};
208
209static int event_function(void *info)
210{
211 struct event_function_struct *efs = info;
212 struct perf_event *event = efs->event;
0017960f 213 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
214 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 216 int ret = 0;
fae3fde6 217
16444645 218 lockdep_assert_irqs_disabled();
fae3fde6 219
63b6da39 220 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
221 /*
222 * Since we do the IPI call without holding ctx->lock things can have
223 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
224 */
225 if (ctx->task) {
63b6da39 226 if (ctx->task != current) {
0da4cf3e 227 ret = -ESRCH;
63b6da39
PZ
228 goto unlock;
229 }
fae3fde6 230
fae3fde6
PZ
231 /*
232 * We only use event_function_call() on established contexts,
233 * and event_function() is only ever called when active (or
234 * rather, we'll have bailed in task_function_call() or the
235 * above ctx->task != current test), therefore we must have
236 * ctx->is_active here.
237 */
238 WARN_ON_ONCE(!ctx->is_active);
239 /*
240 * And since we have ctx->is_active, cpuctx->task_ctx must
241 * match.
242 */
63b6da39
PZ
243 WARN_ON_ONCE(task_ctx != ctx);
244 } else {
245 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 246 }
63b6da39 247
fae3fde6 248 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 249unlock:
fae3fde6
PZ
250 perf_ctx_unlock(cpuctx, task_ctx);
251
63b6da39 252 return ret;
fae3fde6
PZ
253}
254
fae3fde6 255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
cca20946
PZ
304/*
305 * Similar to event_function_call() + event_function(), but hard assumes IRQs
306 * are already disabled and we're on the right CPU.
307 */
308static void event_function_local(struct perf_event *event, event_f func, void *data)
309{
310 struct perf_event_context *ctx = event->ctx;
311 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312 struct task_struct *task = READ_ONCE(ctx->task);
313 struct perf_event_context *task_ctx = NULL;
314
16444645 315 lockdep_assert_irqs_disabled();
cca20946
PZ
316
317 if (task) {
318 if (task == TASK_TOMBSTONE)
319 return;
320
321 task_ctx = ctx;
322 }
323
324 perf_ctx_lock(cpuctx, task_ctx);
325
326 task = ctx->task;
327 if (task == TASK_TOMBSTONE)
328 goto unlock;
329
330 if (task) {
331 /*
332 * We must be either inactive or active and the right task,
333 * otherwise we're screwed, since we cannot IPI to somewhere
334 * else.
335 */
336 if (ctx->is_active) {
337 if (WARN_ON_ONCE(task != current))
338 goto unlock;
339
340 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341 goto unlock;
342 }
343 } else {
344 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345 }
346
347 func(event, cpuctx, ctx, data);
348unlock:
349 perf_ctx_unlock(cpuctx, task_ctx);
350}
351
e5d1367f
SE
352#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
354 PERF_FLAG_PID_CGROUP |\
355 PERF_FLAG_FD_CLOEXEC)
e5d1367f 356
bce38cd5
SE
357/*
358 * branch priv levels that need permission checks
359 */
360#define PERF_SAMPLE_BRANCH_PERM_PLM \
361 (PERF_SAMPLE_BRANCH_KERNEL |\
362 PERF_SAMPLE_BRANCH_HV)
363
0b3fcf17
SE
364enum event_type_t {
365 EVENT_FLEXIBLE = 0x1,
366 EVENT_PINNED = 0x2,
3cbaa590 367 EVENT_TIME = 0x4,
487f05e1
AS
368 /* see ctx_resched() for details */
369 EVENT_CPU = 0x8,
0b3fcf17
SE
370 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371};
372
e5d1367f
SE
373/*
374 * perf_sched_events : >0 events exist
375 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376 */
9107c89e
PZ
377
378static void perf_sched_delayed(struct work_struct *work);
379DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381static DEFINE_MUTEX(perf_sched_mutex);
382static atomic_t perf_sched_count;
383
e5d1367f 384static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 385static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 386static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 387
cdd6c482
IM
388static atomic_t nr_mmap_events __read_mostly;
389static atomic_t nr_comm_events __read_mostly;
e4222673 390static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 391static atomic_t nr_task_events __read_mostly;
948b26b6 392static atomic_t nr_freq_events __read_mostly;
45ac1403 393static atomic_t nr_switch_events __read_mostly;
76193a94 394static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 395static atomic_t nr_bpf_events __read_mostly;
96aaab68 396static atomic_t nr_cgroup_events __read_mostly;
e17d43b9 397static atomic_t nr_text_poke_events __read_mostly;
9ee318a7 398
108b02cf
PZ
399static LIST_HEAD(pmus);
400static DEFINE_MUTEX(pmus_lock);
401static struct srcu_struct pmus_srcu;
a63fbed7 402static cpumask_var_t perf_online_mask;
108b02cf 403
0764771d 404/*
cdd6c482 405 * perf event paranoia level:
0fbdea19
IM
406 * -1 - not paranoid at all
407 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 408 * 1 - disallow cpu events for unpriv
0fbdea19 409 * 2 - disallow kernel profiling for unpriv
0764771d 410 */
0161028b 411int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 412
20443384
FW
413/* Minimum for 512 kiB + 1 user control page */
414int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
415
416/*
cdd6c482 417 * max perf event sample rate
df58ab24 418 */
14c63f17
DH
419#define DEFAULT_MAX_SAMPLE_RATE 100000
420#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
421#define DEFAULT_CPU_TIME_MAX_PERCENT 25
422
423int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
424
425static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
426static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
427
d9494cb4
PZ
428static int perf_sample_allowed_ns __read_mostly =
429 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 430
18ab2cd3 431static void update_perf_cpu_limits(void)
14c63f17
DH
432{
433 u64 tmp = perf_sample_period_ns;
434
435 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
436 tmp = div_u64(tmp, 100);
437 if (!tmp)
438 tmp = 1;
439
440 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 441}
163ec435 442
8d5bce0c 443static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 444
163ec435 445int perf_proc_update_handler(struct ctl_table *table, int write,
32927393 446 void *buffer, size_t *lenp, loff_t *ppos)
163ec435 447{
1a51c5da
SE
448 int ret;
449 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
450 /*
451 * If throttling is disabled don't allow the write:
452 */
1a51c5da 453 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
454 return -EINVAL;
455
1a51c5da
SE
456 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
457 if (ret || !write)
458 return ret;
459
163ec435 460 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
461 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
462 update_perf_cpu_limits();
463
464 return 0;
465}
466
467int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468
469int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
32927393 470 void *buffer, size_t *lenp, loff_t *ppos)
14c63f17 471{
1572e45a 472 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
473
474 if (ret || !write)
475 return ret;
476
b303e7c1
PZ
477 if (sysctl_perf_cpu_time_max_percent == 100 ||
478 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
479 printk(KERN_WARNING
480 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
481 WRITE_ONCE(perf_sample_allowed_ns, 0);
482 } else {
483 update_perf_cpu_limits();
484 }
163ec435
PZ
485
486 return 0;
487}
1ccd1549 488
14c63f17
DH
489/*
490 * perf samples are done in some very critical code paths (NMIs).
491 * If they take too much CPU time, the system can lock up and not
492 * get any real work done. This will drop the sample rate when
493 * we detect that events are taking too long.
494 */
495#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 496static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 497
91a612ee
PZ
498static u64 __report_avg;
499static u64 __report_allowed;
500
6a02ad66 501static void perf_duration_warn(struct irq_work *w)
14c63f17 502{
0d87d7ec 503 printk_ratelimited(KERN_INFO
91a612ee
PZ
504 "perf: interrupt took too long (%lld > %lld), lowering "
505 "kernel.perf_event_max_sample_rate to %d\n",
506 __report_avg, __report_allowed,
507 sysctl_perf_event_sample_rate);
6a02ad66
PZ
508}
509
510static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
511
512void perf_sample_event_took(u64 sample_len_ns)
513{
91a612ee
PZ
514 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
515 u64 running_len;
516 u64 avg_len;
517 u32 max;
14c63f17 518
91a612ee 519 if (max_len == 0)
14c63f17
DH
520 return;
521
91a612ee
PZ
522 /* Decay the counter by 1 average sample. */
523 running_len = __this_cpu_read(running_sample_length);
524 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
525 running_len += sample_len_ns;
526 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
527
528 /*
91a612ee
PZ
529 * Note: this will be biased artifically low until we have
530 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
531 * from having to maintain a count.
532 */
91a612ee
PZ
533 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
534 if (avg_len <= max_len)
14c63f17
DH
535 return;
536
91a612ee
PZ
537 __report_avg = avg_len;
538 __report_allowed = max_len;
14c63f17 539
91a612ee
PZ
540 /*
541 * Compute a throttle threshold 25% below the current duration.
542 */
543 avg_len += avg_len / 4;
544 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
545 if (avg_len < max)
546 max /= (u32)avg_len;
547 else
548 max = 1;
14c63f17 549
91a612ee
PZ
550 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
551 WRITE_ONCE(max_samples_per_tick, max);
552
553 sysctl_perf_event_sample_rate = max * HZ;
554 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 555
cd578abb 556 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 557 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 558 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 559 __report_avg, __report_allowed,
cd578abb
PZ
560 sysctl_perf_event_sample_rate);
561 }
14c63f17
DH
562}
563
cdd6c482 564static atomic64_t perf_event_id;
a96bbc16 565
0b3fcf17
SE
566static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
567 enum event_type_t event_type);
568
569static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
570 enum event_type_t event_type,
571 struct task_struct *task);
572
573static void update_context_time(struct perf_event_context *ctx);
574static u64 perf_event_time(struct perf_event *event);
0b3fcf17 575
cdd6c482 576void __weak perf_event_print_debug(void) { }
0793a61d 577
84c79910 578extern __weak const char *perf_pmu_name(void)
0793a61d 579{
84c79910 580 return "pmu";
0793a61d
TG
581}
582
0b3fcf17
SE
583static inline u64 perf_clock(void)
584{
585 return local_clock();
586}
587
34f43927
PZ
588static inline u64 perf_event_clock(struct perf_event *event)
589{
590 return event->clock();
591}
592
0d3d73aa
PZ
593/*
594 * State based event timekeeping...
595 *
596 * The basic idea is to use event->state to determine which (if any) time
597 * fields to increment with the current delta. This means we only need to
598 * update timestamps when we change state or when they are explicitly requested
599 * (read).
600 *
601 * Event groups make things a little more complicated, but not terribly so. The
602 * rules for a group are that if the group leader is OFF the entire group is
603 * OFF, irrespecive of what the group member states are. This results in
604 * __perf_effective_state().
605 *
606 * A futher ramification is that when a group leader flips between OFF and
607 * !OFF, we need to update all group member times.
608 *
609 *
610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611 * need to make sure the relevant context time is updated before we try and
612 * update our timestamps.
613 */
614
615static __always_inline enum perf_event_state
616__perf_effective_state(struct perf_event *event)
617{
618 struct perf_event *leader = event->group_leader;
619
620 if (leader->state <= PERF_EVENT_STATE_OFF)
621 return leader->state;
622
623 return event->state;
624}
625
626static __always_inline void
627__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628{
629 enum perf_event_state state = __perf_effective_state(event);
630 u64 delta = now - event->tstamp;
631
632 *enabled = event->total_time_enabled;
633 if (state >= PERF_EVENT_STATE_INACTIVE)
634 *enabled += delta;
635
636 *running = event->total_time_running;
637 if (state >= PERF_EVENT_STATE_ACTIVE)
638 *running += delta;
639}
640
641static void perf_event_update_time(struct perf_event *event)
642{
643 u64 now = perf_event_time(event);
644
645 __perf_update_times(event, now, &event->total_time_enabled,
646 &event->total_time_running);
647 event->tstamp = now;
648}
649
650static void perf_event_update_sibling_time(struct perf_event *leader)
651{
652 struct perf_event *sibling;
653
edb39592 654 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
655 perf_event_update_time(sibling);
656}
657
658static void
659perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660{
661 if (event->state == state)
662 return;
663
664 perf_event_update_time(event);
665 /*
666 * If a group leader gets enabled/disabled all its siblings
667 * are affected too.
668 */
669 if ((event->state < 0) ^ (state < 0))
670 perf_event_update_sibling_time(event);
671
672 WRITE_ONCE(event->state, state);
673}
674
e5d1367f
SE
675#ifdef CONFIG_CGROUP_PERF
676
e5d1367f
SE
677static inline bool
678perf_cgroup_match(struct perf_event *event)
679{
680 struct perf_event_context *ctx = event->ctx;
681 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
682
ef824fa1
TH
683 /* @event doesn't care about cgroup */
684 if (!event->cgrp)
685 return true;
686
687 /* wants specific cgroup scope but @cpuctx isn't associated with any */
688 if (!cpuctx->cgrp)
689 return false;
690
691 /*
692 * Cgroup scoping is recursive. An event enabled for a cgroup is
693 * also enabled for all its descendant cgroups. If @cpuctx's
694 * cgroup is a descendant of @event's (the test covers identity
695 * case), it's a match.
696 */
697 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
698 event->cgrp->css.cgroup);
e5d1367f
SE
699}
700
e5d1367f
SE
701static inline void perf_detach_cgroup(struct perf_event *event)
702{
4e2ba650 703 css_put(&event->cgrp->css);
e5d1367f
SE
704 event->cgrp = NULL;
705}
706
707static inline int is_cgroup_event(struct perf_event *event)
708{
709 return event->cgrp != NULL;
710}
711
712static inline u64 perf_cgroup_event_time(struct perf_event *event)
713{
714 struct perf_cgroup_info *t;
715
716 t = per_cpu_ptr(event->cgrp->info, event->cpu);
717 return t->time;
718}
719
720static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
721{
722 struct perf_cgroup_info *info;
723 u64 now;
724
725 now = perf_clock();
726
727 info = this_cpu_ptr(cgrp->info);
728
729 info->time += now - info->timestamp;
730 info->timestamp = now;
731}
732
733static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
734{
c917e0f2
SL
735 struct perf_cgroup *cgrp = cpuctx->cgrp;
736 struct cgroup_subsys_state *css;
737
738 if (cgrp) {
739 for (css = &cgrp->css; css; css = css->parent) {
740 cgrp = container_of(css, struct perf_cgroup, css);
741 __update_cgrp_time(cgrp);
742 }
743 }
e5d1367f
SE
744}
745
746static inline void update_cgrp_time_from_event(struct perf_event *event)
747{
3f7cce3c
SE
748 struct perf_cgroup *cgrp;
749
e5d1367f 750 /*
3f7cce3c
SE
751 * ensure we access cgroup data only when needed and
752 * when we know the cgroup is pinned (css_get)
e5d1367f 753 */
3f7cce3c 754 if (!is_cgroup_event(event))
e5d1367f
SE
755 return;
756
614e4c4e 757 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
758 /*
759 * Do not update time when cgroup is not active
760 */
28fa741c 761 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 762 __update_cgrp_time(event->cgrp);
e5d1367f
SE
763}
764
765static inline void
3f7cce3c
SE
766perf_cgroup_set_timestamp(struct task_struct *task,
767 struct perf_event_context *ctx)
e5d1367f
SE
768{
769 struct perf_cgroup *cgrp;
770 struct perf_cgroup_info *info;
c917e0f2 771 struct cgroup_subsys_state *css;
e5d1367f 772
3f7cce3c
SE
773 /*
774 * ctx->lock held by caller
775 * ensure we do not access cgroup data
776 * unless we have the cgroup pinned (css_get)
777 */
778 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
779 return;
780
614e4c4e 781 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
782
783 for (css = &cgrp->css; css; css = css->parent) {
784 cgrp = container_of(css, struct perf_cgroup, css);
785 info = this_cpu_ptr(cgrp->info);
786 info->timestamp = ctx->timestamp;
787 }
e5d1367f
SE
788}
789
058fe1c0
DCC
790static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
791
e5d1367f
SE
792#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
793#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
794
795/*
796 * reschedule events based on the cgroup constraint of task.
797 *
798 * mode SWOUT : schedule out everything
799 * mode SWIN : schedule in based on cgroup for next
800 */
18ab2cd3 801static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
802{
803 struct perf_cpu_context *cpuctx;
058fe1c0 804 struct list_head *list;
e5d1367f
SE
805 unsigned long flags;
806
807 /*
058fe1c0
DCC
808 * Disable interrupts and preemption to avoid this CPU's
809 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
810 */
811 local_irq_save(flags);
812
058fe1c0
DCC
813 list = this_cpu_ptr(&cgrp_cpuctx_list);
814 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
815 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 816
058fe1c0
DCC
817 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
818 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 819
058fe1c0
DCC
820 if (mode & PERF_CGROUP_SWOUT) {
821 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
822 /*
823 * must not be done before ctxswout due
824 * to event_filter_match() in event_sched_out()
825 */
826 cpuctx->cgrp = NULL;
827 }
e5d1367f 828
058fe1c0
DCC
829 if (mode & PERF_CGROUP_SWIN) {
830 WARN_ON_ONCE(cpuctx->cgrp);
831 /*
832 * set cgrp before ctxsw in to allow
833 * event_filter_match() to not have to pass
834 * task around
835 * we pass the cpuctx->ctx to perf_cgroup_from_task()
836 * because cgorup events are only per-cpu
837 */
838 cpuctx->cgrp = perf_cgroup_from_task(task,
839 &cpuctx->ctx);
840 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 841 }
058fe1c0
DCC
842 perf_pmu_enable(cpuctx->ctx.pmu);
843 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
844 }
845
e5d1367f
SE
846 local_irq_restore(flags);
847}
848
a8d757ef
SE
849static inline void perf_cgroup_sched_out(struct task_struct *task,
850 struct task_struct *next)
e5d1367f 851{
a8d757ef
SE
852 struct perf_cgroup *cgrp1;
853 struct perf_cgroup *cgrp2 = NULL;
854
ddaaf4e2 855 rcu_read_lock();
a8d757ef
SE
856 /*
857 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
858 * we do not need to pass the ctx here because we know
859 * we are holding the rcu lock
a8d757ef 860 */
614e4c4e 861 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 862 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
863
864 /*
865 * only schedule out current cgroup events if we know
866 * that we are switching to a different cgroup. Otherwise,
867 * do no touch the cgroup events.
868 */
869 if (cgrp1 != cgrp2)
870 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
871
872 rcu_read_unlock();
e5d1367f
SE
873}
874
a8d757ef
SE
875static inline void perf_cgroup_sched_in(struct task_struct *prev,
876 struct task_struct *task)
e5d1367f 877{
a8d757ef
SE
878 struct perf_cgroup *cgrp1;
879 struct perf_cgroup *cgrp2 = NULL;
880
ddaaf4e2 881 rcu_read_lock();
a8d757ef
SE
882 /*
883 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
884 * we do not need to pass the ctx here because we know
885 * we are holding the rcu lock
a8d757ef 886 */
614e4c4e 887 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 888 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
889
890 /*
891 * only need to schedule in cgroup events if we are changing
892 * cgroup during ctxsw. Cgroup events were not scheduled
893 * out of ctxsw out if that was not the case.
894 */
895 if (cgrp1 != cgrp2)
896 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
897
898 rcu_read_unlock();
e5d1367f
SE
899}
900
c2283c93
IR
901static int perf_cgroup_ensure_storage(struct perf_event *event,
902 struct cgroup_subsys_state *css)
903{
904 struct perf_cpu_context *cpuctx;
905 struct perf_event **storage;
906 int cpu, heap_size, ret = 0;
907
908 /*
909 * Allow storage to have sufficent space for an iterator for each
910 * possibly nested cgroup plus an iterator for events with no cgroup.
911 */
912 for (heap_size = 1; css; css = css->parent)
913 heap_size++;
914
915 for_each_possible_cpu(cpu) {
916 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
917 if (heap_size <= cpuctx->heap_size)
918 continue;
919
920 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
921 GFP_KERNEL, cpu_to_node(cpu));
922 if (!storage) {
923 ret = -ENOMEM;
924 break;
925 }
926
927 raw_spin_lock_irq(&cpuctx->ctx.lock);
928 if (cpuctx->heap_size < heap_size) {
929 swap(cpuctx->heap, storage);
930 if (storage == cpuctx->heap_default)
931 storage = NULL;
932 cpuctx->heap_size = heap_size;
933 }
934 raw_spin_unlock_irq(&cpuctx->ctx.lock);
935
936 kfree(storage);
937 }
938
939 return ret;
940}
941
e5d1367f
SE
942static inline int perf_cgroup_connect(int fd, struct perf_event *event,
943 struct perf_event_attr *attr,
944 struct perf_event *group_leader)
945{
946 struct perf_cgroup *cgrp;
947 struct cgroup_subsys_state *css;
2903ff01
AV
948 struct fd f = fdget(fd);
949 int ret = 0;
e5d1367f 950
2903ff01 951 if (!f.file)
e5d1367f
SE
952 return -EBADF;
953
b583043e 954 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 955 &perf_event_cgrp_subsys);
3db272c0
LZ
956 if (IS_ERR(css)) {
957 ret = PTR_ERR(css);
958 goto out;
959 }
e5d1367f 960
c2283c93
IR
961 ret = perf_cgroup_ensure_storage(event, css);
962 if (ret)
963 goto out;
964
e5d1367f
SE
965 cgrp = container_of(css, struct perf_cgroup, css);
966 event->cgrp = cgrp;
967
968 /*
969 * all events in a group must monitor
970 * the same cgroup because a task belongs
971 * to only one perf cgroup at a time
972 */
973 if (group_leader && group_leader->cgrp != cgrp) {
974 perf_detach_cgroup(event);
975 ret = -EINVAL;
e5d1367f 976 }
3db272c0 977out:
2903ff01 978 fdput(f);
e5d1367f
SE
979 return ret;
980}
981
982static inline void
983perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
984{
985 struct perf_cgroup_info *t;
986 t = per_cpu_ptr(event->cgrp->info, event->cpu);
987 event->shadow_ctx_time = now - t->timestamp;
988}
989
db4a8356 990static inline void
33238c50 991perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
992{
993 struct perf_cpu_context *cpuctx;
994
995 if (!is_cgroup_event(event))
996 return;
997
db4a8356
DCC
998 /*
999 * Because cgroup events are always per-cpu events,
07c59729 1000 * @ctx == &cpuctx->ctx.
db4a8356 1001 */
07c59729 1002 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 1003
1004 /*
1005 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006 * matching the event's cgroup, we must do this for every new event,
1007 * because if the first would mismatch, the second would not try again
1008 * and we would leave cpuctx->cgrp unset.
1009 */
33238c50 1010 if (ctx->is_active && !cpuctx->cgrp) {
be96b316
TH
1011 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012
be96b316
TH
1013 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014 cpuctx->cgrp = cgrp;
058fe1c0 1015 }
33801b94 1016
33238c50 1017 if (ctx->nr_cgroups++)
33801b94 1018 return;
33238c50
PZ
1019
1020 list_add(&cpuctx->cgrp_cpuctx_entry,
1021 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1022}
1023
1024static inline void
1025perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1026{
1027 struct perf_cpu_context *cpuctx;
1028
1029 if (!is_cgroup_event(event))
33801b94 1030 return;
1031
33238c50
PZ
1032 /*
1033 * Because cgroup events are always per-cpu events,
1034 * @ctx == &cpuctx->ctx.
1035 */
1036 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037
1038 if (--ctx->nr_cgroups)
1039 return;
1040
1041 if (ctx->is_active && cpuctx->cgrp)
33801b94 1042 cpuctx->cgrp = NULL;
1043
33238c50 1044 list_del(&cpuctx->cgrp_cpuctx_entry);
db4a8356
DCC
1045}
1046
e5d1367f
SE
1047#else /* !CONFIG_CGROUP_PERF */
1048
1049static inline bool
1050perf_cgroup_match(struct perf_event *event)
1051{
1052 return true;
1053}
1054
1055static inline void perf_detach_cgroup(struct perf_event *event)
1056{}
1057
1058static inline int is_cgroup_event(struct perf_event *event)
1059{
1060 return 0;
1061}
1062
e5d1367f
SE
1063static inline void update_cgrp_time_from_event(struct perf_event *event)
1064{
1065}
1066
1067static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1068{
1069}
1070
a8d757ef
SE
1071static inline void perf_cgroup_sched_out(struct task_struct *task,
1072 struct task_struct *next)
e5d1367f
SE
1073{
1074}
1075
a8d757ef
SE
1076static inline void perf_cgroup_sched_in(struct task_struct *prev,
1077 struct task_struct *task)
e5d1367f
SE
1078{
1079}
1080
1081static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1082 struct perf_event_attr *attr,
1083 struct perf_event *group_leader)
1084{
1085 return -EINVAL;
1086}
1087
1088static inline void
3f7cce3c
SE
1089perf_cgroup_set_timestamp(struct task_struct *task,
1090 struct perf_event_context *ctx)
e5d1367f
SE
1091{
1092}
1093
d00dbd29 1094static inline void
e5d1367f
SE
1095perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1096{
1097}
1098
1099static inline void
1100perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1101{
1102}
1103
1104static inline u64 perf_cgroup_event_time(struct perf_event *event)
1105{
1106 return 0;
1107}
1108
db4a8356 1109static inline void
33238c50 1110perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
db4a8356
DCC
1111{
1112}
1113
33238c50
PZ
1114static inline void
1115perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1116{
1117}
e5d1367f
SE
1118#endif
1119
9e630205
SE
1120/*
1121 * set default to be dependent on timer tick just
1122 * like original code
1123 */
1124#define PERF_CPU_HRTIMER (1000 / HZ)
1125/*
8a1115ff 1126 * function must be called with interrupts disabled
9e630205 1127 */
272325c4 1128static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1129{
1130 struct perf_cpu_context *cpuctx;
8d5bce0c 1131 bool rotations;
9e630205 1132
16444645 1133 lockdep_assert_irqs_disabled();
9e630205
SE
1134
1135 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1136 rotations = perf_rotate_context(cpuctx);
1137
4cfafd30
PZ
1138 raw_spin_lock(&cpuctx->hrtimer_lock);
1139 if (rotations)
9e630205 1140 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1141 else
1142 cpuctx->hrtimer_active = 0;
1143 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1144
4cfafd30 1145 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1146}
1147
272325c4 1148static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1149{
272325c4 1150 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1151 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1152 u64 interval;
9e630205
SE
1153
1154 /* no multiplexing needed for SW PMU */
1155 if (pmu->task_ctx_nr == perf_sw_context)
1156 return;
1157
62b85639
SE
1158 /*
1159 * check default is sane, if not set then force to
1160 * default interval (1/tick)
1161 */
272325c4
PZ
1162 interval = pmu->hrtimer_interval_ms;
1163 if (interval < 1)
1164 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1165
272325c4 1166 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1167
4cfafd30 1168 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1169 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1170 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1171}
1172
272325c4 1173static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1174{
272325c4 1175 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1176 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1177 unsigned long flags;
9e630205
SE
1178
1179 /* not for SW PMU */
1180 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1181 return 0;
9e630205 1182
4cfafd30
PZ
1183 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1184 if (!cpuctx->hrtimer_active) {
1185 cpuctx->hrtimer_active = 1;
1186 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1187 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1188 }
1189 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1190
272325c4 1191 return 0;
9e630205
SE
1192}
1193
33696fc0 1194void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1195{
33696fc0
PZ
1196 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1197 if (!(*count)++)
1198 pmu->pmu_disable(pmu);
9e35ad38 1199}
9e35ad38 1200
33696fc0 1201void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1202{
33696fc0
PZ
1203 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204 if (!--(*count))
1205 pmu->pmu_enable(pmu);
9e35ad38 1206}
9e35ad38 1207
2fde4f94 1208static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1209
1210/*
2fde4f94
MR
1211 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1212 * perf_event_task_tick() are fully serialized because they're strictly cpu
1213 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1214 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1215 */
2fde4f94 1216static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1217{
2fde4f94 1218 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1219
16444645 1220 lockdep_assert_irqs_disabled();
b5ab4cd5 1221
2fde4f94
MR
1222 WARN_ON(!list_empty(&ctx->active_ctx_list));
1223
1224 list_add(&ctx->active_ctx_list, head);
1225}
1226
1227static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1228{
16444645 1229 lockdep_assert_irqs_disabled();
2fde4f94
MR
1230
1231 WARN_ON(list_empty(&ctx->active_ctx_list));
1232
1233 list_del_init(&ctx->active_ctx_list);
9e35ad38 1234}
9e35ad38 1235
cdd6c482 1236static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1237{
8c94abbb 1238 refcount_inc(&ctx->refcount);
a63eaf34
PM
1239}
1240
ff9ff926
KL
1241static void *alloc_task_ctx_data(struct pmu *pmu)
1242{
217c2a63
KL
1243 if (pmu->task_ctx_cache)
1244 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1245
ff9ff926
KL
1246 return kzalloc(pmu->task_ctx_size, GFP_KERNEL);
1247}
1248
1249static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1250{
217c2a63
KL
1251 if (pmu->task_ctx_cache && task_ctx_data)
1252 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1253 else
1254 kfree(task_ctx_data);
ff9ff926
KL
1255}
1256
4af57ef2
YZ
1257static void free_ctx(struct rcu_head *head)
1258{
1259 struct perf_event_context *ctx;
1260
1261 ctx = container_of(head, struct perf_event_context, rcu_head);
ff9ff926 1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
4af57ef2
YZ
1263 kfree(ctx);
1264}
1265
cdd6c482 1266static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1267{
8c94abbb 1268 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1269 if (ctx->parent_ctx)
1270 put_ctx(ctx->parent_ctx);
63b6da39 1271 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1272 put_task_struct(ctx->task);
4af57ef2 1273 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1274 }
a63eaf34
PM
1275}
1276
f63a8daa
PZ
1277/*
1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279 * perf_pmu_migrate_context() we need some magic.
1280 *
1281 * Those places that change perf_event::ctx will hold both
1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283 *
8b10c5e2
PZ
1284 * Lock ordering is by mutex address. There are two other sites where
1285 * perf_event_context::mutex nests and those are:
1286 *
1287 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1288 * perf_event_exit_event()
1289 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1290 *
1291 * - perf_event_init_context() [ parent, 0 ]
1292 * inherit_task_group()
1293 * inherit_group()
1294 * inherit_event()
1295 * perf_event_alloc()
1296 * perf_init_event()
1297 * perf_try_init_event() [ child , 1 ]
1298 *
1299 * While it appears there is an obvious deadlock here -- the parent and child
1300 * nesting levels are inverted between the two. This is in fact safe because
1301 * life-time rules separate them. That is an exiting task cannot fork, and a
1302 * spawning task cannot (yet) exit.
1303 *
1304 * But remember that that these are parent<->child context relations, and
1305 * migration does not affect children, therefore these two orderings should not
1306 * interact.
f63a8daa
PZ
1307 *
1308 * The change in perf_event::ctx does not affect children (as claimed above)
1309 * because the sys_perf_event_open() case will install a new event and break
1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311 * concerned with cpuctx and that doesn't have children.
1312 *
1313 * The places that change perf_event::ctx will issue:
1314 *
1315 * perf_remove_from_context();
1316 * synchronize_rcu();
1317 * perf_install_in_context();
1318 *
1319 * to affect the change. The remove_from_context() + synchronize_rcu() should
1320 * quiesce the event, after which we can install it in the new location. This
1321 * means that only external vectors (perf_fops, prctl) can perturb the event
1322 * while in transit. Therefore all such accessors should also acquire
1323 * perf_event_context::mutex to serialize against this.
1324 *
1325 * However; because event->ctx can change while we're waiting to acquire
1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327 * function.
1328 *
1329 * Lock order:
69143038 1330 * exec_update_mutex
f63a8daa
PZ
1331 * task_struct::perf_event_mutex
1332 * perf_event_context::mutex
f63a8daa 1333 * perf_event::child_mutex;
07c4a776 1334 * perf_event_context::lock
f63a8daa 1335 * perf_event::mmap_mutex
c1e8d7c6 1336 * mmap_lock
18736eef 1337 * perf_addr_filters_head::lock
82d94856
PZ
1338 *
1339 * cpu_hotplug_lock
1340 * pmus_lock
1341 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1342 */
a83fe28e
PZ
1343static struct perf_event_context *
1344perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1345{
1346 struct perf_event_context *ctx;
1347
1348again:
1349 rcu_read_lock();
6aa7de05 1350 ctx = READ_ONCE(event->ctx);
8c94abbb 1351 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1352 rcu_read_unlock();
1353 goto again;
1354 }
1355 rcu_read_unlock();
1356
a83fe28e 1357 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1358 if (event->ctx != ctx) {
1359 mutex_unlock(&ctx->mutex);
1360 put_ctx(ctx);
1361 goto again;
1362 }
1363
1364 return ctx;
1365}
1366
a83fe28e
PZ
1367static inline struct perf_event_context *
1368perf_event_ctx_lock(struct perf_event *event)
1369{
1370 return perf_event_ctx_lock_nested(event, 0);
1371}
1372
f63a8daa
PZ
1373static void perf_event_ctx_unlock(struct perf_event *event,
1374 struct perf_event_context *ctx)
1375{
1376 mutex_unlock(&ctx->mutex);
1377 put_ctx(ctx);
1378}
1379
211de6eb
PZ
1380/*
1381 * This must be done under the ctx->lock, such as to serialize against
1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383 * calling scheduler related locks and ctx->lock nests inside those.
1384 */
1385static __must_check struct perf_event_context *
1386unclone_ctx(struct perf_event_context *ctx)
71a851b4 1387{
211de6eb
PZ
1388 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390 lockdep_assert_held(&ctx->lock);
1391
1392 if (parent_ctx)
71a851b4 1393 ctx->parent_ctx = NULL;
5a3126d4 1394 ctx->generation++;
211de6eb
PZ
1395
1396 return parent_ctx;
71a851b4
PZ
1397}
1398
1d953111
ON
1399static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 enum pid_type type)
6844c09d 1401{
1d953111 1402 u32 nr;
6844c09d
ACM
1403 /*
1404 * only top level events have the pid namespace they were created in
1405 */
1406 if (event->parent)
1407 event = event->parent;
1408
1d953111
ON
1409 nr = __task_pid_nr_ns(p, type, event->ns);
1410 /* avoid -1 if it is idle thread or runs in another ns */
1411 if (!nr && !pid_alive(p))
1412 nr = -1;
1413 return nr;
6844c09d
ACM
1414}
1415
1d953111 1416static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1417{
6883f81a 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1419}
6844c09d 1420
1d953111
ON
1421static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422{
1423 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1424}
1425
7f453c24 1426/*
cdd6c482 1427 * If we inherit events we want to return the parent event id
7f453c24
PZ
1428 * to userspace.
1429 */
cdd6c482 1430static u64 primary_event_id(struct perf_event *event)
7f453c24 1431{
cdd6c482 1432 u64 id = event->id;
7f453c24 1433
cdd6c482
IM
1434 if (event->parent)
1435 id = event->parent->id;
7f453c24
PZ
1436
1437 return id;
1438}
1439
25346b93 1440/*
cdd6c482 1441 * Get the perf_event_context for a task and lock it.
63b6da39 1442 *
25346b93
PM
1443 * This has to cope with with the fact that until it is locked,
1444 * the context could get moved to another task.
1445 */
cdd6c482 1446static struct perf_event_context *
8dc85d54 1447perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1448{
cdd6c482 1449 struct perf_event_context *ctx;
25346b93 1450
9ed6060d 1451retry:
058ebd0e
PZ
1452 /*
1453 * One of the few rules of preemptible RCU is that one cannot do
1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1455 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1456 * rcu_read_unlock_special().
1457 *
1458 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1459 * side critical section has interrupts disabled.
058ebd0e 1460 */
2fd59077 1461 local_irq_save(*flags);
058ebd0e 1462 rcu_read_lock();
8dc85d54 1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1464 if (ctx) {
1465 /*
1466 * If this context is a clone of another, it might
1467 * get swapped for another underneath us by
cdd6c482 1468 * perf_event_task_sched_out, though the
25346b93
PM
1469 * rcu_read_lock() protects us from any context
1470 * getting freed. Lock the context and check if it
1471 * got swapped before we could get the lock, and retry
1472 * if so. If we locked the right context, then it
1473 * can't get swapped on us any more.
1474 */
2fd59077 1475 raw_spin_lock(&ctx->lock);
8dc85d54 1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1477 raw_spin_unlock(&ctx->lock);
058ebd0e 1478 rcu_read_unlock();
2fd59077 1479 local_irq_restore(*flags);
25346b93
PM
1480 goto retry;
1481 }
b49a9e7e 1482
63b6da39 1483 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1484 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1485 raw_spin_unlock(&ctx->lock);
b49a9e7e 1486 ctx = NULL;
828b6f0e
PZ
1487 } else {
1488 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1489 }
25346b93
PM
1490 }
1491 rcu_read_unlock();
2fd59077
PM
1492 if (!ctx)
1493 local_irq_restore(*flags);
25346b93
PM
1494 return ctx;
1495}
1496
1497/*
1498 * Get the context for a task and increment its pin_count so it
1499 * can't get swapped to another task. This also increments its
1500 * reference count so that the context can't get freed.
1501 */
8dc85d54
PZ
1502static struct perf_event_context *
1503perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1504{
cdd6c482 1505 struct perf_event_context *ctx;
25346b93
PM
1506 unsigned long flags;
1507
8dc85d54 1508 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1509 if (ctx) {
1510 ++ctx->pin_count;
e625cce1 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1512 }
1513 return ctx;
1514}
1515
cdd6c482 1516static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1517{
1518 unsigned long flags;
1519
e625cce1 1520 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1521 --ctx->pin_count;
e625cce1 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1523}
1524
f67218c3
PZ
1525/*
1526 * Update the record of the current time in a context.
1527 */
1528static void update_context_time(struct perf_event_context *ctx)
1529{
1530 u64 now = perf_clock();
1531
1532 ctx->time += now - ctx->timestamp;
1533 ctx->timestamp = now;
1534}
1535
4158755d
SE
1536static u64 perf_event_time(struct perf_event *event)
1537{
1538 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1539
1540 if (is_cgroup_event(event))
1541 return perf_cgroup_event_time(event);
1542
4158755d
SE
1543 return ctx ? ctx->time : 0;
1544}
1545
487f05e1
AS
1546static enum event_type_t get_event_type(struct perf_event *event)
1547{
1548 struct perf_event_context *ctx = event->ctx;
1549 enum event_type_t event_type;
1550
1551 lockdep_assert_held(&ctx->lock);
1552
3bda69c1
AS
1553 /*
1554 * It's 'group type', really, because if our group leader is
1555 * pinned, so are we.
1556 */
1557 if (event->group_leader != event)
1558 event = event->group_leader;
1559
487f05e1
AS
1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 if (!ctx->task)
1562 event_type |= EVENT_CPU;
1563
1564 return event_type;
1565}
1566
8e1a2031 1567/*
161c85fa 1568 * Helper function to initialize event group nodes.
8e1a2031 1569 */
161c85fa 1570static void init_event_group(struct perf_event *event)
8e1a2031
AB
1571{
1572 RB_CLEAR_NODE(&event->group_node);
1573 event->group_index = 0;
1574}
1575
1576/*
1577 * Extract pinned or flexible groups from the context
161c85fa 1578 * based on event attrs bits.
8e1a2031
AB
1579 */
1580static struct perf_event_groups *
1581get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1582{
1583 if (event->attr.pinned)
1584 return &ctx->pinned_groups;
1585 else
1586 return &ctx->flexible_groups;
1587}
1588
8e1a2031 1589/*
161c85fa 1590 * Helper function to initializes perf_event_group trees.
8e1a2031 1591 */
161c85fa 1592static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1593{
1594 groups->tree = RB_ROOT;
1595 groups->index = 0;
1596}
1597
1598/*
1599 * Compare function for event groups;
161c85fa
PZ
1600 *
1601 * Implements complex key that first sorts by CPU and then by virtual index
1602 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1603 */
161c85fa
PZ
1604static bool
1605perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1606{
161c85fa
PZ
1607 if (left->cpu < right->cpu)
1608 return true;
1609 if (left->cpu > right->cpu)
1610 return false;
1611
95ed6c70
IR
1612#ifdef CONFIG_CGROUP_PERF
1613 if (left->cgrp != right->cgrp) {
1614 if (!left->cgrp || !left->cgrp->css.cgroup) {
1615 /*
1616 * Left has no cgroup but right does, no cgroups come
1617 * first.
1618 */
1619 return true;
1620 }
a6763625 1621 if (!right->cgrp || !right->cgrp->css.cgroup) {
95ed6c70
IR
1622 /*
1623 * Right has no cgroup but left does, no cgroups come
1624 * first.
1625 */
1626 return false;
1627 }
1628 /* Two dissimilar cgroups, order by id. */
1629 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1630 return true;
1631
1632 return false;
1633 }
1634#endif
1635
161c85fa
PZ
1636 if (left->group_index < right->group_index)
1637 return true;
1638 if (left->group_index > right->group_index)
1639 return false;
1640
1641 return false;
8e1a2031
AB
1642}
1643
1644/*
161c85fa
PZ
1645 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1646 * key (see perf_event_groups_less). This places it last inside the CPU
1647 * subtree.
8e1a2031
AB
1648 */
1649static void
1650perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1651 struct perf_event *event)
8e1a2031
AB
1652{
1653 struct perf_event *node_event;
1654 struct rb_node *parent;
1655 struct rb_node **node;
1656
1657 event->group_index = ++groups->index;
1658
1659 node = &groups->tree.rb_node;
1660 parent = *node;
1661
1662 while (*node) {
1663 parent = *node;
161c85fa 1664 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1665
1666 if (perf_event_groups_less(event, node_event))
1667 node = &parent->rb_left;
1668 else
1669 node = &parent->rb_right;
1670 }
1671
1672 rb_link_node(&event->group_node, parent, node);
1673 rb_insert_color(&event->group_node, &groups->tree);
1674}
1675
1676/*
161c85fa 1677 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1678 */
1679static void
1680add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1681{
1682 struct perf_event_groups *groups;
1683
1684 groups = get_event_groups(event, ctx);
1685 perf_event_groups_insert(groups, event);
1686}
1687
1688/*
161c85fa 1689 * Delete a group from a tree.
8e1a2031
AB
1690 */
1691static void
1692perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1693 struct perf_event *event)
8e1a2031 1694{
161c85fa
PZ
1695 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1696 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1697
161c85fa 1698 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1699 init_event_group(event);
1700}
1701
1702/*
161c85fa 1703 * Helper function to delete event from its groups.
8e1a2031
AB
1704 */
1705static void
1706del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1707{
1708 struct perf_event_groups *groups;
1709
1710 groups = get_event_groups(event, ctx);
1711 perf_event_groups_delete(groups, event);
1712}
1713
1714/*
95ed6c70 1715 * Get the leftmost event in the cpu/cgroup subtree.
8e1a2031
AB
1716 */
1717static struct perf_event *
95ed6c70
IR
1718perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1719 struct cgroup *cgrp)
8e1a2031
AB
1720{
1721 struct perf_event *node_event = NULL, *match = NULL;
1722 struct rb_node *node = groups->tree.rb_node;
95ed6c70
IR
1723#ifdef CONFIG_CGROUP_PERF
1724 u64 node_cgrp_id, cgrp_id = 0;
1725
1726 if (cgrp)
1727 cgrp_id = cgrp->kn->id;
1728#endif
8e1a2031
AB
1729
1730 while (node) {
161c85fa 1731 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1732
1733 if (cpu < node_event->cpu) {
1734 node = node->rb_left;
95ed6c70
IR
1735 continue;
1736 }
1737 if (cpu > node_event->cpu) {
8e1a2031 1738 node = node->rb_right;
95ed6c70
IR
1739 continue;
1740 }
1741#ifdef CONFIG_CGROUP_PERF
1742 node_cgrp_id = 0;
1743 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1744 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1745
1746 if (cgrp_id < node_cgrp_id) {
8e1a2031 1747 node = node->rb_left;
95ed6c70
IR
1748 continue;
1749 }
1750 if (cgrp_id > node_cgrp_id) {
1751 node = node->rb_right;
1752 continue;
8e1a2031 1753 }
95ed6c70
IR
1754#endif
1755 match = node_event;
1756 node = node->rb_left;
8e1a2031
AB
1757 }
1758
1759 return match;
1760}
1761
1cac7b1a
PZ
1762/*
1763 * Like rb_entry_next_safe() for the @cpu subtree.
1764 */
1765static struct perf_event *
1766perf_event_groups_next(struct perf_event *event)
1767{
1768 struct perf_event *next;
95ed6c70
IR
1769#ifdef CONFIG_CGROUP_PERF
1770 u64 curr_cgrp_id = 0;
1771 u64 next_cgrp_id = 0;
1772#endif
1cac7b1a
PZ
1773
1774 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
95ed6c70
IR
1775 if (next == NULL || next->cpu != event->cpu)
1776 return NULL;
1777
1778#ifdef CONFIG_CGROUP_PERF
1779 if (event->cgrp && event->cgrp->css.cgroup)
1780 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1cac7b1a 1781
95ed6c70
IR
1782 if (next->cgrp && next->cgrp->css.cgroup)
1783 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1784
1785 if (curr_cgrp_id != next_cgrp_id)
1786 return NULL;
1787#endif
1788 return next;
1cac7b1a
PZ
1789}
1790
8e1a2031 1791/*
161c85fa 1792 * Iterate through the whole groups tree.
8e1a2031 1793 */
6e6804d2
PZ
1794#define perf_event_groups_for_each(event, groups) \
1795 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1796 typeof(*event), group_node); event; \
1797 event = rb_entry_safe(rb_next(&event->group_node), \
1798 typeof(*event), group_node))
8e1a2031 1799
fccc714b 1800/*
788faab7 1801 * Add an event from the lists for its context.
fccc714b
PZ
1802 * Must be called with ctx->mutex and ctx->lock held.
1803 */
04289bb9 1804static void
cdd6c482 1805list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1806{
c994d613
PZ
1807 lockdep_assert_held(&ctx->lock);
1808
8a49542c
PZ
1809 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1810 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1811
0d3d73aa
PZ
1812 event->tstamp = perf_event_time(event);
1813
04289bb9 1814 /*
8a49542c
PZ
1815 * If we're a stand alone event or group leader, we go to the context
1816 * list, group events are kept attached to the group so that
1817 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1818 */
8a49542c 1819 if (event->group_leader == event) {
4ff6a8de 1820 event->group_caps = event->event_caps;
8e1a2031 1821 add_event_to_groups(event, ctx);
5c148194 1822 }
592903cd 1823
cdd6c482
IM
1824 list_add_rcu(&event->event_entry, &ctx->event_list);
1825 ctx->nr_events++;
1826 if (event->attr.inherit_stat)
bfbd3381 1827 ctx->nr_stat++;
5a3126d4 1828
33238c50
PZ
1829 if (event->state > PERF_EVENT_STATE_OFF)
1830 perf_cgroup_event_enable(event, ctx);
1831
5a3126d4 1832 ctx->generation++;
04289bb9
IM
1833}
1834
0231bb53
JO
1835/*
1836 * Initialize event state based on the perf_event_attr::disabled.
1837 */
1838static inline void perf_event__state_init(struct perf_event *event)
1839{
1840 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1841 PERF_EVENT_STATE_INACTIVE;
1842}
1843
a723968c 1844static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1845{
1846 int entry = sizeof(u64); /* value */
1847 int size = 0;
1848 int nr = 1;
1849
1850 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1851 size += sizeof(u64);
1852
1853 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1854 size += sizeof(u64);
1855
1856 if (event->attr.read_format & PERF_FORMAT_ID)
1857 entry += sizeof(u64);
1858
1859 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1860 nr += nr_siblings;
c320c7b7
ACM
1861 size += sizeof(u64);
1862 }
1863
1864 size += entry * nr;
1865 event->read_size = size;
1866}
1867
a723968c 1868static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1869{
1870 struct perf_sample_data *data;
c320c7b7
ACM
1871 u16 size = 0;
1872
c320c7b7
ACM
1873 if (sample_type & PERF_SAMPLE_IP)
1874 size += sizeof(data->ip);
1875
6844c09d
ACM
1876 if (sample_type & PERF_SAMPLE_ADDR)
1877 size += sizeof(data->addr);
1878
1879 if (sample_type & PERF_SAMPLE_PERIOD)
1880 size += sizeof(data->period);
1881
c3feedf2
AK
1882 if (sample_type & PERF_SAMPLE_WEIGHT)
1883 size += sizeof(data->weight);
1884
6844c09d
ACM
1885 if (sample_type & PERF_SAMPLE_READ)
1886 size += event->read_size;
1887
d6be9ad6
SE
1888 if (sample_type & PERF_SAMPLE_DATA_SRC)
1889 size += sizeof(data->data_src.val);
1890
fdfbbd07
AK
1891 if (sample_type & PERF_SAMPLE_TRANSACTION)
1892 size += sizeof(data->txn);
1893
fc7ce9c7
KL
1894 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1895 size += sizeof(data->phys_addr);
1896
6546b19f
NK
1897 if (sample_type & PERF_SAMPLE_CGROUP)
1898 size += sizeof(data->cgroup);
1899
6844c09d
ACM
1900 event->header_size = size;
1901}
1902
a723968c
PZ
1903/*
1904 * Called at perf_event creation and when events are attached/detached from a
1905 * group.
1906 */
1907static void perf_event__header_size(struct perf_event *event)
1908{
1909 __perf_event_read_size(event,
1910 event->group_leader->nr_siblings);
1911 __perf_event_header_size(event, event->attr.sample_type);
1912}
1913
6844c09d
ACM
1914static void perf_event__id_header_size(struct perf_event *event)
1915{
1916 struct perf_sample_data *data;
1917 u64 sample_type = event->attr.sample_type;
1918 u16 size = 0;
1919
c320c7b7
ACM
1920 if (sample_type & PERF_SAMPLE_TID)
1921 size += sizeof(data->tid_entry);
1922
1923 if (sample_type & PERF_SAMPLE_TIME)
1924 size += sizeof(data->time);
1925
ff3d527c
AH
1926 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1927 size += sizeof(data->id);
1928
c320c7b7
ACM
1929 if (sample_type & PERF_SAMPLE_ID)
1930 size += sizeof(data->id);
1931
1932 if (sample_type & PERF_SAMPLE_STREAM_ID)
1933 size += sizeof(data->stream_id);
1934
1935 if (sample_type & PERF_SAMPLE_CPU)
1936 size += sizeof(data->cpu_entry);
1937
6844c09d 1938 event->id_header_size = size;
c320c7b7
ACM
1939}
1940
a723968c
PZ
1941static bool perf_event_validate_size(struct perf_event *event)
1942{
1943 /*
1944 * The values computed here will be over-written when we actually
1945 * attach the event.
1946 */
1947 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1948 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1949 perf_event__id_header_size(event);
1950
1951 /*
1952 * Sum the lot; should not exceed the 64k limit we have on records.
1953 * Conservative limit to allow for callchains and other variable fields.
1954 */
1955 if (event->read_size + event->header_size +
1956 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1957 return false;
1958
1959 return true;
1960}
1961
8a49542c
PZ
1962static void perf_group_attach(struct perf_event *event)
1963{
c320c7b7 1964 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1965
a76a82a3
PZ
1966 lockdep_assert_held(&event->ctx->lock);
1967
74c3337c
PZ
1968 /*
1969 * We can have double attach due to group movement in perf_event_open.
1970 */
1971 if (event->attach_state & PERF_ATTACH_GROUP)
1972 return;
1973
8a49542c
PZ
1974 event->attach_state |= PERF_ATTACH_GROUP;
1975
1976 if (group_leader == event)
1977 return;
1978
652884fe
PZ
1979 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1980
4ff6a8de 1981 group_leader->group_caps &= event->event_caps;
8a49542c 1982
8343aae6 1983 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1984 group_leader->nr_siblings++;
c320c7b7
ACM
1985
1986 perf_event__header_size(group_leader);
1987
edb39592 1988 for_each_sibling_event(pos, group_leader)
c320c7b7 1989 perf_event__header_size(pos);
8a49542c
PZ
1990}
1991
a63eaf34 1992/*
788faab7 1993 * Remove an event from the lists for its context.
fccc714b 1994 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1995 */
04289bb9 1996static void
cdd6c482 1997list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1998{
652884fe
PZ
1999 WARN_ON_ONCE(event->ctx != ctx);
2000 lockdep_assert_held(&ctx->lock);
2001
8a49542c
PZ
2002 /*
2003 * We can have double detach due to exit/hot-unplug + close.
2004 */
2005 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 2006 return;
8a49542c
PZ
2007
2008 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2009
cdd6c482
IM
2010 ctx->nr_events--;
2011 if (event->attr.inherit_stat)
bfbd3381 2012 ctx->nr_stat--;
8bc20959 2013
cdd6c482 2014 list_del_rcu(&event->event_entry);
04289bb9 2015
8a49542c 2016 if (event->group_leader == event)
8e1a2031 2017 del_event_from_groups(event, ctx);
5c148194 2018
b2e74a26
SE
2019 /*
2020 * If event was in error state, then keep it
2021 * that way, otherwise bogus counts will be
2022 * returned on read(). The only way to get out
2023 * of error state is by explicit re-enabling
2024 * of the event
2025 */
33238c50
PZ
2026 if (event->state > PERF_EVENT_STATE_OFF) {
2027 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2028 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2029 }
5a3126d4
PZ
2030
2031 ctx->generation++;
050735b0
PZ
2032}
2033
ab43762e
AS
2034static int
2035perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2036{
2037 if (!has_aux(aux_event))
2038 return 0;
2039
2040 if (!event->pmu->aux_output_match)
2041 return 0;
2042
2043 return event->pmu->aux_output_match(aux_event);
2044}
2045
2046static void put_event(struct perf_event *event);
2047static void event_sched_out(struct perf_event *event,
2048 struct perf_cpu_context *cpuctx,
2049 struct perf_event_context *ctx);
2050
2051static void perf_put_aux_event(struct perf_event *event)
2052{
2053 struct perf_event_context *ctx = event->ctx;
2054 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2055 struct perf_event *iter;
2056
2057 /*
2058 * If event uses aux_event tear down the link
2059 */
2060 if (event->aux_event) {
2061 iter = event->aux_event;
2062 event->aux_event = NULL;
2063 put_event(iter);
2064 return;
2065 }
2066
2067 /*
2068 * If the event is an aux_event, tear down all links to
2069 * it from other events.
2070 */
2071 for_each_sibling_event(iter, event->group_leader) {
2072 if (iter->aux_event != event)
2073 continue;
2074
2075 iter->aux_event = NULL;
2076 put_event(event);
2077
2078 /*
2079 * If it's ACTIVE, schedule it out and put it into ERROR
2080 * state so that we don't try to schedule it again. Note
2081 * that perf_event_enable() will clear the ERROR status.
2082 */
2083 event_sched_out(iter, cpuctx, ctx);
2084 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2085 }
2086}
2087
a4faf00d
AS
2088static bool perf_need_aux_event(struct perf_event *event)
2089{
2090 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2091}
2092
ab43762e
AS
2093static int perf_get_aux_event(struct perf_event *event,
2094 struct perf_event *group_leader)
2095{
2096 /*
2097 * Our group leader must be an aux event if we want to be
2098 * an aux_output. This way, the aux event will precede its
2099 * aux_output events in the group, and therefore will always
2100 * schedule first.
2101 */
2102 if (!group_leader)
2103 return 0;
2104
a4faf00d
AS
2105 /*
2106 * aux_output and aux_sample_size are mutually exclusive.
2107 */
2108 if (event->attr.aux_output && event->attr.aux_sample_size)
2109 return 0;
2110
2111 if (event->attr.aux_output &&
2112 !perf_aux_output_match(event, group_leader))
2113 return 0;
2114
2115 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2116 return 0;
2117
2118 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2119 return 0;
2120
2121 /*
2122 * Link aux_outputs to their aux event; this is undone in
2123 * perf_group_detach() by perf_put_aux_event(). When the
2124 * group in torn down, the aux_output events loose their
2125 * link to the aux_event and can't schedule any more.
2126 */
2127 event->aux_event = group_leader;
2128
2129 return 1;
2130}
2131
ab6f824c
PZ
2132static inline struct list_head *get_event_list(struct perf_event *event)
2133{
2134 struct perf_event_context *ctx = event->ctx;
2135 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2136}
2137
8a49542c 2138static void perf_group_detach(struct perf_event *event)
050735b0
PZ
2139{
2140 struct perf_event *sibling, *tmp;
6668128a 2141 struct perf_event_context *ctx = event->ctx;
8a49542c 2142
6668128a 2143 lockdep_assert_held(&ctx->lock);
a76a82a3 2144
8a49542c
PZ
2145 /*
2146 * We can have double detach due to exit/hot-unplug + close.
2147 */
2148 if (!(event->attach_state & PERF_ATTACH_GROUP))
2149 return;
2150
2151 event->attach_state &= ~PERF_ATTACH_GROUP;
2152
ab43762e
AS
2153 perf_put_aux_event(event);
2154
8a49542c
PZ
2155 /*
2156 * If this is a sibling, remove it from its group.
2157 */
2158 if (event->group_leader != event) {
8343aae6 2159 list_del_init(&event->sibling_list);
8a49542c 2160 event->group_leader->nr_siblings--;
c320c7b7 2161 goto out;
8a49542c
PZ
2162 }
2163
04289bb9 2164 /*
cdd6c482
IM
2165 * If this was a group event with sibling events then
2166 * upgrade the siblings to singleton events by adding them
8a49542c 2167 * to whatever list we are on.
04289bb9 2168 */
8343aae6 2169 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2170
04289bb9 2171 sibling->group_leader = sibling;
24868367 2172 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2173
2174 /* Inherit group flags from the previous leader */
4ff6a8de 2175 sibling->group_caps = event->group_caps;
652884fe 2176
8e1a2031 2177 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2178 add_event_to_groups(sibling, event->ctx);
6668128a 2179
ab6f824c
PZ
2180 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2181 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2182 }
2183
652884fe 2184 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2185 }
c320c7b7
ACM
2186
2187out:
2188 perf_event__header_size(event->group_leader);
2189
edb39592 2190 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2191 perf_event__header_size(tmp);
04289bb9
IM
2192}
2193
fadfe7be
JO
2194static bool is_orphaned_event(struct perf_event *event)
2195{
a69b0ca4 2196 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2197}
2198
2c81a647 2199static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2200{
2201 struct pmu *pmu = event->pmu;
2202 return pmu->filter_match ? pmu->filter_match(event) : 1;
2203}
2204
2c81a647
MR
2205/*
2206 * Check whether we should attempt to schedule an event group based on
2207 * PMU-specific filtering. An event group can consist of HW and SW events,
2208 * potentially with a SW leader, so we must check all the filters, to
2209 * determine whether a group is schedulable:
2210 */
2211static inline int pmu_filter_match(struct perf_event *event)
2212{
edb39592 2213 struct perf_event *sibling;
2c81a647
MR
2214
2215 if (!__pmu_filter_match(event))
2216 return 0;
2217
edb39592
PZ
2218 for_each_sibling_event(sibling, event) {
2219 if (!__pmu_filter_match(sibling))
2c81a647
MR
2220 return 0;
2221 }
2222
2223 return 1;
2224}
2225
fa66f07a
SE
2226static inline int
2227event_filter_match(struct perf_event *event)
2228{
0b8f1e2e
PZ
2229 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2230 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2231}
2232
9ffcfa6f
SE
2233static void
2234event_sched_out(struct perf_event *event,
3b6f9e5c 2235 struct perf_cpu_context *cpuctx,
cdd6c482 2236 struct perf_event_context *ctx)
3b6f9e5c 2237{
0d3d73aa 2238 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2239
2240 WARN_ON_ONCE(event->ctx != ctx);
2241 lockdep_assert_held(&ctx->lock);
2242
cdd6c482 2243 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2244 return;
3b6f9e5c 2245
6668128a
PZ
2246 /*
2247 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2248 * we can schedule events _OUT_ individually through things like
2249 * __perf_remove_from_context().
2250 */
2251 list_del_init(&event->active_list);
2252
44377277
AS
2253 perf_pmu_disable(event->pmu);
2254
28a967c3
PZ
2255 event->pmu->del(event, 0);
2256 event->oncpu = -1;
0d3d73aa 2257
1d54ad94
PZ
2258 if (READ_ONCE(event->pending_disable) >= 0) {
2259 WRITE_ONCE(event->pending_disable, -1);
33238c50 2260 perf_cgroup_event_disable(event, ctx);
0d3d73aa 2261 state = PERF_EVENT_STATE_OFF;
970892a9 2262 }
0d3d73aa 2263 perf_event_set_state(event, state);
3b6f9e5c 2264
cdd6c482 2265 if (!is_software_event(event))
3b6f9e5c 2266 cpuctx->active_oncpu--;
2fde4f94
MR
2267 if (!--ctx->nr_active)
2268 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2269 if (event->attr.freq && event->attr.sample_freq)
2270 ctx->nr_freq--;
cdd6c482 2271 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2272 cpuctx->exclusive = 0;
44377277
AS
2273
2274 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2275}
2276
d859e29f 2277static void
cdd6c482 2278group_sched_out(struct perf_event *group_event,
d859e29f 2279 struct perf_cpu_context *cpuctx,
cdd6c482 2280 struct perf_event_context *ctx)
d859e29f 2281{
cdd6c482 2282 struct perf_event *event;
0d3d73aa
PZ
2283
2284 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2285 return;
d859e29f 2286
3f005e7d
MR
2287 perf_pmu_disable(ctx->pmu);
2288
cdd6c482 2289 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2290
2291 /*
2292 * Schedule out siblings (if any):
2293 */
edb39592 2294 for_each_sibling_event(event, group_event)
cdd6c482 2295 event_sched_out(event, cpuctx, ctx);
d859e29f 2296
3f005e7d
MR
2297 perf_pmu_enable(ctx->pmu);
2298
0d3d73aa 2299 if (group_event->attr.exclusive)
d859e29f
PM
2300 cpuctx->exclusive = 0;
2301}
2302
45a0e07a 2303#define DETACH_GROUP 0x01UL
0017960f 2304
0793a61d 2305/*
cdd6c482 2306 * Cross CPU call to remove a performance event
0793a61d 2307 *
cdd6c482 2308 * We disable the event on the hardware level first. After that we
0793a61d
TG
2309 * remove it from the context list.
2310 */
fae3fde6
PZ
2311static void
2312__perf_remove_from_context(struct perf_event *event,
2313 struct perf_cpu_context *cpuctx,
2314 struct perf_event_context *ctx,
2315 void *info)
0793a61d 2316{
45a0e07a 2317 unsigned long flags = (unsigned long)info;
0793a61d 2318
3c5c8711
PZ
2319 if (ctx->is_active & EVENT_TIME) {
2320 update_context_time(ctx);
2321 update_cgrp_time_from_cpuctx(cpuctx);
2322 }
2323
cdd6c482 2324 event_sched_out(event, cpuctx, ctx);
45a0e07a 2325 if (flags & DETACH_GROUP)
46ce0fe9 2326 perf_group_detach(event);
cdd6c482 2327 list_del_event(event, ctx);
39a43640
PZ
2328
2329 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2330 ctx->is_active = 0;
90c91dfb 2331 ctx->rotate_necessary = 0;
39a43640
PZ
2332 if (ctx->task) {
2333 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2334 cpuctx->task_ctx = NULL;
2335 }
64ce3126 2336 }
0793a61d
TG
2337}
2338
0793a61d 2339/*
cdd6c482 2340 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2341 *
cdd6c482
IM
2342 * If event->ctx is a cloned context, callers must make sure that
2343 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2344 * remains valid. This is OK when called from perf_release since
2345 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2346 * When called from perf_event_exit_task, it's OK because the
c93f7669 2347 * context has been detached from its task.
0793a61d 2348 */
45a0e07a 2349static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2350{
a76a82a3
PZ
2351 struct perf_event_context *ctx = event->ctx;
2352
2353 lockdep_assert_held(&ctx->mutex);
0793a61d 2354
45a0e07a 2355 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2356
2357 /*
2358 * The above event_function_call() can NO-OP when it hits
2359 * TASK_TOMBSTONE. In that case we must already have been detached
2360 * from the context (by perf_event_exit_event()) but the grouping
2361 * might still be in-tact.
2362 */
2363 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2364 if ((flags & DETACH_GROUP) &&
2365 (event->attach_state & PERF_ATTACH_GROUP)) {
2366 /*
2367 * Since in that case we cannot possibly be scheduled, simply
2368 * detach now.
2369 */
2370 raw_spin_lock_irq(&ctx->lock);
2371 perf_group_detach(event);
2372 raw_spin_unlock_irq(&ctx->lock);
2373 }
0793a61d
TG
2374}
2375
d859e29f 2376/*
cdd6c482 2377 * Cross CPU call to disable a performance event
d859e29f 2378 */
fae3fde6
PZ
2379static void __perf_event_disable(struct perf_event *event,
2380 struct perf_cpu_context *cpuctx,
2381 struct perf_event_context *ctx,
2382 void *info)
7b648018 2383{
fae3fde6
PZ
2384 if (event->state < PERF_EVENT_STATE_INACTIVE)
2385 return;
7b648018 2386
3c5c8711
PZ
2387 if (ctx->is_active & EVENT_TIME) {
2388 update_context_time(ctx);
2389 update_cgrp_time_from_event(event);
2390 }
2391
fae3fde6
PZ
2392 if (event == event->group_leader)
2393 group_sched_out(event, cpuctx, ctx);
2394 else
2395 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2396
2397 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
33238c50 2398 perf_cgroup_event_disable(event, ctx);
7b648018
PZ
2399}
2400
d859e29f 2401/*
788faab7 2402 * Disable an event.
c93f7669 2403 *
cdd6c482
IM
2404 * If event->ctx is a cloned context, callers must make sure that
2405 * every task struct that event->ctx->task could possibly point to
9f014e3a 2406 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2407 * perf_event_for_each_child or perf_event_for_each because they
2408 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2409 * goes to exit will block in perf_event_exit_event().
2410 *
cdd6c482 2411 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2412 * is the current context on this CPU and preemption is disabled,
cdd6c482 2413 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2414 */
f63a8daa 2415static void _perf_event_disable(struct perf_event *event)
d859e29f 2416{
cdd6c482 2417 struct perf_event_context *ctx = event->ctx;
d859e29f 2418
e625cce1 2419 raw_spin_lock_irq(&ctx->lock);
7b648018 2420 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2421 raw_spin_unlock_irq(&ctx->lock);
7b648018 2422 return;
53cfbf59 2423 }
e625cce1 2424 raw_spin_unlock_irq(&ctx->lock);
7b648018 2425
fae3fde6
PZ
2426 event_function_call(event, __perf_event_disable, NULL);
2427}
2428
2429void perf_event_disable_local(struct perf_event *event)
2430{
2431 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2432}
f63a8daa
PZ
2433
2434/*
2435 * Strictly speaking kernel users cannot create groups and therefore this
2436 * interface does not need the perf_event_ctx_lock() magic.
2437 */
2438void perf_event_disable(struct perf_event *event)
2439{
2440 struct perf_event_context *ctx;
2441
2442 ctx = perf_event_ctx_lock(event);
2443 _perf_event_disable(event);
2444 perf_event_ctx_unlock(event, ctx);
2445}
dcfce4a0 2446EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2447
5aab90ce
JO
2448void perf_event_disable_inatomic(struct perf_event *event)
2449{
1d54ad94
PZ
2450 WRITE_ONCE(event->pending_disable, smp_processor_id());
2451 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2452 irq_work_queue(&event->pending);
2453}
2454
e5d1367f 2455static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2456 struct perf_event_context *ctx)
e5d1367f
SE
2457{
2458 /*
2459 * use the correct time source for the time snapshot
2460 *
2461 * We could get by without this by leveraging the
2462 * fact that to get to this function, the caller
2463 * has most likely already called update_context_time()
2464 * and update_cgrp_time_xx() and thus both timestamp
2465 * are identical (or very close). Given that tstamp is,
2466 * already adjusted for cgroup, we could say that:
2467 * tstamp - ctx->timestamp
2468 * is equivalent to
2469 * tstamp - cgrp->timestamp.
2470 *
2471 * Then, in perf_output_read(), the calculation would
2472 * work with no changes because:
2473 * - event is guaranteed scheduled in
2474 * - no scheduled out in between
2475 * - thus the timestamp would be the same
2476 *
2477 * But this is a bit hairy.
2478 *
2479 * So instead, we have an explicit cgroup call to remain
2480 * within the time time source all along. We believe it
2481 * is cleaner and simpler to understand.
2482 */
2483 if (is_cgroup_event(event))
0d3d73aa 2484 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2485 else
0d3d73aa 2486 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2487}
2488
4fe757dd
PZ
2489#define MAX_INTERRUPTS (~0ULL)
2490
2491static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2492static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2493
235c7fc7 2494static int
9ffcfa6f 2495event_sched_in(struct perf_event *event,
235c7fc7 2496 struct perf_cpu_context *cpuctx,
6e37738a 2497 struct perf_event_context *ctx)
235c7fc7 2498{
44377277 2499 int ret = 0;
4158755d 2500
ab6f824c
PZ
2501 WARN_ON_ONCE(event->ctx != ctx);
2502
63342411
PZ
2503 lockdep_assert_held(&ctx->lock);
2504
cdd6c482 2505 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2506 return 0;
2507
95ff4ca2
AS
2508 WRITE_ONCE(event->oncpu, smp_processor_id());
2509 /*
0c1cbc18
PZ
2510 * Order event::oncpu write to happen before the ACTIVE state is
2511 * visible. This allows perf_event_{stop,read}() to observe the correct
2512 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2513 */
2514 smp_wmb();
0d3d73aa 2515 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2516
2517 /*
2518 * Unthrottle events, since we scheduled we might have missed several
2519 * ticks already, also for a heavily scheduling task there is little
2520 * guarantee it'll get a tick in a timely manner.
2521 */
2522 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2523 perf_log_throttle(event, 1);
2524 event->hw.interrupts = 0;
2525 }
2526
44377277
AS
2527 perf_pmu_disable(event->pmu);
2528
0d3d73aa 2529 perf_set_shadow_time(event, ctx);
72f669c0 2530
ec0d7729
AS
2531 perf_log_itrace_start(event);
2532
a4eaf7f1 2533 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2534 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2535 event->oncpu = -1;
44377277
AS
2536 ret = -EAGAIN;
2537 goto out;
235c7fc7
IM
2538 }
2539
cdd6c482 2540 if (!is_software_event(event))
3b6f9e5c 2541 cpuctx->active_oncpu++;
2fde4f94
MR
2542 if (!ctx->nr_active++)
2543 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2544 if (event->attr.freq && event->attr.sample_freq)
2545 ctx->nr_freq++;
235c7fc7 2546
cdd6c482 2547 if (event->attr.exclusive)
3b6f9e5c
PM
2548 cpuctx->exclusive = 1;
2549
44377277
AS
2550out:
2551 perf_pmu_enable(event->pmu);
2552
2553 return ret;
235c7fc7
IM
2554}
2555
6751b71e 2556static int
cdd6c482 2557group_sched_in(struct perf_event *group_event,
6751b71e 2558 struct perf_cpu_context *cpuctx,
6e37738a 2559 struct perf_event_context *ctx)
6751b71e 2560{
6bde9b6c 2561 struct perf_event *event, *partial_group = NULL;
4a234593 2562 struct pmu *pmu = ctx->pmu;
6751b71e 2563
cdd6c482 2564 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2565 return 0;
2566
fbbe0701 2567 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2568
9ffcfa6f 2569 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2570 pmu->cancel_txn(pmu);
272325c4 2571 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2572 return -EAGAIN;
90151c35 2573 }
6751b71e
PM
2574
2575 /*
2576 * Schedule in siblings as one group (if any):
2577 */
edb39592 2578 for_each_sibling_event(event, group_event) {
9ffcfa6f 2579 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2580 partial_group = event;
6751b71e
PM
2581 goto group_error;
2582 }
2583 }
2584
9ffcfa6f 2585 if (!pmu->commit_txn(pmu))
6e85158c 2586 return 0;
9ffcfa6f 2587
6751b71e
PM
2588group_error:
2589 /*
2590 * Groups can be scheduled in as one unit only, so undo any
2591 * partial group before returning:
0d3d73aa 2592 * The events up to the failed event are scheduled out normally.
6751b71e 2593 */
edb39592 2594 for_each_sibling_event(event, group_event) {
cdd6c482 2595 if (event == partial_group)
0d3d73aa 2596 break;
d7842da4 2597
0d3d73aa 2598 event_sched_out(event, cpuctx, ctx);
6751b71e 2599 }
9ffcfa6f 2600 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2601
ad5133b7 2602 pmu->cancel_txn(pmu);
90151c35 2603
272325c4 2604 perf_mux_hrtimer_restart(cpuctx);
9e630205 2605
6751b71e
PM
2606 return -EAGAIN;
2607}
2608
3b6f9e5c 2609/*
cdd6c482 2610 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2611 */
cdd6c482 2612static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2613 struct perf_cpu_context *cpuctx,
2614 int can_add_hw)
2615{
2616 /*
cdd6c482 2617 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2618 */
4ff6a8de 2619 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2620 return 1;
2621 /*
2622 * If an exclusive group is already on, no other hardware
cdd6c482 2623 * events can go on.
3b6f9e5c
PM
2624 */
2625 if (cpuctx->exclusive)
2626 return 0;
2627 /*
2628 * If this group is exclusive and there are already
cdd6c482 2629 * events on the CPU, it can't go on.
3b6f9e5c 2630 */
cdd6c482 2631 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2632 return 0;
2633 /*
2634 * Otherwise, try to add it if all previous groups were able
2635 * to go on.
2636 */
2637 return can_add_hw;
2638}
2639
cdd6c482
IM
2640static void add_event_to_ctx(struct perf_event *event,
2641 struct perf_event_context *ctx)
53cfbf59 2642{
cdd6c482 2643 list_add_event(event, ctx);
8a49542c 2644 perf_group_attach(event);
53cfbf59
PM
2645}
2646
bd2afa49
PZ
2647static void ctx_sched_out(struct perf_event_context *ctx,
2648 struct perf_cpu_context *cpuctx,
2649 enum event_type_t event_type);
2c29ef0f
PZ
2650static void
2651ctx_sched_in(struct perf_event_context *ctx,
2652 struct perf_cpu_context *cpuctx,
2653 enum event_type_t event_type,
2654 struct task_struct *task);
fe4b04fa 2655
bd2afa49 2656static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2657 struct perf_event_context *ctx,
2658 enum event_type_t event_type)
bd2afa49
PZ
2659{
2660 if (!cpuctx->task_ctx)
2661 return;
2662
2663 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 return;
2665
487f05e1 2666 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2667}
2668
dce5855b
PZ
2669static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2670 struct perf_event_context *ctx,
2671 struct task_struct *task)
2672{
2673 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2674 if (ctx)
2675 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2676 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2677 if (ctx)
2678 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2679}
2680
487f05e1
AS
2681/*
2682 * We want to maintain the following priority of scheduling:
2683 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2684 * - task pinned (EVENT_PINNED)
2685 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2686 * - task flexible (EVENT_FLEXIBLE).
2687 *
2688 * In order to avoid unscheduling and scheduling back in everything every
2689 * time an event is added, only do it for the groups of equal priority and
2690 * below.
2691 *
2692 * This can be called after a batch operation on task events, in which case
2693 * event_type is a bit mask of the types of events involved. For CPU events,
2694 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2695 */
3e349507 2696static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2697 struct perf_event_context *task_ctx,
2698 enum event_type_t event_type)
0017960f 2699{
bd903afe 2700 enum event_type_t ctx_event_type;
487f05e1
AS
2701 bool cpu_event = !!(event_type & EVENT_CPU);
2702
2703 /*
2704 * If pinned groups are involved, flexible groups also need to be
2705 * scheduled out.
2706 */
2707 if (event_type & EVENT_PINNED)
2708 event_type |= EVENT_FLEXIBLE;
2709
bd903afe
SL
2710 ctx_event_type = event_type & EVENT_ALL;
2711
3e349507
PZ
2712 perf_pmu_disable(cpuctx->ctx.pmu);
2713 if (task_ctx)
487f05e1
AS
2714 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2715
2716 /*
2717 * Decide which cpu ctx groups to schedule out based on the types
2718 * of events that caused rescheduling:
2719 * - EVENT_CPU: schedule out corresponding groups;
2720 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2721 * - otherwise, do nothing more.
2722 */
2723 if (cpu_event)
2724 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2725 else if (ctx_event_type & EVENT_PINNED)
2726 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2727
3e349507
PZ
2728 perf_event_sched_in(cpuctx, task_ctx, current);
2729 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2730}
2731
c68d224e
SE
2732void perf_pmu_resched(struct pmu *pmu)
2733{
2734 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2735 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2736
2737 perf_ctx_lock(cpuctx, task_ctx);
2738 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2739 perf_ctx_unlock(cpuctx, task_ctx);
2740}
2741
0793a61d 2742/*
cdd6c482 2743 * Cross CPU call to install and enable a performance event
682076ae 2744 *
a096309b
PZ
2745 * Very similar to remote_function() + event_function() but cannot assume that
2746 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2747 */
fe4b04fa 2748static int __perf_install_in_context(void *info)
0793a61d 2749{
a096309b
PZ
2750 struct perf_event *event = info;
2751 struct perf_event_context *ctx = event->ctx;
108b02cf 2752 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2753 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2754 bool reprogram = true;
a096309b 2755 int ret = 0;
0793a61d 2756
63b6da39 2757 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2758 if (ctx->task) {
b58f6b0d
PZ
2759 raw_spin_lock(&ctx->lock);
2760 task_ctx = ctx;
a096309b 2761
63cae12b 2762 reprogram = (ctx->task == current);
b58f6b0d 2763
39a43640 2764 /*
63cae12b
PZ
2765 * If the task is running, it must be running on this CPU,
2766 * otherwise we cannot reprogram things.
2767 *
2768 * If its not running, we don't care, ctx->lock will
2769 * serialize against it becoming runnable.
39a43640 2770 */
63cae12b
PZ
2771 if (task_curr(ctx->task) && !reprogram) {
2772 ret = -ESRCH;
2773 goto unlock;
2774 }
a096309b 2775
63cae12b 2776 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2777 } else if (task_ctx) {
2778 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2779 }
b58f6b0d 2780
33801b94 2781#ifdef CONFIG_CGROUP_PERF
33238c50 2782 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
33801b94 2783 /*
2784 * If the current cgroup doesn't match the event's
2785 * cgroup, we should not try to schedule it.
2786 */
2787 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2788 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2789 event->cgrp->css.cgroup);
2790 }
2791#endif
2792
63cae12b 2793 if (reprogram) {
a096309b
PZ
2794 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2795 add_event_to_ctx(event, ctx);
487f05e1 2796 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2797 } else {
2798 add_event_to_ctx(event, ctx);
2799 }
2800
63b6da39 2801unlock:
2c29ef0f 2802 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2803
a096309b 2804 return ret;
0793a61d
TG
2805}
2806
8a58ddae
AS
2807static bool exclusive_event_installable(struct perf_event *event,
2808 struct perf_event_context *ctx);
2809
0793a61d 2810/*
a096309b
PZ
2811 * Attach a performance event to a context.
2812 *
2813 * Very similar to event_function_call, see comment there.
0793a61d
TG
2814 */
2815static void
cdd6c482
IM
2816perf_install_in_context(struct perf_event_context *ctx,
2817 struct perf_event *event,
0793a61d
TG
2818 int cpu)
2819{
a096309b 2820 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2821
fe4b04fa
PZ
2822 lockdep_assert_held(&ctx->mutex);
2823
8a58ddae
AS
2824 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2825
0cda4c02
YZ
2826 if (event->cpu != -1)
2827 event->cpu = cpu;
c3f00c70 2828
0b8f1e2e
PZ
2829 /*
2830 * Ensures that if we can observe event->ctx, both the event and ctx
2831 * will be 'complete'. See perf_iterate_sb_cpu().
2832 */
2833 smp_store_release(&event->ctx, ctx);
2834
db0503e4
PZ
2835 /*
2836 * perf_event_attr::disabled events will not run and can be initialized
2837 * without IPI. Except when this is the first event for the context, in
2838 * that case we need the magic of the IPI to set ctx->is_active.
2839 *
2840 * The IOC_ENABLE that is sure to follow the creation of a disabled
2841 * event will issue the IPI and reprogram the hardware.
2842 */
2843 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2844 raw_spin_lock_irq(&ctx->lock);
2845 if (ctx->task == TASK_TOMBSTONE) {
2846 raw_spin_unlock_irq(&ctx->lock);
2847 return;
2848 }
2849 add_event_to_ctx(event, ctx);
2850 raw_spin_unlock_irq(&ctx->lock);
2851 return;
2852 }
2853
a096309b
PZ
2854 if (!task) {
2855 cpu_function_call(cpu, __perf_install_in_context, event);
2856 return;
2857 }
2858
2859 /*
2860 * Should not happen, we validate the ctx is still alive before calling.
2861 */
2862 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2863 return;
2864
39a43640
PZ
2865 /*
2866 * Installing events is tricky because we cannot rely on ctx->is_active
2867 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2868 *
2869 * Instead we use task_curr(), which tells us if the task is running.
2870 * However, since we use task_curr() outside of rq::lock, we can race
2871 * against the actual state. This means the result can be wrong.
2872 *
2873 * If we get a false positive, we retry, this is harmless.
2874 *
2875 * If we get a false negative, things are complicated. If we are after
2876 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2877 * value must be correct. If we're before, it doesn't matter since
2878 * perf_event_context_sched_in() will program the counter.
2879 *
2880 * However, this hinges on the remote context switch having observed
2881 * our task->perf_event_ctxp[] store, such that it will in fact take
2882 * ctx::lock in perf_event_context_sched_in().
2883 *
2884 * We do this by task_function_call(), if the IPI fails to hit the task
2885 * we know any future context switch of task must see the
2886 * perf_event_ctpx[] store.
39a43640 2887 */
63cae12b 2888
63b6da39 2889 /*
63cae12b
PZ
2890 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2891 * task_cpu() load, such that if the IPI then does not find the task
2892 * running, a future context switch of that task must observe the
2893 * store.
63b6da39 2894 */
63cae12b
PZ
2895 smp_mb();
2896again:
2897 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2898 return;
2899
2900 raw_spin_lock_irq(&ctx->lock);
2901 task = ctx->task;
84c4e620 2902 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2903 /*
2904 * Cannot happen because we already checked above (which also
2905 * cannot happen), and we hold ctx->mutex, which serializes us
2906 * against perf_event_exit_task_context().
2907 */
63b6da39
PZ
2908 raw_spin_unlock_irq(&ctx->lock);
2909 return;
2910 }
39a43640 2911 /*
63cae12b
PZ
2912 * If the task is not running, ctx->lock will avoid it becoming so,
2913 * thus we can safely install the event.
39a43640 2914 */
63cae12b
PZ
2915 if (task_curr(task)) {
2916 raw_spin_unlock_irq(&ctx->lock);
2917 goto again;
2918 }
2919 add_event_to_ctx(event, ctx);
2920 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2921}
2922
d859e29f 2923/*
cdd6c482 2924 * Cross CPU call to enable a performance event
d859e29f 2925 */
fae3fde6
PZ
2926static void __perf_event_enable(struct perf_event *event,
2927 struct perf_cpu_context *cpuctx,
2928 struct perf_event_context *ctx,
2929 void *info)
04289bb9 2930{
cdd6c482 2931 struct perf_event *leader = event->group_leader;
fae3fde6 2932 struct perf_event_context *task_ctx;
04289bb9 2933
6e801e01
PZ
2934 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2935 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2936 return;
3cbed429 2937
bd2afa49
PZ
2938 if (ctx->is_active)
2939 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2940
0d3d73aa 2941 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
33238c50 2942 perf_cgroup_event_enable(event, ctx);
04289bb9 2943
fae3fde6
PZ
2944 if (!ctx->is_active)
2945 return;
2946
e5d1367f 2947 if (!event_filter_match(event)) {
bd2afa49 2948 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2949 return;
e5d1367f 2950 }
f4c4176f 2951
04289bb9 2952 /*
cdd6c482 2953 * If the event is in a group and isn't the group leader,
d859e29f 2954 * then don't put it on unless the group is on.
04289bb9 2955 */
bd2afa49
PZ
2956 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2957 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2958 return;
bd2afa49 2959 }
fe4b04fa 2960
fae3fde6
PZ
2961 task_ctx = cpuctx->task_ctx;
2962 if (ctx->task)
2963 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2964
487f05e1 2965 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2966}
2967
d859e29f 2968/*
788faab7 2969 * Enable an event.
c93f7669 2970 *
cdd6c482
IM
2971 * If event->ctx is a cloned context, callers must make sure that
2972 * every task struct that event->ctx->task could possibly point to
c93f7669 2973 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2974 * perf_event_for_each_child or perf_event_for_each as described
2975 * for perf_event_disable.
d859e29f 2976 */
f63a8daa 2977static void _perf_event_enable(struct perf_event *event)
d859e29f 2978{
cdd6c482 2979 struct perf_event_context *ctx = event->ctx;
d859e29f 2980
7b648018 2981 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2982 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2983 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2984 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2985 return;
2986 }
2987
d859e29f 2988 /*
cdd6c482 2989 * If the event is in error state, clear that first.
7b648018
PZ
2990 *
2991 * That way, if we see the event in error state below, we know that it
2992 * has gone back into error state, as distinct from the task having
2993 * been scheduled away before the cross-call arrived.
d859e29f 2994 */
cdd6c482
IM
2995 if (event->state == PERF_EVENT_STATE_ERROR)
2996 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2997 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2998
fae3fde6 2999 event_function_call(event, __perf_event_enable, NULL);
d859e29f 3000}
f63a8daa
PZ
3001
3002/*
3003 * See perf_event_disable();
3004 */
3005void perf_event_enable(struct perf_event *event)
3006{
3007 struct perf_event_context *ctx;
3008
3009 ctx = perf_event_ctx_lock(event);
3010 _perf_event_enable(event);
3011 perf_event_ctx_unlock(event, ctx);
3012}
dcfce4a0 3013EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 3014
375637bc
AS
3015struct stop_event_data {
3016 struct perf_event *event;
3017 unsigned int restart;
3018};
3019
95ff4ca2
AS
3020static int __perf_event_stop(void *info)
3021{
375637bc
AS
3022 struct stop_event_data *sd = info;
3023 struct perf_event *event = sd->event;
95ff4ca2 3024
375637bc 3025 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
3026 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3027 return 0;
3028
3029 /* matches smp_wmb() in event_sched_in() */
3030 smp_rmb();
3031
3032 /*
3033 * There is a window with interrupts enabled before we get here,
3034 * so we need to check again lest we try to stop another CPU's event.
3035 */
3036 if (READ_ONCE(event->oncpu) != smp_processor_id())
3037 return -EAGAIN;
3038
3039 event->pmu->stop(event, PERF_EF_UPDATE);
3040
375637bc
AS
3041 /*
3042 * May race with the actual stop (through perf_pmu_output_stop()),
3043 * but it is only used for events with AUX ring buffer, and such
3044 * events will refuse to restart because of rb::aux_mmap_count==0,
3045 * see comments in perf_aux_output_begin().
3046 *
788faab7 3047 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3048 * while restarting.
3049 */
3050 if (sd->restart)
c9bbdd48 3051 event->pmu->start(event, 0);
375637bc 3052
95ff4ca2
AS
3053 return 0;
3054}
3055
767ae086 3056static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3057{
3058 struct stop_event_data sd = {
3059 .event = event,
767ae086 3060 .restart = restart,
375637bc
AS
3061 };
3062 int ret = 0;
3063
3064 do {
3065 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3066 return 0;
3067
3068 /* matches smp_wmb() in event_sched_in() */
3069 smp_rmb();
3070
3071 /*
3072 * We only want to restart ACTIVE events, so if the event goes
3073 * inactive here (event->oncpu==-1), there's nothing more to do;
3074 * fall through with ret==-ENXIO.
3075 */
3076 ret = cpu_function_call(READ_ONCE(event->oncpu),
3077 __perf_event_stop, &sd);
3078 } while (ret == -EAGAIN);
3079
3080 return ret;
3081}
3082
3083/*
3084 * In order to contain the amount of racy and tricky in the address filter
3085 * configuration management, it is a two part process:
3086 *
3087 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3088 * we update the addresses of corresponding vmas in
c60f83b8 3089 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3090 * (p2) when an event is scheduled in (pmu::add), it calls
3091 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3092 * if the generation has changed since the previous call.
3093 *
3094 * If (p1) happens while the event is active, we restart it to force (p2).
3095 *
3096 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3097 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3098 * ioctl;
3099 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
c1e8d7c6 3100 * registered mapping, called for every new mmap(), with mm::mmap_lock down
375637bc
AS
3101 * for reading;
3102 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3103 * of exec.
3104 */
3105void perf_event_addr_filters_sync(struct perf_event *event)
3106{
3107 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3108
3109 if (!has_addr_filter(event))
3110 return;
3111
3112 raw_spin_lock(&ifh->lock);
3113 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3114 event->pmu->addr_filters_sync(event);
3115 event->hw.addr_filters_gen = event->addr_filters_gen;
3116 }
3117 raw_spin_unlock(&ifh->lock);
3118}
3119EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3120
f63a8daa 3121static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3122{
2023b359 3123 /*
cdd6c482 3124 * not supported on inherited events
2023b359 3125 */
2e939d1d 3126 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3127 return -EINVAL;
3128
cdd6c482 3129 atomic_add(refresh, &event->event_limit);
f63a8daa 3130 _perf_event_enable(event);
2023b359
PZ
3131
3132 return 0;
79f14641 3133}
f63a8daa
PZ
3134
3135/*
3136 * See perf_event_disable()
3137 */
3138int perf_event_refresh(struct perf_event *event, int refresh)
3139{
3140 struct perf_event_context *ctx;
3141 int ret;
3142
3143 ctx = perf_event_ctx_lock(event);
3144 ret = _perf_event_refresh(event, refresh);
3145 perf_event_ctx_unlock(event, ctx);
3146
3147 return ret;
3148}
26ca5c11 3149EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3150
32ff77e8
MC
3151static int perf_event_modify_breakpoint(struct perf_event *bp,
3152 struct perf_event_attr *attr)
3153{
3154 int err;
3155
3156 _perf_event_disable(bp);
3157
3158 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3159
bf06278c 3160 if (!bp->attr.disabled)
32ff77e8 3161 _perf_event_enable(bp);
bf06278c
JO
3162
3163 return err;
32ff77e8
MC
3164}
3165
3166static int perf_event_modify_attr(struct perf_event *event,
3167 struct perf_event_attr *attr)
3168{
3169 if (event->attr.type != attr->type)
3170 return -EINVAL;
3171
3172 switch (event->attr.type) {
3173 case PERF_TYPE_BREAKPOINT:
3174 return perf_event_modify_breakpoint(event, attr);
3175 default:
3176 /* Place holder for future additions. */
3177 return -EOPNOTSUPP;
3178 }
3179}
3180
5b0311e1
FW
3181static void ctx_sched_out(struct perf_event_context *ctx,
3182 struct perf_cpu_context *cpuctx,
3183 enum event_type_t event_type)
235c7fc7 3184{
6668128a 3185 struct perf_event *event, *tmp;
db24d33e 3186 int is_active = ctx->is_active;
235c7fc7 3187
c994d613 3188 lockdep_assert_held(&ctx->lock);
235c7fc7 3189
39a43640
PZ
3190 if (likely(!ctx->nr_events)) {
3191 /*
3192 * See __perf_remove_from_context().
3193 */
3194 WARN_ON_ONCE(ctx->is_active);
3195 if (ctx->task)
3196 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3197 return;
39a43640
PZ
3198 }
3199
db24d33e 3200 ctx->is_active &= ~event_type;
3cbaa590
PZ
3201 if (!(ctx->is_active & EVENT_ALL))
3202 ctx->is_active = 0;
3203
63e30d3e
PZ
3204 if (ctx->task) {
3205 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3206 if (!ctx->is_active)
3207 cpuctx->task_ctx = NULL;
3208 }
facc4307 3209
8fdc6539
PZ
3210 /*
3211 * Always update time if it was set; not only when it changes.
3212 * Otherwise we can 'forget' to update time for any but the last
3213 * context we sched out. For example:
3214 *
3215 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3216 * ctx_sched_out(.event_type = EVENT_PINNED)
3217 *
3218 * would only update time for the pinned events.
3219 */
3cbaa590
PZ
3220 if (is_active & EVENT_TIME) {
3221 /* update (and stop) ctx time */
3222 update_context_time(ctx);
3223 update_cgrp_time_from_cpuctx(cpuctx);
3224 }
3225
8fdc6539
PZ
3226 is_active ^= ctx->is_active; /* changed bits */
3227
3cbaa590 3228 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3229 return;
5b0311e1 3230
075e0b00 3231 perf_pmu_disable(ctx->pmu);
3cbaa590 3232 if (is_active & EVENT_PINNED) {
6668128a 3233 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3234 group_sched_out(event, cpuctx, ctx);
9ed6060d 3235 }
889ff015 3236
3cbaa590 3237 if (is_active & EVENT_FLEXIBLE) {
6668128a 3238 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3239 group_sched_out(event, cpuctx, ctx);
90c91dfb
PZ
3240
3241 /*
3242 * Since we cleared EVENT_FLEXIBLE, also clear
3243 * rotate_necessary, is will be reset by
3244 * ctx_flexible_sched_in() when needed.
3245 */
3246 ctx->rotate_necessary = 0;
9ed6060d 3247 }
1b9a644f 3248 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3249}
3250
564c2b21 3251/*
5a3126d4
PZ
3252 * Test whether two contexts are equivalent, i.e. whether they have both been
3253 * cloned from the same version of the same context.
3254 *
3255 * Equivalence is measured using a generation number in the context that is
3256 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3257 * and list_del_event().
564c2b21 3258 */
cdd6c482
IM
3259static int context_equiv(struct perf_event_context *ctx1,
3260 struct perf_event_context *ctx2)
564c2b21 3261{
211de6eb
PZ
3262 lockdep_assert_held(&ctx1->lock);
3263 lockdep_assert_held(&ctx2->lock);
3264
5a3126d4
PZ
3265 /* Pinning disables the swap optimization */
3266 if (ctx1->pin_count || ctx2->pin_count)
3267 return 0;
3268
3269 /* If ctx1 is the parent of ctx2 */
3270 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3271 return 1;
3272
3273 /* If ctx2 is the parent of ctx1 */
3274 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3275 return 1;
3276
3277 /*
3278 * If ctx1 and ctx2 have the same parent; we flatten the parent
3279 * hierarchy, see perf_event_init_context().
3280 */
3281 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3282 ctx1->parent_gen == ctx2->parent_gen)
3283 return 1;
3284
3285 /* Unmatched */
3286 return 0;
564c2b21
PM
3287}
3288
cdd6c482
IM
3289static void __perf_event_sync_stat(struct perf_event *event,
3290 struct perf_event *next_event)
bfbd3381
PZ
3291{
3292 u64 value;
3293
cdd6c482 3294 if (!event->attr.inherit_stat)
bfbd3381
PZ
3295 return;
3296
3297 /*
cdd6c482 3298 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3299 * because we're in the middle of a context switch and have IRQs
3300 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3301 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3302 * don't need to use it.
3303 */
0d3d73aa 3304 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3305 event->pmu->read(event);
bfbd3381 3306
0d3d73aa 3307 perf_event_update_time(event);
bfbd3381
PZ
3308
3309 /*
cdd6c482 3310 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3311 * values when we flip the contexts.
3312 */
e7850595
PZ
3313 value = local64_read(&next_event->count);
3314 value = local64_xchg(&event->count, value);
3315 local64_set(&next_event->count, value);
bfbd3381 3316
cdd6c482
IM
3317 swap(event->total_time_enabled, next_event->total_time_enabled);
3318 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3319
bfbd3381 3320 /*
19d2e755 3321 * Since we swizzled the values, update the user visible data too.
bfbd3381 3322 */
cdd6c482
IM
3323 perf_event_update_userpage(event);
3324 perf_event_update_userpage(next_event);
bfbd3381
PZ
3325}
3326
cdd6c482
IM
3327static void perf_event_sync_stat(struct perf_event_context *ctx,
3328 struct perf_event_context *next_ctx)
bfbd3381 3329{
cdd6c482 3330 struct perf_event *event, *next_event;
bfbd3381
PZ
3331
3332 if (!ctx->nr_stat)
3333 return;
3334
02ffdbc8
PZ
3335 update_context_time(ctx);
3336
cdd6c482
IM
3337 event = list_first_entry(&ctx->event_list,
3338 struct perf_event, event_entry);
bfbd3381 3339
cdd6c482
IM
3340 next_event = list_first_entry(&next_ctx->event_list,
3341 struct perf_event, event_entry);
bfbd3381 3342
cdd6c482
IM
3343 while (&event->event_entry != &ctx->event_list &&
3344 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3345
cdd6c482 3346 __perf_event_sync_stat(event, next_event);
bfbd3381 3347
cdd6c482
IM
3348 event = list_next_entry(event, event_entry);
3349 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3350 }
3351}
3352
fe4b04fa
PZ
3353static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3354 struct task_struct *next)
0793a61d 3355{
8dc85d54 3356 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3357 struct perf_event_context *next_ctx;
5a3126d4 3358 struct perf_event_context *parent, *next_parent;
108b02cf 3359 struct perf_cpu_context *cpuctx;
c93f7669 3360 int do_switch = 1;
0793a61d 3361
108b02cf
PZ
3362 if (likely(!ctx))
3363 return;
10989fb2 3364
108b02cf
PZ
3365 cpuctx = __get_cpu_context(ctx);
3366 if (!cpuctx->task_ctx)
0793a61d
TG
3367 return;
3368
c93f7669 3369 rcu_read_lock();
8dc85d54 3370 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3371 if (!next_ctx)
3372 goto unlock;
3373
3374 parent = rcu_dereference(ctx->parent_ctx);
3375 next_parent = rcu_dereference(next_ctx->parent_ctx);
3376
3377 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3378 if (!parent && !next_parent)
5a3126d4
PZ
3379 goto unlock;
3380
3381 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3382 /*
3383 * Looks like the two contexts are clones, so we might be
3384 * able to optimize the context switch. We lock both
3385 * contexts and check that they are clones under the
3386 * lock (including re-checking that neither has been
3387 * uncloned in the meantime). It doesn't matter which
3388 * order we take the locks because no other cpu could
3389 * be trying to lock both of these tasks.
3390 */
e625cce1
TG
3391 raw_spin_lock(&ctx->lock);
3392 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3393 if (context_equiv(ctx, next_ctx)) {
c2b98a86
AB
3394 struct pmu *pmu = ctx->pmu;
3395
63b6da39
PZ
3396 WRITE_ONCE(ctx->task, next);
3397 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3398
c2b98a86
AB
3399 /*
3400 * PMU specific parts of task perf context can require
3401 * additional synchronization. As an example of such
3402 * synchronization see implementation details of Intel
3403 * LBR call stack data profiling;
3404 */
3405 if (pmu->swap_task_ctx)
3406 pmu->swap_task_ctx(ctx, next_ctx);
3407 else
3408 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
5a158c3c 3409
63b6da39
PZ
3410 /*
3411 * RCU_INIT_POINTER here is safe because we've not
3412 * modified the ctx and the above modification of
3413 * ctx->task and ctx->task_ctx_data are immaterial
3414 * since those values are always verified under
3415 * ctx->lock which we're now holding.
3416 */
3417 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3418 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3419
c93f7669 3420 do_switch = 0;
bfbd3381 3421
cdd6c482 3422 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3423 }
e625cce1
TG
3424 raw_spin_unlock(&next_ctx->lock);
3425 raw_spin_unlock(&ctx->lock);
564c2b21 3426 }
5a3126d4 3427unlock:
c93f7669 3428 rcu_read_unlock();
564c2b21 3429
c93f7669 3430 if (do_switch) {
facc4307 3431 raw_spin_lock(&ctx->lock);
487f05e1 3432 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3433 raw_spin_unlock(&ctx->lock);
c93f7669 3434 }
0793a61d
TG
3435}
3436
e48c1788
PZ
3437static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3438
ba532500
YZ
3439void perf_sched_cb_dec(struct pmu *pmu)
3440{
e48c1788
PZ
3441 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3442
ba532500 3443 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3444
3445 if (!--cpuctx->sched_cb_usage)
3446 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3447}
3448
e48c1788 3449
ba532500
YZ
3450void perf_sched_cb_inc(struct pmu *pmu)
3451{
e48c1788
PZ
3452 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3453
3454 if (!cpuctx->sched_cb_usage++)
3455 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3456
ba532500
YZ
3457 this_cpu_inc(perf_sched_cb_usages);
3458}
3459
3460/*
3461 * This function provides the context switch callback to the lower code
3462 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3463 *
3464 * This callback is relevant even to per-cpu events; for example multi event
3465 * PEBS requires this to provide PID/TID information. This requires we flush
3466 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3467 */
3468static void perf_pmu_sched_task(struct task_struct *prev,
3469 struct task_struct *next,
3470 bool sched_in)
3471{
3472 struct perf_cpu_context *cpuctx;
3473 struct pmu *pmu;
ba532500
YZ
3474
3475 if (prev == next)
3476 return;
3477
e48c1788 3478 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3479 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3480
e48c1788
PZ
3481 if (WARN_ON_ONCE(!pmu->sched_task))
3482 continue;
ba532500 3483
e48c1788
PZ
3484 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3485 perf_pmu_disable(pmu);
ba532500 3486
e48c1788 3487 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3488
e48c1788
PZ
3489 perf_pmu_enable(pmu);
3490 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3491 }
ba532500
YZ
3492}
3493
45ac1403
AH
3494static void perf_event_switch(struct task_struct *task,
3495 struct task_struct *next_prev, bool sched_in);
3496
8dc85d54
PZ
3497#define for_each_task_context_nr(ctxn) \
3498 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3499
3500/*
3501 * Called from scheduler to remove the events of the current task,
3502 * with interrupts disabled.
3503 *
3504 * We stop each event and update the event value in event->count.
3505 *
3506 * This does not protect us against NMI, but disable()
3507 * sets the disabled bit in the control field of event _before_
3508 * accessing the event control register. If a NMI hits, then it will
3509 * not restart the event.
3510 */
ab0cce56
JO
3511void __perf_event_task_sched_out(struct task_struct *task,
3512 struct task_struct *next)
8dc85d54
PZ
3513{
3514 int ctxn;
3515
ba532500
YZ
3516 if (__this_cpu_read(perf_sched_cb_usages))
3517 perf_pmu_sched_task(task, next, false);
3518
45ac1403
AH
3519 if (atomic_read(&nr_switch_events))
3520 perf_event_switch(task, next, false);
3521
8dc85d54
PZ
3522 for_each_task_context_nr(ctxn)
3523 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3524
3525 /*
3526 * if cgroup events exist on this CPU, then we need
3527 * to check if we have to switch out PMU state.
3528 * cgroup event are system-wide mode only
3529 */
4a32fea9 3530 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3531 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3532}
3533
5b0311e1
FW
3534/*
3535 * Called with IRQs disabled
3536 */
3537static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3538 enum event_type_t event_type)
3539{
3540 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3541}
3542
6eef8a71 3543static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3544{
24fb6b8e
IR
3545 const struct perf_event *le = *(const struct perf_event **)l;
3546 const struct perf_event *re = *(const struct perf_event **)r;
6eef8a71
IR
3547
3548 return le->group_index < re->group_index;
3549}
3550
3551static void swap_ptr(void *l, void *r)
3552{
3553 void **lp = l, **rp = r;
3554
3555 swap(*lp, *rp);
3556}
3557
3558static const struct min_heap_callbacks perf_min_heap = {
3559 .elem_size = sizeof(struct perf_event *),
3560 .less = perf_less_group_idx,
3561 .swp = swap_ptr,
3562};
3563
3564static void __heap_add(struct min_heap *heap, struct perf_event *event)
3565{
3566 struct perf_event **itrs = heap->data;
3567
3568 if (event) {
3569 itrs[heap->nr] = event;
3570 heap->nr++;
3571 }
3572}
3573
836196be
IR
3574static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3575 struct perf_event_groups *groups, int cpu,
6eef8a71
IR
3576 int (*func)(struct perf_event *, void *),
3577 void *data)
3578{
95ed6c70
IR
3579#ifdef CONFIG_CGROUP_PERF
3580 struct cgroup_subsys_state *css = NULL;
3581#endif
6eef8a71
IR
3582 /* Space for per CPU and/or any CPU event iterators. */
3583 struct perf_event *itrs[2];
836196be
IR
3584 struct min_heap event_heap;
3585 struct perf_event **evt;
1cac7b1a 3586 int ret;
8e1a2031 3587
836196be
IR
3588 if (cpuctx) {
3589 event_heap = (struct min_heap){
3590 .data = cpuctx->heap,
3591 .nr = 0,
3592 .size = cpuctx->heap_size,
3593 };
c2283c93
IR
3594
3595 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3596
3597#ifdef CONFIG_CGROUP_PERF
3598 if (cpuctx->cgrp)
3599 css = &cpuctx->cgrp->css;
3600#endif
836196be
IR
3601 } else {
3602 event_heap = (struct min_heap){
3603 .data = itrs,
3604 .nr = 0,
3605 .size = ARRAY_SIZE(itrs),
3606 };
3607 /* Events not within a CPU context may be on any CPU. */
95ed6c70 3608 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
836196be
IR
3609 }
3610 evt = event_heap.data;
3611
95ed6c70
IR
3612 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3613
3614#ifdef CONFIG_CGROUP_PERF
3615 for (; css; css = css->parent)
3616 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3617#endif
1cac7b1a 3618
6eef8a71 3619 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3620
6eef8a71 3621 while (event_heap.nr) {
1cac7b1a
PZ
3622 ret = func(*evt, data);
3623 if (ret)
3624 return ret;
3625
3626 *evt = perf_event_groups_next(*evt);
6eef8a71
IR
3627 if (*evt)
3628 min_heapify(&event_heap, 0, &perf_min_heap);
3629 else
3630 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3631 }
0793a61d 3632
1cac7b1a
PZ
3633 return 0;
3634}
3635
ab6f824c 3636static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3637{
2c2366c7
PZ
3638 struct perf_event_context *ctx = event->ctx;
3639 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3640 int *can_add_hw = data;
ab6f824c 3641
1cac7b1a
PZ
3642 if (event->state <= PERF_EVENT_STATE_OFF)
3643 return 0;
3644
3645 if (!event_filter_match(event))
3646 return 0;
3647
2c2366c7
PZ
3648 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3649 if (!group_sched_in(event, cpuctx, ctx))
ab6f824c 3650 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3651 }
1cac7b1a 3652
ab6f824c 3653 if (event->state == PERF_EVENT_STATE_INACTIVE) {
33238c50
PZ
3654 if (event->attr.pinned) {
3655 perf_cgroup_event_disable(event, ctx);
ab6f824c 3656 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
33238c50 3657 }
1cac7b1a 3658
2c2366c7
PZ
3659 *can_add_hw = 0;
3660 ctx->rotate_necessary = 1;
3b6f9e5c 3661 }
1cac7b1a
PZ
3662
3663 return 0;
5b0311e1
FW
3664}
3665
3666static void
1cac7b1a
PZ
3667ctx_pinned_sched_in(struct perf_event_context *ctx,
3668 struct perf_cpu_context *cpuctx)
5b0311e1 3669{
2c2366c7 3670 int can_add_hw = 1;
3b6f9e5c 3671
836196be
IR
3672 if (ctx != &cpuctx->ctx)
3673 cpuctx = NULL;
3674
3675 visit_groups_merge(cpuctx, &ctx->pinned_groups,
1cac7b1a 3676 smp_processor_id(),
2c2366c7 3677 merge_sched_in, &can_add_hw);
1cac7b1a 3678}
8e1a2031 3679
1cac7b1a
PZ
3680static void
3681ctx_flexible_sched_in(struct perf_event_context *ctx,
3682 struct perf_cpu_context *cpuctx)
3683{
2c2366c7 3684 int can_add_hw = 1;
0793a61d 3685
836196be
IR
3686 if (ctx != &cpuctx->ctx)
3687 cpuctx = NULL;
3688
3689 visit_groups_merge(cpuctx, &ctx->flexible_groups,
1cac7b1a 3690 smp_processor_id(),
2c2366c7 3691 merge_sched_in, &can_add_hw);
5b0311e1
FW
3692}
3693
3694static void
3695ctx_sched_in(struct perf_event_context *ctx,
3696 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3697 enum event_type_t event_type,
3698 struct task_struct *task)
5b0311e1 3699{
db24d33e 3700 int is_active = ctx->is_active;
c994d613
PZ
3701 u64 now;
3702
3703 lockdep_assert_held(&ctx->lock);
e5d1367f 3704
5b0311e1 3705 if (likely(!ctx->nr_events))
facc4307 3706 return;
5b0311e1 3707
3cbaa590 3708 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3709 if (ctx->task) {
3710 if (!is_active)
3711 cpuctx->task_ctx = ctx;
3712 else
3713 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3714 }
3715
3cbaa590
PZ
3716 is_active ^= ctx->is_active; /* changed bits */
3717
3718 if (is_active & EVENT_TIME) {
3719 /* start ctx time */
3720 now = perf_clock();
3721 ctx->timestamp = now;
3722 perf_cgroup_set_timestamp(task, ctx);
3723 }
3724
5b0311e1
FW
3725 /*
3726 * First go through the list and put on any pinned groups
3727 * in order to give them the best chance of going on.
3728 */
3cbaa590 3729 if (is_active & EVENT_PINNED)
6e37738a 3730 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3731
3732 /* Then walk through the lower prio flexible groups */
3cbaa590 3733 if (is_active & EVENT_FLEXIBLE)
6e37738a 3734 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3735}
3736
329c0e01 3737static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3738 enum event_type_t event_type,
3739 struct task_struct *task)
329c0e01
FW
3740{
3741 struct perf_event_context *ctx = &cpuctx->ctx;
3742
e5d1367f 3743 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3744}
3745
e5d1367f
SE
3746static void perf_event_context_sched_in(struct perf_event_context *ctx,
3747 struct task_struct *task)
235c7fc7 3748{
108b02cf 3749 struct perf_cpu_context *cpuctx;
235c7fc7 3750
108b02cf 3751 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3752 if (cpuctx->task_ctx == ctx)
3753 return;
3754
facc4307 3755 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3756 /*
3757 * We must check ctx->nr_events while holding ctx->lock, such
3758 * that we serialize against perf_install_in_context().
3759 */
3760 if (!ctx->nr_events)
3761 goto unlock;
3762
1b9a644f 3763 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3764 /*
3765 * We want to keep the following priority order:
3766 * cpu pinned (that don't need to move), task pinned,
3767 * cpu flexible, task flexible.
fe45bafb
AS
3768 *
3769 * However, if task's ctx is not carrying any pinned
3770 * events, no need to flip the cpuctx's events around.
329c0e01 3771 */
8e1a2031 3772 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3773 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3774 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3775 perf_pmu_enable(ctx->pmu);
fdccc3fb 3776
3777unlock:
facc4307 3778 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3779}
3780
8dc85d54
PZ
3781/*
3782 * Called from scheduler to add the events of the current task
3783 * with interrupts disabled.
3784 *
3785 * We restore the event value and then enable it.
3786 *
3787 * This does not protect us against NMI, but enable()
3788 * sets the enabled bit in the control field of event _before_
3789 * accessing the event control register. If a NMI hits, then it will
3790 * keep the event running.
3791 */
ab0cce56
JO
3792void __perf_event_task_sched_in(struct task_struct *prev,
3793 struct task_struct *task)
8dc85d54
PZ
3794{
3795 struct perf_event_context *ctx;
3796 int ctxn;
3797
7e41d177
PZ
3798 /*
3799 * If cgroup events exist on this CPU, then we need to check if we have
3800 * to switch in PMU state; cgroup event are system-wide mode only.
3801 *
3802 * Since cgroup events are CPU events, we must schedule these in before
3803 * we schedule in the task events.
3804 */
3805 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3806 perf_cgroup_sched_in(prev, task);
3807
8dc85d54
PZ
3808 for_each_task_context_nr(ctxn) {
3809 ctx = task->perf_event_ctxp[ctxn];
3810 if (likely(!ctx))
3811 continue;
3812
e5d1367f 3813 perf_event_context_sched_in(ctx, task);
8dc85d54 3814 }
d010b332 3815
45ac1403
AH
3816 if (atomic_read(&nr_switch_events))
3817 perf_event_switch(task, prev, true);
3818
ba532500
YZ
3819 if (__this_cpu_read(perf_sched_cb_usages))
3820 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3821}
3822
abd50713
PZ
3823static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3824{
3825 u64 frequency = event->attr.sample_freq;
3826 u64 sec = NSEC_PER_SEC;
3827 u64 divisor, dividend;
3828
3829 int count_fls, nsec_fls, frequency_fls, sec_fls;
3830
3831 count_fls = fls64(count);
3832 nsec_fls = fls64(nsec);
3833 frequency_fls = fls64(frequency);
3834 sec_fls = 30;
3835
3836 /*
3837 * We got @count in @nsec, with a target of sample_freq HZ
3838 * the target period becomes:
3839 *
3840 * @count * 10^9
3841 * period = -------------------
3842 * @nsec * sample_freq
3843 *
3844 */
3845
3846 /*
3847 * Reduce accuracy by one bit such that @a and @b converge
3848 * to a similar magnitude.
3849 */
fe4b04fa 3850#define REDUCE_FLS(a, b) \
abd50713
PZ
3851do { \
3852 if (a##_fls > b##_fls) { \
3853 a >>= 1; \
3854 a##_fls--; \
3855 } else { \
3856 b >>= 1; \
3857 b##_fls--; \
3858 } \
3859} while (0)
3860
3861 /*
3862 * Reduce accuracy until either term fits in a u64, then proceed with
3863 * the other, so that finally we can do a u64/u64 division.
3864 */
3865 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3866 REDUCE_FLS(nsec, frequency);
3867 REDUCE_FLS(sec, count);
3868 }
3869
3870 if (count_fls + sec_fls > 64) {
3871 divisor = nsec * frequency;
3872
3873 while (count_fls + sec_fls > 64) {
3874 REDUCE_FLS(count, sec);
3875 divisor >>= 1;
3876 }
3877
3878 dividend = count * sec;
3879 } else {
3880 dividend = count * sec;
3881
3882 while (nsec_fls + frequency_fls > 64) {
3883 REDUCE_FLS(nsec, frequency);
3884 dividend >>= 1;
3885 }
3886
3887 divisor = nsec * frequency;
3888 }
3889
f6ab91ad
PZ
3890 if (!divisor)
3891 return dividend;
3892
abd50713
PZ
3893 return div64_u64(dividend, divisor);
3894}
3895
e050e3f0
SE
3896static DEFINE_PER_CPU(int, perf_throttled_count);
3897static DEFINE_PER_CPU(u64, perf_throttled_seq);
3898
f39d47ff 3899static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3900{
cdd6c482 3901 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3902 s64 period, sample_period;
bd2b5b12
PZ
3903 s64 delta;
3904
abd50713 3905 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3906
3907 delta = (s64)(period - hwc->sample_period);
3908 delta = (delta + 7) / 8; /* low pass filter */
3909
3910 sample_period = hwc->sample_period + delta;
3911
3912 if (!sample_period)
3913 sample_period = 1;
3914
bd2b5b12 3915 hwc->sample_period = sample_period;
abd50713 3916
e7850595 3917 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3918 if (disable)
3919 event->pmu->stop(event, PERF_EF_UPDATE);
3920
e7850595 3921 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3922
3923 if (disable)
3924 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3925 }
bd2b5b12
PZ
3926}
3927
e050e3f0
SE
3928/*
3929 * combine freq adjustment with unthrottling to avoid two passes over the
3930 * events. At the same time, make sure, having freq events does not change
3931 * the rate of unthrottling as that would introduce bias.
3932 */
3933static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3934 int needs_unthr)
60db5e09 3935{
cdd6c482
IM
3936 struct perf_event *event;
3937 struct hw_perf_event *hwc;
e050e3f0 3938 u64 now, period = TICK_NSEC;
abd50713 3939 s64 delta;
60db5e09 3940
e050e3f0
SE
3941 /*
3942 * only need to iterate over all events iff:
3943 * - context have events in frequency mode (needs freq adjust)
3944 * - there are events to unthrottle on this cpu
3945 */
3946 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3947 return;
3948
e050e3f0 3949 raw_spin_lock(&ctx->lock);
f39d47ff 3950 perf_pmu_disable(ctx->pmu);
e050e3f0 3951
03541f8b 3952 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3953 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3954 continue;
3955
5632ab12 3956 if (!event_filter_match(event))
5d27c23d
PZ
3957 continue;
3958
44377277
AS
3959 perf_pmu_disable(event->pmu);
3960
cdd6c482 3961 hwc = &event->hw;
6a24ed6c 3962
ae23bff1 3963 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3964 hwc->interrupts = 0;
cdd6c482 3965 perf_log_throttle(event, 1);
a4eaf7f1 3966 event->pmu->start(event, 0);
a78ac325
PZ
3967 }
3968
cdd6c482 3969 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3970 goto next;
60db5e09 3971
e050e3f0
SE
3972 /*
3973 * stop the event and update event->count
3974 */
3975 event->pmu->stop(event, PERF_EF_UPDATE);
3976
e7850595 3977 now = local64_read(&event->count);
abd50713
PZ
3978 delta = now - hwc->freq_count_stamp;
3979 hwc->freq_count_stamp = now;
60db5e09 3980
e050e3f0
SE
3981 /*
3982 * restart the event
3983 * reload only if value has changed
f39d47ff
SE
3984 * we have stopped the event so tell that
3985 * to perf_adjust_period() to avoid stopping it
3986 * twice.
e050e3f0 3987 */
abd50713 3988 if (delta > 0)
f39d47ff 3989 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3990
3991 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3992 next:
3993 perf_pmu_enable(event->pmu);
60db5e09 3994 }
e050e3f0 3995
f39d47ff 3996 perf_pmu_enable(ctx->pmu);
e050e3f0 3997 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3998}
3999
235c7fc7 4000/*
8703a7cf 4001 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 4002 */
8703a7cf 4003static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 4004{
dddd3379
TG
4005 /*
4006 * Rotate the first entry last of non-pinned groups. Rotation might be
4007 * disabled by the inheritance code.
4008 */
8703a7cf
PZ
4009 if (ctx->rotate_disable)
4010 return;
8e1a2031 4011
8703a7cf
PZ
4012 perf_event_groups_delete(&ctx->flexible_groups, event);
4013 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
4014}
4015
7fa343b7 4016/* pick an event from the flexible_groups to rotate */
8d5bce0c 4017static inline struct perf_event *
7fa343b7 4018ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 4019{
7fa343b7
SL
4020 struct perf_event *event;
4021
4022 /* pick the first active flexible event */
4023 event = list_first_entry_or_null(&ctx->flexible_active,
4024 struct perf_event, active_list);
4025
4026 /* if no active flexible event, pick the first event */
4027 if (!event) {
4028 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4029 typeof(*event), group_node);
4030 }
4031
90c91dfb
PZ
4032 /*
4033 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4034 * finds there are unschedulable events, it will set it again.
4035 */
4036 ctx->rotate_necessary = 0;
4037
7fa343b7 4038 return event;
8d5bce0c
PZ
4039}
4040
4041static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4042{
4043 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
4044 struct perf_event_context *task_ctx = NULL;
4045 int cpu_rotate, task_rotate;
8d5bce0c
PZ
4046
4047 /*
4048 * Since we run this from IRQ context, nobody can install new
4049 * events, thus the event count values are stable.
4050 */
7fc23a53 4051
fd7d5517
IR
4052 cpu_rotate = cpuctx->ctx.rotate_necessary;
4053 task_ctx = cpuctx->task_ctx;
4054 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 4055
8d5bce0c
PZ
4056 if (!(cpu_rotate || task_rotate))
4057 return false;
0f5a2601 4058
facc4307 4059 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 4060 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 4061
8d5bce0c 4062 if (task_rotate)
7fa343b7 4063 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 4064 if (cpu_rotate)
7fa343b7 4065 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 4066
8d5bce0c
PZ
4067 /*
4068 * As per the order given at ctx_resched() first 'pop' task flexible
4069 * and then, if needed CPU flexible.
4070 */
fd7d5517
IR
4071 if (task_event || (task_ctx && cpu_event))
4072 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
4073 if (cpu_event)
4074 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 4075
8d5bce0c 4076 if (task_event)
fd7d5517 4077 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
4078 if (cpu_event)
4079 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 4080
fd7d5517 4081 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 4082
0f5a2601
PZ
4083 perf_pmu_enable(cpuctx->ctx.pmu);
4084 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4085
8d5bce0c 4086 return true;
e9d2b064
PZ
4087}
4088
4089void perf_event_task_tick(void)
4090{
2fde4f94
MR
4091 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4092 struct perf_event_context *ctx, *tmp;
e050e3f0 4093 int throttled;
b5ab4cd5 4094
16444645 4095 lockdep_assert_irqs_disabled();
e9d2b064 4096
e050e3f0
SE
4097 __this_cpu_inc(perf_throttled_seq);
4098 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4099 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4100
2fde4f94 4101 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 4102 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
4103}
4104
889ff015
FW
4105static int event_enable_on_exec(struct perf_event *event,
4106 struct perf_event_context *ctx)
4107{
4108 if (!event->attr.enable_on_exec)
4109 return 0;
4110
4111 event->attr.enable_on_exec = 0;
4112 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4113 return 0;
4114
0d3d73aa 4115 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4116
4117 return 1;
4118}
4119
57e7986e 4120/*
cdd6c482 4121 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4122 * This expects task == current.
4123 */
c1274499 4124static void perf_event_enable_on_exec(int ctxn)
57e7986e 4125{
c1274499 4126 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 4127 enum event_type_t event_type = 0;
3e349507 4128 struct perf_cpu_context *cpuctx;
cdd6c482 4129 struct perf_event *event;
57e7986e
PM
4130 unsigned long flags;
4131 int enabled = 0;
4132
4133 local_irq_save(flags);
c1274499 4134 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 4135 if (!ctx || !ctx->nr_events)
57e7986e
PM
4136 goto out;
4137
3e349507
PZ
4138 cpuctx = __get_cpu_context(ctx);
4139 perf_ctx_lock(cpuctx, ctx);
7fce2509 4140 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 4141 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4142 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4143 event_type |= get_event_type(event);
4144 }
57e7986e
PM
4145
4146 /*
3e349507 4147 * Unclone and reschedule this context if we enabled any event.
57e7986e 4148 */
3e349507 4149 if (enabled) {
211de6eb 4150 clone_ctx = unclone_ctx(ctx);
487f05e1 4151 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
4152 } else {
4153 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
4154 }
4155 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4156
9ed6060d 4157out:
57e7986e 4158 local_irq_restore(flags);
211de6eb
PZ
4159
4160 if (clone_ctx)
4161 put_ctx(clone_ctx);
57e7986e
PM
4162}
4163
0492d4c5
PZ
4164struct perf_read_data {
4165 struct perf_event *event;
4166 bool group;
7d88962e 4167 int ret;
0492d4c5
PZ
4168};
4169
451d24d1 4170static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4171{
d6a2f903
DCC
4172 u16 local_pkg, event_pkg;
4173
4174 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4175 int local_cpu = smp_processor_id();
4176
4177 event_pkg = topology_physical_package_id(event_cpu);
4178 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4179
4180 if (event_pkg == local_pkg)
4181 return local_cpu;
4182 }
4183
4184 return event_cpu;
4185}
4186
0793a61d 4187/*
cdd6c482 4188 * Cross CPU call to read the hardware event
0793a61d 4189 */
cdd6c482 4190static void __perf_event_read(void *info)
0793a61d 4191{
0492d4c5
PZ
4192 struct perf_read_data *data = info;
4193 struct perf_event *sub, *event = data->event;
cdd6c482 4194 struct perf_event_context *ctx = event->ctx;
108b02cf 4195 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 4196 struct pmu *pmu = event->pmu;
621a01ea 4197
e1ac3614
PM
4198 /*
4199 * If this is a task context, we need to check whether it is
4200 * the current task context of this cpu. If not it has been
4201 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4202 * event->count would have been updated to a recent sample
4203 * when the event was scheduled out.
e1ac3614
PM
4204 */
4205 if (ctx->task && cpuctx->task_ctx != ctx)
4206 return;
4207
e625cce1 4208 raw_spin_lock(&ctx->lock);
0c1cbc18 4209 if (ctx->is_active & EVENT_TIME) {
542e72fc 4210 update_context_time(ctx);
e5d1367f
SE
4211 update_cgrp_time_from_event(event);
4212 }
0492d4c5 4213
0d3d73aa
PZ
4214 perf_event_update_time(event);
4215 if (data->group)
4216 perf_event_update_sibling_time(event);
0c1cbc18 4217
4a00c16e
SB
4218 if (event->state != PERF_EVENT_STATE_ACTIVE)
4219 goto unlock;
0492d4c5 4220
4a00c16e
SB
4221 if (!data->group) {
4222 pmu->read(event);
4223 data->ret = 0;
0492d4c5 4224 goto unlock;
4a00c16e
SB
4225 }
4226
4227 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4228
4229 pmu->read(event);
0492d4c5 4230
edb39592 4231 for_each_sibling_event(sub, event) {
4a00c16e
SB
4232 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4233 /*
4234 * Use sibling's PMU rather than @event's since
4235 * sibling could be on different (eg: software) PMU.
4236 */
0492d4c5 4237 sub->pmu->read(sub);
4a00c16e 4238 }
0492d4c5 4239 }
4a00c16e
SB
4240
4241 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4242
4243unlock:
e625cce1 4244 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4245}
4246
b5e58793
PZ
4247static inline u64 perf_event_count(struct perf_event *event)
4248{
c39a0e2c 4249 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4250}
4251
ffe8690c
KX
4252/*
4253 * NMI-safe method to read a local event, that is an event that
4254 * is:
4255 * - either for the current task, or for this CPU
4256 * - does not have inherit set, for inherited task events
4257 * will not be local and we cannot read them atomically
4258 * - must not have a pmu::count method
4259 */
7d9285e8
YS
4260int perf_event_read_local(struct perf_event *event, u64 *value,
4261 u64 *enabled, u64 *running)
ffe8690c
KX
4262{
4263 unsigned long flags;
f91840a3 4264 int ret = 0;
ffe8690c
KX
4265
4266 /*
4267 * Disabling interrupts avoids all counter scheduling (context
4268 * switches, timer based rotation and IPIs).
4269 */
4270 local_irq_save(flags);
4271
ffe8690c
KX
4272 /*
4273 * It must not be an event with inherit set, we cannot read
4274 * all child counters from atomic context.
4275 */
f91840a3
AS
4276 if (event->attr.inherit) {
4277 ret = -EOPNOTSUPP;
4278 goto out;
4279 }
ffe8690c 4280
f91840a3
AS
4281 /* If this is a per-task event, it must be for current */
4282 if ((event->attach_state & PERF_ATTACH_TASK) &&
4283 event->hw.target != current) {
4284 ret = -EINVAL;
4285 goto out;
4286 }
4287
4288 /* If this is a per-CPU event, it must be for this CPU */
4289 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4290 event->cpu != smp_processor_id()) {
4291 ret = -EINVAL;
4292 goto out;
4293 }
ffe8690c 4294
befb1b3c
RC
4295 /* If this is a pinned event it must be running on this CPU */
4296 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4297 ret = -EBUSY;
4298 goto out;
4299 }
4300
ffe8690c
KX
4301 /*
4302 * If the event is currently on this CPU, its either a per-task event,
4303 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4304 * oncpu == -1).
4305 */
4306 if (event->oncpu == smp_processor_id())
4307 event->pmu->read(event);
4308
f91840a3 4309 *value = local64_read(&event->count);
0d3d73aa
PZ
4310 if (enabled || running) {
4311 u64 now = event->shadow_ctx_time + perf_clock();
4312 u64 __enabled, __running;
4313
4314 __perf_update_times(event, now, &__enabled, &__running);
4315 if (enabled)
4316 *enabled = __enabled;
4317 if (running)
4318 *running = __running;
4319 }
f91840a3 4320out:
ffe8690c
KX
4321 local_irq_restore(flags);
4322
f91840a3 4323 return ret;
ffe8690c
KX
4324}
4325
7d88962e 4326static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4327{
0c1cbc18 4328 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4329 int event_cpu, ret = 0;
7d88962e 4330
0793a61d 4331 /*
cdd6c482
IM
4332 * If event is enabled and currently active on a CPU, update the
4333 * value in the event structure:
0793a61d 4334 */
0c1cbc18
PZ
4335again:
4336 if (state == PERF_EVENT_STATE_ACTIVE) {
4337 struct perf_read_data data;
4338
4339 /*
4340 * Orders the ->state and ->oncpu loads such that if we see
4341 * ACTIVE we must also see the right ->oncpu.
4342 *
4343 * Matches the smp_wmb() from event_sched_in().
4344 */
4345 smp_rmb();
d6a2f903 4346
451d24d1
PZ
4347 event_cpu = READ_ONCE(event->oncpu);
4348 if ((unsigned)event_cpu >= nr_cpu_ids)
4349 return 0;
4350
0c1cbc18
PZ
4351 data = (struct perf_read_data){
4352 .event = event,
4353 .group = group,
4354 .ret = 0,
4355 };
4356
451d24d1
PZ
4357 preempt_disable();
4358 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4359
58763148
PZ
4360 /*
4361 * Purposely ignore the smp_call_function_single() return
4362 * value.
4363 *
451d24d1 4364 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4365 * scheduled out and that will have updated the event count.
4366 *
4367 * Therefore, either way, we'll have an up-to-date event count
4368 * after this.
4369 */
451d24d1
PZ
4370 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4371 preempt_enable();
58763148 4372 ret = data.ret;
0c1cbc18
PZ
4373
4374 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4375 struct perf_event_context *ctx = event->ctx;
4376 unsigned long flags;
4377
e625cce1 4378 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4379 state = event->state;
4380 if (state != PERF_EVENT_STATE_INACTIVE) {
4381 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4382 goto again;
4383 }
4384
c530ccd9 4385 /*
0c1cbc18
PZ
4386 * May read while context is not active (e.g., thread is
4387 * blocked), in that case we cannot update context time
c530ccd9 4388 */
0c1cbc18 4389 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4390 update_context_time(ctx);
e5d1367f
SE
4391 update_cgrp_time_from_event(event);
4392 }
0c1cbc18 4393
0d3d73aa 4394 perf_event_update_time(event);
0492d4c5 4395 if (group)
0d3d73aa 4396 perf_event_update_sibling_time(event);
e625cce1 4397 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4398 }
7d88962e
SB
4399
4400 return ret;
0793a61d
TG
4401}
4402
a63eaf34 4403/*
cdd6c482 4404 * Initialize the perf_event context in a task_struct:
a63eaf34 4405 */
eb184479 4406static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4407{
e625cce1 4408 raw_spin_lock_init(&ctx->lock);
a63eaf34 4409 mutex_init(&ctx->mutex);
2fde4f94 4410 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4411 perf_event_groups_init(&ctx->pinned_groups);
4412 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4413 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4414 INIT_LIST_HEAD(&ctx->pinned_active);
4415 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4416 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4417}
4418
4419static struct perf_event_context *
4420alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4421{
4422 struct perf_event_context *ctx;
4423
4424 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4425 if (!ctx)
4426 return NULL;
4427
4428 __perf_event_init_context(ctx);
7b3c92b8
MWO
4429 if (task)
4430 ctx->task = get_task_struct(task);
eb184479
PZ
4431 ctx->pmu = pmu;
4432
4433 return ctx;
a63eaf34
PM
4434}
4435
2ebd4ffb
MH
4436static struct task_struct *
4437find_lively_task_by_vpid(pid_t vpid)
4438{
4439 struct task_struct *task;
0793a61d
TG
4440
4441 rcu_read_lock();
2ebd4ffb 4442 if (!vpid)
0793a61d
TG
4443 task = current;
4444 else
2ebd4ffb 4445 task = find_task_by_vpid(vpid);
0793a61d
TG
4446 if (task)
4447 get_task_struct(task);
4448 rcu_read_unlock();
4449
4450 if (!task)
4451 return ERR_PTR(-ESRCH);
4452
2ebd4ffb 4453 return task;
2ebd4ffb
MH
4454}
4455
fe4b04fa
PZ
4456/*
4457 * Returns a matching context with refcount and pincount.
4458 */
108b02cf 4459static struct perf_event_context *
4af57ef2
YZ
4460find_get_context(struct pmu *pmu, struct task_struct *task,
4461 struct perf_event *event)
0793a61d 4462{
211de6eb 4463 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4464 struct perf_cpu_context *cpuctx;
4af57ef2 4465 void *task_ctx_data = NULL;
25346b93 4466 unsigned long flags;
8dc85d54 4467 int ctxn, err;
4af57ef2 4468 int cpu = event->cpu;
0793a61d 4469
22a4ec72 4470 if (!task) {
cdd6c482 4471 /* Must be root to operate on a CPU event: */
da97e184
JFG
4472 err = perf_allow_cpu(&event->attr);
4473 if (err)
4474 return ERR_PTR(err);
0793a61d 4475
108b02cf 4476 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4477 ctx = &cpuctx->ctx;
c93f7669 4478 get_ctx(ctx);
fe4b04fa 4479 ++ctx->pin_count;
0793a61d 4480
0793a61d
TG
4481 return ctx;
4482 }
4483
8dc85d54
PZ
4484 err = -EINVAL;
4485 ctxn = pmu->task_ctx_nr;
4486 if (ctxn < 0)
4487 goto errout;
4488
4af57ef2 4489 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
ff9ff926 4490 task_ctx_data = alloc_task_ctx_data(pmu);
4af57ef2
YZ
4491 if (!task_ctx_data) {
4492 err = -ENOMEM;
4493 goto errout;
4494 }
4495 }
4496
9ed6060d 4497retry:
8dc85d54 4498 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4499 if (ctx) {
211de6eb 4500 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4501 ++ctx->pin_count;
4af57ef2
YZ
4502
4503 if (task_ctx_data && !ctx->task_ctx_data) {
4504 ctx->task_ctx_data = task_ctx_data;
4505 task_ctx_data = NULL;
4506 }
e625cce1 4507 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4508
4509 if (clone_ctx)
4510 put_ctx(clone_ctx);
9137fb28 4511 } else {
eb184479 4512 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4513 err = -ENOMEM;
4514 if (!ctx)
4515 goto errout;
eb184479 4516
4af57ef2
YZ
4517 if (task_ctx_data) {
4518 ctx->task_ctx_data = task_ctx_data;
4519 task_ctx_data = NULL;
4520 }
4521
dbe08d82
ON
4522 err = 0;
4523 mutex_lock(&task->perf_event_mutex);
4524 /*
4525 * If it has already passed perf_event_exit_task().
4526 * we must see PF_EXITING, it takes this mutex too.
4527 */
4528 if (task->flags & PF_EXITING)
4529 err = -ESRCH;
4530 else if (task->perf_event_ctxp[ctxn])
4531 err = -EAGAIN;
fe4b04fa 4532 else {
9137fb28 4533 get_ctx(ctx);
fe4b04fa 4534 ++ctx->pin_count;
dbe08d82 4535 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4536 }
dbe08d82
ON
4537 mutex_unlock(&task->perf_event_mutex);
4538
4539 if (unlikely(err)) {
9137fb28 4540 put_ctx(ctx);
dbe08d82
ON
4541
4542 if (err == -EAGAIN)
4543 goto retry;
4544 goto errout;
a63eaf34
PM
4545 }
4546 }
4547
ff9ff926 4548 free_task_ctx_data(pmu, task_ctx_data);
0793a61d 4549 return ctx;
c93f7669 4550
9ed6060d 4551errout:
ff9ff926 4552 free_task_ctx_data(pmu, task_ctx_data);
c93f7669 4553 return ERR_PTR(err);
0793a61d
TG
4554}
4555
6fb2915d 4556static void perf_event_free_filter(struct perf_event *event);
2541517c 4557static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4558
cdd6c482 4559static void free_event_rcu(struct rcu_head *head)
592903cd 4560{
cdd6c482 4561 struct perf_event *event;
592903cd 4562
cdd6c482
IM
4563 event = container_of(head, struct perf_event, rcu_head);
4564 if (event->ns)
4565 put_pid_ns(event->ns);
6fb2915d 4566 perf_event_free_filter(event);
cdd6c482 4567 kfree(event);
592903cd
PZ
4568}
4569
b69cf536 4570static void ring_buffer_attach(struct perf_event *event,
56de4e8f 4571 struct perf_buffer *rb);
925d519a 4572
f2fb6bef
KL
4573static void detach_sb_event(struct perf_event *event)
4574{
4575 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4576
4577 raw_spin_lock(&pel->lock);
4578 list_del_rcu(&event->sb_list);
4579 raw_spin_unlock(&pel->lock);
4580}
4581
a4f144eb 4582static bool is_sb_event(struct perf_event *event)
f2fb6bef 4583{
a4f144eb
DCC
4584 struct perf_event_attr *attr = &event->attr;
4585
f2fb6bef 4586 if (event->parent)
a4f144eb 4587 return false;
f2fb6bef
KL
4588
4589 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4590 return false;
f2fb6bef 4591
a4f144eb
DCC
4592 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4593 attr->comm || attr->comm_exec ||
76193a94 4594 attr->task || attr->ksymbol ||
e17d43b9 4595 attr->context_switch || attr->text_poke ||
21038f2b 4596 attr->bpf_event)
a4f144eb
DCC
4597 return true;
4598 return false;
4599}
4600
4601static void unaccount_pmu_sb_event(struct perf_event *event)
4602{
4603 if (is_sb_event(event))
4604 detach_sb_event(event);
f2fb6bef
KL
4605}
4606
4beb31f3 4607static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4608{
4beb31f3
FW
4609 if (event->parent)
4610 return;
4611
4beb31f3
FW
4612 if (is_cgroup_event(event))
4613 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4614}
925d519a 4615
555e0c1e
FW
4616#ifdef CONFIG_NO_HZ_FULL
4617static DEFINE_SPINLOCK(nr_freq_lock);
4618#endif
4619
4620static void unaccount_freq_event_nohz(void)
4621{
4622#ifdef CONFIG_NO_HZ_FULL
4623 spin_lock(&nr_freq_lock);
4624 if (atomic_dec_and_test(&nr_freq_events))
4625 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4626 spin_unlock(&nr_freq_lock);
4627#endif
4628}
4629
4630static void unaccount_freq_event(void)
4631{
4632 if (tick_nohz_full_enabled())
4633 unaccount_freq_event_nohz();
4634 else
4635 atomic_dec(&nr_freq_events);
4636}
4637
4beb31f3
FW
4638static void unaccount_event(struct perf_event *event)
4639{
25432ae9
PZ
4640 bool dec = false;
4641
4beb31f3
FW
4642 if (event->parent)
4643 return;
4644
4645 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4646 dec = true;
4beb31f3
FW
4647 if (event->attr.mmap || event->attr.mmap_data)
4648 atomic_dec(&nr_mmap_events);
4649 if (event->attr.comm)
4650 atomic_dec(&nr_comm_events);
e4222673
HB
4651 if (event->attr.namespaces)
4652 atomic_dec(&nr_namespaces_events);
96aaab68
NK
4653 if (event->attr.cgroup)
4654 atomic_dec(&nr_cgroup_events);
4beb31f3
FW
4655 if (event->attr.task)
4656 atomic_dec(&nr_task_events);
948b26b6 4657 if (event->attr.freq)
555e0c1e 4658 unaccount_freq_event();
45ac1403 4659 if (event->attr.context_switch) {
25432ae9 4660 dec = true;
45ac1403
AH
4661 atomic_dec(&nr_switch_events);
4662 }
4beb31f3 4663 if (is_cgroup_event(event))
25432ae9 4664 dec = true;
4beb31f3 4665 if (has_branch_stack(event))
25432ae9 4666 dec = true;
76193a94
SL
4667 if (event->attr.ksymbol)
4668 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4669 if (event->attr.bpf_event)
4670 atomic_dec(&nr_bpf_events);
e17d43b9
AH
4671 if (event->attr.text_poke)
4672 atomic_dec(&nr_text_poke_events);
25432ae9 4673
9107c89e
PZ
4674 if (dec) {
4675 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4676 schedule_delayed_work(&perf_sched_work, HZ);
4677 }
4beb31f3
FW
4678
4679 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4680
4681 unaccount_pmu_sb_event(event);
4beb31f3 4682}
925d519a 4683
9107c89e
PZ
4684static void perf_sched_delayed(struct work_struct *work)
4685{
4686 mutex_lock(&perf_sched_mutex);
4687 if (atomic_dec_and_test(&perf_sched_count))
4688 static_branch_disable(&perf_sched_events);
4689 mutex_unlock(&perf_sched_mutex);
4690}
4691
bed5b25a
AS
4692/*
4693 * The following implement mutual exclusion of events on "exclusive" pmus
4694 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4695 * at a time, so we disallow creating events that might conflict, namely:
4696 *
4697 * 1) cpu-wide events in the presence of per-task events,
4698 * 2) per-task events in the presence of cpu-wide events,
4699 * 3) two matching events on the same context.
4700 *
4701 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4702 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4703 */
4704static int exclusive_event_init(struct perf_event *event)
4705{
4706 struct pmu *pmu = event->pmu;
4707
8a58ddae 4708 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4709 return 0;
4710
4711 /*
4712 * Prevent co-existence of per-task and cpu-wide events on the
4713 * same exclusive pmu.
4714 *
4715 * Negative pmu::exclusive_cnt means there are cpu-wide
4716 * events on this "exclusive" pmu, positive means there are
4717 * per-task events.
4718 *
4719 * Since this is called in perf_event_alloc() path, event::ctx
4720 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4721 * to mean "per-task event", because unlike other attach states it
4722 * never gets cleared.
4723 */
4724 if (event->attach_state & PERF_ATTACH_TASK) {
4725 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4726 return -EBUSY;
4727 } else {
4728 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4729 return -EBUSY;
4730 }
4731
4732 return 0;
4733}
4734
4735static void exclusive_event_destroy(struct perf_event *event)
4736{
4737 struct pmu *pmu = event->pmu;
4738
8a58ddae 4739 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4740 return;
4741
4742 /* see comment in exclusive_event_init() */
4743 if (event->attach_state & PERF_ATTACH_TASK)
4744 atomic_dec(&pmu->exclusive_cnt);
4745 else
4746 atomic_inc(&pmu->exclusive_cnt);
4747}
4748
4749static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4750{
3bf6215a 4751 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4752 (e1->cpu == e2->cpu ||
4753 e1->cpu == -1 ||
4754 e2->cpu == -1))
4755 return true;
4756 return false;
4757}
4758
bed5b25a
AS
4759static bool exclusive_event_installable(struct perf_event *event,
4760 struct perf_event_context *ctx)
4761{
4762 struct perf_event *iter_event;
4763 struct pmu *pmu = event->pmu;
4764
8a58ddae
AS
4765 lockdep_assert_held(&ctx->mutex);
4766
4767 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4768 return true;
4769
4770 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4771 if (exclusive_event_match(iter_event, event))
4772 return false;
4773 }
4774
4775 return true;
4776}
4777
375637bc
AS
4778static void perf_addr_filters_splice(struct perf_event *event,
4779 struct list_head *head);
4780
683ede43 4781static void _free_event(struct perf_event *event)
f1600952 4782{
e360adbe 4783 irq_work_sync(&event->pending);
925d519a 4784
4beb31f3 4785 unaccount_event(event);
9ee318a7 4786
da97e184
JFG
4787 security_perf_event_free(event);
4788
76369139 4789 if (event->rb) {
9bb5d40c
PZ
4790 /*
4791 * Can happen when we close an event with re-directed output.
4792 *
4793 * Since we have a 0 refcount, perf_mmap_close() will skip
4794 * over us; possibly making our ring_buffer_put() the last.
4795 */
4796 mutex_lock(&event->mmap_mutex);
b69cf536 4797 ring_buffer_attach(event, NULL);
9bb5d40c 4798 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4799 }
4800
e5d1367f
SE
4801 if (is_cgroup_event(event))
4802 perf_detach_cgroup(event);
4803
a0733e69
PZ
4804 if (!event->parent) {
4805 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4806 put_callchain_buffers();
4807 }
4808
4809 perf_event_free_bpf_prog(event);
375637bc 4810 perf_addr_filters_splice(event, NULL);
c60f83b8 4811 kfree(event->addr_filter_ranges);
a0733e69
PZ
4812
4813 if (event->destroy)
4814 event->destroy(event);
4815
1cf8dfe8
PZ
4816 /*
4817 * Must be after ->destroy(), due to uprobe_perf_close() using
4818 * hw.target.
4819 */
621b6d2e
PB
4820 if (event->hw.target)
4821 put_task_struct(event->hw.target);
4822
1cf8dfe8
PZ
4823 /*
4824 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4825 * all task references must be cleaned up.
4826 */
4827 if (event->ctx)
4828 put_ctx(event->ctx);
4829
62a92c8f
AS
4830 exclusive_event_destroy(event);
4831 module_put(event->pmu->module);
a0733e69
PZ
4832
4833 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4834}
4835
683ede43
PZ
4836/*
4837 * Used to free events which have a known refcount of 1, such as in error paths
4838 * where the event isn't exposed yet and inherited events.
4839 */
4840static void free_event(struct perf_event *event)
0793a61d 4841{
683ede43
PZ
4842 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4843 "unexpected event refcount: %ld; ptr=%p\n",
4844 atomic_long_read(&event->refcount), event)) {
4845 /* leak to avoid use-after-free */
4846 return;
4847 }
0793a61d 4848
683ede43 4849 _free_event(event);
0793a61d
TG
4850}
4851
a66a3052 4852/*
f8697762 4853 * Remove user event from the owner task.
a66a3052 4854 */
f8697762 4855static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4856{
8882135b 4857 struct task_struct *owner;
fb0459d7 4858
8882135b 4859 rcu_read_lock();
8882135b 4860 /*
f47c02c0
PZ
4861 * Matches the smp_store_release() in perf_event_exit_task(). If we
4862 * observe !owner it means the list deletion is complete and we can
4863 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4864 * owner->perf_event_mutex.
4865 */
506458ef 4866 owner = READ_ONCE(event->owner);
8882135b
PZ
4867 if (owner) {
4868 /*
4869 * Since delayed_put_task_struct() also drops the last
4870 * task reference we can safely take a new reference
4871 * while holding the rcu_read_lock().
4872 */
4873 get_task_struct(owner);
4874 }
4875 rcu_read_unlock();
4876
4877 if (owner) {
f63a8daa
PZ
4878 /*
4879 * If we're here through perf_event_exit_task() we're already
4880 * holding ctx->mutex which would be an inversion wrt. the
4881 * normal lock order.
4882 *
4883 * However we can safely take this lock because its the child
4884 * ctx->mutex.
4885 */
4886 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4887
8882135b
PZ
4888 /*
4889 * We have to re-check the event->owner field, if it is cleared
4890 * we raced with perf_event_exit_task(), acquiring the mutex
4891 * ensured they're done, and we can proceed with freeing the
4892 * event.
4893 */
f47c02c0 4894 if (event->owner) {
8882135b 4895 list_del_init(&event->owner_entry);
f47c02c0
PZ
4896 smp_store_release(&event->owner, NULL);
4897 }
8882135b
PZ
4898 mutex_unlock(&owner->perf_event_mutex);
4899 put_task_struct(owner);
4900 }
f8697762
JO
4901}
4902
f8697762
JO
4903static void put_event(struct perf_event *event)
4904{
f8697762
JO
4905 if (!atomic_long_dec_and_test(&event->refcount))
4906 return;
4907
c6e5b732
PZ
4908 _free_event(event);
4909}
4910
4911/*
4912 * Kill an event dead; while event:refcount will preserve the event
4913 * object, it will not preserve its functionality. Once the last 'user'
4914 * gives up the object, we'll destroy the thing.
4915 */
4916int perf_event_release_kernel(struct perf_event *event)
4917{
a4f4bb6d 4918 struct perf_event_context *ctx = event->ctx;
c6e5b732 4919 struct perf_event *child, *tmp;
82d94856 4920 LIST_HEAD(free_list);
c6e5b732 4921
a4f4bb6d
PZ
4922 /*
4923 * If we got here through err_file: fput(event_file); we will not have
4924 * attached to a context yet.
4925 */
4926 if (!ctx) {
4927 WARN_ON_ONCE(event->attach_state &
4928 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4929 goto no_ctx;
4930 }
4931
f8697762
JO
4932 if (!is_kernel_event(event))
4933 perf_remove_from_owner(event);
8882135b 4934
5fa7c8ec 4935 ctx = perf_event_ctx_lock(event);
a83fe28e 4936 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4937 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4938
a69b0ca4 4939 raw_spin_lock_irq(&ctx->lock);
683ede43 4940 /*
d8a8cfc7 4941 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4942 * anymore.
683ede43 4943 *
a69b0ca4
PZ
4944 * Anybody acquiring event->child_mutex after the below loop _must_
4945 * also see this, most importantly inherit_event() which will avoid
4946 * placing more children on the list.
683ede43 4947 *
c6e5b732
PZ
4948 * Thus this guarantees that we will in fact observe and kill _ALL_
4949 * child events.
683ede43 4950 */
a69b0ca4
PZ
4951 event->state = PERF_EVENT_STATE_DEAD;
4952 raw_spin_unlock_irq(&ctx->lock);
4953
4954 perf_event_ctx_unlock(event, ctx);
683ede43 4955
c6e5b732
PZ
4956again:
4957 mutex_lock(&event->child_mutex);
4958 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4959
c6e5b732
PZ
4960 /*
4961 * Cannot change, child events are not migrated, see the
4962 * comment with perf_event_ctx_lock_nested().
4963 */
506458ef 4964 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4965 /*
4966 * Since child_mutex nests inside ctx::mutex, we must jump
4967 * through hoops. We start by grabbing a reference on the ctx.
4968 *
4969 * Since the event cannot get freed while we hold the
4970 * child_mutex, the context must also exist and have a !0
4971 * reference count.
4972 */
4973 get_ctx(ctx);
4974
4975 /*
4976 * Now that we have a ctx ref, we can drop child_mutex, and
4977 * acquire ctx::mutex without fear of it going away. Then we
4978 * can re-acquire child_mutex.
4979 */
4980 mutex_unlock(&event->child_mutex);
4981 mutex_lock(&ctx->mutex);
4982 mutex_lock(&event->child_mutex);
4983
4984 /*
4985 * Now that we hold ctx::mutex and child_mutex, revalidate our
4986 * state, if child is still the first entry, it didn't get freed
4987 * and we can continue doing so.
4988 */
4989 tmp = list_first_entry_or_null(&event->child_list,
4990 struct perf_event, child_list);
4991 if (tmp == child) {
4992 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4993 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4994 /*
4995 * This matches the refcount bump in inherit_event();
4996 * this can't be the last reference.
4997 */
4998 put_event(event);
4999 }
5000
5001 mutex_unlock(&event->child_mutex);
5002 mutex_unlock(&ctx->mutex);
5003 put_ctx(ctx);
5004 goto again;
5005 }
5006 mutex_unlock(&event->child_mutex);
5007
82d94856 5008 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
5009 void *var = &child->ctx->refcount;
5010
82d94856
PZ
5011 list_del(&child->child_list);
5012 free_event(child);
1cf8dfe8
PZ
5013
5014 /*
5015 * Wake any perf_event_free_task() waiting for this event to be
5016 * freed.
5017 */
5018 smp_mb(); /* pairs with wait_var_event() */
5019 wake_up_var(var);
82d94856
PZ
5020 }
5021
a4f4bb6d
PZ
5022no_ctx:
5023 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
5024 return 0;
5025}
5026EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5027
8b10c5e2
PZ
5028/*
5029 * Called when the last reference to the file is gone.
5030 */
a6fa941d
AV
5031static int perf_release(struct inode *inode, struct file *file)
5032{
c6e5b732 5033 perf_event_release_kernel(file->private_data);
a6fa941d 5034 return 0;
fb0459d7 5035}
fb0459d7 5036
ca0dd44c 5037static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 5038{
cdd6c482 5039 struct perf_event *child;
e53c0994
PZ
5040 u64 total = 0;
5041
59ed446f
PZ
5042 *enabled = 0;
5043 *running = 0;
5044
6f10581a 5045 mutex_lock(&event->child_mutex);
01add3ea 5046
7d88962e 5047 (void)perf_event_read(event, false);
01add3ea
SB
5048 total += perf_event_count(event);
5049
59ed446f
PZ
5050 *enabled += event->total_time_enabled +
5051 atomic64_read(&event->child_total_time_enabled);
5052 *running += event->total_time_running +
5053 atomic64_read(&event->child_total_time_running);
5054
5055 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5056 (void)perf_event_read(child, false);
01add3ea 5057 total += perf_event_count(child);
59ed446f
PZ
5058 *enabled += child->total_time_enabled;
5059 *running += child->total_time_running;
5060 }
6f10581a 5061 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5062
5063 return total;
5064}
ca0dd44c
PZ
5065
5066u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5067{
5068 struct perf_event_context *ctx;
5069 u64 count;
5070
5071 ctx = perf_event_ctx_lock(event);
5072 count = __perf_event_read_value(event, enabled, running);
5073 perf_event_ctx_unlock(event, ctx);
5074
5075 return count;
5076}
fb0459d7 5077EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5078
7d88962e 5079static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5080 u64 read_format, u64 *values)
3dab77fb 5081{
2aeb1883 5082 struct perf_event_context *ctx = leader->ctx;
fa8c2693 5083 struct perf_event *sub;
2aeb1883 5084 unsigned long flags;
fa8c2693 5085 int n = 1; /* skip @nr */
7d88962e 5086 int ret;
f63a8daa 5087
7d88962e
SB
5088 ret = perf_event_read(leader, true);
5089 if (ret)
5090 return ret;
abf4868b 5091
a9cd8194
PZ
5092 raw_spin_lock_irqsave(&ctx->lock, flags);
5093
fa8c2693
PZ
5094 /*
5095 * Since we co-schedule groups, {enabled,running} times of siblings
5096 * will be identical to those of the leader, so we only publish one
5097 * set.
5098 */
5099 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5100 values[n++] += leader->total_time_enabled +
5101 atomic64_read(&leader->child_total_time_enabled);
5102 }
3dab77fb 5103
fa8c2693
PZ
5104 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5105 values[n++] += leader->total_time_running +
5106 atomic64_read(&leader->child_total_time_running);
5107 }
5108
5109 /*
5110 * Write {count,id} tuples for every sibling.
5111 */
5112 values[n++] += perf_event_count(leader);
abf4868b
PZ
5113 if (read_format & PERF_FORMAT_ID)
5114 values[n++] = primary_event_id(leader);
3dab77fb 5115
edb39592 5116 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5117 values[n++] += perf_event_count(sub);
5118 if (read_format & PERF_FORMAT_ID)
5119 values[n++] = primary_event_id(sub);
5120 }
7d88962e 5121
2aeb1883 5122 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 5123 return 0;
fa8c2693 5124}
3dab77fb 5125
fa8c2693
PZ
5126static int perf_read_group(struct perf_event *event,
5127 u64 read_format, char __user *buf)
5128{
5129 struct perf_event *leader = event->group_leader, *child;
5130 struct perf_event_context *ctx = leader->ctx;
7d88962e 5131 int ret;
fa8c2693 5132 u64 *values;
3dab77fb 5133
fa8c2693 5134 lockdep_assert_held(&ctx->mutex);
3dab77fb 5135
fa8c2693
PZ
5136 values = kzalloc(event->read_size, GFP_KERNEL);
5137 if (!values)
5138 return -ENOMEM;
3dab77fb 5139
fa8c2693
PZ
5140 values[0] = 1 + leader->nr_siblings;
5141
5142 /*
5143 * By locking the child_mutex of the leader we effectively
5144 * lock the child list of all siblings.. XXX explain how.
5145 */
5146 mutex_lock(&leader->child_mutex);
abf4868b 5147
7d88962e
SB
5148 ret = __perf_read_group_add(leader, read_format, values);
5149 if (ret)
5150 goto unlock;
5151
5152 list_for_each_entry(child, &leader->child_list, child_list) {
5153 ret = __perf_read_group_add(child, read_format, values);
5154 if (ret)
5155 goto unlock;
5156 }
abf4868b 5157
fa8c2693 5158 mutex_unlock(&leader->child_mutex);
abf4868b 5159
7d88962e 5160 ret = event->read_size;
fa8c2693
PZ
5161 if (copy_to_user(buf, values, event->read_size))
5162 ret = -EFAULT;
7d88962e 5163 goto out;
fa8c2693 5164
7d88962e
SB
5165unlock:
5166 mutex_unlock(&leader->child_mutex);
5167out:
fa8c2693 5168 kfree(values);
abf4868b 5169 return ret;
3dab77fb
PZ
5170}
5171
b15f495b 5172static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5173 u64 read_format, char __user *buf)
5174{
59ed446f 5175 u64 enabled, running;
3dab77fb
PZ
5176 u64 values[4];
5177 int n = 0;
5178
ca0dd44c 5179 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5180 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5181 values[n++] = enabled;
5182 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5183 values[n++] = running;
3dab77fb 5184 if (read_format & PERF_FORMAT_ID)
cdd6c482 5185 values[n++] = primary_event_id(event);
3dab77fb
PZ
5186
5187 if (copy_to_user(buf, values, n * sizeof(u64)))
5188 return -EFAULT;
5189
5190 return n * sizeof(u64);
5191}
5192
dc633982
JO
5193static bool is_event_hup(struct perf_event *event)
5194{
5195 bool no_children;
5196
a69b0ca4 5197 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5198 return false;
5199
5200 mutex_lock(&event->child_mutex);
5201 no_children = list_empty(&event->child_list);
5202 mutex_unlock(&event->child_mutex);
5203 return no_children;
5204}
5205
0793a61d 5206/*
cdd6c482 5207 * Read the performance event - simple non blocking version for now
0793a61d
TG
5208 */
5209static ssize_t
b15f495b 5210__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5211{
cdd6c482 5212 u64 read_format = event->attr.read_format;
3dab77fb 5213 int ret;
0793a61d 5214
3b6f9e5c 5215 /*
788faab7 5216 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5217 * error state (i.e. because it was pinned but it couldn't be
5218 * scheduled on to the CPU at some point).
5219 */
cdd6c482 5220 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5221 return 0;
5222
c320c7b7 5223 if (count < event->read_size)
3dab77fb
PZ
5224 return -ENOSPC;
5225
cdd6c482 5226 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5227 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5228 ret = perf_read_group(event, read_format, buf);
3dab77fb 5229 else
b15f495b 5230 ret = perf_read_one(event, read_format, buf);
0793a61d 5231
3dab77fb 5232 return ret;
0793a61d
TG
5233}
5234
0793a61d
TG
5235static ssize_t
5236perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5237{
cdd6c482 5238 struct perf_event *event = file->private_data;
f63a8daa
PZ
5239 struct perf_event_context *ctx;
5240 int ret;
0793a61d 5241
da97e184
JFG
5242 ret = security_perf_event_read(event);
5243 if (ret)
5244 return ret;
5245
f63a8daa 5246 ctx = perf_event_ctx_lock(event);
b15f495b 5247 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5248 perf_event_ctx_unlock(event, ctx);
5249
5250 return ret;
0793a61d
TG
5251}
5252
9dd95748 5253static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5254{
cdd6c482 5255 struct perf_event *event = file->private_data;
56de4e8f 5256 struct perf_buffer *rb;
a9a08845 5257 __poll_t events = EPOLLHUP;
c7138f37 5258
e708d7ad 5259 poll_wait(file, &event->waitq, wait);
179033b3 5260
dc633982 5261 if (is_event_hup(event))
179033b3 5262 return events;
c7138f37 5263
10c6db11 5264 /*
9bb5d40c
PZ
5265 * Pin the event->rb by taking event->mmap_mutex; otherwise
5266 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5267 */
5268 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5269 rb = event->rb;
5270 if (rb)
76369139 5271 events = atomic_xchg(&rb->poll, 0);
10c6db11 5272 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5273 return events;
5274}
5275
f63a8daa 5276static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5277{
7d88962e 5278 (void)perf_event_read(event, false);
e7850595 5279 local64_set(&event->count, 0);
cdd6c482 5280 perf_event_update_userpage(event);
3df5edad
PZ
5281}
5282
52ba4b0b
LX
5283/* Assume it's not an event with inherit set. */
5284u64 perf_event_pause(struct perf_event *event, bool reset)
5285{
5286 struct perf_event_context *ctx;
5287 u64 count;
5288
5289 ctx = perf_event_ctx_lock(event);
5290 WARN_ON_ONCE(event->attr.inherit);
5291 _perf_event_disable(event);
5292 count = local64_read(&event->count);
5293 if (reset)
5294 local64_set(&event->count, 0);
5295 perf_event_ctx_unlock(event, ctx);
5296
5297 return count;
5298}
5299EXPORT_SYMBOL_GPL(perf_event_pause);
5300
c93f7669 5301/*
cdd6c482
IM
5302 * Holding the top-level event's child_mutex means that any
5303 * descendant process that has inherited this event will block
8ba289b8 5304 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5305 * task existence requirements of perf_event_enable/disable.
c93f7669 5306 */
cdd6c482
IM
5307static void perf_event_for_each_child(struct perf_event *event,
5308 void (*func)(struct perf_event *))
3df5edad 5309{
cdd6c482 5310 struct perf_event *child;
3df5edad 5311
cdd6c482 5312 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5313
cdd6c482
IM
5314 mutex_lock(&event->child_mutex);
5315 func(event);
5316 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5317 func(child);
cdd6c482 5318 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5319}
5320
cdd6c482
IM
5321static void perf_event_for_each(struct perf_event *event,
5322 void (*func)(struct perf_event *))
3df5edad 5323{
cdd6c482
IM
5324 struct perf_event_context *ctx = event->ctx;
5325 struct perf_event *sibling;
3df5edad 5326
f63a8daa
PZ
5327 lockdep_assert_held(&ctx->mutex);
5328
cdd6c482 5329 event = event->group_leader;
75f937f2 5330
cdd6c482 5331 perf_event_for_each_child(event, func);
edb39592 5332 for_each_sibling_event(sibling, event)
724b6daa 5333 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5334}
5335
fae3fde6
PZ
5336static void __perf_event_period(struct perf_event *event,
5337 struct perf_cpu_context *cpuctx,
5338 struct perf_event_context *ctx,
5339 void *info)
c7999c6f 5340{
fae3fde6 5341 u64 value = *((u64 *)info);
c7999c6f 5342 bool active;
08247e31 5343
cdd6c482 5344 if (event->attr.freq) {
cdd6c482 5345 event->attr.sample_freq = value;
08247e31 5346 } else {
cdd6c482
IM
5347 event->attr.sample_period = value;
5348 event->hw.sample_period = value;
08247e31 5349 }
bad7192b
PZ
5350
5351 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5352 if (active) {
5353 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5354 /*
5355 * We could be throttled; unthrottle now to avoid the tick
5356 * trying to unthrottle while we already re-started the event.
5357 */
5358 if (event->hw.interrupts == MAX_INTERRUPTS) {
5359 event->hw.interrupts = 0;
5360 perf_log_throttle(event, 1);
5361 }
bad7192b
PZ
5362 event->pmu->stop(event, PERF_EF_UPDATE);
5363 }
5364
5365 local64_set(&event->hw.period_left, 0);
5366
5367 if (active) {
5368 event->pmu->start(event, PERF_EF_RELOAD);
5369 perf_pmu_enable(ctx->pmu);
5370 }
c7999c6f
PZ
5371}
5372
81ec3f3c
JO
5373static int perf_event_check_period(struct perf_event *event, u64 value)
5374{
5375 return event->pmu->check_period(event, value);
5376}
5377
3ca270fc 5378static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5379{
c7999c6f
PZ
5380 if (!is_sampling_event(event))
5381 return -EINVAL;
5382
c7999c6f
PZ
5383 if (!value)
5384 return -EINVAL;
5385
5386 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5387 return -EINVAL;
5388
81ec3f3c
JO
5389 if (perf_event_check_period(event, value))
5390 return -EINVAL;
5391
913a90bc
RB
5392 if (!event->attr.freq && (value & (1ULL << 63)))
5393 return -EINVAL;
5394
fae3fde6 5395 event_function_call(event, __perf_event_period, &value);
08247e31 5396
c7999c6f 5397 return 0;
08247e31
PZ
5398}
5399
3ca270fc
LX
5400int perf_event_period(struct perf_event *event, u64 value)
5401{
5402 struct perf_event_context *ctx;
5403 int ret;
5404
5405 ctx = perf_event_ctx_lock(event);
5406 ret = _perf_event_period(event, value);
5407 perf_event_ctx_unlock(event, ctx);
5408
5409 return ret;
5410}
5411EXPORT_SYMBOL_GPL(perf_event_period);
5412
ac9721f3
PZ
5413static const struct file_operations perf_fops;
5414
2903ff01 5415static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5416{
2903ff01
AV
5417 struct fd f = fdget(fd);
5418 if (!f.file)
5419 return -EBADF;
ac9721f3 5420
2903ff01
AV
5421 if (f.file->f_op != &perf_fops) {
5422 fdput(f);
5423 return -EBADF;
ac9721f3 5424 }
2903ff01
AV
5425 *p = f;
5426 return 0;
ac9721f3
PZ
5427}
5428
5429static int perf_event_set_output(struct perf_event *event,
5430 struct perf_event *output_event);
6fb2915d 5431static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5432static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5433static int perf_copy_attr(struct perf_event_attr __user *uattr,
5434 struct perf_event_attr *attr);
a4be7c27 5435
f63a8daa 5436static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5437{
cdd6c482 5438 void (*func)(struct perf_event *);
3df5edad 5439 u32 flags = arg;
d859e29f
PM
5440
5441 switch (cmd) {
cdd6c482 5442 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5443 func = _perf_event_enable;
d859e29f 5444 break;
cdd6c482 5445 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5446 func = _perf_event_disable;
79f14641 5447 break;
cdd6c482 5448 case PERF_EVENT_IOC_RESET:
f63a8daa 5449 func = _perf_event_reset;
6de6a7b9 5450 break;
3df5edad 5451
cdd6c482 5452 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5453 return _perf_event_refresh(event, arg);
08247e31 5454
cdd6c482 5455 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5456 {
5457 u64 value;
08247e31 5458
3ca270fc
LX
5459 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5460 return -EFAULT;
08247e31 5461
3ca270fc
LX
5462 return _perf_event_period(event, value);
5463 }
cf4957f1
JO
5464 case PERF_EVENT_IOC_ID:
5465 {
5466 u64 id = primary_event_id(event);
5467
5468 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5469 return -EFAULT;
5470 return 0;
5471 }
5472
cdd6c482 5473 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5474 {
ac9721f3 5475 int ret;
ac9721f3 5476 if (arg != -1) {
2903ff01
AV
5477 struct perf_event *output_event;
5478 struct fd output;
5479 ret = perf_fget_light(arg, &output);
5480 if (ret)
5481 return ret;
5482 output_event = output.file->private_data;
5483 ret = perf_event_set_output(event, output_event);
5484 fdput(output);
5485 } else {
5486 ret = perf_event_set_output(event, NULL);
ac9721f3 5487 }
ac9721f3
PZ
5488 return ret;
5489 }
a4be7c27 5490
6fb2915d
LZ
5491 case PERF_EVENT_IOC_SET_FILTER:
5492 return perf_event_set_filter(event, (void __user *)arg);
5493
2541517c
AS
5494 case PERF_EVENT_IOC_SET_BPF:
5495 return perf_event_set_bpf_prog(event, arg);
5496
86e7972f 5497 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5498 struct perf_buffer *rb;
86e7972f
WN
5499
5500 rcu_read_lock();
5501 rb = rcu_dereference(event->rb);
5502 if (!rb || !rb->nr_pages) {
5503 rcu_read_unlock();
5504 return -EINVAL;
5505 }
5506 rb_toggle_paused(rb, !!arg);
5507 rcu_read_unlock();
5508 return 0;
5509 }
f371b304
YS
5510
5511 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5512 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5513
5514 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5515 struct perf_event_attr new_attr;
5516 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5517 &new_attr);
5518
5519 if (err)
5520 return err;
5521
5522 return perf_event_modify_attr(event, &new_attr);
5523 }
d859e29f 5524 default:
3df5edad 5525 return -ENOTTY;
d859e29f 5526 }
3df5edad
PZ
5527
5528 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5529 perf_event_for_each(event, func);
3df5edad 5530 else
cdd6c482 5531 perf_event_for_each_child(event, func);
3df5edad
PZ
5532
5533 return 0;
d859e29f
PM
5534}
5535
f63a8daa
PZ
5536static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5537{
5538 struct perf_event *event = file->private_data;
5539 struct perf_event_context *ctx;
5540 long ret;
5541
da97e184
JFG
5542 /* Treat ioctl like writes as it is likely a mutating operation. */
5543 ret = security_perf_event_write(event);
5544 if (ret)
5545 return ret;
5546
f63a8daa
PZ
5547 ctx = perf_event_ctx_lock(event);
5548 ret = _perf_ioctl(event, cmd, arg);
5549 perf_event_ctx_unlock(event, ctx);
5550
5551 return ret;
5552}
5553
b3f20785
PM
5554#ifdef CONFIG_COMPAT
5555static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5556 unsigned long arg)
5557{
5558 switch (_IOC_NR(cmd)) {
5559 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5560 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5561 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5562 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5563 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5564 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5565 cmd &= ~IOCSIZE_MASK;
5566 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5567 }
5568 break;
5569 }
5570 return perf_ioctl(file, cmd, arg);
5571}
5572#else
5573# define perf_compat_ioctl NULL
5574#endif
5575
cdd6c482 5576int perf_event_task_enable(void)
771d7cde 5577{
f63a8daa 5578 struct perf_event_context *ctx;
cdd6c482 5579 struct perf_event *event;
771d7cde 5580
cdd6c482 5581 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5582 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5583 ctx = perf_event_ctx_lock(event);
5584 perf_event_for_each_child(event, _perf_event_enable);
5585 perf_event_ctx_unlock(event, ctx);
5586 }
cdd6c482 5587 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5588
5589 return 0;
5590}
5591
cdd6c482 5592int perf_event_task_disable(void)
771d7cde 5593{
f63a8daa 5594 struct perf_event_context *ctx;
cdd6c482 5595 struct perf_event *event;
771d7cde 5596
cdd6c482 5597 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5598 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5599 ctx = perf_event_ctx_lock(event);
5600 perf_event_for_each_child(event, _perf_event_disable);
5601 perf_event_ctx_unlock(event, ctx);
5602 }
cdd6c482 5603 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5604
5605 return 0;
5606}
5607
cdd6c482 5608static int perf_event_index(struct perf_event *event)
194002b2 5609{
a4eaf7f1
PZ
5610 if (event->hw.state & PERF_HES_STOPPED)
5611 return 0;
5612
cdd6c482 5613 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5614 return 0;
5615
35edc2a5 5616 return event->pmu->event_idx(event);
194002b2
PZ
5617}
5618
c4794295 5619static void calc_timer_values(struct perf_event *event,
e3f3541c 5620 u64 *now,
7f310a5d
EM
5621 u64 *enabled,
5622 u64 *running)
c4794295 5623{
e3f3541c 5624 u64 ctx_time;
c4794295 5625
e3f3541c
PZ
5626 *now = perf_clock();
5627 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5628 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5629}
5630
fa731587
PZ
5631static void perf_event_init_userpage(struct perf_event *event)
5632{
5633 struct perf_event_mmap_page *userpg;
56de4e8f 5634 struct perf_buffer *rb;
fa731587
PZ
5635
5636 rcu_read_lock();
5637 rb = rcu_dereference(event->rb);
5638 if (!rb)
5639 goto unlock;
5640
5641 userpg = rb->user_page;
5642
5643 /* Allow new userspace to detect that bit 0 is deprecated */
5644 userpg->cap_bit0_is_deprecated = 1;
5645 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5646 userpg->data_offset = PAGE_SIZE;
5647 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5648
5649unlock:
5650 rcu_read_unlock();
5651}
5652
c1317ec2
AL
5653void __weak arch_perf_update_userpage(
5654 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5655{
5656}
5657
38ff667b
PZ
5658/*
5659 * Callers need to ensure there can be no nesting of this function, otherwise
5660 * the seqlock logic goes bad. We can not serialize this because the arch
5661 * code calls this from NMI context.
5662 */
cdd6c482 5663void perf_event_update_userpage(struct perf_event *event)
37d81828 5664{
cdd6c482 5665 struct perf_event_mmap_page *userpg;
56de4e8f 5666 struct perf_buffer *rb;
e3f3541c 5667 u64 enabled, running, now;
38ff667b
PZ
5668
5669 rcu_read_lock();
5ec4c599
PZ
5670 rb = rcu_dereference(event->rb);
5671 if (!rb)
5672 goto unlock;
5673
0d641208
EM
5674 /*
5675 * compute total_time_enabled, total_time_running
5676 * based on snapshot values taken when the event
5677 * was last scheduled in.
5678 *
5679 * we cannot simply called update_context_time()
5680 * because of locking issue as we can be called in
5681 * NMI context
5682 */
e3f3541c 5683 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5684
76369139 5685 userpg = rb->user_page;
7b732a75 5686 /*
9d2dcc8f
MF
5687 * Disable preemption to guarantee consistent time stamps are stored to
5688 * the user page.
7b732a75
PZ
5689 */
5690 preempt_disable();
37d81828 5691 ++userpg->lock;
92f22a38 5692 barrier();
cdd6c482 5693 userpg->index = perf_event_index(event);
b5e58793 5694 userpg->offset = perf_event_count(event);
365a4038 5695 if (userpg->index)
e7850595 5696 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5697
0d641208 5698 userpg->time_enabled = enabled +
cdd6c482 5699 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5700
0d641208 5701 userpg->time_running = running +
cdd6c482 5702 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5703
c1317ec2 5704 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5705
92f22a38 5706 barrier();
37d81828 5707 ++userpg->lock;
7b732a75 5708 preempt_enable();
38ff667b 5709unlock:
7b732a75 5710 rcu_read_unlock();
37d81828 5711}
82975c46 5712EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5713
9e3ed2d7 5714static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5715{
11bac800 5716 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 5717 struct perf_buffer *rb;
9e3ed2d7 5718 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5719
5720 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5721 if (vmf->pgoff == 0)
5722 ret = 0;
5723 return ret;
5724 }
5725
5726 rcu_read_lock();
76369139
FW
5727 rb = rcu_dereference(event->rb);
5728 if (!rb)
906010b2
PZ
5729 goto unlock;
5730
5731 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5732 goto unlock;
5733
76369139 5734 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5735 if (!vmf->page)
5736 goto unlock;
5737
5738 get_page(vmf->page);
11bac800 5739 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5740 vmf->page->index = vmf->pgoff;
5741
5742 ret = 0;
5743unlock:
5744 rcu_read_unlock();
5745
5746 return ret;
5747}
5748
10c6db11 5749static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5750 struct perf_buffer *rb)
10c6db11 5751{
56de4e8f 5752 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
5753 unsigned long flags;
5754
b69cf536
PZ
5755 if (event->rb) {
5756 /*
5757 * Should be impossible, we set this when removing
5758 * event->rb_entry and wait/clear when adding event->rb_entry.
5759 */
5760 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5761
b69cf536 5762 old_rb = event->rb;
b69cf536
PZ
5763 spin_lock_irqsave(&old_rb->event_lock, flags);
5764 list_del_rcu(&event->rb_entry);
5765 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5766
2f993cf0
ON
5767 event->rcu_batches = get_state_synchronize_rcu();
5768 event->rcu_pending = 1;
b69cf536 5769 }
10c6db11 5770
b69cf536 5771 if (rb) {
2f993cf0
ON
5772 if (event->rcu_pending) {
5773 cond_synchronize_rcu(event->rcu_batches);
5774 event->rcu_pending = 0;
5775 }
5776
b69cf536
PZ
5777 spin_lock_irqsave(&rb->event_lock, flags);
5778 list_add_rcu(&event->rb_entry, &rb->event_list);
5779 spin_unlock_irqrestore(&rb->event_lock, flags);
5780 }
5781
767ae086
AS
5782 /*
5783 * Avoid racing with perf_mmap_close(AUX): stop the event
5784 * before swizzling the event::rb pointer; if it's getting
5785 * unmapped, its aux_mmap_count will be 0 and it won't
5786 * restart. See the comment in __perf_pmu_output_stop().
5787 *
5788 * Data will inevitably be lost when set_output is done in
5789 * mid-air, but then again, whoever does it like this is
5790 * not in for the data anyway.
5791 */
5792 if (has_aux(event))
5793 perf_event_stop(event, 0);
5794
b69cf536
PZ
5795 rcu_assign_pointer(event->rb, rb);
5796
5797 if (old_rb) {
5798 ring_buffer_put(old_rb);
5799 /*
5800 * Since we detached before setting the new rb, so that we
5801 * could attach the new rb, we could have missed a wakeup.
5802 * Provide it now.
5803 */
5804 wake_up_all(&event->waitq);
5805 }
10c6db11
PZ
5806}
5807
5808static void ring_buffer_wakeup(struct perf_event *event)
5809{
56de4e8f 5810 struct perf_buffer *rb;
10c6db11
PZ
5811
5812 rcu_read_lock();
5813 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5814 if (rb) {
5815 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5816 wake_up_all(&event->waitq);
5817 }
10c6db11
PZ
5818 rcu_read_unlock();
5819}
5820
56de4e8f 5821struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5822{
56de4e8f 5823 struct perf_buffer *rb;
7b732a75 5824
ac9721f3 5825 rcu_read_lock();
76369139
FW
5826 rb = rcu_dereference(event->rb);
5827 if (rb) {
fecb8ed2 5828 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5829 rb = NULL;
ac9721f3
PZ
5830 }
5831 rcu_read_unlock();
5832
76369139 5833 return rb;
ac9721f3
PZ
5834}
5835
56de4e8f 5836void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 5837{
fecb8ed2 5838 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5839 return;
7b732a75 5840
9bb5d40c 5841 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5842
76369139 5843 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5844}
5845
5846static void perf_mmap_open(struct vm_area_struct *vma)
5847{
cdd6c482 5848 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5849
cdd6c482 5850 atomic_inc(&event->mmap_count);
9bb5d40c 5851 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5852
45bfb2e5
PZ
5853 if (vma->vm_pgoff)
5854 atomic_inc(&event->rb->aux_mmap_count);
5855
1e0fb9ec 5856 if (event->pmu->event_mapped)
bfe33492 5857 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5858}
5859
95ff4ca2
AS
5860static void perf_pmu_output_stop(struct perf_event *event);
5861
9bb5d40c
PZ
5862/*
5863 * A buffer can be mmap()ed multiple times; either directly through the same
5864 * event, or through other events by use of perf_event_set_output().
5865 *
5866 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5867 * the buffer here, where we still have a VM context. This means we need
5868 * to detach all events redirecting to us.
5869 */
7b732a75
PZ
5870static void perf_mmap_close(struct vm_area_struct *vma)
5871{
cdd6c482 5872 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5873
56de4e8f 5874 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5875 struct user_struct *mmap_user = rb->mmap_user;
5876 int mmap_locked = rb->mmap_locked;
5877 unsigned long size = perf_data_size(rb);
789f90fc 5878
1e0fb9ec 5879 if (event->pmu->event_unmapped)
bfe33492 5880 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5881
45bfb2e5
PZ
5882 /*
5883 * rb->aux_mmap_count will always drop before rb->mmap_count and
5884 * event->mmap_count, so it is ok to use event->mmap_mutex to
5885 * serialize with perf_mmap here.
5886 */
5887 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5888 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5889 /*
5890 * Stop all AUX events that are writing to this buffer,
5891 * so that we can free its AUX pages and corresponding PMU
5892 * data. Note that after rb::aux_mmap_count dropped to zero,
5893 * they won't start any more (see perf_aux_output_begin()).
5894 */
5895 perf_pmu_output_stop(event);
5896
5897 /* now it's safe to free the pages */
36b3db03
AS
5898 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5899 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5900
95ff4ca2 5901 /* this has to be the last one */
45bfb2e5 5902 rb_free_aux(rb);
ca3bb3d0 5903 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5904
45bfb2e5
PZ
5905 mutex_unlock(&event->mmap_mutex);
5906 }
5907
9bb5d40c
PZ
5908 atomic_dec(&rb->mmap_count);
5909
5910 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5911 goto out_put;
9bb5d40c 5912
b69cf536 5913 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5914 mutex_unlock(&event->mmap_mutex);
5915
5916 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5917 if (atomic_read(&rb->mmap_count))
5918 goto out_put;
ac9721f3 5919
9bb5d40c
PZ
5920 /*
5921 * No other mmap()s, detach from all other events that might redirect
5922 * into the now unreachable buffer. Somewhat complicated by the
5923 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5924 */
5925again:
5926 rcu_read_lock();
5927 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5928 if (!atomic_long_inc_not_zero(&event->refcount)) {
5929 /*
5930 * This event is en-route to free_event() which will
5931 * detach it and remove it from the list.
5932 */
5933 continue;
5934 }
5935 rcu_read_unlock();
789f90fc 5936
9bb5d40c
PZ
5937 mutex_lock(&event->mmap_mutex);
5938 /*
5939 * Check we didn't race with perf_event_set_output() which can
5940 * swizzle the rb from under us while we were waiting to
5941 * acquire mmap_mutex.
5942 *
5943 * If we find a different rb; ignore this event, a next
5944 * iteration will no longer find it on the list. We have to
5945 * still restart the iteration to make sure we're not now
5946 * iterating the wrong list.
5947 */
b69cf536
PZ
5948 if (event->rb == rb)
5949 ring_buffer_attach(event, NULL);
5950
cdd6c482 5951 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5952 put_event(event);
ac9721f3 5953
9bb5d40c
PZ
5954 /*
5955 * Restart the iteration; either we're on the wrong list or
5956 * destroyed its integrity by doing a deletion.
5957 */
5958 goto again;
7b732a75 5959 }
9bb5d40c
PZ
5960 rcu_read_unlock();
5961
5962 /*
5963 * It could be there's still a few 0-ref events on the list; they'll
5964 * get cleaned up by free_event() -- they'll also still have their
5965 * ref on the rb and will free it whenever they are done with it.
5966 *
5967 * Aside from that, this buffer is 'fully' detached and unmapped,
5968 * undo the VM accounting.
5969 */
5970
d44248a4
SL
5971 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5972 &mmap_user->locked_vm);
70f8a3ca 5973 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5974 free_uid(mmap_user);
5975
b69cf536 5976out_put:
9bb5d40c 5977 ring_buffer_put(rb); /* could be last */
37d81828
PM
5978}
5979
f0f37e2f 5980static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5981 .open = perf_mmap_open,
fca0c116 5982 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5983 .fault = perf_mmap_fault,
5984 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5985};
5986
5987static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5988{
cdd6c482 5989 struct perf_event *event = file->private_data;
22a4f650 5990 unsigned long user_locked, user_lock_limit;
789f90fc 5991 struct user_struct *user = current_user();
56de4e8f 5992 struct perf_buffer *rb = NULL;
22a4f650 5993 unsigned long locked, lock_limit;
7b732a75
PZ
5994 unsigned long vma_size;
5995 unsigned long nr_pages;
45bfb2e5 5996 long user_extra = 0, extra = 0;
d57e34fd 5997 int ret = 0, flags = 0;
37d81828 5998
c7920614
PZ
5999 /*
6000 * Don't allow mmap() of inherited per-task counters. This would
6001 * create a performance issue due to all children writing to the
76369139 6002 * same rb.
c7920614
PZ
6003 */
6004 if (event->cpu == -1 && event->attr.inherit)
6005 return -EINVAL;
6006
43a21ea8 6007 if (!(vma->vm_flags & VM_SHARED))
37d81828 6008 return -EINVAL;
7b732a75 6009
da97e184
JFG
6010 ret = security_perf_event_read(event);
6011 if (ret)
6012 return ret;
6013
7b732a75 6014 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
6015
6016 if (vma->vm_pgoff == 0) {
6017 nr_pages = (vma_size / PAGE_SIZE) - 1;
6018 } else {
6019 /*
6020 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6021 * mapped, all subsequent mappings should have the same size
6022 * and offset. Must be above the normal perf buffer.
6023 */
6024 u64 aux_offset, aux_size;
6025
6026 if (!event->rb)
6027 return -EINVAL;
6028
6029 nr_pages = vma_size / PAGE_SIZE;
6030
6031 mutex_lock(&event->mmap_mutex);
6032 ret = -EINVAL;
6033
6034 rb = event->rb;
6035 if (!rb)
6036 goto aux_unlock;
6037
6aa7de05
MR
6038 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6039 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
6040
6041 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6042 goto aux_unlock;
6043
6044 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6045 goto aux_unlock;
6046
6047 /* already mapped with a different offset */
6048 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6049 goto aux_unlock;
6050
6051 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6052 goto aux_unlock;
6053
6054 /* already mapped with a different size */
6055 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6056 goto aux_unlock;
6057
6058 if (!is_power_of_2(nr_pages))
6059 goto aux_unlock;
6060
6061 if (!atomic_inc_not_zero(&rb->mmap_count))
6062 goto aux_unlock;
6063
6064 if (rb_has_aux(rb)) {
6065 atomic_inc(&rb->aux_mmap_count);
6066 ret = 0;
6067 goto unlock;
6068 }
6069
6070 atomic_set(&rb->aux_mmap_count, 1);
6071 user_extra = nr_pages;
6072
6073 goto accounting;
6074 }
7b732a75 6075
7730d865 6076 /*
76369139 6077 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6078 * can do bitmasks instead of modulo.
6079 */
2ed11312 6080 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6081 return -EINVAL;
6082
7b732a75 6083 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6084 return -EINVAL;
6085
cdd6c482 6086 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6087again:
cdd6c482 6088 mutex_lock(&event->mmap_mutex);
76369139 6089 if (event->rb) {
9bb5d40c 6090 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 6091 ret = -EINVAL;
9bb5d40c
PZ
6092 goto unlock;
6093 }
6094
6095 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6096 /*
6097 * Raced against perf_mmap_close() through
6098 * perf_event_set_output(). Try again, hope for better
6099 * luck.
6100 */
6101 mutex_unlock(&event->mmap_mutex);
6102 goto again;
6103 }
6104
ebb3c4c4
PZ
6105 goto unlock;
6106 }
6107
789f90fc 6108 user_extra = nr_pages + 1;
45bfb2e5
PZ
6109
6110accounting:
cdd6c482 6111 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6112
6113 /*
6114 * Increase the limit linearly with more CPUs:
6115 */
6116 user_lock_limit *= num_online_cpus();
6117
00346155
SL
6118 user_locked = atomic_long_read(&user->locked_vm);
6119
6120 /*
6121 * sysctl_perf_event_mlock may have changed, so that
6122 * user->locked_vm > user_lock_limit
6123 */
6124 if (user_locked > user_lock_limit)
6125 user_locked = user_lock_limit;
6126 user_locked += user_extra;
c5078f78 6127
c4b75479 6128 if (user_locked > user_lock_limit) {
d44248a4
SL
6129 /*
6130 * charge locked_vm until it hits user_lock_limit;
6131 * charge the rest from pinned_vm
6132 */
789f90fc 6133 extra = user_locked - user_lock_limit;
d44248a4
SL
6134 user_extra -= extra;
6135 }
7b732a75 6136
78d7d407 6137 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6138 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6139 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6140
da97e184 6141 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6142 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6143 ret = -EPERM;
6144 goto unlock;
6145 }
7b732a75 6146
45bfb2e5 6147 WARN_ON(!rb && event->rb);
906010b2 6148
d57e34fd 6149 if (vma->vm_flags & VM_WRITE)
76369139 6150 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6151
76369139 6152 if (!rb) {
45bfb2e5
PZ
6153 rb = rb_alloc(nr_pages,
6154 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6155 event->cpu, flags);
26cb63ad 6156
45bfb2e5
PZ
6157 if (!rb) {
6158 ret = -ENOMEM;
6159 goto unlock;
6160 }
43a21ea8 6161
45bfb2e5
PZ
6162 atomic_set(&rb->mmap_count, 1);
6163 rb->mmap_user = get_current_user();
6164 rb->mmap_locked = extra;
26cb63ad 6165
45bfb2e5 6166 ring_buffer_attach(event, rb);
ac9721f3 6167
45bfb2e5
PZ
6168 perf_event_init_userpage(event);
6169 perf_event_update_userpage(event);
6170 } else {
1a594131
AS
6171 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6172 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6173 if (!ret)
6174 rb->aux_mmap_locked = extra;
6175 }
9a0f05cb 6176
ebb3c4c4 6177unlock:
45bfb2e5
PZ
6178 if (!ret) {
6179 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6180 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6181
ac9721f3 6182 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6183 } else if (rb) {
6184 atomic_dec(&rb->mmap_count);
6185 }
6186aux_unlock:
cdd6c482 6187 mutex_unlock(&event->mmap_mutex);
37d81828 6188
9bb5d40c
PZ
6189 /*
6190 * Since pinned accounting is per vm we cannot allow fork() to copy our
6191 * vma.
6192 */
26cb63ad 6193 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 6194 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6195
1e0fb9ec 6196 if (event->pmu->event_mapped)
bfe33492 6197 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6198
7b732a75 6199 return ret;
37d81828
PM
6200}
6201
3c446b3d
PZ
6202static int perf_fasync(int fd, struct file *filp, int on)
6203{
496ad9aa 6204 struct inode *inode = file_inode(filp);
cdd6c482 6205 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6206 int retval;
6207
5955102c 6208 inode_lock(inode);
cdd6c482 6209 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6210 inode_unlock(inode);
3c446b3d
PZ
6211
6212 if (retval < 0)
6213 return retval;
6214
6215 return 0;
6216}
6217
0793a61d 6218static const struct file_operations perf_fops = {
3326c1ce 6219 .llseek = no_llseek,
0793a61d
TG
6220 .release = perf_release,
6221 .read = perf_read,
6222 .poll = perf_poll,
d859e29f 6223 .unlocked_ioctl = perf_ioctl,
b3f20785 6224 .compat_ioctl = perf_compat_ioctl,
37d81828 6225 .mmap = perf_mmap,
3c446b3d 6226 .fasync = perf_fasync,
0793a61d
TG
6227};
6228
925d519a 6229/*
cdd6c482 6230 * Perf event wakeup
925d519a
PZ
6231 *
6232 * If there's data, ensure we set the poll() state and publish everything
6233 * to user-space before waking everybody up.
6234 */
6235
fed66e2c
PZ
6236static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6237{
6238 /* only the parent has fasync state */
6239 if (event->parent)
6240 event = event->parent;
6241 return &event->fasync;
6242}
6243
cdd6c482 6244void perf_event_wakeup(struct perf_event *event)
925d519a 6245{
10c6db11 6246 ring_buffer_wakeup(event);
4c9e2542 6247
cdd6c482 6248 if (event->pending_kill) {
fed66e2c 6249 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6250 event->pending_kill = 0;
4c9e2542 6251 }
925d519a
PZ
6252}
6253
1d54ad94
PZ
6254static void perf_pending_event_disable(struct perf_event *event)
6255{
6256 int cpu = READ_ONCE(event->pending_disable);
6257
6258 if (cpu < 0)
6259 return;
6260
6261 if (cpu == smp_processor_id()) {
6262 WRITE_ONCE(event->pending_disable, -1);
6263 perf_event_disable_local(event);
6264 return;
6265 }
6266
6267 /*
6268 * CPU-A CPU-B
6269 *
6270 * perf_event_disable_inatomic()
6271 * @pending_disable = CPU-A;
6272 * irq_work_queue();
6273 *
6274 * sched-out
6275 * @pending_disable = -1;
6276 *
6277 * sched-in
6278 * perf_event_disable_inatomic()
6279 * @pending_disable = CPU-B;
6280 * irq_work_queue(); // FAILS
6281 *
6282 * irq_work_run()
6283 * perf_pending_event()
6284 *
6285 * But the event runs on CPU-B and wants disabling there.
6286 */
6287 irq_work_queue_on(&event->pending, cpu);
6288}
6289
e360adbe 6290static void perf_pending_event(struct irq_work *entry)
79f14641 6291{
1d54ad94 6292 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6293 int rctx;
6294
6295 rctx = perf_swevent_get_recursion_context();
6296 /*
6297 * If we 'fail' here, that's OK, it means recursion is already disabled
6298 * and we won't recurse 'further'.
6299 */
79f14641 6300
1d54ad94 6301 perf_pending_event_disable(event);
79f14641 6302
cdd6c482
IM
6303 if (event->pending_wakeup) {
6304 event->pending_wakeup = 0;
6305 perf_event_wakeup(event);
79f14641 6306 }
d525211f
PZ
6307
6308 if (rctx >= 0)
6309 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6310}
6311
39447b38
ZY
6312/*
6313 * We assume there is only KVM supporting the callbacks.
6314 * Later on, we might change it to a list if there is
6315 * another virtualization implementation supporting the callbacks.
6316 */
6317struct perf_guest_info_callbacks *perf_guest_cbs;
6318
6319int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6320{
6321 perf_guest_cbs = cbs;
6322 return 0;
6323}
6324EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6325
6326int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6327{
6328 perf_guest_cbs = NULL;
6329 return 0;
6330}
6331EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6332
4018994f
JO
6333static void
6334perf_output_sample_regs(struct perf_output_handle *handle,
6335 struct pt_regs *regs, u64 mask)
6336{
6337 int bit;
29dd3288 6338 DECLARE_BITMAP(_mask, 64);
4018994f 6339
29dd3288
MS
6340 bitmap_from_u64(_mask, mask);
6341 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6342 u64 val;
6343
6344 val = perf_reg_value(regs, bit);
6345 perf_output_put(handle, val);
6346 }
6347}
6348
60e2364e 6349static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6350 struct pt_regs *regs,
6351 struct pt_regs *regs_user_copy)
4018994f 6352{
88a7c26a
AL
6353 if (user_mode(regs)) {
6354 regs_user->abi = perf_reg_abi(current);
2565711f 6355 regs_user->regs = regs;
085ebfe9 6356 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6357 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6358 } else {
6359 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6360 regs_user->regs = NULL;
4018994f
JO
6361 }
6362}
6363
60e2364e
SE
6364static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6365 struct pt_regs *regs)
6366{
6367 regs_intr->regs = regs;
6368 regs_intr->abi = perf_reg_abi(current);
6369}
6370
6371
c5ebcedb
JO
6372/*
6373 * Get remaining task size from user stack pointer.
6374 *
6375 * It'd be better to take stack vma map and limit this more
9f014e3a 6376 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6377 * so using TASK_SIZE as limit.
6378 */
6379static u64 perf_ustack_task_size(struct pt_regs *regs)
6380{
6381 unsigned long addr = perf_user_stack_pointer(regs);
6382
6383 if (!addr || addr >= TASK_SIZE)
6384 return 0;
6385
6386 return TASK_SIZE - addr;
6387}
6388
6389static u16
6390perf_sample_ustack_size(u16 stack_size, u16 header_size,
6391 struct pt_regs *regs)
6392{
6393 u64 task_size;
6394
6395 /* No regs, no stack pointer, no dump. */
6396 if (!regs)
6397 return 0;
6398
6399 /*
6400 * Check if we fit in with the requested stack size into the:
6401 * - TASK_SIZE
6402 * If we don't, we limit the size to the TASK_SIZE.
6403 *
6404 * - remaining sample size
6405 * If we don't, we customize the stack size to
6406 * fit in to the remaining sample size.
6407 */
6408
6409 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6410 stack_size = min(stack_size, (u16) task_size);
6411
6412 /* Current header size plus static size and dynamic size. */
6413 header_size += 2 * sizeof(u64);
6414
6415 /* Do we fit in with the current stack dump size? */
6416 if ((u16) (header_size + stack_size) < header_size) {
6417 /*
6418 * If we overflow the maximum size for the sample,
6419 * we customize the stack dump size to fit in.
6420 */
6421 stack_size = USHRT_MAX - header_size - sizeof(u64);
6422 stack_size = round_up(stack_size, sizeof(u64));
6423 }
6424
6425 return stack_size;
6426}
6427
6428static void
6429perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6430 struct pt_regs *regs)
6431{
6432 /* Case of a kernel thread, nothing to dump */
6433 if (!regs) {
6434 u64 size = 0;
6435 perf_output_put(handle, size);
6436 } else {
6437 unsigned long sp;
6438 unsigned int rem;
6439 u64 dyn_size;
02e18447 6440 mm_segment_t fs;
c5ebcedb
JO
6441
6442 /*
6443 * We dump:
6444 * static size
6445 * - the size requested by user or the best one we can fit
6446 * in to the sample max size
6447 * data
6448 * - user stack dump data
6449 * dynamic size
6450 * - the actual dumped size
6451 */
6452
6453 /* Static size. */
6454 perf_output_put(handle, dump_size);
6455
6456 /* Data. */
6457 sp = perf_user_stack_pointer(regs);
02e18447
YC
6458 fs = get_fs();
6459 set_fs(USER_DS);
c5ebcedb 6460 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6461 set_fs(fs);
c5ebcedb
JO
6462 dyn_size = dump_size - rem;
6463
6464 perf_output_skip(handle, rem);
6465
6466 /* Dynamic size. */
6467 perf_output_put(handle, dyn_size);
6468 }
6469}
6470
a4faf00d
AS
6471static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6472 struct perf_sample_data *data,
6473 size_t size)
6474{
6475 struct perf_event *sampler = event->aux_event;
56de4e8f 6476 struct perf_buffer *rb;
a4faf00d
AS
6477
6478 data->aux_size = 0;
6479
6480 if (!sampler)
6481 goto out;
6482
6483 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6484 goto out;
6485
6486 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6487 goto out;
6488
6489 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6490 if (!rb)
6491 goto out;
6492
6493 /*
6494 * If this is an NMI hit inside sampling code, don't take
6495 * the sample. See also perf_aux_sample_output().
6496 */
6497 if (READ_ONCE(rb->aux_in_sampling)) {
6498 data->aux_size = 0;
6499 } else {
6500 size = min_t(size_t, size, perf_aux_size(rb));
6501 data->aux_size = ALIGN(size, sizeof(u64));
6502 }
6503 ring_buffer_put(rb);
6504
6505out:
6506 return data->aux_size;
6507}
6508
56de4e8f 6509long perf_pmu_snapshot_aux(struct perf_buffer *rb,
a4faf00d
AS
6510 struct perf_event *event,
6511 struct perf_output_handle *handle,
6512 unsigned long size)
6513{
6514 unsigned long flags;
6515 long ret;
6516
6517 /*
6518 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6519 * paths. If we start calling them in NMI context, they may race with
6520 * the IRQ ones, that is, for example, re-starting an event that's just
6521 * been stopped, which is why we're using a separate callback that
6522 * doesn't change the event state.
6523 *
6524 * IRQs need to be disabled to prevent IPIs from racing with us.
6525 */
6526 local_irq_save(flags);
6527 /*
6528 * Guard against NMI hits inside the critical section;
6529 * see also perf_prepare_sample_aux().
6530 */
6531 WRITE_ONCE(rb->aux_in_sampling, 1);
6532 barrier();
6533
6534 ret = event->pmu->snapshot_aux(event, handle, size);
6535
6536 barrier();
6537 WRITE_ONCE(rb->aux_in_sampling, 0);
6538 local_irq_restore(flags);
6539
6540 return ret;
6541}
6542
6543static void perf_aux_sample_output(struct perf_event *event,
6544 struct perf_output_handle *handle,
6545 struct perf_sample_data *data)
6546{
6547 struct perf_event *sampler = event->aux_event;
56de4e8f 6548 struct perf_buffer *rb;
a4faf00d 6549 unsigned long pad;
a4faf00d
AS
6550 long size;
6551
6552 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6553 return;
6554
6555 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6556 if (!rb)
6557 return;
6558
6559 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6560
6561 /*
6562 * An error here means that perf_output_copy() failed (returned a
6563 * non-zero surplus that it didn't copy), which in its current
6564 * enlightened implementation is not possible. If that changes, we'd
6565 * like to know.
6566 */
6567 if (WARN_ON_ONCE(size < 0))
6568 goto out_put;
6569
6570 /*
6571 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6572 * perf_prepare_sample_aux(), so should not be more than that.
6573 */
6574 pad = data->aux_size - size;
6575 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6576 pad = 8;
6577
6578 if (pad) {
6579 u64 zero = 0;
6580 perf_output_copy(handle, &zero, pad);
6581 }
6582
6583out_put:
6584 ring_buffer_put(rb);
6585}
6586
c980d109
ACM
6587static void __perf_event_header__init_id(struct perf_event_header *header,
6588 struct perf_sample_data *data,
6589 struct perf_event *event)
6844c09d
ACM
6590{
6591 u64 sample_type = event->attr.sample_type;
6592
6593 data->type = sample_type;
6594 header->size += event->id_header_size;
6595
6596 if (sample_type & PERF_SAMPLE_TID) {
6597 /* namespace issues */
6598 data->tid_entry.pid = perf_event_pid(event, current);
6599 data->tid_entry.tid = perf_event_tid(event, current);
6600 }
6601
6602 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6603 data->time = perf_event_clock(event);
6844c09d 6604
ff3d527c 6605 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6606 data->id = primary_event_id(event);
6607
6608 if (sample_type & PERF_SAMPLE_STREAM_ID)
6609 data->stream_id = event->id;
6610
6611 if (sample_type & PERF_SAMPLE_CPU) {
6612 data->cpu_entry.cpu = raw_smp_processor_id();
6613 data->cpu_entry.reserved = 0;
6614 }
6615}
6616
76369139
FW
6617void perf_event_header__init_id(struct perf_event_header *header,
6618 struct perf_sample_data *data,
6619 struct perf_event *event)
c980d109
ACM
6620{
6621 if (event->attr.sample_id_all)
6622 __perf_event_header__init_id(header, data, event);
6623}
6624
6625static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6626 struct perf_sample_data *data)
6627{
6628 u64 sample_type = data->type;
6629
6630 if (sample_type & PERF_SAMPLE_TID)
6631 perf_output_put(handle, data->tid_entry);
6632
6633 if (sample_type & PERF_SAMPLE_TIME)
6634 perf_output_put(handle, data->time);
6635
6636 if (sample_type & PERF_SAMPLE_ID)
6637 perf_output_put(handle, data->id);
6638
6639 if (sample_type & PERF_SAMPLE_STREAM_ID)
6640 perf_output_put(handle, data->stream_id);
6641
6642 if (sample_type & PERF_SAMPLE_CPU)
6643 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6644
6645 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6646 perf_output_put(handle, data->id);
c980d109
ACM
6647}
6648
76369139
FW
6649void perf_event__output_id_sample(struct perf_event *event,
6650 struct perf_output_handle *handle,
6651 struct perf_sample_data *sample)
c980d109
ACM
6652{
6653 if (event->attr.sample_id_all)
6654 __perf_event__output_id_sample(handle, sample);
6655}
6656
3dab77fb 6657static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6658 struct perf_event *event,
6659 u64 enabled, u64 running)
3dab77fb 6660{
cdd6c482 6661 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6662 u64 values[4];
6663 int n = 0;
6664
b5e58793 6665 values[n++] = perf_event_count(event);
3dab77fb 6666 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6667 values[n++] = enabled +
cdd6c482 6668 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6669 }
6670 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6671 values[n++] = running +
cdd6c482 6672 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6673 }
6674 if (read_format & PERF_FORMAT_ID)
cdd6c482 6675 values[n++] = primary_event_id(event);
3dab77fb 6676
76369139 6677 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6678}
6679
3dab77fb 6680static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6681 struct perf_event *event,
6682 u64 enabled, u64 running)
3dab77fb 6683{
cdd6c482
IM
6684 struct perf_event *leader = event->group_leader, *sub;
6685 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6686 u64 values[5];
6687 int n = 0;
6688
6689 values[n++] = 1 + leader->nr_siblings;
6690
6691 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6692 values[n++] = enabled;
3dab77fb
PZ
6693
6694 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6695 values[n++] = running;
3dab77fb 6696
9e5b127d
PZ
6697 if ((leader != event) &&
6698 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6699 leader->pmu->read(leader);
6700
b5e58793 6701 values[n++] = perf_event_count(leader);
3dab77fb 6702 if (read_format & PERF_FORMAT_ID)
cdd6c482 6703 values[n++] = primary_event_id(leader);
3dab77fb 6704
76369139 6705 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6706
edb39592 6707 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6708 n = 0;
6709
6f5ab001
JO
6710 if ((sub != event) &&
6711 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6712 sub->pmu->read(sub);
6713
b5e58793 6714 values[n++] = perf_event_count(sub);
3dab77fb 6715 if (read_format & PERF_FORMAT_ID)
cdd6c482 6716 values[n++] = primary_event_id(sub);
3dab77fb 6717
76369139 6718 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6719 }
6720}
6721
eed01528
SE
6722#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6723 PERF_FORMAT_TOTAL_TIME_RUNNING)
6724
ba5213ae
PZ
6725/*
6726 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6727 *
6728 * The problem is that its both hard and excessively expensive to iterate the
6729 * child list, not to mention that its impossible to IPI the children running
6730 * on another CPU, from interrupt/NMI context.
6731 */
3dab77fb 6732static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6733 struct perf_event *event)
3dab77fb 6734{
e3f3541c 6735 u64 enabled = 0, running = 0, now;
eed01528
SE
6736 u64 read_format = event->attr.read_format;
6737
6738 /*
6739 * compute total_time_enabled, total_time_running
6740 * based on snapshot values taken when the event
6741 * was last scheduled in.
6742 *
6743 * we cannot simply called update_context_time()
6744 * because of locking issue as we are called in
6745 * NMI context
6746 */
c4794295 6747 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6748 calc_timer_values(event, &now, &enabled, &running);
eed01528 6749
cdd6c482 6750 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6751 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6752 else
eed01528 6753 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6754}
6755
bbfd5e4f
KL
6756static inline bool perf_sample_save_hw_index(struct perf_event *event)
6757{
6758 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6759}
6760
5622f295
MM
6761void perf_output_sample(struct perf_output_handle *handle,
6762 struct perf_event_header *header,
6763 struct perf_sample_data *data,
cdd6c482 6764 struct perf_event *event)
5622f295
MM
6765{
6766 u64 sample_type = data->type;
6767
6768 perf_output_put(handle, *header);
6769
ff3d527c
AH
6770 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6771 perf_output_put(handle, data->id);
6772
5622f295
MM
6773 if (sample_type & PERF_SAMPLE_IP)
6774 perf_output_put(handle, data->ip);
6775
6776 if (sample_type & PERF_SAMPLE_TID)
6777 perf_output_put(handle, data->tid_entry);
6778
6779 if (sample_type & PERF_SAMPLE_TIME)
6780 perf_output_put(handle, data->time);
6781
6782 if (sample_type & PERF_SAMPLE_ADDR)
6783 perf_output_put(handle, data->addr);
6784
6785 if (sample_type & PERF_SAMPLE_ID)
6786 perf_output_put(handle, data->id);
6787
6788 if (sample_type & PERF_SAMPLE_STREAM_ID)
6789 perf_output_put(handle, data->stream_id);
6790
6791 if (sample_type & PERF_SAMPLE_CPU)
6792 perf_output_put(handle, data->cpu_entry);
6793
6794 if (sample_type & PERF_SAMPLE_PERIOD)
6795 perf_output_put(handle, data->period);
6796
6797 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6798 perf_output_read(handle, event);
5622f295
MM
6799
6800 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6801 int size = 1;
5622f295 6802
99e818cc
JO
6803 size += data->callchain->nr;
6804 size *= sizeof(u64);
6805 __output_copy(handle, data->callchain, size);
5622f295
MM
6806 }
6807
6808 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6809 struct perf_raw_record *raw = data->raw;
6810
6811 if (raw) {
6812 struct perf_raw_frag *frag = &raw->frag;
6813
6814 perf_output_put(handle, raw->size);
6815 do {
6816 if (frag->copy) {
6817 __output_custom(handle, frag->copy,
6818 frag->data, frag->size);
6819 } else {
6820 __output_copy(handle, frag->data,
6821 frag->size);
6822 }
6823 if (perf_raw_frag_last(frag))
6824 break;
6825 frag = frag->next;
6826 } while (1);
6827 if (frag->pad)
6828 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6829 } else {
6830 struct {
6831 u32 size;
6832 u32 data;
6833 } raw = {
6834 .size = sizeof(u32),
6835 .data = 0,
6836 };
6837 perf_output_put(handle, raw);
6838 }
6839 }
a7ac67ea 6840
bce38cd5
SE
6841 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6842 if (data->br_stack) {
6843 size_t size;
6844
6845 size = data->br_stack->nr
6846 * sizeof(struct perf_branch_entry);
6847
6848 perf_output_put(handle, data->br_stack->nr);
bbfd5e4f
KL
6849 if (perf_sample_save_hw_index(event))
6850 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5
SE
6851 perf_output_copy(handle, data->br_stack->entries, size);
6852 } else {
6853 /*
6854 * we always store at least the value of nr
6855 */
6856 u64 nr = 0;
6857 perf_output_put(handle, nr);
6858 }
6859 }
4018994f
JO
6860
6861 if (sample_type & PERF_SAMPLE_REGS_USER) {
6862 u64 abi = data->regs_user.abi;
6863
6864 /*
6865 * If there are no regs to dump, notice it through
6866 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6867 */
6868 perf_output_put(handle, abi);
6869
6870 if (abi) {
6871 u64 mask = event->attr.sample_regs_user;
6872 perf_output_sample_regs(handle,
6873 data->regs_user.regs,
6874 mask);
6875 }
6876 }
c5ebcedb 6877
a5cdd40c 6878 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6879 perf_output_sample_ustack(handle,
6880 data->stack_user_size,
6881 data->regs_user.regs);
a5cdd40c 6882 }
c3feedf2
AK
6883
6884 if (sample_type & PERF_SAMPLE_WEIGHT)
6885 perf_output_put(handle, data->weight);
d6be9ad6
SE
6886
6887 if (sample_type & PERF_SAMPLE_DATA_SRC)
6888 perf_output_put(handle, data->data_src.val);
a5cdd40c 6889
fdfbbd07
AK
6890 if (sample_type & PERF_SAMPLE_TRANSACTION)
6891 perf_output_put(handle, data->txn);
6892
60e2364e
SE
6893 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6894 u64 abi = data->regs_intr.abi;
6895 /*
6896 * If there are no regs to dump, notice it through
6897 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6898 */
6899 perf_output_put(handle, abi);
6900
6901 if (abi) {
6902 u64 mask = event->attr.sample_regs_intr;
6903
6904 perf_output_sample_regs(handle,
6905 data->regs_intr.regs,
6906 mask);
6907 }
6908 }
6909
fc7ce9c7
KL
6910 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6911 perf_output_put(handle, data->phys_addr);
6912
6546b19f
NK
6913 if (sample_type & PERF_SAMPLE_CGROUP)
6914 perf_output_put(handle, data->cgroup);
6915
a4faf00d
AS
6916 if (sample_type & PERF_SAMPLE_AUX) {
6917 perf_output_put(handle, data->aux_size);
6918
6919 if (data->aux_size)
6920 perf_aux_sample_output(event, handle, data);
6921 }
6922
a5cdd40c
PZ
6923 if (!event->attr.watermark) {
6924 int wakeup_events = event->attr.wakeup_events;
6925
6926 if (wakeup_events) {
56de4e8f 6927 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
6928 int events = local_inc_return(&rb->events);
6929
6930 if (events >= wakeup_events) {
6931 local_sub(wakeup_events, &rb->events);
6932 local_inc(&rb->wakeup);
6933 }
6934 }
6935 }
5622f295
MM
6936}
6937
fc7ce9c7
KL
6938static u64 perf_virt_to_phys(u64 virt)
6939{
6940 u64 phys_addr = 0;
6941 struct page *p = NULL;
6942
6943 if (!virt)
6944 return 0;
6945
6946 if (virt >= TASK_SIZE) {
6947 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6948 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6949 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6950 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6951 } else {
6952 /*
6953 * Walking the pages tables for user address.
6954 * Interrupts are disabled, so it prevents any tear down
6955 * of the page tables.
dadbb612 6956 * Try IRQ-safe get_user_page_fast_only first.
fc7ce9c7
KL
6957 * If failed, leave phys_addr as 0.
6958 */
d3296fb3
JO
6959 if (current->mm != NULL) {
6960 pagefault_disable();
dadbb612 6961 if (get_user_page_fast_only(virt, 0, &p))
d3296fb3
JO
6962 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6963 pagefault_enable();
6964 }
fc7ce9c7
KL
6965
6966 if (p)
6967 put_page(p);
6968 }
6969
6970 return phys_addr;
6971}
6972
99e818cc
JO
6973static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6974
6cbc304f 6975struct perf_callchain_entry *
8cf7e0e2
JO
6976perf_callchain(struct perf_event *event, struct pt_regs *regs)
6977{
6978 bool kernel = !event->attr.exclude_callchain_kernel;
6979 bool user = !event->attr.exclude_callchain_user;
6980 /* Disallow cross-task user callchains. */
6981 bool crosstask = event->ctx->task && event->ctx->task != current;
6982 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6983 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6984
6985 if (!kernel && !user)
99e818cc 6986 return &__empty_callchain;
8cf7e0e2 6987
99e818cc
JO
6988 callchain = get_perf_callchain(regs, 0, kernel, user,
6989 max_stack, crosstask, true);
6990 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6991}
6992
5622f295
MM
6993void perf_prepare_sample(struct perf_event_header *header,
6994 struct perf_sample_data *data,
cdd6c482 6995 struct perf_event *event,
5622f295 6996 struct pt_regs *regs)
7b732a75 6997{
cdd6c482 6998 u64 sample_type = event->attr.sample_type;
7b732a75 6999
cdd6c482 7000 header->type = PERF_RECORD_SAMPLE;
c320c7b7 7001 header->size = sizeof(*header) + event->header_size;
5622f295
MM
7002
7003 header->misc = 0;
7004 header->misc |= perf_misc_flags(regs);
6fab0192 7005
c980d109 7006 __perf_event_header__init_id(header, data, event);
6844c09d 7007
c320c7b7 7008 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
7009 data->ip = perf_instruction_pointer(regs);
7010
b23f3325 7011 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 7012 int size = 1;
394ee076 7013
6cbc304f
PZ
7014 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7015 data->callchain = perf_callchain(event, regs);
7016
99e818cc 7017 size += data->callchain->nr;
5622f295
MM
7018
7019 header->size += size * sizeof(u64);
394ee076
PZ
7020 }
7021
3a43ce68 7022 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
7023 struct perf_raw_record *raw = data->raw;
7024 int size;
7025
7026 if (raw) {
7027 struct perf_raw_frag *frag = &raw->frag;
7028 u32 sum = 0;
7029
7030 do {
7031 sum += frag->size;
7032 if (perf_raw_frag_last(frag))
7033 break;
7034 frag = frag->next;
7035 } while (1);
7036
7037 size = round_up(sum + sizeof(u32), sizeof(u64));
7038 raw->size = size - sizeof(u32);
7039 frag->pad = raw->size - sum;
7040 } else {
7041 size = sizeof(u64);
7042 }
a044560c 7043
7e3f977e 7044 header->size += size;
7f453c24 7045 }
bce38cd5
SE
7046
7047 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7048 int size = sizeof(u64); /* nr */
7049 if (data->br_stack) {
bbfd5e4f
KL
7050 if (perf_sample_save_hw_index(event))
7051 size += sizeof(u64);
7052
bce38cd5
SE
7053 size += data->br_stack->nr
7054 * sizeof(struct perf_branch_entry);
7055 }
7056 header->size += size;
7057 }
4018994f 7058
2565711f 7059 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
7060 perf_sample_regs_user(&data->regs_user, regs,
7061 &data->regs_user_copy);
2565711f 7062
4018994f
JO
7063 if (sample_type & PERF_SAMPLE_REGS_USER) {
7064 /* regs dump ABI info */
7065 int size = sizeof(u64);
7066
4018994f
JO
7067 if (data->regs_user.regs) {
7068 u64 mask = event->attr.sample_regs_user;
7069 size += hweight64(mask) * sizeof(u64);
7070 }
7071
7072 header->size += size;
7073 }
c5ebcedb
JO
7074
7075 if (sample_type & PERF_SAMPLE_STACK_USER) {
7076 /*
9f014e3a 7077 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7078 * processed as the last one or have additional check added
7079 * in case new sample type is added, because we could eat
7080 * up the rest of the sample size.
7081 */
c5ebcedb
JO
7082 u16 stack_size = event->attr.sample_stack_user;
7083 u16 size = sizeof(u64);
7084
c5ebcedb 7085 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 7086 data->regs_user.regs);
c5ebcedb
JO
7087
7088 /*
7089 * If there is something to dump, add space for the dump
7090 * itself and for the field that tells the dynamic size,
7091 * which is how many have been actually dumped.
7092 */
7093 if (stack_size)
7094 size += sizeof(u64) + stack_size;
7095
7096 data->stack_user_size = stack_size;
7097 header->size += size;
7098 }
60e2364e
SE
7099
7100 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7101 /* regs dump ABI info */
7102 int size = sizeof(u64);
7103
7104 perf_sample_regs_intr(&data->regs_intr, regs);
7105
7106 if (data->regs_intr.regs) {
7107 u64 mask = event->attr.sample_regs_intr;
7108
7109 size += hweight64(mask) * sizeof(u64);
7110 }
7111
7112 header->size += size;
7113 }
fc7ce9c7
KL
7114
7115 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7116 data->phys_addr = perf_virt_to_phys(data->addr);
a4faf00d 7117
6546b19f
NK
7118#ifdef CONFIG_CGROUP_PERF
7119 if (sample_type & PERF_SAMPLE_CGROUP) {
7120 struct cgroup *cgrp;
7121
7122 /* protected by RCU */
7123 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7124 data->cgroup = cgroup_id(cgrp);
7125 }
7126#endif
7127
a4faf00d
AS
7128 if (sample_type & PERF_SAMPLE_AUX) {
7129 u64 size;
7130
7131 header->size += sizeof(u64); /* size */
7132
7133 /*
7134 * Given the 16bit nature of header::size, an AUX sample can
7135 * easily overflow it, what with all the preceding sample bits.
7136 * Make sure this doesn't happen by using up to U16_MAX bytes
7137 * per sample in total (rounded down to 8 byte boundary).
7138 */
7139 size = min_t(size_t, U16_MAX - header->size,
7140 event->attr.aux_sample_size);
7141 size = rounddown(size, 8);
7142 size = perf_prepare_sample_aux(event, data, size);
7143
7144 WARN_ON_ONCE(size + header->size > U16_MAX);
7145 header->size += size;
7146 }
7147 /*
7148 * If you're adding more sample types here, you likely need to do
7149 * something about the overflowing header::size, like repurpose the
7150 * lowest 3 bits of size, which should be always zero at the moment.
7151 * This raises a more important question, do we really need 512k sized
7152 * samples and why, so good argumentation is in order for whatever you
7153 * do here next.
7154 */
7155 WARN_ON_ONCE(header->size & 7);
5622f295 7156}
7f453c24 7157
56201969 7158static __always_inline int
9ecda41a
WN
7159__perf_event_output(struct perf_event *event,
7160 struct perf_sample_data *data,
7161 struct pt_regs *regs,
7162 int (*output_begin)(struct perf_output_handle *,
7163 struct perf_event *,
7164 unsigned int))
5622f295
MM
7165{
7166 struct perf_output_handle handle;
7167 struct perf_event_header header;
56201969 7168 int err;
689802b2 7169
927c7a9e
FW
7170 /* protect the callchain buffers */
7171 rcu_read_lock();
7172
cdd6c482 7173 perf_prepare_sample(&header, data, event, regs);
5c148194 7174
56201969
ACM
7175 err = output_begin(&handle, event, header.size);
7176 if (err)
927c7a9e 7177 goto exit;
0322cd6e 7178
cdd6c482 7179 perf_output_sample(&handle, &header, data, event);
f413cdb8 7180
8a057d84 7181 perf_output_end(&handle);
927c7a9e
FW
7182
7183exit:
7184 rcu_read_unlock();
56201969 7185 return err;
0322cd6e
PZ
7186}
7187
9ecda41a
WN
7188void
7189perf_event_output_forward(struct perf_event *event,
7190 struct perf_sample_data *data,
7191 struct pt_regs *regs)
7192{
7193 __perf_event_output(event, data, regs, perf_output_begin_forward);
7194}
7195
7196void
7197perf_event_output_backward(struct perf_event *event,
7198 struct perf_sample_data *data,
7199 struct pt_regs *regs)
7200{
7201 __perf_event_output(event, data, regs, perf_output_begin_backward);
7202}
7203
56201969 7204int
9ecda41a
WN
7205perf_event_output(struct perf_event *event,
7206 struct perf_sample_data *data,
7207 struct pt_regs *regs)
7208{
56201969 7209 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7210}
7211
38b200d6 7212/*
cdd6c482 7213 * read event_id
38b200d6
PZ
7214 */
7215
7216struct perf_read_event {
7217 struct perf_event_header header;
7218
7219 u32 pid;
7220 u32 tid;
38b200d6
PZ
7221};
7222
7223static void
cdd6c482 7224perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7225 struct task_struct *task)
7226{
7227 struct perf_output_handle handle;
c980d109 7228 struct perf_sample_data sample;
dfc65094 7229 struct perf_read_event read_event = {
38b200d6 7230 .header = {
cdd6c482 7231 .type = PERF_RECORD_READ,
38b200d6 7232 .misc = 0,
c320c7b7 7233 .size = sizeof(read_event) + event->read_size,
38b200d6 7234 },
cdd6c482
IM
7235 .pid = perf_event_pid(event, task),
7236 .tid = perf_event_tid(event, task),
38b200d6 7237 };
3dab77fb 7238 int ret;
38b200d6 7239
c980d109 7240 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 7241 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
7242 if (ret)
7243 return;
7244
dfc65094 7245 perf_output_put(&handle, read_event);
cdd6c482 7246 perf_output_read(&handle, event);
c980d109 7247 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7248
38b200d6
PZ
7249 perf_output_end(&handle);
7250}
7251
aab5b71e 7252typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7253
7254static void
aab5b71e
PZ
7255perf_iterate_ctx(struct perf_event_context *ctx,
7256 perf_iterate_f output,
b73e4fef 7257 void *data, bool all)
52d857a8
JO
7258{
7259 struct perf_event *event;
7260
7261 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7262 if (!all) {
7263 if (event->state < PERF_EVENT_STATE_INACTIVE)
7264 continue;
7265 if (!event_filter_match(event))
7266 continue;
7267 }
7268
67516844 7269 output(event, data);
52d857a8
JO
7270 }
7271}
7272
aab5b71e 7273static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7274{
7275 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7276 struct perf_event *event;
7277
7278 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7279 /*
7280 * Skip events that are not fully formed yet; ensure that
7281 * if we observe event->ctx, both event and ctx will be
7282 * complete enough. See perf_install_in_context().
7283 */
7284 if (!smp_load_acquire(&event->ctx))
7285 continue;
7286
f2fb6bef
KL
7287 if (event->state < PERF_EVENT_STATE_INACTIVE)
7288 continue;
7289 if (!event_filter_match(event))
7290 continue;
7291 output(event, data);
7292 }
7293}
7294
aab5b71e
PZ
7295/*
7296 * Iterate all events that need to receive side-band events.
7297 *
7298 * For new callers; ensure that account_pmu_sb_event() includes
7299 * your event, otherwise it might not get delivered.
7300 */
52d857a8 7301static void
aab5b71e 7302perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
7303 struct perf_event_context *task_ctx)
7304{
52d857a8 7305 struct perf_event_context *ctx;
52d857a8
JO
7306 int ctxn;
7307
aab5b71e
PZ
7308 rcu_read_lock();
7309 preempt_disable();
7310
4e93ad60 7311 /*
aab5b71e
PZ
7312 * If we have task_ctx != NULL we only notify the task context itself.
7313 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
7314 * context.
7315 */
7316 if (task_ctx) {
aab5b71e
PZ
7317 perf_iterate_ctx(task_ctx, output, data, false);
7318 goto done;
4e93ad60
JO
7319 }
7320
aab5b71e 7321 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
7322
7323 for_each_task_context_nr(ctxn) {
52d857a8
JO
7324 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7325 if (ctx)
aab5b71e 7326 perf_iterate_ctx(ctx, output, data, false);
52d857a8 7327 }
aab5b71e 7328done:
f2fb6bef 7329 preempt_enable();
52d857a8 7330 rcu_read_unlock();
95ff4ca2
AS
7331}
7332
375637bc
AS
7333/*
7334 * Clear all file-based filters at exec, they'll have to be
7335 * re-instated when/if these objects are mmapped again.
7336 */
7337static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7338{
7339 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7340 struct perf_addr_filter *filter;
7341 unsigned int restart = 0, count = 0;
7342 unsigned long flags;
7343
7344 if (!has_addr_filter(event))
7345 return;
7346
7347 raw_spin_lock_irqsave(&ifh->lock, flags);
7348 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 7349 if (filter->path.dentry) {
c60f83b8
AS
7350 event->addr_filter_ranges[count].start = 0;
7351 event->addr_filter_ranges[count].size = 0;
375637bc
AS
7352 restart++;
7353 }
7354
7355 count++;
7356 }
7357
7358 if (restart)
7359 event->addr_filters_gen++;
7360 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7361
7362 if (restart)
767ae086 7363 perf_event_stop(event, 1);
375637bc
AS
7364}
7365
7366void perf_event_exec(void)
7367{
7368 struct perf_event_context *ctx;
7369 int ctxn;
7370
7371 rcu_read_lock();
7372 for_each_task_context_nr(ctxn) {
7373 ctx = current->perf_event_ctxp[ctxn];
7374 if (!ctx)
7375 continue;
7376
7377 perf_event_enable_on_exec(ctxn);
7378
aab5b71e 7379 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
7380 true);
7381 }
7382 rcu_read_unlock();
7383}
7384
95ff4ca2 7385struct remote_output {
56de4e8f 7386 struct perf_buffer *rb;
95ff4ca2
AS
7387 int err;
7388};
7389
7390static void __perf_event_output_stop(struct perf_event *event, void *data)
7391{
7392 struct perf_event *parent = event->parent;
7393 struct remote_output *ro = data;
56de4e8f 7394 struct perf_buffer *rb = ro->rb;
375637bc
AS
7395 struct stop_event_data sd = {
7396 .event = event,
7397 };
95ff4ca2
AS
7398
7399 if (!has_aux(event))
7400 return;
7401
7402 if (!parent)
7403 parent = event;
7404
7405 /*
7406 * In case of inheritance, it will be the parent that links to the
767ae086
AS
7407 * ring-buffer, but it will be the child that's actually using it.
7408 *
7409 * We are using event::rb to determine if the event should be stopped,
7410 * however this may race with ring_buffer_attach() (through set_output),
7411 * which will make us skip the event that actually needs to be stopped.
7412 * So ring_buffer_attach() has to stop an aux event before re-assigning
7413 * its rb pointer.
95ff4ca2
AS
7414 */
7415 if (rcu_dereference(parent->rb) == rb)
375637bc 7416 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
7417}
7418
7419static int __perf_pmu_output_stop(void *info)
7420{
7421 struct perf_event *event = info;
f3a519e4 7422 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 7423 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
7424 struct remote_output ro = {
7425 .rb = event->rb,
7426 };
7427
7428 rcu_read_lock();
aab5b71e 7429 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 7430 if (cpuctx->task_ctx)
aab5b71e 7431 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 7432 &ro, false);
95ff4ca2
AS
7433 rcu_read_unlock();
7434
7435 return ro.err;
7436}
7437
7438static void perf_pmu_output_stop(struct perf_event *event)
7439{
7440 struct perf_event *iter;
7441 int err, cpu;
7442
7443restart:
7444 rcu_read_lock();
7445 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7446 /*
7447 * For per-CPU events, we need to make sure that neither they
7448 * nor their children are running; for cpu==-1 events it's
7449 * sufficient to stop the event itself if it's active, since
7450 * it can't have children.
7451 */
7452 cpu = iter->cpu;
7453 if (cpu == -1)
7454 cpu = READ_ONCE(iter->oncpu);
7455
7456 if (cpu == -1)
7457 continue;
7458
7459 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7460 if (err == -EAGAIN) {
7461 rcu_read_unlock();
7462 goto restart;
7463 }
7464 }
7465 rcu_read_unlock();
52d857a8
JO
7466}
7467
60313ebe 7468/*
9f498cc5
PZ
7469 * task tracking -- fork/exit
7470 *
13d7a241 7471 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7472 */
7473
9f498cc5 7474struct perf_task_event {
3a80b4a3 7475 struct task_struct *task;
cdd6c482 7476 struct perf_event_context *task_ctx;
60313ebe
PZ
7477
7478 struct {
7479 struct perf_event_header header;
7480
7481 u32 pid;
7482 u32 ppid;
9f498cc5
PZ
7483 u32 tid;
7484 u32 ptid;
393b2ad8 7485 u64 time;
cdd6c482 7486 } event_id;
60313ebe
PZ
7487};
7488
67516844
JO
7489static int perf_event_task_match(struct perf_event *event)
7490{
13d7a241
SE
7491 return event->attr.comm || event->attr.mmap ||
7492 event->attr.mmap2 || event->attr.mmap_data ||
7493 event->attr.task;
67516844
JO
7494}
7495
cdd6c482 7496static void perf_event_task_output(struct perf_event *event,
52d857a8 7497 void *data)
60313ebe 7498{
52d857a8 7499 struct perf_task_event *task_event = data;
60313ebe 7500 struct perf_output_handle handle;
c980d109 7501 struct perf_sample_data sample;
9f498cc5 7502 struct task_struct *task = task_event->task;
c980d109 7503 int ret, size = task_event->event_id.header.size;
8bb39f9a 7504
67516844
JO
7505 if (!perf_event_task_match(event))
7506 return;
7507
c980d109 7508 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7509
c980d109 7510 ret = perf_output_begin(&handle, event,
a7ac67ea 7511 task_event->event_id.header.size);
ef60777c 7512 if (ret)
c980d109 7513 goto out;
60313ebe 7514
cdd6c482 7515 task_event->event_id.pid = perf_event_pid(event, task);
cdd6c482 7516 task_event->event_id.tid = perf_event_tid(event, task);
f3bed55e
IR
7517
7518 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7519 task_event->event_id.ppid = perf_event_pid(event,
7520 task->real_parent);
7521 task_event->event_id.ptid = perf_event_pid(event,
7522 task->real_parent);
7523 } else { /* PERF_RECORD_FORK */
7524 task_event->event_id.ppid = perf_event_pid(event, current);
7525 task_event->event_id.ptid = perf_event_tid(event, current);
7526 }
9f498cc5 7527
34f43927
PZ
7528 task_event->event_id.time = perf_event_clock(event);
7529
cdd6c482 7530 perf_output_put(&handle, task_event->event_id);
393b2ad8 7531
c980d109
ACM
7532 perf_event__output_id_sample(event, &handle, &sample);
7533
60313ebe 7534 perf_output_end(&handle);
c980d109
ACM
7535out:
7536 task_event->event_id.header.size = size;
60313ebe
PZ
7537}
7538
cdd6c482
IM
7539static void perf_event_task(struct task_struct *task,
7540 struct perf_event_context *task_ctx,
3a80b4a3 7541 int new)
60313ebe 7542{
9f498cc5 7543 struct perf_task_event task_event;
60313ebe 7544
cdd6c482
IM
7545 if (!atomic_read(&nr_comm_events) &&
7546 !atomic_read(&nr_mmap_events) &&
7547 !atomic_read(&nr_task_events))
60313ebe
PZ
7548 return;
7549
9f498cc5 7550 task_event = (struct perf_task_event){
3a80b4a3
PZ
7551 .task = task,
7552 .task_ctx = task_ctx,
cdd6c482 7553 .event_id = {
60313ebe 7554 .header = {
cdd6c482 7555 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7556 .misc = 0,
cdd6c482 7557 .size = sizeof(task_event.event_id),
60313ebe 7558 },
573402db
PZ
7559 /* .pid */
7560 /* .ppid */
9f498cc5
PZ
7561 /* .tid */
7562 /* .ptid */
34f43927 7563 /* .time */
60313ebe
PZ
7564 },
7565 };
7566
aab5b71e 7567 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7568 &task_event,
7569 task_ctx);
9f498cc5
PZ
7570}
7571
cdd6c482 7572void perf_event_fork(struct task_struct *task)
9f498cc5 7573{
cdd6c482 7574 perf_event_task(task, NULL, 1);
e4222673 7575 perf_event_namespaces(task);
60313ebe
PZ
7576}
7577
8d1b2d93
PZ
7578/*
7579 * comm tracking
7580 */
7581
7582struct perf_comm_event {
22a4f650
IM
7583 struct task_struct *task;
7584 char *comm;
8d1b2d93
PZ
7585 int comm_size;
7586
7587 struct {
7588 struct perf_event_header header;
7589
7590 u32 pid;
7591 u32 tid;
cdd6c482 7592 } event_id;
8d1b2d93
PZ
7593};
7594
67516844
JO
7595static int perf_event_comm_match(struct perf_event *event)
7596{
7597 return event->attr.comm;
7598}
7599
cdd6c482 7600static void perf_event_comm_output(struct perf_event *event,
52d857a8 7601 void *data)
8d1b2d93 7602{
52d857a8 7603 struct perf_comm_event *comm_event = data;
8d1b2d93 7604 struct perf_output_handle handle;
c980d109 7605 struct perf_sample_data sample;
cdd6c482 7606 int size = comm_event->event_id.header.size;
c980d109
ACM
7607 int ret;
7608
67516844
JO
7609 if (!perf_event_comm_match(event))
7610 return;
7611
c980d109
ACM
7612 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7613 ret = perf_output_begin(&handle, event,
a7ac67ea 7614 comm_event->event_id.header.size);
8d1b2d93
PZ
7615
7616 if (ret)
c980d109 7617 goto out;
8d1b2d93 7618
cdd6c482
IM
7619 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7620 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7621
cdd6c482 7622 perf_output_put(&handle, comm_event->event_id);
76369139 7623 __output_copy(&handle, comm_event->comm,
8d1b2d93 7624 comm_event->comm_size);
c980d109
ACM
7625
7626 perf_event__output_id_sample(event, &handle, &sample);
7627
8d1b2d93 7628 perf_output_end(&handle);
c980d109
ACM
7629out:
7630 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7631}
7632
cdd6c482 7633static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7634{
413ee3b4 7635 char comm[TASK_COMM_LEN];
8d1b2d93 7636 unsigned int size;
8d1b2d93 7637
413ee3b4 7638 memset(comm, 0, sizeof(comm));
96b02d78 7639 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7640 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7641
7642 comm_event->comm = comm;
7643 comm_event->comm_size = size;
7644
cdd6c482 7645 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7646
aab5b71e 7647 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7648 comm_event,
7649 NULL);
8d1b2d93
PZ
7650}
7651
82b89778 7652void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7653{
9ee318a7
PZ
7654 struct perf_comm_event comm_event;
7655
cdd6c482 7656 if (!atomic_read(&nr_comm_events))
9ee318a7 7657 return;
a63eaf34 7658
9ee318a7 7659 comm_event = (struct perf_comm_event){
8d1b2d93 7660 .task = task,
573402db
PZ
7661 /* .comm */
7662 /* .comm_size */
cdd6c482 7663 .event_id = {
573402db 7664 .header = {
cdd6c482 7665 .type = PERF_RECORD_COMM,
82b89778 7666 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7667 /* .size */
7668 },
7669 /* .pid */
7670 /* .tid */
8d1b2d93
PZ
7671 },
7672 };
7673
cdd6c482 7674 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7675}
7676
e4222673
HB
7677/*
7678 * namespaces tracking
7679 */
7680
7681struct perf_namespaces_event {
7682 struct task_struct *task;
7683
7684 struct {
7685 struct perf_event_header header;
7686
7687 u32 pid;
7688 u32 tid;
7689 u64 nr_namespaces;
7690 struct perf_ns_link_info link_info[NR_NAMESPACES];
7691 } event_id;
7692};
7693
7694static int perf_event_namespaces_match(struct perf_event *event)
7695{
7696 return event->attr.namespaces;
7697}
7698
7699static void perf_event_namespaces_output(struct perf_event *event,
7700 void *data)
7701{
7702 struct perf_namespaces_event *namespaces_event = data;
7703 struct perf_output_handle handle;
7704 struct perf_sample_data sample;
34900ec5 7705 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7706 int ret;
7707
7708 if (!perf_event_namespaces_match(event))
7709 return;
7710
7711 perf_event_header__init_id(&namespaces_event->event_id.header,
7712 &sample, event);
7713 ret = perf_output_begin(&handle, event,
7714 namespaces_event->event_id.header.size);
7715 if (ret)
34900ec5 7716 goto out;
e4222673
HB
7717
7718 namespaces_event->event_id.pid = perf_event_pid(event,
7719 namespaces_event->task);
7720 namespaces_event->event_id.tid = perf_event_tid(event,
7721 namespaces_event->task);
7722
7723 perf_output_put(&handle, namespaces_event->event_id);
7724
7725 perf_event__output_id_sample(event, &handle, &sample);
7726
7727 perf_output_end(&handle);
34900ec5
JO
7728out:
7729 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7730}
7731
7732static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7733 struct task_struct *task,
7734 const struct proc_ns_operations *ns_ops)
7735{
7736 struct path ns_path;
7737 struct inode *ns_inode;
ce623f89 7738 int error;
e4222673
HB
7739
7740 error = ns_get_path(&ns_path, task, ns_ops);
7741 if (!error) {
7742 ns_inode = ns_path.dentry->d_inode;
7743 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7744 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7745 path_put(&ns_path);
e4222673
HB
7746 }
7747}
7748
7749void perf_event_namespaces(struct task_struct *task)
7750{
7751 struct perf_namespaces_event namespaces_event;
7752 struct perf_ns_link_info *ns_link_info;
7753
7754 if (!atomic_read(&nr_namespaces_events))
7755 return;
7756
7757 namespaces_event = (struct perf_namespaces_event){
7758 .task = task,
7759 .event_id = {
7760 .header = {
7761 .type = PERF_RECORD_NAMESPACES,
7762 .misc = 0,
7763 .size = sizeof(namespaces_event.event_id),
7764 },
7765 /* .pid */
7766 /* .tid */
7767 .nr_namespaces = NR_NAMESPACES,
7768 /* .link_info[NR_NAMESPACES] */
7769 },
7770 };
7771
7772 ns_link_info = namespaces_event.event_id.link_info;
7773
7774 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7775 task, &mntns_operations);
7776
7777#ifdef CONFIG_USER_NS
7778 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7779 task, &userns_operations);
7780#endif
7781#ifdef CONFIG_NET_NS
7782 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7783 task, &netns_operations);
7784#endif
7785#ifdef CONFIG_UTS_NS
7786 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7787 task, &utsns_operations);
7788#endif
7789#ifdef CONFIG_IPC_NS
7790 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7791 task, &ipcns_operations);
7792#endif
7793#ifdef CONFIG_PID_NS
7794 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7795 task, &pidns_operations);
7796#endif
7797#ifdef CONFIG_CGROUPS
7798 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7799 task, &cgroupns_operations);
7800#endif
7801
7802 perf_iterate_sb(perf_event_namespaces_output,
7803 &namespaces_event,
7804 NULL);
7805}
7806
96aaab68
NK
7807/*
7808 * cgroup tracking
7809 */
7810#ifdef CONFIG_CGROUP_PERF
7811
7812struct perf_cgroup_event {
7813 char *path;
7814 int path_size;
7815 struct {
7816 struct perf_event_header header;
7817 u64 id;
7818 char path[];
7819 } event_id;
7820};
7821
7822static int perf_event_cgroup_match(struct perf_event *event)
7823{
7824 return event->attr.cgroup;
7825}
7826
7827static void perf_event_cgroup_output(struct perf_event *event, void *data)
7828{
7829 struct perf_cgroup_event *cgroup_event = data;
7830 struct perf_output_handle handle;
7831 struct perf_sample_data sample;
7832 u16 header_size = cgroup_event->event_id.header.size;
7833 int ret;
7834
7835 if (!perf_event_cgroup_match(event))
7836 return;
7837
7838 perf_event_header__init_id(&cgroup_event->event_id.header,
7839 &sample, event);
7840 ret = perf_output_begin(&handle, event,
7841 cgroup_event->event_id.header.size);
7842 if (ret)
7843 goto out;
7844
7845 perf_output_put(&handle, cgroup_event->event_id);
7846 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7847
7848 perf_event__output_id_sample(event, &handle, &sample);
7849
7850 perf_output_end(&handle);
7851out:
7852 cgroup_event->event_id.header.size = header_size;
7853}
7854
7855static void perf_event_cgroup(struct cgroup *cgrp)
7856{
7857 struct perf_cgroup_event cgroup_event;
7858 char path_enomem[16] = "//enomem";
7859 char *pathname;
7860 size_t size;
7861
7862 if (!atomic_read(&nr_cgroup_events))
7863 return;
7864
7865 cgroup_event = (struct perf_cgroup_event){
7866 .event_id = {
7867 .header = {
7868 .type = PERF_RECORD_CGROUP,
7869 .misc = 0,
7870 .size = sizeof(cgroup_event.event_id),
7871 },
7872 .id = cgroup_id(cgrp),
7873 },
7874 };
7875
7876 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7877 if (pathname == NULL) {
7878 cgroup_event.path = path_enomem;
7879 } else {
7880 /* just to be sure to have enough space for alignment */
7881 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7882 cgroup_event.path = pathname;
7883 }
7884
7885 /*
7886 * Since our buffer works in 8 byte units we need to align our string
7887 * size to a multiple of 8. However, we must guarantee the tail end is
7888 * zero'd out to avoid leaking random bits to userspace.
7889 */
7890 size = strlen(cgroup_event.path) + 1;
7891 while (!IS_ALIGNED(size, sizeof(u64)))
7892 cgroup_event.path[size++] = '\0';
7893
7894 cgroup_event.event_id.header.size += size;
7895 cgroup_event.path_size = size;
7896
7897 perf_iterate_sb(perf_event_cgroup_output,
7898 &cgroup_event,
7899 NULL);
7900
7901 kfree(pathname);
7902}
7903
7904#endif
7905
0a4a9391
PZ
7906/*
7907 * mmap tracking
7908 */
7909
7910struct perf_mmap_event {
089dd79d
PZ
7911 struct vm_area_struct *vma;
7912
7913 const char *file_name;
7914 int file_size;
13d7a241
SE
7915 int maj, min;
7916 u64 ino;
7917 u64 ino_generation;
f972eb63 7918 u32 prot, flags;
0a4a9391
PZ
7919
7920 struct {
7921 struct perf_event_header header;
7922
7923 u32 pid;
7924 u32 tid;
7925 u64 start;
7926 u64 len;
7927 u64 pgoff;
cdd6c482 7928 } event_id;
0a4a9391
PZ
7929};
7930
67516844
JO
7931static int perf_event_mmap_match(struct perf_event *event,
7932 void *data)
7933{
7934 struct perf_mmap_event *mmap_event = data;
7935 struct vm_area_struct *vma = mmap_event->vma;
7936 int executable = vma->vm_flags & VM_EXEC;
7937
7938 return (!executable && event->attr.mmap_data) ||
13d7a241 7939 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7940}
7941
cdd6c482 7942static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7943 void *data)
0a4a9391 7944{
52d857a8 7945 struct perf_mmap_event *mmap_event = data;
0a4a9391 7946 struct perf_output_handle handle;
c980d109 7947 struct perf_sample_data sample;
cdd6c482 7948 int size = mmap_event->event_id.header.size;
d9c1bb2f 7949 u32 type = mmap_event->event_id.header.type;
c980d109 7950 int ret;
0a4a9391 7951
67516844
JO
7952 if (!perf_event_mmap_match(event, data))
7953 return;
7954
13d7a241
SE
7955 if (event->attr.mmap2) {
7956 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7957 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7958 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7959 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7960 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7961 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7962 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7963 }
7964
c980d109
ACM
7965 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7966 ret = perf_output_begin(&handle, event,
a7ac67ea 7967 mmap_event->event_id.header.size);
0a4a9391 7968 if (ret)
c980d109 7969 goto out;
0a4a9391 7970
cdd6c482
IM
7971 mmap_event->event_id.pid = perf_event_pid(event, current);
7972 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7973
cdd6c482 7974 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7975
7976 if (event->attr.mmap2) {
7977 perf_output_put(&handle, mmap_event->maj);
7978 perf_output_put(&handle, mmap_event->min);
7979 perf_output_put(&handle, mmap_event->ino);
7980 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7981 perf_output_put(&handle, mmap_event->prot);
7982 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7983 }
7984
76369139 7985 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7986 mmap_event->file_size);
c980d109
ACM
7987
7988 perf_event__output_id_sample(event, &handle, &sample);
7989
78d613eb 7990 perf_output_end(&handle);
c980d109
ACM
7991out:
7992 mmap_event->event_id.header.size = size;
d9c1bb2f 7993 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7994}
7995
cdd6c482 7996static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7997{
089dd79d
PZ
7998 struct vm_area_struct *vma = mmap_event->vma;
7999 struct file *file = vma->vm_file;
13d7a241
SE
8000 int maj = 0, min = 0;
8001 u64 ino = 0, gen = 0;
f972eb63 8002 u32 prot = 0, flags = 0;
0a4a9391
PZ
8003 unsigned int size;
8004 char tmp[16];
8005 char *buf = NULL;
2c42cfbf 8006 char *name;
413ee3b4 8007
0b3589be
PZ
8008 if (vma->vm_flags & VM_READ)
8009 prot |= PROT_READ;
8010 if (vma->vm_flags & VM_WRITE)
8011 prot |= PROT_WRITE;
8012 if (vma->vm_flags & VM_EXEC)
8013 prot |= PROT_EXEC;
8014
8015 if (vma->vm_flags & VM_MAYSHARE)
8016 flags = MAP_SHARED;
8017 else
8018 flags = MAP_PRIVATE;
8019
8020 if (vma->vm_flags & VM_DENYWRITE)
8021 flags |= MAP_DENYWRITE;
8022 if (vma->vm_flags & VM_MAYEXEC)
8023 flags |= MAP_EXECUTABLE;
8024 if (vma->vm_flags & VM_LOCKED)
8025 flags |= MAP_LOCKED;
03911132 8026 if (is_vm_hugetlb_page(vma))
0b3589be
PZ
8027 flags |= MAP_HUGETLB;
8028
0a4a9391 8029 if (file) {
13d7a241
SE
8030 struct inode *inode;
8031 dev_t dev;
3ea2f2b9 8032
2c42cfbf 8033 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 8034 if (!buf) {
c7e548b4
ON
8035 name = "//enomem";
8036 goto cpy_name;
0a4a9391 8037 }
413ee3b4 8038 /*
3ea2f2b9 8039 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
8040 * need to add enough zero bytes after the string to handle
8041 * the 64bit alignment we do later.
8042 */
9bf39ab2 8043 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 8044 if (IS_ERR(name)) {
c7e548b4
ON
8045 name = "//toolong";
8046 goto cpy_name;
0a4a9391 8047 }
13d7a241
SE
8048 inode = file_inode(vma->vm_file);
8049 dev = inode->i_sb->s_dev;
8050 ino = inode->i_ino;
8051 gen = inode->i_generation;
8052 maj = MAJOR(dev);
8053 min = MINOR(dev);
f972eb63 8054
c7e548b4 8055 goto got_name;
0a4a9391 8056 } else {
fbe26abe
JO
8057 if (vma->vm_ops && vma->vm_ops->name) {
8058 name = (char *) vma->vm_ops->name(vma);
8059 if (name)
8060 goto cpy_name;
8061 }
8062
2c42cfbf 8063 name = (char *)arch_vma_name(vma);
c7e548b4
ON
8064 if (name)
8065 goto cpy_name;
089dd79d 8066
32c5fb7e 8067 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 8068 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
8069 name = "[heap]";
8070 goto cpy_name;
32c5fb7e
ON
8071 }
8072 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 8073 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
8074 name = "[stack]";
8075 goto cpy_name;
089dd79d
PZ
8076 }
8077
c7e548b4
ON
8078 name = "//anon";
8079 goto cpy_name;
0a4a9391
PZ
8080 }
8081
c7e548b4
ON
8082cpy_name:
8083 strlcpy(tmp, name, sizeof(tmp));
8084 name = tmp;
0a4a9391 8085got_name:
2c42cfbf
PZ
8086 /*
8087 * Since our buffer works in 8 byte units we need to align our string
8088 * size to a multiple of 8. However, we must guarantee the tail end is
8089 * zero'd out to avoid leaking random bits to userspace.
8090 */
8091 size = strlen(name)+1;
8092 while (!IS_ALIGNED(size, sizeof(u64)))
8093 name[size++] = '\0';
0a4a9391
PZ
8094
8095 mmap_event->file_name = name;
8096 mmap_event->file_size = size;
13d7a241
SE
8097 mmap_event->maj = maj;
8098 mmap_event->min = min;
8099 mmap_event->ino = ino;
8100 mmap_event->ino_generation = gen;
f972eb63
PZ
8101 mmap_event->prot = prot;
8102 mmap_event->flags = flags;
0a4a9391 8103
2fe85427
SE
8104 if (!(vma->vm_flags & VM_EXEC))
8105 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8106
cdd6c482 8107 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 8108
aab5b71e 8109 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
8110 mmap_event,
8111 NULL);
665c2142 8112
0a4a9391
PZ
8113 kfree(buf);
8114}
8115
375637bc
AS
8116/*
8117 * Check whether inode and address range match filter criteria.
8118 */
8119static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8120 struct file *file, unsigned long offset,
8121 unsigned long size)
8122{
7f635ff1
MP
8123 /* d_inode(NULL) won't be equal to any mapped user-space file */
8124 if (!filter->path.dentry)
8125 return false;
8126
9511bce9 8127 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
8128 return false;
8129
8130 if (filter->offset > offset + size)
8131 return false;
8132
8133 if (filter->offset + filter->size < offset)
8134 return false;
8135
8136 return true;
8137}
8138
c60f83b8
AS
8139static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8140 struct vm_area_struct *vma,
8141 struct perf_addr_filter_range *fr)
8142{
8143 unsigned long vma_size = vma->vm_end - vma->vm_start;
8144 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8145 struct file *file = vma->vm_file;
8146
8147 if (!perf_addr_filter_match(filter, file, off, vma_size))
8148 return false;
8149
8150 if (filter->offset < off) {
8151 fr->start = vma->vm_start;
8152 fr->size = min(vma_size, filter->size - (off - filter->offset));
8153 } else {
8154 fr->start = vma->vm_start + filter->offset - off;
8155 fr->size = min(vma->vm_end - fr->start, filter->size);
8156 }
8157
8158 return true;
8159}
8160
375637bc
AS
8161static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8162{
8163 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8164 struct vm_area_struct *vma = data;
375637bc
AS
8165 struct perf_addr_filter *filter;
8166 unsigned int restart = 0, count = 0;
c60f83b8 8167 unsigned long flags;
375637bc
AS
8168
8169 if (!has_addr_filter(event))
8170 return;
8171
c60f83b8 8172 if (!vma->vm_file)
375637bc
AS
8173 return;
8174
8175 raw_spin_lock_irqsave(&ifh->lock, flags);
8176 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8177 if (perf_addr_filter_vma_adjust(filter, vma,
8178 &event->addr_filter_ranges[count]))
375637bc 8179 restart++;
375637bc
AS
8180
8181 count++;
8182 }
8183
8184 if (restart)
8185 event->addr_filters_gen++;
8186 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8187
8188 if (restart)
767ae086 8189 perf_event_stop(event, 1);
375637bc
AS
8190}
8191
8192/*
8193 * Adjust all task's events' filters to the new vma
8194 */
8195static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8196{
8197 struct perf_event_context *ctx;
8198 int ctxn;
8199
12b40a23
MP
8200 /*
8201 * Data tracing isn't supported yet and as such there is no need
8202 * to keep track of anything that isn't related to executable code:
8203 */
8204 if (!(vma->vm_flags & VM_EXEC))
8205 return;
8206
375637bc
AS
8207 rcu_read_lock();
8208 for_each_task_context_nr(ctxn) {
8209 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8210 if (!ctx)
8211 continue;
8212
aab5b71e 8213 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8214 }
8215 rcu_read_unlock();
8216}
8217
3af9e859 8218void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8219{
9ee318a7
PZ
8220 struct perf_mmap_event mmap_event;
8221
cdd6c482 8222 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8223 return;
8224
8225 mmap_event = (struct perf_mmap_event){
089dd79d 8226 .vma = vma,
573402db
PZ
8227 /* .file_name */
8228 /* .file_size */
cdd6c482 8229 .event_id = {
573402db 8230 .header = {
cdd6c482 8231 .type = PERF_RECORD_MMAP,
39447b38 8232 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8233 /* .size */
8234 },
8235 /* .pid */
8236 /* .tid */
089dd79d
PZ
8237 .start = vma->vm_start,
8238 .len = vma->vm_end - vma->vm_start,
3a0304e9 8239 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8240 },
13d7a241
SE
8241 /* .maj (attr_mmap2 only) */
8242 /* .min (attr_mmap2 only) */
8243 /* .ino (attr_mmap2 only) */
8244 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8245 /* .prot (attr_mmap2 only) */
8246 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8247 };
8248
375637bc 8249 perf_addr_filters_adjust(vma);
cdd6c482 8250 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8251}
8252
68db7e98
AS
8253void perf_event_aux_event(struct perf_event *event, unsigned long head,
8254 unsigned long size, u64 flags)
8255{
8256 struct perf_output_handle handle;
8257 struct perf_sample_data sample;
8258 struct perf_aux_event {
8259 struct perf_event_header header;
8260 u64 offset;
8261 u64 size;
8262 u64 flags;
8263 } rec = {
8264 .header = {
8265 .type = PERF_RECORD_AUX,
8266 .misc = 0,
8267 .size = sizeof(rec),
8268 },
8269 .offset = head,
8270 .size = size,
8271 .flags = flags,
8272 };
8273 int ret;
8274
8275 perf_event_header__init_id(&rec.header, &sample, event);
8276 ret = perf_output_begin(&handle, event, rec.header.size);
8277
8278 if (ret)
8279 return;
8280
8281 perf_output_put(&handle, rec);
8282 perf_event__output_id_sample(event, &handle, &sample);
8283
8284 perf_output_end(&handle);
8285}
8286
f38b0dbb
KL
8287/*
8288 * Lost/dropped samples logging
8289 */
8290void perf_log_lost_samples(struct perf_event *event, u64 lost)
8291{
8292 struct perf_output_handle handle;
8293 struct perf_sample_data sample;
8294 int ret;
8295
8296 struct {
8297 struct perf_event_header header;
8298 u64 lost;
8299 } lost_samples_event = {
8300 .header = {
8301 .type = PERF_RECORD_LOST_SAMPLES,
8302 .misc = 0,
8303 .size = sizeof(lost_samples_event),
8304 },
8305 .lost = lost,
8306 };
8307
8308 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8309
8310 ret = perf_output_begin(&handle, event,
8311 lost_samples_event.header.size);
8312 if (ret)
8313 return;
8314
8315 perf_output_put(&handle, lost_samples_event);
8316 perf_event__output_id_sample(event, &handle, &sample);
8317 perf_output_end(&handle);
8318}
8319
45ac1403
AH
8320/*
8321 * context_switch tracking
8322 */
8323
8324struct perf_switch_event {
8325 struct task_struct *task;
8326 struct task_struct *next_prev;
8327
8328 struct {
8329 struct perf_event_header header;
8330 u32 next_prev_pid;
8331 u32 next_prev_tid;
8332 } event_id;
8333};
8334
8335static int perf_event_switch_match(struct perf_event *event)
8336{
8337 return event->attr.context_switch;
8338}
8339
8340static void perf_event_switch_output(struct perf_event *event, void *data)
8341{
8342 struct perf_switch_event *se = data;
8343 struct perf_output_handle handle;
8344 struct perf_sample_data sample;
8345 int ret;
8346
8347 if (!perf_event_switch_match(event))
8348 return;
8349
8350 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8351 if (event->ctx->task) {
8352 se->event_id.header.type = PERF_RECORD_SWITCH;
8353 se->event_id.header.size = sizeof(se->event_id.header);
8354 } else {
8355 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8356 se->event_id.header.size = sizeof(se->event_id);
8357 se->event_id.next_prev_pid =
8358 perf_event_pid(event, se->next_prev);
8359 se->event_id.next_prev_tid =
8360 perf_event_tid(event, se->next_prev);
8361 }
8362
8363 perf_event_header__init_id(&se->event_id.header, &sample, event);
8364
8365 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8366 if (ret)
8367 return;
8368
8369 if (event->ctx->task)
8370 perf_output_put(&handle, se->event_id.header);
8371 else
8372 perf_output_put(&handle, se->event_id);
8373
8374 perf_event__output_id_sample(event, &handle, &sample);
8375
8376 perf_output_end(&handle);
8377}
8378
8379static void perf_event_switch(struct task_struct *task,
8380 struct task_struct *next_prev, bool sched_in)
8381{
8382 struct perf_switch_event switch_event;
8383
8384 /* N.B. caller checks nr_switch_events != 0 */
8385
8386 switch_event = (struct perf_switch_event){
8387 .task = task,
8388 .next_prev = next_prev,
8389 .event_id = {
8390 .header = {
8391 /* .type */
8392 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8393 /* .size */
8394 },
8395 /* .next_prev_pid */
8396 /* .next_prev_tid */
8397 },
8398 };
8399
101592b4
AB
8400 if (!sched_in && task->state == TASK_RUNNING)
8401 switch_event.event_id.header.misc |=
8402 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8403
aab5b71e 8404 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
8405 &switch_event,
8406 NULL);
8407}
8408
a78ac325
PZ
8409/*
8410 * IRQ throttle logging
8411 */
8412
cdd6c482 8413static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
8414{
8415 struct perf_output_handle handle;
c980d109 8416 struct perf_sample_data sample;
a78ac325
PZ
8417 int ret;
8418
8419 struct {
8420 struct perf_event_header header;
8421 u64 time;
cca3f454 8422 u64 id;
7f453c24 8423 u64 stream_id;
a78ac325
PZ
8424 } throttle_event = {
8425 .header = {
cdd6c482 8426 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
8427 .misc = 0,
8428 .size = sizeof(throttle_event),
8429 },
34f43927 8430 .time = perf_event_clock(event),
cdd6c482
IM
8431 .id = primary_event_id(event),
8432 .stream_id = event->id,
a78ac325
PZ
8433 };
8434
966ee4d6 8435 if (enable)
cdd6c482 8436 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 8437
c980d109
ACM
8438 perf_event_header__init_id(&throttle_event.header, &sample, event);
8439
8440 ret = perf_output_begin(&handle, event,
a7ac67ea 8441 throttle_event.header.size);
a78ac325
PZ
8442 if (ret)
8443 return;
8444
8445 perf_output_put(&handle, throttle_event);
c980d109 8446 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
8447 perf_output_end(&handle);
8448}
8449
76193a94
SL
8450/*
8451 * ksymbol register/unregister tracking
8452 */
8453
8454struct perf_ksymbol_event {
8455 const char *name;
8456 int name_len;
8457 struct {
8458 struct perf_event_header header;
8459 u64 addr;
8460 u32 len;
8461 u16 ksym_type;
8462 u16 flags;
8463 } event_id;
8464};
8465
8466static int perf_event_ksymbol_match(struct perf_event *event)
8467{
8468 return event->attr.ksymbol;
8469}
8470
8471static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8472{
8473 struct perf_ksymbol_event *ksymbol_event = data;
8474 struct perf_output_handle handle;
8475 struct perf_sample_data sample;
8476 int ret;
8477
8478 if (!perf_event_ksymbol_match(event))
8479 return;
8480
8481 perf_event_header__init_id(&ksymbol_event->event_id.header,
8482 &sample, event);
8483 ret = perf_output_begin(&handle, event,
8484 ksymbol_event->event_id.header.size);
8485 if (ret)
8486 return;
8487
8488 perf_output_put(&handle, ksymbol_event->event_id);
8489 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8490 perf_event__output_id_sample(event, &handle, &sample);
8491
8492 perf_output_end(&handle);
8493}
8494
8495void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8496 const char *sym)
8497{
8498 struct perf_ksymbol_event ksymbol_event;
8499 char name[KSYM_NAME_LEN];
8500 u16 flags = 0;
8501 int name_len;
8502
8503 if (!atomic_read(&nr_ksymbol_events))
8504 return;
8505
8506 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8507 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8508 goto err;
8509
8510 strlcpy(name, sym, KSYM_NAME_LEN);
8511 name_len = strlen(name) + 1;
8512 while (!IS_ALIGNED(name_len, sizeof(u64)))
8513 name[name_len++] = '\0';
8514 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8515
8516 if (unregister)
8517 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8518
8519 ksymbol_event = (struct perf_ksymbol_event){
8520 .name = name,
8521 .name_len = name_len,
8522 .event_id = {
8523 .header = {
8524 .type = PERF_RECORD_KSYMBOL,
8525 .size = sizeof(ksymbol_event.event_id) +
8526 name_len,
8527 },
8528 .addr = addr,
8529 .len = len,
8530 .ksym_type = ksym_type,
8531 .flags = flags,
8532 },
8533 };
8534
8535 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8536 return;
8537err:
8538 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8539}
8540
6ee52e2a
SL
8541/*
8542 * bpf program load/unload tracking
8543 */
8544
8545struct perf_bpf_event {
8546 struct bpf_prog *prog;
8547 struct {
8548 struct perf_event_header header;
8549 u16 type;
8550 u16 flags;
8551 u32 id;
8552 u8 tag[BPF_TAG_SIZE];
8553 } event_id;
8554};
8555
8556static int perf_event_bpf_match(struct perf_event *event)
8557{
8558 return event->attr.bpf_event;
8559}
8560
8561static void perf_event_bpf_output(struct perf_event *event, void *data)
8562{
8563 struct perf_bpf_event *bpf_event = data;
8564 struct perf_output_handle handle;
8565 struct perf_sample_data sample;
8566 int ret;
8567
8568 if (!perf_event_bpf_match(event))
8569 return;
8570
8571 perf_event_header__init_id(&bpf_event->event_id.header,
8572 &sample, event);
8573 ret = perf_output_begin(&handle, event,
8574 bpf_event->event_id.header.size);
8575 if (ret)
8576 return;
8577
8578 perf_output_put(&handle, bpf_event->event_id);
8579 perf_event__output_id_sample(event, &handle, &sample);
8580
8581 perf_output_end(&handle);
8582}
8583
8584static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8585 enum perf_bpf_event_type type)
8586{
8587 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
6ee52e2a
SL
8588 int i;
8589
8590 if (prog->aux->func_cnt == 0) {
6ee52e2a
SL
8591 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8592 (u64)(unsigned long)prog->bpf_func,
bfea9a85
JO
8593 prog->jited_len, unregister,
8594 prog->aux->ksym.name);
6ee52e2a
SL
8595 } else {
8596 for (i = 0; i < prog->aux->func_cnt; i++) {
8597 struct bpf_prog *subprog = prog->aux->func[i];
8598
6ee52e2a
SL
8599 perf_event_ksymbol(
8600 PERF_RECORD_KSYMBOL_TYPE_BPF,
8601 (u64)(unsigned long)subprog->bpf_func,
bfea9a85
JO
8602 subprog->jited_len, unregister,
8603 prog->aux->ksym.name);
6ee52e2a
SL
8604 }
8605 }
8606}
8607
8608void perf_event_bpf_event(struct bpf_prog *prog,
8609 enum perf_bpf_event_type type,
8610 u16 flags)
8611{
8612 struct perf_bpf_event bpf_event;
8613
8614 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8615 type >= PERF_BPF_EVENT_MAX)
8616 return;
8617
8618 switch (type) {
8619 case PERF_BPF_EVENT_PROG_LOAD:
8620 case PERF_BPF_EVENT_PROG_UNLOAD:
8621 if (atomic_read(&nr_ksymbol_events))
8622 perf_event_bpf_emit_ksymbols(prog, type);
8623 break;
8624 default:
8625 break;
8626 }
8627
8628 if (!atomic_read(&nr_bpf_events))
8629 return;
8630
8631 bpf_event = (struct perf_bpf_event){
8632 .prog = prog,
8633 .event_id = {
8634 .header = {
8635 .type = PERF_RECORD_BPF_EVENT,
8636 .size = sizeof(bpf_event.event_id),
8637 },
8638 .type = type,
8639 .flags = flags,
8640 .id = prog->aux->id,
8641 },
8642 };
8643
8644 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8645
8646 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8647 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8648}
8649
e17d43b9
AH
8650struct perf_text_poke_event {
8651 const void *old_bytes;
8652 const void *new_bytes;
8653 size_t pad;
8654 u16 old_len;
8655 u16 new_len;
8656
8657 struct {
8658 struct perf_event_header header;
8659
8660 u64 addr;
8661 } event_id;
8662};
8663
8664static int perf_event_text_poke_match(struct perf_event *event)
8665{
8666 return event->attr.text_poke;
8667}
8668
8669static void perf_event_text_poke_output(struct perf_event *event, void *data)
8670{
8671 struct perf_text_poke_event *text_poke_event = data;
8672 struct perf_output_handle handle;
8673 struct perf_sample_data sample;
8674 u64 padding = 0;
8675 int ret;
8676
8677 if (!perf_event_text_poke_match(event))
8678 return;
8679
8680 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8681
8682 ret = perf_output_begin(&handle, event, text_poke_event->event_id.header.size);
8683 if (ret)
8684 return;
8685
8686 perf_output_put(&handle, text_poke_event->event_id);
8687 perf_output_put(&handle, text_poke_event->old_len);
8688 perf_output_put(&handle, text_poke_event->new_len);
8689
8690 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8691 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8692
8693 if (text_poke_event->pad)
8694 __output_copy(&handle, &padding, text_poke_event->pad);
8695
8696 perf_event__output_id_sample(event, &handle, &sample);
8697
8698 perf_output_end(&handle);
8699}
8700
8701void perf_event_text_poke(const void *addr, const void *old_bytes,
8702 size_t old_len, const void *new_bytes, size_t new_len)
8703{
8704 struct perf_text_poke_event text_poke_event;
8705 size_t tot, pad;
8706
8707 if (!atomic_read(&nr_text_poke_events))
8708 return;
8709
8710 tot = sizeof(text_poke_event.old_len) + old_len;
8711 tot += sizeof(text_poke_event.new_len) + new_len;
8712 pad = ALIGN(tot, sizeof(u64)) - tot;
8713
8714 text_poke_event = (struct perf_text_poke_event){
8715 .old_bytes = old_bytes,
8716 .new_bytes = new_bytes,
8717 .pad = pad,
8718 .old_len = old_len,
8719 .new_len = new_len,
8720 .event_id = {
8721 .header = {
8722 .type = PERF_RECORD_TEXT_POKE,
8723 .misc = PERF_RECORD_MISC_KERNEL,
8724 .size = sizeof(text_poke_event.event_id) + tot + pad,
8725 },
8726 .addr = (unsigned long)addr,
8727 },
8728 };
8729
8730 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8731}
8732
8d4e6c4c
AS
8733void perf_event_itrace_started(struct perf_event *event)
8734{
8735 event->attach_state |= PERF_ATTACH_ITRACE;
8736}
8737
ec0d7729
AS
8738static void perf_log_itrace_start(struct perf_event *event)
8739{
8740 struct perf_output_handle handle;
8741 struct perf_sample_data sample;
8742 struct perf_aux_event {
8743 struct perf_event_header header;
8744 u32 pid;
8745 u32 tid;
8746 } rec;
8747 int ret;
8748
8749 if (event->parent)
8750 event = event->parent;
8751
8752 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8753 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8754 return;
8755
ec0d7729
AS
8756 rec.header.type = PERF_RECORD_ITRACE_START;
8757 rec.header.misc = 0;
8758 rec.header.size = sizeof(rec);
8759 rec.pid = perf_event_pid(event, current);
8760 rec.tid = perf_event_tid(event, current);
8761
8762 perf_event_header__init_id(&rec.header, &sample, event);
8763 ret = perf_output_begin(&handle, event, rec.header.size);
8764
8765 if (ret)
8766 return;
8767
8768 perf_output_put(&handle, rec);
8769 perf_event__output_id_sample(event, &handle, &sample);
8770
8771 perf_output_end(&handle);
8772}
8773
475113d9
JO
8774static int
8775__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8776{
cdd6c482 8777 struct hw_perf_event *hwc = &event->hw;
79f14641 8778 int ret = 0;
475113d9 8779 u64 seq;
96398826 8780
e050e3f0
SE
8781 seq = __this_cpu_read(perf_throttled_seq);
8782 if (seq != hwc->interrupts_seq) {
8783 hwc->interrupts_seq = seq;
8784 hwc->interrupts = 1;
8785 } else {
8786 hwc->interrupts++;
8787 if (unlikely(throttle
8788 && hwc->interrupts >= max_samples_per_tick)) {
8789 __this_cpu_inc(perf_throttled_count);
555e0c1e 8790 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8791 hwc->interrupts = MAX_INTERRUPTS;
8792 perf_log_throttle(event, 0);
a78ac325
PZ
8793 ret = 1;
8794 }
e050e3f0 8795 }
60db5e09 8796
cdd6c482 8797 if (event->attr.freq) {
def0a9b2 8798 u64 now = perf_clock();
abd50713 8799 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8800
abd50713 8801 hwc->freq_time_stamp = now;
bd2b5b12 8802
abd50713 8803 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8804 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8805 }
8806
475113d9
JO
8807 return ret;
8808}
8809
8810int perf_event_account_interrupt(struct perf_event *event)
8811{
8812 return __perf_event_account_interrupt(event, 1);
8813}
8814
8815/*
8816 * Generic event overflow handling, sampling.
8817 */
8818
8819static int __perf_event_overflow(struct perf_event *event,
8820 int throttle, struct perf_sample_data *data,
8821 struct pt_regs *regs)
8822{
8823 int events = atomic_read(&event->event_limit);
8824 int ret = 0;
8825
8826 /*
8827 * Non-sampling counters might still use the PMI to fold short
8828 * hardware counters, ignore those.
8829 */
8830 if (unlikely(!is_sampling_event(event)))
8831 return 0;
8832
8833 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8834
2023b359
PZ
8835 /*
8836 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8837 * events
2023b359
PZ
8838 */
8839
cdd6c482
IM
8840 event->pending_kill = POLL_IN;
8841 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8842 ret = 1;
cdd6c482 8843 event->pending_kill = POLL_HUP;
5aab90ce
JO
8844
8845 perf_event_disable_inatomic(event);
79f14641
PZ
8846 }
8847
aa6a5f3c 8848 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8849
fed66e2c 8850 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8851 event->pending_wakeup = 1;
8852 irq_work_queue(&event->pending);
f506b3dc
PZ
8853 }
8854
79f14641 8855 return ret;
f6c7d5fe
PZ
8856}
8857
a8b0ca17 8858int perf_event_overflow(struct perf_event *event,
5622f295
MM
8859 struct perf_sample_data *data,
8860 struct pt_regs *regs)
850bc73f 8861{
a8b0ca17 8862 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8863}
8864
15dbf27c 8865/*
cdd6c482 8866 * Generic software event infrastructure
15dbf27c
PZ
8867 */
8868
b28ab83c
PZ
8869struct swevent_htable {
8870 struct swevent_hlist *swevent_hlist;
8871 struct mutex hlist_mutex;
8872 int hlist_refcount;
8873
8874 /* Recursion avoidance in each contexts */
8875 int recursion[PERF_NR_CONTEXTS];
8876};
8877
8878static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8879
7b4b6658 8880/*
cdd6c482
IM
8881 * We directly increment event->count and keep a second value in
8882 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8883 * is kept in the range [-sample_period, 0] so that we can use the
8884 * sign as trigger.
8885 */
8886
ab573844 8887u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8888{
cdd6c482 8889 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8890 u64 period = hwc->last_period;
8891 u64 nr, offset;
8892 s64 old, val;
8893
8894 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8895
8896again:
e7850595 8897 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8898 if (val < 0)
8899 return 0;
15dbf27c 8900
7b4b6658
PZ
8901 nr = div64_u64(period + val, period);
8902 offset = nr * period;
8903 val -= offset;
e7850595 8904 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8905 goto again;
15dbf27c 8906
7b4b6658 8907 return nr;
15dbf27c
PZ
8908}
8909
0cff784a 8910static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8911 struct perf_sample_data *data,
5622f295 8912 struct pt_regs *regs)
15dbf27c 8913{
cdd6c482 8914 struct hw_perf_event *hwc = &event->hw;
850bc73f 8915 int throttle = 0;
15dbf27c 8916
0cff784a
PZ
8917 if (!overflow)
8918 overflow = perf_swevent_set_period(event);
15dbf27c 8919
7b4b6658
PZ
8920 if (hwc->interrupts == MAX_INTERRUPTS)
8921 return;
15dbf27c 8922
7b4b6658 8923 for (; overflow; overflow--) {
a8b0ca17 8924 if (__perf_event_overflow(event, throttle,
5622f295 8925 data, regs)) {
7b4b6658
PZ
8926 /*
8927 * We inhibit the overflow from happening when
8928 * hwc->interrupts == MAX_INTERRUPTS.
8929 */
8930 break;
8931 }
cf450a73 8932 throttle = 1;
7b4b6658 8933 }
15dbf27c
PZ
8934}
8935
a4eaf7f1 8936static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8937 struct perf_sample_data *data,
5622f295 8938 struct pt_regs *regs)
7b4b6658 8939{
cdd6c482 8940 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8941
e7850595 8942 local64_add(nr, &event->count);
d6d020e9 8943
0cff784a
PZ
8944 if (!regs)
8945 return;
8946
6c7e550f 8947 if (!is_sampling_event(event))
7b4b6658 8948 return;
d6d020e9 8949
5d81e5cf
AV
8950 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8951 data->period = nr;
8952 return perf_swevent_overflow(event, 1, data, regs);
8953 } else
8954 data->period = event->hw.last_period;
8955
0cff784a 8956 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8957 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8958
e7850595 8959 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8960 return;
df1a132b 8961
a8b0ca17 8962 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8963}
8964
f5ffe02e
FW
8965static int perf_exclude_event(struct perf_event *event,
8966 struct pt_regs *regs)
8967{
a4eaf7f1 8968 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8969 return 1;
a4eaf7f1 8970
f5ffe02e
FW
8971 if (regs) {
8972 if (event->attr.exclude_user && user_mode(regs))
8973 return 1;
8974
8975 if (event->attr.exclude_kernel && !user_mode(regs))
8976 return 1;
8977 }
8978
8979 return 0;
8980}
8981
cdd6c482 8982static int perf_swevent_match(struct perf_event *event,
1c432d89 8983 enum perf_type_id type,
6fb2915d
LZ
8984 u32 event_id,
8985 struct perf_sample_data *data,
8986 struct pt_regs *regs)
15dbf27c 8987{
cdd6c482 8988 if (event->attr.type != type)
a21ca2ca 8989 return 0;
f5ffe02e 8990
cdd6c482 8991 if (event->attr.config != event_id)
15dbf27c
PZ
8992 return 0;
8993
f5ffe02e
FW
8994 if (perf_exclude_event(event, regs))
8995 return 0;
15dbf27c
PZ
8996
8997 return 1;
8998}
8999
76e1d904
FW
9000static inline u64 swevent_hash(u64 type, u32 event_id)
9001{
9002 u64 val = event_id | (type << 32);
9003
9004 return hash_64(val, SWEVENT_HLIST_BITS);
9005}
9006
49f135ed
FW
9007static inline struct hlist_head *
9008__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 9009{
49f135ed
FW
9010 u64 hash = swevent_hash(type, event_id);
9011
9012 return &hlist->heads[hash];
9013}
76e1d904 9014
49f135ed
FW
9015/* For the read side: events when they trigger */
9016static inline struct hlist_head *
b28ab83c 9017find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
9018{
9019 struct swevent_hlist *hlist;
76e1d904 9020
b28ab83c 9021 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
9022 if (!hlist)
9023 return NULL;
9024
49f135ed
FW
9025 return __find_swevent_head(hlist, type, event_id);
9026}
9027
9028/* For the event head insertion and removal in the hlist */
9029static inline struct hlist_head *
b28ab83c 9030find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
9031{
9032 struct swevent_hlist *hlist;
9033 u32 event_id = event->attr.config;
9034 u64 type = event->attr.type;
9035
9036 /*
9037 * Event scheduling is always serialized against hlist allocation
9038 * and release. Which makes the protected version suitable here.
9039 * The context lock guarantees that.
9040 */
b28ab83c 9041 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
9042 lockdep_is_held(&event->ctx->lock));
9043 if (!hlist)
9044 return NULL;
9045
9046 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
9047}
9048
9049static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 9050 u64 nr,
76e1d904
FW
9051 struct perf_sample_data *data,
9052 struct pt_regs *regs)
15dbf27c 9053{
4a32fea9 9054 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9055 struct perf_event *event;
76e1d904 9056 struct hlist_head *head;
15dbf27c 9057
76e1d904 9058 rcu_read_lock();
b28ab83c 9059 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
9060 if (!head)
9061 goto end;
9062
b67bfe0d 9063 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 9064 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 9065 perf_swevent_event(event, nr, data, regs);
15dbf27c 9066 }
76e1d904
FW
9067end:
9068 rcu_read_unlock();
15dbf27c
PZ
9069}
9070
86038c5e
PZI
9071DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9072
4ed7c92d 9073int perf_swevent_get_recursion_context(void)
96f6d444 9074{
4a32fea9 9075 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 9076
b28ab83c 9077 return get_recursion_context(swhash->recursion);
96f6d444 9078}
645e8cc0 9079EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 9080
98b5c2c6 9081void perf_swevent_put_recursion_context(int rctx)
15dbf27c 9082{
4a32fea9 9083 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 9084
b28ab83c 9085 put_recursion_context(swhash->recursion, rctx);
ce71b9df 9086}
15dbf27c 9087
86038c5e 9088void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 9089{
a4234bfc 9090 struct perf_sample_data data;
4ed7c92d 9091
86038c5e 9092 if (WARN_ON_ONCE(!regs))
4ed7c92d 9093 return;
a4234bfc 9094
fd0d000b 9095 perf_sample_data_init(&data, addr, 0);
a8b0ca17 9096 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
9097}
9098
9099void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9100{
9101 int rctx;
9102
9103 preempt_disable_notrace();
9104 rctx = perf_swevent_get_recursion_context();
9105 if (unlikely(rctx < 0))
9106 goto fail;
9107
9108 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
9109
9110 perf_swevent_put_recursion_context(rctx);
86038c5e 9111fail:
1c024eca 9112 preempt_enable_notrace();
b8e83514
PZ
9113}
9114
cdd6c482 9115static void perf_swevent_read(struct perf_event *event)
15dbf27c 9116{
15dbf27c
PZ
9117}
9118
a4eaf7f1 9119static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 9120{
4a32fea9 9121 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 9122 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
9123 struct hlist_head *head;
9124
6c7e550f 9125 if (is_sampling_event(event)) {
7b4b6658 9126 hwc->last_period = hwc->sample_period;
cdd6c482 9127 perf_swevent_set_period(event);
7b4b6658 9128 }
76e1d904 9129
a4eaf7f1
PZ
9130 hwc->state = !(flags & PERF_EF_START);
9131
b28ab83c 9132 head = find_swevent_head(swhash, event);
12ca6ad2 9133 if (WARN_ON_ONCE(!head))
76e1d904
FW
9134 return -EINVAL;
9135
9136 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 9137 perf_event_update_userpage(event);
76e1d904 9138
15dbf27c
PZ
9139 return 0;
9140}
9141
a4eaf7f1 9142static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 9143{
76e1d904 9144 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
9145}
9146
a4eaf7f1 9147static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 9148{
a4eaf7f1 9149 event->hw.state = 0;
d6d020e9 9150}
aa9c4c0f 9151
a4eaf7f1 9152static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 9153{
a4eaf7f1 9154 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
9155}
9156
49f135ed
FW
9157/* Deref the hlist from the update side */
9158static inline struct swevent_hlist *
b28ab83c 9159swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 9160{
b28ab83c
PZ
9161 return rcu_dereference_protected(swhash->swevent_hlist,
9162 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
9163}
9164
b28ab83c 9165static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 9166{
b28ab83c 9167 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 9168
49f135ed 9169 if (!hlist)
76e1d904
FW
9170 return;
9171
70691d4a 9172 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 9173 kfree_rcu(hlist, rcu_head);
76e1d904
FW
9174}
9175
3b364d7b 9176static void swevent_hlist_put_cpu(int cpu)
76e1d904 9177{
b28ab83c 9178 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 9179
b28ab83c 9180 mutex_lock(&swhash->hlist_mutex);
76e1d904 9181
b28ab83c
PZ
9182 if (!--swhash->hlist_refcount)
9183 swevent_hlist_release(swhash);
76e1d904 9184
b28ab83c 9185 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9186}
9187
3b364d7b 9188static void swevent_hlist_put(void)
76e1d904
FW
9189{
9190 int cpu;
9191
76e1d904 9192 for_each_possible_cpu(cpu)
3b364d7b 9193 swevent_hlist_put_cpu(cpu);
76e1d904
FW
9194}
9195
3b364d7b 9196static int swevent_hlist_get_cpu(int cpu)
76e1d904 9197{
b28ab83c 9198 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
9199 int err = 0;
9200
b28ab83c 9201 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
9202 if (!swevent_hlist_deref(swhash) &&
9203 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
9204 struct swevent_hlist *hlist;
9205
9206 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9207 if (!hlist) {
9208 err = -ENOMEM;
9209 goto exit;
9210 }
b28ab83c 9211 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9212 }
b28ab83c 9213 swhash->hlist_refcount++;
9ed6060d 9214exit:
b28ab83c 9215 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
9216
9217 return err;
9218}
9219
3b364d7b 9220static int swevent_hlist_get(void)
76e1d904 9221{
3b364d7b 9222 int err, cpu, failed_cpu;
76e1d904 9223
a63fbed7 9224 mutex_lock(&pmus_lock);
76e1d904 9225 for_each_possible_cpu(cpu) {
3b364d7b 9226 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
9227 if (err) {
9228 failed_cpu = cpu;
9229 goto fail;
9230 }
9231 }
a63fbed7 9232 mutex_unlock(&pmus_lock);
76e1d904 9233 return 0;
9ed6060d 9234fail:
76e1d904
FW
9235 for_each_possible_cpu(cpu) {
9236 if (cpu == failed_cpu)
9237 break;
3b364d7b 9238 swevent_hlist_put_cpu(cpu);
76e1d904 9239 }
a63fbed7 9240 mutex_unlock(&pmus_lock);
76e1d904
FW
9241 return err;
9242}
9243
c5905afb 9244struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 9245
b0a873eb
PZ
9246static void sw_perf_event_destroy(struct perf_event *event)
9247{
9248 u64 event_id = event->attr.config;
95476b64 9249
b0a873eb
PZ
9250 WARN_ON(event->parent);
9251
c5905afb 9252 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 9253 swevent_hlist_put();
b0a873eb
PZ
9254}
9255
9256static int perf_swevent_init(struct perf_event *event)
9257{
8176cced 9258 u64 event_id = event->attr.config;
b0a873eb
PZ
9259
9260 if (event->attr.type != PERF_TYPE_SOFTWARE)
9261 return -ENOENT;
9262
2481c5fa
SE
9263 /*
9264 * no branch sampling for software events
9265 */
9266 if (has_branch_stack(event))
9267 return -EOPNOTSUPP;
9268
b0a873eb
PZ
9269 switch (event_id) {
9270 case PERF_COUNT_SW_CPU_CLOCK:
9271 case PERF_COUNT_SW_TASK_CLOCK:
9272 return -ENOENT;
9273
9274 default:
9275 break;
9276 }
9277
ce677831 9278 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
9279 return -ENOENT;
9280
9281 if (!event->parent) {
9282 int err;
9283
3b364d7b 9284 err = swevent_hlist_get();
b0a873eb
PZ
9285 if (err)
9286 return err;
9287
c5905afb 9288 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
9289 event->destroy = sw_perf_event_destroy;
9290 }
9291
9292 return 0;
9293}
9294
9295static struct pmu perf_swevent = {
89a1e187 9296 .task_ctx_nr = perf_sw_context,
95476b64 9297
34f43927
PZ
9298 .capabilities = PERF_PMU_CAP_NO_NMI,
9299
b0a873eb 9300 .event_init = perf_swevent_init,
a4eaf7f1
PZ
9301 .add = perf_swevent_add,
9302 .del = perf_swevent_del,
9303 .start = perf_swevent_start,
9304 .stop = perf_swevent_stop,
1c024eca 9305 .read = perf_swevent_read,
1c024eca
PZ
9306};
9307
b0a873eb
PZ
9308#ifdef CONFIG_EVENT_TRACING
9309
1c024eca
PZ
9310static int perf_tp_filter_match(struct perf_event *event,
9311 struct perf_sample_data *data)
9312{
7e3f977e 9313 void *record = data->raw->frag.data;
1c024eca 9314
b71b437e
PZ
9315 /* only top level events have filters set */
9316 if (event->parent)
9317 event = event->parent;
9318
1c024eca
PZ
9319 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9320 return 1;
9321 return 0;
9322}
9323
9324static int perf_tp_event_match(struct perf_event *event,
9325 struct perf_sample_data *data,
9326 struct pt_regs *regs)
9327{
a0f7d0f7
FW
9328 if (event->hw.state & PERF_HES_STOPPED)
9329 return 0;
580d607c 9330 /*
9fd2e48b 9331 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 9332 */
9fd2e48b 9333 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
9334 return 0;
9335
9336 if (!perf_tp_filter_match(event, data))
9337 return 0;
9338
9339 return 1;
9340}
9341
85b67bcb
AS
9342void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9343 struct trace_event_call *call, u64 count,
9344 struct pt_regs *regs, struct hlist_head *head,
9345 struct task_struct *task)
9346{
e87c6bc3 9347 if (bpf_prog_array_valid(call)) {
85b67bcb 9348 *(struct pt_regs **)raw_data = regs;
e87c6bc3 9349 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
9350 perf_swevent_put_recursion_context(rctx);
9351 return;
9352 }
9353 }
9354 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 9355 rctx, task);
85b67bcb
AS
9356}
9357EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9358
1e1dcd93 9359void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 9360 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 9361 struct task_struct *task)
95476b64
FW
9362{
9363 struct perf_sample_data data;
8fd0fbbe 9364 struct perf_event *event;
1c024eca 9365
95476b64 9366 struct perf_raw_record raw = {
7e3f977e
DB
9367 .frag = {
9368 .size = entry_size,
9369 .data = record,
9370 },
95476b64
FW
9371 };
9372
1e1dcd93 9373 perf_sample_data_init(&data, 0, 0);
95476b64
FW
9374 data.raw = &raw;
9375
1e1dcd93
AS
9376 perf_trace_buf_update(record, event_type);
9377
8fd0fbbe 9378 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 9379 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 9380 perf_swevent_event(event, count, &data, regs);
4f41c013 9381 }
ecc55f84 9382
e6dab5ff
AV
9383 /*
9384 * If we got specified a target task, also iterate its context and
9385 * deliver this event there too.
9386 */
9387 if (task && task != current) {
9388 struct perf_event_context *ctx;
9389 struct trace_entry *entry = record;
9390
9391 rcu_read_lock();
9392 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9393 if (!ctx)
9394 goto unlock;
9395
9396 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
9397 if (event->cpu != smp_processor_id())
9398 continue;
e6dab5ff
AV
9399 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9400 continue;
9401 if (event->attr.config != entry->type)
9402 continue;
9403 if (perf_tp_event_match(event, &data, regs))
9404 perf_swevent_event(event, count, &data, regs);
9405 }
9406unlock:
9407 rcu_read_unlock();
9408 }
9409
ecc55f84 9410 perf_swevent_put_recursion_context(rctx);
95476b64
FW
9411}
9412EXPORT_SYMBOL_GPL(perf_tp_event);
9413
cdd6c482 9414static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 9415{
1c024eca 9416 perf_trace_destroy(event);
e077df4f
PZ
9417}
9418
b0a873eb 9419static int perf_tp_event_init(struct perf_event *event)
e077df4f 9420{
76e1d904
FW
9421 int err;
9422
b0a873eb
PZ
9423 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9424 return -ENOENT;
9425
2481c5fa
SE
9426 /*
9427 * no branch sampling for tracepoint events
9428 */
9429 if (has_branch_stack(event))
9430 return -EOPNOTSUPP;
9431
1c024eca
PZ
9432 err = perf_trace_init(event);
9433 if (err)
b0a873eb 9434 return err;
e077df4f 9435
cdd6c482 9436 event->destroy = tp_perf_event_destroy;
e077df4f 9437
b0a873eb
PZ
9438 return 0;
9439}
9440
9441static struct pmu perf_tracepoint = {
89a1e187
PZ
9442 .task_ctx_nr = perf_sw_context,
9443
b0a873eb 9444 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
9445 .add = perf_trace_add,
9446 .del = perf_trace_del,
9447 .start = perf_swevent_start,
9448 .stop = perf_swevent_stop,
b0a873eb 9449 .read = perf_swevent_read,
b0a873eb
PZ
9450};
9451
33ea4b24 9452#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
9453/*
9454 * Flags in config, used by dynamic PMU kprobe and uprobe
9455 * The flags should match following PMU_FORMAT_ATTR().
9456 *
9457 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9458 * if not set, create kprobe/uprobe
a6ca88b2
SL
9459 *
9460 * The following values specify a reference counter (or semaphore in the
9461 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9462 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9463 *
9464 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9465 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
9466 */
9467enum perf_probe_config {
9468 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
9469 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9470 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
9471};
9472
9473PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 9474#endif
e12f03d7 9475
a6ca88b2
SL
9476#ifdef CONFIG_KPROBE_EVENTS
9477static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
9478 &format_attr_retprobe.attr,
9479 NULL,
9480};
9481
a6ca88b2 9482static struct attribute_group kprobe_format_group = {
e12f03d7 9483 .name = "format",
a6ca88b2 9484 .attrs = kprobe_attrs,
e12f03d7
SL
9485};
9486
a6ca88b2
SL
9487static const struct attribute_group *kprobe_attr_groups[] = {
9488 &kprobe_format_group,
e12f03d7
SL
9489 NULL,
9490};
9491
9492static int perf_kprobe_event_init(struct perf_event *event);
9493static struct pmu perf_kprobe = {
9494 .task_ctx_nr = perf_sw_context,
9495 .event_init = perf_kprobe_event_init,
9496 .add = perf_trace_add,
9497 .del = perf_trace_del,
9498 .start = perf_swevent_start,
9499 .stop = perf_swevent_stop,
9500 .read = perf_swevent_read,
a6ca88b2 9501 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
9502};
9503
9504static int perf_kprobe_event_init(struct perf_event *event)
9505{
9506 int err;
9507 bool is_retprobe;
9508
9509 if (event->attr.type != perf_kprobe.type)
9510 return -ENOENT;
32e6e967 9511
c9e0924e 9512 if (!perfmon_capable())
32e6e967
SL
9513 return -EACCES;
9514
e12f03d7
SL
9515 /*
9516 * no branch sampling for probe events
9517 */
9518 if (has_branch_stack(event))
9519 return -EOPNOTSUPP;
9520
9521 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9522 err = perf_kprobe_init(event, is_retprobe);
9523 if (err)
9524 return err;
9525
9526 event->destroy = perf_kprobe_destroy;
9527
9528 return 0;
9529}
9530#endif /* CONFIG_KPROBE_EVENTS */
9531
33ea4b24 9532#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
9533PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9534
9535static struct attribute *uprobe_attrs[] = {
9536 &format_attr_retprobe.attr,
9537 &format_attr_ref_ctr_offset.attr,
9538 NULL,
9539};
9540
9541static struct attribute_group uprobe_format_group = {
9542 .name = "format",
9543 .attrs = uprobe_attrs,
9544};
9545
9546static const struct attribute_group *uprobe_attr_groups[] = {
9547 &uprobe_format_group,
9548 NULL,
9549};
9550
33ea4b24
SL
9551static int perf_uprobe_event_init(struct perf_event *event);
9552static struct pmu perf_uprobe = {
9553 .task_ctx_nr = perf_sw_context,
9554 .event_init = perf_uprobe_event_init,
9555 .add = perf_trace_add,
9556 .del = perf_trace_del,
9557 .start = perf_swevent_start,
9558 .stop = perf_swevent_stop,
9559 .read = perf_swevent_read,
a6ca88b2 9560 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
9561};
9562
9563static int perf_uprobe_event_init(struct perf_event *event)
9564{
9565 int err;
a6ca88b2 9566 unsigned long ref_ctr_offset;
33ea4b24
SL
9567 bool is_retprobe;
9568
9569 if (event->attr.type != perf_uprobe.type)
9570 return -ENOENT;
32e6e967 9571
c9e0924e 9572 if (!perfmon_capable())
32e6e967
SL
9573 return -EACCES;
9574
33ea4b24
SL
9575 /*
9576 * no branch sampling for probe events
9577 */
9578 if (has_branch_stack(event))
9579 return -EOPNOTSUPP;
9580
9581 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
9582 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9583 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
9584 if (err)
9585 return err;
9586
9587 event->destroy = perf_uprobe_destroy;
9588
9589 return 0;
9590}
9591#endif /* CONFIG_UPROBE_EVENTS */
9592
b0a873eb
PZ
9593static inline void perf_tp_register(void)
9594{
2e80a82a 9595 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
9596#ifdef CONFIG_KPROBE_EVENTS
9597 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9598#endif
33ea4b24
SL
9599#ifdef CONFIG_UPROBE_EVENTS
9600 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9601#endif
e077df4f 9602}
6fb2915d 9603
6fb2915d
LZ
9604static void perf_event_free_filter(struct perf_event *event)
9605{
9606 ftrace_profile_free_filter(event);
9607}
9608
aa6a5f3c
AS
9609#ifdef CONFIG_BPF_SYSCALL
9610static void bpf_overflow_handler(struct perf_event *event,
9611 struct perf_sample_data *data,
9612 struct pt_regs *regs)
9613{
9614 struct bpf_perf_event_data_kern ctx = {
9615 .data = data,
7d9285e8 9616 .event = event,
aa6a5f3c
AS
9617 };
9618 int ret = 0;
9619
c895f6f7 9620 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
9621 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9622 goto out;
9623 rcu_read_lock();
88575199 9624 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
9625 rcu_read_unlock();
9626out:
9627 __this_cpu_dec(bpf_prog_active);
aa6a5f3c
AS
9628 if (!ret)
9629 return;
9630
9631 event->orig_overflow_handler(event, data, regs);
9632}
9633
9634static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9635{
9636 struct bpf_prog *prog;
9637
9638 if (event->overflow_handler_context)
9639 /* hw breakpoint or kernel counter */
9640 return -EINVAL;
9641
9642 if (event->prog)
9643 return -EEXIST;
9644
9645 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9646 if (IS_ERR(prog))
9647 return PTR_ERR(prog);
9648
9649 event->prog = prog;
9650 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9651 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9652 return 0;
9653}
9654
9655static void perf_event_free_bpf_handler(struct perf_event *event)
9656{
9657 struct bpf_prog *prog = event->prog;
9658
9659 if (!prog)
9660 return;
9661
9662 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9663 event->prog = NULL;
9664 bpf_prog_put(prog);
9665}
9666#else
9667static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9668{
9669 return -EOPNOTSUPP;
9670}
9671static void perf_event_free_bpf_handler(struct perf_event *event)
9672{
9673}
9674#endif
9675
e12f03d7
SL
9676/*
9677 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9678 * with perf_event_open()
9679 */
9680static inline bool perf_event_is_tracing(struct perf_event *event)
9681{
9682 if (event->pmu == &perf_tracepoint)
9683 return true;
9684#ifdef CONFIG_KPROBE_EVENTS
9685 if (event->pmu == &perf_kprobe)
9686 return true;
33ea4b24
SL
9687#endif
9688#ifdef CONFIG_UPROBE_EVENTS
9689 if (event->pmu == &perf_uprobe)
9690 return true;
e12f03d7
SL
9691#endif
9692 return false;
9693}
9694
2541517c
AS
9695static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9696{
cf5f5cea 9697 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9698 struct bpf_prog *prog;
e87c6bc3 9699 int ret;
2541517c 9700
e12f03d7 9701 if (!perf_event_is_tracing(event))
f91840a3 9702 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9703
98b5c2c6
AS
9704 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9705 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9706 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9707 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9708 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9709 return -EINVAL;
9710
9711 prog = bpf_prog_get(prog_fd);
9712 if (IS_ERR(prog))
9713 return PTR_ERR(prog);
9714
98b5c2c6 9715 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9716 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9717 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9718 /* valid fd, but invalid bpf program type */
9719 bpf_prog_put(prog);
9720 return -EINVAL;
9721 }
9722
9802d865
JB
9723 /* Kprobe override only works for kprobes, not uprobes. */
9724 if (prog->kprobe_override &&
9725 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9726 bpf_prog_put(prog);
9727 return -EINVAL;
9728 }
9729
cf5f5cea 9730 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9731 int off = trace_event_get_offsets(event->tp_event);
9732
9733 if (prog->aux->max_ctx_offset > off) {
9734 bpf_prog_put(prog);
9735 return -EACCES;
9736 }
9737 }
2541517c 9738
e87c6bc3
YS
9739 ret = perf_event_attach_bpf_prog(event, prog);
9740 if (ret)
9741 bpf_prog_put(prog);
9742 return ret;
2541517c
AS
9743}
9744
9745static void perf_event_free_bpf_prog(struct perf_event *event)
9746{
e12f03d7 9747 if (!perf_event_is_tracing(event)) {
0b4c6841 9748 perf_event_free_bpf_handler(event);
2541517c 9749 return;
2541517c 9750 }
e87c6bc3 9751 perf_event_detach_bpf_prog(event);
2541517c
AS
9752}
9753
e077df4f 9754#else
6fb2915d 9755
b0a873eb 9756static inline void perf_tp_register(void)
e077df4f 9757{
e077df4f 9758}
6fb2915d 9759
6fb2915d
LZ
9760static void perf_event_free_filter(struct perf_event *event)
9761{
9762}
9763
2541517c
AS
9764static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9765{
9766 return -ENOENT;
9767}
9768
9769static void perf_event_free_bpf_prog(struct perf_event *event)
9770{
9771}
07b139c8 9772#endif /* CONFIG_EVENT_TRACING */
e077df4f 9773
24f1e32c 9774#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9775void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9776{
f5ffe02e
FW
9777 struct perf_sample_data sample;
9778 struct pt_regs *regs = data;
9779
fd0d000b 9780 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9781
a4eaf7f1 9782 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9783 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9784}
9785#endif
9786
375637bc
AS
9787/*
9788 * Allocate a new address filter
9789 */
9790static struct perf_addr_filter *
9791perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9792{
9793 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9794 struct perf_addr_filter *filter;
9795
9796 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9797 if (!filter)
9798 return NULL;
9799
9800 INIT_LIST_HEAD(&filter->entry);
9801 list_add_tail(&filter->entry, filters);
9802
9803 return filter;
9804}
9805
9806static void free_filters_list(struct list_head *filters)
9807{
9808 struct perf_addr_filter *filter, *iter;
9809
9810 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9811 path_put(&filter->path);
375637bc
AS
9812 list_del(&filter->entry);
9813 kfree(filter);
9814 }
9815}
9816
9817/*
9818 * Free existing address filters and optionally install new ones
9819 */
9820static void perf_addr_filters_splice(struct perf_event *event,
9821 struct list_head *head)
9822{
9823 unsigned long flags;
9824 LIST_HEAD(list);
9825
9826 if (!has_addr_filter(event))
9827 return;
9828
9829 /* don't bother with children, they don't have their own filters */
9830 if (event->parent)
9831 return;
9832
9833 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9834
9835 list_splice_init(&event->addr_filters.list, &list);
9836 if (head)
9837 list_splice(head, &event->addr_filters.list);
9838
9839 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9840
9841 free_filters_list(&list);
9842}
9843
9844/*
9845 * Scan through mm's vmas and see if one of them matches the
9846 * @filter; if so, adjust filter's address range.
c1e8d7c6 9847 * Called with mm::mmap_lock down for reading.
375637bc 9848 */
c60f83b8
AS
9849static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9850 struct mm_struct *mm,
9851 struct perf_addr_filter_range *fr)
375637bc
AS
9852{
9853 struct vm_area_struct *vma;
9854
9855 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9856 if (!vma->vm_file)
375637bc
AS
9857 continue;
9858
c60f83b8
AS
9859 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9860 return;
375637bc 9861 }
375637bc
AS
9862}
9863
9864/*
9865 * Update event's address range filters based on the
9866 * task's existing mappings, if any.
9867 */
9868static void perf_event_addr_filters_apply(struct perf_event *event)
9869{
9870 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9871 struct task_struct *task = READ_ONCE(event->ctx->task);
9872 struct perf_addr_filter *filter;
9873 struct mm_struct *mm = NULL;
9874 unsigned int count = 0;
9875 unsigned long flags;
9876
9877 /*
9878 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9879 * will stop on the parent's child_mutex that our caller is also holding
9880 */
9881 if (task == TASK_TOMBSTONE)
9882 return;
9883
52a44f83
AS
9884 if (ifh->nr_file_filters) {
9885 mm = get_task_mm(event->ctx->task);
9886 if (!mm)
9887 goto restart;
375637bc 9888
d8ed45c5 9889 mmap_read_lock(mm);
52a44f83 9890 }
375637bc
AS
9891
9892 raw_spin_lock_irqsave(&ifh->lock, flags);
9893 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9894 if (filter->path.dentry) {
9895 /*
9896 * Adjust base offset if the filter is associated to a
9897 * binary that needs to be mapped:
9898 */
9899 event->addr_filter_ranges[count].start = 0;
9900 event->addr_filter_ranges[count].size = 0;
375637bc 9901
c60f83b8 9902 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9903 } else {
9904 event->addr_filter_ranges[count].start = filter->offset;
9905 event->addr_filter_ranges[count].size = filter->size;
9906 }
375637bc
AS
9907
9908 count++;
9909 }
9910
9911 event->addr_filters_gen++;
9912 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9913
52a44f83 9914 if (ifh->nr_file_filters) {
d8ed45c5 9915 mmap_read_unlock(mm);
375637bc 9916
52a44f83
AS
9917 mmput(mm);
9918 }
375637bc
AS
9919
9920restart:
767ae086 9921 perf_event_stop(event, 1);
375637bc
AS
9922}
9923
9924/*
9925 * Address range filtering: limiting the data to certain
9926 * instruction address ranges. Filters are ioctl()ed to us from
9927 * userspace as ascii strings.
9928 *
9929 * Filter string format:
9930 *
9931 * ACTION RANGE_SPEC
9932 * where ACTION is one of the
9933 * * "filter": limit the trace to this region
9934 * * "start": start tracing from this address
9935 * * "stop": stop tracing at this address/region;
9936 * RANGE_SPEC is
9937 * * for kernel addresses: <start address>[/<size>]
9938 * * for object files: <start address>[/<size>]@</path/to/object/file>
9939 *
6ed70cf3
AS
9940 * if <size> is not specified or is zero, the range is treated as a single
9941 * address; not valid for ACTION=="filter".
375637bc
AS
9942 */
9943enum {
e96271f3 9944 IF_ACT_NONE = -1,
375637bc
AS
9945 IF_ACT_FILTER,
9946 IF_ACT_START,
9947 IF_ACT_STOP,
9948 IF_SRC_FILE,
9949 IF_SRC_KERNEL,
9950 IF_SRC_FILEADDR,
9951 IF_SRC_KERNELADDR,
9952};
9953
9954enum {
9955 IF_STATE_ACTION = 0,
9956 IF_STATE_SOURCE,
9957 IF_STATE_END,
9958};
9959
9960static const match_table_t if_tokens = {
9961 { IF_ACT_FILTER, "filter" },
9962 { IF_ACT_START, "start" },
9963 { IF_ACT_STOP, "stop" },
9964 { IF_SRC_FILE, "%u/%u@%s" },
9965 { IF_SRC_KERNEL, "%u/%u" },
9966 { IF_SRC_FILEADDR, "%u@%s" },
9967 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9968 { IF_ACT_NONE, NULL },
375637bc
AS
9969};
9970
9971/*
9972 * Address filter string parser
9973 */
9974static int
9975perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9976 struct list_head *filters)
9977{
9978 struct perf_addr_filter *filter = NULL;
9979 char *start, *orig, *filename = NULL;
375637bc
AS
9980 substring_t args[MAX_OPT_ARGS];
9981 int state = IF_STATE_ACTION, token;
9982 unsigned int kernel = 0;
9983 int ret = -EINVAL;
9984
9985 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9986 if (!fstr)
9987 return -ENOMEM;
9988
9989 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9990 static const enum perf_addr_filter_action_t actions[] = {
9991 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9992 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9993 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9994 };
375637bc
AS
9995 ret = -EINVAL;
9996
9997 if (!*start)
9998 continue;
9999
10000 /* filter definition begins */
10001 if (state == IF_STATE_ACTION) {
10002 filter = perf_addr_filter_new(event, filters);
10003 if (!filter)
10004 goto fail;
10005 }
10006
10007 token = match_token(start, if_tokens, args);
10008 switch (token) {
10009 case IF_ACT_FILTER:
10010 case IF_ACT_START:
375637bc
AS
10011 case IF_ACT_STOP:
10012 if (state != IF_STATE_ACTION)
10013 goto fail;
10014
6ed70cf3 10015 filter->action = actions[token];
375637bc
AS
10016 state = IF_STATE_SOURCE;
10017 break;
10018
10019 case IF_SRC_KERNELADDR:
10020 case IF_SRC_KERNEL:
10021 kernel = 1;
10c3405f 10022 /* fall through */
375637bc
AS
10023
10024 case IF_SRC_FILEADDR:
10025 case IF_SRC_FILE:
10026 if (state != IF_STATE_SOURCE)
10027 goto fail;
10028
375637bc
AS
10029 *args[0].to = 0;
10030 ret = kstrtoul(args[0].from, 0, &filter->offset);
10031 if (ret)
10032 goto fail;
10033
6ed70cf3 10034 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
10035 *args[1].to = 0;
10036 ret = kstrtoul(args[1].from, 0, &filter->size);
10037 if (ret)
10038 goto fail;
10039 }
10040
4059ffd0 10041 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 10042 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
10043
10044 filename = match_strdup(&args[fpos]);
375637bc
AS
10045 if (!filename) {
10046 ret = -ENOMEM;
10047 goto fail;
10048 }
10049 }
10050
10051 state = IF_STATE_END;
10052 break;
10053
10054 default:
10055 goto fail;
10056 }
10057
10058 /*
10059 * Filter definition is fully parsed, validate and install it.
10060 * Make sure that it doesn't contradict itself or the event's
10061 * attribute.
10062 */
10063 if (state == IF_STATE_END) {
9ccbfbb1 10064 ret = -EINVAL;
375637bc
AS
10065 if (kernel && event->attr.exclude_kernel)
10066 goto fail;
10067
6ed70cf3
AS
10068 /*
10069 * ACTION "filter" must have a non-zero length region
10070 * specified.
10071 */
10072 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10073 !filter->size)
10074 goto fail;
10075
375637bc
AS
10076 if (!kernel) {
10077 if (!filename)
10078 goto fail;
10079
6ce77bfd
AS
10080 /*
10081 * For now, we only support file-based filters
10082 * in per-task events; doing so for CPU-wide
10083 * events requires additional context switching
10084 * trickery, since same object code will be
10085 * mapped at different virtual addresses in
10086 * different processes.
10087 */
10088 ret = -EOPNOTSUPP;
10089 if (!event->ctx->task)
10090 goto fail_free_name;
10091
375637bc 10092 /* look up the path and grab its inode */
9511bce9
SL
10093 ret = kern_path(filename, LOOKUP_FOLLOW,
10094 &filter->path);
375637bc
AS
10095 if (ret)
10096 goto fail_free_name;
10097
375637bc
AS
10098 kfree(filename);
10099 filename = NULL;
10100
10101 ret = -EINVAL;
9511bce9
SL
10102 if (!filter->path.dentry ||
10103 !S_ISREG(d_inode(filter->path.dentry)
10104 ->i_mode))
375637bc 10105 goto fail;
6ce77bfd
AS
10106
10107 event->addr_filters.nr_file_filters++;
375637bc
AS
10108 }
10109
10110 /* ready to consume more filters */
10111 state = IF_STATE_ACTION;
10112 filter = NULL;
10113 }
10114 }
10115
10116 if (state != IF_STATE_ACTION)
10117 goto fail;
10118
10119 kfree(orig);
10120
10121 return 0;
10122
10123fail_free_name:
10124 kfree(filename);
10125fail:
10126 free_filters_list(filters);
10127 kfree(orig);
10128
10129 return ret;
10130}
10131
10132static int
10133perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10134{
10135 LIST_HEAD(filters);
10136 int ret;
10137
10138 /*
10139 * Since this is called in perf_ioctl() path, we're already holding
10140 * ctx::mutex.
10141 */
10142 lockdep_assert_held(&event->ctx->mutex);
10143
10144 if (WARN_ON_ONCE(event->parent))
10145 return -EINVAL;
10146
375637bc
AS
10147 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10148 if (ret)
6ce77bfd 10149 goto fail_clear_files;
375637bc
AS
10150
10151 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
10152 if (ret)
10153 goto fail_free_filters;
375637bc
AS
10154
10155 /* remove existing filters, if any */
10156 perf_addr_filters_splice(event, &filters);
10157
10158 /* install new filters */
10159 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10160
6ce77bfd
AS
10161 return ret;
10162
10163fail_free_filters:
10164 free_filters_list(&filters);
10165
10166fail_clear_files:
10167 event->addr_filters.nr_file_filters = 0;
10168
375637bc
AS
10169 return ret;
10170}
10171
c796bbbe
AS
10172static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10173{
c796bbbe 10174 int ret = -EINVAL;
e12f03d7 10175 char *filter_str;
c796bbbe
AS
10176
10177 filter_str = strndup_user(arg, PAGE_SIZE);
10178 if (IS_ERR(filter_str))
10179 return PTR_ERR(filter_str);
10180
e12f03d7
SL
10181#ifdef CONFIG_EVENT_TRACING
10182 if (perf_event_is_tracing(event)) {
10183 struct perf_event_context *ctx = event->ctx;
10184
10185 /*
10186 * Beware, here be dragons!!
10187 *
10188 * the tracepoint muck will deadlock against ctx->mutex, but
10189 * the tracepoint stuff does not actually need it. So
10190 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10191 * already have a reference on ctx.
10192 *
10193 * This can result in event getting moved to a different ctx,
10194 * but that does not affect the tracepoint state.
10195 */
10196 mutex_unlock(&ctx->mutex);
10197 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10198 mutex_lock(&ctx->mutex);
10199 } else
10200#endif
10201 if (has_addr_filter(event))
375637bc 10202 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
10203
10204 kfree(filter_str);
10205 return ret;
10206}
10207
b0a873eb
PZ
10208/*
10209 * hrtimer based swevent callback
10210 */
f29ac756 10211
b0a873eb 10212static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 10213{
b0a873eb
PZ
10214 enum hrtimer_restart ret = HRTIMER_RESTART;
10215 struct perf_sample_data data;
10216 struct pt_regs *regs;
10217 struct perf_event *event;
10218 u64 period;
f29ac756 10219
b0a873eb 10220 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
10221
10222 if (event->state != PERF_EVENT_STATE_ACTIVE)
10223 return HRTIMER_NORESTART;
10224
b0a873eb 10225 event->pmu->read(event);
f344011c 10226
fd0d000b 10227 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
10228 regs = get_irq_regs();
10229
10230 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 10231 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 10232 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
10233 ret = HRTIMER_NORESTART;
10234 }
24f1e32c 10235
b0a873eb
PZ
10236 period = max_t(u64, 10000, event->hw.sample_period);
10237 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 10238
b0a873eb 10239 return ret;
f29ac756
PZ
10240}
10241
b0a873eb 10242static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 10243{
b0a873eb 10244 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
10245 s64 period;
10246
10247 if (!is_sampling_event(event))
10248 return;
f5ffe02e 10249
5d508e82
FBH
10250 period = local64_read(&hwc->period_left);
10251 if (period) {
10252 if (period < 0)
10253 period = 10000;
fa407f35 10254
5d508e82
FBH
10255 local64_set(&hwc->period_left, 0);
10256 } else {
10257 period = max_t(u64, 10000, hwc->sample_period);
10258 }
3497d206 10259 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 10260 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 10261}
b0a873eb
PZ
10262
10263static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 10264{
b0a873eb
PZ
10265 struct hw_perf_event *hwc = &event->hw;
10266
6c7e550f 10267 if (is_sampling_event(event)) {
b0a873eb 10268 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 10269 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
10270
10271 hrtimer_cancel(&hwc->hrtimer);
10272 }
24f1e32c
FW
10273}
10274
ba3dd36c
PZ
10275static void perf_swevent_init_hrtimer(struct perf_event *event)
10276{
10277 struct hw_perf_event *hwc = &event->hw;
10278
10279 if (!is_sampling_event(event))
10280 return;
10281
30f9028b 10282 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
10283 hwc->hrtimer.function = perf_swevent_hrtimer;
10284
10285 /*
10286 * Since hrtimers have a fixed rate, we can do a static freq->period
10287 * mapping and avoid the whole period adjust feedback stuff.
10288 */
10289 if (event->attr.freq) {
10290 long freq = event->attr.sample_freq;
10291
10292 event->attr.sample_period = NSEC_PER_SEC / freq;
10293 hwc->sample_period = event->attr.sample_period;
10294 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 10295 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
10296 event->attr.freq = 0;
10297 }
10298}
10299
b0a873eb
PZ
10300/*
10301 * Software event: cpu wall time clock
10302 */
10303
10304static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 10305{
b0a873eb
PZ
10306 s64 prev;
10307 u64 now;
10308
a4eaf7f1 10309 now = local_clock();
b0a873eb
PZ
10310 prev = local64_xchg(&event->hw.prev_count, now);
10311 local64_add(now - prev, &event->count);
24f1e32c 10312}
24f1e32c 10313
a4eaf7f1 10314static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10315{
a4eaf7f1 10316 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 10317 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10318}
10319
a4eaf7f1 10320static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 10321{
b0a873eb
PZ
10322 perf_swevent_cancel_hrtimer(event);
10323 cpu_clock_event_update(event);
10324}
f29ac756 10325
a4eaf7f1
PZ
10326static int cpu_clock_event_add(struct perf_event *event, int flags)
10327{
10328 if (flags & PERF_EF_START)
10329 cpu_clock_event_start(event, flags);
6a694a60 10330 perf_event_update_userpage(event);
a4eaf7f1
PZ
10331
10332 return 0;
10333}
10334
10335static void cpu_clock_event_del(struct perf_event *event, int flags)
10336{
10337 cpu_clock_event_stop(event, flags);
10338}
10339
b0a873eb
PZ
10340static void cpu_clock_event_read(struct perf_event *event)
10341{
10342 cpu_clock_event_update(event);
10343}
f344011c 10344
b0a873eb
PZ
10345static int cpu_clock_event_init(struct perf_event *event)
10346{
10347 if (event->attr.type != PERF_TYPE_SOFTWARE)
10348 return -ENOENT;
10349
10350 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10351 return -ENOENT;
10352
2481c5fa
SE
10353 /*
10354 * no branch sampling for software events
10355 */
10356 if (has_branch_stack(event))
10357 return -EOPNOTSUPP;
10358
ba3dd36c
PZ
10359 perf_swevent_init_hrtimer(event);
10360
b0a873eb 10361 return 0;
f29ac756
PZ
10362}
10363
b0a873eb 10364static struct pmu perf_cpu_clock = {
89a1e187
PZ
10365 .task_ctx_nr = perf_sw_context,
10366
34f43927
PZ
10367 .capabilities = PERF_PMU_CAP_NO_NMI,
10368
b0a873eb 10369 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
10370 .add = cpu_clock_event_add,
10371 .del = cpu_clock_event_del,
10372 .start = cpu_clock_event_start,
10373 .stop = cpu_clock_event_stop,
b0a873eb
PZ
10374 .read = cpu_clock_event_read,
10375};
10376
10377/*
10378 * Software event: task time clock
10379 */
10380
10381static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 10382{
b0a873eb
PZ
10383 u64 prev;
10384 s64 delta;
5c92d124 10385
b0a873eb
PZ
10386 prev = local64_xchg(&event->hw.prev_count, now);
10387 delta = now - prev;
10388 local64_add(delta, &event->count);
10389}
5c92d124 10390
a4eaf7f1 10391static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10392{
a4eaf7f1 10393 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 10394 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10395}
10396
a4eaf7f1 10397static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
10398{
10399 perf_swevent_cancel_hrtimer(event);
10400 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
10401}
10402
10403static int task_clock_event_add(struct perf_event *event, int flags)
10404{
10405 if (flags & PERF_EF_START)
10406 task_clock_event_start(event, flags);
6a694a60 10407 perf_event_update_userpage(event);
b0a873eb 10408
a4eaf7f1
PZ
10409 return 0;
10410}
10411
10412static void task_clock_event_del(struct perf_event *event, int flags)
10413{
10414 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
10415}
10416
10417static void task_clock_event_read(struct perf_event *event)
10418{
768a06e2
PZ
10419 u64 now = perf_clock();
10420 u64 delta = now - event->ctx->timestamp;
10421 u64 time = event->ctx->time + delta;
b0a873eb
PZ
10422
10423 task_clock_event_update(event, time);
10424}
10425
10426static int task_clock_event_init(struct perf_event *event)
6fb2915d 10427{
b0a873eb
PZ
10428 if (event->attr.type != PERF_TYPE_SOFTWARE)
10429 return -ENOENT;
10430
10431 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10432 return -ENOENT;
10433
2481c5fa
SE
10434 /*
10435 * no branch sampling for software events
10436 */
10437 if (has_branch_stack(event))
10438 return -EOPNOTSUPP;
10439
ba3dd36c
PZ
10440 perf_swevent_init_hrtimer(event);
10441
b0a873eb 10442 return 0;
6fb2915d
LZ
10443}
10444
b0a873eb 10445static struct pmu perf_task_clock = {
89a1e187
PZ
10446 .task_ctx_nr = perf_sw_context,
10447
34f43927
PZ
10448 .capabilities = PERF_PMU_CAP_NO_NMI,
10449
b0a873eb 10450 .event_init = task_clock_event_init,
a4eaf7f1
PZ
10451 .add = task_clock_event_add,
10452 .del = task_clock_event_del,
10453 .start = task_clock_event_start,
10454 .stop = task_clock_event_stop,
b0a873eb
PZ
10455 .read = task_clock_event_read,
10456};
6fb2915d 10457
ad5133b7 10458static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 10459{
e077df4f 10460}
6fb2915d 10461
fbbe0701
SB
10462static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10463{
10464}
10465
ad5133b7 10466static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 10467{
ad5133b7 10468 return 0;
6fb2915d
LZ
10469}
10470
81ec3f3c
JO
10471static int perf_event_nop_int(struct perf_event *event, u64 value)
10472{
10473 return 0;
10474}
10475
18ab2cd3 10476static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
10477
10478static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 10479{
fbbe0701
SB
10480 __this_cpu_write(nop_txn_flags, flags);
10481
10482 if (flags & ~PERF_PMU_TXN_ADD)
10483 return;
10484
ad5133b7 10485 perf_pmu_disable(pmu);
6fb2915d
LZ
10486}
10487
ad5133b7
PZ
10488static int perf_pmu_commit_txn(struct pmu *pmu)
10489{
fbbe0701
SB
10490 unsigned int flags = __this_cpu_read(nop_txn_flags);
10491
10492 __this_cpu_write(nop_txn_flags, 0);
10493
10494 if (flags & ~PERF_PMU_TXN_ADD)
10495 return 0;
10496
ad5133b7
PZ
10497 perf_pmu_enable(pmu);
10498 return 0;
10499}
e077df4f 10500
ad5133b7 10501static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 10502{
fbbe0701
SB
10503 unsigned int flags = __this_cpu_read(nop_txn_flags);
10504
10505 __this_cpu_write(nop_txn_flags, 0);
10506
10507 if (flags & ~PERF_PMU_TXN_ADD)
10508 return;
10509
ad5133b7 10510 perf_pmu_enable(pmu);
24f1e32c
FW
10511}
10512
35edc2a5
PZ
10513static int perf_event_idx_default(struct perf_event *event)
10514{
c719f560 10515 return 0;
35edc2a5
PZ
10516}
10517
8dc85d54
PZ
10518/*
10519 * Ensures all contexts with the same task_ctx_nr have the same
10520 * pmu_cpu_context too.
10521 */
9e317041 10522static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 10523{
8dc85d54 10524 struct pmu *pmu;
b326e956 10525
8dc85d54
PZ
10526 if (ctxn < 0)
10527 return NULL;
24f1e32c 10528
8dc85d54
PZ
10529 list_for_each_entry(pmu, &pmus, entry) {
10530 if (pmu->task_ctx_nr == ctxn)
10531 return pmu->pmu_cpu_context;
10532 }
24f1e32c 10533
8dc85d54 10534 return NULL;
24f1e32c
FW
10535}
10536
51676957
PZ
10537static void free_pmu_context(struct pmu *pmu)
10538{
df0062b2
WD
10539 /*
10540 * Static contexts such as perf_sw_context have a global lifetime
10541 * and may be shared between different PMUs. Avoid freeing them
10542 * when a single PMU is going away.
10543 */
10544 if (pmu->task_ctx_nr > perf_invalid_context)
10545 return;
10546
51676957 10547 free_percpu(pmu->pmu_cpu_context);
24f1e32c 10548}
6e855cd4
AS
10549
10550/*
10551 * Let userspace know that this PMU supports address range filtering:
10552 */
10553static ssize_t nr_addr_filters_show(struct device *dev,
10554 struct device_attribute *attr,
10555 char *page)
10556{
10557 struct pmu *pmu = dev_get_drvdata(dev);
10558
10559 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10560}
10561DEVICE_ATTR_RO(nr_addr_filters);
10562
2e80a82a 10563static struct idr pmu_idr;
d6d020e9 10564
abe43400
PZ
10565static ssize_t
10566type_show(struct device *dev, struct device_attribute *attr, char *page)
10567{
10568 struct pmu *pmu = dev_get_drvdata(dev);
10569
10570 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10571}
90826ca7 10572static DEVICE_ATTR_RO(type);
abe43400 10573
62b85639
SE
10574static ssize_t
10575perf_event_mux_interval_ms_show(struct device *dev,
10576 struct device_attribute *attr,
10577 char *page)
10578{
10579 struct pmu *pmu = dev_get_drvdata(dev);
10580
10581 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10582}
10583
272325c4
PZ
10584static DEFINE_MUTEX(mux_interval_mutex);
10585
62b85639
SE
10586static ssize_t
10587perf_event_mux_interval_ms_store(struct device *dev,
10588 struct device_attribute *attr,
10589 const char *buf, size_t count)
10590{
10591 struct pmu *pmu = dev_get_drvdata(dev);
10592 int timer, cpu, ret;
10593
10594 ret = kstrtoint(buf, 0, &timer);
10595 if (ret)
10596 return ret;
10597
10598 if (timer < 1)
10599 return -EINVAL;
10600
10601 /* same value, noting to do */
10602 if (timer == pmu->hrtimer_interval_ms)
10603 return count;
10604
272325c4 10605 mutex_lock(&mux_interval_mutex);
62b85639
SE
10606 pmu->hrtimer_interval_ms = timer;
10607
10608 /* update all cpuctx for this PMU */
a63fbed7 10609 cpus_read_lock();
272325c4 10610 for_each_online_cpu(cpu) {
62b85639
SE
10611 struct perf_cpu_context *cpuctx;
10612 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10613 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10614
272325c4
PZ
10615 cpu_function_call(cpu,
10616 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 10617 }
a63fbed7 10618 cpus_read_unlock();
272325c4 10619 mutex_unlock(&mux_interval_mutex);
62b85639
SE
10620
10621 return count;
10622}
90826ca7 10623static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 10624
90826ca7
GKH
10625static struct attribute *pmu_dev_attrs[] = {
10626 &dev_attr_type.attr,
10627 &dev_attr_perf_event_mux_interval_ms.attr,
10628 NULL,
abe43400 10629};
90826ca7 10630ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
10631
10632static int pmu_bus_running;
10633static struct bus_type pmu_bus = {
10634 .name = "event_source",
90826ca7 10635 .dev_groups = pmu_dev_groups,
abe43400
PZ
10636};
10637
10638static void pmu_dev_release(struct device *dev)
10639{
10640 kfree(dev);
10641}
10642
10643static int pmu_dev_alloc(struct pmu *pmu)
10644{
10645 int ret = -ENOMEM;
10646
10647 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10648 if (!pmu->dev)
10649 goto out;
10650
0c9d42ed 10651 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
10652 device_initialize(pmu->dev);
10653 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10654 if (ret)
10655 goto free_dev;
10656
10657 dev_set_drvdata(pmu->dev, pmu);
10658 pmu->dev->bus = &pmu_bus;
10659 pmu->dev->release = pmu_dev_release;
10660 ret = device_add(pmu->dev);
10661 if (ret)
10662 goto free_dev;
10663
6e855cd4
AS
10664 /* For PMUs with address filters, throw in an extra attribute: */
10665 if (pmu->nr_addr_filters)
10666 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10667
10668 if (ret)
10669 goto del_dev;
10670
f3a3a825
JO
10671 if (pmu->attr_update)
10672 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10673
10674 if (ret)
10675 goto del_dev;
10676
abe43400
PZ
10677out:
10678 return ret;
10679
6e855cd4
AS
10680del_dev:
10681 device_del(pmu->dev);
10682
abe43400
PZ
10683free_dev:
10684 put_device(pmu->dev);
10685 goto out;
10686}
10687
547e9fd7 10688static struct lock_class_key cpuctx_mutex;
facc4307 10689static struct lock_class_key cpuctx_lock;
547e9fd7 10690
03d8e80b 10691int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10692{
66d258c5 10693 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 10694
b0a873eb 10695 mutex_lock(&pmus_lock);
33696fc0
PZ
10696 ret = -ENOMEM;
10697 pmu->pmu_disable_count = alloc_percpu(int);
10698 if (!pmu->pmu_disable_count)
10699 goto unlock;
f29ac756 10700
2e80a82a
PZ
10701 pmu->type = -1;
10702 if (!name)
10703 goto skip_type;
10704 pmu->name = name;
10705
66d258c5
PZ
10706 if (type != PERF_TYPE_SOFTWARE) {
10707 if (type >= 0)
10708 max = type;
10709
10710 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10711 if (ret < 0)
2e80a82a 10712 goto free_pdc;
66d258c5
PZ
10713
10714 WARN_ON(type >= 0 && ret != type);
10715
10716 type = ret;
2e80a82a
PZ
10717 }
10718 pmu->type = type;
10719
abe43400
PZ
10720 if (pmu_bus_running) {
10721 ret = pmu_dev_alloc(pmu);
10722 if (ret)
10723 goto free_idr;
10724 }
10725
2e80a82a 10726skip_type:
26657848
PZ
10727 if (pmu->task_ctx_nr == perf_hw_context) {
10728 static int hw_context_taken = 0;
10729
5101ef20
MR
10730 /*
10731 * Other than systems with heterogeneous CPUs, it never makes
10732 * sense for two PMUs to share perf_hw_context. PMUs which are
10733 * uncore must use perf_invalid_context.
10734 */
10735 if (WARN_ON_ONCE(hw_context_taken &&
10736 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10737 pmu->task_ctx_nr = perf_invalid_context;
10738
10739 hw_context_taken = 1;
10740 }
10741
8dc85d54
PZ
10742 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10743 if (pmu->pmu_cpu_context)
10744 goto got_cpu_context;
f29ac756 10745
c4814202 10746 ret = -ENOMEM;
108b02cf
PZ
10747 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10748 if (!pmu->pmu_cpu_context)
abe43400 10749 goto free_dev;
f344011c 10750
108b02cf
PZ
10751 for_each_possible_cpu(cpu) {
10752 struct perf_cpu_context *cpuctx;
10753
10754 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10755 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10756 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10757 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10758 cpuctx->ctx.pmu = pmu;
a63fbed7 10759 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10760
272325c4 10761 __perf_mux_hrtimer_init(cpuctx, cpu);
836196be
IR
10762
10763 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10764 cpuctx->heap = cpuctx->heap_default;
108b02cf 10765 }
76e1d904 10766
8dc85d54 10767got_cpu_context:
ad5133b7
PZ
10768 if (!pmu->start_txn) {
10769 if (pmu->pmu_enable) {
10770 /*
10771 * If we have pmu_enable/pmu_disable calls, install
10772 * transaction stubs that use that to try and batch
10773 * hardware accesses.
10774 */
10775 pmu->start_txn = perf_pmu_start_txn;
10776 pmu->commit_txn = perf_pmu_commit_txn;
10777 pmu->cancel_txn = perf_pmu_cancel_txn;
10778 } else {
fbbe0701 10779 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10780 pmu->commit_txn = perf_pmu_nop_int;
10781 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10782 }
5c92d124 10783 }
15dbf27c 10784
ad5133b7
PZ
10785 if (!pmu->pmu_enable) {
10786 pmu->pmu_enable = perf_pmu_nop_void;
10787 pmu->pmu_disable = perf_pmu_nop_void;
10788 }
10789
81ec3f3c
JO
10790 if (!pmu->check_period)
10791 pmu->check_period = perf_event_nop_int;
10792
35edc2a5
PZ
10793 if (!pmu->event_idx)
10794 pmu->event_idx = perf_event_idx_default;
10795
d44f821b
LK
10796 /*
10797 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10798 * since these cannot be in the IDR. This way the linear search
10799 * is fast, provided a valid software event is provided.
10800 */
10801 if (type == PERF_TYPE_SOFTWARE || !name)
10802 list_add_rcu(&pmu->entry, &pmus);
10803 else
10804 list_add_tail_rcu(&pmu->entry, &pmus);
10805
bed5b25a 10806 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10807 ret = 0;
10808unlock:
b0a873eb
PZ
10809 mutex_unlock(&pmus_lock);
10810
33696fc0 10811 return ret;
108b02cf 10812
abe43400
PZ
10813free_dev:
10814 device_del(pmu->dev);
10815 put_device(pmu->dev);
10816
2e80a82a 10817free_idr:
66d258c5 10818 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a
PZ
10819 idr_remove(&pmu_idr, pmu->type);
10820
108b02cf
PZ
10821free_pdc:
10822 free_percpu(pmu->pmu_disable_count);
10823 goto unlock;
f29ac756 10824}
c464c76e 10825EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10826
b0a873eb 10827void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10828{
b0a873eb
PZ
10829 mutex_lock(&pmus_lock);
10830 list_del_rcu(&pmu->entry);
5c92d124 10831
0475f9ea 10832 /*
cde8e884
PZ
10833 * We dereference the pmu list under both SRCU and regular RCU, so
10834 * synchronize against both of those.
0475f9ea 10835 */
b0a873eb 10836 synchronize_srcu(&pmus_srcu);
cde8e884 10837 synchronize_rcu();
d6d020e9 10838
33696fc0 10839 free_percpu(pmu->pmu_disable_count);
66d258c5 10840 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a 10841 idr_remove(&pmu_idr, pmu->type);
a9f97721 10842 if (pmu_bus_running) {
0933840a
JO
10843 if (pmu->nr_addr_filters)
10844 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10845 device_del(pmu->dev);
10846 put_device(pmu->dev);
10847 }
51676957 10848 free_pmu_context(pmu);
a9f97721 10849 mutex_unlock(&pmus_lock);
b0a873eb 10850}
c464c76e 10851EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10852
e321d02d
KL
10853static inline bool has_extended_regs(struct perf_event *event)
10854{
10855 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10856 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10857}
10858
cc34b98b
MR
10859static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10860{
ccd41c86 10861 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10862 int ret;
10863
10864 if (!try_module_get(pmu->module))
10865 return -ENODEV;
ccd41c86 10866
0c7296ca
PZ
10867 /*
10868 * A number of pmu->event_init() methods iterate the sibling_list to,
10869 * for example, validate if the group fits on the PMU. Therefore,
10870 * if this is a sibling event, acquire the ctx->mutex to protect
10871 * the sibling_list.
10872 */
10873 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10874 /*
10875 * This ctx->mutex can nest when we're called through
10876 * inheritance. See the perf_event_ctx_lock_nested() comment.
10877 */
10878 ctx = perf_event_ctx_lock_nested(event->group_leader,
10879 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10880 BUG_ON(!ctx);
10881 }
10882
cc34b98b
MR
10883 event->pmu = pmu;
10884 ret = pmu->event_init(event);
ccd41c86
PZ
10885
10886 if (ctx)
10887 perf_event_ctx_unlock(event->group_leader, ctx);
10888
cc6795ae 10889 if (!ret) {
e321d02d
KL
10890 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10891 has_extended_regs(event))
10892 ret = -EOPNOTSUPP;
10893
cc6795ae 10894 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10895 event_has_any_exclude_flag(event))
cc6795ae 10896 ret = -EINVAL;
e321d02d
KL
10897
10898 if (ret && event->destroy)
10899 event->destroy(event);
cc6795ae
AM
10900 }
10901
cc34b98b
MR
10902 if (ret)
10903 module_put(pmu->module);
10904
10905 return ret;
10906}
10907
18ab2cd3 10908static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10909{
66d258c5 10910 int idx, type, ret;
85c617ab 10911 struct pmu *pmu;
b0a873eb
PZ
10912
10913 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10914
40999312
KL
10915 /* Try parent's PMU first: */
10916 if (event->parent && event->parent->pmu) {
10917 pmu = event->parent->pmu;
10918 ret = perf_try_init_event(pmu, event);
10919 if (!ret)
10920 goto unlock;
10921 }
10922
66d258c5
PZ
10923 /*
10924 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10925 * are often aliases for PERF_TYPE_RAW.
10926 */
10927 type = event->attr.type;
10928 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10929 type = PERF_TYPE_RAW;
10930
10931again:
2e80a82a 10932 rcu_read_lock();
66d258c5 10933 pmu = idr_find(&pmu_idr, type);
2e80a82a 10934 rcu_read_unlock();
940c5b29 10935 if (pmu) {
cc34b98b 10936 ret = perf_try_init_event(pmu, event);
66d258c5
PZ
10937 if (ret == -ENOENT && event->attr.type != type) {
10938 type = event->attr.type;
10939 goto again;
10940 }
10941
940c5b29
LM
10942 if (ret)
10943 pmu = ERR_PTR(ret);
66d258c5 10944
2e80a82a 10945 goto unlock;
940c5b29 10946 }
2e80a82a 10947
9f0bff11 10948 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 10949 ret = perf_try_init_event(pmu, event);
b0a873eb 10950 if (!ret)
e5f4d339 10951 goto unlock;
76e1d904 10952
b0a873eb
PZ
10953 if (ret != -ENOENT) {
10954 pmu = ERR_PTR(ret);
e5f4d339 10955 goto unlock;
f344011c 10956 }
5c92d124 10957 }
e5f4d339
PZ
10958 pmu = ERR_PTR(-ENOENT);
10959unlock:
b0a873eb 10960 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10961
4aeb0b42 10962 return pmu;
5c92d124
IM
10963}
10964
f2fb6bef
KL
10965static void attach_sb_event(struct perf_event *event)
10966{
10967 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10968
10969 raw_spin_lock(&pel->lock);
10970 list_add_rcu(&event->sb_list, &pel->list);
10971 raw_spin_unlock(&pel->lock);
10972}
10973
aab5b71e
PZ
10974/*
10975 * We keep a list of all !task (and therefore per-cpu) events
10976 * that need to receive side-band records.
10977 *
10978 * This avoids having to scan all the various PMU per-cpu contexts
10979 * looking for them.
10980 */
f2fb6bef
KL
10981static void account_pmu_sb_event(struct perf_event *event)
10982{
a4f144eb 10983 if (is_sb_event(event))
f2fb6bef
KL
10984 attach_sb_event(event);
10985}
10986
4beb31f3
FW
10987static void account_event_cpu(struct perf_event *event, int cpu)
10988{
10989 if (event->parent)
10990 return;
10991
4beb31f3
FW
10992 if (is_cgroup_event(event))
10993 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10994}
10995
555e0c1e
FW
10996/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10997static void account_freq_event_nohz(void)
10998{
10999#ifdef CONFIG_NO_HZ_FULL
11000 /* Lock so we don't race with concurrent unaccount */
11001 spin_lock(&nr_freq_lock);
11002 if (atomic_inc_return(&nr_freq_events) == 1)
11003 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11004 spin_unlock(&nr_freq_lock);
11005#endif
11006}
11007
11008static void account_freq_event(void)
11009{
11010 if (tick_nohz_full_enabled())
11011 account_freq_event_nohz();
11012 else
11013 atomic_inc(&nr_freq_events);
11014}
11015
11016
766d6c07
FW
11017static void account_event(struct perf_event *event)
11018{
25432ae9
PZ
11019 bool inc = false;
11020
4beb31f3
FW
11021 if (event->parent)
11022 return;
11023
766d6c07 11024 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 11025 inc = true;
766d6c07
FW
11026 if (event->attr.mmap || event->attr.mmap_data)
11027 atomic_inc(&nr_mmap_events);
11028 if (event->attr.comm)
11029 atomic_inc(&nr_comm_events);
e4222673
HB
11030 if (event->attr.namespaces)
11031 atomic_inc(&nr_namespaces_events);
96aaab68
NK
11032 if (event->attr.cgroup)
11033 atomic_inc(&nr_cgroup_events);
766d6c07
FW
11034 if (event->attr.task)
11035 atomic_inc(&nr_task_events);
555e0c1e
FW
11036 if (event->attr.freq)
11037 account_freq_event();
45ac1403
AH
11038 if (event->attr.context_switch) {
11039 atomic_inc(&nr_switch_events);
25432ae9 11040 inc = true;
45ac1403 11041 }
4beb31f3 11042 if (has_branch_stack(event))
25432ae9 11043 inc = true;
4beb31f3 11044 if (is_cgroup_event(event))
25432ae9 11045 inc = true;
76193a94
SL
11046 if (event->attr.ksymbol)
11047 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
11048 if (event->attr.bpf_event)
11049 atomic_inc(&nr_bpf_events);
e17d43b9
AH
11050 if (event->attr.text_poke)
11051 atomic_inc(&nr_text_poke_events);
25432ae9 11052
9107c89e 11053 if (inc) {
5bce9db1
AS
11054 /*
11055 * We need the mutex here because static_branch_enable()
11056 * must complete *before* the perf_sched_count increment
11057 * becomes visible.
11058 */
9107c89e
PZ
11059 if (atomic_inc_not_zero(&perf_sched_count))
11060 goto enabled;
11061
11062 mutex_lock(&perf_sched_mutex);
11063 if (!atomic_read(&perf_sched_count)) {
11064 static_branch_enable(&perf_sched_events);
11065 /*
11066 * Guarantee that all CPUs observe they key change and
11067 * call the perf scheduling hooks before proceeding to
11068 * install events that need them.
11069 */
0809d954 11070 synchronize_rcu();
9107c89e
PZ
11071 }
11072 /*
11073 * Now that we have waited for the sync_sched(), allow further
11074 * increments to by-pass the mutex.
11075 */
11076 atomic_inc(&perf_sched_count);
11077 mutex_unlock(&perf_sched_mutex);
11078 }
11079enabled:
4beb31f3
FW
11080
11081 account_event_cpu(event, event->cpu);
f2fb6bef
KL
11082
11083 account_pmu_sb_event(event);
766d6c07
FW
11084}
11085
0793a61d 11086/*
788faab7 11087 * Allocate and initialize an event structure
0793a61d 11088 */
cdd6c482 11089static struct perf_event *
c3f00c70 11090perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
11091 struct task_struct *task,
11092 struct perf_event *group_leader,
11093 struct perf_event *parent_event,
4dc0da86 11094 perf_overflow_handler_t overflow_handler,
79dff51e 11095 void *context, int cgroup_fd)
0793a61d 11096{
51b0fe39 11097 struct pmu *pmu;
cdd6c482
IM
11098 struct perf_event *event;
11099 struct hw_perf_event *hwc;
90983b16 11100 long err = -EINVAL;
0793a61d 11101
66832eb4
ON
11102 if ((unsigned)cpu >= nr_cpu_ids) {
11103 if (!task || cpu != -1)
11104 return ERR_PTR(-EINVAL);
11105 }
11106
c3f00c70 11107 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 11108 if (!event)
d5d2bc0d 11109 return ERR_PTR(-ENOMEM);
0793a61d 11110
04289bb9 11111 /*
cdd6c482 11112 * Single events are their own group leaders, with an
04289bb9
IM
11113 * empty sibling list:
11114 */
11115 if (!group_leader)
cdd6c482 11116 group_leader = event;
04289bb9 11117
cdd6c482
IM
11118 mutex_init(&event->child_mutex);
11119 INIT_LIST_HEAD(&event->child_list);
fccc714b 11120
cdd6c482
IM
11121 INIT_LIST_HEAD(&event->event_entry);
11122 INIT_LIST_HEAD(&event->sibling_list);
6668128a 11123 INIT_LIST_HEAD(&event->active_list);
8e1a2031 11124 init_event_group(event);
10c6db11 11125 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 11126 INIT_LIST_HEAD(&event->active_entry);
375637bc 11127 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
11128 INIT_HLIST_NODE(&event->hlist_entry);
11129
10c6db11 11130
cdd6c482 11131 init_waitqueue_head(&event->waitq);
1d54ad94 11132 event->pending_disable = -1;
e360adbe 11133 init_irq_work(&event->pending, perf_pending_event);
0793a61d 11134
cdd6c482 11135 mutex_init(&event->mmap_mutex);
375637bc 11136 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 11137
a6fa941d 11138 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
11139 event->cpu = cpu;
11140 event->attr = *attr;
11141 event->group_leader = group_leader;
11142 event->pmu = NULL;
cdd6c482 11143 event->oncpu = -1;
a96bbc16 11144
cdd6c482 11145 event->parent = parent_event;
b84fbc9f 11146
17cf22c3 11147 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 11148 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 11149
cdd6c482 11150 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 11151
d580ff86
PZ
11152 if (task) {
11153 event->attach_state = PERF_ATTACH_TASK;
d580ff86 11154 /*
50f16a8b
PZ
11155 * XXX pmu::event_init needs to know what task to account to
11156 * and we cannot use the ctx information because we need the
11157 * pmu before we get a ctx.
d580ff86 11158 */
7b3c92b8 11159 event->hw.target = get_task_struct(task);
d580ff86
PZ
11160 }
11161
34f43927
PZ
11162 event->clock = &local_clock;
11163 if (parent_event)
11164 event->clock = parent_event->clock;
11165
4dc0da86 11166 if (!overflow_handler && parent_event) {
b326e956 11167 overflow_handler = parent_event->overflow_handler;
4dc0da86 11168 context = parent_event->overflow_handler_context;
f1e4ba5b 11169#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 11170 if (overflow_handler == bpf_overflow_handler) {
85192dbf 11171 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 11172
85192dbf 11173 bpf_prog_inc(prog);
aa6a5f3c
AS
11174 event->prog = prog;
11175 event->orig_overflow_handler =
11176 parent_event->orig_overflow_handler;
11177 }
11178#endif
4dc0da86 11179 }
66832eb4 11180
1879445d
WN
11181 if (overflow_handler) {
11182 event->overflow_handler = overflow_handler;
11183 event->overflow_handler_context = context;
9ecda41a
WN
11184 } else if (is_write_backward(event)){
11185 event->overflow_handler = perf_event_output_backward;
11186 event->overflow_handler_context = NULL;
1879445d 11187 } else {
9ecda41a 11188 event->overflow_handler = perf_event_output_forward;
1879445d
WN
11189 event->overflow_handler_context = NULL;
11190 }
97eaf530 11191
0231bb53 11192 perf_event__state_init(event);
a86ed508 11193
4aeb0b42 11194 pmu = NULL;
b8e83514 11195
cdd6c482 11196 hwc = &event->hw;
bd2b5b12 11197 hwc->sample_period = attr->sample_period;
0d48696f 11198 if (attr->freq && attr->sample_freq)
bd2b5b12 11199 hwc->sample_period = 1;
eced1dfc 11200 hwc->last_period = hwc->sample_period;
bd2b5b12 11201
e7850595 11202 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 11203
2023b359 11204 /*
ba5213ae
PZ
11205 * We currently do not support PERF_SAMPLE_READ on inherited events.
11206 * See perf_output_read().
2023b359 11207 */
ba5213ae 11208 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 11209 goto err_ns;
a46a2300
YZ
11210
11211 if (!has_branch_stack(event))
11212 event->attr.branch_sample_type = 0;
2023b359 11213
b0a873eb 11214 pmu = perf_init_event(event);
85c617ab 11215 if (IS_ERR(pmu)) {
4aeb0b42 11216 err = PTR_ERR(pmu);
90983b16 11217 goto err_ns;
621a01ea 11218 }
d5d2bc0d 11219
09f4e8f0
PZ
11220 /*
11221 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11222 * be different on other CPUs in the uncore mask.
11223 */
11224 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11225 err = -EINVAL;
11226 goto err_pmu;
11227 }
11228
ab43762e
AS
11229 if (event->attr.aux_output &&
11230 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11231 err = -EOPNOTSUPP;
11232 goto err_pmu;
11233 }
11234
98add2af
PZ
11235 if (cgroup_fd != -1) {
11236 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11237 if (err)
11238 goto err_pmu;
11239 }
11240
bed5b25a
AS
11241 err = exclusive_event_init(event);
11242 if (err)
11243 goto err_pmu;
11244
375637bc 11245 if (has_addr_filter(event)) {
c60f83b8
AS
11246 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11247 sizeof(struct perf_addr_filter_range),
11248 GFP_KERNEL);
11249 if (!event->addr_filter_ranges) {
36cc2b92 11250 err = -ENOMEM;
375637bc 11251 goto err_per_task;
36cc2b92 11252 }
375637bc 11253
18736eef
AS
11254 /*
11255 * Clone the parent's vma offsets: they are valid until exec()
11256 * even if the mm is not shared with the parent.
11257 */
11258 if (event->parent) {
11259 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11260
11261 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
11262 memcpy(event->addr_filter_ranges,
11263 event->parent->addr_filter_ranges,
11264 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
11265 raw_spin_unlock_irq(&ifh->lock);
11266 }
11267
375637bc
AS
11268 /* force hw sync on the address filters */
11269 event->addr_filters_gen = 1;
11270 }
11271
cdd6c482 11272 if (!event->parent) {
927c7a9e 11273 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 11274 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 11275 if (err)
375637bc 11276 goto err_addr_filters;
d010b332 11277 }
f344011c 11278 }
9ee318a7 11279
da97e184
JFG
11280 err = security_perf_event_alloc(event);
11281 if (err)
11282 goto err_callchain_buffer;
11283
927a5570
AS
11284 /* symmetric to unaccount_event() in _free_event() */
11285 account_event(event);
11286
cdd6c482 11287 return event;
90983b16 11288
da97e184
JFG
11289err_callchain_buffer:
11290 if (!event->parent) {
11291 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11292 put_callchain_buffers();
11293 }
375637bc 11294err_addr_filters:
c60f83b8 11295 kfree(event->addr_filter_ranges);
375637bc 11296
bed5b25a
AS
11297err_per_task:
11298 exclusive_event_destroy(event);
11299
90983b16 11300err_pmu:
98add2af
PZ
11301 if (is_cgroup_event(event))
11302 perf_detach_cgroup(event);
90983b16
FW
11303 if (event->destroy)
11304 event->destroy(event);
c464c76e 11305 module_put(pmu->module);
90983b16
FW
11306err_ns:
11307 if (event->ns)
11308 put_pid_ns(event->ns);
621b6d2e
PB
11309 if (event->hw.target)
11310 put_task_struct(event->hw.target);
90983b16
FW
11311 kfree(event);
11312
11313 return ERR_PTR(err);
0793a61d
TG
11314}
11315
cdd6c482
IM
11316static int perf_copy_attr(struct perf_event_attr __user *uattr,
11317 struct perf_event_attr *attr)
974802ea 11318{
974802ea 11319 u32 size;
cdf8073d 11320 int ret;
974802ea 11321
c2ba8f41 11322 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
11323 memset(attr, 0, sizeof(*attr));
11324
11325 ret = get_user(size, &uattr->size);
11326 if (ret)
11327 return ret;
11328
c2ba8f41
AS
11329 /* ABI compatibility quirk: */
11330 if (!size)
974802ea 11331 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 11332 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
11333 goto err_size;
11334
c2ba8f41
AS
11335 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11336 if (ret) {
11337 if (ret == -E2BIG)
11338 goto err_size;
11339 return ret;
974802ea
PZ
11340 }
11341
f12f42ac
MX
11342 attr->size = size;
11343
a4faf00d 11344 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
11345 return -EINVAL;
11346
11347 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11348 return -EINVAL;
11349
11350 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11351 return -EINVAL;
11352
bce38cd5
SE
11353 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11354 u64 mask = attr->branch_sample_type;
11355
11356 /* only using defined bits */
11357 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11358 return -EINVAL;
11359
11360 /* at least one branch bit must be set */
11361 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11362 return -EINVAL;
11363
bce38cd5
SE
11364 /* propagate priv level, when not set for branch */
11365 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11366
11367 /* exclude_kernel checked on syscall entry */
11368 if (!attr->exclude_kernel)
11369 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11370
11371 if (!attr->exclude_user)
11372 mask |= PERF_SAMPLE_BRANCH_USER;
11373
11374 if (!attr->exclude_hv)
11375 mask |= PERF_SAMPLE_BRANCH_HV;
11376 /*
11377 * adjust user setting (for HW filter setup)
11378 */
11379 attr->branch_sample_type = mask;
11380 }
e712209a 11381 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
11382 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11383 ret = perf_allow_kernel(attr);
11384 if (ret)
11385 return ret;
11386 }
bce38cd5 11387 }
4018994f 11388
c5ebcedb 11389 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 11390 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
11391 if (ret)
11392 return ret;
11393 }
11394
11395 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11396 if (!arch_perf_have_user_stack_dump())
11397 return -ENOSYS;
11398
11399 /*
11400 * We have __u32 type for the size, but so far
11401 * we can only use __u16 as maximum due to the
11402 * __u16 sample size limit.
11403 */
11404 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 11405 return -EINVAL;
c5ebcedb 11406 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 11407 return -EINVAL;
c5ebcedb 11408 }
4018994f 11409
5f970521
JO
11410 if (!attr->sample_max_stack)
11411 attr->sample_max_stack = sysctl_perf_event_max_stack;
11412
60e2364e
SE
11413 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11414 ret = perf_reg_validate(attr->sample_regs_intr);
6546b19f
NK
11415
11416#ifndef CONFIG_CGROUP_PERF
11417 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11418 return -EINVAL;
11419#endif
11420
974802ea
PZ
11421out:
11422 return ret;
11423
11424err_size:
11425 put_user(sizeof(*attr), &uattr->size);
11426 ret = -E2BIG;
11427 goto out;
11428}
11429
ac9721f3
PZ
11430static int
11431perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 11432{
56de4e8f 11433 struct perf_buffer *rb = NULL;
a4be7c27
PZ
11434 int ret = -EINVAL;
11435
ac9721f3 11436 if (!output_event)
a4be7c27
PZ
11437 goto set;
11438
ac9721f3
PZ
11439 /* don't allow circular references */
11440 if (event == output_event)
a4be7c27
PZ
11441 goto out;
11442
0f139300
PZ
11443 /*
11444 * Don't allow cross-cpu buffers
11445 */
11446 if (output_event->cpu != event->cpu)
11447 goto out;
11448
11449 /*
76369139 11450 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
11451 */
11452 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11453 goto out;
11454
34f43927
PZ
11455 /*
11456 * Mixing clocks in the same buffer is trouble you don't need.
11457 */
11458 if (output_event->clock != event->clock)
11459 goto out;
11460
9ecda41a
WN
11461 /*
11462 * Either writing ring buffer from beginning or from end.
11463 * Mixing is not allowed.
11464 */
11465 if (is_write_backward(output_event) != is_write_backward(event))
11466 goto out;
11467
45bfb2e5
PZ
11468 /*
11469 * If both events generate aux data, they must be on the same PMU
11470 */
11471 if (has_aux(event) && has_aux(output_event) &&
11472 event->pmu != output_event->pmu)
11473 goto out;
11474
a4be7c27 11475set:
cdd6c482 11476 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
11477 /* Can't redirect output if we've got an active mmap() */
11478 if (atomic_read(&event->mmap_count))
11479 goto unlock;
a4be7c27 11480
ac9721f3 11481 if (output_event) {
76369139
FW
11482 /* get the rb we want to redirect to */
11483 rb = ring_buffer_get(output_event);
11484 if (!rb)
ac9721f3 11485 goto unlock;
a4be7c27
PZ
11486 }
11487
b69cf536 11488 ring_buffer_attach(event, rb);
9bb5d40c 11489
a4be7c27 11490 ret = 0;
ac9721f3
PZ
11491unlock:
11492 mutex_unlock(&event->mmap_mutex);
11493
a4be7c27 11494out:
a4be7c27
PZ
11495 return ret;
11496}
11497
f63a8daa
PZ
11498static void mutex_lock_double(struct mutex *a, struct mutex *b)
11499{
11500 if (b < a)
11501 swap(a, b);
11502
11503 mutex_lock(a);
11504 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11505}
11506
34f43927
PZ
11507static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11508{
11509 bool nmi_safe = false;
11510
11511 switch (clk_id) {
11512 case CLOCK_MONOTONIC:
11513 event->clock = &ktime_get_mono_fast_ns;
11514 nmi_safe = true;
11515 break;
11516
11517 case CLOCK_MONOTONIC_RAW:
11518 event->clock = &ktime_get_raw_fast_ns;
11519 nmi_safe = true;
11520 break;
11521
11522 case CLOCK_REALTIME:
11523 event->clock = &ktime_get_real_ns;
11524 break;
11525
11526 case CLOCK_BOOTTIME:
9285ec4c 11527 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
11528 break;
11529
11530 case CLOCK_TAI:
9285ec4c 11531 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
11532 break;
11533
11534 default:
11535 return -EINVAL;
11536 }
11537
11538 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11539 return -EINVAL;
11540
11541 return 0;
11542}
11543
321027c1
PZ
11544/*
11545 * Variation on perf_event_ctx_lock_nested(), except we take two context
11546 * mutexes.
11547 */
11548static struct perf_event_context *
11549__perf_event_ctx_lock_double(struct perf_event *group_leader,
11550 struct perf_event_context *ctx)
11551{
11552 struct perf_event_context *gctx;
11553
11554again:
11555 rcu_read_lock();
11556 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 11557 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
11558 rcu_read_unlock();
11559 goto again;
11560 }
11561 rcu_read_unlock();
11562
11563 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11564
11565 if (group_leader->ctx != gctx) {
11566 mutex_unlock(&ctx->mutex);
11567 mutex_unlock(&gctx->mutex);
11568 put_ctx(gctx);
11569 goto again;
11570 }
11571
11572 return gctx;
11573}
11574
0793a61d 11575/**
cdd6c482 11576 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 11577 *
cdd6c482 11578 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 11579 * @pid: target pid
9f66a381 11580 * @cpu: target cpu
cdd6c482 11581 * @group_fd: group leader event fd
0793a61d 11582 */
cdd6c482
IM
11583SYSCALL_DEFINE5(perf_event_open,
11584 struct perf_event_attr __user *, attr_uptr,
2743a5b0 11585 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 11586{
b04243ef
PZ
11587 struct perf_event *group_leader = NULL, *output_event = NULL;
11588 struct perf_event *event, *sibling;
cdd6c482 11589 struct perf_event_attr attr;
f63a8daa 11590 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 11591 struct file *event_file = NULL;
2903ff01 11592 struct fd group = {NULL, 0};
38a81da2 11593 struct task_struct *task = NULL;
89a1e187 11594 struct pmu *pmu;
ea635c64 11595 int event_fd;
b04243ef 11596 int move_group = 0;
dc86cabe 11597 int err;
a21b0b35 11598 int f_flags = O_RDWR;
79dff51e 11599 int cgroup_fd = -1;
0793a61d 11600
2743a5b0 11601 /* for future expandability... */
e5d1367f 11602 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
11603 return -EINVAL;
11604
da97e184
JFG
11605 /* Do we allow access to perf_event_open(2) ? */
11606 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11607 if (err)
11608 return err;
11609
dc86cabe
IM
11610 err = perf_copy_attr(attr_uptr, &attr);
11611 if (err)
11612 return err;
eab656ae 11613
0764771d 11614 if (!attr.exclude_kernel) {
da97e184
JFG
11615 err = perf_allow_kernel(&attr);
11616 if (err)
11617 return err;
0764771d
PZ
11618 }
11619
e4222673 11620 if (attr.namespaces) {
18aa1856 11621 if (!perfmon_capable())
e4222673
HB
11622 return -EACCES;
11623 }
11624
df58ab24 11625 if (attr.freq) {
cdd6c482 11626 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 11627 return -EINVAL;
0819b2e3
PZ
11628 } else {
11629 if (attr.sample_period & (1ULL << 63))
11630 return -EINVAL;
df58ab24
PZ
11631 }
11632
fc7ce9c7 11633 /* Only privileged users can get physical addresses */
da97e184
JFG
11634 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11635 err = perf_allow_kernel(&attr);
11636 if (err)
11637 return err;
11638 }
fc7ce9c7 11639
b0c8fdc7
DH
11640 err = security_locked_down(LOCKDOWN_PERF);
11641 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11642 /* REGS_INTR can leak data, lockdown must prevent this */
11643 return err;
11644
11645 err = 0;
11646
e5d1367f
SE
11647 /*
11648 * In cgroup mode, the pid argument is used to pass the fd
11649 * opened to the cgroup directory in cgroupfs. The cpu argument
11650 * designates the cpu on which to monitor threads from that
11651 * cgroup.
11652 */
11653 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11654 return -EINVAL;
11655
a21b0b35
YD
11656 if (flags & PERF_FLAG_FD_CLOEXEC)
11657 f_flags |= O_CLOEXEC;
11658
11659 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
11660 if (event_fd < 0)
11661 return event_fd;
11662
ac9721f3 11663 if (group_fd != -1) {
2903ff01
AV
11664 err = perf_fget_light(group_fd, &group);
11665 if (err)
d14b12d7 11666 goto err_fd;
2903ff01 11667 group_leader = group.file->private_data;
ac9721f3
PZ
11668 if (flags & PERF_FLAG_FD_OUTPUT)
11669 output_event = group_leader;
11670 if (flags & PERF_FLAG_FD_NO_GROUP)
11671 group_leader = NULL;
11672 }
11673
e5d1367f 11674 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
11675 task = find_lively_task_by_vpid(pid);
11676 if (IS_ERR(task)) {
11677 err = PTR_ERR(task);
11678 goto err_group_fd;
11679 }
11680 }
11681
1f4ee503
PZ
11682 if (task && group_leader &&
11683 group_leader->attr.inherit != attr.inherit) {
11684 err = -EINVAL;
11685 goto err_task;
11686 }
11687
79c9ce57 11688 if (task) {
69143038 11689 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
79c9ce57 11690 if (err)
e5aeee51 11691 goto err_task;
79c9ce57
PZ
11692
11693 /*
11694 * Reuse ptrace permission checks for now.
11695 *
69143038 11696 * We must hold exec_update_mutex across this and any potential
79c9ce57
PZ
11697 * perf_install_in_context() call for this new event to
11698 * serialize against exec() altering our credentials (and the
11699 * perf_event_exit_task() that could imply).
11700 */
11701 err = -EACCES;
11702 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11703 goto err_cred;
11704 }
11705
79dff51e
MF
11706 if (flags & PERF_FLAG_PID_CGROUP)
11707 cgroup_fd = pid;
11708
4dc0da86 11709 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 11710 NULL, NULL, cgroup_fd);
d14b12d7
SE
11711 if (IS_ERR(event)) {
11712 err = PTR_ERR(event);
79c9ce57 11713 goto err_cred;
d14b12d7
SE
11714 }
11715
53b25335
VW
11716 if (is_sampling_event(event)) {
11717 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11718 err = -EOPNOTSUPP;
53b25335
VW
11719 goto err_alloc;
11720 }
11721 }
11722
89a1e187
PZ
11723 /*
11724 * Special case software events and allow them to be part of
11725 * any hardware group.
11726 */
11727 pmu = event->pmu;
b04243ef 11728
34f43927
PZ
11729 if (attr.use_clockid) {
11730 err = perf_event_set_clock(event, attr.clockid);
11731 if (err)
11732 goto err_alloc;
11733 }
11734
4ff6a8de
DCC
11735 if (pmu->task_ctx_nr == perf_sw_context)
11736 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11737
a1150c20
SL
11738 if (group_leader) {
11739 if (is_software_event(event) &&
11740 !in_software_context(group_leader)) {
b04243ef 11741 /*
a1150c20
SL
11742 * If the event is a sw event, but the group_leader
11743 * is on hw context.
b04243ef 11744 *
a1150c20
SL
11745 * Allow the addition of software events to hw
11746 * groups, this is safe because software events
11747 * never fail to schedule.
b04243ef 11748 */
a1150c20
SL
11749 pmu = group_leader->ctx->pmu;
11750 } else if (!is_software_event(event) &&
11751 is_software_event(group_leader) &&
4ff6a8de 11752 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11753 /*
11754 * In case the group is a pure software group, and we
11755 * try to add a hardware event, move the whole group to
11756 * the hardware context.
11757 */
11758 move_group = 1;
11759 }
11760 }
89a1e187
PZ
11761
11762 /*
11763 * Get the target context (task or percpu):
11764 */
4af57ef2 11765 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11766 if (IS_ERR(ctx)) {
11767 err = PTR_ERR(ctx);
c6be5a5c 11768 goto err_alloc;
89a1e187
PZ
11769 }
11770
ccff286d 11771 /*
cdd6c482 11772 * Look up the group leader (we will attach this event to it):
04289bb9 11773 */
ac9721f3 11774 if (group_leader) {
dc86cabe 11775 err = -EINVAL;
04289bb9 11776
04289bb9 11777 /*
ccff286d
IM
11778 * Do not allow a recursive hierarchy (this new sibling
11779 * becoming part of another group-sibling):
11780 */
11781 if (group_leader->group_leader != group_leader)
c3f00c70 11782 goto err_context;
34f43927
PZ
11783
11784 /* All events in a group should have the same clock */
11785 if (group_leader->clock != event->clock)
11786 goto err_context;
11787
ccff286d 11788 /*
64aee2a9
MR
11789 * Make sure we're both events for the same CPU;
11790 * grouping events for different CPUs is broken; since
11791 * you can never concurrently schedule them anyhow.
04289bb9 11792 */
64aee2a9
MR
11793 if (group_leader->cpu != event->cpu)
11794 goto err_context;
c3c87e77 11795
64aee2a9
MR
11796 /*
11797 * Make sure we're both on the same task, or both
11798 * per-CPU events.
11799 */
11800 if (group_leader->ctx->task != ctx->task)
11801 goto err_context;
11802
11803 /*
11804 * Do not allow to attach to a group in a different task
11805 * or CPU context. If we're moving SW events, we'll fix
11806 * this up later, so allow that.
11807 */
11808 if (!move_group && group_leader->ctx != ctx)
11809 goto err_context;
b04243ef 11810
3b6f9e5c
PM
11811 /*
11812 * Only a group leader can be exclusive or pinned
11813 */
0d48696f 11814 if (attr.exclusive || attr.pinned)
c3f00c70 11815 goto err_context;
ac9721f3
PZ
11816 }
11817
11818 if (output_event) {
11819 err = perf_event_set_output(event, output_event);
11820 if (err)
c3f00c70 11821 goto err_context;
ac9721f3 11822 }
0793a61d 11823
a21b0b35
YD
11824 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11825 f_flags);
ea635c64
AV
11826 if (IS_ERR(event_file)) {
11827 err = PTR_ERR(event_file);
201c2f85 11828 event_file = NULL;
c3f00c70 11829 goto err_context;
ea635c64 11830 }
9b51f66d 11831
b04243ef 11832 if (move_group) {
321027c1
PZ
11833 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11834
84c4e620
PZ
11835 if (gctx->task == TASK_TOMBSTONE) {
11836 err = -ESRCH;
11837 goto err_locked;
11838 }
321027c1
PZ
11839
11840 /*
11841 * Check if we raced against another sys_perf_event_open() call
11842 * moving the software group underneath us.
11843 */
11844 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11845 /*
11846 * If someone moved the group out from under us, check
11847 * if this new event wound up on the same ctx, if so
11848 * its the regular !move_group case, otherwise fail.
11849 */
11850 if (gctx != ctx) {
11851 err = -EINVAL;
11852 goto err_locked;
11853 } else {
11854 perf_event_ctx_unlock(group_leader, gctx);
11855 move_group = 0;
11856 }
11857 }
8a58ddae
AS
11858
11859 /*
11860 * Failure to create exclusive events returns -EBUSY.
11861 */
11862 err = -EBUSY;
11863 if (!exclusive_event_installable(group_leader, ctx))
11864 goto err_locked;
11865
11866 for_each_sibling_event(sibling, group_leader) {
11867 if (!exclusive_event_installable(sibling, ctx))
11868 goto err_locked;
11869 }
f55fc2a5
PZ
11870 } else {
11871 mutex_lock(&ctx->mutex);
11872 }
11873
84c4e620
PZ
11874 if (ctx->task == TASK_TOMBSTONE) {
11875 err = -ESRCH;
11876 goto err_locked;
11877 }
11878
a723968c
PZ
11879 if (!perf_event_validate_size(event)) {
11880 err = -E2BIG;
11881 goto err_locked;
11882 }
11883
a63fbed7
TG
11884 if (!task) {
11885 /*
11886 * Check if the @cpu we're creating an event for is online.
11887 *
11888 * We use the perf_cpu_context::ctx::mutex to serialize against
11889 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11890 */
11891 struct perf_cpu_context *cpuctx =
11892 container_of(ctx, struct perf_cpu_context, ctx);
11893
11894 if (!cpuctx->online) {
11895 err = -ENODEV;
11896 goto err_locked;
11897 }
11898 }
11899
da9ec3d3
MR
11900 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11901 err = -EINVAL;
ab43762e 11902 goto err_locked;
da9ec3d3 11903 }
a63fbed7 11904
f55fc2a5
PZ
11905 /*
11906 * Must be under the same ctx::mutex as perf_install_in_context(),
11907 * because we need to serialize with concurrent event creation.
11908 */
11909 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11910 err = -EBUSY;
11911 goto err_locked;
11912 }
f63a8daa 11913
f55fc2a5
PZ
11914 WARN_ON_ONCE(ctx->parent_ctx);
11915
79c9ce57
PZ
11916 /*
11917 * This is the point on no return; we cannot fail hereafter. This is
11918 * where we start modifying current state.
11919 */
11920
f55fc2a5 11921 if (move_group) {
f63a8daa
PZ
11922 /*
11923 * See perf_event_ctx_lock() for comments on the details
11924 * of swizzling perf_event::ctx.
11925 */
45a0e07a 11926 perf_remove_from_context(group_leader, 0);
279b5165 11927 put_ctx(gctx);
0231bb53 11928
edb39592 11929 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11930 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11931 put_ctx(gctx);
11932 }
b04243ef 11933
f63a8daa
PZ
11934 /*
11935 * Wait for everybody to stop referencing the events through
11936 * the old lists, before installing it on new lists.
11937 */
0cda4c02 11938 synchronize_rcu();
f63a8daa 11939
8f95b435
PZI
11940 /*
11941 * Install the group siblings before the group leader.
11942 *
11943 * Because a group leader will try and install the entire group
11944 * (through the sibling list, which is still in-tact), we can
11945 * end up with siblings installed in the wrong context.
11946 *
11947 * By installing siblings first we NO-OP because they're not
11948 * reachable through the group lists.
11949 */
edb39592 11950 for_each_sibling_event(sibling, group_leader) {
8f95b435 11951 perf_event__state_init(sibling);
9fc81d87 11952 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11953 get_ctx(ctx);
11954 }
8f95b435
PZI
11955
11956 /*
11957 * Removing from the context ends up with disabled
11958 * event. What we want here is event in the initial
11959 * startup state, ready to be add into new context.
11960 */
11961 perf_event__state_init(group_leader);
11962 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11963 get_ctx(ctx);
bed5b25a
AS
11964 }
11965
f73e22ab
PZ
11966 /*
11967 * Precalculate sample_data sizes; do while holding ctx::mutex such
11968 * that we're serialized against further additions and before
11969 * perf_install_in_context() which is the point the event is active and
11970 * can use these values.
11971 */
11972 perf_event__header_size(event);
11973 perf_event__id_header_size(event);
11974
78cd2c74
PZ
11975 event->owner = current;
11976
e2d37cd2 11977 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11978 perf_unpin_context(ctx);
f63a8daa 11979
f55fc2a5 11980 if (move_group)
321027c1 11981 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11982 mutex_unlock(&ctx->mutex);
9b51f66d 11983
79c9ce57 11984 if (task) {
69143038 11985 mutex_unlock(&task->signal->exec_update_mutex);
79c9ce57
PZ
11986 put_task_struct(task);
11987 }
11988
cdd6c482
IM
11989 mutex_lock(&current->perf_event_mutex);
11990 list_add_tail(&event->owner_entry, &current->perf_event_list);
11991 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11992
8a49542c
PZ
11993 /*
11994 * Drop the reference on the group_event after placing the
11995 * new event on the sibling_list. This ensures destruction
11996 * of the group leader will find the pointer to itself in
11997 * perf_group_detach().
11998 */
2903ff01 11999 fdput(group);
ea635c64
AV
12000 fd_install(event_fd, event_file);
12001 return event_fd;
0793a61d 12002
f55fc2a5
PZ
12003err_locked:
12004 if (move_group)
321027c1 12005 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
12006 mutex_unlock(&ctx->mutex);
12007/* err_file: */
12008 fput(event_file);
c3f00c70 12009err_context:
fe4b04fa 12010 perf_unpin_context(ctx);
ea635c64 12011 put_ctx(ctx);
c6be5a5c 12012err_alloc:
13005627
PZ
12013 /*
12014 * If event_file is set, the fput() above will have called ->release()
12015 * and that will take care of freeing the event.
12016 */
12017 if (!event_file)
12018 free_event(event);
79c9ce57
PZ
12019err_cred:
12020 if (task)
69143038 12021 mutex_unlock(&task->signal->exec_update_mutex);
1f4ee503 12022err_task:
e7d0bc04
PZ
12023 if (task)
12024 put_task_struct(task);
89a1e187 12025err_group_fd:
2903ff01 12026 fdput(group);
ea635c64
AV
12027err_fd:
12028 put_unused_fd(event_fd);
dc86cabe 12029 return err;
0793a61d
TG
12030}
12031
fb0459d7
AV
12032/**
12033 * perf_event_create_kernel_counter
12034 *
12035 * @attr: attributes of the counter to create
12036 * @cpu: cpu in which the counter is bound
38a81da2 12037 * @task: task to profile (NULL for percpu)
fb0459d7
AV
12038 */
12039struct perf_event *
12040perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 12041 struct task_struct *task,
4dc0da86
AK
12042 perf_overflow_handler_t overflow_handler,
12043 void *context)
fb0459d7 12044{
fb0459d7 12045 struct perf_event_context *ctx;
c3f00c70 12046 struct perf_event *event;
fb0459d7 12047 int err;
d859e29f 12048
dce5affb
AS
12049 /*
12050 * Grouping is not supported for kernel events, neither is 'AUX',
12051 * make sure the caller's intentions are adjusted.
12052 */
12053 if (attr->aux_output)
12054 return ERR_PTR(-EINVAL);
12055
4dc0da86 12056 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 12057 overflow_handler, context, -1);
c3f00c70
PZ
12058 if (IS_ERR(event)) {
12059 err = PTR_ERR(event);
12060 goto err;
12061 }
d859e29f 12062
f8697762 12063 /* Mark owner so we could distinguish it from user events. */
63b6da39 12064 event->owner = TASK_TOMBSTONE;
f8697762 12065
f25d8ba9
AS
12066 /*
12067 * Get the target context (task or percpu):
12068 */
4af57ef2 12069 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
12070 if (IS_ERR(ctx)) {
12071 err = PTR_ERR(ctx);
c3f00c70 12072 goto err_free;
d859e29f 12073 }
fb0459d7 12074
fb0459d7
AV
12075 WARN_ON_ONCE(ctx->parent_ctx);
12076 mutex_lock(&ctx->mutex);
84c4e620
PZ
12077 if (ctx->task == TASK_TOMBSTONE) {
12078 err = -ESRCH;
12079 goto err_unlock;
12080 }
12081
a63fbed7
TG
12082 if (!task) {
12083 /*
12084 * Check if the @cpu we're creating an event for is online.
12085 *
12086 * We use the perf_cpu_context::ctx::mutex to serialize against
12087 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12088 */
12089 struct perf_cpu_context *cpuctx =
12090 container_of(ctx, struct perf_cpu_context, ctx);
12091 if (!cpuctx->online) {
12092 err = -ENODEV;
12093 goto err_unlock;
12094 }
12095 }
12096
bed5b25a 12097 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 12098 err = -EBUSY;
84c4e620 12099 goto err_unlock;
bed5b25a
AS
12100 }
12101
4ce54af8 12102 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 12103 perf_unpin_context(ctx);
fb0459d7
AV
12104 mutex_unlock(&ctx->mutex);
12105
fb0459d7
AV
12106 return event;
12107
84c4e620
PZ
12108err_unlock:
12109 mutex_unlock(&ctx->mutex);
12110 perf_unpin_context(ctx);
12111 put_ctx(ctx);
c3f00c70
PZ
12112err_free:
12113 free_event(event);
12114err:
c6567f64 12115 return ERR_PTR(err);
9b51f66d 12116}
fb0459d7 12117EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 12118
0cda4c02
YZ
12119void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12120{
12121 struct perf_event_context *src_ctx;
12122 struct perf_event_context *dst_ctx;
12123 struct perf_event *event, *tmp;
12124 LIST_HEAD(events);
12125
12126 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12127 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12128
f63a8daa
PZ
12129 /*
12130 * See perf_event_ctx_lock() for comments on the details
12131 * of swizzling perf_event::ctx.
12132 */
12133 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
12134 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12135 event_entry) {
45a0e07a 12136 perf_remove_from_context(event, 0);
9a545de0 12137 unaccount_event_cpu(event, src_cpu);
0cda4c02 12138 put_ctx(src_ctx);
9886167d 12139 list_add(&event->migrate_entry, &events);
0cda4c02 12140 }
0cda4c02 12141
8f95b435
PZI
12142 /*
12143 * Wait for the events to quiesce before re-instating them.
12144 */
0cda4c02
YZ
12145 synchronize_rcu();
12146
8f95b435
PZI
12147 /*
12148 * Re-instate events in 2 passes.
12149 *
12150 * Skip over group leaders and only install siblings on this first
12151 * pass, siblings will not get enabled without a leader, however a
12152 * leader will enable its siblings, even if those are still on the old
12153 * context.
12154 */
12155 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12156 if (event->group_leader == event)
12157 continue;
12158
12159 list_del(&event->migrate_entry);
12160 if (event->state >= PERF_EVENT_STATE_OFF)
12161 event->state = PERF_EVENT_STATE_INACTIVE;
12162 account_event_cpu(event, dst_cpu);
12163 perf_install_in_context(dst_ctx, event, dst_cpu);
12164 get_ctx(dst_ctx);
12165 }
12166
12167 /*
12168 * Once all the siblings are setup properly, install the group leaders
12169 * to make it go.
12170 */
9886167d
PZ
12171 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12172 list_del(&event->migrate_entry);
0cda4c02
YZ
12173 if (event->state >= PERF_EVENT_STATE_OFF)
12174 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 12175 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
12176 perf_install_in_context(dst_ctx, event, dst_cpu);
12177 get_ctx(dst_ctx);
12178 }
12179 mutex_unlock(&dst_ctx->mutex);
f63a8daa 12180 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
12181}
12182EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12183
cdd6c482 12184static void sync_child_event(struct perf_event *child_event,
38b200d6 12185 struct task_struct *child)
d859e29f 12186{
cdd6c482 12187 struct perf_event *parent_event = child_event->parent;
8bc20959 12188 u64 child_val;
d859e29f 12189
cdd6c482
IM
12190 if (child_event->attr.inherit_stat)
12191 perf_event_read_event(child_event, child);
38b200d6 12192
b5e58793 12193 child_val = perf_event_count(child_event);
d859e29f
PM
12194
12195 /*
12196 * Add back the child's count to the parent's count:
12197 */
a6e6dea6 12198 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
12199 atomic64_add(child_event->total_time_enabled,
12200 &parent_event->child_total_time_enabled);
12201 atomic64_add(child_event->total_time_running,
12202 &parent_event->child_total_time_running);
d859e29f
PM
12203}
12204
9b51f66d 12205static void
8ba289b8
PZ
12206perf_event_exit_event(struct perf_event *child_event,
12207 struct perf_event_context *child_ctx,
12208 struct task_struct *child)
9b51f66d 12209{
8ba289b8
PZ
12210 struct perf_event *parent_event = child_event->parent;
12211
1903d50c
PZ
12212 /*
12213 * Do not destroy the 'original' grouping; because of the context
12214 * switch optimization the original events could've ended up in a
12215 * random child task.
12216 *
12217 * If we were to destroy the original group, all group related
12218 * operations would cease to function properly after this random
12219 * child dies.
12220 *
12221 * Do destroy all inherited groups, we don't care about those
12222 * and being thorough is better.
12223 */
32132a3d
PZ
12224 raw_spin_lock_irq(&child_ctx->lock);
12225 WARN_ON_ONCE(child_ctx->is_active);
12226
8ba289b8 12227 if (parent_event)
32132a3d
PZ
12228 perf_group_detach(child_event);
12229 list_del_event(child_event, child_ctx);
0d3d73aa 12230 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 12231 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 12232
9b51f66d 12233 /*
8ba289b8 12234 * Parent events are governed by their filedesc, retain them.
9b51f66d 12235 */
8ba289b8 12236 if (!parent_event) {
179033b3 12237 perf_event_wakeup(child_event);
8ba289b8 12238 return;
4bcf349a 12239 }
8ba289b8
PZ
12240 /*
12241 * Child events can be cleaned up.
12242 */
12243
12244 sync_child_event(child_event, child);
12245
12246 /*
12247 * Remove this event from the parent's list
12248 */
12249 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12250 mutex_lock(&parent_event->child_mutex);
12251 list_del_init(&child_event->child_list);
12252 mutex_unlock(&parent_event->child_mutex);
12253
12254 /*
12255 * Kick perf_poll() for is_event_hup().
12256 */
12257 perf_event_wakeup(parent_event);
12258 free_event(child_event);
12259 put_event(parent_event);
9b51f66d
IM
12260}
12261
8dc85d54 12262static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 12263{
211de6eb 12264 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 12265 struct perf_event *child_event, *next;
63b6da39
PZ
12266
12267 WARN_ON_ONCE(child != current);
9b51f66d 12268
6a3351b6 12269 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 12270 if (!child_ctx)
9b51f66d
IM
12271 return;
12272
ad3a37de 12273 /*
6a3351b6
PZ
12274 * In order to reduce the amount of tricky in ctx tear-down, we hold
12275 * ctx::mutex over the entire thing. This serializes against almost
12276 * everything that wants to access the ctx.
12277 *
12278 * The exception is sys_perf_event_open() /
12279 * perf_event_create_kernel_count() which does find_get_context()
12280 * without ctx::mutex (it cannot because of the move_group double mutex
12281 * lock thing). See the comments in perf_install_in_context().
ad3a37de 12282 */
6a3351b6 12283 mutex_lock(&child_ctx->mutex);
c93f7669
PM
12284
12285 /*
6a3351b6
PZ
12286 * In a single ctx::lock section, de-schedule the events and detach the
12287 * context from the task such that we cannot ever get it scheduled back
12288 * in.
c93f7669 12289 */
6a3351b6 12290 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 12291 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 12292
71a851b4 12293 /*
63b6da39
PZ
12294 * Now that the context is inactive, destroy the task <-> ctx relation
12295 * and mark the context dead.
71a851b4 12296 */
63b6da39
PZ
12297 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12298 put_ctx(child_ctx); /* cannot be last */
12299 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12300 put_task_struct(current); /* cannot be last */
4a1c0f26 12301
211de6eb 12302 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 12303 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 12304
211de6eb
PZ
12305 if (clone_ctx)
12306 put_ctx(clone_ctx);
4a1c0f26 12307
9f498cc5 12308 /*
cdd6c482
IM
12309 * Report the task dead after unscheduling the events so that we
12310 * won't get any samples after PERF_RECORD_EXIT. We can however still
12311 * get a few PERF_RECORD_READ events.
9f498cc5 12312 */
cdd6c482 12313 perf_event_task(child, child_ctx, 0);
a63eaf34 12314
ebf905fc 12315 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 12316 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 12317
a63eaf34
PM
12318 mutex_unlock(&child_ctx->mutex);
12319
12320 put_ctx(child_ctx);
9b51f66d
IM
12321}
12322
8dc85d54
PZ
12323/*
12324 * When a child task exits, feed back event values to parent events.
79c9ce57 12325 *
69143038 12326 * Can be called with exec_update_mutex held when called from
96ecee29 12327 * setup_new_exec().
8dc85d54
PZ
12328 */
12329void perf_event_exit_task(struct task_struct *child)
12330{
8882135b 12331 struct perf_event *event, *tmp;
8dc85d54
PZ
12332 int ctxn;
12333
8882135b
PZ
12334 mutex_lock(&child->perf_event_mutex);
12335 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12336 owner_entry) {
12337 list_del_init(&event->owner_entry);
12338
12339 /*
12340 * Ensure the list deletion is visible before we clear
12341 * the owner, closes a race against perf_release() where
12342 * we need to serialize on the owner->perf_event_mutex.
12343 */
f47c02c0 12344 smp_store_release(&event->owner, NULL);
8882135b
PZ
12345 }
12346 mutex_unlock(&child->perf_event_mutex);
12347
8dc85d54
PZ
12348 for_each_task_context_nr(ctxn)
12349 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
12350
12351 /*
12352 * The perf_event_exit_task_context calls perf_event_task
12353 * with child's task_ctx, which generates EXIT events for
12354 * child contexts and sets child->perf_event_ctxp[] to NULL.
12355 * At this point we need to send EXIT events to cpu contexts.
12356 */
12357 perf_event_task(child, NULL, 0);
8dc85d54
PZ
12358}
12359
889ff015
FW
12360static void perf_free_event(struct perf_event *event,
12361 struct perf_event_context *ctx)
12362{
12363 struct perf_event *parent = event->parent;
12364
12365 if (WARN_ON_ONCE(!parent))
12366 return;
12367
12368 mutex_lock(&parent->child_mutex);
12369 list_del_init(&event->child_list);
12370 mutex_unlock(&parent->child_mutex);
12371
a6fa941d 12372 put_event(parent);
889ff015 12373
652884fe 12374 raw_spin_lock_irq(&ctx->lock);
8a49542c 12375 perf_group_detach(event);
889ff015 12376 list_del_event(event, ctx);
652884fe 12377 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
12378 free_event(event);
12379}
12380
bbbee908 12381/*
1cf8dfe8
PZ
12382 * Free a context as created by inheritance by perf_event_init_task() below,
12383 * used by fork() in case of fail.
652884fe 12384 *
1cf8dfe8
PZ
12385 * Even though the task has never lived, the context and events have been
12386 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 12387 */
cdd6c482 12388void perf_event_free_task(struct task_struct *task)
bbbee908 12389{
8dc85d54 12390 struct perf_event_context *ctx;
cdd6c482 12391 struct perf_event *event, *tmp;
8dc85d54 12392 int ctxn;
bbbee908 12393
8dc85d54
PZ
12394 for_each_task_context_nr(ctxn) {
12395 ctx = task->perf_event_ctxp[ctxn];
12396 if (!ctx)
12397 continue;
bbbee908 12398
8dc85d54 12399 mutex_lock(&ctx->mutex);
e552a838
PZ
12400 raw_spin_lock_irq(&ctx->lock);
12401 /*
12402 * Destroy the task <-> ctx relation and mark the context dead.
12403 *
12404 * This is important because even though the task hasn't been
12405 * exposed yet the context has been (through child_list).
12406 */
12407 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12408 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12409 put_task_struct(task); /* cannot be last */
12410 raw_spin_unlock_irq(&ctx->lock);
bbbee908 12411
15121c78 12412 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 12413 perf_free_event(event, ctx);
bbbee908 12414
8dc85d54 12415 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
12416
12417 /*
12418 * perf_event_release_kernel() could've stolen some of our
12419 * child events and still have them on its free_list. In that
12420 * case we must wait for these events to have been freed (in
12421 * particular all their references to this task must've been
12422 * dropped).
12423 *
12424 * Without this copy_process() will unconditionally free this
12425 * task (irrespective of its reference count) and
12426 * _free_event()'s put_task_struct(event->hw.target) will be a
12427 * use-after-free.
12428 *
12429 * Wait for all events to drop their context reference.
12430 */
12431 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12432 put_ctx(ctx); /* must be last */
8dc85d54 12433 }
889ff015
FW
12434}
12435
4e231c79
PZ
12436void perf_event_delayed_put(struct task_struct *task)
12437{
12438 int ctxn;
12439
12440 for_each_task_context_nr(ctxn)
12441 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12442}
12443
e03e7ee3 12444struct file *perf_event_get(unsigned int fd)
ffe8690c 12445{
02e5ad97 12446 struct file *file = fget(fd);
e03e7ee3
AS
12447 if (!file)
12448 return ERR_PTR(-EBADF);
ffe8690c 12449
e03e7ee3
AS
12450 if (file->f_op != &perf_fops) {
12451 fput(file);
12452 return ERR_PTR(-EBADF);
12453 }
ffe8690c 12454
e03e7ee3 12455 return file;
ffe8690c
KX
12456}
12457
f8d959a5
YS
12458const struct perf_event *perf_get_event(struct file *file)
12459{
12460 if (file->f_op != &perf_fops)
12461 return ERR_PTR(-EINVAL);
12462
12463 return file->private_data;
12464}
12465
ffe8690c
KX
12466const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12467{
12468 if (!event)
12469 return ERR_PTR(-EINVAL);
12470
12471 return &event->attr;
12472}
12473
97dee4f3 12474/*
788faab7 12475 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
12476 *
12477 * Returns:
12478 * - valid pointer on success
12479 * - NULL for orphaned events
12480 * - IS_ERR() on error
97dee4f3
PZ
12481 */
12482static struct perf_event *
12483inherit_event(struct perf_event *parent_event,
12484 struct task_struct *parent,
12485 struct perf_event_context *parent_ctx,
12486 struct task_struct *child,
12487 struct perf_event *group_leader,
12488 struct perf_event_context *child_ctx)
12489{
8ca2bd41 12490 enum perf_event_state parent_state = parent_event->state;
97dee4f3 12491 struct perf_event *child_event;
cee010ec 12492 unsigned long flags;
97dee4f3
PZ
12493
12494 /*
12495 * Instead of creating recursive hierarchies of events,
12496 * we link inherited events back to the original parent,
12497 * which has a filp for sure, which we use as the reference
12498 * count:
12499 */
12500 if (parent_event->parent)
12501 parent_event = parent_event->parent;
12502
12503 child_event = perf_event_alloc(&parent_event->attr,
12504 parent_event->cpu,
d580ff86 12505 child,
97dee4f3 12506 group_leader, parent_event,
79dff51e 12507 NULL, NULL, -1);
97dee4f3
PZ
12508 if (IS_ERR(child_event))
12509 return child_event;
a6fa941d 12510
313ccb96
JO
12511
12512 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12513 !child_ctx->task_ctx_data) {
12514 struct pmu *pmu = child_event->pmu;
12515
ff9ff926 12516 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
313ccb96
JO
12517 if (!child_ctx->task_ctx_data) {
12518 free_event(child_event);
697d8778 12519 return ERR_PTR(-ENOMEM);
313ccb96
JO
12520 }
12521 }
12522
c6e5b732
PZ
12523 /*
12524 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12525 * must be under the same lock in order to serialize against
12526 * perf_event_release_kernel(), such that either we must observe
12527 * is_orphaned_event() or they will observe us on the child_list.
12528 */
12529 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
12530 if (is_orphaned_event(parent_event) ||
12531 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 12532 mutex_unlock(&parent_event->child_mutex);
313ccb96 12533 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
12534 free_event(child_event);
12535 return NULL;
12536 }
12537
97dee4f3
PZ
12538 get_ctx(child_ctx);
12539
12540 /*
12541 * Make the child state follow the state of the parent event,
12542 * not its attr.disabled bit. We hold the parent's mutex,
12543 * so we won't race with perf_event_{en, dis}able_family.
12544 */
1929def9 12545 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
12546 child_event->state = PERF_EVENT_STATE_INACTIVE;
12547 else
12548 child_event->state = PERF_EVENT_STATE_OFF;
12549
12550 if (parent_event->attr.freq) {
12551 u64 sample_period = parent_event->hw.sample_period;
12552 struct hw_perf_event *hwc = &child_event->hw;
12553
12554 hwc->sample_period = sample_period;
12555 hwc->last_period = sample_period;
12556
12557 local64_set(&hwc->period_left, sample_period);
12558 }
12559
12560 child_event->ctx = child_ctx;
12561 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
12562 child_event->overflow_handler_context
12563 = parent_event->overflow_handler_context;
97dee4f3 12564
614b6780
TG
12565 /*
12566 * Precalculate sample_data sizes
12567 */
12568 perf_event__header_size(child_event);
6844c09d 12569 perf_event__id_header_size(child_event);
614b6780 12570
97dee4f3
PZ
12571 /*
12572 * Link it up in the child's context:
12573 */
cee010ec 12574 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 12575 add_event_to_ctx(child_event, child_ctx);
cee010ec 12576 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 12577
97dee4f3
PZ
12578 /*
12579 * Link this into the parent event's child list
12580 */
97dee4f3
PZ
12581 list_add_tail(&child_event->child_list, &parent_event->child_list);
12582 mutex_unlock(&parent_event->child_mutex);
12583
12584 return child_event;
12585}
12586
d8a8cfc7
PZ
12587/*
12588 * Inherits an event group.
12589 *
12590 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12591 * This matches with perf_event_release_kernel() removing all child events.
12592 *
12593 * Returns:
12594 * - 0 on success
12595 * - <0 on error
12596 */
97dee4f3
PZ
12597static int inherit_group(struct perf_event *parent_event,
12598 struct task_struct *parent,
12599 struct perf_event_context *parent_ctx,
12600 struct task_struct *child,
12601 struct perf_event_context *child_ctx)
12602{
12603 struct perf_event *leader;
12604 struct perf_event *sub;
12605 struct perf_event *child_ctr;
12606
12607 leader = inherit_event(parent_event, parent, parent_ctx,
12608 child, NULL, child_ctx);
12609 if (IS_ERR(leader))
12610 return PTR_ERR(leader);
d8a8cfc7
PZ
12611 /*
12612 * @leader can be NULL here because of is_orphaned_event(). In this
12613 * case inherit_event() will create individual events, similar to what
12614 * perf_group_detach() would do anyway.
12615 */
edb39592 12616 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
12617 child_ctr = inherit_event(sub, parent, parent_ctx,
12618 child, leader, child_ctx);
12619 if (IS_ERR(child_ctr))
12620 return PTR_ERR(child_ctr);
f733c6b5 12621
00496fe5 12622 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
12623 !perf_get_aux_event(child_ctr, leader))
12624 return -EINVAL;
97dee4f3
PZ
12625 }
12626 return 0;
889ff015
FW
12627}
12628
d8a8cfc7
PZ
12629/*
12630 * Creates the child task context and tries to inherit the event-group.
12631 *
12632 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12633 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12634 * consistent with perf_event_release_kernel() removing all child events.
12635 *
12636 * Returns:
12637 * - 0 on success
12638 * - <0 on error
12639 */
889ff015
FW
12640static int
12641inherit_task_group(struct perf_event *event, struct task_struct *parent,
12642 struct perf_event_context *parent_ctx,
8dc85d54 12643 struct task_struct *child, int ctxn,
889ff015
FW
12644 int *inherited_all)
12645{
12646 int ret;
8dc85d54 12647 struct perf_event_context *child_ctx;
889ff015
FW
12648
12649 if (!event->attr.inherit) {
12650 *inherited_all = 0;
12651 return 0;
bbbee908
PZ
12652 }
12653
fe4b04fa 12654 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
12655 if (!child_ctx) {
12656 /*
12657 * This is executed from the parent task context, so
12658 * inherit events that have been marked for cloning.
12659 * First allocate and initialize a context for the
12660 * child.
12661 */
734df5ab 12662 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
12663 if (!child_ctx)
12664 return -ENOMEM;
bbbee908 12665
8dc85d54 12666 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
12667 }
12668
12669 ret = inherit_group(event, parent, parent_ctx,
12670 child, child_ctx);
12671
12672 if (ret)
12673 *inherited_all = 0;
12674
12675 return ret;
bbbee908
PZ
12676}
12677
9b51f66d 12678/*
cdd6c482 12679 * Initialize the perf_event context in task_struct
9b51f66d 12680 */
985c8dcb 12681static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 12682{
889ff015 12683 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
12684 struct perf_event_context *cloned_ctx;
12685 struct perf_event *event;
9b51f66d 12686 struct task_struct *parent = current;
564c2b21 12687 int inherited_all = 1;
dddd3379 12688 unsigned long flags;
6ab423e0 12689 int ret = 0;
9b51f66d 12690
8dc85d54 12691 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
12692 return 0;
12693
ad3a37de 12694 /*
25346b93
PM
12695 * If the parent's context is a clone, pin it so it won't get
12696 * swapped under us.
ad3a37de 12697 */
8dc85d54 12698 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
12699 if (!parent_ctx)
12700 return 0;
25346b93 12701
ad3a37de
PM
12702 /*
12703 * No need to check if parent_ctx != NULL here; since we saw
12704 * it non-NULL earlier, the only reason for it to become NULL
12705 * is if we exit, and since we're currently in the middle of
12706 * a fork we can't be exiting at the same time.
12707 */
ad3a37de 12708
9b51f66d
IM
12709 /*
12710 * Lock the parent list. No need to lock the child - not PID
12711 * hashed yet and not running, so nobody can access it.
12712 */
d859e29f 12713 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
12714
12715 /*
12716 * We dont have to disable NMIs - we are only looking at
12717 * the list, not manipulating it:
12718 */
6e6804d2 12719 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12720 ret = inherit_task_group(event, parent, parent_ctx,
12721 child, ctxn, &inherited_all);
889ff015 12722 if (ret)
e7cc4865 12723 goto out_unlock;
889ff015 12724 }
b93f7978 12725
dddd3379
TG
12726 /*
12727 * We can't hold ctx->lock when iterating the ->flexible_group list due
12728 * to allocations, but we need to prevent rotation because
12729 * rotate_ctx() will change the list from interrupt context.
12730 */
12731 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12732 parent_ctx->rotate_disable = 1;
12733 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12734
6e6804d2 12735 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12736 ret = inherit_task_group(event, parent, parent_ctx,
12737 child, ctxn, &inherited_all);
889ff015 12738 if (ret)
e7cc4865 12739 goto out_unlock;
564c2b21
PM
12740 }
12741
dddd3379
TG
12742 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12743 parent_ctx->rotate_disable = 0;
dddd3379 12744
8dc85d54 12745 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12746
05cbaa28 12747 if (child_ctx && inherited_all) {
564c2b21
PM
12748 /*
12749 * Mark the child context as a clone of the parent
12750 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12751 *
12752 * Note that if the parent is a clone, the holding of
12753 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12754 */
c5ed5145 12755 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12756 if (cloned_ctx) {
12757 child_ctx->parent_ctx = cloned_ctx;
25346b93 12758 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12759 } else {
12760 child_ctx->parent_ctx = parent_ctx;
12761 child_ctx->parent_gen = parent_ctx->generation;
12762 }
12763 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12764 }
12765
c5ed5145 12766 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12767out_unlock:
d859e29f 12768 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12769
25346b93 12770 perf_unpin_context(parent_ctx);
fe4b04fa 12771 put_ctx(parent_ctx);
ad3a37de 12772
6ab423e0 12773 return ret;
9b51f66d
IM
12774}
12775
8dc85d54
PZ
12776/*
12777 * Initialize the perf_event context in task_struct
12778 */
12779int perf_event_init_task(struct task_struct *child)
12780{
12781 int ctxn, ret;
12782
8550d7cb
ON
12783 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12784 mutex_init(&child->perf_event_mutex);
12785 INIT_LIST_HEAD(&child->perf_event_list);
12786
8dc85d54
PZ
12787 for_each_task_context_nr(ctxn) {
12788 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12789 if (ret) {
12790 perf_event_free_task(child);
8dc85d54 12791 return ret;
6c72e350 12792 }
8dc85d54
PZ
12793 }
12794
12795 return 0;
12796}
12797
220b140b
PM
12798static void __init perf_event_init_all_cpus(void)
12799{
b28ab83c 12800 struct swevent_htable *swhash;
220b140b 12801 int cpu;
220b140b 12802
a63fbed7
TG
12803 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12804
220b140b 12805 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12806 swhash = &per_cpu(swevent_htable, cpu);
12807 mutex_init(&swhash->hlist_mutex);
2fde4f94 12808 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12809
12810 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12811 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12812
058fe1c0
DCC
12813#ifdef CONFIG_CGROUP_PERF
12814 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12815#endif
e48c1788 12816 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12817 }
12818}
12819
d18bf422 12820static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12821{
108b02cf 12822 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12823
b28ab83c 12824 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12825 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12826 struct swevent_hlist *hlist;
12827
b28ab83c
PZ
12828 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12829 WARN_ON(!hlist);
12830 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12831 }
b28ab83c 12832 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12833}
12834
2965faa5 12835#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12836static void __perf_event_exit_context(void *__info)
0793a61d 12837{
108b02cf 12838 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12839 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12840 struct perf_event *event;
0793a61d 12841
fae3fde6 12842 raw_spin_lock(&ctx->lock);
0ee098c9 12843 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12844 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12845 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12846 raw_spin_unlock(&ctx->lock);
0793a61d 12847}
108b02cf
PZ
12848
12849static void perf_event_exit_cpu_context(int cpu)
12850{
a63fbed7 12851 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12852 struct perf_event_context *ctx;
12853 struct pmu *pmu;
108b02cf 12854
a63fbed7
TG
12855 mutex_lock(&pmus_lock);
12856 list_for_each_entry(pmu, &pmus, entry) {
12857 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12858 ctx = &cpuctx->ctx;
108b02cf
PZ
12859
12860 mutex_lock(&ctx->mutex);
12861 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12862 cpuctx->online = 0;
108b02cf
PZ
12863 mutex_unlock(&ctx->mutex);
12864 }
a63fbed7
TG
12865 cpumask_clear_cpu(cpu, perf_online_mask);
12866 mutex_unlock(&pmus_lock);
108b02cf 12867}
00e16c3d
TG
12868#else
12869
12870static void perf_event_exit_cpu_context(int cpu) { }
12871
12872#endif
108b02cf 12873
a63fbed7
TG
12874int perf_event_init_cpu(unsigned int cpu)
12875{
12876 struct perf_cpu_context *cpuctx;
12877 struct perf_event_context *ctx;
12878 struct pmu *pmu;
12879
12880 perf_swevent_init_cpu(cpu);
12881
12882 mutex_lock(&pmus_lock);
12883 cpumask_set_cpu(cpu, perf_online_mask);
12884 list_for_each_entry(pmu, &pmus, entry) {
12885 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12886 ctx = &cpuctx->ctx;
12887
12888 mutex_lock(&ctx->mutex);
12889 cpuctx->online = 1;
12890 mutex_unlock(&ctx->mutex);
12891 }
12892 mutex_unlock(&pmus_lock);
12893
12894 return 0;
12895}
12896
00e16c3d 12897int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12898{
e3703f8c 12899 perf_event_exit_cpu_context(cpu);
00e16c3d 12900 return 0;
0793a61d 12901}
0793a61d 12902
c277443c
PZ
12903static int
12904perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12905{
12906 int cpu;
12907
12908 for_each_online_cpu(cpu)
12909 perf_event_exit_cpu(cpu);
12910
12911 return NOTIFY_OK;
12912}
12913
12914/*
12915 * Run the perf reboot notifier at the very last possible moment so that
12916 * the generic watchdog code runs as long as possible.
12917 */
12918static struct notifier_block perf_reboot_notifier = {
12919 .notifier_call = perf_reboot,
12920 .priority = INT_MIN,
12921};
12922
cdd6c482 12923void __init perf_event_init(void)
0793a61d 12924{
3c502e7a
JW
12925 int ret;
12926
2e80a82a
PZ
12927 idr_init(&pmu_idr);
12928
220b140b 12929 perf_event_init_all_cpus();
b0a873eb 12930 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12931 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12932 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12933 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12934 perf_tp_register();
00e16c3d 12935 perf_event_init_cpu(smp_processor_id());
c277443c 12936 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12937
12938 ret = init_hw_breakpoint();
12939 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12940
b01c3a00
JO
12941 /*
12942 * Build time assertion that we keep the data_head at the intended
12943 * location. IOW, validation we got the __reserved[] size right.
12944 */
12945 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12946 != 1024);
0793a61d 12947}
abe43400 12948
fd979c01
CS
12949ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12950 char *page)
12951{
12952 struct perf_pmu_events_attr *pmu_attr =
12953 container_of(attr, struct perf_pmu_events_attr, attr);
12954
12955 if (pmu_attr->event_str)
12956 return sprintf(page, "%s\n", pmu_attr->event_str);
12957
12958 return 0;
12959}
675965b0 12960EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12961
abe43400
PZ
12962static int __init perf_event_sysfs_init(void)
12963{
12964 struct pmu *pmu;
12965 int ret;
12966
12967 mutex_lock(&pmus_lock);
12968
12969 ret = bus_register(&pmu_bus);
12970 if (ret)
12971 goto unlock;
12972
12973 list_for_each_entry(pmu, &pmus, entry) {
12974 if (!pmu->name || pmu->type < 0)
12975 continue;
12976
12977 ret = pmu_dev_alloc(pmu);
12978 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12979 }
12980 pmu_bus_running = 1;
12981 ret = 0;
12982
12983unlock:
12984 mutex_unlock(&pmus_lock);
12985
12986 return ret;
12987}
12988device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12989
12990#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12991static struct cgroup_subsys_state *
12992perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12993{
12994 struct perf_cgroup *jc;
e5d1367f 12995
1b15d055 12996 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12997 if (!jc)
12998 return ERR_PTR(-ENOMEM);
12999
e5d1367f
SE
13000 jc->info = alloc_percpu(struct perf_cgroup_info);
13001 if (!jc->info) {
13002 kfree(jc);
13003 return ERR_PTR(-ENOMEM);
13004 }
13005
e5d1367f
SE
13006 return &jc->css;
13007}
13008
eb95419b 13009static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 13010{
eb95419b
TH
13011 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13012
e5d1367f
SE
13013 free_percpu(jc->info);
13014 kfree(jc);
13015}
13016
96aaab68
NK
13017static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13018{
13019 perf_event_cgroup(css->cgroup);
13020 return 0;
13021}
13022
e5d1367f
SE
13023static int __perf_cgroup_move(void *info)
13024{
13025 struct task_struct *task = info;
ddaaf4e2 13026 rcu_read_lock();
e5d1367f 13027 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 13028 rcu_read_unlock();
e5d1367f
SE
13029 return 0;
13030}
13031
1f7dd3e5 13032static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 13033{
bb9d97b6 13034 struct task_struct *task;
1f7dd3e5 13035 struct cgroup_subsys_state *css;
bb9d97b6 13036
1f7dd3e5 13037 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 13038 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
13039}
13040
073219e9 13041struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
13042 .css_alloc = perf_cgroup_css_alloc,
13043 .css_free = perf_cgroup_css_free,
96aaab68 13044 .css_online = perf_cgroup_css_online,
bb9d97b6 13045 .attach = perf_cgroup_attach,
968ebff1
TH
13046 /*
13047 * Implicitly enable on dfl hierarchy so that perf events can
13048 * always be filtered by cgroup2 path as long as perf_event
13049 * controller is not mounted on a legacy hierarchy.
13050 */
13051 .implicit_on_dfl = true,
8cfd8147 13052 .threaded = true,
e5d1367f
SE
13053};
13054#endif /* CONFIG_CGROUP_PERF */