Merge tag 'perf-core-for-mingo-4.11-20170209' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
487f05e1
AS
358 /* see ctx_resched() for details */
359 EVENT_CPU = 0x8,
0b3fcf17
SE
360 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
361};
362
e5d1367f
SE
363/*
364 * perf_sched_events : >0 events exist
365 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 */
9107c89e
PZ
367
368static void perf_sched_delayed(struct work_struct *work);
369DEFINE_STATIC_KEY_FALSE(perf_sched_events);
370static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
371static DEFINE_MUTEX(perf_sched_mutex);
372static atomic_t perf_sched_count;
373
e5d1367f 374static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 375static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 376static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 377
cdd6c482
IM
378static atomic_t nr_mmap_events __read_mostly;
379static atomic_t nr_comm_events __read_mostly;
380static atomic_t nr_task_events __read_mostly;
948b26b6 381static atomic_t nr_freq_events __read_mostly;
45ac1403 382static atomic_t nr_switch_events __read_mostly;
9ee318a7 383
108b02cf
PZ
384static LIST_HEAD(pmus);
385static DEFINE_MUTEX(pmus_lock);
386static struct srcu_struct pmus_srcu;
387
0764771d 388/*
cdd6c482 389 * perf event paranoia level:
0fbdea19
IM
390 * -1 - not paranoid at all
391 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 392 * 1 - disallow cpu events for unpriv
0fbdea19 393 * 2 - disallow kernel profiling for unpriv
0764771d 394 */
0161028b 395int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 396
20443384
FW
397/* Minimum for 512 kiB + 1 user control page */
398int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
399
400/*
cdd6c482 401 * max perf event sample rate
df58ab24 402 */
14c63f17
DH
403#define DEFAULT_MAX_SAMPLE_RATE 100000
404#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
405#define DEFAULT_CPU_TIME_MAX_PERCENT 25
406
407int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
408
409static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
410static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
411
d9494cb4
PZ
412static int perf_sample_allowed_ns __read_mostly =
413 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 414
18ab2cd3 415static void update_perf_cpu_limits(void)
14c63f17
DH
416{
417 u64 tmp = perf_sample_period_ns;
418
419 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
420 tmp = div_u64(tmp, 100);
421 if (!tmp)
422 tmp = 1;
423
424 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 425}
163ec435 426
9e630205
SE
427static int perf_rotate_context(struct perf_cpu_context *cpuctx);
428
163ec435
PZ
429int perf_proc_update_handler(struct ctl_table *table, int write,
430 void __user *buffer, size_t *lenp,
431 loff_t *ppos)
432{
723478c8 433 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
434
435 if (ret || !write)
436 return ret;
437
ab7fdefb
KL
438 /*
439 * If throttling is disabled don't allow the write:
440 */
441 if (sysctl_perf_cpu_time_max_percent == 100 ||
442 sysctl_perf_cpu_time_max_percent == 0)
443 return -EINVAL;
444
163ec435 445 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
446 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
447 update_perf_cpu_limits();
448
449 return 0;
450}
451
452int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
453
454int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
455 void __user *buffer, size_t *lenp,
456 loff_t *ppos)
457{
458 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
459
460 if (ret || !write)
461 return ret;
462
b303e7c1
PZ
463 if (sysctl_perf_cpu_time_max_percent == 100 ||
464 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
465 printk(KERN_WARNING
466 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
467 WRITE_ONCE(perf_sample_allowed_ns, 0);
468 } else {
469 update_perf_cpu_limits();
470 }
163ec435
PZ
471
472 return 0;
473}
1ccd1549 474
14c63f17
DH
475/*
476 * perf samples are done in some very critical code paths (NMIs).
477 * If they take too much CPU time, the system can lock up and not
478 * get any real work done. This will drop the sample rate when
479 * we detect that events are taking too long.
480 */
481#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 482static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 483
91a612ee
PZ
484static u64 __report_avg;
485static u64 __report_allowed;
486
6a02ad66 487static void perf_duration_warn(struct irq_work *w)
14c63f17 488{
0d87d7ec 489 printk_ratelimited(KERN_INFO
91a612ee
PZ
490 "perf: interrupt took too long (%lld > %lld), lowering "
491 "kernel.perf_event_max_sample_rate to %d\n",
492 __report_avg, __report_allowed,
493 sysctl_perf_event_sample_rate);
6a02ad66
PZ
494}
495
496static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
497
498void perf_sample_event_took(u64 sample_len_ns)
499{
91a612ee
PZ
500 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
501 u64 running_len;
502 u64 avg_len;
503 u32 max;
14c63f17 504
91a612ee 505 if (max_len == 0)
14c63f17
DH
506 return;
507
91a612ee
PZ
508 /* Decay the counter by 1 average sample. */
509 running_len = __this_cpu_read(running_sample_length);
510 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
511 running_len += sample_len_ns;
512 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
513
514 /*
91a612ee
PZ
515 * Note: this will be biased artifically low until we have
516 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
517 * from having to maintain a count.
518 */
91a612ee
PZ
519 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
520 if (avg_len <= max_len)
14c63f17
DH
521 return;
522
91a612ee
PZ
523 __report_avg = avg_len;
524 __report_allowed = max_len;
14c63f17 525
91a612ee
PZ
526 /*
527 * Compute a throttle threshold 25% below the current duration.
528 */
529 avg_len += avg_len / 4;
530 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
531 if (avg_len < max)
532 max /= (u32)avg_len;
533 else
534 max = 1;
14c63f17 535
91a612ee
PZ
536 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
537 WRITE_ONCE(max_samples_per_tick, max);
538
539 sysctl_perf_event_sample_rate = max * HZ;
540 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 541
cd578abb 542 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 543 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 544 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 545 __report_avg, __report_allowed,
cd578abb
PZ
546 sysctl_perf_event_sample_rate);
547 }
14c63f17
DH
548}
549
cdd6c482 550static atomic64_t perf_event_id;
a96bbc16 551
0b3fcf17
SE
552static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
553 enum event_type_t event_type);
554
555static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
556 enum event_type_t event_type,
557 struct task_struct *task);
558
559static void update_context_time(struct perf_event_context *ctx);
560static u64 perf_event_time(struct perf_event *event);
0b3fcf17 561
cdd6c482 562void __weak perf_event_print_debug(void) { }
0793a61d 563
84c79910 564extern __weak const char *perf_pmu_name(void)
0793a61d 565{
84c79910 566 return "pmu";
0793a61d
TG
567}
568
0b3fcf17
SE
569static inline u64 perf_clock(void)
570{
571 return local_clock();
572}
573
34f43927
PZ
574static inline u64 perf_event_clock(struct perf_event *event)
575{
576 return event->clock();
577}
578
e5d1367f
SE
579#ifdef CONFIG_CGROUP_PERF
580
e5d1367f
SE
581static inline bool
582perf_cgroup_match(struct perf_event *event)
583{
584 struct perf_event_context *ctx = event->ctx;
585 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
586
ef824fa1
TH
587 /* @event doesn't care about cgroup */
588 if (!event->cgrp)
589 return true;
590
591 /* wants specific cgroup scope but @cpuctx isn't associated with any */
592 if (!cpuctx->cgrp)
593 return false;
594
595 /*
596 * Cgroup scoping is recursive. An event enabled for a cgroup is
597 * also enabled for all its descendant cgroups. If @cpuctx's
598 * cgroup is a descendant of @event's (the test covers identity
599 * case), it's a match.
600 */
601 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
602 event->cgrp->css.cgroup);
e5d1367f
SE
603}
604
e5d1367f
SE
605static inline void perf_detach_cgroup(struct perf_event *event)
606{
4e2ba650 607 css_put(&event->cgrp->css);
e5d1367f
SE
608 event->cgrp = NULL;
609}
610
611static inline int is_cgroup_event(struct perf_event *event)
612{
613 return event->cgrp != NULL;
614}
615
616static inline u64 perf_cgroup_event_time(struct perf_event *event)
617{
618 struct perf_cgroup_info *t;
619
620 t = per_cpu_ptr(event->cgrp->info, event->cpu);
621 return t->time;
622}
623
624static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
625{
626 struct perf_cgroup_info *info;
627 u64 now;
628
629 now = perf_clock();
630
631 info = this_cpu_ptr(cgrp->info);
632
633 info->time += now - info->timestamp;
634 info->timestamp = now;
635}
636
637static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
638{
639 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
640 if (cgrp_out)
641 __update_cgrp_time(cgrp_out);
642}
643
644static inline void update_cgrp_time_from_event(struct perf_event *event)
645{
3f7cce3c
SE
646 struct perf_cgroup *cgrp;
647
e5d1367f 648 /*
3f7cce3c
SE
649 * ensure we access cgroup data only when needed and
650 * when we know the cgroup is pinned (css_get)
e5d1367f 651 */
3f7cce3c 652 if (!is_cgroup_event(event))
e5d1367f
SE
653 return;
654
614e4c4e 655 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
656 /*
657 * Do not update time when cgroup is not active
658 */
659 if (cgrp == event->cgrp)
660 __update_cgrp_time(event->cgrp);
e5d1367f
SE
661}
662
663static inline void
3f7cce3c
SE
664perf_cgroup_set_timestamp(struct task_struct *task,
665 struct perf_event_context *ctx)
e5d1367f
SE
666{
667 struct perf_cgroup *cgrp;
668 struct perf_cgroup_info *info;
669
3f7cce3c
SE
670 /*
671 * ctx->lock held by caller
672 * ensure we do not access cgroup data
673 * unless we have the cgroup pinned (css_get)
674 */
675 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
676 return;
677
614e4c4e 678 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 679 info = this_cpu_ptr(cgrp->info);
3f7cce3c 680 info->timestamp = ctx->timestamp;
e5d1367f
SE
681}
682
058fe1c0
DCC
683static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
684
e5d1367f
SE
685#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
686#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
687
688/*
689 * reschedule events based on the cgroup constraint of task.
690 *
691 * mode SWOUT : schedule out everything
692 * mode SWIN : schedule in based on cgroup for next
693 */
18ab2cd3 694static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
695{
696 struct perf_cpu_context *cpuctx;
058fe1c0 697 struct list_head *list;
e5d1367f
SE
698 unsigned long flags;
699
700 /*
058fe1c0
DCC
701 * Disable interrupts and preemption to avoid this CPU's
702 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
703 */
704 local_irq_save(flags);
705
058fe1c0
DCC
706 list = this_cpu_ptr(&cgrp_cpuctx_list);
707 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
708 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 709
058fe1c0
DCC
710 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
711 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 712
058fe1c0
DCC
713 if (mode & PERF_CGROUP_SWOUT) {
714 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
715 /*
716 * must not be done before ctxswout due
717 * to event_filter_match() in event_sched_out()
718 */
719 cpuctx->cgrp = NULL;
720 }
e5d1367f 721
058fe1c0
DCC
722 if (mode & PERF_CGROUP_SWIN) {
723 WARN_ON_ONCE(cpuctx->cgrp);
724 /*
725 * set cgrp before ctxsw in to allow
726 * event_filter_match() to not have to pass
727 * task around
728 * we pass the cpuctx->ctx to perf_cgroup_from_task()
729 * because cgorup events are only per-cpu
730 */
731 cpuctx->cgrp = perf_cgroup_from_task(task,
732 &cpuctx->ctx);
733 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 734 }
058fe1c0
DCC
735 perf_pmu_enable(cpuctx->ctx.pmu);
736 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
737 }
738
e5d1367f
SE
739 local_irq_restore(flags);
740}
741
a8d757ef
SE
742static inline void perf_cgroup_sched_out(struct task_struct *task,
743 struct task_struct *next)
e5d1367f 744{
a8d757ef
SE
745 struct perf_cgroup *cgrp1;
746 struct perf_cgroup *cgrp2 = NULL;
747
ddaaf4e2 748 rcu_read_lock();
a8d757ef
SE
749 /*
750 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
751 * we do not need to pass the ctx here because we know
752 * we are holding the rcu lock
a8d757ef 753 */
614e4c4e 754 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 755 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
756
757 /*
758 * only schedule out current cgroup events if we know
759 * that we are switching to a different cgroup. Otherwise,
760 * do no touch the cgroup events.
761 */
762 if (cgrp1 != cgrp2)
763 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
764
765 rcu_read_unlock();
e5d1367f
SE
766}
767
a8d757ef
SE
768static inline void perf_cgroup_sched_in(struct task_struct *prev,
769 struct task_struct *task)
e5d1367f 770{
a8d757ef
SE
771 struct perf_cgroup *cgrp1;
772 struct perf_cgroup *cgrp2 = NULL;
773
ddaaf4e2 774 rcu_read_lock();
a8d757ef
SE
775 /*
776 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
777 * we do not need to pass the ctx here because we know
778 * we are holding the rcu lock
a8d757ef 779 */
614e4c4e 780 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 781 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
782
783 /*
784 * only need to schedule in cgroup events if we are changing
785 * cgroup during ctxsw. Cgroup events were not scheduled
786 * out of ctxsw out if that was not the case.
787 */
788 if (cgrp1 != cgrp2)
789 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
790
791 rcu_read_unlock();
e5d1367f
SE
792}
793
794static inline int perf_cgroup_connect(int fd, struct perf_event *event,
795 struct perf_event_attr *attr,
796 struct perf_event *group_leader)
797{
798 struct perf_cgroup *cgrp;
799 struct cgroup_subsys_state *css;
2903ff01
AV
800 struct fd f = fdget(fd);
801 int ret = 0;
e5d1367f 802
2903ff01 803 if (!f.file)
e5d1367f
SE
804 return -EBADF;
805
b583043e 806 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 807 &perf_event_cgrp_subsys);
3db272c0
LZ
808 if (IS_ERR(css)) {
809 ret = PTR_ERR(css);
810 goto out;
811 }
e5d1367f
SE
812
813 cgrp = container_of(css, struct perf_cgroup, css);
814 event->cgrp = cgrp;
815
816 /*
817 * all events in a group must monitor
818 * the same cgroup because a task belongs
819 * to only one perf cgroup at a time
820 */
821 if (group_leader && group_leader->cgrp != cgrp) {
822 perf_detach_cgroup(event);
823 ret = -EINVAL;
e5d1367f 824 }
3db272c0 825out:
2903ff01 826 fdput(f);
e5d1367f
SE
827 return ret;
828}
829
830static inline void
831perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
832{
833 struct perf_cgroup_info *t;
834 t = per_cpu_ptr(event->cgrp->info, event->cpu);
835 event->shadow_ctx_time = now - t->timestamp;
836}
837
838static inline void
839perf_cgroup_defer_enabled(struct perf_event *event)
840{
841 /*
842 * when the current task's perf cgroup does not match
843 * the event's, we need to remember to call the
844 * perf_mark_enable() function the first time a task with
845 * a matching perf cgroup is scheduled in.
846 */
847 if (is_cgroup_event(event) && !perf_cgroup_match(event))
848 event->cgrp_defer_enabled = 1;
849}
850
851static inline void
852perf_cgroup_mark_enabled(struct perf_event *event,
853 struct perf_event_context *ctx)
854{
855 struct perf_event *sub;
856 u64 tstamp = perf_event_time(event);
857
858 if (!event->cgrp_defer_enabled)
859 return;
860
861 event->cgrp_defer_enabled = 0;
862
863 event->tstamp_enabled = tstamp - event->total_time_enabled;
864 list_for_each_entry(sub, &event->sibling_list, group_entry) {
865 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
866 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
867 sub->cgrp_defer_enabled = 0;
868 }
869 }
870}
db4a8356
DCC
871
872/*
873 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
874 * cleared when last cgroup event is removed.
875 */
876static inline void
877list_update_cgroup_event(struct perf_event *event,
878 struct perf_event_context *ctx, bool add)
879{
880 struct perf_cpu_context *cpuctx;
058fe1c0 881 struct list_head *cpuctx_entry;
db4a8356
DCC
882
883 if (!is_cgroup_event(event))
884 return;
885
886 if (add && ctx->nr_cgroups++)
887 return;
888 else if (!add && --ctx->nr_cgroups)
889 return;
890 /*
891 * Because cgroup events are always per-cpu events,
892 * this will always be called from the right CPU.
893 */
894 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
895 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
896 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
897 if (add) {
898 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
899 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
900 cpuctx->cgrp = event->cgrp;
901 } else {
902 list_del(cpuctx_entry);
8fc31ce8 903 cpuctx->cgrp = NULL;
058fe1c0 904 }
db4a8356
DCC
905}
906
e5d1367f
SE
907#else /* !CONFIG_CGROUP_PERF */
908
909static inline bool
910perf_cgroup_match(struct perf_event *event)
911{
912 return true;
913}
914
915static inline void perf_detach_cgroup(struct perf_event *event)
916{}
917
918static inline int is_cgroup_event(struct perf_event *event)
919{
920 return 0;
921}
922
923static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
924{
925 return 0;
926}
927
928static inline void update_cgrp_time_from_event(struct perf_event *event)
929{
930}
931
932static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933{
934}
935
a8d757ef
SE
936static inline void perf_cgroup_sched_out(struct task_struct *task,
937 struct task_struct *next)
e5d1367f
SE
938{
939}
940
a8d757ef
SE
941static inline void perf_cgroup_sched_in(struct task_struct *prev,
942 struct task_struct *task)
e5d1367f
SE
943{
944}
945
946static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947 struct perf_event_attr *attr,
948 struct perf_event *group_leader)
949{
950 return -EINVAL;
951}
952
953static inline void
3f7cce3c
SE
954perf_cgroup_set_timestamp(struct task_struct *task,
955 struct perf_event_context *ctx)
e5d1367f
SE
956{
957}
958
959void
960perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961{
962}
963
964static inline void
965perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966{
967}
968
969static inline u64 perf_cgroup_event_time(struct perf_event *event)
970{
971 return 0;
972}
973
974static inline void
975perf_cgroup_defer_enabled(struct perf_event *event)
976{
977}
978
979static inline void
980perf_cgroup_mark_enabled(struct perf_event *event,
981 struct perf_event_context *ctx)
982{
983}
db4a8356
DCC
984
985static inline void
986list_update_cgroup_event(struct perf_event *event,
987 struct perf_event_context *ctx, bool add)
988{
989}
990
e5d1367f
SE
991#endif
992
9e630205
SE
993/*
994 * set default to be dependent on timer tick just
995 * like original code
996 */
997#define PERF_CPU_HRTIMER (1000 / HZ)
998/*
999 * function must be called with interrupts disbled
1000 */
272325c4 1001static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1002{
1003 struct perf_cpu_context *cpuctx;
9e630205
SE
1004 int rotations = 0;
1005
1006 WARN_ON(!irqs_disabled());
1007
1008 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1009 rotations = perf_rotate_context(cpuctx);
1010
4cfafd30
PZ
1011 raw_spin_lock(&cpuctx->hrtimer_lock);
1012 if (rotations)
9e630205 1013 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1014 else
1015 cpuctx->hrtimer_active = 0;
1016 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1017
4cfafd30 1018 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1019}
1020
272325c4 1021static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1022{
272325c4 1023 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1024 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1025 u64 interval;
9e630205
SE
1026
1027 /* no multiplexing needed for SW PMU */
1028 if (pmu->task_ctx_nr == perf_sw_context)
1029 return;
1030
62b85639
SE
1031 /*
1032 * check default is sane, if not set then force to
1033 * default interval (1/tick)
1034 */
272325c4
PZ
1035 interval = pmu->hrtimer_interval_ms;
1036 if (interval < 1)
1037 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1038
272325c4 1039 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1040
4cfafd30
PZ
1041 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1043 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1044}
1045
272325c4 1046static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1047{
272325c4 1048 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1049 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1050 unsigned long flags;
9e630205
SE
1051
1052 /* not for SW PMU */
1053 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1054 return 0;
9e630205 1055
4cfafd30
PZ
1056 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057 if (!cpuctx->hrtimer_active) {
1058 cpuctx->hrtimer_active = 1;
1059 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061 }
1062 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1063
272325c4 1064 return 0;
9e630205
SE
1065}
1066
33696fc0 1067void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1068{
33696fc0
PZ
1069 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070 if (!(*count)++)
1071 pmu->pmu_disable(pmu);
9e35ad38 1072}
9e35ad38 1073
33696fc0 1074void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1075{
33696fc0
PZ
1076 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077 if (!--(*count))
1078 pmu->pmu_enable(pmu);
9e35ad38 1079}
9e35ad38 1080
2fde4f94 1081static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1082
1083/*
2fde4f94
MR
1084 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085 * perf_event_task_tick() are fully serialized because they're strictly cpu
1086 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1088 */
2fde4f94 1089static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1090{
2fde4f94 1091 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1092
e9d2b064 1093 WARN_ON(!irqs_disabled());
b5ab4cd5 1094
2fde4f94
MR
1095 WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097 list_add(&ctx->active_ctx_list, head);
1098}
1099
1100static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101{
1102 WARN_ON(!irqs_disabled());
1103
1104 WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106 list_del_init(&ctx->active_ctx_list);
9e35ad38 1107}
9e35ad38 1108
cdd6c482 1109static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1110{
e5289d4a 1111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1112}
1113
4af57ef2
YZ
1114static void free_ctx(struct rcu_head *head)
1115{
1116 struct perf_event_context *ctx;
1117
1118 ctx = container_of(head, struct perf_event_context, rcu_head);
1119 kfree(ctx->task_ctx_data);
1120 kfree(ctx);
1121}
1122
cdd6c482 1123static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1124{
564c2b21
PM
1125 if (atomic_dec_and_test(&ctx->refcount)) {
1126 if (ctx->parent_ctx)
1127 put_ctx(ctx->parent_ctx);
63b6da39 1128 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1129 put_task_struct(ctx->task);
4af57ef2 1130 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1131 }
a63eaf34
PM
1132}
1133
f63a8daa
PZ
1134/*
1135 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136 * perf_pmu_migrate_context() we need some magic.
1137 *
1138 * Those places that change perf_event::ctx will hold both
1139 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140 *
8b10c5e2
PZ
1141 * Lock ordering is by mutex address. There are two other sites where
1142 * perf_event_context::mutex nests and those are:
1143 *
1144 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1145 * perf_event_exit_event()
1146 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1147 *
1148 * - perf_event_init_context() [ parent, 0 ]
1149 * inherit_task_group()
1150 * inherit_group()
1151 * inherit_event()
1152 * perf_event_alloc()
1153 * perf_init_event()
1154 * perf_try_init_event() [ child , 1 ]
1155 *
1156 * While it appears there is an obvious deadlock here -- the parent and child
1157 * nesting levels are inverted between the two. This is in fact safe because
1158 * life-time rules separate them. That is an exiting task cannot fork, and a
1159 * spawning task cannot (yet) exit.
1160 *
1161 * But remember that that these are parent<->child context relations, and
1162 * migration does not affect children, therefore these two orderings should not
1163 * interact.
f63a8daa
PZ
1164 *
1165 * The change in perf_event::ctx does not affect children (as claimed above)
1166 * because the sys_perf_event_open() case will install a new event and break
1167 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168 * concerned with cpuctx and that doesn't have children.
1169 *
1170 * The places that change perf_event::ctx will issue:
1171 *
1172 * perf_remove_from_context();
1173 * synchronize_rcu();
1174 * perf_install_in_context();
1175 *
1176 * to affect the change. The remove_from_context() + synchronize_rcu() should
1177 * quiesce the event, after which we can install it in the new location. This
1178 * means that only external vectors (perf_fops, prctl) can perturb the event
1179 * while in transit. Therefore all such accessors should also acquire
1180 * perf_event_context::mutex to serialize against this.
1181 *
1182 * However; because event->ctx can change while we're waiting to acquire
1183 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184 * function.
1185 *
1186 * Lock order:
79c9ce57 1187 * cred_guard_mutex
f63a8daa
PZ
1188 * task_struct::perf_event_mutex
1189 * perf_event_context::mutex
f63a8daa 1190 * perf_event::child_mutex;
07c4a776 1191 * perf_event_context::lock
f63a8daa
PZ
1192 * perf_event::mmap_mutex
1193 * mmap_sem
1194 */
a83fe28e
PZ
1195static struct perf_event_context *
1196perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1197{
1198 struct perf_event_context *ctx;
1199
1200again:
1201 rcu_read_lock();
1202 ctx = ACCESS_ONCE(event->ctx);
1203 if (!atomic_inc_not_zero(&ctx->refcount)) {
1204 rcu_read_unlock();
1205 goto again;
1206 }
1207 rcu_read_unlock();
1208
a83fe28e 1209 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1210 if (event->ctx != ctx) {
1211 mutex_unlock(&ctx->mutex);
1212 put_ctx(ctx);
1213 goto again;
1214 }
1215
1216 return ctx;
1217}
1218
a83fe28e
PZ
1219static inline struct perf_event_context *
1220perf_event_ctx_lock(struct perf_event *event)
1221{
1222 return perf_event_ctx_lock_nested(event, 0);
1223}
1224
f63a8daa
PZ
1225static void perf_event_ctx_unlock(struct perf_event *event,
1226 struct perf_event_context *ctx)
1227{
1228 mutex_unlock(&ctx->mutex);
1229 put_ctx(ctx);
1230}
1231
211de6eb
PZ
1232/*
1233 * This must be done under the ctx->lock, such as to serialize against
1234 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235 * calling scheduler related locks and ctx->lock nests inside those.
1236 */
1237static __must_check struct perf_event_context *
1238unclone_ctx(struct perf_event_context *ctx)
71a851b4 1239{
211de6eb
PZ
1240 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242 lockdep_assert_held(&ctx->lock);
1243
1244 if (parent_ctx)
71a851b4 1245 ctx->parent_ctx = NULL;
5a3126d4 1246 ctx->generation++;
211de6eb
PZ
1247
1248 return parent_ctx;
71a851b4
PZ
1249}
1250
6844c09d
ACM
1251static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252{
1253 /*
1254 * only top level events have the pid namespace they were created in
1255 */
1256 if (event->parent)
1257 event = event->parent;
1258
1259 return task_tgid_nr_ns(p, event->ns);
1260}
1261
1262static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263{
1264 /*
1265 * only top level events have the pid namespace they were created in
1266 */
1267 if (event->parent)
1268 event = event->parent;
1269
1270 return task_pid_nr_ns(p, event->ns);
1271}
1272
7f453c24 1273/*
cdd6c482 1274 * If we inherit events we want to return the parent event id
7f453c24
PZ
1275 * to userspace.
1276 */
cdd6c482 1277static u64 primary_event_id(struct perf_event *event)
7f453c24 1278{
cdd6c482 1279 u64 id = event->id;
7f453c24 1280
cdd6c482
IM
1281 if (event->parent)
1282 id = event->parent->id;
7f453c24
PZ
1283
1284 return id;
1285}
1286
25346b93 1287/*
cdd6c482 1288 * Get the perf_event_context for a task and lock it.
63b6da39 1289 *
25346b93
PM
1290 * This has to cope with with the fact that until it is locked,
1291 * the context could get moved to another task.
1292 */
cdd6c482 1293static struct perf_event_context *
8dc85d54 1294perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1295{
cdd6c482 1296 struct perf_event_context *ctx;
25346b93 1297
9ed6060d 1298retry:
058ebd0e
PZ
1299 /*
1300 * One of the few rules of preemptible RCU is that one cannot do
1301 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1302 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1303 * rcu_read_unlock_special().
1304 *
1305 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1306 * side critical section has interrupts disabled.
058ebd0e 1307 */
2fd59077 1308 local_irq_save(*flags);
058ebd0e 1309 rcu_read_lock();
8dc85d54 1310 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1311 if (ctx) {
1312 /*
1313 * If this context is a clone of another, it might
1314 * get swapped for another underneath us by
cdd6c482 1315 * perf_event_task_sched_out, though the
25346b93
PM
1316 * rcu_read_lock() protects us from any context
1317 * getting freed. Lock the context and check if it
1318 * got swapped before we could get the lock, and retry
1319 * if so. If we locked the right context, then it
1320 * can't get swapped on us any more.
1321 */
2fd59077 1322 raw_spin_lock(&ctx->lock);
8dc85d54 1323 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1324 raw_spin_unlock(&ctx->lock);
058ebd0e 1325 rcu_read_unlock();
2fd59077 1326 local_irq_restore(*flags);
25346b93
PM
1327 goto retry;
1328 }
b49a9e7e 1329
63b6da39
PZ
1330 if (ctx->task == TASK_TOMBSTONE ||
1331 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1332 raw_spin_unlock(&ctx->lock);
b49a9e7e 1333 ctx = NULL;
828b6f0e
PZ
1334 } else {
1335 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1336 }
25346b93
PM
1337 }
1338 rcu_read_unlock();
2fd59077
PM
1339 if (!ctx)
1340 local_irq_restore(*flags);
25346b93
PM
1341 return ctx;
1342}
1343
1344/*
1345 * Get the context for a task and increment its pin_count so it
1346 * can't get swapped to another task. This also increments its
1347 * reference count so that the context can't get freed.
1348 */
8dc85d54
PZ
1349static struct perf_event_context *
1350perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1351{
cdd6c482 1352 struct perf_event_context *ctx;
25346b93
PM
1353 unsigned long flags;
1354
8dc85d54 1355 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1356 if (ctx) {
1357 ++ctx->pin_count;
e625cce1 1358 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1359 }
1360 return ctx;
1361}
1362
cdd6c482 1363static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1364{
1365 unsigned long flags;
1366
e625cce1 1367 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1368 --ctx->pin_count;
e625cce1 1369 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1370}
1371
f67218c3
PZ
1372/*
1373 * Update the record of the current time in a context.
1374 */
1375static void update_context_time(struct perf_event_context *ctx)
1376{
1377 u64 now = perf_clock();
1378
1379 ctx->time += now - ctx->timestamp;
1380 ctx->timestamp = now;
1381}
1382
4158755d
SE
1383static u64 perf_event_time(struct perf_event *event)
1384{
1385 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1386
1387 if (is_cgroup_event(event))
1388 return perf_cgroup_event_time(event);
1389
4158755d
SE
1390 return ctx ? ctx->time : 0;
1391}
1392
f67218c3
PZ
1393/*
1394 * Update the total_time_enabled and total_time_running fields for a event.
1395 */
1396static void update_event_times(struct perf_event *event)
1397{
1398 struct perf_event_context *ctx = event->ctx;
1399 u64 run_end;
1400
3cbaa590
PZ
1401 lockdep_assert_held(&ctx->lock);
1402
f67218c3
PZ
1403 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405 return;
3cbaa590 1406
e5d1367f
SE
1407 /*
1408 * in cgroup mode, time_enabled represents
1409 * the time the event was enabled AND active
1410 * tasks were in the monitored cgroup. This is
1411 * independent of the activity of the context as
1412 * there may be a mix of cgroup and non-cgroup events.
1413 *
1414 * That is why we treat cgroup events differently
1415 * here.
1416 */
1417 if (is_cgroup_event(event))
46cd6a7f 1418 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1419 else if (ctx->is_active)
1420 run_end = ctx->time;
acd1d7c1
PZ
1421 else
1422 run_end = event->tstamp_stopped;
1423
1424 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1425
1426 if (event->state == PERF_EVENT_STATE_INACTIVE)
1427 run_end = event->tstamp_stopped;
1428 else
4158755d 1429 run_end = perf_event_time(event);
f67218c3
PZ
1430
1431 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1432
f67218c3
PZ
1433}
1434
96c21a46
PZ
1435/*
1436 * Update total_time_enabled and total_time_running for all events in a group.
1437 */
1438static void update_group_times(struct perf_event *leader)
1439{
1440 struct perf_event *event;
1441
1442 update_event_times(leader);
1443 list_for_each_entry(event, &leader->sibling_list, group_entry)
1444 update_event_times(event);
1445}
1446
487f05e1
AS
1447static enum event_type_t get_event_type(struct perf_event *event)
1448{
1449 struct perf_event_context *ctx = event->ctx;
1450 enum event_type_t event_type;
1451
1452 lockdep_assert_held(&ctx->lock);
1453
1454 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455 if (!ctx->task)
1456 event_type |= EVENT_CPU;
1457
1458 return event_type;
1459}
1460
889ff015
FW
1461static struct list_head *
1462ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463{
1464 if (event->attr.pinned)
1465 return &ctx->pinned_groups;
1466 else
1467 return &ctx->flexible_groups;
1468}
1469
fccc714b 1470/*
cdd6c482 1471 * Add a event from the lists for its context.
fccc714b
PZ
1472 * Must be called with ctx->mutex and ctx->lock held.
1473 */
04289bb9 1474static void
cdd6c482 1475list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1476{
c994d613
PZ
1477 lockdep_assert_held(&ctx->lock);
1478
8a49542c
PZ
1479 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1481
1482 /*
8a49542c
PZ
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1486 */
8a49542c 1487 if (event->group_leader == event) {
889ff015
FW
1488 struct list_head *list;
1489
4ff6a8de 1490 event->group_caps = event->event_caps;
d6f962b5 1491
889ff015
FW
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
5c148194 1494 }
592903cd 1495
db4a8356 1496 list_update_cgroup_event(event, ctx, true);
e5d1367f 1497
cdd6c482
IM
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
bfbd3381 1501 ctx->nr_stat++;
5a3126d4
PZ
1502
1503 ctx->generation++;
04289bb9
IM
1504}
1505
0231bb53
JO
1506/*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509static inline void perf_event__state_init(struct perf_event *event)
1510{
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513}
1514
a723968c 1515static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1516{
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1531 nr += nr_siblings;
c320c7b7
ACM
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537}
1538
a723968c 1539static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1540{
1541 struct perf_sample_data *data;
c320c7b7
ACM
1542 u16 size = 0;
1543
c320c7b7
ACM
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
6844c09d
ACM
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
c3feedf2
AK
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
6844c09d
ACM
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
d6be9ad6
SE
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
fdfbbd07
AK
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
6844c09d
ACM
1565 event->header_size = size;
1566}
1567
a723968c
PZ
1568/*
1569 * Called at perf_event creation and when events are attached/detached from a
1570 * group.
1571 */
1572static void perf_event__header_size(struct perf_event *event)
1573{
1574 __perf_event_read_size(event,
1575 event->group_leader->nr_siblings);
1576 __perf_event_header_size(event, event->attr.sample_type);
1577}
1578
6844c09d
ACM
1579static void perf_event__id_header_size(struct perf_event *event)
1580{
1581 struct perf_sample_data *data;
1582 u64 sample_type = event->attr.sample_type;
1583 u16 size = 0;
1584
c320c7b7
ACM
1585 if (sample_type & PERF_SAMPLE_TID)
1586 size += sizeof(data->tid_entry);
1587
1588 if (sample_type & PERF_SAMPLE_TIME)
1589 size += sizeof(data->time);
1590
ff3d527c
AH
1591 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592 size += sizeof(data->id);
1593
c320c7b7
ACM
1594 if (sample_type & PERF_SAMPLE_ID)
1595 size += sizeof(data->id);
1596
1597 if (sample_type & PERF_SAMPLE_STREAM_ID)
1598 size += sizeof(data->stream_id);
1599
1600 if (sample_type & PERF_SAMPLE_CPU)
1601 size += sizeof(data->cpu_entry);
1602
6844c09d 1603 event->id_header_size = size;
c320c7b7
ACM
1604}
1605
a723968c
PZ
1606static bool perf_event_validate_size(struct perf_event *event)
1607{
1608 /*
1609 * The values computed here will be over-written when we actually
1610 * attach the event.
1611 */
1612 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614 perf_event__id_header_size(event);
1615
1616 /*
1617 * Sum the lot; should not exceed the 64k limit we have on records.
1618 * Conservative limit to allow for callchains and other variable fields.
1619 */
1620 if (event->read_size + event->header_size +
1621 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622 return false;
1623
1624 return true;
1625}
1626
8a49542c
PZ
1627static void perf_group_attach(struct perf_event *event)
1628{
c320c7b7 1629 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1630
a76a82a3
PZ
1631 lockdep_assert_held(&event->ctx->lock);
1632
74c3337c
PZ
1633 /*
1634 * We can have double attach due to group movement in perf_event_open.
1635 */
1636 if (event->attach_state & PERF_ATTACH_GROUP)
1637 return;
1638
8a49542c
PZ
1639 event->attach_state |= PERF_ATTACH_GROUP;
1640
1641 if (group_leader == event)
1642 return;
1643
652884fe
PZ
1644 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
4ff6a8de 1646 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1647
1648 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649 group_leader->nr_siblings++;
c320c7b7
ACM
1650
1651 perf_event__header_size(group_leader);
1652
1653 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654 perf_event__header_size(pos);
8a49542c
PZ
1655}
1656
a63eaf34 1657/*
cdd6c482 1658 * Remove a event from the lists for its context.
fccc714b 1659 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1660 */
04289bb9 1661static void
cdd6c482 1662list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1663{
652884fe
PZ
1664 WARN_ON_ONCE(event->ctx != ctx);
1665 lockdep_assert_held(&ctx->lock);
1666
8a49542c
PZ
1667 /*
1668 * We can have double detach due to exit/hot-unplug + close.
1669 */
1670 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1671 return;
8a49542c
PZ
1672
1673 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
db4a8356 1675 list_update_cgroup_event(event, ctx, false);
e5d1367f 1676
cdd6c482
IM
1677 ctx->nr_events--;
1678 if (event->attr.inherit_stat)
bfbd3381 1679 ctx->nr_stat--;
8bc20959 1680
cdd6c482 1681 list_del_rcu(&event->event_entry);
04289bb9 1682
8a49542c
PZ
1683 if (event->group_leader == event)
1684 list_del_init(&event->group_entry);
5c148194 1685
96c21a46 1686 update_group_times(event);
b2e74a26
SE
1687
1688 /*
1689 * If event was in error state, then keep it
1690 * that way, otherwise bogus counts will be
1691 * returned on read(). The only way to get out
1692 * of error state is by explicit re-enabling
1693 * of the event
1694 */
1695 if (event->state > PERF_EVENT_STATE_OFF)
1696 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1697
1698 ctx->generation++;
050735b0
PZ
1699}
1700
8a49542c 1701static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1702{
1703 struct perf_event *sibling, *tmp;
8a49542c
PZ
1704 struct list_head *list = NULL;
1705
a76a82a3
PZ
1706 lockdep_assert_held(&event->ctx->lock);
1707
8a49542c
PZ
1708 /*
1709 * We can have double detach due to exit/hot-unplug + close.
1710 */
1711 if (!(event->attach_state & PERF_ATTACH_GROUP))
1712 return;
1713
1714 event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716 /*
1717 * If this is a sibling, remove it from its group.
1718 */
1719 if (event->group_leader != event) {
1720 list_del_init(&event->group_entry);
1721 event->group_leader->nr_siblings--;
c320c7b7 1722 goto out;
8a49542c
PZ
1723 }
1724
1725 if (!list_empty(&event->group_entry))
1726 list = &event->group_entry;
2e2af50b 1727
04289bb9 1728 /*
cdd6c482
IM
1729 * If this was a group event with sibling events then
1730 * upgrade the siblings to singleton events by adding them
8a49542c 1731 * to whatever list we are on.
04289bb9 1732 */
cdd6c482 1733 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1734 if (list)
1735 list_move_tail(&sibling->group_entry, list);
04289bb9 1736 sibling->group_leader = sibling;
d6f962b5
FW
1737
1738 /* Inherit group flags from the previous leader */
4ff6a8de 1739 sibling->group_caps = event->group_caps;
652884fe
PZ
1740
1741 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1742 }
c320c7b7
ACM
1743
1744out:
1745 perf_event__header_size(event->group_leader);
1746
1747 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748 perf_event__header_size(tmp);
04289bb9
IM
1749}
1750
fadfe7be
JO
1751static bool is_orphaned_event(struct perf_event *event)
1752{
a69b0ca4 1753 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1754}
1755
2c81a647 1756static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1757{
1758 struct pmu *pmu = event->pmu;
1759 return pmu->filter_match ? pmu->filter_match(event) : 1;
1760}
1761
2c81a647
MR
1762/*
1763 * Check whether we should attempt to schedule an event group based on
1764 * PMU-specific filtering. An event group can consist of HW and SW events,
1765 * potentially with a SW leader, so we must check all the filters, to
1766 * determine whether a group is schedulable:
1767 */
1768static inline int pmu_filter_match(struct perf_event *event)
1769{
1770 struct perf_event *child;
1771
1772 if (!__pmu_filter_match(event))
1773 return 0;
1774
1775 list_for_each_entry(child, &event->sibling_list, group_entry) {
1776 if (!__pmu_filter_match(child))
1777 return 0;
1778 }
1779
1780 return 1;
1781}
1782
fa66f07a
SE
1783static inline int
1784event_filter_match(struct perf_event *event)
1785{
0b8f1e2e
PZ
1786 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1788}
1789
9ffcfa6f
SE
1790static void
1791event_sched_out(struct perf_event *event,
3b6f9e5c 1792 struct perf_cpu_context *cpuctx,
cdd6c482 1793 struct perf_event_context *ctx)
3b6f9e5c 1794{
4158755d 1795 u64 tstamp = perf_event_time(event);
fa66f07a 1796 u64 delta;
652884fe
PZ
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
fa66f07a
SE
1801 /*
1802 * An event which could not be activated because of
1803 * filter mismatch still needs to have its timings
1804 * maintained, otherwise bogus information is return
1805 * via read() for time_enabled, time_running:
1806 */
0b8f1e2e
PZ
1807 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808 !event_filter_match(event)) {
e5d1367f 1809 delta = tstamp - event->tstamp_stopped;
fa66f07a 1810 event->tstamp_running += delta;
4158755d 1811 event->tstamp_stopped = tstamp;
fa66f07a
SE
1812 }
1813
cdd6c482 1814 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1815 return;
3b6f9e5c 1816
44377277
AS
1817 perf_pmu_disable(event->pmu);
1818
28a967c3
PZ
1819 event->tstamp_stopped = tstamp;
1820 event->pmu->del(event, 0);
1821 event->oncpu = -1;
cdd6c482
IM
1822 event->state = PERF_EVENT_STATE_INACTIVE;
1823 if (event->pending_disable) {
1824 event->pending_disable = 0;
1825 event->state = PERF_EVENT_STATE_OFF;
970892a9 1826 }
3b6f9e5c 1827
cdd6c482 1828 if (!is_software_event(event))
3b6f9e5c 1829 cpuctx->active_oncpu--;
2fde4f94
MR
1830 if (!--ctx->nr_active)
1831 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1832 if (event->attr.freq && event->attr.sample_freq)
1833 ctx->nr_freq--;
cdd6c482 1834 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1835 cpuctx->exclusive = 0;
44377277
AS
1836
1837 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1838}
1839
d859e29f 1840static void
cdd6c482 1841group_sched_out(struct perf_event *group_event,
d859e29f 1842 struct perf_cpu_context *cpuctx,
cdd6c482 1843 struct perf_event_context *ctx)
d859e29f 1844{
cdd6c482 1845 struct perf_event *event;
fa66f07a 1846 int state = group_event->state;
d859e29f 1847
3f005e7d
MR
1848 perf_pmu_disable(ctx->pmu);
1849
cdd6c482 1850 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1851
1852 /*
1853 * Schedule out siblings (if any):
1854 */
cdd6c482
IM
1855 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856 event_sched_out(event, cpuctx, ctx);
d859e29f 1857
3f005e7d
MR
1858 perf_pmu_enable(ctx->pmu);
1859
fa66f07a 1860 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1861 cpuctx->exclusive = 0;
1862}
1863
45a0e07a 1864#define DETACH_GROUP 0x01UL
0017960f 1865
0793a61d 1866/*
cdd6c482 1867 * Cross CPU call to remove a performance event
0793a61d 1868 *
cdd6c482 1869 * We disable the event on the hardware level first. After that we
0793a61d
TG
1870 * remove it from the context list.
1871 */
fae3fde6
PZ
1872static void
1873__perf_remove_from_context(struct perf_event *event,
1874 struct perf_cpu_context *cpuctx,
1875 struct perf_event_context *ctx,
1876 void *info)
0793a61d 1877{
45a0e07a 1878 unsigned long flags = (unsigned long)info;
0793a61d 1879
cdd6c482 1880 event_sched_out(event, cpuctx, ctx);
45a0e07a 1881 if (flags & DETACH_GROUP)
46ce0fe9 1882 perf_group_detach(event);
cdd6c482 1883 list_del_event(event, ctx);
39a43640
PZ
1884
1885 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1886 ctx->is_active = 0;
39a43640
PZ
1887 if (ctx->task) {
1888 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889 cpuctx->task_ctx = NULL;
1890 }
64ce3126 1891 }
0793a61d
TG
1892}
1893
0793a61d 1894/*
cdd6c482 1895 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1896 *
cdd6c482
IM
1897 * If event->ctx is a cloned context, callers must make sure that
1898 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1899 * remains valid. This is OK when called from perf_release since
1900 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1901 * When called from perf_event_exit_task, it's OK because the
c93f7669 1902 * context has been detached from its task.
0793a61d 1903 */
45a0e07a 1904static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1905{
a76a82a3
PZ
1906 struct perf_event_context *ctx = event->ctx;
1907
1908 lockdep_assert_held(&ctx->mutex);
0793a61d 1909
45a0e07a 1910 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1911
1912 /*
1913 * The above event_function_call() can NO-OP when it hits
1914 * TASK_TOMBSTONE. In that case we must already have been detached
1915 * from the context (by perf_event_exit_event()) but the grouping
1916 * might still be in-tact.
1917 */
1918 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919 if ((flags & DETACH_GROUP) &&
1920 (event->attach_state & PERF_ATTACH_GROUP)) {
1921 /*
1922 * Since in that case we cannot possibly be scheduled, simply
1923 * detach now.
1924 */
1925 raw_spin_lock_irq(&ctx->lock);
1926 perf_group_detach(event);
1927 raw_spin_unlock_irq(&ctx->lock);
1928 }
0793a61d
TG
1929}
1930
d859e29f 1931/*
cdd6c482 1932 * Cross CPU call to disable a performance event
d859e29f 1933 */
fae3fde6
PZ
1934static void __perf_event_disable(struct perf_event *event,
1935 struct perf_cpu_context *cpuctx,
1936 struct perf_event_context *ctx,
1937 void *info)
7b648018 1938{
fae3fde6
PZ
1939 if (event->state < PERF_EVENT_STATE_INACTIVE)
1940 return;
7b648018 1941
fae3fde6
PZ
1942 update_context_time(ctx);
1943 update_cgrp_time_from_event(event);
1944 update_group_times(event);
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
1949 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1950}
1951
d859e29f 1952/*
cdd6c482 1953 * Disable a event.
c93f7669 1954 *
cdd6c482
IM
1955 * If event->ctx is a cloned context, callers must make sure that
1956 * every task struct that event->ctx->task could possibly point to
c93f7669 1957 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1958 * perf_event_for_each_child or perf_event_for_each because they
1959 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1960 * goes to exit will block in perf_event_exit_event().
1961 *
cdd6c482 1962 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1963 * is the current context on this CPU and preemption is disabled,
cdd6c482 1964 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1965 */
f63a8daa 1966static void _perf_event_disable(struct perf_event *event)
d859e29f 1967{
cdd6c482 1968 struct perf_event_context *ctx = event->ctx;
d859e29f 1969
e625cce1 1970 raw_spin_lock_irq(&ctx->lock);
7b648018 1971 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1972 raw_spin_unlock_irq(&ctx->lock);
7b648018 1973 return;
53cfbf59 1974 }
e625cce1 1975 raw_spin_unlock_irq(&ctx->lock);
7b648018 1976
fae3fde6
PZ
1977 event_function_call(event, __perf_event_disable, NULL);
1978}
1979
1980void perf_event_disable_local(struct perf_event *event)
1981{
1982 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1983}
f63a8daa
PZ
1984
1985/*
1986 * Strictly speaking kernel users cannot create groups and therefore this
1987 * interface does not need the perf_event_ctx_lock() magic.
1988 */
1989void perf_event_disable(struct perf_event *event)
1990{
1991 struct perf_event_context *ctx;
1992
1993 ctx = perf_event_ctx_lock(event);
1994 _perf_event_disable(event);
1995 perf_event_ctx_unlock(event, ctx);
1996}
dcfce4a0 1997EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1998
5aab90ce
JO
1999void perf_event_disable_inatomic(struct perf_event *event)
2000{
2001 event->pending_disable = 1;
2002 irq_work_queue(&event->pending);
2003}
2004
e5d1367f
SE
2005static void perf_set_shadow_time(struct perf_event *event,
2006 struct perf_event_context *ctx,
2007 u64 tstamp)
2008{
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
2035 perf_cgroup_set_shadow_time(event, tstamp);
2036 else
2037 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038}
2039
4fe757dd
PZ
2040#define MAX_INTERRUPTS (~0ULL)
2041
2042static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2043static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2044
235c7fc7 2045static int
9ffcfa6f 2046event_sched_in(struct perf_event *event,
235c7fc7 2047 struct perf_cpu_context *cpuctx,
6e37738a 2048 struct perf_event_context *ctx)
235c7fc7 2049{
4158755d 2050 u64 tstamp = perf_event_time(event);
44377277 2051 int ret = 0;
4158755d 2052
63342411
PZ
2053 lockdep_assert_held(&ctx->lock);
2054
cdd6c482 2055 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2056 return 0;
2057
95ff4ca2
AS
2058 WRITE_ONCE(event->oncpu, smp_processor_id());
2059 /*
2060 * Order event::oncpu write to happen before the ACTIVE state
2061 * is visible.
2062 */
2063 smp_wmb();
2064 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
235c7fc7
IM
2076 /*
2077 * The new state must be visible before we turn it on in the hardware:
2078 */
2079 smp_wmb();
2080
44377277
AS
2081 perf_pmu_disable(event->pmu);
2082
72f669c0
SL
2083 perf_set_shadow_time(event, ctx, tstamp);
2084
ec0d7729
AS
2085 perf_log_itrace_start(event);
2086
a4eaf7f1 2087 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2088 event->state = PERF_EVENT_STATE_INACTIVE;
2089 event->oncpu = -1;
44377277
AS
2090 ret = -EAGAIN;
2091 goto out;
235c7fc7
IM
2092 }
2093
00a2916f
PZ
2094 event->tstamp_running += tstamp - event->tstamp_stopped;
2095
cdd6c482 2096 if (!is_software_event(event))
3b6f9e5c 2097 cpuctx->active_oncpu++;
2fde4f94
MR
2098 if (!ctx->nr_active++)
2099 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2100 if (event->attr.freq && event->attr.sample_freq)
2101 ctx->nr_freq++;
235c7fc7 2102
cdd6c482 2103 if (event->attr.exclusive)
3b6f9e5c
PM
2104 cpuctx->exclusive = 1;
2105
44377277
AS
2106out:
2107 perf_pmu_enable(event->pmu);
2108
2109 return ret;
235c7fc7
IM
2110}
2111
6751b71e 2112static int
cdd6c482 2113group_sched_in(struct perf_event *group_event,
6751b71e 2114 struct perf_cpu_context *cpuctx,
6e37738a 2115 struct perf_event_context *ctx)
6751b71e 2116{
6bde9b6c 2117 struct perf_event *event, *partial_group = NULL;
4a234593 2118 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2119 u64 now = ctx->time;
2120 bool simulate = false;
6751b71e 2121
cdd6c482 2122 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2123 return 0;
2124
fbbe0701 2125 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2126
9ffcfa6f 2127 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2128 pmu->cancel_txn(pmu);
272325c4 2129 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2130 return -EAGAIN;
90151c35 2131 }
6751b71e
PM
2132
2133 /*
2134 * Schedule in siblings as one group (if any):
2135 */
cdd6c482 2136 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2137 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2138 partial_group = event;
6751b71e
PM
2139 goto group_error;
2140 }
2141 }
2142
9ffcfa6f 2143 if (!pmu->commit_txn(pmu))
6e85158c 2144 return 0;
9ffcfa6f 2145
6751b71e
PM
2146group_error:
2147 /*
2148 * Groups can be scheduled in as one unit only, so undo any
2149 * partial group before returning:
d7842da4
SE
2150 * The events up to the failed event are scheduled out normally,
2151 * tstamp_stopped will be updated.
2152 *
2153 * The failed events and the remaining siblings need to have
2154 * their timings updated as if they had gone thru event_sched_in()
2155 * and event_sched_out(). This is required to get consistent timings
2156 * across the group. This also takes care of the case where the group
2157 * could never be scheduled by ensuring tstamp_stopped is set to mark
2158 * the time the event was actually stopped, such that time delta
2159 * calculation in update_event_times() is correct.
6751b71e 2160 */
cdd6c482
IM
2161 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162 if (event == partial_group)
d7842da4
SE
2163 simulate = true;
2164
2165 if (simulate) {
2166 event->tstamp_running += now - event->tstamp_stopped;
2167 event->tstamp_stopped = now;
2168 } else {
2169 event_sched_out(event, cpuctx, ctx);
2170 }
6751b71e 2171 }
9ffcfa6f 2172 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2173
ad5133b7 2174 pmu->cancel_txn(pmu);
90151c35 2175
272325c4 2176 perf_mux_hrtimer_restart(cpuctx);
9e630205 2177
6751b71e
PM
2178 return -EAGAIN;
2179}
2180
3b6f9e5c 2181/*
cdd6c482 2182 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2183 */
cdd6c482 2184static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2185 struct perf_cpu_context *cpuctx,
2186 int can_add_hw)
2187{
2188 /*
cdd6c482 2189 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2190 */
4ff6a8de 2191 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2192 return 1;
2193 /*
2194 * If an exclusive group is already on, no other hardware
cdd6c482 2195 * events can go on.
3b6f9e5c
PM
2196 */
2197 if (cpuctx->exclusive)
2198 return 0;
2199 /*
2200 * If this group is exclusive and there are already
cdd6c482 2201 * events on the CPU, it can't go on.
3b6f9e5c 2202 */
cdd6c482 2203 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2204 return 0;
2205 /*
2206 * Otherwise, try to add it if all previous groups were able
2207 * to go on.
2208 */
2209 return can_add_hw;
2210}
2211
cdd6c482
IM
2212static void add_event_to_ctx(struct perf_event *event,
2213 struct perf_event_context *ctx)
53cfbf59 2214{
4158755d
SE
2215 u64 tstamp = perf_event_time(event);
2216
cdd6c482 2217 list_add_event(event, ctx);
8a49542c 2218 perf_group_attach(event);
4158755d
SE
2219 event->tstamp_enabled = tstamp;
2220 event->tstamp_running = tstamp;
2221 event->tstamp_stopped = tstamp;
53cfbf59
PM
2222}
2223
bd2afa49
PZ
2224static void ctx_sched_out(struct perf_event_context *ctx,
2225 struct perf_cpu_context *cpuctx,
2226 enum event_type_t event_type);
2c29ef0f
PZ
2227static void
2228ctx_sched_in(struct perf_event_context *ctx,
2229 struct perf_cpu_context *cpuctx,
2230 enum event_type_t event_type,
2231 struct task_struct *task);
fe4b04fa 2232
bd2afa49 2233static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2234 struct perf_event_context *ctx,
2235 enum event_type_t event_type)
bd2afa49
PZ
2236{
2237 if (!cpuctx->task_ctx)
2238 return;
2239
2240 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241 return;
2242
487f05e1 2243 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2244}
2245
dce5855b
PZ
2246static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247 struct perf_event_context *ctx,
2248 struct task_struct *task)
2249{
2250 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251 if (ctx)
2252 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254 if (ctx)
2255 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256}
2257
487f05e1
AS
2258/*
2259 * We want to maintain the following priority of scheduling:
2260 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261 * - task pinned (EVENT_PINNED)
2262 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263 * - task flexible (EVENT_FLEXIBLE).
2264 *
2265 * In order to avoid unscheduling and scheduling back in everything every
2266 * time an event is added, only do it for the groups of equal priority and
2267 * below.
2268 *
2269 * This can be called after a batch operation on task events, in which case
2270 * event_type is a bit mask of the types of events involved. For CPU events,
2271 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272 */
3e349507 2273static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2274 struct perf_event_context *task_ctx,
2275 enum event_type_t event_type)
0017960f 2276{
487f05e1
AS
2277 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278 bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280 /*
2281 * If pinned groups are involved, flexible groups also need to be
2282 * scheduled out.
2283 */
2284 if (event_type & EVENT_PINNED)
2285 event_type |= EVENT_FLEXIBLE;
2286
3e349507
PZ
2287 perf_pmu_disable(cpuctx->ctx.pmu);
2288 if (task_ctx)
487f05e1
AS
2289 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291 /*
2292 * Decide which cpu ctx groups to schedule out based on the types
2293 * of events that caused rescheduling:
2294 * - EVENT_CPU: schedule out corresponding groups;
2295 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296 * - otherwise, do nothing more.
2297 */
2298 if (cpu_event)
2299 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300 else if (ctx_event_type & EVENT_PINNED)
2301 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
3e349507
PZ
2303 perf_event_sched_in(cpuctx, task_ctx, current);
2304 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2305}
2306
0793a61d 2307/*
cdd6c482 2308 * Cross CPU call to install and enable a performance event
682076ae 2309 *
a096309b
PZ
2310 * Very similar to remote_function() + event_function() but cannot assume that
2311 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2312 */
fe4b04fa 2313static int __perf_install_in_context(void *info)
0793a61d 2314{
a096309b
PZ
2315 struct perf_event *event = info;
2316 struct perf_event_context *ctx = event->ctx;
108b02cf 2317 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2318 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2319 bool reprogram = true;
a096309b 2320 int ret = 0;
0793a61d 2321
63b6da39 2322 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2323 if (ctx->task) {
b58f6b0d
PZ
2324 raw_spin_lock(&ctx->lock);
2325 task_ctx = ctx;
a096309b 2326
63cae12b 2327 reprogram = (ctx->task == current);
b58f6b0d 2328
39a43640 2329 /*
63cae12b
PZ
2330 * If the task is running, it must be running on this CPU,
2331 * otherwise we cannot reprogram things.
2332 *
2333 * If its not running, we don't care, ctx->lock will
2334 * serialize against it becoming runnable.
39a43640 2335 */
63cae12b
PZ
2336 if (task_curr(ctx->task) && !reprogram) {
2337 ret = -ESRCH;
2338 goto unlock;
2339 }
a096309b 2340
63cae12b 2341 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2342 } else if (task_ctx) {
2343 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2344 }
b58f6b0d 2345
63cae12b 2346 if (reprogram) {
a096309b
PZ
2347 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348 add_event_to_ctx(event, ctx);
487f05e1 2349 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2350 } else {
2351 add_event_to_ctx(event, ctx);
2352 }
2353
63b6da39 2354unlock:
2c29ef0f 2355 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2356
a096309b 2357 return ret;
0793a61d
TG
2358}
2359
2360/*
a096309b
PZ
2361 * Attach a performance event to a context.
2362 *
2363 * Very similar to event_function_call, see comment there.
0793a61d
TG
2364 */
2365static void
cdd6c482
IM
2366perf_install_in_context(struct perf_event_context *ctx,
2367 struct perf_event *event,
0793a61d
TG
2368 int cpu)
2369{
a096309b 2370 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2371
fe4b04fa
PZ
2372 lockdep_assert_held(&ctx->mutex);
2373
0cda4c02
YZ
2374 if (event->cpu != -1)
2375 event->cpu = cpu;
c3f00c70 2376
0b8f1e2e
PZ
2377 /*
2378 * Ensures that if we can observe event->ctx, both the event and ctx
2379 * will be 'complete'. See perf_iterate_sb_cpu().
2380 */
2381 smp_store_release(&event->ctx, ctx);
2382
a096309b
PZ
2383 if (!task) {
2384 cpu_function_call(cpu, __perf_install_in_context, event);
2385 return;
2386 }
2387
2388 /*
2389 * Should not happen, we validate the ctx is still alive before calling.
2390 */
2391 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392 return;
2393
39a43640
PZ
2394 /*
2395 * Installing events is tricky because we cannot rely on ctx->is_active
2396 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2397 *
2398 * Instead we use task_curr(), which tells us if the task is running.
2399 * However, since we use task_curr() outside of rq::lock, we can race
2400 * against the actual state. This means the result can be wrong.
2401 *
2402 * If we get a false positive, we retry, this is harmless.
2403 *
2404 * If we get a false negative, things are complicated. If we are after
2405 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406 * value must be correct. If we're before, it doesn't matter since
2407 * perf_event_context_sched_in() will program the counter.
2408 *
2409 * However, this hinges on the remote context switch having observed
2410 * our task->perf_event_ctxp[] store, such that it will in fact take
2411 * ctx::lock in perf_event_context_sched_in().
2412 *
2413 * We do this by task_function_call(), if the IPI fails to hit the task
2414 * we know any future context switch of task must see the
2415 * perf_event_ctpx[] store.
39a43640 2416 */
63cae12b 2417
63b6da39 2418 /*
63cae12b
PZ
2419 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420 * task_cpu() load, such that if the IPI then does not find the task
2421 * running, a future context switch of that task must observe the
2422 * store.
63b6da39 2423 */
63cae12b
PZ
2424 smp_mb();
2425again:
2426 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2427 return;
2428
2429 raw_spin_lock_irq(&ctx->lock);
2430 task = ctx->task;
84c4e620 2431 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2432 /*
2433 * Cannot happen because we already checked above (which also
2434 * cannot happen), and we hold ctx->mutex, which serializes us
2435 * against perf_event_exit_task_context().
2436 */
63b6da39
PZ
2437 raw_spin_unlock_irq(&ctx->lock);
2438 return;
2439 }
39a43640 2440 /*
63cae12b
PZ
2441 * If the task is not running, ctx->lock will avoid it becoming so,
2442 * thus we can safely install the event.
39a43640 2443 */
63cae12b
PZ
2444 if (task_curr(task)) {
2445 raw_spin_unlock_irq(&ctx->lock);
2446 goto again;
2447 }
2448 add_event_to_ctx(event, ctx);
2449 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2450}
2451
fa289bec 2452/*
cdd6c482 2453 * Put a event into inactive state and update time fields.
fa289bec
PM
2454 * Enabling the leader of a group effectively enables all
2455 * the group members that aren't explicitly disabled, so we
2456 * have to update their ->tstamp_enabled also.
2457 * Note: this works for group members as well as group leaders
2458 * since the non-leader members' sibling_lists will be empty.
2459 */
1d9b482e 2460static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2461{
cdd6c482 2462 struct perf_event *sub;
4158755d 2463 u64 tstamp = perf_event_time(event);
fa289bec 2464
cdd6c482 2465 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2466 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2467 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2468 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2470 }
fa289bec
PM
2471}
2472
d859e29f 2473/*
cdd6c482 2474 * Cross CPU call to enable a performance event
d859e29f 2475 */
fae3fde6
PZ
2476static void __perf_event_enable(struct perf_event *event,
2477 struct perf_cpu_context *cpuctx,
2478 struct perf_event_context *ctx,
2479 void *info)
04289bb9 2480{
cdd6c482 2481 struct perf_event *leader = event->group_leader;
fae3fde6 2482 struct perf_event_context *task_ctx;
04289bb9 2483
6e801e01
PZ
2484 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2486 return;
3cbed429 2487
bd2afa49
PZ
2488 if (ctx->is_active)
2489 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
1d9b482e 2491 __perf_event_mark_enabled(event);
04289bb9 2492
fae3fde6
PZ
2493 if (!ctx->is_active)
2494 return;
2495
e5d1367f 2496 if (!event_filter_match(event)) {
bd2afa49 2497 if (is_cgroup_event(event))
e5d1367f 2498 perf_cgroup_defer_enabled(event);
bd2afa49 2499 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2500 return;
e5d1367f 2501 }
f4c4176f 2502
04289bb9 2503 /*
cdd6c482 2504 * If the event is in a group and isn't the group leader,
d859e29f 2505 * then don't put it on unless the group is on.
04289bb9 2506 */
bd2afa49
PZ
2507 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2509 return;
bd2afa49 2510 }
fe4b04fa 2511
fae3fde6
PZ
2512 task_ctx = cpuctx->task_ctx;
2513 if (ctx->task)
2514 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2515
487f05e1 2516 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2517}
2518
d859e29f 2519/*
cdd6c482 2520 * Enable a event.
c93f7669 2521 *
cdd6c482
IM
2522 * If event->ctx is a cloned context, callers must make sure that
2523 * every task struct that event->ctx->task could possibly point to
c93f7669 2524 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2525 * perf_event_for_each_child or perf_event_for_each as described
2526 * for perf_event_disable.
d859e29f 2527 */
f63a8daa 2528static void _perf_event_enable(struct perf_event *event)
d859e29f 2529{
cdd6c482 2530 struct perf_event_context *ctx = event->ctx;
d859e29f 2531
7b648018 2532 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2533 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2535 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2536 return;
2537 }
2538
d859e29f 2539 /*
cdd6c482 2540 * If the event is in error state, clear that first.
7b648018
PZ
2541 *
2542 * That way, if we see the event in error state below, we know that it
2543 * has gone back into error state, as distinct from the task having
2544 * been scheduled away before the cross-call arrived.
d859e29f 2545 */
cdd6c482
IM
2546 if (event->state == PERF_EVENT_STATE_ERROR)
2547 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2548 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2549
fae3fde6 2550 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2551}
f63a8daa
PZ
2552
2553/*
2554 * See perf_event_disable();
2555 */
2556void perf_event_enable(struct perf_event *event)
2557{
2558 struct perf_event_context *ctx;
2559
2560 ctx = perf_event_ctx_lock(event);
2561 _perf_event_enable(event);
2562 perf_event_ctx_unlock(event, ctx);
2563}
dcfce4a0 2564EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2565
375637bc
AS
2566struct stop_event_data {
2567 struct perf_event *event;
2568 unsigned int restart;
2569};
2570
95ff4ca2
AS
2571static int __perf_event_stop(void *info)
2572{
375637bc
AS
2573 struct stop_event_data *sd = info;
2574 struct perf_event *event = sd->event;
95ff4ca2 2575
375637bc 2576 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2577 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578 return 0;
2579
2580 /* matches smp_wmb() in event_sched_in() */
2581 smp_rmb();
2582
2583 /*
2584 * There is a window with interrupts enabled before we get here,
2585 * so we need to check again lest we try to stop another CPU's event.
2586 */
2587 if (READ_ONCE(event->oncpu) != smp_processor_id())
2588 return -EAGAIN;
2589
2590 event->pmu->stop(event, PERF_EF_UPDATE);
2591
375637bc
AS
2592 /*
2593 * May race with the actual stop (through perf_pmu_output_stop()),
2594 * but it is only used for events with AUX ring buffer, and such
2595 * events will refuse to restart because of rb::aux_mmap_count==0,
2596 * see comments in perf_aux_output_begin().
2597 *
2598 * Since this is happening on a event-local CPU, no trace is lost
2599 * while restarting.
2600 */
2601 if (sd->restart)
c9bbdd48 2602 event->pmu->start(event, 0);
375637bc 2603
95ff4ca2
AS
2604 return 0;
2605}
2606
767ae086 2607static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2608{
2609 struct stop_event_data sd = {
2610 .event = event,
767ae086 2611 .restart = restart,
375637bc
AS
2612 };
2613 int ret = 0;
2614
2615 do {
2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 return 0;
2618
2619 /* matches smp_wmb() in event_sched_in() */
2620 smp_rmb();
2621
2622 /*
2623 * We only want to restart ACTIVE events, so if the event goes
2624 * inactive here (event->oncpu==-1), there's nothing more to do;
2625 * fall through with ret==-ENXIO.
2626 */
2627 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628 __perf_event_stop, &sd);
2629 } while (ret == -EAGAIN);
2630
2631 return ret;
2632}
2633
2634/*
2635 * In order to contain the amount of racy and tricky in the address filter
2636 * configuration management, it is a two part process:
2637 *
2638 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639 * we update the addresses of corresponding vmas in
2640 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2641 * (p2) when an event is scheduled in (pmu::add), it calls
2642 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643 * if the generation has changed since the previous call.
2644 *
2645 * If (p1) happens while the event is active, we restart it to force (p2).
2646 *
2647 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2649 * ioctl;
2650 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2652 * for reading;
2653 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654 * of exec.
2655 */
2656void perf_event_addr_filters_sync(struct perf_event *event)
2657{
2658 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660 if (!has_addr_filter(event))
2661 return;
2662
2663 raw_spin_lock(&ifh->lock);
2664 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665 event->pmu->addr_filters_sync(event);
2666 event->hw.addr_filters_gen = event->addr_filters_gen;
2667 }
2668 raw_spin_unlock(&ifh->lock);
2669}
2670EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
f63a8daa 2672static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2673{
2023b359 2674 /*
cdd6c482 2675 * not supported on inherited events
2023b359 2676 */
2e939d1d 2677 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2678 return -EINVAL;
2679
cdd6c482 2680 atomic_add(refresh, &event->event_limit);
f63a8daa 2681 _perf_event_enable(event);
2023b359
PZ
2682
2683 return 0;
79f14641 2684}
f63a8daa
PZ
2685
2686/*
2687 * See perf_event_disable()
2688 */
2689int perf_event_refresh(struct perf_event *event, int refresh)
2690{
2691 struct perf_event_context *ctx;
2692 int ret;
2693
2694 ctx = perf_event_ctx_lock(event);
2695 ret = _perf_event_refresh(event, refresh);
2696 perf_event_ctx_unlock(event, ctx);
2697
2698 return ret;
2699}
26ca5c11 2700EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2701
5b0311e1
FW
2702static void ctx_sched_out(struct perf_event_context *ctx,
2703 struct perf_cpu_context *cpuctx,
2704 enum event_type_t event_type)
235c7fc7 2705{
db24d33e 2706 int is_active = ctx->is_active;
c994d613 2707 struct perf_event *event;
235c7fc7 2708
c994d613 2709 lockdep_assert_held(&ctx->lock);
235c7fc7 2710
39a43640
PZ
2711 if (likely(!ctx->nr_events)) {
2712 /*
2713 * See __perf_remove_from_context().
2714 */
2715 WARN_ON_ONCE(ctx->is_active);
2716 if (ctx->task)
2717 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2718 return;
39a43640
PZ
2719 }
2720
db24d33e 2721 ctx->is_active &= ~event_type;
3cbaa590
PZ
2722 if (!(ctx->is_active & EVENT_ALL))
2723 ctx->is_active = 0;
2724
63e30d3e
PZ
2725 if (ctx->task) {
2726 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727 if (!ctx->is_active)
2728 cpuctx->task_ctx = NULL;
2729 }
facc4307 2730
8fdc6539
PZ
2731 /*
2732 * Always update time if it was set; not only when it changes.
2733 * Otherwise we can 'forget' to update time for any but the last
2734 * context we sched out. For example:
2735 *
2736 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737 * ctx_sched_out(.event_type = EVENT_PINNED)
2738 *
2739 * would only update time for the pinned events.
2740 */
3cbaa590
PZ
2741 if (is_active & EVENT_TIME) {
2742 /* update (and stop) ctx time */
2743 update_context_time(ctx);
2744 update_cgrp_time_from_cpuctx(cpuctx);
2745 }
2746
8fdc6539
PZ
2747 is_active ^= ctx->is_active; /* changed bits */
2748
3cbaa590 2749 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2750 return;
5b0311e1 2751
075e0b00 2752 perf_pmu_disable(ctx->pmu);
3cbaa590 2753 if (is_active & EVENT_PINNED) {
889ff015
FW
2754 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755 group_sched_out(event, cpuctx, ctx);
9ed6060d 2756 }
889ff015 2757
3cbaa590 2758 if (is_active & EVENT_FLEXIBLE) {
889ff015 2759 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2760 group_sched_out(event, cpuctx, ctx);
9ed6060d 2761 }
1b9a644f 2762 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2763}
2764
564c2b21 2765/*
5a3126d4
PZ
2766 * Test whether two contexts are equivalent, i.e. whether they have both been
2767 * cloned from the same version of the same context.
2768 *
2769 * Equivalence is measured using a generation number in the context that is
2770 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771 * and list_del_event().
564c2b21 2772 */
cdd6c482
IM
2773static int context_equiv(struct perf_event_context *ctx1,
2774 struct perf_event_context *ctx2)
564c2b21 2775{
211de6eb
PZ
2776 lockdep_assert_held(&ctx1->lock);
2777 lockdep_assert_held(&ctx2->lock);
2778
5a3126d4
PZ
2779 /* Pinning disables the swap optimization */
2780 if (ctx1->pin_count || ctx2->pin_count)
2781 return 0;
2782
2783 /* If ctx1 is the parent of ctx2 */
2784 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785 return 1;
2786
2787 /* If ctx2 is the parent of ctx1 */
2788 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789 return 1;
2790
2791 /*
2792 * If ctx1 and ctx2 have the same parent; we flatten the parent
2793 * hierarchy, see perf_event_init_context().
2794 */
2795 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796 ctx1->parent_gen == ctx2->parent_gen)
2797 return 1;
2798
2799 /* Unmatched */
2800 return 0;
564c2b21
PM
2801}
2802
cdd6c482
IM
2803static void __perf_event_sync_stat(struct perf_event *event,
2804 struct perf_event *next_event)
bfbd3381
PZ
2805{
2806 u64 value;
2807
cdd6c482 2808 if (!event->attr.inherit_stat)
bfbd3381
PZ
2809 return;
2810
2811 /*
cdd6c482 2812 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2813 * because we're in the middle of a context switch and have IRQs
2814 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2815 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2816 * don't need to use it.
2817 */
cdd6c482
IM
2818 switch (event->state) {
2819 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2820 event->pmu->read(event);
2821 /* fall-through */
bfbd3381 2822
cdd6c482
IM
2823 case PERF_EVENT_STATE_INACTIVE:
2824 update_event_times(event);
bfbd3381
PZ
2825 break;
2826
2827 default:
2828 break;
2829 }
2830
2831 /*
cdd6c482 2832 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2833 * values when we flip the contexts.
2834 */
e7850595
PZ
2835 value = local64_read(&next_event->count);
2836 value = local64_xchg(&event->count, value);
2837 local64_set(&next_event->count, value);
bfbd3381 2838
cdd6c482
IM
2839 swap(event->total_time_enabled, next_event->total_time_enabled);
2840 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2841
bfbd3381 2842 /*
19d2e755 2843 * Since we swizzled the values, update the user visible data too.
bfbd3381 2844 */
cdd6c482
IM
2845 perf_event_update_userpage(event);
2846 perf_event_update_userpage(next_event);
bfbd3381
PZ
2847}
2848
cdd6c482
IM
2849static void perf_event_sync_stat(struct perf_event_context *ctx,
2850 struct perf_event_context *next_ctx)
bfbd3381 2851{
cdd6c482 2852 struct perf_event *event, *next_event;
bfbd3381
PZ
2853
2854 if (!ctx->nr_stat)
2855 return;
2856
02ffdbc8
PZ
2857 update_context_time(ctx);
2858
cdd6c482
IM
2859 event = list_first_entry(&ctx->event_list,
2860 struct perf_event, event_entry);
bfbd3381 2861
cdd6c482
IM
2862 next_event = list_first_entry(&next_ctx->event_list,
2863 struct perf_event, event_entry);
bfbd3381 2864
cdd6c482
IM
2865 while (&event->event_entry != &ctx->event_list &&
2866 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2867
cdd6c482 2868 __perf_event_sync_stat(event, next_event);
bfbd3381 2869
cdd6c482
IM
2870 event = list_next_entry(event, event_entry);
2871 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2872 }
2873}
2874
fe4b04fa
PZ
2875static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876 struct task_struct *next)
0793a61d 2877{
8dc85d54 2878 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2879 struct perf_event_context *next_ctx;
5a3126d4 2880 struct perf_event_context *parent, *next_parent;
108b02cf 2881 struct perf_cpu_context *cpuctx;
c93f7669 2882 int do_switch = 1;
0793a61d 2883
108b02cf
PZ
2884 if (likely(!ctx))
2885 return;
10989fb2 2886
108b02cf
PZ
2887 cpuctx = __get_cpu_context(ctx);
2888 if (!cpuctx->task_ctx)
0793a61d
TG
2889 return;
2890
c93f7669 2891 rcu_read_lock();
8dc85d54 2892 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2893 if (!next_ctx)
2894 goto unlock;
2895
2896 parent = rcu_dereference(ctx->parent_ctx);
2897 next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2900 if (!parent && !next_parent)
5a3126d4
PZ
2901 goto unlock;
2902
2903 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2904 /*
2905 * Looks like the two contexts are clones, so we might be
2906 * able to optimize the context switch. We lock both
2907 * contexts and check that they are clones under the
2908 * lock (including re-checking that neither has been
2909 * uncloned in the meantime). It doesn't matter which
2910 * order we take the locks because no other cpu could
2911 * be trying to lock both of these tasks.
2912 */
e625cce1
TG
2913 raw_spin_lock(&ctx->lock);
2914 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2915 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2916 WRITE_ONCE(ctx->task, next);
2917 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2918
2919 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
63b6da39
PZ
2921 /*
2922 * RCU_INIT_POINTER here is safe because we've not
2923 * modified the ctx and the above modification of
2924 * ctx->task and ctx->task_ctx_data are immaterial
2925 * since those values are always verified under
2926 * ctx->lock which we're now holding.
2927 */
2928 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
c93f7669 2931 do_switch = 0;
bfbd3381 2932
cdd6c482 2933 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2934 }
e625cce1
TG
2935 raw_spin_unlock(&next_ctx->lock);
2936 raw_spin_unlock(&ctx->lock);
564c2b21 2937 }
5a3126d4 2938unlock:
c93f7669 2939 rcu_read_unlock();
564c2b21 2940
c93f7669 2941 if (do_switch) {
facc4307 2942 raw_spin_lock(&ctx->lock);
487f05e1 2943 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2944 raw_spin_unlock(&ctx->lock);
c93f7669 2945 }
0793a61d
TG
2946}
2947
e48c1788
PZ
2948static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
ba532500
YZ
2950void perf_sched_cb_dec(struct pmu *pmu)
2951{
e48c1788
PZ
2952 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
ba532500 2954 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2955
2956 if (!--cpuctx->sched_cb_usage)
2957 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2958}
2959
e48c1788 2960
ba532500
YZ
2961void perf_sched_cb_inc(struct pmu *pmu)
2962{
e48c1788
PZ
2963 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965 if (!cpuctx->sched_cb_usage++)
2966 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
ba532500
YZ
2968 this_cpu_inc(perf_sched_cb_usages);
2969}
2970
2971/*
2972 * This function provides the context switch callback to the lower code
2973 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2974 *
2975 * This callback is relevant even to per-cpu events; for example multi event
2976 * PEBS requires this to provide PID/TID information. This requires we flush
2977 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2978 */
2979static void perf_pmu_sched_task(struct task_struct *prev,
2980 struct task_struct *next,
2981 bool sched_in)
2982{
2983 struct perf_cpu_context *cpuctx;
2984 struct pmu *pmu;
ba532500
YZ
2985
2986 if (prev == next)
2987 return;
2988
e48c1788 2989 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2990 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2991
e48c1788
PZ
2992 if (WARN_ON_ONCE(!pmu->sched_task))
2993 continue;
ba532500 2994
e48c1788
PZ
2995 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996 perf_pmu_disable(pmu);
ba532500 2997
e48c1788 2998 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2999
e48c1788
PZ
3000 perf_pmu_enable(pmu);
3001 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3002 }
ba532500
YZ
3003}
3004
45ac1403
AH
3005static void perf_event_switch(struct task_struct *task,
3006 struct task_struct *next_prev, bool sched_in);
3007
8dc85d54
PZ
3008#define for_each_task_context_nr(ctxn) \
3009 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011/*
3012 * Called from scheduler to remove the events of the current task,
3013 * with interrupts disabled.
3014 *
3015 * We stop each event and update the event value in event->count.
3016 *
3017 * This does not protect us against NMI, but disable()
3018 * sets the disabled bit in the control field of event _before_
3019 * accessing the event control register. If a NMI hits, then it will
3020 * not restart the event.
3021 */
ab0cce56
JO
3022void __perf_event_task_sched_out(struct task_struct *task,
3023 struct task_struct *next)
8dc85d54
PZ
3024{
3025 int ctxn;
3026
ba532500
YZ
3027 if (__this_cpu_read(perf_sched_cb_usages))
3028 perf_pmu_sched_task(task, next, false);
3029
45ac1403
AH
3030 if (atomic_read(&nr_switch_events))
3031 perf_event_switch(task, next, false);
3032
8dc85d54
PZ
3033 for_each_task_context_nr(ctxn)
3034 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3035
3036 /*
3037 * if cgroup events exist on this CPU, then we need
3038 * to check if we have to switch out PMU state.
3039 * cgroup event are system-wide mode only
3040 */
4a32fea9 3041 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3042 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3043}
3044
5b0311e1
FW
3045/*
3046 * Called with IRQs disabled
3047 */
3048static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049 enum event_type_t event_type)
3050{
3051 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3052}
3053
235c7fc7 3054static void
5b0311e1 3055ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3056 struct perf_cpu_context *cpuctx)
0793a61d 3057{
cdd6c482 3058 struct perf_event *event;
0793a61d 3059
889ff015
FW
3060 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3062 continue;
5632ab12 3063 if (!event_filter_match(event))
3b6f9e5c
PM
3064 continue;
3065
e5d1367f
SE
3066 /* may need to reset tstamp_enabled */
3067 if (is_cgroup_event(event))
3068 perf_cgroup_mark_enabled(event, ctx);
3069
8c9ed8e1 3070 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3071 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3072
3073 /*
3074 * If this pinned group hasn't been scheduled,
3075 * put it in error state.
3076 */
cdd6c482
IM
3077 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078 update_group_times(event);
3079 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3080 }
3b6f9e5c 3081 }
5b0311e1
FW
3082}
3083
3084static void
3085ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3086 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3087{
3088 struct perf_event *event;
3089 int can_add_hw = 1;
3b6f9e5c 3090
889ff015
FW
3091 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092 /* Ignore events in OFF or ERROR state */
3093 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3094 continue;
04289bb9
IM
3095 /*
3096 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3097 * of events:
04289bb9 3098 */
5632ab12 3099 if (!event_filter_match(event))
0793a61d
TG
3100 continue;
3101
e5d1367f
SE
3102 /* may need to reset tstamp_enabled */
3103 if (is_cgroup_event(event))
3104 perf_cgroup_mark_enabled(event, ctx);
3105
9ed6060d 3106 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3107 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3108 can_add_hw = 0;
9ed6060d 3109 }
0793a61d 3110 }
5b0311e1
FW
3111}
3112
3113static void
3114ctx_sched_in(struct perf_event_context *ctx,
3115 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3116 enum event_type_t event_type,
3117 struct task_struct *task)
5b0311e1 3118{
db24d33e 3119 int is_active = ctx->is_active;
c994d613
PZ
3120 u64 now;
3121
3122 lockdep_assert_held(&ctx->lock);
e5d1367f 3123
5b0311e1 3124 if (likely(!ctx->nr_events))
facc4307 3125 return;
5b0311e1 3126
3cbaa590 3127 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3128 if (ctx->task) {
3129 if (!is_active)
3130 cpuctx->task_ctx = ctx;
3131 else
3132 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133 }
3134
3cbaa590
PZ
3135 is_active ^= ctx->is_active; /* changed bits */
3136
3137 if (is_active & EVENT_TIME) {
3138 /* start ctx time */
3139 now = perf_clock();
3140 ctx->timestamp = now;
3141 perf_cgroup_set_timestamp(task, ctx);
3142 }
3143
5b0311e1
FW
3144 /*
3145 * First go through the list and put on any pinned groups
3146 * in order to give them the best chance of going on.
3147 */
3cbaa590 3148 if (is_active & EVENT_PINNED)
6e37738a 3149 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3150
3151 /* Then walk through the lower prio flexible groups */
3cbaa590 3152 if (is_active & EVENT_FLEXIBLE)
6e37738a 3153 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3154}
3155
329c0e01 3156static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3157 enum event_type_t event_type,
3158 struct task_struct *task)
329c0e01
FW
3159{
3160 struct perf_event_context *ctx = &cpuctx->ctx;
3161
e5d1367f 3162 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3163}
3164
e5d1367f
SE
3165static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166 struct task_struct *task)
235c7fc7 3167{
108b02cf 3168 struct perf_cpu_context *cpuctx;
235c7fc7 3169
108b02cf 3170 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3171 if (cpuctx->task_ctx == ctx)
3172 return;
3173
facc4307 3174 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3175 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3176 /*
3177 * We want to keep the following priority order:
3178 * cpu pinned (that don't need to move), task pinned,
3179 * cpu flexible, task flexible.
fe45bafb
AS
3180 *
3181 * However, if task's ctx is not carrying any pinned
3182 * events, no need to flip the cpuctx's events around.
329c0e01 3183 */
fe45bafb
AS
3184 if (!list_empty(&ctx->pinned_groups))
3185 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3186 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3187 perf_pmu_enable(ctx->pmu);
3188 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3189}
3190
8dc85d54
PZ
3191/*
3192 * Called from scheduler to add the events of the current task
3193 * with interrupts disabled.
3194 *
3195 * We restore the event value and then enable it.
3196 *
3197 * This does not protect us against NMI, but enable()
3198 * sets the enabled bit in the control field of event _before_
3199 * accessing the event control register. If a NMI hits, then it will
3200 * keep the event running.
3201 */
ab0cce56
JO
3202void __perf_event_task_sched_in(struct task_struct *prev,
3203 struct task_struct *task)
8dc85d54
PZ
3204{
3205 struct perf_event_context *ctx;
3206 int ctxn;
3207
7e41d177
PZ
3208 /*
3209 * If cgroup events exist on this CPU, then we need to check if we have
3210 * to switch in PMU state; cgroup event are system-wide mode only.
3211 *
3212 * Since cgroup events are CPU events, we must schedule these in before
3213 * we schedule in the task events.
3214 */
3215 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216 perf_cgroup_sched_in(prev, task);
3217
8dc85d54
PZ
3218 for_each_task_context_nr(ctxn) {
3219 ctx = task->perf_event_ctxp[ctxn];
3220 if (likely(!ctx))
3221 continue;
3222
e5d1367f 3223 perf_event_context_sched_in(ctx, task);
8dc85d54 3224 }
d010b332 3225
45ac1403
AH
3226 if (atomic_read(&nr_switch_events))
3227 perf_event_switch(task, prev, true);
3228
ba532500
YZ
3229 if (__this_cpu_read(perf_sched_cb_usages))
3230 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3231}
3232
abd50713
PZ
3233static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234{
3235 u64 frequency = event->attr.sample_freq;
3236 u64 sec = NSEC_PER_SEC;
3237 u64 divisor, dividend;
3238
3239 int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241 count_fls = fls64(count);
3242 nsec_fls = fls64(nsec);
3243 frequency_fls = fls64(frequency);
3244 sec_fls = 30;
3245
3246 /*
3247 * We got @count in @nsec, with a target of sample_freq HZ
3248 * the target period becomes:
3249 *
3250 * @count * 10^9
3251 * period = -------------------
3252 * @nsec * sample_freq
3253 *
3254 */
3255
3256 /*
3257 * Reduce accuracy by one bit such that @a and @b converge
3258 * to a similar magnitude.
3259 */
fe4b04fa 3260#define REDUCE_FLS(a, b) \
abd50713
PZ
3261do { \
3262 if (a##_fls > b##_fls) { \
3263 a >>= 1; \
3264 a##_fls--; \
3265 } else { \
3266 b >>= 1; \
3267 b##_fls--; \
3268 } \
3269} while (0)
3270
3271 /*
3272 * Reduce accuracy until either term fits in a u64, then proceed with
3273 * the other, so that finally we can do a u64/u64 division.
3274 */
3275 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276 REDUCE_FLS(nsec, frequency);
3277 REDUCE_FLS(sec, count);
3278 }
3279
3280 if (count_fls + sec_fls > 64) {
3281 divisor = nsec * frequency;
3282
3283 while (count_fls + sec_fls > 64) {
3284 REDUCE_FLS(count, sec);
3285 divisor >>= 1;
3286 }
3287
3288 dividend = count * sec;
3289 } else {
3290 dividend = count * sec;
3291
3292 while (nsec_fls + frequency_fls > 64) {
3293 REDUCE_FLS(nsec, frequency);
3294 dividend >>= 1;
3295 }
3296
3297 divisor = nsec * frequency;
3298 }
3299
f6ab91ad
PZ
3300 if (!divisor)
3301 return dividend;
3302
abd50713
PZ
3303 return div64_u64(dividend, divisor);
3304}
3305
e050e3f0
SE
3306static DEFINE_PER_CPU(int, perf_throttled_count);
3307static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
f39d47ff 3309static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3310{
cdd6c482 3311 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3312 s64 period, sample_period;
bd2b5b12
PZ
3313 s64 delta;
3314
abd50713 3315 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3316
3317 delta = (s64)(period - hwc->sample_period);
3318 delta = (delta + 7) / 8; /* low pass filter */
3319
3320 sample_period = hwc->sample_period + delta;
3321
3322 if (!sample_period)
3323 sample_period = 1;
3324
bd2b5b12 3325 hwc->sample_period = sample_period;
abd50713 3326
e7850595 3327 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3328 if (disable)
3329 event->pmu->stop(event, PERF_EF_UPDATE);
3330
e7850595 3331 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3332
3333 if (disable)
3334 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3335 }
bd2b5b12
PZ
3336}
3337
e050e3f0
SE
3338/*
3339 * combine freq adjustment with unthrottling to avoid two passes over the
3340 * events. At the same time, make sure, having freq events does not change
3341 * the rate of unthrottling as that would introduce bias.
3342 */
3343static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344 int needs_unthr)
60db5e09 3345{
cdd6c482
IM
3346 struct perf_event *event;
3347 struct hw_perf_event *hwc;
e050e3f0 3348 u64 now, period = TICK_NSEC;
abd50713 3349 s64 delta;
60db5e09 3350
e050e3f0
SE
3351 /*
3352 * only need to iterate over all events iff:
3353 * - context have events in frequency mode (needs freq adjust)
3354 * - there are events to unthrottle on this cpu
3355 */
3356 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3357 return;
3358
e050e3f0 3359 raw_spin_lock(&ctx->lock);
f39d47ff 3360 perf_pmu_disable(ctx->pmu);
e050e3f0 3361
03541f8b 3362 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3363 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3364 continue;
3365
5632ab12 3366 if (!event_filter_match(event))
5d27c23d
PZ
3367 continue;
3368
44377277
AS
3369 perf_pmu_disable(event->pmu);
3370
cdd6c482 3371 hwc = &event->hw;
6a24ed6c 3372
ae23bff1 3373 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3374 hwc->interrupts = 0;
cdd6c482 3375 perf_log_throttle(event, 1);
a4eaf7f1 3376 event->pmu->start(event, 0);
a78ac325
PZ
3377 }
3378
cdd6c482 3379 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3380 goto next;
60db5e09 3381
e050e3f0
SE
3382 /*
3383 * stop the event and update event->count
3384 */
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
e7850595 3387 now = local64_read(&event->count);
abd50713
PZ
3388 delta = now - hwc->freq_count_stamp;
3389 hwc->freq_count_stamp = now;
60db5e09 3390
e050e3f0
SE
3391 /*
3392 * restart the event
3393 * reload only if value has changed
f39d47ff
SE
3394 * we have stopped the event so tell that
3395 * to perf_adjust_period() to avoid stopping it
3396 * twice.
e050e3f0 3397 */
abd50713 3398 if (delta > 0)
f39d47ff 3399 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3400
3401 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3402 next:
3403 perf_pmu_enable(event->pmu);
60db5e09 3404 }
e050e3f0 3405
f39d47ff 3406 perf_pmu_enable(ctx->pmu);
e050e3f0 3407 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3408}
3409
235c7fc7 3410/*
cdd6c482 3411 * Round-robin a context's events:
235c7fc7 3412 */
cdd6c482 3413static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3414{
dddd3379
TG
3415 /*
3416 * Rotate the first entry last of non-pinned groups. Rotation might be
3417 * disabled by the inheritance code.
3418 */
3419 if (!ctx->rotate_disable)
3420 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3421}
3422
9e630205 3423static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3424{
8dc85d54 3425 struct perf_event_context *ctx = NULL;
2fde4f94 3426 int rotate = 0;
7fc23a53 3427
b5ab4cd5 3428 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3429 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430 rotate = 1;
3431 }
235c7fc7 3432
8dc85d54 3433 ctx = cpuctx->task_ctx;
b5ab4cd5 3434 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3435 if (ctx->nr_events != ctx->nr_active)
3436 rotate = 1;
3437 }
9717e6cd 3438
e050e3f0 3439 if (!rotate)
0f5a2601
PZ
3440 goto done;
3441
facc4307 3442 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3443 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3444
e050e3f0
SE
3445 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446 if (ctx)
3447 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3448
e050e3f0
SE
3449 rotate_ctx(&cpuctx->ctx);
3450 if (ctx)
3451 rotate_ctx(ctx);
235c7fc7 3452
e050e3f0 3453 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3454
0f5a2601
PZ
3455 perf_pmu_enable(cpuctx->ctx.pmu);
3456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3457done:
9e630205
SE
3458
3459 return rotate;
e9d2b064
PZ
3460}
3461
3462void perf_event_task_tick(void)
3463{
2fde4f94
MR
3464 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465 struct perf_event_context *ctx, *tmp;
e050e3f0 3466 int throttled;
b5ab4cd5 3467
e9d2b064
PZ
3468 WARN_ON(!irqs_disabled());
3469
e050e3f0
SE
3470 __this_cpu_inc(perf_throttled_seq);
3471 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3472 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3473
2fde4f94 3474 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3475 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3476}
3477
889ff015
FW
3478static int event_enable_on_exec(struct perf_event *event,
3479 struct perf_event_context *ctx)
3480{
3481 if (!event->attr.enable_on_exec)
3482 return 0;
3483
3484 event->attr.enable_on_exec = 0;
3485 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486 return 0;
3487
1d9b482e 3488 __perf_event_mark_enabled(event);
889ff015
FW
3489
3490 return 1;
3491}
3492
57e7986e 3493/*
cdd6c482 3494 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3495 * This expects task == current.
3496 */
c1274499 3497static void perf_event_enable_on_exec(int ctxn)
57e7986e 3498{
c1274499 3499 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3500 enum event_type_t event_type = 0;
3e349507 3501 struct perf_cpu_context *cpuctx;
cdd6c482 3502 struct perf_event *event;
57e7986e
PM
3503 unsigned long flags;
3504 int enabled = 0;
3505
3506 local_irq_save(flags);
c1274499 3507 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3508 if (!ctx || !ctx->nr_events)
57e7986e
PM
3509 goto out;
3510
3e349507
PZ
3511 cpuctx = __get_cpu_context(ctx);
3512 perf_ctx_lock(cpuctx, ctx);
7fce2509 3513 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3514 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3515 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3516 event_type |= get_event_type(event);
3517 }
57e7986e
PM
3518
3519 /*
3e349507 3520 * Unclone and reschedule this context if we enabled any event.
57e7986e 3521 */
3e349507 3522 if (enabled) {
211de6eb 3523 clone_ctx = unclone_ctx(ctx);
487f05e1 3524 ctx_resched(cpuctx, ctx, event_type);
3e349507
PZ
3525 }
3526 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3527
9ed6060d 3528out:
57e7986e 3529 local_irq_restore(flags);
211de6eb
PZ
3530
3531 if (clone_ctx)
3532 put_ctx(clone_ctx);
57e7986e
PM
3533}
3534
0492d4c5
PZ
3535struct perf_read_data {
3536 struct perf_event *event;
3537 bool group;
7d88962e 3538 int ret;
0492d4c5
PZ
3539};
3540
d6a2f903
DCC
3541static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3542{
3543 int event_cpu = event->oncpu;
3544 u16 local_pkg, event_pkg;
3545
3546 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3547 event_pkg = topology_physical_package_id(event_cpu);
3548 local_pkg = topology_physical_package_id(local_cpu);
3549
3550 if (event_pkg == local_pkg)
3551 return local_cpu;
3552 }
3553
3554 return event_cpu;
3555}
3556
0793a61d 3557/*
cdd6c482 3558 * Cross CPU call to read the hardware event
0793a61d 3559 */
cdd6c482 3560static void __perf_event_read(void *info)
0793a61d 3561{
0492d4c5
PZ
3562 struct perf_read_data *data = info;
3563 struct perf_event *sub, *event = data->event;
cdd6c482 3564 struct perf_event_context *ctx = event->ctx;
108b02cf 3565 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3566 struct pmu *pmu = event->pmu;
621a01ea 3567
e1ac3614
PM
3568 /*
3569 * If this is a task context, we need to check whether it is
3570 * the current task context of this cpu. If not it has been
3571 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3572 * event->count would have been updated to a recent sample
3573 * when the event was scheduled out.
e1ac3614
PM
3574 */
3575 if (ctx->task && cpuctx->task_ctx != ctx)
3576 return;
3577
e625cce1 3578 raw_spin_lock(&ctx->lock);
e5d1367f 3579 if (ctx->is_active) {
542e72fc 3580 update_context_time(ctx);
e5d1367f
SE
3581 update_cgrp_time_from_event(event);
3582 }
0492d4c5 3583
cdd6c482 3584 update_event_times(event);
4a00c16e
SB
3585 if (event->state != PERF_EVENT_STATE_ACTIVE)
3586 goto unlock;
0492d4c5 3587
4a00c16e
SB
3588 if (!data->group) {
3589 pmu->read(event);
3590 data->ret = 0;
0492d4c5 3591 goto unlock;
4a00c16e
SB
3592 }
3593
3594 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3595
3596 pmu->read(event);
0492d4c5
PZ
3597
3598 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3599 update_event_times(sub);
4a00c16e
SB
3600 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3601 /*
3602 * Use sibling's PMU rather than @event's since
3603 * sibling could be on different (eg: software) PMU.
3604 */
0492d4c5 3605 sub->pmu->read(sub);
4a00c16e 3606 }
0492d4c5 3607 }
4a00c16e
SB
3608
3609 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3610
3611unlock:
e625cce1 3612 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3613}
3614
b5e58793
PZ
3615static inline u64 perf_event_count(struct perf_event *event)
3616{
eacd3ecc
MF
3617 if (event->pmu->count)
3618 return event->pmu->count(event);
3619
3620 return __perf_event_count(event);
b5e58793
PZ
3621}
3622
ffe8690c
KX
3623/*
3624 * NMI-safe method to read a local event, that is an event that
3625 * is:
3626 * - either for the current task, or for this CPU
3627 * - does not have inherit set, for inherited task events
3628 * will not be local and we cannot read them atomically
3629 * - must not have a pmu::count method
3630 */
3631u64 perf_event_read_local(struct perf_event *event)
3632{
3633 unsigned long flags;
3634 u64 val;
3635
3636 /*
3637 * Disabling interrupts avoids all counter scheduling (context
3638 * switches, timer based rotation and IPIs).
3639 */
3640 local_irq_save(flags);
3641
3642 /* If this is a per-task event, it must be for current */
3643 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3644 event->hw.target != current);
3645
3646 /* If this is a per-CPU event, it must be for this CPU */
3647 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3648 event->cpu != smp_processor_id());
3649
3650 /*
3651 * It must not be an event with inherit set, we cannot read
3652 * all child counters from atomic context.
3653 */
3654 WARN_ON_ONCE(event->attr.inherit);
3655
3656 /*
3657 * It must not have a pmu::count method, those are not
3658 * NMI safe.
3659 */
3660 WARN_ON_ONCE(event->pmu->count);
3661
3662 /*
3663 * If the event is currently on this CPU, its either a per-task event,
3664 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3665 * oncpu == -1).
3666 */
3667 if (event->oncpu == smp_processor_id())
3668 event->pmu->read(event);
3669
3670 val = local64_read(&event->count);
3671 local_irq_restore(flags);
3672
3673 return val;
3674}
3675
7d88962e 3676static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3677{
d6a2f903 3678 int ret = 0, cpu_to_read, local_cpu;
7d88962e 3679
0793a61d 3680 /*
cdd6c482
IM
3681 * If event is enabled and currently active on a CPU, update the
3682 * value in the event structure:
0793a61d 3683 */
cdd6c482 3684 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3685 struct perf_read_data data = {
3686 .event = event,
3687 .group = group,
7d88962e 3688 .ret = 0,
0492d4c5 3689 };
d6a2f903
DCC
3690
3691 local_cpu = get_cpu();
3692 cpu_to_read = find_cpu_to_read(event, local_cpu);
3693 put_cpu();
3694
58763148
PZ
3695 /*
3696 * Purposely ignore the smp_call_function_single() return
3697 * value.
3698 *
3699 * If event->oncpu isn't a valid CPU it means the event got
3700 * scheduled out and that will have updated the event count.
3701 *
3702 * Therefore, either way, we'll have an up-to-date event count
3703 * after this.
3704 */
2cc53841 3705 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
58763148 3706 ret = data.ret;
cdd6c482 3707 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3708 struct perf_event_context *ctx = event->ctx;
3709 unsigned long flags;
3710
e625cce1 3711 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3712 /*
3713 * may read while context is not active
3714 * (e.g., thread is blocked), in that case
3715 * we cannot update context time
3716 */
e5d1367f 3717 if (ctx->is_active) {
c530ccd9 3718 update_context_time(ctx);
e5d1367f
SE
3719 update_cgrp_time_from_event(event);
3720 }
0492d4c5
PZ
3721 if (group)
3722 update_group_times(event);
3723 else
3724 update_event_times(event);
e625cce1 3725 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3726 }
7d88962e
SB
3727
3728 return ret;
0793a61d
TG
3729}
3730
a63eaf34 3731/*
cdd6c482 3732 * Initialize the perf_event context in a task_struct:
a63eaf34 3733 */
eb184479 3734static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3735{
e625cce1 3736 raw_spin_lock_init(&ctx->lock);
a63eaf34 3737 mutex_init(&ctx->mutex);
2fde4f94 3738 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3739 INIT_LIST_HEAD(&ctx->pinned_groups);
3740 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3741 INIT_LIST_HEAD(&ctx->event_list);
3742 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3743}
3744
3745static struct perf_event_context *
3746alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3747{
3748 struct perf_event_context *ctx;
3749
3750 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3751 if (!ctx)
3752 return NULL;
3753
3754 __perf_event_init_context(ctx);
3755 if (task) {
3756 ctx->task = task;
3757 get_task_struct(task);
0793a61d 3758 }
eb184479
PZ
3759 ctx->pmu = pmu;
3760
3761 return ctx;
a63eaf34
PM
3762}
3763
2ebd4ffb
MH
3764static struct task_struct *
3765find_lively_task_by_vpid(pid_t vpid)
3766{
3767 struct task_struct *task;
0793a61d
TG
3768
3769 rcu_read_lock();
2ebd4ffb 3770 if (!vpid)
0793a61d
TG
3771 task = current;
3772 else
2ebd4ffb 3773 task = find_task_by_vpid(vpid);
0793a61d
TG
3774 if (task)
3775 get_task_struct(task);
3776 rcu_read_unlock();
3777
3778 if (!task)
3779 return ERR_PTR(-ESRCH);
3780
2ebd4ffb 3781 return task;
2ebd4ffb
MH
3782}
3783
fe4b04fa
PZ
3784/*
3785 * Returns a matching context with refcount and pincount.
3786 */
108b02cf 3787static struct perf_event_context *
4af57ef2
YZ
3788find_get_context(struct pmu *pmu, struct task_struct *task,
3789 struct perf_event *event)
0793a61d 3790{
211de6eb 3791 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3792 struct perf_cpu_context *cpuctx;
4af57ef2 3793 void *task_ctx_data = NULL;
25346b93 3794 unsigned long flags;
8dc85d54 3795 int ctxn, err;
4af57ef2 3796 int cpu = event->cpu;
0793a61d 3797
22a4ec72 3798 if (!task) {
cdd6c482 3799 /* Must be root to operate on a CPU event: */
0764771d 3800 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3801 return ERR_PTR(-EACCES);
3802
0793a61d 3803 /*
cdd6c482 3804 * We could be clever and allow to attach a event to an
0793a61d
TG
3805 * offline CPU and activate it when the CPU comes up, but
3806 * that's for later.
3807 */
f6325e30 3808 if (!cpu_online(cpu))
0793a61d
TG
3809 return ERR_PTR(-ENODEV);
3810
108b02cf 3811 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3812 ctx = &cpuctx->ctx;
c93f7669 3813 get_ctx(ctx);
fe4b04fa 3814 ++ctx->pin_count;
0793a61d 3815
0793a61d
TG
3816 return ctx;
3817 }
3818
8dc85d54
PZ
3819 err = -EINVAL;
3820 ctxn = pmu->task_ctx_nr;
3821 if (ctxn < 0)
3822 goto errout;
3823
4af57ef2
YZ
3824 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3825 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3826 if (!task_ctx_data) {
3827 err = -ENOMEM;
3828 goto errout;
3829 }
3830 }
3831
9ed6060d 3832retry:
8dc85d54 3833 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3834 if (ctx) {
211de6eb 3835 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3836 ++ctx->pin_count;
4af57ef2
YZ
3837
3838 if (task_ctx_data && !ctx->task_ctx_data) {
3839 ctx->task_ctx_data = task_ctx_data;
3840 task_ctx_data = NULL;
3841 }
e625cce1 3842 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3843
3844 if (clone_ctx)
3845 put_ctx(clone_ctx);
9137fb28 3846 } else {
eb184479 3847 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3848 err = -ENOMEM;
3849 if (!ctx)
3850 goto errout;
eb184479 3851
4af57ef2
YZ
3852 if (task_ctx_data) {
3853 ctx->task_ctx_data = task_ctx_data;
3854 task_ctx_data = NULL;
3855 }
3856
dbe08d82
ON
3857 err = 0;
3858 mutex_lock(&task->perf_event_mutex);
3859 /*
3860 * If it has already passed perf_event_exit_task().
3861 * we must see PF_EXITING, it takes this mutex too.
3862 */
3863 if (task->flags & PF_EXITING)
3864 err = -ESRCH;
3865 else if (task->perf_event_ctxp[ctxn])
3866 err = -EAGAIN;
fe4b04fa 3867 else {
9137fb28 3868 get_ctx(ctx);
fe4b04fa 3869 ++ctx->pin_count;
dbe08d82 3870 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3871 }
dbe08d82
ON
3872 mutex_unlock(&task->perf_event_mutex);
3873
3874 if (unlikely(err)) {
9137fb28 3875 put_ctx(ctx);
dbe08d82
ON
3876
3877 if (err == -EAGAIN)
3878 goto retry;
3879 goto errout;
a63eaf34
PM
3880 }
3881 }
3882
4af57ef2 3883 kfree(task_ctx_data);
0793a61d 3884 return ctx;
c93f7669 3885
9ed6060d 3886errout:
4af57ef2 3887 kfree(task_ctx_data);
c93f7669 3888 return ERR_PTR(err);
0793a61d
TG
3889}
3890
6fb2915d 3891static void perf_event_free_filter(struct perf_event *event);
2541517c 3892static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3893
cdd6c482 3894static void free_event_rcu(struct rcu_head *head)
592903cd 3895{
cdd6c482 3896 struct perf_event *event;
592903cd 3897
cdd6c482
IM
3898 event = container_of(head, struct perf_event, rcu_head);
3899 if (event->ns)
3900 put_pid_ns(event->ns);
6fb2915d 3901 perf_event_free_filter(event);
cdd6c482 3902 kfree(event);
592903cd
PZ
3903}
3904
b69cf536
PZ
3905static void ring_buffer_attach(struct perf_event *event,
3906 struct ring_buffer *rb);
925d519a 3907
f2fb6bef
KL
3908static void detach_sb_event(struct perf_event *event)
3909{
3910 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3911
3912 raw_spin_lock(&pel->lock);
3913 list_del_rcu(&event->sb_list);
3914 raw_spin_unlock(&pel->lock);
3915}
3916
a4f144eb 3917static bool is_sb_event(struct perf_event *event)
f2fb6bef 3918{
a4f144eb
DCC
3919 struct perf_event_attr *attr = &event->attr;
3920
f2fb6bef 3921 if (event->parent)
a4f144eb 3922 return false;
f2fb6bef
KL
3923
3924 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3925 return false;
f2fb6bef 3926
a4f144eb
DCC
3927 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3928 attr->comm || attr->comm_exec ||
3929 attr->task ||
3930 attr->context_switch)
3931 return true;
3932 return false;
3933}
3934
3935static void unaccount_pmu_sb_event(struct perf_event *event)
3936{
3937 if (is_sb_event(event))
3938 detach_sb_event(event);
f2fb6bef
KL
3939}
3940
4beb31f3 3941static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3942{
4beb31f3
FW
3943 if (event->parent)
3944 return;
3945
4beb31f3
FW
3946 if (is_cgroup_event(event))
3947 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3948}
925d519a 3949
555e0c1e
FW
3950#ifdef CONFIG_NO_HZ_FULL
3951static DEFINE_SPINLOCK(nr_freq_lock);
3952#endif
3953
3954static void unaccount_freq_event_nohz(void)
3955{
3956#ifdef CONFIG_NO_HZ_FULL
3957 spin_lock(&nr_freq_lock);
3958 if (atomic_dec_and_test(&nr_freq_events))
3959 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3960 spin_unlock(&nr_freq_lock);
3961#endif
3962}
3963
3964static void unaccount_freq_event(void)
3965{
3966 if (tick_nohz_full_enabled())
3967 unaccount_freq_event_nohz();
3968 else
3969 atomic_dec(&nr_freq_events);
3970}
3971
4beb31f3
FW
3972static void unaccount_event(struct perf_event *event)
3973{
25432ae9
PZ
3974 bool dec = false;
3975
4beb31f3
FW
3976 if (event->parent)
3977 return;
3978
3979 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3980 dec = true;
4beb31f3
FW
3981 if (event->attr.mmap || event->attr.mmap_data)
3982 atomic_dec(&nr_mmap_events);
3983 if (event->attr.comm)
3984 atomic_dec(&nr_comm_events);
3985 if (event->attr.task)
3986 atomic_dec(&nr_task_events);
948b26b6 3987 if (event->attr.freq)
555e0c1e 3988 unaccount_freq_event();
45ac1403 3989 if (event->attr.context_switch) {
25432ae9 3990 dec = true;
45ac1403
AH
3991 atomic_dec(&nr_switch_events);
3992 }
4beb31f3 3993 if (is_cgroup_event(event))
25432ae9 3994 dec = true;
4beb31f3 3995 if (has_branch_stack(event))
25432ae9
PZ
3996 dec = true;
3997
9107c89e
PZ
3998 if (dec) {
3999 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4000 schedule_delayed_work(&perf_sched_work, HZ);
4001 }
4beb31f3
FW
4002
4003 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4004
4005 unaccount_pmu_sb_event(event);
4beb31f3 4006}
925d519a 4007
9107c89e
PZ
4008static void perf_sched_delayed(struct work_struct *work)
4009{
4010 mutex_lock(&perf_sched_mutex);
4011 if (atomic_dec_and_test(&perf_sched_count))
4012 static_branch_disable(&perf_sched_events);
4013 mutex_unlock(&perf_sched_mutex);
4014}
4015
bed5b25a
AS
4016/*
4017 * The following implement mutual exclusion of events on "exclusive" pmus
4018 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4019 * at a time, so we disallow creating events that might conflict, namely:
4020 *
4021 * 1) cpu-wide events in the presence of per-task events,
4022 * 2) per-task events in the presence of cpu-wide events,
4023 * 3) two matching events on the same context.
4024 *
4025 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4026 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4027 */
4028static int exclusive_event_init(struct perf_event *event)
4029{
4030 struct pmu *pmu = event->pmu;
4031
4032 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4033 return 0;
4034
4035 /*
4036 * Prevent co-existence of per-task and cpu-wide events on the
4037 * same exclusive pmu.
4038 *
4039 * Negative pmu::exclusive_cnt means there are cpu-wide
4040 * events on this "exclusive" pmu, positive means there are
4041 * per-task events.
4042 *
4043 * Since this is called in perf_event_alloc() path, event::ctx
4044 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4045 * to mean "per-task event", because unlike other attach states it
4046 * never gets cleared.
4047 */
4048 if (event->attach_state & PERF_ATTACH_TASK) {
4049 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4050 return -EBUSY;
4051 } else {
4052 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4053 return -EBUSY;
4054 }
4055
4056 return 0;
4057}
4058
4059static void exclusive_event_destroy(struct perf_event *event)
4060{
4061 struct pmu *pmu = event->pmu;
4062
4063 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064 return;
4065
4066 /* see comment in exclusive_event_init() */
4067 if (event->attach_state & PERF_ATTACH_TASK)
4068 atomic_dec(&pmu->exclusive_cnt);
4069 else
4070 atomic_inc(&pmu->exclusive_cnt);
4071}
4072
4073static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4074{
3bf6215a 4075 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4076 (e1->cpu == e2->cpu ||
4077 e1->cpu == -1 ||
4078 e2->cpu == -1))
4079 return true;
4080 return false;
4081}
4082
4083/* Called under the same ctx::mutex as perf_install_in_context() */
4084static bool exclusive_event_installable(struct perf_event *event,
4085 struct perf_event_context *ctx)
4086{
4087 struct perf_event *iter_event;
4088 struct pmu *pmu = event->pmu;
4089
4090 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4091 return true;
4092
4093 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4094 if (exclusive_event_match(iter_event, event))
4095 return false;
4096 }
4097
4098 return true;
4099}
4100
375637bc
AS
4101static void perf_addr_filters_splice(struct perf_event *event,
4102 struct list_head *head);
4103
683ede43 4104static void _free_event(struct perf_event *event)
f1600952 4105{
e360adbe 4106 irq_work_sync(&event->pending);
925d519a 4107
4beb31f3 4108 unaccount_event(event);
9ee318a7 4109
76369139 4110 if (event->rb) {
9bb5d40c
PZ
4111 /*
4112 * Can happen when we close an event with re-directed output.
4113 *
4114 * Since we have a 0 refcount, perf_mmap_close() will skip
4115 * over us; possibly making our ring_buffer_put() the last.
4116 */
4117 mutex_lock(&event->mmap_mutex);
b69cf536 4118 ring_buffer_attach(event, NULL);
9bb5d40c 4119 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4120 }
4121
e5d1367f
SE
4122 if (is_cgroup_event(event))
4123 perf_detach_cgroup(event);
4124
a0733e69
PZ
4125 if (!event->parent) {
4126 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4127 put_callchain_buffers();
4128 }
4129
4130 perf_event_free_bpf_prog(event);
375637bc
AS
4131 perf_addr_filters_splice(event, NULL);
4132 kfree(event->addr_filters_offs);
a0733e69
PZ
4133
4134 if (event->destroy)
4135 event->destroy(event);
4136
4137 if (event->ctx)
4138 put_ctx(event->ctx);
4139
62a92c8f
AS
4140 exclusive_event_destroy(event);
4141 module_put(event->pmu->module);
a0733e69
PZ
4142
4143 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4144}
4145
683ede43
PZ
4146/*
4147 * Used to free events which have a known refcount of 1, such as in error paths
4148 * where the event isn't exposed yet and inherited events.
4149 */
4150static void free_event(struct perf_event *event)
0793a61d 4151{
683ede43
PZ
4152 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4153 "unexpected event refcount: %ld; ptr=%p\n",
4154 atomic_long_read(&event->refcount), event)) {
4155 /* leak to avoid use-after-free */
4156 return;
4157 }
0793a61d 4158
683ede43 4159 _free_event(event);
0793a61d
TG
4160}
4161
a66a3052 4162/*
f8697762 4163 * Remove user event from the owner task.
a66a3052 4164 */
f8697762 4165static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4166{
8882135b 4167 struct task_struct *owner;
fb0459d7 4168
8882135b 4169 rcu_read_lock();
8882135b 4170 /*
f47c02c0
PZ
4171 * Matches the smp_store_release() in perf_event_exit_task(). If we
4172 * observe !owner it means the list deletion is complete and we can
4173 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4174 * owner->perf_event_mutex.
4175 */
f47c02c0 4176 owner = lockless_dereference(event->owner);
8882135b
PZ
4177 if (owner) {
4178 /*
4179 * Since delayed_put_task_struct() also drops the last
4180 * task reference we can safely take a new reference
4181 * while holding the rcu_read_lock().
4182 */
4183 get_task_struct(owner);
4184 }
4185 rcu_read_unlock();
4186
4187 if (owner) {
f63a8daa
PZ
4188 /*
4189 * If we're here through perf_event_exit_task() we're already
4190 * holding ctx->mutex which would be an inversion wrt. the
4191 * normal lock order.
4192 *
4193 * However we can safely take this lock because its the child
4194 * ctx->mutex.
4195 */
4196 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4197
8882135b
PZ
4198 /*
4199 * We have to re-check the event->owner field, if it is cleared
4200 * we raced with perf_event_exit_task(), acquiring the mutex
4201 * ensured they're done, and we can proceed with freeing the
4202 * event.
4203 */
f47c02c0 4204 if (event->owner) {
8882135b 4205 list_del_init(&event->owner_entry);
f47c02c0
PZ
4206 smp_store_release(&event->owner, NULL);
4207 }
8882135b
PZ
4208 mutex_unlock(&owner->perf_event_mutex);
4209 put_task_struct(owner);
4210 }
f8697762
JO
4211}
4212
f8697762
JO
4213static void put_event(struct perf_event *event)
4214{
f8697762
JO
4215 if (!atomic_long_dec_and_test(&event->refcount))
4216 return;
4217
c6e5b732
PZ
4218 _free_event(event);
4219}
4220
4221/*
4222 * Kill an event dead; while event:refcount will preserve the event
4223 * object, it will not preserve its functionality. Once the last 'user'
4224 * gives up the object, we'll destroy the thing.
4225 */
4226int perf_event_release_kernel(struct perf_event *event)
4227{
a4f4bb6d 4228 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4229 struct perf_event *child, *tmp;
4230
a4f4bb6d
PZ
4231 /*
4232 * If we got here through err_file: fput(event_file); we will not have
4233 * attached to a context yet.
4234 */
4235 if (!ctx) {
4236 WARN_ON_ONCE(event->attach_state &
4237 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4238 goto no_ctx;
4239 }
4240
f8697762
JO
4241 if (!is_kernel_event(event))
4242 perf_remove_from_owner(event);
8882135b 4243
5fa7c8ec 4244 ctx = perf_event_ctx_lock(event);
a83fe28e 4245 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4246 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4247
a69b0ca4 4248 raw_spin_lock_irq(&ctx->lock);
683ede43 4249 /*
a69b0ca4
PZ
4250 * Mark this even as STATE_DEAD, there is no external reference to it
4251 * anymore.
683ede43 4252 *
a69b0ca4
PZ
4253 * Anybody acquiring event->child_mutex after the below loop _must_
4254 * also see this, most importantly inherit_event() which will avoid
4255 * placing more children on the list.
683ede43 4256 *
c6e5b732
PZ
4257 * Thus this guarantees that we will in fact observe and kill _ALL_
4258 * child events.
683ede43 4259 */
a69b0ca4
PZ
4260 event->state = PERF_EVENT_STATE_DEAD;
4261 raw_spin_unlock_irq(&ctx->lock);
4262
4263 perf_event_ctx_unlock(event, ctx);
683ede43 4264
c6e5b732
PZ
4265again:
4266 mutex_lock(&event->child_mutex);
4267 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4268
c6e5b732
PZ
4269 /*
4270 * Cannot change, child events are not migrated, see the
4271 * comment with perf_event_ctx_lock_nested().
4272 */
4273 ctx = lockless_dereference(child->ctx);
4274 /*
4275 * Since child_mutex nests inside ctx::mutex, we must jump
4276 * through hoops. We start by grabbing a reference on the ctx.
4277 *
4278 * Since the event cannot get freed while we hold the
4279 * child_mutex, the context must also exist and have a !0
4280 * reference count.
4281 */
4282 get_ctx(ctx);
4283
4284 /*
4285 * Now that we have a ctx ref, we can drop child_mutex, and
4286 * acquire ctx::mutex without fear of it going away. Then we
4287 * can re-acquire child_mutex.
4288 */
4289 mutex_unlock(&event->child_mutex);
4290 mutex_lock(&ctx->mutex);
4291 mutex_lock(&event->child_mutex);
4292
4293 /*
4294 * Now that we hold ctx::mutex and child_mutex, revalidate our
4295 * state, if child is still the first entry, it didn't get freed
4296 * and we can continue doing so.
4297 */
4298 tmp = list_first_entry_or_null(&event->child_list,
4299 struct perf_event, child_list);
4300 if (tmp == child) {
4301 perf_remove_from_context(child, DETACH_GROUP);
4302 list_del(&child->child_list);
4303 free_event(child);
4304 /*
4305 * This matches the refcount bump in inherit_event();
4306 * this can't be the last reference.
4307 */
4308 put_event(event);
4309 }
4310
4311 mutex_unlock(&event->child_mutex);
4312 mutex_unlock(&ctx->mutex);
4313 put_ctx(ctx);
4314 goto again;
4315 }
4316 mutex_unlock(&event->child_mutex);
4317
a4f4bb6d
PZ
4318no_ctx:
4319 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4320 return 0;
4321}
4322EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4323
8b10c5e2
PZ
4324/*
4325 * Called when the last reference to the file is gone.
4326 */
a6fa941d
AV
4327static int perf_release(struct inode *inode, struct file *file)
4328{
c6e5b732 4329 perf_event_release_kernel(file->private_data);
a6fa941d 4330 return 0;
fb0459d7 4331}
fb0459d7 4332
59ed446f 4333u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4334{
cdd6c482 4335 struct perf_event *child;
e53c0994
PZ
4336 u64 total = 0;
4337
59ed446f
PZ
4338 *enabled = 0;
4339 *running = 0;
4340
6f10581a 4341 mutex_lock(&event->child_mutex);
01add3ea 4342
7d88962e 4343 (void)perf_event_read(event, false);
01add3ea
SB
4344 total += perf_event_count(event);
4345
59ed446f
PZ
4346 *enabled += event->total_time_enabled +
4347 atomic64_read(&event->child_total_time_enabled);
4348 *running += event->total_time_running +
4349 atomic64_read(&event->child_total_time_running);
4350
4351 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4352 (void)perf_event_read(child, false);
01add3ea 4353 total += perf_event_count(child);
59ed446f
PZ
4354 *enabled += child->total_time_enabled;
4355 *running += child->total_time_running;
4356 }
6f10581a 4357 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4358
4359 return total;
4360}
fb0459d7 4361EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4362
7d88962e 4363static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4364 u64 read_format, u64 *values)
3dab77fb 4365{
fa8c2693
PZ
4366 struct perf_event *sub;
4367 int n = 1; /* skip @nr */
7d88962e 4368 int ret;
f63a8daa 4369
7d88962e
SB
4370 ret = perf_event_read(leader, true);
4371 if (ret)
4372 return ret;
abf4868b 4373
fa8c2693
PZ
4374 /*
4375 * Since we co-schedule groups, {enabled,running} times of siblings
4376 * will be identical to those of the leader, so we only publish one
4377 * set.
4378 */
4379 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4380 values[n++] += leader->total_time_enabled +
4381 atomic64_read(&leader->child_total_time_enabled);
4382 }
3dab77fb 4383
fa8c2693
PZ
4384 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4385 values[n++] += leader->total_time_running +
4386 atomic64_read(&leader->child_total_time_running);
4387 }
4388
4389 /*
4390 * Write {count,id} tuples for every sibling.
4391 */
4392 values[n++] += perf_event_count(leader);
abf4868b
PZ
4393 if (read_format & PERF_FORMAT_ID)
4394 values[n++] = primary_event_id(leader);
3dab77fb 4395
fa8c2693
PZ
4396 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4397 values[n++] += perf_event_count(sub);
4398 if (read_format & PERF_FORMAT_ID)
4399 values[n++] = primary_event_id(sub);
4400 }
7d88962e
SB
4401
4402 return 0;
fa8c2693 4403}
3dab77fb 4404
fa8c2693
PZ
4405static int perf_read_group(struct perf_event *event,
4406 u64 read_format, char __user *buf)
4407{
4408 struct perf_event *leader = event->group_leader, *child;
4409 struct perf_event_context *ctx = leader->ctx;
7d88962e 4410 int ret;
fa8c2693 4411 u64 *values;
3dab77fb 4412
fa8c2693 4413 lockdep_assert_held(&ctx->mutex);
3dab77fb 4414
fa8c2693
PZ
4415 values = kzalloc(event->read_size, GFP_KERNEL);
4416 if (!values)
4417 return -ENOMEM;
3dab77fb 4418
fa8c2693
PZ
4419 values[0] = 1 + leader->nr_siblings;
4420
4421 /*
4422 * By locking the child_mutex of the leader we effectively
4423 * lock the child list of all siblings.. XXX explain how.
4424 */
4425 mutex_lock(&leader->child_mutex);
abf4868b 4426
7d88962e
SB
4427 ret = __perf_read_group_add(leader, read_format, values);
4428 if (ret)
4429 goto unlock;
4430
4431 list_for_each_entry(child, &leader->child_list, child_list) {
4432 ret = __perf_read_group_add(child, read_format, values);
4433 if (ret)
4434 goto unlock;
4435 }
abf4868b 4436
fa8c2693 4437 mutex_unlock(&leader->child_mutex);
abf4868b 4438
7d88962e 4439 ret = event->read_size;
fa8c2693
PZ
4440 if (copy_to_user(buf, values, event->read_size))
4441 ret = -EFAULT;
7d88962e 4442 goto out;
fa8c2693 4443
7d88962e
SB
4444unlock:
4445 mutex_unlock(&leader->child_mutex);
4446out:
fa8c2693 4447 kfree(values);
abf4868b 4448 return ret;
3dab77fb
PZ
4449}
4450
b15f495b 4451static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4452 u64 read_format, char __user *buf)
4453{
59ed446f 4454 u64 enabled, running;
3dab77fb
PZ
4455 u64 values[4];
4456 int n = 0;
4457
59ed446f
PZ
4458 values[n++] = perf_event_read_value(event, &enabled, &running);
4459 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4460 values[n++] = enabled;
4461 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4462 values[n++] = running;
3dab77fb 4463 if (read_format & PERF_FORMAT_ID)
cdd6c482 4464 values[n++] = primary_event_id(event);
3dab77fb
PZ
4465
4466 if (copy_to_user(buf, values, n * sizeof(u64)))
4467 return -EFAULT;
4468
4469 return n * sizeof(u64);
4470}
4471
dc633982
JO
4472static bool is_event_hup(struct perf_event *event)
4473{
4474 bool no_children;
4475
a69b0ca4 4476 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4477 return false;
4478
4479 mutex_lock(&event->child_mutex);
4480 no_children = list_empty(&event->child_list);
4481 mutex_unlock(&event->child_mutex);
4482 return no_children;
4483}
4484
0793a61d 4485/*
cdd6c482 4486 * Read the performance event - simple non blocking version for now
0793a61d
TG
4487 */
4488static ssize_t
b15f495b 4489__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4490{
cdd6c482 4491 u64 read_format = event->attr.read_format;
3dab77fb 4492 int ret;
0793a61d 4493
3b6f9e5c 4494 /*
cdd6c482 4495 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4496 * error state (i.e. because it was pinned but it couldn't be
4497 * scheduled on to the CPU at some point).
4498 */
cdd6c482 4499 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4500 return 0;
4501
c320c7b7 4502 if (count < event->read_size)
3dab77fb
PZ
4503 return -ENOSPC;
4504
cdd6c482 4505 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4506 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4507 ret = perf_read_group(event, read_format, buf);
3dab77fb 4508 else
b15f495b 4509 ret = perf_read_one(event, read_format, buf);
0793a61d 4510
3dab77fb 4511 return ret;
0793a61d
TG
4512}
4513
0793a61d
TG
4514static ssize_t
4515perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4516{
cdd6c482 4517 struct perf_event *event = file->private_data;
f63a8daa
PZ
4518 struct perf_event_context *ctx;
4519 int ret;
0793a61d 4520
f63a8daa 4521 ctx = perf_event_ctx_lock(event);
b15f495b 4522 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4523 perf_event_ctx_unlock(event, ctx);
4524
4525 return ret;
0793a61d
TG
4526}
4527
4528static unsigned int perf_poll(struct file *file, poll_table *wait)
4529{
cdd6c482 4530 struct perf_event *event = file->private_data;
76369139 4531 struct ring_buffer *rb;
61b67684 4532 unsigned int events = POLLHUP;
c7138f37 4533
e708d7ad 4534 poll_wait(file, &event->waitq, wait);
179033b3 4535
dc633982 4536 if (is_event_hup(event))
179033b3 4537 return events;
c7138f37 4538
10c6db11 4539 /*
9bb5d40c
PZ
4540 * Pin the event->rb by taking event->mmap_mutex; otherwise
4541 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4542 */
4543 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4544 rb = event->rb;
4545 if (rb)
76369139 4546 events = atomic_xchg(&rb->poll, 0);
10c6db11 4547 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4548 return events;
4549}
4550
f63a8daa 4551static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4552{
7d88962e 4553 (void)perf_event_read(event, false);
e7850595 4554 local64_set(&event->count, 0);
cdd6c482 4555 perf_event_update_userpage(event);
3df5edad
PZ
4556}
4557
c93f7669 4558/*
cdd6c482
IM
4559 * Holding the top-level event's child_mutex means that any
4560 * descendant process that has inherited this event will block
8ba289b8 4561 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4562 * task existence requirements of perf_event_enable/disable.
c93f7669 4563 */
cdd6c482
IM
4564static void perf_event_for_each_child(struct perf_event *event,
4565 void (*func)(struct perf_event *))
3df5edad 4566{
cdd6c482 4567 struct perf_event *child;
3df5edad 4568
cdd6c482 4569 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4570
cdd6c482
IM
4571 mutex_lock(&event->child_mutex);
4572 func(event);
4573 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4574 func(child);
cdd6c482 4575 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4576}
4577
cdd6c482
IM
4578static void perf_event_for_each(struct perf_event *event,
4579 void (*func)(struct perf_event *))
3df5edad 4580{
cdd6c482
IM
4581 struct perf_event_context *ctx = event->ctx;
4582 struct perf_event *sibling;
3df5edad 4583
f63a8daa
PZ
4584 lockdep_assert_held(&ctx->mutex);
4585
cdd6c482 4586 event = event->group_leader;
75f937f2 4587
cdd6c482 4588 perf_event_for_each_child(event, func);
cdd6c482 4589 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4590 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4591}
4592
fae3fde6
PZ
4593static void __perf_event_period(struct perf_event *event,
4594 struct perf_cpu_context *cpuctx,
4595 struct perf_event_context *ctx,
4596 void *info)
c7999c6f 4597{
fae3fde6 4598 u64 value = *((u64 *)info);
c7999c6f 4599 bool active;
08247e31 4600
cdd6c482 4601 if (event->attr.freq) {
cdd6c482 4602 event->attr.sample_freq = value;
08247e31 4603 } else {
cdd6c482
IM
4604 event->attr.sample_period = value;
4605 event->hw.sample_period = value;
08247e31 4606 }
bad7192b
PZ
4607
4608 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4609 if (active) {
4610 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4611 /*
4612 * We could be throttled; unthrottle now to avoid the tick
4613 * trying to unthrottle while we already re-started the event.
4614 */
4615 if (event->hw.interrupts == MAX_INTERRUPTS) {
4616 event->hw.interrupts = 0;
4617 perf_log_throttle(event, 1);
4618 }
bad7192b
PZ
4619 event->pmu->stop(event, PERF_EF_UPDATE);
4620 }
4621
4622 local64_set(&event->hw.period_left, 0);
4623
4624 if (active) {
4625 event->pmu->start(event, PERF_EF_RELOAD);
4626 perf_pmu_enable(ctx->pmu);
4627 }
c7999c6f
PZ
4628}
4629
4630static int perf_event_period(struct perf_event *event, u64 __user *arg)
4631{
c7999c6f
PZ
4632 u64 value;
4633
4634 if (!is_sampling_event(event))
4635 return -EINVAL;
4636
4637 if (copy_from_user(&value, arg, sizeof(value)))
4638 return -EFAULT;
4639
4640 if (!value)
4641 return -EINVAL;
4642
4643 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4644 return -EINVAL;
4645
fae3fde6 4646 event_function_call(event, __perf_event_period, &value);
08247e31 4647
c7999c6f 4648 return 0;
08247e31
PZ
4649}
4650
ac9721f3
PZ
4651static const struct file_operations perf_fops;
4652
2903ff01 4653static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4654{
2903ff01
AV
4655 struct fd f = fdget(fd);
4656 if (!f.file)
4657 return -EBADF;
ac9721f3 4658
2903ff01
AV
4659 if (f.file->f_op != &perf_fops) {
4660 fdput(f);
4661 return -EBADF;
ac9721f3 4662 }
2903ff01
AV
4663 *p = f;
4664 return 0;
ac9721f3
PZ
4665}
4666
4667static int perf_event_set_output(struct perf_event *event,
4668 struct perf_event *output_event);
6fb2915d 4669static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4670static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4671
f63a8daa 4672static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4673{
cdd6c482 4674 void (*func)(struct perf_event *);
3df5edad 4675 u32 flags = arg;
d859e29f
PM
4676
4677 switch (cmd) {
cdd6c482 4678 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4679 func = _perf_event_enable;
d859e29f 4680 break;
cdd6c482 4681 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4682 func = _perf_event_disable;
79f14641 4683 break;
cdd6c482 4684 case PERF_EVENT_IOC_RESET:
f63a8daa 4685 func = _perf_event_reset;
6de6a7b9 4686 break;
3df5edad 4687
cdd6c482 4688 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4689 return _perf_event_refresh(event, arg);
08247e31 4690
cdd6c482
IM
4691 case PERF_EVENT_IOC_PERIOD:
4692 return perf_event_period(event, (u64 __user *)arg);
08247e31 4693
cf4957f1
JO
4694 case PERF_EVENT_IOC_ID:
4695 {
4696 u64 id = primary_event_id(event);
4697
4698 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4699 return -EFAULT;
4700 return 0;
4701 }
4702
cdd6c482 4703 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4704 {
ac9721f3 4705 int ret;
ac9721f3 4706 if (arg != -1) {
2903ff01
AV
4707 struct perf_event *output_event;
4708 struct fd output;
4709 ret = perf_fget_light(arg, &output);
4710 if (ret)
4711 return ret;
4712 output_event = output.file->private_data;
4713 ret = perf_event_set_output(event, output_event);
4714 fdput(output);
4715 } else {
4716 ret = perf_event_set_output(event, NULL);
ac9721f3 4717 }
ac9721f3
PZ
4718 return ret;
4719 }
a4be7c27 4720
6fb2915d
LZ
4721 case PERF_EVENT_IOC_SET_FILTER:
4722 return perf_event_set_filter(event, (void __user *)arg);
4723
2541517c
AS
4724 case PERF_EVENT_IOC_SET_BPF:
4725 return perf_event_set_bpf_prog(event, arg);
4726
86e7972f
WN
4727 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4728 struct ring_buffer *rb;
4729
4730 rcu_read_lock();
4731 rb = rcu_dereference(event->rb);
4732 if (!rb || !rb->nr_pages) {
4733 rcu_read_unlock();
4734 return -EINVAL;
4735 }
4736 rb_toggle_paused(rb, !!arg);
4737 rcu_read_unlock();
4738 return 0;
4739 }
d859e29f 4740 default:
3df5edad 4741 return -ENOTTY;
d859e29f 4742 }
3df5edad
PZ
4743
4744 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4745 perf_event_for_each(event, func);
3df5edad 4746 else
cdd6c482 4747 perf_event_for_each_child(event, func);
3df5edad
PZ
4748
4749 return 0;
d859e29f
PM
4750}
4751
f63a8daa
PZ
4752static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4753{
4754 struct perf_event *event = file->private_data;
4755 struct perf_event_context *ctx;
4756 long ret;
4757
4758 ctx = perf_event_ctx_lock(event);
4759 ret = _perf_ioctl(event, cmd, arg);
4760 perf_event_ctx_unlock(event, ctx);
4761
4762 return ret;
4763}
4764
b3f20785
PM
4765#ifdef CONFIG_COMPAT
4766static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4767 unsigned long arg)
4768{
4769 switch (_IOC_NR(cmd)) {
4770 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4771 case _IOC_NR(PERF_EVENT_IOC_ID):
4772 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4773 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4774 cmd &= ~IOCSIZE_MASK;
4775 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4776 }
4777 break;
4778 }
4779 return perf_ioctl(file, cmd, arg);
4780}
4781#else
4782# define perf_compat_ioctl NULL
4783#endif
4784
cdd6c482 4785int perf_event_task_enable(void)
771d7cde 4786{
f63a8daa 4787 struct perf_event_context *ctx;
cdd6c482 4788 struct perf_event *event;
771d7cde 4789
cdd6c482 4790 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4791 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4792 ctx = perf_event_ctx_lock(event);
4793 perf_event_for_each_child(event, _perf_event_enable);
4794 perf_event_ctx_unlock(event, ctx);
4795 }
cdd6c482 4796 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4797
4798 return 0;
4799}
4800
cdd6c482 4801int perf_event_task_disable(void)
771d7cde 4802{
f63a8daa 4803 struct perf_event_context *ctx;
cdd6c482 4804 struct perf_event *event;
771d7cde 4805
cdd6c482 4806 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4807 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4808 ctx = perf_event_ctx_lock(event);
4809 perf_event_for_each_child(event, _perf_event_disable);
4810 perf_event_ctx_unlock(event, ctx);
4811 }
cdd6c482 4812 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4813
4814 return 0;
4815}
4816
cdd6c482 4817static int perf_event_index(struct perf_event *event)
194002b2 4818{
a4eaf7f1
PZ
4819 if (event->hw.state & PERF_HES_STOPPED)
4820 return 0;
4821
cdd6c482 4822 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4823 return 0;
4824
35edc2a5 4825 return event->pmu->event_idx(event);
194002b2
PZ
4826}
4827
c4794295 4828static void calc_timer_values(struct perf_event *event,
e3f3541c 4829 u64 *now,
7f310a5d
EM
4830 u64 *enabled,
4831 u64 *running)
c4794295 4832{
e3f3541c 4833 u64 ctx_time;
c4794295 4834
e3f3541c
PZ
4835 *now = perf_clock();
4836 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4837 *enabled = ctx_time - event->tstamp_enabled;
4838 *running = ctx_time - event->tstamp_running;
4839}
4840
fa731587
PZ
4841static void perf_event_init_userpage(struct perf_event *event)
4842{
4843 struct perf_event_mmap_page *userpg;
4844 struct ring_buffer *rb;
4845
4846 rcu_read_lock();
4847 rb = rcu_dereference(event->rb);
4848 if (!rb)
4849 goto unlock;
4850
4851 userpg = rb->user_page;
4852
4853 /* Allow new userspace to detect that bit 0 is deprecated */
4854 userpg->cap_bit0_is_deprecated = 1;
4855 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4856 userpg->data_offset = PAGE_SIZE;
4857 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4858
4859unlock:
4860 rcu_read_unlock();
4861}
4862
c1317ec2
AL
4863void __weak arch_perf_update_userpage(
4864 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4865{
4866}
4867
38ff667b
PZ
4868/*
4869 * Callers need to ensure there can be no nesting of this function, otherwise
4870 * the seqlock logic goes bad. We can not serialize this because the arch
4871 * code calls this from NMI context.
4872 */
cdd6c482 4873void perf_event_update_userpage(struct perf_event *event)
37d81828 4874{
cdd6c482 4875 struct perf_event_mmap_page *userpg;
76369139 4876 struct ring_buffer *rb;
e3f3541c 4877 u64 enabled, running, now;
38ff667b
PZ
4878
4879 rcu_read_lock();
5ec4c599
PZ
4880 rb = rcu_dereference(event->rb);
4881 if (!rb)
4882 goto unlock;
4883
0d641208
EM
4884 /*
4885 * compute total_time_enabled, total_time_running
4886 * based on snapshot values taken when the event
4887 * was last scheduled in.
4888 *
4889 * we cannot simply called update_context_time()
4890 * because of locking issue as we can be called in
4891 * NMI context
4892 */
e3f3541c 4893 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4894
76369139 4895 userpg = rb->user_page;
7b732a75
PZ
4896 /*
4897 * Disable preemption so as to not let the corresponding user-space
4898 * spin too long if we get preempted.
4899 */
4900 preempt_disable();
37d81828 4901 ++userpg->lock;
92f22a38 4902 barrier();
cdd6c482 4903 userpg->index = perf_event_index(event);
b5e58793 4904 userpg->offset = perf_event_count(event);
365a4038 4905 if (userpg->index)
e7850595 4906 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4907
0d641208 4908 userpg->time_enabled = enabled +
cdd6c482 4909 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4910
0d641208 4911 userpg->time_running = running +
cdd6c482 4912 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4913
c1317ec2 4914 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4915
92f22a38 4916 barrier();
37d81828 4917 ++userpg->lock;
7b732a75 4918 preempt_enable();
38ff667b 4919unlock:
7b732a75 4920 rcu_read_unlock();
37d81828
PM
4921}
4922
906010b2
PZ
4923static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4924{
4925 struct perf_event *event = vma->vm_file->private_data;
76369139 4926 struct ring_buffer *rb;
906010b2
PZ
4927 int ret = VM_FAULT_SIGBUS;
4928
4929 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4930 if (vmf->pgoff == 0)
4931 ret = 0;
4932 return ret;
4933 }
4934
4935 rcu_read_lock();
76369139
FW
4936 rb = rcu_dereference(event->rb);
4937 if (!rb)
906010b2
PZ
4938 goto unlock;
4939
4940 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4941 goto unlock;
4942
76369139 4943 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4944 if (!vmf->page)
4945 goto unlock;
4946
4947 get_page(vmf->page);
4948 vmf->page->mapping = vma->vm_file->f_mapping;
4949 vmf->page->index = vmf->pgoff;
4950
4951 ret = 0;
4952unlock:
4953 rcu_read_unlock();
4954
4955 return ret;
4956}
4957
10c6db11
PZ
4958static void ring_buffer_attach(struct perf_event *event,
4959 struct ring_buffer *rb)
4960{
b69cf536 4961 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4962 unsigned long flags;
4963
b69cf536
PZ
4964 if (event->rb) {
4965 /*
4966 * Should be impossible, we set this when removing
4967 * event->rb_entry and wait/clear when adding event->rb_entry.
4968 */
4969 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4970
b69cf536 4971 old_rb = event->rb;
b69cf536
PZ
4972 spin_lock_irqsave(&old_rb->event_lock, flags);
4973 list_del_rcu(&event->rb_entry);
4974 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4975
2f993cf0
ON
4976 event->rcu_batches = get_state_synchronize_rcu();
4977 event->rcu_pending = 1;
b69cf536 4978 }
10c6db11 4979
b69cf536 4980 if (rb) {
2f993cf0
ON
4981 if (event->rcu_pending) {
4982 cond_synchronize_rcu(event->rcu_batches);
4983 event->rcu_pending = 0;
4984 }
4985
b69cf536
PZ
4986 spin_lock_irqsave(&rb->event_lock, flags);
4987 list_add_rcu(&event->rb_entry, &rb->event_list);
4988 spin_unlock_irqrestore(&rb->event_lock, flags);
4989 }
4990
767ae086
AS
4991 /*
4992 * Avoid racing with perf_mmap_close(AUX): stop the event
4993 * before swizzling the event::rb pointer; if it's getting
4994 * unmapped, its aux_mmap_count will be 0 and it won't
4995 * restart. See the comment in __perf_pmu_output_stop().
4996 *
4997 * Data will inevitably be lost when set_output is done in
4998 * mid-air, but then again, whoever does it like this is
4999 * not in for the data anyway.
5000 */
5001 if (has_aux(event))
5002 perf_event_stop(event, 0);
5003
b69cf536
PZ
5004 rcu_assign_pointer(event->rb, rb);
5005
5006 if (old_rb) {
5007 ring_buffer_put(old_rb);
5008 /*
5009 * Since we detached before setting the new rb, so that we
5010 * could attach the new rb, we could have missed a wakeup.
5011 * Provide it now.
5012 */
5013 wake_up_all(&event->waitq);
5014 }
10c6db11
PZ
5015}
5016
5017static void ring_buffer_wakeup(struct perf_event *event)
5018{
5019 struct ring_buffer *rb;
5020
5021 rcu_read_lock();
5022 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5023 if (rb) {
5024 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5025 wake_up_all(&event->waitq);
5026 }
10c6db11
PZ
5027 rcu_read_unlock();
5028}
5029
fdc26706 5030struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5031{
76369139 5032 struct ring_buffer *rb;
7b732a75 5033
ac9721f3 5034 rcu_read_lock();
76369139
FW
5035 rb = rcu_dereference(event->rb);
5036 if (rb) {
5037 if (!atomic_inc_not_zero(&rb->refcount))
5038 rb = NULL;
ac9721f3
PZ
5039 }
5040 rcu_read_unlock();
5041
76369139 5042 return rb;
ac9721f3
PZ
5043}
5044
fdc26706 5045void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5046{
76369139 5047 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5048 return;
7b732a75 5049
9bb5d40c 5050 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5051
76369139 5052 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5053}
5054
5055static void perf_mmap_open(struct vm_area_struct *vma)
5056{
cdd6c482 5057 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5058
cdd6c482 5059 atomic_inc(&event->mmap_count);
9bb5d40c 5060 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5061
45bfb2e5
PZ
5062 if (vma->vm_pgoff)
5063 atomic_inc(&event->rb->aux_mmap_count);
5064
1e0fb9ec
AL
5065 if (event->pmu->event_mapped)
5066 event->pmu->event_mapped(event);
7b732a75
PZ
5067}
5068
95ff4ca2
AS
5069static void perf_pmu_output_stop(struct perf_event *event);
5070
9bb5d40c
PZ
5071/*
5072 * A buffer can be mmap()ed multiple times; either directly through the same
5073 * event, or through other events by use of perf_event_set_output().
5074 *
5075 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5076 * the buffer here, where we still have a VM context. This means we need
5077 * to detach all events redirecting to us.
5078 */
7b732a75
PZ
5079static void perf_mmap_close(struct vm_area_struct *vma)
5080{
cdd6c482 5081 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5082
b69cf536 5083 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5084 struct user_struct *mmap_user = rb->mmap_user;
5085 int mmap_locked = rb->mmap_locked;
5086 unsigned long size = perf_data_size(rb);
789f90fc 5087
1e0fb9ec
AL
5088 if (event->pmu->event_unmapped)
5089 event->pmu->event_unmapped(event);
5090
45bfb2e5
PZ
5091 /*
5092 * rb->aux_mmap_count will always drop before rb->mmap_count and
5093 * event->mmap_count, so it is ok to use event->mmap_mutex to
5094 * serialize with perf_mmap here.
5095 */
5096 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5097 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5098 /*
5099 * Stop all AUX events that are writing to this buffer,
5100 * so that we can free its AUX pages and corresponding PMU
5101 * data. Note that after rb::aux_mmap_count dropped to zero,
5102 * they won't start any more (see perf_aux_output_begin()).
5103 */
5104 perf_pmu_output_stop(event);
5105
5106 /* now it's safe to free the pages */
45bfb2e5
PZ
5107 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5108 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5109
95ff4ca2 5110 /* this has to be the last one */
45bfb2e5 5111 rb_free_aux(rb);
95ff4ca2
AS
5112 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5113
45bfb2e5
PZ
5114 mutex_unlock(&event->mmap_mutex);
5115 }
5116
9bb5d40c
PZ
5117 atomic_dec(&rb->mmap_count);
5118
5119 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5120 goto out_put;
9bb5d40c 5121
b69cf536 5122 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5123 mutex_unlock(&event->mmap_mutex);
5124
5125 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5126 if (atomic_read(&rb->mmap_count))
5127 goto out_put;
ac9721f3 5128
9bb5d40c
PZ
5129 /*
5130 * No other mmap()s, detach from all other events that might redirect
5131 * into the now unreachable buffer. Somewhat complicated by the
5132 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5133 */
5134again:
5135 rcu_read_lock();
5136 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5137 if (!atomic_long_inc_not_zero(&event->refcount)) {
5138 /*
5139 * This event is en-route to free_event() which will
5140 * detach it and remove it from the list.
5141 */
5142 continue;
5143 }
5144 rcu_read_unlock();
789f90fc 5145
9bb5d40c
PZ
5146 mutex_lock(&event->mmap_mutex);
5147 /*
5148 * Check we didn't race with perf_event_set_output() which can
5149 * swizzle the rb from under us while we were waiting to
5150 * acquire mmap_mutex.
5151 *
5152 * If we find a different rb; ignore this event, a next
5153 * iteration will no longer find it on the list. We have to
5154 * still restart the iteration to make sure we're not now
5155 * iterating the wrong list.
5156 */
b69cf536
PZ
5157 if (event->rb == rb)
5158 ring_buffer_attach(event, NULL);
5159
cdd6c482 5160 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5161 put_event(event);
ac9721f3 5162
9bb5d40c
PZ
5163 /*
5164 * Restart the iteration; either we're on the wrong list or
5165 * destroyed its integrity by doing a deletion.
5166 */
5167 goto again;
7b732a75 5168 }
9bb5d40c
PZ
5169 rcu_read_unlock();
5170
5171 /*
5172 * It could be there's still a few 0-ref events on the list; they'll
5173 * get cleaned up by free_event() -- they'll also still have their
5174 * ref on the rb and will free it whenever they are done with it.
5175 *
5176 * Aside from that, this buffer is 'fully' detached and unmapped,
5177 * undo the VM accounting.
5178 */
5179
5180 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5181 vma->vm_mm->pinned_vm -= mmap_locked;
5182 free_uid(mmap_user);
5183
b69cf536 5184out_put:
9bb5d40c 5185 ring_buffer_put(rb); /* could be last */
37d81828
PM
5186}
5187
f0f37e2f 5188static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5189 .open = perf_mmap_open,
45bfb2e5 5190 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5191 .fault = perf_mmap_fault,
5192 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5193};
5194
5195static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5196{
cdd6c482 5197 struct perf_event *event = file->private_data;
22a4f650 5198 unsigned long user_locked, user_lock_limit;
789f90fc 5199 struct user_struct *user = current_user();
22a4f650 5200 unsigned long locked, lock_limit;
45bfb2e5 5201 struct ring_buffer *rb = NULL;
7b732a75
PZ
5202 unsigned long vma_size;
5203 unsigned long nr_pages;
45bfb2e5 5204 long user_extra = 0, extra = 0;
d57e34fd 5205 int ret = 0, flags = 0;
37d81828 5206
c7920614
PZ
5207 /*
5208 * Don't allow mmap() of inherited per-task counters. This would
5209 * create a performance issue due to all children writing to the
76369139 5210 * same rb.
c7920614
PZ
5211 */
5212 if (event->cpu == -1 && event->attr.inherit)
5213 return -EINVAL;
5214
43a21ea8 5215 if (!(vma->vm_flags & VM_SHARED))
37d81828 5216 return -EINVAL;
7b732a75
PZ
5217
5218 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5219
5220 if (vma->vm_pgoff == 0) {
5221 nr_pages = (vma_size / PAGE_SIZE) - 1;
5222 } else {
5223 /*
5224 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5225 * mapped, all subsequent mappings should have the same size
5226 * and offset. Must be above the normal perf buffer.
5227 */
5228 u64 aux_offset, aux_size;
5229
5230 if (!event->rb)
5231 return -EINVAL;
5232
5233 nr_pages = vma_size / PAGE_SIZE;
5234
5235 mutex_lock(&event->mmap_mutex);
5236 ret = -EINVAL;
5237
5238 rb = event->rb;
5239 if (!rb)
5240 goto aux_unlock;
5241
5242 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5243 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5244
5245 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5246 goto aux_unlock;
5247
5248 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5249 goto aux_unlock;
5250
5251 /* already mapped with a different offset */
5252 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5253 goto aux_unlock;
5254
5255 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5256 goto aux_unlock;
5257
5258 /* already mapped with a different size */
5259 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5260 goto aux_unlock;
5261
5262 if (!is_power_of_2(nr_pages))
5263 goto aux_unlock;
5264
5265 if (!atomic_inc_not_zero(&rb->mmap_count))
5266 goto aux_unlock;
5267
5268 if (rb_has_aux(rb)) {
5269 atomic_inc(&rb->aux_mmap_count);
5270 ret = 0;
5271 goto unlock;
5272 }
5273
5274 atomic_set(&rb->aux_mmap_count, 1);
5275 user_extra = nr_pages;
5276
5277 goto accounting;
5278 }
7b732a75 5279
7730d865 5280 /*
76369139 5281 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5282 * can do bitmasks instead of modulo.
5283 */
2ed11312 5284 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5285 return -EINVAL;
5286
7b732a75 5287 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5288 return -EINVAL;
5289
cdd6c482 5290 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5291again:
cdd6c482 5292 mutex_lock(&event->mmap_mutex);
76369139 5293 if (event->rb) {
9bb5d40c 5294 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5295 ret = -EINVAL;
9bb5d40c
PZ
5296 goto unlock;
5297 }
5298
5299 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5300 /*
5301 * Raced against perf_mmap_close() through
5302 * perf_event_set_output(). Try again, hope for better
5303 * luck.
5304 */
5305 mutex_unlock(&event->mmap_mutex);
5306 goto again;
5307 }
5308
ebb3c4c4
PZ
5309 goto unlock;
5310 }
5311
789f90fc 5312 user_extra = nr_pages + 1;
45bfb2e5
PZ
5313
5314accounting:
cdd6c482 5315 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5316
5317 /*
5318 * Increase the limit linearly with more CPUs:
5319 */
5320 user_lock_limit *= num_online_cpus();
5321
789f90fc 5322 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5323
789f90fc
PZ
5324 if (user_locked > user_lock_limit)
5325 extra = user_locked - user_lock_limit;
7b732a75 5326
78d7d407 5327 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5328 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5329 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5330
459ec28a
IM
5331 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5332 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5333 ret = -EPERM;
5334 goto unlock;
5335 }
7b732a75 5336
45bfb2e5 5337 WARN_ON(!rb && event->rb);
906010b2 5338
d57e34fd 5339 if (vma->vm_flags & VM_WRITE)
76369139 5340 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5341
76369139 5342 if (!rb) {
45bfb2e5
PZ
5343 rb = rb_alloc(nr_pages,
5344 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5345 event->cpu, flags);
26cb63ad 5346
45bfb2e5
PZ
5347 if (!rb) {
5348 ret = -ENOMEM;
5349 goto unlock;
5350 }
43a21ea8 5351
45bfb2e5
PZ
5352 atomic_set(&rb->mmap_count, 1);
5353 rb->mmap_user = get_current_user();
5354 rb->mmap_locked = extra;
26cb63ad 5355
45bfb2e5 5356 ring_buffer_attach(event, rb);
ac9721f3 5357
45bfb2e5
PZ
5358 perf_event_init_userpage(event);
5359 perf_event_update_userpage(event);
5360 } else {
1a594131
AS
5361 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5362 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5363 if (!ret)
5364 rb->aux_mmap_locked = extra;
5365 }
9a0f05cb 5366
ebb3c4c4 5367unlock:
45bfb2e5
PZ
5368 if (!ret) {
5369 atomic_long_add(user_extra, &user->locked_vm);
5370 vma->vm_mm->pinned_vm += extra;
5371
ac9721f3 5372 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5373 } else if (rb) {
5374 atomic_dec(&rb->mmap_count);
5375 }
5376aux_unlock:
cdd6c482 5377 mutex_unlock(&event->mmap_mutex);
37d81828 5378
9bb5d40c
PZ
5379 /*
5380 * Since pinned accounting is per vm we cannot allow fork() to copy our
5381 * vma.
5382 */
26cb63ad 5383 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5384 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5385
1e0fb9ec
AL
5386 if (event->pmu->event_mapped)
5387 event->pmu->event_mapped(event);
5388
7b732a75 5389 return ret;
37d81828
PM
5390}
5391
3c446b3d
PZ
5392static int perf_fasync(int fd, struct file *filp, int on)
5393{
496ad9aa 5394 struct inode *inode = file_inode(filp);
cdd6c482 5395 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5396 int retval;
5397
5955102c 5398 inode_lock(inode);
cdd6c482 5399 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5400 inode_unlock(inode);
3c446b3d
PZ
5401
5402 if (retval < 0)
5403 return retval;
5404
5405 return 0;
5406}
5407
0793a61d 5408static const struct file_operations perf_fops = {
3326c1ce 5409 .llseek = no_llseek,
0793a61d
TG
5410 .release = perf_release,
5411 .read = perf_read,
5412 .poll = perf_poll,
d859e29f 5413 .unlocked_ioctl = perf_ioctl,
b3f20785 5414 .compat_ioctl = perf_compat_ioctl,
37d81828 5415 .mmap = perf_mmap,
3c446b3d 5416 .fasync = perf_fasync,
0793a61d
TG
5417};
5418
925d519a 5419/*
cdd6c482 5420 * Perf event wakeup
925d519a
PZ
5421 *
5422 * If there's data, ensure we set the poll() state and publish everything
5423 * to user-space before waking everybody up.
5424 */
5425
fed66e2c
PZ
5426static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5427{
5428 /* only the parent has fasync state */
5429 if (event->parent)
5430 event = event->parent;
5431 return &event->fasync;
5432}
5433
cdd6c482 5434void perf_event_wakeup(struct perf_event *event)
925d519a 5435{
10c6db11 5436 ring_buffer_wakeup(event);
4c9e2542 5437
cdd6c482 5438 if (event->pending_kill) {
fed66e2c 5439 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5440 event->pending_kill = 0;
4c9e2542 5441 }
925d519a
PZ
5442}
5443
e360adbe 5444static void perf_pending_event(struct irq_work *entry)
79f14641 5445{
cdd6c482
IM
5446 struct perf_event *event = container_of(entry,
5447 struct perf_event, pending);
d525211f
PZ
5448 int rctx;
5449
5450 rctx = perf_swevent_get_recursion_context();
5451 /*
5452 * If we 'fail' here, that's OK, it means recursion is already disabled
5453 * and we won't recurse 'further'.
5454 */
79f14641 5455
cdd6c482
IM
5456 if (event->pending_disable) {
5457 event->pending_disable = 0;
fae3fde6 5458 perf_event_disable_local(event);
79f14641
PZ
5459 }
5460
cdd6c482
IM
5461 if (event->pending_wakeup) {
5462 event->pending_wakeup = 0;
5463 perf_event_wakeup(event);
79f14641 5464 }
d525211f
PZ
5465
5466 if (rctx >= 0)
5467 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5468}
5469
39447b38
ZY
5470/*
5471 * We assume there is only KVM supporting the callbacks.
5472 * Later on, we might change it to a list if there is
5473 * another virtualization implementation supporting the callbacks.
5474 */
5475struct perf_guest_info_callbacks *perf_guest_cbs;
5476
5477int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5478{
5479 perf_guest_cbs = cbs;
5480 return 0;
5481}
5482EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5483
5484int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5485{
5486 perf_guest_cbs = NULL;
5487 return 0;
5488}
5489EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5490
4018994f
JO
5491static void
5492perf_output_sample_regs(struct perf_output_handle *handle,
5493 struct pt_regs *regs, u64 mask)
5494{
5495 int bit;
29dd3288 5496 DECLARE_BITMAP(_mask, 64);
4018994f 5497
29dd3288
MS
5498 bitmap_from_u64(_mask, mask);
5499 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5500 u64 val;
5501
5502 val = perf_reg_value(regs, bit);
5503 perf_output_put(handle, val);
5504 }
5505}
5506
60e2364e 5507static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5508 struct pt_regs *regs,
5509 struct pt_regs *regs_user_copy)
4018994f 5510{
88a7c26a
AL
5511 if (user_mode(regs)) {
5512 regs_user->abi = perf_reg_abi(current);
2565711f 5513 regs_user->regs = regs;
88a7c26a
AL
5514 } else if (current->mm) {
5515 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5516 } else {
5517 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5518 regs_user->regs = NULL;
4018994f
JO
5519 }
5520}
5521
60e2364e
SE
5522static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5523 struct pt_regs *regs)
5524{
5525 regs_intr->regs = regs;
5526 regs_intr->abi = perf_reg_abi(current);
5527}
5528
5529
c5ebcedb
JO
5530/*
5531 * Get remaining task size from user stack pointer.
5532 *
5533 * It'd be better to take stack vma map and limit this more
5534 * precisly, but there's no way to get it safely under interrupt,
5535 * so using TASK_SIZE as limit.
5536 */
5537static u64 perf_ustack_task_size(struct pt_regs *regs)
5538{
5539 unsigned long addr = perf_user_stack_pointer(regs);
5540
5541 if (!addr || addr >= TASK_SIZE)
5542 return 0;
5543
5544 return TASK_SIZE - addr;
5545}
5546
5547static u16
5548perf_sample_ustack_size(u16 stack_size, u16 header_size,
5549 struct pt_regs *regs)
5550{
5551 u64 task_size;
5552
5553 /* No regs, no stack pointer, no dump. */
5554 if (!regs)
5555 return 0;
5556
5557 /*
5558 * Check if we fit in with the requested stack size into the:
5559 * - TASK_SIZE
5560 * If we don't, we limit the size to the TASK_SIZE.
5561 *
5562 * - remaining sample size
5563 * If we don't, we customize the stack size to
5564 * fit in to the remaining sample size.
5565 */
5566
5567 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5568 stack_size = min(stack_size, (u16) task_size);
5569
5570 /* Current header size plus static size and dynamic size. */
5571 header_size += 2 * sizeof(u64);
5572
5573 /* Do we fit in with the current stack dump size? */
5574 if ((u16) (header_size + stack_size) < header_size) {
5575 /*
5576 * If we overflow the maximum size for the sample,
5577 * we customize the stack dump size to fit in.
5578 */
5579 stack_size = USHRT_MAX - header_size - sizeof(u64);
5580 stack_size = round_up(stack_size, sizeof(u64));
5581 }
5582
5583 return stack_size;
5584}
5585
5586static void
5587perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5588 struct pt_regs *regs)
5589{
5590 /* Case of a kernel thread, nothing to dump */
5591 if (!regs) {
5592 u64 size = 0;
5593 perf_output_put(handle, size);
5594 } else {
5595 unsigned long sp;
5596 unsigned int rem;
5597 u64 dyn_size;
5598
5599 /*
5600 * We dump:
5601 * static size
5602 * - the size requested by user or the best one we can fit
5603 * in to the sample max size
5604 * data
5605 * - user stack dump data
5606 * dynamic size
5607 * - the actual dumped size
5608 */
5609
5610 /* Static size. */
5611 perf_output_put(handle, dump_size);
5612
5613 /* Data. */
5614 sp = perf_user_stack_pointer(regs);
5615 rem = __output_copy_user(handle, (void *) sp, dump_size);
5616 dyn_size = dump_size - rem;
5617
5618 perf_output_skip(handle, rem);
5619
5620 /* Dynamic size. */
5621 perf_output_put(handle, dyn_size);
5622 }
5623}
5624
c980d109
ACM
5625static void __perf_event_header__init_id(struct perf_event_header *header,
5626 struct perf_sample_data *data,
5627 struct perf_event *event)
6844c09d
ACM
5628{
5629 u64 sample_type = event->attr.sample_type;
5630
5631 data->type = sample_type;
5632 header->size += event->id_header_size;
5633
5634 if (sample_type & PERF_SAMPLE_TID) {
5635 /* namespace issues */
5636 data->tid_entry.pid = perf_event_pid(event, current);
5637 data->tid_entry.tid = perf_event_tid(event, current);
5638 }
5639
5640 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5641 data->time = perf_event_clock(event);
6844c09d 5642
ff3d527c 5643 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5644 data->id = primary_event_id(event);
5645
5646 if (sample_type & PERF_SAMPLE_STREAM_ID)
5647 data->stream_id = event->id;
5648
5649 if (sample_type & PERF_SAMPLE_CPU) {
5650 data->cpu_entry.cpu = raw_smp_processor_id();
5651 data->cpu_entry.reserved = 0;
5652 }
5653}
5654
76369139
FW
5655void perf_event_header__init_id(struct perf_event_header *header,
5656 struct perf_sample_data *data,
5657 struct perf_event *event)
c980d109
ACM
5658{
5659 if (event->attr.sample_id_all)
5660 __perf_event_header__init_id(header, data, event);
5661}
5662
5663static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5664 struct perf_sample_data *data)
5665{
5666 u64 sample_type = data->type;
5667
5668 if (sample_type & PERF_SAMPLE_TID)
5669 perf_output_put(handle, data->tid_entry);
5670
5671 if (sample_type & PERF_SAMPLE_TIME)
5672 perf_output_put(handle, data->time);
5673
5674 if (sample_type & PERF_SAMPLE_ID)
5675 perf_output_put(handle, data->id);
5676
5677 if (sample_type & PERF_SAMPLE_STREAM_ID)
5678 perf_output_put(handle, data->stream_id);
5679
5680 if (sample_type & PERF_SAMPLE_CPU)
5681 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5682
5683 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5684 perf_output_put(handle, data->id);
c980d109
ACM
5685}
5686
76369139
FW
5687void perf_event__output_id_sample(struct perf_event *event,
5688 struct perf_output_handle *handle,
5689 struct perf_sample_data *sample)
c980d109
ACM
5690{
5691 if (event->attr.sample_id_all)
5692 __perf_event__output_id_sample(handle, sample);
5693}
5694
3dab77fb 5695static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5696 struct perf_event *event,
5697 u64 enabled, u64 running)
3dab77fb 5698{
cdd6c482 5699 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5700 u64 values[4];
5701 int n = 0;
5702
b5e58793 5703 values[n++] = perf_event_count(event);
3dab77fb 5704 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5705 values[n++] = enabled +
cdd6c482 5706 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5707 }
5708 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5709 values[n++] = running +
cdd6c482 5710 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5711 }
5712 if (read_format & PERF_FORMAT_ID)
cdd6c482 5713 values[n++] = primary_event_id(event);
3dab77fb 5714
76369139 5715 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5716}
5717
5718/*
cdd6c482 5719 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5720 */
5721static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5722 struct perf_event *event,
5723 u64 enabled, u64 running)
3dab77fb 5724{
cdd6c482
IM
5725 struct perf_event *leader = event->group_leader, *sub;
5726 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5727 u64 values[5];
5728 int n = 0;
5729
5730 values[n++] = 1 + leader->nr_siblings;
5731
5732 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5733 values[n++] = enabled;
3dab77fb
PZ
5734
5735 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5736 values[n++] = running;
3dab77fb 5737
cdd6c482 5738 if (leader != event)
3dab77fb
PZ
5739 leader->pmu->read(leader);
5740
b5e58793 5741 values[n++] = perf_event_count(leader);
3dab77fb 5742 if (read_format & PERF_FORMAT_ID)
cdd6c482 5743 values[n++] = primary_event_id(leader);
3dab77fb 5744
76369139 5745 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5746
65abc865 5747 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5748 n = 0;
5749
6f5ab001
JO
5750 if ((sub != event) &&
5751 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5752 sub->pmu->read(sub);
5753
b5e58793 5754 values[n++] = perf_event_count(sub);
3dab77fb 5755 if (read_format & PERF_FORMAT_ID)
cdd6c482 5756 values[n++] = primary_event_id(sub);
3dab77fb 5757
76369139 5758 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5759 }
5760}
5761
eed01528
SE
5762#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5763 PERF_FORMAT_TOTAL_TIME_RUNNING)
5764
3dab77fb 5765static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5766 struct perf_event *event)
3dab77fb 5767{
e3f3541c 5768 u64 enabled = 0, running = 0, now;
eed01528
SE
5769 u64 read_format = event->attr.read_format;
5770
5771 /*
5772 * compute total_time_enabled, total_time_running
5773 * based on snapshot values taken when the event
5774 * was last scheduled in.
5775 *
5776 * we cannot simply called update_context_time()
5777 * because of locking issue as we are called in
5778 * NMI context
5779 */
c4794295 5780 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5781 calc_timer_values(event, &now, &enabled, &running);
eed01528 5782
cdd6c482 5783 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5784 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5785 else
eed01528 5786 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5787}
5788
5622f295
MM
5789void perf_output_sample(struct perf_output_handle *handle,
5790 struct perf_event_header *header,
5791 struct perf_sample_data *data,
cdd6c482 5792 struct perf_event *event)
5622f295
MM
5793{
5794 u64 sample_type = data->type;
5795
5796 perf_output_put(handle, *header);
5797
ff3d527c
AH
5798 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5799 perf_output_put(handle, data->id);
5800
5622f295
MM
5801 if (sample_type & PERF_SAMPLE_IP)
5802 perf_output_put(handle, data->ip);
5803
5804 if (sample_type & PERF_SAMPLE_TID)
5805 perf_output_put(handle, data->tid_entry);
5806
5807 if (sample_type & PERF_SAMPLE_TIME)
5808 perf_output_put(handle, data->time);
5809
5810 if (sample_type & PERF_SAMPLE_ADDR)
5811 perf_output_put(handle, data->addr);
5812
5813 if (sample_type & PERF_SAMPLE_ID)
5814 perf_output_put(handle, data->id);
5815
5816 if (sample_type & PERF_SAMPLE_STREAM_ID)
5817 perf_output_put(handle, data->stream_id);
5818
5819 if (sample_type & PERF_SAMPLE_CPU)
5820 perf_output_put(handle, data->cpu_entry);
5821
5822 if (sample_type & PERF_SAMPLE_PERIOD)
5823 perf_output_put(handle, data->period);
5824
5825 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5826 perf_output_read(handle, event);
5622f295
MM
5827
5828 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5829 if (data->callchain) {
5830 int size = 1;
5831
5832 if (data->callchain)
5833 size += data->callchain->nr;
5834
5835 size *= sizeof(u64);
5836
76369139 5837 __output_copy(handle, data->callchain, size);
5622f295
MM
5838 } else {
5839 u64 nr = 0;
5840 perf_output_put(handle, nr);
5841 }
5842 }
5843
5844 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5845 struct perf_raw_record *raw = data->raw;
5846
5847 if (raw) {
5848 struct perf_raw_frag *frag = &raw->frag;
5849
5850 perf_output_put(handle, raw->size);
5851 do {
5852 if (frag->copy) {
5853 __output_custom(handle, frag->copy,
5854 frag->data, frag->size);
5855 } else {
5856 __output_copy(handle, frag->data,
5857 frag->size);
5858 }
5859 if (perf_raw_frag_last(frag))
5860 break;
5861 frag = frag->next;
5862 } while (1);
5863 if (frag->pad)
5864 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5865 } else {
5866 struct {
5867 u32 size;
5868 u32 data;
5869 } raw = {
5870 .size = sizeof(u32),
5871 .data = 0,
5872 };
5873 perf_output_put(handle, raw);
5874 }
5875 }
a7ac67ea 5876
bce38cd5
SE
5877 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5878 if (data->br_stack) {
5879 size_t size;
5880
5881 size = data->br_stack->nr
5882 * sizeof(struct perf_branch_entry);
5883
5884 perf_output_put(handle, data->br_stack->nr);
5885 perf_output_copy(handle, data->br_stack->entries, size);
5886 } else {
5887 /*
5888 * we always store at least the value of nr
5889 */
5890 u64 nr = 0;
5891 perf_output_put(handle, nr);
5892 }
5893 }
4018994f
JO
5894
5895 if (sample_type & PERF_SAMPLE_REGS_USER) {
5896 u64 abi = data->regs_user.abi;
5897
5898 /*
5899 * If there are no regs to dump, notice it through
5900 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5901 */
5902 perf_output_put(handle, abi);
5903
5904 if (abi) {
5905 u64 mask = event->attr.sample_regs_user;
5906 perf_output_sample_regs(handle,
5907 data->regs_user.regs,
5908 mask);
5909 }
5910 }
c5ebcedb 5911
a5cdd40c 5912 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5913 perf_output_sample_ustack(handle,
5914 data->stack_user_size,
5915 data->regs_user.regs);
a5cdd40c 5916 }
c3feedf2
AK
5917
5918 if (sample_type & PERF_SAMPLE_WEIGHT)
5919 perf_output_put(handle, data->weight);
d6be9ad6
SE
5920
5921 if (sample_type & PERF_SAMPLE_DATA_SRC)
5922 perf_output_put(handle, data->data_src.val);
a5cdd40c 5923
fdfbbd07
AK
5924 if (sample_type & PERF_SAMPLE_TRANSACTION)
5925 perf_output_put(handle, data->txn);
5926
60e2364e
SE
5927 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5928 u64 abi = data->regs_intr.abi;
5929 /*
5930 * If there are no regs to dump, notice it through
5931 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5932 */
5933 perf_output_put(handle, abi);
5934
5935 if (abi) {
5936 u64 mask = event->attr.sample_regs_intr;
5937
5938 perf_output_sample_regs(handle,
5939 data->regs_intr.regs,
5940 mask);
5941 }
5942 }
5943
a5cdd40c
PZ
5944 if (!event->attr.watermark) {
5945 int wakeup_events = event->attr.wakeup_events;
5946
5947 if (wakeup_events) {
5948 struct ring_buffer *rb = handle->rb;
5949 int events = local_inc_return(&rb->events);
5950
5951 if (events >= wakeup_events) {
5952 local_sub(wakeup_events, &rb->events);
5953 local_inc(&rb->wakeup);
5954 }
5955 }
5956 }
5622f295
MM
5957}
5958
5959void perf_prepare_sample(struct perf_event_header *header,
5960 struct perf_sample_data *data,
cdd6c482 5961 struct perf_event *event,
5622f295 5962 struct pt_regs *regs)
7b732a75 5963{
cdd6c482 5964 u64 sample_type = event->attr.sample_type;
7b732a75 5965
cdd6c482 5966 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5967 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5968
5969 header->misc = 0;
5970 header->misc |= perf_misc_flags(regs);
6fab0192 5971
c980d109 5972 __perf_event_header__init_id(header, data, event);
6844c09d 5973
c320c7b7 5974 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5975 data->ip = perf_instruction_pointer(regs);
5976
b23f3325 5977 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5978 int size = 1;
394ee076 5979
e6dab5ff 5980 data->callchain = perf_callchain(event, regs);
5622f295
MM
5981
5982 if (data->callchain)
5983 size += data->callchain->nr;
5984
5985 header->size += size * sizeof(u64);
394ee076
PZ
5986 }
5987
3a43ce68 5988 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5989 struct perf_raw_record *raw = data->raw;
5990 int size;
5991
5992 if (raw) {
5993 struct perf_raw_frag *frag = &raw->frag;
5994 u32 sum = 0;
5995
5996 do {
5997 sum += frag->size;
5998 if (perf_raw_frag_last(frag))
5999 break;
6000 frag = frag->next;
6001 } while (1);
6002
6003 size = round_up(sum + sizeof(u32), sizeof(u64));
6004 raw->size = size - sizeof(u32);
6005 frag->pad = raw->size - sum;
6006 } else {
6007 size = sizeof(u64);
6008 }
a044560c 6009
7e3f977e 6010 header->size += size;
7f453c24 6011 }
bce38cd5
SE
6012
6013 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6014 int size = sizeof(u64); /* nr */
6015 if (data->br_stack) {
6016 size += data->br_stack->nr
6017 * sizeof(struct perf_branch_entry);
6018 }
6019 header->size += size;
6020 }
4018994f 6021
2565711f 6022 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6023 perf_sample_regs_user(&data->regs_user, regs,
6024 &data->regs_user_copy);
2565711f 6025
4018994f
JO
6026 if (sample_type & PERF_SAMPLE_REGS_USER) {
6027 /* regs dump ABI info */
6028 int size = sizeof(u64);
6029
4018994f
JO
6030 if (data->regs_user.regs) {
6031 u64 mask = event->attr.sample_regs_user;
6032 size += hweight64(mask) * sizeof(u64);
6033 }
6034
6035 header->size += size;
6036 }
c5ebcedb
JO
6037
6038 if (sample_type & PERF_SAMPLE_STACK_USER) {
6039 /*
6040 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6041 * processed as the last one or have additional check added
6042 * in case new sample type is added, because we could eat
6043 * up the rest of the sample size.
6044 */
c5ebcedb
JO
6045 u16 stack_size = event->attr.sample_stack_user;
6046 u16 size = sizeof(u64);
6047
c5ebcedb 6048 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6049 data->regs_user.regs);
c5ebcedb
JO
6050
6051 /*
6052 * If there is something to dump, add space for the dump
6053 * itself and for the field that tells the dynamic size,
6054 * which is how many have been actually dumped.
6055 */
6056 if (stack_size)
6057 size += sizeof(u64) + stack_size;
6058
6059 data->stack_user_size = stack_size;
6060 header->size += size;
6061 }
60e2364e
SE
6062
6063 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6064 /* regs dump ABI info */
6065 int size = sizeof(u64);
6066
6067 perf_sample_regs_intr(&data->regs_intr, regs);
6068
6069 if (data->regs_intr.regs) {
6070 u64 mask = event->attr.sample_regs_intr;
6071
6072 size += hweight64(mask) * sizeof(u64);
6073 }
6074
6075 header->size += size;
6076 }
5622f295 6077}
7f453c24 6078
9ecda41a
WN
6079static void __always_inline
6080__perf_event_output(struct perf_event *event,
6081 struct perf_sample_data *data,
6082 struct pt_regs *regs,
6083 int (*output_begin)(struct perf_output_handle *,
6084 struct perf_event *,
6085 unsigned int))
5622f295
MM
6086{
6087 struct perf_output_handle handle;
6088 struct perf_event_header header;
689802b2 6089
927c7a9e
FW
6090 /* protect the callchain buffers */
6091 rcu_read_lock();
6092
cdd6c482 6093 perf_prepare_sample(&header, data, event, regs);
5c148194 6094
9ecda41a 6095 if (output_begin(&handle, event, header.size))
927c7a9e 6096 goto exit;
0322cd6e 6097
cdd6c482 6098 perf_output_sample(&handle, &header, data, event);
f413cdb8 6099
8a057d84 6100 perf_output_end(&handle);
927c7a9e
FW
6101
6102exit:
6103 rcu_read_unlock();
0322cd6e
PZ
6104}
6105
9ecda41a
WN
6106void
6107perf_event_output_forward(struct perf_event *event,
6108 struct perf_sample_data *data,
6109 struct pt_regs *regs)
6110{
6111 __perf_event_output(event, data, regs, perf_output_begin_forward);
6112}
6113
6114void
6115perf_event_output_backward(struct perf_event *event,
6116 struct perf_sample_data *data,
6117 struct pt_regs *regs)
6118{
6119 __perf_event_output(event, data, regs, perf_output_begin_backward);
6120}
6121
6122void
6123perf_event_output(struct perf_event *event,
6124 struct perf_sample_data *data,
6125 struct pt_regs *regs)
6126{
6127 __perf_event_output(event, data, regs, perf_output_begin);
6128}
6129
38b200d6 6130/*
cdd6c482 6131 * read event_id
38b200d6
PZ
6132 */
6133
6134struct perf_read_event {
6135 struct perf_event_header header;
6136
6137 u32 pid;
6138 u32 tid;
38b200d6
PZ
6139};
6140
6141static void
cdd6c482 6142perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6143 struct task_struct *task)
6144{
6145 struct perf_output_handle handle;
c980d109 6146 struct perf_sample_data sample;
dfc65094 6147 struct perf_read_event read_event = {
38b200d6 6148 .header = {
cdd6c482 6149 .type = PERF_RECORD_READ,
38b200d6 6150 .misc = 0,
c320c7b7 6151 .size = sizeof(read_event) + event->read_size,
38b200d6 6152 },
cdd6c482
IM
6153 .pid = perf_event_pid(event, task),
6154 .tid = perf_event_tid(event, task),
38b200d6 6155 };
3dab77fb 6156 int ret;
38b200d6 6157
c980d109 6158 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6159 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6160 if (ret)
6161 return;
6162
dfc65094 6163 perf_output_put(&handle, read_event);
cdd6c482 6164 perf_output_read(&handle, event);
c980d109 6165 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6166
38b200d6
PZ
6167 perf_output_end(&handle);
6168}
6169
aab5b71e 6170typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6171
6172static void
aab5b71e
PZ
6173perf_iterate_ctx(struct perf_event_context *ctx,
6174 perf_iterate_f output,
b73e4fef 6175 void *data, bool all)
52d857a8
JO
6176{
6177 struct perf_event *event;
6178
6179 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6180 if (!all) {
6181 if (event->state < PERF_EVENT_STATE_INACTIVE)
6182 continue;
6183 if (!event_filter_match(event))
6184 continue;
6185 }
6186
67516844 6187 output(event, data);
52d857a8
JO
6188 }
6189}
6190
aab5b71e 6191static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6192{
6193 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6194 struct perf_event *event;
6195
6196 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6197 /*
6198 * Skip events that are not fully formed yet; ensure that
6199 * if we observe event->ctx, both event and ctx will be
6200 * complete enough. See perf_install_in_context().
6201 */
6202 if (!smp_load_acquire(&event->ctx))
6203 continue;
6204
f2fb6bef
KL
6205 if (event->state < PERF_EVENT_STATE_INACTIVE)
6206 continue;
6207 if (!event_filter_match(event))
6208 continue;
6209 output(event, data);
6210 }
6211}
6212
aab5b71e
PZ
6213/*
6214 * Iterate all events that need to receive side-band events.
6215 *
6216 * For new callers; ensure that account_pmu_sb_event() includes
6217 * your event, otherwise it might not get delivered.
6218 */
52d857a8 6219static void
aab5b71e 6220perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6221 struct perf_event_context *task_ctx)
6222{
52d857a8 6223 struct perf_event_context *ctx;
52d857a8
JO
6224 int ctxn;
6225
aab5b71e
PZ
6226 rcu_read_lock();
6227 preempt_disable();
6228
4e93ad60 6229 /*
aab5b71e
PZ
6230 * If we have task_ctx != NULL we only notify the task context itself.
6231 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6232 * context.
6233 */
6234 if (task_ctx) {
aab5b71e
PZ
6235 perf_iterate_ctx(task_ctx, output, data, false);
6236 goto done;
4e93ad60
JO
6237 }
6238
aab5b71e 6239 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6240
6241 for_each_task_context_nr(ctxn) {
52d857a8
JO
6242 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6243 if (ctx)
aab5b71e 6244 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6245 }
aab5b71e 6246done:
f2fb6bef 6247 preempt_enable();
52d857a8 6248 rcu_read_unlock();
95ff4ca2
AS
6249}
6250
375637bc
AS
6251/*
6252 * Clear all file-based filters at exec, they'll have to be
6253 * re-instated when/if these objects are mmapped again.
6254 */
6255static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6256{
6257 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6258 struct perf_addr_filter *filter;
6259 unsigned int restart = 0, count = 0;
6260 unsigned long flags;
6261
6262 if (!has_addr_filter(event))
6263 return;
6264
6265 raw_spin_lock_irqsave(&ifh->lock, flags);
6266 list_for_each_entry(filter, &ifh->list, entry) {
6267 if (filter->inode) {
6268 event->addr_filters_offs[count] = 0;
6269 restart++;
6270 }
6271
6272 count++;
6273 }
6274
6275 if (restart)
6276 event->addr_filters_gen++;
6277 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6278
6279 if (restart)
767ae086 6280 perf_event_stop(event, 1);
375637bc
AS
6281}
6282
6283void perf_event_exec(void)
6284{
6285 struct perf_event_context *ctx;
6286 int ctxn;
6287
6288 rcu_read_lock();
6289 for_each_task_context_nr(ctxn) {
6290 ctx = current->perf_event_ctxp[ctxn];
6291 if (!ctx)
6292 continue;
6293
6294 perf_event_enable_on_exec(ctxn);
6295
aab5b71e 6296 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6297 true);
6298 }
6299 rcu_read_unlock();
6300}
6301
95ff4ca2
AS
6302struct remote_output {
6303 struct ring_buffer *rb;
6304 int err;
6305};
6306
6307static void __perf_event_output_stop(struct perf_event *event, void *data)
6308{
6309 struct perf_event *parent = event->parent;
6310 struct remote_output *ro = data;
6311 struct ring_buffer *rb = ro->rb;
375637bc
AS
6312 struct stop_event_data sd = {
6313 .event = event,
6314 };
95ff4ca2
AS
6315
6316 if (!has_aux(event))
6317 return;
6318
6319 if (!parent)
6320 parent = event;
6321
6322 /*
6323 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6324 * ring-buffer, but it will be the child that's actually using it.
6325 *
6326 * We are using event::rb to determine if the event should be stopped,
6327 * however this may race with ring_buffer_attach() (through set_output),
6328 * which will make us skip the event that actually needs to be stopped.
6329 * So ring_buffer_attach() has to stop an aux event before re-assigning
6330 * its rb pointer.
95ff4ca2
AS
6331 */
6332 if (rcu_dereference(parent->rb) == rb)
375637bc 6333 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6334}
6335
6336static int __perf_pmu_output_stop(void *info)
6337{
6338 struct perf_event *event = info;
6339 struct pmu *pmu = event->pmu;
8b6a3fe8 6340 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6341 struct remote_output ro = {
6342 .rb = event->rb,
6343 };
6344
6345 rcu_read_lock();
aab5b71e 6346 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6347 if (cpuctx->task_ctx)
aab5b71e 6348 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6349 &ro, false);
95ff4ca2
AS
6350 rcu_read_unlock();
6351
6352 return ro.err;
6353}
6354
6355static void perf_pmu_output_stop(struct perf_event *event)
6356{
6357 struct perf_event *iter;
6358 int err, cpu;
6359
6360restart:
6361 rcu_read_lock();
6362 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6363 /*
6364 * For per-CPU events, we need to make sure that neither they
6365 * nor their children are running; for cpu==-1 events it's
6366 * sufficient to stop the event itself if it's active, since
6367 * it can't have children.
6368 */
6369 cpu = iter->cpu;
6370 if (cpu == -1)
6371 cpu = READ_ONCE(iter->oncpu);
6372
6373 if (cpu == -1)
6374 continue;
6375
6376 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6377 if (err == -EAGAIN) {
6378 rcu_read_unlock();
6379 goto restart;
6380 }
6381 }
6382 rcu_read_unlock();
52d857a8
JO
6383}
6384
60313ebe 6385/*
9f498cc5
PZ
6386 * task tracking -- fork/exit
6387 *
13d7a241 6388 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6389 */
6390
9f498cc5 6391struct perf_task_event {
3a80b4a3 6392 struct task_struct *task;
cdd6c482 6393 struct perf_event_context *task_ctx;
60313ebe
PZ
6394
6395 struct {
6396 struct perf_event_header header;
6397
6398 u32 pid;
6399 u32 ppid;
9f498cc5
PZ
6400 u32 tid;
6401 u32 ptid;
393b2ad8 6402 u64 time;
cdd6c482 6403 } event_id;
60313ebe
PZ
6404};
6405
67516844
JO
6406static int perf_event_task_match(struct perf_event *event)
6407{
13d7a241
SE
6408 return event->attr.comm || event->attr.mmap ||
6409 event->attr.mmap2 || event->attr.mmap_data ||
6410 event->attr.task;
67516844
JO
6411}
6412
cdd6c482 6413static void perf_event_task_output(struct perf_event *event,
52d857a8 6414 void *data)
60313ebe 6415{
52d857a8 6416 struct perf_task_event *task_event = data;
60313ebe 6417 struct perf_output_handle handle;
c980d109 6418 struct perf_sample_data sample;
9f498cc5 6419 struct task_struct *task = task_event->task;
c980d109 6420 int ret, size = task_event->event_id.header.size;
8bb39f9a 6421
67516844
JO
6422 if (!perf_event_task_match(event))
6423 return;
6424
c980d109 6425 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6426
c980d109 6427 ret = perf_output_begin(&handle, event,
a7ac67ea 6428 task_event->event_id.header.size);
ef60777c 6429 if (ret)
c980d109 6430 goto out;
60313ebe 6431
cdd6c482
IM
6432 task_event->event_id.pid = perf_event_pid(event, task);
6433 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6434
cdd6c482
IM
6435 task_event->event_id.tid = perf_event_tid(event, task);
6436 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6437
34f43927
PZ
6438 task_event->event_id.time = perf_event_clock(event);
6439
cdd6c482 6440 perf_output_put(&handle, task_event->event_id);
393b2ad8 6441
c980d109
ACM
6442 perf_event__output_id_sample(event, &handle, &sample);
6443
60313ebe 6444 perf_output_end(&handle);
c980d109
ACM
6445out:
6446 task_event->event_id.header.size = size;
60313ebe
PZ
6447}
6448
cdd6c482
IM
6449static void perf_event_task(struct task_struct *task,
6450 struct perf_event_context *task_ctx,
3a80b4a3 6451 int new)
60313ebe 6452{
9f498cc5 6453 struct perf_task_event task_event;
60313ebe 6454
cdd6c482
IM
6455 if (!atomic_read(&nr_comm_events) &&
6456 !atomic_read(&nr_mmap_events) &&
6457 !atomic_read(&nr_task_events))
60313ebe
PZ
6458 return;
6459
9f498cc5 6460 task_event = (struct perf_task_event){
3a80b4a3
PZ
6461 .task = task,
6462 .task_ctx = task_ctx,
cdd6c482 6463 .event_id = {
60313ebe 6464 .header = {
cdd6c482 6465 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6466 .misc = 0,
cdd6c482 6467 .size = sizeof(task_event.event_id),
60313ebe 6468 },
573402db
PZ
6469 /* .pid */
6470 /* .ppid */
9f498cc5
PZ
6471 /* .tid */
6472 /* .ptid */
34f43927 6473 /* .time */
60313ebe
PZ
6474 },
6475 };
6476
aab5b71e 6477 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6478 &task_event,
6479 task_ctx);
9f498cc5
PZ
6480}
6481
cdd6c482 6482void perf_event_fork(struct task_struct *task)
9f498cc5 6483{
cdd6c482 6484 perf_event_task(task, NULL, 1);
60313ebe
PZ
6485}
6486
8d1b2d93
PZ
6487/*
6488 * comm tracking
6489 */
6490
6491struct perf_comm_event {
22a4f650
IM
6492 struct task_struct *task;
6493 char *comm;
8d1b2d93
PZ
6494 int comm_size;
6495
6496 struct {
6497 struct perf_event_header header;
6498
6499 u32 pid;
6500 u32 tid;
cdd6c482 6501 } event_id;
8d1b2d93
PZ
6502};
6503
67516844
JO
6504static int perf_event_comm_match(struct perf_event *event)
6505{
6506 return event->attr.comm;
6507}
6508
cdd6c482 6509static void perf_event_comm_output(struct perf_event *event,
52d857a8 6510 void *data)
8d1b2d93 6511{
52d857a8 6512 struct perf_comm_event *comm_event = data;
8d1b2d93 6513 struct perf_output_handle handle;
c980d109 6514 struct perf_sample_data sample;
cdd6c482 6515 int size = comm_event->event_id.header.size;
c980d109
ACM
6516 int ret;
6517
67516844
JO
6518 if (!perf_event_comm_match(event))
6519 return;
6520
c980d109
ACM
6521 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6522 ret = perf_output_begin(&handle, event,
a7ac67ea 6523 comm_event->event_id.header.size);
8d1b2d93
PZ
6524
6525 if (ret)
c980d109 6526 goto out;
8d1b2d93 6527
cdd6c482
IM
6528 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6529 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6530
cdd6c482 6531 perf_output_put(&handle, comm_event->event_id);
76369139 6532 __output_copy(&handle, comm_event->comm,
8d1b2d93 6533 comm_event->comm_size);
c980d109
ACM
6534
6535 perf_event__output_id_sample(event, &handle, &sample);
6536
8d1b2d93 6537 perf_output_end(&handle);
c980d109
ACM
6538out:
6539 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6540}
6541
cdd6c482 6542static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6543{
413ee3b4 6544 char comm[TASK_COMM_LEN];
8d1b2d93 6545 unsigned int size;
8d1b2d93 6546
413ee3b4 6547 memset(comm, 0, sizeof(comm));
96b02d78 6548 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6549 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6550
6551 comm_event->comm = comm;
6552 comm_event->comm_size = size;
6553
cdd6c482 6554 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6555
aab5b71e 6556 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6557 comm_event,
6558 NULL);
8d1b2d93
PZ
6559}
6560
82b89778 6561void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6562{
9ee318a7
PZ
6563 struct perf_comm_event comm_event;
6564
cdd6c482 6565 if (!atomic_read(&nr_comm_events))
9ee318a7 6566 return;
a63eaf34 6567
9ee318a7 6568 comm_event = (struct perf_comm_event){
8d1b2d93 6569 .task = task,
573402db
PZ
6570 /* .comm */
6571 /* .comm_size */
cdd6c482 6572 .event_id = {
573402db 6573 .header = {
cdd6c482 6574 .type = PERF_RECORD_COMM,
82b89778 6575 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6576 /* .size */
6577 },
6578 /* .pid */
6579 /* .tid */
8d1b2d93
PZ
6580 },
6581 };
6582
cdd6c482 6583 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6584}
6585
0a4a9391
PZ
6586/*
6587 * mmap tracking
6588 */
6589
6590struct perf_mmap_event {
089dd79d
PZ
6591 struct vm_area_struct *vma;
6592
6593 const char *file_name;
6594 int file_size;
13d7a241
SE
6595 int maj, min;
6596 u64 ino;
6597 u64 ino_generation;
f972eb63 6598 u32 prot, flags;
0a4a9391
PZ
6599
6600 struct {
6601 struct perf_event_header header;
6602
6603 u32 pid;
6604 u32 tid;
6605 u64 start;
6606 u64 len;
6607 u64 pgoff;
cdd6c482 6608 } event_id;
0a4a9391
PZ
6609};
6610
67516844
JO
6611static int perf_event_mmap_match(struct perf_event *event,
6612 void *data)
6613{
6614 struct perf_mmap_event *mmap_event = data;
6615 struct vm_area_struct *vma = mmap_event->vma;
6616 int executable = vma->vm_flags & VM_EXEC;
6617
6618 return (!executable && event->attr.mmap_data) ||
13d7a241 6619 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6620}
6621
cdd6c482 6622static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6623 void *data)
0a4a9391 6624{
52d857a8 6625 struct perf_mmap_event *mmap_event = data;
0a4a9391 6626 struct perf_output_handle handle;
c980d109 6627 struct perf_sample_data sample;
cdd6c482 6628 int size = mmap_event->event_id.header.size;
c980d109 6629 int ret;
0a4a9391 6630
67516844
JO
6631 if (!perf_event_mmap_match(event, data))
6632 return;
6633
13d7a241
SE
6634 if (event->attr.mmap2) {
6635 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6636 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6637 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6638 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6639 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6640 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6641 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6642 }
6643
c980d109
ACM
6644 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6645 ret = perf_output_begin(&handle, event,
a7ac67ea 6646 mmap_event->event_id.header.size);
0a4a9391 6647 if (ret)
c980d109 6648 goto out;
0a4a9391 6649
cdd6c482
IM
6650 mmap_event->event_id.pid = perf_event_pid(event, current);
6651 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6652
cdd6c482 6653 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6654
6655 if (event->attr.mmap2) {
6656 perf_output_put(&handle, mmap_event->maj);
6657 perf_output_put(&handle, mmap_event->min);
6658 perf_output_put(&handle, mmap_event->ino);
6659 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6660 perf_output_put(&handle, mmap_event->prot);
6661 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6662 }
6663
76369139 6664 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6665 mmap_event->file_size);
c980d109
ACM
6666
6667 perf_event__output_id_sample(event, &handle, &sample);
6668
78d613eb 6669 perf_output_end(&handle);
c980d109
ACM
6670out:
6671 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6672}
6673
cdd6c482 6674static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6675{
089dd79d
PZ
6676 struct vm_area_struct *vma = mmap_event->vma;
6677 struct file *file = vma->vm_file;
13d7a241
SE
6678 int maj = 0, min = 0;
6679 u64 ino = 0, gen = 0;
f972eb63 6680 u32 prot = 0, flags = 0;
0a4a9391
PZ
6681 unsigned int size;
6682 char tmp[16];
6683 char *buf = NULL;
2c42cfbf 6684 char *name;
413ee3b4 6685
0b3589be
PZ
6686 if (vma->vm_flags & VM_READ)
6687 prot |= PROT_READ;
6688 if (vma->vm_flags & VM_WRITE)
6689 prot |= PROT_WRITE;
6690 if (vma->vm_flags & VM_EXEC)
6691 prot |= PROT_EXEC;
6692
6693 if (vma->vm_flags & VM_MAYSHARE)
6694 flags = MAP_SHARED;
6695 else
6696 flags = MAP_PRIVATE;
6697
6698 if (vma->vm_flags & VM_DENYWRITE)
6699 flags |= MAP_DENYWRITE;
6700 if (vma->vm_flags & VM_MAYEXEC)
6701 flags |= MAP_EXECUTABLE;
6702 if (vma->vm_flags & VM_LOCKED)
6703 flags |= MAP_LOCKED;
6704 if (vma->vm_flags & VM_HUGETLB)
6705 flags |= MAP_HUGETLB;
6706
0a4a9391 6707 if (file) {
13d7a241
SE
6708 struct inode *inode;
6709 dev_t dev;
3ea2f2b9 6710
2c42cfbf 6711 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6712 if (!buf) {
c7e548b4
ON
6713 name = "//enomem";
6714 goto cpy_name;
0a4a9391 6715 }
413ee3b4 6716 /*
3ea2f2b9 6717 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6718 * need to add enough zero bytes after the string to handle
6719 * the 64bit alignment we do later.
6720 */
9bf39ab2 6721 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6722 if (IS_ERR(name)) {
c7e548b4
ON
6723 name = "//toolong";
6724 goto cpy_name;
0a4a9391 6725 }
13d7a241
SE
6726 inode = file_inode(vma->vm_file);
6727 dev = inode->i_sb->s_dev;
6728 ino = inode->i_ino;
6729 gen = inode->i_generation;
6730 maj = MAJOR(dev);
6731 min = MINOR(dev);
f972eb63 6732
c7e548b4 6733 goto got_name;
0a4a9391 6734 } else {
fbe26abe
JO
6735 if (vma->vm_ops && vma->vm_ops->name) {
6736 name = (char *) vma->vm_ops->name(vma);
6737 if (name)
6738 goto cpy_name;
6739 }
6740
2c42cfbf 6741 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6742 if (name)
6743 goto cpy_name;
089dd79d 6744
32c5fb7e 6745 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6746 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6747 name = "[heap]";
6748 goto cpy_name;
32c5fb7e
ON
6749 }
6750 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6751 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6752 name = "[stack]";
6753 goto cpy_name;
089dd79d
PZ
6754 }
6755
c7e548b4
ON
6756 name = "//anon";
6757 goto cpy_name;
0a4a9391
PZ
6758 }
6759
c7e548b4
ON
6760cpy_name:
6761 strlcpy(tmp, name, sizeof(tmp));
6762 name = tmp;
0a4a9391 6763got_name:
2c42cfbf
PZ
6764 /*
6765 * Since our buffer works in 8 byte units we need to align our string
6766 * size to a multiple of 8. However, we must guarantee the tail end is
6767 * zero'd out to avoid leaking random bits to userspace.
6768 */
6769 size = strlen(name)+1;
6770 while (!IS_ALIGNED(size, sizeof(u64)))
6771 name[size++] = '\0';
0a4a9391
PZ
6772
6773 mmap_event->file_name = name;
6774 mmap_event->file_size = size;
13d7a241
SE
6775 mmap_event->maj = maj;
6776 mmap_event->min = min;
6777 mmap_event->ino = ino;
6778 mmap_event->ino_generation = gen;
f972eb63
PZ
6779 mmap_event->prot = prot;
6780 mmap_event->flags = flags;
0a4a9391 6781
2fe85427
SE
6782 if (!(vma->vm_flags & VM_EXEC))
6783 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6784
cdd6c482 6785 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6786
aab5b71e 6787 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6788 mmap_event,
6789 NULL);
665c2142 6790
0a4a9391
PZ
6791 kfree(buf);
6792}
6793
375637bc
AS
6794/*
6795 * Check whether inode and address range match filter criteria.
6796 */
6797static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6798 struct file *file, unsigned long offset,
6799 unsigned long size)
6800{
45063097 6801 if (filter->inode != file_inode(file))
375637bc
AS
6802 return false;
6803
6804 if (filter->offset > offset + size)
6805 return false;
6806
6807 if (filter->offset + filter->size < offset)
6808 return false;
6809
6810 return true;
6811}
6812
6813static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6814{
6815 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6816 struct vm_area_struct *vma = data;
6817 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6818 struct file *file = vma->vm_file;
6819 struct perf_addr_filter *filter;
6820 unsigned int restart = 0, count = 0;
6821
6822 if (!has_addr_filter(event))
6823 return;
6824
6825 if (!file)
6826 return;
6827
6828 raw_spin_lock_irqsave(&ifh->lock, flags);
6829 list_for_each_entry(filter, &ifh->list, entry) {
6830 if (perf_addr_filter_match(filter, file, off,
6831 vma->vm_end - vma->vm_start)) {
6832 event->addr_filters_offs[count] = vma->vm_start;
6833 restart++;
6834 }
6835
6836 count++;
6837 }
6838
6839 if (restart)
6840 event->addr_filters_gen++;
6841 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6842
6843 if (restart)
767ae086 6844 perf_event_stop(event, 1);
375637bc
AS
6845}
6846
6847/*
6848 * Adjust all task's events' filters to the new vma
6849 */
6850static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6851{
6852 struct perf_event_context *ctx;
6853 int ctxn;
6854
12b40a23
MP
6855 /*
6856 * Data tracing isn't supported yet and as such there is no need
6857 * to keep track of anything that isn't related to executable code:
6858 */
6859 if (!(vma->vm_flags & VM_EXEC))
6860 return;
6861
375637bc
AS
6862 rcu_read_lock();
6863 for_each_task_context_nr(ctxn) {
6864 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6865 if (!ctx)
6866 continue;
6867
aab5b71e 6868 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6869 }
6870 rcu_read_unlock();
6871}
6872
3af9e859 6873void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6874{
9ee318a7
PZ
6875 struct perf_mmap_event mmap_event;
6876
cdd6c482 6877 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6878 return;
6879
6880 mmap_event = (struct perf_mmap_event){
089dd79d 6881 .vma = vma,
573402db
PZ
6882 /* .file_name */
6883 /* .file_size */
cdd6c482 6884 .event_id = {
573402db 6885 .header = {
cdd6c482 6886 .type = PERF_RECORD_MMAP,
39447b38 6887 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6888 /* .size */
6889 },
6890 /* .pid */
6891 /* .tid */
089dd79d
PZ
6892 .start = vma->vm_start,
6893 .len = vma->vm_end - vma->vm_start,
3a0304e9 6894 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6895 },
13d7a241
SE
6896 /* .maj (attr_mmap2 only) */
6897 /* .min (attr_mmap2 only) */
6898 /* .ino (attr_mmap2 only) */
6899 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6900 /* .prot (attr_mmap2 only) */
6901 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6902 };
6903
375637bc 6904 perf_addr_filters_adjust(vma);
cdd6c482 6905 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6906}
6907
68db7e98
AS
6908void perf_event_aux_event(struct perf_event *event, unsigned long head,
6909 unsigned long size, u64 flags)
6910{
6911 struct perf_output_handle handle;
6912 struct perf_sample_data sample;
6913 struct perf_aux_event {
6914 struct perf_event_header header;
6915 u64 offset;
6916 u64 size;
6917 u64 flags;
6918 } rec = {
6919 .header = {
6920 .type = PERF_RECORD_AUX,
6921 .misc = 0,
6922 .size = sizeof(rec),
6923 },
6924 .offset = head,
6925 .size = size,
6926 .flags = flags,
6927 };
6928 int ret;
6929
6930 perf_event_header__init_id(&rec.header, &sample, event);
6931 ret = perf_output_begin(&handle, event, rec.header.size);
6932
6933 if (ret)
6934 return;
6935
6936 perf_output_put(&handle, rec);
6937 perf_event__output_id_sample(event, &handle, &sample);
6938
6939 perf_output_end(&handle);
6940}
6941
f38b0dbb
KL
6942/*
6943 * Lost/dropped samples logging
6944 */
6945void perf_log_lost_samples(struct perf_event *event, u64 lost)
6946{
6947 struct perf_output_handle handle;
6948 struct perf_sample_data sample;
6949 int ret;
6950
6951 struct {
6952 struct perf_event_header header;
6953 u64 lost;
6954 } lost_samples_event = {
6955 .header = {
6956 .type = PERF_RECORD_LOST_SAMPLES,
6957 .misc = 0,
6958 .size = sizeof(lost_samples_event),
6959 },
6960 .lost = lost,
6961 };
6962
6963 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6964
6965 ret = perf_output_begin(&handle, event,
6966 lost_samples_event.header.size);
6967 if (ret)
6968 return;
6969
6970 perf_output_put(&handle, lost_samples_event);
6971 perf_event__output_id_sample(event, &handle, &sample);
6972 perf_output_end(&handle);
6973}
6974
45ac1403
AH
6975/*
6976 * context_switch tracking
6977 */
6978
6979struct perf_switch_event {
6980 struct task_struct *task;
6981 struct task_struct *next_prev;
6982
6983 struct {
6984 struct perf_event_header header;
6985 u32 next_prev_pid;
6986 u32 next_prev_tid;
6987 } event_id;
6988};
6989
6990static int perf_event_switch_match(struct perf_event *event)
6991{
6992 return event->attr.context_switch;
6993}
6994
6995static void perf_event_switch_output(struct perf_event *event, void *data)
6996{
6997 struct perf_switch_event *se = data;
6998 struct perf_output_handle handle;
6999 struct perf_sample_data sample;
7000 int ret;
7001
7002 if (!perf_event_switch_match(event))
7003 return;
7004
7005 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7006 if (event->ctx->task) {
7007 se->event_id.header.type = PERF_RECORD_SWITCH;
7008 se->event_id.header.size = sizeof(se->event_id.header);
7009 } else {
7010 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7011 se->event_id.header.size = sizeof(se->event_id);
7012 se->event_id.next_prev_pid =
7013 perf_event_pid(event, se->next_prev);
7014 se->event_id.next_prev_tid =
7015 perf_event_tid(event, se->next_prev);
7016 }
7017
7018 perf_event_header__init_id(&se->event_id.header, &sample, event);
7019
7020 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7021 if (ret)
7022 return;
7023
7024 if (event->ctx->task)
7025 perf_output_put(&handle, se->event_id.header);
7026 else
7027 perf_output_put(&handle, se->event_id);
7028
7029 perf_event__output_id_sample(event, &handle, &sample);
7030
7031 perf_output_end(&handle);
7032}
7033
7034static void perf_event_switch(struct task_struct *task,
7035 struct task_struct *next_prev, bool sched_in)
7036{
7037 struct perf_switch_event switch_event;
7038
7039 /* N.B. caller checks nr_switch_events != 0 */
7040
7041 switch_event = (struct perf_switch_event){
7042 .task = task,
7043 .next_prev = next_prev,
7044 .event_id = {
7045 .header = {
7046 /* .type */
7047 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7048 /* .size */
7049 },
7050 /* .next_prev_pid */
7051 /* .next_prev_tid */
7052 },
7053 };
7054
aab5b71e 7055 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7056 &switch_event,
7057 NULL);
7058}
7059
a78ac325
PZ
7060/*
7061 * IRQ throttle logging
7062 */
7063
cdd6c482 7064static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7065{
7066 struct perf_output_handle handle;
c980d109 7067 struct perf_sample_data sample;
a78ac325
PZ
7068 int ret;
7069
7070 struct {
7071 struct perf_event_header header;
7072 u64 time;
cca3f454 7073 u64 id;
7f453c24 7074 u64 stream_id;
a78ac325
PZ
7075 } throttle_event = {
7076 .header = {
cdd6c482 7077 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7078 .misc = 0,
7079 .size = sizeof(throttle_event),
7080 },
34f43927 7081 .time = perf_event_clock(event),
cdd6c482
IM
7082 .id = primary_event_id(event),
7083 .stream_id = event->id,
a78ac325
PZ
7084 };
7085
966ee4d6 7086 if (enable)
cdd6c482 7087 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7088
c980d109
ACM
7089 perf_event_header__init_id(&throttle_event.header, &sample, event);
7090
7091 ret = perf_output_begin(&handle, event,
a7ac67ea 7092 throttle_event.header.size);
a78ac325
PZ
7093 if (ret)
7094 return;
7095
7096 perf_output_put(&handle, throttle_event);
c980d109 7097 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7098 perf_output_end(&handle);
7099}
7100
ec0d7729
AS
7101static void perf_log_itrace_start(struct perf_event *event)
7102{
7103 struct perf_output_handle handle;
7104 struct perf_sample_data sample;
7105 struct perf_aux_event {
7106 struct perf_event_header header;
7107 u32 pid;
7108 u32 tid;
7109 } rec;
7110 int ret;
7111
7112 if (event->parent)
7113 event = event->parent;
7114
7115 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7116 event->hw.itrace_started)
7117 return;
7118
ec0d7729
AS
7119 rec.header.type = PERF_RECORD_ITRACE_START;
7120 rec.header.misc = 0;
7121 rec.header.size = sizeof(rec);
7122 rec.pid = perf_event_pid(event, current);
7123 rec.tid = perf_event_tid(event, current);
7124
7125 perf_event_header__init_id(&rec.header, &sample, event);
7126 ret = perf_output_begin(&handle, event, rec.header.size);
7127
7128 if (ret)
7129 return;
7130
7131 perf_output_put(&handle, rec);
7132 perf_event__output_id_sample(event, &handle, &sample);
7133
7134 perf_output_end(&handle);
7135}
7136
475113d9
JO
7137static int
7138__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7139{
cdd6c482 7140 struct hw_perf_event *hwc = &event->hw;
79f14641 7141 int ret = 0;
475113d9 7142 u64 seq;
96398826 7143
e050e3f0
SE
7144 seq = __this_cpu_read(perf_throttled_seq);
7145 if (seq != hwc->interrupts_seq) {
7146 hwc->interrupts_seq = seq;
7147 hwc->interrupts = 1;
7148 } else {
7149 hwc->interrupts++;
7150 if (unlikely(throttle
7151 && hwc->interrupts >= max_samples_per_tick)) {
7152 __this_cpu_inc(perf_throttled_count);
555e0c1e 7153 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7154 hwc->interrupts = MAX_INTERRUPTS;
7155 perf_log_throttle(event, 0);
a78ac325
PZ
7156 ret = 1;
7157 }
e050e3f0 7158 }
60db5e09 7159
cdd6c482 7160 if (event->attr.freq) {
def0a9b2 7161 u64 now = perf_clock();
abd50713 7162 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7163
abd50713 7164 hwc->freq_time_stamp = now;
bd2b5b12 7165
abd50713 7166 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7167 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7168 }
7169
475113d9
JO
7170 return ret;
7171}
7172
7173int perf_event_account_interrupt(struct perf_event *event)
7174{
7175 return __perf_event_account_interrupt(event, 1);
7176}
7177
7178/*
7179 * Generic event overflow handling, sampling.
7180 */
7181
7182static int __perf_event_overflow(struct perf_event *event,
7183 int throttle, struct perf_sample_data *data,
7184 struct pt_regs *regs)
7185{
7186 int events = atomic_read(&event->event_limit);
7187 int ret = 0;
7188
7189 /*
7190 * Non-sampling counters might still use the PMI to fold short
7191 * hardware counters, ignore those.
7192 */
7193 if (unlikely(!is_sampling_event(event)))
7194 return 0;
7195
7196 ret = __perf_event_account_interrupt(event, throttle);
7197
2023b359
PZ
7198 /*
7199 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7200 * events
2023b359
PZ
7201 */
7202
cdd6c482
IM
7203 event->pending_kill = POLL_IN;
7204 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7205 ret = 1;
cdd6c482 7206 event->pending_kill = POLL_HUP;
5aab90ce
JO
7207
7208 perf_event_disable_inatomic(event);
79f14641
PZ
7209 }
7210
aa6a5f3c 7211 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7212
fed66e2c 7213 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7214 event->pending_wakeup = 1;
7215 irq_work_queue(&event->pending);
f506b3dc
PZ
7216 }
7217
79f14641 7218 return ret;
f6c7d5fe
PZ
7219}
7220
a8b0ca17 7221int perf_event_overflow(struct perf_event *event,
5622f295
MM
7222 struct perf_sample_data *data,
7223 struct pt_regs *regs)
850bc73f 7224{
a8b0ca17 7225 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7226}
7227
15dbf27c 7228/*
cdd6c482 7229 * Generic software event infrastructure
15dbf27c
PZ
7230 */
7231
b28ab83c
PZ
7232struct swevent_htable {
7233 struct swevent_hlist *swevent_hlist;
7234 struct mutex hlist_mutex;
7235 int hlist_refcount;
7236
7237 /* Recursion avoidance in each contexts */
7238 int recursion[PERF_NR_CONTEXTS];
7239};
7240
7241static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7242
7b4b6658 7243/*
cdd6c482
IM
7244 * We directly increment event->count and keep a second value in
7245 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7246 * is kept in the range [-sample_period, 0] so that we can use the
7247 * sign as trigger.
7248 */
7249
ab573844 7250u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7251{
cdd6c482 7252 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7253 u64 period = hwc->last_period;
7254 u64 nr, offset;
7255 s64 old, val;
7256
7257 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7258
7259again:
e7850595 7260 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7261 if (val < 0)
7262 return 0;
15dbf27c 7263
7b4b6658
PZ
7264 nr = div64_u64(period + val, period);
7265 offset = nr * period;
7266 val -= offset;
e7850595 7267 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7268 goto again;
15dbf27c 7269
7b4b6658 7270 return nr;
15dbf27c
PZ
7271}
7272
0cff784a 7273static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7274 struct perf_sample_data *data,
5622f295 7275 struct pt_regs *regs)
15dbf27c 7276{
cdd6c482 7277 struct hw_perf_event *hwc = &event->hw;
850bc73f 7278 int throttle = 0;
15dbf27c 7279
0cff784a
PZ
7280 if (!overflow)
7281 overflow = perf_swevent_set_period(event);
15dbf27c 7282
7b4b6658
PZ
7283 if (hwc->interrupts == MAX_INTERRUPTS)
7284 return;
15dbf27c 7285
7b4b6658 7286 for (; overflow; overflow--) {
a8b0ca17 7287 if (__perf_event_overflow(event, throttle,
5622f295 7288 data, regs)) {
7b4b6658
PZ
7289 /*
7290 * We inhibit the overflow from happening when
7291 * hwc->interrupts == MAX_INTERRUPTS.
7292 */
7293 break;
7294 }
cf450a73 7295 throttle = 1;
7b4b6658 7296 }
15dbf27c
PZ
7297}
7298
a4eaf7f1 7299static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7300 struct perf_sample_data *data,
5622f295 7301 struct pt_regs *regs)
7b4b6658 7302{
cdd6c482 7303 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7304
e7850595 7305 local64_add(nr, &event->count);
d6d020e9 7306
0cff784a
PZ
7307 if (!regs)
7308 return;
7309
6c7e550f 7310 if (!is_sampling_event(event))
7b4b6658 7311 return;
d6d020e9 7312
5d81e5cf
AV
7313 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7314 data->period = nr;
7315 return perf_swevent_overflow(event, 1, data, regs);
7316 } else
7317 data->period = event->hw.last_period;
7318
0cff784a 7319 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7320 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7321
e7850595 7322 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7323 return;
df1a132b 7324
a8b0ca17 7325 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7326}
7327
f5ffe02e
FW
7328static int perf_exclude_event(struct perf_event *event,
7329 struct pt_regs *regs)
7330{
a4eaf7f1 7331 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7332 return 1;
a4eaf7f1 7333
f5ffe02e
FW
7334 if (regs) {
7335 if (event->attr.exclude_user && user_mode(regs))
7336 return 1;
7337
7338 if (event->attr.exclude_kernel && !user_mode(regs))
7339 return 1;
7340 }
7341
7342 return 0;
7343}
7344
cdd6c482 7345static int perf_swevent_match(struct perf_event *event,
1c432d89 7346 enum perf_type_id type,
6fb2915d
LZ
7347 u32 event_id,
7348 struct perf_sample_data *data,
7349 struct pt_regs *regs)
15dbf27c 7350{
cdd6c482 7351 if (event->attr.type != type)
a21ca2ca 7352 return 0;
f5ffe02e 7353
cdd6c482 7354 if (event->attr.config != event_id)
15dbf27c
PZ
7355 return 0;
7356
f5ffe02e
FW
7357 if (perf_exclude_event(event, regs))
7358 return 0;
15dbf27c
PZ
7359
7360 return 1;
7361}
7362
76e1d904
FW
7363static inline u64 swevent_hash(u64 type, u32 event_id)
7364{
7365 u64 val = event_id | (type << 32);
7366
7367 return hash_64(val, SWEVENT_HLIST_BITS);
7368}
7369
49f135ed
FW
7370static inline struct hlist_head *
7371__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7372{
49f135ed
FW
7373 u64 hash = swevent_hash(type, event_id);
7374
7375 return &hlist->heads[hash];
7376}
76e1d904 7377
49f135ed
FW
7378/* For the read side: events when they trigger */
7379static inline struct hlist_head *
b28ab83c 7380find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7381{
7382 struct swevent_hlist *hlist;
76e1d904 7383
b28ab83c 7384 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7385 if (!hlist)
7386 return NULL;
7387
49f135ed
FW
7388 return __find_swevent_head(hlist, type, event_id);
7389}
7390
7391/* For the event head insertion and removal in the hlist */
7392static inline struct hlist_head *
b28ab83c 7393find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7394{
7395 struct swevent_hlist *hlist;
7396 u32 event_id = event->attr.config;
7397 u64 type = event->attr.type;
7398
7399 /*
7400 * Event scheduling is always serialized against hlist allocation
7401 * and release. Which makes the protected version suitable here.
7402 * The context lock guarantees that.
7403 */
b28ab83c 7404 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7405 lockdep_is_held(&event->ctx->lock));
7406 if (!hlist)
7407 return NULL;
7408
7409 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7410}
7411
7412static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7413 u64 nr,
76e1d904
FW
7414 struct perf_sample_data *data,
7415 struct pt_regs *regs)
15dbf27c 7416{
4a32fea9 7417 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7418 struct perf_event *event;
76e1d904 7419 struct hlist_head *head;
15dbf27c 7420
76e1d904 7421 rcu_read_lock();
b28ab83c 7422 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7423 if (!head)
7424 goto end;
7425
b67bfe0d 7426 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7427 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7428 perf_swevent_event(event, nr, data, regs);
15dbf27c 7429 }
76e1d904
FW
7430end:
7431 rcu_read_unlock();
15dbf27c
PZ
7432}
7433
86038c5e
PZI
7434DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7435
4ed7c92d 7436int perf_swevent_get_recursion_context(void)
96f6d444 7437{
4a32fea9 7438 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7439
b28ab83c 7440 return get_recursion_context(swhash->recursion);
96f6d444 7441}
645e8cc0 7442EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7443
98b5c2c6 7444void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7445{
4a32fea9 7446 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7447
b28ab83c 7448 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7449}
15dbf27c 7450
86038c5e 7451void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7452{
a4234bfc 7453 struct perf_sample_data data;
4ed7c92d 7454
86038c5e 7455 if (WARN_ON_ONCE(!regs))
4ed7c92d 7456 return;
a4234bfc 7457
fd0d000b 7458 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7459 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7460}
7461
7462void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7463{
7464 int rctx;
7465
7466 preempt_disable_notrace();
7467 rctx = perf_swevent_get_recursion_context();
7468 if (unlikely(rctx < 0))
7469 goto fail;
7470
7471 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7472
7473 perf_swevent_put_recursion_context(rctx);
86038c5e 7474fail:
1c024eca 7475 preempt_enable_notrace();
b8e83514
PZ
7476}
7477
cdd6c482 7478static void perf_swevent_read(struct perf_event *event)
15dbf27c 7479{
15dbf27c
PZ
7480}
7481
a4eaf7f1 7482static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7483{
4a32fea9 7484 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7485 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7486 struct hlist_head *head;
7487
6c7e550f 7488 if (is_sampling_event(event)) {
7b4b6658 7489 hwc->last_period = hwc->sample_period;
cdd6c482 7490 perf_swevent_set_period(event);
7b4b6658 7491 }
76e1d904 7492
a4eaf7f1
PZ
7493 hwc->state = !(flags & PERF_EF_START);
7494
b28ab83c 7495 head = find_swevent_head(swhash, event);
12ca6ad2 7496 if (WARN_ON_ONCE(!head))
76e1d904
FW
7497 return -EINVAL;
7498
7499 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7500 perf_event_update_userpage(event);
76e1d904 7501
15dbf27c
PZ
7502 return 0;
7503}
7504
a4eaf7f1 7505static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7506{
76e1d904 7507 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7508}
7509
a4eaf7f1 7510static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7511{
a4eaf7f1 7512 event->hw.state = 0;
d6d020e9 7513}
aa9c4c0f 7514
a4eaf7f1 7515static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7516{
a4eaf7f1 7517 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7518}
7519
49f135ed
FW
7520/* Deref the hlist from the update side */
7521static inline struct swevent_hlist *
b28ab83c 7522swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7523{
b28ab83c
PZ
7524 return rcu_dereference_protected(swhash->swevent_hlist,
7525 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7526}
7527
b28ab83c 7528static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7529{
b28ab83c 7530 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7531
49f135ed 7532 if (!hlist)
76e1d904
FW
7533 return;
7534
70691d4a 7535 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7536 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7537}
7538
3b364d7b 7539static void swevent_hlist_put_cpu(int cpu)
76e1d904 7540{
b28ab83c 7541 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7542
b28ab83c 7543 mutex_lock(&swhash->hlist_mutex);
76e1d904 7544
b28ab83c
PZ
7545 if (!--swhash->hlist_refcount)
7546 swevent_hlist_release(swhash);
76e1d904 7547
b28ab83c 7548 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7549}
7550
3b364d7b 7551static void swevent_hlist_put(void)
76e1d904
FW
7552{
7553 int cpu;
7554
76e1d904 7555 for_each_possible_cpu(cpu)
3b364d7b 7556 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7557}
7558
3b364d7b 7559static int swevent_hlist_get_cpu(int cpu)
76e1d904 7560{
b28ab83c 7561 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7562 int err = 0;
7563
b28ab83c 7564 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7565 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7566 struct swevent_hlist *hlist;
7567
7568 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7569 if (!hlist) {
7570 err = -ENOMEM;
7571 goto exit;
7572 }
b28ab83c 7573 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7574 }
b28ab83c 7575 swhash->hlist_refcount++;
9ed6060d 7576exit:
b28ab83c 7577 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7578
7579 return err;
7580}
7581
3b364d7b 7582static int swevent_hlist_get(void)
76e1d904 7583{
3b364d7b 7584 int err, cpu, failed_cpu;
76e1d904 7585
76e1d904
FW
7586 get_online_cpus();
7587 for_each_possible_cpu(cpu) {
3b364d7b 7588 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7589 if (err) {
7590 failed_cpu = cpu;
7591 goto fail;
7592 }
7593 }
7594 put_online_cpus();
7595
7596 return 0;
9ed6060d 7597fail:
76e1d904
FW
7598 for_each_possible_cpu(cpu) {
7599 if (cpu == failed_cpu)
7600 break;
3b364d7b 7601 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7602 }
7603
7604 put_online_cpus();
7605 return err;
7606}
7607
c5905afb 7608struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7609
b0a873eb
PZ
7610static void sw_perf_event_destroy(struct perf_event *event)
7611{
7612 u64 event_id = event->attr.config;
95476b64 7613
b0a873eb
PZ
7614 WARN_ON(event->parent);
7615
c5905afb 7616 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7617 swevent_hlist_put();
b0a873eb
PZ
7618}
7619
7620static int perf_swevent_init(struct perf_event *event)
7621{
8176cced 7622 u64 event_id = event->attr.config;
b0a873eb
PZ
7623
7624 if (event->attr.type != PERF_TYPE_SOFTWARE)
7625 return -ENOENT;
7626
2481c5fa
SE
7627 /*
7628 * no branch sampling for software events
7629 */
7630 if (has_branch_stack(event))
7631 return -EOPNOTSUPP;
7632
b0a873eb
PZ
7633 switch (event_id) {
7634 case PERF_COUNT_SW_CPU_CLOCK:
7635 case PERF_COUNT_SW_TASK_CLOCK:
7636 return -ENOENT;
7637
7638 default:
7639 break;
7640 }
7641
ce677831 7642 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7643 return -ENOENT;
7644
7645 if (!event->parent) {
7646 int err;
7647
3b364d7b 7648 err = swevent_hlist_get();
b0a873eb
PZ
7649 if (err)
7650 return err;
7651
c5905afb 7652 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7653 event->destroy = sw_perf_event_destroy;
7654 }
7655
7656 return 0;
7657}
7658
7659static struct pmu perf_swevent = {
89a1e187 7660 .task_ctx_nr = perf_sw_context,
95476b64 7661
34f43927
PZ
7662 .capabilities = PERF_PMU_CAP_NO_NMI,
7663
b0a873eb 7664 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7665 .add = perf_swevent_add,
7666 .del = perf_swevent_del,
7667 .start = perf_swevent_start,
7668 .stop = perf_swevent_stop,
1c024eca 7669 .read = perf_swevent_read,
1c024eca
PZ
7670};
7671
b0a873eb
PZ
7672#ifdef CONFIG_EVENT_TRACING
7673
1c024eca
PZ
7674static int perf_tp_filter_match(struct perf_event *event,
7675 struct perf_sample_data *data)
7676{
7e3f977e 7677 void *record = data->raw->frag.data;
1c024eca 7678
b71b437e
PZ
7679 /* only top level events have filters set */
7680 if (event->parent)
7681 event = event->parent;
7682
1c024eca
PZ
7683 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7684 return 1;
7685 return 0;
7686}
7687
7688static int perf_tp_event_match(struct perf_event *event,
7689 struct perf_sample_data *data,
7690 struct pt_regs *regs)
7691{
a0f7d0f7
FW
7692 if (event->hw.state & PERF_HES_STOPPED)
7693 return 0;
580d607c
PZ
7694 /*
7695 * All tracepoints are from kernel-space.
7696 */
7697 if (event->attr.exclude_kernel)
1c024eca
PZ
7698 return 0;
7699
7700 if (!perf_tp_filter_match(event, data))
7701 return 0;
7702
7703 return 1;
7704}
7705
85b67bcb
AS
7706void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7707 struct trace_event_call *call, u64 count,
7708 struct pt_regs *regs, struct hlist_head *head,
7709 struct task_struct *task)
7710{
7711 struct bpf_prog *prog = call->prog;
7712
7713 if (prog) {
7714 *(struct pt_regs **)raw_data = regs;
7715 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7716 perf_swevent_put_recursion_context(rctx);
7717 return;
7718 }
7719 }
7720 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7721 rctx, task);
7722}
7723EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7724
1e1dcd93 7725void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7726 struct pt_regs *regs, struct hlist_head *head, int rctx,
7727 struct task_struct *task)
95476b64
FW
7728{
7729 struct perf_sample_data data;
1c024eca 7730 struct perf_event *event;
1c024eca 7731
95476b64 7732 struct perf_raw_record raw = {
7e3f977e
DB
7733 .frag = {
7734 .size = entry_size,
7735 .data = record,
7736 },
95476b64
FW
7737 };
7738
1e1dcd93 7739 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7740 data.raw = &raw;
7741
1e1dcd93
AS
7742 perf_trace_buf_update(record, event_type);
7743
b67bfe0d 7744 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7745 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7746 perf_swevent_event(event, count, &data, regs);
4f41c013 7747 }
ecc55f84 7748
e6dab5ff
AV
7749 /*
7750 * If we got specified a target task, also iterate its context and
7751 * deliver this event there too.
7752 */
7753 if (task && task != current) {
7754 struct perf_event_context *ctx;
7755 struct trace_entry *entry = record;
7756
7757 rcu_read_lock();
7758 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7759 if (!ctx)
7760 goto unlock;
7761
7762 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7763 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7764 continue;
7765 if (event->attr.config != entry->type)
7766 continue;
7767 if (perf_tp_event_match(event, &data, regs))
7768 perf_swevent_event(event, count, &data, regs);
7769 }
7770unlock:
7771 rcu_read_unlock();
7772 }
7773
ecc55f84 7774 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7775}
7776EXPORT_SYMBOL_GPL(perf_tp_event);
7777
cdd6c482 7778static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7779{
1c024eca 7780 perf_trace_destroy(event);
e077df4f
PZ
7781}
7782
b0a873eb 7783static int perf_tp_event_init(struct perf_event *event)
e077df4f 7784{
76e1d904
FW
7785 int err;
7786
b0a873eb
PZ
7787 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7788 return -ENOENT;
7789
2481c5fa
SE
7790 /*
7791 * no branch sampling for tracepoint events
7792 */
7793 if (has_branch_stack(event))
7794 return -EOPNOTSUPP;
7795
1c024eca
PZ
7796 err = perf_trace_init(event);
7797 if (err)
b0a873eb 7798 return err;
e077df4f 7799
cdd6c482 7800 event->destroy = tp_perf_event_destroy;
e077df4f 7801
b0a873eb
PZ
7802 return 0;
7803}
7804
7805static struct pmu perf_tracepoint = {
89a1e187
PZ
7806 .task_ctx_nr = perf_sw_context,
7807
b0a873eb 7808 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7809 .add = perf_trace_add,
7810 .del = perf_trace_del,
7811 .start = perf_swevent_start,
7812 .stop = perf_swevent_stop,
b0a873eb 7813 .read = perf_swevent_read,
b0a873eb
PZ
7814};
7815
7816static inline void perf_tp_register(void)
7817{
2e80a82a 7818 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7819}
6fb2915d 7820
6fb2915d
LZ
7821static void perf_event_free_filter(struct perf_event *event)
7822{
7823 ftrace_profile_free_filter(event);
7824}
7825
aa6a5f3c
AS
7826#ifdef CONFIG_BPF_SYSCALL
7827static void bpf_overflow_handler(struct perf_event *event,
7828 struct perf_sample_data *data,
7829 struct pt_regs *regs)
7830{
7831 struct bpf_perf_event_data_kern ctx = {
7832 .data = data,
7833 .regs = regs,
7834 };
7835 int ret = 0;
7836
7837 preempt_disable();
7838 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7839 goto out;
7840 rcu_read_lock();
88575199 7841 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7842 rcu_read_unlock();
7843out:
7844 __this_cpu_dec(bpf_prog_active);
7845 preempt_enable();
7846 if (!ret)
7847 return;
7848
7849 event->orig_overflow_handler(event, data, regs);
7850}
7851
7852static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7853{
7854 struct bpf_prog *prog;
7855
7856 if (event->overflow_handler_context)
7857 /* hw breakpoint or kernel counter */
7858 return -EINVAL;
7859
7860 if (event->prog)
7861 return -EEXIST;
7862
7863 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7864 if (IS_ERR(prog))
7865 return PTR_ERR(prog);
7866
7867 event->prog = prog;
7868 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7869 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7870 return 0;
7871}
7872
7873static void perf_event_free_bpf_handler(struct perf_event *event)
7874{
7875 struct bpf_prog *prog = event->prog;
7876
7877 if (!prog)
7878 return;
7879
7880 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7881 event->prog = NULL;
7882 bpf_prog_put(prog);
7883}
7884#else
7885static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7886{
7887 return -EOPNOTSUPP;
7888}
7889static void perf_event_free_bpf_handler(struct perf_event *event)
7890{
7891}
7892#endif
7893
2541517c
AS
7894static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7895{
98b5c2c6 7896 bool is_kprobe, is_tracepoint;
2541517c
AS
7897 struct bpf_prog *prog;
7898
aa6a5f3c
AS
7899 if (event->attr.type == PERF_TYPE_HARDWARE ||
7900 event->attr.type == PERF_TYPE_SOFTWARE)
7901 return perf_event_set_bpf_handler(event, prog_fd);
7902
2541517c
AS
7903 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7904 return -EINVAL;
7905
7906 if (event->tp_event->prog)
7907 return -EEXIST;
7908
98b5c2c6
AS
7909 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7910 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7911 if (!is_kprobe && !is_tracepoint)
7912 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7913 return -EINVAL;
7914
7915 prog = bpf_prog_get(prog_fd);
7916 if (IS_ERR(prog))
7917 return PTR_ERR(prog);
7918
98b5c2c6
AS
7919 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7920 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7921 /* valid fd, but invalid bpf program type */
7922 bpf_prog_put(prog);
7923 return -EINVAL;
7924 }
7925
32bbe007
AS
7926 if (is_tracepoint) {
7927 int off = trace_event_get_offsets(event->tp_event);
7928
7929 if (prog->aux->max_ctx_offset > off) {
7930 bpf_prog_put(prog);
7931 return -EACCES;
7932 }
7933 }
2541517c
AS
7934 event->tp_event->prog = prog;
7935
7936 return 0;
7937}
7938
7939static void perf_event_free_bpf_prog(struct perf_event *event)
7940{
7941 struct bpf_prog *prog;
7942
aa6a5f3c
AS
7943 perf_event_free_bpf_handler(event);
7944
2541517c
AS
7945 if (!event->tp_event)
7946 return;
7947
7948 prog = event->tp_event->prog;
7949 if (prog) {
7950 event->tp_event->prog = NULL;
1aacde3d 7951 bpf_prog_put(prog);
2541517c
AS
7952 }
7953}
7954
e077df4f 7955#else
6fb2915d 7956
b0a873eb 7957static inline void perf_tp_register(void)
e077df4f 7958{
e077df4f 7959}
6fb2915d 7960
6fb2915d
LZ
7961static void perf_event_free_filter(struct perf_event *event)
7962{
7963}
7964
2541517c
AS
7965static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7966{
7967 return -ENOENT;
7968}
7969
7970static void perf_event_free_bpf_prog(struct perf_event *event)
7971{
7972}
07b139c8 7973#endif /* CONFIG_EVENT_TRACING */
e077df4f 7974
24f1e32c 7975#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7976void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7977{
f5ffe02e
FW
7978 struct perf_sample_data sample;
7979 struct pt_regs *regs = data;
7980
fd0d000b 7981 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7982
a4eaf7f1 7983 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7984 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7985}
7986#endif
7987
375637bc
AS
7988/*
7989 * Allocate a new address filter
7990 */
7991static struct perf_addr_filter *
7992perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7993{
7994 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7995 struct perf_addr_filter *filter;
7996
7997 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7998 if (!filter)
7999 return NULL;
8000
8001 INIT_LIST_HEAD(&filter->entry);
8002 list_add_tail(&filter->entry, filters);
8003
8004 return filter;
8005}
8006
8007static void free_filters_list(struct list_head *filters)
8008{
8009 struct perf_addr_filter *filter, *iter;
8010
8011 list_for_each_entry_safe(filter, iter, filters, entry) {
8012 if (filter->inode)
8013 iput(filter->inode);
8014 list_del(&filter->entry);
8015 kfree(filter);
8016 }
8017}
8018
8019/*
8020 * Free existing address filters and optionally install new ones
8021 */
8022static void perf_addr_filters_splice(struct perf_event *event,
8023 struct list_head *head)
8024{
8025 unsigned long flags;
8026 LIST_HEAD(list);
8027
8028 if (!has_addr_filter(event))
8029 return;
8030
8031 /* don't bother with children, they don't have their own filters */
8032 if (event->parent)
8033 return;
8034
8035 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8036
8037 list_splice_init(&event->addr_filters.list, &list);
8038 if (head)
8039 list_splice(head, &event->addr_filters.list);
8040
8041 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8042
8043 free_filters_list(&list);
8044}
8045
8046/*
8047 * Scan through mm's vmas and see if one of them matches the
8048 * @filter; if so, adjust filter's address range.
8049 * Called with mm::mmap_sem down for reading.
8050 */
8051static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8052 struct mm_struct *mm)
8053{
8054 struct vm_area_struct *vma;
8055
8056 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8057 struct file *file = vma->vm_file;
8058 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8059 unsigned long vma_size = vma->vm_end - vma->vm_start;
8060
8061 if (!file)
8062 continue;
8063
8064 if (!perf_addr_filter_match(filter, file, off, vma_size))
8065 continue;
8066
8067 return vma->vm_start;
8068 }
8069
8070 return 0;
8071}
8072
8073/*
8074 * Update event's address range filters based on the
8075 * task's existing mappings, if any.
8076 */
8077static void perf_event_addr_filters_apply(struct perf_event *event)
8078{
8079 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8080 struct task_struct *task = READ_ONCE(event->ctx->task);
8081 struct perf_addr_filter *filter;
8082 struct mm_struct *mm = NULL;
8083 unsigned int count = 0;
8084 unsigned long flags;
8085
8086 /*
8087 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8088 * will stop on the parent's child_mutex that our caller is also holding
8089 */
8090 if (task == TASK_TOMBSTONE)
8091 return;
8092
8093 mm = get_task_mm(event->ctx->task);
8094 if (!mm)
8095 goto restart;
8096
8097 down_read(&mm->mmap_sem);
8098
8099 raw_spin_lock_irqsave(&ifh->lock, flags);
8100 list_for_each_entry(filter, &ifh->list, entry) {
8101 event->addr_filters_offs[count] = 0;
8102
99f5bc9b
MP
8103 /*
8104 * Adjust base offset if the filter is associated to a binary
8105 * that needs to be mapped:
8106 */
8107 if (filter->inode)
375637bc
AS
8108 event->addr_filters_offs[count] =
8109 perf_addr_filter_apply(filter, mm);
8110
8111 count++;
8112 }
8113
8114 event->addr_filters_gen++;
8115 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8116
8117 up_read(&mm->mmap_sem);
8118
8119 mmput(mm);
8120
8121restart:
767ae086 8122 perf_event_stop(event, 1);
375637bc
AS
8123}
8124
8125/*
8126 * Address range filtering: limiting the data to certain
8127 * instruction address ranges. Filters are ioctl()ed to us from
8128 * userspace as ascii strings.
8129 *
8130 * Filter string format:
8131 *
8132 * ACTION RANGE_SPEC
8133 * where ACTION is one of the
8134 * * "filter": limit the trace to this region
8135 * * "start": start tracing from this address
8136 * * "stop": stop tracing at this address/region;
8137 * RANGE_SPEC is
8138 * * for kernel addresses: <start address>[/<size>]
8139 * * for object files: <start address>[/<size>]@</path/to/object/file>
8140 *
8141 * if <size> is not specified, the range is treated as a single address.
8142 */
8143enum {
e96271f3 8144 IF_ACT_NONE = -1,
375637bc
AS
8145 IF_ACT_FILTER,
8146 IF_ACT_START,
8147 IF_ACT_STOP,
8148 IF_SRC_FILE,
8149 IF_SRC_KERNEL,
8150 IF_SRC_FILEADDR,
8151 IF_SRC_KERNELADDR,
8152};
8153
8154enum {
8155 IF_STATE_ACTION = 0,
8156 IF_STATE_SOURCE,
8157 IF_STATE_END,
8158};
8159
8160static const match_table_t if_tokens = {
8161 { IF_ACT_FILTER, "filter" },
8162 { IF_ACT_START, "start" },
8163 { IF_ACT_STOP, "stop" },
8164 { IF_SRC_FILE, "%u/%u@%s" },
8165 { IF_SRC_KERNEL, "%u/%u" },
8166 { IF_SRC_FILEADDR, "%u@%s" },
8167 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8168 { IF_ACT_NONE, NULL },
375637bc
AS
8169};
8170
8171/*
8172 * Address filter string parser
8173 */
8174static int
8175perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8176 struct list_head *filters)
8177{
8178 struct perf_addr_filter *filter = NULL;
8179 char *start, *orig, *filename = NULL;
8180 struct path path;
8181 substring_t args[MAX_OPT_ARGS];
8182 int state = IF_STATE_ACTION, token;
8183 unsigned int kernel = 0;
8184 int ret = -EINVAL;
8185
8186 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8187 if (!fstr)
8188 return -ENOMEM;
8189
8190 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8191 ret = -EINVAL;
8192
8193 if (!*start)
8194 continue;
8195
8196 /* filter definition begins */
8197 if (state == IF_STATE_ACTION) {
8198 filter = perf_addr_filter_new(event, filters);
8199 if (!filter)
8200 goto fail;
8201 }
8202
8203 token = match_token(start, if_tokens, args);
8204 switch (token) {
8205 case IF_ACT_FILTER:
8206 case IF_ACT_START:
8207 filter->filter = 1;
8208
8209 case IF_ACT_STOP:
8210 if (state != IF_STATE_ACTION)
8211 goto fail;
8212
8213 state = IF_STATE_SOURCE;
8214 break;
8215
8216 case IF_SRC_KERNELADDR:
8217 case IF_SRC_KERNEL:
8218 kernel = 1;
8219
8220 case IF_SRC_FILEADDR:
8221 case IF_SRC_FILE:
8222 if (state != IF_STATE_SOURCE)
8223 goto fail;
8224
8225 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8226 filter->range = 1;
8227
8228 *args[0].to = 0;
8229 ret = kstrtoul(args[0].from, 0, &filter->offset);
8230 if (ret)
8231 goto fail;
8232
8233 if (filter->range) {
8234 *args[1].to = 0;
8235 ret = kstrtoul(args[1].from, 0, &filter->size);
8236 if (ret)
8237 goto fail;
8238 }
8239
4059ffd0
MP
8240 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8241 int fpos = filter->range ? 2 : 1;
8242
8243 filename = match_strdup(&args[fpos]);
375637bc
AS
8244 if (!filename) {
8245 ret = -ENOMEM;
8246 goto fail;
8247 }
8248 }
8249
8250 state = IF_STATE_END;
8251 break;
8252
8253 default:
8254 goto fail;
8255 }
8256
8257 /*
8258 * Filter definition is fully parsed, validate and install it.
8259 * Make sure that it doesn't contradict itself or the event's
8260 * attribute.
8261 */
8262 if (state == IF_STATE_END) {
8263 if (kernel && event->attr.exclude_kernel)
8264 goto fail;
8265
8266 if (!kernel) {
8267 if (!filename)
8268 goto fail;
8269
8270 /* look up the path and grab its inode */
8271 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8272 if (ret)
8273 goto fail_free_name;
8274
8275 filter->inode = igrab(d_inode(path.dentry));
8276 path_put(&path);
8277 kfree(filename);
8278 filename = NULL;
8279
8280 ret = -EINVAL;
8281 if (!filter->inode ||
8282 !S_ISREG(filter->inode->i_mode))
8283 /* free_filters_list() will iput() */
8284 goto fail;
8285 }
8286
8287 /* ready to consume more filters */
8288 state = IF_STATE_ACTION;
8289 filter = NULL;
8290 }
8291 }
8292
8293 if (state != IF_STATE_ACTION)
8294 goto fail;
8295
8296 kfree(orig);
8297
8298 return 0;
8299
8300fail_free_name:
8301 kfree(filename);
8302fail:
8303 free_filters_list(filters);
8304 kfree(orig);
8305
8306 return ret;
8307}
8308
8309static int
8310perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8311{
8312 LIST_HEAD(filters);
8313 int ret;
8314
8315 /*
8316 * Since this is called in perf_ioctl() path, we're already holding
8317 * ctx::mutex.
8318 */
8319 lockdep_assert_held(&event->ctx->mutex);
8320
8321 if (WARN_ON_ONCE(event->parent))
8322 return -EINVAL;
8323
8324 /*
8325 * For now, we only support filtering in per-task events; doing so
8326 * for CPU-wide events requires additional context switching trickery,
8327 * since same object code will be mapped at different virtual
8328 * addresses in different processes.
8329 */
8330 if (!event->ctx->task)
8331 return -EOPNOTSUPP;
8332
8333 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8334 if (ret)
8335 return ret;
8336
8337 ret = event->pmu->addr_filters_validate(&filters);
8338 if (ret) {
8339 free_filters_list(&filters);
8340 return ret;
8341 }
8342
8343 /* remove existing filters, if any */
8344 perf_addr_filters_splice(event, &filters);
8345
8346 /* install new filters */
8347 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8348
8349 return ret;
8350}
8351
c796bbbe
AS
8352static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8353{
8354 char *filter_str;
8355 int ret = -EINVAL;
8356
375637bc
AS
8357 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8358 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8359 !has_addr_filter(event))
c796bbbe
AS
8360 return -EINVAL;
8361
8362 filter_str = strndup_user(arg, PAGE_SIZE);
8363 if (IS_ERR(filter_str))
8364 return PTR_ERR(filter_str);
8365
8366 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8367 event->attr.type == PERF_TYPE_TRACEPOINT)
8368 ret = ftrace_profile_set_filter(event, event->attr.config,
8369 filter_str);
375637bc
AS
8370 else if (has_addr_filter(event))
8371 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8372
8373 kfree(filter_str);
8374 return ret;
8375}
8376
b0a873eb
PZ
8377/*
8378 * hrtimer based swevent callback
8379 */
f29ac756 8380
b0a873eb 8381static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8382{
b0a873eb
PZ
8383 enum hrtimer_restart ret = HRTIMER_RESTART;
8384 struct perf_sample_data data;
8385 struct pt_regs *regs;
8386 struct perf_event *event;
8387 u64 period;
f29ac756 8388
b0a873eb 8389 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8390
8391 if (event->state != PERF_EVENT_STATE_ACTIVE)
8392 return HRTIMER_NORESTART;
8393
b0a873eb 8394 event->pmu->read(event);
f344011c 8395
fd0d000b 8396 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8397 regs = get_irq_regs();
8398
8399 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8400 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8401 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8402 ret = HRTIMER_NORESTART;
8403 }
24f1e32c 8404
b0a873eb
PZ
8405 period = max_t(u64, 10000, event->hw.sample_period);
8406 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8407
b0a873eb 8408 return ret;
f29ac756
PZ
8409}
8410
b0a873eb 8411static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8412{
b0a873eb 8413 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8414 s64 period;
8415
8416 if (!is_sampling_event(event))
8417 return;
f5ffe02e 8418
5d508e82
FBH
8419 period = local64_read(&hwc->period_left);
8420 if (period) {
8421 if (period < 0)
8422 period = 10000;
fa407f35 8423
5d508e82
FBH
8424 local64_set(&hwc->period_left, 0);
8425 } else {
8426 period = max_t(u64, 10000, hwc->sample_period);
8427 }
3497d206
TG
8428 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8429 HRTIMER_MODE_REL_PINNED);
24f1e32c 8430}
b0a873eb
PZ
8431
8432static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8433{
b0a873eb
PZ
8434 struct hw_perf_event *hwc = &event->hw;
8435
6c7e550f 8436 if (is_sampling_event(event)) {
b0a873eb 8437 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8438 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8439
8440 hrtimer_cancel(&hwc->hrtimer);
8441 }
24f1e32c
FW
8442}
8443
ba3dd36c
PZ
8444static void perf_swevent_init_hrtimer(struct perf_event *event)
8445{
8446 struct hw_perf_event *hwc = &event->hw;
8447
8448 if (!is_sampling_event(event))
8449 return;
8450
8451 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8452 hwc->hrtimer.function = perf_swevent_hrtimer;
8453
8454 /*
8455 * Since hrtimers have a fixed rate, we can do a static freq->period
8456 * mapping and avoid the whole period adjust feedback stuff.
8457 */
8458 if (event->attr.freq) {
8459 long freq = event->attr.sample_freq;
8460
8461 event->attr.sample_period = NSEC_PER_SEC / freq;
8462 hwc->sample_period = event->attr.sample_period;
8463 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8464 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8465 event->attr.freq = 0;
8466 }
8467}
8468
b0a873eb
PZ
8469/*
8470 * Software event: cpu wall time clock
8471 */
8472
8473static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8474{
b0a873eb
PZ
8475 s64 prev;
8476 u64 now;
8477
a4eaf7f1 8478 now = local_clock();
b0a873eb
PZ
8479 prev = local64_xchg(&event->hw.prev_count, now);
8480 local64_add(now - prev, &event->count);
24f1e32c 8481}
24f1e32c 8482
a4eaf7f1 8483static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8484{
a4eaf7f1 8485 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8486 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8487}
8488
a4eaf7f1 8489static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8490{
b0a873eb
PZ
8491 perf_swevent_cancel_hrtimer(event);
8492 cpu_clock_event_update(event);
8493}
f29ac756 8494
a4eaf7f1
PZ
8495static int cpu_clock_event_add(struct perf_event *event, int flags)
8496{
8497 if (flags & PERF_EF_START)
8498 cpu_clock_event_start(event, flags);
6a694a60 8499 perf_event_update_userpage(event);
a4eaf7f1
PZ
8500
8501 return 0;
8502}
8503
8504static void cpu_clock_event_del(struct perf_event *event, int flags)
8505{
8506 cpu_clock_event_stop(event, flags);
8507}
8508
b0a873eb
PZ
8509static void cpu_clock_event_read(struct perf_event *event)
8510{
8511 cpu_clock_event_update(event);
8512}
f344011c 8513
b0a873eb
PZ
8514static int cpu_clock_event_init(struct perf_event *event)
8515{
8516 if (event->attr.type != PERF_TYPE_SOFTWARE)
8517 return -ENOENT;
8518
8519 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8520 return -ENOENT;
8521
2481c5fa
SE
8522 /*
8523 * no branch sampling for software events
8524 */
8525 if (has_branch_stack(event))
8526 return -EOPNOTSUPP;
8527
ba3dd36c
PZ
8528 perf_swevent_init_hrtimer(event);
8529
b0a873eb 8530 return 0;
f29ac756
PZ
8531}
8532
b0a873eb 8533static struct pmu perf_cpu_clock = {
89a1e187
PZ
8534 .task_ctx_nr = perf_sw_context,
8535
34f43927
PZ
8536 .capabilities = PERF_PMU_CAP_NO_NMI,
8537
b0a873eb 8538 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8539 .add = cpu_clock_event_add,
8540 .del = cpu_clock_event_del,
8541 .start = cpu_clock_event_start,
8542 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8543 .read = cpu_clock_event_read,
8544};
8545
8546/*
8547 * Software event: task time clock
8548 */
8549
8550static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8551{
b0a873eb
PZ
8552 u64 prev;
8553 s64 delta;
5c92d124 8554
b0a873eb
PZ
8555 prev = local64_xchg(&event->hw.prev_count, now);
8556 delta = now - prev;
8557 local64_add(delta, &event->count);
8558}
5c92d124 8559
a4eaf7f1 8560static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8561{
a4eaf7f1 8562 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8563 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8564}
8565
a4eaf7f1 8566static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8567{
8568 perf_swevent_cancel_hrtimer(event);
8569 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8570}
8571
8572static int task_clock_event_add(struct perf_event *event, int flags)
8573{
8574 if (flags & PERF_EF_START)
8575 task_clock_event_start(event, flags);
6a694a60 8576 perf_event_update_userpage(event);
b0a873eb 8577
a4eaf7f1
PZ
8578 return 0;
8579}
8580
8581static void task_clock_event_del(struct perf_event *event, int flags)
8582{
8583 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8584}
8585
8586static void task_clock_event_read(struct perf_event *event)
8587{
768a06e2
PZ
8588 u64 now = perf_clock();
8589 u64 delta = now - event->ctx->timestamp;
8590 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8591
8592 task_clock_event_update(event, time);
8593}
8594
8595static int task_clock_event_init(struct perf_event *event)
6fb2915d 8596{
b0a873eb
PZ
8597 if (event->attr.type != PERF_TYPE_SOFTWARE)
8598 return -ENOENT;
8599
8600 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8601 return -ENOENT;
8602
2481c5fa
SE
8603 /*
8604 * no branch sampling for software events
8605 */
8606 if (has_branch_stack(event))
8607 return -EOPNOTSUPP;
8608
ba3dd36c
PZ
8609 perf_swevent_init_hrtimer(event);
8610
b0a873eb 8611 return 0;
6fb2915d
LZ
8612}
8613
b0a873eb 8614static struct pmu perf_task_clock = {
89a1e187
PZ
8615 .task_ctx_nr = perf_sw_context,
8616
34f43927
PZ
8617 .capabilities = PERF_PMU_CAP_NO_NMI,
8618
b0a873eb 8619 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8620 .add = task_clock_event_add,
8621 .del = task_clock_event_del,
8622 .start = task_clock_event_start,
8623 .stop = task_clock_event_stop,
b0a873eb
PZ
8624 .read = task_clock_event_read,
8625};
6fb2915d 8626
ad5133b7 8627static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8628{
e077df4f 8629}
6fb2915d 8630
fbbe0701
SB
8631static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8632{
8633}
8634
ad5133b7 8635static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8636{
ad5133b7 8637 return 0;
6fb2915d
LZ
8638}
8639
18ab2cd3 8640static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8641
8642static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8643{
fbbe0701
SB
8644 __this_cpu_write(nop_txn_flags, flags);
8645
8646 if (flags & ~PERF_PMU_TXN_ADD)
8647 return;
8648
ad5133b7 8649 perf_pmu_disable(pmu);
6fb2915d
LZ
8650}
8651
ad5133b7
PZ
8652static int perf_pmu_commit_txn(struct pmu *pmu)
8653{
fbbe0701
SB
8654 unsigned int flags = __this_cpu_read(nop_txn_flags);
8655
8656 __this_cpu_write(nop_txn_flags, 0);
8657
8658 if (flags & ~PERF_PMU_TXN_ADD)
8659 return 0;
8660
ad5133b7
PZ
8661 perf_pmu_enable(pmu);
8662 return 0;
8663}
e077df4f 8664
ad5133b7 8665static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8666{
fbbe0701
SB
8667 unsigned int flags = __this_cpu_read(nop_txn_flags);
8668
8669 __this_cpu_write(nop_txn_flags, 0);
8670
8671 if (flags & ~PERF_PMU_TXN_ADD)
8672 return;
8673
ad5133b7 8674 perf_pmu_enable(pmu);
24f1e32c
FW
8675}
8676
35edc2a5
PZ
8677static int perf_event_idx_default(struct perf_event *event)
8678{
c719f560 8679 return 0;
35edc2a5
PZ
8680}
8681
8dc85d54
PZ
8682/*
8683 * Ensures all contexts with the same task_ctx_nr have the same
8684 * pmu_cpu_context too.
8685 */
9e317041 8686static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8687{
8dc85d54 8688 struct pmu *pmu;
b326e956 8689
8dc85d54
PZ
8690 if (ctxn < 0)
8691 return NULL;
24f1e32c 8692
8dc85d54
PZ
8693 list_for_each_entry(pmu, &pmus, entry) {
8694 if (pmu->task_ctx_nr == ctxn)
8695 return pmu->pmu_cpu_context;
8696 }
24f1e32c 8697
8dc85d54 8698 return NULL;
24f1e32c
FW
8699}
8700
51676957
PZ
8701static void free_pmu_context(struct pmu *pmu)
8702{
8dc85d54 8703 mutex_lock(&pmus_lock);
51676957 8704 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8705 mutex_unlock(&pmus_lock);
24f1e32c 8706}
6e855cd4
AS
8707
8708/*
8709 * Let userspace know that this PMU supports address range filtering:
8710 */
8711static ssize_t nr_addr_filters_show(struct device *dev,
8712 struct device_attribute *attr,
8713 char *page)
8714{
8715 struct pmu *pmu = dev_get_drvdata(dev);
8716
8717 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8718}
8719DEVICE_ATTR_RO(nr_addr_filters);
8720
2e80a82a 8721static struct idr pmu_idr;
d6d020e9 8722
abe43400
PZ
8723static ssize_t
8724type_show(struct device *dev, struct device_attribute *attr, char *page)
8725{
8726 struct pmu *pmu = dev_get_drvdata(dev);
8727
8728 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8729}
90826ca7 8730static DEVICE_ATTR_RO(type);
abe43400 8731
62b85639
SE
8732static ssize_t
8733perf_event_mux_interval_ms_show(struct device *dev,
8734 struct device_attribute *attr,
8735 char *page)
8736{
8737 struct pmu *pmu = dev_get_drvdata(dev);
8738
8739 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8740}
8741
272325c4
PZ
8742static DEFINE_MUTEX(mux_interval_mutex);
8743
62b85639
SE
8744static ssize_t
8745perf_event_mux_interval_ms_store(struct device *dev,
8746 struct device_attribute *attr,
8747 const char *buf, size_t count)
8748{
8749 struct pmu *pmu = dev_get_drvdata(dev);
8750 int timer, cpu, ret;
8751
8752 ret = kstrtoint(buf, 0, &timer);
8753 if (ret)
8754 return ret;
8755
8756 if (timer < 1)
8757 return -EINVAL;
8758
8759 /* same value, noting to do */
8760 if (timer == pmu->hrtimer_interval_ms)
8761 return count;
8762
272325c4 8763 mutex_lock(&mux_interval_mutex);
62b85639
SE
8764 pmu->hrtimer_interval_ms = timer;
8765
8766 /* update all cpuctx for this PMU */
272325c4
PZ
8767 get_online_cpus();
8768 for_each_online_cpu(cpu) {
62b85639
SE
8769 struct perf_cpu_context *cpuctx;
8770 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8771 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8772
272325c4
PZ
8773 cpu_function_call(cpu,
8774 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8775 }
272325c4
PZ
8776 put_online_cpus();
8777 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8778
8779 return count;
8780}
90826ca7 8781static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8782
90826ca7
GKH
8783static struct attribute *pmu_dev_attrs[] = {
8784 &dev_attr_type.attr,
8785 &dev_attr_perf_event_mux_interval_ms.attr,
8786 NULL,
abe43400 8787};
90826ca7 8788ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8789
8790static int pmu_bus_running;
8791static struct bus_type pmu_bus = {
8792 .name = "event_source",
90826ca7 8793 .dev_groups = pmu_dev_groups,
abe43400
PZ
8794};
8795
8796static void pmu_dev_release(struct device *dev)
8797{
8798 kfree(dev);
8799}
8800
8801static int pmu_dev_alloc(struct pmu *pmu)
8802{
8803 int ret = -ENOMEM;
8804
8805 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8806 if (!pmu->dev)
8807 goto out;
8808
0c9d42ed 8809 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8810 device_initialize(pmu->dev);
8811 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8812 if (ret)
8813 goto free_dev;
8814
8815 dev_set_drvdata(pmu->dev, pmu);
8816 pmu->dev->bus = &pmu_bus;
8817 pmu->dev->release = pmu_dev_release;
8818 ret = device_add(pmu->dev);
8819 if (ret)
8820 goto free_dev;
8821
6e855cd4
AS
8822 /* For PMUs with address filters, throw in an extra attribute: */
8823 if (pmu->nr_addr_filters)
8824 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8825
8826 if (ret)
8827 goto del_dev;
8828
abe43400
PZ
8829out:
8830 return ret;
8831
6e855cd4
AS
8832del_dev:
8833 device_del(pmu->dev);
8834
abe43400
PZ
8835free_dev:
8836 put_device(pmu->dev);
8837 goto out;
8838}
8839
547e9fd7 8840static struct lock_class_key cpuctx_mutex;
facc4307 8841static struct lock_class_key cpuctx_lock;
547e9fd7 8842
03d8e80b 8843int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8844{
108b02cf 8845 int cpu, ret;
24f1e32c 8846
b0a873eb 8847 mutex_lock(&pmus_lock);
33696fc0
PZ
8848 ret = -ENOMEM;
8849 pmu->pmu_disable_count = alloc_percpu(int);
8850 if (!pmu->pmu_disable_count)
8851 goto unlock;
f29ac756 8852
2e80a82a
PZ
8853 pmu->type = -1;
8854 if (!name)
8855 goto skip_type;
8856 pmu->name = name;
8857
8858 if (type < 0) {
0e9c3be2
TH
8859 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8860 if (type < 0) {
8861 ret = type;
2e80a82a
PZ
8862 goto free_pdc;
8863 }
8864 }
8865 pmu->type = type;
8866
abe43400
PZ
8867 if (pmu_bus_running) {
8868 ret = pmu_dev_alloc(pmu);
8869 if (ret)
8870 goto free_idr;
8871 }
8872
2e80a82a 8873skip_type:
26657848
PZ
8874 if (pmu->task_ctx_nr == perf_hw_context) {
8875 static int hw_context_taken = 0;
8876
5101ef20
MR
8877 /*
8878 * Other than systems with heterogeneous CPUs, it never makes
8879 * sense for two PMUs to share perf_hw_context. PMUs which are
8880 * uncore must use perf_invalid_context.
8881 */
8882 if (WARN_ON_ONCE(hw_context_taken &&
8883 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8884 pmu->task_ctx_nr = perf_invalid_context;
8885
8886 hw_context_taken = 1;
8887 }
8888
8dc85d54
PZ
8889 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8890 if (pmu->pmu_cpu_context)
8891 goto got_cpu_context;
f29ac756 8892
c4814202 8893 ret = -ENOMEM;
108b02cf
PZ
8894 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8895 if (!pmu->pmu_cpu_context)
abe43400 8896 goto free_dev;
f344011c 8897
108b02cf
PZ
8898 for_each_possible_cpu(cpu) {
8899 struct perf_cpu_context *cpuctx;
8900
8901 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8902 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8903 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8904 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8905 cpuctx->ctx.pmu = pmu;
9e630205 8906
272325c4 8907 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 8908 }
76e1d904 8909
8dc85d54 8910got_cpu_context:
ad5133b7
PZ
8911 if (!pmu->start_txn) {
8912 if (pmu->pmu_enable) {
8913 /*
8914 * If we have pmu_enable/pmu_disable calls, install
8915 * transaction stubs that use that to try and batch
8916 * hardware accesses.
8917 */
8918 pmu->start_txn = perf_pmu_start_txn;
8919 pmu->commit_txn = perf_pmu_commit_txn;
8920 pmu->cancel_txn = perf_pmu_cancel_txn;
8921 } else {
fbbe0701 8922 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8923 pmu->commit_txn = perf_pmu_nop_int;
8924 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8925 }
5c92d124 8926 }
15dbf27c 8927
ad5133b7
PZ
8928 if (!pmu->pmu_enable) {
8929 pmu->pmu_enable = perf_pmu_nop_void;
8930 pmu->pmu_disable = perf_pmu_nop_void;
8931 }
8932
35edc2a5
PZ
8933 if (!pmu->event_idx)
8934 pmu->event_idx = perf_event_idx_default;
8935
b0a873eb 8936 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8937 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8938 ret = 0;
8939unlock:
b0a873eb
PZ
8940 mutex_unlock(&pmus_lock);
8941
33696fc0 8942 return ret;
108b02cf 8943
abe43400
PZ
8944free_dev:
8945 device_del(pmu->dev);
8946 put_device(pmu->dev);
8947
2e80a82a
PZ
8948free_idr:
8949 if (pmu->type >= PERF_TYPE_MAX)
8950 idr_remove(&pmu_idr, pmu->type);
8951
108b02cf
PZ
8952free_pdc:
8953 free_percpu(pmu->pmu_disable_count);
8954 goto unlock;
f29ac756 8955}
c464c76e 8956EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8957
b0a873eb 8958void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8959{
0933840a
JO
8960 int remove_device;
8961
b0a873eb 8962 mutex_lock(&pmus_lock);
0933840a 8963 remove_device = pmu_bus_running;
b0a873eb
PZ
8964 list_del_rcu(&pmu->entry);
8965 mutex_unlock(&pmus_lock);
5c92d124 8966
0475f9ea 8967 /*
cde8e884
PZ
8968 * We dereference the pmu list under both SRCU and regular RCU, so
8969 * synchronize against both of those.
0475f9ea 8970 */
b0a873eb 8971 synchronize_srcu(&pmus_srcu);
cde8e884 8972 synchronize_rcu();
d6d020e9 8973
33696fc0 8974 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8975 if (pmu->type >= PERF_TYPE_MAX)
8976 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
8977 if (remove_device) {
8978 if (pmu->nr_addr_filters)
8979 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8980 device_del(pmu->dev);
8981 put_device(pmu->dev);
8982 }
51676957 8983 free_pmu_context(pmu);
b0a873eb 8984}
c464c76e 8985EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8986
cc34b98b
MR
8987static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8988{
ccd41c86 8989 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8990 int ret;
8991
8992 if (!try_module_get(pmu->module))
8993 return -ENODEV;
ccd41c86
PZ
8994
8995 if (event->group_leader != event) {
8b10c5e2
PZ
8996 /*
8997 * This ctx->mutex can nest when we're called through
8998 * inheritance. See the perf_event_ctx_lock_nested() comment.
8999 */
9000 ctx = perf_event_ctx_lock_nested(event->group_leader,
9001 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9002 BUG_ON(!ctx);
9003 }
9004
cc34b98b
MR
9005 event->pmu = pmu;
9006 ret = pmu->event_init(event);
ccd41c86
PZ
9007
9008 if (ctx)
9009 perf_event_ctx_unlock(event->group_leader, ctx);
9010
cc34b98b
MR
9011 if (ret)
9012 module_put(pmu->module);
9013
9014 return ret;
9015}
9016
18ab2cd3 9017static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
9018{
9019 struct pmu *pmu = NULL;
9020 int idx;
940c5b29 9021 int ret;
b0a873eb
PZ
9022
9023 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9024
40999312
KL
9025 /* Try parent's PMU first: */
9026 if (event->parent && event->parent->pmu) {
9027 pmu = event->parent->pmu;
9028 ret = perf_try_init_event(pmu, event);
9029 if (!ret)
9030 goto unlock;
9031 }
9032
2e80a82a
PZ
9033 rcu_read_lock();
9034 pmu = idr_find(&pmu_idr, event->attr.type);
9035 rcu_read_unlock();
940c5b29 9036 if (pmu) {
cc34b98b 9037 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9038 if (ret)
9039 pmu = ERR_PTR(ret);
2e80a82a 9040 goto unlock;
940c5b29 9041 }
2e80a82a 9042
b0a873eb 9043 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9044 ret = perf_try_init_event(pmu, event);
b0a873eb 9045 if (!ret)
e5f4d339 9046 goto unlock;
76e1d904 9047
b0a873eb
PZ
9048 if (ret != -ENOENT) {
9049 pmu = ERR_PTR(ret);
e5f4d339 9050 goto unlock;
f344011c 9051 }
5c92d124 9052 }
e5f4d339
PZ
9053 pmu = ERR_PTR(-ENOENT);
9054unlock:
b0a873eb 9055 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9056
4aeb0b42 9057 return pmu;
5c92d124
IM
9058}
9059
f2fb6bef
KL
9060static void attach_sb_event(struct perf_event *event)
9061{
9062 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9063
9064 raw_spin_lock(&pel->lock);
9065 list_add_rcu(&event->sb_list, &pel->list);
9066 raw_spin_unlock(&pel->lock);
9067}
9068
aab5b71e
PZ
9069/*
9070 * We keep a list of all !task (and therefore per-cpu) events
9071 * that need to receive side-band records.
9072 *
9073 * This avoids having to scan all the various PMU per-cpu contexts
9074 * looking for them.
9075 */
f2fb6bef
KL
9076static void account_pmu_sb_event(struct perf_event *event)
9077{
a4f144eb 9078 if (is_sb_event(event))
f2fb6bef
KL
9079 attach_sb_event(event);
9080}
9081
4beb31f3
FW
9082static void account_event_cpu(struct perf_event *event, int cpu)
9083{
9084 if (event->parent)
9085 return;
9086
4beb31f3
FW
9087 if (is_cgroup_event(event))
9088 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9089}
9090
555e0c1e
FW
9091/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9092static void account_freq_event_nohz(void)
9093{
9094#ifdef CONFIG_NO_HZ_FULL
9095 /* Lock so we don't race with concurrent unaccount */
9096 spin_lock(&nr_freq_lock);
9097 if (atomic_inc_return(&nr_freq_events) == 1)
9098 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9099 spin_unlock(&nr_freq_lock);
9100#endif
9101}
9102
9103static void account_freq_event(void)
9104{
9105 if (tick_nohz_full_enabled())
9106 account_freq_event_nohz();
9107 else
9108 atomic_inc(&nr_freq_events);
9109}
9110
9111
766d6c07
FW
9112static void account_event(struct perf_event *event)
9113{
25432ae9
PZ
9114 bool inc = false;
9115
4beb31f3
FW
9116 if (event->parent)
9117 return;
9118
766d6c07 9119 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9120 inc = true;
766d6c07
FW
9121 if (event->attr.mmap || event->attr.mmap_data)
9122 atomic_inc(&nr_mmap_events);
9123 if (event->attr.comm)
9124 atomic_inc(&nr_comm_events);
9125 if (event->attr.task)
9126 atomic_inc(&nr_task_events);
555e0c1e
FW
9127 if (event->attr.freq)
9128 account_freq_event();
45ac1403
AH
9129 if (event->attr.context_switch) {
9130 atomic_inc(&nr_switch_events);
25432ae9 9131 inc = true;
45ac1403 9132 }
4beb31f3 9133 if (has_branch_stack(event))
25432ae9 9134 inc = true;
4beb31f3 9135 if (is_cgroup_event(event))
25432ae9
PZ
9136 inc = true;
9137
9107c89e
PZ
9138 if (inc) {
9139 if (atomic_inc_not_zero(&perf_sched_count))
9140 goto enabled;
9141
9142 mutex_lock(&perf_sched_mutex);
9143 if (!atomic_read(&perf_sched_count)) {
9144 static_branch_enable(&perf_sched_events);
9145 /*
9146 * Guarantee that all CPUs observe they key change and
9147 * call the perf scheduling hooks before proceeding to
9148 * install events that need them.
9149 */
9150 synchronize_sched();
9151 }
9152 /*
9153 * Now that we have waited for the sync_sched(), allow further
9154 * increments to by-pass the mutex.
9155 */
9156 atomic_inc(&perf_sched_count);
9157 mutex_unlock(&perf_sched_mutex);
9158 }
9159enabled:
4beb31f3
FW
9160
9161 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9162
9163 account_pmu_sb_event(event);
766d6c07
FW
9164}
9165
0793a61d 9166/*
cdd6c482 9167 * Allocate and initialize a event structure
0793a61d 9168 */
cdd6c482 9169static struct perf_event *
c3f00c70 9170perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9171 struct task_struct *task,
9172 struct perf_event *group_leader,
9173 struct perf_event *parent_event,
4dc0da86 9174 perf_overflow_handler_t overflow_handler,
79dff51e 9175 void *context, int cgroup_fd)
0793a61d 9176{
51b0fe39 9177 struct pmu *pmu;
cdd6c482
IM
9178 struct perf_event *event;
9179 struct hw_perf_event *hwc;
90983b16 9180 long err = -EINVAL;
0793a61d 9181
66832eb4
ON
9182 if ((unsigned)cpu >= nr_cpu_ids) {
9183 if (!task || cpu != -1)
9184 return ERR_PTR(-EINVAL);
9185 }
9186
c3f00c70 9187 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9188 if (!event)
d5d2bc0d 9189 return ERR_PTR(-ENOMEM);
0793a61d 9190
04289bb9 9191 /*
cdd6c482 9192 * Single events are their own group leaders, with an
04289bb9
IM
9193 * empty sibling list:
9194 */
9195 if (!group_leader)
cdd6c482 9196 group_leader = event;
04289bb9 9197
cdd6c482
IM
9198 mutex_init(&event->child_mutex);
9199 INIT_LIST_HEAD(&event->child_list);
fccc714b 9200
cdd6c482
IM
9201 INIT_LIST_HEAD(&event->group_entry);
9202 INIT_LIST_HEAD(&event->event_entry);
9203 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9204 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9205 INIT_LIST_HEAD(&event->active_entry);
375637bc 9206 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9207 INIT_HLIST_NODE(&event->hlist_entry);
9208
10c6db11 9209
cdd6c482 9210 init_waitqueue_head(&event->waitq);
e360adbe 9211 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9212
cdd6c482 9213 mutex_init(&event->mmap_mutex);
375637bc 9214 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9215
a6fa941d 9216 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9217 event->cpu = cpu;
9218 event->attr = *attr;
9219 event->group_leader = group_leader;
9220 event->pmu = NULL;
cdd6c482 9221 event->oncpu = -1;
a96bbc16 9222
cdd6c482 9223 event->parent = parent_event;
b84fbc9f 9224
17cf22c3 9225 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9226 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9227
cdd6c482 9228 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9229
d580ff86
PZ
9230 if (task) {
9231 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9232 /*
50f16a8b
PZ
9233 * XXX pmu::event_init needs to know what task to account to
9234 * and we cannot use the ctx information because we need the
9235 * pmu before we get a ctx.
d580ff86 9236 */
50f16a8b 9237 event->hw.target = task;
d580ff86
PZ
9238 }
9239
34f43927
PZ
9240 event->clock = &local_clock;
9241 if (parent_event)
9242 event->clock = parent_event->clock;
9243
4dc0da86 9244 if (!overflow_handler && parent_event) {
b326e956 9245 overflow_handler = parent_event->overflow_handler;
4dc0da86 9246 context = parent_event->overflow_handler_context;
f1e4ba5b 9247#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9248 if (overflow_handler == bpf_overflow_handler) {
9249 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9250
9251 if (IS_ERR(prog)) {
9252 err = PTR_ERR(prog);
9253 goto err_ns;
9254 }
9255 event->prog = prog;
9256 event->orig_overflow_handler =
9257 parent_event->orig_overflow_handler;
9258 }
9259#endif
4dc0da86 9260 }
66832eb4 9261
1879445d
WN
9262 if (overflow_handler) {
9263 event->overflow_handler = overflow_handler;
9264 event->overflow_handler_context = context;
9ecda41a
WN
9265 } else if (is_write_backward(event)){
9266 event->overflow_handler = perf_event_output_backward;
9267 event->overflow_handler_context = NULL;
1879445d 9268 } else {
9ecda41a 9269 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9270 event->overflow_handler_context = NULL;
9271 }
97eaf530 9272
0231bb53 9273 perf_event__state_init(event);
a86ed508 9274
4aeb0b42 9275 pmu = NULL;
b8e83514 9276
cdd6c482 9277 hwc = &event->hw;
bd2b5b12 9278 hwc->sample_period = attr->sample_period;
0d48696f 9279 if (attr->freq && attr->sample_freq)
bd2b5b12 9280 hwc->sample_period = 1;
eced1dfc 9281 hwc->last_period = hwc->sample_period;
bd2b5b12 9282
e7850595 9283 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9284
2023b359 9285 /*
cdd6c482 9286 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9287 */
3dab77fb 9288 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9289 goto err_ns;
a46a2300
YZ
9290
9291 if (!has_branch_stack(event))
9292 event->attr.branch_sample_type = 0;
2023b359 9293
79dff51e
MF
9294 if (cgroup_fd != -1) {
9295 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9296 if (err)
9297 goto err_ns;
9298 }
9299
b0a873eb 9300 pmu = perf_init_event(event);
4aeb0b42 9301 if (!pmu)
90983b16
FW
9302 goto err_ns;
9303 else if (IS_ERR(pmu)) {
4aeb0b42 9304 err = PTR_ERR(pmu);
90983b16 9305 goto err_ns;
621a01ea 9306 }
d5d2bc0d 9307
bed5b25a
AS
9308 err = exclusive_event_init(event);
9309 if (err)
9310 goto err_pmu;
9311
375637bc
AS
9312 if (has_addr_filter(event)) {
9313 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9314 sizeof(unsigned long),
9315 GFP_KERNEL);
9316 if (!event->addr_filters_offs)
9317 goto err_per_task;
9318
9319 /* force hw sync on the address filters */
9320 event->addr_filters_gen = 1;
9321 }
9322
cdd6c482 9323 if (!event->parent) {
927c7a9e 9324 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9325 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9326 if (err)
375637bc 9327 goto err_addr_filters;
d010b332 9328 }
f344011c 9329 }
9ee318a7 9330
927a5570
AS
9331 /* symmetric to unaccount_event() in _free_event() */
9332 account_event(event);
9333
cdd6c482 9334 return event;
90983b16 9335
375637bc
AS
9336err_addr_filters:
9337 kfree(event->addr_filters_offs);
9338
bed5b25a
AS
9339err_per_task:
9340 exclusive_event_destroy(event);
9341
90983b16
FW
9342err_pmu:
9343 if (event->destroy)
9344 event->destroy(event);
c464c76e 9345 module_put(pmu->module);
90983b16 9346err_ns:
79dff51e
MF
9347 if (is_cgroup_event(event))
9348 perf_detach_cgroup(event);
90983b16
FW
9349 if (event->ns)
9350 put_pid_ns(event->ns);
9351 kfree(event);
9352
9353 return ERR_PTR(err);
0793a61d
TG
9354}
9355
cdd6c482
IM
9356static int perf_copy_attr(struct perf_event_attr __user *uattr,
9357 struct perf_event_attr *attr)
974802ea 9358{
974802ea 9359 u32 size;
cdf8073d 9360 int ret;
974802ea
PZ
9361
9362 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9363 return -EFAULT;
9364
9365 /*
9366 * zero the full structure, so that a short copy will be nice.
9367 */
9368 memset(attr, 0, sizeof(*attr));
9369
9370 ret = get_user(size, &uattr->size);
9371 if (ret)
9372 return ret;
9373
9374 if (size > PAGE_SIZE) /* silly large */
9375 goto err_size;
9376
9377 if (!size) /* abi compat */
9378 size = PERF_ATTR_SIZE_VER0;
9379
9380 if (size < PERF_ATTR_SIZE_VER0)
9381 goto err_size;
9382
9383 /*
9384 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9385 * ensure all the unknown bits are 0 - i.e. new
9386 * user-space does not rely on any kernel feature
9387 * extensions we dont know about yet.
974802ea
PZ
9388 */
9389 if (size > sizeof(*attr)) {
cdf8073d
IS
9390 unsigned char __user *addr;
9391 unsigned char __user *end;
9392 unsigned char val;
974802ea 9393
cdf8073d
IS
9394 addr = (void __user *)uattr + sizeof(*attr);
9395 end = (void __user *)uattr + size;
974802ea 9396
cdf8073d 9397 for (; addr < end; addr++) {
974802ea
PZ
9398 ret = get_user(val, addr);
9399 if (ret)
9400 return ret;
9401 if (val)
9402 goto err_size;
9403 }
b3e62e35 9404 size = sizeof(*attr);
974802ea
PZ
9405 }
9406
9407 ret = copy_from_user(attr, uattr, size);
9408 if (ret)
9409 return -EFAULT;
9410
cd757645 9411 if (attr->__reserved_1)
974802ea
PZ
9412 return -EINVAL;
9413
9414 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9415 return -EINVAL;
9416
9417 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9418 return -EINVAL;
9419
bce38cd5
SE
9420 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9421 u64 mask = attr->branch_sample_type;
9422
9423 /* only using defined bits */
9424 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9425 return -EINVAL;
9426
9427 /* at least one branch bit must be set */
9428 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9429 return -EINVAL;
9430
bce38cd5
SE
9431 /* propagate priv level, when not set for branch */
9432 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9433
9434 /* exclude_kernel checked on syscall entry */
9435 if (!attr->exclude_kernel)
9436 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9437
9438 if (!attr->exclude_user)
9439 mask |= PERF_SAMPLE_BRANCH_USER;
9440
9441 if (!attr->exclude_hv)
9442 mask |= PERF_SAMPLE_BRANCH_HV;
9443 /*
9444 * adjust user setting (for HW filter setup)
9445 */
9446 attr->branch_sample_type = mask;
9447 }
e712209a
SE
9448 /* privileged levels capture (kernel, hv): check permissions */
9449 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9450 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9451 return -EACCES;
bce38cd5 9452 }
4018994f 9453
c5ebcedb 9454 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9455 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9456 if (ret)
9457 return ret;
9458 }
9459
9460 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9461 if (!arch_perf_have_user_stack_dump())
9462 return -ENOSYS;
9463
9464 /*
9465 * We have __u32 type for the size, but so far
9466 * we can only use __u16 as maximum due to the
9467 * __u16 sample size limit.
9468 */
9469 if (attr->sample_stack_user >= USHRT_MAX)
9470 ret = -EINVAL;
9471 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9472 ret = -EINVAL;
9473 }
4018994f 9474
60e2364e
SE
9475 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9476 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9477out:
9478 return ret;
9479
9480err_size:
9481 put_user(sizeof(*attr), &uattr->size);
9482 ret = -E2BIG;
9483 goto out;
9484}
9485
ac9721f3
PZ
9486static int
9487perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9488{
b69cf536 9489 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9490 int ret = -EINVAL;
9491
ac9721f3 9492 if (!output_event)
a4be7c27
PZ
9493 goto set;
9494
ac9721f3
PZ
9495 /* don't allow circular references */
9496 if (event == output_event)
a4be7c27
PZ
9497 goto out;
9498
0f139300
PZ
9499 /*
9500 * Don't allow cross-cpu buffers
9501 */
9502 if (output_event->cpu != event->cpu)
9503 goto out;
9504
9505 /*
76369139 9506 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9507 */
9508 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9509 goto out;
9510
34f43927
PZ
9511 /*
9512 * Mixing clocks in the same buffer is trouble you don't need.
9513 */
9514 if (output_event->clock != event->clock)
9515 goto out;
9516
9ecda41a
WN
9517 /*
9518 * Either writing ring buffer from beginning or from end.
9519 * Mixing is not allowed.
9520 */
9521 if (is_write_backward(output_event) != is_write_backward(event))
9522 goto out;
9523
45bfb2e5
PZ
9524 /*
9525 * If both events generate aux data, they must be on the same PMU
9526 */
9527 if (has_aux(event) && has_aux(output_event) &&
9528 event->pmu != output_event->pmu)
9529 goto out;
9530
a4be7c27 9531set:
cdd6c482 9532 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9533 /* Can't redirect output if we've got an active mmap() */
9534 if (atomic_read(&event->mmap_count))
9535 goto unlock;
a4be7c27 9536
ac9721f3 9537 if (output_event) {
76369139
FW
9538 /* get the rb we want to redirect to */
9539 rb = ring_buffer_get(output_event);
9540 if (!rb)
ac9721f3 9541 goto unlock;
a4be7c27
PZ
9542 }
9543
b69cf536 9544 ring_buffer_attach(event, rb);
9bb5d40c 9545
a4be7c27 9546 ret = 0;
ac9721f3
PZ
9547unlock:
9548 mutex_unlock(&event->mmap_mutex);
9549
a4be7c27 9550out:
a4be7c27
PZ
9551 return ret;
9552}
9553
f63a8daa
PZ
9554static void mutex_lock_double(struct mutex *a, struct mutex *b)
9555{
9556 if (b < a)
9557 swap(a, b);
9558
9559 mutex_lock(a);
9560 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9561}
9562
34f43927
PZ
9563static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9564{
9565 bool nmi_safe = false;
9566
9567 switch (clk_id) {
9568 case CLOCK_MONOTONIC:
9569 event->clock = &ktime_get_mono_fast_ns;
9570 nmi_safe = true;
9571 break;
9572
9573 case CLOCK_MONOTONIC_RAW:
9574 event->clock = &ktime_get_raw_fast_ns;
9575 nmi_safe = true;
9576 break;
9577
9578 case CLOCK_REALTIME:
9579 event->clock = &ktime_get_real_ns;
9580 break;
9581
9582 case CLOCK_BOOTTIME:
9583 event->clock = &ktime_get_boot_ns;
9584 break;
9585
9586 case CLOCK_TAI:
9587 event->clock = &ktime_get_tai_ns;
9588 break;
9589
9590 default:
9591 return -EINVAL;
9592 }
9593
9594 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9595 return -EINVAL;
9596
9597 return 0;
9598}
9599
321027c1
PZ
9600/*
9601 * Variation on perf_event_ctx_lock_nested(), except we take two context
9602 * mutexes.
9603 */
9604static struct perf_event_context *
9605__perf_event_ctx_lock_double(struct perf_event *group_leader,
9606 struct perf_event_context *ctx)
9607{
9608 struct perf_event_context *gctx;
9609
9610again:
9611 rcu_read_lock();
9612 gctx = READ_ONCE(group_leader->ctx);
9613 if (!atomic_inc_not_zero(&gctx->refcount)) {
9614 rcu_read_unlock();
9615 goto again;
9616 }
9617 rcu_read_unlock();
9618
9619 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9620
9621 if (group_leader->ctx != gctx) {
9622 mutex_unlock(&ctx->mutex);
9623 mutex_unlock(&gctx->mutex);
9624 put_ctx(gctx);
9625 goto again;
9626 }
9627
9628 return gctx;
9629}
9630
0793a61d 9631/**
cdd6c482 9632 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9633 *
cdd6c482 9634 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9635 * @pid: target pid
9f66a381 9636 * @cpu: target cpu
cdd6c482 9637 * @group_fd: group leader event fd
0793a61d 9638 */
cdd6c482
IM
9639SYSCALL_DEFINE5(perf_event_open,
9640 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9641 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9642{
b04243ef
PZ
9643 struct perf_event *group_leader = NULL, *output_event = NULL;
9644 struct perf_event *event, *sibling;
cdd6c482 9645 struct perf_event_attr attr;
f63a8daa 9646 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9647 struct file *event_file = NULL;
2903ff01 9648 struct fd group = {NULL, 0};
38a81da2 9649 struct task_struct *task = NULL;
89a1e187 9650 struct pmu *pmu;
ea635c64 9651 int event_fd;
b04243ef 9652 int move_group = 0;
dc86cabe 9653 int err;
a21b0b35 9654 int f_flags = O_RDWR;
79dff51e 9655 int cgroup_fd = -1;
0793a61d 9656
2743a5b0 9657 /* for future expandability... */
e5d1367f 9658 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9659 return -EINVAL;
9660
dc86cabe
IM
9661 err = perf_copy_attr(attr_uptr, &attr);
9662 if (err)
9663 return err;
eab656ae 9664
0764771d
PZ
9665 if (!attr.exclude_kernel) {
9666 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9667 return -EACCES;
9668 }
9669
df58ab24 9670 if (attr.freq) {
cdd6c482 9671 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9672 return -EINVAL;
0819b2e3
PZ
9673 } else {
9674 if (attr.sample_period & (1ULL << 63))
9675 return -EINVAL;
df58ab24
PZ
9676 }
9677
97c79a38
ACM
9678 if (!attr.sample_max_stack)
9679 attr.sample_max_stack = sysctl_perf_event_max_stack;
9680
e5d1367f
SE
9681 /*
9682 * In cgroup mode, the pid argument is used to pass the fd
9683 * opened to the cgroup directory in cgroupfs. The cpu argument
9684 * designates the cpu on which to monitor threads from that
9685 * cgroup.
9686 */
9687 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9688 return -EINVAL;
9689
a21b0b35
YD
9690 if (flags & PERF_FLAG_FD_CLOEXEC)
9691 f_flags |= O_CLOEXEC;
9692
9693 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9694 if (event_fd < 0)
9695 return event_fd;
9696
ac9721f3 9697 if (group_fd != -1) {
2903ff01
AV
9698 err = perf_fget_light(group_fd, &group);
9699 if (err)
d14b12d7 9700 goto err_fd;
2903ff01 9701 group_leader = group.file->private_data;
ac9721f3
PZ
9702 if (flags & PERF_FLAG_FD_OUTPUT)
9703 output_event = group_leader;
9704 if (flags & PERF_FLAG_FD_NO_GROUP)
9705 group_leader = NULL;
9706 }
9707
e5d1367f 9708 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9709 task = find_lively_task_by_vpid(pid);
9710 if (IS_ERR(task)) {
9711 err = PTR_ERR(task);
9712 goto err_group_fd;
9713 }
9714 }
9715
1f4ee503
PZ
9716 if (task && group_leader &&
9717 group_leader->attr.inherit != attr.inherit) {
9718 err = -EINVAL;
9719 goto err_task;
9720 }
9721
fbfc623f
YZ
9722 get_online_cpus();
9723
79c9ce57
PZ
9724 if (task) {
9725 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9726 if (err)
9727 goto err_cpus;
9728
9729 /*
9730 * Reuse ptrace permission checks for now.
9731 *
9732 * We must hold cred_guard_mutex across this and any potential
9733 * perf_install_in_context() call for this new event to
9734 * serialize against exec() altering our credentials (and the
9735 * perf_event_exit_task() that could imply).
9736 */
9737 err = -EACCES;
9738 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9739 goto err_cred;
9740 }
9741
79dff51e
MF
9742 if (flags & PERF_FLAG_PID_CGROUP)
9743 cgroup_fd = pid;
9744
4dc0da86 9745 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9746 NULL, NULL, cgroup_fd);
d14b12d7
SE
9747 if (IS_ERR(event)) {
9748 err = PTR_ERR(event);
79c9ce57 9749 goto err_cred;
d14b12d7
SE
9750 }
9751
53b25335
VW
9752 if (is_sampling_event(event)) {
9753 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9754 err = -EOPNOTSUPP;
53b25335
VW
9755 goto err_alloc;
9756 }
9757 }
9758
89a1e187
PZ
9759 /*
9760 * Special case software events and allow them to be part of
9761 * any hardware group.
9762 */
9763 pmu = event->pmu;
b04243ef 9764
34f43927
PZ
9765 if (attr.use_clockid) {
9766 err = perf_event_set_clock(event, attr.clockid);
9767 if (err)
9768 goto err_alloc;
9769 }
9770
4ff6a8de
DCC
9771 if (pmu->task_ctx_nr == perf_sw_context)
9772 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9773
b04243ef
PZ
9774 if (group_leader &&
9775 (is_software_event(event) != is_software_event(group_leader))) {
9776 if (is_software_event(event)) {
9777 /*
9778 * If event and group_leader are not both a software
9779 * event, and event is, then group leader is not.
9780 *
9781 * Allow the addition of software events to !software
9782 * groups, this is safe because software events never
9783 * fail to schedule.
9784 */
9785 pmu = group_leader->pmu;
9786 } else if (is_software_event(group_leader) &&
4ff6a8de 9787 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9788 /*
9789 * In case the group is a pure software group, and we
9790 * try to add a hardware event, move the whole group to
9791 * the hardware context.
9792 */
9793 move_group = 1;
9794 }
9795 }
89a1e187
PZ
9796
9797 /*
9798 * Get the target context (task or percpu):
9799 */
4af57ef2 9800 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9801 if (IS_ERR(ctx)) {
9802 err = PTR_ERR(ctx);
c6be5a5c 9803 goto err_alloc;
89a1e187
PZ
9804 }
9805
bed5b25a
AS
9806 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9807 err = -EBUSY;
9808 goto err_context;
9809 }
9810
ccff286d 9811 /*
cdd6c482 9812 * Look up the group leader (we will attach this event to it):
04289bb9 9813 */
ac9721f3 9814 if (group_leader) {
dc86cabe 9815 err = -EINVAL;
04289bb9 9816
04289bb9 9817 /*
ccff286d
IM
9818 * Do not allow a recursive hierarchy (this new sibling
9819 * becoming part of another group-sibling):
9820 */
9821 if (group_leader->group_leader != group_leader)
c3f00c70 9822 goto err_context;
34f43927
PZ
9823
9824 /* All events in a group should have the same clock */
9825 if (group_leader->clock != event->clock)
9826 goto err_context;
9827
ccff286d
IM
9828 /*
9829 * Do not allow to attach to a group in a different
9830 * task or CPU context:
04289bb9 9831 */
b04243ef 9832 if (move_group) {
c3c87e77
PZ
9833 /*
9834 * Make sure we're both on the same task, or both
9835 * per-cpu events.
9836 */
9837 if (group_leader->ctx->task != ctx->task)
9838 goto err_context;
9839
9840 /*
9841 * Make sure we're both events for the same CPU;
9842 * grouping events for different CPUs is broken; since
9843 * you can never concurrently schedule them anyhow.
9844 */
9845 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9846 goto err_context;
9847 } else {
9848 if (group_leader->ctx != ctx)
9849 goto err_context;
9850 }
9851
3b6f9e5c
PM
9852 /*
9853 * Only a group leader can be exclusive or pinned
9854 */
0d48696f 9855 if (attr.exclusive || attr.pinned)
c3f00c70 9856 goto err_context;
ac9721f3
PZ
9857 }
9858
9859 if (output_event) {
9860 err = perf_event_set_output(event, output_event);
9861 if (err)
c3f00c70 9862 goto err_context;
ac9721f3 9863 }
0793a61d 9864
a21b0b35
YD
9865 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9866 f_flags);
ea635c64
AV
9867 if (IS_ERR(event_file)) {
9868 err = PTR_ERR(event_file);
201c2f85 9869 event_file = NULL;
c3f00c70 9870 goto err_context;
ea635c64 9871 }
9b51f66d 9872
b04243ef 9873 if (move_group) {
321027c1
PZ
9874 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9875
84c4e620
PZ
9876 if (gctx->task == TASK_TOMBSTONE) {
9877 err = -ESRCH;
9878 goto err_locked;
9879 }
321027c1
PZ
9880
9881 /*
9882 * Check if we raced against another sys_perf_event_open() call
9883 * moving the software group underneath us.
9884 */
9885 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9886 /*
9887 * If someone moved the group out from under us, check
9888 * if this new event wound up on the same ctx, if so
9889 * its the regular !move_group case, otherwise fail.
9890 */
9891 if (gctx != ctx) {
9892 err = -EINVAL;
9893 goto err_locked;
9894 } else {
9895 perf_event_ctx_unlock(group_leader, gctx);
9896 move_group = 0;
9897 }
9898 }
f55fc2a5
PZ
9899 } else {
9900 mutex_lock(&ctx->mutex);
9901 }
9902
84c4e620
PZ
9903 if (ctx->task == TASK_TOMBSTONE) {
9904 err = -ESRCH;
9905 goto err_locked;
9906 }
9907
a723968c
PZ
9908 if (!perf_event_validate_size(event)) {
9909 err = -E2BIG;
9910 goto err_locked;
9911 }
9912
f55fc2a5
PZ
9913 /*
9914 * Must be under the same ctx::mutex as perf_install_in_context(),
9915 * because we need to serialize with concurrent event creation.
9916 */
9917 if (!exclusive_event_installable(event, ctx)) {
9918 /* exclusive and group stuff are assumed mutually exclusive */
9919 WARN_ON_ONCE(move_group);
f63a8daa 9920
f55fc2a5
PZ
9921 err = -EBUSY;
9922 goto err_locked;
9923 }
f63a8daa 9924
f55fc2a5
PZ
9925 WARN_ON_ONCE(ctx->parent_ctx);
9926
79c9ce57
PZ
9927 /*
9928 * This is the point on no return; we cannot fail hereafter. This is
9929 * where we start modifying current state.
9930 */
9931
f55fc2a5 9932 if (move_group) {
f63a8daa
PZ
9933 /*
9934 * See perf_event_ctx_lock() for comments on the details
9935 * of swizzling perf_event::ctx.
9936 */
45a0e07a 9937 perf_remove_from_context(group_leader, 0);
0231bb53 9938
b04243ef
PZ
9939 list_for_each_entry(sibling, &group_leader->sibling_list,
9940 group_entry) {
45a0e07a 9941 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9942 put_ctx(gctx);
9943 }
b04243ef 9944
f63a8daa
PZ
9945 /*
9946 * Wait for everybody to stop referencing the events through
9947 * the old lists, before installing it on new lists.
9948 */
0cda4c02 9949 synchronize_rcu();
f63a8daa 9950
8f95b435
PZI
9951 /*
9952 * Install the group siblings before the group leader.
9953 *
9954 * Because a group leader will try and install the entire group
9955 * (through the sibling list, which is still in-tact), we can
9956 * end up with siblings installed in the wrong context.
9957 *
9958 * By installing siblings first we NO-OP because they're not
9959 * reachable through the group lists.
9960 */
b04243ef
PZ
9961 list_for_each_entry(sibling, &group_leader->sibling_list,
9962 group_entry) {
8f95b435 9963 perf_event__state_init(sibling);
9fc81d87 9964 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9965 get_ctx(ctx);
9966 }
8f95b435
PZI
9967
9968 /*
9969 * Removing from the context ends up with disabled
9970 * event. What we want here is event in the initial
9971 * startup state, ready to be add into new context.
9972 */
9973 perf_event__state_init(group_leader);
9974 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9975 get_ctx(ctx);
b04243ef 9976
f55fc2a5
PZ
9977 /*
9978 * Now that all events are installed in @ctx, nothing
9979 * references @gctx anymore, so drop the last reference we have
9980 * on it.
9981 */
9982 put_ctx(gctx);
bed5b25a
AS
9983 }
9984
f73e22ab
PZ
9985 /*
9986 * Precalculate sample_data sizes; do while holding ctx::mutex such
9987 * that we're serialized against further additions and before
9988 * perf_install_in_context() which is the point the event is active and
9989 * can use these values.
9990 */
9991 perf_event__header_size(event);
9992 perf_event__id_header_size(event);
9993
78cd2c74
PZ
9994 event->owner = current;
9995
e2d37cd2 9996 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9997 perf_unpin_context(ctx);
f63a8daa 9998
f55fc2a5 9999 if (move_group)
321027c1 10000 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10001 mutex_unlock(&ctx->mutex);
9b51f66d 10002
79c9ce57
PZ
10003 if (task) {
10004 mutex_unlock(&task->signal->cred_guard_mutex);
10005 put_task_struct(task);
10006 }
10007
fbfc623f
YZ
10008 put_online_cpus();
10009
cdd6c482
IM
10010 mutex_lock(&current->perf_event_mutex);
10011 list_add_tail(&event->owner_entry, &current->perf_event_list);
10012 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10013
8a49542c
PZ
10014 /*
10015 * Drop the reference on the group_event after placing the
10016 * new event on the sibling_list. This ensures destruction
10017 * of the group leader will find the pointer to itself in
10018 * perf_group_detach().
10019 */
2903ff01 10020 fdput(group);
ea635c64
AV
10021 fd_install(event_fd, event_file);
10022 return event_fd;
0793a61d 10023
f55fc2a5
PZ
10024err_locked:
10025 if (move_group)
321027c1 10026 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10027 mutex_unlock(&ctx->mutex);
10028/* err_file: */
10029 fput(event_file);
c3f00c70 10030err_context:
fe4b04fa 10031 perf_unpin_context(ctx);
ea635c64 10032 put_ctx(ctx);
c6be5a5c 10033err_alloc:
13005627
PZ
10034 /*
10035 * If event_file is set, the fput() above will have called ->release()
10036 * and that will take care of freeing the event.
10037 */
10038 if (!event_file)
10039 free_event(event);
79c9ce57
PZ
10040err_cred:
10041 if (task)
10042 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10043err_cpus:
fbfc623f 10044 put_online_cpus();
1f4ee503 10045err_task:
e7d0bc04
PZ
10046 if (task)
10047 put_task_struct(task);
89a1e187 10048err_group_fd:
2903ff01 10049 fdput(group);
ea635c64
AV
10050err_fd:
10051 put_unused_fd(event_fd);
dc86cabe 10052 return err;
0793a61d
TG
10053}
10054
fb0459d7
AV
10055/**
10056 * perf_event_create_kernel_counter
10057 *
10058 * @attr: attributes of the counter to create
10059 * @cpu: cpu in which the counter is bound
38a81da2 10060 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10061 */
10062struct perf_event *
10063perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10064 struct task_struct *task,
4dc0da86
AK
10065 perf_overflow_handler_t overflow_handler,
10066 void *context)
fb0459d7 10067{
fb0459d7 10068 struct perf_event_context *ctx;
c3f00c70 10069 struct perf_event *event;
fb0459d7 10070 int err;
d859e29f 10071
fb0459d7
AV
10072 /*
10073 * Get the target context (task or percpu):
10074 */
d859e29f 10075
4dc0da86 10076 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10077 overflow_handler, context, -1);
c3f00c70
PZ
10078 if (IS_ERR(event)) {
10079 err = PTR_ERR(event);
10080 goto err;
10081 }
d859e29f 10082
f8697762 10083 /* Mark owner so we could distinguish it from user events. */
63b6da39 10084 event->owner = TASK_TOMBSTONE;
f8697762 10085
4af57ef2 10086 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10087 if (IS_ERR(ctx)) {
10088 err = PTR_ERR(ctx);
c3f00c70 10089 goto err_free;
d859e29f 10090 }
fb0459d7 10091
fb0459d7
AV
10092 WARN_ON_ONCE(ctx->parent_ctx);
10093 mutex_lock(&ctx->mutex);
84c4e620
PZ
10094 if (ctx->task == TASK_TOMBSTONE) {
10095 err = -ESRCH;
10096 goto err_unlock;
10097 }
10098
bed5b25a 10099 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10100 err = -EBUSY;
84c4e620 10101 goto err_unlock;
bed5b25a
AS
10102 }
10103
fb0459d7 10104 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10105 perf_unpin_context(ctx);
fb0459d7
AV
10106 mutex_unlock(&ctx->mutex);
10107
fb0459d7
AV
10108 return event;
10109
84c4e620
PZ
10110err_unlock:
10111 mutex_unlock(&ctx->mutex);
10112 perf_unpin_context(ctx);
10113 put_ctx(ctx);
c3f00c70
PZ
10114err_free:
10115 free_event(event);
10116err:
c6567f64 10117 return ERR_PTR(err);
9b51f66d 10118}
fb0459d7 10119EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10120
0cda4c02
YZ
10121void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10122{
10123 struct perf_event_context *src_ctx;
10124 struct perf_event_context *dst_ctx;
10125 struct perf_event *event, *tmp;
10126 LIST_HEAD(events);
10127
10128 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10129 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10130
f63a8daa
PZ
10131 /*
10132 * See perf_event_ctx_lock() for comments on the details
10133 * of swizzling perf_event::ctx.
10134 */
10135 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10136 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10137 event_entry) {
45a0e07a 10138 perf_remove_from_context(event, 0);
9a545de0 10139 unaccount_event_cpu(event, src_cpu);
0cda4c02 10140 put_ctx(src_ctx);
9886167d 10141 list_add(&event->migrate_entry, &events);
0cda4c02 10142 }
0cda4c02 10143
8f95b435
PZI
10144 /*
10145 * Wait for the events to quiesce before re-instating them.
10146 */
0cda4c02
YZ
10147 synchronize_rcu();
10148
8f95b435
PZI
10149 /*
10150 * Re-instate events in 2 passes.
10151 *
10152 * Skip over group leaders and only install siblings on this first
10153 * pass, siblings will not get enabled without a leader, however a
10154 * leader will enable its siblings, even if those are still on the old
10155 * context.
10156 */
10157 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10158 if (event->group_leader == event)
10159 continue;
10160
10161 list_del(&event->migrate_entry);
10162 if (event->state >= PERF_EVENT_STATE_OFF)
10163 event->state = PERF_EVENT_STATE_INACTIVE;
10164 account_event_cpu(event, dst_cpu);
10165 perf_install_in_context(dst_ctx, event, dst_cpu);
10166 get_ctx(dst_ctx);
10167 }
10168
10169 /*
10170 * Once all the siblings are setup properly, install the group leaders
10171 * to make it go.
10172 */
9886167d
PZ
10173 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10174 list_del(&event->migrate_entry);
0cda4c02
YZ
10175 if (event->state >= PERF_EVENT_STATE_OFF)
10176 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10177 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10178 perf_install_in_context(dst_ctx, event, dst_cpu);
10179 get_ctx(dst_ctx);
10180 }
10181 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10182 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10183}
10184EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10185
cdd6c482 10186static void sync_child_event(struct perf_event *child_event,
38b200d6 10187 struct task_struct *child)
d859e29f 10188{
cdd6c482 10189 struct perf_event *parent_event = child_event->parent;
8bc20959 10190 u64 child_val;
d859e29f 10191
cdd6c482
IM
10192 if (child_event->attr.inherit_stat)
10193 perf_event_read_event(child_event, child);
38b200d6 10194
b5e58793 10195 child_val = perf_event_count(child_event);
d859e29f
PM
10196
10197 /*
10198 * Add back the child's count to the parent's count:
10199 */
a6e6dea6 10200 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10201 atomic64_add(child_event->total_time_enabled,
10202 &parent_event->child_total_time_enabled);
10203 atomic64_add(child_event->total_time_running,
10204 &parent_event->child_total_time_running);
d859e29f
PM
10205}
10206
9b51f66d 10207static void
8ba289b8
PZ
10208perf_event_exit_event(struct perf_event *child_event,
10209 struct perf_event_context *child_ctx,
10210 struct task_struct *child)
9b51f66d 10211{
8ba289b8
PZ
10212 struct perf_event *parent_event = child_event->parent;
10213
1903d50c
PZ
10214 /*
10215 * Do not destroy the 'original' grouping; because of the context
10216 * switch optimization the original events could've ended up in a
10217 * random child task.
10218 *
10219 * If we were to destroy the original group, all group related
10220 * operations would cease to function properly after this random
10221 * child dies.
10222 *
10223 * Do destroy all inherited groups, we don't care about those
10224 * and being thorough is better.
10225 */
32132a3d
PZ
10226 raw_spin_lock_irq(&child_ctx->lock);
10227 WARN_ON_ONCE(child_ctx->is_active);
10228
8ba289b8 10229 if (parent_event)
32132a3d
PZ
10230 perf_group_detach(child_event);
10231 list_del_event(child_event, child_ctx);
a69b0ca4 10232 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10233 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10234
9b51f66d 10235 /*
8ba289b8 10236 * Parent events are governed by their filedesc, retain them.
9b51f66d 10237 */
8ba289b8 10238 if (!parent_event) {
179033b3 10239 perf_event_wakeup(child_event);
8ba289b8 10240 return;
4bcf349a 10241 }
8ba289b8
PZ
10242 /*
10243 * Child events can be cleaned up.
10244 */
10245
10246 sync_child_event(child_event, child);
10247
10248 /*
10249 * Remove this event from the parent's list
10250 */
10251 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10252 mutex_lock(&parent_event->child_mutex);
10253 list_del_init(&child_event->child_list);
10254 mutex_unlock(&parent_event->child_mutex);
10255
10256 /*
10257 * Kick perf_poll() for is_event_hup().
10258 */
10259 perf_event_wakeup(parent_event);
10260 free_event(child_event);
10261 put_event(parent_event);
9b51f66d
IM
10262}
10263
8dc85d54 10264static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10265{
211de6eb 10266 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10267 struct perf_event *child_event, *next;
63b6da39
PZ
10268
10269 WARN_ON_ONCE(child != current);
9b51f66d 10270
6a3351b6 10271 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10272 if (!child_ctx)
9b51f66d
IM
10273 return;
10274
ad3a37de 10275 /*
6a3351b6
PZ
10276 * In order to reduce the amount of tricky in ctx tear-down, we hold
10277 * ctx::mutex over the entire thing. This serializes against almost
10278 * everything that wants to access the ctx.
10279 *
10280 * The exception is sys_perf_event_open() /
10281 * perf_event_create_kernel_count() which does find_get_context()
10282 * without ctx::mutex (it cannot because of the move_group double mutex
10283 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10284 */
6a3351b6 10285 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10286
10287 /*
6a3351b6
PZ
10288 * In a single ctx::lock section, de-schedule the events and detach the
10289 * context from the task such that we cannot ever get it scheduled back
10290 * in.
c93f7669 10291 */
6a3351b6 10292 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10293 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10294
71a851b4 10295 /*
63b6da39
PZ
10296 * Now that the context is inactive, destroy the task <-> ctx relation
10297 * and mark the context dead.
71a851b4 10298 */
63b6da39
PZ
10299 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10300 put_ctx(child_ctx); /* cannot be last */
10301 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10302 put_task_struct(current); /* cannot be last */
4a1c0f26 10303
211de6eb 10304 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10305 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10306
211de6eb
PZ
10307 if (clone_ctx)
10308 put_ctx(clone_ctx);
4a1c0f26 10309
9f498cc5 10310 /*
cdd6c482
IM
10311 * Report the task dead after unscheduling the events so that we
10312 * won't get any samples after PERF_RECORD_EXIT. We can however still
10313 * get a few PERF_RECORD_READ events.
9f498cc5 10314 */
cdd6c482 10315 perf_event_task(child, child_ctx, 0);
a63eaf34 10316
ebf905fc 10317 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10318 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10319
a63eaf34
PM
10320 mutex_unlock(&child_ctx->mutex);
10321
10322 put_ctx(child_ctx);
9b51f66d
IM
10323}
10324
8dc85d54
PZ
10325/*
10326 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10327 *
10328 * Can be called with cred_guard_mutex held when called from
10329 * install_exec_creds().
8dc85d54
PZ
10330 */
10331void perf_event_exit_task(struct task_struct *child)
10332{
8882135b 10333 struct perf_event *event, *tmp;
8dc85d54
PZ
10334 int ctxn;
10335
8882135b
PZ
10336 mutex_lock(&child->perf_event_mutex);
10337 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10338 owner_entry) {
10339 list_del_init(&event->owner_entry);
10340
10341 /*
10342 * Ensure the list deletion is visible before we clear
10343 * the owner, closes a race against perf_release() where
10344 * we need to serialize on the owner->perf_event_mutex.
10345 */
f47c02c0 10346 smp_store_release(&event->owner, NULL);
8882135b
PZ
10347 }
10348 mutex_unlock(&child->perf_event_mutex);
10349
8dc85d54
PZ
10350 for_each_task_context_nr(ctxn)
10351 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10352
10353 /*
10354 * The perf_event_exit_task_context calls perf_event_task
10355 * with child's task_ctx, which generates EXIT events for
10356 * child contexts and sets child->perf_event_ctxp[] to NULL.
10357 * At this point we need to send EXIT events to cpu contexts.
10358 */
10359 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10360}
10361
889ff015
FW
10362static void perf_free_event(struct perf_event *event,
10363 struct perf_event_context *ctx)
10364{
10365 struct perf_event *parent = event->parent;
10366
10367 if (WARN_ON_ONCE(!parent))
10368 return;
10369
10370 mutex_lock(&parent->child_mutex);
10371 list_del_init(&event->child_list);
10372 mutex_unlock(&parent->child_mutex);
10373
a6fa941d 10374 put_event(parent);
889ff015 10375
652884fe 10376 raw_spin_lock_irq(&ctx->lock);
8a49542c 10377 perf_group_detach(event);
889ff015 10378 list_del_event(event, ctx);
652884fe 10379 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10380 free_event(event);
10381}
10382
bbbee908 10383/*
652884fe 10384 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10385 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10386 *
10387 * Not all locks are strictly required, but take them anyway to be nice and
10388 * help out with the lockdep assertions.
bbbee908 10389 */
cdd6c482 10390void perf_event_free_task(struct task_struct *task)
bbbee908 10391{
8dc85d54 10392 struct perf_event_context *ctx;
cdd6c482 10393 struct perf_event *event, *tmp;
8dc85d54 10394 int ctxn;
bbbee908 10395
8dc85d54
PZ
10396 for_each_task_context_nr(ctxn) {
10397 ctx = task->perf_event_ctxp[ctxn];
10398 if (!ctx)
10399 continue;
bbbee908 10400
8dc85d54 10401 mutex_lock(&ctx->mutex);
bbbee908 10402again:
8dc85d54
PZ
10403 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10404 group_entry)
10405 perf_free_event(event, ctx);
bbbee908 10406
8dc85d54
PZ
10407 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10408 group_entry)
10409 perf_free_event(event, ctx);
bbbee908 10410
8dc85d54
PZ
10411 if (!list_empty(&ctx->pinned_groups) ||
10412 !list_empty(&ctx->flexible_groups))
10413 goto again;
bbbee908 10414
8dc85d54 10415 mutex_unlock(&ctx->mutex);
bbbee908 10416
8dc85d54
PZ
10417 put_ctx(ctx);
10418 }
889ff015
FW
10419}
10420
4e231c79
PZ
10421void perf_event_delayed_put(struct task_struct *task)
10422{
10423 int ctxn;
10424
10425 for_each_task_context_nr(ctxn)
10426 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10427}
10428
e03e7ee3 10429struct file *perf_event_get(unsigned int fd)
ffe8690c 10430{
e03e7ee3 10431 struct file *file;
ffe8690c 10432
e03e7ee3
AS
10433 file = fget_raw(fd);
10434 if (!file)
10435 return ERR_PTR(-EBADF);
ffe8690c 10436
e03e7ee3
AS
10437 if (file->f_op != &perf_fops) {
10438 fput(file);
10439 return ERR_PTR(-EBADF);
10440 }
ffe8690c 10441
e03e7ee3 10442 return file;
ffe8690c
KX
10443}
10444
10445const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10446{
10447 if (!event)
10448 return ERR_PTR(-EINVAL);
10449
10450 return &event->attr;
10451}
10452
97dee4f3
PZ
10453/*
10454 * inherit a event from parent task to child task:
10455 */
10456static struct perf_event *
10457inherit_event(struct perf_event *parent_event,
10458 struct task_struct *parent,
10459 struct perf_event_context *parent_ctx,
10460 struct task_struct *child,
10461 struct perf_event *group_leader,
10462 struct perf_event_context *child_ctx)
10463{
1929def9 10464 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10465 struct perf_event *child_event;
cee010ec 10466 unsigned long flags;
97dee4f3
PZ
10467
10468 /*
10469 * Instead of creating recursive hierarchies of events,
10470 * we link inherited events back to the original parent,
10471 * which has a filp for sure, which we use as the reference
10472 * count:
10473 */
10474 if (parent_event->parent)
10475 parent_event = parent_event->parent;
10476
10477 child_event = perf_event_alloc(&parent_event->attr,
10478 parent_event->cpu,
d580ff86 10479 child,
97dee4f3 10480 group_leader, parent_event,
79dff51e 10481 NULL, NULL, -1);
97dee4f3
PZ
10482 if (IS_ERR(child_event))
10483 return child_event;
a6fa941d 10484
c6e5b732
PZ
10485 /*
10486 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10487 * must be under the same lock in order to serialize against
10488 * perf_event_release_kernel(), such that either we must observe
10489 * is_orphaned_event() or they will observe us on the child_list.
10490 */
10491 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10492 if (is_orphaned_event(parent_event) ||
10493 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10494 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10495 free_event(child_event);
10496 return NULL;
10497 }
10498
97dee4f3
PZ
10499 get_ctx(child_ctx);
10500
10501 /*
10502 * Make the child state follow the state of the parent event,
10503 * not its attr.disabled bit. We hold the parent's mutex,
10504 * so we won't race with perf_event_{en, dis}able_family.
10505 */
1929def9 10506 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10507 child_event->state = PERF_EVENT_STATE_INACTIVE;
10508 else
10509 child_event->state = PERF_EVENT_STATE_OFF;
10510
10511 if (parent_event->attr.freq) {
10512 u64 sample_period = parent_event->hw.sample_period;
10513 struct hw_perf_event *hwc = &child_event->hw;
10514
10515 hwc->sample_period = sample_period;
10516 hwc->last_period = sample_period;
10517
10518 local64_set(&hwc->period_left, sample_period);
10519 }
10520
10521 child_event->ctx = child_ctx;
10522 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10523 child_event->overflow_handler_context
10524 = parent_event->overflow_handler_context;
97dee4f3 10525
614b6780
TG
10526 /*
10527 * Precalculate sample_data sizes
10528 */
10529 perf_event__header_size(child_event);
6844c09d 10530 perf_event__id_header_size(child_event);
614b6780 10531
97dee4f3
PZ
10532 /*
10533 * Link it up in the child's context:
10534 */
cee010ec 10535 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10536 add_event_to_ctx(child_event, child_ctx);
cee010ec 10537 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10538
97dee4f3
PZ
10539 /*
10540 * Link this into the parent event's child list
10541 */
97dee4f3
PZ
10542 list_add_tail(&child_event->child_list, &parent_event->child_list);
10543 mutex_unlock(&parent_event->child_mutex);
10544
10545 return child_event;
10546}
10547
10548static int inherit_group(struct perf_event *parent_event,
10549 struct task_struct *parent,
10550 struct perf_event_context *parent_ctx,
10551 struct task_struct *child,
10552 struct perf_event_context *child_ctx)
10553{
10554 struct perf_event *leader;
10555 struct perf_event *sub;
10556 struct perf_event *child_ctr;
10557
10558 leader = inherit_event(parent_event, parent, parent_ctx,
10559 child, NULL, child_ctx);
10560 if (IS_ERR(leader))
10561 return PTR_ERR(leader);
10562 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10563 child_ctr = inherit_event(sub, parent, parent_ctx,
10564 child, leader, child_ctx);
10565 if (IS_ERR(child_ctr))
10566 return PTR_ERR(child_ctr);
10567 }
10568 return 0;
889ff015
FW
10569}
10570
10571static int
10572inherit_task_group(struct perf_event *event, struct task_struct *parent,
10573 struct perf_event_context *parent_ctx,
8dc85d54 10574 struct task_struct *child, int ctxn,
889ff015
FW
10575 int *inherited_all)
10576{
10577 int ret;
8dc85d54 10578 struct perf_event_context *child_ctx;
889ff015
FW
10579
10580 if (!event->attr.inherit) {
10581 *inherited_all = 0;
10582 return 0;
bbbee908
PZ
10583 }
10584
fe4b04fa 10585 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10586 if (!child_ctx) {
10587 /*
10588 * This is executed from the parent task context, so
10589 * inherit events that have been marked for cloning.
10590 * First allocate and initialize a context for the
10591 * child.
10592 */
bbbee908 10593
734df5ab 10594 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10595 if (!child_ctx)
10596 return -ENOMEM;
bbbee908 10597
8dc85d54 10598 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10599 }
10600
10601 ret = inherit_group(event, parent, parent_ctx,
10602 child, child_ctx);
10603
10604 if (ret)
10605 *inherited_all = 0;
10606
10607 return ret;
bbbee908
PZ
10608}
10609
9b51f66d 10610/*
cdd6c482 10611 * Initialize the perf_event context in task_struct
9b51f66d 10612 */
985c8dcb 10613static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10614{
889ff015 10615 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10616 struct perf_event_context *cloned_ctx;
10617 struct perf_event *event;
9b51f66d 10618 struct task_struct *parent = current;
564c2b21 10619 int inherited_all = 1;
dddd3379 10620 unsigned long flags;
6ab423e0 10621 int ret = 0;
9b51f66d 10622
8dc85d54 10623 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10624 return 0;
10625
ad3a37de 10626 /*
25346b93
PM
10627 * If the parent's context is a clone, pin it so it won't get
10628 * swapped under us.
ad3a37de 10629 */
8dc85d54 10630 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10631 if (!parent_ctx)
10632 return 0;
25346b93 10633
ad3a37de
PM
10634 /*
10635 * No need to check if parent_ctx != NULL here; since we saw
10636 * it non-NULL earlier, the only reason for it to become NULL
10637 * is if we exit, and since we're currently in the middle of
10638 * a fork we can't be exiting at the same time.
10639 */
ad3a37de 10640
9b51f66d
IM
10641 /*
10642 * Lock the parent list. No need to lock the child - not PID
10643 * hashed yet and not running, so nobody can access it.
10644 */
d859e29f 10645 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10646
10647 /*
10648 * We dont have to disable NMIs - we are only looking at
10649 * the list, not manipulating it:
10650 */
889ff015 10651 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10652 ret = inherit_task_group(event, parent, parent_ctx,
10653 child, ctxn, &inherited_all);
889ff015
FW
10654 if (ret)
10655 break;
10656 }
b93f7978 10657
dddd3379
TG
10658 /*
10659 * We can't hold ctx->lock when iterating the ->flexible_group list due
10660 * to allocations, but we need to prevent rotation because
10661 * rotate_ctx() will change the list from interrupt context.
10662 */
10663 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10664 parent_ctx->rotate_disable = 1;
10665 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10666
889ff015 10667 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10668 ret = inherit_task_group(event, parent, parent_ctx,
10669 child, ctxn, &inherited_all);
889ff015 10670 if (ret)
9b51f66d 10671 break;
564c2b21
PM
10672 }
10673
dddd3379
TG
10674 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10675 parent_ctx->rotate_disable = 0;
dddd3379 10676
8dc85d54 10677 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10678
05cbaa28 10679 if (child_ctx && inherited_all) {
564c2b21
PM
10680 /*
10681 * Mark the child context as a clone of the parent
10682 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10683 *
10684 * Note that if the parent is a clone, the holding of
10685 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10686 */
c5ed5145 10687 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10688 if (cloned_ctx) {
10689 child_ctx->parent_ctx = cloned_ctx;
25346b93 10690 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10691 } else {
10692 child_ctx->parent_ctx = parent_ctx;
10693 child_ctx->parent_gen = parent_ctx->generation;
10694 }
10695 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10696 }
10697
c5ed5145 10698 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10699 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10700
25346b93 10701 perf_unpin_context(parent_ctx);
fe4b04fa 10702 put_ctx(parent_ctx);
ad3a37de 10703
6ab423e0 10704 return ret;
9b51f66d
IM
10705}
10706
8dc85d54
PZ
10707/*
10708 * Initialize the perf_event context in task_struct
10709 */
10710int perf_event_init_task(struct task_struct *child)
10711{
10712 int ctxn, ret;
10713
8550d7cb
ON
10714 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10715 mutex_init(&child->perf_event_mutex);
10716 INIT_LIST_HEAD(&child->perf_event_list);
10717
8dc85d54
PZ
10718 for_each_task_context_nr(ctxn) {
10719 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10720 if (ret) {
10721 perf_event_free_task(child);
8dc85d54 10722 return ret;
6c72e350 10723 }
8dc85d54
PZ
10724 }
10725
10726 return 0;
10727}
10728
220b140b
PM
10729static void __init perf_event_init_all_cpus(void)
10730{
b28ab83c 10731 struct swevent_htable *swhash;
220b140b 10732 int cpu;
220b140b
PM
10733
10734 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10735 swhash = &per_cpu(swevent_htable, cpu);
10736 mutex_init(&swhash->hlist_mutex);
2fde4f94 10737 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10738
10739 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10740 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10741
058fe1c0
DCC
10742#ifdef CONFIG_CGROUP_PERF
10743 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10744#endif
e48c1788 10745 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10746 }
10747}
10748
00e16c3d 10749int perf_event_init_cpu(unsigned int cpu)
0793a61d 10750{
108b02cf 10751 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10752
b28ab83c 10753 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10754 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10755 struct swevent_hlist *hlist;
10756
b28ab83c
PZ
10757 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10758 WARN_ON(!hlist);
10759 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10760 }
b28ab83c 10761 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10762 return 0;
0793a61d
TG
10763}
10764
2965faa5 10765#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10766static void __perf_event_exit_context(void *__info)
0793a61d 10767{
108b02cf 10768 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10769 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10770 struct perf_event *event;
0793a61d 10771
fae3fde6
PZ
10772 raw_spin_lock(&ctx->lock);
10773 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10774 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10775 raw_spin_unlock(&ctx->lock);
0793a61d 10776}
108b02cf
PZ
10777
10778static void perf_event_exit_cpu_context(int cpu)
10779{
10780 struct perf_event_context *ctx;
10781 struct pmu *pmu;
10782 int idx;
10783
10784 idx = srcu_read_lock(&pmus_srcu);
10785 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10786 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10787
10788 mutex_lock(&ctx->mutex);
10789 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10790 mutex_unlock(&ctx->mutex);
10791 }
10792 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10793}
00e16c3d
TG
10794#else
10795
10796static void perf_event_exit_cpu_context(int cpu) { }
10797
10798#endif
108b02cf 10799
00e16c3d 10800int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10801{
e3703f8c 10802 perf_event_exit_cpu_context(cpu);
00e16c3d 10803 return 0;
0793a61d 10804}
0793a61d 10805
c277443c
PZ
10806static int
10807perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10808{
10809 int cpu;
10810
10811 for_each_online_cpu(cpu)
10812 perf_event_exit_cpu(cpu);
10813
10814 return NOTIFY_OK;
10815}
10816
10817/*
10818 * Run the perf reboot notifier at the very last possible moment so that
10819 * the generic watchdog code runs as long as possible.
10820 */
10821static struct notifier_block perf_reboot_notifier = {
10822 .notifier_call = perf_reboot,
10823 .priority = INT_MIN,
10824};
10825
cdd6c482 10826void __init perf_event_init(void)
0793a61d 10827{
3c502e7a
JW
10828 int ret;
10829
2e80a82a
PZ
10830 idr_init(&pmu_idr);
10831
220b140b 10832 perf_event_init_all_cpus();
b0a873eb 10833 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10834 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10835 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10836 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10837 perf_tp_register();
00e16c3d 10838 perf_event_init_cpu(smp_processor_id());
c277443c 10839 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10840
10841 ret = init_hw_breakpoint();
10842 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10843
b01c3a00
JO
10844 /*
10845 * Build time assertion that we keep the data_head at the intended
10846 * location. IOW, validation we got the __reserved[] size right.
10847 */
10848 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10849 != 1024);
0793a61d 10850}
abe43400 10851
fd979c01
CS
10852ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10853 char *page)
10854{
10855 struct perf_pmu_events_attr *pmu_attr =
10856 container_of(attr, struct perf_pmu_events_attr, attr);
10857
10858 if (pmu_attr->event_str)
10859 return sprintf(page, "%s\n", pmu_attr->event_str);
10860
10861 return 0;
10862}
675965b0 10863EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10864
abe43400
PZ
10865static int __init perf_event_sysfs_init(void)
10866{
10867 struct pmu *pmu;
10868 int ret;
10869
10870 mutex_lock(&pmus_lock);
10871
10872 ret = bus_register(&pmu_bus);
10873 if (ret)
10874 goto unlock;
10875
10876 list_for_each_entry(pmu, &pmus, entry) {
10877 if (!pmu->name || pmu->type < 0)
10878 continue;
10879
10880 ret = pmu_dev_alloc(pmu);
10881 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10882 }
10883 pmu_bus_running = 1;
10884 ret = 0;
10885
10886unlock:
10887 mutex_unlock(&pmus_lock);
10888
10889 return ret;
10890}
10891device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10892
10893#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10894static struct cgroup_subsys_state *
10895perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10896{
10897 struct perf_cgroup *jc;
e5d1367f 10898
1b15d055 10899 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10900 if (!jc)
10901 return ERR_PTR(-ENOMEM);
10902
e5d1367f
SE
10903 jc->info = alloc_percpu(struct perf_cgroup_info);
10904 if (!jc->info) {
10905 kfree(jc);
10906 return ERR_PTR(-ENOMEM);
10907 }
10908
e5d1367f
SE
10909 return &jc->css;
10910}
10911
eb95419b 10912static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10913{
eb95419b
TH
10914 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10915
e5d1367f
SE
10916 free_percpu(jc->info);
10917 kfree(jc);
10918}
10919
10920static int __perf_cgroup_move(void *info)
10921{
10922 struct task_struct *task = info;
ddaaf4e2 10923 rcu_read_lock();
e5d1367f 10924 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10925 rcu_read_unlock();
e5d1367f
SE
10926 return 0;
10927}
10928
1f7dd3e5 10929static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10930{
bb9d97b6 10931 struct task_struct *task;
1f7dd3e5 10932 struct cgroup_subsys_state *css;
bb9d97b6 10933
1f7dd3e5 10934 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10935 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10936}
10937
073219e9 10938struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10939 .css_alloc = perf_cgroup_css_alloc,
10940 .css_free = perf_cgroup_css_free,
bb9d97b6 10941 .attach = perf_cgroup_attach,
e5d1367f
SE
10942};
10943#endif /* CONFIG_CGROUP_PERF */