mm, fs: reduce fault, page_mkwrite, and pfn_mkwrite to take only vmf
[linux-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
487f05e1
AS
358 /* see ctx_resched() for details */
359 EVENT_CPU = 0x8,
0b3fcf17
SE
360 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
361};
362
e5d1367f
SE
363/*
364 * perf_sched_events : >0 events exist
365 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 */
9107c89e
PZ
367
368static void perf_sched_delayed(struct work_struct *work);
369DEFINE_STATIC_KEY_FALSE(perf_sched_events);
370static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
371static DEFINE_MUTEX(perf_sched_mutex);
372static atomic_t perf_sched_count;
373
e5d1367f 374static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 375static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 376static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 377
cdd6c482
IM
378static atomic_t nr_mmap_events __read_mostly;
379static atomic_t nr_comm_events __read_mostly;
380static atomic_t nr_task_events __read_mostly;
948b26b6 381static atomic_t nr_freq_events __read_mostly;
45ac1403 382static atomic_t nr_switch_events __read_mostly;
9ee318a7 383
108b02cf
PZ
384static LIST_HEAD(pmus);
385static DEFINE_MUTEX(pmus_lock);
386static struct srcu_struct pmus_srcu;
387
0764771d 388/*
cdd6c482 389 * perf event paranoia level:
0fbdea19
IM
390 * -1 - not paranoid at all
391 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 392 * 1 - disallow cpu events for unpriv
0fbdea19 393 * 2 - disallow kernel profiling for unpriv
0764771d 394 */
0161028b 395int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 396
20443384
FW
397/* Minimum for 512 kiB + 1 user control page */
398int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
399
400/*
cdd6c482 401 * max perf event sample rate
df58ab24 402 */
14c63f17
DH
403#define DEFAULT_MAX_SAMPLE_RATE 100000
404#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
405#define DEFAULT_CPU_TIME_MAX_PERCENT 25
406
407int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
408
409static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
410static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
411
d9494cb4
PZ
412static int perf_sample_allowed_ns __read_mostly =
413 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 414
18ab2cd3 415static void update_perf_cpu_limits(void)
14c63f17
DH
416{
417 u64 tmp = perf_sample_period_ns;
418
419 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
420 tmp = div_u64(tmp, 100);
421 if (!tmp)
422 tmp = 1;
423
424 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 425}
163ec435 426
9e630205
SE
427static int perf_rotate_context(struct perf_cpu_context *cpuctx);
428
163ec435
PZ
429int perf_proc_update_handler(struct ctl_table *table, int write,
430 void __user *buffer, size_t *lenp,
431 loff_t *ppos)
432{
723478c8 433 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
434
435 if (ret || !write)
436 return ret;
437
ab7fdefb
KL
438 /*
439 * If throttling is disabled don't allow the write:
440 */
441 if (sysctl_perf_cpu_time_max_percent == 100 ||
442 sysctl_perf_cpu_time_max_percent == 0)
443 return -EINVAL;
444
163ec435 445 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
446 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
447 update_perf_cpu_limits();
448
449 return 0;
450}
451
452int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
453
454int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
455 void __user *buffer, size_t *lenp,
456 loff_t *ppos)
457{
458 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
459
460 if (ret || !write)
461 return ret;
462
b303e7c1
PZ
463 if (sysctl_perf_cpu_time_max_percent == 100 ||
464 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
465 printk(KERN_WARNING
466 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
467 WRITE_ONCE(perf_sample_allowed_ns, 0);
468 } else {
469 update_perf_cpu_limits();
470 }
163ec435
PZ
471
472 return 0;
473}
1ccd1549 474
14c63f17
DH
475/*
476 * perf samples are done in some very critical code paths (NMIs).
477 * If they take too much CPU time, the system can lock up and not
478 * get any real work done. This will drop the sample rate when
479 * we detect that events are taking too long.
480 */
481#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 482static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 483
91a612ee
PZ
484static u64 __report_avg;
485static u64 __report_allowed;
486
6a02ad66 487static void perf_duration_warn(struct irq_work *w)
14c63f17 488{
0d87d7ec 489 printk_ratelimited(KERN_INFO
91a612ee
PZ
490 "perf: interrupt took too long (%lld > %lld), lowering "
491 "kernel.perf_event_max_sample_rate to %d\n",
492 __report_avg, __report_allowed,
493 sysctl_perf_event_sample_rate);
6a02ad66
PZ
494}
495
496static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
497
498void perf_sample_event_took(u64 sample_len_ns)
499{
91a612ee
PZ
500 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
501 u64 running_len;
502 u64 avg_len;
503 u32 max;
14c63f17 504
91a612ee 505 if (max_len == 0)
14c63f17
DH
506 return;
507
91a612ee
PZ
508 /* Decay the counter by 1 average sample. */
509 running_len = __this_cpu_read(running_sample_length);
510 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
511 running_len += sample_len_ns;
512 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
513
514 /*
91a612ee
PZ
515 * Note: this will be biased artifically low until we have
516 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
517 * from having to maintain a count.
518 */
91a612ee
PZ
519 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
520 if (avg_len <= max_len)
14c63f17
DH
521 return;
522
91a612ee
PZ
523 __report_avg = avg_len;
524 __report_allowed = max_len;
14c63f17 525
91a612ee
PZ
526 /*
527 * Compute a throttle threshold 25% below the current duration.
528 */
529 avg_len += avg_len / 4;
530 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
531 if (avg_len < max)
532 max /= (u32)avg_len;
533 else
534 max = 1;
14c63f17 535
91a612ee
PZ
536 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
537 WRITE_ONCE(max_samples_per_tick, max);
538
539 sysctl_perf_event_sample_rate = max * HZ;
540 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 541
cd578abb 542 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 543 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 544 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 545 __report_avg, __report_allowed,
cd578abb
PZ
546 sysctl_perf_event_sample_rate);
547 }
14c63f17
DH
548}
549
cdd6c482 550static atomic64_t perf_event_id;
a96bbc16 551
0b3fcf17
SE
552static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
553 enum event_type_t event_type);
554
555static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
556 enum event_type_t event_type,
557 struct task_struct *task);
558
559static void update_context_time(struct perf_event_context *ctx);
560static u64 perf_event_time(struct perf_event *event);
0b3fcf17 561
cdd6c482 562void __weak perf_event_print_debug(void) { }
0793a61d 563
84c79910 564extern __weak const char *perf_pmu_name(void)
0793a61d 565{
84c79910 566 return "pmu";
0793a61d
TG
567}
568
0b3fcf17
SE
569static inline u64 perf_clock(void)
570{
571 return local_clock();
572}
573
34f43927
PZ
574static inline u64 perf_event_clock(struct perf_event *event)
575{
576 return event->clock();
577}
578
e5d1367f
SE
579#ifdef CONFIG_CGROUP_PERF
580
e5d1367f
SE
581static inline bool
582perf_cgroup_match(struct perf_event *event)
583{
584 struct perf_event_context *ctx = event->ctx;
585 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
586
ef824fa1
TH
587 /* @event doesn't care about cgroup */
588 if (!event->cgrp)
589 return true;
590
591 /* wants specific cgroup scope but @cpuctx isn't associated with any */
592 if (!cpuctx->cgrp)
593 return false;
594
595 /*
596 * Cgroup scoping is recursive. An event enabled for a cgroup is
597 * also enabled for all its descendant cgroups. If @cpuctx's
598 * cgroup is a descendant of @event's (the test covers identity
599 * case), it's a match.
600 */
601 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
602 event->cgrp->css.cgroup);
e5d1367f
SE
603}
604
e5d1367f
SE
605static inline void perf_detach_cgroup(struct perf_event *event)
606{
4e2ba650 607 css_put(&event->cgrp->css);
e5d1367f
SE
608 event->cgrp = NULL;
609}
610
611static inline int is_cgroup_event(struct perf_event *event)
612{
613 return event->cgrp != NULL;
614}
615
616static inline u64 perf_cgroup_event_time(struct perf_event *event)
617{
618 struct perf_cgroup_info *t;
619
620 t = per_cpu_ptr(event->cgrp->info, event->cpu);
621 return t->time;
622}
623
624static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
625{
626 struct perf_cgroup_info *info;
627 u64 now;
628
629 now = perf_clock();
630
631 info = this_cpu_ptr(cgrp->info);
632
633 info->time += now - info->timestamp;
634 info->timestamp = now;
635}
636
637static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
638{
639 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
640 if (cgrp_out)
641 __update_cgrp_time(cgrp_out);
642}
643
644static inline void update_cgrp_time_from_event(struct perf_event *event)
645{
3f7cce3c
SE
646 struct perf_cgroup *cgrp;
647
e5d1367f 648 /*
3f7cce3c
SE
649 * ensure we access cgroup data only when needed and
650 * when we know the cgroup is pinned (css_get)
e5d1367f 651 */
3f7cce3c 652 if (!is_cgroup_event(event))
e5d1367f
SE
653 return;
654
614e4c4e 655 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
656 /*
657 * Do not update time when cgroup is not active
658 */
659 if (cgrp == event->cgrp)
660 __update_cgrp_time(event->cgrp);
e5d1367f
SE
661}
662
663static inline void
3f7cce3c
SE
664perf_cgroup_set_timestamp(struct task_struct *task,
665 struct perf_event_context *ctx)
e5d1367f
SE
666{
667 struct perf_cgroup *cgrp;
668 struct perf_cgroup_info *info;
669
3f7cce3c
SE
670 /*
671 * ctx->lock held by caller
672 * ensure we do not access cgroup data
673 * unless we have the cgroup pinned (css_get)
674 */
675 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
676 return;
677
614e4c4e 678 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 679 info = this_cpu_ptr(cgrp->info);
3f7cce3c 680 info->timestamp = ctx->timestamp;
e5d1367f
SE
681}
682
058fe1c0
DCC
683static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
684
e5d1367f
SE
685#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
686#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
687
688/*
689 * reschedule events based on the cgroup constraint of task.
690 *
691 * mode SWOUT : schedule out everything
692 * mode SWIN : schedule in based on cgroup for next
693 */
18ab2cd3 694static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
695{
696 struct perf_cpu_context *cpuctx;
058fe1c0 697 struct list_head *list;
e5d1367f
SE
698 unsigned long flags;
699
700 /*
058fe1c0
DCC
701 * Disable interrupts and preemption to avoid this CPU's
702 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
703 */
704 local_irq_save(flags);
705
058fe1c0
DCC
706 list = this_cpu_ptr(&cgrp_cpuctx_list);
707 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
708 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 709
058fe1c0
DCC
710 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
711 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 712
058fe1c0
DCC
713 if (mode & PERF_CGROUP_SWOUT) {
714 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
715 /*
716 * must not be done before ctxswout due
717 * to event_filter_match() in event_sched_out()
718 */
719 cpuctx->cgrp = NULL;
720 }
e5d1367f 721
058fe1c0
DCC
722 if (mode & PERF_CGROUP_SWIN) {
723 WARN_ON_ONCE(cpuctx->cgrp);
724 /*
725 * set cgrp before ctxsw in to allow
726 * event_filter_match() to not have to pass
727 * task around
728 * we pass the cpuctx->ctx to perf_cgroup_from_task()
729 * because cgorup events are only per-cpu
730 */
731 cpuctx->cgrp = perf_cgroup_from_task(task,
732 &cpuctx->ctx);
733 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 734 }
058fe1c0
DCC
735 perf_pmu_enable(cpuctx->ctx.pmu);
736 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
737 }
738
e5d1367f
SE
739 local_irq_restore(flags);
740}
741
a8d757ef
SE
742static inline void perf_cgroup_sched_out(struct task_struct *task,
743 struct task_struct *next)
e5d1367f 744{
a8d757ef
SE
745 struct perf_cgroup *cgrp1;
746 struct perf_cgroup *cgrp2 = NULL;
747
ddaaf4e2 748 rcu_read_lock();
a8d757ef
SE
749 /*
750 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
751 * we do not need to pass the ctx here because we know
752 * we are holding the rcu lock
a8d757ef 753 */
614e4c4e 754 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 755 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
756
757 /*
758 * only schedule out current cgroup events if we know
759 * that we are switching to a different cgroup. Otherwise,
760 * do no touch the cgroup events.
761 */
762 if (cgrp1 != cgrp2)
763 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
764
765 rcu_read_unlock();
e5d1367f
SE
766}
767
a8d757ef
SE
768static inline void perf_cgroup_sched_in(struct task_struct *prev,
769 struct task_struct *task)
e5d1367f 770{
a8d757ef
SE
771 struct perf_cgroup *cgrp1;
772 struct perf_cgroup *cgrp2 = NULL;
773
ddaaf4e2 774 rcu_read_lock();
a8d757ef
SE
775 /*
776 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
777 * we do not need to pass the ctx here because we know
778 * we are holding the rcu lock
a8d757ef 779 */
614e4c4e 780 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 781 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
782
783 /*
784 * only need to schedule in cgroup events if we are changing
785 * cgroup during ctxsw. Cgroup events were not scheduled
786 * out of ctxsw out if that was not the case.
787 */
788 if (cgrp1 != cgrp2)
789 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
790
791 rcu_read_unlock();
e5d1367f
SE
792}
793
794static inline int perf_cgroup_connect(int fd, struct perf_event *event,
795 struct perf_event_attr *attr,
796 struct perf_event *group_leader)
797{
798 struct perf_cgroup *cgrp;
799 struct cgroup_subsys_state *css;
2903ff01
AV
800 struct fd f = fdget(fd);
801 int ret = 0;
e5d1367f 802
2903ff01 803 if (!f.file)
e5d1367f
SE
804 return -EBADF;
805
b583043e 806 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 807 &perf_event_cgrp_subsys);
3db272c0
LZ
808 if (IS_ERR(css)) {
809 ret = PTR_ERR(css);
810 goto out;
811 }
e5d1367f
SE
812
813 cgrp = container_of(css, struct perf_cgroup, css);
814 event->cgrp = cgrp;
815
816 /*
817 * all events in a group must monitor
818 * the same cgroup because a task belongs
819 * to only one perf cgroup at a time
820 */
821 if (group_leader && group_leader->cgrp != cgrp) {
822 perf_detach_cgroup(event);
823 ret = -EINVAL;
e5d1367f 824 }
3db272c0 825out:
2903ff01 826 fdput(f);
e5d1367f
SE
827 return ret;
828}
829
830static inline void
831perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
832{
833 struct perf_cgroup_info *t;
834 t = per_cpu_ptr(event->cgrp->info, event->cpu);
835 event->shadow_ctx_time = now - t->timestamp;
836}
837
838static inline void
839perf_cgroup_defer_enabled(struct perf_event *event)
840{
841 /*
842 * when the current task's perf cgroup does not match
843 * the event's, we need to remember to call the
844 * perf_mark_enable() function the first time a task with
845 * a matching perf cgroup is scheduled in.
846 */
847 if (is_cgroup_event(event) && !perf_cgroup_match(event))
848 event->cgrp_defer_enabled = 1;
849}
850
851static inline void
852perf_cgroup_mark_enabled(struct perf_event *event,
853 struct perf_event_context *ctx)
854{
855 struct perf_event *sub;
856 u64 tstamp = perf_event_time(event);
857
858 if (!event->cgrp_defer_enabled)
859 return;
860
861 event->cgrp_defer_enabled = 0;
862
863 event->tstamp_enabled = tstamp - event->total_time_enabled;
864 list_for_each_entry(sub, &event->sibling_list, group_entry) {
865 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
866 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
867 sub->cgrp_defer_enabled = 0;
868 }
869 }
870}
db4a8356
DCC
871
872/*
873 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
874 * cleared when last cgroup event is removed.
875 */
876static inline void
877list_update_cgroup_event(struct perf_event *event,
878 struct perf_event_context *ctx, bool add)
879{
880 struct perf_cpu_context *cpuctx;
058fe1c0 881 struct list_head *cpuctx_entry;
db4a8356
DCC
882
883 if (!is_cgroup_event(event))
884 return;
885
886 if (add && ctx->nr_cgroups++)
887 return;
888 else if (!add && --ctx->nr_cgroups)
889 return;
890 /*
891 * Because cgroup events are always per-cpu events,
892 * this will always be called from the right CPU.
893 */
894 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
895 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
896 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
897 if (add) {
898 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
899 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
900 cpuctx->cgrp = event->cgrp;
901 } else {
902 list_del(cpuctx_entry);
8fc31ce8 903 cpuctx->cgrp = NULL;
058fe1c0 904 }
db4a8356
DCC
905}
906
e5d1367f
SE
907#else /* !CONFIG_CGROUP_PERF */
908
909static inline bool
910perf_cgroup_match(struct perf_event *event)
911{
912 return true;
913}
914
915static inline void perf_detach_cgroup(struct perf_event *event)
916{}
917
918static inline int is_cgroup_event(struct perf_event *event)
919{
920 return 0;
921}
922
923static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
924{
925 return 0;
926}
927
928static inline void update_cgrp_time_from_event(struct perf_event *event)
929{
930}
931
932static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933{
934}
935
a8d757ef
SE
936static inline void perf_cgroup_sched_out(struct task_struct *task,
937 struct task_struct *next)
e5d1367f
SE
938{
939}
940
a8d757ef
SE
941static inline void perf_cgroup_sched_in(struct task_struct *prev,
942 struct task_struct *task)
e5d1367f
SE
943{
944}
945
946static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947 struct perf_event_attr *attr,
948 struct perf_event *group_leader)
949{
950 return -EINVAL;
951}
952
953static inline void
3f7cce3c
SE
954perf_cgroup_set_timestamp(struct task_struct *task,
955 struct perf_event_context *ctx)
e5d1367f
SE
956{
957}
958
959void
960perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961{
962}
963
964static inline void
965perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966{
967}
968
969static inline u64 perf_cgroup_event_time(struct perf_event *event)
970{
971 return 0;
972}
973
974static inline void
975perf_cgroup_defer_enabled(struct perf_event *event)
976{
977}
978
979static inline void
980perf_cgroup_mark_enabled(struct perf_event *event,
981 struct perf_event_context *ctx)
982{
983}
db4a8356
DCC
984
985static inline void
986list_update_cgroup_event(struct perf_event *event,
987 struct perf_event_context *ctx, bool add)
988{
989}
990
e5d1367f
SE
991#endif
992
9e630205
SE
993/*
994 * set default to be dependent on timer tick just
995 * like original code
996 */
997#define PERF_CPU_HRTIMER (1000 / HZ)
998/*
999 * function must be called with interrupts disbled
1000 */
272325c4 1001static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1002{
1003 struct perf_cpu_context *cpuctx;
9e630205
SE
1004 int rotations = 0;
1005
1006 WARN_ON(!irqs_disabled());
1007
1008 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1009 rotations = perf_rotate_context(cpuctx);
1010
4cfafd30
PZ
1011 raw_spin_lock(&cpuctx->hrtimer_lock);
1012 if (rotations)
9e630205 1013 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1014 else
1015 cpuctx->hrtimer_active = 0;
1016 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1017
4cfafd30 1018 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1019}
1020
272325c4 1021static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1022{
272325c4 1023 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1024 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1025 u64 interval;
9e630205
SE
1026
1027 /* no multiplexing needed for SW PMU */
1028 if (pmu->task_ctx_nr == perf_sw_context)
1029 return;
1030
62b85639
SE
1031 /*
1032 * check default is sane, if not set then force to
1033 * default interval (1/tick)
1034 */
272325c4
PZ
1035 interval = pmu->hrtimer_interval_ms;
1036 if (interval < 1)
1037 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1038
272325c4 1039 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1040
4cfafd30
PZ
1041 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1043 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1044}
1045
272325c4 1046static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1047{
272325c4 1048 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1049 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1050 unsigned long flags;
9e630205
SE
1051
1052 /* not for SW PMU */
1053 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1054 return 0;
9e630205 1055
4cfafd30
PZ
1056 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057 if (!cpuctx->hrtimer_active) {
1058 cpuctx->hrtimer_active = 1;
1059 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061 }
1062 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1063
272325c4 1064 return 0;
9e630205
SE
1065}
1066
33696fc0 1067void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1068{
33696fc0
PZ
1069 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070 if (!(*count)++)
1071 pmu->pmu_disable(pmu);
9e35ad38 1072}
9e35ad38 1073
33696fc0 1074void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1075{
33696fc0
PZ
1076 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077 if (!--(*count))
1078 pmu->pmu_enable(pmu);
9e35ad38 1079}
9e35ad38 1080
2fde4f94 1081static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1082
1083/*
2fde4f94
MR
1084 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085 * perf_event_task_tick() are fully serialized because they're strictly cpu
1086 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1088 */
2fde4f94 1089static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1090{
2fde4f94 1091 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1092
e9d2b064 1093 WARN_ON(!irqs_disabled());
b5ab4cd5 1094
2fde4f94
MR
1095 WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097 list_add(&ctx->active_ctx_list, head);
1098}
1099
1100static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101{
1102 WARN_ON(!irqs_disabled());
1103
1104 WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106 list_del_init(&ctx->active_ctx_list);
9e35ad38 1107}
9e35ad38 1108
cdd6c482 1109static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1110{
e5289d4a 1111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1112}
1113
4af57ef2
YZ
1114static void free_ctx(struct rcu_head *head)
1115{
1116 struct perf_event_context *ctx;
1117
1118 ctx = container_of(head, struct perf_event_context, rcu_head);
1119 kfree(ctx->task_ctx_data);
1120 kfree(ctx);
1121}
1122
cdd6c482 1123static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1124{
564c2b21
PM
1125 if (atomic_dec_and_test(&ctx->refcount)) {
1126 if (ctx->parent_ctx)
1127 put_ctx(ctx->parent_ctx);
63b6da39 1128 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1129 put_task_struct(ctx->task);
4af57ef2 1130 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1131 }
a63eaf34
PM
1132}
1133
f63a8daa
PZ
1134/*
1135 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136 * perf_pmu_migrate_context() we need some magic.
1137 *
1138 * Those places that change perf_event::ctx will hold both
1139 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140 *
8b10c5e2
PZ
1141 * Lock ordering is by mutex address. There are two other sites where
1142 * perf_event_context::mutex nests and those are:
1143 *
1144 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1145 * perf_event_exit_event()
1146 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1147 *
1148 * - perf_event_init_context() [ parent, 0 ]
1149 * inherit_task_group()
1150 * inherit_group()
1151 * inherit_event()
1152 * perf_event_alloc()
1153 * perf_init_event()
1154 * perf_try_init_event() [ child , 1 ]
1155 *
1156 * While it appears there is an obvious deadlock here -- the parent and child
1157 * nesting levels are inverted between the two. This is in fact safe because
1158 * life-time rules separate them. That is an exiting task cannot fork, and a
1159 * spawning task cannot (yet) exit.
1160 *
1161 * But remember that that these are parent<->child context relations, and
1162 * migration does not affect children, therefore these two orderings should not
1163 * interact.
f63a8daa
PZ
1164 *
1165 * The change in perf_event::ctx does not affect children (as claimed above)
1166 * because the sys_perf_event_open() case will install a new event and break
1167 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168 * concerned with cpuctx and that doesn't have children.
1169 *
1170 * The places that change perf_event::ctx will issue:
1171 *
1172 * perf_remove_from_context();
1173 * synchronize_rcu();
1174 * perf_install_in_context();
1175 *
1176 * to affect the change. The remove_from_context() + synchronize_rcu() should
1177 * quiesce the event, after which we can install it in the new location. This
1178 * means that only external vectors (perf_fops, prctl) can perturb the event
1179 * while in transit. Therefore all such accessors should also acquire
1180 * perf_event_context::mutex to serialize against this.
1181 *
1182 * However; because event->ctx can change while we're waiting to acquire
1183 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184 * function.
1185 *
1186 * Lock order:
79c9ce57 1187 * cred_guard_mutex
f63a8daa
PZ
1188 * task_struct::perf_event_mutex
1189 * perf_event_context::mutex
f63a8daa 1190 * perf_event::child_mutex;
07c4a776 1191 * perf_event_context::lock
f63a8daa
PZ
1192 * perf_event::mmap_mutex
1193 * mmap_sem
1194 */
a83fe28e
PZ
1195static struct perf_event_context *
1196perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1197{
1198 struct perf_event_context *ctx;
1199
1200again:
1201 rcu_read_lock();
1202 ctx = ACCESS_ONCE(event->ctx);
1203 if (!atomic_inc_not_zero(&ctx->refcount)) {
1204 rcu_read_unlock();
1205 goto again;
1206 }
1207 rcu_read_unlock();
1208
a83fe28e 1209 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1210 if (event->ctx != ctx) {
1211 mutex_unlock(&ctx->mutex);
1212 put_ctx(ctx);
1213 goto again;
1214 }
1215
1216 return ctx;
1217}
1218
a83fe28e
PZ
1219static inline struct perf_event_context *
1220perf_event_ctx_lock(struct perf_event *event)
1221{
1222 return perf_event_ctx_lock_nested(event, 0);
1223}
1224
f63a8daa
PZ
1225static void perf_event_ctx_unlock(struct perf_event *event,
1226 struct perf_event_context *ctx)
1227{
1228 mutex_unlock(&ctx->mutex);
1229 put_ctx(ctx);
1230}
1231
211de6eb
PZ
1232/*
1233 * This must be done under the ctx->lock, such as to serialize against
1234 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235 * calling scheduler related locks and ctx->lock nests inside those.
1236 */
1237static __must_check struct perf_event_context *
1238unclone_ctx(struct perf_event_context *ctx)
71a851b4 1239{
211de6eb
PZ
1240 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242 lockdep_assert_held(&ctx->lock);
1243
1244 if (parent_ctx)
71a851b4 1245 ctx->parent_ctx = NULL;
5a3126d4 1246 ctx->generation++;
211de6eb
PZ
1247
1248 return parent_ctx;
71a851b4
PZ
1249}
1250
6844c09d
ACM
1251static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252{
1253 /*
1254 * only top level events have the pid namespace they were created in
1255 */
1256 if (event->parent)
1257 event = event->parent;
1258
1259 return task_tgid_nr_ns(p, event->ns);
1260}
1261
1262static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263{
1264 /*
1265 * only top level events have the pid namespace they were created in
1266 */
1267 if (event->parent)
1268 event = event->parent;
1269
1270 return task_pid_nr_ns(p, event->ns);
1271}
1272
7f453c24 1273/*
cdd6c482 1274 * If we inherit events we want to return the parent event id
7f453c24
PZ
1275 * to userspace.
1276 */
cdd6c482 1277static u64 primary_event_id(struct perf_event *event)
7f453c24 1278{
cdd6c482 1279 u64 id = event->id;
7f453c24 1280
cdd6c482
IM
1281 if (event->parent)
1282 id = event->parent->id;
7f453c24
PZ
1283
1284 return id;
1285}
1286
25346b93 1287/*
cdd6c482 1288 * Get the perf_event_context for a task and lock it.
63b6da39 1289 *
25346b93
PM
1290 * This has to cope with with the fact that until it is locked,
1291 * the context could get moved to another task.
1292 */
cdd6c482 1293static struct perf_event_context *
8dc85d54 1294perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1295{
cdd6c482 1296 struct perf_event_context *ctx;
25346b93 1297
9ed6060d 1298retry:
058ebd0e
PZ
1299 /*
1300 * One of the few rules of preemptible RCU is that one cannot do
1301 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1302 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1303 * rcu_read_unlock_special().
1304 *
1305 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1306 * side critical section has interrupts disabled.
058ebd0e 1307 */
2fd59077 1308 local_irq_save(*flags);
058ebd0e 1309 rcu_read_lock();
8dc85d54 1310 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1311 if (ctx) {
1312 /*
1313 * If this context is a clone of another, it might
1314 * get swapped for another underneath us by
cdd6c482 1315 * perf_event_task_sched_out, though the
25346b93
PM
1316 * rcu_read_lock() protects us from any context
1317 * getting freed. Lock the context and check if it
1318 * got swapped before we could get the lock, and retry
1319 * if so. If we locked the right context, then it
1320 * can't get swapped on us any more.
1321 */
2fd59077 1322 raw_spin_lock(&ctx->lock);
8dc85d54 1323 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1324 raw_spin_unlock(&ctx->lock);
058ebd0e 1325 rcu_read_unlock();
2fd59077 1326 local_irq_restore(*flags);
25346b93
PM
1327 goto retry;
1328 }
b49a9e7e 1329
63b6da39
PZ
1330 if (ctx->task == TASK_TOMBSTONE ||
1331 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1332 raw_spin_unlock(&ctx->lock);
b49a9e7e 1333 ctx = NULL;
828b6f0e
PZ
1334 } else {
1335 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1336 }
25346b93
PM
1337 }
1338 rcu_read_unlock();
2fd59077
PM
1339 if (!ctx)
1340 local_irq_restore(*flags);
25346b93
PM
1341 return ctx;
1342}
1343
1344/*
1345 * Get the context for a task and increment its pin_count so it
1346 * can't get swapped to another task. This also increments its
1347 * reference count so that the context can't get freed.
1348 */
8dc85d54
PZ
1349static struct perf_event_context *
1350perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1351{
cdd6c482 1352 struct perf_event_context *ctx;
25346b93
PM
1353 unsigned long flags;
1354
8dc85d54 1355 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1356 if (ctx) {
1357 ++ctx->pin_count;
e625cce1 1358 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1359 }
1360 return ctx;
1361}
1362
cdd6c482 1363static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1364{
1365 unsigned long flags;
1366
e625cce1 1367 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1368 --ctx->pin_count;
e625cce1 1369 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1370}
1371
f67218c3
PZ
1372/*
1373 * Update the record of the current time in a context.
1374 */
1375static void update_context_time(struct perf_event_context *ctx)
1376{
1377 u64 now = perf_clock();
1378
1379 ctx->time += now - ctx->timestamp;
1380 ctx->timestamp = now;
1381}
1382
4158755d
SE
1383static u64 perf_event_time(struct perf_event *event)
1384{
1385 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1386
1387 if (is_cgroup_event(event))
1388 return perf_cgroup_event_time(event);
1389
4158755d
SE
1390 return ctx ? ctx->time : 0;
1391}
1392
f67218c3
PZ
1393/*
1394 * Update the total_time_enabled and total_time_running fields for a event.
1395 */
1396static void update_event_times(struct perf_event *event)
1397{
1398 struct perf_event_context *ctx = event->ctx;
1399 u64 run_end;
1400
3cbaa590
PZ
1401 lockdep_assert_held(&ctx->lock);
1402
f67218c3
PZ
1403 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405 return;
3cbaa590 1406
e5d1367f
SE
1407 /*
1408 * in cgroup mode, time_enabled represents
1409 * the time the event was enabled AND active
1410 * tasks were in the monitored cgroup. This is
1411 * independent of the activity of the context as
1412 * there may be a mix of cgroup and non-cgroup events.
1413 *
1414 * That is why we treat cgroup events differently
1415 * here.
1416 */
1417 if (is_cgroup_event(event))
46cd6a7f 1418 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1419 else if (ctx->is_active)
1420 run_end = ctx->time;
acd1d7c1
PZ
1421 else
1422 run_end = event->tstamp_stopped;
1423
1424 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1425
1426 if (event->state == PERF_EVENT_STATE_INACTIVE)
1427 run_end = event->tstamp_stopped;
1428 else
4158755d 1429 run_end = perf_event_time(event);
f67218c3
PZ
1430
1431 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1432
f67218c3
PZ
1433}
1434
96c21a46
PZ
1435/*
1436 * Update total_time_enabled and total_time_running for all events in a group.
1437 */
1438static void update_group_times(struct perf_event *leader)
1439{
1440 struct perf_event *event;
1441
1442 update_event_times(leader);
1443 list_for_each_entry(event, &leader->sibling_list, group_entry)
1444 update_event_times(event);
1445}
1446
487f05e1
AS
1447static enum event_type_t get_event_type(struct perf_event *event)
1448{
1449 struct perf_event_context *ctx = event->ctx;
1450 enum event_type_t event_type;
1451
1452 lockdep_assert_held(&ctx->lock);
1453
1454 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455 if (!ctx->task)
1456 event_type |= EVENT_CPU;
1457
1458 return event_type;
1459}
1460
889ff015
FW
1461static struct list_head *
1462ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463{
1464 if (event->attr.pinned)
1465 return &ctx->pinned_groups;
1466 else
1467 return &ctx->flexible_groups;
1468}
1469
fccc714b 1470/*
cdd6c482 1471 * Add a event from the lists for its context.
fccc714b
PZ
1472 * Must be called with ctx->mutex and ctx->lock held.
1473 */
04289bb9 1474static void
cdd6c482 1475list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1476{
c994d613
PZ
1477 lockdep_assert_held(&ctx->lock);
1478
8a49542c
PZ
1479 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1481
1482 /*
8a49542c
PZ
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1486 */
8a49542c 1487 if (event->group_leader == event) {
889ff015
FW
1488 struct list_head *list;
1489
4ff6a8de 1490 event->group_caps = event->event_caps;
d6f962b5 1491
889ff015
FW
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
5c148194 1494 }
592903cd 1495
db4a8356 1496 list_update_cgroup_event(event, ctx, true);
e5d1367f 1497
cdd6c482
IM
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
bfbd3381 1501 ctx->nr_stat++;
5a3126d4
PZ
1502
1503 ctx->generation++;
04289bb9
IM
1504}
1505
0231bb53
JO
1506/*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509static inline void perf_event__state_init(struct perf_event *event)
1510{
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513}
1514
a723968c 1515static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1516{
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1531 nr += nr_siblings;
c320c7b7
ACM
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537}
1538
a723968c 1539static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1540{
1541 struct perf_sample_data *data;
c320c7b7
ACM
1542 u16 size = 0;
1543
c320c7b7
ACM
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
6844c09d
ACM
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
c3feedf2
AK
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
6844c09d
ACM
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
d6be9ad6
SE
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
fdfbbd07
AK
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
6844c09d
ACM
1565 event->header_size = size;
1566}
1567
a723968c
PZ
1568/*
1569 * Called at perf_event creation and when events are attached/detached from a
1570 * group.
1571 */
1572static void perf_event__header_size(struct perf_event *event)
1573{
1574 __perf_event_read_size(event,
1575 event->group_leader->nr_siblings);
1576 __perf_event_header_size(event, event->attr.sample_type);
1577}
1578
6844c09d
ACM
1579static void perf_event__id_header_size(struct perf_event *event)
1580{
1581 struct perf_sample_data *data;
1582 u64 sample_type = event->attr.sample_type;
1583 u16 size = 0;
1584
c320c7b7
ACM
1585 if (sample_type & PERF_SAMPLE_TID)
1586 size += sizeof(data->tid_entry);
1587
1588 if (sample_type & PERF_SAMPLE_TIME)
1589 size += sizeof(data->time);
1590
ff3d527c
AH
1591 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592 size += sizeof(data->id);
1593
c320c7b7
ACM
1594 if (sample_type & PERF_SAMPLE_ID)
1595 size += sizeof(data->id);
1596
1597 if (sample_type & PERF_SAMPLE_STREAM_ID)
1598 size += sizeof(data->stream_id);
1599
1600 if (sample_type & PERF_SAMPLE_CPU)
1601 size += sizeof(data->cpu_entry);
1602
6844c09d 1603 event->id_header_size = size;
c320c7b7
ACM
1604}
1605
a723968c
PZ
1606static bool perf_event_validate_size(struct perf_event *event)
1607{
1608 /*
1609 * The values computed here will be over-written when we actually
1610 * attach the event.
1611 */
1612 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614 perf_event__id_header_size(event);
1615
1616 /*
1617 * Sum the lot; should not exceed the 64k limit we have on records.
1618 * Conservative limit to allow for callchains and other variable fields.
1619 */
1620 if (event->read_size + event->header_size +
1621 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622 return false;
1623
1624 return true;
1625}
1626
8a49542c
PZ
1627static void perf_group_attach(struct perf_event *event)
1628{
c320c7b7 1629 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1630
a76a82a3
PZ
1631 lockdep_assert_held(&event->ctx->lock);
1632
74c3337c
PZ
1633 /*
1634 * We can have double attach due to group movement in perf_event_open.
1635 */
1636 if (event->attach_state & PERF_ATTACH_GROUP)
1637 return;
1638
8a49542c
PZ
1639 event->attach_state |= PERF_ATTACH_GROUP;
1640
1641 if (group_leader == event)
1642 return;
1643
652884fe
PZ
1644 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
4ff6a8de 1646 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1647
1648 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649 group_leader->nr_siblings++;
c320c7b7
ACM
1650
1651 perf_event__header_size(group_leader);
1652
1653 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654 perf_event__header_size(pos);
8a49542c
PZ
1655}
1656
a63eaf34 1657/*
cdd6c482 1658 * Remove a event from the lists for its context.
fccc714b 1659 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1660 */
04289bb9 1661static void
cdd6c482 1662list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1663{
652884fe
PZ
1664 WARN_ON_ONCE(event->ctx != ctx);
1665 lockdep_assert_held(&ctx->lock);
1666
8a49542c
PZ
1667 /*
1668 * We can have double detach due to exit/hot-unplug + close.
1669 */
1670 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1671 return;
8a49542c
PZ
1672
1673 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
db4a8356 1675 list_update_cgroup_event(event, ctx, false);
e5d1367f 1676
cdd6c482
IM
1677 ctx->nr_events--;
1678 if (event->attr.inherit_stat)
bfbd3381 1679 ctx->nr_stat--;
8bc20959 1680
cdd6c482 1681 list_del_rcu(&event->event_entry);
04289bb9 1682
8a49542c
PZ
1683 if (event->group_leader == event)
1684 list_del_init(&event->group_entry);
5c148194 1685
96c21a46 1686 update_group_times(event);
b2e74a26
SE
1687
1688 /*
1689 * If event was in error state, then keep it
1690 * that way, otherwise bogus counts will be
1691 * returned on read(). The only way to get out
1692 * of error state is by explicit re-enabling
1693 * of the event
1694 */
1695 if (event->state > PERF_EVENT_STATE_OFF)
1696 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1697
1698 ctx->generation++;
050735b0
PZ
1699}
1700
8a49542c 1701static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1702{
1703 struct perf_event *sibling, *tmp;
8a49542c
PZ
1704 struct list_head *list = NULL;
1705
a76a82a3
PZ
1706 lockdep_assert_held(&event->ctx->lock);
1707
8a49542c
PZ
1708 /*
1709 * We can have double detach due to exit/hot-unplug + close.
1710 */
1711 if (!(event->attach_state & PERF_ATTACH_GROUP))
1712 return;
1713
1714 event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716 /*
1717 * If this is a sibling, remove it from its group.
1718 */
1719 if (event->group_leader != event) {
1720 list_del_init(&event->group_entry);
1721 event->group_leader->nr_siblings--;
c320c7b7 1722 goto out;
8a49542c
PZ
1723 }
1724
1725 if (!list_empty(&event->group_entry))
1726 list = &event->group_entry;
2e2af50b 1727
04289bb9 1728 /*
cdd6c482
IM
1729 * If this was a group event with sibling events then
1730 * upgrade the siblings to singleton events by adding them
8a49542c 1731 * to whatever list we are on.
04289bb9 1732 */
cdd6c482 1733 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1734 if (list)
1735 list_move_tail(&sibling->group_entry, list);
04289bb9 1736 sibling->group_leader = sibling;
d6f962b5
FW
1737
1738 /* Inherit group flags from the previous leader */
4ff6a8de 1739 sibling->group_caps = event->group_caps;
652884fe
PZ
1740
1741 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1742 }
c320c7b7
ACM
1743
1744out:
1745 perf_event__header_size(event->group_leader);
1746
1747 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748 perf_event__header_size(tmp);
04289bb9
IM
1749}
1750
fadfe7be
JO
1751static bool is_orphaned_event(struct perf_event *event)
1752{
a69b0ca4 1753 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1754}
1755
2c81a647 1756static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1757{
1758 struct pmu *pmu = event->pmu;
1759 return pmu->filter_match ? pmu->filter_match(event) : 1;
1760}
1761
2c81a647
MR
1762/*
1763 * Check whether we should attempt to schedule an event group based on
1764 * PMU-specific filtering. An event group can consist of HW and SW events,
1765 * potentially with a SW leader, so we must check all the filters, to
1766 * determine whether a group is schedulable:
1767 */
1768static inline int pmu_filter_match(struct perf_event *event)
1769{
1770 struct perf_event *child;
1771
1772 if (!__pmu_filter_match(event))
1773 return 0;
1774
1775 list_for_each_entry(child, &event->sibling_list, group_entry) {
1776 if (!__pmu_filter_match(child))
1777 return 0;
1778 }
1779
1780 return 1;
1781}
1782
fa66f07a
SE
1783static inline int
1784event_filter_match(struct perf_event *event)
1785{
0b8f1e2e
PZ
1786 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1788}
1789
9ffcfa6f
SE
1790static void
1791event_sched_out(struct perf_event *event,
3b6f9e5c 1792 struct perf_cpu_context *cpuctx,
cdd6c482 1793 struct perf_event_context *ctx)
3b6f9e5c 1794{
4158755d 1795 u64 tstamp = perf_event_time(event);
fa66f07a 1796 u64 delta;
652884fe
PZ
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
fa66f07a
SE
1801 /*
1802 * An event which could not be activated because of
1803 * filter mismatch still needs to have its timings
1804 * maintained, otherwise bogus information is return
1805 * via read() for time_enabled, time_running:
1806 */
0b8f1e2e
PZ
1807 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808 !event_filter_match(event)) {
e5d1367f 1809 delta = tstamp - event->tstamp_stopped;
fa66f07a 1810 event->tstamp_running += delta;
4158755d 1811 event->tstamp_stopped = tstamp;
fa66f07a
SE
1812 }
1813
cdd6c482 1814 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1815 return;
3b6f9e5c 1816
44377277
AS
1817 perf_pmu_disable(event->pmu);
1818
28a967c3
PZ
1819 event->tstamp_stopped = tstamp;
1820 event->pmu->del(event, 0);
1821 event->oncpu = -1;
cdd6c482
IM
1822 event->state = PERF_EVENT_STATE_INACTIVE;
1823 if (event->pending_disable) {
1824 event->pending_disable = 0;
1825 event->state = PERF_EVENT_STATE_OFF;
970892a9 1826 }
3b6f9e5c 1827
cdd6c482 1828 if (!is_software_event(event))
3b6f9e5c 1829 cpuctx->active_oncpu--;
2fde4f94
MR
1830 if (!--ctx->nr_active)
1831 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1832 if (event->attr.freq && event->attr.sample_freq)
1833 ctx->nr_freq--;
cdd6c482 1834 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1835 cpuctx->exclusive = 0;
44377277
AS
1836
1837 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1838}
1839
d859e29f 1840static void
cdd6c482 1841group_sched_out(struct perf_event *group_event,
d859e29f 1842 struct perf_cpu_context *cpuctx,
cdd6c482 1843 struct perf_event_context *ctx)
d859e29f 1844{
cdd6c482 1845 struct perf_event *event;
fa66f07a 1846 int state = group_event->state;
d859e29f 1847
3f005e7d
MR
1848 perf_pmu_disable(ctx->pmu);
1849
cdd6c482 1850 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1851
1852 /*
1853 * Schedule out siblings (if any):
1854 */
cdd6c482
IM
1855 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856 event_sched_out(event, cpuctx, ctx);
d859e29f 1857
3f005e7d
MR
1858 perf_pmu_enable(ctx->pmu);
1859
fa66f07a 1860 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1861 cpuctx->exclusive = 0;
1862}
1863
45a0e07a 1864#define DETACH_GROUP 0x01UL
0017960f 1865
0793a61d 1866/*
cdd6c482 1867 * Cross CPU call to remove a performance event
0793a61d 1868 *
cdd6c482 1869 * We disable the event on the hardware level first. After that we
0793a61d
TG
1870 * remove it from the context list.
1871 */
fae3fde6
PZ
1872static void
1873__perf_remove_from_context(struct perf_event *event,
1874 struct perf_cpu_context *cpuctx,
1875 struct perf_event_context *ctx,
1876 void *info)
0793a61d 1877{
45a0e07a 1878 unsigned long flags = (unsigned long)info;
0793a61d 1879
cdd6c482 1880 event_sched_out(event, cpuctx, ctx);
45a0e07a 1881 if (flags & DETACH_GROUP)
46ce0fe9 1882 perf_group_detach(event);
cdd6c482 1883 list_del_event(event, ctx);
39a43640
PZ
1884
1885 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1886 ctx->is_active = 0;
39a43640
PZ
1887 if (ctx->task) {
1888 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889 cpuctx->task_ctx = NULL;
1890 }
64ce3126 1891 }
0793a61d
TG
1892}
1893
0793a61d 1894/*
cdd6c482 1895 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1896 *
cdd6c482
IM
1897 * If event->ctx is a cloned context, callers must make sure that
1898 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1899 * remains valid. This is OK when called from perf_release since
1900 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1901 * When called from perf_event_exit_task, it's OK because the
c93f7669 1902 * context has been detached from its task.
0793a61d 1903 */
45a0e07a 1904static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1905{
a76a82a3
PZ
1906 struct perf_event_context *ctx = event->ctx;
1907
1908 lockdep_assert_held(&ctx->mutex);
0793a61d 1909
45a0e07a 1910 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1911
1912 /*
1913 * The above event_function_call() can NO-OP when it hits
1914 * TASK_TOMBSTONE. In that case we must already have been detached
1915 * from the context (by perf_event_exit_event()) but the grouping
1916 * might still be in-tact.
1917 */
1918 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919 if ((flags & DETACH_GROUP) &&
1920 (event->attach_state & PERF_ATTACH_GROUP)) {
1921 /*
1922 * Since in that case we cannot possibly be scheduled, simply
1923 * detach now.
1924 */
1925 raw_spin_lock_irq(&ctx->lock);
1926 perf_group_detach(event);
1927 raw_spin_unlock_irq(&ctx->lock);
1928 }
0793a61d
TG
1929}
1930
d859e29f 1931/*
cdd6c482 1932 * Cross CPU call to disable a performance event
d859e29f 1933 */
fae3fde6
PZ
1934static void __perf_event_disable(struct perf_event *event,
1935 struct perf_cpu_context *cpuctx,
1936 struct perf_event_context *ctx,
1937 void *info)
7b648018 1938{
fae3fde6
PZ
1939 if (event->state < PERF_EVENT_STATE_INACTIVE)
1940 return;
7b648018 1941
fae3fde6
PZ
1942 update_context_time(ctx);
1943 update_cgrp_time_from_event(event);
1944 update_group_times(event);
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
1949 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1950}
1951
d859e29f 1952/*
cdd6c482 1953 * Disable a event.
c93f7669 1954 *
cdd6c482
IM
1955 * If event->ctx is a cloned context, callers must make sure that
1956 * every task struct that event->ctx->task could possibly point to
c93f7669 1957 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1958 * perf_event_for_each_child or perf_event_for_each because they
1959 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1960 * goes to exit will block in perf_event_exit_event().
1961 *
cdd6c482 1962 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1963 * is the current context on this CPU and preemption is disabled,
cdd6c482 1964 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1965 */
f63a8daa 1966static void _perf_event_disable(struct perf_event *event)
d859e29f 1967{
cdd6c482 1968 struct perf_event_context *ctx = event->ctx;
d859e29f 1969
e625cce1 1970 raw_spin_lock_irq(&ctx->lock);
7b648018 1971 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1972 raw_spin_unlock_irq(&ctx->lock);
7b648018 1973 return;
53cfbf59 1974 }
e625cce1 1975 raw_spin_unlock_irq(&ctx->lock);
7b648018 1976
fae3fde6
PZ
1977 event_function_call(event, __perf_event_disable, NULL);
1978}
1979
1980void perf_event_disable_local(struct perf_event *event)
1981{
1982 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1983}
f63a8daa
PZ
1984
1985/*
1986 * Strictly speaking kernel users cannot create groups and therefore this
1987 * interface does not need the perf_event_ctx_lock() magic.
1988 */
1989void perf_event_disable(struct perf_event *event)
1990{
1991 struct perf_event_context *ctx;
1992
1993 ctx = perf_event_ctx_lock(event);
1994 _perf_event_disable(event);
1995 perf_event_ctx_unlock(event, ctx);
1996}
dcfce4a0 1997EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1998
5aab90ce
JO
1999void perf_event_disable_inatomic(struct perf_event *event)
2000{
2001 event->pending_disable = 1;
2002 irq_work_queue(&event->pending);
2003}
2004
e5d1367f
SE
2005static void perf_set_shadow_time(struct perf_event *event,
2006 struct perf_event_context *ctx,
2007 u64 tstamp)
2008{
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
2035 perf_cgroup_set_shadow_time(event, tstamp);
2036 else
2037 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038}
2039
4fe757dd
PZ
2040#define MAX_INTERRUPTS (~0ULL)
2041
2042static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2043static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2044
235c7fc7 2045static int
9ffcfa6f 2046event_sched_in(struct perf_event *event,
235c7fc7 2047 struct perf_cpu_context *cpuctx,
6e37738a 2048 struct perf_event_context *ctx)
235c7fc7 2049{
4158755d 2050 u64 tstamp = perf_event_time(event);
44377277 2051 int ret = 0;
4158755d 2052
63342411
PZ
2053 lockdep_assert_held(&ctx->lock);
2054
cdd6c482 2055 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2056 return 0;
2057
95ff4ca2
AS
2058 WRITE_ONCE(event->oncpu, smp_processor_id());
2059 /*
2060 * Order event::oncpu write to happen before the ACTIVE state
2061 * is visible.
2062 */
2063 smp_wmb();
2064 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
235c7fc7
IM
2076 /*
2077 * The new state must be visible before we turn it on in the hardware:
2078 */
2079 smp_wmb();
2080
44377277
AS
2081 perf_pmu_disable(event->pmu);
2082
72f669c0
SL
2083 perf_set_shadow_time(event, ctx, tstamp);
2084
ec0d7729
AS
2085 perf_log_itrace_start(event);
2086
a4eaf7f1 2087 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2088 event->state = PERF_EVENT_STATE_INACTIVE;
2089 event->oncpu = -1;
44377277
AS
2090 ret = -EAGAIN;
2091 goto out;
235c7fc7
IM
2092 }
2093
00a2916f
PZ
2094 event->tstamp_running += tstamp - event->tstamp_stopped;
2095
cdd6c482 2096 if (!is_software_event(event))
3b6f9e5c 2097 cpuctx->active_oncpu++;
2fde4f94
MR
2098 if (!ctx->nr_active++)
2099 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2100 if (event->attr.freq && event->attr.sample_freq)
2101 ctx->nr_freq++;
235c7fc7 2102
cdd6c482 2103 if (event->attr.exclusive)
3b6f9e5c
PM
2104 cpuctx->exclusive = 1;
2105
44377277
AS
2106out:
2107 perf_pmu_enable(event->pmu);
2108
2109 return ret;
235c7fc7
IM
2110}
2111
6751b71e 2112static int
cdd6c482 2113group_sched_in(struct perf_event *group_event,
6751b71e 2114 struct perf_cpu_context *cpuctx,
6e37738a 2115 struct perf_event_context *ctx)
6751b71e 2116{
6bde9b6c 2117 struct perf_event *event, *partial_group = NULL;
4a234593 2118 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2119 u64 now = ctx->time;
2120 bool simulate = false;
6751b71e 2121
cdd6c482 2122 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2123 return 0;
2124
fbbe0701 2125 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2126
9ffcfa6f 2127 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2128 pmu->cancel_txn(pmu);
272325c4 2129 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2130 return -EAGAIN;
90151c35 2131 }
6751b71e
PM
2132
2133 /*
2134 * Schedule in siblings as one group (if any):
2135 */
cdd6c482 2136 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2137 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2138 partial_group = event;
6751b71e
PM
2139 goto group_error;
2140 }
2141 }
2142
9ffcfa6f 2143 if (!pmu->commit_txn(pmu))
6e85158c 2144 return 0;
9ffcfa6f 2145
6751b71e
PM
2146group_error:
2147 /*
2148 * Groups can be scheduled in as one unit only, so undo any
2149 * partial group before returning:
d7842da4
SE
2150 * The events up to the failed event are scheduled out normally,
2151 * tstamp_stopped will be updated.
2152 *
2153 * The failed events and the remaining siblings need to have
2154 * their timings updated as if they had gone thru event_sched_in()
2155 * and event_sched_out(). This is required to get consistent timings
2156 * across the group. This also takes care of the case where the group
2157 * could never be scheduled by ensuring tstamp_stopped is set to mark
2158 * the time the event was actually stopped, such that time delta
2159 * calculation in update_event_times() is correct.
6751b71e 2160 */
cdd6c482
IM
2161 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162 if (event == partial_group)
d7842da4
SE
2163 simulate = true;
2164
2165 if (simulate) {
2166 event->tstamp_running += now - event->tstamp_stopped;
2167 event->tstamp_stopped = now;
2168 } else {
2169 event_sched_out(event, cpuctx, ctx);
2170 }
6751b71e 2171 }
9ffcfa6f 2172 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2173
ad5133b7 2174 pmu->cancel_txn(pmu);
90151c35 2175
272325c4 2176 perf_mux_hrtimer_restart(cpuctx);
9e630205 2177
6751b71e
PM
2178 return -EAGAIN;
2179}
2180
3b6f9e5c 2181/*
cdd6c482 2182 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2183 */
cdd6c482 2184static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2185 struct perf_cpu_context *cpuctx,
2186 int can_add_hw)
2187{
2188 /*
cdd6c482 2189 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2190 */
4ff6a8de 2191 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2192 return 1;
2193 /*
2194 * If an exclusive group is already on, no other hardware
cdd6c482 2195 * events can go on.
3b6f9e5c
PM
2196 */
2197 if (cpuctx->exclusive)
2198 return 0;
2199 /*
2200 * If this group is exclusive and there are already
cdd6c482 2201 * events on the CPU, it can't go on.
3b6f9e5c 2202 */
cdd6c482 2203 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2204 return 0;
2205 /*
2206 * Otherwise, try to add it if all previous groups were able
2207 * to go on.
2208 */
2209 return can_add_hw;
2210}
2211
cdd6c482
IM
2212static void add_event_to_ctx(struct perf_event *event,
2213 struct perf_event_context *ctx)
53cfbf59 2214{
4158755d
SE
2215 u64 tstamp = perf_event_time(event);
2216
cdd6c482 2217 list_add_event(event, ctx);
8a49542c 2218 perf_group_attach(event);
4158755d
SE
2219 event->tstamp_enabled = tstamp;
2220 event->tstamp_running = tstamp;
2221 event->tstamp_stopped = tstamp;
53cfbf59
PM
2222}
2223
bd2afa49
PZ
2224static void ctx_sched_out(struct perf_event_context *ctx,
2225 struct perf_cpu_context *cpuctx,
2226 enum event_type_t event_type);
2c29ef0f
PZ
2227static void
2228ctx_sched_in(struct perf_event_context *ctx,
2229 struct perf_cpu_context *cpuctx,
2230 enum event_type_t event_type,
2231 struct task_struct *task);
fe4b04fa 2232
bd2afa49 2233static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2234 struct perf_event_context *ctx,
2235 enum event_type_t event_type)
bd2afa49
PZ
2236{
2237 if (!cpuctx->task_ctx)
2238 return;
2239
2240 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241 return;
2242
487f05e1 2243 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2244}
2245
dce5855b
PZ
2246static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247 struct perf_event_context *ctx,
2248 struct task_struct *task)
2249{
2250 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251 if (ctx)
2252 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254 if (ctx)
2255 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256}
2257
487f05e1
AS
2258/*
2259 * We want to maintain the following priority of scheduling:
2260 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261 * - task pinned (EVENT_PINNED)
2262 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263 * - task flexible (EVENT_FLEXIBLE).
2264 *
2265 * In order to avoid unscheduling and scheduling back in everything every
2266 * time an event is added, only do it for the groups of equal priority and
2267 * below.
2268 *
2269 * This can be called after a batch operation on task events, in which case
2270 * event_type is a bit mask of the types of events involved. For CPU events,
2271 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272 */
3e349507 2273static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2274 struct perf_event_context *task_ctx,
2275 enum event_type_t event_type)
0017960f 2276{
487f05e1
AS
2277 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278 bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280 /*
2281 * If pinned groups are involved, flexible groups also need to be
2282 * scheduled out.
2283 */
2284 if (event_type & EVENT_PINNED)
2285 event_type |= EVENT_FLEXIBLE;
2286
3e349507
PZ
2287 perf_pmu_disable(cpuctx->ctx.pmu);
2288 if (task_ctx)
487f05e1
AS
2289 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291 /*
2292 * Decide which cpu ctx groups to schedule out based on the types
2293 * of events that caused rescheduling:
2294 * - EVENT_CPU: schedule out corresponding groups;
2295 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296 * - otherwise, do nothing more.
2297 */
2298 if (cpu_event)
2299 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300 else if (ctx_event_type & EVENT_PINNED)
2301 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
3e349507
PZ
2303 perf_event_sched_in(cpuctx, task_ctx, current);
2304 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2305}
2306
0793a61d 2307/*
cdd6c482 2308 * Cross CPU call to install and enable a performance event
682076ae 2309 *
a096309b
PZ
2310 * Very similar to remote_function() + event_function() but cannot assume that
2311 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2312 */
fe4b04fa 2313static int __perf_install_in_context(void *info)
0793a61d 2314{
a096309b
PZ
2315 struct perf_event *event = info;
2316 struct perf_event_context *ctx = event->ctx;
108b02cf 2317 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2318 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2319 bool reprogram = true;
a096309b 2320 int ret = 0;
0793a61d 2321
63b6da39 2322 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2323 if (ctx->task) {
b58f6b0d
PZ
2324 raw_spin_lock(&ctx->lock);
2325 task_ctx = ctx;
a096309b 2326
63cae12b 2327 reprogram = (ctx->task == current);
b58f6b0d 2328
39a43640 2329 /*
63cae12b
PZ
2330 * If the task is running, it must be running on this CPU,
2331 * otherwise we cannot reprogram things.
2332 *
2333 * If its not running, we don't care, ctx->lock will
2334 * serialize against it becoming runnable.
39a43640 2335 */
63cae12b
PZ
2336 if (task_curr(ctx->task) && !reprogram) {
2337 ret = -ESRCH;
2338 goto unlock;
2339 }
a096309b 2340
63cae12b 2341 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2342 } else if (task_ctx) {
2343 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2344 }
b58f6b0d 2345
63cae12b 2346 if (reprogram) {
a096309b
PZ
2347 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348 add_event_to_ctx(event, ctx);
487f05e1 2349 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2350 } else {
2351 add_event_to_ctx(event, ctx);
2352 }
2353
63b6da39 2354unlock:
2c29ef0f 2355 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2356
a096309b 2357 return ret;
0793a61d
TG
2358}
2359
2360/*
a096309b
PZ
2361 * Attach a performance event to a context.
2362 *
2363 * Very similar to event_function_call, see comment there.
0793a61d
TG
2364 */
2365static void
cdd6c482
IM
2366perf_install_in_context(struct perf_event_context *ctx,
2367 struct perf_event *event,
0793a61d
TG
2368 int cpu)
2369{
a096309b 2370 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2371
fe4b04fa
PZ
2372 lockdep_assert_held(&ctx->mutex);
2373
0cda4c02
YZ
2374 if (event->cpu != -1)
2375 event->cpu = cpu;
c3f00c70 2376
0b8f1e2e
PZ
2377 /*
2378 * Ensures that if we can observe event->ctx, both the event and ctx
2379 * will be 'complete'. See perf_iterate_sb_cpu().
2380 */
2381 smp_store_release(&event->ctx, ctx);
2382
a096309b
PZ
2383 if (!task) {
2384 cpu_function_call(cpu, __perf_install_in_context, event);
2385 return;
2386 }
2387
2388 /*
2389 * Should not happen, we validate the ctx is still alive before calling.
2390 */
2391 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392 return;
2393
39a43640
PZ
2394 /*
2395 * Installing events is tricky because we cannot rely on ctx->is_active
2396 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2397 *
2398 * Instead we use task_curr(), which tells us if the task is running.
2399 * However, since we use task_curr() outside of rq::lock, we can race
2400 * against the actual state. This means the result can be wrong.
2401 *
2402 * If we get a false positive, we retry, this is harmless.
2403 *
2404 * If we get a false negative, things are complicated. If we are after
2405 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406 * value must be correct. If we're before, it doesn't matter since
2407 * perf_event_context_sched_in() will program the counter.
2408 *
2409 * However, this hinges on the remote context switch having observed
2410 * our task->perf_event_ctxp[] store, such that it will in fact take
2411 * ctx::lock in perf_event_context_sched_in().
2412 *
2413 * We do this by task_function_call(), if the IPI fails to hit the task
2414 * we know any future context switch of task must see the
2415 * perf_event_ctpx[] store.
39a43640 2416 */
63cae12b 2417
63b6da39 2418 /*
63cae12b
PZ
2419 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420 * task_cpu() load, such that if the IPI then does not find the task
2421 * running, a future context switch of that task must observe the
2422 * store.
63b6da39 2423 */
63cae12b
PZ
2424 smp_mb();
2425again:
2426 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2427 return;
2428
2429 raw_spin_lock_irq(&ctx->lock);
2430 task = ctx->task;
84c4e620 2431 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2432 /*
2433 * Cannot happen because we already checked above (which also
2434 * cannot happen), and we hold ctx->mutex, which serializes us
2435 * against perf_event_exit_task_context().
2436 */
63b6da39
PZ
2437 raw_spin_unlock_irq(&ctx->lock);
2438 return;
2439 }
39a43640 2440 /*
63cae12b
PZ
2441 * If the task is not running, ctx->lock will avoid it becoming so,
2442 * thus we can safely install the event.
39a43640 2443 */
63cae12b
PZ
2444 if (task_curr(task)) {
2445 raw_spin_unlock_irq(&ctx->lock);
2446 goto again;
2447 }
2448 add_event_to_ctx(event, ctx);
2449 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2450}
2451
fa289bec 2452/*
cdd6c482 2453 * Put a event into inactive state and update time fields.
fa289bec
PM
2454 * Enabling the leader of a group effectively enables all
2455 * the group members that aren't explicitly disabled, so we
2456 * have to update their ->tstamp_enabled also.
2457 * Note: this works for group members as well as group leaders
2458 * since the non-leader members' sibling_lists will be empty.
2459 */
1d9b482e 2460static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2461{
cdd6c482 2462 struct perf_event *sub;
4158755d 2463 u64 tstamp = perf_event_time(event);
fa289bec 2464
cdd6c482 2465 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2466 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2467 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2468 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2470 }
fa289bec
PM
2471}
2472
d859e29f 2473/*
cdd6c482 2474 * Cross CPU call to enable a performance event
d859e29f 2475 */
fae3fde6
PZ
2476static void __perf_event_enable(struct perf_event *event,
2477 struct perf_cpu_context *cpuctx,
2478 struct perf_event_context *ctx,
2479 void *info)
04289bb9 2480{
cdd6c482 2481 struct perf_event *leader = event->group_leader;
fae3fde6 2482 struct perf_event_context *task_ctx;
04289bb9 2483
6e801e01
PZ
2484 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2486 return;
3cbed429 2487
bd2afa49
PZ
2488 if (ctx->is_active)
2489 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
1d9b482e 2491 __perf_event_mark_enabled(event);
04289bb9 2492
fae3fde6
PZ
2493 if (!ctx->is_active)
2494 return;
2495
e5d1367f 2496 if (!event_filter_match(event)) {
bd2afa49 2497 if (is_cgroup_event(event))
e5d1367f 2498 perf_cgroup_defer_enabled(event);
bd2afa49 2499 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2500 return;
e5d1367f 2501 }
f4c4176f 2502
04289bb9 2503 /*
cdd6c482 2504 * If the event is in a group and isn't the group leader,
d859e29f 2505 * then don't put it on unless the group is on.
04289bb9 2506 */
bd2afa49
PZ
2507 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2509 return;
bd2afa49 2510 }
fe4b04fa 2511
fae3fde6
PZ
2512 task_ctx = cpuctx->task_ctx;
2513 if (ctx->task)
2514 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2515
487f05e1 2516 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2517}
2518
d859e29f 2519/*
cdd6c482 2520 * Enable a event.
c93f7669 2521 *
cdd6c482
IM
2522 * If event->ctx is a cloned context, callers must make sure that
2523 * every task struct that event->ctx->task could possibly point to
c93f7669 2524 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2525 * perf_event_for_each_child or perf_event_for_each as described
2526 * for perf_event_disable.
d859e29f 2527 */
f63a8daa 2528static void _perf_event_enable(struct perf_event *event)
d859e29f 2529{
cdd6c482 2530 struct perf_event_context *ctx = event->ctx;
d859e29f 2531
7b648018 2532 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2533 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2535 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2536 return;
2537 }
2538
d859e29f 2539 /*
cdd6c482 2540 * If the event is in error state, clear that first.
7b648018
PZ
2541 *
2542 * That way, if we see the event in error state below, we know that it
2543 * has gone back into error state, as distinct from the task having
2544 * been scheduled away before the cross-call arrived.
d859e29f 2545 */
cdd6c482
IM
2546 if (event->state == PERF_EVENT_STATE_ERROR)
2547 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2548 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2549
fae3fde6 2550 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2551}
f63a8daa
PZ
2552
2553/*
2554 * See perf_event_disable();
2555 */
2556void perf_event_enable(struct perf_event *event)
2557{
2558 struct perf_event_context *ctx;
2559
2560 ctx = perf_event_ctx_lock(event);
2561 _perf_event_enable(event);
2562 perf_event_ctx_unlock(event, ctx);
2563}
dcfce4a0 2564EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2565
375637bc
AS
2566struct stop_event_data {
2567 struct perf_event *event;
2568 unsigned int restart;
2569};
2570
95ff4ca2
AS
2571static int __perf_event_stop(void *info)
2572{
375637bc
AS
2573 struct stop_event_data *sd = info;
2574 struct perf_event *event = sd->event;
95ff4ca2 2575
375637bc 2576 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2577 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578 return 0;
2579
2580 /* matches smp_wmb() in event_sched_in() */
2581 smp_rmb();
2582
2583 /*
2584 * There is a window with interrupts enabled before we get here,
2585 * so we need to check again lest we try to stop another CPU's event.
2586 */
2587 if (READ_ONCE(event->oncpu) != smp_processor_id())
2588 return -EAGAIN;
2589
2590 event->pmu->stop(event, PERF_EF_UPDATE);
2591
375637bc
AS
2592 /*
2593 * May race with the actual stop (through perf_pmu_output_stop()),
2594 * but it is only used for events with AUX ring buffer, and such
2595 * events will refuse to restart because of rb::aux_mmap_count==0,
2596 * see comments in perf_aux_output_begin().
2597 *
2598 * Since this is happening on a event-local CPU, no trace is lost
2599 * while restarting.
2600 */
2601 if (sd->restart)
c9bbdd48 2602 event->pmu->start(event, 0);
375637bc 2603
95ff4ca2
AS
2604 return 0;
2605}
2606
767ae086 2607static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2608{
2609 struct stop_event_data sd = {
2610 .event = event,
767ae086 2611 .restart = restart,
375637bc
AS
2612 };
2613 int ret = 0;
2614
2615 do {
2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 return 0;
2618
2619 /* matches smp_wmb() in event_sched_in() */
2620 smp_rmb();
2621
2622 /*
2623 * We only want to restart ACTIVE events, so if the event goes
2624 * inactive here (event->oncpu==-1), there's nothing more to do;
2625 * fall through with ret==-ENXIO.
2626 */
2627 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628 __perf_event_stop, &sd);
2629 } while (ret == -EAGAIN);
2630
2631 return ret;
2632}
2633
2634/*
2635 * In order to contain the amount of racy and tricky in the address filter
2636 * configuration management, it is a two part process:
2637 *
2638 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639 * we update the addresses of corresponding vmas in
2640 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2641 * (p2) when an event is scheduled in (pmu::add), it calls
2642 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643 * if the generation has changed since the previous call.
2644 *
2645 * If (p1) happens while the event is active, we restart it to force (p2).
2646 *
2647 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2649 * ioctl;
2650 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2652 * for reading;
2653 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654 * of exec.
2655 */
2656void perf_event_addr_filters_sync(struct perf_event *event)
2657{
2658 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660 if (!has_addr_filter(event))
2661 return;
2662
2663 raw_spin_lock(&ifh->lock);
2664 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665 event->pmu->addr_filters_sync(event);
2666 event->hw.addr_filters_gen = event->addr_filters_gen;
2667 }
2668 raw_spin_unlock(&ifh->lock);
2669}
2670EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
f63a8daa 2672static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2673{
2023b359 2674 /*
cdd6c482 2675 * not supported on inherited events
2023b359 2676 */
2e939d1d 2677 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2678 return -EINVAL;
2679
cdd6c482 2680 atomic_add(refresh, &event->event_limit);
f63a8daa 2681 _perf_event_enable(event);
2023b359
PZ
2682
2683 return 0;
79f14641 2684}
f63a8daa
PZ
2685
2686/*
2687 * See perf_event_disable()
2688 */
2689int perf_event_refresh(struct perf_event *event, int refresh)
2690{
2691 struct perf_event_context *ctx;
2692 int ret;
2693
2694 ctx = perf_event_ctx_lock(event);
2695 ret = _perf_event_refresh(event, refresh);
2696 perf_event_ctx_unlock(event, ctx);
2697
2698 return ret;
2699}
26ca5c11 2700EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2701
5b0311e1
FW
2702static void ctx_sched_out(struct perf_event_context *ctx,
2703 struct perf_cpu_context *cpuctx,
2704 enum event_type_t event_type)
235c7fc7 2705{
db24d33e 2706 int is_active = ctx->is_active;
c994d613 2707 struct perf_event *event;
235c7fc7 2708
c994d613 2709 lockdep_assert_held(&ctx->lock);
235c7fc7 2710
39a43640
PZ
2711 if (likely(!ctx->nr_events)) {
2712 /*
2713 * See __perf_remove_from_context().
2714 */
2715 WARN_ON_ONCE(ctx->is_active);
2716 if (ctx->task)
2717 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2718 return;
39a43640
PZ
2719 }
2720
db24d33e 2721 ctx->is_active &= ~event_type;
3cbaa590
PZ
2722 if (!(ctx->is_active & EVENT_ALL))
2723 ctx->is_active = 0;
2724
63e30d3e
PZ
2725 if (ctx->task) {
2726 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727 if (!ctx->is_active)
2728 cpuctx->task_ctx = NULL;
2729 }
facc4307 2730
8fdc6539
PZ
2731 /*
2732 * Always update time if it was set; not only when it changes.
2733 * Otherwise we can 'forget' to update time for any but the last
2734 * context we sched out. For example:
2735 *
2736 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737 * ctx_sched_out(.event_type = EVENT_PINNED)
2738 *
2739 * would only update time for the pinned events.
2740 */
3cbaa590
PZ
2741 if (is_active & EVENT_TIME) {
2742 /* update (and stop) ctx time */
2743 update_context_time(ctx);
2744 update_cgrp_time_from_cpuctx(cpuctx);
2745 }
2746
8fdc6539
PZ
2747 is_active ^= ctx->is_active; /* changed bits */
2748
3cbaa590 2749 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2750 return;
5b0311e1 2751
075e0b00 2752 perf_pmu_disable(ctx->pmu);
3cbaa590 2753 if (is_active & EVENT_PINNED) {
889ff015
FW
2754 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755 group_sched_out(event, cpuctx, ctx);
9ed6060d 2756 }
889ff015 2757
3cbaa590 2758 if (is_active & EVENT_FLEXIBLE) {
889ff015 2759 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2760 group_sched_out(event, cpuctx, ctx);
9ed6060d 2761 }
1b9a644f 2762 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2763}
2764
564c2b21 2765/*
5a3126d4
PZ
2766 * Test whether two contexts are equivalent, i.e. whether they have both been
2767 * cloned from the same version of the same context.
2768 *
2769 * Equivalence is measured using a generation number in the context that is
2770 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771 * and list_del_event().
564c2b21 2772 */
cdd6c482
IM
2773static int context_equiv(struct perf_event_context *ctx1,
2774 struct perf_event_context *ctx2)
564c2b21 2775{
211de6eb
PZ
2776 lockdep_assert_held(&ctx1->lock);
2777 lockdep_assert_held(&ctx2->lock);
2778
5a3126d4
PZ
2779 /* Pinning disables the swap optimization */
2780 if (ctx1->pin_count || ctx2->pin_count)
2781 return 0;
2782
2783 /* If ctx1 is the parent of ctx2 */
2784 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785 return 1;
2786
2787 /* If ctx2 is the parent of ctx1 */
2788 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789 return 1;
2790
2791 /*
2792 * If ctx1 and ctx2 have the same parent; we flatten the parent
2793 * hierarchy, see perf_event_init_context().
2794 */
2795 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796 ctx1->parent_gen == ctx2->parent_gen)
2797 return 1;
2798
2799 /* Unmatched */
2800 return 0;
564c2b21
PM
2801}
2802
cdd6c482
IM
2803static void __perf_event_sync_stat(struct perf_event *event,
2804 struct perf_event *next_event)
bfbd3381
PZ
2805{
2806 u64 value;
2807
cdd6c482 2808 if (!event->attr.inherit_stat)
bfbd3381
PZ
2809 return;
2810
2811 /*
cdd6c482 2812 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2813 * because we're in the middle of a context switch and have IRQs
2814 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2815 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2816 * don't need to use it.
2817 */
cdd6c482
IM
2818 switch (event->state) {
2819 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2820 event->pmu->read(event);
2821 /* fall-through */
bfbd3381 2822
cdd6c482
IM
2823 case PERF_EVENT_STATE_INACTIVE:
2824 update_event_times(event);
bfbd3381
PZ
2825 break;
2826
2827 default:
2828 break;
2829 }
2830
2831 /*
cdd6c482 2832 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2833 * values when we flip the contexts.
2834 */
e7850595
PZ
2835 value = local64_read(&next_event->count);
2836 value = local64_xchg(&event->count, value);
2837 local64_set(&next_event->count, value);
bfbd3381 2838
cdd6c482
IM
2839 swap(event->total_time_enabled, next_event->total_time_enabled);
2840 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2841
bfbd3381 2842 /*
19d2e755 2843 * Since we swizzled the values, update the user visible data too.
bfbd3381 2844 */
cdd6c482
IM
2845 perf_event_update_userpage(event);
2846 perf_event_update_userpage(next_event);
bfbd3381
PZ
2847}
2848
cdd6c482
IM
2849static void perf_event_sync_stat(struct perf_event_context *ctx,
2850 struct perf_event_context *next_ctx)
bfbd3381 2851{
cdd6c482 2852 struct perf_event *event, *next_event;
bfbd3381
PZ
2853
2854 if (!ctx->nr_stat)
2855 return;
2856
02ffdbc8
PZ
2857 update_context_time(ctx);
2858
cdd6c482
IM
2859 event = list_first_entry(&ctx->event_list,
2860 struct perf_event, event_entry);
bfbd3381 2861
cdd6c482
IM
2862 next_event = list_first_entry(&next_ctx->event_list,
2863 struct perf_event, event_entry);
bfbd3381 2864
cdd6c482
IM
2865 while (&event->event_entry != &ctx->event_list &&
2866 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2867
cdd6c482 2868 __perf_event_sync_stat(event, next_event);
bfbd3381 2869
cdd6c482
IM
2870 event = list_next_entry(event, event_entry);
2871 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2872 }
2873}
2874
fe4b04fa
PZ
2875static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876 struct task_struct *next)
0793a61d 2877{
8dc85d54 2878 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2879 struct perf_event_context *next_ctx;
5a3126d4 2880 struct perf_event_context *parent, *next_parent;
108b02cf 2881 struct perf_cpu_context *cpuctx;
c93f7669 2882 int do_switch = 1;
0793a61d 2883
108b02cf
PZ
2884 if (likely(!ctx))
2885 return;
10989fb2 2886
108b02cf
PZ
2887 cpuctx = __get_cpu_context(ctx);
2888 if (!cpuctx->task_ctx)
0793a61d
TG
2889 return;
2890
c93f7669 2891 rcu_read_lock();
8dc85d54 2892 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2893 if (!next_ctx)
2894 goto unlock;
2895
2896 parent = rcu_dereference(ctx->parent_ctx);
2897 next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2900 if (!parent && !next_parent)
5a3126d4
PZ
2901 goto unlock;
2902
2903 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2904 /*
2905 * Looks like the two contexts are clones, so we might be
2906 * able to optimize the context switch. We lock both
2907 * contexts and check that they are clones under the
2908 * lock (including re-checking that neither has been
2909 * uncloned in the meantime). It doesn't matter which
2910 * order we take the locks because no other cpu could
2911 * be trying to lock both of these tasks.
2912 */
e625cce1
TG
2913 raw_spin_lock(&ctx->lock);
2914 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2915 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2916 WRITE_ONCE(ctx->task, next);
2917 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2918
2919 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
63b6da39
PZ
2921 /*
2922 * RCU_INIT_POINTER here is safe because we've not
2923 * modified the ctx and the above modification of
2924 * ctx->task and ctx->task_ctx_data are immaterial
2925 * since those values are always verified under
2926 * ctx->lock which we're now holding.
2927 */
2928 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
c93f7669 2931 do_switch = 0;
bfbd3381 2932
cdd6c482 2933 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2934 }
e625cce1
TG
2935 raw_spin_unlock(&next_ctx->lock);
2936 raw_spin_unlock(&ctx->lock);
564c2b21 2937 }
5a3126d4 2938unlock:
c93f7669 2939 rcu_read_unlock();
564c2b21 2940
c93f7669 2941 if (do_switch) {
facc4307 2942 raw_spin_lock(&ctx->lock);
487f05e1 2943 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2944 raw_spin_unlock(&ctx->lock);
c93f7669 2945 }
0793a61d
TG
2946}
2947
e48c1788
PZ
2948static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
ba532500
YZ
2950void perf_sched_cb_dec(struct pmu *pmu)
2951{
e48c1788
PZ
2952 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
ba532500 2954 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2955
2956 if (!--cpuctx->sched_cb_usage)
2957 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2958}
2959
e48c1788 2960
ba532500
YZ
2961void perf_sched_cb_inc(struct pmu *pmu)
2962{
e48c1788
PZ
2963 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965 if (!cpuctx->sched_cb_usage++)
2966 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
ba532500
YZ
2968 this_cpu_inc(perf_sched_cb_usages);
2969}
2970
2971/*
2972 * This function provides the context switch callback to the lower code
2973 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2974 *
2975 * This callback is relevant even to per-cpu events; for example multi event
2976 * PEBS requires this to provide PID/TID information. This requires we flush
2977 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2978 */
2979static void perf_pmu_sched_task(struct task_struct *prev,
2980 struct task_struct *next,
2981 bool sched_in)
2982{
2983 struct perf_cpu_context *cpuctx;
2984 struct pmu *pmu;
ba532500
YZ
2985
2986 if (prev == next)
2987 return;
2988
e48c1788 2989 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2990 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2991
e48c1788
PZ
2992 if (WARN_ON_ONCE(!pmu->sched_task))
2993 continue;
ba532500 2994
e48c1788
PZ
2995 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996 perf_pmu_disable(pmu);
ba532500 2997
e48c1788 2998 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2999
e48c1788
PZ
3000 perf_pmu_enable(pmu);
3001 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3002 }
ba532500
YZ
3003}
3004
45ac1403
AH
3005static void perf_event_switch(struct task_struct *task,
3006 struct task_struct *next_prev, bool sched_in);
3007
8dc85d54
PZ
3008#define for_each_task_context_nr(ctxn) \
3009 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011/*
3012 * Called from scheduler to remove the events of the current task,
3013 * with interrupts disabled.
3014 *
3015 * We stop each event and update the event value in event->count.
3016 *
3017 * This does not protect us against NMI, but disable()
3018 * sets the disabled bit in the control field of event _before_
3019 * accessing the event control register. If a NMI hits, then it will
3020 * not restart the event.
3021 */
ab0cce56
JO
3022void __perf_event_task_sched_out(struct task_struct *task,
3023 struct task_struct *next)
8dc85d54
PZ
3024{
3025 int ctxn;
3026
ba532500
YZ
3027 if (__this_cpu_read(perf_sched_cb_usages))
3028 perf_pmu_sched_task(task, next, false);
3029
45ac1403
AH
3030 if (atomic_read(&nr_switch_events))
3031 perf_event_switch(task, next, false);
3032
8dc85d54
PZ
3033 for_each_task_context_nr(ctxn)
3034 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3035
3036 /*
3037 * if cgroup events exist on this CPU, then we need
3038 * to check if we have to switch out PMU state.
3039 * cgroup event are system-wide mode only
3040 */
4a32fea9 3041 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3042 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3043}
3044
5b0311e1
FW
3045/*
3046 * Called with IRQs disabled
3047 */
3048static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049 enum event_type_t event_type)
3050{
3051 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3052}
3053
235c7fc7 3054static void
5b0311e1 3055ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3056 struct perf_cpu_context *cpuctx)
0793a61d 3057{
cdd6c482 3058 struct perf_event *event;
0793a61d 3059
889ff015
FW
3060 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3062 continue;
5632ab12 3063 if (!event_filter_match(event))
3b6f9e5c
PM
3064 continue;
3065
e5d1367f
SE
3066 /* may need to reset tstamp_enabled */
3067 if (is_cgroup_event(event))
3068 perf_cgroup_mark_enabled(event, ctx);
3069
8c9ed8e1 3070 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3071 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3072
3073 /*
3074 * If this pinned group hasn't been scheduled,
3075 * put it in error state.
3076 */
cdd6c482
IM
3077 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078 update_group_times(event);
3079 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3080 }
3b6f9e5c 3081 }
5b0311e1
FW
3082}
3083
3084static void
3085ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3086 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3087{
3088 struct perf_event *event;
3089 int can_add_hw = 1;
3b6f9e5c 3090
889ff015
FW
3091 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092 /* Ignore events in OFF or ERROR state */
3093 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3094 continue;
04289bb9
IM
3095 /*
3096 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3097 * of events:
04289bb9 3098 */
5632ab12 3099 if (!event_filter_match(event))
0793a61d
TG
3100 continue;
3101
e5d1367f
SE
3102 /* may need to reset tstamp_enabled */
3103 if (is_cgroup_event(event))
3104 perf_cgroup_mark_enabled(event, ctx);
3105
9ed6060d 3106 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3107 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3108 can_add_hw = 0;
9ed6060d 3109 }
0793a61d 3110 }
5b0311e1
FW
3111}
3112
3113static void
3114ctx_sched_in(struct perf_event_context *ctx,
3115 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3116 enum event_type_t event_type,
3117 struct task_struct *task)
5b0311e1 3118{
db24d33e 3119 int is_active = ctx->is_active;
c994d613
PZ
3120 u64 now;
3121
3122 lockdep_assert_held(&ctx->lock);
e5d1367f 3123
5b0311e1 3124 if (likely(!ctx->nr_events))
facc4307 3125 return;
5b0311e1 3126
3cbaa590 3127 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3128 if (ctx->task) {
3129 if (!is_active)
3130 cpuctx->task_ctx = ctx;
3131 else
3132 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133 }
3134
3cbaa590
PZ
3135 is_active ^= ctx->is_active; /* changed bits */
3136
3137 if (is_active & EVENT_TIME) {
3138 /* start ctx time */
3139 now = perf_clock();
3140 ctx->timestamp = now;
3141 perf_cgroup_set_timestamp(task, ctx);
3142 }
3143
5b0311e1
FW
3144 /*
3145 * First go through the list and put on any pinned groups
3146 * in order to give them the best chance of going on.
3147 */
3cbaa590 3148 if (is_active & EVENT_PINNED)
6e37738a 3149 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3150
3151 /* Then walk through the lower prio flexible groups */
3cbaa590 3152 if (is_active & EVENT_FLEXIBLE)
6e37738a 3153 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3154}
3155
329c0e01 3156static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3157 enum event_type_t event_type,
3158 struct task_struct *task)
329c0e01
FW
3159{
3160 struct perf_event_context *ctx = &cpuctx->ctx;
3161
e5d1367f 3162 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3163}
3164
e5d1367f
SE
3165static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166 struct task_struct *task)
235c7fc7 3167{
108b02cf 3168 struct perf_cpu_context *cpuctx;
235c7fc7 3169
108b02cf 3170 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3171 if (cpuctx->task_ctx == ctx)
3172 return;
3173
facc4307 3174 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3175 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3176 /*
3177 * We want to keep the following priority order:
3178 * cpu pinned (that don't need to move), task pinned,
3179 * cpu flexible, task flexible.
fe45bafb
AS
3180 *
3181 * However, if task's ctx is not carrying any pinned
3182 * events, no need to flip the cpuctx's events around.
329c0e01 3183 */
fe45bafb
AS
3184 if (!list_empty(&ctx->pinned_groups))
3185 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3186 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3187 perf_pmu_enable(ctx->pmu);
3188 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3189}
3190
8dc85d54
PZ
3191/*
3192 * Called from scheduler to add the events of the current task
3193 * with interrupts disabled.
3194 *
3195 * We restore the event value and then enable it.
3196 *
3197 * This does not protect us against NMI, but enable()
3198 * sets the enabled bit in the control field of event _before_
3199 * accessing the event control register. If a NMI hits, then it will
3200 * keep the event running.
3201 */
ab0cce56
JO
3202void __perf_event_task_sched_in(struct task_struct *prev,
3203 struct task_struct *task)
8dc85d54
PZ
3204{
3205 struct perf_event_context *ctx;
3206 int ctxn;
3207
7e41d177
PZ
3208 /*
3209 * If cgroup events exist on this CPU, then we need to check if we have
3210 * to switch in PMU state; cgroup event are system-wide mode only.
3211 *
3212 * Since cgroup events are CPU events, we must schedule these in before
3213 * we schedule in the task events.
3214 */
3215 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216 perf_cgroup_sched_in(prev, task);
3217
8dc85d54
PZ
3218 for_each_task_context_nr(ctxn) {
3219 ctx = task->perf_event_ctxp[ctxn];
3220 if (likely(!ctx))
3221 continue;
3222
e5d1367f 3223 perf_event_context_sched_in(ctx, task);
8dc85d54 3224 }
d010b332 3225
45ac1403
AH
3226 if (atomic_read(&nr_switch_events))
3227 perf_event_switch(task, prev, true);
3228
ba532500
YZ
3229 if (__this_cpu_read(perf_sched_cb_usages))
3230 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3231}
3232
abd50713
PZ
3233static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234{
3235 u64 frequency = event->attr.sample_freq;
3236 u64 sec = NSEC_PER_SEC;
3237 u64 divisor, dividend;
3238
3239 int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241 count_fls = fls64(count);
3242 nsec_fls = fls64(nsec);
3243 frequency_fls = fls64(frequency);
3244 sec_fls = 30;
3245
3246 /*
3247 * We got @count in @nsec, with a target of sample_freq HZ
3248 * the target period becomes:
3249 *
3250 * @count * 10^9
3251 * period = -------------------
3252 * @nsec * sample_freq
3253 *
3254 */
3255
3256 /*
3257 * Reduce accuracy by one bit such that @a and @b converge
3258 * to a similar magnitude.
3259 */
fe4b04fa 3260#define REDUCE_FLS(a, b) \
abd50713
PZ
3261do { \
3262 if (a##_fls > b##_fls) { \
3263 a >>= 1; \
3264 a##_fls--; \
3265 } else { \
3266 b >>= 1; \
3267 b##_fls--; \
3268 } \
3269} while (0)
3270
3271 /*
3272 * Reduce accuracy until either term fits in a u64, then proceed with
3273 * the other, so that finally we can do a u64/u64 division.
3274 */
3275 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276 REDUCE_FLS(nsec, frequency);
3277 REDUCE_FLS(sec, count);
3278 }
3279
3280 if (count_fls + sec_fls > 64) {
3281 divisor = nsec * frequency;
3282
3283 while (count_fls + sec_fls > 64) {
3284 REDUCE_FLS(count, sec);
3285 divisor >>= 1;
3286 }
3287
3288 dividend = count * sec;
3289 } else {
3290 dividend = count * sec;
3291
3292 while (nsec_fls + frequency_fls > 64) {
3293 REDUCE_FLS(nsec, frequency);
3294 dividend >>= 1;
3295 }
3296
3297 divisor = nsec * frequency;
3298 }
3299
f6ab91ad
PZ
3300 if (!divisor)
3301 return dividend;
3302
abd50713
PZ
3303 return div64_u64(dividend, divisor);
3304}
3305
e050e3f0
SE
3306static DEFINE_PER_CPU(int, perf_throttled_count);
3307static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
f39d47ff 3309static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3310{
cdd6c482 3311 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3312 s64 period, sample_period;
bd2b5b12
PZ
3313 s64 delta;
3314
abd50713 3315 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3316
3317 delta = (s64)(period - hwc->sample_period);
3318 delta = (delta + 7) / 8; /* low pass filter */
3319
3320 sample_period = hwc->sample_period + delta;
3321
3322 if (!sample_period)
3323 sample_period = 1;
3324
bd2b5b12 3325 hwc->sample_period = sample_period;
abd50713 3326
e7850595 3327 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3328 if (disable)
3329 event->pmu->stop(event, PERF_EF_UPDATE);
3330
e7850595 3331 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3332
3333 if (disable)
3334 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3335 }
bd2b5b12
PZ
3336}
3337
e050e3f0
SE
3338/*
3339 * combine freq adjustment with unthrottling to avoid two passes over the
3340 * events. At the same time, make sure, having freq events does not change
3341 * the rate of unthrottling as that would introduce bias.
3342 */
3343static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344 int needs_unthr)
60db5e09 3345{
cdd6c482
IM
3346 struct perf_event *event;
3347 struct hw_perf_event *hwc;
e050e3f0 3348 u64 now, period = TICK_NSEC;
abd50713 3349 s64 delta;
60db5e09 3350
e050e3f0
SE
3351 /*
3352 * only need to iterate over all events iff:
3353 * - context have events in frequency mode (needs freq adjust)
3354 * - there are events to unthrottle on this cpu
3355 */
3356 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3357 return;
3358
e050e3f0 3359 raw_spin_lock(&ctx->lock);
f39d47ff 3360 perf_pmu_disable(ctx->pmu);
e050e3f0 3361
03541f8b 3362 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3363 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3364 continue;
3365
5632ab12 3366 if (!event_filter_match(event))
5d27c23d
PZ
3367 continue;
3368
44377277
AS
3369 perf_pmu_disable(event->pmu);
3370
cdd6c482 3371 hwc = &event->hw;
6a24ed6c 3372
ae23bff1 3373 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3374 hwc->interrupts = 0;
cdd6c482 3375 perf_log_throttle(event, 1);
a4eaf7f1 3376 event->pmu->start(event, 0);
a78ac325
PZ
3377 }
3378
cdd6c482 3379 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3380 goto next;
60db5e09 3381
e050e3f0
SE
3382 /*
3383 * stop the event and update event->count
3384 */
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
e7850595 3387 now = local64_read(&event->count);
abd50713
PZ
3388 delta = now - hwc->freq_count_stamp;
3389 hwc->freq_count_stamp = now;
60db5e09 3390
e050e3f0
SE
3391 /*
3392 * restart the event
3393 * reload only if value has changed
f39d47ff
SE
3394 * we have stopped the event so tell that
3395 * to perf_adjust_period() to avoid stopping it
3396 * twice.
e050e3f0 3397 */
abd50713 3398 if (delta > 0)
f39d47ff 3399 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3400
3401 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3402 next:
3403 perf_pmu_enable(event->pmu);
60db5e09 3404 }
e050e3f0 3405
f39d47ff 3406 perf_pmu_enable(ctx->pmu);
e050e3f0 3407 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3408}
3409
235c7fc7 3410/*
cdd6c482 3411 * Round-robin a context's events:
235c7fc7 3412 */
cdd6c482 3413static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3414{
dddd3379
TG
3415 /*
3416 * Rotate the first entry last of non-pinned groups. Rotation might be
3417 * disabled by the inheritance code.
3418 */
3419 if (!ctx->rotate_disable)
3420 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3421}
3422
9e630205 3423static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3424{
8dc85d54 3425 struct perf_event_context *ctx = NULL;
2fde4f94 3426 int rotate = 0;
7fc23a53 3427
b5ab4cd5 3428 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3429 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430 rotate = 1;
3431 }
235c7fc7 3432
8dc85d54 3433 ctx = cpuctx->task_ctx;
b5ab4cd5 3434 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3435 if (ctx->nr_events != ctx->nr_active)
3436 rotate = 1;
3437 }
9717e6cd 3438
e050e3f0 3439 if (!rotate)
0f5a2601
PZ
3440 goto done;
3441
facc4307 3442 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3443 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3444
e050e3f0
SE
3445 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446 if (ctx)
3447 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3448
e050e3f0
SE
3449 rotate_ctx(&cpuctx->ctx);
3450 if (ctx)
3451 rotate_ctx(ctx);
235c7fc7 3452
e050e3f0 3453 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3454
0f5a2601
PZ
3455 perf_pmu_enable(cpuctx->ctx.pmu);
3456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3457done:
9e630205
SE
3458
3459 return rotate;
e9d2b064
PZ
3460}
3461
3462void perf_event_task_tick(void)
3463{
2fde4f94
MR
3464 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465 struct perf_event_context *ctx, *tmp;
e050e3f0 3466 int throttled;
b5ab4cd5 3467
e9d2b064
PZ
3468 WARN_ON(!irqs_disabled());
3469
e050e3f0
SE
3470 __this_cpu_inc(perf_throttled_seq);
3471 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3472 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3473
2fde4f94 3474 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3475 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3476}
3477
889ff015
FW
3478static int event_enable_on_exec(struct perf_event *event,
3479 struct perf_event_context *ctx)
3480{
3481 if (!event->attr.enable_on_exec)
3482 return 0;
3483
3484 event->attr.enable_on_exec = 0;
3485 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486 return 0;
3487
1d9b482e 3488 __perf_event_mark_enabled(event);
889ff015
FW
3489
3490 return 1;
3491}
3492
57e7986e 3493/*
cdd6c482 3494 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3495 * This expects task == current.
3496 */
c1274499 3497static void perf_event_enable_on_exec(int ctxn)
57e7986e 3498{
c1274499 3499 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3500 enum event_type_t event_type = 0;
3e349507 3501 struct perf_cpu_context *cpuctx;
cdd6c482 3502 struct perf_event *event;
57e7986e
PM
3503 unsigned long flags;
3504 int enabled = 0;
3505
3506 local_irq_save(flags);
c1274499 3507 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3508 if (!ctx || !ctx->nr_events)
57e7986e
PM
3509 goto out;
3510
3e349507
PZ
3511 cpuctx = __get_cpu_context(ctx);
3512 perf_ctx_lock(cpuctx, ctx);
7fce2509 3513 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3514 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3515 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3516 event_type |= get_event_type(event);
3517 }
57e7986e
PM
3518
3519 /*
3e349507 3520 * Unclone and reschedule this context if we enabled any event.
57e7986e 3521 */
3e349507 3522 if (enabled) {
211de6eb 3523 clone_ctx = unclone_ctx(ctx);
487f05e1 3524 ctx_resched(cpuctx, ctx, event_type);
3e349507
PZ
3525 }
3526 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3527
9ed6060d 3528out:
57e7986e 3529 local_irq_restore(flags);
211de6eb
PZ
3530
3531 if (clone_ctx)
3532 put_ctx(clone_ctx);
57e7986e
PM
3533}
3534
0492d4c5
PZ
3535struct perf_read_data {
3536 struct perf_event *event;
3537 bool group;
7d88962e 3538 int ret;
0492d4c5
PZ
3539};
3540
451d24d1 3541static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3542{
d6a2f903
DCC
3543 u16 local_pkg, event_pkg;
3544
3545 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3546 int local_cpu = smp_processor_id();
3547
3548 event_pkg = topology_physical_package_id(event_cpu);
3549 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3550
3551 if (event_pkg == local_pkg)
3552 return local_cpu;
3553 }
3554
3555 return event_cpu;
3556}
3557
0793a61d 3558/*
cdd6c482 3559 * Cross CPU call to read the hardware event
0793a61d 3560 */
cdd6c482 3561static void __perf_event_read(void *info)
0793a61d 3562{
0492d4c5
PZ
3563 struct perf_read_data *data = info;
3564 struct perf_event *sub, *event = data->event;
cdd6c482 3565 struct perf_event_context *ctx = event->ctx;
108b02cf 3566 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3567 struct pmu *pmu = event->pmu;
621a01ea 3568
e1ac3614
PM
3569 /*
3570 * If this is a task context, we need to check whether it is
3571 * the current task context of this cpu. If not it has been
3572 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3573 * event->count would have been updated to a recent sample
3574 * when the event was scheduled out.
e1ac3614
PM
3575 */
3576 if (ctx->task && cpuctx->task_ctx != ctx)
3577 return;
3578
e625cce1 3579 raw_spin_lock(&ctx->lock);
e5d1367f 3580 if (ctx->is_active) {
542e72fc 3581 update_context_time(ctx);
e5d1367f
SE
3582 update_cgrp_time_from_event(event);
3583 }
0492d4c5 3584
cdd6c482 3585 update_event_times(event);
4a00c16e
SB
3586 if (event->state != PERF_EVENT_STATE_ACTIVE)
3587 goto unlock;
0492d4c5 3588
4a00c16e
SB
3589 if (!data->group) {
3590 pmu->read(event);
3591 data->ret = 0;
0492d4c5 3592 goto unlock;
4a00c16e
SB
3593 }
3594
3595 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3596
3597 pmu->read(event);
0492d4c5
PZ
3598
3599 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3600 update_event_times(sub);
4a00c16e
SB
3601 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3602 /*
3603 * Use sibling's PMU rather than @event's since
3604 * sibling could be on different (eg: software) PMU.
3605 */
0492d4c5 3606 sub->pmu->read(sub);
4a00c16e 3607 }
0492d4c5 3608 }
4a00c16e
SB
3609
3610 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3611
3612unlock:
e625cce1 3613 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3614}
3615
b5e58793
PZ
3616static inline u64 perf_event_count(struct perf_event *event)
3617{
eacd3ecc
MF
3618 if (event->pmu->count)
3619 return event->pmu->count(event);
3620
3621 return __perf_event_count(event);
b5e58793
PZ
3622}
3623
ffe8690c
KX
3624/*
3625 * NMI-safe method to read a local event, that is an event that
3626 * is:
3627 * - either for the current task, or for this CPU
3628 * - does not have inherit set, for inherited task events
3629 * will not be local and we cannot read them atomically
3630 * - must not have a pmu::count method
3631 */
3632u64 perf_event_read_local(struct perf_event *event)
3633{
3634 unsigned long flags;
3635 u64 val;
3636
3637 /*
3638 * Disabling interrupts avoids all counter scheduling (context
3639 * switches, timer based rotation and IPIs).
3640 */
3641 local_irq_save(flags);
3642
3643 /* If this is a per-task event, it must be for current */
3644 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3645 event->hw.target != current);
3646
3647 /* If this is a per-CPU event, it must be for this CPU */
3648 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3649 event->cpu != smp_processor_id());
3650
3651 /*
3652 * It must not be an event with inherit set, we cannot read
3653 * all child counters from atomic context.
3654 */
3655 WARN_ON_ONCE(event->attr.inherit);
3656
3657 /*
3658 * It must not have a pmu::count method, those are not
3659 * NMI safe.
3660 */
3661 WARN_ON_ONCE(event->pmu->count);
3662
3663 /*
3664 * If the event is currently on this CPU, its either a per-task event,
3665 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3666 * oncpu == -1).
3667 */
3668 if (event->oncpu == smp_processor_id())
3669 event->pmu->read(event);
3670
3671 val = local64_read(&event->count);
3672 local_irq_restore(flags);
3673
3674 return val;
3675}
3676
7d88962e 3677static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3678{
451d24d1 3679 int event_cpu, ret = 0;
7d88962e 3680
0793a61d 3681 /*
cdd6c482
IM
3682 * If event is enabled and currently active on a CPU, update the
3683 * value in the event structure:
0793a61d 3684 */
cdd6c482 3685 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3686 struct perf_read_data data = {
3687 .event = event,
3688 .group = group,
7d88962e 3689 .ret = 0,
0492d4c5 3690 };
d6a2f903 3691
451d24d1
PZ
3692 event_cpu = READ_ONCE(event->oncpu);
3693 if ((unsigned)event_cpu >= nr_cpu_ids)
3694 return 0;
3695
3696 preempt_disable();
3697 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3698
58763148
PZ
3699 /*
3700 * Purposely ignore the smp_call_function_single() return
3701 * value.
3702 *
451d24d1 3703 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3704 * scheduled out and that will have updated the event count.
3705 *
3706 * Therefore, either way, we'll have an up-to-date event count
3707 * after this.
3708 */
451d24d1
PZ
3709 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3710 preempt_enable();
58763148 3711 ret = data.ret;
cdd6c482 3712 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3713 struct perf_event_context *ctx = event->ctx;
3714 unsigned long flags;
3715
e625cce1 3716 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3717 /*
3718 * may read while context is not active
3719 * (e.g., thread is blocked), in that case
3720 * we cannot update context time
3721 */
e5d1367f 3722 if (ctx->is_active) {
c530ccd9 3723 update_context_time(ctx);
e5d1367f
SE
3724 update_cgrp_time_from_event(event);
3725 }
0492d4c5
PZ
3726 if (group)
3727 update_group_times(event);
3728 else
3729 update_event_times(event);
e625cce1 3730 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3731 }
7d88962e
SB
3732
3733 return ret;
0793a61d
TG
3734}
3735
a63eaf34 3736/*
cdd6c482 3737 * Initialize the perf_event context in a task_struct:
a63eaf34 3738 */
eb184479 3739static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3740{
e625cce1 3741 raw_spin_lock_init(&ctx->lock);
a63eaf34 3742 mutex_init(&ctx->mutex);
2fde4f94 3743 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3744 INIT_LIST_HEAD(&ctx->pinned_groups);
3745 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3746 INIT_LIST_HEAD(&ctx->event_list);
3747 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3748}
3749
3750static struct perf_event_context *
3751alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3752{
3753 struct perf_event_context *ctx;
3754
3755 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3756 if (!ctx)
3757 return NULL;
3758
3759 __perf_event_init_context(ctx);
3760 if (task) {
3761 ctx->task = task;
3762 get_task_struct(task);
0793a61d 3763 }
eb184479
PZ
3764 ctx->pmu = pmu;
3765
3766 return ctx;
a63eaf34
PM
3767}
3768
2ebd4ffb
MH
3769static struct task_struct *
3770find_lively_task_by_vpid(pid_t vpid)
3771{
3772 struct task_struct *task;
0793a61d
TG
3773
3774 rcu_read_lock();
2ebd4ffb 3775 if (!vpid)
0793a61d
TG
3776 task = current;
3777 else
2ebd4ffb 3778 task = find_task_by_vpid(vpid);
0793a61d
TG
3779 if (task)
3780 get_task_struct(task);
3781 rcu_read_unlock();
3782
3783 if (!task)
3784 return ERR_PTR(-ESRCH);
3785
2ebd4ffb 3786 return task;
2ebd4ffb
MH
3787}
3788
fe4b04fa
PZ
3789/*
3790 * Returns a matching context with refcount and pincount.
3791 */
108b02cf 3792static struct perf_event_context *
4af57ef2
YZ
3793find_get_context(struct pmu *pmu, struct task_struct *task,
3794 struct perf_event *event)
0793a61d 3795{
211de6eb 3796 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3797 struct perf_cpu_context *cpuctx;
4af57ef2 3798 void *task_ctx_data = NULL;
25346b93 3799 unsigned long flags;
8dc85d54 3800 int ctxn, err;
4af57ef2 3801 int cpu = event->cpu;
0793a61d 3802
22a4ec72 3803 if (!task) {
cdd6c482 3804 /* Must be root to operate on a CPU event: */
0764771d 3805 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3806 return ERR_PTR(-EACCES);
3807
0793a61d 3808 /*
cdd6c482 3809 * We could be clever and allow to attach a event to an
0793a61d
TG
3810 * offline CPU and activate it when the CPU comes up, but
3811 * that's for later.
3812 */
f6325e30 3813 if (!cpu_online(cpu))
0793a61d
TG
3814 return ERR_PTR(-ENODEV);
3815
108b02cf 3816 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3817 ctx = &cpuctx->ctx;
c93f7669 3818 get_ctx(ctx);
fe4b04fa 3819 ++ctx->pin_count;
0793a61d 3820
0793a61d
TG
3821 return ctx;
3822 }
3823
8dc85d54
PZ
3824 err = -EINVAL;
3825 ctxn = pmu->task_ctx_nr;
3826 if (ctxn < 0)
3827 goto errout;
3828
4af57ef2
YZ
3829 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3830 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3831 if (!task_ctx_data) {
3832 err = -ENOMEM;
3833 goto errout;
3834 }
3835 }
3836
9ed6060d 3837retry:
8dc85d54 3838 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3839 if (ctx) {
211de6eb 3840 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3841 ++ctx->pin_count;
4af57ef2
YZ
3842
3843 if (task_ctx_data && !ctx->task_ctx_data) {
3844 ctx->task_ctx_data = task_ctx_data;
3845 task_ctx_data = NULL;
3846 }
e625cce1 3847 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3848
3849 if (clone_ctx)
3850 put_ctx(clone_ctx);
9137fb28 3851 } else {
eb184479 3852 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3853 err = -ENOMEM;
3854 if (!ctx)
3855 goto errout;
eb184479 3856
4af57ef2
YZ
3857 if (task_ctx_data) {
3858 ctx->task_ctx_data = task_ctx_data;
3859 task_ctx_data = NULL;
3860 }
3861
dbe08d82
ON
3862 err = 0;
3863 mutex_lock(&task->perf_event_mutex);
3864 /*
3865 * If it has already passed perf_event_exit_task().
3866 * we must see PF_EXITING, it takes this mutex too.
3867 */
3868 if (task->flags & PF_EXITING)
3869 err = -ESRCH;
3870 else if (task->perf_event_ctxp[ctxn])
3871 err = -EAGAIN;
fe4b04fa 3872 else {
9137fb28 3873 get_ctx(ctx);
fe4b04fa 3874 ++ctx->pin_count;
dbe08d82 3875 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3876 }
dbe08d82
ON
3877 mutex_unlock(&task->perf_event_mutex);
3878
3879 if (unlikely(err)) {
9137fb28 3880 put_ctx(ctx);
dbe08d82
ON
3881
3882 if (err == -EAGAIN)
3883 goto retry;
3884 goto errout;
a63eaf34
PM
3885 }
3886 }
3887
4af57ef2 3888 kfree(task_ctx_data);
0793a61d 3889 return ctx;
c93f7669 3890
9ed6060d 3891errout:
4af57ef2 3892 kfree(task_ctx_data);
c93f7669 3893 return ERR_PTR(err);
0793a61d
TG
3894}
3895
6fb2915d 3896static void perf_event_free_filter(struct perf_event *event);
2541517c 3897static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3898
cdd6c482 3899static void free_event_rcu(struct rcu_head *head)
592903cd 3900{
cdd6c482 3901 struct perf_event *event;
592903cd 3902
cdd6c482
IM
3903 event = container_of(head, struct perf_event, rcu_head);
3904 if (event->ns)
3905 put_pid_ns(event->ns);
6fb2915d 3906 perf_event_free_filter(event);
cdd6c482 3907 kfree(event);
592903cd
PZ
3908}
3909
b69cf536
PZ
3910static void ring_buffer_attach(struct perf_event *event,
3911 struct ring_buffer *rb);
925d519a 3912
f2fb6bef
KL
3913static void detach_sb_event(struct perf_event *event)
3914{
3915 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3916
3917 raw_spin_lock(&pel->lock);
3918 list_del_rcu(&event->sb_list);
3919 raw_spin_unlock(&pel->lock);
3920}
3921
a4f144eb 3922static bool is_sb_event(struct perf_event *event)
f2fb6bef 3923{
a4f144eb
DCC
3924 struct perf_event_attr *attr = &event->attr;
3925
f2fb6bef 3926 if (event->parent)
a4f144eb 3927 return false;
f2fb6bef
KL
3928
3929 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3930 return false;
f2fb6bef 3931
a4f144eb
DCC
3932 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3933 attr->comm || attr->comm_exec ||
3934 attr->task ||
3935 attr->context_switch)
3936 return true;
3937 return false;
3938}
3939
3940static void unaccount_pmu_sb_event(struct perf_event *event)
3941{
3942 if (is_sb_event(event))
3943 detach_sb_event(event);
f2fb6bef
KL
3944}
3945
4beb31f3 3946static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3947{
4beb31f3
FW
3948 if (event->parent)
3949 return;
3950
4beb31f3
FW
3951 if (is_cgroup_event(event))
3952 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3953}
925d519a 3954
555e0c1e
FW
3955#ifdef CONFIG_NO_HZ_FULL
3956static DEFINE_SPINLOCK(nr_freq_lock);
3957#endif
3958
3959static void unaccount_freq_event_nohz(void)
3960{
3961#ifdef CONFIG_NO_HZ_FULL
3962 spin_lock(&nr_freq_lock);
3963 if (atomic_dec_and_test(&nr_freq_events))
3964 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3965 spin_unlock(&nr_freq_lock);
3966#endif
3967}
3968
3969static void unaccount_freq_event(void)
3970{
3971 if (tick_nohz_full_enabled())
3972 unaccount_freq_event_nohz();
3973 else
3974 atomic_dec(&nr_freq_events);
3975}
3976
4beb31f3
FW
3977static void unaccount_event(struct perf_event *event)
3978{
25432ae9
PZ
3979 bool dec = false;
3980
4beb31f3
FW
3981 if (event->parent)
3982 return;
3983
3984 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3985 dec = true;
4beb31f3
FW
3986 if (event->attr.mmap || event->attr.mmap_data)
3987 atomic_dec(&nr_mmap_events);
3988 if (event->attr.comm)
3989 atomic_dec(&nr_comm_events);
3990 if (event->attr.task)
3991 atomic_dec(&nr_task_events);
948b26b6 3992 if (event->attr.freq)
555e0c1e 3993 unaccount_freq_event();
45ac1403 3994 if (event->attr.context_switch) {
25432ae9 3995 dec = true;
45ac1403
AH
3996 atomic_dec(&nr_switch_events);
3997 }
4beb31f3 3998 if (is_cgroup_event(event))
25432ae9 3999 dec = true;
4beb31f3 4000 if (has_branch_stack(event))
25432ae9
PZ
4001 dec = true;
4002
9107c89e
PZ
4003 if (dec) {
4004 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4005 schedule_delayed_work(&perf_sched_work, HZ);
4006 }
4beb31f3
FW
4007
4008 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4009
4010 unaccount_pmu_sb_event(event);
4beb31f3 4011}
925d519a 4012
9107c89e
PZ
4013static void perf_sched_delayed(struct work_struct *work)
4014{
4015 mutex_lock(&perf_sched_mutex);
4016 if (atomic_dec_and_test(&perf_sched_count))
4017 static_branch_disable(&perf_sched_events);
4018 mutex_unlock(&perf_sched_mutex);
4019}
4020
bed5b25a
AS
4021/*
4022 * The following implement mutual exclusion of events on "exclusive" pmus
4023 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4024 * at a time, so we disallow creating events that might conflict, namely:
4025 *
4026 * 1) cpu-wide events in the presence of per-task events,
4027 * 2) per-task events in the presence of cpu-wide events,
4028 * 3) two matching events on the same context.
4029 *
4030 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4031 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4032 */
4033static int exclusive_event_init(struct perf_event *event)
4034{
4035 struct pmu *pmu = event->pmu;
4036
4037 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4038 return 0;
4039
4040 /*
4041 * Prevent co-existence of per-task and cpu-wide events on the
4042 * same exclusive pmu.
4043 *
4044 * Negative pmu::exclusive_cnt means there are cpu-wide
4045 * events on this "exclusive" pmu, positive means there are
4046 * per-task events.
4047 *
4048 * Since this is called in perf_event_alloc() path, event::ctx
4049 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4050 * to mean "per-task event", because unlike other attach states it
4051 * never gets cleared.
4052 */
4053 if (event->attach_state & PERF_ATTACH_TASK) {
4054 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4055 return -EBUSY;
4056 } else {
4057 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4058 return -EBUSY;
4059 }
4060
4061 return 0;
4062}
4063
4064static void exclusive_event_destroy(struct perf_event *event)
4065{
4066 struct pmu *pmu = event->pmu;
4067
4068 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4069 return;
4070
4071 /* see comment in exclusive_event_init() */
4072 if (event->attach_state & PERF_ATTACH_TASK)
4073 atomic_dec(&pmu->exclusive_cnt);
4074 else
4075 atomic_inc(&pmu->exclusive_cnt);
4076}
4077
4078static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4079{
3bf6215a 4080 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4081 (e1->cpu == e2->cpu ||
4082 e1->cpu == -1 ||
4083 e2->cpu == -1))
4084 return true;
4085 return false;
4086}
4087
4088/* Called under the same ctx::mutex as perf_install_in_context() */
4089static bool exclusive_event_installable(struct perf_event *event,
4090 struct perf_event_context *ctx)
4091{
4092 struct perf_event *iter_event;
4093 struct pmu *pmu = event->pmu;
4094
4095 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4096 return true;
4097
4098 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4099 if (exclusive_event_match(iter_event, event))
4100 return false;
4101 }
4102
4103 return true;
4104}
4105
375637bc
AS
4106static void perf_addr_filters_splice(struct perf_event *event,
4107 struct list_head *head);
4108
683ede43 4109static void _free_event(struct perf_event *event)
f1600952 4110{
e360adbe 4111 irq_work_sync(&event->pending);
925d519a 4112
4beb31f3 4113 unaccount_event(event);
9ee318a7 4114
76369139 4115 if (event->rb) {
9bb5d40c
PZ
4116 /*
4117 * Can happen when we close an event with re-directed output.
4118 *
4119 * Since we have a 0 refcount, perf_mmap_close() will skip
4120 * over us; possibly making our ring_buffer_put() the last.
4121 */
4122 mutex_lock(&event->mmap_mutex);
b69cf536 4123 ring_buffer_attach(event, NULL);
9bb5d40c 4124 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4125 }
4126
e5d1367f
SE
4127 if (is_cgroup_event(event))
4128 perf_detach_cgroup(event);
4129
a0733e69
PZ
4130 if (!event->parent) {
4131 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4132 put_callchain_buffers();
4133 }
4134
4135 perf_event_free_bpf_prog(event);
375637bc
AS
4136 perf_addr_filters_splice(event, NULL);
4137 kfree(event->addr_filters_offs);
a0733e69
PZ
4138
4139 if (event->destroy)
4140 event->destroy(event);
4141
4142 if (event->ctx)
4143 put_ctx(event->ctx);
4144
62a92c8f
AS
4145 exclusive_event_destroy(event);
4146 module_put(event->pmu->module);
a0733e69
PZ
4147
4148 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4149}
4150
683ede43
PZ
4151/*
4152 * Used to free events which have a known refcount of 1, such as in error paths
4153 * where the event isn't exposed yet and inherited events.
4154 */
4155static void free_event(struct perf_event *event)
0793a61d 4156{
683ede43
PZ
4157 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4158 "unexpected event refcount: %ld; ptr=%p\n",
4159 atomic_long_read(&event->refcount), event)) {
4160 /* leak to avoid use-after-free */
4161 return;
4162 }
0793a61d 4163
683ede43 4164 _free_event(event);
0793a61d
TG
4165}
4166
a66a3052 4167/*
f8697762 4168 * Remove user event from the owner task.
a66a3052 4169 */
f8697762 4170static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4171{
8882135b 4172 struct task_struct *owner;
fb0459d7 4173
8882135b 4174 rcu_read_lock();
8882135b 4175 /*
f47c02c0
PZ
4176 * Matches the smp_store_release() in perf_event_exit_task(). If we
4177 * observe !owner it means the list deletion is complete and we can
4178 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4179 * owner->perf_event_mutex.
4180 */
f47c02c0 4181 owner = lockless_dereference(event->owner);
8882135b
PZ
4182 if (owner) {
4183 /*
4184 * Since delayed_put_task_struct() also drops the last
4185 * task reference we can safely take a new reference
4186 * while holding the rcu_read_lock().
4187 */
4188 get_task_struct(owner);
4189 }
4190 rcu_read_unlock();
4191
4192 if (owner) {
f63a8daa
PZ
4193 /*
4194 * If we're here through perf_event_exit_task() we're already
4195 * holding ctx->mutex which would be an inversion wrt. the
4196 * normal lock order.
4197 *
4198 * However we can safely take this lock because its the child
4199 * ctx->mutex.
4200 */
4201 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4202
8882135b
PZ
4203 /*
4204 * We have to re-check the event->owner field, if it is cleared
4205 * we raced with perf_event_exit_task(), acquiring the mutex
4206 * ensured they're done, and we can proceed with freeing the
4207 * event.
4208 */
f47c02c0 4209 if (event->owner) {
8882135b 4210 list_del_init(&event->owner_entry);
f47c02c0
PZ
4211 smp_store_release(&event->owner, NULL);
4212 }
8882135b
PZ
4213 mutex_unlock(&owner->perf_event_mutex);
4214 put_task_struct(owner);
4215 }
f8697762
JO
4216}
4217
f8697762
JO
4218static void put_event(struct perf_event *event)
4219{
f8697762
JO
4220 if (!atomic_long_dec_and_test(&event->refcount))
4221 return;
4222
c6e5b732
PZ
4223 _free_event(event);
4224}
4225
4226/*
4227 * Kill an event dead; while event:refcount will preserve the event
4228 * object, it will not preserve its functionality. Once the last 'user'
4229 * gives up the object, we'll destroy the thing.
4230 */
4231int perf_event_release_kernel(struct perf_event *event)
4232{
a4f4bb6d 4233 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4234 struct perf_event *child, *tmp;
4235
a4f4bb6d
PZ
4236 /*
4237 * If we got here through err_file: fput(event_file); we will not have
4238 * attached to a context yet.
4239 */
4240 if (!ctx) {
4241 WARN_ON_ONCE(event->attach_state &
4242 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4243 goto no_ctx;
4244 }
4245
f8697762
JO
4246 if (!is_kernel_event(event))
4247 perf_remove_from_owner(event);
8882135b 4248
5fa7c8ec 4249 ctx = perf_event_ctx_lock(event);
a83fe28e 4250 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4251 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4252
a69b0ca4 4253 raw_spin_lock_irq(&ctx->lock);
683ede43 4254 /*
a69b0ca4
PZ
4255 * Mark this even as STATE_DEAD, there is no external reference to it
4256 * anymore.
683ede43 4257 *
a69b0ca4
PZ
4258 * Anybody acquiring event->child_mutex after the below loop _must_
4259 * also see this, most importantly inherit_event() which will avoid
4260 * placing more children on the list.
683ede43 4261 *
c6e5b732
PZ
4262 * Thus this guarantees that we will in fact observe and kill _ALL_
4263 * child events.
683ede43 4264 */
a69b0ca4
PZ
4265 event->state = PERF_EVENT_STATE_DEAD;
4266 raw_spin_unlock_irq(&ctx->lock);
4267
4268 perf_event_ctx_unlock(event, ctx);
683ede43 4269
c6e5b732
PZ
4270again:
4271 mutex_lock(&event->child_mutex);
4272 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4273
c6e5b732
PZ
4274 /*
4275 * Cannot change, child events are not migrated, see the
4276 * comment with perf_event_ctx_lock_nested().
4277 */
4278 ctx = lockless_dereference(child->ctx);
4279 /*
4280 * Since child_mutex nests inside ctx::mutex, we must jump
4281 * through hoops. We start by grabbing a reference on the ctx.
4282 *
4283 * Since the event cannot get freed while we hold the
4284 * child_mutex, the context must also exist and have a !0
4285 * reference count.
4286 */
4287 get_ctx(ctx);
4288
4289 /*
4290 * Now that we have a ctx ref, we can drop child_mutex, and
4291 * acquire ctx::mutex without fear of it going away. Then we
4292 * can re-acquire child_mutex.
4293 */
4294 mutex_unlock(&event->child_mutex);
4295 mutex_lock(&ctx->mutex);
4296 mutex_lock(&event->child_mutex);
4297
4298 /*
4299 * Now that we hold ctx::mutex and child_mutex, revalidate our
4300 * state, if child is still the first entry, it didn't get freed
4301 * and we can continue doing so.
4302 */
4303 tmp = list_first_entry_or_null(&event->child_list,
4304 struct perf_event, child_list);
4305 if (tmp == child) {
4306 perf_remove_from_context(child, DETACH_GROUP);
4307 list_del(&child->child_list);
4308 free_event(child);
4309 /*
4310 * This matches the refcount bump in inherit_event();
4311 * this can't be the last reference.
4312 */
4313 put_event(event);
4314 }
4315
4316 mutex_unlock(&event->child_mutex);
4317 mutex_unlock(&ctx->mutex);
4318 put_ctx(ctx);
4319 goto again;
4320 }
4321 mutex_unlock(&event->child_mutex);
4322
a4f4bb6d
PZ
4323no_ctx:
4324 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4325 return 0;
4326}
4327EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4328
8b10c5e2
PZ
4329/*
4330 * Called when the last reference to the file is gone.
4331 */
a6fa941d
AV
4332static int perf_release(struct inode *inode, struct file *file)
4333{
c6e5b732 4334 perf_event_release_kernel(file->private_data);
a6fa941d 4335 return 0;
fb0459d7 4336}
fb0459d7 4337
59ed446f 4338u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4339{
cdd6c482 4340 struct perf_event *child;
e53c0994
PZ
4341 u64 total = 0;
4342
59ed446f
PZ
4343 *enabled = 0;
4344 *running = 0;
4345
6f10581a 4346 mutex_lock(&event->child_mutex);
01add3ea 4347
7d88962e 4348 (void)perf_event_read(event, false);
01add3ea
SB
4349 total += perf_event_count(event);
4350
59ed446f
PZ
4351 *enabled += event->total_time_enabled +
4352 atomic64_read(&event->child_total_time_enabled);
4353 *running += event->total_time_running +
4354 atomic64_read(&event->child_total_time_running);
4355
4356 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4357 (void)perf_event_read(child, false);
01add3ea 4358 total += perf_event_count(child);
59ed446f
PZ
4359 *enabled += child->total_time_enabled;
4360 *running += child->total_time_running;
4361 }
6f10581a 4362 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4363
4364 return total;
4365}
fb0459d7 4366EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4367
7d88962e 4368static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4369 u64 read_format, u64 *values)
3dab77fb 4370{
fa8c2693
PZ
4371 struct perf_event *sub;
4372 int n = 1; /* skip @nr */
7d88962e 4373 int ret;
f63a8daa 4374
7d88962e
SB
4375 ret = perf_event_read(leader, true);
4376 if (ret)
4377 return ret;
abf4868b 4378
fa8c2693
PZ
4379 /*
4380 * Since we co-schedule groups, {enabled,running} times of siblings
4381 * will be identical to those of the leader, so we only publish one
4382 * set.
4383 */
4384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4385 values[n++] += leader->total_time_enabled +
4386 atomic64_read(&leader->child_total_time_enabled);
4387 }
3dab77fb 4388
fa8c2693
PZ
4389 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4390 values[n++] += leader->total_time_running +
4391 atomic64_read(&leader->child_total_time_running);
4392 }
4393
4394 /*
4395 * Write {count,id} tuples for every sibling.
4396 */
4397 values[n++] += perf_event_count(leader);
abf4868b
PZ
4398 if (read_format & PERF_FORMAT_ID)
4399 values[n++] = primary_event_id(leader);
3dab77fb 4400
fa8c2693
PZ
4401 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4402 values[n++] += perf_event_count(sub);
4403 if (read_format & PERF_FORMAT_ID)
4404 values[n++] = primary_event_id(sub);
4405 }
7d88962e
SB
4406
4407 return 0;
fa8c2693 4408}
3dab77fb 4409
fa8c2693
PZ
4410static int perf_read_group(struct perf_event *event,
4411 u64 read_format, char __user *buf)
4412{
4413 struct perf_event *leader = event->group_leader, *child;
4414 struct perf_event_context *ctx = leader->ctx;
7d88962e 4415 int ret;
fa8c2693 4416 u64 *values;
3dab77fb 4417
fa8c2693 4418 lockdep_assert_held(&ctx->mutex);
3dab77fb 4419
fa8c2693
PZ
4420 values = kzalloc(event->read_size, GFP_KERNEL);
4421 if (!values)
4422 return -ENOMEM;
3dab77fb 4423
fa8c2693
PZ
4424 values[0] = 1 + leader->nr_siblings;
4425
4426 /*
4427 * By locking the child_mutex of the leader we effectively
4428 * lock the child list of all siblings.. XXX explain how.
4429 */
4430 mutex_lock(&leader->child_mutex);
abf4868b 4431
7d88962e
SB
4432 ret = __perf_read_group_add(leader, read_format, values);
4433 if (ret)
4434 goto unlock;
4435
4436 list_for_each_entry(child, &leader->child_list, child_list) {
4437 ret = __perf_read_group_add(child, read_format, values);
4438 if (ret)
4439 goto unlock;
4440 }
abf4868b 4441
fa8c2693 4442 mutex_unlock(&leader->child_mutex);
abf4868b 4443
7d88962e 4444 ret = event->read_size;
fa8c2693
PZ
4445 if (copy_to_user(buf, values, event->read_size))
4446 ret = -EFAULT;
7d88962e 4447 goto out;
fa8c2693 4448
7d88962e
SB
4449unlock:
4450 mutex_unlock(&leader->child_mutex);
4451out:
fa8c2693 4452 kfree(values);
abf4868b 4453 return ret;
3dab77fb
PZ
4454}
4455
b15f495b 4456static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4457 u64 read_format, char __user *buf)
4458{
59ed446f 4459 u64 enabled, running;
3dab77fb
PZ
4460 u64 values[4];
4461 int n = 0;
4462
59ed446f
PZ
4463 values[n++] = perf_event_read_value(event, &enabled, &running);
4464 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4465 values[n++] = enabled;
4466 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4467 values[n++] = running;
3dab77fb 4468 if (read_format & PERF_FORMAT_ID)
cdd6c482 4469 values[n++] = primary_event_id(event);
3dab77fb
PZ
4470
4471 if (copy_to_user(buf, values, n * sizeof(u64)))
4472 return -EFAULT;
4473
4474 return n * sizeof(u64);
4475}
4476
dc633982
JO
4477static bool is_event_hup(struct perf_event *event)
4478{
4479 bool no_children;
4480
a69b0ca4 4481 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4482 return false;
4483
4484 mutex_lock(&event->child_mutex);
4485 no_children = list_empty(&event->child_list);
4486 mutex_unlock(&event->child_mutex);
4487 return no_children;
4488}
4489
0793a61d 4490/*
cdd6c482 4491 * Read the performance event - simple non blocking version for now
0793a61d
TG
4492 */
4493static ssize_t
b15f495b 4494__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4495{
cdd6c482 4496 u64 read_format = event->attr.read_format;
3dab77fb 4497 int ret;
0793a61d 4498
3b6f9e5c 4499 /*
cdd6c482 4500 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4501 * error state (i.e. because it was pinned but it couldn't be
4502 * scheduled on to the CPU at some point).
4503 */
cdd6c482 4504 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4505 return 0;
4506
c320c7b7 4507 if (count < event->read_size)
3dab77fb
PZ
4508 return -ENOSPC;
4509
cdd6c482 4510 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4511 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4512 ret = perf_read_group(event, read_format, buf);
3dab77fb 4513 else
b15f495b 4514 ret = perf_read_one(event, read_format, buf);
0793a61d 4515
3dab77fb 4516 return ret;
0793a61d
TG
4517}
4518
0793a61d
TG
4519static ssize_t
4520perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4521{
cdd6c482 4522 struct perf_event *event = file->private_data;
f63a8daa
PZ
4523 struct perf_event_context *ctx;
4524 int ret;
0793a61d 4525
f63a8daa 4526 ctx = perf_event_ctx_lock(event);
b15f495b 4527 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4528 perf_event_ctx_unlock(event, ctx);
4529
4530 return ret;
0793a61d
TG
4531}
4532
4533static unsigned int perf_poll(struct file *file, poll_table *wait)
4534{
cdd6c482 4535 struct perf_event *event = file->private_data;
76369139 4536 struct ring_buffer *rb;
61b67684 4537 unsigned int events = POLLHUP;
c7138f37 4538
e708d7ad 4539 poll_wait(file, &event->waitq, wait);
179033b3 4540
dc633982 4541 if (is_event_hup(event))
179033b3 4542 return events;
c7138f37 4543
10c6db11 4544 /*
9bb5d40c
PZ
4545 * Pin the event->rb by taking event->mmap_mutex; otherwise
4546 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4547 */
4548 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4549 rb = event->rb;
4550 if (rb)
76369139 4551 events = atomic_xchg(&rb->poll, 0);
10c6db11 4552 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4553 return events;
4554}
4555
f63a8daa 4556static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4557{
7d88962e 4558 (void)perf_event_read(event, false);
e7850595 4559 local64_set(&event->count, 0);
cdd6c482 4560 perf_event_update_userpage(event);
3df5edad
PZ
4561}
4562
c93f7669 4563/*
cdd6c482
IM
4564 * Holding the top-level event's child_mutex means that any
4565 * descendant process that has inherited this event will block
8ba289b8 4566 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4567 * task existence requirements of perf_event_enable/disable.
c93f7669 4568 */
cdd6c482
IM
4569static void perf_event_for_each_child(struct perf_event *event,
4570 void (*func)(struct perf_event *))
3df5edad 4571{
cdd6c482 4572 struct perf_event *child;
3df5edad 4573
cdd6c482 4574 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4575
cdd6c482
IM
4576 mutex_lock(&event->child_mutex);
4577 func(event);
4578 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4579 func(child);
cdd6c482 4580 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4581}
4582
cdd6c482
IM
4583static void perf_event_for_each(struct perf_event *event,
4584 void (*func)(struct perf_event *))
3df5edad 4585{
cdd6c482
IM
4586 struct perf_event_context *ctx = event->ctx;
4587 struct perf_event *sibling;
3df5edad 4588
f63a8daa
PZ
4589 lockdep_assert_held(&ctx->mutex);
4590
cdd6c482 4591 event = event->group_leader;
75f937f2 4592
cdd6c482 4593 perf_event_for_each_child(event, func);
cdd6c482 4594 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4595 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4596}
4597
fae3fde6
PZ
4598static void __perf_event_period(struct perf_event *event,
4599 struct perf_cpu_context *cpuctx,
4600 struct perf_event_context *ctx,
4601 void *info)
c7999c6f 4602{
fae3fde6 4603 u64 value = *((u64 *)info);
c7999c6f 4604 bool active;
08247e31 4605
cdd6c482 4606 if (event->attr.freq) {
cdd6c482 4607 event->attr.sample_freq = value;
08247e31 4608 } else {
cdd6c482
IM
4609 event->attr.sample_period = value;
4610 event->hw.sample_period = value;
08247e31 4611 }
bad7192b
PZ
4612
4613 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4614 if (active) {
4615 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4616 /*
4617 * We could be throttled; unthrottle now to avoid the tick
4618 * trying to unthrottle while we already re-started the event.
4619 */
4620 if (event->hw.interrupts == MAX_INTERRUPTS) {
4621 event->hw.interrupts = 0;
4622 perf_log_throttle(event, 1);
4623 }
bad7192b
PZ
4624 event->pmu->stop(event, PERF_EF_UPDATE);
4625 }
4626
4627 local64_set(&event->hw.period_left, 0);
4628
4629 if (active) {
4630 event->pmu->start(event, PERF_EF_RELOAD);
4631 perf_pmu_enable(ctx->pmu);
4632 }
c7999c6f
PZ
4633}
4634
4635static int perf_event_period(struct perf_event *event, u64 __user *arg)
4636{
c7999c6f
PZ
4637 u64 value;
4638
4639 if (!is_sampling_event(event))
4640 return -EINVAL;
4641
4642 if (copy_from_user(&value, arg, sizeof(value)))
4643 return -EFAULT;
4644
4645 if (!value)
4646 return -EINVAL;
4647
4648 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4649 return -EINVAL;
4650
fae3fde6 4651 event_function_call(event, __perf_event_period, &value);
08247e31 4652
c7999c6f 4653 return 0;
08247e31
PZ
4654}
4655
ac9721f3
PZ
4656static const struct file_operations perf_fops;
4657
2903ff01 4658static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4659{
2903ff01
AV
4660 struct fd f = fdget(fd);
4661 if (!f.file)
4662 return -EBADF;
ac9721f3 4663
2903ff01
AV
4664 if (f.file->f_op != &perf_fops) {
4665 fdput(f);
4666 return -EBADF;
ac9721f3 4667 }
2903ff01
AV
4668 *p = f;
4669 return 0;
ac9721f3
PZ
4670}
4671
4672static int perf_event_set_output(struct perf_event *event,
4673 struct perf_event *output_event);
6fb2915d 4674static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4675static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4676
f63a8daa 4677static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4678{
cdd6c482 4679 void (*func)(struct perf_event *);
3df5edad 4680 u32 flags = arg;
d859e29f
PM
4681
4682 switch (cmd) {
cdd6c482 4683 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4684 func = _perf_event_enable;
d859e29f 4685 break;
cdd6c482 4686 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4687 func = _perf_event_disable;
79f14641 4688 break;
cdd6c482 4689 case PERF_EVENT_IOC_RESET:
f63a8daa 4690 func = _perf_event_reset;
6de6a7b9 4691 break;
3df5edad 4692
cdd6c482 4693 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4694 return _perf_event_refresh(event, arg);
08247e31 4695
cdd6c482
IM
4696 case PERF_EVENT_IOC_PERIOD:
4697 return perf_event_period(event, (u64 __user *)arg);
08247e31 4698
cf4957f1
JO
4699 case PERF_EVENT_IOC_ID:
4700 {
4701 u64 id = primary_event_id(event);
4702
4703 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4704 return -EFAULT;
4705 return 0;
4706 }
4707
cdd6c482 4708 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4709 {
ac9721f3 4710 int ret;
ac9721f3 4711 if (arg != -1) {
2903ff01
AV
4712 struct perf_event *output_event;
4713 struct fd output;
4714 ret = perf_fget_light(arg, &output);
4715 if (ret)
4716 return ret;
4717 output_event = output.file->private_data;
4718 ret = perf_event_set_output(event, output_event);
4719 fdput(output);
4720 } else {
4721 ret = perf_event_set_output(event, NULL);
ac9721f3 4722 }
ac9721f3
PZ
4723 return ret;
4724 }
a4be7c27 4725
6fb2915d
LZ
4726 case PERF_EVENT_IOC_SET_FILTER:
4727 return perf_event_set_filter(event, (void __user *)arg);
4728
2541517c
AS
4729 case PERF_EVENT_IOC_SET_BPF:
4730 return perf_event_set_bpf_prog(event, arg);
4731
86e7972f
WN
4732 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4733 struct ring_buffer *rb;
4734
4735 rcu_read_lock();
4736 rb = rcu_dereference(event->rb);
4737 if (!rb || !rb->nr_pages) {
4738 rcu_read_unlock();
4739 return -EINVAL;
4740 }
4741 rb_toggle_paused(rb, !!arg);
4742 rcu_read_unlock();
4743 return 0;
4744 }
d859e29f 4745 default:
3df5edad 4746 return -ENOTTY;
d859e29f 4747 }
3df5edad
PZ
4748
4749 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4750 perf_event_for_each(event, func);
3df5edad 4751 else
cdd6c482 4752 perf_event_for_each_child(event, func);
3df5edad
PZ
4753
4754 return 0;
d859e29f
PM
4755}
4756
f63a8daa
PZ
4757static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4758{
4759 struct perf_event *event = file->private_data;
4760 struct perf_event_context *ctx;
4761 long ret;
4762
4763 ctx = perf_event_ctx_lock(event);
4764 ret = _perf_ioctl(event, cmd, arg);
4765 perf_event_ctx_unlock(event, ctx);
4766
4767 return ret;
4768}
4769
b3f20785
PM
4770#ifdef CONFIG_COMPAT
4771static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4772 unsigned long arg)
4773{
4774 switch (_IOC_NR(cmd)) {
4775 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4776 case _IOC_NR(PERF_EVENT_IOC_ID):
4777 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4778 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4779 cmd &= ~IOCSIZE_MASK;
4780 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4781 }
4782 break;
4783 }
4784 return perf_ioctl(file, cmd, arg);
4785}
4786#else
4787# define perf_compat_ioctl NULL
4788#endif
4789
cdd6c482 4790int perf_event_task_enable(void)
771d7cde 4791{
f63a8daa 4792 struct perf_event_context *ctx;
cdd6c482 4793 struct perf_event *event;
771d7cde 4794
cdd6c482 4795 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4796 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4797 ctx = perf_event_ctx_lock(event);
4798 perf_event_for_each_child(event, _perf_event_enable);
4799 perf_event_ctx_unlock(event, ctx);
4800 }
cdd6c482 4801 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4802
4803 return 0;
4804}
4805
cdd6c482 4806int perf_event_task_disable(void)
771d7cde 4807{
f63a8daa 4808 struct perf_event_context *ctx;
cdd6c482 4809 struct perf_event *event;
771d7cde 4810
cdd6c482 4811 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4812 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4813 ctx = perf_event_ctx_lock(event);
4814 perf_event_for_each_child(event, _perf_event_disable);
4815 perf_event_ctx_unlock(event, ctx);
4816 }
cdd6c482 4817 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4818
4819 return 0;
4820}
4821
cdd6c482 4822static int perf_event_index(struct perf_event *event)
194002b2 4823{
a4eaf7f1
PZ
4824 if (event->hw.state & PERF_HES_STOPPED)
4825 return 0;
4826
cdd6c482 4827 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4828 return 0;
4829
35edc2a5 4830 return event->pmu->event_idx(event);
194002b2
PZ
4831}
4832
c4794295 4833static void calc_timer_values(struct perf_event *event,
e3f3541c 4834 u64 *now,
7f310a5d
EM
4835 u64 *enabled,
4836 u64 *running)
c4794295 4837{
e3f3541c 4838 u64 ctx_time;
c4794295 4839
e3f3541c
PZ
4840 *now = perf_clock();
4841 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4842 *enabled = ctx_time - event->tstamp_enabled;
4843 *running = ctx_time - event->tstamp_running;
4844}
4845
fa731587
PZ
4846static void perf_event_init_userpage(struct perf_event *event)
4847{
4848 struct perf_event_mmap_page *userpg;
4849 struct ring_buffer *rb;
4850
4851 rcu_read_lock();
4852 rb = rcu_dereference(event->rb);
4853 if (!rb)
4854 goto unlock;
4855
4856 userpg = rb->user_page;
4857
4858 /* Allow new userspace to detect that bit 0 is deprecated */
4859 userpg->cap_bit0_is_deprecated = 1;
4860 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4861 userpg->data_offset = PAGE_SIZE;
4862 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4863
4864unlock:
4865 rcu_read_unlock();
4866}
4867
c1317ec2
AL
4868void __weak arch_perf_update_userpage(
4869 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4870{
4871}
4872
38ff667b
PZ
4873/*
4874 * Callers need to ensure there can be no nesting of this function, otherwise
4875 * the seqlock logic goes bad. We can not serialize this because the arch
4876 * code calls this from NMI context.
4877 */
cdd6c482 4878void perf_event_update_userpage(struct perf_event *event)
37d81828 4879{
cdd6c482 4880 struct perf_event_mmap_page *userpg;
76369139 4881 struct ring_buffer *rb;
e3f3541c 4882 u64 enabled, running, now;
38ff667b
PZ
4883
4884 rcu_read_lock();
5ec4c599
PZ
4885 rb = rcu_dereference(event->rb);
4886 if (!rb)
4887 goto unlock;
4888
0d641208
EM
4889 /*
4890 * compute total_time_enabled, total_time_running
4891 * based on snapshot values taken when the event
4892 * was last scheduled in.
4893 *
4894 * we cannot simply called update_context_time()
4895 * because of locking issue as we can be called in
4896 * NMI context
4897 */
e3f3541c 4898 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4899
76369139 4900 userpg = rb->user_page;
7b732a75
PZ
4901 /*
4902 * Disable preemption so as to not let the corresponding user-space
4903 * spin too long if we get preempted.
4904 */
4905 preempt_disable();
37d81828 4906 ++userpg->lock;
92f22a38 4907 barrier();
cdd6c482 4908 userpg->index = perf_event_index(event);
b5e58793 4909 userpg->offset = perf_event_count(event);
365a4038 4910 if (userpg->index)
e7850595 4911 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4912
0d641208 4913 userpg->time_enabled = enabled +
cdd6c482 4914 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4915
0d641208 4916 userpg->time_running = running +
cdd6c482 4917 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4918
c1317ec2 4919 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4920
92f22a38 4921 barrier();
37d81828 4922 ++userpg->lock;
7b732a75 4923 preempt_enable();
38ff667b 4924unlock:
7b732a75 4925 rcu_read_unlock();
37d81828
PM
4926}
4927
11bac800 4928static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4929{
11bac800 4930 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4931 struct ring_buffer *rb;
906010b2
PZ
4932 int ret = VM_FAULT_SIGBUS;
4933
4934 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4935 if (vmf->pgoff == 0)
4936 ret = 0;
4937 return ret;
4938 }
4939
4940 rcu_read_lock();
76369139
FW
4941 rb = rcu_dereference(event->rb);
4942 if (!rb)
906010b2
PZ
4943 goto unlock;
4944
4945 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4946 goto unlock;
4947
76369139 4948 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4949 if (!vmf->page)
4950 goto unlock;
4951
4952 get_page(vmf->page);
11bac800 4953 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4954 vmf->page->index = vmf->pgoff;
4955
4956 ret = 0;
4957unlock:
4958 rcu_read_unlock();
4959
4960 return ret;
4961}
4962
10c6db11
PZ
4963static void ring_buffer_attach(struct perf_event *event,
4964 struct ring_buffer *rb)
4965{
b69cf536 4966 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4967 unsigned long flags;
4968
b69cf536
PZ
4969 if (event->rb) {
4970 /*
4971 * Should be impossible, we set this when removing
4972 * event->rb_entry and wait/clear when adding event->rb_entry.
4973 */
4974 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4975
b69cf536 4976 old_rb = event->rb;
b69cf536
PZ
4977 spin_lock_irqsave(&old_rb->event_lock, flags);
4978 list_del_rcu(&event->rb_entry);
4979 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4980
2f993cf0
ON
4981 event->rcu_batches = get_state_synchronize_rcu();
4982 event->rcu_pending = 1;
b69cf536 4983 }
10c6db11 4984
b69cf536 4985 if (rb) {
2f993cf0
ON
4986 if (event->rcu_pending) {
4987 cond_synchronize_rcu(event->rcu_batches);
4988 event->rcu_pending = 0;
4989 }
4990
b69cf536
PZ
4991 spin_lock_irqsave(&rb->event_lock, flags);
4992 list_add_rcu(&event->rb_entry, &rb->event_list);
4993 spin_unlock_irqrestore(&rb->event_lock, flags);
4994 }
4995
767ae086
AS
4996 /*
4997 * Avoid racing with perf_mmap_close(AUX): stop the event
4998 * before swizzling the event::rb pointer; if it's getting
4999 * unmapped, its aux_mmap_count will be 0 and it won't
5000 * restart. See the comment in __perf_pmu_output_stop().
5001 *
5002 * Data will inevitably be lost when set_output is done in
5003 * mid-air, but then again, whoever does it like this is
5004 * not in for the data anyway.
5005 */
5006 if (has_aux(event))
5007 perf_event_stop(event, 0);
5008
b69cf536
PZ
5009 rcu_assign_pointer(event->rb, rb);
5010
5011 if (old_rb) {
5012 ring_buffer_put(old_rb);
5013 /*
5014 * Since we detached before setting the new rb, so that we
5015 * could attach the new rb, we could have missed a wakeup.
5016 * Provide it now.
5017 */
5018 wake_up_all(&event->waitq);
5019 }
10c6db11
PZ
5020}
5021
5022static void ring_buffer_wakeup(struct perf_event *event)
5023{
5024 struct ring_buffer *rb;
5025
5026 rcu_read_lock();
5027 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5028 if (rb) {
5029 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5030 wake_up_all(&event->waitq);
5031 }
10c6db11
PZ
5032 rcu_read_unlock();
5033}
5034
fdc26706 5035struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5036{
76369139 5037 struct ring_buffer *rb;
7b732a75 5038
ac9721f3 5039 rcu_read_lock();
76369139
FW
5040 rb = rcu_dereference(event->rb);
5041 if (rb) {
5042 if (!atomic_inc_not_zero(&rb->refcount))
5043 rb = NULL;
ac9721f3
PZ
5044 }
5045 rcu_read_unlock();
5046
76369139 5047 return rb;
ac9721f3
PZ
5048}
5049
fdc26706 5050void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5051{
76369139 5052 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5053 return;
7b732a75 5054
9bb5d40c 5055 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5056
76369139 5057 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5058}
5059
5060static void perf_mmap_open(struct vm_area_struct *vma)
5061{
cdd6c482 5062 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5063
cdd6c482 5064 atomic_inc(&event->mmap_count);
9bb5d40c 5065 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5066
45bfb2e5
PZ
5067 if (vma->vm_pgoff)
5068 atomic_inc(&event->rb->aux_mmap_count);
5069
1e0fb9ec
AL
5070 if (event->pmu->event_mapped)
5071 event->pmu->event_mapped(event);
7b732a75
PZ
5072}
5073
95ff4ca2
AS
5074static void perf_pmu_output_stop(struct perf_event *event);
5075
9bb5d40c
PZ
5076/*
5077 * A buffer can be mmap()ed multiple times; either directly through the same
5078 * event, or through other events by use of perf_event_set_output().
5079 *
5080 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5081 * the buffer here, where we still have a VM context. This means we need
5082 * to detach all events redirecting to us.
5083 */
7b732a75
PZ
5084static void perf_mmap_close(struct vm_area_struct *vma)
5085{
cdd6c482 5086 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5087
b69cf536 5088 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5089 struct user_struct *mmap_user = rb->mmap_user;
5090 int mmap_locked = rb->mmap_locked;
5091 unsigned long size = perf_data_size(rb);
789f90fc 5092
1e0fb9ec
AL
5093 if (event->pmu->event_unmapped)
5094 event->pmu->event_unmapped(event);
5095
45bfb2e5
PZ
5096 /*
5097 * rb->aux_mmap_count will always drop before rb->mmap_count and
5098 * event->mmap_count, so it is ok to use event->mmap_mutex to
5099 * serialize with perf_mmap here.
5100 */
5101 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5102 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5103 /*
5104 * Stop all AUX events that are writing to this buffer,
5105 * so that we can free its AUX pages and corresponding PMU
5106 * data. Note that after rb::aux_mmap_count dropped to zero,
5107 * they won't start any more (see perf_aux_output_begin()).
5108 */
5109 perf_pmu_output_stop(event);
5110
5111 /* now it's safe to free the pages */
45bfb2e5
PZ
5112 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5113 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5114
95ff4ca2 5115 /* this has to be the last one */
45bfb2e5 5116 rb_free_aux(rb);
95ff4ca2
AS
5117 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5118
45bfb2e5
PZ
5119 mutex_unlock(&event->mmap_mutex);
5120 }
5121
9bb5d40c
PZ
5122 atomic_dec(&rb->mmap_count);
5123
5124 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5125 goto out_put;
9bb5d40c 5126
b69cf536 5127 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5128 mutex_unlock(&event->mmap_mutex);
5129
5130 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5131 if (atomic_read(&rb->mmap_count))
5132 goto out_put;
ac9721f3 5133
9bb5d40c
PZ
5134 /*
5135 * No other mmap()s, detach from all other events that might redirect
5136 * into the now unreachable buffer. Somewhat complicated by the
5137 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5138 */
5139again:
5140 rcu_read_lock();
5141 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5142 if (!atomic_long_inc_not_zero(&event->refcount)) {
5143 /*
5144 * This event is en-route to free_event() which will
5145 * detach it and remove it from the list.
5146 */
5147 continue;
5148 }
5149 rcu_read_unlock();
789f90fc 5150
9bb5d40c
PZ
5151 mutex_lock(&event->mmap_mutex);
5152 /*
5153 * Check we didn't race with perf_event_set_output() which can
5154 * swizzle the rb from under us while we were waiting to
5155 * acquire mmap_mutex.
5156 *
5157 * If we find a different rb; ignore this event, a next
5158 * iteration will no longer find it on the list. We have to
5159 * still restart the iteration to make sure we're not now
5160 * iterating the wrong list.
5161 */
b69cf536
PZ
5162 if (event->rb == rb)
5163 ring_buffer_attach(event, NULL);
5164
cdd6c482 5165 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5166 put_event(event);
ac9721f3 5167
9bb5d40c
PZ
5168 /*
5169 * Restart the iteration; either we're on the wrong list or
5170 * destroyed its integrity by doing a deletion.
5171 */
5172 goto again;
7b732a75 5173 }
9bb5d40c
PZ
5174 rcu_read_unlock();
5175
5176 /*
5177 * It could be there's still a few 0-ref events on the list; they'll
5178 * get cleaned up by free_event() -- they'll also still have their
5179 * ref on the rb and will free it whenever they are done with it.
5180 *
5181 * Aside from that, this buffer is 'fully' detached and unmapped,
5182 * undo the VM accounting.
5183 */
5184
5185 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5186 vma->vm_mm->pinned_vm -= mmap_locked;
5187 free_uid(mmap_user);
5188
b69cf536 5189out_put:
9bb5d40c 5190 ring_buffer_put(rb); /* could be last */
37d81828
PM
5191}
5192
f0f37e2f 5193static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5194 .open = perf_mmap_open,
45bfb2e5 5195 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5196 .fault = perf_mmap_fault,
5197 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5198};
5199
5200static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5201{
cdd6c482 5202 struct perf_event *event = file->private_data;
22a4f650 5203 unsigned long user_locked, user_lock_limit;
789f90fc 5204 struct user_struct *user = current_user();
22a4f650 5205 unsigned long locked, lock_limit;
45bfb2e5 5206 struct ring_buffer *rb = NULL;
7b732a75
PZ
5207 unsigned long vma_size;
5208 unsigned long nr_pages;
45bfb2e5 5209 long user_extra = 0, extra = 0;
d57e34fd 5210 int ret = 0, flags = 0;
37d81828 5211
c7920614
PZ
5212 /*
5213 * Don't allow mmap() of inherited per-task counters. This would
5214 * create a performance issue due to all children writing to the
76369139 5215 * same rb.
c7920614
PZ
5216 */
5217 if (event->cpu == -1 && event->attr.inherit)
5218 return -EINVAL;
5219
43a21ea8 5220 if (!(vma->vm_flags & VM_SHARED))
37d81828 5221 return -EINVAL;
7b732a75
PZ
5222
5223 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5224
5225 if (vma->vm_pgoff == 0) {
5226 nr_pages = (vma_size / PAGE_SIZE) - 1;
5227 } else {
5228 /*
5229 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5230 * mapped, all subsequent mappings should have the same size
5231 * and offset. Must be above the normal perf buffer.
5232 */
5233 u64 aux_offset, aux_size;
5234
5235 if (!event->rb)
5236 return -EINVAL;
5237
5238 nr_pages = vma_size / PAGE_SIZE;
5239
5240 mutex_lock(&event->mmap_mutex);
5241 ret = -EINVAL;
5242
5243 rb = event->rb;
5244 if (!rb)
5245 goto aux_unlock;
5246
5247 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5248 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5249
5250 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5251 goto aux_unlock;
5252
5253 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5254 goto aux_unlock;
5255
5256 /* already mapped with a different offset */
5257 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5258 goto aux_unlock;
5259
5260 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5261 goto aux_unlock;
5262
5263 /* already mapped with a different size */
5264 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5265 goto aux_unlock;
5266
5267 if (!is_power_of_2(nr_pages))
5268 goto aux_unlock;
5269
5270 if (!atomic_inc_not_zero(&rb->mmap_count))
5271 goto aux_unlock;
5272
5273 if (rb_has_aux(rb)) {
5274 atomic_inc(&rb->aux_mmap_count);
5275 ret = 0;
5276 goto unlock;
5277 }
5278
5279 atomic_set(&rb->aux_mmap_count, 1);
5280 user_extra = nr_pages;
5281
5282 goto accounting;
5283 }
7b732a75 5284
7730d865 5285 /*
76369139 5286 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5287 * can do bitmasks instead of modulo.
5288 */
2ed11312 5289 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5290 return -EINVAL;
5291
7b732a75 5292 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5293 return -EINVAL;
5294
cdd6c482 5295 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5296again:
cdd6c482 5297 mutex_lock(&event->mmap_mutex);
76369139 5298 if (event->rb) {
9bb5d40c 5299 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5300 ret = -EINVAL;
9bb5d40c
PZ
5301 goto unlock;
5302 }
5303
5304 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5305 /*
5306 * Raced against perf_mmap_close() through
5307 * perf_event_set_output(). Try again, hope for better
5308 * luck.
5309 */
5310 mutex_unlock(&event->mmap_mutex);
5311 goto again;
5312 }
5313
ebb3c4c4
PZ
5314 goto unlock;
5315 }
5316
789f90fc 5317 user_extra = nr_pages + 1;
45bfb2e5
PZ
5318
5319accounting:
cdd6c482 5320 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5321
5322 /*
5323 * Increase the limit linearly with more CPUs:
5324 */
5325 user_lock_limit *= num_online_cpus();
5326
789f90fc 5327 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5328
789f90fc
PZ
5329 if (user_locked > user_lock_limit)
5330 extra = user_locked - user_lock_limit;
7b732a75 5331
78d7d407 5332 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5333 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5334 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5335
459ec28a
IM
5336 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5337 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5338 ret = -EPERM;
5339 goto unlock;
5340 }
7b732a75 5341
45bfb2e5 5342 WARN_ON(!rb && event->rb);
906010b2 5343
d57e34fd 5344 if (vma->vm_flags & VM_WRITE)
76369139 5345 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5346
76369139 5347 if (!rb) {
45bfb2e5
PZ
5348 rb = rb_alloc(nr_pages,
5349 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5350 event->cpu, flags);
26cb63ad 5351
45bfb2e5
PZ
5352 if (!rb) {
5353 ret = -ENOMEM;
5354 goto unlock;
5355 }
43a21ea8 5356
45bfb2e5
PZ
5357 atomic_set(&rb->mmap_count, 1);
5358 rb->mmap_user = get_current_user();
5359 rb->mmap_locked = extra;
26cb63ad 5360
45bfb2e5 5361 ring_buffer_attach(event, rb);
ac9721f3 5362
45bfb2e5
PZ
5363 perf_event_init_userpage(event);
5364 perf_event_update_userpage(event);
5365 } else {
1a594131
AS
5366 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5367 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5368 if (!ret)
5369 rb->aux_mmap_locked = extra;
5370 }
9a0f05cb 5371
ebb3c4c4 5372unlock:
45bfb2e5
PZ
5373 if (!ret) {
5374 atomic_long_add(user_extra, &user->locked_vm);
5375 vma->vm_mm->pinned_vm += extra;
5376
ac9721f3 5377 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5378 } else if (rb) {
5379 atomic_dec(&rb->mmap_count);
5380 }
5381aux_unlock:
cdd6c482 5382 mutex_unlock(&event->mmap_mutex);
37d81828 5383
9bb5d40c
PZ
5384 /*
5385 * Since pinned accounting is per vm we cannot allow fork() to copy our
5386 * vma.
5387 */
26cb63ad 5388 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5389 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5390
1e0fb9ec
AL
5391 if (event->pmu->event_mapped)
5392 event->pmu->event_mapped(event);
5393
7b732a75 5394 return ret;
37d81828
PM
5395}
5396
3c446b3d
PZ
5397static int perf_fasync(int fd, struct file *filp, int on)
5398{
496ad9aa 5399 struct inode *inode = file_inode(filp);
cdd6c482 5400 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5401 int retval;
5402
5955102c 5403 inode_lock(inode);
cdd6c482 5404 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5405 inode_unlock(inode);
3c446b3d
PZ
5406
5407 if (retval < 0)
5408 return retval;
5409
5410 return 0;
5411}
5412
0793a61d 5413static const struct file_operations perf_fops = {
3326c1ce 5414 .llseek = no_llseek,
0793a61d
TG
5415 .release = perf_release,
5416 .read = perf_read,
5417 .poll = perf_poll,
d859e29f 5418 .unlocked_ioctl = perf_ioctl,
b3f20785 5419 .compat_ioctl = perf_compat_ioctl,
37d81828 5420 .mmap = perf_mmap,
3c446b3d 5421 .fasync = perf_fasync,
0793a61d
TG
5422};
5423
925d519a 5424/*
cdd6c482 5425 * Perf event wakeup
925d519a
PZ
5426 *
5427 * If there's data, ensure we set the poll() state and publish everything
5428 * to user-space before waking everybody up.
5429 */
5430
fed66e2c
PZ
5431static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5432{
5433 /* only the parent has fasync state */
5434 if (event->parent)
5435 event = event->parent;
5436 return &event->fasync;
5437}
5438
cdd6c482 5439void perf_event_wakeup(struct perf_event *event)
925d519a 5440{
10c6db11 5441 ring_buffer_wakeup(event);
4c9e2542 5442
cdd6c482 5443 if (event->pending_kill) {
fed66e2c 5444 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5445 event->pending_kill = 0;
4c9e2542 5446 }
925d519a
PZ
5447}
5448
e360adbe 5449static void perf_pending_event(struct irq_work *entry)
79f14641 5450{
cdd6c482
IM
5451 struct perf_event *event = container_of(entry,
5452 struct perf_event, pending);
d525211f
PZ
5453 int rctx;
5454
5455 rctx = perf_swevent_get_recursion_context();
5456 /*
5457 * If we 'fail' here, that's OK, it means recursion is already disabled
5458 * and we won't recurse 'further'.
5459 */
79f14641 5460
cdd6c482
IM
5461 if (event->pending_disable) {
5462 event->pending_disable = 0;
fae3fde6 5463 perf_event_disable_local(event);
79f14641
PZ
5464 }
5465
cdd6c482
IM
5466 if (event->pending_wakeup) {
5467 event->pending_wakeup = 0;
5468 perf_event_wakeup(event);
79f14641 5469 }
d525211f
PZ
5470
5471 if (rctx >= 0)
5472 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5473}
5474
39447b38
ZY
5475/*
5476 * We assume there is only KVM supporting the callbacks.
5477 * Later on, we might change it to a list if there is
5478 * another virtualization implementation supporting the callbacks.
5479 */
5480struct perf_guest_info_callbacks *perf_guest_cbs;
5481
5482int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5483{
5484 perf_guest_cbs = cbs;
5485 return 0;
5486}
5487EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5488
5489int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5490{
5491 perf_guest_cbs = NULL;
5492 return 0;
5493}
5494EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5495
4018994f
JO
5496static void
5497perf_output_sample_regs(struct perf_output_handle *handle,
5498 struct pt_regs *regs, u64 mask)
5499{
5500 int bit;
29dd3288 5501 DECLARE_BITMAP(_mask, 64);
4018994f 5502
29dd3288
MS
5503 bitmap_from_u64(_mask, mask);
5504 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5505 u64 val;
5506
5507 val = perf_reg_value(regs, bit);
5508 perf_output_put(handle, val);
5509 }
5510}
5511
60e2364e 5512static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5513 struct pt_regs *regs,
5514 struct pt_regs *regs_user_copy)
4018994f 5515{
88a7c26a
AL
5516 if (user_mode(regs)) {
5517 regs_user->abi = perf_reg_abi(current);
2565711f 5518 regs_user->regs = regs;
88a7c26a
AL
5519 } else if (current->mm) {
5520 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5521 } else {
5522 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5523 regs_user->regs = NULL;
4018994f
JO
5524 }
5525}
5526
60e2364e
SE
5527static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5528 struct pt_regs *regs)
5529{
5530 regs_intr->regs = regs;
5531 regs_intr->abi = perf_reg_abi(current);
5532}
5533
5534
c5ebcedb
JO
5535/*
5536 * Get remaining task size from user stack pointer.
5537 *
5538 * It'd be better to take stack vma map and limit this more
5539 * precisly, but there's no way to get it safely under interrupt,
5540 * so using TASK_SIZE as limit.
5541 */
5542static u64 perf_ustack_task_size(struct pt_regs *regs)
5543{
5544 unsigned long addr = perf_user_stack_pointer(regs);
5545
5546 if (!addr || addr >= TASK_SIZE)
5547 return 0;
5548
5549 return TASK_SIZE - addr;
5550}
5551
5552static u16
5553perf_sample_ustack_size(u16 stack_size, u16 header_size,
5554 struct pt_regs *regs)
5555{
5556 u64 task_size;
5557
5558 /* No regs, no stack pointer, no dump. */
5559 if (!regs)
5560 return 0;
5561
5562 /*
5563 * Check if we fit in with the requested stack size into the:
5564 * - TASK_SIZE
5565 * If we don't, we limit the size to the TASK_SIZE.
5566 *
5567 * - remaining sample size
5568 * If we don't, we customize the stack size to
5569 * fit in to the remaining sample size.
5570 */
5571
5572 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5573 stack_size = min(stack_size, (u16) task_size);
5574
5575 /* Current header size plus static size and dynamic size. */
5576 header_size += 2 * sizeof(u64);
5577
5578 /* Do we fit in with the current stack dump size? */
5579 if ((u16) (header_size + stack_size) < header_size) {
5580 /*
5581 * If we overflow the maximum size for the sample,
5582 * we customize the stack dump size to fit in.
5583 */
5584 stack_size = USHRT_MAX - header_size - sizeof(u64);
5585 stack_size = round_up(stack_size, sizeof(u64));
5586 }
5587
5588 return stack_size;
5589}
5590
5591static void
5592perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5593 struct pt_regs *regs)
5594{
5595 /* Case of a kernel thread, nothing to dump */
5596 if (!regs) {
5597 u64 size = 0;
5598 perf_output_put(handle, size);
5599 } else {
5600 unsigned long sp;
5601 unsigned int rem;
5602 u64 dyn_size;
5603
5604 /*
5605 * We dump:
5606 * static size
5607 * - the size requested by user or the best one we can fit
5608 * in to the sample max size
5609 * data
5610 * - user stack dump data
5611 * dynamic size
5612 * - the actual dumped size
5613 */
5614
5615 /* Static size. */
5616 perf_output_put(handle, dump_size);
5617
5618 /* Data. */
5619 sp = perf_user_stack_pointer(regs);
5620 rem = __output_copy_user(handle, (void *) sp, dump_size);
5621 dyn_size = dump_size - rem;
5622
5623 perf_output_skip(handle, rem);
5624
5625 /* Dynamic size. */
5626 perf_output_put(handle, dyn_size);
5627 }
5628}
5629
c980d109
ACM
5630static void __perf_event_header__init_id(struct perf_event_header *header,
5631 struct perf_sample_data *data,
5632 struct perf_event *event)
6844c09d
ACM
5633{
5634 u64 sample_type = event->attr.sample_type;
5635
5636 data->type = sample_type;
5637 header->size += event->id_header_size;
5638
5639 if (sample_type & PERF_SAMPLE_TID) {
5640 /* namespace issues */
5641 data->tid_entry.pid = perf_event_pid(event, current);
5642 data->tid_entry.tid = perf_event_tid(event, current);
5643 }
5644
5645 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5646 data->time = perf_event_clock(event);
6844c09d 5647
ff3d527c 5648 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5649 data->id = primary_event_id(event);
5650
5651 if (sample_type & PERF_SAMPLE_STREAM_ID)
5652 data->stream_id = event->id;
5653
5654 if (sample_type & PERF_SAMPLE_CPU) {
5655 data->cpu_entry.cpu = raw_smp_processor_id();
5656 data->cpu_entry.reserved = 0;
5657 }
5658}
5659
76369139
FW
5660void perf_event_header__init_id(struct perf_event_header *header,
5661 struct perf_sample_data *data,
5662 struct perf_event *event)
c980d109
ACM
5663{
5664 if (event->attr.sample_id_all)
5665 __perf_event_header__init_id(header, data, event);
5666}
5667
5668static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5669 struct perf_sample_data *data)
5670{
5671 u64 sample_type = data->type;
5672
5673 if (sample_type & PERF_SAMPLE_TID)
5674 perf_output_put(handle, data->tid_entry);
5675
5676 if (sample_type & PERF_SAMPLE_TIME)
5677 perf_output_put(handle, data->time);
5678
5679 if (sample_type & PERF_SAMPLE_ID)
5680 perf_output_put(handle, data->id);
5681
5682 if (sample_type & PERF_SAMPLE_STREAM_ID)
5683 perf_output_put(handle, data->stream_id);
5684
5685 if (sample_type & PERF_SAMPLE_CPU)
5686 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5687
5688 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5689 perf_output_put(handle, data->id);
c980d109
ACM
5690}
5691
76369139
FW
5692void perf_event__output_id_sample(struct perf_event *event,
5693 struct perf_output_handle *handle,
5694 struct perf_sample_data *sample)
c980d109
ACM
5695{
5696 if (event->attr.sample_id_all)
5697 __perf_event__output_id_sample(handle, sample);
5698}
5699
3dab77fb 5700static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5701 struct perf_event *event,
5702 u64 enabled, u64 running)
3dab77fb 5703{
cdd6c482 5704 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5705 u64 values[4];
5706 int n = 0;
5707
b5e58793 5708 values[n++] = perf_event_count(event);
3dab77fb 5709 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5710 values[n++] = enabled +
cdd6c482 5711 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5712 }
5713 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5714 values[n++] = running +
cdd6c482 5715 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5716 }
5717 if (read_format & PERF_FORMAT_ID)
cdd6c482 5718 values[n++] = primary_event_id(event);
3dab77fb 5719
76369139 5720 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5721}
5722
5723/*
cdd6c482 5724 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5725 */
5726static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5727 struct perf_event *event,
5728 u64 enabled, u64 running)
3dab77fb 5729{
cdd6c482
IM
5730 struct perf_event *leader = event->group_leader, *sub;
5731 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5732 u64 values[5];
5733 int n = 0;
5734
5735 values[n++] = 1 + leader->nr_siblings;
5736
5737 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5738 values[n++] = enabled;
3dab77fb
PZ
5739
5740 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5741 values[n++] = running;
3dab77fb 5742
cdd6c482 5743 if (leader != event)
3dab77fb
PZ
5744 leader->pmu->read(leader);
5745
b5e58793 5746 values[n++] = perf_event_count(leader);
3dab77fb 5747 if (read_format & PERF_FORMAT_ID)
cdd6c482 5748 values[n++] = primary_event_id(leader);
3dab77fb 5749
76369139 5750 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5751
65abc865 5752 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5753 n = 0;
5754
6f5ab001
JO
5755 if ((sub != event) &&
5756 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5757 sub->pmu->read(sub);
5758
b5e58793 5759 values[n++] = perf_event_count(sub);
3dab77fb 5760 if (read_format & PERF_FORMAT_ID)
cdd6c482 5761 values[n++] = primary_event_id(sub);
3dab77fb 5762
76369139 5763 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5764 }
5765}
5766
eed01528
SE
5767#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5768 PERF_FORMAT_TOTAL_TIME_RUNNING)
5769
3dab77fb 5770static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5771 struct perf_event *event)
3dab77fb 5772{
e3f3541c 5773 u64 enabled = 0, running = 0, now;
eed01528
SE
5774 u64 read_format = event->attr.read_format;
5775
5776 /*
5777 * compute total_time_enabled, total_time_running
5778 * based on snapshot values taken when the event
5779 * was last scheduled in.
5780 *
5781 * we cannot simply called update_context_time()
5782 * because of locking issue as we are called in
5783 * NMI context
5784 */
c4794295 5785 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5786 calc_timer_values(event, &now, &enabled, &running);
eed01528 5787
cdd6c482 5788 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5789 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5790 else
eed01528 5791 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5792}
5793
5622f295
MM
5794void perf_output_sample(struct perf_output_handle *handle,
5795 struct perf_event_header *header,
5796 struct perf_sample_data *data,
cdd6c482 5797 struct perf_event *event)
5622f295
MM
5798{
5799 u64 sample_type = data->type;
5800
5801 perf_output_put(handle, *header);
5802
ff3d527c
AH
5803 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5804 perf_output_put(handle, data->id);
5805
5622f295
MM
5806 if (sample_type & PERF_SAMPLE_IP)
5807 perf_output_put(handle, data->ip);
5808
5809 if (sample_type & PERF_SAMPLE_TID)
5810 perf_output_put(handle, data->tid_entry);
5811
5812 if (sample_type & PERF_SAMPLE_TIME)
5813 perf_output_put(handle, data->time);
5814
5815 if (sample_type & PERF_SAMPLE_ADDR)
5816 perf_output_put(handle, data->addr);
5817
5818 if (sample_type & PERF_SAMPLE_ID)
5819 perf_output_put(handle, data->id);
5820
5821 if (sample_type & PERF_SAMPLE_STREAM_ID)
5822 perf_output_put(handle, data->stream_id);
5823
5824 if (sample_type & PERF_SAMPLE_CPU)
5825 perf_output_put(handle, data->cpu_entry);
5826
5827 if (sample_type & PERF_SAMPLE_PERIOD)
5828 perf_output_put(handle, data->period);
5829
5830 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5831 perf_output_read(handle, event);
5622f295
MM
5832
5833 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834 if (data->callchain) {
5835 int size = 1;
5836
5837 if (data->callchain)
5838 size += data->callchain->nr;
5839
5840 size *= sizeof(u64);
5841
76369139 5842 __output_copy(handle, data->callchain, size);
5622f295
MM
5843 } else {
5844 u64 nr = 0;
5845 perf_output_put(handle, nr);
5846 }
5847 }
5848
5849 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5850 struct perf_raw_record *raw = data->raw;
5851
5852 if (raw) {
5853 struct perf_raw_frag *frag = &raw->frag;
5854
5855 perf_output_put(handle, raw->size);
5856 do {
5857 if (frag->copy) {
5858 __output_custom(handle, frag->copy,
5859 frag->data, frag->size);
5860 } else {
5861 __output_copy(handle, frag->data,
5862 frag->size);
5863 }
5864 if (perf_raw_frag_last(frag))
5865 break;
5866 frag = frag->next;
5867 } while (1);
5868 if (frag->pad)
5869 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5870 } else {
5871 struct {
5872 u32 size;
5873 u32 data;
5874 } raw = {
5875 .size = sizeof(u32),
5876 .data = 0,
5877 };
5878 perf_output_put(handle, raw);
5879 }
5880 }
a7ac67ea 5881
bce38cd5
SE
5882 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5883 if (data->br_stack) {
5884 size_t size;
5885
5886 size = data->br_stack->nr
5887 * sizeof(struct perf_branch_entry);
5888
5889 perf_output_put(handle, data->br_stack->nr);
5890 perf_output_copy(handle, data->br_stack->entries, size);
5891 } else {
5892 /*
5893 * we always store at least the value of nr
5894 */
5895 u64 nr = 0;
5896 perf_output_put(handle, nr);
5897 }
5898 }
4018994f
JO
5899
5900 if (sample_type & PERF_SAMPLE_REGS_USER) {
5901 u64 abi = data->regs_user.abi;
5902
5903 /*
5904 * If there are no regs to dump, notice it through
5905 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5906 */
5907 perf_output_put(handle, abi);
5908
5909 if (abi) {
5910 u64 mask = event->attr.sample_regs_user;
5911 perf_output_sample_regs(handle,
5912 data->regs_user.regs,
5913 mask);
5914 }
5915 }
c5ebcedb 5916
a5cdd40c 5917 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5918 perf_output_sample_ustack(handle,
5919 data->stack_user_size,
5920 data->regs_user.regs);
a5cdd40c 5921 }
c3feedf2
AK
5922
5923 if (sample_type & PERF_SAMPLE_WEIGHT)
5924 perf_output_put(handle, data->weight);
d6be9ad6
SE
5925
5926 if (sample_type & PERF_SAMPLE_DATA_SRC)
5927 perf_output_put(handle, data->data_src.val);
a5cdd40c 5928
fdfbbd07
AK
5929 if (sample_type & PERF_SAMPLE_TRANSACTION)
5930 perf_output_put(handle, data->txn);
5931
60e2364e
SE
5932 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5933 u64 abi = data->regs_intr.abi;
5934 /*
5935 * If there are no regs to dump, notice it through
5936 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5937 */
5938 perf_output_put(handle, abi);
5939
5940 if (abi) {
5941 u64 mask = event->attr.sample_regs_intr;
5942
5943 perf_output_sample_regs(handle,
5944 data->regs_intr.regs,
5945 mask);
5946 }
5947 }
5948
a5cdd40c
PZ
5949 if (!event->attr.watermark) {
5950 int wakeup_events = event->attr.wakeup_events;
5951
5952 if (wakeup_events) {
5953 struct ring_buffer *rb = handle->rb;
5954 int events = local_inc_return(&rb->events);
5955
5956 if (events >= wakeup_events) {
5957 local_sub(wakeup_events, &rb->events);
5958 local_inc(&rb->wakeup);
5959 }
5960 }
5961 }
5622f295
MM
5962}
5963
5964void perf_prepare_sample(struct perf_event_header *header,
5965 struct perf_sample_data *data,
cdd6c482 5966 struct perf_event *event,
5622f295 5967 struct pt_regs *regs)
7b732a75 5968{
cdd6c482 5969 u64 sample_type = event->attr.sample_type;
7b732a75 5970
cdd6c482 5971 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5972 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5973
5974 header->misc = 0;
5975 header->misc |= perf_misc_flags(regs);
6fab0192 5976
c980d109 5977 __perf_event_header__init_id(header, data, event);
6844c09d 5978
c320c7b7 5979 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5980 data->ip = perf_instruction_pointer(regs);
5981
b23f3325 5982 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5983 int size = 1;
394ee076 5984
e6dab5ff 5985 data->callchain = perf_callchain(event, regs);
5622f295
MM
5986
5987 if (data->callchain)
5988 size += data->callchain->nr;
5989
5990 header->size += size * sizeof(u64);
394ee076
PZ
5991 }
5992
3a43ce68 5993 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5994 struct perf_raw_record *raw = data->raw;
5995 int size;
5996
5997 if (raw) {
5998 struct perf_raw_frag *frag = &raw->frag;
5999 u32 sum = 0;
6000
6001 do {
6002 sum += frag->size;
6003 if (perf_raw_frag_last(frag))
6004 break;
6005 frag = frag->next;
6006 } while (1);
6007
6008 size = round_up(sum + sizeof(u32), sizeof(u64));
6009 raw->size = size - sizeof(u32);
6010 frag->pad = raw->size - sum;
6011 } else {
6012 size = sizeof(u64);
6013 }
a044560c 6014
7e3f977e 6015 header->size += size;
7f453c24 6016 }
bce38cd5
SE
6017
6018 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6019 int size = sizeof(u64); /* nr */
6020 if (data->br_stack) {
6021 size += data->br_stack->nr
6022 * sizeof(struct perf_branch_entry);
6023 }
6024 header->size += size;
6025 }
4018994f 6026
2565711f 6027 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6028 perf_sample_regs_user(&data->regs_user, regs,
6029 &data->regs_user_copy);
2565711f 6030
4018994f
JO
6031 if (sample_type & PERF_SAMPLE_REGS_USER) {
6032 /* regs dump ABI info */
6033 int size = sizeof(u64);
6034
4018994f
JO
6035 if (data->regs_user.regs) {
6036 u64 mask = event->attr.sample_regs_user;
6037 size += hweight64(mask) * sizeof(u64);
6038 }
6039
6040 header->size += size;
6041 }
c5ebcedb
JO
6042
6043 if (sample_type & PERF_SAMPLE_STACK_USER) {
6044 /*
6045 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6046 * processed as the last one or have additional check added
6047 * in case new sample type is added, because we could eat
6048 * up the rest of the sample size.
6049 */
c5ebcedb
JO
6050 u16 stack_size = event->attr.sample_stack_user;
6051 u16 size = sizeof(u64);
6052
c5ebcedb 6053 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6054 data->regs_user.regs);
c5ebcedb
JO
6055
6056 /*
6057 * If there is something to dump, add space for the dump
6058 * itself and for the field that tells the dynamic size,
6059 * which is how many have been actually dumped.
6060 */
6061 if (stack_size)
6062 size += sizeof(u64) + stack_size;
6063
6064 data->stack_user_size = stack_size;
6065 header->size += size;
6066 }
60e2364e
SE
6067
6068 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6069 /* regs dump ABI info */
6070 int size = sizeof(u64);
6071
6072 perf_sample_regs_intr(&data->regs_intr, regs);
6073
6074 if (data->regs_intr.regs) {
6075 u64 mask = event->attr.sample_regs_intr;
6076
6077 size += hweight64(mask) * sizeof(u64);
6078 }
6079
6080 header->size += size;
6081 }
5622f295 6082}
7f453c24 6083
9ecda41a
WN
6084static void __always_inline
6085__perf_event_output(struct perf_event *event,
6086 struct perf_sample_data *data,
6087 struct pt_regs *regs,
6088 int (*output_begin)(struct perf_output_handle *,
6089 struct perf_event *,
6090 unsigned int))
5622f295
MM
6091{
6092 struct perf_output_handle handle;
6093 struct perf_event_header header;
689802b2 6094
927c7a9e
FW
6095 /* protect the callchain buffers */
6096 rcu_read_lock();
6097
cdd6c482 6098 perf_prepare_sample(&header, data, event, regs);
5c148194 6099
9ecda41a 6100 if (output_begin(&handle, event, header.size))
927c7a9e 6101 goto exit;
0322cd6e 6102
cdd6c482 6103 perf_output_sample(&handle, &header, data, event);
f413cdb8 6104
8a057d84 6105 perf_output_end(&handle);
927c7a9e
FW
6106
6107exit:
6108 rcu_read_unlock();
0322cd6e
PZ
6109}
6110
9ecda41a
WN
6111void
6112perf_event_output_forward(struct perf_event *event,
6113 struct perf_sample_data *data,
6114 struct pt_regs *regs)
6115{
6116 __perf_event_output(event, data, regs, perf_output_begin_forward);
6117}
6118
6119void
6120perf_event_output_backward(struct perf_event *event,
6121 struct perf_sample_data *data,
6122 struct pt_regs *regs)
6123{
6124 __perf_event_output(event, data, regs, perf_output_begin_backward);
6125}
6126
6127void
6128perf_event_output(struct perf_event *event,
6129 struct perf_sample_data *data,
6130 struct pt_regs *regs)
6131{
6132 __perf_event_output(event, data, regs, perf_output_begin);
6133}
6134
38b200d6 6135/*
cdd6c482 6136 * read event_id
38b200d6
PZ
6137 */
6138
6139struct perf_read_event {
6140 struct perf_event_header header;
6141
6142 u32 pid;
6143 u32 tid;
38b200d6
PZ
6144};
6145
6146static void
cdd6c482 6147perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6148 struct task_struct *task)
6149{
6150 struct perf_output_handle handle;
c980d109 6151 struct perf_sample_data sample;
dfc65094 6152 struct perf_read_event read_event = {
38b200d6 6153 .header = {
cdd6c482 6154 .type = PERF_RECORD_READ,
38b200d6 6155 .misc = 0,
c320c7b7 6156 .size = sizeof(read_event) + event->read_size,
38b200d6 6157 },
cdd6c482
IM
6158 .pid = perf_event_pid(event, task),
6159 .tid = perf_event_tid(event, task),
38b200d6 6160 };
3dab77fb 6161 int ret;
38b200d6 6162
c980d109 6163 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6164 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6165 if (ret)
6166 return;
6167
dfc65094 6168 perf_output_put(&handle, read_event);
cdd6c482 6169 perf_output_read(&handle, event);
c980d109 6170 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6171
38b200d6
PZ
6172 perf_output_end(&handle);
6173}
6174
aab5b71e 6175typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6176
6177static void
aab5b71e
PZ
6178perf_iterate_ctx(struct perf_event_context *ctx,
6179 perf_iterate_f output,
b73e4fef 6180 void *data, bool all)
52d857a8
JO
6181{
6182 struct perf_event *event;
6183
6184 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6185 if (!all) {
6186 if (event->state < PERF_EVENT_STATE_INACTIVE)
6187 continue;
6188 if (!event_filter_match(event))
6189 continue;
6190 }
6191
67516844 6192 output(event, data);
52d857a8
JO
6193 }
6194}
6195
aab5b71e 6196static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6197{
6198 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6199 struct perf_event *event;
6200
6201 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6202 /*
6203 * Skip events that are not fully formed yet; ensure that
6204 * if we observe event->ctx, both event and ctx will be
6205 * complete enough. See perf_install_in_context().
6206 */
6207 if (!smp_load_acquire(&event->ctx))
6208 continue;
6209
f2fb6bef
KL
6210 if (event->state < PERF_EVENT_STATE_INACTIVE)
6211 continue;
6212 if (!event_filter_match(event))
6213 continue;
6214 output(event, data);
6215 }
6216}
6217
aab5b71e
PZ
6218/*
6219 * Iterate all events that need to receive side-band events.
6220 *
6221 * For new callers; ensure that account_pmu_sb_event() includes
6222 * your event, otherwise it might not get delivered.
6223 */
52d857a8 6224static void
aab5b71e 6225perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6226 struct perf_event_context *task_ctx)
6227{
52d857a8 6228 struct perf_event_context *ctx;
52d857a8
JO
6229 int ctxn;
6230
aab5b71e
PZ
6231 rcu_read_lock();
6232 preempt_disable();
6233
4e93ad60 6234 /*
aab5b71e
PZ
6235 * If we have task_ctx != NULL we only notify the task context itself.
6236 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6237 * context.
6238 */
6239 if (task_ctx) {
aab5b71e
PZ
6240 perf_iterate_ctx(task_ctx, output, data, false);
6241 goto done;
4e93ad60
JO
6242 }
6243
aab5b71e 6244 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6245
6246 for_each_task_context_nr(ctxn) {
52d857a8
JO
6247 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6248 if (ctx)
aab5b71e 6249 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6250 }
aab5b71e 6251done:
f2fb6bef 6252 preempt_enable();
52d857a8 6253 rcu_read_unlock();
95ff4ca2
AS
6254}
6255
375637bc
AS
6256/*
6257 * Clear all file-based filters at exec, they'll have to be
6258 * re-instated when/if these objects are mmapped again.
6259 */
6260static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6261{
6262 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6263 struct perf_addr_filter *filter;
6264 unsigned int restart = 0, count = 0;
6265 unsigned long flags;
6266
6267 if (!has_addr_filter(event))
6268 return;
6269
6270 raw_spin_lock_irqsave(&ifh->lock, flags);
6271 list_for_each_entry(filter, &ifh->list, entry) {
6272 if (filter->inode) {
6273 event->addr_filters_offs[count] = 0;
6274 restart++;
6275 }
6276
6277 count++;
6278 }
6279
6280 if (restart)
6281 event->addr_filters_gen++;
6282 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6283
6284 if (restart)
767ae086 6285 perf_event_stop(event, 1);
375637bc
AS
6286}
6287
6288void perf_event_exec(void)
6289{
6290 struct perf_event_context *ctx;
6291 int ctxn;
6292
6293 rcu_read_lock();
6294 for_each_task_context_nr(ctxn) {
6295 ctx = current->perf_event_ctxp[ctxn];
6296 if (!ctx)
6297 continue;
6298
6299 perf_event_enable_on_exec(ctxn);
6300
aab5b71e 6301 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6302 true);
6303 }
6304 rcu_read_unlock();
6305}
6306
95ff4ca2
AS
6307struct remote_output {
6308 struct ring_buffer *rb;
6309 int err;
6310};
6311
6312static void __perf_event_output_stop(struct perf_event *event, void *data)
6313{
6314 struct perf_event *parent = event->parent;
6315 struct remote_output *ro = data;
6316 struct ring_buffer *rb = ro->rb;
375637bc
AS
6317 struct stop_event_data sd = {
6318 .event = event,
6319 };
95ff4ca2
AS
6320
6321 if (!has_aux(event))
6322 return;
6323
6324 if (!parent)
6325 parent = event;
6326
6327 /*
6328 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6329 * ring-buffer, but it will be the child that's actually using it.
6330 *
6331 * We are using event::rb to determine if the event should be stopped,
6332 * however this may race with ring_buffer_attach() (through set_output),
6333 * which will make us skip the event that actually needs to be stopped.
6334 * So ring_buffer_attach() has to stop an aux event before re-assigning
6335 * its rb pointer.
95ff4ca2
AS
6336 */
6337 if (rcu_dereference(parent->rb) == rb)
375637bc 6338 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6339}
6340
6341static int __perf_pmu_output_stop(void *info)
6342{
6343 struct perf_event *event = info;
6344 struct pmu *pmu = event->pmu;
8b6a3fe8 6345 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6346 struct remote_output ro = {
6347 .rb = event->rb,
6348 };
6349
6350 rcu_read_lock();
aab5b71e 6351 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6352 if (cpuctx->task_ctx)
aab5b71e 6353 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6354 &ro, false);
95ff4ca2
AS
6355 rcu_read_unlock();
6356
6357 return ro.err;
6358}
6359
6360static void perf_pmu_output_stop(struct perf_event *event)
6361{
6362 struct perf_event *iter;
6363 int err, cpu;
6364
6365restart:
6366 rcu_read_lock();
6367 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6368 /*
6369 * For per-CPU events, we need to make sure that neither they
6370 * nor their children are running; for cpu==-1 events it's
6371 * sufficient to stop the event itself if it's active, since
6372 * it can't have children.
6373 */
6374 cpu = iter->cpu;
6375 if (cpu == -1)
6376 cpu = READ_ONCE(iter->oncpu);
6377
6378 if (cpu == -1)
6379 continue;
6380
6381 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6382 if (err == -EAGAIN) {
6383 rcu_read_unlock();
6384 goto restart;
6385 }
6386 }
6387 rcu_read_unlock();
52d857a8
JO
6388}
6389
60313ebe 6390/*
9f498cc5
PZ
6391 * task tracking -- fork/exit
6392 *
13d7a241 6393 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6394 */
6395
9f498cc5 6396struct perf_task_event {
3a80b4a3 6397 struct task_struct *task;
cdd6c482 6398 struct perf_event_context *task_ctx;
60313ebe
PZ
6399
6400 struct {
6401 struct perf_event_header header;
6402
6403 u32 pid;
6404 u32 ppid;
9f498cc5
PZ
6405 u32 tid;
6406 u32 ptid;
393b2ad8 6407 u64 time;
cdd6c482 6408 } event_id;
60313ebe
PZ
6409};
6410
67516844
JO
6411static int perf_event_task_match(struct perf_event *event)
6412{
13d7a241
SE
6413 return event->attr.comm || event->attr.mmap ||
6414 event->attr.mmap2 || event->attr.mmap_data ||
6415 event->attr.task;
67516844
JO
6416}
6417
cdd6c482 6418static void perf_event_task_output(struct perf_event *event,
52d857a8 6419 void *data)
60313ebe 6420{
52d857a8 6421 struct perf_task_event *task_event = data;
60313ebe 6422 struct perf_output_handle handle;
c980d109 6423 struct perf_sample_data sample;
9f498cc5 6424 struct task_struct *task = task_event->task;
c980d109 6425 int ret, size = task_event->event_id.header.size;
8bb39f9a 6426
67516844
JO
6427 if (!perf_event_task_match(event))
6428 return;
6429
c980d109 6430 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6431
c980d109 6432 ret = perf_output_begin(&handle, event,
a7ac67ea 6433 task_event->event_id.header.size);
ef60777c 6434 if (ret)
c980d109 6435 goto out;
60313ebe 6436
cdd6c482
IM
6437 task_event->event_id.pid = perf_event_pid(event, task);
6438 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6439
cdd6c482
IM
6440 task_event->event_id.tid = perf_event_tid(event, task);
6441 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6442
34f43927
PZ
6443 task_event->event_id.time = perf_event_clock(event);
6444
cdd6c482 6445 perf_output_put(&handle, task_event->event_id);
393b2ad8 6446
c980d109
ACM
6447 perf_event__output_id_sample(event, &handle, &sample);
6448
60313ebe 6449 perf_output_end(&handle);
c980d109
ACM
6450out:
6451 task_event->event_id.header.size = size;
60313ebe
PZ
6452}
6453
cdd6c482
IM
6454static void perf_event_task(struct task_struct *task,
6455 struct perf_event_context *task_ctx,
3a80b4a3 6456 int new)
60313ebe 6457{
9f498cc5 6458 struct perf_task_event task_event;
60313ebe 6459
cdd6c482
IM
6460 if (!atomic_read(&nr_comm_events) &&
6461 !atomic_read(&nr_mmap_events) &&
6462 !atomic_read(&nr_task_events))
60313ebe
PZ
6463 return;
6464
9f498cc5 6465 task_event = (struct perf_task_event){
3a80b4a3
PZ
6466 .task = task,
6467 .task_ctx = task_ctx,
cdd6c482 6468 .event_id = {
60313ebe 6469 .header = {
cdd6c482 6470 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6471 .misc = 0,
cdd6c482 6472 .size = sizeof(task_event.event_id),
60313ebe 6473 },
573402db
PZ
6474 /* .pid */
6475 /* .ppid */
9f498cc5
PZ
6476 /* .tid */
6477 /* .ptid */
34f43927 6478 /* .time */
60313ebe
PZ
6479 },
6480 };
6481
aab5b71e 6482 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6483 &task_event,
6484 task_ctx);
9f498cc5
PZ
6485}
6486
cdd6c482 6487void perf_event_fork(struct task_struct *task)
9f498cc5 6488{
cdd6c482 6489 perf_event_task(task, NULL, 1);
60313ebe
PZ
6490}
6491
8d1b2d93
PZ
6492/*
6493 * comm tracking
6494 */
6495
6496struct perf_comm_event {
22a4f650
IM
6497 struct task_struct *task;
6498 char *comm;
8d1b2d93
PZ
6499 int comm_size;
6500
6501 struct {
6502 struct perf_event_header header;
6503
6504 u32 pid;
6505 u32 tid;
cdd6c482 6506 } event_id;
8d1b2d93
PZ
6507};
6508
67516844
JO
6509static int perf_event_comm_match(struct perf_event *event)
6510{
6511 return event->attr.comm;
6512}
6513
cdd6c482 6514static void perf_event_comm_output(struct perf_event *event,
52d857a8 6515 void *data)
8d1b2d93 6516{
52d857a8 6517 struct perf_comm_event *comm_event = data;
8d1b2d93 6518 struct perf_output_handle handle;
c980d109 6519 struct perf_sample_data sample;
cdd6c482 6520 int size = comm_event->event_id.header.size;
c980d109
ACM
6521 int ret;
6522
67516844
JO
6523 if (!perf_event_comm_match(event))
6524 return;
6525
c980d109
ACM
6526 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6527 ret = perf_output_begin(&handle, event,
a7ac67ea 6528 comm_event->event_id.header.size);
8d1b2d93
PZ
6529
6530 if (ret)
c980d109 6531 goto out;
8d1b2d93 6532
cdd6c482
IM
6533 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6534 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6535
cdd6c482 6536 perf_output_put(&handle, comm_event->event_id);
76369139 6537 __output_copy(&handle, comm_event->comm,
8d1b2d93 6538 comm_event->comm_size);
c980d109
ACM
6539
6540 perf_event__output_id_sample(event, &handle, &sample);
6541
8d1b2d93 6542 perf_output_end(&handle);
c980d109
ACM
6543out:
6544 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6545}
6546
cdd6c482 6547static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6548{
413ee3b4 6549 char comm[TASK_COMM_LEN];
8d1b2d93 6550 unsigned int size;
8d1b2d93 6551
413ee3b4 6552 memset(comm, 0, sizeof(comm));
96b02d78 6553 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6554 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6555
6556 comm_event->comm = comm;
6557 comm_event->comm_size = size;
6558
cdd6c482 6559 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6560
aab5b71e 6561 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6562 comm_event,
6563 NULL);
8d1b2d93
PZ
6564}
6565
82b89778 6566void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6567{
9ee318a7
PZ
6568 struct perf_comm_event comm_event;
6569
cdd6c482 6570 if (!atomic_read(&nr_comm_events))
9ee318a7 6571 return;
a63eaf34 6572
9ee318a7 6573 comm_event = (struct perf_comm_event){
8d1b2d93 6574 .task = task,
573402db
PZ
6575 /* .comm */
6576 /* .comm_size */
cdd6c482 6577 .event_id = {
573402db 6578 .header = {
cdd6c482 6579 .type = PERF_RECORD_COMM,
82b89778 6580 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6581 /* .size */
6582 },
6583 /* .pid */
6584 /* .tid */
8d1b2d93
PZ
6585 },
6586 };
6587
cdd6c482 6588 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6589}
6590
0a4a9391
PZ
6591/*
6592 * mmap tracking
6593 */
6594
6595struct perf_mmap_event {
089dd79d
PZ
6596 struct vm_area_struct *vma;
6597
6598 const char *file_name;
6599 int file_size;
13d7a241
SE
6600 int maj, min;
6601 u64 ino;
6602 u64 ino_generation;
f972eb63 6603 u32 prot, flags;
0a4a9391
PZ
6604
6605 struct {
6606 struct perf_event_header header;
6607
6608 u32 pid;
6609 u32 tid;
6610 u64 start;
6611 u64 len;
6612 u64 pgoff;
cdd6c482 6613 } event_id;
0a4a9391
PZ
6614};
6615
67516844
JO
6616static int perf_event_mmap_match(struct perf_event *event,
6617 void *data)
6618{
6619 struct perf_mmap_event *mmap_event = data;
6620 struct vm_area_struct *vma = mmap_event->vma;
6621 int executable = vma->vm_flags & VM_EXEC;
6622
6623 return (!executable && event->attr.mmap_data) ||
13d7a241 6624 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6625}
6626
cdd6c482 6627static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6628 void *data)
0a4a9391 6629{
52d857a8 6630 struct perf_mmap_event *mmap_event = data;
0a4a9391 6631 struct perf_output_handle handle;
c980d109 6632 struct perf_sample_data sample;
cdd6c482 6633 int size = mmap_event->event_id.header.size;
c980d109 6634 int ret;
0a4a9391 6635
67516844
JO
6636 if (!perf_event_mmap_match(event, data))
6637 return;
6638
13d7a241
SE
6639 if (event->attr.mmap2) {
6640 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6641 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6642 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6643 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6644 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6645 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6646 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6647 }
6648
c980d109
ACM
6649 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6650 ret = perf_output_begin(&handle, event,
a7ac67ea 6651 mmap_event->event_id.header.size);
0a4a9391 6652 if (ret)
c980d109 6653 goto out;
0a4a9391 6654
cdd6c482
IM
6655 mmap_event->event_id.pid = perf_event_pid(event, current);
6656 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6657
cdd6c482 6658 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6659
6660 if (event->attr.mmap2) {
6661 perf_output_put(&handle, mmap_event->maj);
6662 perf_output_put(&handle, mmap_event->min);
6663 perf_output_put(&handle, mmap_event->ino);
6664 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6665 perf_output_put(&handle, mmap_event->prot);
6666 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6667 }
6668
76369139 6669 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6670 mmap_event->file_size);
c980d109
ACM
6671
6672 perf_event__output_id_sample(event, &handle, &sample);
6673
78d613eb 6674 perf_output_end(&handle);
c980d109
ACM
6675out:
6676 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6677}
6678
cdd6c482 6679static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6680{
089dd79d
PZ
6681 struct vm_area_struct *vma = mmap_event->vma;
6682 struct file *file = vma->vm_file;
13d7a241
SE
6683 int maj = 0, min = 0;
6684 u64 ino = 0, gen = 0;
f972eb63 6685 u32 prot = 0, flags = 0;
0a4a9391
PZ
6686 unsigned int size;
6687 char tmp[16];
6688 char *buf = NULL;
2c42cfbf 6689 char *name;
413ee3b4 6690
0b3589be
PZ
6691 if (vma->vm_flags & VM_READ)
6692 prot |= PROT_READ;
6693 if (vma->vm_flags & VM_WRITE)
6694 prot |= PROT_WRITE;
6695 if (vma->vm_flags & VM_EXEC)
6696 prot |= PROT_EXEC;
6697
6698 if (vma->vm_flags & VM_MAYSHARE)
6699 flags = MAP_SHARED;
6700 else
6701 flags = MAP_PRIVATE;
6702
6703 if (vma->vm_flags & VM_DENYWRITE)
6704 flags |= MAP_DENYWRITE;
6705 if (vma->vm_flags & VM_MAYEXEC)
6706 flags |= MAP_EXECUTABLE;
6707 if (vma->vm_flags & VM_LOCKED)
6708 flags |= MAP_LOCKED;
6709 if (vma->vm_flags & VM_HUGETLB)
6710 flags |= MAP_HUGETLB;
6711
0a4a9391 6712 if (file) {
13d7a241
SE
6713 struct inode *inode;
6714 dev_t dev;
3ea2f2b9 6715
2c42cfbf 6716 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6717 if (!buf) {
c7e548b4
ON
6718 name = "//enomem";
6719 goto cpy_name;
0a4a9391 6720 }
413ee3b4 6721 /*
3ea2f2b9 6722 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6723 * need to add enough zero bytes after the string to handle
6724 * the 64bit alignment we do later.
6725 */
9bf39ab2 6726 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6727 if (IS_ERR(name)) {
c7e548b4
ON
6728 name = "//toolong";
6729 goto cpy_name;
0a4a9391 6730 }
13d7a241
SE
6731 inode = file_inode(vma->vm_file);
6732 dev = inode->i_sb->s_dev;
6733 ino = inode->i_ino;
6734 gen = inode->i_generation;
6735 maj = MAJOR(dev);
6736 min = MINOR(dev);
f972eb63 6737
c7e548b4 6738 goto got_name;
0a4a9391 6739 } else {
fbe26abe
JO
6740 if (vma->vm_ops && vma->vm_ops->name) {
6741 name = (char *) vma->vm_ops->name(vma);
6742 if (name)
6743 goto cpy_name;
6744 }
6745
2c42cfbf 6746 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6747 if (name)
6748 goto cpy_name;
089dd79d 6749
32c5fb7e 6750 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6751 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6752 name = "[heap]";
6753 goto cpy_name;
32c5fb7e
ON
6754 }
6755 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6756 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6757 name = "[stack]";
6758 goto cpy_name;
089dd79d
PZ
6759 }
6760
c7e548b4
ON
6761 name = "//anon";
6762 goto cpy_name;
0a4a9391
PZ
6763 }
6764
c7e548b4
ON
6765cpy_name:
6766 strlcpy(tmp, name, sizeof(tmp));
6767 name = tmp;
0a4a9391 6768got_name:
2c42cfbf
PZ
6769 /*
6770 * Since our buffer works in 8 byte units we need to align our string
6771 * size to a multiple of 8. However, we must guarantee the tail end is
6772 * zero'd out to avoid leaking random bits to userspace.
6773 */
6774 size = strlen(name)+1;
6775 while (!IS_ALIGNED(size, sizeof(u64)))
6776 name[size++] = '\0';
0a4a9391
PZ
6777
6778 mmap_event->file_name = name;
6779 mmap_event->file_size = size;
13d7a241
SE
6780 mmap_event->maj = maj;
6781 mmap_event->min = min;
6782 mmap_event->ino = ino;
6783 mmap_event->ino_generation = gen;
f972eb63
PZ
6784 mmap_event->prot = prot;
6785 mmap_event->flags = flags;
0a4a9391 6786
2fe85427
SE
6787 if (!(vma->vm_flags & VM_EXEC))
6788 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6789
cdd6c482 6790 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6791
aab5b71e 6792 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6793 mmap_event,
6794 NULL);
665c2142 6795
0a4a9391
PZ
6796 kfree(buf);
6797}
6798
375637bc
AS
6799/*
6800 * Check whether inode and address range match filter criteria.
6801 */
6802static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6803 struct file *file, unsigned long offset,
6804 unsigned long size)
6805{
45063097 6806 if (filter->inode != file_inode(file))
375637bc
AS
6807 return false;
6808
6809 if (filter->offset > offset + size)
6810 return false;
6811
6812 if (filter->offset + filter->size < offset)
6813 return false;
6814
6815 return true;
6816}
6817
6818static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6819{
6820 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6821 struct vm_area_struct *vma = data;
6822 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6823 struct file *file = vma->vm_file;
6824 struct perf_addr_filter *filter;
6825 unsigned int restart = 0, count = 0;
6826
6827 if (!has_addr_filter(event))
6828 return;
6829
6830 if (!file)
6831 return;
6832
6833 raw_spin_lock_irqsave(&ifh->lock, flags);
6834 list_for_each_entry(filter, &ifh->list, entry) {
6835 if (perf_addr_filter_match(filter, file, off,
6836 vma->vm_end - vma->vm_start)) {
6837 event->addr_filters_offs[count] = vma->vm_start;
6838 restart++;
6839 }
6840
6841 count++;
6842 }
6843
6844 if (restart)
6845 event->addr_filters_gen++;
6846 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6847
6848 if (restart)
767ae086 6849 perf_event_stop(event, 1);
375637bc
AS
6850}
6851
6852/*
6853 * Adjust all task's events' filters to the new vma
6854 */
6855static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6856{
6857 struct perf_event_context *ctx;
6858 int ctxn;
6859
12b40a23
MP
6860 /*
6861 * Data tracing isn't supported yet and as such there is no need
6862 * to keep track of anything that isn't related to executable code:
6863 */
6864 if (!(vma->vm_flags & VM_EXEC))
6865 return;
6866
375637bc
AS
6867 rcu_read_lock();
6868 for_each_task_context_nr(ctxn) {
6869 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6870 if (!ctx)
6871 continue;
6872
aab5b71e 6873 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6874 }
6875 rcu_read_unlock();
6876}
6877
3af9e859 6878void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6879{
9ee318a7
PZ
6880 struct perf_mmap_event mmap_event;
6881
cdd6c482 6882 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6883 return;
6884
6885 mmap_event = (struct perf_mmap_event){
089dd79d 6886 .vma = vma,
573402db
PZ
6887 /* .file_name */
6888 /* .file_size */
cdd6c482 6889 .event_id = {
573402db 6890 .header = {
cdd6c482 6891 .type = PERF_RECORD_MMAP,
39447b38 6892 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6893 /* .size */
6894 },
6895 /* .pid */
6896 /* .tid */
089dd79d
PZ
6897 .start = vma->vm_start,
6898 .len = vma->vm_end - vma->vm_start,
3a0304e9 6899 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6900 },
13d7a241
SE
6901 /* .maj (attr_mmap2 only) */
6902 /* .min (attr_mmap2 only) */
6903 /* .ino (attr_mmap2 only) */
6904 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6905 /* .prot (attr_mmap2 only) */
6906 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6907 };
6908
375637bc 6909 perf_addr_filters_adjust(vma);
cdd6c482 6910 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6911}
6912
68db7e98
AS
6913void perf_event_aux_event(struct perf_event *event, unsigned long head,
6914 unsigned long size, u64 flags)
6915{
6916 struct perf_output_handle handle;
6917 struct perf_sample_data sample;
6918 struct perf_aux_event {
6919 struct perf_event_header header;
6920 u64 offset;
6921 u64 size;
6922 u64 flags;
6923 } rec = {
6924 .header = {
6925 .type = PERF_RECORD_AUX,
6926 .misc = 0,
6927 .size = sizeof(rec),
6928 },
6929 .offset = head,
6930 .size = size,
6931 .flags = flags,
6932 };
6933 int ret;
6934
6935 perf_event_header__init_id(&rec.header, &sample, event);
6936 ret = perf_output_begin(&handle, event, rec.header.size);
6937
6938 if (ret)
6939 return;
6940
6941 perf_output_put(&handle, rec);
6942 perf_event__output_id_sample(event, &handle, &sample);
6943
6944 perf_output_end(&handle);
6945}
6946
f38b0dbb
KL
6947/*
6948 * Lost/dropped samples logging
6949 */
6950void perf_log_lost_samples(struct perf_event *event, u64 lost)
6951{
6952 struct perf_output_handle handle;
6953 struct perf_sample_data sample;
6954 int ret;
6955
6956 struct {
6957 struct perf_event_header header;
6958 u64 lost;
6959 } lost_samples_event = {
6960 .header = {
6961 .type = PERF_RECORD_LOST_SAMPLES,
6962 .misc = 0,
6963 .size = sizeof(lost_samples_event),
6964 },
6965 .lost = lost,
6966 };
6967
6968 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6969
6970 ret = perf_output_begin(&handle, event,
6971 lost_samples_event.header.size);
6972 if (ret)
6973 return;
6974
6975 perf_output_put(&handle, lost_samples_event);
6976 perf_event__output_id_sample(event, &handle, &sample);
6977 perf_output_end(&handle);
6978}
6979
45ac1403
AH
6980/*
6981 * context_switch tracking
6982 */
6983
6984struct perf_switch_event {
6985 struct task_struct *task;
6986 struct task_struct *next_prev;
6987
6988 struct {
6989 struct perf_event_header header;
6990 u32 next_prev_pid;
6991 u32 next_prev_tid;
6992 } event_id;
6993};
6994
6995static int perf_event_switch_match(struct perf_event *event)
6996{
6997 return event->attr.context_switch;
6998}
6999
7000static void perf_event_switch_output(struct perf_event *event, void *data)
7001{
7002 struct perf_switch_event *se = data;
7003 struct perf_output_handle handle;
7004 struct perf_sample_data sample;
7005 int ret;
7006
7007 if (!perf_event_switch_match(event))
7008 return;
7009
7010 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7011 if (event->ctx->task) {
7012 se->event_id.header.type = PERF_RECORD_SWITCH;
7013 se->event_id.header.size = sizeof(se->event_id.header);
7014 } else {
7015 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7016 se->event_id.header.size = sizeof(se->event_id);
7017 se->event_id.next_prev_pid =
7018 perf_event_pid(event, se->next_prev);
7019 se->event_id.next_prev_tid =
7020 perf_event_tid(event, se->next_prev);
7021 }
7022
7023 perf_event_header__init_id(&se->event_id.header, &sample, event);
7024
7025 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7026 if (ret)
7027 return;
7028
7029 if (event->ctx->task)
7030 perf_output_put(&handle, se->event_id.header);
7031 else
7032 perf_output_put(&handle, se->event_id);
7033
7034 perf_event__output_id_sample(event, &handle, &sample);
7035
7036 perf_output_end(&handle);
7037}
7038
7039static void perf_event_switch(struct task_struct *task,
7040 struct task_struct *next_prev, bool sched_in)
7041{
7042 struct perf_switch_event switch_event;
7043
7044 /* N.B. caller checks nr_switch_events != 0 */
7045
7046 switch_event = (struct perf_switch_event){
7047 .task = task,
7048 .next_prev = next_prev,
7049 .event_id = {
7050 .header = {
7051 /* .type */
7052 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7053 /* .size */
7054 },
7055 /* .next_prev_pid */
7056 /* .next_prev_tid */
7057 },
7058 };
7059
aab5b71e 7060 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7061 &switch_event,
7062 NULL);
7063}
7064
a78ac325
PZ
7065/*
7066 * IRQ throttle logging
7067 */
7068
cdd6c482 7069static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7070{
7071 struct perf_output_handle handle;
c980d109 7072 struct perf_sample_data sample;
a78ac325
PZ
7073 int ret;
7074
7075 struct {
7076 struct perf_event_header header;
7077 u64 time;
cca3f454 7078 u64 id;
7f453c24 7079 u64 stream_id;
a78ac325
PZ
7080 } throttle_event = {
7081 .header = {
cdd6c482 7082 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7083 .misc = 0,
7084 .size = sizeof(throttle_event),
7085 },
34f43927 7086 .time = perf_event_clock(event),
cdd6c482
IM
7087 .id = primary_event_id(event),
7088 .stream_id = event->id,
a78ac325
PZ
7089 };
7090
966ee4d6 7091 if (enable)
cdd6c482 7092 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7093
c980d109
ACM
7094 perf_event_header__init_id(&throttle_event.header, &sample, event);
7095
7096 ret = perf_output_begin(&handle, event,
a7ac67ea 7097 throttle_event.header.size);
a78ac325
PZ
7098 if (ret)
7099 return;
7100
7101 perf_output_put(&handle, throttle_event);
c980d109 7102 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7103 perf_output_end(&handle);
7104}
7105
ec0d7729
AS
7106static void perf_log_itrace_start(struct perf_event *event)
7107{
7108 struct perf_output_handle handle;
7109 struct perf_sample_data sample;
7110 struct perf_aux_event {
7111 struct perf_event_header header;
7112 u32 pid;
7113 u32 tid;
7114 } rec;
7115 int ret;
7116
7117 if (event->parent)
7118 event = event->parent;
7119
7120 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7121 event->hw.itrace_started)
7122 return;
7123
ec0d7729
AS
7124 rec.header.type = PERF_RECORD_ITRACE_START;
7125 rec.header.misc = 0;
7126 rec.header.size = sizeof(rec);
7127 rec.pid = perf_event_pid(event, current);
7128 rec.tid = perf_event_tid(event, current);
7129
7130 perf_event_header__init_id(&rec.header, &sample, event);
7131 ret = perf_output_begin(&handle, event, rec.header.size);
7132
7133 if (ret)
7134 return;
7135
7136 perf_output_put(&handle, rec);
7137 perf_event__output_id_sample(event, &handle, &sample);
7138
7139 perf_output_end(&handle);
7140}
7141
475113d9
JO
7142static int
7143__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7144{
cdd6c482 7145 struct hw_perf_event *hwc = &event->hw;
79f14641 7146 int ret = 0;
475113d9 7147 u64 seq;
96398826 7148
e050e3f0
SE
7149 seq = __this_cpu_read(perf_throttled_seq);
7150 if (seq != hwc->interrupts_seq) {
7151 hwc->interrupts_seq = seq;
7152 hwc->interrupts = 1;
7153 } else {
7154 hwc->interrupts++;
7155 if (unlikely(throttle
7156 && hwc->interrupts >= max_samples_per_tick)) {
7157 __this_cpu_inc(perf_throttled_count);
555e0c1e 7158 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7159 hwc->interrupts = MAX_INTERRUPTS;
7160 perf_log_throttle(event, 0);
a78ac325
PZ
7161 ret = 1;
7162 }
e050e3f0 7163 }
60db5e09 7164
cdd6c482 7165 if (event->attr.freq) {
def0a9b2 7166 u64 now = perf_clock();
abd50713 7167 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7168
abd50713 7169 hwc->freq_time_stamp = now;
bd2b5b12 7170
abd50713 7171 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7172 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7173 }
7174
475113d9
JO
7175 return ret;
7176}
7177
7178int perf_event_account_interrupt(struct perf_event *event)
7179{
7180 return __perf_event_account_interrupt(event, 1);
7181}
7182
7183/*
7184 * Generic event overflow handling, sampling.
7185 */
7186
7187static int __perf_event_overflow(struct perf_event *event,
7188 int throttle, struct perf_sample_data *data,
7189 struct pt_regs *regs)
7190{
7191 int events = atomic_read(&event->event_limit);
7192 int ret = 0;
7193
7194 /*
7195 * Non-sampling counters might still use the PMI to fold short
7196 * hardware counters, ignore those.
7197 */
7198 if (unlikely(!is_sampling_event(event)))
7199 return 0;
7200
7201 ret = __perf_event_account_interrupt(event, throttle);
7202
2023b359
PZ
7203 /*
7204 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7205 * events
2023b359
PZ
7206 */
7207
cdd6c482
IM
7208 event->pending_kill = POLL_IN;
7209 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7210 ret = 1;
cdd6c482 7211 event->pending_kill = POLL_HUP;
5aab90ce
JO
7212
7213 perf_event_disable_inatomic(event);
79f14641
PZ
7214 }
7215
aa6a5f3c 7216 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7217
fed66e2c 7218 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7219 event->pending_wakeup = 1;
7220 irq_work_queue(&event->pending);
f506b3dc
PZ
7221 }
7222
79f14641 7223 return ret;
f6c7d5fe
PZ
7224}
7225
a8b0ca17 7226int perf_event_overflow(struct perf_event *event,
5622f295
MM
7227 struct perf_sample_data *data,
7228 struct pt_regs *regs)
850bc73f 7229{
a8b0ca17 7230 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7231}
7232
15dbf27c 7233/*
cdd6c482 7234 * Generic software event infrastructure
15dbf27c
PZ
7235 */
7236
b28ab83c
PZ
7237struct swevent_htable {
7238 struct swevent_hlist *swevent_hlist;
7239 struct mutex hlist_mutex;
7240 int hlist_refcount;
7241
7242 /* Recursion avoidance in each contexts */
7243 int recursion[PERF_NR_CONTEXTS];
7244};
7245
7246static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7247
7b4b6658 7248/*
cdd6c482
IM
7249 * We directly increment event->count and keep a second value in
7250 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7251 * is kept in the range [-sample_period, 0] so that we can use the
7252 * sign as trigger.
7253 */
7254
ab573844 7255u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7256{
cdd6c482 7257 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7258 u64 period = hwc->last_period;
7259 u64 nr, offset;
7260 s64 old, val;
7261
7262 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7263
7264again:
e7850595 7265 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7266 if (val < 0)
7267 return 0;
15dbf27c 7268
7b4b6658
PZ
7269 nr = div64_u64(period + val, period);
7270 offset = nr * period;
7271 val -= offset;
e7850595 7272 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7273 goto again;
15dbf27c 7274
7b4b6658 7275 return nr;
15dbf27c
PZ
7276}
7277
0cff784a 7278static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7279 struct perf_sample_data *data,
5622f295 7280 struct pt_regs *regs)
15dbf27c 7281{
cdd6c482 7282 struct hw_perf_event *hwc = &event->hw;
850bc73f 7283 int throttle = 0;
15dbf27c 7284
0cff784a
PZ
7285 if (!overflow)
7286 overflow = perf_swevent_set_period(event);
15dbf27c 7287
7b4b6658
PZ
7288 if (hwc->interrupts == MAX_INTERRUPTS)
7289 return;
15dbf27c 7290
7b4b6658 7291 for (; overflow; overflow--) {
a8b0ca17 7292 if (__perf_event_overflow(event, throttle,
5622f295 7293 data, regs)) {
7b4b6658
PZ
7294 /*
7295 * We inhibit the overflow from happening when
7296 * hwc->interrupts == MAX_INTERRUPTS.
7297 */
7298 break;
7299 }
cf450a73 7300 throttle = 1;
7b4b6658 7301 }
15dbf27c
PZ
7302}
7303
a4eaf7f1 7304static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7305 struct perf_sample_data *data,
5622f295 7306 struct pt_regs *regs)
7b4b6658 7307{
cdd6c482 7308 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7309
e7850595 7310 local64_add(nr, &event->count);
d6d020e9 7311
0cff784a
PZ
7312 if (!regs)
7313 return;
7314
6c7e550f 7315 if (!is_sampling_event(event))
7b4b6658 7316 return;
d6d020e9 7317
5d81e5cf
AV
7318 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7319 data->period = nr;
7320 return perf_swevent_overflow(event, 1, data, regs);
7321 } else
7322 data->period = event->hw.last_period;
7323
0cff784a 7324 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7325 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7326
e7850595 7327 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7328 return;
df1a132b 7329
a8b0ca17 7330 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7331}
7332
f5ffe02e
FW
7333static int perf_exclude_event(struct perf_event *event,
7334 struct pt_regs *regs)
7335{
a4eaf7f1 7336 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7337 return 1;
a4eaf7f1 7338
f5ffe02e
FW
7339 if (regs) {
7340 if (event->attr.exclude_user && user_mode(regs))
7341 return 1;
7342
7343 if (event->attr.exclude_kernel && !user_mode(regs))
7344 return 1;
7345 }
7346
7347 return 0;
7348}
7349
cdd6c482 7350static int perf_swevent_match(struct perf_event *event,
1c432d89 7351 enum perf_type_id type,
6fb2915d
LZ
7352 u32 event_id,
7353 struct perf_sample_data *data,
7354 struct pt_regs *regs)
15dbf27c 7355{
cdd6c482 7356 if (event->attr.type != type)
a21ca2ca 7357 return 0;
f5ffe02e 7358
cdd6c482 7359 if (event->attr.config != event_id)
15dbf27c
PZ
7360 return 0;
7361
f5ffe02e
FW
7362 if (perf_exclude_event(event, regs))
7363 return 0;
15dbf27c
PZ
7364
7365 return 1;
7366}
7367
76e1d904
FW
7368static inline u64 swevent_hash(u64 type, u32 event_id)
7369{
7370 u64 val = event_id | (type << 32);
7371
7372 return hash_64(val, SWEVENT_HLIST_BITS);
7373}
7374
49f135ed
FW
7375static inline struct hlist_head *
7376__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7377{
49f135ed
FW
7378 u64 hash = swevent_hash(type, event_id);
7379
7380 return &hlist->heads[hash];
7381}
76e1d904 7382
49f135ed
FW
7383/* For the read side: events when they trigger */
7384static inline struct hlist_head *
b28ab83c 7385find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7386{
7387 struct swevent_hlist *hlist;
76e1d904 7388
b28ab83c 7389 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7390 if (!hlist)
7391 return NULL;
7392
49f135ed
FW
7393 return __find_swevent_head(hlist, type, event_id);
7394}
7395
7396/* For the event head insertion and removal in the hlist */
7397static inline struct hlist_head *
b28ab83c 7398find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7399{
7400 struct swevent_hlist *hlist;
7401 u32 event_id = event->attr.config;
7402 u64 type = event->attr.type;
7403
7404 /*
7405 * Event scheduling is always serialized against hlist allocation
7406 * and release. Which makes the protected version suitable here.
7407 * The context lock guarantees that.
7408 */
b28ab83c 7409 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7410 lockdep_is_held(&event->ctx->lock));
7411 if (!hlist)
7412 return NULL;
7413
7414 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7415}
7416
7417static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7418 u64 nr,
76e1d904
FW
7419 struct perf_sample_data *data,
7420 struct pt_regs *regs)
15dbf27c 7421{
4a32fea9 7422 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7423 struct perf_event *event;
76e1d904 7424 struct hlist_head *head;
15dbf27c 7425
76e1d904 7426 rcu_read_lock();
b28ab83c 7427 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7428 if (!head)
7429 goto end;
7430
b67bfe0d 7431 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7432 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7433 perf_swevent_event(event, nr, data, regs);
15dbf27c 7434 }
76e1d904
FW
7435end:
7436 rcu_read_unlock();
15dbf27c
PZ
7437}
7438
86038c5e
PZI
7439DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7440
4ed7c92d 7441int perf_swevent_get_recursion_context(void)
96f6d444 7442{
4a32fea9 7443 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7444
b28ab83c 7445 return get_recursion_context(swhash->recursion);
96f6d444 7446}
645e8cc0 7447EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7448
98b5c2c6 7449void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7450{
4a32fea9 7451 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7452
b28ab83c 7453 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7454}
15dbf27c 7455
86038c5e 7456void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7457{
a4234bfc 7458 struct perf_sample_data data;
4ed7c92d 7459
86038c5e 7460 if (WARN_ON_ONCE(!regs))
4ed7c92d 7461 return;
a4234bfc 7462
fd0d000b 7463 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7464 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7465}
7466
7467void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7468{
7469 int rctx;
7470
7471 preempt_disable_notrace();
7472 rctx = perf_swevent_get_recursion_context();
7473 if (unlikely(rctx < 0))
7474 goto fail;
7475
7476 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7477
7478 perf_swevent_put_recursion_context(rctx);
86038c5e 7479fail:
1c024eca 7480 preempt_enable_notrace();
b8e83514
PZ
7481}
7482
cdd6c482 7483static void perf_swevent_read(struct perf_event *event)
15dbf27c 7484{
15dbf27c
PZ
7485}
7486
a4eaf7f1 7487static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7488{
4a32fea9 7489 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7490 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7491 struct hlist_head *head;
7492
6c7e550f 7493 if (is_sampling_event(event)) {
7b4b6658 7494 hwc->last_period = hwc->sample_period;
cdd6c482 7495 perf_swevent_set_period(event);
7b4b6658 7496 }
76e1d904 7497
a4eaf7f1
PZ
7498 hwc->state = !(flags & PERF_EF_START);
7499
b28ab83c 7500 head = find_swevent_head(swhash, event);
12ca6ad2 7501 if (WARN_ON_ONCE(!head))
76e1d904
FW
7502 return -EINVAL;
7503
7504 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7505 perf_event_update_userpage(event);
76e1d904 7506
15dbf27c
PZ
7507 return 0;
7508}
7509
a4eaf7f1 7510static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7511{
76e1d904 7512 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7513}
7514
a4eaf7f1 7515static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7516{
a4eaf7f1 7517 event->hw.state = 0;
d6d020e9 7518}
aa9c4c0f 7519
a4eaf7f1 7520static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7521{
a4eaf7f1 7522 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7523}
7524
49f135ed
FW
7525/* Deref the hlist from the update side */
7526static inline struct swevent_hlist *
b28ab83c 7527swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7528{
b28ab83c
PZ
7529 return rcu_dereference_protected(swhash->swevent_hlist,
7530 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7531}
7532
b28ab83c 7533static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7534{
b28ab83c 7535 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7536
49f135ed 7537 if (!hlist)
76e1d904
FW
7538 return;
7539
70691d4a 7540 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7541 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7542}
7543
3b364d7b 7544static void swevent_hlist_put_cpu(int cpu)
76e1d904 7545{
b28ab83c 7546 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7547
b28ab83c 7548 mutex_lock(&swhash->hlist_mutex);
76e1d904 7549
b28ab83c
PZ
7550 if (!--swhash->hlist_refcount)
7551 swevent_hlist_release(swhash);
76e1d904 7552
b28ab83c 7553 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7554}
7555
3b364d7b 7556static void swevent_hlist_put(void)
76e1d904
FW
7557{
7558 int cpu;
7559
76e1d904 7560 for_each_possible_cpu(cpu)
3b364d7b 7561 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7562}
7563
3b364d7b 7564static int swevent_hlist_get_cpu(int cpu)
76e1d904 7565{
b28ab83c 7566 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7567 int err = 0;
7568
b28ab83c 7569 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7570 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7571 struct swevent_hlist *hlist;
7572
7573 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7574 if (!hlist) {
7575 err = -ENOMEM;
7576 goto exit;
7577 }
b28ab83c 7578 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7579 }
b28ab83c 7580 swhash->hlist_refcount++;
9ed6060d 7581exit:
b28ab83c 7582 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7583
7584 return err;
7585}
7586
3b364d7b 7587static int swevent_hlist_get(void)
76e1d904 7588{
3b364d7b 7589 int err, cpu, failed_cpu;
76e1d904 7590
76e1d904
FW
7591 get_online_cpus();
7592 for_each_possible_cpu(cpu) {
3b364d7b 7593 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7594 if (err) {
7595 failed_cpu = cpu;
7596 goto fail;
7597 }
7598 }
7599 put_online_cpus();
7600
7601 return 0;
9ed6060d 7602fail:
76e1d904
FW
7603 for_each_possible_cpu(cpu) {
7604 if (cpu == failed_cpu)
7605 break;
3b364d7b 7606 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7607 }
7608
7609 put_online_cpus();
7610 return err;
7611}
7612
c5905afb 7613struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7614
b0a873eb
PZ
7615static void sw_perf_event_destroy(struct perf_event *event)
7616{
7617 u64 event_id = event->attr.config;
95476b64 7618
b0a873eb
PZ
7619 WARN_ON(event->parent);
7620
c5905afb 7621 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7622 swevent_hlist_put();
b0a873eb
PZ
7623}
7624
7625static int perf_swevent_init(struct perf_event *event)
7626{
8176cced 7627 u64 event_id = event->attr.config;
b0a873eb
PZ
7628
7629 if (event->attr.type != PERF_TYPE_SOFTWARE)
7630 return -ENOENT;
7631
2481c5fa
SE
7632 /*
7633 * no branch sampling for software events
7634 */
7635 if (has_branch_stack(event))
7636 return -EOPNOTSUPP;
7637
b0a873eb
PZ
7638 switch (event_id) {
7639 case PERF_COUNT_SW_CPU_CLOCK:
7640 case PERF_COUNT_SW_TASK_CLOCK:
7641 return -ENOENT;
7642
7643 default:
7644 break;
7645 }
7646
ce677831 7647 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7648 return -ENOENT;
7649
7650 if (!event->parent) {
7651 int err;
7652
3b364d7b 7653 err = swevent_hlist_get();
b0a873eb
PZ
7654 if (err)
7655 return err;
7656
c5905afb 7657 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7658 event->destroy = sw_perf_event_destroy;
7659 }
7660
7661 return 0;
7662}
7663
7664static struct pmu perf_swevent = {
89a1e187 7665 .task_ctx_nr = perf_sw_context,
95476b64 7666
34f43927
PZ
7667 .capabilities = PERF_PMU_CAP_NO_NMI,
7668
b0a873eb 7669 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7670 .add = perf_swevent_add,
7671 .del = perf_swevent_del,
7672 .start = perf_swevent_start,
7673 .stop = perf_swevent_stop,
1c024eca 7674 .read = perf_swevent_read,
1c024eca
PZ
7675};
7676
b0a873eb
PZ
7677#ifdef CONFIG_EVENT_TRACING
7678
1c024eca
PZ
7679static int perf_tp_filter_match(struct perf_event *event,
7680 struct perf_sample_data *data)
7681{
7e3f977e 7682 void *record = data->raw->frag.data;
1c024eca 7683
b71b437e
PZ
7684 /* only top level events have filters set */
7685 if (event->parent)
7686 event = event->parent;
7687
1c024eca
PZ
7688 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7689 return 1;
7690 return 0;
7691}
7692
7693static int perf_tp_event_match(struct perf_event *event,
7694 struct perf_sample_data *data,
7695 struct pt_regs *regs)
7696{
a0f7d0f7
FW
7697 if (event->hw.state & PERF_HES_STOPPED)
7698 return 0;
580d607c
PZ
7699 /*
7700 * All tracepoints are from kernel-space.
7701 */
7702 if (event->attr.exclude_kernel)
1c024eca
PZ
7703 return 0;
7704
7705 if (!perf_tp_filter_match(event, data))
7706 return 0;
7707
7708 return 1;
7709}
7710
85b67bcb
AS
7711void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7712 struct trace_event_call *call, u64 count,
7713 struct pt_regs *regs, struct hlist_head *head,
7714 struct task_struct *task)
7715{
7716 struct bpf_prog *prog = call->prog;
7717
7718 if (prog) {
7719 *(struct pt_regs **)raw_data = regs;
7720 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7721 perf_swevent_put_recursion_context(rctx);
7722 return;
7723 }
7724 }
7725 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7726 rctx, task);
7727}
7728EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7729
1e1dcd93 7730void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7731 struct pt_regs *regs, struct hlist_head *head, int rctx,
7732 struct task_struct *task)
95476b64
FW
7733{
7734 struct perf_sample_data data;
1c024eca 7735 struct perf_event *event;
1c024eca 7736
95476b64 7737 struct perf_raw_record raw = {
7e3f977e
DB
7738 .frag = {
7739 .size = entry_size,
7740 .data = record,
7741 },
95476b64
FW
7742 };
7743
1e1dcd93 7744 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7745 data.raw = &raw;
7746
1e1dcd93
AS
7747 perf_trace_buf_update(record, event_type);
7748
b67bfe0d 7749 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7750 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7751 perf_swevent_event(event, count, &data, regs);
4f41c013 7752 }
ecc55f84 7753
e6dab5ff
AV
7754 /*
7755 * If we got specified a target task, also iterate its context and
7756 * deliver this event there too.
7757 */
7758 if (task && task != current) {
7759 struct perf_event_context *ctx;
7760 struct trace_entry *entry = record;
7761
7762 rcu_read_lock();
7763 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7764 if (!ctx)
7765 goto unlock;
7766
7767 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7768 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7769 continue;
7770 if (event->attr.config != entry->type)
7771 continue;
7772 if (perf_tp_event_match(event, &data, regs))
7773 perf_swevent_event(event, count, &data, regs);
7774 }
7775unlock:
7776 rcu_read_unlock();
7777 }
7778
ecc55f84 7779 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7780}
7781EXPORT_SYMBOL_GPL(perf_tp_event);
7782
cdd6c482 7783static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7784{
1c024eca 7785 perf_trace_destroy(event);
e077df4f
PZ
7786}
7787
b0a873eb 7788static int perf_tp_event_init(struct perf_event *event)
e077df4f 7789{
76e1d904
FW
7790 int err;
7791
b0a873eb
PZ
7792 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7793 return -ENOENT;
7794
2481c5fa
SE
7795 /*
7796 * no branch sampling for tracepoint events
7797 */
7798 if (has_branch_stack(event))
7799 return -EOPNOTSUPP;
7800
1c024eca
PZ
7801 err = perf_trace_init(event);
7802 if (err)
b0a873eb 7803 return err;
e077df4f 7804
cdd6c482 7805 event->destroy = tp_perf_event_destroy;
e077df4f 7806
b0a873eb
PZ
7807 return 0;
7808}
7809
7810static struct pmu perf_tracepoint = {
89a1e187
PZ
7811 .task_ctx_nr = perf_sw_context,
7812
b0a873eb 7813 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7814 .add = perf_trace_add,
7815 .del = perf_trace_del,
7816 .start = perf_swevent_start,
7817 .stop = perf_swevent_stop,
b0a873eb 7818 .read = perf_swevent_read,
b0a873eb
PZ
7819};
7820
7821static inline void perf_tp_register(void)
7822{
2e80a82a 7823 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7824}
6fb2915d 7825
6fb2915d
LZ
7826static void perf_event_free_filter(struct perf_event *event)
7827{
7828 ftrace_profile_free_filter(event);
7829}
7830
aa6a5f3c
AS
7831#ifdef CONFIG_BPF_SYSCALL
7832static void bpf_overflow_handler(struct perf_event *event,
7833 struct perf_sample_data *data,
7834 struct pt_regs *regs)
7835{
7836 struct bpf_perf_event_data_kern ctx = {
7837 .data = data,
7838 .regs = regs,
7839 };
7840 int ret = 0;
7841
7842 preempt_disable();
7843 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7844 goto out;
7845 rcu_read_lock();
88575199 7846 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7847 rcu_read_unlock();
7848out:
7849 __this_cpu_dec(bpf_prog_active);
7850 preempt_enable();
7851 if (!ret)
7852 return;
7853
7854 event->orig_overflow_handler(event, data, regs);
7855}
7856
7857static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7858{
7859 struct bpf_prog *prog;
7860
7861 if (event->overflow_handler_context)
7862 /* hw breakpoint or kernel counter */
7863 return -EINVAL;
7864
7865 if (event->prog)
7866 return -EEXIST;
7867
7868 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7869 if (IS_ERR(prog))
7870 return PTR_ERR(prog);
7871
7872 event->prog = prog;
7873 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7874 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7875 return 0;
7876}
7877
7878static void perf_event_free_bpf_handler(struct perf_event *event)
7879{
7880 struct bpf_prog *prog = event->prog;
7881
7882 if (!prog)
7883 return;
7884
7885 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7886 event->prog = NULL;
7887 bpf_prog_put(prog);
7888}
7889#else
7890static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7891{
7892 return -EOPNOTSUPP;
7893}
7894static void perf_event_free_bpf_handler(struct perf_event *event)
7895{
7896}
7897#endif
7898
2541517c
AS
7899static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7900{
98b5c2c6 7901 bool is_kprobe, is_tracepoint;
2541517c
AS
7902 struct bpf_prog *prog;
7903
aa6a5f3c
AS
7904 if (event->attr.type == PERF_TYPE_HARDWARE ||
7905 event->attr.type == PERF_TYPE_SOFTWARE)
7906 return perf_event_set_bpf_handler(event, prog_fd);
7907
2541517c
AS
7908 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7909 return -EINVAL;
7910
7911 if (event->tp_event->prog)
7912 return -EEXIST;
7913
98b5c2c6
AS
7914 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7915 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7916 if (!is_kprobe && !is_tracepoint)
7917 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7918 return -EINVAL;
7919
7920 prog = bpf_prog_get(prog_fd);
7921 if (IS_ERR(prog))
7922 return PTR_ERR(prog);
7923
98b5c2c6
AS
7924 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7925 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7926 /* valid fd, but invalid bpf program type */
7927 bpf_prog_put(prog);
7928 return -EINVAL;
7929 }
7930
32bbe007
AS
7931 if (is_tracepoint) {
7932 int off = trace_event_get_offsets(event->tp_event);
7933
7934 if (prog->aux->max_ctx_offset > off) {
7935 bpf_prog_put(prog);
7936 return -EACCES;
7937 }
7938 }
2541517c
AS
7939 event->tp_event->prog = prog;
7940
7941 return 0;
7942}
7943
7944static void perf_event_free_bpf_prog(struct perf_event *event)
7945{
7946 struct bpf_prog *prog;
7947
aa6a5f3c
AS
7948 perf_event_free_bpf_handler(event);
7949
2541517c
AS
7950 if (!event->tp_event)
7951 return;
7952
7953 prog = event->tp_event->prog;
7954 if (prog) {
7955 event->tp_event->prog = NULL;
1aacde3d 7956 bpf_prog_put(prog);
2541517c
AS
7957 }
7958}
7959
e077df4f 7960#else
6fb2915d 7961
b0a873eb 7962static inline void perf_tp_register(void)
e077df4f 7963{
e077df4f 7964}
6fb2915d 7965
6fb2915d
LZ
7966static void perf_event_free_filter(struct perf_event *event)
7967{
7968}
7969
2541517c
AS
7970static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7971{
7972 return -ENOENT;
7973}
7974
7975static void perf_event_free_bpf_prog(struct perf_event *event)
7976{
7977}
07b139c8 7978#endif /* CONFIG_EVENT_TRACING */
e077df4f 7979
24f1e32c 7980#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7981void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7982{
f5ffe02e
FW
7983 struct perf_sample_data sample;
7984 struct pt_regs *regs = data;
7985
fd0d000b 7986 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7987
a4eaf7f1 7988 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7989 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7990}
7991#endif
7992
375637bc
AS
7993/*
7994 * Allocate a new address filter
7995 */
7996static struct perf_addr_filter *
7997perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7998{
7999 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8000 struct perf_addr_filter *filter;
8001
8002 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8003 if (!filter)
8004 return NULL;
8005
8006 INIT_LIST_HEAD(&filter->entry);
8007 list_add_tail(&filter->entry, filters);
8008
8009 return filter;
8010}
8011
8012static void free_filters_list(struct list_head *filters)
8013{
8014 struct perf_addr_filter *filter, *iter;
8015
8016 list_for_each_entry_safe(filter, iter, filters, entry) {
8017 if (filter->inode)
8018 iput(filter->inode);
8019 list_del(&filter->entry);
8020 kfree(filter);
8021 }
8022}
8023
8024/*
8025 * Free existing address filters and optionally install new ones
8026 */
8027static void perf_addr_filters_splice(struct perf_event *event,
8028 struct list_head *head)
8029{
8030 unsigned long flags;
8031 LIST_HEAD(list);
8032
8033 if (!has_addr_filter(event))
8034 return;
8035
8036 /* don't bother with children, they don't have their own filters */
8037 if (event->parent)
8038 return;
8039
8040 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8041
8042 list_splice_init(&event->addr_filters.list, &list);
8043 if (head)
8044 list_splice(head, &event->addr_filters.list);
8045
8046 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8047
8048 free_filters_list(&list);
8049}
8050
8051/*
8052 * Scan through mm's vmas and see if one of them matches the
8053 * @filter; if so, adjust filter's address range.
8054 * Called with mm::mmap_sem down for reading.
8055 */
8056static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8057 struct mm_struct *mm)
8058{
8059 struct vm_area_struct *vma;
8060
8061 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8062 struct file *file = vma->vm_file;
8063 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8064 unsigned long vma_size = vma->vm_end - vma->vm_start;
8065
8066 if (!file)
8067 continue;
8068
8069 if (!perf_addr_filter_match(filter, file, off, vma_size))
8070 continue;
8071
8072 return vma->vm_start;
8073 }
8074
8075 return 0;
8076}
8077
8078/*
8079 * Update event's address range filters based on the
8080 * task's existing mappings, if any.
8081 */
8082static void perf_event_addr_filters_apply(struct perf_event *event)
8083{
8084 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8085 struct task_struct *task = READ_ONCE(event->ctx->task);
8086 struct perf_addr_filter *filter;
8087 struct mm_struct *mm = NULL;
8088 unsigned int count = 0;
8089 unsigned long flags;
8090
8091 /*
8092 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8093 * will stop on the parent's child_mutex that our caller is also holding
8094 */
8095 if (task == TASK_TOMBSTONE)
8096 return;
8097
6ce77bfd
AS
8098 if (!ifh->nr_file_filters)
8099 return;
8100
375637bc
AS
8101 mm = get_task_mm(event->ctx->task);
8102 if (!mm)
8103 goto restart;
8104
8105 down_read(&mm->mmap_sem);
8106
8107 raw_spin_lock_irqsave(&ifh->lock, flags);
8108 list_for_each_entry(filter, &ifh->list, entry) {
8109 event->addr_filters_offs[count] = 0;
8110
99f5bc9b
MP
8111 /*
8112 * Adjust base offset if the filter is associated to a binary
8113 * that needs to be mapped:
8114 */
8115 if (filter->inode)
375637bc
AS
8116 event->addr_filters_offs[count] =
8117 perf_addr_filter_apply(filter, mm);
8118
8119 count++;
8120 }
8121
8122 event->addr_filters_gen++;
8123 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8124
8125 up_read(&mm->mmap_sem);
8126
8127 mmput(mm);
8128
8129restart:
767ae086 8130 perf_event_stop(event, 1);
375637bc
AS
8131}
8132
8133/*
8134 * Address range filtering: limiting the data to certain
8135 * instruction address ranges. Filters are ioctl()ed to us from
8136 * userspace as ascii strings.
8137 *
8138 * Filter string format:
8139 *
8140 * ACTION RANGE_SPEC
8141 * where ACTION is one of the
8142 * * "filter": limit the trace to this region
8143 * * "start": start tracing from this address
8144 * * "stop": stop tracing at this address/region;
8145 * RANGE_SPEC is
8146 * * for kernel addresses: <start address>[/<size>]
8147 * * for object files: <start address>[/<size>]@</path/to/object/file>
8148 *
8149 * if <size> is not specified, the range is treated as a single address.
8150 */
8151enum {
e96271f3 8152 IF_ACT_NONE = -1,
375637bc
AS
8153 IF_ACT_FILTER,
8154 IF_ACT_START,
8155 IF_ACT_STOP,
8156 IF_SRC_FILE,
8157 IF_SRC_KERNEL,
8158 IF_SRC_FILEADDR,
8159 IF_SRC_KERNELADDR,
8160};
8161
8162enum {
8163 IF_STATE_ACTION = 0,
8164 IF_STATE_SOURCE,
8165 IF_STATE_END,
8166};
8167
8168static const match_table_t if_tokens = {
8169 { IF_ACT_FILTER, "filter" },
8170 { IF_ACT_START, "start" },
8171 { IF_ACT_STOP, "stop" },
8172 { IF_SRC_FILE, "%u/%u@%s" },
8173 { IF_SRC_KERNEL, "%u/%u" },
8174 { IF_SRC_FILEADDR, "%u@%s" },
8175 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8176 { IF_ACT_NONE, NULL },
375637bc
AS
8177};
8178
8179/*
8180 * Address filter string parser
8181 */
8182static int
8183perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8184 struct list_head *filters)
8185{
8186 struct perf_addr_filter *filter = NULL;
8187 char *start, *orig, *filename = NULL;
8188 struct path path;
8189 substring_t args[MAX_OPT_ARGS];
8190 int state = IF_STATE_ACTION, token;
8191 unsigned int kernel = 0;
8192 int ret = -EINVAL;
8193
8194 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8195 if (!fstr)
8196 return -ENOMEM;
8197
8198 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8199 ret = -EINVAL;
8200
8201 if (!*start)
8202 continue;
8203
8204 /* filter definition begins */
8205 if (state == IF_STATE_ACTION) {
8206 filter = perf_addr_filter_new(event, filters);
8207 if (!filter)
8208 goto fail;
8209 }
8210
8211 token = match_token(start, if_tokens, args);
8212 switch (token) {
8213 case IF_ACT_FILTER:
8214 case IF_ACT_START:
8215 filter->filter = 1;
8216
8217 case IF_ACT_STOP:
8218 if (state != IF_STATE_ACTION)
8219 goto fail;
8220
8221 state = IF_STATE_SOURCE;
8222 break;
8223
8224 case IF_SRC_KERNELADDR:
8225 case IF_SRC_KERNEL:
8226 kernel = 1;
8227
8228 case IF_SRC_FILEADDR:
8229 case IF_SRC_FILE:
8230 if (state != IF_STATE_SOURCE)
8231 goto fail;
8232
8233 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8234 filter->range = 1;
8235
8236 *args[0].to = 0;
8237 ret = kstrtoul(args[0].from, 0, &filter->offset);
8238 if (ret)
8239 goto fail;
8240
8241 if (filter->range) {
8242 *args[1].to = 0;
8243 ret = kstrtoul(args[1].from, 0, &filter->size);
8244 if (ret)
8245 goto fail;
8246 }
8247
4059ffd0
MP
8248 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8249 int fpos = filter->range ? 2 : 1;
8250
8251 filename = match_strdup(&args[fpos]);
375637bc
AS
8252 if (!filename) {
8253 ret = -ENOMEM;
8254 goto fail;
8255 }
8256 }
8257
8258 state = IF_STATE_END;
8259 break;
8260
8261 default:
8262 goto fail;
8263 }
8264
8265 /*
8266 * Filter definition is fully parsed, validate and install it.
8267 * Make sure that it doesn't contradict itself or the event's
8268 * attribute.
8269 */
8270 if (state == IF_STATE_END) {
9ccbfbb1 8271 ret = -EINVAL;
375637bc
AS
8272 if (kernel && event->attr.exclude_kernel)
8273 goto fail;
8274
8275 if (!kernel) {
8276 if (!filename)
8277 goto fail;
8278
6ce77bfd
AS
8279 /*
8280 * For now, we only support file-based filters
8281 * in per-task events; doing so for CPU-wide
8282 * events requires additional context switching
8283 * trickery, since same object code will be
8284 * mapped at different virtual addresses in
8285 * different processes.
8286 */
8287 ret = -EOPNOTSUPP;
8288 if (!event->ctx->task)
8289 goto fail_free_name;
8290
375637bc
AS
8291 /* look up the path and grab its inode */
8292 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8293 if (ret)
8294 goto fail_free_name;
8295
8296 filter->inode = igrab(d_inode(path.dentry));
8297 path_put(&path);
8298 kfree(filename);
8299 filename = NULL;
8300
8301 ret = -EINVAL;
8302 if (!filter->inode ||
8303 !S_ISREG(filter->inode->i_mode))
8304 /* free_filters_list() will iput() */
8305 goto fail;
6ce77bfd
AS
8306
8307 event->addr_filters.nr_file_filters++;
375637bc
AS
8308 }
8309
8310 /* ready to consume more filters */
8311 state = IF_STATE_ACTION;
8312 filter = NULL;
8313 }
8314 }
8315
8316 if (state != IF_STATE_ACTION)
8317 goto fail;
8318
8319 kfree(orig);
8320
8321 return 0;
8322
8323fail_free_name:
8324 kfree(filename);
8325fail:
8326 free_filters_list(filters);
8327 kfree(orig);
8328
8329 return ret;
8330}
8331
8332static int
8333perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8334{
8335 LIST_HEAD(filters);
8336 int ret;
8337
8338 /*
8339 * Since this is called in perf_ioctl() path, we're already holding
8340 * ctx::mutex.
8341 */
8342 lockdep_assert_held(&event->ctx->mutex);
8343
8344 if (WARN_ON_ONCE(event->parent))
8345 return -EINVAL;
8346
375637bc
AS
8347 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8348 if (ret)
6ce77bfd 8349 goto fail_clear_files;
375637bc
AS
8350
8351 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8352 if (ret)
8353 goto fail_free_filters;
375637bc
AS
8354
8355 /* remove existing filters, if any */
8356 perf_addr_filters_splice(event, &filters);
8357
8358 /* install new filters */
8359 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8360
6ce77bfd
AS
8361 return ret;
8362
8363fail_free_filters:
8364 free_filters_list(&filters);
8365
8366fail_clear_files:
8367 event->addr_filters.nr_file_filters = 0;
8368
375637bc
AS
8369 return ret;
8370}
8371
c796bbbe
AS
8372static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8373{
8374 char *filter_str;
8375 int ret = -EINVAL;
8376
375637bc
AS
8377 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8378 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8379 !has_addr_filter(event))
c796bbbe
AS
8380 return -EINVAL;
8381
8382 filter_str = strndup_user(arg, PAGE_SIZE);
8383 if (IS_ERR(filter_str))
8384 return PTR_ERR(filter_str);
8385
8386 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8387 event->attr.type == PERF_TYPE_TRACEPOINT)
8388 ret = ftrace_profile_set_filter(event, event->attr.config,
8389 filter_str);
375637bc
AS
8390 else if (has_addr_filter(event))
8391 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8392
8393 kfree(filter_str);
8394 return ret;
8395}
8396
b0a873eb
PZ
8397/*
8398 * hrtimer based swevent callback
8399 */
f29ac756 8400
b0a873eb 8401static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8402{
b0a873eb
PZ
8403 enum hrtimer_restart ret = HRTIMER_RESTART;
8404 struct perf_sample_data data;
8405 struct pt_regs *regs;
8406 struct perf_event *event;
8407 u64 period;
f29ac756 8408
b0a873eb 8409 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8410
8411 if (event->state != PERF_EVENT_STATE_ACTIVE)
8412 return HRTIMER_NORESTART;
8413
b0a873eb 8414 event->pmu->read(event);
f344011c 8415
fd0d000b 8416 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8417 regs = get_irq_regs();
8418
8419 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8420 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8421 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8422 ret = HRTIMER_NORESTART;
8423 }
24f1e32c 8424
b0a873eb
PZ
8425 period = max_t(u64, 10000, event->hw.sample_period);
8426 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8427
b0a873eb 8428 return ret;
f29ac756
PZ
8429}
8430
b0a873eb 8431static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8432{
b0a873eb 8433 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8434 s64 period;
8435
8436 if (!is_sampling_event(event))
8437 return;
f5ffe02e 8438
5d508e82
FBH
8439 period = local64_read(&hwc->period_left);
8440 if (period) {
8441 if (period < 0)
8442 period = 10000;
fa407f35 8443
5d508e82
FBH
8444 local64_set(&hwc->period_left, 0);
8445 } else {
8446 period = max_t(u64, 10000, hwc->sample_period);
8447 }
3497d206
TG
8448 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8449 HRTIMER_MODE_REL_PINNED);
24f1e32c 8450}
b0a873eb
PZ
8451
8452static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8453{
b0a873eb
PZ
8454 struct hw_perf_event *hwc = &event->hw;
8455
6c7e550f 8456 if (is_sampling_event(event)) {
b0a873eb 8457 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8458 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8459
8460 hrtimer_cancel(&hwc->hrtimer);
8461 }
24f1e32c
FW
8462}
8463
ba3dd36c
PZ
8464static void perf_swevent_init_hrtimer(struct perf_event *event)
8465{
8466 struct hw_perf_event *hwc = &event->hw;
8467
8468 if (!is_sampling_event(event))
8469 return;
8470
8471 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8472 hwc->hrtimer.function = perf_swevent_hrtimer;
8473
8474 /*
8475 * Since hrtimers have a fixed rate, we can do a static freq->period
8476 * mapping and avoid the whole period adjust feedback stuff.
8477 */
8478 if (event->attr.freq) {
8479 long freq = event->attr.sample_freq;
8480
8481 event->attr.sample_period = NSEC_PER_SEC / freq;
8482 hwc->sample_period = event->attr.sample_period;
8483 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8484 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8485 event->attr.freq = 0;
8486 }
8487}
8488
b0a873eb
PZ
8489/*
8490 * Software event: cpu wall time clock
8491 */
8492
8493static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8494{
b0a873eb
PZ
8495 s64 prev;
8496 u64 now;
8497
a4eaf7f1 8498 now = local_clock();
b0a873eb
PZ
8499 prev = local64_xchg(&event->hw.prev_count, now);
8500 local64_add(now - prev, &event->count);
24f1e32c 8501}
24f1e32c 8502
a4eaf7f1 8503static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8504{
a4eaf7f1 8505 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8506 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8507}
8508
a4eaf7f1 8509static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8510{
b0a873eb
PZ
8511 perf_swevent_cancel_hrtimer(event);
8512 cpu_clock_event_update(event);
8513}
f29ac756 8514
a4eaf7f1
PZ
8515static int cpu_clock_event_add(struct perf_event *event, int flags)
8516{
8517 if (flags & PERF_EF_START)
8518 cpu_clock_event_start(event, flags);
6a694a60 8519 perf_event_update_userpage(event);
a4eaf7f1
PZ
8520
8521 return 0;
8522}
8523
8524static void cpu_clock_event_del(struct perf_event *event, int flags)
8525{
8526 cpu_clock_event_stop(event, flags);
8527}
8528
b0a873eb
PZ
8529static void cpu_clock_event_read(struct perf_event *event)
8530{
8531 cpu_clock_event_update(event);
8532}
f344011c 8533
b0a873eb
PZ
8534static int cpu_clock_event_init(struct perf_event *event)
8535{
8536 if (event->attr.type != PERF_TYPE_SOFTWARE)
8537 return -ENOENT;
8538
8539 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8540 return -ENOENT;
8541
2481c5fa
SE
8542 /*
8543 * no branch sampling for software events
8544 */
8545 if (has_branch_stack(event))
8546 return -EOPNOTSUPP;
8547
ba3dd36c
PZ
8548 perf_swevent_init_hrtimer(event);
8549
b0a873eb 8550 return 0;
f29ac756
PZ
8551}
8552
b0a873eb 8553static struct pmu perf_cpu_clock = {
89a1e187
PZ
8554 .task_ctx_nr = perf_sw_context,
8555
34f43927
PZ
8556 .capabilities = PERF_PMU_CAP_NO_NMI,
8557
b0a873eb 8558 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8559 .add = cpu_clock_event_add,
8560 .del = cpu_clock_event_del,
8561 .start = cpu_clock_event_start,
8562 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8563 .read = cpu_clock_event_read,
8564};
8565
8566/*
8567 * Software event: task time clock
8568 */
8569
8570static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8571{
b0a873eb
PZ
8572 u64 prev;
8573 s64 delta;
5c92d124 8574
b0a873eb
PZ
8575 prev = local64_xchg(&event->hw.prev_count, now);
8576 delta = now - prev;
8577 local64_add(delta, &event->count);
8578}
5c92d124 8579
a4eaf7f1 8580static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8581{
a4eaf7f1 8582 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8583 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8584}
8585
a4eaf7f1 8586static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8587{
8588 perf_swevent_cancel_hrtimer(event);
8589 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8590}
8591
8592static int task_clock_event_add(struct perf_event *event, int flags)
8593{
8594 if (flags & PERF_EF_START)
8595 task_clock_event_start(event, flags);
6a694a60 8596 perf_event_update_userpage(event);
b0a873eb 8597
a4eaf7f1
PZ
8598 return 0;
8599}
8600
8601static void task_clock_event_del(struct perf_event *event, int flags)
8602{
8603 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8604}
8605
8606static void task_clock_event_read(struct perf_event *event)
8607{
768a06e2
PZ
8608 u64 now = perf_clock();
8609 u64 delta = now - event->ctx->timestamp;
8610 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8611
8612 task_clock_event_update(event, time);
8613}
8614
8615static int task_clock_event_init(struct perf_event *event)
6fb2915d 8616{
b0a873eb
PZ
8617 if (event->attr.type != PERF_TYPE_SOFTWARE)
8618 return -ENOENT;
8619
8620 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8621 return -ENOENT;
8622
2481c5fa
SE
8623 /*
8624 * no branch sampling for software events
8625 */
8626 if (has_branch_stack(event))
8627 return -EOPNOTSUPP;
8628
ba3dd36c
PZ
8629 perf_swevent_init_hrtimer(event);
8630
b0a873eb 8631 return 0;
6fb2915d
LZ
8632}
8633
b0a873eb 8634static struct pmu perf_task_clock = {
89a1e187
PZ
8635 .task_ctx_nr = perf_sw_context,
8636
34f43927
PZ
8637 .capabilities = PERF_PMU_CAP_NO_NMI,
8638
b0a873eb 8639 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8640 .add = task_clock_event_add,
8641 .del = task_clock_event_del,
8642 .start = task_clock_event_start,
8643 .stop = task_clock_event_stop,
b0a873eb
PZ
8644 .read = task_clock_event_read,
8645};
6fb2915d 8646
ad5133b7 8647static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8648{
e077df4f 8649}
6fb2915d 8650
fbbe0701
SB
8651static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8652{
8653}
8654
ad5133b7 8655static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8656{
ad5133b7 8657 return 0;
6fb2915d
LZ
8658}
8659
18ab2cd3 8660static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8661
8662static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8663{
fbbe0701
SB
8664 __this_cpu_write(nop_txn_flags, flags);
8665
8666 if (flags & ~PERF_PMU_TXN_ADD)
8667 return;
8668
ad5133b7 8669 perf_pmu_disable(pmu);
6fb2915d
LZ
8670}
8671
ad5133b7
PZ
8672static int perf_pmu_commit_txn(struct pmu *pmu)
8673{
fbbe0701
SB
8674 unsigned int flags = __this_cpu_read(nop_txn_flags);
8675
8676 __this_cpu_write(nop_txn_flags, 0);
8677
8678 if (flags & ~PERF_PMU_TXN_ADD)
8679 return 0;
8680
ad5133b7
PZ
8681 perf_pmu_enable(pmu);
8682 return 0;
8683}
e077df4f 8684
ad5133b7 8685static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8686{
fbbe0701
SB
8687 unsigned int flags = __this_cpu_read(nop_txn_flags);
8688
8689 __this_cpu_write(nop_txn_flags, 0);
8690
8691 if (flags & ~PERF_PMU_TXN_ADD)
8692 return;
8693
ad5133b7 8694 perf_pmu_enable(pmu);
24f1e32c
FW
8695}
8696
35edc2a5
PZ
8697static int perf_event_idx_default(struct perf_event *event)
8698{
c719f560 8699 return 0;
35edc2a5
PZ
8700}
8701
8dc85d54
PZ
8702/*
8703 * Ensures all contexts with the same task_ctx_nr have the same
8704 * pmu_cpu_context too.
8705 */
9e317041 8706static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8707{
8dc85d54 8708 struct pmu *pmu;
b326e956 8709
8dc85d54
PZ
8710 if (ctxn < 0)
8711 return NULL;
24f1e32c 8712
8dc85d54
PZ
8713 list_for_each_entry(pmu, &pmus, entry) {
8714 if (pmu->task_ctx_nr == ctxn)
8715 return pmu->pmu_cpu_context;
8716 }
24f1e32c 8717
8dc85d54 8718 return NULL;
24f1e32c
FW
8719}
8720
51676957
PZ
8721static void free_pmu_context(struct pmu *pmu)
8722{
8dc85d54 8723 mutex_lock(&pmus_lock);
51676957 8724 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8725 mutex_unlock(&pmus_lock);
24f1e32c 8726}
6e855cd4
AS
8727
8728/*
8729 * Let userspace know that this PMU supports address range filtering:
8730 */
8731static ssize_t nr_addr_filters_show(struct device *dev,
8732 struct device_attribute *attr,
8733 char *page)
8734{
8735 struct pmu *pmu = dev_get_drvdata(dev);
8736
8737 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8738}
8739DEVICE_ATTR_RO(nr_addr_filters);
8740
2e80a82a 8741static struct idr pmu_idr;
d6d020e9 8742
abe43400
PZ
8743static ssize_t
8744type_show(struct device *dev, struct device_attribute *attr, char *page)
8745{
8746 struct pmu *pmu = dev_get_drvdata(dev);
8747
8748 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8749}
90826ca7 8750static DEVICE_ATTR_RO(type);
abe43400 8751
62b85639
SE
8752static ssize_t
8753perf_event_mux_interval_ms_show(struct device *dev,
8754 struct device_attribute *attr,
8755 char *page)
8756{
8757 struct pmu *pmu = dev_get_drvdata(dev);
8758
8759 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8760}
8761
272325c4
PZ
8762static DEFINE_MUTEX(mux_interval_mutex);
8763
62b85639
SE
8764static ssize_t
8765perf_event_mux_interval_ms_store(struct device *dev,
8766 struct device_attribute *attr,
8767 const char *buf, size_t count)
8768{
8769 struct pmu *pmu = dev_get_drvdata(dev);
8770 int timer, cpu, ret;
8771
8772 ret = kstrtoint(buf, 0, &timer);
8773 if (ret)
8774 return ret;
8775
8776 if (timer < 1)
8777 return -EINVAL;
8778
8779 /* same value, noting to do */
8780 if (timer == pmu->hrtimer_interval_ms)
8781 return count;
8782
272325c4 8783 mutex_lock(&mux_interval_mutex);
62b85639
SE
8784 pmu->hrtimer_interval_ms = timer;
8785
8786 /* update all cpuctx for this PMU */
272325c4
PZ
8787 get_online_cpus();
8788 for_each_online_cpu(cpu) {
62b85639
SE
8789 struct perf_cpu_context *cpuctx;
8790 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8792
272325c4
PZ
8793 cpu_function_call(cpu,
8794 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8795 }
272325c4
PZ
8796 put_online_cpus();
8797 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8798
8799 return count;
8800}
90826ca7 8801static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8802
90826ca7
GKH
8803static struct attribute *pmu_dev_attrs[] = {
8804 &dev_attr_type.attr,
8805 &dev_attr_perf_event_mux_interval_ms.attr,
8806 NULL,
abe43400 8807};
90826ca7 8808ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8809
8810static int pmu_bus_running;
8811static struct bus_type pmu_bus = {
8812 .name = "event_source",
90826ca7 8813 .dev_groups = pmu_dev_groups,
abe43400
PZ
8814};
8815
8816static void pmu_dev_release(struct device *dev)
8817{
8818 kfree(dev);
8819}
8820
8821static int pmu_dev_alloc(struct pmu *pmu)
8822{
8823 int ret = -ENOMEM;
8824
8825 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8826 if (!pmu->dev)
8827 goto out;
8828
0c9d42ed 8829 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8830 device_initialize(pmu->dev);
8831 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8832 if (ret)
8833 goto free_dev;
8834
8835 dev_set_drvdata(pmu->dev, pmu);
8836 pmu->dev->bus = &pmu_bus;
8837 pmu->dev->release = pmu_dev_release;
8838 ret = device_add(pmu->dev);
8839 if (ret)
8840 goto free_dev;
8841
6e855cd4
AS
8842 /* For PMUs with address filters, throw in an extra attribute: */
8843 if (pmu->nr_addr_filters)
8844 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8845
8846 if (ret)
8847 goto del_dev;
8848
abe43400
PZ
8849out:
8850 return ret;
8851
6e855cd4
AS
8852del_dev:
8853 device_del(pmu->dev);
8854
abe43400
PZ
8855free_dev:
8856 put_device(pmu->dev);
8857 goto out;
8858}
8859
547e9fd7 8860static struct lock_class_key cpuctx_mutex;
facc4307 8861static struct lock_class_key cpuctx_lock;
547e9fd7 8862
03d8e80b 8863int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8864{
108b02cf 8865 int cpu, ret;
24f1e32c 8866
b0a873eb 8867 mutex_lock(&pmus_lock);
33696fc0
PZ
8868 ret = -ENOMEM;
8869 pmu->pmu_disable_count = alloc_percpu(int);
8870 if (!pmu->pmu_disable_count)
8871 goto unlock;
f29ac756 8872
2e80a82a
PZ
8873 pmu->type = -1;
8874 if (!name)
8875 goto skip_type;
8876 pmu->name = name;
8877
8878 if (type < 0) {
0e9c3be2
TH
8879 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8880 if (type < 0) {
8881 ret = type;
2e80a82a
PZ
8882 goto free_pdc;
8883 }
8884 }
8885 pmu->type = type;
8886
abe43400
PZ
8887 if (pmu_bus_running) {
8888 ret = pmu_dev_alloc(pmu);
8889 if (ret)
8890 goto free_idr;
8891 }
8892
2e80a82a 8893skip_type:
26657848
PZ
8894 if (pmu->task_ctx_nr == perf_hw_context) {
8895 static int hw_context_taken = 0;
8896
5101ef20
MR
8897 /*
8898 * Other than systems with heterogeneous CPUs, it never makes
8899 * sense for two PMUs to share perf_hw_context. PMUs which are
8900 * uncore must use perf_invalid_context.
8901 */
8902 if (WARN_ON_ONCE(hw_context_taken &&
8903 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8904 pmu->task_ctx_nr = perf_invalid_context;
8905
8906 hw_context_taken = 1;
8907 }
8908
8dc85d54
PZ
8909 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8910 if (pmu->pmu_cpu_context)
8911 goto got_cpu_context;
f29ac756 8912
c4814202 8913 ret = -ENOMEM;
108b02cf
PZ
8914 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8915 if (!pmu->pmu_cpu_context)
abe43400 8916 goto free_dev;
f344011c 8917
108b02cf
PZ
8918 for_each_possible_cpu(cpu) {
8919 struct perf_cpu_context *cpuctx;
8920
8921 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8922 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8923 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8924 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8925 cpuctx->ctx.pmu = pmu;
9e630205 8926
272325c4 8927 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 8928 }
76e1d904 8929
8dc85d54 8930got_cpu_context:
ad5133b7
PZ
8931 if (!pmu->start_txn) {
8932 if (pmu->pmu_enable) {
8933 /*
8934 * If we have pmu_enable/pmu_disable calls, install
8935 * transaction stubs that use that to try and batch
8936 * hardware accesses.
8937 */
8938 pmu->start_txn = perf_pmu_start_txn;
8939 pmu->commit_txn = perf_pmu_commit_txn;
8940 pmu->cancel_txn = perf_pmu_cancel_txn;
8941 } else {
fbbe0701 8942 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8943 pmu->commit_txn = perf_pmu_nop_int;
8944 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8945 }
5c92d124 8946 }
15dbf27c 8947
ad5133b7
PZ
8948 if (!pmu->pmu_enable) {
8949 pmu->pmu_enable = perf_pmu_nop_void;
8950 pmu->pmu_disable = perf_pmu_nop_void;
8951 }
8952
35edc2a5
PZ
8953 if (!pmu->event_idx)
8954 pmu->event_idx = perf_event_idx_default;
8955
b0a873eb 8956 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8957 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8958 ret = 0;
8959unlock:
b0a873eb
PZ
8960 mutex_unlock(&pmus_lock);
8961
33696fc0 8962 return ret;
108b02cf 8963
abe43400
PZ
8964free_dev:
8965 device_del(pmu->dev);
8966 put_device(pmu->dev);
8967
2e80a82a
PZ
8968free_idr:
8969 if (pmu->type >= PERF_TYPE_MAX)
8970 idr_remove(&pmu_idr, pmu->type);
8971
108b02cf
PZ
8972free_pdc:
8973 free_percpu(pmu->pmu_disable_count);
8974 goto unlock;
f29ac756 8975}
c464c76e 8976EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8977
b0a873eb 8978void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8979{
0933840a
JO
8980 int remove_device;
8981
b0a873eb 8982 mutex_lock(&pmus_lock);
0933840a 8983 remove_device = pmu_bus_running;
b0a873eb
PZ
8984 list_del_rcu(&pmu->entry);
8985 mutex_unlock(&pmus_lock);
5c92d124 8986
0475f9ea 8987 /*
cde8e884
PZ
8988 * We dereference the pmu list under both SRCU and regular RCU, so
8989 * synchronize against both of those.
0475f9ea 8990 */
b0a873eb 8991 synchronize_srcu(&pmus_srcu);
cde8e884 8992 synchronize_rcu();
d6d020e9 8993
33696fc0 8994 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8995 if (pmu->type >= PERF_TYPE_MAX)
8996 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
8997 if (remove_device) {
8998 if (pmu->nr_addr_filters)
8999 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9000 device_del(pmu->dev);
9001 put_device(pmu->dev);
9002 }
51676957 9003 free_pmu_context(pmu);
b0a873eb 9004}
c464c76e 9005EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9006
cc34b98b
MR
9007static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9008{
ccd41c86 9009 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9010 int ret;
9011
9012 if (!try_module_get(pmu->module))
9013 return -ENODEV;
ccd41c86
PZ
9014
9015 if (event->group_leader != event) {
8b10c5e2
PZ
9016 /*
9017 * This ctx->mutex can nest when we're called through
9018 * inheritance. See the perf_event_ctx_lock_nested() comment.
9019 */
9020 ctx = perf_event_ctx_lock_nested(event->group_leader,
9021 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9022 BUG_ON(!ctx);
9023 }
9024
cc34b98b
MR
9025 event->pmu = pmu;
9026 ret = pmu->event_init(event);
ccd41c86
PZ
9027
9028 if (ctx)
9029 perf_event_ctx_unlock(event->group_leader, ctx);
9030
cc34b98b
MR
9031 if (ret)
9032 module_put(pmu->module);
9033
9034 return ret;
9035}
9036
18ab2cd3 9037static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
9038{
9039 struct pmu *pmu = NULL;
9040 int idx;
940c5b29 9041 int ret;
b0a873eb
PZ
9042
9043 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9044
40999312
KL
9045 /* Try parent's PMU first: */
9046 if (event->parent && event->parent->pmu) {
9047 pmu = event->parent->pmu;
9048 ret = perf_try_init_event(pmu, event);
9049 if (!ret)
9050 goto unlock;
9051 }
9052
2e80a82a
PZ
9053 rcu_read_lock();
9054 pmu = idr_find(&pmu_idr, event->attr.type);
9055 rcu_read_unlock();
940c5b29 9056 if (pmu) {
cc34b98b 9057 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9058 if (ret)
9059 pmu = ERR_PTR(ret);
2e80a82a 9060 goto unlock;
940c5b29 9061 }
2e80a82a 9062
b0a873eb 9063 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9064 ret = perf_try_init_event(pmu, event);
b0a873eb 9065 if (!ret)
e5f4d339 9066 goto unlock;
76e1d904 9067
b0a873eb
PZ
9068 if (ret != -ENOENT) {
9069 pmu = ERR_PTR(ret);
e5f4d339 9070 goto unlock;
f344011c 9071 }
5c92d124 9072 }
e5f4d339
PZ
9073 pmu = ERR_PTR(-ENOENT);
9074unlock:
b0a873eb 9075 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9076
4aeb0b42 9077 return pmu;
5c92d124
IM
9078}
9079
f2fb6bef
KL
9080static void attach_sb_event(struct perf_event *event)
9081{
9082 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9083
9084 raw_spin_lock(&pel->lock);
9085 list_add_rcu(&event->sb_list, &pel->list);
9086 raw_spin_unlock(&pel->lock);
9087}
9088
aab5b71e
PZ
9089/*
9090 * We keep a list of all !task (and therefore per-cpu) events
9091 * that need to receive side-band records.
9092 *
9093 * This avoids having to scan all the various PMU per-cpu contexts
9094 * looking for them.
9095 */
f2fb6bef
KL
9096static void account_pmu_sb_event(struct perf_event *event)
9097{
a4f144eb 9098 if (is_sb_event(event))
f2fb6bef
KL
9099 attach_sb_event(event);
9100}
9101
4beb31f3
FW
9102static void account_event_cpu(struct perf_event *event, int cpu)
9103{
9104 if (event->parent)
9105 return;
9106
4beb31f3
FW
9107 if (is_cgroup_event(event))
9108 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9109}
9110
555e0c1e
FW
9111/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9112static void account_freq_event_nohz(void)
9113{
9114#ifdef CONFIG_NO_HZ_FULL
9115 /* Lock so we don't race with concurrent unaccount */
9116 spin_lock(&nr_freq_lock);
9117 if (atomic_inc_return(&nr_freq_events) == 1)
9118 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9119 spin_unlock(&nr_freq_lock);
9120#endif
9121}
9122
9123static void account_freq_event(void)
9124{
9125 if (tick_nohz_full_enabled())
9126 account_freq_event_nohz();
9127 else
9128 atomic_inc(&nr_freq_events);
9129}
9130
9131
766d6c07
FW
9132static void account_event(struct perf_event *event)
9133{
25432ae9
PZ
9134 bool inc = false;
9135
4beb31f3
FW
9136 if (event->parent)
9137 return;
9138
766d6c07 9139 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9140 inc = true;
766d6c07
FW
9141 if (event->attr.mmap || event->attr.mmap_data)
9142 atomic_inc(&nr_mmap_events);
9143 if (event->attr.comm)
9144 atomic_inc(&nr_comm_events);
9145 if (event->attr.task)
9146 atomic_inc(&nr_task_events);
555e0c1e
FW
9147 if (event->attr.freq)
9148 account_freq_event();
45ac1403
AH
9149 if (event->attr.context_switch) {
9150 atomic_inc(&nr_switch_events);
25432ae9 9151 inc = true;
45ac1403 9152 }
4beb31f3 9153 if (has_branch_stack(event))
25432ae9 9154 inc = true;
4beb31f3 9155 if (is_cgroup_event(event))
25432ae9
PZ
9156 inc = true;
9157
9107c89e
PZ
9158 if (inc) {
9159 if (atomic_inc_not_zero(&perf_sched_count))
9160 goto enabled;
9161
9162 mutex_lock(&perf_sched_mutex);
9163 if (!atomic_read(&perf_sched_count)) {
9164 static_branch_enable(&perf_sched_events);
9165 /*
9166 * Guarantee that all CPUs observe they key change and
9167 * call the perf scheduling hooks before proceeding to
9168 * install events that need them.
9169 */
9170 synchronize_sched();
9171 }
9172 /*
9173 * Now that we have waited for the sync_sched(), allow further
9174 * increments to by-pass the mutex.
9175 */
9176 atomic_inc(&perf_sched_count);
9177 mutex_unlock(&perf_sched_mutex);
9178 }
9179enabled:
4beb31f3
FW
9180
9181 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9182
9183 account_pmu_sb_event(event);
766d6c07
FW
9184}
9185
0793a61d 9186/*
cdd6c482 9187 * Allocate and initialize a event structure
0793a61d 9188 */
cdd6c482 9189static struct perf_event *
c3f00c70 9190perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9191 struct task_struct *task,
9192 struct perf_event *group_leader,
9193 struct perf_event *parent_event,
4dc0da86 9194 perf_overflow_handler_t overflow_handler,
79dff51e 9195 void *context, int cgroup_fd)
0793a61d 9196{
51b0fe39 9197 struct pmu *pmu;
cdd6c482
IM
9198 struct perf_event *event;
9199 struct hw_perf_event *hwc;
90983b16 9200 long err = -EINVAL;
0793a61d 9201
66832eb4
ON
9202 if ((unsigned)cpu >= nr_cpu_ids) {
9203 if (!task || cpu != -1)
9204 return ERR_PTR(-EINVAL);
9205 }
9206
c3f00c70 9207 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9208 if (!event)
d5d2bc0d 9209 return ERR_PTR(-ENOMEM);
0793a61d 9210
04289bb9 9211 /*
cdd6c482 9212 * Single events are their own group leaders, with an
04289bb9
IM
9213 * empty sibling list:
9214 */
9215 if (!group_leader)
cdd6c482 9216 group_leader = event;
04289bb9 9217
cdd6c482
IM
9218 mutex_init(&event->child_mutex);
9219 INIT_LIST_HEAD(&event->child_list);
fccc714b 9220
cdd6c482
IM
9221 INIT_LIST_HEAD(&event->group_entry);
9222 INIT_LIST_HEAD(&event->event_entry);
9223 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9224 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9225 INIT_LIST_HEAD(&event->active_entry);
375637bc 9226 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9227 INIT_HLIST_NODE(&event->hlist_entry);
9228
10c6db11 9229
cdd6c482 9230 init_waitqueue_head(&event->waitq);
e360adbe 9231 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9232
cdd6c482 9233 mutex_init(&event->mmap_mutex);
375637bc 9234 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9235
a6fa941d 9236 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9237 event->cpu = cpu;
9238 event->attr = *attr;
9239 event->group_leader = group_leader;
9240 event->pmu = NULL;
cdd6c482 9241 event->oncpu = -1;
a96bbc16 9242
cdd6c482 9243 event->parent = parent_event;
b84fbc9f 9244
17cf22c3 9245 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9246 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9247
cdd6c482 9248 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9249
d580ff86
PZ
9250 if (task) {
9251 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9252 /*
50f16a8b
PZ
9253 * XXX pmu::event_init needs to know what task to account to
9254 * and we cannot use the ctx information because we need the
9255 * pmu before we get a ctx.
d580ff86 9256 */
50f16a8b 9257 event->hw.target = task;
d580ff86
PZ
9258 }
9259
34f43927
PZ
9260 event->clock = &local_clock;
9261 if (parent_event)
9262 event->clock = parent_event->clock;
9263
4dc0da86 9264 if (!overflow_handler && parent_event) {
b326e956 9265 overflow_handler = parent_event->overflow_handler;
4dc0da86 9266 context = parent_event->overflow_handler_context;
f1e4ba5b 9267#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9268 if (overflow_handler == bpf_overflow_handler) {
9269 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9270
9271 if (IS_ERR(prog)) {
9272 err = PTR_ERR(prog);
9273 goto err_ns;
9274 }
9275 event->prog = prog;
9276 event->orig_overflow_handler =
9277 parent_event->orig_overflow_handler;
9278 }
9279#endif
4dc0da86 9280 }
66832eb4 9281
1879445d
WN
9282 if (overflow_handler) {
9283 event->overflow_handler = overflow_handler;
9284 event->overflow_handler_context = context;
9ecda41a
WN
9285 } else if (is_write_backward(event)){
9286 event->overflow_handler = perf_event_output_backward;
9287 event->overflow_handler_context = NULL;
1879445d 9288 } else {
9ecda41a 9289 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9290 event->overflow_handler_context = NULL;
9291 }
97eaf530 9292
0231bb53 9293 perf_event__state_init(event);
a86ed508 9294
4aeb0b42 9295 pmu = NULL;
b8e83514 9296
cdd6c482 9297 hwc = &event->hw;
bd2b5b12 9298 hwc->sample_period = attr->sample_period;
0d48696f 9299 if (attr->freq && attr->sample_freq)
bd2b5b12 9300 hwc->sample_period = 1;
eced1dfc 9301 hwc->last_period = hwc->sample_period;
bd2b5b12 9302
e7850595 9303 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9304
2023b359 9305 /*
cdd6c482 9306 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9307 */
3dab77fb 9308 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9309 goto err_ns;
a46a2300
YZ
9310
9311 if (!has_branch_stack(event))
9312 event->attr.branch_sample_type = 0;
2023b359 9313
79dff51e
MF
9314 if (cgroup_fd != -1) {
9315 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9316 if (err)
9317 goto err_ns;
9318 }
9319
b0a873eb 9320 pmu = perf_init_event(event);
4aeb0b42 9321 if (!pmu)
90983b16
FW
9322 goto err_ns;
9323 else if (IS_ERR(pmu)) {
4aeb0b42 9324 err = PTR_ERR(pmu);
90983b16 9325 goto err_ns;
621a01ea 9326 }
d5d2bc0d 9327
bed5b25a
AS
9328 err = exclusive_event_init(event);
9329 if (err)
9330 goto err_pmu;
9331
375637bc
AS
9332 if (has_addr_filter(event)) {
9333 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9334 sizeof(unsigned long),
9335 GFP_KERNEL);
9336 if (!event->addr_filters_offs)
9337 goto err_per_task;
9338
9339 /* force hw sync on the address filters */
9340 event->addr_filters_gen = 1;
9341 }
9342
cdd6c482 9343 if (!event->parent) {
927c7a9e 9344 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9345 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9346 if (err)
375637bc 9347 goto err_addr_filters;
d010b332 9348 }
f344011c 9349 }
9ee318a7 9350
927a5570
AS
9351 /* symmetric to unaccount_event() in _free_event() */
9352 account_event(event);
9353
cdd6c482 9354 return event;
90983b16 9355
375637bc
AS
9356err_addr_filters:
9357 kfree(event->addr_filters_offs);
9358
bed5b25a
AS
9359err_per_task:
9360 exclusive_event_destroy(event);
9361
90983b16
FW
9362err_pmu:
9363 if (event->destroy)
9364 event->destroy(event);
c464c76e 9365 module_put(pmu->module);
90983b16 9366err_ns:
79dff51e
MF
9367 if (is_cgroup_event(event))
9368 perf_detach_cgroup(event);
90983b16
FW
9369 if (event->ns)
9370 put_pid_ns(event->ns);
9371 kfree(event);
9372
9373 return ERR_PTR(err);
0793a61d
TG
9374}
9375
cdd6c482
IM
9376static int perf_copy_attr(struct perf_event_attr __user *uattr,
9377 struct perf_event_attr *attr)
974802ea 9378{
974802ea 9379 u32 size;
cdf8073d 9380 int ret;
974802ea
PZ
9381
9382 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9383 return -EFAULT;
9384
9385 /*
9386 * zero the full structure, so that a short copy will be nice.
9387 */
9388 memset(attr, 0, sizeof(*attr));
9389
9390 ret = get_user(size, &uattr->size);
9391 if (ret)
9392 return ret;
9393
9394 if (size > PAGE_SIZE) /* silly large */
9395 goto err_size;
9396
9397 if (!size) /* abi compat */
9398 size = PERF_ATTR_SIZE_VER0;
9399
9400 if (size < PERF_ATTR_SIZE_VER0)
9401 goto err_size;
9402
9403 /*
9404 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9405 * ensure all the unknown bits are 0 - i.e. new
9406 * user-space does not rely on any kernel feature
9407 * extensions we dont know about yet.
974802ea
PZ
9408 */
9409 if (size > sizeof(*attr)) {
cdf8073d
IS
9410 unsigned char __user *addr;
9411 unsigned char __user *end;
9412 unsigned char val;
974802ea 9413
cdf8073d
IS
9414 addr = (void __user *)uattr + sizeof(*attr);
9415 end = (void __user *)uattr + size;
974802ea 9416
cdf8073d 9417 for (; addr < end; addr++) {
974802ea
PZ
9418 ret = get_user(val, addr);
9419 if (ret)
9420 return ret;
9421 if (val)
9422 goto err_size;
9423 }
b3e62e35 9424 size = sizeof(*attr);
974802ea
PZ
9425 }
9426
9427 ret = copy_from_user(attr, uattr, size);
9428 if (ret)
9429 return -EFAULT;
9430
cd757645 9431 if (attr->__reserved_1)
974802ea
PZ
9432 return -EINVAL;
9433
9434 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9435 return -EINVAL;
9436
9437 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9438 return -EINVAL;
9439
bce38cd5
SE
9440 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9441 u64 mask = attr->branch_sample_type;
9442
9443 /* only using defined bits */
9444 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9445 return -EINVAL;
9446
9447 /* at least one branch bit must be set */
9448 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9449 return -EINVAL;
9450
bce38cd5
SE
9451 /* propagate priv level, when not set for branch */
9452 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9453
9454 /* exclude_kernel checked on syscall entry */
9455 if (!attr->exclude_kernel)
9456 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9457
9458 if (!attr->exclude_user)
9459 mask |= PERF_SAMPLE_BRANCH_USER;
9460
9461 if (!attr->exclude_hv)
9462 mask |= PERF_SAMPLE_BRANCH_HV;
9463 /*
9464 * adjust user setting (for HW filter setup)
9465 */
9466 attr->branch_sample_type = mask;
9467 }
e712209a
SE
9468 /* privileged levels capture (kernel, hv): check permissions */
9469 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9470 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9471 return -EACCES;
bce38cd5 9472 }
4018994f 9473
c5ebcedb 9474 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9475 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9476 if (ret)
9477 return ret;
9478 }
9479
9480 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9481 if (!arch_perf_have_user_stack_dump())
9482 return -ENOSYS;
9483
9484 /*
9485 * We have __u32 type for the size, but so far
9486 * we can only use __u16 as maximum due to the
9487 * __u16 sample size limit.
9488 */
9489 if (attr->sample_stack_user >= USHRT_MAX)
9490 ret = -EINVAL;
9491 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9492 ret = -EINVAL;
9493 }
4018994f 9494
60e2364e
SE
9495 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9496 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9497out:
9498 return ret;
9499
9500err_size:
9501 put_user(sizeof(*attr), &uattr->size);
9502 ret = -E2BIG;
9503 goto out;
9504}
9505
ac9721f3
PZ
9506static int
9507perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9508{
b69cf536 9509 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9510 int ret = -EINVAL;
9511
ac9721f3 9512 if (!output_event)
a4be7c27
PZ
9513 goto set;
9514
ac9721f3
PZ
9515 /* don't allow circular references */
9516 if (event == output_event)
a4be7c27
PZ
9517 goto out;
9518
0f139300
PZ
9519 /*
9520 * Don't allow cross-cpu buffers
9521 */
9522 if (output_event->cpu != event->cpu)
9523 goto out;
9524
9525 /*
76369139 9526 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9527 */
9528 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9529 goto out;
9530
34f43927
PZ
9531 /*
9532 * Mixing clocks in the same buffer is trouble you don't need.
9533 */
9534 if (output_event->clock != event->clock)
9535 goto out;
9536
9ecda41a
WN
9537 /*
9538 * Either writing ring buffer from beginning or from end.
9539 * Mixing is not allowed.
9540 */
9541 if (is_write_backward(output_event) != is_write_backward(event))
9542 goto out;
9543
45bfb2e5
PZ
9544 /*
9545 * If both events generate aux data, they must be on the same PMU
9546 */
9547 if (has_aux(event) && has_aux(output_event) &&
9548 event->pmu != output_event->pmu)
9549 goto out;
9550
a4be7c27 9551set:
cdd6c482 9552 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9553 /* Can't redirect output if we've got an active mmap() */
9554 if (atomic_read(&event->mmap_count))
9555 goto unlock;
a4be7c27 9556
ac9721f3 9557 if (output_event) {
76369139
FW
9558 /* get the rb we want to redirect to */
9559 rb = ring_buffer_get(output_event);
9560 if (!rb)
ac9721f3 9561 goto unlock;
a4be7c27
PZ
9562 }
9563
b69cf536 9564 ring_buffer_attach(event, rb);
9bb5d40c 9565
a4be7c27 9566 ret = 0;
ac9721f3
PZ
9567unlock:
9568 mutex_unlock(&event->mmap_mutex);
9569
a4be7c27 9570out:
a4be7c27
PZ
9571 return ret;
9572}
9573
f63a8daa
PZ
9574static void mutex_lock_double(struct mutex *a, struct mutex *b)
9575{
9576 if (b < a)
9577 swap(a, b);
9578
9579 mutex_lock(a);
9580 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9581}
9582
34f43927
PZ
9583static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9584{
9585 bool nmi_safe = false;
9586
9587 switch (clk_id) {
9588 case CLOCK_MONOTONIC:
9589 event->clock = &ktime_get_mono_fast_ns;
9590 nmi_safe = true;
9591 break;
9592
9593 case CLOCK_MONOTONIC_RAW:
9594 event->clock = &ktime_get_raw_fast_ns;
9595 nmi_safe = true;
9596 break;
9597
9598 case CLOCK_REALTIME:
9599 event->clock = &ktime_get_real_ns;
9600 break;
9601
9602 case CLOCK_BOOTTIME:
9603 event->clock = &ktime_get_boot_ns;
9604 break;
9605
9606 case CLOCK_TAI:
9607 event->clock = &ktime_get_tai_ns;
9608 break;
9609
9610 default:
9611 return -EINVAL;
9612 }
9613
9614 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9615 return -EINVAL;
9616
9617 return 0;
9618}
9619
321027c1
PZ
9620/*
9621 * Variation on perf_event_ctx_lock_nested(), except we take two context
9622 * mutexes.
9623 */
9624static struct perf_event_context *
9625__perf_event_ctx_lock_double(struct perf_event *group_leader,
9626 struct perf_event_context *ctx)
9627{
9628 struct perf_event_context *gctx;
9629
9630again:
9631 rcu_read_lock();
9632 gctx = READ_ONCE(group_leader->ctx);
9633 if (!atomic_inc_not_zero(&gctx->refcount)) {
9634 rcu_read_unlock();
9635 goto again;
9636 }
9637 rcu_read_unlock();
9638
9639 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9640
9641 if (group_leader->ctx != gctx) {
9642 mutex_unlock(&ctx->mutex);
9643 mutex_unlock(&gctx->mutex);
9644 put_ctx(gctx);
9645 goto again;
9646 }
9647
9648 return gctx;
9649}
9650
0793a61d 9651/**
cdd6c482 9652 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9653 *
cdd6c482 9654 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9655 * @pid: target pid
9f66a381 9656 * @cpu: target cpu
cdd6c482 9657 * @group_fd: group leader event fd
0793a61d 9658 */
cdd6c482
IM
9659SYSCALL_DEFINE5(perf_event_open,
9660 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9661 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9662{
b04243ef
PZ
9663 struct perf_event *group_leader = NULL, *output_event = NULL;
9664 struct perf_event *event, *sibling;
cdd6c482 9665 struct perf_event_attr attr;
f63a8daa 9666 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9667 struct file *event_file = NULL;
2903ff01 9668 struct fd group = {NULL, 0};
38a81da2 9669 struct task_struct *task = NULL;
89a1e187 9670 struct pmu *pmu;
ea635c64 9671 int event_fd;
b04243ef 9672 int move_group = 0;
dc86cabe 9673 int err;
a21b0b35 9674 int f_flags = O_RDWR;
79dff51e 9675 int cgroup_fd = -1;
0793a61d 9676
2743a5b0 9677 /* for future expandability... */
e5d1367f 9678 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9679 return -EINVAL;
9680
dc86cabe
IM
9681 err = perf_copy_attr(attr_uptr, &attr);
9682 if (err)
9683 return err;
eab656ae 9684
0764771d
PZ
9685 if (!attr.exclude_kernel) {
9686 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9687 return -EACCES;
9688 }
9689
df58ab24 9690 if (attr.freq) {
cdd6c482 9691 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9692 return -EINVAL;
0819b2e3
PZ
9693 } else {
9694 if (attr.sample_period & (1ULL << 63))
9695 return -EINVAL;
df58ab24
PZ
9696 }
9697
97c79a38
ACM
9698 if (!attr.sample_max_stack)
9699 attr.sample_max_stack = sysctl_perf_event_max_stack;
9700
e5d1367f
SE
9701 /*
9702 * In cgroup mode, the pid argument is used to pass the fd
9703 * opened to the cgroup directory in cgroupfs. The cpu argument
9704 * designates the cpu on which to monitor threads from that
9705 * cgroup.
9706 */
9707 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9708 return -EINVAL;
9709
a21b0b35
YD
9710 if (flags & PERF_FLAG_FD_CLOEXEC)
9711 f_flags |= O_CLOEXEC;
9712
9713 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9714 if (event_fd < 0)
9715 return event_fd;
9716
ac9721f3 9717 if (group_fd != -1) {
2903ff01
AV
9718 err = perf_fget_light(group_fd, &group);
9719 if (err)
d14b12d7 9720 goto err_fd;
2903ff01 9721 group_leader = group.file->private_data;
ac9721f3
PZ
9722 if (flags & PERF_FLAG_FD_OUTPUT)
9723 output_event = group_leader;
9724 if (flags & PERF_FLAG_FD_NO_GROUP)
9725 group_leader = NULL;
9726 }
9727
e5d1367f 9728 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9729 task = find_lively_task_by_vpid(pid);
9730 if (IS_ERR(task)) {
9731 err = PTR_ERR(task);
9732 goto err_group_fd;
9733 }
9734 }
9735
1f4ee503
PZ
9736 if (task && group_leader &&
9737 group_leader->attr.inherit != attr.inherit) {
9738 err = -EINVAL;
9739 goto err_task;
9740 }
9741
fbfc623f
YZ
9742 get_online_cpus();
9743
79c9ce57
PZ
9744 if (task) {
9745 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9746 if (err)
9747 goto err_cpus;
9748
9749 /*
9750 * Reuse ptrace permission checks for now.
9751 *
9752 * We must hold cred_guard_mutex across this and any potential
9753 * perf_install_in_context() call for this new event to
9754 * serialize against exec() altering our credentials (and the
9755 * perf_event_exit_task() that could imply).
9756 */
9757 err = -EACCES;
9758 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9759 goto err_cred;
9760 }
9761
79dff51e
MF
9762 if (flags & PERF_FLAG_PID_CGROUP)
9763 cgroup_fd = pid;
9764
4dc0da86 9765 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9766 NULL, NULL, cgroup_fd);
d14b12d7
SE
9767 if (IS_ERR(event)) {
9768 err = PTR_ERR(event);
79c9ce57 9769 goto err_cred;
d14b12d7
SE
9770 }
9771
53b25335
VW
9772 if (is_sampling_event(event)) {
9773 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9774 err = -EOPNOTSUPP;
53b25335
VW
9775 goto err_alloc;
9776 }
9777 }
9778
89a1e187
PZ
9779 /*
9780 * Special case software events and allow them to be part of
9781 * any hardware group.
9782 */
9783 pmu = event->pmu;
b04243ef 9784
34f43927
PZ
9785 if (attr.use_clockid) {
9786 err = perf_event_set_clock(event, attr.clockid);
9787 if (err)
9788 goto err_alloc;
9789 }
9790
4ff6a8de
DCC
9791 if (pmu->task_ctx_nr == perf_sw_context)
9792 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9793
b04243ef
PZ
9794 if (group_leader &&
9795 (is_software_event(event) != is_software_event(group_leader))) {
9796 if (is_software_event(event)) {
9797 /*
9798 * If event and group_leader are not both a software
9799 * event, and event is, then group leader is not.
9800 *
9801 * Allow the addition of software events to !software
9802 * groups, this is safe because software events never
9803 * fail to schedule.
9804 */
9805 pmu = group_leader->pmu;
9806 } else if (is_software_event(group_leader) &&
4ff6a8de 9807 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9808 /*
9809 * In case the group is a pure software group, and we
9810 * try to add a hardware event, move the whole group to
9811 * the hardware context.
9812 */
9813 move_group = 1;
9814 }
9815 }
89a1e187
PZ
9816
9817 /*
9818 * Get the target context (task or percpu):
9819 */
4af57ef2 9820 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9821 if (IS_ERR(ctx)) {
9822 err = PTR_ERR(ctx);
c6be5a5c 9823 goto err_alloc;
89a1e187
PZ
9824 }
9825
bed5b25a
AS
9826 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9827 err = -EBUSY;
9828 goto err_context;
9829 }
9830
ccff286d 9831 /*
cdd6c482 9832 * Look up the group leader (we will attach this event to it):
04289bb9 9833 */
ac9721f3 9834 if (group_leader) {
dc86cabe 9835 err = -EINVAL;
04289bb9 9836
04289bb9 9837 /*
ccff286d
IM
9838 * Do not allow a recursive hierarchy (this new sibling
9839 * becoming part of another group-sibling):
9840 */
9841 if (group_leader->group_leader != group_leader)
c3f00c70 9842 goto err_context;
34f43927
PZ
9843
9844 /* All events in a group should have the same clock */
9845 if (group_leader->clock != event->clock)
9846 goto err_context;
9847
ccff286d
IM
9848 /*
9849 * Do not allow to attach to a group in a different
9850 * task or CPU context:
04289bb9 9851 */
b04243ef 9852 if (move_group) {
c3c87e77
PZ
9853 /*
9854 * Make sure we're both on the same task, or both
9855 * per-cpu events.
9856 */
9857 if (group_leader->ctx->task != ctx->task)
9858 goto err_context;
9859
9860 /*
9861 * Make sure we're both events for the same CPU;
9862 * grouping events for different CPUs is broken; since
9863 * you can never concurrently schedule them anyhow.
9864 */
9865 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9866 goto err_context;
9867 } else {
9868 if (group_leader->ctx != ctx)
9869 goto err_context;
9870 }
9871
3b6f9e5c
PM
9872 /*
9873 * Only a group leader can be exclusive or pinned
9874 */
0d48696f 9875 if (attr.exclusive || attr.pinned)
c3f00c70 9876 goto err_context;
ac9721f3
PZ
9877 }
9878
9879 if (output_event) {
9880 err = perf_event_set_output(event, output_event);
9881 if (err)
c3f00c70 9882 goto err_context;
ac9721f3 9883 }
0793a61d 9884
a21b0b35
YD
9885 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9886 f_flags);
ea635c64
AV
9887 if (IS_ERR(event_file)) {
9888 err = PTR_ERR(event_file);
201c2f85 9889 event_file = NULL;
c3f00c70 9890 goto err_context;
ea635c64 9891 }
9b51f66d 9892
b04243ef 9893 if (move_group) {
321027c1
PZ
9894 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9895
84c4e620
PZ
9896 if (gctx->task == TASK_TOMBSTONE) {
9897 err = -ESRCH;
9898 goto err_locked;
9899 }
321027c1
PZ
9900
9901 /*
9902 * Check if we raced against another sys_perf_event_open() call
9903 * moving the software group underneath us.
9904 */
9905 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9906 /*
9907 * If someone moved the group out from under us, check
9908 * if this new event wound up on the same ctx, if so
9909 * its the regular !move_group case, otherwise fail.
9910 */
9911 if (gctx != ctx) {
9912 err = -EINVAL;
9913 goto err_locked;
9914 } else {
9915 perf_event_ctx_unlock(group_leader, gctx);
9916 move_group = 0;
9917 }
9918 }
f55fc2a5
PZ
9919 } else {
9920 mutex_lock(&ctx->mutex);
9921 }
9922
84c4e620
PZ
9923 if (ctx->task == TASK_TOMBSTONE) {
9924 err = -ESRCH;
9925 goto err_locked;
9926 }
9927
a723968c
PZ
9928 if (!perf_event_validate_size(event)) {
9929 err = -E2BIG;
9930 goto err_locked;
9931 }
9932
f55fc2a5
PZ
9933 /*
9934 * Must be under the same ctx::mutex as perf_install_in_context(),
9935 * because we need to serialize with concurrent event creation.
9936 */
9937 if (!exclusive_event_installable(event, ctx)) {
9938 /* exclusive and group stuff are assumed mutually exclusive */
9939 WARN_ON_ONCE(move_group);
f63a8daa 9940
f55fc2a5
PZ
9941 err = -EBUSY;
9942 goto err_locked;
9943 }
f63a8daa 9944
f55fc2a5
PZ
9945 WARN_ON_ONCE(ctx->parent_ctx);
9946
79c9ce57
PZ
9947 /*
9948 * This is the point on no return; we cannot fail hereafter. This is
9949 * where we start modifying current state.
9950 */
9951
f55fc2a5 9952 if (move_group) {
f63a8daa
PZ
9953 /*
9954 * See perf_event_ctx_lock() for comments on the details
9955 * of swizzling perf_event::ctx.
9956 */
45a0e07a 9957 perf_remove_from_context(group_leader, 0);
0231bb53 9958
b04243ef
PZ
9959 list_for_each_entry(sibling, &group_leader->sibling_list,
9960 group_entry) {
45a0e07a 9961 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9962 put_ctx(gctx);
9963 }
b04243ef 9964
f63a8daa
PZ
9965 /*
9966 * Wait for everybody to stop referencing the events through
9967 * the old lists, before installing it on new lists.
9968 */
0cda4c02 9969 synchronize_rcu();
f63a8daa 9970
8f95b435
PZI
9971 /*
9972 * Install the group siblings before the group leader.
9973 *
9974 * Because a group leader will try and install the entire group
9975 * (through the sibling list, which is still in-tact), we can
9976 * end up with siblings installed in the wrong context.
9977 *
9978 * By installing siblings first we NO-OP because they're not
9979 * reachable through the group lists.
9980 */
b04243ef
PZ
9981 list_for_each_entry(sibling, &group_leader->sibling_list,
9982 group_entry) {
8f95b435 9983 perf_event__state_init(sibling);
9fc81d87 9984 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9985 get_ctx(ctx);
9986 }
8f95b435
PZI
9987
9988 /*
9989 * Removing from the context ends up with disabled
9990 * event. What we want here is event in the initial
9991 * startup state, ready to be add into new context.
9992 */
9993 perf_event__state_init(group_leader);
9994 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9995 get_ctx(ctx);
b04243ef 9996
f55fc2a5
PZ
9997 /*
9998 * Now that all events are installed in @ctx, nothing
9999 * references @gctx anymore, so drop the last reference we have
10000 * on it.
10001 */
10002 put_ctx(gctx);
bed5b25a
AS
10003 }
10004
f73e22ab
PZ
10005 /*
10006 * Precalculate sample_data sizes; do while holding ctx::mutex such
10007 * that we're serialized against further additions and before
10008 * perf_install_in_context() which is the point the event is active and
10009 * can use these values.
10010 */
10011 perf_event__header_size(event);
10012 perf_event__id_header_size(event);
10013
78cd2c74
PZ
10014 event->owner = current;
10015
e2d37cd2 10016 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10017 perf_unpin_context(ctx);
f63a8daa 10018
f55fc2a5 10019 if (move_group)
321027c1 10020 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10021 mutex_unlock(&ctx->mutex);
9b51f66d 10022
79c9ce57
PZ
10023 if (task) {
10024 mutex_unlock(&task->signal->cred_guard_mutex);
10025 put_task_struct(task);
10026 }
10027
fbfc623f
YZ
10028 put_online_cpus();
10029
cdd6c482
IM
10030 mutex_lock(&current->perf_event_mutex);
10031 list_add_tail(&event->owner_entry, &current->perf_event_list);
10032 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10033
8a49542c
PZ
10034 /*
10035 * Drop the reference on the group_event after placing the
10036 * new event on the sibling_list. This ensures destruction
10037 * of the group leader will find the pointer to itself in
10038 * perf_group_detach().
10039 */
2903ff01 10040 fdput(group);
ea635c64
AV
10041 fd_install(event_fd, event_file);
10042 return event_fd;
0793a61d 10043
f55fc2a5
PZ
10044err_locked:
10045 if (move_group)
321027c1 10046 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10047 mutex_unlock(&ctx->mutex);
10048/* err_file: */
10049 fput(event_file);
c3f00c70 10050err_context:
fe4b04fa 10051 perf_unpin_context(ctx);
ea635c64 10052 put_ctx(ctx);
c6be5a5c 10053err_alloc:
13005627
PZ
10054 /*
10055 * If event_file is set, the fput() above will have called ->release()
10056 * and that will take care of freeing the event.
10057 */
10058 if (!event_file)
10059 free_event(event);
79c9ce57
PZ
10060err_cred:
10061 if (task)
10062 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10063err_cpus:
fbfc623f 10064 put_online_cpus();
1f4ee503 10065err_task:
e7d0bc04
PZ
10066 if (task)
10067 put_task_struct(task);
89a1e187 10068err_group_fd:
2903ff01 10069 fdput(group);
ea635c64
AV
10070err_fd:
10071 put_unused_fd(event_fd);
dc86cabe 10072 return err;
0793a61d
TG
10073}
10074
fb0459d7
AV
10075/**
10076 * perf_event_create_kernel_counter
10077 *
10078 * @attr: attributes of the counter to create
10079 * @cpu: cpu in which the counter is bound
38a81da2 10080 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10081 */
10082struct perf_event *
10083perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10084 struct task_struct *task,
4dc0da86
AK
10085 perf_overflow_handler_t overflow_handler,
10086 void *context)
fb0459d7 10087{
fb0459d7 10088 struct perf_event_context *ctx;
c3f00c70 10089 struct perf_event *event;
fb0459d7 10090 int err;
d859e29f 10091
fb0459d7
AV
10092 /*
10093 * Get the target context (task or percpu):
10094 */
d859e29f 10095
4dc0da86 10096 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10097 overflow_handler, context, -1);
c3f00c70
PZ
10098 if (IS_ERR(event)) {
10099 err = PTR_ERR(event);
10100 goto err;
10101 }
d859e29f 10102
f8697762 10103 /* Mark owner so we could distinguish it from user events. */
63b6da39 10104 event->owner = TASK_TOMBSTONE;
f8697762 10105
4af57ef2 10106 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10107 if (IS_ERR(ctx)) {
10108 err = PTR_ERR(ctx);
c3f00c70 10109 goto err_free;
d859e29f 10110 }
fb0459d7 10111
fb0459d7
AV
10112 WARN_ON_ONCE(ctx->parent_ctx);
10113 mutex_lock(&ctx->mutex);
84c4e620
PZ
10114 if (ctx->task == TASK_TOMBSTONE) {
10115 err = -ESRCH;
10116 goto err_unlock;
10117 }
10118
bed5b25a 10119 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10120 err = -EBUSY;
84c4e620 10121 goto err_unlock;
bed5b25a
AS
10122 }
10123
fb0459d7 10124 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10125 perf_unpin_context(ctx);
fb0459d7
AV
10126 mutex_unlock(&ctx->mutex);
10127
fb0459d7
AV
10128 return event;
10129
84c4e620
PZ
10130err_unlock:
10131 mutex_unlock(&ctx->mutex);
10132 perf_unpin_context(ctx);
10133 put_ctx(ctx);
c3f00c70
PZ
10134err_free:
10135 free_event(event);
10136err:
c6567f64 10137 return ERR_PTR(err);
9b51f66d 10138}
fb0459d7 10139EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10140
0cda4c02
YZ
10141void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10142{
10143 struct perf_event_context *src_ctx;
10144 struct perf_event_context *dst_ctx;
10145 struct perf_event *event, *tmp;
10146 LIST_HEAD(events);
10147
10148 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10149 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10150
f63a8daa
PZ
10151 /*
10152 * See perf_event_ctx_lock() for comments on the details
10153 * of swizzling perf_event::ctx.
10154 */
10155 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10156 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10157 event_entry) {
45a0e07a 10158 perf_remove_from_context(event, 0);
9a545de0 10159 unaccount_event_cpu(event, src_cpu);
0cda4c02 10160 put_ctx(src_ctx);
9886167d 10161 list_add(&event->migrate_entry, &events);
0cda4c02 10162 }
0cda4c02 10163
8f95b435
PZI
10164 /*
10165 * Wait for the events to quiesce before re-instating them.
10166 */
0cda4c02
YZ
10167 synchronize_rcu();
10168
8f95b435
PZI
10169 /*
10170 * Re-instate events in 2 passes.
10171 *
10172 * Skip over group leaders and only install siblings on this first
10173 * pass, siblings will not get enabled without a leader, however a
10174 * leader will enable its siblings, even if those are still on the old
10175 * context.
10176 */
10177 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10178 if (event->group_leader == event)
10179 continue;
10180
10181 list_del(&event->migrate_entry);
10182 if (event->state >= PERF_EVENT_STATE_OFF)
10183 event->state = PERF_EVENT_STATE_INACTIVE;
10184 account_event_cpu(event, dst_cpu);
10185 perf_install_in_context(dst_ctx, event, dst_cpu);
10186 get_ctx(dst_ctx);
10187 }
10188
10189 /*
10190 * Once all the siblings are setup properly, install the group leaders
10191 * to make it go.
10192 */
9886167d
PZ
10193 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10194 list_del(&event->migrate_entry);
0cda4c02
YZ
10195 if (event->state >= PERF_EVENT_STATE_OFF)
10196 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10197 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10198 perf_install_in_context(dst_ctx, event, dst_cpu);
10199 get_ctx(dst_ctx);
10200 }
10201 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10202 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10203}
10204EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10205
cdd6c482 10206static void sync_child_event(struct perf_event *child_event,
38b200d6 10207 struct task_struct *child)
d859e29f 10208{
cdd6c482 10209 struct perf_event *parent_event = child_event->parent;
8bc20959 10210 u64 child_val;
d859e29f 10211
cdd6c482
IM
10212 if (child_event->attr.inherit_stat)
10213 perf_event_read_event(child_event, child);
38b200d6 10214
b5e58793 10215 child_val = perf_event_count(child_event);
d859e29f
PM
10216
10217 /*
10218 * Add back the child's count to the parent's count:
10219 */
a6e6dea6 10220 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10221 atomic64_add(child_event->total_time_enabled,
10222 &parent_event->child_total_time_enabled);
10223 atomic64_add(child_event->total_time_running,
10224 &parent_event->child_total_time_running);
d859e29f
PM
10225}
10226
9b51f66d 10227static void
8ba289b8
PZ
10228perf_event_exit_event(struct perf_event *child_event,
10229 struct perf_event_context *child_ctx,
10230 struct task_struct *child)
9b51f66d 10231{
8ba289b8
PZ
10232 struct perf_event *parent_event = child_event->parent;
10233
1903d50c
PZ
10234 /*
10235 * Do not destroy the 'original' grouping; because of the context
10236 * switch optimization the original events could've ended up in a
10237 * random child task.
10238 *
10239 * If we were to destroy the original group, all group related
10240 * operations would cease to function properly after this random
10241 * child dies.
10242 *
10243 * Do destroy all inherited groups, we don't care about those
10244 * and being thorough is better.
10245 */
32132a3d
PZ
10246 raw_spin_lock_irq(&child_ctx->lock);
10247 WARN_ON_ONCE(child_ctx->is_active);
10248
8ba289b8 10249 if (parent_event)
32132a3d
PZ
10250 perf_group_detach(child_event);
10251 list_del_event(child_event, child_ctx);
a69b0ca4 10252 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10253 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10254
9b51f66d 10255 /*
8ba289b8 10256 * Parent events are governed by their filedesc, retain them.
9b51f66d 10257 */
8ba289b8 10258 if (!parent_event) {
179033b3 10259 perf_event_wakeup(child_event);
8ba289b8 10260 return;
4bcf349a 10261 }
8ba289b8
PZ
10262 /*
10263 * Child events can be cleaned up.
10264 */
10265
10266 sync_child_event(child_event, child);
10267
10268 /*
10269 * Remove this event from the parent's list
10270 */
10271 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10272 mutex_lock(&parent_event->child_mutex);
10273 list_del_init(&child_event->child_list);
10274 mutex_unlock(&parent_event->child_mutex);
10275
10276 /*
10277 * Kick perf_poll() for is_event_hup().
10278 */
10279 perf_event_wakeup(parent_event);
10280 free_event(child_event);
10281 put_event(parent_event);
9b51f66d
IM
10282}
10283
8dc85d54 10284static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10285{
211de6eb 10286 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10287 struct perf_event *child_event, *next;
63b6da39
PZ
10288
10289 WARN_ON_ONCE(child != current);
9b51f66d 10290
6a3351b6 10291 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10292 if (!child_ctx)
9b51f66d
IM
10293 return;
10294
ad3a37de 10295 /*
6a3351b6
PZ
10296 * In order to reduce the amount of tricky in ctx tear-down, we hold
10297 * ctx::mutex over the entire thing. This serializes against almost
10298 * everything that wants to access the ctx.
10299 *
10300 * The exception is sys_perf_event_open() /
10301 * perf_event_create_kernel_count() which does find_get_context()
10302 * without ctx::mutex (it cannot because of the move_group double mutex
10303 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10304 */
6a3351b6 10305 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10306
10307 /*
6a3351b6
PZ
10308 * In a single ctx::lock section, de-schedule the events and detach the
10309 * context from the task such that we cannot ever get it scheduled back
10310 * in.
c93f7669 10311 */
6a3351b6 10312 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10313 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10314
71a851b4 10315 /*
63b6da39
PZ
10316 * Now that the context is inactive, destroy the task <-> ctx relation
10317 * and mark the context dead.
71a851b4 10318 */
63b6da39
PZ
10319 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10320 put_ctx(child_ctx); /* cannot be last */
10321 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10322 put_task_struct(current); /* cannot be last */
4a1c0f26 10323
211de6eb 10324 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10325 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10326
211de6eb
PZ
10327 if (clone_ctx)
10328 put_ctx(clone_ctx);
4a1c0f26 10329
9f498cc5 10330 /*
cdd6c482
IM
10331 * Report the task dead after unscheduling the events so that we
10332 * won't get any samples after PERF_RECORD_EXIT. We can however still
10333 * get a few PERF_RECORD_READ events.
9f498cc5 10334 */
cdd6c482 10335 perf_event_task(child, child_ctx, 0);
a63eaf34 10336
ebf905fc 10337 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10338 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10339
a63eaf34
PM
10340 mutex_unlock(&child_ctx->mutex);
10341
10342 put_ctx(child_ctx);
9b51f66d
IM
10343}
10344
8dc85d54
PZ
10345/*
10346 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10347 *
10348 * Can be called with cred_guard_mutex held when called from
10349 * install_exec_creds().
8dc85d54
PZ
10350 */
10351void perf_event_exit_task(struct task_struct *child)
10352{
8882135b 10353 struct perf_event *event, *tmp;
8dc85d54
PZ
10354 int ctxn;
10355
8882135b
PZ
10356 mutex_lock(&child->perf_event_mutex);
10357 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10358 owner_entry) {
10359 list_del_init(&event->owner_entry);
10360
10361 /*
10362 * Ensure the list deletion is visible before we clear
10363 * the owner, closes a race against perf_release() where
10364 * we need to serialize on the owner->perf_event_mutex.
10365 */
f47c02c0 10366 smp_store_release(&event->owner, NULL);
8882135b
PZ
10367 }
10368 mutex_unlock(&child->perf_event_mutex);
10369
8dc85d54
PZ
10370 for_each_task_context_nr(ctxn)
10371 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10372
10373 /*
10374 * The perf_event_exit_task_context calls perf_event_task
10375 * with child's task_ctx, which generates EXIT events for
10376 * child contexts and sets child->perf_event_ctxp[] to NULL.
10377 * At this point we need to send EXIT events to cpu contexts.
10378 */
10379 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10380}
10381
889ff015
FW
10382static void perf_free_event(struct perf_event *event,
10383 struct perf_event_context *ctx)
10384{
10385 struct perf_event *parent = event->parent;
10386
10387 if (WARN_ON_ONCE(!parent))
10388 return;
10389
10390 mutex_lock(&parent->child_mutex);
10391 list_del_init(&event->child_list);
10392 mutex_unlock(&parent->child_mutex);
10393
a6fa941d 10394 put_event(parent);
889ff015 10395
652884fe 10396 raw_spin_lock_irq(&ctx->lock);
8a49542c 10397 perf_group_detach(event);
889ff015 10398 list_del_event(event, ctx);
652884fe 10399 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10400 free_event(event);
10401}
10402
bbbee908 10403/*
652884fe 10404 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10405 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10406 *
10407 * Not all locks are strictly required, but take them anyway to be nice and
10408 * help out with the lockdep assertions.
bbbee908 10409 */
cdd6c482 10410void perf_event_free_task(struct task_struct *task)
bbbee908 10411{
8dc85d54 10412 struct perf_event_context *ctx;
cdd6c482 10413 struct perf_event *event, *tmp;
8dc85d54 10414 int ctxn;
bbbee908 10415
8dc85d54
PZ
10416 for_each_task_context_nr(ctxn) {
10417 ctx = task->perf_event_ctxp[ctxn];
10418 if (!ctx)
10419 continue;
bbbee908 10420
8dc85d54 10421 mutex_lock(&ctx->mutex);
bbbee908 10422again:
8dc85d54
PZ
10423 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10424 group_entry)
10425 perf_free_event(event, ctx);
bbbee908 10426
8dc85d54
PZ
10427 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10428 group_entry)
10429 perf_free_event(event, ctx);
bbbee908 10430
8dc85d54
PZ
10431 if (!list_empty(&ctx->pinned_groups) ||
10432 !list_empty(&ctx->flexible_groups))
10433 goto again;
bbbee908 10434
8dc85d54 10435 mutex_unlock(&ctx->mutex);
bbbee908 10436
8dc85d54
PZ
10437 put_ctx(ctx);
10438 }
889ff015
FW
10439}
10440
4e231c79
PZ
10441void perf_event_delayed_put(struct task_struct *task)
10442{
10443 int ctxn;
10444
10445 for_each_task_context_nr(ctxn)
10446 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10447}
10448
e03e7ee3 10449struct file *perf_event_get(unsigned int fd)
ffe8690c 10450{
e03e7ee3 10451 struct file *file;
ffe8690c 10452
e03e7ee3
AS
10453 file = fget_raw(fd);
10454 if (!file)
10455 return ERR_PTR(-EBADF);
ffe8690c 10456
e03e7ee3
AS
10457 if (file->f_op != &perf_fops) {
10458 fput(file);
10459 return ERR_PTR(-EBADF);
10460 }
ffe8690c 10461
e03e7ee3 10462 return file;
ffe8690c
KX
10463}
10464
10465const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10466{
10467 if (!event)
10468 return ERR_PTR(-EINVAL);
10469
10470 return &event->attr;
10471}
10472
97dee4f3
PZ
10473/*
10474 * inherit a event from parent task to child task:
10475 */
10476static struct perf_event *
10477inherit_event(struct perf_event *parent_event,
10478 struct task_struct *parent,
10479 struct perf_event_context *parent_ctx,
10480 struct task_struct *child,
10481 struct perf_event *group_leader,
10482 struct perf_event_context *child_ctx)
10483{
1929def9 10484 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10485 struct perf_event *child_event;
cee010ec 10486 unsigned long flags;
97dee4f3
PZ
10487
10488 /*
10489 * Instead of creating recursive hierarchies of events,
10490 * we link inherited events back to the original parent,
10491 * which has a filp for sure, which we use as the reference
10492 * count:
10493 */
10494 if (parent_event->parent)
10495 parent_event = parent_event->parent;
10496
10497 child_event = perf_event_alloc(&parent_event->attr,
10498 parent_event->cpu,
d580ff86 10499 child,
97dee4f3 10500 group_leader, parent_event,
79dff51e 10501 NULL, NULL, -1);
97dee4f3
PZ
10502 if (IS_ERR(child_event))
10503 return child_event;
a6fa941d 10504
c6e5b732
PZ
10505 /*
10506 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10507 * must be under the same lock in order to serialize against
10508 * perf_event_release_kernel(), such that either we must observe
10509 * is_orphaned_event() or they will observe us on the child_list.
10510 */
10511 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10512 if (is_orphaned_event(parent_event) ||
10513 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10514 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10515 free_event(child_event);
10516 return NULL;
10517 }
10518
97dee4f3
PZ
10519 get_ctx(child_ctx);
10520
10521 /*
10522 * Make the child state follow the state of the parent event,
10523 * not its attr.disabled bit. We hold the parent's mutex,
10524 * so we won't race with perf_event_{en, dis}able_family.
10525 */
1929def9 10526 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10527 child_event->state = PERF_EVENT_STATE_INACTIVE;
10528 else
10529 child_event->state = PERF_EVENT_STATE_OFF;
10530
10531 if (parent_event->attr.freq) {
10532 u64 sample_period = parent_event->hw.sample_period;
10533 struct hw_perf_event *hwc = &child_event->hw;
10534
10535 hwc->sample_period = sample_period;
10536 hwc->last_period = sample_period;
10537
10538 local64_set(&hwc->period_left, sample_period);
10539 }
10540
10541 child_event->ctx = child_ctx;
10542 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10543 child_event->overflow_handler_context
10544 = parent_event->overflow_handler_context;
97dee4f3 10545
614b6780
TG
10546 /*
10547 * Precalculate sample_data sizes
10548 */
10549 perf_event__header_size(child_event);
6844c09d 10550 perf_event__id_header_size(child_event);
614b6780 10551
97dee4f3
PZ
10552 /*
10553 * Link it up in the child's context:
10554 */
cee010ec 10555 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10556 add_event_to_ctx(child_event, child_ctx);
cee010ec 10557 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10558
97dee4f3
PZ
10559 /*
10560 * Link this into the parent event's child list
10561 */
97dee4f3
PZ
10562 list_add_tail(&child_event->child_list, &parent_event->child_list);
10563 mutex_unlock(&parent_event->child_mutex);
10564
10565 return child_event;
10566}
10567
10568static int inherit_group(struct perf_event *parent_event,
10569 struct task_struct *parent,
10570 struct perf_event_context *parent_ctx,
10571 struct task_struct *child,
10572 struct perf_event_context *child_ctx)
10573{
10574 struct perf_event *leader;
10575 struct perf_event *sub;
10576 struct perf_event *child_ctr;
10577
10578 leader = inherit_event(parent_event, parent, parent_ctx,
10579 child, NULL, child_ctx);
10580 if (IS_ERR(leader))
10581 return PTR_ERR(leader);
10582 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10583 child_ctr = inherit_event(sub, parent, parent_ctx,
10584 child, leader, child_ctx);
10585 if (IS_ERR(child_ctr))
10586 return PTR_ERR(child_ctr);
10587 }
10588 return 0;
889ff015
FW
10589}
10590
10591static int
10592inherit_task_group(struct perf_event *event, struct task_struct *parent,
10593 struct perf_event_context *parent_ctx,
8dc85d54 10594 struct task_struct *child, int ctxn,
889ff015
FW
10595 int *inherited_all)
10596{
10597 int ret;
8dc85d54 10598 struct perf_event_context *child_ctx;
889ff015
FW
10599
10600 if (!event->attr.inherit) {
10601 *inherited_all = 0;
10602 return 0;
bbbee908
PZ
10603 }
10604
fe4b04fa 10605 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10606 if (!child_ctx) {
10607 /*
10608 * This is executed from the parent task context, so
10609 * inherit events that have been marked for cloning.
10610 * First allocate and initialize a context for the
10611 * child.
10612 */
bbbee908 10613
734df5ab 10614 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10615 if (!child_ctx)
10616 return -ENOMEM;
bbbee908 10617
8dc85d54 10618 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10619 }
10620
10621 ret = inherit_group(event, parent, parent_ctx,
10622 child, child_ctx);
10623
10624 if (ret)
10625 *inherited_all = 0;
10626
10627 return ret;
bbbee908
PZ
10628}
10629
9b51f66d 10630/*
cdd6c482 10631 * Initialize the perf_event context in task_struct
9b51f66d 10632 */
985c8dcb 10633static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10634{
889ff015 10635 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10636 struct perf_event_context *cloned_ctx;
10637 struct perf_event *event;
9b51f66d 10638 struct task_struct *parent = current;
564c2b21 10639 int inherited_all = 1;
dddd3379 10640 unsigned long flags;
6ab423e0 10641 int ret = 0;
9b51f66d 10642
8dc85d54 10643 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10644 return 0;
10645
ad3a37de 10646 /*
25346b93
PM
10647 * If the parent's context is a clone, pin it so it won't get
10648 * swapped under us.
ad3a37de 10649 */
8dc85d54 10650 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10651 if (!parent_ctx)
10652 return 0;
25346b93 10653
ad3a37de
PM
10654 /*
10655 * No need to check if parent_ctx != NULL here; since we saw
10656 * it non-NULL earlier, the only reason for it to become NULL
10657 * is if we exit, and since we're currently in the middle of
10658 * a fork we can't be exiting at the same time.
10659 */
ad3a37de 10660
9b51f66d
IM
10661 /*
10662 * Lock the parent list. No need to lock the child - not PID
10663 * hashed yet and not running, so nobody can access it.
10664 */
d859e29f 10665 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10666
10667 /*
10668 * We dont have to disable NMIs - we are only looking at
10669 * the list, not manipulating it:
10670 */
889ff015 10671 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10672 ret = inherit_task_group(event, parent, parent_ctx,
10673 child, ctxn, &inherited_all);
889ff015
FW
10674 if (ret)
10675 break;
10676 }
b93f7978 10677
dddd3379
TG
10678 /*
10679 * We can't hold ctx->lock when iterating the ->flexible_group list due
10680 * to allocations, but we need to prevent rotation because
10681 * rotate_ctx() will change the list from interrupt context.
10682 */
10683 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10684 parent_ctx->rotate_disable = 1;
10685 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10686
889ff015 10687 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10688 ret = inherit_task_group(event, parent, parent_ctx,
10689 child, ctxn, &inherited_all);
889ff015 10690 if (ret)
9b51f66d 10691 break;
564c2b21
PM
10692 }
10693
dddd3379
TG
10694 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10695 parent_ctx->rotate_disable = 0;
dddd3379 10696
8dc85d54 10697 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10698
05cbaa28 10699 if (child_ctx && inherited_all) {
564c2b21
PM
10700 /*
10701 * Mark the child context as a clone of the parent
10702 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10703 *
10704 * Note that if the parent is a clone, the holding of
10705 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10706 */
c5ed5145 10707 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10708 if (cloned_ctx) {
10709 child_ctx->parent_ctx = cloned_ctx;
25346b93 10710 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10711 } else {
10712 child_ctx->parent_ctx = parent_ctx;
10713 child_ctx->parent_gen = parent_ctx->generation;
10714 }
10715 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10716 }
10717
c5ed5145 10718 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10719 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10720
25346b93 10721 perf_unpin_context(parent_ctx);
fe4b04fa 10722 put_ctx(parent_ctx);
ad3a37de 10723
6ab423e0 10724 return ret;
9b51f66d
IM
10725}
10726
8dc85d54
PZ
10727/*
10728 * Initialize the perf_event context in task_struct
10729 */
10730int perf_event_init_task(struct task_struct *child)
10731{
10732 int ctxn, ret;
10733
8550d7cb
ON
10734 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10735 mutex_init(&child->perf_event_mutex);
10736 INIT_LIST_HEAD(&child->perf_event_list);
10737
8dc85d54
PZ
10738 for_each_task_context_nr(ctxn) {
10739 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10740 if (ret) {
10741 perf_event_free_task(child);
8dc85d54 10742 return ret;
6c72e350 10743 }
8dc85d54
PZ
10744 }
10745
10746 return 0;
10747}
10748
220b140b
PM
10749static void __init perf_event_init_all_cpus(void)
10750{
b28ab83c 10751 struct swevent_htable *swhash;
220b140b 10752 int cpu;
220b140b
PM
10753
10754 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10755 swhash = &per_cpu(swevent_htable, cpu);
10756 mutex_init(&swhash->hlist_mutex);
2fde4f94 10757 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10758
10759 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10760 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10761
058fe1c0
DCC
10762#ifdef CONFIG_CGROUP_PERF
10763 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10764#endif
e48c1788 10765 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10766 }
10767}
10768
00e16c3d 10769int perf_event_init_cpu(unsigned int cpu)
0793a61d 10770{
108b02cf 10771 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10772
b28ab83c 10773 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10774 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10775 struct swevent_hlist *hlist;
10776
b28ab83c
PZ
10777 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10778 WARN_ON(!hlist);
10779 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10780 }
b28ab83c 10781 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10782 return 0;
0793a61d
TG
10783}
10784
2965faa5 10785#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10786static void __perf_event_exit_context(void *__info)
0793a61d 10787{
108b02cf 10788 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10789 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10790 struct perf_event *event;
0793a61d 10791
fae3fde6
PZ
10792 raw_spin_lock(&ctx->lock);
10793 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10794 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10795 raw_spin_unlock(&ctx->lock);
0793a61d 10796}
108b02cf
PZ
10797
10798static void perf_event_exit_cpu_context(int cpu)
10799{
10800 struct perf_event_context *ctx;
10801 struct pmu *pmu;
10802 int idx;
10803
10804 idx = srcu_read_lock(&pmus_srcu);
10805 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10806 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10807
10808 mutex_lock(&ctx->mutex);
10809 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10810 mutex_unlock(&ctx->mutex);
10811 }
10812 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10813}
00e16c3d
TG
10814#else
10815
10816static void perf_event_exit_cpu_context(int cpu) { }
10817
10818#endif
108b02cf 10819
00e16c3d 10820int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10821{
e3703f8c 10822 perf_event_exit_cpu_context(cpu);
00e16c3d 10823 return 0;
0793a61d 10824}
0793a61d 10825
c277443c
PZ
10826static int
10827perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10828{
10829 int cpu;
10830
10831 for_each_online_cpu(cpu)
10832 perf_event_exit_cpu(cpu);
10833
10834 return NOTIFY_OK;
10835}
10836
10837/*
10838 * Run the perf reboot notifier at the very last possible moment so that
10839 * the generic watchdog code runs as long as possible.
10840 */
10841static struct notifier_block perf_reboot_notifier = {
10842 .notifier_call = perf_reboot,
10843 .priority = INT_MIN,
10844};
10845
cdd6c482 10846void __init perf_event_init(void)
0793a61d 10847{
3c502e7a
JW
10848 int ret;
10849
2e80a82a
PZ
10850 idr_init(&pmu_idr);
10851
220b140b 10852 perf_event_init_all_cpus();
b0a873eb 10853 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10854 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10855 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10856 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10857 perf_tp_register();
00e16c3d 10858 perf_event_init_cpu(smp_processor_id());
c277443c 10859 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10860
10861 ret = init_hw_breakpoint();
10862 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10863
b01c3a00
JO
10864 /*
10865 * Build time assertion that we keep the data_head at the intended
10866 * location. IOW, validation we got the __reserved[] size right.
10867 */
10868 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10869 != 1024);
0793a61d 10870}
abe43400 10871
fd979c01
CS
10872ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10873 char *page)
10874{
10875 struct perf_pmu_events_attr *pmu_attr =
10876 container_of(attr, struct perf_pmu_events_attr, attr);
10877
10878 if (pmu_attr->event_str)
10879 return sprintf(page, "%s\n", pmu_attr->event_str);
10880
10881 return 0;
10882}
675965b0 10883EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10884
abe43400
PZ
10885static int __init perf_event_sysfs_init(void)
10886{
10887 struct pmu *pmu;
10888 int ret;
10889
10890 mutex_lock(&pmus_lock);
10891
10892 ret = bus_register(&pmu_bus);
10893 if (ret)
10894 goto unlock;
10895
10896 list_for_each_entry(pmu, &pmus, entry) {
10897 if (!pmu->name || pmu->type < 0)
10898 continue;
10899
10900 ret = pmu_dev_alloc(pmu);
10901 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10902 }
10903 pmu_bus_running = 1;
10904 ret = 0;
10905
10906unlock:
10907 mutex_unlock(&pmus_lock);
10908
10909 return ret;
10910}
10911device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10912
10913#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10914static struct cgroup_subsys_state *
10915perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10916{
10917 struct perf_cgroup *jc;
e5d1367f 10918
1b15d055 10919 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10920 if (!jc)
10921 return ERR_PTR(-ENOMEM);
10922
e5d1367f
SE
10923 jc->info = alloc_percpu(struct perf_cgroup_info);
10924 if (!jc->info) {
10925 kfree(jc);
10926 return ERR_PTR(-ENOMEM);
10927 }
10928
e5d1367f
SE
10929 return &jc->css;
10930}
10931
eb95419b 10932static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10933{
eb95419b
TH
10934 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10935
e5d1367f
SE
10936 free_percpu(jc->info);
10937 kfree(jc);
10938}
10939
10940static int __perf_cgroup_move(void *info)
10941{
10942 struct task_struct *task = info;
ddaaf4e2 10943 rcu_read_lock();
e5d1367f 10944 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10945 rcu_read_unlock();
e5d1367f
SE
10946 return 0;
10947}
10948
1f7dd3e5 10949static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10950{
bb9d97b6 10951 struct task_struct *task;
1f7dd3e5 10952 struct cgroup_subsys_state *css;
bb9d97b6 10953
1f7dd3e5 10954 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10955 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10956}
10957
073219e9 10958struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10959 .css_alloc = perf_cgroup_css_alloc,
10960 .css_free = perf_cgroup_css_free,
bb9d97b6 10961 .attach = perf_cgroup_attach,
e5d1367f
SE
10962};
10963#endif /* CONFIG_CGROUP_PERF */