perf/headers: Sync new perf_event.h with the tools/include/uapi version
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730}
731
732static inline void update_cgrp_time_from_event(struct perf_event *event)
733{
3f7cce3c
SE
734 struct perf_cgroup *cgrp;
735
e5d1367f 736 /*
3f7cce3c
SE
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
e5d1367f 739 */
3f7cce3c 740 if (!is_cgroup_event(event))
e5d1367f
SE
741 return;
742
614e4c4e 743 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
744 /*
745 * Do not update time when cgroup is not active
746 */
e6a52033 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 748 __update_cgrp_time(event->cgrp);
e5d1367f
SE
749}
750
751static inline void
3f7cce3c
SE
752perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
e5d1367f
SE
754{
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
3f7cce3c
SE
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
764 return;
765
614e4c4e 766 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 767 info = this_cpu_ptr(cgrp->info);
3f7cce3c 768 info->timestamp = ctx->timestamp;
e5d1367f
SE
769}
770
058fe1c0
DCC
771static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
e5d1367f
SE
773#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776/*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
18ab2cd3 782static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
783{
784 struct perf_cpu_context *cpuctx;
058fe1c0 785 struct list_head *list;
e5d1367f
SE
786 unsigned long flags;
787
788 /*
058fe1c0
DCC
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
791 */
792 local_irq_save(flags);
793
058fe1c0
DCC
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 797
058fe1c0
DCC
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 800
058fe1c0
DCC
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
e5d1367f 809
058fe1c0
DCC
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 822 }
058fe1c0
DCC
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
825 }
826
e5d1367f
SE
827 local_irq_restore(flags);
828}
829
a8d757ef
SE
830static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
e5d1367f 832{
a8d757ef
SE
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
ddaaf4e2 836 rcu_read_lock();
a8d757ef
SE
837 /*
838 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
a8d757ef 841 */
614e4c4e 842 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 843 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
852
853 rcu_read_unlock();
e5d1367f
SE
854}
855
a8d757ef
SE
856static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
e5d1367f 858{
a8d757ef
SE
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
ddaaf4e2 862 rcu_read_lock();
a8d757ef
SE
863 /*
864 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
a8d757ef 867 */
614e4c4e 868 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 869 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
878
879 rcu_read_unlock();
e5d1367f
SE
880}
881
882static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885{
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
2903ff01
AV
888 struct fd f = fdget(fd);
889 int ret = 0;
e5d1367f 890
2903ff01 891 if (!f.file)
e5d1367f
SE
892 return -EBADF;
893
b583043e 894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 895 &perf_event_cgrp_subsys);
3db272c0
LZ
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
e5d1367f
SE
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
e5d1367f 912 }
3db272c0 913out:
2903ff01 914 fdput(f);
e5d1367f
SE
915 return ret;
916}
917
918static inline void
919perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920{
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924}
925
db4a8356
DCC
926/*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930static inline void
931list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933{
934 struct perf_cpu_context *cpuctx;
058fe1c0 935 struct list_head *cpuctx_entry;
db4a8356
DCC
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
be96b316
TH
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
058fe1c0 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
be96b316
TH
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
058fe1c0
DCC
957 } else {
958 list_del(cpuctx_entry);
8fc31ce8 959 cpuctx->cgrp = NULL;
058fe1c0 960 }
db4a8356
DCC
961}
962
e5d1367f
SE
963#else /* !CONFIG_CGROUP_PERF */
964
965static inline bool
966perf_cgroup_match(struct perf_event *event)
967{
968 return true;
969}
970
971static inline void perf_detach_cgroup(struct perf_event *event)
972{}
973
974static inline int is_cgroup_event(struct perf_event *event)
975{
976 return 0;
977}
978
e5d1367f
SE
979static inline void update_cgrp_time_from_event(struct perf_event *event)
980{
981}
982
983static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984{
985}
986
a8d757ef
SE
987static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
e5d1367f
SE
989{
990}
991
a8d757ef
SE
992static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
e5d1367f
SE
994{
995}
996
997static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000{
1001 return -EINVAL;
1002}
1003
1004static inline void
3f7cce3c
SE
1005perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
e5d1367f
SE
1007{
1008}
1009
1010void
1011perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012{
1013}
1014
1015static inline void
1016perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017{
1018}
1019
1020static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021{
1022 return 0;
1023}
1024
db4a8356
DCC
1025static inline void
1026list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028{
1029}
1030
e5d1367f
SE
1031#endif
1032
9e630205
SE
1033/*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037#define PERF_CPU_HRTIMER (1000 / HZ)
1038/*
8a1115ff 1039 * function must be called with interrupts disabled
9e630205 1040 */
272325c4 1041static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1042{
1043 struct perf_cpu_context *cpuctx;
9e630205
SE
1044 int rotations = 0;
1045
16444645 1046 lockdep_assert_irqs_disabled();
9e630205
SE
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1049 rotations = perf_rotate_context(cpuctx);
1050
4cfafd30
PZ
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
9e630205 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1057
4cfafd30 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1059}
1060
272325c4 1061static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1062{
272325c4 1063 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1064 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1065 u64 interval;
9e630205
SE
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
62b85639
SE
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
272325c4
PZ
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1078
272325c4 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1080
4cfafd30
PZ
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1083 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1084}
1085
272325c4 1086static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1087{
272325c4 1088 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1089 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1090 unsigned long flags;
9e630205
SE
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1094 return 0;
9e630205 1095
4cfafd30
PZ
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1103
272325c4 1104 return 0;
9e630205
SE
1105}
1106
33696fc0 1107void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1108{
33696fc0
PZ
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
9e35ad38 1112}
9e35ad38 1113
33696fc0 1114void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1115{
33696fc0
PZ
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
9e35ad38 1119}
9e35ad38 1120
2fde4f94 1121static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1122
1123/*
2fde4f94
MR
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1128 */
2fde4f94 1129static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1130{
2fde4f94 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1132
16444645 1133 lockdep_assert_irqs_disabled();
b5ab4cd5 1134
2fde4f94
MR
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138}
1139
1140static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141{
16444645 1142 lockdep_assert_irqs_disabled();
2fde4f94
MR
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
9e35ad38 1147}
9e35ad38 1148
cdd6c482 1149static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1150{
e5289d4a 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1152}
1153
4af57ef2
YZ
1154static void free_ctx(struct rcu_head *head)
1155{
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161}
1162
cdd6c482 1163static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1164{
564c2b21
PM
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
63b6da39 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1169 put_task_struct(ctx->task);
4af57ef2 1170 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1171 }
a63eaf34
PM
1172}
1173
f63a8daa
PZ
1174/*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
8b10c5e2
PZ
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
f63a8daa
PZ
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
79c9ce57 1227 * cred_guard_mutex
f63a8daa
PZ
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
f63a8daa 1230 * perf_event::child_mutex;
07c4a776 1231 * perf_event_context::lock
f63a8daa
PZ
1232 * perf_event::mmap_mutex
1233 * mmap_sem
82d94856
PZ
1234 *
1235 * cpu_hotplug_lock
1236 * pmus_lock
1237 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1238 */
a83fe28e
PZ
1239static struct perf_event_context *
1240perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1241{
1242 struct perf_event_context *ctx;
1243
1244again:
1245 rcu_read_lock();
6aa7de05 1246 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1247 if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 rcu_read_unlock();
1249 goto again;
1250 }
1251 rcu_read_unlock();
1252
a83fe28e 1253 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1254 if (event->ctx != ctx) {
1255 mutex_unlock(&ctx->mutex);
1256 put_ctx(ctx);
1257 goto again;
1258 }
1259
1260 return ctx;
1261}
1262
a83fe28e
PZ
1263static inline struct perf_event_context *
1264perf_event_ctx_lock(struct perf_event *event)
1265{
1266 return perf_event_ctx_lock_nested(event, 0);
1267}
1268
f63a8daa
PZ
1269static void perf_event_ctx_unlock(struct perf_event *event,
1270 struct perf_event_context *ctx)
1271{
1272 mutex_unlock(&ctx->mutex);
1273 put_ctx(ctx);
1274}
1275
211de6eb
PZ
1276/*
1277 * This must be done under the ctx->lock, such as to serialize against
1278 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279 * calling scheduler related locks and ctx->lock nests inside those.
1280 */
1281static __must_check struct perf_event_context *
1282unclone_ctx(struct perf_event_context *ctx)
71a851b4 1283{
211de6eb
PZ
1284 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285
1286 lockdep_assert_held(&ctx->lock);
1287
1288 if (parent_ctx)
71a851b4 1289 ctx->parent_ctx = NULL;
5a3126d4 1290 ctx->generation++;
211de6eb
PZ
1291
1292 return parent_ctx;
71a851b4
PZ
1293}
1294
1d953111
ON
1295static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 enum pid_type type)
6844c09d 1297{
1d953111 1298 u32 nr;
6844c09d
ACM
1299 /*
1300 * only top level events have the pid namespace they were created in
1301 */
1302 if (event->parent)
1303 event = event->parent;
1304
1d953111
ON
1305 nr = __task_pid_nr_ns(p, type, event->ns);
1306 /* avoid -1 if it is idle thread or runs in another ns */
1307 if (!nr && !pid_alive(p))
1308 nr = -1;
1309 return nr;
6844c09d
ACM
1310}
1311
1d953111 1312static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1313{
1d953111
ON
1314 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315}
6844c09d 1316
1d953111
ON
1317static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318{
1319 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1320}
1321
7f453c24 1322/*
cdd6c482 1323 * If we inherit events we want to return the parent event id
7f453c24
PZ
1324 * to userspace.
1325 */
cdd6c482 1326static u64 primary_event_id(struct perf_event *event)
7f453c24 1327{
cdd6c482 1328 u64 id = event->id;
7f453c24 1329
cdd6c482
IM
1330 if (event->parent)
1331 id = event->parent->id;
7f453c24
PZ
1332
1333 return id;
1334}
1335
25346b93 1336/*
cdd6c482 1337 * Get the perf_event_context for a task and lock it.
63b6da39 1338 *
25346b93
PM
1339 * This has to cope with with the fact that until it is locked,
1340 * the context could get moved to another task.
1341 */
cdd6c482 1342static struct perf_event_context *
8dc85d54 1343perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1344{
cdd6c482 1345 struct perf_event_context *ctx;
25346b93 1346
9ed6060d 1347retry:
058ebd0e
PZ
1348 /*
1349 * One of the few rules of preemptible RCU is that one cannot do
1350 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1351 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1352 * rcu_read_unlock_special().
1353 *
1354 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1355 * side critical section has interrupts disabled.
058ebd0e 1356 */
2fd59077 1357 local_irq_save(*flags);
058ebd0e 1358 rcu_read_lock();
8dc85d54 1359 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1360 if (ctx) {
1361 /*
1362 * If this context is a clone of another, it might
1363 * get swapped for another underneath us by
cdd6c482 1364 * perf_event_task_sched_out, though the
25346b93
PM
1365 * rcu_read_lock() protects us from any context
1366 * getting freed. Lock the context and check if it
1367 * got swapped before we could get the lock, and retry
1368 * if so. If we locked the right context, then it
1369 * can't get swapped on us any more.
1370 */
2fd59077 1371 raw_spin_lock(&ctx->lock);
8dc85d54 1372 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1373 raw_spin_unlock(&ctx->lock);
058ebd0e 1374 rcu_read_unlock();
2fd59077 1375 local_irq_restore(*flags);
25346b93
PM
1376 goto retry;
1377 }
b49a9e7e 1378
63b6da39
PZ
1379 if (ctx->task == TASK_TOMBSTONE ||
1380 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1381 raw_spin_unlock(&ctx->lock);
b49a9e7e 1382 ctx = NULL;
828b6f0e
PZ
1383 } else {
1384 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1385 }
25346b93
PM
1386 }
1387 rcu_read_unlock();
2fd59077
PM
1388 if (!ctx)
1389 local_irq_restore(*flags);
25346b93
PM
1390 return ctx;
1391}
1392
1393/*
1394 * Get the context for a task and increment its pin_count so it
1395 * can't get swapped to another task. This also increments its
1396 * reference count so that the context can't get freed.
1397 */
8dc85d54
PZ
1398static struct perf_event_context *
1399perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1400{
cdd6c482 1401 struct perf_event_context *ctx;
25346b93
PM
1402 unsigned long flags;
1403
8dc85d54 1404 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1405 if (ctx) {
1406 ++ctx->pin_count;
e625cce1 1407 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1408 }
1409 return ctx;
1410}
1411
cdd6c482 1412static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1413{
1414 unsigned long flags;
1415
e625cce1 1416 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1417 --ctx->pin_count;
e625cce1 1418 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1419}
1420
f67218c3
PZ
1421/*
1422 * Update the record of the current time in a context.
1423 */
1424static void update_context_time(struct perf_event_context *ctx)
1425{
1426 u64 now = perf_clock();
1427
1428 ctx->time += now - ctx->timestamp;
1429 ctx->timestamp = now;
1430}
1431
4158755d
SE
1432static u64 perf_event_time(struct perf_event *event)
1433{
1434 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1435
1436 if (is_cgroup_event(event))
1437 return perf_cgroup_event_time(event);
1438
4158755d
SE
1439 return ctx ? ctx->time : 0;
1440}
1441
487f05e1
AS
1442static enum event_type_t get_event_type(struct perf_event *event)
1443{
1444 struct perf_event_context *ctx = event->ctx;
1445 enum event_type_t event_type;
1446
1447 lockdep_assert_held(&ctx->lock);
1448
3bda69c1
AS
1449 /*
1450 * It's 'group type', really, because if our group leader is
1451 * pinned, so are we.
1452 */
1453 if (event->group_leader != event)
1454 event = event->group_leader;
1455
487f05e1
AS
1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 if (!ctx->task)
1458 event_type |= EVENT_CPU;
1459
1460 return event_type;
1461}
1462
889ff015
FW
1463static struct list_head *
1464ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465{
1466 if (event->attr.pinned)
1467 return &ctx->pinned_groups;
1468 else
1469 return &ctx->flexible_groups;
1470}
1471
fccc714b 1472/*
cdd6c482 1473 * Add a event from the lists for its context.
fccc714b
PZ
1474 * Must be called with ctx->mutex and ctx->lock held.
1475 */
04289bb9 1476static void
cdd6c482 1477list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1478{
c994d613
PZ
1479 lockdep_assert_held(&ctx->lock);
1480
8a49542c
PZ
1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1483
0d3d73aa
PZ
1484 event->tstamp = perf_event_time(event);
1485
04289bb9 1486 /*
8a49542c
PZ
1487 * If we're a stand alone event or group leader, we go to the context
1488 * list, group events are kept attached to the group so that
1489 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1490 */
8a49542c 1491 if (event->group_leader == event) {
889ff015
FW
1492 struct list_head *list;
1493
4ff6a8de 1494 event->group_caps = event->event_caps;
d6f962b5 1495
889ff015
FW
1496 list = ctx_group_list(event, ctx);
1497 list_add_tail(&event->group_entry, list);
5c148194 1498 }
592903cd 1499
db4a8356 1500 list_update_cgroup_event(event, ctx, true);
e5d1367f 1501
cdd6c482
IM
1502 list_add_rcu(&event->event_entry, &ctx->event_list);
1503 ctx->nr_events++;
1504 if (event->attr.inherit_stat)
bfbd3381 1505 ctx->nr_stat++;
5a3126d4
PZ
1506
1507 ctx->generation++;
04289bb9
IM
1508}
1509
0231bb53
JO
1510/*
1511 * Initialize event state based on the perf_event_attr::disabled.
1512 */
1513static inline void perf_event__state_init(struct perf_event *event)
1514{
1515 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 PERF_EVENT_STATE_INACTIVE;
1517}
1518
a723968c 1519static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1520{
1521 int entry = sizeof(u64); /* value */
1522 int size = 0;
1523 int nr = 1;
1524
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 size += sizeof(u64);
1527
1528 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 size += sizeof(u64);
1530
1531 if (event->attr.read_format & PERF_FORMAT_ID)
1532 entry += sizeof(u64);
1533
1534 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1535 nr += nr_siblings;
c320c7b7
ACM
1536 size += sizeof(u64);
1537 }
1538
1539 size += entry * nr;
1540 event->read_size = size;
1541}
1542
a723968c 1543static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1544{
1545 struct perf_sample_data *data;
c320c7b7
ACM
1546 u16 size = 0;
1547
c320c7b7
ACM
1548 if (sample_type & PERF_SAMPLE_IP)
1549 size += sizeof(data->ip);
1550
6844c09d
ACM
1551 if (sample_type & PERF_SAMPLE_ADDR)
1552 size += sizeof(data->addr);
1553
1554 if (sample_type & PERF_SAMPLE_PERIOD)
1555 size += sizeof(data->period);
1556
c3feedf2
AK
1557 if (sample_type & PERF_SAMPLE_WEIGHT)
1558 size += sizeof(data->weight);
1559
6844c09d
ACM
1560 if (sample_type & PERF_SAMPLE_READ)
1561 size += event->read_size;
1562
d6be9ad6
SE
1563 if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 size += sizeof(data->data_src.val);
1565
fdfbbd07
AK
1566 if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 size += sizeof(data->txn);
1568
fc7ce9c7
KL
1569 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 size += sizeof(data->phys_addr);
1571
6844c09d
ACM
1572 event->header_size = size;
1573}
1574
a723968c
PZ
1575/*
1576 * Called at perf_event creation and when events are attached/detached from a
1577 * group.
1578 */
1579static void perf_event__header_size(struct perf_event *event)
1580{
1581 __perf_event_read_size(event,
1582 event->group_leader->nr_siblings);
1583 __perf_event_header_size(event, event->attr.sample_type);
1584}
1585
6844c09d
ACM
1586static void perf_event__id_header_size(struct perf_event *event)
1587{
1588 struct perf_sample_data *data;
1589 u64 sample_type = event->attr.sample_type;
1590 u16 size = 0;
1591
c320c7b7
ACM
1592 if (sample_type & PERF_SAMPLE_TID)
1593 size += sizeof(data->tid_entry);
1594
1595 if (sample_type & PERF_SAMPLE_TIME)
1596 size += sizeof(data->time);
1597
ff3d527c
AH
1598 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 size += sizeof(data->id);
1600
c320c7b7
ACM
1601 if (sample_type & PERF_SAMPLE_ID)
1602 size += sizeof(data->id);
1603
1604 if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 size += sizeof(data->stream_id);
1606
1607 if (sample_type & PERF_SAMPLE_CPU)
1608 size += sizeof(data->cpu_entry);
1609
6844c09d 1610 event->id_header_size = size;
c320c7b7
ACM
1611}
1612
a723968c
PZ
1613static bool perf_event_validate_size(struct perf_event *event)
1614{
1615 /*
1616 * The values computed here will be over-written when we actually
1617 * attach the event.
1618 */
1619 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 perf_event__id_header_size(event);
1622
1623 /*
1624 * Sum the lot; should not exceed the 64k limit we have on records.
1625 * Conservative limit to allow for callchains and other variable fields.
1626 */
1627 if (event->read_size + event->header_size +
1628 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 return false;
1630
1631 return true;
1632}
1633
8a49542c
PZ
1634static void perf_group_attach(struct perf_event *event)
1635{
c320c7b7 1636 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1637
a76a82a3
PZ
1638 lockdep_assert_held(&event->ctx->lock);
1639
74c3337c
PZ
1640 /*
1641 * We can have double attach due to group movement in perf_event_open.
1642 */
1643 if (event->attach_state & PERF_ATTACH_GROUP)
1644 return;
1645
8a49542c
PZ
1646 event->attach_state |= PERF_ATTACH_GROUP;
1647
1648 if (group_leader == event)
1649 return;
1650
652884fe
PZ
1651 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652
4ff6a8de 1653 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1654
1655 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 group_leader->nr_siblings++;
c320c7b7
ACM
1657
1658 perf_event__header_size(group_leader);
1659
1660 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 perf_event__header_size(pos);
8a49542c
PZ
1662}
1663
a63eaf34 1664/*
cdd6c482 1665 * Remove a event from the lists for its context.
fccc714b 1666 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1667 */
04289bb9 1668static void
cdd6c482 1669list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1670{
652884fe
PZ
1671 WARN_ON_ONCE(event->ctx != ctx);
1672 lockdep_assert_held(&ctx->lock);
1673
8a49542c
PZ
1674 /*
1675 * We can have double detach due to exit/hot-unplug + close.
1676 */
1677 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1678 return;
8a49542c
PZ
1679
1680 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681
db4a8356 1682 list_update_cgroup_event(event, ctx, false);
e5d1367f 1683
cdd6c482
IM
1684 ctx->nr_events--;
1685 if (event->attr.inherit_stat)
bfbd3381 1686 ctx->nr_stat--;
8bc20959 1687
cdd6c482 1688 list_del_rcu(&event->event_entry);
04289bb9 1689
8a49542c
PZ
1690 if (event->group_leader == event)
1691 list_del_init(&event->group_entry);
5c148194 1692
b2e74a26
SE
1693 /*
1694 * If event was in error state, then keep it
1695 * that way, otherwise bogus counts will be
1696 * returned on read(). The only way to get out
1697 * of error state is by explicit re-enabling
1698 * of the event
1699 */
1700 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1701 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1702
1703 ctx->generation++;
050735b0
PZ
1704}
1705
8a49542c 1706static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1707{
1708 struct perf_event *sibling, *tmp;
8a49542c
PZ
1709 struct list_head *list = NULL;
1710
a76a82a3
PZ
1711 lockdep_assert_held(&event->ctx->lock);
1712
8a49542c
PZ
1713 /*
1714 * We can have double detach due to exit/hot-unplug + close.
1715 */
1716 if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 return;
1718
1719 event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721 /*
1722 * If this is a sibling, remove it from its group.
1723 */
1724 if (event->group_leader != event) {
1725 list_del_init(&event->group_entry);
1726 event->group_leader->nr_siblings--;
c320c7b7 1727 goto out;
8a49542c
PZ
1728 }
1729
1730 if (!list_empty(&event->group_entry))
1731 list = &event->group_entry;
2e2af50b 1732
04289bb9 1733 /*
cdd6c482
IM
1734 * If this was a group event with sibling events then
1735 * upgrade the siblings to singleton events by adding them
8a49542c 1736 * to whatever list we are on.
04289bb9 1737 */
cdd6c482 1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1739 if (list)
1740 list_move_tail(&sibling->group_entry, list);
04289bb9 1741 sibling->group_leader = sibling;
d6f962b5
FW
1742
1743 /* Inherit group flags from the previous leader */
4ff6a8de 1744 sibling->group_caps = event->group_caps;
652884fe
PZ
1745
1746 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1747 }
c320c7b7
ACM
1748
1749out:
1750 perf_event__header_size(event->group_leader);
1751
1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 perf_event__header_size(tmp);
04289bb9
IM
1754}
1755
fadfe7be
JO
1756static bool is_orphaned_event(struct perf_event *event)
1757{
a69b0ca4 1758 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1759}
1760
2c81a647 1761static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1762{
1763 struct pmu *pmu = event->pmu;
1764 return pmu->filter_match ? pmu->filter_match(event) : 1;
1765}
1766
2c81a647
MR
1767/*
1768 * Check whether we should attempt to schedule an event group based on
1769 * PMU-specific filtering. An event group can consist of HW and SW events,
1770 * potentially with a SW leader, so we must check all the filters, to
1771 * determine whether a group is schedulable:
1772 */
1773static inline int pmu_filter_match(struct perf_event *event)
1774{
1775 struct perf_event *child;
1776
1777 if (!__pmu_filter_match(event))
1778 return 0;
1779
1780 list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 if (!__pmu_filter_match(child))
1782 return 0;
1783 }
1784
1785 return 1;
1786}
1787
fa66f07a
SE
1788static inline int
1789event_filter_match(struct perf_event *event)
1790{
0b8f1e2e
PZ
1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1793}
1794
9ffcfa6f
SE
1795static void
1796event_sched_out(struct perf_event *event,
3b6f9e5c 1797 struct perf_cpu_context *cpuctx,
cdd6c482 1798 struct perf_event_context *ctx)
3b6f9e5c 1799{
0d3d73aa 1800 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1801
1802 WARN_ON_ONCE(event->ctx != ctx);
1803 lockdep_assert_held(&ctx->lock);
1804
cdd6c482 1805 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1806 return;
3b6f9e5c 1807
44377277
AS
1808 perf_pmu_disable(event->pmu);
1809
28a967c3
PZ
1810 event->pmu->del(event, 0);
1811 event->oncpu = -1;
0d3d73aa 1812
cdd6c482
IM
1813 if (event->pending_disable) {
1814 event->pending_disable = 0;
0d3d73aa 1815 state = PERF_EVENT_STATE_OFF;
970892a9 1816 }
0d3d73aa 1817 perf_event_set_state(event, state);
3b6f9e5c 1818
cdd6c482 1819 if (!is_software_event(event))
3b6f9e5c 1820 cpuctx->active_oncpu--;
2fde4f94
MR
1821 if (!--ctx->nr_active)
1822 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1823 if (event->attr.freq && event->attr.sample_freq)
1824 ctx->nr_freq--;
cdd6c482 1825 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1826 cpuctx->exclusive = 0;
44377277
AS
1827
1828 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1829}
1830
d859e29f 1831static void
cdd6c482 1832group_sched_out(struct perf_event *group_event,
d859e29f 1833 struct perf_cpu_context *cpuctx,
cdd6c482 1834 struct perf_event_context *ctx)
d859e29f 1835{
cdd6c482 1836 struct perf_event *event;
0d3d73aa
PZ
1837
1838 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 return;
d859e29f 1840
3f005e7d
MR
1841 perf_pmu_disable(ctx->pmu);
1842
cdd6c482 1843 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1844
1845 /*
1846 * Schedule out siblings (if any):
1847 */
cdd6c482
IM
1848 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 event_sched_out(event, cpuctx, ctx);
d859e29f 1850
3f005e7d
MR
1851 perf_pmu_enable(ctx->pmu);
1852
0d3d73aa 1853 if (group_event->attr.exclusive)
d859e29f
PM
1854 cpuctx->exclusive = 0;
1855}
1856
45a0e07a 1857#define DETACH_GROUP 0x01UL
0017960f 1858
0793a61d 1859/*
cdd6c482 1860 * Cross CPU call to remove a performance event
0793a61d 1861 *
cdd6c482 1862 * We disable the event on the hardware level first. After that we
0793a61d
TG
1863 * remove it from the context list.
1864 */
fae3fde6
PZ
1865static void
1866__perf_remove_from_context(struct perf_event *event,
1867 struct perf_cpu_context *cpuctx,
1868 struct perf_event_context *ctx,
1869 void *info)
0793a61d 1870{
45a0e07a 1871 unsigned long flags = (unsigned long)info;
0793a61d 1872
3c5c8711
PZ
1873 if (ctx->is_active & EVENT_TIME) {
1874 update_context_time(ctx);
1875 update_cgrp_time_from_cpuctx(cpuctx);
1876 }
1877
cdd6c482 1878 event_sched_out(event, cpuctx, ctx);
45a0e07a 1879 if (flags & DETACH_GROUP)
46ce0fe9 1880 perf_group_detach(event);
cdd6c482 1881 list_del_event(event, ctx);
39a43640
PZ
1882
1883 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1884 ctx->is_active = 0;
39a43640
PZ
1885 if (ctx->task) {
1886 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 cpuctx->task_ctx = NULL;
1888 }
64ce3126 1889 }
0793a61d
TG
1890}
1891
0793a61d 1892/*
cdd6c482 1893 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1894 *
cdd6c482
IM
1895 * If event->ctx is a cloned context, callers must make sure that
1896 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1897 * remains valid. This is OK when called from perf_release since
1898 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1899 * When called from perf_event_exit_task, it's OK because the
c93f7669 1900 * context has been detached from its task.
0793a61d 1901 */
45a0e07a 1902static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1903{
a76a82a3
PZ
1904 struct perf_event_context *ctx = event->ctx;
1905
1906 lockdep_assert_held(&ctx->mutex);
0793a61d 1907
45a0e07a 1908 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1909
1910 /*
1911 * The above event_function_call() can NO-OP when it hits
1912 * TASK_TOMBSTONE. In that case we must already have been detached
1913 * from the context (by perf_event_exit_event()) but the grouping
1914 * might still be in-tact.
1915 */
1916 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 if ((flags & DETACH_GROUP) &&
1918 (event->attach_state & PERF_ATTACH_GROUP)) {
1919 /*
1920 * Since in that case we cannot possibly be scheduled, simply
1921 * detach now.
1922 */
1923 raw_spin_lock_irq(&ctx->lock);
1924 perf_group_detach(event);
1925 raw_spin_unlock_irq(&ctx->lock);
1926 }
0793a61d
TG
1927}
1928
d859e29f 1929/*
cdd6c482 1930 * Cross CPU call to disable a performance event
d859e29f 1931 */
fae3fde6
PZ
1932static void __perf_event_disable(struct perf_event *event,
1933 struct perf_cpu_context *cpuctx,
1934 struct perf_event_context *ctx,
1935 void *info)
7b648018 1936{
fae3fde6
PZ
1937 if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 return;
7b648018 1939
3c5c8711
PZ
1940 if (ctx->is_active & EVENT_TIME) {
1941 update_context_time(ctx);
1942 update_cgrp_time_from_event(event);
1943 }
1944
fae3fde6
PZ
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
1949
1950 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
1951}
1952
d859e29f 1953/*
cdd6c482 1954 * Disable a event.
c93f7669 1955 *
cdd6c482
IM
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
c93f7669 1958 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1961 * goes to exit will block in perf_event_exit_event().
1962 *
cdd6c482 1963 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1964 * is the current context on this CPU and preemption is disabled,
cdd6c482 1965 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1966 */
f63a8daa 1967static void _perf_event_disable(struct perf_event *event)
d859e29f 1968{
cdd6c482 1969 struct perf_event_context *ctx = event->ctx;
d859e29f 1970
e625cce1 1971 raw_spin_lock_irq(&ctx->lock);
7b648018 1972 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1973 raw_spin_unlock_irq(&ctx->lock);
7b648018 1974 return;
53cfbf59 1975 }
e625cce1 1976 raw_spin_unlock_irq(&ctx->lock);
7b648018 1977
fae3fde6
PZ
1978 event_function_call(event, __perf_event_disable, NULL);
1979}
1980
1981void perf_event_disable_local(struct perf_event *event)
1982{
1983 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1984}
f63a8daa
PZ
1985
1986/*
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1989 */
1990void perf_event_disable(struct perf_event *event)
1991{
1992 struct perf_event_context *ctx;
1993
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1997}
dcfce4a0 1998EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1999
5aab90ce
JO
2000void perf_event_disable_inatomic(struct perf_event *event)
2001{
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2004}
2005
e5d1367f 2006static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2007 struct perf_event_context *ctx)
e5d1367f
SE
2008{
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
0d3d73aa 2035 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2036 else
0d3d73aa 2037 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2038}
2039
4fe757dd
PZ
2040#define MAX_INTERRUPTS (~0ULL)
2041
2042static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2043static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2044
235c7fc7 2045static int
9ffcfa6f 2046event_sched_in(struct perf_event *event,
235c7fc7 2047 struct perf_cpu_context *cpuctx,
6e37738a 2048 struct perf_event_context *ctx)
235c7fc7 2049{
44377277 2050 int ret = 0;
4158755d 2051
63342411
PZ
2052 lockdep_assert_held(&ctx->lock);
2053
cdd6c482 2054 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2055 return 0;
2056
95ff4ca2
AS
2057 WRITE_ONCE(event->oncpu, smp_processor_id());
2058 /*
0c1cbc18
PZ
2059 * Order event::oncpu write to happen before the ACTIVE state is
2060 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2062 */
2063 smp_wmb();
0d3d73aa 2064 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
44377277
AS
2076 perf_pmu_disable(event->pmu);
2077
0d3d73aa 2078 perf_set_shadow_time(event, ctx);
72f669c0 2079
ec0d7729
AS
2080 perf_log_itrace_start(event);
2081
a4eaf7f1 2082 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2083 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2084 event->oncpu = -1;
44377277
AS
2085 ret = -EAGAIN;
2086 goto out;
235c7fc7
IM
2087 }
2088
cdd6c482 2089 if (!is_software_event(event))
3b6f9e5c 2090 cpuctx->active_oncpu++;
2fde4f94
MR
2091 if (!ctx->nr_active++)
2092 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2093 if (event->attr.freq && event->attr.sample_freq)
2094 ctx->nr_freq++;
235c7fc7 2095
cdd6c482 2096 if (event->attr.exclusive)
3b6f9e5c
PM
2097 cpuctx->exclusive = 1;
2098
44377277
AS
2099out:
2100 perf_pmu_enable(event->pmu);
2101
2102 return ret;
235c7fc7
IM
2103}
2104
6751b71e 2105static int
cdd6c482 2106group_sched_in(struct perf_event *group_event,
6751b71e 2107 struct perf_cpu_context *cpuctx,
6e37738a 2108 struct perf_event_context *ctx)
6751b71e 2109{
6bde9b6c 2110 struct perf_event *event, *partial_group = NULL;
4a234593 2111 struct pmu *pmu = ctx->pmu;
6751b71e 2112
cdd6c482 2113 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2114 return 0;
2115
fbbe0701 2116 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2117
9ffcfa6f 2118 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2119 pmu->cancel_txn(pmu);
272325c4 2120 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2121 return -EAGAIN;
90151c35 2122 }
6751b71e
PM
2123
2124 /*
2125 * Schedule in siblings as one group (if any):
2126 */
cdd6c482 2127 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2128 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2129 partial_group = event;
6751b71e
PM
2130 goto group_error;
2131 }
2132 }
2133
9ffcfa6f 2134 if (!pmu->commit_txn(pmu))
6e85158c 2135 return 0;
9ffcfa6f 2136
6751b71e
PM
2137group_error:
2138 /*
2139 * Groups can be scheduled in as one unit only, so undo any
2140 * partial group before returning:
0d3d73aa 2141 * The events up to the failed event are scheduled out normally.
6751b71e 2142 */
cdd6c482
IM
2143 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 if (event == partial_group)
0d3d73aa 2145 break;
d7842da4 2146
0d3d73aa 2147 event_sched_out(event, cpuctx, ctx);
6751b71e 2148 }
9ffcfa6f 2149 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2150
ad5133b7 2151 pmu->cancel_txn(pmu);
90151c35 2152
272325c4 2153 perf_mux_hrtimer_restart(cpuctx);
9e630205 2154
6751b71e
PM
2155 return -EAGAIN;
2156}
2157
3b6f9e5c 2158/*
cdd6c482 2159 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2160 */
cdd6c482 2161static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2162 struct perf_cpu_context *cpuctx,
2163 int can_add_hw)
2164{
2165 /*
cdd6c482 2166 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2167 */
4ff6a8de 2168 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2169 return 1;
2170 /*
2171 * If an exclusive group is already on, no other hardware
cdd6c482 2172 * events can go on.
3b6f9e5c
PM
2173 */
2174 if (cpuctx->exclusive)
2175 return 0;
2176 /*
2177 * If this group is exclusive and there are already
cdd6c482 2178 * events on the CPU, it can't go on.
3b6f9e5c 2179 */
cdd6c482 2180 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2181 return 0;
2182 /*
2183 * Otherwise, try to add it if all previous groups were able
2184 * to go on.
2185 */
2186 return can_add_hw;
2187}
2188
cdd6c482
IM
2189static void add_event_to_ctx(struct perf_event *event,
2190 struct perf_event_context *ctx)
53cfbf59 2191{
cdd6c482 2192 list_add_event(event, ctx);
8a49542c 2193 perf_group_attach(event);
53cfbf59
PM
2194}
2195
bd2afa49
PZ
2196static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2c29ef0f
PZ
2199static void
2200ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
fe4b04fa 2204
bd2afa49 2205static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2206 struct perf_event_context *ctx,
2207 enum event_type_t event_type)
bd2afa49
PZ
2208{
2209 if (!cpuctx->task_ctx)
2210 return;
2211
2212 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 return;
2214
487f05e1 2215 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2216}
2217
dce5855b
PZ
2218static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 struct perf_event_context *ctx,
2220 struct task_struct *task)
2221{
2222 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 if (ctx)
2224 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 if (ctx)
2227 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228}
2229
487f05e1
AS
2230/*
2231 * We want to maintain the following priority of scheduling:
2232 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233 * - task pinned (EVENT_PINNED)
2234 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235 * - task flexible (EVENT_FLEXIBLE).
2236 *
2237 * In order to avoid unscheduling and scheduling back in everything every
2238 * time an event is added, only do it for the groups of equal priority and
2239 * below.
2240 *
2241 * This can be called after a batch operation on task events, in which case
2242 * event_type is a bit mask of the types of events involved. For CPU events,
2243 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244 */
3e349507 2245static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2246 struct perf_event_context *task_ctx,
2247 enum event_type_t event_type)
0017960f 2248{
487f05e1
AS
2249 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250 bool cpu_event = !!(event_type & EVENT_CPU);
2251
2252 /*
2253 * If pinned groups are involved, flexible groups also need to be
2254 * scheduled out.
2255 */
2256 if (event_type & EVENT_PINNED)
2257 event_type |= EVENT_FLEXIBLE;
2258
3e349507
PZ
2259 perf_pmu_disable(cpuctx->ctx.pmu);
2260 if (task_ctx)
487f05e1
AS
2261 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2262
2263 /*
2264 * Decide which cpu ctx groups to schedule out based on the types
2265 * of events that caused rescheduling:
2266 * - EVENT_CPU: schedule out corresponding groups;
2267 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268 * - otherwise, do nothing more.
2269 */
2270 if (cpu_event)
2271 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272 else if (ctx_event_type & EVENT_PINNED)
2273 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2274
3e349507
PZ
2275 perf_event_sched_in(cpuctx, task_ctx, current);
2276 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2277}
2278
0793a61d 2279/*
cdd6c482 2280 * Cross CPU call to install and enable a performance event
682076ae 2281 *
a096309b
PZ
2282 * Very similar to remote_function() + event_function() but cannot assume that
2283 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2284 */
fe4b04fa 2285static int __perf_install_in_context(void *info)
0793a61d 2286{
a096309b
PZ
2287 struct perf_event *event = info;
2288 struct perf_event_context *ctx = event->ctx;
108b02cf 2289 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2290 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2291 bool reprogram = true;
a096309b 2292 int ret = 0;
0793a61d 2293
63b6da39 2294 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2295 if (ctx->task) {
b58f6b0d
PZ
2296 raw_spin_lock(&ctx->lock);
2297 task_ctx = ctx;
a096309b 2298
63cae12b 2299 reprogram = (ctx->task == current);
b58f6b0d 2300
39a43640 2301 /*
63cae12b
PZ
2302 * If the task is running, it must be running on this CPU,
2303 * otherwise we cannot reprogram things.
2304 *
2305 * If its not running, we don't care, ctx->lock will
2306 * serialize against it becoming runnable.
39a43640 2307 */
63cae12b
PZ
2308 if (task_curr(ctx->task) && !reprogram) {
2309 ret = -ESRCH;
2310 goto unlock;
2311 }
a096309b 2312
63cae12b 2313 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2314 } else if (task_ctx) {
2315 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2316 }
b58f6b0d 2317
63cae12b 2318 if (reprogram) {
a096309b
PZ
2319 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320 add_event_to_ctx(event, ctx);
487f05e1 2321 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2322 } else {
2323 add_event_to_ctx(event, ctx);
2324 }
2325
63b6da39 2326unlock:
2c29ef0f 2327 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2328
a096309b 2329 return ret;
0793a61d
TG
2330}
2331
2332/*
a096309b
PZ
2333 * Attach a performance event to a context.
2334 *
2335 * Very similar to event_function_call, see comment there.
0793a61d
TG
2336 */
2337static void
cdd6c482
IM
2338perf_install_in_context(struct perf_event_context *ctx,
2339 struct perf_event *event,
0793a61d
TG
2340 int cpu)
2341{
a096309b 2342 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2343
fe4b04fa
PZ
2344 lockdep_assert_held(&ctx->mutex);
2345
0cda4c02
YZ
2346 if (event->cpu != -1)
2347 event->cpu = cpu;
c3f00c70 2348
0b8f1e2e
PZ
2349 /*
2350 * Ensures that if we can observe event->ctx, both the event and ctx
2351 * will be 'complete'. See perf_iterate_sb_cpu().
2352 */
2353 smp_store_release(&event->ctx, ctx);
2354
a096309b
PZ
2355 if (!task) {
2356 cpu_function_call(cpu, __perf_install_in_context, event);
2357 return;
2358 }
2359
2360 /*
2361 * Should not happen, we validate the ctx is still alive before calling.
2362 */
2363 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364 return;
2365
39a43640
PZ
2366 /*
2367 * Installing events is tricky because we cannot rely on ctx->is_active
2368 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2369 *
2370 * Instead we use task_curr(), which tells us if the task is running.
2371 * However, since we use task_curr() outside of rq::lock, we can race
2372 * against the actual state. This means the result can be wrong.
2373 *
2374 * If we get a false positive, we retry, this is harmless.
2375 *
2376 * If we get a false negative, things are complicated. If we are after
2377 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378 * value must be correct. If we're before, it doesn't matter since
2379 * perf_event_context_sched_in() will program the counter.
2380 *
2381 * However, this hinges on the remote context switch having observed
2382 * our task->perf_event_ctxp[] store, such that it will in fact take
2383 * ctx::lock in perf_event_context_sched_in().
2384 *
2385 * We do this by task_function_call(), if the IPI fails to hit the task
2386 * we know any future context switch of task must see the
2387 * perf_event_ctpx[] store.
39a43640 2388 */
63cae12b 2389
63b6da39 2390 /*
63cae12b
PZ
2391 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392 * task_cpu() load, such that if the IPI then does not find the task
2393 * running, a future context switch of that task must observe the
2394 * store.
63b6da39 2395 */
63cae12b
PZ
2396 smp_mb();
2397again:
2398 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2399 return;
2400
2401 raw_spin_lock_irq(&ctx->lock);
2402 task = ctx->task;
84c4e620 2403 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2404 /*
2405 * Cannot happen because we already checked above (which also
2406 * cannot happen), and we hold ctx->mutex, which serializes us
2407 * against perf_event_exit_task_context().
2408 */
63b6da39
PZ
2409 raw_spin_unlock_irq(&ctx->lock);
2410 return;
2411 }
39a43640 2412 /*
63cae12b
PZ
2413 * If the task is not running, ctx->lock will avoid it becoming so,
2414 * thus we can safely install the event.
39a43640 2415 */
63cae12b
PZ
2416 if (task_curr(task)) {
2417 raw_spin_unlock_irq(&ctx->lock);
2418 goto again;
2419 }
2420 add_event_to_ctx(event, ctx);
2421 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2422}
2423
d859e29f 2424/*
cdd6c482 2425 * Cross CPU call to enable a performance event
d859e29f 2426 */
fae3fde6
PZ
2427static void __perf_event_enable(struct perf_event *event,
2428 struct perf_cpu_context *cpuctx,
2429 struct perf_event_context *ctx,
2430 void *info)
04289bb9 2431{
cdd6c482 2432 struct perf_event *leader = event->group_leader;
fae3fde6 2433 struct perf_event_context *task_ctx;
04289bb9 2434
6e801e01
PZ
2435 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2437 return;
3cbed429 2438
bd2afa49
PZ
2439 if (ctx->is_active)
2440 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2441
0d3d73aa 2442 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2443
fae3fde6
PZ
2444 if (!ctx->is_active)
2445 return;
2446
e5d1367f 2447 if (!event_filter_match(event)) {
bd2afa49 2448 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2449 return;
e5d1367f 2450 }
f4c4176f 2451
04289bb9 2452 /*
cdd6c482 2453 * If the event is in a group and isn't the group leader,
d859e29f 2454 * then don't put it on unless the group is on.
04289bb9 2455 */
bd2afa49
PZ
2456 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2458 return;
bd2afa49 2459 }
fe4b04fa 2460
fae3fde6
PZ
2461 task_ctx = cpuctx->task_ctx;
2462 if (ctx->task)
2463 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2464
487f05e1 2465 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2466}
2467
d859e29f 2468/*
cdd6c482 2469 * Enable a event.
c93f7669 2470 *
cdd6c482
IM
2471 * If event->ctx is a cloned context, callers must make sure that
2472 * every task struct that event->ctx->task could possibly point to
c93f7669 2473 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2474 * perf_event_for_each_child or perf_event_for_each as described
2475 * for perf_event_disable.
d859e29f 2476 */
f63a8daa 2477static void _perf_event_enable(struct perf_event *event)
d859e29f 2478{
cdd6c482 2479 struct perf_event_context *ctx = event->ctx;
d859e29f 2480
7b648018 2481 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2482 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2484 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2485 return;
2486 }
2487
d859e29f 2488 /*
cdd6c482 2489 * If the event is in error state, clear that first.
7b648018
PZ
2490 *
2491 * That way, if we see the event in error state below, we know that it
2492 * has gone back into error state, as distinct from the task having
2493 * been scheduled away before the cross-call arrived.
d859e29f 2494 */
cdd6c482
IM
2495 if (event->state == PERF_EVENT_STATE_ERROR)
2496 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2497 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2498
fae3fde6 2499 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2500}
f63a8daa
PZ
2501
2502/*
2503 * See perf_event_disable();
2504 */
2505void perf_event_enable(struct perf_event *event)
2506{
2507 struct perf_event_context *ctx;
2508
2509 ctx = perf_event_ctx_lock(event);
2510 _perf_event_enable(event);
2511 perf_event_ctx_unlock(event, ctx);
2512}
dcfce4a0 2513EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2514
375637bc
AS
2515struct stop_event_data {
2516 struct perf_event *event;
2517 unsigned int restart;
2518};
2519
95ff4ca2
AS
2520static int __perf_event_stop(void *info)
2521{
375637bc
AS
2522 struct stop_event_data *sd = info;
2523 struct perf_event *event = sd->event;
95ff4ca2 2524
375637bc 2525 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2526 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527 return 0;
2528
2529 /* matches smp_wmb() in event_sched_in() */
2530 smp_rmb();
2531
2532 /*
2533 * There is a window with interrupts enabled before we get here,
2534 * so we need to check again lest we try to stop another CPU's event.
2535 */
2536 if (READ_ONCE(event->oncpu) != smp_processor_id())
2537 return -EAGAIN;
2538
2539 event->pmu->stop(event, PERF_EF_UPDATE);
2540
375637bc
AS
2541 /*
2542 * May race with the actual stop (through perf_pmu_output_stop()),
2543 * but it is only used for events with AUX ring buffer, and such
2544 * events will refuse to restart because of rb::aux_mmap_count==0,
2545 * see comments in perf_aux_output_begin().
2546 *
2547 * Since this is happening on a event-local CPU, no trace is lost
2548 * while restarting.
2549 */
2550 if (sd->restart)
c9bbdd48 2551 event->pmu->start(event, 0);
375637bc 2552
95ff4ca2
AS
2553 return 0;
2554}
2555
767ae086 2556static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2557{
2558 struct stop_event_data sd = {
2559 .event = event,
767ae086 2560 .restart = restart,
375637bc
AS
2561 };
2562 int ret = 0;
2563
2564 do {
2565 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566 return 0;
2567
2568 /* matches smp_wmb() in event_sched_in() */
2569 smp_rmb();
2570
2571 /*
2572 * We only want to restart ACTIVE events, so if the event goes
2573 * inactive here (event->oncpu==-1), there's nothing more to do;
2574 * fall through with ret==-ENXIO.
2575 */
2576 ret = cpu_function_call(READ_ONCE(event->oncpu),
2577 __perf_event_stop, &sd);
2578 } while (ret == -EAGAIN);
2579
2580 return ret;
2581}
2582
2583/*
2584 * In order to contain the amount of racy and tricky in the address filter
2585 * configuration management, it is a two part process:
2586 *
2587 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588 * we update the addresses of corresponding vmas in
2589 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2590 * (p2) when an event is scheduled in (pmu::add), it calls
2591 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592 * if the generation has changed since the previous call.
2593 *
2594 * If (p1) happens while the event is active, we restart it to force (p2).
2595 *
2596 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2598 * ioctl;
2599 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2601 * for reading;
2602 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603 * of exec.
2604 */
2605void perf_event_addr_filters_sync(struct perf_event *event)
2606{
2607 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2608
2609 if (!has_addr_filter(event))
2610 return;
2611
2612 raw_spin_lock(&ifh->lock);
2613 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614 event->pmu->addr_filters_sync(event);
2615 event->hw.addr_filters_gen = event->addr_filters_gen;
2616 }
2617 raw_spin_unlock(&ifh->lock);
2618}
2619EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2620
f63a8daa 2621static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2622{
2023b359 2623 /*
cdd6c482 2624 * not supported on inherited events
2023b359 2625 */
2e939d1d 2626 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2627 return -EINVAL;
2628
cdd6c482 2629 atomic_add(refresh, &event->event_limit);
f63a8daa 2630 _perf_event_enable(event);
2023b359
PZ
2631
2632 return 0;
79f14641 2633}
f63a8daa
PZ
2634
2635/*
2636 * See perf_event_disable()
2637 */
2638int perf_event_refresh(struct perf_event *event, int refresh)
2639{
2640 struct perf_event_context *ctx;
2641 int ret;
2642
2643 ctx = perf_event_ctx_lock(event);
2644 ret = _perf_event_refresh(event, refresh);
2645 perf_event_ctx_unlock(event, ctx);
2646
2647 return ret;
2648}
26ca5c11 2649EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2650
5b0311e1
FW
2651static void ctx_sched_out(struct perf_event_context *ctx,
2652 struct perf_cpu_context *cpuctx,
2653 enum event_type_t event_type)
235c7fc7 2654{
db24d33e 2655 int is_active = ctx->is_active;
c994d613 2656 struct perf_event *event;
235c7fc7 2657
c994d613 2658 lockdep_assert_held(&ctx->lock);
235c7fc7 2659
39a43640
PZ
2660 if (likely(!ctx->nr_events)) {
2661 /*
2662 * See __perf_remove_from_context().
2663 */
2664 WARN_ON_ONCE(ctx->is_active);
2665 if (ctx->task)
2666 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2667 return;
39a43640
PZ
2668 }
2669
db24d33e 2670 ctx->is_active &= ~event_type;
3cbaa590
PZ
2671 if (!(ctx->is_active & EVENT_ALL))
2672 ctx->is_active = 0;
2673
63e30d3e
PZ
2674 if (ctx->task) {
2675 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676 if (!ctx->is_active)
2677 cpuctx->task_ctx = NULL;
2678 }
facc4307 2679
8fdc6539
PZ
2680 /*
2681 * Always update time if it was set; not only when it changes.
2682 * Otherwise we can 'forget' to update time for any but the last
2683 * context we sched out. For example:
2684 *
2685 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686 * ctx_sched_out(.event_type = EVENT_PINNED)
2687 *
2688 * would only update time for the pinned events.
2689 */
3cbaa590
PZ
2690 if (is_active & EVENT_TIME) {
2691 /* update (and stop) ctx time */
2692 update_context_time(ctx);
2693 update_cgrp_time_from_cpuctx(cpuctx);
2694 }
2695
8fdc6539
PZ
2696 is_active ^= ctx->is_active; /* changed bits */
2697
3cbaa590 2698 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2699 return;
5b0311e1 2700
075e0b00 2701 perf_pmu_disable(ctx->pmu);
3cbaa590 2702 if (is_active & EVENT_PINNED) {
889ff015
FW
2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704 group_sched_out(event, cpuctx, ctx);
9ed6060d 2705 }
889ff015 2706
3cbaa590 2707 if (is_active & EVENT_FLEXIBLE) {
889ff015 2708 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2709 group_sched_out(event, cpuctx, ctx);
9ed6060d 2710 }
1b9a644f 2711 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2712}
2713
564c2b21 2714/*
5a3126d4
PZ
2715 * Test whether two contexts are equivalent, i.e. whether they have both been
2716 * cloned from the same version of the same context.
2717 *
2718 * Equivalence is measured using a generation number in the context that is
2719 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720 * and list_del_event().
564c2b21 2721 */
cdd6c482
IM
2722static int context_equiv(struct perf_event_context *ctx1,
2723 struct perf_event_context *ctx2)
564c2b21 2724{
211de6eb
PZ
2725 lockdep_assert_held(&ctx1->lock);
2726 lockdep_assert_held(&ctx2->lock);
2727
5a3126d4
PZ
2728 /* Pinning disables the swap optimization */
2729 if (ctx1->pin_count || ctx2->pin_count)
2730 return 0;
2731
2732 /* If ctx1 is the parent of ctx2 */
2733 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734 return 1;
2735
2736 /* If ctx2 is the parent of ctx1 */
2737 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738 return 1;
2739
2740 /*
2741 * If ctx1 and ctx2 have the same parent; we flatten the parent
2742 * hierarchy, see perf_event_init_context().
2743 */
2744 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745 ctx1->parent_gen == ctx2->parent_gen)
2746 return 1;
2747
2748 /* Unmatched */
2749 return 0;
564c2b21
PM
2750}
2751
cdd6c482
IM
2752static void __perf_event_sync_stat(struct perf_event *event,
2753 struct perf_event *next_event)
bfbd3381
PZ
2754{
2755 u64 value;
2756
cdd6c482 2757 if (!event->attr.inherit_stat)
bfbd3381
PZ
2758 return;
2759
2760 /*
cdd6c482 2761 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2762 * because we're in the middle of a context switch and have IRQs
2763 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2764 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2765 * don't need to use it.
2766 */
0d3d73aa 2767 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 2768 event->pmu->read(event);
bfbd3381 2769
0d3d73aa 2770 perf_event_update_time(event);
bfbd3381
PZ
2771
2772 /*
cdd6c482 2773 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2774 * values when we flip the contexts.
2775 */
e7850595
PZ
2776 value = local64_read(&next_event->count);
2777 value = local64_xchg(&event->count, value);
2778 local64_set(&next_event->count, value);
bfbd3381 2779
cdd6c482
IM
2780 swap(event->total_time_enabled, next_event->total_time_enabled);
2781 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2782
bfbd3381 2783 /*
19d2e755 2784 * Since we swizzled the values, update the user visible data too.
bfbd3381 2785 */
cdd6c482
IM
2786 perf_event_update_userpage(event);
2787 perf_event_update_userpage(next_event);
bfbd3381
PZ
2788}
2789
cdd6c482
IM
2790static void perf_event_sync_stat(struct perf_event_context *ctx,
2791 struct perf_event_context *next_ctx)
bfbd3381 2792{
cdd6c482 2793 struct perf_event *event, *next_event;
bfbd3381
PZ
2794
2795 if (!ctx->nr_stat)
2796 return;
2797
02ffdbc8
PZ
2798 update_context_time(ctx);
2799
cdd6c482
IM
2800 event = list_first_entry(&ctx->event_list,
2801 struct perf_event, event_entry);
bfbd3381 2802
cdd6c482
IM
2803 next_event = list_first_entry(&next_ctx->event_list,
2804 struct perf_event, event_entry);
bfbd3381 2805
cdd6c482
IM
2806 while (&event->event_entry != &ctx->event_list &&
2807 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2808
cdd6c482 2809 __perf_event_sync_stat(event, next_event);
bfbd3381 2810
cdd6c482
IM
2811 event = list_next_entry(event, event_entry);
2812 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2813 }
2814}
2815
fe4b04fa
PZ
2816static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817 struct task_struct *next)
0793a61d 2818{
8dc85d54 2819 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2820 struct perf_event_context *next_ctx;
5a3126d4 2821 struct perf_event_context *parent, *next_parent;
108b02cf 2822 struct perf_cpu_context *cpuctx;
c93f7669 2823 int do_switch = 1;
0793a61d 2824
108b02cf
PZ
2825 if (likely(!ctx))
2826 return;
10989fb2 2827
108b02cf
PZ
2828 cpuctx = __get_cpu_context(ctx);
2829 if (!cpuctx->task_ctx)
0793a61d
TG
2830 return;
2831
c93f7669 2832 rcu_read_lock();
8dc85d54 2833 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2834 if (!next_ctx)
2835 goto unlock;
2836
2837 parent = rcu_dereference(ctx->parent_ctx);
2838 next_parent = rcu_dereference(next_ctx->parent_ctx);
2839
2840 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2841 if (!parent && !next_parent)
5a3126d4
PZ
2842 goto unlock;
2843
2844 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2845 /*
2846 * Looks like the two contexts are clones, so we might be
2847 * able to optimize the context switch. We lock both
2848 * contexts and check that they are clones under the
2849 * lock (including re-checking that neither has been
2850 * uncloned in the meantime). It doesn't matter which
2851 * order we take the locks because no other cpu could
2852 * be trying to lock both of these tasks.
2853 */
e625cce1
TG
2854 raw_spin_lock(&ctx->lock);
2855 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2856 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2857 WRITE_ONCE(ctx->task, next);
2858 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2859
2860 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2861
63b6da39
PZ
2862 /*
2863 * RCU_INIT_POINTER here is safe because we've not
2864 * modified the ctx and the above modification of
2865 * ctx->task and ctx->task_ctx_data are immaterial
2866 * since those values are always verified under
2867 * ctx->lock which we're now holding.
2868 */
2869 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2871
c93f7669 2872 do_switch = 0;
bfbd3381 2873
cdd6c482 2874 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2875 }
e625cce1
TG
2876 raw_spin_unlock(&next_ctx->lock);
2877 raw_spin_unlock(&ctx->lock);
564c2b21 2878 }
5a3126d4 2879unlock:
c93f7669 2880 rcu_read_unlock();
564c2b21 2881
c93f7669 2882 if (do_switch) {
facc4307 2883 raw_spin_lock(&ctx->lock);
487f05e1 2884 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2885 raw_spin_unlock(&ctx->lock);
c93f7669 2886 }
0793a61d
TG
2887}
2888
e48c1788
PZ
2889static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2890
ba532500
YZ
2891void perf_sched_cb_dec(struct pmu *pmu)
2892{
e48c1788
PZ
2893 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2894
ba532500 2895 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2896
2897 if (!--cpuctx->sched_cb_usage)
2898 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2899}
2900
e48c1788 2901
ba532500
YZ
2902void perf_sched_cb_inc(struct pmu *pmu)
2903{
e48c1788
PZ
2904 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2905
2906 if (!cpuctx->sched_cb_usage++)
2907 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2908
ba532500
YZ
2909 this_cpu_inc(perf_sched_cb_usages);
2910}
2911
2912/*
2913 * This function provides the context switch callback to the lower code
2914 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2915 *
2916 * This callback is relevant even to per-cpu events; for example multi event
2917 * PEBS requires this to provide PID/TID information. This requires we flush
2918 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2919 */
2920static void perf_pmu_sched_task(struct task_struct *prev,
2921 struct task_struct *next,
2922 bool sched_in)
2923{
2924 struct perf_cpu_context *cpuctx;
2925 struct pmu *pmu;
ba532500
YZ
2926
2927 if (prev == next)
2928 return;
2929
e48c1788 2930 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2931 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2932
e48c1788
PZ
2933 if (WARN_ON_ONCE(!pmu->sched_task))
2934 continue;
ba532500 2935
e48c1788
PZ
2936 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937 perf_pmu_disable(pmu);
ba532500 2938
e48c1788 2939 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2940
e48c1788
PZ
2941 perf_pmu_enable(pmu);
2942 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2943 }
ba532500
YZ
2944}
2945
45ac1403
AH
2946static void perf_event_switch(struct task_struct *task,
2947 struct task_struct *next_prev, bool sched_in);
2948
8dc85d54
PZ
2949#define for_each_task_context_nr(ctxn) \
2950 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2951
2952/*
2953 * Called from scheduler to remove the events of the current task,
2954 * with interrupts disabled.
2955 *
2956 * We stop each event and update the event value in event->count.
2957 *
2958 * This does not protect us against NMI, but disable()
2959 * sets the disabled bit in the control field of event _before_
2960 * accessing the event control register. If a NMI hits, then it will
2961 * not restart the event.
2962 */
ab0cce56
JO
2963void __perf_event_task_sched_out(struct task_struct *task,
2964 struct task_struct *next)
8dc85d54
PZ
2965{
2966 int ctxn;
2967
ba532500
YZ
2968 if (__this_cpu_read(perf_sched_cb_usages))
2969 perf_pmu_sched_task(task, next, false);
2970
45ac1403
AH
2971 if (atomic_read(&nr_switch_events))
2972 perf_event_switch(task, next, false);
2973
8dc85d54
PZ
2974 for_each_task_context_nr(ctxn)
2975 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2976
2977 /*
2978 * if cgroup events exist on this CPU, then we need
2979 * to check if we have to switch out PMU state.
2980 * cgroup event are system-wide mode only
2981 */
4a32fea9 2982 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2983 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2984}
2985
5b0311e1
FW
2986/*
2987 * Called with IRQs disabled
2988 */
2989static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990 enum event_type_t event_type)
2991{
2992 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2993}
2994
235c7fc7 2995static void
5b0311e1 2996ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2997 struct perf_cpu_context *cpuctx)
0793a61d 2998{
cdd6c482 2999 struct perf_event *event;
0793a61d 3000
889ff015
FW
3001 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3003 continue;
5632ab12 3004 if (!event_filter_match(event))
3b6f9e5c
PM
3005 continue;
3006
8c9ed8e1 3007 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3008 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3009
3010 /*
3011 * If this pinned group hasn't been scheduled,
3012 * put it in error state.
3013 */
0d3d73aa
PZ
3014 if (event->state == PERF_EVENT_STATE_INACTIVE)
3015 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3b6f9e5c 3016 }
5b0311e1
FW
3017}
3018
3019static void
3020ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3021 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3022{
3023 struct perf_event *event;
3024 int can_add_hw = 1;
3b6f9e5c 3025
889ff015
FW
3026 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027 /* Ignore events in OFF or ERROR state */
3028 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3029 continue;
04289bb9
IM
3030 /*
3031 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3032 * of events:
04289bb9 3033 */
5632ab12 3034 if (!event_filter_match(event))
0793a61d
TG
3035 continue;
3036
9ed6060d 3037 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3038 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3039 can_add_hw = 0;
9ed6060d 3040 }
0793a61d 3041 }
5b0311e1
FW
3042}
3043
3044static void
3045ctx_sched_in(struct perf_event_context *ctx,
3046 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3047 enum event_type_t event_type,
3048 struct task_struct *task)
5b0311e1 3049{
db24d33e 3050 int is_active = ctx->is_active;
c994d613
PZ
3051 u64 now;
3052
3053 lockdep_assert_held(&ctx->lock);
e5d1367f 3054
5b0311e1 3055 if (likely(!ctx->nr_events))
facc4307 3056 return;
5b0311e1 3057
3cbaa590 3058 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3059 if (ctx->task) {
3060 if (!is_active)
3061 cpuctx->task_ctx = ctx;
3062 else
3063 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3064 }
3065
3cbaa590
PZ
3066 is_active ^= ctx->is_active; /* changed bits */
3067
3068 if (is_active & EVENT_TIME) {
3069 /* start ctx time */
3070 now = perf_clock();
3071 ctx->timestamp = now;
3072 perf_cgroup_set_timestamp(task, ctx);
3073 }
3074
5b0311e1
FW
3075 /*
3076 * First go through the list and put on any pinned groups
3077 * in order to give them the best chance of going on.
3078 */
3cbaa590 3079 if (is_active & EVENT_PINNED)
6e37738a 3080 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3081
3082 /* Then walk through the lower prio flexible groups */
3cbaa590 3083 if (is_active & EVENT_FLEXIBLE)
6e37738a 3084 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3085}
3086
329c0e01 3087static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3088 enum event_type_t event_type,
3089 struct task_struct *task)
329c0e01
FW
3090{
3091 struct perf_event_context *ctx = &cpuctx->ctx;
3092
e5d1367f 3093 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3094}
3095
e5d1367f
SE
3096static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097 struct task_struct *task)
235c7fc7 3098{
108b02cf 3099 struct perf_cpu_context *cpuctx;
235c7fc7 3100
108b02cf 3101 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3102 if (cpuctx->task_ctx == ctx)
3103 return;
3104
facc4307 3105 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3106 /*
3107 * We must check ctx->nr_events while holding ctx->lock, such
3108 * that we serialize against perf_install_in_context().
3109 */
3110 if (!ctx->nr_events)
3111 goto unlock;
3112
1b9a644f 3113 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3114 /*
3115 * We want to keep the following priority order:
3116 * cpu pinned (that don't need to move), task pinned,
3117 * cpu flexible, task flexible.
fe45bafb
AS
3118 *
3119 * However, if task's ctx is not carrying any pinned
3120 * events, no need to flip the cpuctx's events around.
329c0e01 3121 */
fe45bafb
AS
3122 if (!list_empty(&ctx->pinned_groups))
3123 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3124 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3125 perf_pmu_enable(ctx->pmu);
fdccc3fb 3126
3127unlock:
facc4307 3128 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3129}
3130
8dc85d54
PZ
3131/*
3132 * Called from scheduler to add the events of the current task
3133 * with interrupts disabled.
3134 *
3135 * We restore the event value and then enable it.
3136 *
3137 * This does not protect us against NMI, but enable()
3138 * sets the enabled bit in the control field of event _before_
3139 * accessing the event control register. If a NMI hits, then it will
3140 * keep the event running.
3141 */
ab0cce56
JO
3142void __perf_event_task_sched_in(struct task_struct *prev,
3143 struct task_struct *task)
8dc85d54
PZ
3144{
3145 struct perf_event_context *ctx;
3146 int ctxn;
3147
7e41d177
PZ
3148 /*
3149 * If cgroup events exist on this CPU, then we need to check if we have
3150 * to switch in PMU state; cgroup event are system-wide mode only.
3151 *
3152 * Since cgroup events are CPU events, we must schedule these in before
3153 * we schedule in the task events.
3154 */
3155 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156 perf_cgroup_sched_in(prev, task);
3157
8dc85d54
PZ
3158 for_each_task_context_nr(ctxn) {
3159 ctx = task->perf_event_ctxp[ctxn];
3160 if (likely(!ctx))
3161 continue;
3162
e5d1367f 3163 perf_event_context_sched_in(ctx, task);
8dc85d54 3164 }
d010b332 3165
45ac1403
AH
3166 if (atomic_read(&nr_switch_events))
3167 perf_event_switch(task, prev, true);
3168
ba532500
YZ
3169 if (__this_cpu_read(perf_sched_cb_usages))
3170 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3171}
3172
abd50713
PZ
3173static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3174{
3175 u64 frequency = event->attr.sample_freq;
3176 u64 sec = NSEC_PER_SEC;
3177 u64 divisor, dividend;
3178
3179 int count_fls, nsec_fls, frequency_fls, sec_fls;
3180
3181 count_fls = fls64(count);
3182 nsec_fls = fls64(nsec);
3183 frequency_fls = fls64(frequency);
3184 sec_fls = 30;
3185
3186 /*
3187 * We got @count in @nsec, with a target of sample_freq HZ
3188 * the target period becomes:
3189 *
3190 * @count * 10^9
3191 * period = -------------------
3192 * @nsec * sample_freq
3193 *
3194 */
3195
3196 /*
3197 * Reduce accuracy by one bit such that @a and @b converge
3198 * to a similar magnitude.
3199 */
fe4b04fa 3200#define REDUCE_FLS(a, b) \
abd50713
PZ
3201do { \
3202 if (a##_fls > b##_fls) { \
3203 a >>= 1; \
3204 a##_fls--; \
3205 } else { \
3206 b >>= 1; \
3207 b##_fls--; \
3208 } \
3209} while (0)
3210
3211 /*
3212 * Reduce accuracy until either term fits in a u64, then proceed with
3213 * the other, so that finally we can do a u64/u64 division.
3214 */
3215 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216 REDUCE_FLS(nsec, frequency);
3217 REDUCE_FLS(sec, count);
3218 }
3219
3220 if (count_fls + sec_fls > 64) {
3221 divisor = nsec * frequency;
3222
3223 while (count_fls + sec_fls > 64) {
3224 REDUCE_FLS(count, sec);
3225 divisor >>= 1;
3226 }
3227
3228 dividend = count * sec;
3229 } else {
3230 dividend = count * sec;
3231
3232 while (nsec_fls + frequency_fls > 64) {
3233 REDUCE_FLS(nsec, frequency);
3234 dividend >>= 1;
3235 }
3236
3237 divisor = nsec * frequency;
3238 }
3239
f6ab91ad
PZ
3240 if (!divisor)
3241 return dividend;
3242
abd50713
PZ
3243 return div64_u64(dividend, divisor);
3244}
3245
e050e3f0
SE
3246static DEFINE_PER_CPU(int, perf_throttled_count);
3247static DEFINE_PER_CPU(u64, perf_throttled_seq);
3248
f39d47ff 3249static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3250{
cdd6c482 3251 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3252 s64 period, sample_period;
bd2b5b12
PZ
3253 s64 delta;
3254
abd50713 3255 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3256
3257 delta = (s64)(period - hwc->sample_period);
3258 delta = (delta + 7) / 8; /* low pass filter */
3259
3260 sample_period = hwc->sample_period + delta;
3261
3262 if (!sample_period)
3263 sample_period = 1;
3264
bd2b5b12 3265 hwc->sample_period = sample_period;
abd50713 3266
e7850595 3267 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3268 if (disable)
3269 event->pmu->stop(event, PERF_EF_UPDATE);
3270
e7850595 3271 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3272
3273 if (disable)
3274 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3275 }
bd2b5b12
PZ
3276}
3277
e050e3f0
SE
3278/*
3279 * combine freq adjustment with unthrottling to avoid two passes over the
3280 * events. At the same time, make sure, having freq events does not change
3281 * the rate of unthrottling as that would introduce bias.
3282 */
3283static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284 int needs_unthr)
60db5e09 3285{
cdd6c482
IM
3286 struct perf_event *event;
3287 struct hw_perf_event *hwc;
e050e3f0 3288 u64 now, period = TICK_NSEC;
abd50713 3289 s64 delta;
60db5e09 3290
e050e3f0
SE
3291 /*
3292 * only need to iterate over all events iff:
3293 * - context have events in frequency mode (needs freq adjust)
3294 * - there are events to unthrottle on this cpu
3295 */
3296 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3297 return;
3298
e050e3f0 3299 raw_spin_lock(&ctx->lock);
f39d47ff 3300 perf_pmu_disable(ctx->pmu);
e050e3f0 3301
03541f8b 3302 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3303 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3304 continue;
3305
5632ab12 3306 if (!event_filter_match(event))
5d27c23d
PZ
3307 continue;
3308
44377277
AS
3309 perf_pmu_disable(event->pmu);
3310
cdd6c482 3311 hwc = &event->hw;
6a24ed6c 3312
ae23bff1 3313 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3314 hwc->interrupts = 0;
cdd6c482 3315 perf_log_throttle(event, 1);
a4eaf7f1 3316 event->pmu->start(event, 0);
a78ac325
PZ
3317 }
3318
cdd6c482 3319 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3320 goto next;
60db5e09 3321
e050e3f0
SE
3322 /*
3323 * stop the event and update event->count
3324 */
3325 event->pmu->stop(event, PERF_EF_UPDATE);
3326
e7850595 3327 now = local64_read(&event->count);
abd50713
PZ
3328 delta = now - hwc->freq_count_stamp;
3329 hwc->freq_count_stamp = now;
60db5e09 3330
e050e3f0
SE
3331 /*
3332 * restart the event
3333 * reload only if value has changed
f39d47ff
SE
3334 * we have stopped the event so tell that
3335 * to perf_adjust_period() to avoid stopping it
3336 * twice.
e050e3f0 3337 */
abd50713 3338 if (delta > 0)
f39d47ff 3339 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3340
3341 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3342 next:
3343 perf_pmu_enable(event->pmu);
60db5e09 3344 }
e050e3f0 3345
f39d47ff 3346 perf_pmu_enable(ctx->pmu);
e050e3f0 3347 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3348}
3349
235c7fc7 3350/*
cdd6c482 3351 * Round-robin a context's events:
235c7fc7 3352 */
cdd6c482 3353static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3354{
dddd3379
TG
3355 /*
3356 * Rotate the first entry last of non-pinned groups. Rotation might be
3357 * disabled by the inheritance code.
3358 */
3359 if (!ctx->rotate_disable)
3360 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3361}
3362
9e630205 3363static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3364{
8dc85d54 3365 struct perf_event_context *ctx = NULL;
2fde4f94 3366 int rotate = 0;
7fc23a53 3367
b5ab4cd5 3368 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3369 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370 rotate = 1;
3371 }
235c7fc7 3372
8dc85d54 3373 ctx = cpuctx->task_ctx;
b5ab4cd5 3374 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3375 if (ctx->nr_events != ctx->nr_active)
3376 rotate = 1;
3377 }
9717e6cd 3378
e050e3f0 3379 if (!rotate)
0f5a2601
PZ
3380 goto done;
3381
facc4307 3382 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3383 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3384
e050e3f0
SE
3385 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386 if (ctx)
3387 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3388
e050e3f0
SE
3389 rotate_ctx(&cpuctx->ctx);
3390 if (ctx)
3391 rotate_ctx(ctx);
235c7fc7 3392
e050e3f0 3393 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3394
0f5a2601
PZ
3395 perf_pmu_enable(cpuctx->ctx.pmu);
3396 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3397done:
9e630205
SE
3398
3399 return rotate;
e9d2b064
PZ
3400}
3401
3402void perf_event_task_tick(void)
3403{
2fde4f94
MR
3404 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405 struct perf_event_context *ctx, *tmp;
e050e3f0 3406 int throttled;
b5ab4cd5 3407
16444645 3408 lockdep_assert_irqs_disabled();
e9d2b064 3409
e050e3f0
SE
3410 __this_cpu_inc(perf_throttled_seq);
3411 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3412 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3413
2fde4f94 3414 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3415 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3416}
3417
889ff015
FW
3418static int event_enable_on_exec(struct perf_event *event,
3419 struct perf_event_context *ctx)
3420{
3421 if (!event->attr.enable_on_exec)
3422 return 0;
3423
3424 event->attr.enable_on_exec = 0;
3425 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426 return 0;
3427
0d3d73aa 3428 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3429
3430 return 1;
3431}
3432
57e7986e 3433/*
cdd6c482 3434 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3435 * This expects task == current.
3436 */
c1274499 3437static void perf_event_enable_on_exec(int ctxn)
57e7986e 3438{
c1274499 3439 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3440 enum event_type_t event_type = 0;
3e349507 3441 struct perf_cpu_context *cpuctx;
cdd6c482 3442 struct perf_event *event;
57e7986e
PM
3443 unsigned long flags;
3444 int enabled = 0;
3445
3446 local_irq_save(flags);
c1274499 3447 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3448 if (!ctx || !ctx->nr_events)
57e7986e
PM
3449 goto out;
3450
3e349507
PZ
3451 cpuctx = __get_cpu_context(ctx);
3452 perf_ctx_lock(cpuctx, ctx);
7fce2509 3453 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3454 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3455 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3456 event_type |= get_event_type(event);
3457 }
57e7986e
PM
3458
3459 /*
3e349507 3460 * Unclone and reschedule this context if we enabled any event.
57e7986e 3461 */
3e349507 3462 if (enabled) {
211de6eb 3463 clone_ctx = unclone_ctx(ctx);
487f05e1 3464 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3465 } else {
3466 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3467 }
3468 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3469
9ed6060d 3470out:
57e7986e 3471 local_irq_restore(flags);
211de6eb
PZ
3472
3473 if (clone_ctx)
3474 put_ctx(clone_ctx);
57e7986e
PM
3475}
3476
0492d4c5
PZ
3477struct perf_read_data {
3478 struct perf_event *event;
3479 bool group;
7d88962e 3480 int ret;
0492d4c5
PZ
3481};
3482
451d24d1 3483static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3484{
d6a2f903
DCC
3485 u16 local_pkg, event_pkg;
3486
3487 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3488 int local_cpu = smp_processor_id();
3489
3490 event_pkg = topology_physical_package_id(event_cpu);
3491 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3492
3493 if (event_pkg == local_pkg)
3494 return local_cpu;
3495 }
3496
3497 return event_cpu;
3498}
3499
0793a61d 3500/*
cdd6c482 3501 * Cross CPU call to read the hardware event
0793a61d 3502 */
cdd6c482 3503static void __perf_event_read(void *info)
0793a61d 3504{
0492d4c5
PZ
3505 struct perf_read_data *data = info;
3506 struct perf_event *sub, *event = data->event;
cdd6c482 3507 struct perf_event_context *ctx = event->ctx;
108b02cf 3508 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3509 struct pmu *pmu = event->pmu;
621a01ea 3510
e1ac3614
PM
3511 /*
3512 * If this is a task context, we need to check whether it is
3513 * the current task context of this cpu. If not it has been
3514 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3515 * event->count would have been updated to a recent sample
3516 * when the event was scheduled out.
e1ac3614
PM
3517 */
3518 if (ctx->task && cpuctx->task_ctx != ctx)
3519 return;
3520
e625cce1 3521 raw_spin_lock(&ctx->lock);
0c1cbc18 3522 if (ctx->is_active & EVENT_TIME) {
542e72fc 3523 update_context_time(ctx);
e5d1367f
SE
3524 update_cgrp_time_from_event(event);
3525 }
0492d4c5 3526
0d3d73aa
PZ
3527 perf_event_update_time(event);
3528 if (data->group)
3529 perf_event_update_sibling_time(event);
0c1cbc18 3530
4a00c16e
SB
3531 if (event->state != PERF_EVENT_STATE_ACTIVE)
3532 goto unlock;
0492d4c5 3533
4a00c16e
SB
3534 if (!data->group) {
3535 pmu->read(event);
3536 data->ret = 0;
0492d4c5 3537 goto unlock;
4a00c16e
SB
3538 }
3539
3540 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3541
3542 pmu->read(event);
0492d4c5
PZ
3543
3544 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3545 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3546 /*
3547 * Use sibling's PMU rather than @event's since
3548 * sibling could be on different (eg: software) PMU.
3549 */
0492d4c5 3550 sub->pmu->read(sub);
4a00c16e 3551 }
0492d4c5 3552 }
4a00c16e
SB
3553
3554 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3555
3556unlock:
e625cce1 3557 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3558}
3559
b5e58793
PZ
3560static inline u64 perf_event_count(struct perf_event *event)
3561{
c39a0e2c 3562 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3563}
3564
ffe8690c
KX
3565/*
3566 * NMI-safe method to read a local event, that is an event that
3567 * is:
3568 * - either for the current task, or for this CPU
3569 * - does not have inherit set, for inherited task events
3570 * will not be local and we cannot read them atomically
3571 * - must not have a pmu::count method
3572 */
7d9285e8
YS
3573int perf_event_read_local(struct perf_event *event, u64 *value,
3574 u64 *enabled, u64 *running)
ffe8690c
KX
3575{
3576 unsigned long flags;
f91840a3 3577 int ret = 0;
ffe8690c
KX
3578
3579 /*
3580 * Disabling interrupts avoids all counter scheduling (context
3581 * switches, timer based rotation and IPIs).
3582 */
3583 local_irq_save(flags);
3584
ffe8690c
KX
3585 /*
3586 * It must not be an event with inherit set, we cannot read
3587 * all child counters from atomic context.
3588 */
f91840a3
AS
3589 if (event->attr.inherit) {
3590 ret = -EOPNOTSUPP;
3591 goto out;
3592 }
ffe8690c 3593
f91840a3
AS
3594 /* If this is a per-task event, it must be for current */
3595 if ((event->attach_state & PERF_ATTACH_TASK) &&
3596 event->hw.target != current) {
3597 ret = -EINVAL;
3598 goto out;
3599 }
3600
3601 /* If this is a per-CPU event, it must be for this CPU */
3602 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603 event->cpu != smp_processor_id()) {
3604 ret = -EINVAL;
3605 goto out;
3606 }
ffe8690c
KX
3607
3608 /*
3609 * If the event is currently on this CPU, its either a per-task event,
3610 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611 * oncpu == -1).
3612 */
3613 if (event->oncpu == smp_processor_id())
3614 event->pmu->read(event);
3615
f91840a3 3616 *value = local64_read(&event->count);
0d3d73aa
PZ
3617 if (enabled || running) {
3618 u64 now = event->shadow_ctx_time + perf_clock();
3619 u64 __enabled, __running;
3620
3621 __perf_update_times(event, now, &__enabled, &__running);
3622 if (enabled)
3623 *enabled = __enabled;
3624 if (running)
3625 *running = __running;
3626 }
f91840a3 3627out:
ffe8690c
KX
3628 local_irq_restore(flags);
3629
f91840a3 3630 return ret;
ffe8690c
KX
3631}
3632
7d88962e 3633static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3634{
0c1cbc18 3635 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3636 int event_cpu, ret = 0;
7d88962e 3637
0793a61d 3638 /*
cdd6c482
IM
3639 * If event is enabled and currently active on a CPU, update the
3640 * value in the event structure:
0793a61d 3641 */
0c1cbc18
PZ
3642again:
3643 if (state == PERF_EVENT_STATE_ACTIVE) {
3644 struct perf_read_data data;
3645
3646 /*
3647 * Orders the ->state and ->oncpu loads such that if we see
3648 * ACTIVE we must also see the right ->oncpu.
3649 *
3650 * Matches the smp_wmb() from event_sched_in().
3651 */
3652 smp_rmb();
d6a2f903 3653
451d24d1
PZ
3654 event_cpu = READ_ONCE(event->oncpu);
3655 if ((unsigned)event_cpu >= nr_cpu_ids)
3656 return 0;
3657
0c1cbc18
PZ
3658 data = (struct perf_read_data){
3659 .event = event,
3660 .group = group,
3661 .ret = 0,
3662 };
3663
451d24d1
PZ
3664 preempt_disable();
3665 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3666
58763148
PZ
3667 /*
3668 * Purposely ignore the smp_call_function_single() return
3669 * value.
3670 *
451d24d1 3671 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3672 * scheduled out and that will have updated the event count.
3673 *
3674 * Therefore, either way, we'll have an up-to-date event count
3675 * after this.
3676 */
451d24d1
PZ
3677 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678 preempt_enable();
58763148 3679 ret = data.ret;
0c1cbc18
PZ
3680
3681 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3682 struct perf_event_context *ctx = event->ctx;
3683 unsigned long flags;
3684
e625cce1 3685 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3686 state = event->state;
3687 if (state != PERF_EVENT_STATE_INACTIVE) {
3688 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689 goto again;
3690 }
3691
c530ccd9 3692 /*
0c1cbc18
PZ
3693 * May read while context is not active (e.g., thread is
3694 * blocked), in that case we cannot update context time
c530ccd9 3695 */
0c1cbc18 3696 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3697 update_context_time(ctx);
e5d1367f
SE
3698 update_cgrp_time_from_event(event);
3699 }
0c1cbc18 3700
0d3d73aa 3701 perf_event_update_time(event);
0492d4c5 3702 if (group)
0d3d73aa 3703 perf_event_update_sibling_time(event);
e625cce1 3704 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3705 }
7d88962e
SB
3706
3707 return ret;
0793a61d
TG
3708}
3709
a63eaf34 3710/*
cdd6c482 3711 * Initialize the perf_event context in a task_struct:
a63eaf34 3712 */
eb184479 3713static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3714{
e625cce1 3715 raw_spin_lock_init(&ctx->lock);
a63eaf34 3716 mutex_init(&ctx->mutex);
2fde4f94 3717 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3718 INIT_LIST_HEAD(&ctx->pinned_groups);
3719 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3720 INIT_LIST_HEAD(&ctx->event_list);
3721 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3722}
3723
3724static struct perf_event_context *
3725alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3726{
3727 struct perf_event_context *ctx;
3728
3729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730 if (!ctx)
3731 return NULL;
3732
3733 __perf_event_init_context(ctx);
3734 if (task) {
3735 ctx->task = task;
3736 get_task_struct(task);
0793a61d 3737 }
eb184479
PZ
3738 ctx->pmu = pmu;
3739
3740 return ctx;
a63eaf34
PM
3741}
3742
2ebd4ffb
MH
3743static struct task_struct *
3744find_lively_task_by_vpid(pid_t vpid)
3745{
3746 struct task_struct *task;
0793a61d
TG
3747
3748 rcu_read_lock();
2ebd4ffb 3749 if (!vpid)
0793a61d
TG
3750 task = current;
3751 else
2ebd4ffb 3752 task = find_task_by_vpid(vpid);
0793a61d
TG
3753 if (task)
3754 get_task_struct(task);
3755 rcu_read_unlock();
3756
3757 if (!task)
3758 return ERR_PTR(-ESRCH);
3759
2ebd4ffb 3760 return task;
2ebd4ffb
MH
3761}
3762
fe4b04fa
PZ
3763/*
3764 * Returns a matching context with refcount and pincount.
3765 */
108b02cf 3766static struct perf_event_context *
4af57ef2
YZ
3767find_get_context(struct pmu *pmu, struct task_struct *task,
3768 struct perf_event *event)
0793a61d 3769{
211de6eb 3770 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3771 struct perf_cpu_context *cpuctx;
4af57ef2 3772 void *task_ctx_data = NULL;
25346b93 3773 unsigned long flags;
8dc85d54 3774 int ctxn, err;
4af57ef2 3775 int cpu = event->cpu;
0793a61d 3776
22a4ec72 3777 if (!task) {
cdd6c482 3778 /* Must be root to operate on a CPU event: */
0764771d 3779 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3780 return ERR_PTR(-EACCES);
3781
108b02cf 3782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3783 ctx = &cpuctx->ctx;
c93f7669 3784 get_ctx(ctx);
fe4b04fa 3785 ++ctx->pin_count;
0793a61d 3786
0793a61d
TG
3787 return ctx;
3788 }
3789
8dc85d54
PZ
3790 err = -EINVAL;
3791 ctxn = pmu->task_ctx_nr;
3792 if (ctxn < 0)
3793 goto errout;
3794
4af57ef2
YZ
3795 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797 if (!task_ctx_data) {
3798 err = -ENOMEM;
3799 goto errout;
3800 }
3801 }
3802
9ed6060d 3803retry:
8dc85d54 3804 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3805 if (ctx) {
211de6eb 3806 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3807 ++ctx->pin_count;
4af57ef2
YZ
3808
3809 if (task_ctx_data && !ctx->task_ctx_data) {
3810 ctx->task_ctx_data = task_ctx_data;
3811 task_ctx_data = NULL;
3812 }
e625cce1 3813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3814
3815 if (clone_ctx)
3816 put_ctx(clone_ctx);
9137fb28 3817 } else {
eb184479 3818 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3819 err = -ENOMEM;
3820 if (!ctx)
3821 goto errout;
eb184479 3822
4af57ef2
YZ
3823 if (task_ctx_data) {
3824 ctx->task_ctx_data = task_ctx_data;
3825 task_ctx_data = NULL;
3826 }
3827
dbe08d82
ON
3828 err = 0;
3829 mutex_lock(&task->perf_event_mutex);
3830 /*
3831 * If it has already passed perf_event_exit_task().
3832 * we must see PF_EXITING, it takes this mutex too.
3833 */
3834 if (task->flags & PF_EXITING)
3835 err = -ESRCH;
3836 else if (task->perf_event_ctxp[ctxn])
3837 err = -EAGAIN;
fe4b04fa 3838 else {
9137fb28 3839 get_ctx(ctx);
fe4b04fa 3840 ++ctx->pin_count;
dbe08d82 3841 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3842 }
dbe08d82
ON
3843 mutex_unlock(&task->perf_event_mutex);
3844
3845 if (unlikely(err)) {
9137fb28 3846 put_ctx(ctx);
dbe08d82
ON
3847
3848 if (err == -EAGAIN)
3849 goto retry;
3850 goto errout;
a63eaf34
PM
3851 }
3852 }
3853
4af57ef2 3854 kfree(task_ctx_data);
0793a61d 3855 return ctx;
c93f7669 3856
9ed6060d 3857errout:
4af57ef2 3858 kfree(task_ctx_data);
c93f7669 3859 return ERR_PTR(err);
0793a61d
TG
3860}
3861
6fb2915d 3862static void perf_event_free_filter(struct perf_event *event);
2541517c 3863static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3864
cdd6c482 3865static void free_event_rcu(struct rcu_head *head)
592903cd 3866{
cdd6c482 3867 struct perf_event *event;
592903cd 3868
cdd6c482
IM
3869 event = container_of(head, struct perf_event, rcu_head);
3870 if (event->ns)
3871 put_pid_ns(event->ns);
6fb2915d 3872 perf_event_free_filter(event);
cdd6c482 3873 kfree(event);
592903cd
PZ
3874}
3875
b69cf536
PZ
3876static void ring_buffer_attach(struct perf_event *event,
3877 struct ring_buffer *rb);
925d519a 3878
f2fb6bef
KL
3879static void detach_sb_event(struct perf_event *event)
3880{
3881 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3882
3883 raw_spin_lock(&pel->lock);
3884 list_del_rcu(&event->sb_list);
3885 raw_spin_unlock(&pel->lock);
3886}
3887
a4f144eb 3888static bool is_sb_event(struct perf_event *event)
f2fb6bef 3889{
a4f144eb
DCC
3890 struct perf_event_attr *attr = &event->attr;
3891
f2fb6bef 3892 if (event->parent)
a4f144eb 3893 return false;
f2fb6bef
KL
3894
3895 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3896 return false;
f2fb6bef 3897
a4f144eb
DCC
3898 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899 attr->comm || attr->comm_exec ||
3900 attr->task ||
3901 attr->context_switch)
3902 return true;
3903 return false;
3904}
3905
3906static void unaccount_pmu_sb_event(struct perf_event *event)
3907{
3908 if (is_sb_event(event))
3909 detach_sb_event(event);
f2fb6bef
KL
3910}
3911
4beb31f3 3912static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3913{
4beb31f3
FW
3914 if (event->parent)
3915 return;
3916
4beb31f3
FW
3917 if (is_cgroup_event(event))
3918 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3919}
925d519a 3920
555e0c1e
FW
3921#ifdef CONFIG_NO_HZ_FULL
3922static DEFINE_SPINLOCK(nr_freq_lock);
3923#endif
3924
3925static void unaccount_freq_event_nohz(void)
3926{
3927#ifdef CONFIG_NO_HZ_FULL
3928 spin_lock(&nr_freq_lock);
3929 if (atomic_dec_and_test(&nr_freq_events))
3930 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931 spin_unlock(&nr_freq_lock);
3932#endif
3933}
3934
3935static void unaccount_freq_event(void)
3936{
3937 if (tick_nohz_full_enabled())
3938 unaccount_freq_event_nohz();
3939 else
3940 atomic_dec(&nr_freq_events);
3941}
3942
4beb31f3
FW
3943static void unaccount_event(struct perf_event *event)
3944{
25432ae9
PZ
3945 bool dec = false;
3946
4beb31f3
FW
3947 if (event->parent)
3948 return;
3949
3950 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3951 dec = true;
4beb31f3
FW
3952 if (event->attr.mmap || event->attr.mmap_data)
3953 atomic_dec(&nr_mmap_events);
3954 if (event->attr.comm)
3955 atomic_dec(&nr_comm_events);
e4222673
HB
3956 if (event->attr.namespaces)
3957 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
3958 if (event->attr.task)
3959 atomic_dec(&nr_task_events);
948b26b6 3960 if (event->attr.freq)
555e0c1e 3961 unaccount_freq_event();
45ac1403 3962 if (event->attr.context_switch) {
25432ae9 3963 dec = true;
45ac1403
AH
3964 atomic_dec(&nr_switch_events);
3965 }
4beb31f3 3966 if (is_cgroup_event(event))
25432ae9 3967 dec = true;
4beb31f3 3968 if (has_branch_stack(event))
25432ae9
PZ
3969 dec = true;
3970
9107c89e
PZ
3971 if (dec) {
3972 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973 schedule_delayed_work(&perf_sched_work, HZ);
3974 }
4beb31f3
FW
3975
3976 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3977
3978 unaccount_pmu_sb_event(event);
4beb31f3 3979}
925d519a 3980
9107c89e
PZ
3981static void perf_sched_delayed(struct work_struct *work)
3982{
3983 mutex_lock(&perf_sched_mutex);
3984 if (atomic_dec_and_test(&perf_sched_count))
3985 static_branch_disable(&perf_sched_events);
3986 mutex_unlock(&perf_sched_mutex);
3987}
3988
bed5b25a
AS
3989/*
3990 * The following implement mutual exclusion of events on "exclusive" pmus
3991 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992 * at a time, so we disallow creating events that might conflict, namely:
3993 *
3994 * 1) cpu-wide events in the presence of per-task events,
3995 * 2) per-task events in the presence of cpu-wide events,
3996 * 3) two matching events on the same context.
3997 *
3998 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3999 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4000 */
4001static int exclusive_event_init(struct perf_event *event)
4002{
4003 struct pmu *pmu = event->pmu;
4004
4005 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006 return 0;
4007
4008 /*
4009 * Prevent co-existence of per-task and cpu-wide events on the
4010 * same exclusive pmu.
4011 *
4012 * Negative pmu::exclusive_cnt means there are cpu-wide
4013 * events on this "exclusive" pmu, positive means there are
4014 * per-task events.
4015 *
4016 * Since this is called in perf_event_alloc() path, event::ctx
4017 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018 * to mean "per-task event", because unlike other attach states it
4019 * never gets cleared.
4020 */
4021 if (event->attach_state & PERF_ATTACH_TASK) {
4022 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023 return -EBUSY;
4024 } else {
4025 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026 return -EBUSY;
4027 }
4028
4029 return 0;
4030}
4031
4032static void exclusive_event_destroy(struct perf_event *event)
4033{
4034 struct pmu *pmu = event->pmu;
4035
4036 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037 return;
4038
4039 /* see comment in exclusive_event_init() */
4040 if (event->attach_state & PERF_ATTACH_TASK)
4041 atomic_dec(&pmu->exclusive_cnt);
4042 else
4043 atomic_inc(&pmu->exclusive_cnt);
4044}
4045
4046static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4047{
3bf6215a 4048 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4049 (e1->cpu == e2->cpu ||
4050 e1->cpu == -1 ||
4051 e2->cpu == -1))
4052 return true;
4053 return false;
4054}
4055
4056/* Called under the same ctx::mutex as perf_install_in_context() */
4057static bool exclusive_event_installable(struct perf_event *event,
4058 struct perf_event_context *ctx)
4059{
4060 struct perf_event *iter_event;
4061 struct pmu *pmu = event->pmu;
4062
4063 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064 return true;
4065
4066 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067 if (exclusive_event_match(iter_event, event))
4068 return false;
4069 }
4070
4071 return true;
4072}
4073
375637bc
AS
4074static void perf_addr_filters_splice(struct perf_event *event,
4075 struct list_head *head);
4076
683ede43 4077static void _free_event(struct perf_event *event)
f1600952 4078{
e360adbe 4079 irq_work_sync(&event->pending);
925d519a 4080
4beb31f3 4081 unaccount_event(event);
9ee318a7 4082
76369139 4083 if (event->rb) {
9bb5d40c
PZ
4084 /*
4085 * Can happen when we close an event with re-directed output.
4086 *
4087 * Since we have a 0 refcount, perf_mmap_close() will skip
4088 * over us; possibly making our ring_buffer_put() the last.
4089 */
4090 mutex_lock(&event->mmap_mutex);
b69cf536 4091 ring_buffer_attach(event, NULL);
9bb5d40c 4092 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4093 }
4094
e5d1367f
SE
4095 if (is_cgroup_event(event))
4096 perf_detach_cgroup(event);
4097
a0733e69
PZ
4098 if (!event->parent) {
4099 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100 put_callchain_buffers();
4101 }
4102
4103 perf_event_free_bpf_prog(event);
375637bc
AS
4104 perf_addr_filters_splice(event, NULL);
4105 kfree(event->addr_filters_offs);
a0733e69
PZ
4106
4107 if (event->destroy)
4108 event->destroy(event);
4109
4110 if (event->ctx)
4111 put_ctx(event->ctx);
4112
62a92c8f
AS
4113 exclusive_event_destroy(event);
4114 module_put(event->pmu->module);
a0733e69
PZ
4115
4116 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4117}
4118
683ede43
PZ
4119/*
4120 * Used to free events which have a known refcount of 1, such as in error paths
4121 * where the event isn't exposed yet and inherited events.
4122 */
4123static void free_event(struct perf_event *event)
0793a61d 4124{
683ede43
PZ
4125 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126 "unexpected event refcount: %ld; ptr=%p\n",
4127 atomic_long_read(&event->refcount), event)) {
4128 /* leak to avoid use-after-free */
4129 return;
4130 }
0793a61d 4131
683ede43 4132 _free_event(event);
0793a61d
TG
4133}
4134
a66a3052 4135/*
f8697762 4136 * Remove user event from the owner task.
a66a3052 4137 */
f8697762 4138static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4139{
8882135b 4140 struct task_struct *owner;
fb0459d7 4141
8882135b 4142 rcu_read_lock();
8882135b 4143 /*
f47c02c0
PZ
4144 * Matches the smp_store_release() in perf_event_exit_task(). If we
4145 * observe !owner it means the list deletion is complete and we can
4146 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4147 * owner->perf_event_mutex.
4148 */
506458ef 4149 owner = READ_ONCE(event->owner);
8882135b
PZ
4150 if (owner) {
4151 /*
4152 * Since delayed_put_task_struct() also drops the last
4153 * task reference we can safely take a new reference
4154 * while holding the rcu_read_lock().
4155 */
4156 get_task_struct(owner);
4157 }
4158 rcu_read_unlock();
4159
4160 if (owner) {
f63a8daa
PZ
4161 /*
4162 * If we're here through perf_event_exit_task() we're already
4163 * holding ctx->mutex which would be an inversion wrt. the
4164 * normal lock order.
4165 *
4166 * However we can safely take this lock because its the child
4167 * ctx->mutex.
4168 */
4169 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4170
8882135b
PZ
4171 /*
4172 * We have to re-check the event->owner field, if it is cleared
4173 * we raced with perf_event_exit_task(), acquiring the mutex
4174 * ensured they're done, and we can proceed with freeing the
4175 * event.
4176 */
f47c02c0 4177 if (event->owner) {
8882135b 4178 list_del_init(&event->owner_entry);
f47c02c0
PZ
4179 smp_store_release(&event->owner, NULL);
4180 }
8882135b
PZ
4181 mutex_unlock(&owner->perf_event_mutex);
4182 put_task_struct(owner);
4183 }
f8697762
JO
4184}
4185
f8697762
JO
4186static void put_event(struct perf_event *event)
4187{
f8697762
JO
4188 if (!atomic_long_dec_and_test(&event->refcount))
4189 return;
4190
c6e5b732
PZ
4191 _free_event(event);
4192}
4193
4194/*
4195 * Kill an event dead; while event:refcount will preserve the event
4196 * object, it will not preserve its functionality. Once the last 'user'
4197 * gives up the object, we'll destroy the thing.
4198 */
4199int perf_event_release_kernel(struct perf_event *event)
4200{
a4f4bb6d 4201 struct perf_event_context *ctx = event->ctx;
c6e5b732 4202 struct perf_event *child, *tmp;
82d94856 4203 LIST_HEAD(free_list);
c6e5b732 4204
a4f4bb6d
PZ
4205 /*
4206 * If we got here through err_file: fput(event_file); we will not have
4207 * attached to a context yet.
4208 */
4209 if (!ctx) {
4210 WARN_ON_ONCE(event->attach_state &
4211 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212 goto no_ctx;
4213 }
4214
f8697762
JO
4215 if (!is_kernel_event(event))
4216 perf_remove_from_owner(event);
8882135b 4217
5fa7c8ec 4218 ctx = perf_event_ctx_lock(event);
a83fe28e 4219 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4220 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4221
a69b0ca4 4222 raw_spin_lock_irq(&ctx->lock);
683ede43 4223 /*
d8a8cfc7 4224 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4225 * anymore.
683ede43 4226 *
a69b0ca4
PZ
4227 * Anybody acquiring event->child_mutex after the below loop _must_
4228 * also see this, most importantly inherit_event() which will avoid
4229 * placing more children on the list.
683ede43 4230 *
c6e5b732
PZ
4231 * Thus this guarantees that we will in fact observe and kill _ALL_
4232 * child events.
683ede43 4233 */
a69b0ca4
PZ
4234 event->state = PERF_EVENT_STATE_DEAD;
4235 raw_spin_unlock_irq(&ctx->lock);
4236
4237 perf_event_ctx_unlock(event, ctx);
683ede43 4238
c6e5b732
PZ
4239again:
4240 mutex_lock(&event->child_mutex);
4241 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4242
c6e5b732
PZ
4243 /*
4244 * Cannot change, child events are not migrated, see the
4245 * comment with perf_event_ctx_lock_nested().
4246 */
506458ef 4247 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4248 /*
4249 * Since child_mutex nests inside ctx::mutex, we must jump
4250 * through hoops. We start by grabbing a reference on the ctx.
4251 *
4252 * Since the event cannot get freed while we hold the
4253 * child_mutex, the context must also exist and have a !0
4254 * reference count.
4255 */
4256 get_ctx(ctx);
4257
4258 /*
4259 * Now that we have a ctx ref, we can drop child_mutex, and
4260 * acquire ctx::mutex without fear of it going away. Then we
4261 * can re-acquire child_mutex.
4262 */
4263 mutex_unlock(&event->child_mutex);
4264 mutex_lock(&ctx->mutex);
4265 mutex_lock(&event->child_mutex);
4266
4267 /*
4268 * Now that we hold ctx::mutex and child_mutex, revalidate our
4269 * state, if child is still the first entry, it didn't get freed
4270 * and we can continue doing so.
4271 */
4272 tmp = list_first_entry_or_null(&event->child_list,
4273 struct perf_event, child_list);
4274 if (tmp == child) {
4275 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4276 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4277 /*
4278 * This matches the refcount bump in inherit_event();
4279 * this can't be the last reference.
4280 */
4281 put_event(event);
4282 }
4283
4284 mutex_unlock(&event->child_mutex);
4285 mutex_unlock(&ctx->mutex);
4286 put_ctx(ctx);
4287 goto again;
4288 }
4289 mutex_unlock(&event->child_mutex);
4290
82d94856
PZ
4291 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292 list_del(&child->child_list);
4293 free_event(child);
4294 }
4295
a4f4bb6d
PZ
4296no_ctx:
4297 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4298 return 0;
4299}
4300EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4301
8b10c5e2
PZ
4302/*
4303 * Called when the last reference to the file is gone.
4304 */
a6fa941d
AV
4305static int perf_release(struct inode *inode, struct file *file)
4306{
c6e5b732 4307 perf_event_release_kernel(file->private_data);
a6fa941d 4308 return 0;
fb0459d7 4309}
fb0459d7 4310
ca0dd44c 4311static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4312{
cdd6c482 4313 struct perf_event *child;
e53c0994
PZ
4314 u64 total = 0;
4315
59ed446f
PZ
4316 *enabled = 0;
4317 *running = 0;
4318
6f10581a 4319 mutex_lock(&event->child_mutex);
01add3ea 4320
7d88962e 4321 (void)perf_event_read(event, false);
01add3ea
SB
4322 total += perf_event_count(event);
4323
59ed446f
PZ
4324 *enabled += event->total_time_enabled +
4325 atomic64_read(&event->child_total_time_enabled);
4326 *running += event->total_time_running +
4327 atomic64_read(&event->child_total_time_running);
4328
4329 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4330 (void)perf_event_read(child, false);
01add3ea 4331 total += perf_event_count(child);
59ed446f
PZ
4332 *enabled += child->total_time_enabled;
4333 *running += child->total_time_running;
4334 }
6f10581a 4335 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4336
4337 return total;
4338}
ca0dd44c
PZ
4339
4340u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4341{
4342 struct perf_event_context *ctx;
4343 u64 count;
4344
4345 ctx = perf_event_ctx_lock(event);
4346 count = __perf_event_read_value(event, enabled, running);
4347 perf_event_ctx_unlock(event, ctx);
4348
4349 return count;
4350}
fb0459d7 4351EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4352
7d88962e 4353static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4354 u64 read_format, u64 *values)
3dab77fb 4355{
2aeb1883 4356 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4357 struct perf_event *sub;
2aeb1883 4358 unsigned long flags;
fa8c2693 4359 int n = 1; /* skip @nr */
7d88962e 4360 int ret;
f63a8daa 4361
7d88962e
SB
4362 ret = perf_event_read(leader, true);
4363 if (ret)
4364 return ret;
abf4868b 4365
a9cd8194
PZ
4366 raw_spin_lock_irqsave(&ctx->lock, flags);
4367
fa8c2693
PZ
4368 /*
4369 * Since we co-schedule groups, {enabled,running} times of siblings
4370 * will be identical to those of the leader, so we only publish one
4371 * set.
4372 */
4373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374 values[n++] += leader->total_time_enabled +
4375 atomic64_read(&leader->child_total_time_enabled);
4376 }
3dab77fb 4377
fa8c2693
PZ
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379 values[n++] += leader->total_time_running +
4380 atomic64_read(&leader->child_total_time_running);
4381 }
4382
4383 /*
4384 * Write {count,id} tuples for every sibling.
4385 */
4386 values[n++] += perf_event_count(leader);
abf4868b
PZ
4387 if (read_format & PERF_FORMAT_ID)
4388 values[n++] = primary_event_id(leader);
3dab77fb 4389
fa8c2693
PZ
4390 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 values[n++] += perf_event_count(sub);
4392 if (read_format & PERF_FORMAT_ID)
4393 values[n++] = primary_event_id(sub);
4394 }
7d88962e 4395
2aeb1883 4396 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4397 return 0;
fa8c2693 4398}
3dab77fb 4399
fa8c2693
PZ
4400static int perf_read_group(struct perf_event *event,
4401 u64 read_format, char __user *buf)
4402{
4403 struct perf_event *leader = event->group_leader, *child;
4404 struct perf_event_context *ctx = leader->ctx;
7d88962e 4405 int ret;
fa8c2693 4406 u64 *values;
3dab77fb 4407
fa8c2693 4408 lockdep_assert_held(&ctx->mutex);
3dab77fb 4409
fa8c2693
PZ
4410 values = kzalloc(event->read_size, GFP_KERNEL);
4411 if (!values)
4412 return -ENOMEM;
3dab77fb 4413
fa8c2693
PZ
4414 values[0] = 1 + leader->nr_siblings;
4415
4416 /*
4417 * By locking the child_mutex of the leader we effectively
4418 * lock the child list of all siblings.. XXX explain how.
4419 */
4420 mutex_lock(&leader->child_mutex);
abf4868b 4421
7d88962e
SB
4422 ret = __perf_read_group_add(leader, read_format, values);
4423 if (ret)
4424 goto unlock;
4425
4426 list_for_each_entry(child, &leader->child_list, child_list) {
4427 ret = __perf_read_group_add(child, read_format, values);
4428 if (ret)
4429 goto unlock;
4430 }
abf4868b 4431
fa8c2693 4432 mutex_unlock(&leader->child_mutex);
abf4868b 4433
7d88962e 4434 ret = event->read_size;
fa8c2693
PZ
4435 if (copy_to_user(buf, values, event->read_size))
4436 ret = -EFAULT;
7d88962e 4437 goto out;
fa8c2693 4438
7d88962e
SB
4439unlock:
4440 mutex_unlock(&leader->child_mutex);
4441out:
fa8c2693 4442 kfree(values);
abf4868b 4443 return ret;
3dab77fb
PZ
4444}
4445
b15f495b 4446static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4447 u64 read_format, char __user *buf)
4448{
59ed446f 4449 u64 enabled, running;
3dab77fb
PZ
4450 u64 values[4];
4451 int n = 0;
4452
ca0dd44c 4453 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455 values[n++] = enabled;
4456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457 values[n++] = running;
3dab77fb 4458 if (read_format & PERF_FORMAT_ID)
cdd6c482 4459 values[n++] = primary_event_id(event);
3dab77fb
PZ
4460
4461 if (copy_to_user(buf, values, n * sizeof(u64)))
4462 return -EFAULT;
4463
4464 return n * sizeof(u64);
4465}
4466
dc633982
JO
4467static bool is_event_hup(struct perf_event *event)
4468{
4469 bool no_children;
4470
a69b0ca4 4471 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4472 return false;
4473
4474 mutex_lock(&event->child_mutex);
4475 no_children = list_empty(&event->child_list);
4476 mutex_unlock(&event->child_mutex);
4477 return no_children;
4478}
4479
0793a61d 4480/*
cdd6c482 4481 * Read the performance event - simple non blocking version for now
0793a61d
TG
4482 */
4483static ssize_t
b15f495b 4484__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4485{
cdd6c482 4486 u64 read_format = event->attr.read_format;
3dab77fb 4487 int ret;
0793a61d 4488
3b6f9e5c 4489 /*
cdd6c482 4490 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4491 * error state (i.e. because it was pinned but it couldn't be
4492 * scheduled on to the CPU at some point).
4493 */
cdd6c482 4494 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4495 return 0;
4496
c320c7b7 4497 if (count < event->read_size)
3dab77fb
PZ
4498 return -ENOSPC;
4499
cdd6c482 4500 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4501 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4502 ret = perf_read_group(event, read_format, buf);
3dab77fb 4503 else
b15f495b 4504 ret = perf_read_one(event, read_format, buf);
0793a61d 4505
3dab77fb 4506 return ret;
0793a61d
TG
4507}
4508
0793a61d
TG
4509static ssize_t
4510perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4511{
cdd6c482 4512 struct perf_event *event = file->private_data;
f63a8daa
PZ
4513 struct perf_event_context *ctx;
4514 int ret;
0793a61d 4515
f63a8daa 4516 ctx = perf_event_ctx_lock(event);
b15f495b 4517 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4518 perf_event_ctx_unlock(event, ctx);
4519
4520 return ret;
0793a61d
TG
4521}
4522
4523static unsigned int perf_poll(struct file *file, poll_table *wait)
4524{
cdd6c482 4525 struct perf_event *event = file->private_data;
76369139 4526 struct ring_buffer *rb;
61b67684 4527 unsigned int events = POLLHUP;
c7138f37 4528
e708d7ad 4529 poll_wait(file, &event->waitq, wait);
179033b3 4530
dc633982 4531 if (is_event_hup(event))
179033b3 4532 return events;
c7138f37 4533
10c6db11 4534 /*
9bb5d40c
PZ
4535 * Pin the event->rb by taking event->mmap_mutex; otherwise
4536 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4537 */
4538 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4539 rb = event->rb;
4540 if (rb)
76369139 4541 events = atomic_xchg(&rb->poll, 0);
10c6db11 4542 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4543 return events;
4544}
4545
f63a8daa 4546static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4547{
7d88962e 4548 (void)perf_event_read(event, false);
e7850595 4549 local64_set(&event->count, 0);
cdd6c482 4550 perf_event_update_userpage(event);
3df5edad
PZ
4551}
4552
c93f7669 4553/*
cdd6c482
IM
4554 * Holding the top-level event's child_mutex means that any
4555 * descendant process that has inherited this event will block
8ba289b8 4556 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4557 * task existence requirements of perf_event_enable/disable.
c93f7669 4558 */
cdd6c482
IM
4559static void perf_event_for_each_child(struct perf_event *event,
4560 void (*func)(struct perf_event *))
3df5edad 4561{
cdd6c482 4562 struct perf_event *child;
3df5edad 4563
cdd6c482 4564 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4565
cdd6c482
IM
4566 mutex_lock(&event->child_mutex);
4567 func(event);
4568 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4569 func(child);
cdd6c482 4570 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4571}
4572
cdd6c482
IM
4573static void perf_event_for_each(struct perf_event *event,
4574 void (*func)(struct perf_event *))
3df5edad 4575{
cdd6c482
IM
4576 struct perf_event_context *ctx = event->ctx;
4577 struct perf_event *sibling;
3df5edad 4578
f63a8daa
PZ
4579 lockdep_assert_held(&ctx->mutex);
4580
cdd6c482 4581 event = event->group_leader;
75f937f2 4582
cdd6c482 4583 perf_event_for_each_child(event, func);
cdd6c482 4584 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4585 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4586}
4587
fae3fde6
PZ
4588static void __perf_event_period(struct perf_event *event,
4589 struct perf_cpu_context *cpuctx,
4590 struct perf_event_context *ctx,
4591 void *info)
c7999c6f 4592{
fae3fde6 4593 u64 value = *((u64 *)info);
c7999c6f 4594 bool active;
08247e31 4595
cdd6c482 4596 if (event->attr.freq) {
cdd6c482 4597 event->attr.sample_freq = value;
08247e31 4598 } else {
cdd6c482
IM
4599 event->attr.sample_period = value;
4600 event->hw.sample_period = value;
08247e31 4601 }
bad7192b
PZ
4602
4603 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604 if (active) {
4605 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4606 /*
4607 * We could be throttled; unthrottle now to avoid the tick
4608 * trying to unthrottle while we already re-started the event.
4609 */
4610 if (event->hw.interrupts == MAX_INTERRUPTS) {
4611 event->hw.interrupts = 0;
4612 perf_log_throttle(event, 1);
4613 }
bad7192b
PZ
4614 event->pmu->stop(event, PERF_EF_UPDATE);
4615 }
4616
4617 local64_set(&event->hw.period_left, 0);
4618
4619 if (active) {
4620 event->pmu->start(event, PERF_EF_RELOAD);
4621 perf_pmu_enable(ctx->pmu);
4622 }
c7999c6f
PZ
4623}
4624
4625static int perf_event_period(struct perf_event *event, u64 __user *arg)
4626{
c7999c6f
PZ
4627 u64 value;
4628
4629 if (!is_sampling_event(event))
4630 return -EINVAL;
4631
4632 if (copy_from_user(&value, arg, sizeof(value)))
4633 return -EFAULT;
4634
4635 if (!value)
4636 return -EINVAL;
4637
4638 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639 return -EINVAL;
4640
fae3fde6 4641 event_function_call(event, __perf_event_period, &value);
08247e31 4642
c7999c6f 4643 return 0;
08247e31
PZ
4644}
4645
ac9721f3
PZ
4646static const struct file_operations perf_fops;
4647
2903ff01 4648static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4649{
2903ff01
AV
4650 struct fd f = fdget(fd);
4651 if (!f.file)
4652 return -EBADF;
ac9721f3 4653
2903ff01
AV
4654 if (f.file->f_op != &perf_fops) {
4655 fdput(f);
4656 return -EBADF;
ac9721f3 4657 }
2903ff01
AV
4658 *p = f;
4659 return 0;
ac9721f3
PZ
4660}
4661
4662static int perf_event_set_output(struct perf_event *event,
4663 struct perf_event *output_event);
6fb2915d 4664static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4665static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4666
f63a8daa 4667static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4668{
cdd6c482 4669 void (*func)(struct perf_event *);
3df5edad 4670 u32 flags = arg;
d859e29f
PM
4671
4672 switch (cmd) {
cdd6c482 4673 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4674 func = _perf_event_enable;
d859e29f 4675 break;
cdd6c482 4676 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4677 func = _perf_event_disable;
79f14641 4678 break;
cdd6c482 4679 case PERF_EVENT_IOC_RESET:
f63a8daa 4680 func = _perf_event_reset;
6de6a7b9 4681 break;
3df5edad 4682
cdd6c482 4683 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4684 return _perf_event_refresh(event, arg);
08247e31 4685
cdd6c482
IM
4686 case PERF_EVENT_IOC_PERIOD:
4687 return perf_event_period(event, (u64 __user *)arg);
08247e31 4688
cf4957f1
JO
4689 case PERF_EVENT_IOC_ID:
4690 {
4691 u64 id = primary_event_id(event);
4692
4693 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694 return -EFAULT;
4695 return 0;
4696 }
4697
cdd6c482 4698 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4699 {
ac9721f3 4700 int ret;
ac9721f3 4701 if (arg != -1) {
2903ff01
AV
4702 struct perf_event *output_event;
4703 struct fd output;
4704 ret = perf_fget_light(arg, &output);
4705 if (ret)
4706 return ret;
4707 output_event = output.file->private_data;
4708 ret = perf_event_set_output(event, output_event);
4709 fdput(output);
4710 } else {
4711 ret = perf_event_set_output(event, NULL);
ac9721f3 4712 }
ac9721f3
PZ
4713 return ret;
4714 }
a4be7c27 4715
6fb2915d
LZ
4716 case PERF_EVENT_IOC_SET_FILTER:
4717 return perf_event_set_filter(event, (void __user *)arg);
4718
2541517c
AS
4719 case PERF_EVENT_IOC_SET_BPF:
4720 return perf_event_set_bpf_prog(event, arg);
4721
86e7972f
WN
4722 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723 struct ring_buffer *rb;
4724
4725 rcu_read_lock();
4726 rb = rcu_dereference(event->rb);
4727 if (!rb || !rb->nr_pages) {
4728 rcu_read_unlock();
4729 return -EINVAL;
4730 }
4731 rb_toggle_paused(rb, !!arg);
4732 rcu_read_unlock();
4733 return 0;
4734 }
d859e29f 4735 default:
3df5edad 4736 return -ENOTTY;
d859e29f 4737 }
3df5edad
PZ
4738
4739 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4740 perf_event_for_each(event, func);
3df5edad 4741 else
cdd6c482 4742 perf_event_for_each_child(event, func);
3df5edad
PZ
4743
4744 return 0;
d859e29f
PM
4745}
4746
f63a8daa
PZ
4747static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4748{
4749 struct perf_event *event = file->private_data;
4750 struct perf_event_context *ctx;
4751 long ret;
4752
4753 ctx = perf_event_ctx_lock(event);
4754 ret = _perf_ioctl(event, cmd, arg);
4755 perf_event_ctx_unlock(event, ctx);
4756
4757 return ret;
4758}
4759
b3f20785
PM
4760#ifdef CONFIG_COMPAT
4761static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4762 unsigned long arg)
4763{
4764 switch (_IOC_NR(cmd)) {
4765 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4766 case _IOC_NR(PERF_EVENT_IOC_ID):
4767 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4768 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4769 cmd &= ~IOCSIZE_MASK;
4770 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4771 }
4772 break;
4773 }
4774 return perf_ioctl(file, cmd, arg);
4775}
4776#else
4777# define perf_compat_ioctl NULL
4778#endif
4779
cdd6c482 4780int perf_event_task_enable(void)
771d7cde 4781{
f63a8daa 4782 struct perf_event_context *ctx;
cdd6c482 4783 struct perf_event *event;
771d7cde 4784
cdd6c482 4785 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4786 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4787 ctx = perf_event_ctx_lock(event);
4788 perf_event_for_each_child(event, _perf_event_enable);
4789 perf_event_ctx_unlock(event, ctx);
4790 }
cdd6c482 4791 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4792
4793 return 0;
4794}
4795
cdd6c482 4796int perf_event_task_disable(void)
771d7cde 4797{
f63a8daa 4798 struct perf_event_context *ctx;
cdd6c482 4799 struct perf_event *event;
771d7cde 4800
cdd6c482 4801 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4802 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4803 ctx = perf_event_ctx_lock(event);
4804 perf_event_for_each_child(event, _perf_event_disable);
4805 perf_event_ctx_unlock(event, ctx);
4806 }
cdd6c482 4807 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4808
4809 return 0;
4810}
4811
cdd6c482 4812static int perf_event_index(struct perf_event *event)
194002b2 4813{
a4eaf7f1
PZ
4814 if (event->hw.state & PERF_HES_STOPPED)
4815 return 0;
4816
cdd6c482 4817 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4818 return 0;
4819
35edc2a5 4820 return event->pmu->event_idx(event);
194002b2
PZ
4821}
4822
c4794295 4823static void calc_timer_values(struct perf_event *event,
e3f3541c 4824 u64 *now,
7f310a5d
EM
4825 u64 *enabled,
4826 u64 *running)
c4794295 4827{
e3f3541c 4828 u64 ctx_time;
c4794295 4829
e3f3541c
PZ
4830 *now = perf_clock();
4831 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 4832 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
4833}
4834
fa731587
PZ
4835static void perf_event_init_userpage(struct perf_event *event)
4836{
4837 struct perf_event_mmap_page *userpg;
4838 struct ring_buffer *rb;
4839
4840 rcu_read_lock();
4841 rb = rcu_dereference(event->rb);
4842 if (!rb)
4843 goto unlock;
4844
4845 userpg = rb->user_page;
4846
4847 /* Allow new userspace to detect that bit 0 is deprecated */
4848 userpg->cap_bit0_is_deprecated = 1;
4849 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4850 userpg->data_offset = PAGE_SIZE;
4851 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4852
4853unlock:
4854 rcu_read_unlock();
4855}
4856
c1317ec2
AL
4857void __weak arch_perf_update_userpage(
4858 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4859{
4860}
4861
38ff667b
PZ
4862/*
4863 * Callers need to ensure there can be no nesting of this function, otherwise
4864 * the seqlock logic goes bad. We can not serialize this because the arch
4865 * code calls this from NMI context.
4866 */
cdd6c482 4867void perf_event_update_userpage(struct perf_event *event)
37d81828 4868{
cdd6c482 4869 struct perf_event_mmap_page *userpg;
76369139 4870 struct ring_buffer *rb;
e3f3541c 4871 u64 enabled, running, now;
38ff667b
PZ
4872
4873 rcu_read_lock();
5ec4c599
PZ
4874 rb = rcu_dereference(event->rb);
4875 if (!rb)
4876 goto unlock;
4877
0d641208
EM
4878 /*
4879 * compute total_time_enabled, total_time_running
4880 * based on snapshot values taken when the event
4881 * was last scheduled in.
4882 *
4883 * we cannot simply called update_context_time()
4884 * because of locking issue as we can be called in
4885 * NMI context
4886 */
e3f3541c 4887 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4888
76369139 4889 userpg = rb->user_page;
7b732a75
PZ
4890 /*
4891 * Disable preemption so as to not let the corresponding user-space
4892 * spin too long if we get preempted.
4893 */
4894 preempt_disable();
37d81828 4895 ++userpg->lock;
92f22a38 4896 barrier();
cdd6c482 4897 userpg->index = perf_event_index(event);
b5e58793 4898 userpg->offset = perf_event_count(event);
365a4038 4899 if (userpg->index)
e7850595 4900 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4901
0d641208 4902 userpg->time_enabled = enabled +
cdd6c482 4903 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4904
0d641208 4905 userpg->time_running = running +
cdd6c482 4906 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4907
c1317ec2 4908 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4909
92f22a38 4910 barrier();
37d81828 4911 ++userpg->lock;
7b732a75 4912 preempt_enable();
38ff667b 4913unlock:
7b732a75 4914 rcu_read_unlock();
37d81828
PM
4915}
4916
11bac800 4917static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4918{
11bac800 4919 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4920 struct ring_buffer *rb;
906010b2
PZ
4921 int ret = VM_FAULT_SIGBUS;
4922
4923 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4924 if (vmf->pgoff == 0)
4925 ret = 0;
4926 return ret;
4927 }
4928
4929 rcu_read_lock();
76369139
FW
4930 rb = rcu_dereference(event->rb);
4931 if (!rb)
906010b2
PZ
4932 goto unlock;
4933
4934 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4935 goto unlock;
4936
76369139 4937 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4938 if (!vmf->page)
4939 goto unlock;
4940
4941 get_page(vmf->page);
11bac800 4942 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4943 vmf->page->index = vmf->pgoff;
4944
4945 ret = 0;
4946unlock:
4947 rcu_read_unlock();
4948
4949 return ret;
4950}
4951
10c6db11
PZ
4952static void ring_buffer_attach(struct perf_event *event,
4953 struct ring_buffer *rb)
4954{
b69cf536 4955 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4956 unsigned long flags;
4957
b69cf536
PZ
4958 if (event->rb) {
4959 /*
4960 * Should be impossible, we set this when removing
4961 * event->rb_entry and wait/clear when adding event->rb_entry.
4962 */
4963 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4964
b69cf536 4965 old_rb = event->rb;
b69cf536
PZ
4966 spin_lock_irqsave(&old_rb->event_lock, flags);
4967 list_del_rcu(&event->rb_entry);
4968 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4969
2f993cf0
ON
4970 event->rcu_batches = get_state_synchronize_rcu();
4971 event->rcu_pending = 1;
b69cf536 4972 }
10c6db11 4973
b69cf536 4974 if (rb) {
2f993cf0
ON
4975 if (event->rcu_pending) {
4976 cond_synchronize_rcu(event->rcu_batches);
4977 event->rcu_pending = 0;
4978 }
4979
b69cf536
PZ
4980 spin_lock_irqsave(&rb->event_lock, flags);
4981 list_add_rcu(&event->rb_entry, &rb->event_list);
4982 spin_unlock_irqrestore(&rb->event_lock, flags);
4983 }
4984
767ae086
AS
4985 /*
4986 * Avoid racing with perf_mmap_close(AUX): stop the event
4987 * before swizzling the event::rb pointer; if it's getting
4988 * unmapped, its aux_mmap_count will be 0 and it won't
4989 * restart. See the comment in __perf_pmu_output_stop().
4990 *
4991 * Data will inevitably be lost when set_output is done in
4992 * mid-air, but then again, whoever does it like this is
4993 * not in for the data anyway.
4994 */
4995 if (has_aux(event))
4996 perf_event_stop(event, 0);
4997
b69cf536
PZ
4998 rcu_assign_pointer(event->rb, rb);
4999
5000 if (old_rb) {
5001 ring_buffer_put(old_rb);
5002 /*
5003 * Since we detached before setting the new rb, so that we
5004 * could attach the new rb, we could have missed a wakeup.
5005 * Provide it now.
5006 */
5007 wake_up_all(&event->waitq);
5008 }
10c6db11
PZ
5009}
5010
5011static void ring_buffer_wakeup(struct perf_event *event)
5012{
5013 struct ring_buffer *rb;
5014
5015 rcu_read_lock();
5016 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5017 if (rb) {
5018 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5019 wake_up_all(&event->waitq);
5020 }
10c6db11
PZ
5021 rcu_read_unlock();
5022}
5023
fdc26706 5024struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5025{
76369139 5026 struct ring_buffer *rb;
7b732a75 5027
ac9721f3 5028 rcu_read_lock();
76369139
FW
5029 rb = rcu_dereference(event->rb);
5030 if (rb) {
5031 if (!atomic_inc_not_zero(&rb->refcount))
5032 rb = NULL;
ac9721f3
PZ
5033 }
5034 rcu_read_unlock();
5035
76369139 5036 return rb;
ac9721f3
PZ
5037}
5038
fdc26706 5039void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5040{
76369139 5041 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5042 return;
7b732a75 5043
9bb5d40c 5044 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5045
76369139 5046 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5047}
5048
5049static void perf_mmap_open(struct vm_area_struct *vma)
5050{
cdd6c482 5051 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5052
cdd6c482 5053 atomic_inc(&event->mmap_count);
9bb5d40c 5054 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5055
45bfb2e5
PZ
5056 if (vma->vm_pgoff)
5057 atomic_inc(&event->rb->aux_mmap_count);
5058
1e0fb9ec 5059 if (event->pmu->event_mapped)
bfe33492 5060 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5061}
5062
95ff4ca2
AS
5063static void perf_pmu_output_stop(struct perf_event *event);
5064
9bb5d40c
PZ
5065/*
5066 * A buffer can be mmap()ed multiple times; either directly through the same
5067 * event, or through other events by use of perf_event_set_output().
5068 *
5069 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5070 * the buffer here, where we still have a VM context. This means we need
5071 * to detach all events redirecting to us.
5072 */
7b732a75
PZ
5073static void perf_mmap_close(struct vm_area_struct *vma)
5074{
cdd6c482 5075 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5076
b69cf536 5077 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5078 struct user_struct *mmap_user = rb->mmap_user;
5079 int mmap_locked = rb->mmap_locked;
5080 unsigned long size = perf_data_size(rb);
789f90fc 5081
1e0fb9ec 5082 if (event->pmu->event_unmapped)
bfe33492 5083 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5084
45bfb2e5
PZ
5085 /*
5086 * rb->aux_mmap_count will always drop before rb->mmap_count and
5087 * event->mmap_count, so it is ok to use event->mmap_mutex to
5088 * serialize with perf_mmap here.
5089 */
5090 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5091 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5092 /*
5093 * Stop all AUX events that are writing to this buffer,
5094 * so that we can free its AUX pages and corresponding PMU
5095 * data. Note that after rb::aux_mmap_count dropped to zero,
5096 * they won't start any more (see perf_aux_output_begin()).
5097 */
5098 perf_pmu_output_stop(event);
5099
5100 /* now it's safe to free the pages */
45bfb2e5
PZ
5101 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5102 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5103
95ff4ca2 5104 /* this has to be the last one */
45bfb2e5 5105 rb_free_aux(rb);
95ff4ca2
AS
5106 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5107
45bfb2e5
PZ
5108 mutex_unlock(&event->mmap_mutex);
5109 }
5110
9bb5d40c
PZ
5111 atomic_dec(&rb->mmap_count);
5112
5113 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5114 goto out_put;
9bb5d40c 5115
b69cf536 5116 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5117 mutex_unlock(&event->mmap_mutex);
5118
5119 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5120 if (atomic_read(&rb->mmap_count))
5121 goto out_put;
ac9721f3 5122
9bb5d40c
PZ
5123 /*
5124 * No other mmap()s, detach from all other events that might redirect
5125 * into the now unreachable buffer. Somewhat complicated by the
5126 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5127 */
5128again:
5129 rcu_read_lock();
5130 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5131 if (!atomic_long_inc_not_zero(&event->refcount)) {
5132 /*
5133 * This event is en-route to free_event() which will
5134 * detach it and remove it from the list.
5135 */
5136 continue;
5137 }
5138 rcu_read_unlock();
789f90fc 5139
9bb5d40c
PZ
5140 mutex_lock(&event->mmap_mutex);
5141 /*
5142 * Check we didn't race with perf_event_set_output() which can
5143 * swizzle the rb from under us while we were waiting to
5144 * acquire mmap_mutex.
5145 *
5146 * If we find a different rb; ignore this event, a next
5147 * iteration will no longer find it on the list. We have to
5148 * still restart the iteration to make sure we're not now
5149 * iterating the wrong list.
5150 */
b69cf536
PZ
5151 if (event->rb == rb)
5152 ring_buffer_attach(event, NULL);
5153
cdd6c482 5154 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5155 put_event(event);
ac9721f3 5156
9bb5d40c
PZ
5157 /*
5158 * Restart the iteration; either we're on the wrong list or
5159 * destroyed its integrity by doing a deletion.
5160 */
5161 goto again;
7b732a75 5162 }
9bb5d40c
PZ
5163 rcu_read_unlock();
5164
5165 /*
5166 * It could be there's still a few 0-ref events on the list; they'll
5167 * get cleaned up by free_event() -- they'll also still have their
5168 * ref on the rb and will free it whenever they are done with it.
5169 *
5170 * Aside from that, this buffer is 'fully' detached and unmapped,
5171 * undo the VM accounting.
5172 */
5173
5174 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5175 vma->vm_mm->pinned_vm -= mmap_locked;
5176 free_uid(mmap_user);
5177
b69cf536 5178out_put:
9bb5d40c 5179 ring_buffer_put(rb); /* could be last */
37d81828
PM
5180}
5181
f0f37e2f 5182static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5183 .open = perf_mmap_open,
45bfb2e5 5184 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5185 .fault = perf_mmap_fault,
5186 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5187};
5188
5189static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5190{
cdd6c482 5191 struct perf_event *event = file->private_data;
22a4f650 5192 unsigned long user_locked, user_lock_limit;
789f90fc 5193 struct user_struct *user = current_user();
22a4f650 5194 unsigned long locked, lock_limit;
45bfb2e5 5195 struct ring_buffer *rb = NULL;
7b732a75
PZ
5196 unsigned long vma_size;
5197 unsigned long nr_pages;
45bfb2e5 5198 long user_extra = 0, extra = 0;
d57e34fd 5199 int ret = 0, flags = 0;
37d81828 5200
c7920614
PZ
5201 /*
5202 * Don't allow mmap() of inherited per-task counters. This would
5203 * create a performance issue due to all children writing to the
76369139 5204 * same rb.
c7920614
PZ
5205 */
5206 if (event->cpu == -1 && event->attr.inherit)
5207 return -EINVAL;
5208
43a21ea8 5209 if (!(vma->vm_flags & VM_SHARED))
37d81828 5210 return -EINVAL;
7b732a75
PZ
5211
5212 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5213
5214 if (vma->vm_pgoff == 0) {
5215 nr_pages = (vma_size / PAGE_SIZE) - 1;
5216 } else {
5217 /*
5218 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5219 * mapped, all subsequent mappings should have the same size
5220 * and offset. Must be above the normal perf buffer.
5221 */
5222 u64 aux_offset, aux_size;
5223
5224 if (!event->rb)
5225 return -EINVAL;
5226
5227 nr_pages = vma_size / PAGE_SIZE;
5228
5229 mutex_lock(&event->mmap_mutex);
5230 ret = -EINVAL;
5231
5232 rb = event->rb;
5233 if (!rb)
5234 goto aux_unlock;
5235
6aa7de05
MR
5236 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5237 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5238
5239 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5240 goto aux_unlock;
5241
5242 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5243 goto aux_unlock;
5244
5245 /* already mapped with a different offset */
5246 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5247 goto aux_unlock;
5248
5249 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5250 goto aux_unlock;
5251
5252 /* already mapped with a different size */
5253 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5254 goto aux_unlock;
5255
5256 if (!is_power_of_2(nr_pages))
5257 goto aux_unlock;
5258
5259 if (!atomic_inc_not_zero(&rb->mmap_count))
5260 goto aux_unlock;
5261
5262 if (rb_has_aux(rb)) {
5263 atomic_inc(&rb->aux_mmap_count);
5264 ret = 0;
5265 goto unlock;
5266 }
5267
5268 atomic_set(&rb->aux_mmap_count, 1);
5269 user_extra = nr_pages;
5270
5271 goto accounting;
5272 }
7b732a75 5273
7730d865 5274 /*
76369139 5275 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5276 * can do bitmasks instead of modulo.
5277 */
2ed11312 5278 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5279 return -EINVAL;
5280
7b732a75 5281 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5282 return -EINVAL;
5283
cdd6c482 5284 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5285again:
cdd6c482 5286 mutex_lock(&event->mmap_mutex);
76369139 5287 if (event->rb) {
9bb5d40c 5288 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5289 ret = -EINVAL;
9bb5d40c
PZ
5290 goto unlock;
5291 }
5292
5293 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5294 /*
5295 * Raced against perf_mmap_close() through
5296 * perf_event_set_output(). Try again, hope for better
5297 * luck.
5298 */
5299 mutex_unlock(&event->mmap_mutex);
5300 goto again;
5301 }
5302
ebb3c4c4
PZ
5303 goto unlock;
5304 }
5305
789f90fc 5306 user_extra = nr_pages + 1;
45bfb2e5
PZ
5307
5308accounting:
cdd6c482 5309 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5310
5311 /*
5312 * Increase the limit linearly with more CPUs:
5313 */
5314 user_lock_limit *= num_online_cpus();
5315
789f90fc 5316 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5317
789f90fc
PZ
5318 if (user_locked > user_lock_limit)
5319 extra = user_locked - user_lock_limit;
7b732a75 5320
78d7d407 5321 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5322 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5323 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5324
459ec28a
IM
5325 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5326 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5327 ret = -EPERM;
5328 goto unlock;
5329 }
7b732a75 5330
45bfb2e5 5331 WARN_ON(!rb && event->rb);
906010b2 5332
d57e34fd 5333 if (vma->vm_flags & VM_WRITE)
76369139 5334 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5335
76369139 5336 if (!rb) {
45bfb2e5
PZ
5337 rb = rb_alloc(nr_pages,
5338 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5339 event->cpu, flags);
26cb63ad 5340
45bfb2e5
PZ
5341 if (!rb) {
5342 ret = -ENOMEM;
5343 goto unlock;
5344 }
43a21ea8 5345
45bfb2e5
PZ
5346 atomic_set(&rb->mmap_count, 1);
5347 rb->mmap_user = get_current_user();
5348 rb->mmap_locked = extra;
26cb63ad 5349
45bfb2e5 5350 ring_buffer_attach(event, rb);
ac9721f3 5351
45bfb2e5
PZ
5352 perf_event_init_userpage(event);
5353 perf_event_update_userpage(event);
5354 } else {
1a594131
AS
5355 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5356 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5357 if (!ret)
5358 rb->aux_mmap_locked = extra;
5359 }
9a0f05cb 5360
ebb3c4c4 5361unlock:
45bfb2e5
PZ
5362 if (!ret) {
5363 atomic_long_add(user_extra, &user->locked_vm);
5364 vma->vm_mm->pinned_vm += extra;
5365
ac9721f3 5366 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5367 } else if (rb) {
5368 atomic_dec(&rb->mmap_count);
5369 }
5370aux_unlock:
cdd6c482 5371 mutex_unlock(&event->mmap_mutex);
37d81828 5372
9bb5d40c
PZ
5373 /*
5374 * Since pinned accounting is per vm we cannot allow fork() to copy our
5375 * vma.
5376 */
26cb63ad 5377 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5378 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5379
1e0fb9ec 5380 if (event->pmu->event_mapped)
bfe33492 5381 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5382
7b732a75 5383 return ret;
37d81828
PM
5384}
5385
3c446b3d
PZ
5386static int perf_fasync(int fd, struct file *filp, int on)
5387{
496ad9aa 5388 struct inode *inode = file_inode(filp);
cdd6c482 5389 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5390 int retval;
5391
5955102c 5392 inode_lock(inode);
cdd6c482 5393 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5394 inode_unlock(inode);
3c446b3d
PZ
5395
5396 if (retval < 0)
5397 return retval;
5398
5399 return 0;
5400}
5401
0793a61d 5402static const struct file_operations perf_fops = {
3326c1ce 5403 .llseek = no_llseek,
0793a61d
TG
5404 .release = perf_release,
5405 .read = perf_read,
5406 .poll = perf_poll,
d859e29f 5407 .unlocked_ioctl = perf_ioctl,
b3f20785 5408 .compat_ioctl = perf_compat_ioctl,
37d81828 5409 .mmap = perf_mmap,
3c446b3d 5410 .fasync = perf_fasync,
0793a61d
TG
5411};
5412
925d519a 5413/*
cdd6c482 5414 * Perf event wakeup
925d519a
PZ
5415 *
5416 * If there's data, ensure we set the poll() state and publish everything
5417 * to user-space before waking everybody up.
5418 */
5419
fed66e2c
PZ
5420static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5421{
5422 /* only the parent has fasync state */
5423 if (event->parent)
5424 event = event->parent;
5425 return &event->fasync;
5426}
5427
cdd6c482 5428void perf_event_wakeup(struct perf_event *event)
925d519a 5429{
10c6db11 5430 ring_buffer_wakeup(event);
4c9e2542 5431
cdd6c482 5432 if (event->pending_kill) {
fed66e2c 5433 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5434 event->pending_kill = 0;
4c9e2542 5435 }
925d519a
PZ
5436}
5437
e360adbe 5438static void perf_pending_event(struct irq_work *entry)
79f14641 5439{
cdd6c482
IM
5440 struct perf_event *event = container_of(entry,
5441 struct perf_event, pending);
d525211f
PZ
5442 int rctx;
5443
5444 rctx = perf_swevent_get_recursion_context();
5445 /*
5446 * If we 'fail' here, that's OK, it means recursion is already disabled
5447 * and we won't recurse 'further'.
5448 */
79f14641 5449
cdd6c482
IM
5450 if (event->pending_disable) {
5451 event->pending_disable = 0;
fae3fde6 5452 perf_event_disable_local(event);
79f14641
PZ
5453 }
5454
cdd6c482
IM
5455 if (event->pending_wakeup) {
5456 event->pending_wakeup = 0;
5457 perf_event_wakeup(event);
79f14641 5458 }
d525211f
PZ
5459
5460 if (rctx >= 0)
5461 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5462}
5463
39447b38
ZY
5464/*
5465 * We assume there is only KVM supporting the callbacks.
5466 * Later on, we might change it to a list if there is
5467 * another virtualization implementation supporting the callbacks.
5468 */
5469struct perf_guest_info_callbacks *perf_guest_cbs;
5470
5471int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5472{
5473 perf_guest_cbs = cbs;
5474 return 0;
5475}
5476EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5477
5478int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5479{
5480 perf_guest_cbs = NULL;
5481 return 0;
5482}
5483EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5484
4018994f
JO
5485static void
5486perf_output_sample_regs(struct perf_output_handle *handle,
5487 struct pt_regs *regs, u64 mask)
5488{
5489 int bit;
29dd3288 5490 DECLARE_BITMAP(_mask, 64);
4018994f 5491
29dd3288
MS
5492 bitmap_from_u64(_mask, mask);
5493 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5494 u64 val;
5495
5496 val = perf_reg_value(regs, bit);
5497 perf_output_put(handle, val);
5498 }
5499}
5500
60e2364e 5501static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5502 struct pt_regs *regs,
5503 struct pt_regs *regs_user_copy)
4018994f 5504{
88a7c26a
AL
5505 if (user_mode(regs)) {
5506 regs_user->abi = perf_reg_abi(current);
2565711f 5507 regs_user->regs = regs;
88a7c26a
AL
5508 } else if (current->mm) {
5509 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5510 } else {
5511 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5512 regs_user->regs = NULL;
4018994f
JO
5513 }
5514}
5515
60e2364e
SE
5516static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5517 struct pt_regs *regs)
5518{
5519 regs_intr->regs = regs;
5520 regs_intr->abi = perf_reg_abi(current);
5521}
5522
5523
c5ebcedb
JO
5524/*
5525 * Get remaining task size from user stack pointer.
5526 *
5527 * It'd be better to take stack vma map and limit this more
5528 * precisly, but there's no way to get it safely under interrupt,
5529 * so using TASK_SIZE as limit.
5530 */
5531static u64 perf_ustack_task_size(struct pt_regs *regs)
5532{
5533 unsigned long addr = perf_user_stack_pointer(regs);
5534
5535 if (!addr || addr >= TASK_SIZE)
5536 return 0;
5537
5538 return TASK_SIZE - addr;
5539}
5540
5541static u16
5542perf_sample_ustack_size(u16 stack_size, u16 header_size,
5543 struct pt_regs *regs)
5544{
5545 u64 task_size;
5546
5547 /* No regs, no stack pointer, no dump. */
5548 if (!regs)
5549 return 0;
5550
5551 /*
5552 * Check if we fit in with the requested stack size into the:
5553 * - TASK_SIZE
5554 * If we don't, we limit the size to the TASK_SIZE.
5555 *
5556 * - remaining sample size
5557 * If we don't, we customize the stack size to
5558 * fit in to the remaining sample size.
5559 */
5560
5561 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5562 stack_size = min(stack_size, (u16) task_size);
5563
5564 /* Current header size plus static size and dynamic size. */
5565 header_size += 2 * sizeof(u64);
5566
5567 /* Do we fit in with the current stack dump size? */
5568 if ((u16) (header_size + stack_size) < header_size) {
5569 /*
5570 * If we overflow the maximum size for the sample,
5571 * we customize the stack dump size to fit in.
5572 */
5573 stack_size = USHRT_MAX - header_size - sizeof(u64);
5574 stack_size = round_up(stack_size, sizeof(u64));
5575 }
5576
5577 return stack_size;
5578}
5579
5580static void
5581perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5582 struct pt_regs *regs)
5583{
5584 /* Case of a kernel thread, nothing to dump */
5585 if (!regs) {
5586 u64 size = 0;
5587 perf_output_put(handle, size);
5588 } else {
5589 unsigned long sp;
5590 unsigned int rem;
5591 u64 dyn_size;
5592
5593 /*
5594 * We dump:
5595 * static size
5596 * - the size requested by user or the best one we can fit
5597 * in to the sample max size
5598 * data
5599 * - user stack dump data
5600 * dynamic size
5601 * - the actual dumped size
5602 */
5603
5604 /* Static size. */
5605 perf_output_put(handle, dump_size);
5606
5607 /* Data. */
5608 sp = perf_user_stack_pointer(regs);
5609 rem = __output_copy_user(handle, (void *) sp, dump_size);
5610 dyn_size = dump_size - rem;
5611
5612 perf_output_skip(handle, rem);
5613
5614 /* Dynamic size. */
5615 perf_output_put(handle, dyn_size);
5616 }
5617}
5618
c980d109
ACM
5619static void __perf_event_header__init_id(struct perf_event_header *header,
5620 struct perf_sample_data *data,
5621 struct perf_event *event)
6844c09d
ACM
5622{
5623 u64 sample_type = event->attr.sample_type;
5624
5625 data->type = sample_type;
5626 header->size += event->id_header_size;
5627
5628 if (sample_type & PERF_SAMPLE_TID) {
5629 /* namespace issues */
5630 data->tid_entry.pid = perf_event_pid(event, current);
5631 data->tid_entry.tid = perf_event_tid(event, current);
5632 }
5633
5634 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5635 data->time = perf_event_clock(event);
6844c09d 5636
ff3d527c 5637 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5638 data->id = primary_event_id(event);
5639
5640 if (sample_type & PERF_SAMPLE_STREAM_ID)
5641 data->stream_id = event->id;
5642
5643 if (sample_type & PERF_SAMPLE_CPU) {
5644 data->cpu_entry.cpu = raw_smp_processor_id();
5645 data->cpu_entry.reserved = 0;
5646 }
5647}
5648
76369139
FW
5649void perf_event_header__init_id(struct perf_event_header *header,
5650 struct perf_sample_data *data,
5651 struct perf_event *event)
c980d109
ACM
5652{
5653 if (event->attr.sample_id_all)
5654 __perf_event_header__init_id(header, data, event);
5655}
5656
5657static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5658 struct perf_sample_data *data)
5659{
5660 u64 sample_type = data->type;
5661
5662 if (sample_type & PERF_SAMPLE_TID)
5663 perf_output_put(handle, data->tid_entry);
5664
5665 if (sample_type & PERF_SAMPLE_TIME)
5666 perf_output_put(handle, data->time);
5667
5668 if (sample_type & PERF_SAMPLE_ID)
5669 perf_output_put(handle, data->id);
5670
5671 if (sample_type & PERF_SAMPLE_STREAM_ID)
5672 perf_output_put(handle, data->stream_id);
5673
5674 if (sample_type & PERF_SAMPLE_CPU)
5675 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5676
5677 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5678 perf_output_put(handle, data->id);
c980d109
ACM
5679}
5680
76369139
FW
5681void perf_event__output_id_sample(struct perf_event *event,
5682 struct perf_output_handle *handle,
5683 struct perf_sample_data *sample)
c980d109
ACM
5684{
5685 if (event->attr.sample_id_all)
5686 __perf_event__output_id_sample(handle, sample);
5687}
5688
3dab77fb 5689static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5690 struct perf_event *event,
5691 u64 enabled, u64 running)
3dab77fb 5692{
cdd6c482 5693 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5694 u64 values[4];
5695 int n = 0;
5696
b5e58793 5697 values[n++] = perf_event_count(event);
3dab77fb 5698 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5699 values[n++] = enabled +
cdd6c482 5700 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5701 }
5702 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5703 values[n++] = running +
cdd6c482 5704 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5705 }
5706 if (read_format & PERF_FORMAT_ID)
cdd6c482 5707 values[n++] = primary_event_id(event);
3dab77fb 5708
76369139 5709 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5710}
5711
3dab77fb 5712static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5713 struct perf_event *event,
5714 u64 enabled, u64 running)
3dab77fb 5715{
cdd6c482
IM
5716 struct perf_event *leader = event->group_leader, *sub;
5717 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5718 u64 values[5];
5719 int n = 0;
5720
5721 values[n++] = 1 + leader->nr_siblings;
5722
5723 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5724 values[n++] = enabled;
3dab77fb
PZ
5725
5726 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5727 values[n++] = running;
3dab77fb 5728
cdd6c482 5729 if (leader != event)
3dab77fb
PZ
5730 leader->pmu->read(leader);
5731
b5e58793 5732 values[n++] = perf_event_count(leader);
3dab77fb 5733 if (read_format & PERF_FORMAT_ID)
cdd6c482 5734 values[n++] = primary_event_id(leader);
3dab77fb 5735
76369139 5736 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5737
65abc865 5738 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5739 n = 0;
5740
6f5ab001
JO
5741 if ((sub != event) &&
5742 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5743 sub->pmu->read(sub);
5744
b5e58793 5745 values[n++] = perf_event_count(sub);
3dab77fb 5746 if (read_format & PERF_FORMAT_ID)
cdd6c482 5747 values[n++] = primary_event_id(sub);
3dab77fb 5748
76369139 5749 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5750 }
5751}
5752
eed01528
SE
5753#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5754 PERF_FORMAT_TOTAL_TIME_RUNNING)
5755
ba5213ae
PZ
5756/*
5757 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5758 *
5759 * The problem is that its both hard and excessively expensive to iterate the
5760 * child list, not to mention that its impossible to IPI the children running
5761 * on another CPU, from interrupt/NMI context.
5762 */
3dab77fb 5763static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5764 struct perf_event *event)
3dab77fb 5765{
e3f3541c 5766 u64 enabled = 0, running = 0, now;
eed01528
SE
5767 u64 read_format = event->attr.read_format;
5768
5769 /*
5770 * compute total_time_enabled, total_time_running
5771 * based on snapshot values taken when the event
5772 * was last scheduled in.
5773 *
5774 * we cannot simply called update_context_time()
5775 * because of locking issue as we are called in
5776 * NMI context
5777 */
c4794295 5778 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5779 calc_timer_values(event, &now, &enabled, &running);
eed01528 5780
cdd6c482 5781 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5782 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5783 else
eed01528 5784 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5785}
5786
5622f295
MM
5787void perf_output_sample(struct perf_output_handle *handle,
5788 struct perf_event_header *header,
5789 struct perf_sample_data *data,
cdd6c482 5790 struct perf_event *event)
5622f295
MM
5791{
5792 u64 sample_type = data->type;
5793
5794 perf_output_put(handle, *header);
5795
ff3d527c
AH
5796 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5797 perf_output_put(handle, data->id);
5798
5622f295
MM
5799 if (sample_type & PERF_SAMPLE_IP)
5800 perf_output_put(handle, data->ip);
5801
5802 if (sample_type & PERF_SAMPLE_TID)
5803 perf_output_put(handle, data->tid_entry);
5804
5805 if (sample_type & PERF_SAMPLE_TIME)
5806 perf_output_put(handle, data->time);
5807
5808 if (sample_type & PERF_SAMPLE_ADDR)
5809 perf_output_put(handle, data->addr);
5810
5811 if (sample_type & PERF_SAMPLE_ID)
5812 perf_output_put(handle, data->id);
5813
5814 if (sample_type & PERF_SAMPLE_STREAM_ID)
5815 perf_output_put(handle, data->stream_id);
5816
5817 if (sample_type & PERF_SAMPLE_CPU)
5818 perf_output_put(handle, data->cpu_entry);
5819
5820 if (sample_type & PERF_SAMPLE_PERIOD)
5821 perf_output_put(handle, data->period);
5822
5823 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5824 perf_output_read(handle, event);
5622f295
MM
5825
5826 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 5827 int size = 1;
5622f295 5828
99e818cc
JO
5829 size += data->callchain->nr;
5830 size *= sizeof(u64);
5831 __output_copy(handle, data->callchain, size);
5622f295
MM
5832 }
5833
5834 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5835 struct perf_raw_record *raw = data->raw;
5836
5837 if (raw) {
5838 struct perf_raw_frag *frag = &raw->frag;
5839
5840 perf_output_put(handle, raw->size);
5841 do {
5842 if (frag->copy) {
5843 __output_custom(handle, frag->copy,
5844 frag->data, frag->size);
5845 } else {
5846 __output_copy(handle, frag->data,
5847 frag->size);
5848 }
5849 if (perf_raw_frag_last(frag))
5850 break;
5851 frag = frag->next;
5852 } while (1);
5853 if (frag->pad)
5854 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5855 } else {
5856 struct {
5857 u32 size;
5858 u32 data;
5859 } raw = {
5860 .size = sizeof(u32),
5861 .data = 0,
5862 };
5863 perf_output_put(handle, raw);
5864 }
5865 }
a7ac67ea 5866
bce38cd5
SE
5867 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5868 if (data->br_stack) {
5869 size_t size;
5870
5871 size = data->br_stack->nr
5872 * sizeof(struct perf_branch_entry);
5873
5874 perf_output_put(handle, data->br_stack->nr);
5875 perf_output_copy(handle, data->br_stack->entries, size);
5876 } else {
5877 /*
5878 * we always store at least the value of nr
5879 */
5880 u64 nr = 0;
5881 perf_output_put(handle, nr);
5882 }
5883 }
4018994f
JO
5884
5885 if (sample_type & PERF_SAMPLE_REGS_USER) {
5886 u64 abi = data->regs_user.abi;
5887
5888 /*
5889 * If there are no regs to dump, notice it through
5890 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5891 */
5892 perf_output_put(handle, abi);
5893
5894 if (abi) {
5895 u64 mask = event->attr.sample_regs_user;
5896 perf_output_sample_regs(handle,
5897 data->regs_user.regs,
5898 mask);
5899 }
5900 }
c5ebcedb 5901
a5cdd40c 5902 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5903 perf_output_sample_ustack(handle,
5904 data->stack_user_size,
5905 data->regs_user.regs);
a5cdd40c 5906 }
c3feedf2
AK
5907
5908 if (sample_type & PERF_SAMPLE_WEIGHT)
5909 perf_output_put(handle, data->weight);
d6be9ad6
SE
5910
5911 if (sample_type & PERF_SAMPLE_DATA_SRC)
5912 perf_output_put(handle, data->data_src.val);
a5cdd40c 5913
fdfbbd07
AK
5914 if (sample_type & PERF_SAMPLE_TRANSACTION)
5915 perf_output_put(handle, data->txn);
5916
60e2364e
SE
5917 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5918 u64 abi = data->regs_intr.abi;
5919 /*
5920 * If there are no regs to dump, notice it through
5921 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5922 */
5923 perf_output_put(handle, abi);
5924
5925 if (abi) {
5926 u64 mask = event->attr.sample_regs_intr;
5927
5928 perf_output_sample_regs(handle,
5929 data->regs_intr.regs,
5930 mask);
5931 }
5932 }
5933
fc7ce9c7
KL
5934 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5935 perf_output_put(handle, data->phys_addr);
5936
a5cdd40c
PZ
5937 if (!event->attr.watermark) {
5938 int wakeup_events = event->attr.wakeup_events;
5939
5940 if (wakeup_events) {
5941 struct ring_buffer *rb = handle->rb;
5942 int events = local_inc_return(&rb->events);
5943
5944 if (events >= wakeup_events) {
5945 local_sub(wakeup_events, &rb->events);
5946 local_inc(&rb->wakeup);
5947 }
5948 }
5949 }
5622f295
MM
5950}
5951
fc7ce9c7
KL
5952static u64 perf_virt_to_phys(u64 virt)
5953{
5954 u64 phys_addr = 0;
5955 struct page *p = NULL;
5956
5957 if (!virt)
5958 return 0;
5959
5960 if (virt >= TASK_SIZE) {
5961 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5962 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5963 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5964 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5965 } else {
5966 /*
5967 * Walking the pages tables for user address.
5968 * Interrupts are disabled, so it prevents any tear down
5969 * of the page tables.
5970 * Try IRQ-safe __get_user_pages_fast first.
5971 * If failed, leave phys_addr as 0.
5972 */
5973 if ((current->mm != NULL) &&
5974 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5975 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5976
5977 if (p)
5978 put_page(p);
5979 }
5980
5981 return phys_addr;
5982}
5983
99e818cc
JO
5984static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5985
8cf7e0e2
JO
5986static struct perf_callchain_entry *
5987perf_callchain(struct perf_event *event, struct pt_regs *regs)
5988{
5989 bool kernel = !event->attr.exclude_callchain_kernel;
5990 bool user = !event->attr.exclude_callchain_user;
5991 /* Disallow cross-task user callchains. */
5992 bool crosstask = event->ctx->task && event->ctx->task != current;
5993 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 5994 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
5995
5996 if (!kernel && !user)
99e818cc 5997 return &__empty_callchain;
8cf7e0e2 5998
99e818cc
JO
5999 callchain = get_perf_callchain(regs, 0, kernel, user,
6000 max_stack, crosstask, true);
6001 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6002}
6003
5622f295
MM
6004void perf_prepare_sample(struct perf_event_header *header,
6005 struct perf_sample_data *data,
cdd6c482 6006 struct perf_event *event,
5622f295 6007 struct pt_regs *regs)
7b732a75 6008{
cdd6c482 6009 u64 sample_type = event->attr.sample_type;
7b732a75 6010
cdd6c482 6011 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6012 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6013
6014 header->misc = 0;
6015 header->misc |= perf_misc_flags(regs);
6fab0192 6016
c980d109 6017 __perf_event_header__init_id(header, data, event);
6844c09d 6018
c320c7b7 6019 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6020 data->ip = perf_instruction_pointer(regs);
6021
b23f3325 6022 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6023 int size = 1;
394ee076 6024
e6dab5ff 6025 data->callchain = perf_callchain(event, regs);
99e818cc 6026 size += data->callchain->nr;
5622f295
MM
6027
6028 header->size += size * sizeof(u64);
394ee076
PZ
6029 }
6030
3a43ce68 6031 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6032 struct perf_raw_record *raw = data->raw;
6033 int size;
6034
6035 if (raw) {
6036 struct perf_raw_frag *frag = &raw->frag;
6037 u32 sum = 0;
6038
6039 do {
6040 sum += frag->size;
6041 if (perf_raw_frag_last(frag))
6042 break;
6043 frag = frag->next;
6044 } while (1);
6045
6046 size = round_up(sum + sizeof(u32), sizeof(u64));
6047 raw->size = size - sizeof(u32);
6048 frag->pad = raw->size - sum;
6049 } else {
6050 size = sizeof(u64);
6051 }
a044560c 6052
7e3f977e 6053 header->size += size;
7f453c24 6054 }
bce38cd5
SE
6055
6056 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6057 int size = sizeof(u64); /* nr */
6058 if (data->br_stack) {
6059 size += data->br_stack->nr
6060 * sizeof(struct perf_branch_entry);
6061 }
6062 header->size += size;
6063 }
4018994f 6064
2565711f 6065 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6066 perf_sample_regs_user(&data->regs_user, regs,
6067 &data->regs_user_copy);
2565711f 6068
4018994f
JO
6069 if (sample_type & PERF_SAMPLE_REGS_USER) {
6070 /* regs dump ABI info */
6071 int size = sizeof(u64);
6072
4018994f
JO
6073 if (data->regs_user.regs) {
6074 u64 mask = event->attr.sample_regs_user;
6075 size += hweight64(mask) * sizeof(u64);
6076 }
6077
6078 header->size += size;
6079 }
c5ebcedb
JO
6080
6081 if (sample_type & PERF_SAMPLE_STACK_USER) {
6082 /*
6083 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6084 * processed as the last one or have additional check added
6085 * in case new sample type is added, because we could eat
6086 * up the rest of the sample size.
6087 */
c5ebcedb
JO
6088 u16 stack_size = event->attr.sample_stack_user;
6089 u16 size = sizeof(u64);
6090
c5ebcedb 6091 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6092 data->regs_user.regs);
c5ebcedb
JO
6093
6094 /*
6095 * If there is something to dump, add space for the dump
6096 * itself and for the field that tells the dynamic size,
6097 * which is how many have been actually dumped.
6098 */
6099 if (stack_size)
6100 size += sizeof(u64) + stack_size;
6101
6102 data->stack_user_size = stack_size;
6103 header->size += size;
6104 }
60e2364e
SE
6105
6106 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6107 /* regs dump ABI info */
6108 int size = sizeof(u64);
6109
6110 perf_sample_regs_intr(&data->regs_intr, regs);
6111
6112 if (data->regs_intr.regs) {
6113 u64 mask = event->attr.sample_regs_intr;
6114
6115 size += hweight64(mask) * sizeof(u64);
6116 }
6117
6118 header->size += size;
6119 }
fc7ce9c7
KL
6120
6121 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6122 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6123}
7f453c24 6124
9ecda41a
WN
6125static void __always_inline
6126__perf_event_output(struct perf_event *event,
6127 struct perf_sample_data *data,
6128 struct pt_regs *regs,
6129 int (*output_begin)(struct perf_output_handle *,
6130 struct perf_event *,
6131 unsigned int))
5622f295
MM
6132{
6133 struct perf_output_handle handle;
6134 struct perf_event_header header;
689802b2 6135
927c7a9e
FW
6136 /* protect the callchain buffers */
6137 rcu_read_lock();
6138
cdd6c482 6139 perf_prepare_sample(&header, data, event, regs);
5c148194 6140
9ecda41a 6141 if (output_begin(&handle, event, header.size))
927c7a9e 6142 goto exit;
0322cd6e 6143
cdd6c482 6144 perf_output_sample(&handle, &header, data, event);
f413cdb8 6145
8a057d84 6146 perf_output_end(&handle);
927c7a9e
FW
6147
6148exit:
6149 rcu_read_unlock();
0322cd6e
PZ
6150}
6151
9ecda41a
WN
6152void
6153perf_event_output_forward(struct perf_event *event,
6154 struct perf_sample_data *data,
6155 struct pt_regs *regs)
6156{
6157 __perf_event_output(event, data, regs, perf_output_begin_forward);
6158}
6159
6160void
6161perf_event_output_backward(struct perf_event *event,
6162 struct perf_sample_data *data,
6163 struct pt_regs *regs)
6164{
6165 __perf_event_output(event, data, regs, perf_output_begin_backward);
6166}
6167
6168void
6169perf_event_output(struct perf_event *event,
6170 struct perf_sample_data *data,
6171 struct pt_regs *regs)
6172{
6173 __perf_event_output(event, data, regs, perf_output_begin);
6174}
6175
38b200d6 6176/*
cdd6c482 6177 * read event_id
38b200d6
PZ
6178 */
6179
6180struct perf_read_event {
6181 struct perf_event_header header;
6182
6183 u32 pid;
6184 u32 tid;
38b200d6
PZ
6185};
6186
6187static void
cdd6c482 6188perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6189 struct task_struct *task)
6190{
6191 struct perf_output_handle handle;
c980d109 6192 struct perf_sample_data sample;
dfc65094 6193 struct perf_read_event read_event = {
38b200d6 6194 .header = {
cdd6c482 6195 .type = PERF_RECORD_READ,
38b200d6 6196 .misc = 0,
c320c7b7 6197 .size = sizeof(read_event) + event->read_size,
38b200d6 6198 },
cdd6c482
IM
6199 .pid = perf_event_pid(event, task),
6200 .tid = perf_event_tid(event, task),
38b200d6 6201 };
3dab77fb 6202 int ret;
38b200d6 6203
c980d109 6204 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6205 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6206 if (ret)
6207 return;
6208
dfc65094 6209 perf_output_put(&handle, read_event);
cdd6c482 6210 perf_output_read(&handle, event);
c980d109 6211 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6212
38b200d6
PZ
6213 perf_output_end(&handle);
6214}
6215
aab5b71e 6216typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6217
6218static void
aab5b71e
PZ
6219perf_iterate_ctx(struct perf_event_context *ctx,
6220 perf_iterate_f output,
b73e4fef 6221 void *data, bool all)
52d857a8
JO
6222{
6223 struct perf_event *event;
6224
6225 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6226 if (!all) {
6227 if (event->state < PERF_EVENT_STATE_INACTIVE)
6228 continue;
6229 if (!event_filter_match(event))
6230 continue;
6231 }
6232
67516844 6233 output(event, data);
52d857a8
JO
6234 }
6235}
6236
aab5b71e 6237static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6238{
6239 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6240 struct perf_event *event;
6241
6242 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6243 /*
6244 * Skip events that are not fully formed yet; ensure that
6245 * if we observe event->ctx, both event and ctx will be
6246 * complete enough. See perf_install_in_context().
6247 */
6248 if (!smp_load_acquire(&event->ctx))
6249 continue;
6250
f2fb6bef
KL
6251 if (event->state < PERF_EVENT_STATE_INACTIVE)
6252 continue;
6253 if (!event_filter_match(event))
6254 continue;
6255 output(event, data);
6256 }
6257}
6258
aab5b71e
PZ
6259/*
6260 * Iterate all events that need to receive side-band events.
6261 *
6262 * For new callers; ensure that account_pmu_sb_event() includes
6263 * your event, otherwise it might not get delivered.
6264 */
52d857a8 6265static void
aab5b71e 6266perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6267 struct perf_event_context *task_ctx)
6268{
52d857a8 6269 struct perf_event_context *ctx;
52d857a8
JO
6270 int ctxn;
6271
aab5b71e
PZ
6272 rcu_read_lock();
6273 preempt_disable();
6274
4e93ad60 6275 /*
aab5b71e
PZ
6276 * If we have task_ctx != NULL we only notify the task context itself.
6277 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6278 * context.
6279 */
6280 if (task_ctx) {
aab5b71e
PZ
6281 perf_iterate_ctx(task_ctx, output, data, false);
6282 goto done;
4e93ad60
JO
6283 }
6284
aab5b71e 6285 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6286
6287 for_each_task_context_nr(ctxn) {
52d857a8
JO
6288 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6289 if (ctx)
aab5b71e 6290 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6291 }
aab5b71e 6292done:
f2fb6bef 6293 preempt_enable();
52d857a8 6294 rcu_read_unlock();
95ff4ca2
AS
6295}
6296
375637bc
AS
6297/*
6298 * Clear all file-based filters at exec, they'll have to be
6299 * re-instated when/if these objects are mmapped again.
6300 */
6301static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6302{
6303 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6304 struct perf_addr_filter *filter;
6305 unsigned int restart = 0, count = 0;
6306 unsigned long flags;
6307
6308 if (!has_addr_filter(event))
6309 return;
6310
6311 raw_spin_lock_irqsave(&ifh->lock, flags);
6312 list_for_each_entry(filter, &ifh->list, entry) {
6313 if (filter->inode) {
6314 event->addr_filters_offs[count] = 0;
6315 restart++;
6316 }
6317
6318 count++;
6319 }
6320
6321 if (restart)
6322 event->addr_filters_gen++;
6323 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6324
6325 if (restart)
767ae086 6326 perf_event_stop(event, 1);
375637bc
AS
6327}
6328
6329void perf_event_exec(void)
6330{
6331 struct perf_event_context *ctx;
6332 int ctxn;
6333
6334 rcu_read_lock();
6335 for_each_task_context_nr(ctxn) {
6336 ctx = current->perf_event_ctxp[ctxn];
6337 if (!ctx)
6338 continue;
6339
6340 perf_event_enable_on_exec(ctxn);
6341
aab5b71e 6342 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6343 true);
6344 }
6345 rcu_read_unlock();
6346}
6347
95ff4ca2
AS
6348struct remote_output {
6349 struct ring_buffer *rb;
6350 int err;
6351};
6352
6353static void __perf_event_output_stop(struct perf_event *event, void *data)
6354{
6355 struct perf_event *parent = event->parent;
6356 struct remote_output *ro = data;
6357 struct ring_buffer *rb = ro->rb;
375637bc
AS
6358 struct stop_event_data sd = {
6359 .event = event,
6360 };
95ff4ca2
AS
6361
6362 if (!has_aux(event))
6363 return;
6364
6365 if (!parent)
6366 parent = event;
6367
6368 /*
6369 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6370 * ring-buffer, but it will be the child that's actually using it.
6371 *
6372 * We are using event::rb to determine if the event should be stopped,
6373 * however this may race with ring_buffer_attach() (through set_output),
6374 * which will make us skip the event that actually needs to be stopped.
6375 * So ring_buffer_attach() has to stop an aux event before re-assigning
6376 * its rb pointer.
95ff4ca2
AS
6377 */
6378 if (rcu_dereference(parent->rb) == rb)
375637bc 6379 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6380}
6381
6382static int __perf_pmu_output_stop(void *info)
6383{
6384 struct perf_event *event = info;
6385 struct pmu *pmu = event->pmu;
8b6a3fe8 6386 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6387 struct remote_output ro = {
6388 .rb = event->rb,
6389 };
6390
6391 rcu_read_lock();
aab5b71e 6392 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6393 if (cpuctx->task_ctx)
aab5b71e 6394 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6395 &ro, false);
95ff4ca2
AS
6396 rcu_read_unlock();
6397
6398 return ro.err;
6399}
6400
6401static void perf_pmu_output_stop(struct perf_event *event)
6402{
6403 struct perf_event *iter;
6404 int err, cpu;
6405
6406restart:
6407 rcu_read_lock();
6408 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6409 /*
6410 * For per-CPU events, we need to make sure that neither they
6411 * nor their children are running; for cpu==-1 events it's
6412 * sufficient to stop the event itself if it's active, since
6413 * it can't have children.
6414 */
6415 cpu = iter->cpu;
6416 if (cpu == -1)
6417 cpu = READ_ONCE(iter->oncpu);
6418
6419 if (cpu == -1)
6420 continue;
6421
6422 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6423 if (err == -EAGAIN) {
6424 rcu_read_unlock();
6425 goto restart;
6426 }
6427 }
6428 rcu_read_unlock();
52d857a8
JO
6429}
6430
60313ebe 6431/*
9f498cc5
PZ
6432 * task tracking -- fork/exit
6433 *
13d7a241 6434 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6435 */
6436
9f498cc5 6437struct perf_task_event {
3a80b4a3 6438 struct task_struct *task;
cdd6c482 6439 struct perf_event_context *task_ctx;
60313ebe
PZ
6440
6441 struct {
6442 struct perf_event_header header;
6443
6444 u32 pid;
6445 u32 ppid;
9f498cc5
PZ
6446 u32 tid;
6447 u32 ptid;
393b2ad8 6448 u64 time;
cdd6c482 6449 } event_id;
60313ebe
PZ
6450};
6451
67516844
JO
6452static int perf_event_task_match(struct perf_event *event)
6453{
13d7a241
SE
6454 return event->attr.comm || event->attr.mmap ||
6455 event->attr.mmap2 || event->attr.mmap_data ||
6456 event->attr.task;
67516844
JO
6457}
6458
cdd6c482 6459static void perf_event_task_output(struct perf_event *event,
52d857a8 6460 void *data)
60313ebe 6461{
52d857a8 6462 struct perf_task_event *task_event = data;
60313ebe 6463 struct perf_output_handle handle;
c980d109 6464 struct perf_sample_data sample;
9f498cc5 6465 struct task_struct *task = task_event->task;
c980d109 6466 int ret, size = task_event->event_id.header.size;
8bb39f9a 6467
67516844
JO
6468 if (!perf_event_task_match(event))
6469 return;
6470
c980d109 6471 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6472
c980d109 6473 ret = perf_output_begin(&handle, event,
a7ac67ea 6474 task_event->event_id.header.size);
ef60777c 6475 if (ret)
c980d109 6476 goto out;
60313ebe 6477
cdd6c482
IM
6478 task_event->event_id.pid = perf_event_pid(event, task);
6479 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6480
cdd6c482
IM
6481 task_event->event_id.tid = perf_event_tid(event, task);
6482 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6483
34f43927
PZ
6484 task_event->event_id.time = perf_event_clock(event);
6485
cdd6c482 6486 perf_output_put(&handle, task_event->event_id);
393b2ad8 6487
c980d109
ACM
6488 perf_event__output_id_sample(event, &handle, &sample);
6489
60313ebe 6490 perf_output_end(&handle);
c980d109
ACM
6491out:
6492 task_event->event_id.header.size = size;
60313ebe
PZ
6493}
6494
cdd6c482
IM
6495static void perf_event_task(struct task_struct *task,
6496 struct perf_event_context *task_ctx,
3a80b4a3 6497 int new)
60313ebe 6498{
9f498cc5 6499 struct perf_task_event task_event;
60313ebe 6500
cdd6c482
IM
6501 if (!atomic_read(&nr_comm_events) &&
6502 !atomic_read(&nr_mmap_events) &&
6503 !atomic_read(&nr_task_events))
60313ebe
PZ
6504 return;
6505
9f498cc5 6506 task_event = (struct perf_task_event){
3a80b4a3
PZ
6507 .task = task,
6508 .task_ctx = task_ctx,
cdd6c482 6509 .event_id = {
60313ebe 6510 .header = {
cdd6c482 6511 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6512 .misc = 0,
cdd6c482 6513 .size = sizeof(task_event.event_id),
60313ebe 6514 },
573402db
PZ
6515 /* .pid */
6516 /* .ppid */
9f498cc5
PZ
6517 /* .tid */
6518 /* .ptid */
34f43927 6519 /* .time */
60313ebe
PZ
6520 },
6521 };
6522
aab5b71e 6523 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6524 &task_event,
6525 task_ctx);
9f498cc5
PZ
6526}
6527
cdd6c482 6528void perf_event_fork(struct task_struct *task)
9f498cc5 6529{
cdd6c482 6530 perf_event_task(task, NULL, 1);
e4222673 6531 perf_event_namespaces(task);
60313ebe
PZ
6532}
6533
8d1b2d93
PZ
6534/*
6535 * comm tracking
6536 */
6537
6538struct perf_comm_event {
22a4f650
IM
6539 struct task_struct *task;
6540 char *comm;
8d1b2d93
PZ
6541 int comm_size;
6542
6543 struct {
6544 struct perf_event_header header;
6545
6546 u32 pid;
6547 u32 tid;
cdd6c482 6548 } event_id;
8d1b2d93
PZ
6549};
6550
67516844
JO
6551static int perf_event_comm_match(struct perf_event *event)
6552{
6553 return event->attr.comm;
6554}
6555
cdd6c482 6556static void perf_event_comm_output(struct perf_event *event,
52d857a8 6557 void *data)
8d1b2d93 6558{
52d857a8 6559 struct perf_comm_event *comm_event = data;
8d1b2d93 6560 struct perf_output_handle handle;
c980d109 6561 struct perf_sample_data sample;
cdd6c482 6562 int size = comm_event->event_id.header.size;
c980d109
ACM
6563 int ret;
6564
67516844
JO
6565 if (!perf_event_comm_match(event))
6566 return;
6567
c980d109
ACM
6568 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6569 ret = perf_output_begin(&handle, event,
a7ac67ea 6570 comm_event->event_id.header.size);
8d1b2d93
PZ
6571
6572 if (ret)
c980d109 6573 goto out;
8d1b2d93 6574
cdd6c482
IM
6575 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6576 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6577
cdd6c482 6578 perf_output_put(&handle, comm_event->event_id);
76369139 6579 __output_copy(&handle, comm_event->comm,
8d1b2d93 6580 comm_event->comm_size);
c980d109
ACM
6581
6582 perf_event__output_id_sample(event, &handle, &sample);
6583
8d1b2d93 6584 perf_output_end(&handle);
c980d109
ACM
6585out:
6586 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6587}
6588
cdd6c482 6589static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6590{
413ee3b4 6591 char comm[TASK_COMM_LEN];
8d1b2d93 6592 unsigned int size;
8d1b2d93 6593
413ee3b4 6594 memset(comm, 0, sizeof(comm));
96b02d78 6595 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6596 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6597
6598 comm_event->comm = comm;
6599 comm_event->comm_size = size;
6600
cdd6c482 6601 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6602
aab5b71e 6603 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6604 comm_event,
6605 NULL);
8d1b2d93
PZ
6606}
6607
82b89778 6608void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6609{
9ee318a7
PZ
6610 struct perf_comm_event comm_event;
6611
cdd6c482 6612 if (!atomic_read(&nr_comm_events))
9ee318a7 6613 return;
a63eaf34 6614
9ee318a7 6615 comm_event = (struct perf_comm_event){
8d1b2d93 6616 .task = task,
573402db
PZ
6617 /* .comm */
6618 /* .comm_size */
cdd6c482 6619 .event_id = {
573402db 6620 .header = {
cdd6c482 6621 .type = PERF_RECORD_COMM,
82b89778 6622 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6623 /* .size */
6624 },
6625 /* .pid */
6626 /* .tid */
8d1b2d93
PZ
6627 },
6628 };
6629
cdd6c482 6630 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6631}
6632
e4222673
HB
6633/*
6634 * namespaces tracking
6635 */
6636
6637struct perf_namespaces_event {
6638 struct task_struct *task;
6639
6640 struct {
6641 struct perf_event_header header;
6642
6643 u32 pid;
6644 u32 tid;
6645 u64 nr_namespaces;
6646 struct perf_ns_link_info link_info[NR_NAMESPACES];
6647 } event_id;
6648};
6649
6650static int perf_event_namespaces_match(struct perf_event *event)
6651{
6652 return event->attr.namespaces;
6653}
6654
6655static void perf_event_namespaces_output(struct perf_event *event,
6656 void *data)
6657{
6658 struct perf_namespaces_event *namespaces_event = data;
6659 struct perf_output_handle handle;
6660 struct perf_sample_data sample;
34900ec5 6661 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
6662 int ret;
6663
6664 if (!perf_event_namespaces_match(event))
6665 return;
6666
6667 perf_event_header__init_id(&namespaces_event->event_id.header,
6668 &sample, event);
6669 ret = perf_output_begin(&handle, event,
6670 namespaces_event->event_id.header.size);
6671 if (ret)
34900ec5 6672 goto out;
e4222673
HB
6673
6674 namespaces_event->event_id.pid = perf_event_pid(event,
6675 namespaces_event->task);
6676 namespaces_event->event_id.tid = perf_event_tid(event,
6677 namespaces_event->task);
6678
6679 perf_output_put(&handle, namespaces_event->event_id);
6680
6681 perf_event__output_id_sample(event, &handle, &sample);
6682
6683 perf_output_end(&handle);
34900ec5
JO
6684out:
6685 namespaces_event->event_id.header.size = header_size;
e4222673
HB
6686}
6687
6688static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6689 struct task_struct *task,
6690 const struct proc_ns_operations *ns_ops)
6691{
6692 struct path ns_path;
6693 struct inode *ns_inode;
6694 void *error;
6695
6696 error = ns_get_path(&ns_path, task, ns_ops);
6697 if (!error) {
6698 ns_inode = ns_path.dentry->d_inode;
6699 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6700 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 6701 path_put(&ns_path);
e4222673
HB
6702 }
6703}
6704
6705void perf_event_namespaces(struct task_struct *task)
6706{
6707 struct perf_namespaces_event namespaces_event;
6708 struct perf_ns_link_info *ns_link_info;
6709
6710 if (!atomic_read(&nr_namespaces_events))
6711 return;
6712
6713 namespaces_event = (struct perf_namespaces_event){
6714 .task = task,
6715 .event_id = {
6716 .header = {
6717 .type = PERF_RECORD_NAMESPACES,
6718 .misc = 0,
6719 .size = sizeof(namespaces_event.event_id),
6720 },
6721 /* .pid */
6722 /* .tid */
6723 .nr_namespaces = NR_NAMESPACES,
6724 /* .link_info[NR_NAMESPACES] */
6725 },
6726 };
6727
6728 ns_link_info = namespaces_event.event_id.link_info;
6729
6730 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6731 task, &mntns_operations);
6732
6733#ifdef CONFIG_USER_NS
6734 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6735 task, &userns_operations);
6736#endif
6737#ifdef CONFIG_NET_NS
6738 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6739 task, &netns_operations);
6740#endif
6741#ifdef CONFIG_UTS_NS
6742 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6743 task, &utsns_operations);
6744#endif
6745#ifdef CONFIG_IPC_NS
6746 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6747 task, &ipcns_operations);
6748#endif
6749#ifdef CONFIG_PID_NS
6750 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6751 task, &pidns_operations);
6752#endif
6753#ifdef CONFIG_CGROUPS
6754 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6755 task, &cgroupns_operations);
6756#endif
6757
6758 perf_iterate_sb(perf_event_namespaces_output,
6759 &namespaces_event,
6760 NULL);
6761}
6762
0a4a9391
PZ
6763/*
6764 * mmap tracking
6765 */
6766
6767struct perf_mmap_event {
089dd79d
PZ
6768 struct vm_area_struct *vma;
6769
6770 const char *file_name;
6771 int file_size;
13d7a241
SE
6772 int maj, min;
6773 u64 ino;
6774 u64 ino_generation;
f972eb63 6775 u32 prot, flags;
0a4a9391
PZ
6776
6777 struct {
6778 struct perf_event_header header;
6779
6780 u32 pid;
6781 u32 tid;
6782 u64 start;
6783 u64 len;
6784 u64 pgoff;
cdd6c482 6785 } event_id;
0a4a9391
PZ
6786};
6787
67516844
JO
6788static int perf_event_mmap_match(struct perf_event *event,
6789 void *data)
6790{
6791 struct perf_mmap_event *mmap_event = data;
6792 struct vm_area_struct *vma = mmap_event->vma;
6793 int executable = vma->vm_flags & VM_EXEC;
6794
6795 return (!executable && event->attr.mmap_data) ||
13d7a241 6796 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6797}
6798
cdd6c482 6799static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6800 void *data)
0a4a9391 6801{
52d857a8 6802 struct perf_mmap_event *mmap_event = data;
0a4a9391 6803 struct perf_output_handle handle;
c980d109 6804 struct perf_sample_data sample;
cdd6c482 6805 int size = mmap_event->event_id.header.size;
c980d109 6806 int ret;
0a4a9391 6807
67516844
JO
6808 if (!perf_event_mmap_match(event, data))
6809 return;
6810
13d7a241
SE
6811 if (event->attr.mmap2) {
6812 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6813 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6814 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6815 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6816 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6817 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6818 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6819 }
6820
c980d109
ACM
6821 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6822 ret = perf_output_begin(&handle, event,
a7ac67ea 6823 mmap_event->event_id.header.size);
0a4a9391 6824 if (ret)
c980d109 6825 goto out;
0a4a9391 6826
cdd6c482
IM
6827 mmap_event->event_id.pid = perf_event_pid(event, current);
6828 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6829
cdd6c482 6830 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6831
6832 if (event->attr.mmap2) {
6833 perf_output_put(&handle, mmap_event->maj);
6834 perf_output_put(&handle, mmap_event->min);
6835 perf_output_put(&handle, mmap_event->ino);
6836 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6837 perf_output_put(&handle, mmap_event->prot);
6838 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6839 }
6840
76369139 6841 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6842 mmap_event->file_size);
c980d109
ACM
6843
6844 perf_event__output_id_sample(event, &handle, &sample);
6845
78d613eb 6846 perf_output_end(&handle);
c980d109
ACM
6847out:
6848 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6849}
6850
cdd6c482 6851static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6852{
089dd79d
PZ
6853 struct vm_area_struct *vma = mmap_event->vma;
6854 struct file *file = vma->vm_file;
13d7a241
SE
6855 int maj = 0, min = 0;
6856 u64 ino = 0, gen = 0;
f972eb63 6857 u32 prot = 0, flags = 0;
0a4a9391
PZ
6858 unsigned int size;
6859 char tmp[16];
6860 char *buf = NULL;
2c42cfbf 6861 char *name;
413ee3b4 6862
0b3589be
PZ
6863 if (vma->vm_flags & VM_READ)
6864 prot |= PROT_READ;
6865 if (vma->vm_flags & VM_WRITE)
6866 prot |= PROT_WRITE;
6867 if (vma->vm_flags & VM_EXEC)
6868 prot |= PROT_EXEC;
6869
6870 if (vma->vm_flags & VM_MAYSHARE)
6871 flags = MAP_SHARED;
6872 else
6873 flags = MAP_PRIVATE;
6874
6875 if (vma->vm_flags & VM_DENYWRITE)
6876 flags |= MAP_DENYWRITE;
6877 if (vma->vm_flags & VM_MAYEXEC)
6878 flags |= MAP_EXECUTABLE;
6879 if (vma->vm_flags & VM_LOCKED)
6880 flags |= MAP_LOCKED;
6881 if (vma->vm_flags & VM_HUGETLB)
6882 flags |= MAP_HUGETLB;
6883
0a4a9391 6884 if (file) {
13d7a241
SE
6885 struct inode *inode;
6886 dev_t dev;
3ea2f2b9 6887
2c42cfbf 6888 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6889 if (!buf) {
c7e548b4
ON
6890 name = "//enomem";
6891 goto cpy_name;
0a4a9391 6892 }
413ee3b4 6893 /*
3ea2f2b9 6894 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6895 * need to add enough zero bytes after the string to handle
6896 * the 64bit alignment we do later.
6897 */
9bf39ab2 6898 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6899 if (IS_ERR(name)) {
c7e548b4
ON
6900 name = "//toolong";
6901 goto cpy_name;
0a4a9391 6902 }
13d7a241
SE
6903 inode = file_inode(vma->vm_file);
6904 dev = inode->i_sb->s_dev;
6905 ino = inode->i_ino;
6906 gen = inode->i_generation;
6907 maj = MAJOR(dev);
6908 min = MINOR(dev);
f972eb63 6909
c7e548b4 6910 goto got_name;
0a4a9391 6911 } else {
fbe26abe
JO
6912 if (vma->vm_ops && vma->vm_ops->name) {
6913 name = (char *) vma->vm_ops->name(vma);
6914 if (name)
6915 goto cpy_name;
6916 }
6917
2c42cfbf 6918 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6919 if (name)
6920 goto cpy_name;
089dd79d 6921
32c5fb7e 6922 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6923 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6924 name = "[heap]";
6925 goto cpy_name;
32c5fb7e
ON
6926 }
6927 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6928 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6929 name = "[stack]";
6930 goto cpy_name;
089dd79d
PZ
6931 }
6932
c7e548b4
ON
6933 name = "//anon";
6934 goto cpy_name;
0a4a9391
PZ
6935 }
6936
c7e548b4
ON
6937cpy_name:
6938 strlcpy(tmp, name, sizeof(tmp));
6939 name = tmp;
0a4a9391 6940got_name:
2c42cfbf
PZ
6941 /*
6942 * Since our buffer works in 8 byte units we need to align our string
6943 * size to a multiple of 8. However, we must guarantee the tail end is
6944 * zero'd out to avoid leaking random bits to userspace.
6945 */
6946 size = strlen(name)+1;
6947 while (!IS_ALIGNED(size, sizeof(u64)))
6948 name[size++] = '\0';
0a4a9391
PZ
6949
6950 mmap_event->file_name = name;
6951 mmap_event->file_size = size;
13d7a241
SE
6952 mmap_event->maj = maj;
6953 mmap_event->min = min;
6954 mmap_event->ino = ino;
6955 mmap_event->ino_generation = gen;
f972eb63
PZ
6956 mmap_event->prot = prot;
6957 mmap_event->flags = flags;
0a4a9391 6958
2fe85427
SE
6959 if (!(vma->vm_flags & VM_EXEC))
6960 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6961
cdd6c482 6962 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6963
aab5b71e 6964 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6965 mmap_event,
6966 NULL);
665c2142 6967
0a4a9391
PZ
6968 kfree(buf);
6969}
6970
375637bc
AS
6971/*
6972 * Check whether inode and address range match filter criteria.
6973 */
6974static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6975 struct file *file, unsigned long offset,
6976 unsigned long size)
6977{
45063097 6978 if (filter->inode != file_inode(file))
375637bc
AS
6979 return false;
6980
6981 if (filter->offset > offset + size)
6982 return false;
6983
6984 if (filter->offset + filter->size < offset)
6985 return false;
6986
6987 return true;
6988}
6989
6990static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6991{
6992 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6993 struct vm_area_struct *vma = data;
6994 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6995 struct file *file = vma->vm_file;
6996 struct perf_addr_filter *filter;
6997 unsigned int restart = 0, count = 0;
6998
6999 if (!has_addr_filter(event))
7000 return;
7001
7002 if (!file)
7003 return;
7004
7005 raw_spin_lock_irqsave(&ifh->lock, flags);
7006 list_for_each_entry(filter, &ifh->list, entry) {
7007 if (perf_addr_filter_match(filter, file, off,
7008 vma->vm_end - vma->vm_start)) {
7009 event->addr_filters_offs[count] = vma->vm_start;
7010 restart++;
7011 }
7012
7013 count++;
7014 }
7015
7016 if (restart)
7017 event->addr_filters_gen++;
7018 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7019
7020 if (restart)
767ae086 7021 perf_event_stop(event, 1);
375637bc
AS
7022}
7023
7024/*
7025 * Adjust all task's events' filters to the new vma
7026 */
7027static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7028{
7029 struct perf_event_context *ctx;
7030 int ctxn;
7031
12b40a23
MP
7032 /*
7033 * Data tracing isn't supported yet and as such there is no need
7034 * to keep track of anything that isn't related to executable code:
7035 */
7036 if (!(vma->vm_flags & VM_EXEC))
7037 return;
7038
375637bc
AS
7039 rcu_read_lock();
7040 for_each_task_context_nr(ctxn) {
7041 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7042 if (!ctx)
7043 continue;
7044
aab5b71e 7045 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7046 }
7047 rcu_read_unlock();
7048}
7049
3af9e859 7050void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7051{
9ee318a7
PZ
7052 struct perf_mmap_event mmap_event;
7053
cdd6c482 7054 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7055 return;
7056
7057 mmap_event = (struct perf_mmap_event){
089dd79d 7058 .vma = vma,
573402db
PZ
7059 /* .file_name */
7060 /* .file_size */
cdd6c482 7061 .event_id = {
573402db 7062 .header = {
cdd6c482 7063 .type = PERF_RECORD_MMAP,
39447b38 7064 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7065 /* .size */
7066 },
7067 /* .pid */
7068 /* .tid */
089dd79d
PZ
7069 .start = vma->vm_start,
7070 .len = vma->vm_end - vma->vm_start,
3a0304e9 7071 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7072 },
13d7a241
SE
7073 /* .maj (attr_mmap2 only) */
7074 /* .min (attr_mmap2 only) */
7075 /* .ino (attr_mmap2 only) */
7076 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7077 /* .prot (attr_mmap2 only) */
7078 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7079 };
7080
375637bc 7081 perf_addr_filters_adjust(vma);
cdd6c482 7082 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7083}
7084
68db7e98
AS
7085void perf_event_aux_event(struct perf_event *event, unsigned long head,
7086 unsigned long size, u64 flags)
7087{
7088 struct perf_output_handle handle;
7089 struct perf_sample_data sample;
7090 struct perf_aux_event {
7091 struct perf_event_header header;
7092 u64 offset;
7093 u64 size;
7094 u64 flags;
7095 } rec = {
7096 .header = {
7097 .type = PERF_RECORD_AUX,
7098 .misc = 0,
7099 .size = sizeof(rec),
7100 },
7101 .offset = head,
7102 .size = size,
7103 .flags = flags,
7104 };
7105 int ret;
7106
7107 perf_event_header__init_id(&rec.header, &sample, event);
7108 ret = perf_output_begin(&handle, event, rec.header.size);
7109
7110 if (ret)
7111 return;
7112
7113 perf_output_put(&handle, rec);
7114 perf_event__output_id_sample(event, &handle, &sample);
7115
7116 perf_output_end(&handle);
7117}
7118
f38b0dbb
KL
7119/*
7120 * Lost/dropped samples logging
7121 */
7122void perf_log_lost_samples(struct perf_event *event, u64 lost)
7123{
7124 struct perf_output_handle handle;
7125 struct perf_sample_data sample;
7126 int ret;
7127
7128 struct {
7129 struct perf_event_header header;
7130 u64 lost;
7131 } lost_samples_event = {
7132 .header = {
7133 .type = PERF_RECORD_LOST_SAMPLES,
7134 .misc = 0,
7135 .size = sizeof(lost_samples_event),
7136 },
7137 .lost = lost,
7138 };
7139
7140 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7141
7142 ret = perf_output_begin(&handle, event,
7143 lost_samples_event.header.size);
7144 if (ret)
7145 return;
7146
7147 perf_output_put(&handle, lost_samples_event);
7148 perf_event__output_id_sample(event, &handle, &sample);
7149 perf_output_end(&handle);
7150}
7151
45ac1403
AH
7152/*
7153 * context_switch tracking
7154 */
7155
7156struct perf_switch_event {
7157 struct task_struct *task;
7158 struct task_struct *next_prev;
7159
7160 struct {
7161 struct perf_event_header header;
7162 u32 next_prev_pid;
7163 u32 next_prev_tid;
7164 } event_id;
7165};
7166
7167static int perf_event_switch_match(struct perf_event *event)
7168{
7169 return event->attr.context_switch;
7170}
7171
7172static void perf_event_switch_output(struct perf_event *event, void *data)
7173{
7174 struct perf_switch_event *se = data;
7175 struct perf_output_handle handle;
7176 struct perf_sample_data sample;
7177 int ret;
7178
7179 if (!perf_event_switch_match(event))
7180 return;
7181
7182 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7183 if (event->ctx->task) {
7184 se->event_id.header.type = PERF_RECORD_SWITCH;
7185 se->event_id.header.size = sizeof(se->event_id.header);
7186 } else {
7187 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7188 se->event_id.header.size = sizeof(se->event_id);
7189 se->event_id.next_prev_pid =
7190 perf_event_pid(event, se->next_prev);
7191 se->event_id.next_prev_tid =
7192 perf_event_tid(event, se->next_prev);
7193 }
7194
7195 perf_event_header__init_id(&se->event_id.header, &sample, event);
7196
7197 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7198 if (ret)
7199 return;
7200
7201 if (event->ctx->task)
7202 perf_output_put(&handle, se->event_id.header);
7203 else
7204 perf_output_put(&handle, se->event_id);
7205
7206 perf_event__output_id_sample(event, &handle, &sample);
7207
7208 perf_output_end(&handle);
7209}
7210
7211static void perf_event_switch(struct task_struct *task,
7212 struct task_struct *next_prev, bool sched_in)
7213{
7214 struct perf_switch_event switch_event;
7215
7216 /* N.B. caller checks nr_switch_events != 0 */
7217
7218 switch_event = (struct perf_switch_event){
7219 .task = task,
7220 .next_prev = next_prev,
7221 .event_id = {
7222 .header = {
7223 /* .type */
7224 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7225 /* .size */
7226 },
7227 /* .next_prev_pid */
7228 /* .next_prev_tid */
7229 },
7230 };
7231
aab5b71e 7232 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7233 &switch_event,
7234 NULL);
7235}
7236
a78ac325
PZ
7237/*
7238 * IRQ throttle logging
7239 */
7240
cdd6c482 7241static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7242{
7243 struct perf_output_handle handle;
c980d109 7244 struct perf_sample_data sample;
a78ac325
PZ
7245 int ret;
7246
7247 struct {
7248 struct perf_event_header header;
7249 u64 time;
cca3f454 7250 u64 id;
7f453c24 7251 u64 stream_id;
a78ac325
PZ
7252 } throttle_event = {
7253 .header = {
cdd6c482 7254 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7255 .misc = 0,
7256 .size = sizeof(throttle_event),
7257 },
34f43927 7258 .time = perf_event_clock(event),
cdd6c482
IM
7259 .id = primary_event_id(event),
7260 .stream_id = event->id,
a78ac325
PZ
7261 };
7262
966ee4d6 7263 if (enable)
cdd6c482 7264 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7265
c980d109
ACM
7266 perf_event_header__init_id(&throttle_event.header, &sample, event);
7267
7268 ret = perf_output_begin(&handle, event,
a7ac67ea 7269 throttle_event.header.size);
a78ac325
PZ
7270 if (ret)
7271 return;
7272
7273 perf_output_put(&handle, throttle_event);
c980d109 7274 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7275 perf_output_end(&handle);
7276}
7277
8d4e6c4c
AS
7278void perf_event_itrace_started(struct perf_event *event)
7279{
7280 event->attach_state |= PERF_ATTACH_ITRACE;
7281}
7282
ec0d7729
AS
7283static void perf_log_itrace_start(struct perf_event *event)
7284{
7285 struct perf_output_handle handle;
7286 struct perf_sample_data sample;
7287 struct perf_aux_event {
7288 struct perf_event_header header;
7289 u32 pid;
7290 u32 tid;
7291 } rec;
7292 int ret;
7293
7294 if (event->parent)
7295 event = event->parent;
7296
7297 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7298 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7299 return;
7300
ec0d7729
AS
7301 rec.header.type = PERF_RECORD_ITRACE_START;
7302 rec.header.misc = 0;
7303 rec.header.size = sizeof(rec);
7304 rec.pid = perf_event_pid(event, current);
7305 rec.tid = perf_event_tid(event, current);
7306
7307 perf_event_header__init_id(&rec.header, &sample, event);
7308 ret = perf_output_begin(&handle, event, rec.header.size);
7309
7310 if (ret)
7311 return;
7312
7313 perf_output_put(&handle, rec);
7314 perf_event__output_id_sample(event, &handle, &sample);
7315
7316 perf_output_end(&handle);
7317}
7318
475113d9
JO
7319static int
7320__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7321{
cdd6c482 7322 struct hw_perf_event *hwc = &event->hw;
79f14641 7323 int ret = 0;
475113d9 7324 u64 seq;
96398826 7325
e050e3f0
SE
7326 seq = __this_cpu_read(perf_throttled_seq);
7327 if (seq != hwc->interrupts_seq) {
7328 hwc->interrupts_seq = seq;
7329 hwc->interrupts = 1;
7330 } else {
7331 hwc->interrupts++;
7332 if (unlikely(throttle
7333 && hwc->interrupts >= max_samples_per_tick)) {
7334 __this_cpu_inc(perf_throttled_count);
555e0c1e 7335 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7336 hwc->interrupts = MAX_INTERRUPTS;
7337 perf_log_throttle(event, 0);
a78ac325
PZ
7338 ret = 1;
7339 }
e050e3f0 7340 }
60db5e09 7341
cdd6c482 7342 if (event->attr.freq) {
def0a9b2 7343 u64 now = perf_clock();
abd50713 7344 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7345
abd50713 7346 hwc->freq_time_stamp = now;
bd2b5b12 7347
abd50713 7348 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7349 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7350 }
7351
475113d9
JO
7352 return ret;
7353}
7354
7355int perf_event_account_interrupt(struct perf_event *event)
7356{
7357 return __perf_event_account_interrupt(event, 1);
7358}
7359
7360/*
7361 * Generic event overflow handling, sampling.
7362 */
7363
7364static int __perf_event_overflow(struct perf_event *event,
7365 int throttle, struct perf_sample_data *data,
7366 struct pt_regs *regs)
7367{
7368 int events = atomic_read(&event->event_limit);
7369 int ret = 0;
7370
7371 /*
7372 * Non-sampling counters might still use the PMI to fold short
7373 * hardware counters, ignore those.
7374 */
7375 if (unlikely(!is_sampling_event(event)))
7376 return 0;
7377
7378 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7379
2023b359
PZ
7380 /*
7381 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7382 * events
2023b359
PZ
7383 */
7384
cdd6c482
IM
7385 event->pending_kill = POLL_IN;
7386 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7387 ret = 1;
cdd6c482 7388 event->pending_kill = POLL_HUP;
5aab90ce
JO
7389
7390 perf_event_disable_inatomic(event);
79f14641
PZ
7391 }
7392
aa6a5f3c 7393 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7394
fed66e2c 7395 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7396 event->pending_wakeup = 1;
7397 irq_work_queue(&event->pending);
f506b3dc
PZ
7398 }
7399
79f14641 7400 return ret;
f6c7d5fe
PZ
7401}
7402
a8b0ca17 7403int perf_event_overflow(struct perf_event *event,
5622f295
MM
7404 struct perf_sample_data *data,
7405 struct pt_regs *regs)
850bc73f 7406{
a8b0ca17 7407 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7408}
7409
15dbf27c 7410/*
cdd6c482 7411 * Generic software event infrastructure
15dbf27c
PZ
7412 */
7413
b28ab83c
PZ
7414struct swevent_htable {
7415 struct swevent_hlist *swevent_hlist;
7416 struct mutex hlist_mutex;
7417 int hlist_refcount;
7418
7419 /* Recursion avoidance in each contexts */
7420 int recursion[PERF_NR_CONTEXTS];
7421};
7422
7423static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7424
7b4b6658 7425/*
cdd6c482
IM
7426 * We directly increment event->count and keep a second value in
7427 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7428 * is kept in the range [-sample_period, 0] so that we can use the
7429 * sign as trigger.
7430 */
7431
ab573844 7432u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7433{
cdd6c482 7434 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7435 u64 period = hwc->last_period;
7436 u64 nr, offset;
7437 s64 old, val;
7438
7439 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7440
7441again:
e7850595 7442 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7443 if (val < 0)
7444 return 0;
15dbf27c 7445
7b4b6658
PZ
7446 nr = div64_u64(period + val, period);
7447 offset = nr * period;
7448 val -= offset;
e7850595 7449 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7450 goto again;
15dbf27c 7451
7b4b6658 7452 return nr;
15dbf27c
PZ
7453}
7454
0cff784a 7455static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7456 struct perf_sample_data *data,
5622f295 7457 struct pt_regs *regs)
15dbf27c 7458{
cdd6c482 7459 struct hw_perf_event *hwc = &event->hw;
850bc73f 7460 int throttle = 0;
15dbf27c 7461
0cff784a
PZ
7462 if (!overflow)
7463 overflow = perf_swevent_set_period(event);
15dbf27c 7464
7b4b6658
PZ
7465 if (hwc->interrupts == MAX_INTERRUPTS)
7466 return;
15dbf27c 7467
7b4b6658 7468 for (; overflow; overflow--) {
a8b0ca17 7469 if (__perf_event_overflow(event, throttle,
5622f295 7470 data, regs)) {
7b4b6658
PZ
7471 /*
7472 * We inhibit the overflow from happening when
7473 * hwc->interrupts == MAX_INTERRUPTS.
7474 */
7475 break;
7476 }
cf450a73 7477 throttle = 1;
7b4b6658 7478 }
15dbf27c
PZ
7479}
7480
a4eaf7f1 7481static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7482 struct perf_sample_data *data,
5622f295 7483 struct pt_regs *regs)
7b4b6658 7484{
cdd6c482 7485 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7486
e7850595 7487 local64_add(nr, &event->count);
d6d020e9 7488
0cff784a
PZ
7489 if (!regs)
7490 return;
7491
6c7e550f 7492 if (!is_sampling_event(event))
7b4b6658 7493 return;
d6d020e9 7494
5d81e5cf
AV
7495 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7496 data->period = nr;
7497 return perf_swevent_overflow(event, 1, data, regs);
7498 } else
7499 data->period = event->hw.last_period;
7500
0cff784a 7501 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7502 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7503
e7850595 7504 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7505 return;
df1a132b 7506
a8b0ca17 7507 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7508}
7509
f5ffe02e
FW
7510static int perf_exclude_event(struct perf_event *event,
7511 struct pt_regs *regs)
7512{
a4eaf7f1 7513 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7514 return 1;
a4eaf7f1 7515
f5ffe02e
FW
7516 if (regs) {
7517 if (event->attr.exclude_user && user_mode(regs))
7518 return 1;
7519
7520 if (event->attr.exclude_kernel && !user_mode(regs))
7521 return 1;
7522 }
7523
7524 return 0;
7525}
7526
cdd6c482 7527static int perf_swevent_match(struct perf_event *event,
1c432d89 7528 enum perf_type_id type,
6fb2915d
LZ
7529 u32 event_id,
7530 struct perf_sample_data *data,
7531 struct pt_regs *regs)
15dbf27c 7532{
cdd6c482 7533 if (event->attr.type != type)
a21ca2ca 7534 return 0;
f5ffe02e 7535
cdd6c482 7536 if (event->attr.config != event_id)
15dbf27c
PZ
7537 return 0;
7538
f5ffe02e
FW
7539 if (perf_exclude_event(event, regs))
7540 return 0;
15dbf27c
PZ
7541
7542 return 1;
7543}
7544
76e1d904
FW
7545static inline u64 swevent_hash(u64 type, u32 event_id)
7546{
7547 u64 val = event_id | (type << 32);
7548
7549 return hash_64(val, SWEVENT_HLIST_BITS);
7550}
7551
49f135ed
FW
7552static inline struct hlist_head *
7553__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7554{
49f135ed
FW
7555 u64 hash = swevent_hash(type, event_id);
7556
7557 return &hlist->heads[hash];
7558}
76e1d904 7559
49f135ed
FW
7560/* For the read side: events when they trigger */
7561static inline struct hlist_head *
b28ab83c 7562find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7563{
7564 struct swevent_hlist *hlist;
76e1d904 7565
b28ab83c 7566 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7567 if (!hlist)
7568 return NULL;
7569
49f135ed
FW
7570 return __find_swevent_head(hlist, type, event_id);
7571}
7572
7573/* For the event head insertion and removal in the hlist */
7574static inline struct hlist_head *
b28ab83c 7575find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7576{
7577 struct swevent_hlist *hlist;
7578 u32 event_id = event->attr.config;
7579 u64 type = event->attr.type;
7580
7581 /*
7582 * Event scheduling is always serialized against hlist allocation
7583 * and release. Which makes the protected version suitable here.
7584 * The context lock guarantees that.
7585 */
b28ab83c 7586 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7587 lockdep_is_held(&event->ctx->lock));
7588 if (!hlist)
7589 return NULL;
7590
7591 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7592}
7593
7594static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7595 u64 nr,
76e1d904
FW
7596 struct perf_sample_data *data,
7597 struct pt_regs *regs)
15dbf27c 7598{
4a32fea9 7599 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7600 struct perf_event *event;
76e1d904 7601 struct hlist_head *head;
15dbf27c 7602
76e1d904 7603 rcu_read_lock();
b28ab83c 7604 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7605 if (!head)
7606 goto end;
7607
b67bfe0d 7608 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7609 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7610 perf_swevent_event(event, nr, data, regs);
15dbf27c 7611 }
76e1d904
FW
7612end:
7613 rcu_read_unlock();
15dbf27c
PZ
7614}
7615
86038c5e
PZI
7616DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7617
4ed7c92d 7618int perf_swevent_get_recursion_context(void)
96f6d444 7619{
4a32fea9 7620 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7621
b28ab83c 7622 return get_recursion_context(swhash->recursion);
96f6d444 7623}
645e8cc0 7624EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7625
98b5c2c6 7626void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7627{
4a32fea9 7628 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7629
b28ab83c 7630 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7631}
15dbf27c 7632
86038c5e 7633void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7634{
a4234bfc 7635 struct perf_sample_data data;
4ed7c92d 7636
86038c5e 7637 if (WARN_ON_ONCE(!regs))
4ed7c92d 7638 return;
a4234bfc 7639
fd0d000b 7640 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7641 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7642}
7643
7644void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7645{
7646 int rctx;
7647
7648 preempt_disable_notrace();
7649 rctx = perf_swevent_get_recursion_context();
7650 if (unlikely(rctx < 0))
7651 goto fail;
7652
7653 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7654
7655 perf_swevent_put_recursion_context(rctx);
86038c5e 7656fail:
1c024eca 7657 preempt_enable_notrace();
b8e83514
PZ
7658}
7659
cdd6c482 7660static void perf_swevent_read(struct perf_event *event)
15dbf27c 7661{
15dbf27c
PZ
7662}
7663
a4eaf7f1 7664static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7665{
4a32fea9 7666 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7667 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7668 struct hlist_head *head;
7669
6c7e550f 7670 if (is_sampling_event(event)) {
7b4b6658 7671 hwc->last_period = hwc->sample_period;
cdd6c482 7672 perf_swevent_set_period(event);
7b4b6658 7673 }
76e1d904 7674
a4eaf7f1
PZ
7675 hwc->state = !(flags & PERF_EF_START);
7676
b28ab83c 7677 head = find_swevent_head(swhash, event);
12ca6ad2 7678 if (WARN_ON_ONCE(!head))
76e1d904
FW
7679 return -EINVAL;
7680
7681 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7682 perf_event_update_userpage(event);
76e1d904 7683
15dbf27c
PZ
7684 return 0;
7685}
7686
a4eaf7f1 7687static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7688{
76e1d904 7689 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7690}
7691
a4eaf7f1 7692static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7693{
a4eaf7f1 7694 event->hw.state = 0;
d6d020e9 7695}
aa9c4c0f 7696
a4eaf7f1 7697static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7698{
a4eaf7f1 7699 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7700}
7701
49f135ed
FW
7702/* Deref the hlist from the update side */
7703static inline struct swevent_hlist *
b28ab83c 7704swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7705{
b28ab83c
PZ
7706 return rcu_dereference_protected(swhash->swevent_hlist,
7707 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7708}
7709
b28ab83c 7710static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7711{
b28ab83c 7712 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7713
49f135ed 7714 if (!hlist)
76e1d904
FW
7715 return;
7716
70691d4a 7717 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7718 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7719}
7720
3b364d7b 7721static void swevent_hlist_put_cpu(int cpu)
76e1d904 7722{
b28ab83c 7723 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7724
b28ab83c 7725 mutex_lock(&swhash->hlist_mutex);
76e1d904 7726
b28ab83c
PZ
7727 if (!--swhash->hlist_refcount)
7728 swevent_hlist_release(swhash);
76e1d904 7729
b28ab83c 7730 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7731}
7732
3b364d7b 7733static void swevent_hlist_put(void)
76e1d904
FW
7734{
7735 int cpu;
7736
76e1d904 7737 for_each_possible_cpu(cpu)
3b364d7b 7738 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7739}
7740
3b364d7b 7741static int swevent_hlist_get_cpu(int cpu)
76e1d904 7742{
b28ab83c 7743 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7744 int err = 0;
7745
b28ab83c 7746 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7747 if (!swevent_hlist_deref(swhash) &&
7748 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7749 struct swevent_hlist *hlist;
7750
7751 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7752 if (!hlist) {
7753 err = -ENOMEM;
7754 goto exit;
7755 }
b28ab83c 7756 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7757 }
b28ab83c 7758 swhash->hlist_refcount++;
9ed6060d 7759exit:
b28ab83c 7760 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7761
7762 return err;
7763}
7764
3b364d7b 7765static int swevent_hlist_get(void)
76e1d904 7766{
3b364d7b 7767 int err, cpu, failed_cpu;
76e1d904 7768
a63fbed7 7769 mutex_lock(&pmus_lock);
76e1d904 7770 for_each_possible_cpu(cpu) {
3b364d7b 7771 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7772 if (err) {
7773 failed_cpu = cpu;
7774 goto fail;
7775 }
7776 }
a63fbed7 7777 mutex_unlock(&pmus_lock);
76e1d904 7778 return 0;
9ed6060d 7779fail:
76e1d904
FW
7780 for_each_possible_cpu(cpu) {
7781 if (cpu == failed_cpu)
7782 break;
3b364d7b 7783 swevent_hlist_put_cpu(cpu);
76e1d904 7784 }
a63fbed7 7785 mutex_unlock(&pmus_lock);
76e1d904
FW
7786 return err;
7787}
7788
c5905afb 7789struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7790
b0a873eb
PZ
7791static void sw_perf_event_destroy(struct perf_event *event)
7792{
7793 u64 event_id = event->attr.config;
95476b64 7794
b0a873eb
PZ
7795 WARN_ON(event->parent);
7796
c5905afb 7797 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7798 swevent_hlist_put();
b0a873eb
PZ
7799}
7800
7801static int perf_swevent_init(struct perf_event *event)
7802{
8176cced 7803 u64 event_id = event->attr.config;
b0a873eb
PZ
7804
7805 if (event->attr.type != PERF_TYPE_SOFTWARE)
7806 return -ENOENT;
7807
2481c5fa
SE
7808 /*
7809 * no branch sampling for software events
7810 */
7811 if (has_branch_stack(event))
7812 return -EOPNOTSUPP;
7813
b0a873eb
PZ
7814 switch (event_id) {
7815 case PERF_COUNT_SW_CPU_CLOCK:
7816 case PERF_COUNT_SW_TASK_CLOCK:
7817 return -ENOENT;
7818
7819 default:
7820 break;
7821 }
7822
ce677831 7823 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7824 return -ENOENT;
7825
7826 if (!event->parent) {
7827 int err;
7828
3b364d7b 7829 err = swevent_hlist_get();
b0a873eb
PZ
7830 if (err)
7831 return err;
7832
c5905afb 7833 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7834 event->destroy = sw_perf_event_destroy;
7835 }
7836
7837 return 0;
7838}
7839
7840static struct pmu perf_swevent = {
89a1e187 7841 .task_ctx_nr = perf_sw_context,
95476b64 7842
34f43927
PZ
7843 .capabilities = PERF_PMU_CAP_NO_NMI,
7844
b0a873eb 7845 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7846 .add = perf_swevent_add,
7847 .del = perf_swevent_del,
7848 .start = perf_swevent_start,
7849 .stop = perf_swevent_stop,
1c024eca 7850 .read = perf_swevent_read,
1c024eca
PZ
7851};
7852
b0a873eb
PZ
7853#ifdef CONFIG_EVENT_TRACING
7854
1c024eca
PZ
7855static int perf_tp_filter_match(struct perf_event *event,
7856 struct perf_sample_data *data)
7857{
7e3f977e 7858 void *record = data->raw->frag.data;
1c024eca 7859
b71b437e
PZ
7860 /* only top level events have filters set */
7861 if (event->parent)
7862 event = event->parent;
7863
1c024eca
PZ
7864 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7865 return 1;
7866 return 0;
7867}
7868
7869static int perf_tp_event_match(struct perf_event *event,
7870 struct perf_sample_data *data,
7871 struct pt_regs *regs)
7872{
a0f7d0f7
FW
7873 if (event->hw.state & PERF_HES_STOPPED)
7874 return 0;
580d607c
PZ
7875 /*
7876 * All tracepoints are from kernel-space.
7877 */
7878 if (event->attr.exclude_kernel)
1c024eca
PZ
7879 return 0;
7880
7881 if (!perf_tp_filter_match(event, data))
7882 return 0;
7883
7884 return 1;
7885}
7886
85b67bcb
AS
7887void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7888 struct trace_event_call *call, u64 count,
7889 struct pt_regs *regs, struct hlist_head *head,
7890 struct task_struct *task)
7891{
e87c6bc3 7892 if (bpf_prog_array_valid(call)) {
85b67bcb 7893 *(struct pt_regs **)raw_data = regs;
e87c6bc3 7894 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
7895 perf_swevent_put_recursion_context(rctx);
7896 return;
7897 }
7898 }
7899 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 7900 rctx, task);
85b67bcb
AS
7901}
7902EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7903
1e1dcd93 7904void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7905 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 7906 struct task_struct *task)
95476b64
FW
7907{
7908 struct perf_sample_data data;
8fd0fbbe 7909 struct perf_event *event;
1c024eca 7910
95476b64 7911 struct perf_raw_record raw = {
7e3f977e
DB
7912 .frag = {
7913 .size = entry_size,
7914 .data = record,
7915 },
95476b64
FW
7916 };
7917
1e1dcd93 7918 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7919 data.raw = &raw;
7920
1e1dcd93
AS
7921 perf_trace_buf_update(record, event_type);
7922
8fd0fbbe 7923 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7924 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7925 perf_swevent_event(event, count, &data, regs);
4f41c013 7926 }
ecc55f84 7927
e6dab5ff
AV
7928 /*
7929 * If we got specified a target task, also iterate its context and
7930 * deliver this event there too.
7931 */
7932 if (task && task != current) {
7933 struct perf_event_context *ctx;
7934 struct trace_entry *entry = record;
7935
7936 rcu_read_lock();
7937 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7938 if (!ctx)
7939 goto unlock;
7940
7941 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7942 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7943 continue;
7944 if (event->attr.config != entry->type)
7945 continue;
7946 if (perf_tp_event_match(event, &data, regs))
7947 perf_swevent_event(event, count, &data, regs);
7948 }
7949unlock:
7950 rcu_read_unlock();
7951 }
7952
ecc55f84 7953 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7954}
7955EXPORT_SYMBOL_GPL(perf_tp_event);
7956
cdd6c482 7957static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7958{
1c024eca 7959 perf_trace_destroy(event);
e077df4f
PZ
7960}
7961
b0a873eb 7962static int perf_tp_event_init(struct perf_event *event)
e077df4f 7963{
76e1d904
FW
7964 int err;
7965
b0a873eb
PZ
7966 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7967 return -ENOENT;
7968
2481c5fa
SE
7969 /*
7970 * no branch sampling for tracepoint events
7971 */
7972 if (has_branch_stack(event))
7973 return -EOPNOTSUPP;
7974
1c024eca
PZ
7975 err = perf_trace_init(event);
7976 if (err)
b0a873eb 7977 return err;
e077df4f 7978
cdd6c482 7979 event->destroy = tp_perf_event_destroy;
e077df4f 7980
b0a873eb
PZ
7981 return 0;
7982}
7983
7984static struct pmu perf_tracepoint = {
89a1e187
PZ
7985 .task_ctx_nr = perf_sw_context,
7986
b0a873eb 7987 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7988 .add = perf_trace_add,
7989 .del = perf_trace_del,
7990 .start = perf_swevent_start,
7991 .stop = perf_swevent_stop,
b0a873eb 7992 .read = perf_swevent_read,
b0a873eb
PZ
7993};
7994
7995static inline void perf_tp_register(void)
7996{
2e80a82a 7997 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7998}
6fb2915d 7999
6fb2915d
LZ
8000static void perf_event_free_filter(struct perf_event *event)
8001{
8002 ftrace_profile_free_filter(event);
8003}
8004
aa6a5f3c
AS
8005#ifdef CONFIG_BPF_SYSCALL
8006static void bpf_overflow_handler(struct perf_event *event,
8007 struct perf_sample_data *data,
8008 struct pt_regs *regs)
8009{
8010 struct bpf_perf_event_data_kern ctx = {
8011 .data = data,
7d9285e8 8012 .event = event,
aa6a5f3c
AS
8013 };
8014 int ret = 0;
8015
c895f6f7 8016 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8017 preempt_disable();
8018 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8019 goto out;
8020 rcu_read_lock();
88575199 8021 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8022 rcu_read_unlock();
8023out:
8024 __this_cpu_dec(bpf_prog_active);
8025 preempt_enable();
8026 if (!ret)
8027 return;
8028
8029 event->orig_overflow_handler(event, data, regs);
8030}
8031
8032static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8033{
8034 struct bpf_prog *prog;
8035
8036 if (event->overflow_handler_context)
8037 /* hw breakpoint or kernel counter */
8038 return -EINVAL;
8039
8040 if (event->prog)
8041 return -EEXIST;
8042
8043 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8044 if (IS_ERR(prog))
8045 return PTR_ERR(prog);
8046
8047 event->prog = prog;
8048 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8049 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8050 return 0;
8051}
8052
8053static void perf_event_free_bpf_handler(struct perf_event *event)
8054{
8055 struct bpf_prog *prog = event->prog;
8056
8057 if (!prog)
8058 return;
8059
8060 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8061 event->prog = NULL;
8062 bpf_prog_put(prog);
8063}
8064#else
8065static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8066{
8067 return -EOPNOTSUPP;
8068}
8069static void perf_event_free_bpf_handler(struct perf_event *event)
8070{
8071}
8072#endif
8073
2541517c
AS
8074static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8075{
cf5f5cea 8076 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8077 struct bpf_prog *prog;
e87c6bc3 8078 int ret;
2541517c
AS
8079
8080 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8081 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8082
98b5c2c6
AS
8083 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8084 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8085 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8086 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8087 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8088 return -EINVAL;
8089
8090 prog = bpf_prog_get(prog_fd);
8091 if (IS_ERR(prog))
8092 return PTR_ERR(prog);
8093
98b5c2c6 8094 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8095 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8096 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8097 /* valid fd, but invalid bpf program type */
8098 bpf_prog_put(prog);
8099 return -EINVAL;
8100 }
8101
cf5f5cea 8102 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8103 int off = trace_event_get_offsets(event->tp_event);
8104
8105 if (prog->aux->max_ctx_offset > off) {
8106 bpf_prog_put(prog);
8107 return -EACCES;
8108 }
8109 }
2541517c 8110
e87c6bc3
YS
8111 ret = perf_event_attach_bpf_prog(event, prog);
8112 if (ret)
8113 bpf_prog_put(prog);
8114 return ret;
2541517c
AS
8115}
8116
8117static void perf_event_free_bpf_prog(struct perf_event *event)
8118{
0b4c6841
YS
8119 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8120 perf_event_free_bpf_handler(event);
2541517c 8121 return;
2541517c 8122 }
e87c6bc3 8123 perf_event_detach_bpf_prog(event);
2541517c
AS
8124}
8125
e077df4f 8126#else
6fb2915d 8127
b0a873eb 8128static inline void perf_tp_register(void)
e077df4f 8129{
e077df4f 8130}
6fb2915d 8131
6fb2915d
LZ
8132static void perf_event_free_filter(struct perf_event *event)
8133{
8134}
8135
2541517c
AS
8136static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8137{
8138 return -ENOENT;
8139}
8140
8141static void perf_event_free_bpf_prog(struct perf_event *event)
8142{
8143}
07b139c8 8144#endif /* CONFIG_EVENT_TRACING */
e077df4f 8145
24f1e32c 8146#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8147void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8148{
f5ffe02e
FW
8149 struct perf_sample_data sample;
8150 struct pt_regs *regs = data;
8151
fd0d000b 8152 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8153
a4eaf7f1 8154 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8155 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8156}
8157#endif
8158
375637bc
AS
8159/*
8160 * Allocate a new address filter
8161 */
8162static struct perf_addr_filter *
8163perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8164{
8165 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8166 struct perf_addr_filter *filter;
8167
8168 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8169 if (!filter)
8170 return NULL;
8171
8172 INIT_LIST_HEAD(&filter->entry);
8173 list_add_tail(&filter->entry, filters);
8174
8175 return filter;
8176}
8177
8178static void free_filters_list(struct list_head *filters)
8179{
8180 struct perf_addr_filter *filter, *iter;
8181
8182 list_for_each_entry_safe(filter, iter, filters, entry) {
8183 if (filter->inode)
8184 iput(filter->inode);
8185 list_del(&filter->entry);
8186 kfree(filter);
8187 }
8188}
8189
8190/*
8191 * Free existing address filters and optionally install new ones
8192 */
8193static void perf_addr_filters_splice(struct perf_event *event,
8194 struct list_head *head)
8195{
8196 unsigned long flags;
8197 LIST_HEAD(list);
8198
8199 if (!has_addr_filter(event))
8200 return;
8201
8202 /* don't bother with children, they don't have their own filters */
8203 if (event->parent)
8204 return;
8205
8206 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8207
8208 list_splice_init(&event->addr_filters.list, &list);
8209 if (head)
8210 list_splice(head, &event->addr_filters.list);
8211
8212 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8213
8214 free_filters_list(&list);
8215}
8216
8217/*
8218 * Scan through mm's vmas and see if one of them matches the
8219 * @filter; if so, adjust filter's address range.
8220 * Called with mm::mmap_sem down for reading.
8221 */
8222static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8223 struct mm_struct *mm)
8224{
8225 struct vm_area_struct *vma;
8226
8227 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8228 struct file *file = vma->vm_file;
8229 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8230 unsigned long vma_size = vma->vm_end - vma->vm_start;
8231
8232 if (!file)
8233 continue;
8234
8235 if (!perf_addr_filter_match(filter, file, off, vma_size))
8236 continue;
8237
8238 return vma->vm_start;
8239 }
8240
8241 return 0;
8242}
8243
8244/*
8245 * Update event's address range filters based on the
8246 * task's existing mappings, if any.
8247 */
8248static void perf_event_addr_filters_apply(struct perf_event *event)
8249{
8250 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8251 struct task_struct *task = READ_ONCE(event->ctx->task);
8252 struct perf_addr_filter *filter;
8253 struct mm_struct *mm = NULL;
8254 unsigned int count = 0;
8255 unsigned long flags;
8256
8257 /*
8258 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8259 * will stop on the parent's child_mutex that our caller is also holding
8260 */
8261 if (task == TASK_TOMBSTONE)
8262 return;
8263
6ce77bfd
AS
8264 if (!ifh->nr_file_filters)
8265 return;
8266
375637bc
AS
8267 mm = get_task_mm(event->ctx->task);
8268 if (!mm)
8269 goto restart;
8270
8271 down_read(&mm->mmap_sem);
8272
8273 raw_spin_lock_irqsave(&ifh->lock, flags);
8274 list_for_each_entry(filter, &ifh->list, entry) {
8275 event->addr_filters_offs[count] = 0;
8276
99f5bc9b
MP
8277 /*
8278 * Adjust base offset if the filter is associated to a binary
8279 * that needs to be mapped:
8280 */
8281 if (filter->inode)
375637bc
AS
8282 event->addr_filters_offs[count] =
8283 perf_addr_filter_apply(filter, mm);
8284
8285 count++;
8286 }
8287
8288 event->addr_filters_gen++;
8289 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8290
8291 up_read(&mm->mmap_sem);
8292
8293 mmput(mm);
8294
8295restart:
767ae086 8296 perf_event_stop(event, 1);
375637bc
AS
8297}
8298
8299/*
8300 * Address range filtering: limiting the data to certain
8301 * instruction address ranges. Filters are ioctl()ed to us from
8302 * userspace as ascii strings.
8303 *
8304 * Filter string format:
8305 *
8306 * ACTION RANGE_SPEC
8307 * where ACTION is one of the
8308 * * "filter": limit the trace to this region
8309 * * "start": start tracing from this address
8310 * * "stop": stop tracing at this address/region;
8311 * RANGE_SPEC is
8312 * * for kernel addresses: <start address>[/<size>]
8313 * * for object files: <start address>[/<size>]@</path/to/object/file>
8314 *
8315 * if <size> is not specified, the range is treated as a single address.
8316 */
8317enum {
e96271f3 8318 IF_ACT_NONE = -1,
375637bc
AS
8319 IF_ACT_FILTER,
8320 IF_ACT_START,
8321 IF_ACT_STOP,
8322 IF_SRC_FILE,
8323 IF_SRC_KERNEL,
8324 IF_SRC_FILEADDR,
8325 IF_SRC_KERNELADDR,
8326};
8327
8328enum {
8329 IF_STATE_ACTION = 0,
8330 IF_STATE_SOURCE,
8331 IF_STATE_END,
8332};
8333
8334static const match_table_t if_tokens = {
8335 { IF_ACT_FILTER, "filter" },
8336 { IF_ACT_START, "start" },
8337 { IF_ACT_STOP, "stop" },
8338 { IF_SRC_FILE, "%u/%u@%s" },
8339 { IF_SRC_KERNEL, "%u/%u" },
8340 { IF_SRC_FILEADDR, "%u@%s" },
8341 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8342 { IF_ACT_NONE, NULL },
375637bc
AS
8343};
8344
8345/*
8346 * Address filter string parser
8347 */
8348static int
8349perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8350 struct list_head *filters)
8351{
8352 struct perf_addr_filter *filter = NULL;
8353 char *start, *orig, *filename = NULL;
8354 struct path path;
8355 substring_t args[MAX_OPT_ARGS];
8356 int state = IF_STATE_ACTION, token;
8357 unsigned int kernel = 0;
8358 int ret = -EINVAL;
8359
8360 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8361 if (!fstr)
8362 return -ENOMEM;
8363
8364 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8365 ret = -EINVAL;
8366
8367 if (!*start)
8368 continue;
8369
8370 /* filter definition begins */
8371 if (state == IF_STATE_ACTION) {
8372 filter = perf_addr_filter_new(event, filters);
8373 if (!filter)
8374 goto fail;
8375 }
8376
8377 token = match_token(start, if_tokens, args);
8378 switch (token) {
8379 case IF_ACT_FILTER:
8380 case IF_ACT_START:
8381 filter->filter = 1;
8382
8383 case IF_ACT_STOP:
8384 if (state != IF_STATE_ACTION)
8385 goto fail;
8386
8387 state = IF_STATE_SOURCE;
8388 break;
8389
8390 case IF_SRC_KERNELADDR:
8391 case IF_SRC_KERNEL:
8392 kernel = 1;
8393
8394 case IF_SRC_FILEADDR:
8395 case IF_SRC_FILE:
8396 if (state != IF_STATE_SOURCE)
8397 goto fail;
8398
8399 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8400 filter->range = 1;
8401
8402 *args[0].to = 0;
8403 ret = kstrtoul(args[0].from, 0, &filter->offset);
8404 if (ret)
8405 goto fail;
8406
8407 if (filter->range) {
8408 *args[1].to = 0;
8409 ret = kstrtoul(args[1].from, 0, &filter->size);
8410 if (ret)
8411 goto fail;
8412 }
8413
4059ffd0
MP
8414 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8415 int fpos = filter->range ? 2 : 1;
8416
8417 filename = match_strdup(&args[fpos]);
375637bc
AS
8418 if (!filename) {
8419 ret = -ENOMEM;
8420 goto fail;
8421 }
8422 }
8423
8424 state = IF_STATE_END;
8425 break;
8426
8427 default:
8428 goto fail;
8429 }
8430
8431 /*
8432 * Filter definition is fully parsed, validate and install it.
8433 * Make sure that it doesn't contradict itself or the event's
8434 * attribute.
8435 */
8436 if (state == IF_STATE_END) {
9ccbfbb1 8437 ret = -EINVAL;
375637bc
AS
8438 if (kernel && event->attr.exclude_kernel)
8439 goto fail;
8440
8441 if (!kernel) {
8442 if (!filename)
8443 goto fail;
8444
6ce77bfd
AS
8445 /*
8446 * For now, we only support file-based filters
8447 * in per-task events; doing so for CPU-wide
8448 * events requires additional context switching
8449 * trickery, since same object code will be
8450 * mapped at different virtual addresses in
8451 * different processes.
8452 */
8453 ret = -EOPNOTSUPP;
8454 if (!event->ctx->task)
8455 goto fail_free_name;
8456
375637bc
AS
8457 /* look up the path and grab its inode */
8458 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8459 if (ret)
8460 goto fail_free_name;
8461
8462 filter->inode = igrab(d_inode(path.dentry));
8463 path_put(&path);
8464 kfree(filename);
8465 filename = NULL;
8466
8467 ret = -EINVAL;
8468 if (!filter->inode ||
8469 !S_ISREG(filter->inode->i_mode))
8470 /* free_filters_list() will iput() */
8471 goto fail;
6ce77bfd
AS
8472
8473 event->addr_filters.nr_file_filters++;
375637bc
AS
8474 }
8475
8476 /* ready to consume more filters */
8477 state = IF_STATE_ACTION;
8478 filter = NULL;
8479 }
8480 }
8481
8482 if (state != IF_STATE_ACTION)
8483 goto fail;
8484
8485 kfree(orig);
8486
8487 return 0;
8488
8489fail_free_name:
8490 kfree(filename);
8491fail:
8492 free_filters_list(filters);
8493 kfree(orig);
8494
8495 return ret;
8496}
8497
8498static int
8499perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8500{
8501 LIST_HEAD(filters);
8502 int ret;
8503
8504 /*
8505 * Since this is called in perf_ioctl() path, we're already holding
8506 * ctx::mutex.
8507 */
8508 lockdep_assert_held(&event->ctx->mutex);
8509
8510 if (WARN_ON_ONCE(event->parent))
8511 return -EINVAL;
8512
375637bc
AS
8513 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8514 if (ret)
6ce77bfd 8515 goto fail_clear_files;
375637bc
AS
8516
8517 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8518 if (ret)
8519 goto fail_free_filters;
375637bc
AS
8520
8521 /* remove existing filters, if any */
8522 perf_addr_filters_splice(event, &filters);
8523
8524 /* install new filters */
8525 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8526
6ce77bfd
AS
8527 return ret;
8528
8529fail_free_filters:
8530 free_filters_list(&filters);
8531
8532fail_clear_files:
8533 event->addr_filters.nr_file_filters = 0;
8534
375637bc
AS
8535 return ret;
8536}
8537
43fa87f7
PZ
8538static int
8539perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8540{
8541 struct perf_event_context *ctx = event->ctx;
8542 int ret;
8543
8544 /*
8545 * Beware, here be dragons!!
8546 *
8547 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8548 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8549 * perf_event_ctx_lock() we already have a reference on ctx.
8550 *
8551 * This can result in event getting moved to a different ctx, but that
8552 * does not affect the tracepoint state.
8553 */
8554 mutex_unlock(&ctx->mutex);
8555 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8556 mutex_lock(&ctx->mutex);
8557
8558 return ret;
8559}
8560
c796bbbe
AS
8561static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8562{
8563 char *filter_str;
8564 int ret = -EINVAL;
8565
375637bc
AS
8566 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8567 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8568 !has_addr_filter(event))
c796bbbe
AS
8569 return -EINVAL;
8570
8571 filter_str = strndup_user(arg, PAGE_SIZE);
8572 if (IS_ERR(filter_str))
8573 return PTR_ERR(filter_str);
8574
8575 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8576 event->attr.type == PERF_TYPE_TRACEPOINT)
43fa87f7 8577 ret = perf_tracepoint_set_filter(event, filter_str);
375637bc
AS
8578 else if (has_addr_filter(event))
8579 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8580
8581 kfree(filter_str);
8582 return ret;
8583}
8584
b0a873eb
PZ
8585/*
8586 * hrtimer based swevent callback
8587 */
f29ac756 8588
b0a873eb 8589static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8590{
b0a873eb
PZ
8591 enum hrtimer_restart ret = HRTIMER_RESTART;
8592 struct perf_sample_data data;
8593 struct pt_regs *regs;
8594 struct perf_event *event;
8595 u64 period;
f29ac756 8596
b0a873eb 8597 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8598
8599 if (event->state != PERF_EVENT_STATE_ACTIVE)
8600 return HRTIMER_NORESTART;
8601
b0a873eb 8602 event->pmu->read(event);
f344011c 8603
fd0d000b 8604 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8605 regs = get_irq_regs();
8606
8607 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8608 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8609 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8610 ret = HRTIMER_NORESTART;
8611 }
24f1e32c 8612
b0a873eb
PZ
8613 period = max_t(u64, 10000, event->hw.sample_period);
8614 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8615
b0a873eb 8616 return ret;
f29ac756
PZ
8617}
8618
b0a873eb 8619static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8620{
b0a873eb 8621 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8622 s64 period;
8623
8624 if (!is_sampling_event(event))
8625 return;
f5ffe02e 8626
5d508e82
FBH
8627 period = local64_read(&hwc->period_left);
8628 if (period) {
8629 if (period < 0)
8630 period = 10000;
fa407f35 8631
5d508e82
FBH
8632 local64_set(&hwc->period_left, 0);
8633 } else {
8634 period = max_t(u64, 10000, hwc->sample_period);
8635 }
3497d206
TG
8636 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8637 HRTIMER_MODE_REL_PINNED);
24f1e32c 8638}
b0a873eb
PZ
8639
8640static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8641{
b0a873eb
PZ
8642 struct hw_perf_event *hwc = &event->hw;
8643
6c7e550f 8644 if (is_sampling_event(event)) {
b0a873eb 8645 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8646 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8647
8648 hrtimer_cancel(&hwc->hrtimer);
8649 }
24f1e32c
FW
8650}
8651
ba3dd36c
PZ
8652static void perf_swevent_init_hrtimer(struct perf_event *event)
8653{
8654 struct hw_perf_event *hwc = &event->hw;
8655
8656 if (!is_sampling_event(event))
8657 return;
8658
8659 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8660 hwc->hrtimer.function = perf_swevent_hrtimer;
8661
8662 /*
8663 * Since hrtimers have a fixed rate, we can do a static freq->period
8664 * mapping and avoid the whole period adjust feedback stuff.
8665 */
8666 if (event->attr.freq) {
8667 long freq = event->attr.sample_freq;
8668
8669 event->attr.sample_period = NSEC_PER_SEC / freq;
8670 hwc->sample_period = event->attr.sample_period;
8671 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8672 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8673 event->attr.freq = 0;
8674 }
8675}
8676
b0a873eb
PZ
8677/*
8678 * Software event: cpu wall time clock
8679 */
8680
8681static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8682{
b0a873eb
PZ
8683 s64 prev;
8684 u64 now;
8685
a4eaf7f1 8686 now = local_clock();
b0a873eb
PZ
8687 prev = local64_xchg(&event->hw.prev_count, now);
8688 local64_add(now - prev, &event->count);
24f1e32c 8689}
24f1e32c 8690
a4eaf7f1 8691static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8692{
a4eaf7f1 8693 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8694 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8695}
8696
a4eaf7f1 8697static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8698{
b0a873eb
PZ
8699 perf_swevent_cancel_hrtimer(event);
8700 cpu_clock_event_update(event);
8701}
f29ac756 8702
a4eaf7f1
PZ
8703static int cpu_clock_event_add(struct perf_event *event, int flags)
8704{
8705 if (flags & PERF_EF_START)
8706 cpu_clock_event_start(event, flags);
6a694a60 8707 perf_event_update_userpage(event);
a4eaf7f1
PZ
8708
8709 return 0;
8710}
8711
8712static void cpu_clock_event_del(struct perf_event *event, int flags)
8713{
8714 cpu_clock_event_stop(event, flags);
8715}
8716
b0a873eb
PZ
8717static void cpu_clock_event_read(struct perf_event *event)
8718{
8719 cpu_clock_event_update(event);
8720}
f344011c 8721
b0a873eb
PZ
8722static int cpu_clock_event_init(struct perf_event *event)
8723{
8724 if (event->attr.type != PERF_TYPE_SOFTWARE)
8725 return -ENOENT;
8726
8727 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8728 return -ENOENT;
8729
2481c5fa
SE
8730 /*
8731 * no branch sampling for software events
8732 */
8733 if (has_branch_stack(event))
8734 return -EOPNOTSUPP;
8735
ba3dd36c
PZ
8736 perf_swevent_init_hrtimer(event);
8737
b0a873eb 8738 return 0;
f29ac756
PZ
8739}
8740
b0a873eb 8741static struct pmu perf_cpu_clock = {
89a1e187
PZ
8742 .task_ctx_nr = perf_sw_context,
8743
34f43927
PZ
8744 .capabilities = PERF_PMU_CAP_NO_NMI,
8745
b0a873eb 8746 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8747 .add = cpu_clock_event_add,
8748 .del = cpu_clock_event_del,
8749 .start = cpu_clock_event_start,
8750 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8751 .read = cpu_clock_event_read,
8752};
8753
8754/*
8755 * Software event: task time clock
8756 */
8757
8758static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8759{
b0a873eb
PZ
8760 u64 prev;
8761 s64 delta;
5c92d124 8762
b0a873eb
PZ
8763 prev = local64_xchg(&event->hw.prev_count, now);
8764 delta = now - prev;
8765 local64_add(delta, &event->count);
8766}
5c92d124 8767
a4eaf7f1 8768static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8769{
a4eaf7f1 8770 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8771 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8772}
8773
a4eaf7f1 8774static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8775{
8776 perf_swevent_cancel_hrtimer(event);
8777 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8778}
8779
8780static int task_clock_event_add(struct perf_event *event, int flags)
8781{
8782 if (flags & PERF_EF_START)
8783 task_clock_event_start(event, flags);
6a694a60 8784 perf_event_update_userpage(event);
b0a873eb 8785
a4eaf7f1
PZ
8786 return 0;
8787}
8788
8789static void task_clock_event_del(struct perf_event *event, int flags)
8790{
8791 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8792}
8793
8794static void task_clock_event_read(struct perf_event *event)
8795{
768a06e2
PZ
8796 u64 now = perf_clock();
8797 u64 delta = now - event->ctx->timestamp;
8798 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8799
8800 task_clock_event_update(event, time);
8801}
8802
8803static int task_clock_event_init(struct perf_event *event)
6fb2915d 8804{
b0a873eb
PZ
8805 if (event->attr.type != PERF_TYPE_SOFTWARE)
8806 return -ENOENT;
8807
8808 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8809 return -ENOENT;
8810
2481c5fa
SE
8811 /*
8812 * no branch sampling for software events
8813 */
8814 if (has_branch_stack(event))
8815 return -EOPNOTSUPP;
8816
ba3dd36c
PZ
8817 perf_swevent_init_hrtimer(event);
8818
b0a873eb 8819 return 0;
6fb2915d
LZ
8820}
8821
b0a873eb 8822static struct pmu perf_task_clock = {
89a1e187
PZ
8823 .task_ctx_nr = perf_sw_context,
8824
34f43927
PZ
8825 .capabilities = PERF_PMU_CAP_NO_NMI,
8826
b0a873eb 8827 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8828 .add = task_clock_event_add,
8829 .del = task_clock_event_del,
8830 .start = task_clock_event_start,
8831 .stop = task_clock_event_stop,
b0a873eb
PZ
8832 .read = task_clock_event_read,
8833};
6fb2915d 8834
ad5133b7 8835static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8836{
e077df4f 8837}
6fb2915d 8838
fbbe0701
SB
8839static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8840{
8841}
8842
ad5133b7 8843static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8844{
ad5133b7 8845 return 0;
6fb2915d
LZ
8846}
8847
18ab2cd3 8848static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8849
8850static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8851{
fbbe0701
SB
8852 __this_cpu_write(nop_txn_flags, flags);
8853
8854 if (flags & ~PERF_PMU_TXN_ADD)
8855 return;
8856
ad5133b7 8857 perf_pmu_disable(pmu);
6fb2915d
LZ
8858}
8859
ad5133b7
PZ
8860static int perf_pmu_commit_txn(struct pmu *pmu)
8861{
fbbe0701
SB
8862 unsigned int flags = __this_cpu_read(nop_txn_flags);
8863
8864 __this_cpu_write(nop_txn_flags, 0);
8865
8866 if (flags & ~PERF_PMU_TXN_ADD)
8867 return 0;
8868
ad5133b7
PZ
8869 perf_pmu_enable(pmu);
8870 return 0;
8871}
e077df4f 8872
ad5133b7 8873static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8874{
fbbe0701
SB
8875 unsigned int flags = __this_cpu_read(nop_txn_flags);
8876
8877 __this_cpu_write(nop_txn_flags, 0);
8878
8879 if (flags & ~PERF_PMU_TXN_ADD)
8880 return;
8881
ad5133b7 8882 perf_pmu_enable(pmu);
24f1e32c
FW
8883}
8884
35edc2a5
PZ
8885static int perf_event_idx_default(struct perf_event *event)
8886{
c719f560 8887 return 0;
35edc2a5
PZ
8888}
8889
8dc85d54
PZ
8890/*
8891 * Ensures all contexts with the same task_ctx_nr have the same
8892 * pmu_cpu_context too.
8893 */
9e317041 8894static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8895{
8dc85d54 8896 struct pmu *pmu;
b326e956 8897
8dc85d54
PZ
8898 if (ctxn < 0)
8899 return NULL;
24f1e32c 8900
8dc85d54
PZ
8901 list_for_each_entry(pmu, &pmus, entry) {
8902 if (pmu->task_ctx_nr == ctxn)
8903 return pmu->pmu_cpu_context;
8904 }
24f1e32c 8905
8dc85d54 8906 return NULL;
24f1e32c
FW
8907}
8908
51676957
PZ
8909static void free_pmu_context(struct pmu *pmu)
8910{
df0062b2
WD
8911 /*
8912 * Static contexts such as perf_sw_context have a global lifetime
8913 * and may be shared between different PMUs. Avoid freeing them
8914 * when a single PMU is going away.
8915 */
8916 if (pmu->task_ctx_nr > perf_invalid_context)
8917 return;
8918
8dc85d54 8919 mutex_lock(&pmus_lock);
51676957 8920 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8921 mutex_unlock(&pmus_lock);
24f1e32c 8922}
6e855cd4
AS
8923
8924/*
8925 * Let userspace know that this PMU supports address range filtering:
8926 */
8927static ssize_t nr_addr_filters_show(struct device *dev,
8928 struct device_attribute *attr,
8929 char *page)
8930{
8931 struct pmu *pmu = dev_get_drvdata(dev);
8932
8933 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8934}
8935DEVICE_ATTR_RO(nr_addr_filters);
8936
2e80a82a 8937static struct idr pmu_idr;
d6d020e9 8938
abe43400
PZ
8939static ssize_t
8940type_show(struct device *dev, struct device_attribute *attr, char *page)
8941{
8942 struct pmu *pmu = dev_get_drvdata(dev);
8943
8944 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8945}
90826ca7 8946static DEVICE_ATTR_RO(type);
abe43400 8947
62b85639
SE
8948static ssize_t
8949perf_event_mux_interval_ms_show(struct device *dev,
8950 struct device_attribute *attr,
8951 char *page)
8952{
8953 struct pmu *pmu = dev_get_drvdata(dev);
8954
8955 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8956}
8957
272325c4
PZ
8958static DEFINE_MUTEX(mux_interval_mutex);
8959
62b85639
SE
8960static ssize_t
8961perf_event_mux_interval_ms_store(struct device *dev,
8962 struct device_attribute *attr,
8963 const char *buf, size_t count)
8964{
8965 struct pmu *pmu = dev_get_drvdata(dev);
8966 int timer, cpu, ret;
8967
8968 ret = kstrtoint(buf, 0, &timer);
8969 if (ret)
8970 return ret;
8971
8972 if (timer < 1)
8973 return -EINVAL;
8974
8975 /* same value, noting to do */
8976 if (timer == pmu->hrtimer_interval_ms)
8977 return count;
8978
272325c4 8979 mutex_lock(&mux_interval_mutex);
62b85639
SE
8980 pmu->hrtimer_interval_ms = timer;
8981
8982 /* update all cpuctx for this PMU */
a63fbed7 8983 cpus_read_lock();
272325c4 8984 for_each_online_cpu(cpu) {
62b85639
SE
8985 struct perf_cpu_context *cpuctx;
8986 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8987 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8988
272325c4
PZ
8989 cpu_function_call(cpu,
8990 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8991 }
a63fbed7 8992 cpus_read_unlock();
272325c4 8993 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8994
8995 return count;
8996}
90826ca7 8997static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8998
90826ca7
GKH
8999static struct attribute *pmu_dev_attrs[] = {
9000 &dev_attr_type.attr,
9001 &dev_attr_perf_event_mux_interval_ms.attr,
9002 NULL,
abe43400 9003};
90826ca7 9004ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9005
9006static int pmu_bus_running;
9007static struct bus_type pmu_bus = {
9008 .name = "event_source",
90826ca7 9009 .dev_groups = pmu_dev_groups,
abe43400
PZ
9010};
9011
9012static void pmu_dev_release(struct device *dev)
9013{
9014 kfree(dev);
9015}
9016
9017static int pmu_dev_alloc(struct pmu *pmu)
9018{
9019 int ret = -ENOMEM;
9020
9021 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9022 if (!pmu->dev)
9023 goto out;
9024
0c9d42ed 9025 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9026 device_initialize(pmu->dev);
9027 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9028 if (ret)
9029 goto free_dev;
9030
9031 dev_set_drvdata(pmu->dev, pmu);
9032 pmu->dev->bus = &pmu_bus;
9033 pmu->dev->release = pmu_dev_release;
9034 ret = device_add(pmu->dev);
9035 if (ret)
9036 goto free_dev;
9037
6e855cd4
AS
9038 /* For PMUs with address filters, throw in an extra attribute: */
9039 if (pmu->nr_addr_filters)
9040 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9041
9042 if (ret)
9043 goto del_dev;
9044
abe43400
PZ
9045out:
9046 return ret;
9047
6e855cd4
AS
9048del_dev:
9049 device_del(pmu->dev);
9050
abe43400
PZ
9051free_dev:
9052 put_device(pmu->dev);
9053 goto out;
9054}
9055
547e9fd7 9056static struct lock_class_key cpuctx_mutex;
facc4307 9057static struct lock_class_key cpuctx_lock;
547e9fd7 9058
03d8e80b 9059int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9060{
108b02cf 9061 int cpu, ret;
24f1e32c 9062
b0a873eb 9063 mutex_lock(&pmus_lock);
33696fc0
PZ
9064 ret = -ENOMEM;
9065 pmu->pmu_disable_count = alloc_percpu(int);
9066 if (!pmu->pmu_disable_count)
9067 goto unlock;
f29ac756 9068
2e80a82a
PZ
9069 pmu->type = -1;
9070 if (!name)
9071 goto skip_type;
9072 pmu->name = name;
9073
9074 if (type < 0) {
0e9c3be2
TH
9075 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9076 if (type < 0) {
9077 ret = type;
2e80a82a
PZ
9078 goto free_pdc;
9079 }
9080 }
9081 pmu->type = type;
9082
abe43400
PZ
9083 if (pmu_bus_running) {
9084 ret = pmu_dev_alloc(pmu);
9085 if (ret)
9086 goto free_idr;
9087 }
9088
2e80a82a 9089skip_type:
26657848
PZ
9090 if (pmu->task_ctx_nr == perf_hw_context) {
9091 static int hw_context_taken = 0;
9092
5101ef20
MR
9093 /*
9094 * Other than systems with heterogeneous CPUs, it never makes
9095 * sense for two PMUs to share perf_hw_context. PMUs which are
9096 * uncore must use perf_invalid_context.
9097 */
9098 if (WARN_ON_ONCE(hw_context_taken &&
9099 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9100 pmu->task_ctx_nr = perf_invalid_context;
9101
9102 hw_context_taken = 1;
9103 }
9104
8dc85d54
PZ
9105 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9106 if (pmu->pmu_cpu_context)
9107 goto got_cpu_context;
f29ac756 9108
c4814202 9109 ret = -ENOMEM;
108b02cf
PZ
9110 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9111 if (!pmu->pmu_cpu_context)
abe43400 9112 goto free_dev;
f344011c 9113
108b02cf
PZ
9114 for_each_possible_cpu(cpu) {
9115 struct perf_cpu_context *cpuctx;
9116
9117 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9118 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9119 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9120 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9121 cpuctx->ctx.pmu = pmu;
a63fbed7 9122 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9123
272325c4 9124 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9125 }
76e1d904 9126
8dc85d54 9127got_cpu_context:
ad5133b7
PZ
9128 if (!pmu->start_txn) {
9129 if (pmu->pmu_enable) {
9130 /*
9131 * If we have pmu_enable/pmu_disable calls, install
9132 * transaction stubs that use that to try and batch
9133 * hardware accesses.
9134 */
9135 pmu->start_txn = perf_pmu_start_txn;
9136 pmu->commit_txn = perf_pmu_commit_txn;
9137 pmu->cancel_txn = perf_pmu_cancel_txn;
9138 } else {
fbbe0701 9139 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9140 pmu->commit_txn = perf_pmu_nop_int;
9141 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9142 }
5c92d124 9143 }
15dbf27c 9144
ad5133b7
PZ
9145 if (!pmu->pmu_enable) {
9146 pmu->pmu_enable = perf_pmu_nop_void;
9147 pmu->pmu_disable = perf_pmu_nop_void;
9148 }
9149
35edc2a5
PZ
9150 if (!pmu->event_idx)
9151 pmu->event_idx = perf_event_idx_default;
9152
b0a873eb 9153 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9154 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9155 ret = 0;
9156unlock:
b0a873eb
PZ
9157 mutex_unlock(&pmus_lock);
9158
33696fc0 9159 return ret;
108b02cf 9160
abe43400
PZ
9161free_dev:
9162 device_del(pmu->dev);
9163 put_device(pmu->dev);
9164
2e80a82a
PZ
9165free_idr:
9166 if (pmu->type >= PERF_TYPE_MAX)
9167 idr_remove(&pmu_idr, pmu->type);
9168
108b02cf
PZ
9169free_pdc:
9170 free_percpu(pmu->pmu_disable_count);
9171 goto unlock;
f29ac756 9172}
c464c76e 9173EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9174
b0a873eb 9175void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9176{
0933840a
JO
9177 int remove_device;
9178
b0a873eb 9179 mutex_lock(&pmus_lock);
0933840a 9180 remove_device = pmu_bus_running;
b0a873eb
PZ
9181 list_del_rcu(&pmu->entry);
9182 mutex_unlock(&pmus_lock);
5c92d124 9183
0475f9ea 9184 /*
cde8e884
PZ
9185 * We dereference the pmu list under both SRCU and regular RCU, so
9186 * synchronize against both of those.
0475f9ea 9187 */
b0a873eb 9188 synchronize_srcu(&pmus_srcu);
cde8e884 9189 synchronize_rcu();
d6d020e9 9190
33696fc0 9191 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9192 if (pmu->type >= PERF_TYPE_MAX)
9193 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9194 if (remove_device) {
9195 if (pmu->nr_addr_filters)
9196 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9197 device_del(pmu->dev);
9198 put_device(pmu->dev);
9199 }
51676957 9200 free_pmu_context(pmu);
b0a873eb 9201}
c464c76e 9202EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9203
cc34b98b
MR
9204static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9205{
ccd41c86 9206 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9207 int ret;
9208
9209 if (!try_module_get(pmu->module))
9210 return -ENODEV;
ccd41c86 9211
0c7296ca
PZ
9212 /*
9213 * A number of pmu->event_init() methods iterate the sibling_list to,
9214 * for example, validate if the group fits on the PMU. Therefore,
9215 * if this is a sibling event, acquire the ctx->mutex to protect
9216 * the sibling_list.
9217 */
9218 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9219 /*
9220 * This ctx->mutex can nest when we're called through
9221 * inheritance. See the perf_event_ctx_lock_nested() comment.
9222 */
9223 ctx = perf_event_ctx_lock_nested(event->group_leader,
9224 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9225 BUG_ON(!ctx);
9226 }
9227
cc34b98b
MR
9228 event->pmu = pmu;
9229 ret = pmu->event_init(event);
ccd41c86
PZ
9230
9231 if (ctx)
9232 perf_event_ctx_unlock(event->group_leader, ctx);
9233
cc34b98b
MR
9234 if (ret)
9235 module_put(pmu->module);
9236
9237 return ret;
9238}
9239
18ab2cd3 9240static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9241{
85c617ab 9242 struct pmu *pmu;
b0a873eb 9243 int idx;
940c5b29 9244 int ret;
b0a873eb
PZ
9245
9246 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9247
40999312
KL
9248 /* Try parent's PMU first: */
9249 if (event->parent && event->parent->pmu) {
9250 pmu = event->parent->pmu;
9251 ret = perf_try_init_event(pmu, event);
9252 if (!ret)
9253 goto unlock;
9254 }
9255
2e80a82a
PZ
9256 rcu_read_lock();
9257 pmu = idr_find(&pmu_idr, event->attr.type);
9258 rcu_read_unlock();
940c5b29 9259 if (pmu) {
cc34b98b 9260 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9261 if (ret)
9262 pmu = ERR_PTR(ret);
2e80a82a 9263 goto unlock;
940c5b29 9264 }
2e80a82a 9265
b0a873eb 9266 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9267 ret = perf_try_init_event(pmu, event);
b0a873eb 9268 if (!ret)
e5f4d339 9269 goto unlock;
76e1d904 9270
b0a873eb
PZ
9271 if (ret != -ENOENT) {
9272 pmu = ERR_PTR(ret);
e5f4d339 9273 goto unlock;
f344011c 9274 }
5c92d124 9275 }
e5f4d339
PZ
9276 pmu = ERR_PTR(-ENOENT);
9277unlock:
b0a873eb 9278 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9279
4aeb0b42 9280 return pmu;
5c92d124
IM
9281}
9282
f2fb6bef
KL
9283static void attach_sb_event(struct perf_event *event)
9284{
9285 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9286
9287 raw_spin_lock(&pel->lock);
9288 list_add_rcu(&event->sb_list, &pel->list);
9289 raw_spin_unlock(&pel->lock);
9290}
9291
aab5b71e
PZ
9292/*
9293 * We keep a list of all !task (and therefore per-cpu) events
9294 * that need to receive side-band records.
9295 *
9296 * This avoids having to scan all the various PMU per-cpu contexts
9297 * looking for them.
9298 */
f2fb6bef
KL
9299static void account_pmu_sb_event(struct perf_event *event)
9300{
a4f144eb 9301 if (is_sb_event(event))
f2fb6bef
KL
9302 attach_sb_event(event);
9303}
9304
4beb31f3
FW
9305static void account_event_cpu(struct perf_event *event, int cpu)
9306{
9307 if (event->parent)
9308 return;
9309
4beb31f3
FW
9310 if (is_cgroup_event(event))
9311 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9312}
9313
555e0c1e
FW
9314/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9315static void account_freq_event_nohz(void)
9316{
9317#ifdef CONFIG_NO_HZ_FULL
9318 /* Lock so we don't race with concurrent unaccount */
9319 spin_lock(&nr_freq_lock);
9320 if (atomic_inc_return(&nr_freq_events) == 1)
9321 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9322 spin_unlock(&nr_freq_lock);
9323#endif
9324}
9325
9326static void account_freq_event(void)
9327{
9328 if (tick_nohz_full_enabled())
9329 account_freq_event_nohz();
9330 else
9331 atomic_inc(&nr_freq_events);
9332}
9333
9334
766d6c07
FW
9335static void account_event(struct perf_event *event)
9336{
25432ae9
PZ
9337 bool inc = false;
9338
4beb31f3
FW
9339 if (event->parent)
9340 return;
9341
766d6c07 9342 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9343 inc = true;
766d6c07
FW
9344 if (event->attr.mmap || event->attr.mmap_data)
9345 atomic_inc(&nr_mmap_events);
9346 if (event->attr.comm)
9347 atomic_inc(&nr_comm_events);
e4222673
HB
9348 if (event->attr.namespaces)
9349 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9350 if (event->attr.task)
9351 atomic_inc(&nr_task_events);
555e0c1e
FW
9352 if (event->attr.freq)
9353 account_freq_event();
45ac1403
AH
9354 if (event->attr.context_switch) {
9355 atomic_inc(&nr_switch_events);
25432ae9 9356 inc = true;
45ac1403 9357 }
4beb31f3 9358 if (has_branch_stack(event))
25432ae9 9359 inc = true;
4beb31f3 9360 if (is_cgroup_event(event))
25432ae9
PZ
9361 inc = true;
9362
9107c89e 9363 if (inc) {
5bce9db1
AS
9364 /*
9365 * We need the mutex here because static_branch_enable()
9366 * must complete *before* the perf_sched_count increment
9367 * becomes visible.
9368 */
9107c89e
PZ
9369 if (atomic_inc_not_zero(&perf_sched_count))
9370 goto enabled;
9371
9372 mutex_lock(&perf_sched_mutex);
9373 if (!atomic_read(&perf_sched_count)) {
9374 static_branch_enable(&perf_sched_events);
9375 /*
9376 * Guarantee that all CPUs observe they key change and
9377 * call the perf scheduling hooks before proceeding to
9378 * install events that need them.
9379 */
9380 synchronize_sched();
9381 }
9382 /*
9383 * Now that we have waited for the sync_sched(), allow further
9384 * increments to by-pass the mutex.
9385 */
9386 atomic_inc(&perf_sched_count);
9387 mutex_unlock(&perf_sched_mutex);
9388 }
9389enabled:
4beb31f3
FW
9390
9391 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9392
9393 account_pmu_sb_event(event);
766d6c07
FW
9394}
9395
0793a61d 9396/*
cdd6c482 9397 * Allocate and initialize a event structure
0793a61d 9398 */
cdd6c482 9399static struct perf_event *
c3f00c70 9400perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9401 struct task_struct *task,
9402 struct perf_event *group_leader,
9403 struct perf_event *parent_event,
4dc0da86 9404 perf_overflow_handler_t overflow_handler,
79dff51e 9405 void *context, int cgroup_fd)
0793a61d 9406{
51b0fe39 9407 struct pmu *pmu;
cdd6c482
IM
9408 struct perf_event *event;
9409 struct hw_perf_event *hwc;
90983b16 9410 long err = -EINVAL;
0793a61d 9411
66832eb4
ON
9412 if ((unsigned)cpu >= nr_cpu_ids) {
9413 if (!task || cpu != -1)
9414 return ERR_PTR(-EINVAL);
9415 }
9416
c3f00c70 9417 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9418 if (!event)
d5d2bc0d 9419 return ERR_PTR(-ENOMEM);
0793a61d 9420
04289bb9 9421 /*
cdd6c482 9422 * Single events are their own group leaders, with an
04289bb9
IM
9423 * empty sibling list:
9424 */
9425 if (!group_leader)
cdd6c482 9426 group_leader = event;
04289bb9 9427
cdd6c482
IM
9428 mutex_init(&event->child_mutex);
9429 INIT_LIST_HEAD(&event->child_list);
fccc714b 9430
cdd6c482
IM
9431 INIT_LIST_HEAD(&event->group_entry);
9432 INIT_LIST_HEAD(&event->event_entry);
9433 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9434 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9435 INIT_LIST_HEAD(&event->active_entry);
375637bc 9436 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9437 INIT_HLIST_NODE(&event->hlist_entry);
9438
10c6db11 9439
cdd6c482 9440 init_waitqueue_head(&event->waitq);
e360adbe 9441 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9442
cdd6c482 9443 mutex_init(&event->mmap_mutex);
375637bc 9444 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9445
a6fa941d 9446 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9447 event->cpu = cpu;
9448 event->attr = *attr;
9449 event->group_leader = group_leader;
9450 event->pmu = NULL;
cdd6c482 9451 event->oncpu = -1;
a96bbc16 9452
cdd6c482 9453 event->parent = parent_event;
b84fbc9f 9454
17cf22c3 9455 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9456 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9457
cdd6c482 9458 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9459
d580ff86
PZ
9460 if (task) {
9461 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9462 /*
50f16a8b
PZ
9463 * XXX pmu::event_init needs to know what task to account to
9464 * and we cannot use the ctx information because we need the
9465 * pmu before we get a ctx.
d580ff86 9466 */
50f16a8b 9467 event->hw.target = task;
d580ff86
PZ
9468 }
9469
34f43927
PZ
9470 event->clock = &local_clock;
9471 if (parent_event)
9472 event->clock = parent_event->clock;
9473
4dc0da86 9474 if (!overflow_handler && parent_event) {
b326e956 9475 overflow_handler = parent_event->overflow_handler;
4dc0da86 9476 context = parent_event->overflow_handler_context;
f1e4ba5b 9477#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9478 if (overflow_handler == bpf_overflow_handler) {
9479 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9480
9481 if (IS_ERR(prog)) {
9482 err = PTR_ERR(prog);
9483 goto err_ns;
9484 }
9485 event->prog = prog;
9486 event->orig_overflow_handler =
9487 parent_event->orig_overflow_handler;
9488 }
9489#endif
4dc0da86 9490 }
66832eb4 9491
1879445d
WN
9492 if (overflow_handler) {
9493 event->overflow_handler = overflow_handler;
9494 event->overflow_handler_context = context;
9ecda41a
WN
9495 } else if (is_write_backward(event)){
9496 event->overflow_handler = perf_event_output_backward;
9497 event->overflow_handler_context = NULL;
1879445d 9498 } else {
9ecda41a 9499 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9500 event->overflow_handler_context = NULL;
9501 }
97eaf530 9502
0231bb53 9503 perf_event__state_init(event);
a86ed508 9504
4aeb0b42 9505 pmu = NULL;
b8e83514 9506
cdd6c482 9507 hwc = &event->hw;
bd2b5b12 9508 hwc->sample_period = attr->sample_period;
0d48696f 9509 if (attr->freq && attr->sample_freq)
bd2b5b12 9510 hwc->sample_period = 1;
eced1dfc 9511 hwc->last_period = hwc->sample_period;
bd2b5b12 9512
e7850595 9513 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9514
2023b359 9515 /*
ba5213ae
PZ
9516 * We currently do not support PERF_SAMPLE_READ on inherited events.
9517 * See perf_output_read().
2023b359 9518 */
ba5213ae 9519 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9520 goto err_ns;
a46a2300
YZ
9521
9522 if (!has_branch_stack(event))
9523 event->attr.branch_sample_type = 0;
2023b359 9524
79dff51e
MF
9525 if (cgroup_fd != -1) {
9526 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9527 if (err)
9528 goto err_ns;
9529 }
9530
b0a873eb 9531 pmu = perf_init_event(event);
85c617ab 9532 if (IS_ERR(pmu)) {
4aeb0b42 9533 err = PTR_ERR(pmu);
90983b16 9534 goto err_ns;
621a01ea 9535 }
d5d2bc0d 9536
bed5b25a
AS
9537 err = exclusive_event_init(event);
9538 if (err)
9539 goto err_pmu;
9540
375637bc
AS
9541 if (has_addr_filter(event)) {
9542 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9543 sizeof(unsigned long),
9544 GFP_KERNEL);
36cc2b92
DC
9545 if (!event->addr_filters_offs) {
9546 err = -ENOMEM;
375637bc 9547 goto err_per_task;
36cc2b92 9548 }
375637bc
AS
9549
9550 /* force hw sync on the address filters */
9551 event->addr_filters_gen = 1;
9552 }
9553
cdd6c482 9554 if (!event->parent) {
927c7a9e 9555 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9556 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9557 if (err)
375637bc 9558 goto err_addr_filters;
d010b332 9559 }
f344011c 9560 }
9ee318a7 9561
927a5570
AS
9562 /* symmetric to unaccount_event() in _free_event() */
9563 account_event(event);
9564
cdd6c482 9565 return event;
90983b16 9566
375637bc
AS
9567err_addr_filters:
9568 kfree(event->addr_filters_offs);
9569
bed5b25a
AS
9570err_per_task:
9571 exclusive_event_destroy(event);
9572
90983b16
FW
9573err_pmu:
9574 if (event->destroy)
9575 event->destroy(event);
c464c76e 9576 module_put(pmu->module);
90983b16 9577err_ns:
79dff51e
MF
9578 if (is_cgroup_event(event))
9579 perf_detach_cgroup(event);
90983b16
FW
9580 if (event->ns)
9581 put_pid_ns(event->ns);
9582 kfree(event);
9583
9584 return ERR_PTR(err);
0793a61d
TG
9585}
9586
cdd6c482
IM
9587static int perf_copy_attr(struct perf_event_attr __user *uattr,
9588 struct perf_event_attr *attr)
974802ea 9589{
974802ea 9590 u32 size;
cdf8073d 9591 int ret;
974802ea
PZ
9592
9593 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9594 return -EFAULT;
9595
9596 /*
9597 * zero the full structure, so that a short copy will be nice.
9598 */
9599 memset(attr, 0, sizeof(*attr));
9600
9601 ret = get_user(size, &uattr->size);
9602 if (ret)
9603 return ret;
9604
9605 if (size > PAGE_SIZE) /* silly large */
9606 goto err_size;
9607
9608 if (!size) /* abi compat */
9609 size = PERF_ATTR_SIZE_VER0;
9610
9611 if (size < PERF_ATTR_SIZE_VER0)
9612 goto err_size;
9613
9614 /*
9615 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9616 * ensure all the unknown bits are 0 - i.e. new
9617 * user-space does not rely on any kernel feature
9618 * extensions we dont know about yet.
974802ea
PZ
9619 */
9620 if (size > sizeof(*attr)) {
cdf8073d
IS
9621 unsigned char __user *addr;
9622 unsigned char __user *end;
9623 unsigned char val;
974802ea 9624
cdf8073d
IS
9625 addr = (void __user *)uattr + sizeof(*attr);
9626 end = (void __user *)uattr + size;
974802ea 9627
cdf8073d 9628 for (; addr < end; addr++) {
974802ea
PZ
9629 ret = get_user(val, addr);
9630 if (ret)
9631 return ret;
9632 if (val)
9633 goto err_size;
9634 }
b3e62e35 9635 size = sizeof(*attr);
974802ea
PZ
9636 }
9637
9638 ret = copy_from_user(attr, uattr, size);
9639 if (ret)
9640 return -EFAULT;
9641
f12f42ac
MX
9642 attr->size = size;
9643
cd757645 9644 if (attr->__reserved_1)
974802ea
PZ
9645 return -EINVAL;
9646
9647 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9648 return -EINVAL;
9649
9650 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9651 return -EINVAL;
9652
bce38cd5
SE
9653 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9654 u64 mask = attr->branch_sample_type;
9655
9656 /* only using defined bits */
9657 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9658 return -EINVAL;
9659
9660 /* at least one branch bit must be set */
9661 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9662 return -EINVAL;
9663
bce38cd5
SE
9664 /* propagate priv level, when not set for branch */
9665 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9666
9667 /* exclude_kernel checked on syscall entry */
9668 if (!attr->exclude_kernel)
9669 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9670
9671 if (!attr->exclude_user)
9672 mask |= PERF_SAMPLE_BRANCH_USER;
9673
9674 if (!attr->exclude_hv)
9675 mask |= PERF_SAMPLE_BRANCH_HV;
9676 /*
9677 * adjust user setting (for HW filter setup)
9678 */
9679 attr->branch_sample_type = mask;
9680 }
e712209a
SE
9681 /* privileged levels capture (kernel, hv): check permissions */
9682 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9683 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9684 return -EACCES;
bce38cd5 9685 }
4018994f 9686
c5ebcedb 9687 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9688 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9689 if (ret)
9690 return ret;
9691 }
9692
9693 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9694 if (!arch_perf_have_user_stack_dump())
9695 return -ENOSYS;
9696
9697 /*
9698 * We have __u32 type for the size, but so far
9699 * we can only use __u16 as maximum due to the
9700 * __u16 sample size limit.
9701 */
9702 if (attr->sample_stack_user >= USHRT_MAX)
9703 ret = -EINVAL;
9704 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9705 ret = -EINVAL;
9706 }
4018994f 9707
60e2364e
SE
9708 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9709 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9710out:
9711 return ret;
9712
9713err_size:
9714 put_user(sizeof(*attr), &uattr->size);
9715 ret = -E2BIG;
9716 goto out;
9717}
9718
ac9721f3
PZ
9719static int
9720perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9721{
b69cf536 9722 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9723 int ret = -EINVAL;
9724
ac9721f3 9725 if (!output_event)
a4be7c27
PZ
9726 goto set;
9727
ac9721f3
PZ
9728 /* don't allow circular references */
9729 if (event == output_event)
a4be7c27
PZ
9730 goto out;
9731
0f139300
PZ
9732 /*
9733 * Don't allow cross-cpu buffers
9734 */
9735 if (output_event->cpu != event->cpu)
9736 goto out;
9737
9738 /*
76369139 9739 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9740 */
9741 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9742 goto out;
9743
34f43927
PZ
9744 /*
9745 * Mixing clocks in the same buffer is trouble you don't need.
9746 */
9747 if (output_event->clock != event->clock)
9748 goto out;
9749
9ecda41a
WN
9750 /*
9751 * Either writing ring buffer from beginning or from end.
9752 * Mixing is not allowed.
9753 */
9754 if (is_write_backward(output_event) != is_write_backward(event))
9755 goto out;
9756
45bfb2e5
PZ
9757 /*
9758 * If both events generate aux data, they must be on the same PMU
9759 */
9760 if (has_aux(event) && has_aux(output_event) &&
9761 event->pmu != output_event->pmu)
9762 goto out;
9763
a4be7c27 9764set:
cdd6c482 9765 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9766 /* Can't redirect output if we've got an active mmap() */
9767 if (atomic_read(&event->mmap_count))
9768 goto unlock;
a4be7c27 9769
ac9721f3 9770 if (output_event) {
76369139
FW
9771 /* get the rb we want to redirect to */
9772 rb = ring_buffer_get(output_event);
9773 if (!rb)
ac9721f3 9774 goto unlock;
a4be7c27
PZ
9775 }
9776
b69cf536 9777 ring_buffer_attach(event, rb);
9bb5d40c 9778
a4be7c27 9779 ret = 0;
ac9721f3
PZ
9780unlock:
9781 mutex_unlock(&event->mmap_mutex);
9782
a4be7c27 9783out:
a4be7c27
PZ
9784 return ret;
9785}
9786
f63a8daa
PZ
9787static void mutex_lock_double(struct mutex *a, struct mutex *b)
9788{
9789 if (b < a)
9790 swap(a, b);
9791
9792 mutex_lock(a);
9793 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9794}
9795
34f43927
PZ
9796static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9797{
9798 bool nmi_safe = false;
9799
9800 switch (clk_id) {
9801 case CLOCK_MONOTONIC:
9802 event->clock = &ktime_get_mono_fast_ns;
9803 nmi_safe = true;
9804 break;
9805
9806 case CLOCK_MONOTONIC_RAW:
9807 event->clock = &ktime_get_raw_fast_ns;
9808 nmi_safe = true;
9809 break;
9810
9811 case CLOCK_REALTIME:
9812 event->clock = &ktime_get_real_ns;
9813 break;
9814
9815 case CLOCK_BOOTTIME:
9816 event->clock = &ktime_get_boot_ns;
9817 break;
9818
9819 case CLOCK_TAI:
9820 event->clock = &ktime_get_tai_ns;
9821 break;
9822
9823 default:
9824 return -EINVAL;
9825 }
9826
9827 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9828 return -EINVAL;
9829
9830 return 0;
9831}
9832
321027c1
PZ
9833/*
9834 * Variation on perf_event_ctx_lock_nested(), except we take two context
9835 * mutexes.
9836 */
9837static struct perf_event_context *
9838__perf_event_ctx_lock_double(struct perf_event *group_leader,
9839 struct perf_event_context *ctx)
9840{
9841 struct perf_event_context *gctx;
9842
9843again:
9844 rcu_read_lock();
9845 gctx = READ_ONCE(group_leader->ctx);
9846 if (!atomic_inc_not_zero(&gctx->refcount)) {
9847 rcu_read_unlock();
9848 goto again;
9849 }
9850 rcu_read_unlock();
9851
9852 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9853
9854 if (group_leader->ctx != gctx) {
9855 mutex_unlock(&ctx->mutex);
9856 mutex_unlock(&gctx->mutex);
9857 put_ctx(gctx);
9858 goto again;
9859 }
9860
9861 return gctx;
9862}
9863
0793a61d 9864/**
cdd6c482 9865 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9866 *
cdd6c482 9867 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9868 * @pid: target pid
9f66a381 9869 * @cpu: target cpu
cdd6c482 9870 * @group_fd: group leader event fd
0793a61d 9871 */
cdd6c482
IM
9872SYSCALL_DEFINE5(perf_event_open,
9873 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9874 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9875{
b04243ef
PZ
9876 struct perf_event *group_leader = NULL, *output_event = NULL;
9877 struct perf_event *event, *sibling;
cdd6c482 9878 struct perf_event_attr attr;
f63a8daa 9879 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9880 struct file *event_file = NULL;
2903ff01 9881 struct fd group = {NULL, 0};
38a81da2 9882 struct task_struct *task = NULL;
89a1e187 9883 struct pmu *pmu;
ea635c64 9884 int event_fd;
b04243ef 9885 int move_group = 0;
dc86cabe 9886 int err;
a21b0b35 9887 int f_flags = O_RDWR;
79dff51e 9888 int cgroup_fd = -1;
0793a61d 9889
2743a5b0 9890 /* for future expandability... */
e5d1367f 9891 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9892 return -EINVAL;
9893
dc86cabe
IM
9894 err = perf_copy_attr(attr_uptr, &attr);
9895 if (err)
9896 return err;
eab656ae 9897
0764771d
PZ
9898 if (!attr.exclude_kernel) {
9899 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9900 return -EACCES;
9901 }
9902
e4222673
HB
9903 if (attr.namespaces) {
9904 if (!capable(CAP_SYS_ADMIN))
9905 return -EACCES;
9906 }
9907
df58ab24 9908 if (attr.freq) {
cdd6c482 9909 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9910 return -EINVAL;
0819b2e3
PZ
9911 } else {
9912 if (attr.sample_period & (1ULL << 63))
9913 return -EINVAL;
df58ab24
PZ
9914 }
9915
fc7ce9c7
KL
9916 /* Only privileged users can get physical addresses */
9917 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9918 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9919 return -EACCES;
9920
97c79a38
ACM
9921 if (!attr.sample_max_stack)
9922 attr.sample_max_stack = sysctl_perf_event_max_stack;
9923
e5d1367f
SE
9924 /*
9925 * In cgroup mode, the pid argument is used to pass the fd
9926 * opened to the cgroup directory in cgroupfs. The cpu argument
9927 * designates the cpu on which to monitor threads from that
9928 * cgroup.
9929 */
9930 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9931 return -EINVAL;
9932
a21b0b35
YD
9933 if (flags & PERF_FLAG_FD_CLOEXEC)
9934 f_flags |= O_CLOEXEC;
9935
9936 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9937 if (event_fd < 0)
9938 return event_fd;
9939
ac9721f3 9940 if (group_fd != -1) {
2903ff01
AV
9941 err = perf_fget_light(group_fd, &group);
9942 if (err)
d14b12d7 9943 goto err_fd;
2903ff01 9944 group_leader = group.file->private_data;
ac9721f3
PZ
9945 if (flags & PERF_FLAG_FD_OUTPUT)
9946 output_event = group_leader;
9947 if (flags & PERF_FLAG_FD_NO_GROUP)
9948 group_leader = NULL;
9949 }
9950
e5d1367f 9951 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9952 task = find_lively_task_by_vpid(pid);
9953 if (IS_ERR(task)) {
9954 err = PTR_ERR(task);
9955 goto err_group_fd;
9956 }
9957 }
9958
1f4ee503
PZ
9959 if (task && group_leader &&
9960 group_leader->attr.inherit != attr.inherit) {
9961 err = -EINVAL;
9962 goto err_task;
9963 }
9964
79c9ce57
PZ
9965 if (task) {
9966 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9967 if (err)
e5aeee51 9968 goto err_task;
79c9ce57
PZ
9969
9970 /*
9971 * Reuse ptrace permission checks for now.
9972 *
9973 * We must hold cred_guard_mutex across this and any potential
9974 * perf_install_in_context() call for this new event to
9975 * serialize against exec() altering our credentials (and the
9976 * perf_event_exit_task() that could imply).
9977 */
9978 err = -EACCES;
9979 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9980 goto err_cred;
9981 }
9982
79dff51e
MF
9983 if (flags & PERF_FLAG_PID_CGROUP)
9984 cgroup_fd = pid;
9985
4dc0da86 9986 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9987 NULL, NULL, cgroup_fd);
d14b12d7
SE
9988 if (IS_ERR(event)) {
9989 err = PTR_ERR(event);
79c9ce57 9990 goto err_cred;
d14b12d7
SE
9991 }
9992
53b25335
VW
9993 if (is_sampling_event(event)) {
9994 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9995 err = -EOPNOTSUPP;
53b25335
VW
9996 goto err_alloc;
9997 }
9998 }
9999
89a1e187
PZ
10000 /*
10001 * Special case software events and allow them to be part of
10002 * any hardware group.
10003 */
10004 pmu = event->pmu;
b04243ef 10005
34f43927
PZ
10006 if (attr.use_clockid) {
10007 err = perf_event_set_clock(event, attr.clockid);
10008 if (err)
10009 goto err_alloc;
10010 }
10011
4ff6a8de
DCC
10012 if (pmu->task_ctx_nr == perf_sw_context)
10013 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10014
b04243ef
PZ
10015 if (group_leader &&
10016 (is_software_event(event) != is_software_event(group_leader))) {
10017 if (is_software_event(event)) {
10018 /*
10019 * If event and group_leader are not both a software
10020 * event, and event is, then group leader is not.
10021 *
10022 * Allow the addition of software events to !software
10023 * groups, this is safe because software events never
10024 * fail to schedule.
10025 */
10026 pmu = group_leader->pmu;
10027 } else if (is_software_event(group_leader) &&
4ff6a8de 10028 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10029 /*
10030 * In case the group is a pure software group, and we
10031 * try to add a hardware event, move the whole group to
10032 * the hardware context.
10033 */
10034 move_group = 1;
10035 }
10036 }
89a1e187
PZ
10037
10038 /*
10039 * Get the target context (task or percpu):
10040 */
4af57ef2 10041 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10042 if (IS_ERR(ctx)) {
10043 err = PTR_ERR(ctx);
c6be5a5c 10044 goto err_alloc;
89a1e187
PZ
10045 }
10046
bed5b25a
AS
10047 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10048 err = -EBUSY;
10049 goto err_context;
10050 }
10051
ccff286d 10052 /*
cdd6c482 10053 * Look up the group leader (we will attach this event to it):
04289bb9 10054 */
ac9721f3 10055 if (group_leader) {
dc86cabe 10056 err = -EINVAL;
04289bb9 10057
04289bb9 10058 /*
ccff286d
IM
10059 * Do not allow a recursive hierarchy (this new sibling
10060 * becoming part of another group-sibling):
10061 */
10062 if (group_leader->group_leader != group_leader)
c3f00c70 10063 goto err_context;
34f43927
PZ
10064
10065 /* All events in a group should have the same clock */
10066 if (group_leader->clock != event->clock)
10067 goto err_context;
10068
ccff286d 10069 /*
64aee2a9
MR
10070 * Make sure we're both events for the same CPU;
10071 * grouping events for different CPUs is broken; since
10072 * you can never concurrently schedule them anyhow.
04289bb9 10073 */
64aee2a9
MR
10074 if (group_leader->cpu != event->cpu)
10075 goto err_context;
c3c87e77 10076
64aee2a9
MR
10077 /*
10078 * Make sure we're both on the same task, or both
10079 * per-CPU events.
10080 */
10081 if (group_leader->ctx->task != ctx->task)
10082 goto err_context;
10083
10084 /*
10085 * Do not allow to attach to a group in a different task
10086 * or CPU context. If we're moving SW events, we'll fix
10087 * this up later, so allow that.
10088 */
10089 if (!move_group && group_leader->ctx != ctx)
10090 goto err_context;
b04243ef 10091
3b6f9e5c
PM
10092 /*
10093 * Only a group leader can be exclusive or pinned
10094 */
0d48696f 10095 if (attr.exclusive || attr.pinned)
c3f00c70 10096 goto err_context;
ac9721f3
PZ
10097 }
10098
10099 if (output_event) {
10100 err = perf_event_set_output(event, output_event);
10101 if (err)
c3f00c70 10102 goto err_context;
ac9721f3 10103 }
0793a61d 10104
a21b0b35
YD
10105 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10106 f_flags);
ea635c64
AV
10107 if (IS_ERR(event_file)) {
10108 err = PTR_ERR(event_file);
201c2f85 10109 event_file = NULL;
c3f00c70 10110 goto err_context;
ea635c64 10111 }
9b51f66d 10112
b04243ef 10113 if (move_group) {
321027c1
PZ
10114 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10115
84c4e620
PZ
10116 if (gctx->task == TASK_TOMBSTONE) {
10117 err = -ESRCH;
10118 goto err_locked;
10119 }
321027c1
PZ
10120
10121 /*
10122 * Check if we raced against another sys_perf_event_open() call
10123 * moving the software group underneath us.
10124 */
10125 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10126 /*
10127 * If someone moved the group out from under us, check
10128 * if this new event wound up on the same ctx, if so
10129 * its the regular !move_group case, otherwise fail.
10130 */
10131 if (gctx != ctx) {
10132 err = -EINVAL;
10133 goto err_locked;
10134 } else {
10135 perf_event_ctx_unlock(group_leader, gctx);
10136 move_group = 0;
10137 }
10138 }
f55fc2a5
PZ
10139 } else {
10140 mutex_lock(&ctx->mutex);
10141 }
10142
84c4e620
PZ
10143 if (ctx->task == TASK_TOMBSTONE) {
10144 err = -ESRCH;
10145 goto err_locked;
10146 }
10147
a723968c
PZ
10148 if (!perf_event_validate_size(event)) {
10149 err = -E2BIG;
10150 goto err_locked;
10151 }
10152
a63fbed7
TG
10153 if (!task) {
10154 /*
10155 * Check if the @cpu we're creating an event for is online.
10156 *
10157 * We use the perf_cpu_context::ctx::mutex to serialize against
10158 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10159 */
10160 struct perf_cpu_context *cpuctx =
10161 container_of(ctx, struct perf_cpu_context, ctx);
10162
10163 if (!cpuctx->online) {
10164 err = -ENODEV;
10165 goto err_locked;
10166 }
10167 }
10168
10169
f55fc2a5
PZ
10170 /*
10171 * Must be under the same ctx::mutex as perf_install_in_context(),
10172 * because we need to serialize with concurrent event creation.
10173 */
10174 if (!exclusive_event_installable(event, ctx)) {
10175 /* exclusive and group stuff are assumed mutually exclusive */
10176 WARN_ON_ONCE(move_group);
f63a8daa 10177
f55fc2a5
PZ
10178 err = -EBUSY;
10179 goto err_locked;
10180 }
f63a8daa 10181
f55fc2a5
PZ
10182 WARN_ON_ONCE(ctx->parent_ctx);
10183
79c9ce57
PZ
10184 /*
10185 * This is the point on no return; we cannot fail hereafter. This is
10186 * where we start modifying current state.
10187 */
10188
f55fc2a5 10189 if (move_group) {
f63a8daa
PZ
10190 /*
10191 * See perf_event_ctx_lock() for comments on the details
10192 * of swizzling perf_event::ctx.
10193 */
45a0e07a 10194 perf_remove_from_context(group_leader, 0);
279b5165 10195 put_ctx(gctx);
0231bb53 10196
b04243ef
PZ
10197 list_for_each_entry(sibling, &group_leader->sibling_list,
10198 group_entry) {
45a0e07a 10199 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10200 put_ctx(gctx);
10201 }
b04243ef 10202
f63a8daa
PZ
10203 /*
10204 * Wait for everybody to stop referencing the events through
10205 * the old lists, before installing it on new lists.
10206 */
0cda4c02 10207 synchronize_rcu();
f63a8daa 10208
8f95b435
PZI
10209 /*
10210 * Install the group siblings before the group leader.
10211 *
10212 * Because a group leader will try and install the entire group
10213 * (through the sibling list, which is still in-tact), we can
10214 * end up with siblings installed in the wrong context.
10215 *
10216 * By installing siblings first we NO-OP because they're not
10217 * reachable through the group lists.
10218 */
b04243ef
PZ
10219 list_for_each_entry(sibling, &group_leader->sibling_list,
10220 group_entry) {
8f95b435 10221 perf_event__state_init(sibling);
9fc81d87 10222 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10223 get_ctx(ctx);
10224 }
8f95b435
PZI
10225
10226 /*
10227 * Removing from the context ends up with disabled
10228 * event. What we want here is event in the initial
10229 * startup state, ready to be add into new context.
10230 */
10231 perf_event__state_init(group_leader);
10232 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10233 get_ctx(ctx);
bed5b25a
AS
10234 }
10235
f73e22ab
PZ
10236 /*
10237 * Precalculate sample_data sizes; do while holding ctx::mutex such
10238 * that we're serialized against further additions and before
10239 * perf_install_in_context() which is the point the event is active and
10240 * can use these values.
10241 */
10242 perf_event__header_size(event);
10243 perf_event__id_header_size(event);
10244
78cd2c74
PZ
10245 event->owner = current;
10246
e2d37cd2 10247 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10248 perf_unpin_context(ctx);
f63a8daa 10249
f55fc2a5 10250 if (move_group)
321027c1 10251 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10252 mutex_unlock(&ctx->mutex);
9b51f66d 10253
79c9ce57
PZ
10254 if (task) {
10255 mutex_unlock(&task->signal->cred_guard_mutex);
10256 put_task_struct(task);
10257 }
10258
cdd6c482
IM
10259 mutex_lock(&current->perf_event_mutex);
10260 list_add_tail(&event->owner_entry, &current->perf_event_list);
10261 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10262
8a49542c
PZ
10263 /*
10264 * Drop the reference on the group_event after placing the
10265 * new event on the sibling_list. This ensures destruction
10266 * of the group leader will find the pointer to itself in
10267 * perf_group_detach().
10268 */
2903ff01 10269 fdput(group);
ea635c64
AV
10270 fd_install(event_fd, event_file);
10271 return event_fd;
0793a61d 10272
f55fc2a5
PZ
10273err_locked:
10274 if (move_group)
321027c1 10275 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10276 mutex_unlock(&ctx->mutex);
10277/* err_file: */
10278 fput(event_file);
c3f00c70 10279err_context:
fe4b04fa 10280 perf_unpin_context(ctx);
ea635c64 10281 put_ctx(ctx);
c6be5a5c 10282err_alloc:
13005627
PZ
10283 /*
10284 * If event_file is set, the fput() above will have called ->release()
10285 * and that will take care of freeing the event.
10286 */
10287 if (!event_file)
10288 free_event(event);
79c9ce57
PZ
10289err_cred:
10290 if (task)
10291 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10292err_task:
e7d0bc04
PZ
10293 if (task)
10294 put_task_struct(task);
89a1e187 10295err_group_fd:
2903ff01 10296 fdput(group);
ea635c64
AV
10297err_fd:
10298 put_unused_fd(event_fd);
dc86cabe 10299 return err;
0793a61d
TG
10300}
10301
fb0459d7
AV
10302/**
10303 * perf_event_create_kernel_counter
10304 *
10305 * @attr: attributes of the counter to create
10306 * @cpu: cpu in which the counter is bound
38a81da2 10307 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10308 */
10309struct perf_event *
10310perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10311 struct task_struct *task,
4dc0da86
AK
10312 perf_overflow_handler_t overflow_handler,
10313 void *context)
fb0459d7 10314{
fb0459d7 10315 struct perf_event_context *ctx;
c3f00c70 10316 struct perf_event *event;
fb0459d7 10317 int err;
d859e29f 10318
fb0459d7
AV
10319 /*
10320 * Get the target context (task or percpu):
10321 */
d859e29f 10322
4dc0da86 10323 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10324 overflow_handler, context, -1);
c3f00c70
PZ
10325 if (IS_ERR(event)) {
10326 err = PTR_ERR(event);
10327 goto err;
10328 }
d859e29f 10329
f8697762 10330 /* Mark owner so we could distinguish it from user events. */
63b6da39 10331 event->owner = TASK_TOMBSTONE;
f8697762 10332
4af57ef2 10333 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10334 if (IS_ERR(ctx)) {
10335 err = PTR_ERR(ctx);
c3f00c70 10336 goto err_free;
d859e29f 10337 }
fb0459d7 10338
fb0459d7
AV
10339 WARN_ON_ONCE(ctx->parent_ctx);
10340 mutex_lock(&ctx->mutex);
84c4e620
PZ
10341 if (ctx->task == TASK_TOMBSTONE) {
10342 err = -ESRCH;
10343 goto err_unlock;
10344 }
10345
a63fbed7
TG
10346 if (!task) {
10347 /*
10348 * Check if the @cpu we're creating an event for is online.
10349 *
10350 * We use the perf_cpu_context::ctx::mutex to serialize against
10351 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10352 */
10353 struct perf_cpu_context *cpuctx =
10354 container_of(ctx, struct perf_cpu_context, ctx);
10355 if (!cpuctx->online) {
10356 err = -ENODEV;
10357 goto err_unlock;
10358 }
10359 }
10360
bed5b25a 10361 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10362 err = -EBUSY;
84c4e620 10363 goto err_unlock;
bed5b25a
AS
10364 }
10365
fb0459d7 10366 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10367 perf_unpin_context(ctx);
fb0459d7
AV
10368 mutex_unlock(&ctx->mutex);
10369
fb0459d7
AV
10370 return event;
10371
84c4e620
PZ
10372err_unlock:
10373 mutex_unlock(&ctx->mutex);
10374 perf_unpin_context(ctx);
10375 put_ctx(ctx);
c3f00c70
PZ
10376err_free:
10377 free_event(event);
10378err:
c6567f64 10379 return ERR_PTR(err);
9b51f66d 10380}
fb0459d7 10381EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10382
0cda4c02
YZ
10383void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10384{
10385 struct perf_event_context *src_ctx;
10386 struct perf_event_context *dst_ctx;
10387 struct perf_event *event, *tmp;
10388 LIST_HEAD(events);
10389
10390 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10391 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10392
f63a8daa
PZ
10393 /*
10394 * See perf_event_ctx_lock() for comments on the details
10395 * of swizzling perf_event::ctx.
10396 */
10397 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10398 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10399 event_entry) {
45a0e07a 10400 perf_remove_from_context(event, 0);
9a545de0 10401 unaccount_event_cpu(event, src_cpu);
0cda4c02 10402 put_ctx(src_ctx);
9886167d 10403 list_add(&event->migrate_entry, &events);
0cda4c02 10404 }
0cda4c02 10405
8f95b435
PZI
10406 /*
10407 * Wait for the events to quiesce before re-instating them.
10408 */
0cda4c02
YZ
10409 synchronize_rcu();
10410
8f95b435
PZI
10411 /*
10412 * Re-instate events in 2 passes.
10413 *
10414 * Skip over group leaders and only install siblings on this first
10415 * pass, siblings will not get enabled without a leader, however a
10416 * leader will enable its siblings, even if those are still on the old
10417 * context.
10418 */
10419 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10420 if (event->group_leader == event)
10421 continue;
10422
10423 list_del(&event->migrate_entry);
10424 if (event->state >= PERF_EVENT_STATE_OFF)
10425 event->state = PERF_EVENT_STATE_INACTIVE;
10426 account_event_cpu(event, dst_cpu);
10427 perf_install_in_context(dst_ctx, event, dst_cpu);
10428 get_ctx(dst_ctx);
10429 }
10430
10431 /*
10432 * Once all the siblings are setup properly, install the group leaders
10433 * to make it go.
10434 */
9886167d
PZ
10435 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10436 list_del(&event->migrate_entry);
0cda4c02
YZ
10437 if (event->state >= PERF_EVENT_STATE_OFF)
10438 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10439 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10440 perf_install_in_context(dst_ctx, event, dst_cpu);
10441 get_ctx(dst_ctx);
10442 }
10443 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10444 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10445}
10446EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10447
cdd6c482 10448static void sync_child_event(struct perf_event *child_event,
38b200d6 10449 struct task_struct *child)
d859e29f 10450{
cdd6c482 10451 struct perf_event *parent_event = child_event->parent;
8bc20959 10452 u64 child_val;
d859e29f 10453
cdd6c482
IM
10454 if (child_event->attr.inherit_stat)
10455 perf_event_read_event(child_event, child);
38b200d6 10456
b5e58793 10457 child_val = perf_event_count(child_event);
d859e29f
PM
10458
10459 /*
10460 * Add back the child's count to the parent's count:
10461 */
a6e6dea6 10462 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10463 atomic64_add(child_event->total_time_enabled,
10464 &parent_event->child_total_time_enabled);
10465 atomic64_add(child_event->total_time_running,
10466 &parent_event->child_total_time_running);
d859e29f
PM
10467}
10468
9b51f66d 10469static void
8ba289b8
PZ
10470perf_event_exit_event(struct perf_event *child_event,
10471 struct perf_event_context *child_ctx,
10472 struct task_struct *child)
9b51f66d 10473{
8ba289b8
PZ
10474 struct perf_event *parent_event = child_event->parent;
10475
1903d50c
PZ
10476 /*
10477 * Do not destroy the 'original' grouping; because of the context
10478 * switch optimization the original events could've ended up in a
10479 * random child task.
10480 *
10481 * If we were to destroy the original group, all group related
10482 * operations would cease to function properly after this random
10483 * child dies.
10484 *
10485 * Do destroy all inherited groups, we don't care about those
10486 * and being thorough is better.
10487 */
32132a3d
PZ
10488 raw_spin_lock_irq(&child_ctx->lock);
10489 WARN_ON_ONCE(child_ctx->is_active);
10490
8ba289b8 10491 if (parent_event)
32132a3d
PZ
10492 perf_group_detach(child_event);
10493 list_del_event(child_event, child_ctx);
0d3d73aa 10494 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 10495 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10496
9b51f66d 10497 /*
8ba289b8 10498 * Parent events are governed by their filedesc, retain them.
9b51f66d 10499 */
8ba289b8 10500 if (!parent_event) {
179033b3 10501 perf_event_wakeup(child_event);
8ba289b8 10502 return;
4bcf349a 10503 }
8ba289b8
PZ
10504 /*
10505 * Child events can be cleaned up.
10506 */
10507
10508 sync_child_event(child_event, child);
10509
10510 /*
10511 * Remove this event from the parent's list
10512 */
10513 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10514 mutex_lock(&parent_event->child_mutex);
10515 list_del_init(&child_event->child_list);
10516 mutex_unlock(&parent_event->child_mutex);
10517
10518 /*
10519 * Kick perf_poll() for is_event_hup().
10520 */
10521 perf_event_wakeup(parent_event);
10522 free_event(child_event);
10523 put_event(parent_event);
9b51f66d
IM
10524}
10525
8dc85d54 10526static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10527{
211de6eb 10528 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10529 struct perf_event *child_event, *next;
63b6da39
PZ
10530
10531 WARN_ON_ONCE(child != current);
9b51f66d 10532
6a3351b6 10533 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10534 if (!child_ctx)
9b51f66d
IM
10535 return;
10536
ad3a37de 10537 /*
6a3351b6
PZ
10538 * In order to reduce the amount of tricky in ctx tear-down, we hold
10539 * ctx::mutex over the entire thing. This serializes against almost
10540 * everything that wants to access the ctx.
10541 *
10542 * The exception is sys_perf_event_open() /
10543 * perf_event_create_kernel_count() which does find_get_context()
10544 * without ctx::mutex (it cannot because of the move_group double mutex
10545 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10546 */
6a3351b6 10547 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10548
10549 /*
6a3351b6
PZ
10550 * In a single ctx::lock section, de-schedule the events and detach the
10551 * context from the task such that we cannot ever get it scheduled back
10552 * in.
c93f7669 10553 */
6a3351b6 10554 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10555 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10556
71a851b4 10557 /*
63b6da39
PZ
10558 * Now that the context is inactive, destroy the task <-> ctx relation
10559 * and mark the context dead.
71a851b4 10560 */
63b6da39
PZ
10561 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10562 put_ctx(child_ctx); /* cannot be last */
10563 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10564 put_task_struct(current); /* cannot be last */
4a1c0f26 10565
211de6eb 10566 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10567 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10568
211de6eb
PZ
10569 if (clone_ctx)
10570 put_ctx(clone_ctx);
4a1c0f26 10571
9f498cc5 10572 /*
cdd6c482
IM
10573 * Report the task dead after unscheduling the events so that we
10574 * won't get any samples after PERF_RECORD_EXIT. We can however still
10575 * get a few PERF_RECORD_READ events.
9f498cc5 10576 */
cdd6c482 10577 perf_event_task(child, child_ctx, 0);
a63eaf34 10578
ebf905fc 10579 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10580 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10581
a63eaf34
PM
10582 mutex_unlock(&child_ctx->mutex);
10583
10584 put_ctx(child_ctx);
9b51f66d
IM
10585}
10586
8dc85d54
PZ
10587/*
10588 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10589 *
10590 * Can be called with cred_guard_mutex held when called from
10591 * install_exec_creds().
8dc85d54
PZ
10592 */
10593void perf_event_exit_task(struct task_struct *child)
10594{
8882135b 10595 struct perf_event *event, *tmp;
8dc85d54
PZ
10596 int ctxn;
10597
8882135b
PZ
10598 mutex_lock(&child->perf_event_mutex);
10599 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10600 owner_entry) {
10601 list_del_init(&event->owner_entry);
10602
10603 /*
10604 * Ensure the list deletion is visible before we clear
10605 * the owner, closes a race against perf_release() where
10606 * we need to serialize on the owner->perf_event_mutex.
10607 */
f47c02c0 10608 smp_store_release(&event->owner, NULL);
8882135b
PZ
10609 }
10610 mutex_unlock(&child->perf_event_mutex);
10611
8dc85d54
PZ
10612 for_each_task_context_nr(ctxn)
10613 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10614
10615 /*
10616 * The perf_event_exit_task_context calls perf_event_task
10617 * with child's task_ctx, which generates EXIT events for
10618 * child contexts and sets child->perf_event_ctxp[] to NULL.
10619 * At this point we need to send EXIT events to cpu contexts.
10620 */
10621 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10622}
10623
889ff015
FW
10624static void perf_free_event(struct perf_event *event,
10625 struct perf_event_context *ctx)
10626{
10627 struct perf_event *parent = event->parent;
10628
10629 if (WARN_ON_ONCE(!parent))
10630 return;
10631
10632 mutex_lock(&parent->child_mutex);
10633 list_del_init(&event->child_list);
10634 mutex_unlock(&parent->child_mutex);
10635
a6fa941d 10636 put_event(parent);
889ff015 10637
652884fe 10638 raw_spin_lock_irq(&ctx->lock);
8a49542c 10639 perf_group_detach(event);
889ff015 10640 list_del_event(event, ctx);
652884fe 10641 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10642 free_event(event);
10643}
10644
bbbee908 10645/*
652884fe 10646 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10647 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10648 *
10649 * Not all locks are strictly required, but take them anyway to be nice and
10650 * help out with the lockdep assertions.
bbbee908 10651 */
cdd6c482 10652void perf_event_free_task(struct task_struct *task)
bbbee908 10653{
8dc85d54 10654 struct perf_event_context *ctx;
cdd6c482 10655 struct perf_event *event, *tmp;
8dc85d54 10656 int ctxn;
bbbee908 10657
8dc85d54
PZ
10658 for_each_task_context_nr(ctxn) {
10659 ctx = task->perf_event_ctxp[ctxn];
10660 if (!ctx)
10661 continue;
bbbee908 10662
8dc85d54 10663 mutex_lock(&ctx->mutex);
e552a838
PZ
10664 raw_spin_lock_irq(&ctx->lock);
10665 /*
10666 * Destroy the task <-> ctx relation and mark the context dead.
10667 *
10668 * This is important because even though the task hasn't been
10669 * exposed yet the context has been (through child_list).
10670 */
10671 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10672 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10673 put_task_struct(task); /* cannot be last */
10674 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10675
15121c78 10676 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10677 perf_free_event(event, ctx);
bbbee908 10678
8dc85d54 10679 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10680 put_ctx(ctx);
10681 }
889ff015
FW
10682}
10683
4e231c79
PZ
10684void perf_event_delayed_put(struct task_struct *task)
10685{
10686 int ctxn;
10687
10688 for_each_task_context_nr(ctxn)
10689 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10690}
10691
e03e7ee3 10692struct file *perf_event_get(unsigned int fd)
ffe8690c 10693{
e03e7ee3 10694 struct file *file;
ffe8690c 10695
e03e7ee3
AS
10696 file = fget_raw(fd);
10697 if (!file)
10698 return ERR_PTR(-EBADF);
ffe8690c 10699
e03e7ee3
AS
10700 if (file->f_op != &perf_fops) {
10701 fput(file);
10702 return ERR_PTR(-EBADF);
10703 }
ffe8690c 10704
e03e7ee3 10705 return file;
ffe8690c
KX
10706}
10707
10708const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10709{
10710 if (!event)
10711 return ERR_PTR(-EINVAL);
10712
10713 return &event->attr;
10714}
10715
97dee4f3 10716/*
d8a8cfc7
PZ
10717 * Inherit a event from parent task to child task.
10718 *
10719 * Returns:
10720 * - valid pointer on success
10721 * - NULL for orphaned events
10722 * - IS_ERR() on error
97dee4f3
PZ
10723 */
10724static struct perf_event *
10725inherit_event(struct perf_event *parent_event,
10726 struct task_struct *parent,
10727 struct perf_event_context *parent_ctx,
10728 struct task_struct *child,
10729 struct perf_event *group_leader,
10730 struct perf_event_context *child_ctx)
10731{
8ca2bd41 10732 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10733 struct perf_event *child_event;
cee010ec 10734 unsigned long flags;
97dee4f3
PZ
10735
10736 /*
10737 * Instead of creating recursive hierarchies of events,
10738 * we link inherited events back to the original parent,
10739 * which has a filp for sure, which we use as the reference
10740 * count:
10741 */
10742 if (parent_event->parent)
10743 parent_event = parent_event->parent;
10744
10745 child_event = perf_event_alloc(&parent_event->attr,
10746 parent_event->cpu,
d580ff86 10747 child,
97dee4f3 10748 group_leader, parent_event,
79dff51e 10749 NULL, NULL, -1);
97dee4f3
PZ
10750 if (IS_ERR(child_event))
10751 return child_event;
a6fa941d 10752
313ccb96
JO
10753
10754 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10755 !child_ctx->task_ctx_data) {
10756 struct pmu *pmu = child_event->pmu;
10757
10758 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10759 GFP_KERNEL);
10760 if (!child_ctx->task_ctx_data) {
10761 free_event(child_event);
10762 return NULL;
10763 }
10764 }
10765
c6e5b732
PZ
10766 /*
10767 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10768 * must be under the same lock in order to serialize against
10769 * perf_event_release_kernel(), such that either we must observe
10770 * is_orphaned_event() or they will observe us on the child_list.
10771 */
10772 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10773 if (is_orphaned_event(parent_event) ||
10774 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10775 mutex_unlock(&parent_event->child_mutex);
313ccb96 10776 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
10777 free_event(child_event);
10778 return NULL;
10779 }
10780
97dee4f3
PZ
10781 get_ctx(child_ctx);
10782
10783 /*
10784 * Make the child state follow the state of the parent event,
10785 * not its attr.disabled bit. We hold the parent's mutex,
10786 * so we won't race with perf_event_{en, dis}able_family.
10787 */
1929def9 10788 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10789 child_event->state = PERF_EVENT_STATE_INACTIVE;
10790 else
10791 child_event->state = PERF_EVENT_STATE_OFF;
10792
10793 if (parent_event->attr.freq) {
10794 u64 sample_period = parent_event->hw.sample_period;
10795 struct hw_perf_event *hwc = &child_event->hw;
10796
10797 hwc->sample_period = sample_period;
10798 hwc->last_period = sample_period;
10799
10800 local64_set(&hwc->period_left, sample_period);
10801 }
10802
10803 child_event->ctx = child_ctx;
10804 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10805 child_event->overflow_handler_context
10806 = parent_event->overflow_handler_context;
97dee4f3 10807
614b6780
TG
10808 /*
10809 * Precalculate sample_data sizes
10810 */
10811 perf_event__header_size(child_event);
6844c09d 10812 perf_event__id_header_size(child_event);
614b6780 10813
97dee4f3
PZ
10814 /*
10815 * Link it up in the child's context:
10816 */
cee010ec 10817 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10818 add_event_to_ctx(child_event, child_ctx);
cee010ec 10819 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10820
97dee4f3
PZ
10821 /*
10822 * Link this into the parent event's child list
10823 */
97dee4f3
PZ
10824 list_add_tail(&child_event->child_list, &parent_event->child_list);
10825 mutex_unlock(&parent_event->child_mutex);
10826
10827 return child_event;
10828}
10829
d8a8cfc7
PZ
10830/*
10831 * Inherits an event group.
10832 *
10833 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10834 * This matches with perf_event_release_kernel() removing all child events.
10835 *
10836 * Returns:
10837 * - 0 on success
10838 * - <0 on error
10839 */
97dee4f3
PZ
10840static int inherit_group(struct perf_event *parent_event,
10841 struct task_struct *parent,
10842 struct perf_event_context *parent_ctx,
10843 struct task_struct *child,
10844 struct perf_event_context *child_ctx)
10845{
10846 struct perf_event *leader;
10847 struct perf_event *sub;
10848 struct perf_event *child_ctr;
10849
10850 leader = inherit_event(parent_event, parent, parent_ctx,
10851 child, NULL, child_ctx);
10852 if (IS_ERR(leader))
10853 return PTR_ERR(leader);
d8a8cfc7
PZ
10854 /*
10855 * @leader can be NULL here because of is_orphaned_event(). In this
10856 * case inherit_event() will create individual events, similar to what
10857 * perf_group_detach() would do anyway.
10858 */
97dee4f3
PZ
10859 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10860 child_ctr = inherit_event(sub, parent, parent_ctx,
10861 child, leader, child_ctx);
10862 if (IS_ERR(child_ctr))
10863 return PTR_ERR(child_ctr);
10864 }
10865 return 0;
889ff015
FW
10866}
10867
d8a8cfc7
PZ
10868/*
10869 * Creates the child task context and tries to inherit the event-group.
10870 *
10871 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10872 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10873 * consistent with perf_event_release_kernel() removing all child events.
10874 *
10875 * Returns:
10876 * - 0 on success
10877 * - <0 on error
10878 */
889ff015
FW
10879static int
10880inherit_task_group(struct perf_event *event, struct task_struct *parent,
10881 struct perf_event_context *parent_ctx,
8dc85d54 10882 struct task_struct *child, int ctxn,
889ff015
FW
10883 int *inherited_all)
10884{
10885 int ret;
8dc85d54 10886 struct perf_event_context *child_ctx;
889ff015
FW
10887
10888 if (!event->attr.inherit) {
10889 *inherited_all = 0;
10890 return 0;
bbbee908
PZ
10891 }
10892
fe4b04fa 10893 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10894 if (!child_ctx) {
10895 /*
10896 * This is executed from the parent task context, so
10897 * inherit events that have been marked for cloning.
10898 * First allocate and initialize a context for the
10899 * child.
10900 */
734df5ab 10901 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10902 if (!child_ctx)
10903 return -ENOMEM;
bbbee908 10904
8dc85d54 10905 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10906 }
10907
10908 ret = inherit_group(event, parent, parent_ctx,
10909 child, child_ctx);
10910
10911 if (ret)
10912 *inherited_all = 0;
10913
10914 return ret;
bbbee908
PZ
10915}
10916
9b51f66d 10917/*
cdd6c482 10918 * Initialize the perf_event context in task_struct
9b51f66d 10919 */
985c8dcb 10920static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10921{
889ff015 10922 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10923 struct perf_event_context *cloned_ctx;
10924 struct perf_event *event;
9b51f66d 10925 struct task_struct *parent = current;
564c2b21 10926 int inherited_all = 1;
dddd3379 10927 unsigned long flags;
6ab423e0 10928 int ret = 0;
9b51f66d 10929
8dc85d54 10930 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10931 return 0;
10932
ad3a37de 10933 /*
25346b93
PM
10934 * If the parent's context is a clone, pin it so it won't get
10935 * swapped under us.
ad3a37de 10936 */
8dc85d54 10937 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10938 if (!parent_ctx)
10939 return 0;
25346b93 10940
ad3a37de
PM
10941 /*
10942 * No need to check if parent_ctx != NULL here; since we saw
10943 * it non-NULL earlier, the only reason for it to become NULL
10944 * is if we exit, and since we're currently in the middle of
10945 * a fork we can't be exiting at the same time.
10946 */
ad3a37de 10947
9b51f66d
IM
10948 /*
10949 * Lock the parent list. No need to lock the child - not PID
10950 * hashed yet and not running, so nobody can access it.
10951 */
d859e29f 10952 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10953
10954 /*
10955 * We dont have to disable NMIs - we are only looking at
10956 * the list, not manipulating it:
10957 */
889ff015 10958 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10959 ret = inherit_task_group(event, parent, parent_ctx,
10960 child, ctxn, &inherited_all);
889ff015 10961 if (ret)
e7cc4865 10962 goto out_unlock;
889ff015 10963 }
b93f7978 10964
dddd3379
TG
10965 /*
10966 * We can't hold ctx->lock when iterating the ->flexible_group list due
10967 * to allocations, but we need to prevent rotation because
10968 * rotate_ctx() will change the list from interrupt context.
10969 */
10970 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10971 parent_ctx->rotate_disable = 1;
10972 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10973
889ff015 10974 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10975 ret = inherit_task_group(event, parent, parent_ctx,
10976 child, ctxn, &inherited_all);
889ff015 10977 if (ret)
e7cc4865 10978 goto out_unlock;
564c2b21
PM
10979 }
10980
dddd3379
TG
10981 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10982 parent_ctx->rotate_disable = 0;
dddd3379 10983
8dc85d54 10984 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10985
05cbaa28 10986 if (child_ctx && inherited_all) {
564c2b21
PM
10987 /*
10988 * Mark the child context as a clone of the parent
10989 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10990 *
10991 * Note that if the parent is a clone, the holding of
10992 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10993 */
c5ed5145 10994 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10995 if (cloned_ctx) {
10996 child_ctx->parent_ctx = cloned_ctx;
25346b93 10997 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10998 } else {
10999 child_ctx->parent_ctx = parent_ctx;
11000 child_ctx->parent_gen = parent_ctx->generation;
11001 }
11002 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11003 }
11004
c5ed5145 11005 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11006out_unlock:
d859e29f 11007 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11008
25346b93 11009 perf_unpin_context(parent_ctx);
fe4b04fa 11010 put_ctx(parent_ctx);
ad3a37de 11011
6ab423e0 11012 return ret;
9b51f66d
IM
11013}
11014
8dc85d54
PZ
11015/*
11016 * Initialize the perf_event context in task_struct
11017 */
11018int perf_event_init_task(struct task_struct *child)
11019{
11020 int ctxn, ret;
11021
8550d7cb
ON
11022 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11023 mutex_init(&child->perf_event_mutex);
11024 INIT_LIST_HEAD(&child->perf_event_list);
11025
8dc85d54
PZ
11026 for_each_task_context_nr(ctxn) {
11027 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11028 if (ret) {
11029 perf_event_free_task(child);
8dc85d54 11030 return ret;
6c72e350 11031 }
8dc85d54
PZ
11032 }
11033
11034 return 0;
11035}
11036
220b140b
PM
11037static void __init perf_event_init_all_cpus(void)
11038{
b28ab83c 11039 struct swevent_htable *swhash;
220b140b 11040 int cpu;
220b140b 11041
a63fbed7
TG
11042 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11043
220b140b 11044 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11045 swhash = &per_cpu(swevent_htable, cpu);
11046 mutex_init(&swhash->hlist_mutex);
2fde4f94 11047 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11048
11049 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11050 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11051
058fe1c0
DCC
11052#ifdef CONFIG_CGROUP_PERF
11053 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11054#endif
e48c1788 11055 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11056 }
11057}
11058
a63fbed7 11059void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11060{
108b02cf 11061 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11062
b28ab83c 11063 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11064 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11065 struct swevent_hlist *hlist;
11066
b28ab83c
PZ
11067 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11068 WARN_ON(!hlist);
11069 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11070 }
b28ab83c 11071 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11072}
11073
2965faa5 11074#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11075static void __perf_event_exit_context(void *__info)
0793a61d 11076{
108b02cf 11077 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11078 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11079 struct perf_event *event;
0793a61d 11080
fae3fde6 11081 raw_spin_lock(&ctx->lock);
0ee098c9 11082 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11083 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11084 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11085 raw_spin_unlock(&ctx->lock);
0793a61d 11086}
108b02cf
PZ
11087
11088static void perf_event_exit_cpu_context(int cpu)
11089{
a63fbed7 11090 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11091 struct perf_event_context *ctx;
11092 struct pmu *pmu;
108b02cf 11093
a63fbed7
TG
11094 mutex_lock(&pmus_lock);
11095 list_for_each_entry(pmu, &pmus, entry) {
11096 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11097 ctx = &cpuctx->ctx;
108b02cf
PZ
11098
11099 mutex_lock(&ctx->mutex);
11100 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11101 cpuctx->online = 0;
108b02cf
PZ
11102 mutex_unlock(&ctx->mutex);
11103 }
a63fbed7
TG
11104 cpumask_clear_cpu(cpu, perf_online_mask);
11105 mutex_unlock(&pmus_lock);
108b02cf 11106}
00e16c3d
TG
11107#else
11108
11109static void perf_event_exit_cpu_context(int cpu) { }
11110
11111#endif
108b02cf 11112
a63fbed7
TG
11113int perf_event_init_cpu(unsigned int cpu)
11114{
11115 struct perf_cpu_context *cpuctx;
11116 struct perf_event_context *ctx;
11117 struct pmu *pmu;
11118
11119 perf_swevent_init_cpu(cpu);
11120
11121 mutex_lock(&pmus_lock);
11122 cpumask_set_cpu(cpu, perf_online_mask);
11123 list_for_each_entry(pmu, &pmus, entry) {
11124 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11125 ctx = &cpuctx->ctx;
11126
11127 mutex_lock(&ctx->mutex);
11128 cpuctx->online = 1;
11129 mutex_unlock(&ctx->mutex);
11130 }
11131 mutex_unlock(&pmus_lock);
11132
11133 return 0;
11134}
11135
00e16c3d 11136int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11137{
e3703f8c 11138 perf_event_exit_cpu_context(cpu);
00e16c3d 11139 return 0;
0793a61d 11140}
0793a61d 11141
c277443c
PZ
11142static int
11143perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11144{
11145 int cpu;
11146
11147 for_each_online_cpu(cpu)
11148 perf_event_exit_cpu(cpu);
11149
11150 return NOTIFY_OK;
11151}
11152
11153/*
11154 * Run the perf reboot notifier at the very last possible moment so that
11155 * the generic watchdog code runs as long as possible.
11156 */
11157static struct notifier_block perf_reboot_notifier = {
11158 .notifier_call = perf_reboot,
11159 .priority = INT_MIN,
11160};
11161
cdd6c482 11162void __init perf_event_init(void)
0793a61d 11163{
3c502e7a
JW
11164 int ret;
11165
2e80a82a
PZ
11166 idr_init(&pmu_idr);
11167
220b140b 11168 perf_event_init_all_cpus();
b0a873eb 11169 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11170 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11171 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11172 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11173 perf_tp_register();
00e16c3d 11174 perf_event_init_cpu(smp_processor_id());
c277443c 11175 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11176
11177 ret = init_hw_breakpoint();
11178 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11179
b01c3a00
JO
11180 /*
11181 * Build time assertion that we keep the data_head at the intended
11182 * location. IOW, validation we got the __reserved[] size right.
11183 */
11184 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11185 != 1024);
0793a61d 11186}
abe43400 11187
fd979c01
CS
11188ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11189 char *page)
11190{
11191 struct perf_pmu_events_attr *pmu_attr =
11192 container_of(attr, struct perf_pmu_events_attr, attr);
11193
11194 if (pmu_attr->event_str)
11195 return sprintf(page, "%s\n", pmu_attr->event_str);
11196
11197 return 0;
11198}
675965b0 11199EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11200
abe43400
PZ
11201static int __init perf_event_sysfs_init(void)
11202{
11203 struct pmu *pmu;
11204 int ret;
11205
11206 mutex_lock(&pmus_lock);
11207
11208 ret = bus_register(&pmu_bus);
11209 if (ret)
11210 goto unlock;
11211
11212 list_for_each_entry(pmu, &pmus, entry) {
11213 if (!pmu->name || pmu->type < 0)
11214 continue;
11215
11216 ret = pmu_dev_alloc(pmu);
11217 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11218 }
11219 pmu_bus_running = 1;
11220 ret = 0;
11221
11222unlock:
11223 mutex_unlock(&pmus_lock);
11224
11225 return ret;
11226}
11227device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11228
11229#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11230static struct cgroup_subsys_state *
11231perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11232{
11233 struct perf_cgroup *jc;
e5d1367f 11234
1b15d055 11235 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11236 if (!jc)
11237 return ERR_PTR(-ENOMEM);
11238
e5d1367f
SE
11239 jc->info = alloc_percpu(struct perf_cgroup_info);
11240 if (!jc->info) {
11241 kfree(jc);
11242 return ERR_PTR(-ENOMEM);
11243 }
11244
e5d1367f
SE
11245 return &jc->css;
11246}
11247
eb95419b 11248static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11249{
eb95419b
TH
11250 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11251
e5d1367f
SE
11252 free_percpu(jc->info);
11253 kfree(jc);
11254}
11255
11256static int __perf_cgroup_move(void *info)
11257{
11258 struct task_struct *task = info;
ddaaf4e2 11259 rcu_read_lock();
e5d1367f 11260 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11261 rcu_read_unlock();
e5d1367f
SE
11262 return 0;
11263}
11264
1f7dd3e5 11265static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11266{
bb9d97b6 11267 struct task_struct *task;
1f7dd3e5 11268 struct cgroup_subsys_state *css;
bb9d97b6 11269
1f7dd3e5 11270 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11271 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11272}
11273
073219e9 11274struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11275 .css_alloc = perf_cgroup_css_alloc,
11276 .css_free = perf_cgroup_css_free,
bb9d97b6 11277 .attach = perf_cgroup_attach,
968ebff1
TH
11278 /*
11279 * Implicitly enable on dfl hierarchy so that perf events can
11280 * always be filtered by cgroup2 path as long as perf_event
11281 * controller is not mounted on a legacy hierarchy.
11282 */
11283 .implicit_on_dfl = true,
8cfd8147 11284 .threaded = true,
e5d1367f
SE
11285};
11286#endif /* CONFIG_CGROUP_PERF */