Merge tag 'drm-misc-next-2017-01-30' of git://anongit.freedesktop.org/git/drm-misc...
[linux-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
0b3fcf17
SE
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359};
360
e5d1367f
SE
361/*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
9107c89e
PZ
365
366static void perf_sched_delayed(struct work_struct *work);
367DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369static DEFINE_MUTEX(perf_sched_mutex);
370static atomic_t perf_sched_count;
371
e5d1367f 372static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 373static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 374static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 375
cdd6c482
IM
376static atomic_t nr_mmap_events __read_mostly;
377static atomic_t nr_comm_events __read_mostly;
378static atomic_t nr_task_events __read_mostly;
948b26b6 379static atomic_t nr_freq_events __read_mostly;
45ac1403 380static atomic_t nr_switch_events __read_mostly;
9ee318a7 381
108b02cf
PZ
382static LIST_HEAD(pmus);
383static DEFINE_MUTEX(pmus_lock);
384static struct srcu_struct pmus_srcu;
385
0764771d 386/*
cdd6c482 387 * perf event paranoia level:
0fbdea19
IM
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 390 * 1 - disallow cpu events for unpriv
0fbdea19 391 * 2 - disallow kernel profiling for unpriv
0764771d 392 */
0161028b 393int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 394
20443384
FW
395/* Minimum for 512 kiB + 1 user control page */
396int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
397
398/*
cdd6c482 399 * max perf event sample rate
df58ab24 400 */
14c63f17
DH
401#define DEFAULT_MAX_SAMPLE_RATE 100000
402#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403#define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
d9494cb4
PZ
410static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 412
18ab2cd3 413static void update_perf_cpu_limits(void)
14c63f17
DH
414{
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 423}
163ec435 424
9e630205
SE
425static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
163ec435
PZ
427int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430{
723478c8 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
432
433 if (ret || !write)
434 return ret;
435
ab7fdefb
KL
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
163ec435 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448}
449
450int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455{
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
b303e7c1
PZ
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
163ec435
PZ
469
470 return 0;
471}
1ccd1549 472
14c63f17
DH
473/*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 480static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 481
91a612ee
PZ
482static u64 __report_avg;
483static u64 __report_allowed;
484
6a02ad66 485static void perf_duration_warn(struct irq_work *w)
14c63f17 486{
0d87d7ec 487 printk_ratelimited(KERN_INFO
91a612ee
PZ
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
6a02ad66
PZ
492}
493
494static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496void perf_sample_event_took(u64 sample_len_ns)
497{
91a612ee
PZ
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
14c63f17 502
91a612ee 503 if (max_len == 0)
14c63f17
DH
504 return;
505
91a612ee
PZ
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
511
512 /*
91a612ee
PZ
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
515 * from having to maintain a count.
516 */
91a612ee
PZ
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
14c63f17
DH
519 return;
520
91a612ee
PZ
521 __report_avg = avg_len;
522 __report_allowed = max_len;
14c63f17 523
91a612ee
PZ
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
14c63f17 533
91a612ee
PZ
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 539
cd578abb 540 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 542 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 543 __report_avg, __report_allowed,
cd578abb
PZ
544 sysctl_perf_event_sample_rate);
545 }
14c63f17
DH
546}
547
cdd6c482 548static atomic64_t perf_event_id;
a96bbc16 549
0b3fcf17
SE
550static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557static void update_context_time(struct perf_event_context *ctx);
558static u64 perf_event_time(struct perf_event *event);
0b3fcf17 559
cdd6c482 560void __weak perf_event_print_debug(void) { }
0793a61d 561
84c79910 562extern __weak const char *perf_pmu_name(void)
0793a61d 563{
84c79910 564 return "pmu";
0793a61d
TG
565}
566
0b3fcf17
SE
567static inline u64 perf_clock(void)
568{
569 return local_clock();
570}
571
34f43927
PZ
572static inline u64 perf_event_clock(struct perf_event *event)
573{
574 return event->clock();
575}
576
e5d1367f
SE
577#ifdef CONFIG_CGROUP_PERF
578
e5d1367f
SE
579static inline bool
580perf_cgroup_match(struct perf_event *event)
581{
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
ef824fa1
TH
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
e5d1367f
SE
601}
602
e5d1367f
SE
603static inline void perf_detach_cgroup(struct perf_event *event)
604{
4e2ba650 605 css_put(&event->cgrp->css);
e5d1367f
SE
606 event->cgrp = NULL;
607}
608
609static inline int is_cgroup_event(struct perf_event *event)
610{
611 return event->cgrp != NULL;
612}
613
614static inline u64 perf_cgroup_event_time(struct perf_event *event)
615{
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620}
621
622static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623{
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633}
634
635static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636{
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640}
641
642static inline void update_cgrp_time_from_event(struct perf_event *event)
643{
3f7cce3c
SE
644 struct perf_cgroup *cgrp;
645
e5d1367f 646 /*
3f7cce3c
SE
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
e5d1367f 649 */
3f7cce3c 650 if (!is_cgroup_event(event))
e5d1367f
SE
651 return;
652
614e4c4e 653 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
e5d1367f
SE
659}
660
661static inline void
3f7cce3c
SE
662perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
e5d1367f
SE
664{
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
3f7cce3c
SE
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
674 return;
675
614e4c4e 676 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 677 info = this_cpu_ptr(cgrp->info);
3f7cce3c 678 info->timestamp = ctx->timestamp;
e5d1367f
SE
679}
680
681#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684/*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
18ab2cd3 690static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
691{
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
e5d1367f
SE
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
e5d1367f 712
e5d1367f
SE
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
e566b76e 734 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
614e4c4e
SE
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
e5d1367f 741 */
614e4c4e 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
facc4307
PZ
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 747 }
e5d1367f
SE
748 }
749
e5d1367f
SE
750 local_irq_restore(flags);
751}
752
a8d757ef
SE
753static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
e5d1367f 755{
a8d757ef
SE
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
ddaaf4e2 759 rcu_read_lock();
a8d757ef
SE
760 /*
761 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
a8d757ef 764 */
614e4c4e 765 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 766 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
775
776 rcu_read_unlock();
e5d1367f
SE
777}
778
a8d757ef
SE
779static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
e5d1367f 781{
a8d757ef
SE
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
ddaaf4e2 785 rcu_read_lock();
a8d757ef
SE
786 /*
787 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
a8d757ef 790 */
614e4c4e 791 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 792 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
801
802 rcu_read_unlock();
e5d1367f
SE
803}
804
805static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808{
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
2903ff01
AV
811 struct fd f = fdget(fd);
812 int ret = 0;
e5d1367f 813
2903ff01 814 if (!f.file)
e5d1367f
SE
815 return -EBADF;
816
b583043e 817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 818 &perf_event_cgrp_subsys);
3db272c0
LZ
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
e5d1367f
SE
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
e5d1367f 835 }
3db272c0 836out:
2903ff01 837 fdput(f);
e5d1367f
SE
838 return ret;
839}
840
841static inline void
842perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843{
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847}
848
849static inline void
850perf_cgroup_defer_enabled(struct perf_event *event)
851{
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860}
861
862static inline void
863perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865{
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881}
db4a8356
DCC
882
883/*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887static inline void
888list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890{
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
864c2357 905
8fc31ce8
DCC
906 /*
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
909 */
910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 cpuctx->cgrp = event->cgrp;
912 else if (!add)
913 cpuctx->cgrp = NULL;
db4a8356
DCC
914}
915
e5d1367f
SE
916#else /* !CONFIG_CGROUP_PERF */
917
918static inline bool
919perf_cgroup_match(struct perf_event *event)
920{
921 return true;
922}
923
924static inline void perf_detach_cgroup(struct perf_event *event)
925{}
926
927static inline int is_cgroup_event(struct perf_event *event)
928{
929 return 0;
930}
931
932static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933{
934 return 0;
935}
936
937static inline void update_cgrp_time_from_event(struct perf_event *event)
938{
939}
940
941static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942{
943}
944
a8d757ef
SE
945static inline void perf_cgroup_sched_out(struct task_struct *task,
946 struct task_struct *next)
e5d1367f
SE
947{
948}
949
a8d757ef
SE
950static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 struct task_struct *task)
e5d1367f
SE
952{
953}
954
955static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 struct perf_event_attr *attr,
957 struct perf_event *group_leader)
958{
959 return -EINVAL;
960}
961
962static inline void
3f7cce3c
SE
963perf_cgroup_set_timestamp(struct task_struct *task,
964 struct perf_event_context *ctx)
e5d1367f
SE
965{
966}
967
968void
969perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970{
971}
972
973static inline void
974perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975{
976}
977
978static inline u64 perf_cgroup_event_time(struct perf_event *event)
979{
980 return 0;
981}
982
983static inline void
984perf_cgroup_defer_enabled(struct perf_event *event)
985{
986}
987
988static inline void
989perf_cgroup_mark_enabled(struct perf_event *event,
990 struct perf_event_context *ctx)
991{
992}
db4a8356
DCC
993
994static inline void
995list_update_cgroup_event(struct perf_event *event,
996 struct perf_event_context *ctx, bool add)
997{
998}
999
e5d1367f
SE
1000#endif
1001
9e630205
SE
1002/*
1003 * set default to be dependent on timer tick just
1004 * like original code
1005 */
1006#define PERF_CPU_HRTIMER (1000 / HZ)
1007/*
1008 * function must be called with interrupts disbled
1009 */
272325c4 1010static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1011{
1012 struct perf_cpu_context *cpuctx;
9e630205
SE
1013 int rotations = 0;
1014
1015 WARN_ON(!irqs_disabled());
1016
1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1018 rotations = perf_rotate_context(cpuctx);
1019
4cfafd30
PZ
1020 raw_spin_lock(&cpuctx->hrtimer_lock);
1021 if (rotations)
9e630205 1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1023 else
1024 cpuctx->hrtimer_active = 0;
1025 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1026
4cfafd30 1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1028}
1029
272325c4 1030static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1031{
272325c4 1032 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1033 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1034 u64 interval;
9e630205
SE
1035
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu->task_ctx_nr == perf_sw_context)
1038 return;
1039
62b85639
SE
1040 /*
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1043 */
272325c4
PZ
1044 interval = pmu->hrtimer_interval_ms;
1045 if (interval < 1)
1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1047
272325c4 1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1049
4cfafd30
PZ
1050 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1052 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1053}
1054
272325c4 1055static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1056{
272325c4 1057 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1058 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1059 unsigned long flags;
9e630205
SE
1060
1061 /* not for SW PMU */
1062 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1063 return 0;
9e630205 1064
4cfafd30
PZ
1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 if (!cpuctx->hrtimer_active) {
1067 cpuctx->hrtimer_active = 1;
1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 }
1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1072
272325c4 1073 return 0;
9e630205
SE
1074}
1075
33696fc0 1076void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1077{
33696fc0
PZ
1078 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 if (!(*count)++)
1080 pmu->pmu_disable(pmu);
9e35ad38 1081}
9e35ad38 1082
33696fc0 1083void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1084{
33696fc0
PZ
1085 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 if (!--(*count))
1087 pmu->pmu_enable(pmu);
9e35ad38 1088}
9e35ad38 1089
2fde4f94 1090static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1091
1092/*
2fde4f94
MR
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1097 */
2fde4f94 1098static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1099{
2fde4f94 1100 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1101
e9d2b064 1102 WARN_ON(!irqs_disabled());
b5ab4cd5 1103
2fde4f94
MR
1104 WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106 list_add(&ctx->active_ctx_list, head);
1107}
1108
1109static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110{
1111 WARN_ON(!irqs_disabled());
1112
1113 WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115 list_del_init(&ctx->active_ctx_list);
9e35ad38 1116}
9e35ad38 1117
cdd6c482 1118static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1119{
e5289d4a 1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1121}
1122
4af57ef2
YZ
1123static void free_ctx(struct rcu_head *head)
1124{
1125 struct perf_event_context *ctx;
1126
1127 ctx = container_of(head, struct perf_event_context, rcu_head);
1128 kfree(ctx->task_ctx_data);
1129 kfree(ctx);
1130}
1131
cdd6c482 1132static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1133{
564c2b21
PM
1134 if (atomic_dec_and_test(&ctx->refcount)) {
1135 if (ctx->parent_ctx)
1136 put_ctx(ctx->parent_ctx);
63b6da39 1137 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1138 put_task_struct(ctx->task);
4af57ef2 1139 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1140 }
a63eaf34
PM
1141}
1142
f63a8daa
PZ
1143/*
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1146 *
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149 *
8b10c5e2
PZ
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1152 *
1153 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1156 *
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1159 * inherit_group()
1160 * inherit_event()
1161 * perf_event_alloc()
1162 * perf_init_event()
1163 * perf_try_init_event() [ child , 1 ]
1164 *
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1169 *
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1172 * interact.
f63a8daa
PZ
1173 *
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1178 *
1179 * The places that change perf_event::ctx will issue:
1180 *
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1184 *
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1190 *
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193 * function.
1194 *
1195 * Lock order:
79c9ce57 1196 * cred_guard_mutex
f63a8daa
PZ
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
f63a8daa 1199 * perf_event::child_mutex;
07c4a776 1200 * perf_event_context::lock
f63a8daa
PZ
1201 * perf_event::mmap_mutex
1202 * mmap_sem
1203 */
a83fe28e
PZ
1204static struct perf_event_context *
1205perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1206{
1207 struct perf_event_context *ctx;
1208
1209again:
1210 rcu_read_lock();
1211 ctx = ACCESS_ONCE(event->ctx);
1212 if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 rcu_read_unlock();
1214 goto again;
1215 }
1216 rcu_read_unlock();
1217
a83fe28e 1218 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1219 if (event->ctx != ctx) {
1220 mutex_unlock(&ctx->mutex);
1221 put_ctx(ctx);
1222 goto again;
1223 }
1224
1225 return ctx;
1226}
1227
a83fe28e
PZ
1228static inline struct perf_event_context *
1229perf_event_ctx_lock(struct perf_event *event)
1230{
1231 return perf_event_ctx_lock_nested(event, 0);
1232}
1233
f63a8daa
PZ
1234static void perf_event_ctx_unlock(struct perf_event *event,
1235 struct perf_event_context *ctx)
1236{
1237 mutex_unlock(&ctx->mutex);
1238 put_ctx(ctx);
1239}
1240
211de6eb
PZ
1241/*
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1245 */
1246static __must_check struct perf_event_context *
1247unclone_ctx(struct perf_event_context *ctx)
71a851b4 1248{
211de6eb
PZ
1249 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251 lockdep_assert_held(&ctx->lock);
1252
1253 if (parent_ctx)
71a851b4 1254 ctx->parent_ctx = NULL;
5a3126d4 1255 ctx->generation++;
211de6eb
PZ
1256
1257 return parent_ctx;
71a851b4
PZ
1258}
1259
6844c09d
ACM
1260static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261{
1262 /*
1263 * only top level events have the pid namespace they were created in
1264 */
1265 if (event->parent)
1266 event = event->parent;
1267
1268 return task_tgid_nr_ns(p, event->ns);
1269}
1270
1271static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272{
1273 /*
1274 * only top level events have the pid namespace they were created in
1275 */
1276 if (event->parent)
1277 event = event->parent;
1278
1279 return task_pid_nr_ns(p, event->ns);
1280}
1281
7f453c24 1282/*
cdd6c482 1283 * If we inherit events we want to return the parent event id
7f453c24
PZ
1284 * to userspace.
1285 */
cdd6c482 1286static u64 primary_event_id(struct perf_event *event)
7f453c24 1287{
cdd6c482 1288 u64 id = event->id;
7f453c24 1289
cdd6c482
IM
1290 if (event->parent)
1291 id = event->parent->id;
7f453c24
PZ
1292
1293 return id;
1294}
1295
25346b93 1296/*
cdd6c482 1297 * Get the perf_event_context for a task and lock it.
63b6da39 1298 *
25346b93
PM
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1301 */
cdd6c482 1302static struct perf_event_context *
8dc85d54 1303perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1304{
cdd6c482 1305 struct perf_event_context *ctx;
25346b93 1306
9ed6060d 1307retry:
058ebd0e
PZ
1308 /*
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1311 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1312 * rcu_read_unlock_special().
1313 *
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1315 * side critical section has interrupts disabled.
058ebd0e 1316 */
2fd59077 1317 local_irq_save(*flags);
058ebd0e 1318 rcu_read_lock();
8dc85d54 1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1320 if (ctx) {
1321 /*
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
cdd6c482 1324 * perf_event_task_sched_out, though the
25346b93
PM
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1330 */
2fd59077 1331 raw_spin_lock(&ctx->lock);
8dc85d54 1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
058ebd0e 1334 rcu_read_unlock();
2fd59077 1335 local_irq_restore(*flags);
25346b93
PM
1336 goto retry;
1337 }
b49a9e7e 1338
63b6da39
PZ
1339 if (ctx->task == TASK_TOMBSTONE ||
1340 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1341 raw_spin_unlock(&ctx->lock);
b49a9e7e 1342 ctx = NULL;
828b6f0e
PZ
1343 } else {
1344 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1345 }
25346b93
PM
1346 }
1347 rcu_read_unlock();
2fd59077
PM
1348 if (!ctx)
1349 local_irq_restore(*flags);
25346b93
PM
1350 return ctx;
1351}
1352
1353/*
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1357 */
8dc85d54
PZ
1358static struct perf_event_context *
1359perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1360{
cdd6c482 1361 struct perf_event_context *ctx;
25346b93
PM
1362 unsigned long flags;
1363
8dc85d54 1364 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1365 if (ctx) {
1366 ++ctx->pin_count;
e625cce1 1367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1368 }
1369 return ctx;
1370}
1371
cdd6c482 1372static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1373{
1374 unsigned long flags;
1375
e625cce1 1376 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1377 --ctx->pin_count;
e625cce1 1378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1379}
1380
f67218c3
PZ
1381/*
1382 * Update the record of the current time in a context.
1383 */
1384static void update_context_time(struct perf_event_context *ctx)
1385{
1386 u64 now = perf_clock();
1387
1388 ctx->time += now - ctx->timestamp;
1389 ctx->timestamp = now;
1390}
1391
4158755d
SE
1392static u64 perf_event_time(struct perf_event *event)
1393{
1394 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1395
1396 if (is_cgroup_event(event))
1397 return perf_cgroup_event_time(event);
1398
4158755d
SE
1399 return ctx ? ctx->time : 0;
1400}
1401
f67218c3
PZ
1402/*
1403 * Update the total_time_enabled and total_time_running fields for a event.
1404 */
1405static void update_event_times(struct perf_event *event)
1406{
1407 struct perf_event_context *ctx = event->ctx;
1408 u64 run_end;
1409
3cbaa590
PZ
1410 lockdep_assert_held(&ctx->lock);
1411
f67218c3
PZ
1412 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 return;
3cbaa590 1415
e5d1367f
SE
1416 /*
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1422 *
1423 * That is why we treat cgroup events differently
1424 * here.
1425 */
1426 if (is_cgroup_event(event))
46cd6a7f 1427 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1428 else if (ctx->is_active)
1429 run_end = ctx->time;
acd1d7c1
PZ
1430 else
1431 run_end = event->tstamp_stopped;
1432
1433 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1434
1435 if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 run_end = event->tstamp_stopped;
1437 else
4158755d 1438 run_end = perf_event_time(event);
f67218c3
PZ
1439
1440 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1441
f67218c3
PZ
1442}
1443
96c21a46
PZ
1444/*
1445 * Update total_time_enabled and total_time_running for all events in a group.
1446 */
1447static void update_group_times(struct perf_event *leader)
1448{
1449 struct perf_event *event;
1450
1451 update_event_times(leader);
1452 list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 update_event_times(event);
1454}
1455
889ff015
FW
1456static struct list_head *
1457ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458{
1459 if (event->attr.pinned)
1460 return &ctx->pinned_groups;
1461 else
1462 return &ctx->flexible_groups;
1463}
1464
fccc714b 1465/*
cdd6c482 1466 * Add a event from the lists for its context.
fccc714b
PZ
1467 * Must be called with ctx->mutex and ctx->lock held.
1468 */
04289bb9 1469static void
cdd6c482 1470list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1471{
db4a8356 1472
c994d613
PZ
1473 lockdep_assert_held(&ctx->lock);
1474
8a49542c
PZ
1475 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1477
1478 /*
8a49542c
PZ
1479 * If we're a stand alone event or group leader, we go to the context
1480 * list, group events are kept attached to the group so that
1481 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1482 */
8a49542c 1483 if (event->group_leader == event) {
889ff015
FW
1484 struct list_head *list;
1485
4ff6a8de 1486 event->group_caps = event->event_caps;
d6f962b5 1487
889ff015
FW
1488 list = ctx_group_list(event, ctx);
1489 list_add_tail(&event->group_entry, list);
5c148194 1490 }
592903cd 1491
db4a8356 1492 list_update_cgroup_event(event, ctx, true);
e5d1367f 1493
cdd6c482
IM
1494 list_add_rcu(&event->event_entry, &ctx->event_list);
1495 ctx->nr_events++;
1496 if (event->attr.inherit_stat)
bfbd3381 1497 ctx->nr_stat++;
5a3126d4
PZ
1498
1499 ctx->generation++;
04289bb9
IM
1500}
1501
0231bb53
JO
1502/*
1503 * Initialize event state based on the perf_event_attr::disabled.
1504 */
1505static inline void perf_event__state_init(struct perf_event *event)
1506{
1507 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508 PERF_EVENT_STATE_INACTIVE;
1509}
1510
a723968c 1511static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1512{
1513 int entry = sizeof(u64); /* value */
1514 int size = 0;
1515 int nr = 1;
1516
1517 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518 size += sizeof(u64);
1519
1520 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521 size += sizeof(u64);
1522
1523 if (event->attr.read_format & PERF_FORMAT_ID)
1524 entry += sizeof(u64);
1525
1526 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1527 nr += nr_siblings;
c320c7b7
ACM
1528 size += sizeof(u64);
1529 }
1530
1531 size += entry * nr;
1532 event->read_size = size;
1533}
1534
a723968c 1535static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1536{
1537 struct perf_sample_data *data;
c320c7b7
ACM
1538 u16 size = 0;
1539
c320c7b7
ACM
1540 if (sample_type & PERF_SAMPLE_IP)
1541 size += sizeof(data->ip);
1542
6844c09d
ACM
1543 if (sample_type & PERF_SAMPLE_ADDR)
1544 size += sizeof(data->addr);
1545
1546 if (sample_type & PERF_SAMPLE_PERIOD)
1547 size += sizeof(data->period);
1548
c3feedf2
AK
1549 if (sample_type & PERF_SAMPLE_WEIGHT)
1550 size += sizeof(data->weight);
1551
6844c09d
ACM
1552 if (sample_type & PERF_SAMPLE_READ)
1553 size += event->read_size;
1554
d6be9ad6
SE
1555 if (sample_type & PERF_SAMPLE_DATA_SRC)
1556 size += sizeof(data->data_src.val);
1557
fdfbbd07
AK
1558 if (sample_type & PERF_SAMPLE_TRANSACTION)
1559 size += sizeof(data->txn);
1560
6844c09d
ACM
1561 event->header_size = size;
1562}
1563
a723968c
PZ
1564/*
1565 * Called at perf_event creation and when events are attached/detached from a
1566 * group.
1567 */
1568static void perf_event__header_size(struct perf_event *event)
1569{
1570 __perf_event_read_size(event,
1571 event->group_leader->nr_siblings);
1572 __perf_event_header_size(event, event->attr.sample_type);
1573}
1574
6844c09d
ACM
1575static void perf_event__id_header_size(struct perf_event *event)
1576{
1577 struct perf_sample_data *data;
1578 u64 sample_type = event->attr.sample_type;
1579 u16 size = 0;
1580
c320c7b7
ACM
1581 if (sample_type & PERF_SAMPLE_TID)
1582 size += sizeof(data->tid_entry);
1583
1584 if (sample_type & PERF_SAMPLE_TIME)
1585 size += sizeof(data->time);
1586
ff3d527c
AH
1587 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588 size += sizeof(data->id);
1589
c320c7b7
ACM
1590 if (sample_type & PERF_SAMPLE_ID)
1591 size += sizeof(data->id);
1592
1593 if (sample_type & PERF_SAMPLE_STREAM_ID)
1594 size += sizeof(data->stream_id);
1595
1596 if (sample_type & PERF_SAMPLE_CPU)
1597 size += sizeof(data->cpu_entry);
1598
6844c09d 1599 event->id_header_size = size;
c320c7b7
ACM
1600}
1601
a723968c
PZ
1602static bool perf_event_validate_size(struct perf_event *event)
1603{
1604 /*
1605 * The values computed here will be over-written when we actually
1606 * attach the event.
1607 */
1608 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610 perf_event__id_header_size(event);
1611
1612 /*
1613 * Sum the lot; should not exceed the 64k limit we have on records.
1614 * Conservative limit to allow for callchains and other variable fields.
1615 */
1616 if (event->read_size + event->header_size +
1617 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618 return false;
1619
1620 return true;
1621}
1622
8a49542c
PZ
1623static void perf_group_attach(struct perf_event *event)
1624{
c320c7b7 1625 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1626
74c3337c
PZ
1627 /*
1628 * We can have double attach due to group movement in perf_event_open.
1629 */
1630 if (event->attach_state & PERF_ATTACH_GROUP)
1631 return;
1632
8a49542c
PZ
1633 event->attach_state |= PERF_ATTACH_GROUP;
1634
1635 if (group_leader == event)
1636 return;
1637
652884fe
PZ
1638 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639
4ff6a8de 1640 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1641
1642 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643 group_leader->nr_siblings++;
c320c7b7
ACM
1644
1645 perf_event__header_size(group_leader);
1646
1647 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648 perf_event__header_size(pos);
8a49542c
PZ
1649}
1650
a63eaf34 1651/*
cdd6c482 1652 * Remove a event from the lists for its context.
fccc714b 1653 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1654 */
04289bb9 1655static void
cdd6c482 1656list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1657{
652884fe
PZ
1658 WARN_ON_ONCE(event->ctx != ctx);
1659 lockdep_assert_held(&ctx->lock);
1660
8a49542c
PZ
1661 /*
1662 * We can have double detach due to exit/hot-unplug + close.
1663 */
1664 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1665 return;
8a49542c
PZ
1666
1667 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668
db4a8356 1669 list_update_cgroup_event(event, ctx, false);
e5d1367f 1670
cdd6c482
IM
1671 ctx->nr_events--;
1672 if (event->attr.inherit_stat)
bfbd3381 1673 ctx->nr_stat--;
8bc20959 1674
cdd6c482 1675 list_del_rcu(&event->event_entry);
04289bb9 1676
8a49542c
PZ
1677 if (event->group_leader == event)
1678 list_del_init(&event->group_entry);
5c148194 1679
96c21a46 1680 update_group_times(event);
b2e74a26
SE
1681
1682 /*
1683 * If event was in error state, then keep it
1684 * that way, otherwise bogus counts will be
1685 * returned on read(). The only way to get out
1686 * of error state is by explicit re-enabling
1687 * of the event
1688 */
1689 if (event->state > PERF_EVENT_STATE_OFF)
1690 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1691
1692 ctx->generation++;
050735b0
PZ
1693}
1694
8a49542c 1695static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1696{
1697 struct perf_event *sibling, *tmp;
8a49542c
PZ
1698 struct list_head *list = NULL;
1699
1700 /*
1701 * We can have double detach due to exit/hot-unplug + close.
1702 */
1703 if (!(event->attach_state & PERF_ATTACH_GROUP))
1704 return;
1705
1706 event->attach_state &= ~PERF_ATTACH_GROUP;
1707
1708 /*
1709 * If this is a sibling, remove it from its group.
1710 */
1711 if (event->group_leader != event) {
1712 list_del_init(&event->group_entry);
1713 event->group_leader->nr_siblings--;
c320c7b7 1714 goto out;
8a49542c
PZ
1715 }
1716
1717 if (!list_empty(&event->group_entry))
1718 list = &event->group_entry;
2e2af50b 1719
04289bb9 1720 /*
cdd6c482
IM
1721 * If this was a group event with sibling events then
1722 * upgrade the siblings to singleton events by adding them
8a49542c 1723 * to whatever list we are on.
04289bb9 1724 */
cdd6c482 1725 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1726 if (list)
1727 list_move_tail(&sibling->group_entry, list);
04289bb9 1728 sibling->group_leader = sibling;
d6f962b5
FW
1729
1730 /* Inherit group flags from the previous leader */
4ff6a8de 1731 sibling->group_caps = event->group_caps;
652884fe
PZ
1732
1733 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1734 }
c320c7b7
ACM
1735
1736out:
1737 perf_event__header_size(event->group_leader);
1738
1739 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740 perf_event__header_size(tmp);
04289bb9
IM
1741}
1742
fadfe7be
JO
1743static bool is_orphaned_event(struct perf_event *event)
1744{
a69b0ca4 1745 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1746}
1747
2c81a647 1748static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1749{
1750 struct pmu *pmu = event->pmu;
1751 return pmu->filter_match ? pmu->filter_match(event) : 1;
1752}
1753
2c81a647
MR
1754/*
1755 * Check whether we should attempt to schedule an event group based on
1756 * PMU-specific filtering. An event group can consist of HW and SW events,
1757 * potentially with a SW leader, so we must check all the filters, to
1758 * determine whether a group is schedulable:
1759 */
1760static inline int pmu_filter_match(struct perf_event *event)
1761{
1762 struct perf_event *child;
1763
1764 if (!__pmu_filter_match(event))
1765 return 0;
1766
1767 list_for_each_entry(child, &event->sibling_list, group_entry) {
1768 if (!__pmu_filter_match(child))
1769 return 0;
1770 }
1771
1772 return 1;
1773}
1774
fa66f07a
SE
1775static inline int
1776event_filter_match(struct perf_event *event)
1777{
0b8f1e2e
PZ
1778 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1780}
1781
9ffcfa6f
SE
1782static void
1783event_sched_out(struct perf_event *event,
3b6f9e5c 1784 struct perf_cpu_context *cpuctx,
cdd6c482 1785 struct perf_event_context *ctx)
3b6f9e5c 1786{
4158755d 1787 u64 tstamp = perf_event_time(event);
fa66f07a 1788 u64 delta;
652884fe
PZ
1789
1790 WARN_ON_ONCE(event->ctx != ctx);
1791 lockdep_assert_held(&ctx->lock);
1792
fa66f07a
SE
1793 /*
1794 * An event which could not be activated because of
1795 * filter mismatch still needs to have its timings
1796 * maintained, otherwise bogus information is return
1797 * via read() for time_enabled, time_running:
1798 */
0b8f1e2e
PZ
1799 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800 !event_filter_match(event)) {
e5d1367f 1801 delta = tstamp - event->tstamp_stopped;
fa66f07a 1802 event->tstamp_running += delta;
4158755d 1803 event->tstamp_stopped = tstamp;
fa66f07a
SE
1804 }
1805
cdd6c482 1806 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1807 return;
3b6f9e5c 1808
44377277
AS
1809 perf_pmu_disable(event->pmu);
1810
28a967c3
PZ
1811 event->tstamp_stopped = tstamp;
1812 event->pmu->del(event, 0);
1813 event->oncpu = -1;
cdd6c482
IM
1814 event->state = PERF_EVENT_STATE_INACTIVE;
1815 if (event->pending_disable) {
1816 event->pending_disable = 0;
1817 event->state = PERF_EVENT_STATE_OFF;
970892a9 1818 }
3b6f9e5c 1819
cdd6c482 1820 if (!is_software_event(event))
3b6f9e5c 1821 cpuctx->active_oncpu--;
2fde4f94
MR
1822 if (!--ctx->nr_active)
1823 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1824 if (event->attr.freq && event->attr.sample_freq)
1825 ctx->nr_freq--;
cdd6c482 1826 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1827 cpuctx->exclusive = 0;
44377277
AS
1828
1829 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1830}
1831
d859e29f 1832static void
cdd6c482 1833group_sched_out(struct perf_event *group_event,
d859e29f 1834 struct perf_cpu_context *cpuctx,
cdd6c482 1835 struct perf_event_context *ctx)
d859e29f 1836{
cdd6c482 1837 struct perf_event *event;
fa66f07a 1838 int state = group_event->state;
d859e29f 1839
3f005e7d
MR
1840 perf_pmu_disable(ctx->pmu);
1841
cdd6c482 1842 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1843
1844 /*
1845 * Schedule out siblings (if any):
1846 */
cdd6c482
IM
1847 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848 event_sched_out(event, cpuctx, ctx);
d859e29f 1849
3f005e7d
MR
1850 perf_pmu_enable(ctx->pmu);
1851
fa66f07a 1852 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1853 cpuctx->exclusive = 0;
1854}
1855
45a0e07a 1856#define DETACH_GROUP 0x01UL
0017960f 1857
0793a61d 1858/*
cdd6c482 1859 * Cross CPU call to remove a performance event
0793a61d 1860 *
cdd6c482 1861 * We disable the event on the hardware level first. After that we
0793a61d
TG
1862 * remove it from the context list.
1863 */
fae3fde6
PZ
1864static void
1865__perf_remove_from_context(struct perf_event *event,
1866 struct perf_cpu_context *cpuctx,
1867 struct perf_event_context *ctx,
1868 void *info)
0793a61d 1869{
45a0e07a 1870 unsigned long flags = (unsigned long)info;
0793a61d 1871
cdd6c482 1872 event_sched_out(event, cpuctx, ctx);
45a0e07a 1873 if (flags & DETACH_GROUP)
46ce0fe9 1874 perf_group_detach(event);
cdd6c482 1875 list_del_event(event, ctx);
39a43640
PZ
1876
1877 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1878 ctx->is_active = 0;
39a43640
PZ
1879 if (ctx->task) {
1880 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881 cpuctx->task_ctx = NULL;
1882 }
64ce3126 1883 }
0793a61d
TG
1884}
1885
0793a61d 1886/*
cdd6c482 1887 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1888 *
cdd6c482
IM
1889 * If event->ctx is a cloned context, callers must make sure that
1890 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1891 * remains valid. This is OK when called from perf_release since
1892 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1893 * When called from perf_event_exit_task, it's OK because the
c93f7669 1894 * context has been detached from its task.
0793a61d 1895 */
45a0e07a 1896static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1897{
fae3fde6 1898 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1899
45a0e07a 1900 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1901}
1902
d859e29f 1903/*
cdd6c482 1904 * Cross CPU call to disable a performance event
d859e29f 1905 */
fae3fde6
PZ
1906static void __perf_event_disable(struct perf_event *event,
1907 struct perf_cpu_context *cpuctx,
1908 struct perf_event_context *ctx,
1909 void *info)
7b648018 1910{
fae3fde6
PZ
1911 if (event->state < PERF_EVENT_STATE_INACTIVE)
1912 return;
7b648018 1913
fae3fde6
PZ
1914 update_context_time(ctx);
1915 update_cgrp_time_from_event(event);
1916 update_group_times(event);
1917 if (event == event->group_leader)
1918 group_sched_out(event, cpuctx, ctx);
1919 else
1920 event_sched_out(event, cpuctx, ctx);
1921 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1922}
1923
d859e29f 1924/*
cdd6c482 1925 * Disable a event.
c93f7669 1926 *
cdd6c482
IM
1927 * If event->ctx is a cloned context, callers must make sure that
1928 * every task struct that event->ctx->task could possibly point to
c93f7669 1929 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1930 * perf_event_for_each_child or perf_event_for_each because they
1931 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1932 * goes to exit will block in perf_event_exit_event().
1933 *
cdd6c482 1934 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1935 * is the current context on this CPU and preemption is disabled,
cdd6c482 1936 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1937 */
f63a8daa 1938static void _perf_event_disable(struct perf_event *event)
d859e29f 1939{
cdd6c482 1940 struct perf_event_context *ctx = event->ctx;
d859e29f 1941
e625cce1 1942 raw_spin_lock_irq(&ctx->lock);
7b648018 1943 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1944 raw_spin_unlock_irq(&ctx->lock);
7b648018 1945 return;
53cfbf59 1946 }
e625cce1 1947 raw_spin_unlock_irq(&ctx->lock);
7b648018 1948
fae3fde6
PZ
1949 event_function_call(event, __perf_event_disable, NULL);
1950}
1951
1952void perf_event_disable_local(struct perf_event *event)
1953{
1954 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1955}
f63a8daa
PZ
1956
1957/*
1958 * Strictly speaking kernel users cannot create groups and therefore this
1959 * interface does not need the perf_event_ctx_lock() magic.
1960 */
1961void perf_event_disable(struct perf_event *event)
1962{
1963 struct perf_event_context *ctx;
1964
1965 ctx = perf_event_ctx_lock(event);
1966 _perf_event_disable(event);
1967 perf_event_ctx_unlock(event, ctx);
1968}
dcfce4a0 1969EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1970
5aab90ce
JO
1971void perf_event_disable_inatomic(struct perf_event *event)
1972{
1973 event->pending_disable = 1;
1974 irq_work_queue(&event->pending);
1975}
1976
e5d1367f
SE
1977static void perf_set_shadow_time(struct perf_event *event,
1978 struct perf_event_context *ctx,
1979 u64 tstamp)
1980{
1981 /*
1982 * use the correct time source for the time snapshot
1983 *
1984 * We could get by without this by leveraging the
1985 * fact that to get to this function, the caller
1986 * has most likely already called update_context_time()
1987 * and update_cgrp_time_xx() and thus both timestamp
1988 * are identical (or very close). Given that tstamp is,
1989 * already adjusted for cgroup, we could say that:
1990 * tstamp - ctx->timestamp
1991 * is equivalent to
1992 * tstamp - cgrp->timestamp.
1993 *
1994 * Then, in perf_output_read(), the calculation would
1995 * work with no changes because:
1996 * - event is guaranteed scheduled in
1997 * - no scheduled out in between
1998 * - thus the timestamp would be the same
1999 *
2000 * But this is a bit hairy.
2001 *
2002 * So instead, we have an explicit cgroup call to remain
2003 * within the time time source all along. We believe it
2004 * is cleaner and simpler to understand.
2005 */
2006 if (is_cgroup_event(event))
2007 perf_cgroup_set_shadow_time(event, tstamp);
2008 else
2009 event->shadow_ctx_time = tstamp - ctx->timestamp;
2010}
2011
4fe757dd
PZ
2012#define MAX_INTERRUPTS (~0ULL)
2013
2014static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2015static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2016
235c7fc7 2017static int
9ffcfa6f 2018event_sched_in(struct perf_event *event,
235c7fc7 2019 struct perf_cpu_context *cpuctx,
6e37738a 2020 struct perf_event_context *ctx)
235c7fc7 2021{
4158755d 2022 u64 tstamp = perf_event_time(event);
44377277 2023 int ret = 0;
4158755d 2024
63342411
PZ
2025 lockdep_assert_held(&ctx->lock);
2026
cdd6c482 2027 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2028 return 0;
2029
95ff4ca2
AS
2030 WRITE_ONCE(event->oncpu, smp_processor_id());
2031 /*
2032 * Order event::oncpu write to happen before the ACTIVE state
2033 * is visible.
2034 */
2035 smp_wmb();
2036 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2037
2038 /*
2039 * Unthrottle events, since we scheduled we might have missed several
2040 * ticks already, also for a heavily scheduling task there is little
2041 * guarantee it'll get a tick in a timely manner.
2042 */
2043 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044 perf_log_throttle(event, 1);
2045 event->hw.interrupts = 0;
2046 }
2047
235c7fc7
IM
2048 /*
2049 * The new state must be visible before we turn it on in the hardware:
2050 */
2051 smp_wmb();
2052
44377277
AS
2053 perf_pmu_disable(event->pmu);
2054
72f669c0
SL
2055 perf_set_shadow_time(event, ctx, tstamp);
2056
ec0d7729
AS
2057 perf_log_itrace_start(event);
2058
a4eaf7f1 2059 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2060 event->state = PERF_EVENT_STATE_INACTIVE;
2061 event->oncpu = -1;
44377277
AS
2062 ret = -EAGAIN;
2063 goto out;
235c7fc7
IM
2064 }
2065
00a2916f
PZ
2066 event->tstamp_running += tstamp - event->tstamp_stopped;
2067
cdd6c482 2068 if (!is_software_event(event))
3b6f9e5c 2069 cpuctx->active_oncpu++;
2fde4f94
MR
2070 if (!ctx->nr_active++)
2071 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2072 if (event->attr.freq && event->attr.sample_freq)
2073 ctx->nr_freq++;
235c7fc7 2074
cdd6c482 2075 if (event->attr.exclusive)
3b6f9e5c
PM
2076 cpuctx->exclusive = 1;
2077
44377277
AS
2078out:
2079 perf_pmu_enable(event->pmu);
2080
2081 return ret;
235c7fc7
IM
2082}
2083
6751b71e 2084static int
cdd6c482 2085group_sched_in(struct perf_event *group_event,
6751b71e 2086 struct perf_cpu_context *cpuctx,
6e37738a 2087 struct perf_event_context *ctx)
6751b71e 2088{
6bde9b6c 2089 struct perf_event *event, *partial_group = NULL;
4a234593 2090 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2091 u64 now = ctx->time;
2092 bool simulate = false;
6751b71e 2093
cdd6c482 2094 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2095 return 0;
2096
fbbe0701 2097 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2098
9ffcfa6f 2099 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2100 pmu->cancel_txn(pmu);
272325c4 2101 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2102 return -EAGAIN;
90151c35 2103 }
6751b71e
PM
2104
2105 /*
2106 * Schedule in siblings as one group (if any):
2107 */
cdd6c482 2108 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2109 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2110 partial_group = event;
6751b71e
PM
2111 goto group_error;
2112 }
2113 }
2114
9ffcfa6f 2115 if (!pmu->commit_txn(pmu))
6e85158c 2116 return 0;
9ffcfa6f 2117
6751b71e
PM
2118group_error:
2119 /*
2120 * Groups can be scheduled in as one unit only, so undo any
2121 * partial group before returning:
d7842da4
SE
2122 * The events up to the failed event are scheduled out normally,
2123 * tstamp_stopped will be updated.
2124 *
2125 * The failed events and the remaining siblings need to have
2126 * their timings updated as if they had gone thru event_sched_in()
2127 * and event_sched_out(). This is required to get consistent timings
2128 * across the group. This also takes care of the case where the group
2129 * could never be scheduled by ensuring tstamp_stopped is set to mark
2130 * the time the event was actually stopped, such that time delta
2131 * calculation in update_event_times() is correct.
6751b71e 2132 */
cdd6c482
IM
2133 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134 if (event == partial_group)
d7842da4
SE
2135 simulate = true;
2136
2137 if (simulate) {
2138 event->tstamp_running += now - event->tstamp_stopped;
2139 event->tstamp_stopped = now;
2140 } else {
2141 event_sched_out(event, cpuctx, ctx);
2142 }
6751b71e 2143 }
9ffcfa6f 2144 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2145
ad5133b7 2146 pmu->cancel_txn(pmu);
90151c35 2147
272325c4 2148 perf_mux_hrtimer_restart(cpuctx);
9e630205 2149
6751b71e
PM
2150 return -EAGAIN;
2151}
2152
3b6f9e5c 2153/*
cdd6c482 2154 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2155 */
cdd6c482 2156static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2157 struct perf_cpu_context *cpuctx,
2158 int can_add_hw)
2159{
2160 /*
cdd6c482 2161 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2162 */
4ff6a8de 2163 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2164 return 1;
2165 /*
2166 * If an exclusive group is already on, no other hardware
cdd6c482 2167 * events can go on.
3b6f9e5c
PM
2168 */
2169 if (cpuctx->exclusive)
2170 return 0;
2171 /*
2172 * If this group is exclusive and there are already
cdd6c482 2173 * events on the CPU, it can't go on.
3b6f9e5c 2174 */
cdd6c482 2175 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2176 return 0;
2177 /*
2178 * Otherwise, try to add it if all previous groups were able
2179 * to go on.
2180 */
2181 return can_add_hw;
2182}
2183
cdd6c482
IM
2184static void add_event_to_ctx(struct perf_event *event,
2185 struct perf_event_context *ctx)
53cfbf59 2186{
4158755d
SE
2187 u64 tstamp = perf_event_time(event);
2188
cdd6c482 2189 list_add_event(event, ctx);
8a49542c 2190 perf_group_attach(event);
4158755d
SE
2191 event->tstamp_enabled = tstamp;
2192 event->tstamp_running = tstamp;
2193 event->tstamp_stopped = tstamp;
53cfbf59
PM
2194}
2195
bd2afa49
PZ
2196static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2c29ef0f
PZ
2199static void
2200ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
fe4b04fa 2204
bd2afa49
PZ
2205static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 struct perf_event_context *ctx)
2207{
2208 if (!cpuctx->task_ctx)
2209 return;
2210
2211 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212 return;
2213
2214 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215}
2216
dce5855b
PZ
2217static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 struct task_struct *task)
2220{
2221 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222 if (ctx)
2223 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225 if (ctx)
2226 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227}
2228
3e349507
PZ
2229static void ctx_resched(struct perf_cpu_context *cpuctx,
2230 struct perf_event_context *task_ctx)
0017960f 2231{
3e349507
PZ
2232 perf_pmu_disable(cpuctx->ctx.pmu);
2233 if (task_ctx)
2234 task_ctx_sched_out(cpuctx, task_ctx);
2235 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236 perf_event_sched_in(cpuctx, task_ctx, current);
2237 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2238}
2239
0793a61d 2240/*
cdd6c482 2241 * Cross CPU call to install and enable a performance event
682076ae 2242 *
a096309b
PZ
2243 * Very similar to remote_function() + event_function() but cannot assume that
2244 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2245 */
fe4b04fa 2246static int __perf_install_in_context(void *info)
0793a61d 2247{
a096309b
PZ
2248 struct perf_event *event = info;
2249 struct perf_event_context *ctx = event->ctx;
108b02cf 2250 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2251 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2252 bool reprogram = true;
a096309b 2253 int ret = 0;
0793a61d 2254
63b6da39 2255 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2256 if (ctx->task) {
b58f6b0d
PZ
2257 raw_spin_lock(&ctx->lock);
2258 task_ctx = ctx;
a096309b 2259
63cae12b 2260 reprogram = (ctx->task == current);
b58f6b0d 2261
39a43640 2262 /*
63cae12b
PZ
2263 * If the task is running, it must be running on this CPU,
2264 * otherwise we cannot reprogram things.
2265 *
2266 * If its not running, we don't care, ctx->lock will
2267 * serialize against it becoming runnable.
39a43640 2268 */
63cae12b
PZ
2269 if (task_curr(ctx->task) && !reprogram) {
2270 ret = -ESRCH;
2271 goto unlock;
2272 }
a096309b 2273
63cae12b 2274 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2275 } else if (task_ctx) {
2276 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2277 }
b58f6b0d 2278
63cae12b 2279 if (reprogram) {
a096309b
PZ
2280 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2281 add_event_to_ctx(event, ctx);
2282 ctx_resched(cpuctx, task_ctx);
2283 } else {
2284 add_event_to_ctx(event, ctx);
2285 }
2286
63b6da39 2287unlock:
2c29ef0f 2288 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2289
a096309b 2290 return ret;
0793a61d
TG
2291}
2292
2293/*
a096309b
PZ
2294 * Attach a performance event to a context.
2295 *
2296 * Very similar to event_function_call, see comment there.
0793a61d
TG
2297 */
2298static void
cdd6c482
IM
2299perf_install_in_context(struct perf_event_context *ctx,
2300 struct perf_event *event,
0793a61d
TG
2301 int cpu)
2302{
a096309b 2303 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2304
fe4b04fa
PZ
2305 lockdep_assert_held(&ctx->mutex);
2306
0cda4c02
YZ
2307 if (event->cpu != -1)
2308 event->cpu = cpu;
c3f00c70 2309
0b8f1e2e
PZ
2310 /*
2311 * Ensures that if we can observe event->ctx, both the event and ctx
2312 * will be 'complete'. See perf_iterate_sb_cpu().
2313 */
2314 smp_store_release(&event->ctx, ctx);
2315
a096309b
PZ
2316 if (!task) {
2317 cpu_function_call(cpu, __perf_install_in_context, event);
2318 return;
2319 }
2320
2321 /*
2322 * Should not happen, we validate the ctx is still alive before calling.
2323 */
2324 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2325 return;
2326
39a43640
PZ
2327 /*
2328 * Installing events is tricky because we cannot rely on ctx->is_active
2329 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2330 *
2331 * Instead we use task_curr(), which tells us if the task is running.
2332 * However, since we use task_curr() outside of rq::lock, we can race
2333 * against the actual state. This means the result can be wrong.
2334 *
2335 * If we get a false positive, we retry, this is harmless.
2336 *
2337 * If we get a false negative, things are complicated. If we are after
2338 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2339 * value must be correct. If we're before, it doesn't matter since
2340 * perf_event_context_sched_in() will program the counter.
2341 *
2342 * However, this hinges on the remote context switch having observed
2343 * our task->perf_event_ctxp[] store, such that it will in fact take
2344 * ctx::lock in perf_event_context_sched_in().
2345 *
2346 * We do this by task_function_call(), if the IPI fails to hit the task
2347 * we know any future context switch of task must see the
2348 * perf_event_ctpx[] store.
39a43640 2349 */
63cae12b 2350
63b6da39 2351 /*
63cae12b
PZ
2352 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2353 * task_cpu() load, such that if the IPI then does not find the task
2354 * running, a future context switch of that task must observe the
2355 * store.
63b6da39 2356 */
63cae12b
PZ
2357 smp_mb();
2358again:
2359 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2360 return;
2361
2362 raw_spin_lock_irq(&ctx->lock);
2363 task = ctx->task;
84c4e620 2364 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2365 /*
2366 * Cannot happen because we already checked above (which also
2367 * cannot happen), and we hold ctx->mutex, which serializes us
2368 * against perf_event_exit_task_context().
2369 */
63b6da39
PZ
2370 raw_spin_unlock_irq(&ctx->lock);
2371 return;
2372 }
39a43640 2373 /*
63cae12b
PZ
2374 * If the task is not running, ctx->lock will avoid it becoming so,
2375 * thus we can safely install the event.
39a43640 2376 */
63cae12b
PZ
2377 if (task_curr(task)) {
2378 raw_spin_unlock_irq(&ctx->lock);
2379 goto again;
2380 }
2381 add_event_to_ctx(event, ctx);
2382 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2383}
2384
fa289bec 2385/*
cdd6c482 2386 * Put a event into inactive state and update time fields.
fa289bec
PM
2387 * Enabling the leader of a group effectively enables all
2388 * the group members that aren't explicitly disabled, so we
2389 * have to update their ->tstamp_enabled also.
2390 * Note: this works for group members as well as group leaders
2391 * since the non-leader members' sibling_lists will be empty.
2392 */
1d9b482e 2393static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2394{
cdd6c482 2395 struct perf_event *sub;
4158755d 2396 u64 tstamp = perf_event_time(event);
fa289bec 2397
cdd6c482 2398 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2399 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2400 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2401 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2402 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2403 }
fa289bec
PM
2404}
2405
d859e29f 2406/*
cdd6c482 2407 * Cross CPU call to enable a performance event
d859e29f 2408 */
fae3fde6
PZ
2409static void __perf_event_enable(struct perf_event *event,
2410 struct perf_cpu_context *cpuctx,
2411 struct perf_event_context *ctx,
2412 void *info)
04289bb9 2413{
cdd6c482 2414 struct perf_event *leader = event->group_leader;
fae3fde6 2415 struct perf_event_context *task_ctx;
04289bb9 2416
6e801e01
PZ
2417 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2418 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2419 return;
3cbed429 2420
bd2afa49
PZ
2421 if (ctx->is_active)
2422 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2423
1d9b482e 2424 __perf_event_mark_enabled(event);
04289bb9 2425
fae3fde6
PZ
2426 if (!ctx->is_active)
2427 return;
2428
e5d1367f 2429 if (!event_filter_match(event)) {
bd2afa49 2430 if (is_cgroup_event(event))
e5d1367f 2431 perf_cgroup_defer_enabled(event);
bd2afa49 2432 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2433 return;
e5d1367f 2434 }
f4c4176f 2435
04289bb9 2436 /*
cdd6c482 2437 * If the event is in a group and isn't the group leader,
d859e29f 2438 * then don't put it on unless the group is on.
04289bb9 2439 */
bd2afa49
PZ
2440 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2441 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2442 return;
bd2afa49 2443 }
fe4b04fa 2444
fae3fde6
PZ
2445 task_ctx = cpuctx->task_ctx;
2446 if (ctx->task)
2447 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2448
fae3fde6 2449 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2450}
2451
d859e29f 2452/*
cdd6c482 2453 * Enable a event.
c93f7669 2454 *
cdd6c482
IM
2455 * If event->ctx is a cloned context, callers must make sure that
2456 * every task struct that event->ctx->task could possibly point to
c93f7669 2457 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2458 * perf_event_for_each_child or perf_event_for_each as described
2459 * for perf_event_disable.
d859e29f 2460 */
f63a8daa 2461static void _perf_event_enable(struct perf_event *event)
d859e29f 2462{
cdd6c482 2463 struct perf_event_context *ctx = event->ctx;
d859e29f 2464
7b648018 2465 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2466 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2467 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2468 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2469 return;
2470 }
2471
d859e29f 2472 /*
cdd6c482 2473 * If the event is in error state, clear that first.
7b648018
PZ
2474 *
2475 * That way, if we see the event in error state below, we know that it
2476 * has gone back into error state, as distinct from the task having
2477 * been scheduled away before the cross-call arrived.
d859e29f 2478 */
cdd6c482
IM
2479 if (event->state == PERF_EVENT_STATE_ERROR)
2480 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2481 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2482
fae3fde6 2483 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2484}
f63a8daa
PZ
2485
2486/*
2487 * See perf_event_disable();
2488 */
2489void perf_event_enable(struct perf_event *event)
2490{
2491 struct perf_event_context *ctx;
2492
2493 ctx = perf_event_ctx_lock(event);
2494 _perf_event_enable(event);
2495 perf_event_ctx_unlock(event, ctx);
2496}
dcfce4a0 2497EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2498
375637bc
AS
2499struct stop_event_data {
2500 struct perf_event *event;
2501 unsigned int restart;
2502};
2503
95ff4ca2
AS
2504static int __perf_event_stop(void *info)
2505{
375637bc
AS
2506 struct stop_event_data *sd = info;
2507 struct perf_event *event = sd->event;
95ff4ca2 2508
375637bc 2509 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2510 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2511 return 0;
2512
2513 /* matches smp_wmb() in event_sched_in() */
2514 smp_rmb();
2515
2516 /*
2517 * There is a window with interrupts enabled before we get here,
2518 * so we need to check again lest we try to stop another CPU's event.
2519 */
2520 if (READ_ONCE(event->oncpu) != smp_processor_id())
2521 return -EAGAIN;
2522
2523 event->pmu->stop(event, PERF_EF_UPDATE);
2524
375637bc
AS
2525 /*
2526 * May race with the actual stop (through perf_pmu_output_stop()),
2527 * but it is only used for events with AUX ring buffer, and such
2528 * events will refuse to restart because of rb::aux_mmap_count==0,
2529 * see comments in perf_aux_output_begin().
2530 *
2531 * Since this is happening on a event-local CPU, no trace is lost
2532 * while restarting.
2533 */
2534 if (sd->restart)
c9bbdd48 2535 event->pmu->start(event, 0);
375637bc 2536
95ff4ca2
AS
2537 return 0;
2538}
2539
767ae086 2540static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2541{
2542 struct stop_event_data sd = {
2543 .event = event,
767ae086 2544 .restart = restart,
375637bc
AS
2545 };
2546 int ret = 0;
2547
2548 do {
2549 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2550 return 0;
2551
2552 /* matches smp_wmb() in event_sched_in() */
2553 smp_rmb();
2554
2555 /*
2556 * We only want to restart ACTIVE events, so if the event goes
2557 * inactive here (event->oncpu==-1), there's nothing more to do;
2558 * fall through with ret==-ENXIO.
2559 */
2560 ret = cpu_function_call(READ_ONCE(event->oncpu),
2561 __perf_event_stop, &sd);
2562 } while (ret == -EAGAIN);
2563
2564 return ret;
2565}
2566
2567/*
2568 * In order to contain the amount of racy and tricky in the address filter
2569 * configuration management, it is a two part process:
2570 *
2571 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2572 * we update the addresses of corresponding vmas in
2573 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2574 * (p2) when an event is scheduled in (pmu::add), it calls
2575 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2576 * if the generation has changed since the previous call.
2577 *
2578 * If (p1) happens while the event is active, we restart it to force (p2).
2579 *
2580 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2581 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2582 * ioctl;
2583 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2584 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2585 * for reading;
2586 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2587 * of exec.
2588 */
2589void perf_event_addr_filters_sync(struct perf_event *event)
2590{
2591 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2592
2593 if (!has_addr_filter(event))
2594 return;
2595
2596 raw_spin_lock(&ifh->lock);
2597 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2598 event->pmu->addr_filters_sync(event);
2599 event->hw.addr_filters_gen = event->addr_filters_gen;
2600 }
2601 raw_spin_unlock(&ifh->lock);
2602}
2603EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2604
f63a8daa 2605static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2606{
2023b359 2607 /*
cdd6c482 2608 * not supported on inherited events
2023b359 2609 */
2e939d1d 2610 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2611 return -EINVAL;
2612
cdd6c482 2613 atomic_add(refresh, &event->event_limit);
f63a8daa 2614 _perf_event_enable(event);
2023b359
PZ
2615
2616 return 0;
79f14641 2617}
f63a8daa
PZ
2618
2619/*
2620 * See perf_event_disable()
2621 */
2622int perf_event_refresh(struct perf_event *event, int refresh)
2623{
2624 struct perf_event_context *ctx;
2625 int ret;
2626
2627 ctx = perf_event_ctx_lock(event);
2628 ret = _perf_event_refresh(event, refresh);
2629 perf_event_ctx_unlock(event, ctx);
2630
2631 return ret;
2632}
26ca5c11 2633EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2634
5b0311e1
FW
2635static void ctx_sched_out(struct perf_event_context *ctx,
2636 struct perf_cpu_context *cpuctx,
2637 enum event_type_t event_type)
235c7fc7 2638{
db24d33e 2639 int is_active = ctx->is_active;
c994d613 2640 struct perf_event *event;
235c7fc7 2641
c994d613 2642 lockdep_assert_held(&ctx->lock);
235c7fc7 2643
39a43640
PZ
2644 if (likely(!ctx->nr_events)) {
2645 /*
2646 * See __perf_remove_from_context().
2647 */
2648 WARN_ON_ONCE(ctx->is_active);
2649 if (ctx->task)
2650 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2651 return;
39a43640
PZ
2652 }
2653
db24d33e 2654 ctx->is_active &= ~event_type;
3cbaa590
PZ
2655 if (!(ctx->is_active & EVENT_ALL))
2656 ctx->is_active = 0;
2657
63e30d3e
PZ
2658 if (ctx->task) {
2659 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2660 if (!ctx->is_active)
2661 cpuctx->task_ctx = NULL;
2662 }
facc4307 2663
8fdc6539
PZ
2664 /*
2665 * Always update time if it was set; not only when it changes.
2666 * Otherwise we can 'forget' to update time for any but the last
2667 * context we sched out. For example:
2668 *
2669 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2670 * ctx_sched_out(.event_type = EVENT_PINNED)
2671 *
2672 * would only update time for the pinned events.
2673 */
3cbaa590
PZ
2674 if (is_active & EVENT_TIME) {
2675 /* update (and stop) ctx time */
2676 update_context_time(ctx);
2677 update_cgrp_time_from_cpuctx(cpuctx);
2678 }
2679
8fdc6539
PZ
2680 is_active ^= ctx->is_active; /* changed bits */
2681
3cbaa590 2682 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2683 return;
5b0311e1 2684
075e0b00 2685 perf_pmu_disable(ctx->pmu);
3cbaa590 2686 if (is_active & EVENT_PINNED) {
889ff015
FW
2687 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2688 group_sched_out(event, cpuctx, ctx);
9ed6060d 2689 }
889ff015 2690
3cbaa590 2691 if (is_active & EVENT_FLEXIBLE) {
889ff015 2692 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2693 group_sched_out(event, cpuctx, ctx);
9ed6060d 2694 }
1b9a644f 2695 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2696}
2697
564c2b21 2698/*
5a3126d4
PZ
2699 * Test whether two contexts are equivalent, i.e. whether they have both been
2700 * cloned from the same version of the same context.
2701 *
2702 * Equivalence is measured using a generation number in the context that is
2703 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2704 * and list_del_event().
564c2b21 2705 */
cdd6c482
IM
2706static int context_equiv(struct perf_event_context *ctx1,
2707 struct perf_event_context *ctx2)
564c2b21 2708{
211de6eb
PZ
2709 lockdep_assert_held(&ctx1->lock);
2710 lockdep_assert_held(&ctx2->lock);
2711
5a3126d4
PZ
2712 /* Pinning disables the swap optimization */
2713 if (ctx1->pin_count || ctx2->pin_count)
2714 return 0;
2715
2716 /* If ctx1 is the parent of ctx2 */
2717 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2718 return 1;
2719
2720 /* If ctx2 is the parent of ctx1 */
2721 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2722 return 1;
2723
2724 /*
2725 * If ctx1 and ctx2 have the same parent; we flatten the parent
2726 * hierarchy, see perf_event_init_context().
2727 */
2728 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2729 ctx1->parent_gen == ctx2->parent_gen)
2730 return 1;
2731
2732 /* Unmatched */
2733 return 0;
564c2b21
PM
2734}
2735
cdd6c482
IM
2736static void __perf_event_sync_stat(struct perf_event *event,
2737 struct perf_event *next_event)
bfbd3381
PZ
2738{
2739 u64 value;
2740
cdd6c482 2741 if (!event->attr.inherit_stat)
bfbd3381
PZ
2742 return;
2743
2744 /*
cdd6c482 2745 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2746 * because we're in the middle of a context switch and have IRQs
2747 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2748 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2749 * don't need to use it.
2750 */
cdd6c482
IM
2751 switch (event->state) {
2752 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2753 event->pmu->read(event);
2754 /* fall-through */
bfbd3381 2755
cdd6c482
IM
2756 case PERF_EVENT_STATE_INACTIVE:
2757 update_event_times(event);
bfbd3381
PZ
2758 break;
2759
2760 default:
2761 break;
2762 }
2763
2764 /*
cdd6c482 2765 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2766 * values when we flip the contexts.
2767 */
e7850595
PZ
2768 value = local64_read(&next_event->count);
2769 value = local64_xchg(&event->count, value);
2770 local64_set(&next_event->count, value);
bfbd3381 2771
cdd6c482
IM
2772 swap(event->total_time_enabled, next_event->total_time_enabled);
2773 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2774
bfbd3381 2775 /*
19d2e755 2776 * Since we swizzled the values, update the user visible data too.
bfbd3381 2777 */
cdd6c482
IM
2778 perf_event_update_userpage(event);
2779 perf_event_update_userpage(next_event);
bfbd3381
PZ
2780}
2781
cdd6c482
IM
2782static void perf_event_sync_stat(struct perf_event_context *ctx,
2783 struct perf_event_context *next_ctx)
bfbd3381 2784{
cdd6c482 2785 struct perf_event *event, *next_event;
bfbd3381
PZ
2786
2787 if (!ctx->nr_stat)
2788 return;
2789
02ffdbc8
PZ
2790 update_context_time(ctx);
2791
cdd6c482
IM
2792 event = list_first_entry(&ctx->event_list,
2793 struct perf_event, event_entry);
bfbd3381 2794
cdd6c482
IM
2795 next_event = list_first_entry(&next_ctx->event_list,
2796 struct perf_event, event_entry);
bfbd3381 2797
cdd6c482
IM
2798 while (&event->event_entry != &ctx->event_list &&
2799 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2800
cdd6c482 2801 __perf_event_sync_stat(event, next_event);
bfbd3381 2802
cdd6c482
IM
2803 event = list_next_entry(event, event_entry);
2804 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2805 }
2806}
2807
fe4b04fa
PZ
2808static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2809 struct task_struct *next)
0793a61d 2810{
8dc85d54 2811 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2812 struct perf_event_context *next_ctx;
5a3126d4 2813 struct perf_event_context *parent, *next_parent;
108b02cf 2814 struct perf_cpu_context *cpuctx;
c93f7669 2815 int do_switch = 1;
0793a61d 2816
108b02cf
PZ
2817 if (likely(!ctx))
2818 return;
10989fb2 2819
108b02cf
PZ
2820 cpuctx = __get_cpu_context(ctx);
2821 if (!cpuctx->task_ctx)
0793a61d
TG
2822 return;
2823
c93f7669 2824 rcu_read_lock();
8dc85d54 2825 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2826 if (!next_ctx)
2827 goto unlock;
2828
2829 parent = rcu_dereference(ctx->parent_ctx);
2830 next_parent = rcu_dereference(next_ctx->parent_ctx);
2831
2832 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2833 if (!parent && !next_parent)
5a3126d4
PZ
2834 goto unlock;
2835
2836 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2837 /*
2838 * Looks like the two contexts are clones, so we might be
2839 * able to optimize the context switch. We lock both
2840 * contexts and check that they are clones under the
2841 * lock (including re-checking that neither has been
2842 * uncloned in the meantime). It doesn't matter which
2843 * order we take the locks because no other cpu could
2844 * be trying to lock both of these tasks.
2845 */
e625cce1
TG
2846 raw_spin_lock(&ctx->lock);
2847 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2848 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2849 WRITE_ONCE(ctx->task, next);
2850 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2851
2852 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2853
63b6da39
PZ
2854 /*
2855 * RCU_INIT_POINTER here is safe because we've not
2856 * modified the ctx and the above modification of
2857 * ctx->task and ctx->task_ctx_data are immaterial
2858 * since those values are always verified under
2859 * ctx->lock which we're now holding.
2860 */
2861 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2862 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2863
c93f7669 2864 do_switch = 0;
bfbd3381 2865
cdd6c482 2866 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2867 }
e625cce1
TG
2868 raw_spin_unlock(&next_ctx->lock);
2869 raw_spin_unlock(&ctx->lock);
564c2b21 2870 }
5a3126d4 2871unlock:
c93f7669 2872 rcu_read_unlock();
564c2b21 2873
c93f7669 2874 if (do_switch) {
facc4307 2875 raw_spin_lock(&ctx->lock);
8833d0e2 2876 task_ctx_sched_out(cpuctx, ctx);
facc4307 2877 raw_spin_unlock(&ctx->lock);
c93f7669 2878 }
0793a61d
TG
2879}
2880
e48c1788
PZ
2881static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2882
ba532500
YZ
2883void perf_sched_cb_dec(struct pmu *pmu)
2884{
e48c1788
PZ
2885 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2886
ba532500 2887 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2888
2889 if (!--cpuctx->sched_cb_usage)
2890 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2891}
2892
e48c1788 2893
ba532500
YZ
2894void perf_sched_cb_inc(struct pmu *pmu)
2895{
e48c1788
PZ
2896 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2897
2898 if (!cpuctx->sched_cb_usage++)
2899 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2900
ba532500
YZ
2901 this_cpu_inc(perf_sched_cb_usages);
2902}
2903
2904/*
2905 * This function provides the context switch callback to the lower code
2906 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2907 *
2908 * This callback is relevant even to per-cpu events; for example multi event
2909 * PEBS requires this to provide PID/TID information. This requires we flush
2910 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2911 */
2912static void perf_pmu_sched_task(struct task_struct *prev,
2913 struct task_struct *next,
2914 bool sched_in)
2915{
2916 struct perf_cpu_context *cpuctx;
2917 struct pmu *pmu;
ba532500
YZ
2918
2919 if (prev == next)
2920 return;
2921
e48c1788
PZ
2922 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2923 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
ba532500 2924
e48c1788
PZ
2925 if (WARN_ON_ONCE(!pmu->sched_task))
2926 continue;
ba532500 2927
e48c1788
PZ
2928 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2929 perf_pmu_disable(pmu);
ba532500 2930
e48c1788 2931 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2932
e48c1788
PZ
2933 perf_pmu_enable(pmu);
2934 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2935 }
ba532500
YZ
2936}
2937
45ac1403
AH
2938static void perf_event_switch(struct task_struct *task,
2939 struct task_struct *next_prev, bool sched_in);
2940
8dc85d54
PZ
2941#define for_each_task_context_nr(ctxn) \
2942 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2943
2944/*
2945 * Called from scheduler to remove the events of the current task,
2946 * with interrupts disabled.
2947 *
2948 * We stop each event and update the event value in event->count.
2949 *
2950 * This does not protect us against NMI, but disable()
2951 * sets the disabled bit in the control field of event _before_
2952 * accessing the event control register. If a NMI hits, then it will
2953 * not restart the event.
2954 */
ab0cce56
JO
2955void __perf_event_task_sched_out(struct task_struct *task,
2956 struct task_struct *next)
8dc85d54
PZ
2957{
2958 int ctxn;
2959
ba532500
YZ
2960 if (__this_cpu_read(perf_sched_cb_usages))
2961 perf_pmu_sched_task(task, next, false);
2962
45ac1403
AH
2963 if (atomic_read(&nr_switch_events))
2964 perf_event_switch(task, next, false);
2965
8dc85d54
PZ
2966 for_each_task_context_nr(ctxn)
2967 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2968
2969 /*
2970 * if cgroup events exist on this CPU, then we need
2971 * to check if we have to switch out PMU state.
2972 * cgroup event are system-wide mode only
2973 */
4a32fea9 2974 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2975 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2976}
2977
5b0311e1
FW
2978/*
2979 * Called with IRQs disabled
2980 */
2981static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2982 enum event_type_t event_type)
2983{
2984 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2985}
2986
235c7fc7 2987static void
5b0311e1 2988ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2989 struct perf_cpu_context *cpuctx)
0793a61d 2990{
cdd6c482 2991 struct perf_event *event;
0793a61d 2992
889ff015
FW
2993 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2994 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2995 continue;
5632ab12 2996 if (!event_filter_match(event))
3b6f9e5c
PM
2997 continue;
2998
e5d1367f
SE
2999 /* may need to reset tstamp_enabled */
3000 if (is_cgroup_event(event))
3001 perf_cgroup_mark_enabled(event, ctx);
3002
8c9ed8e1 3003 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3004 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3005
3006 /*
3007 * If this pinned group hasn't been scheduled,
3008 * put it in error state.
3009 */
cdd6c482
IM
3010 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3011 update_group_times(event);
3012 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3013 }
3b6f9e5c 3014 }
5b0311e1
FW
3015}
3016
3017static void
3018ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3019 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3020{
3021 struct perf_event *event;
3022 int can_add_hw = 1;
3b6f9e5c 3023
889ff015
FW
3024 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3025 /* Ignore events in OFF or ERROR state */
3026 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3027 continue;
04289bb9
IM
3028 /*
3029 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3030 * of events:
04289bb9 3031 */
5632ab12 3032 if (!event_filter_match(event))
0793a61d
TG
3033 continue;
3034
e5d1367f
SE
3035 /* may need to reset tstamp_enabled */
3036 if (is_cgroup_event(event))
3037 perf_cgroup_mark_enabled(event, ctx);
3038
9ed6060d 3039 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3040 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3041 can_add_hw = 0;
9ed6060d 3042 }
0793a61d 3043 }
5b0311e1
FW
3044}
3045
3046static void
3047ctx_sched_in(struct perf_event_context *ctx,
3048 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3049 enum event_type_t event_type,
3050 struct task_struct *task)
5b0311e1 3051{
db24d33e 3052 int is_active = ctx->is_active;
c994d613
PZ
3053 u64 now;
3054
3055 lockdep_assert_held(&ctx->lock);
e5d1367f 3056
5b0311e1 3057 if (likely(!ctx->nr_events))
facc4307 3058 return;
5b0311e1 3059
3cbaa590 3060 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3061 if (ctx->task) {
3062 if (!is_active)
3063 cpuctx->task_ctx = ctx;
3064 else
3065 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066 }
3067
3cbaa590
PZ
3068 is_active ^= ctx->is_active; /* changed bits */
3069
3070 if (is_active & EVENT_TIME) {
3071 /* start ctx time */
3072 now = perf_clock();
3073 ctx->timestamp = now;
3074 perf_cgroup_set_timestamp(task, ctx);
3075 }
3076
5b0311e1
FW
3077 /*
3078 * First go through the list and put on any pinned groups
3079 * in order to give them the best chance of going on.
3080 */
3cbaa590 3081 if (is_active & EVENT_PINNED)
6e37738a 3082 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3083
3084 /* Then walk through the lower prio flexible groups */
3cbaa590 3085 if (is_active & EVENT_FLEXIBLE)
6e37738a 3086 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3087}
3088
329c0e01 3089static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3090 enum event_type_t event_type,
3091 struct task_struct *task)
329c0e01
FW
3092{
3093 struct perf_event_context *ctx = &cpuctx->ctx;
3094
e5d1367f 3095 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3096}
3097
e5d1367f
SE
3098static void perf_event_context_sched_in(struct perf_event_context *ctx,
3099 struct task_struct *task)
235c7fc7 3100{
108b02cf 3101 struct perf_cpu_context *cpuctx;
235c7fc7 3102
108b02cf 3103 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3104 if (cpuctx->task_ctx == ctx)
3105 return;
3106
facc4307 3107 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3108 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3109 /*
3110 * We want to keep the following priority order:
3111 * cpu pinned (that don't need to move), task pinned,
3112 * cpu flexible, task flexible.
3113 */
3114 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3115 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3116 perf_pmu_enable(ctx->pmu);
3117 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3118}
3119
8dc85d54
PZ
3120/*
3121 * Called from scheduler to add the events of the current task
3122 * with interrupts disabled.
3123 *
3124 * We restore the event value and then enable it.
3125 *
3126 * This does not protect us against NMI, but enable()
3127 * sets the enabled bit in the control field of event _before_
3128 * accessing the event control register. If a NMI hits, then it will
3129 * keep the event running.
3130 */
ab0cce56
JO
3131void __perf_event_task_sched_in(struct task_struct *prev,
3132 struct task_struct *task)
8dc85d54
PZ
3133{
3134 struct perf_event_context *ctx;
3135 int ctxn;
3136
7e41d177
PZ
3137 /*
3138 * If cgroup events exist on this CPU, then we need to check if we have
3139 * to switch in PMU state; cgroup event are system-wide mode only.
3140 *
3141 * Since cgroup events are CPU events, we must schedule these in before
3142 * we schedule in the task events.
3143 */
3144 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3145 perf_cgroup_sched_in(prev, task);
3146
8dc85d54
PZ
3147 for_each_task_context_nr(ctxn) {
3148 ctx = task->perf_event_ctxp[ctxn];
3149 if (likely(!ctx))
3150 continue;
3151
e5d1367f 3152 perf_event_context_sched_in(ctx, task);
8dc85d54 3153 }
d010b332 3154
45ac1403
AH
3155 if (atomic_read(&nr_switch_events))
3156 perf_event_switch(task, prev, true);
3157
ba532500
YZ
3158 if (__this_cpu_read(perf_sched_cb_usages))
3159 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3160}
3161
abd50713
PZ
3162static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3163{
3164 u64 frequency = event->attr.sample_freq;
3165 u64 sec = NSEC_PER_SEC;
3166 u64 divisor, dividend;
3167
3168 int count_fls, nsec_fls, frequency_fls, sec_fls;
3169
3170 count_fls = fls64(count);
3171 nsec_fls = fls64(nsec);
3172 frequency_fls = fls64(frequency);
3173 sec_fls = 30;
3174
3175 /*
3176 * We got @count in @nsec, with a target of sample_freq HZ
3177 * the target period becomes:
3178 *
3179 * @count * 10^9
3180 * period = -------------------
3181 * @nsec * sample_freq
3182 *
3183 */
3184
3185 /*
3186 * Reduce accuracy by one bit such that @a and @b converge
3187 * to a similar magnitude.
3188 */
fe4b04fa 3189#define REDUCE_FLS(a, b) \
abd50713
PZ
3190do { \
3191 if (a##_fls > b##_fls) { \
3192 a >>= 1; \
3193 a##_fls--; \
3194 } else { \
3195 b >>= 1; \
3196 b##_fls--; \
3197 } \
3198} while (0)
3199
3200 /*
3201 * Reduce accuracy until either term fits in a u64, then proceed with
3202 * the other, so that finally we can do a u64/u64 division.
3203 */
3204 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3205 REDUCE_FLS(nsec, frequency);
3206 REDUCE_FLS(sec, count);
3207 }
3208
3209 if (count_fls + sec_fls > 64) {
3210 divisor = nsec * frequency;
3211
3212 while (count_fls + sec_fls > 64) {
3213 REDUCE_FLS(count, sec);
3214 divisor >>= 1;
3215 }
3216
3217 dividend = count * sec;
3218 } else {
3219 dividend = count * sec;
3220
3221 while (nsec_fls + frequency_fls > 64) {
3222 REDUCE_FLS(nsec, frequency);
3223 dividend >>= 1;
3224 }
3225
3226 divisor = nsec * frequency;
3227 }
3228
f6ab91ad
PZ
3229 if (!divisor)
3230 return dividend;
3231
abd50713
PZ
3232 return div64_u64(dividend, divisor);
3233}
3234
e050e3f0
SE
3235static DEFINE_PER_CPU(int, perf_throttled_count);
3236static DEFINE_PER_CPU(u64, perf_throttled_seq);
3237
f39d47ff 3238static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3239{
cdd6c482 3240 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3241 s64 period, sample_period;
bd2b5b12
PZ
3242 s64 delta;
3243
abd50713 3244 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3245
3246 delta = (s64)(period - hwc->sample_period);
3247 delta = (delta + 7) / 8; /* low pass filter */
3248
3249 sample_period = hwc->sample_period + delta;
3250
3251 if (!sample_period)
3252 sample_period = 1;
3253
bd2b5b12 3254 hwc->sample_period = sample_period;
abd50713 3255
e7850595 3256 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3257 if (disable)
3258 event->pmu->stop(event, PERF_EF_UPDATE);
3259
e7850595 3260 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3261
3262 if (disable)
3263 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3264 }
bd2b5b12
PZ
3265}
3266
e050e3f0
SE
3267/*
3268 * combine freq adjustment with unthrottling to avoid two passes over the
3269 * events. At the same time, make sure, having freq events does not change
3270 * the rate of unthrottling as that would introduce bias.
3271 */
3272static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3273 int needs_unthr)
60db5e09 3274{
cdd6c482
IM
3275 struct perf_event *event;
3276 struct hw_perf_event *hwc;
e050e3f0 3277 u64 now, period = TICK_NSEC;
abd50713 3278 s64 delta;
60db5e09 3279
e050e3f0
SE
3280 /*
3281 * only need to iterate over all events iff:
3282 * - context have events in frequency mode (needs freq adjust)
3283 * - there are events to unthrottle on this cpu
3284 */
3285 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3286 return;
3287
e050e3f0 3288 raw_spin_lock(&ctx->lock);
f39d47ff 3289 perf_pmu_disable(ctx->pmu);
e050e3f0 3290
03541f8b 3291 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3292 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3293 continue;
3294
5632ab12 3295 if (!event_filter_match(event))
5d27c23d
PZ
3296 continue;
3297
44377277
AS
3298 perf_pmu_disable(event->pmu);
3299
cdd6c482 3300 hwc = &event->hw;
6a24ed6c 3301
ae23bff1 3302 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3303 hwc->interrupts = 0;
cdd6c482 3304 perf_log_throttle(event, 1);
a4eaf7f1 3305 event->pmu->start(event, 0);
a78ac325
PZ
3306 }
3307
cdd6c482 3308 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3309 goto next;
60db5e09 3310
e050e3f0
SE
3311 /*
3312 * stop the event and update event->count
3313 */
3314 event->pmu->stop(event, PERF_EF_UPDATE);
3315
e7850595 3316 now = local64_read(&event->count);
abd50713
PZ
3317 delta = now - hwc->freq_count_stamp;
3318 hwc->freq_count_stamp = now;
60db5e09 3319
e050e3f0
SE
3320 /*
3321 * restart the event
3322 * reload only if value has changed
f39d47ff
SE
3323 * we have stopped the event so tell that
3324 * to perf_adjust_period() to avoid stopping it
3325 * twice.
e050e3f0 3326 */
abd50713 3327 if (delta > 0)
f39d47ff 3328 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3329
3330 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3331 next:
3332 perf_pmu_enable(event->pmu);
60db5e09 3333 }
e050e3f0 3334
f39d47ff 3335 perf_pmu_enable(ctx->pmu);
e050e3f0 3336 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3337}
3338
235c7fc7 3339/*
cdd6c482 3340 * Round-robin a context's events:
235c7fc7 3341 */
cdd6c482 3342static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3343{
dddd3379
TG
3344 /*
3345 * Rotate the first entry last of non-pinned groups. Rotation might be
3346 * disabled by the inheritance code.
3347 */
3348 if (!ctx->rotate_disable)
3349 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3350}
3351
9e630205 3352static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3353{
8dc85d54 3354 struct perf_event_context *ctx = NULL;
2fde4f94 3355 int rotate = 0;
7fc23a53 3356
b5ab4cd5 3357 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3358 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3359 rotate = 1;
3360 }
235c7fc7 3361
8dc85d54 3362 ctx = cpuctx->task_ctx;
b5ab4cd5 3363 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3364 if (ctx->nr_events != ctx->nr_active)
3365 rotate = 1;
3366 }
9717e6cd 3367
e050e3f0 3368 if (!rotate)
0f5a2601
PZ
3369 goto done;
3370
facc4307 3371 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3372 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3373
e050e3f0
SE
3374 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3375 if (ctx)
3376 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3377
e050e3f0
SE
3378 rotate_ctx(&cpuctx->ctx);
3379 if (ctx)
3380 rotate_ctx(ctx);
235c7fc7 3381
e050e3f0 3382 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3383
0f5a2601
PZ
3384 perf_pmu_enable(cpuctx->ctx.pmu);
3385 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3386done:
9e630205
SE
3387
3388 return rotate;
e9d2b064
PZ
3389}
3390
3391void perf_event_task_tick(void)
3392{
2fde4f94
MR
3393 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3394 struct perf_event_context *ctx, *tmp;
e050e3f0 3395 int throttled;
b5ab4cd5 3396
e9d2b064
PZ
3397 WARN_ON(!irqs_disabled());
3398
e050e3f0
SE
3399 __this_cpu_inc(perf_throttled_seq);
3400 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3401 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3402
2fde4f94 3403 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3404 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3405}
3406
889ff015
FW
3407static int event_enable_on_exec(struct perf_event *event,
3408 struct perf_event_context *ctx)
3409{
3410 if (!event->attr.enable_on_exec)
3411 return 0;
3412
3413 event->attr.enable_on_exec = 0;
3414 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3415 return 0;
3416
1d9b482e 3417 __perf_event_mark_enabled(event);
889ff015
FW
3418
3419 return 1;
3420}
3421
57e7986e 3422/*
cdd6c482 3423 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3424 * This expects task == current.
3425 */
c1274499 3426static void perf_event_enable_on_exec(int ctxn)
57e7986e 3427{
c1274499 3428 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3429 struct perf_cpu_context *cpuctx;
cdd6c482 3430 struct perf_event *event;
57e7986e
PM
3431 unsigned long flags;
3432 int enabled = 0;
3433
3434 local_irq_save(flags);
c1274499 3435 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3436 if (!ctx || !ctx->nr_events)
57e7986e
PM
3437 goto out;
3438
3e349507
PZ
3439 cpuctx = __get_cpu_context(ctx);
3440 perf_ctx_lock(cpuctx, ctx);
7fce2509 3441 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3442 list_for_each_entry(event, &ctx->event_list, event_entry)
3443 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3444
3445 /*
3e349507 3446 * Unclone and reschedule this context if we enabled any event.
57e7986e 3447 */
3e349507 3448 if (enabled) {
211de6eb 3449 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3450 ctx_resched(cpuctx, ctx);
3451 }
3452 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3453
9ed6060d 3454out:
57e7986e 3455 local_irq_restore(flags);
211de6eb
PZ
3456
3457 if (clone_ctx)
3458 put_ctx(clone_ctx);
57e7986e
PM
3459}
3460
0492d4c5
PZ
3461struct perf_read_data {
3462 struct perf_event *event;
3463 bool group;
7d88962e 3464 int ret;
0492d4c5
PZ
3465};
3466
d6a2f903
DCC
3467static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3468{
3469 int event_cpu = event->oncpu;
3470 u16 local_pkg, event_pkg;
3471
3472 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3473 event_pkg = topology_physical_package_id(event_cpu);
3474 local_pkg = topology_physical_package_id(local_cpu);
3475
3476 if (event_pkg == local_pkg)
3477 return local_cpu;
3478 }
3479
3480 return event_cpu;
3481}
3482
0793a61d 3483/*
cdd6c482 3484 * Cross CPU call to read the hardware event
0793a61d 3485 */
cdd6c482 3486static void __perf_event_read(void *info)
0793a61d 3487{
0492d4c5
PZ
3488 struct perf_read_data *data = info;
3489 struct perf_event *sub, *event = data->event;
cdd6c482 3490 struct perf_event_context *ctx = event->ctx;
108b02cf 3491 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3492 struct pmu *pmu = event->pmu;
621a01ea 3493
e1ac3614
PM
3494 /*
3495 * If this is a task context, we need to check whether it is
3496 * the current task context of this cpu. If not it has been
3497 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3498 * event->count would have been updated to a recent sample
3499 * when the event was scheduled out.
e1ac3614
PM
3500 */
3501 if (ctx->task && cpuctx->task_ctx != ctx)
3502 return;
3503
e625cce1 3504 raw_spin_lock(&ctx->lock);
e5d1367f 3505 if (ctx->is_active) {
542e72fc 3506 update_context_time(ctx);
e5d1367f
SE
3507 update_cgrp_time_from_event(event);
3508 }
0492d4c5 3509
cdd6c482 3510 update_event_times(event);
4a00c16e
SB
3511 if (event->state != PERF_EVENT_STATE_ACTIVE)
3512 goto unlock;
0492d4c5 3513
4a00c16e
SB
3514 if (!data->group) {
3515 pmu->read(event);
3516 data->ret = 0;
0492d4c5 3517 goto unlock;
4a00c16e
SB
3518 }
3519
3520 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3521
3522 pmu->read(event);
0492d4c5
PZ
3523
3524 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3525 update_event_times(sub);
4a00c16e
SB
3526 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3527 /*
3528 * Use sibling's PMU rather than @event's since
3529 * sibling could be on different (eg: software) PMU.
3530 */
0492d4c5 3531 sub->pmu->read(sub);
4a00c16e 3532 }
0492d4c5 3533 }
4a00c16e
SB
3534
3535 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3536
3537unlock:
e625cce1 3538 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3539}
3540
b5e58793
PZ
3541static inline u64 perf_event_count(struct perf_event *event)
3542{
eacd3ecc
MF
3543 if (event->pmu->count)
3544 return event->pmu->count(event);
3545
3546 return __perf_event_count(event);
b5e58793
PZ
3547}
3548
ffe8690c
KX
3549/*
3550 * NMI-safe method to read a local event, that is an event that
3551 * is:
3552 * - either for the current task, or for this CPU
3553 * - does not have inherit set, for inherited task events
3554 * will not be local and we cannot read them atomically
3555 * - must not have a pmu::count method
3556 */
3557u64 perf_event_read_local(struct perf_event *event)
3558{
3559 unsigned long flags;
3560 u64 val;
3561
3562 /*
3563 * Disabling interrupts avoids all counter scheduling (context
3564 * switches, timer based rotation and IPIs).
3565 */
3566 local_irq_save(flags);
3567
3568 /* If this is a per-task event, it must be for current */
3569 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3570 event->hw.target != current);
3571
3572 /* If this is a per-CPU event, it must be for this CPU */
3573 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3574 event->cpu != smp_processor_id());
3575
3576 /*
3577 * It must not be an event with inherit set, we cannot read
3578 * all child counters from atomic context.
3579 */
3580 WARN_ON_ONCE(event->attr.inherit);
3581
3582 /*
3583 * It must not have a pmu::count method, those are not
3584 * NMI safe.
3585 */
3586 WARN_ON_ONCE(event->pmu->count);
3587
3588 /*
3589 * If the event is currently on this CPU, its either a per-task event,
3590 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3591 * oncpu == -1).
3592 */
3593 if (event->oncpu == smp_processor_id())
3594 event->pmu->read(event);
3595
3596 val = local64_read(&event->count);
3597 local_irq_restore(flags);
3598
3599 return val;
3600}
3601
7d88962e 3602static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3603{
d6a2f903 3604 int ret = 0, cpu_to_read, local_cpu;
7d88962e 3605
0793a61d 3606 /*
cdd6c482
IM
3607 * If event is enabled and currently active on a CPU, update the
3608 * value in the event structure:
0793a61d 3609 */
cdd6c482 3610 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3611 struct perf_read_data data = {
3612 .event = event,
3613 .group = group,
7d88962e 3614 .ret = 0,
0492d4c5 3615 };
d6a2f903
DCC
3616
3617 local_cpu = get_cpu();
3618 cpu_to_read = find_cpu_to_read(event, local_cpu);
3619 put_cpu();
3620
58763148
PZ
3621 /*
3622 * Purposely ignore the smp_call_function_single() return
3623 * value.
3624 *
3625 * If event->oncpu isn't a valid CPU it means the event got
3626 * scheduled out and that will have updated the event count.
3627 *
3628 * Therefore, either way, we'll have an up-to-date event count
3629 * after this.
3630 */
2cc53841 3631 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
58763148 3632 ret = data.ret;
cdd6c482 3633 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3634 struct perf_event_context *ctx = event->ctx;
3635 unsigned long flags;
3636
e625cce1 3637 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3638 /*
3639 * may read while context is not active
3640 * (e.g., thread is blocked), in that case
3641 * we cannot update context time
3642 */
e5d1367f 3643 if (ctx->is_active) {
c530ccd9 3644 update_context_time(ctx);
e5d1367f
SE
3645 update_cgrp_time_from_event(event);
3646 }
0492d4c5
PZ
3647 if (group)
3648 update_group_times(event);
3649 else
3650 update_event_times(event);
e625cce1 3651 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3652 }
7d88962e
SB
3653
3654 return ret;
0793a61d
TG
3655}
3656
a63eaf34 3657/*
cdd6c482 3658 * Initialize the perf_event context in a task_struct:
a63eaf34 3659 */
eb184479 3660static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3661{
e625cce1 3662 raw_spin_lock_init(&ctx->lock);
a63eaf34 3663 mutex_init(&ctx->mutex);
2fde4f94 3664 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3665 INIT_LIST_HEAD(&ctx->pinned_groups);
3666 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3667 INIT_LIST_HEAD(&ctx->event_list);
3668 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3669}
3670
3671static struct perf_event_context *
3672alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3673{
3674 struct perf_event_context *ctx;
3675
3676 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3677 if (!ctx)
3678 return NULL;
3679
3680 __perf_event_init_context(ctx);
3681 if (task) {
3682 ctx->task = task;
3683 get_task_struct(task);
0793a61d 3684 }
eb184479
PZ
3685 ctx->pmu = pmu;
3686
3687 return ctx;
a63eaf34
PM
3688}
3689
2ebd4ffb
MH
3690static struct task_struct *
3691find_lively_task_by_vpid(pid_t vpid)
3692{
3693 struct task_struct *task;
0793a61d
TG
3694
3695 rcu_read_lock();
2ebd4ffb 3696 if (!vpid)
0793a61d
TG
3697 task = current;
3698 else
2ebd4ffb 3699 task = find_task_by_vpid(vpid);
0793a61d
TG
3700 if (task)
3701 get_task_struct(task);
3702 rcu_read_unlock();
3703
3704 if (!task)
3705 return ERR_PTR(-ESRCH);
3706
2ebd4ffb 3707 return task;
2ebd4ffb
MH
3708}
3709
fe4b04fa
PZ
3710/*
3711 * Returns a matching context with refcount and pincount.
3712 */
108b02cf 3713static struct perf_event_context *
4af57ef2
YZ
3714find_get_context(struct pmu *pmu, struct task_struct *task,
3715 struct perf_event *event)
0793a61d 3716{
211de6eb 3717 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3718 struct perf_cpu_context *cpuctx;
4af57ef2 3719 void *task_ctx_data = NULL;
25346b93 3720 unsigned long flags;
8dc85d54 3721 int ctxn, err;
4af57ef2 3722 int cpu = event->cpu;
0793a61d 3723
22a4ec72 3724 if (!task) {
cdd6c482 3725 /* Must be root to operate on a CPU event: */
0764771d 3726 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3727 return ERR_PTR(-EACCES);
3728
0793a61d 3729 /*
cdd6c482 3730 * We could be clever and allow to attach a event to an
0793a61d
TG
3731 * offline CPU and activate it when the CPU comes up, but
3732 * that's for later.
3733 */
f6325e30 3734 if (!cpu_online(cpu))
0793a61d
TG
3735 return ERR_PTR(-ENODEV);
3736
108b02cf 3737 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3738 ctx = &cpuctx->ctx;
c93f7669 3739 get_ctx(ctx);
fe4b04fa 3740 ++ctx->pin_count;
0793a61d 3741
0793a61d
TG
3742 return ctx;
3743 }
3744
8dc85d54
PZ
3745 err = -EINVAL;
3746 ctxn = pmu->task_ctx_nr;
3747 if (ctxn < 0)
3748 goto errout;
3749
4af57ef2
YZ
3750 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3751 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3752 if (!task_ctx_data) {
3753 err = -ENOMEM;
3754 goto errout;
3755 }
3756 }
3757
9ed6060d 3758retry:
8dc85d54 3759 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3760 if (ctx) {
211de6eb 3761 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3762 ++ctx->pin_count;
4af57ef2
YZ
3763
3764 if (task_ctx_data && !ctx->task_ctx_data) {
3765 ctx->task_ctx_data = task_ctx_data;
3766 task_ctx_data = NULL;
3767 }
e625cce1 3768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3769
3770 if (clone_ctx)
3771 put_ctx(clone_ctx);
9137fb28 3772 } else {
eb184479 3773 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3774 err = -ENOMEM;
3775 if (!ctx)
3776 goto errout;
eb184479 3777
4af57ef2
YZ
3778 if (task_ctx_data) {
3779 ctx->task_ctx_data = task_ctx_data;
3780 task_ctx_data = NULL;
3781 }
3782
dbe08d82
ON
3783 err = 0;
3784 mutex_lock(&task->perf_event_mutex);
3785 /*
3786 * If it has already passed perf_event_exit_task().
3787 * we must see PF_EXITING, it takes this mutex too.
3788 */
3789 if (task->flags & PF_EXITING)
3790 err = -ESRCH;
3791 else if (task->perf_event_ctxp[ctxn])
3792 err = -EAGAIN;
fe4b04fa 3793 else {
9137fb28 3794 get_ctx(ctx);
fe4b04fa 3795 ++ctx->pin_count;
dbe08d82 3796 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3797 }
dbe08d82
ON
3798 mutex_unlock(&task->perf_event_mutex);
3799
3800 if (unlikely(err)) {
9137fb28 3801 put_ctx(ctx);
dbe08d82
ON
3802
3803 if (err == -EAGAIN)
3804 goto retry;
3805 goto errout;
a63eaf34
PM
3806 }
3807 }
3808
4af57ef2 3809 kfree(task_ctx_data);
0793a61d 3810 return ctx;
c93f7669 3811
9ed6060d 3812errout:
4af57ef2 3813 kfree(task_ctx_data);
c93f7669 3814 return ERR_PTR(err);
0793a61d
TG
3815}
3816
6fb2915d 3817static void perf_event_free_filter(struct perf_event *event);
2541517c 3818static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3819
cdd6c482 3820static void free_event_rcu(struct rcu_head *head)
592903cd 3821{
cdd6c482 3822 struct perf_event *event;
592903cd 3823
cdd6c482
IM
3824 event = container_of(head, struct perf_event, rcu_head);
3825 if (event->ns)
3826 put_pid_ns(event->ns);
6fb2915d 3827 perf_event_free_filter(event);
cdd6c482 3828 kfree(event);
592903cd
PZ
3829}
3830
b69cf536
PZ
3831static void ring_buffer_attach(struct perf_event *event,
3832 struct ring_buffer *rb);
925d519a 3833
f2fb6bef
KL
3834static void detach_sb_event(struct perf_event *event)
3835{
3836 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3837
3838 raw_spin_lock(&pel->lock);
3839 list_del_rcu(&event->sb_list);
3840 raw_spin_unlock(&pel->lock);
3841}
3842
a4f144eb 3843static bool is_sb_event(struct perf_event *event)
f2fb6bef 3844{
a4f144eb
DCC
3845 struct perf_event_attr *attr = &event->attr;
3846
f2fb6bef 3847 if (event->parent)
a4f144eb 3848 return false;
f2fb6bef
KL
3849
3850 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3851 return false;
f2fb6bef 3852
a4f144eb
DCC
3853 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3854 attr->comm || attr->comm_exec ||
3855 attr->task ||
3856 attr->context_switch)
3857 return true;
3858 return false;
3859}
3860
3861static void unaccount_pmu_sb_event(struct perf_event *event)
3862{
3863 if (is_sb_event(event))
3864 detach_sb_event(event);
f2fb6bef
KL
3865}
3866
4beb31f3 3867static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3868{
4beb31f3
FW
3869 if (event->parent)
3870 return;
3871
4beb31f3
FW
3872 if (is_cgroup_event(event))
3873 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3874}
925d519a 3875
555e0c1e
FW
3876#ifdef CONFIG_NO_HZ_FULL
3877static DEFINE_SPINLOCK(nr_freq_lock);
3878#endif
3879
3880static void unaccount_freq_event_nohz(void)
3881{
3882#ifdef CONFIG_NO_HZ_FULL
3883 spin_lock(&nr_freq_lock);
3884 if (atomic_dec_and_test(&nr_freq_events))
3885 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3886 spin_unlock(&nr_freq_lock);
3887#endif
3888}
3889
3890static void unaccount_freq_event(void)
3891{
3892 if (tick_nohz_full_enabled())
3893 unaccount_freq_event_nohz();
3894 else
3895 atomic_dec(&nr_freq_events);
3896}
3897
4beb31f3
FW
3898static void unaccount_event(struct perf_event *event)
3899{
25432ae9
PZ
3900 bool dec = false;
3901
4beb31f3
FW
3902 if (event->parent)
3903 return;
3904
3905 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3906 dec = true;
4beb31f3
FW
3907 if (event->attr.mmap || event->attr.mmap_data)
3908 atomic_dec(&nr_mmap_events);
3909 if (event->attr.comm)
3910 atomic_dec(&nr_comm_events);
3911 if (event->attr.task)
3912 atomic_dec(&nr_task_events);
948b26b6 3913 if (event->attr.freq)
555e0c1e 3914 unaccount_freq_event();
45ac1403 3915 if (event->attr.context_switch) {
25432ae9 3916 dec = true;
45ac1403
AH
3917 atomic_dec(&nr_switch_events);
3918 }
4beb31f3 3919 if (is_cgroup_event(event))
25432ae9 3920 dec = true;
4beb31f3 3921 if (has_branch_stack(event))
25432ae9
PZ
3922 dec = true;
3923
9107c89e
PZ
3924 if (dec) {
3925 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3926 schedule_delayed_work(&perf_sched_work, HZ);
3927 }
4beb31f3
FW
3928
3929 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3930
3931 unaccount_pmu_sb_event(event);
4beb31f3 3932}
925d519a 3933
9107c89e
PZ
3934static void perf_sched_delayed(struct work_struct *work)
3935{
3936 mutex_lock(&perf_sched_mutex);
3937 if (atomic_dec_and_test(&perf_sched_count))
3938 static_branch_disable(&perf_sched_events);
3939 mutex_unlock(&perf_sched_mutex);
3940}
3941
bed5b25a
AS
3942/*
3943 * The following implement mutual exclusion of events on "exclusive" pmus
3944 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3945 * at a time, so we disallow creating events that might conflict, namely:
3946 *
3947 * 1) cpu-wide events in the presence of per-task events,
3948 * 2) per-task events in the presence of cpu-wide events,
3949 * 3) two matching events on the same context.
3950 *
3951 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3952 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3953 */
3954static int exclusive_event_init(struct perf_event *event)
3955{
3956 struct pmu *pmu = event->pmu;
3957
3958 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3959 return 0;
3960
3961 /*
3962 * Prevent co-existence of per-task and cpu-wide events on the
3963 * same exclusive pmu.
3964 *
3965 * Negative pmu::exclusive_cnt means there are cpu-wide
3966 * events on this "exclusive" pmu, positive means there are
3967 * per-task events.
3968 *
3969 * Since this is called in perf_event_alloc() path, event::ctx
3970 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3971 * to mean "per-task event", because unlike other attach states it
3972 * never gets cleared.
3973 */
3974 if (event->attach_state & PERF_ATTACH_TASK) {
3975 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3976 return -EBUSY;
3977 } else {
3978 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3979 return -EBUSY;
3980 }
3981
3982 return 0;
3983}
3984
3985static void exclusive_event_destroy(struct perf_event *event)
3986{
3987 struct pmu *pmu = event->pmu;
3988
3989 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3990 return;
3991
3992 /* see comment in exclusive_event_init() */
3993 if (event->attach_state & PERF_ATTACH_TASK)
3994 atomic_dec(&pmu->exclusive_cnt);
3995 else
3996 atomic_inc(&pmu->exclusive_cnt);
3997}
3998
3999static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4000{
3bf6215a 4001 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4002 (e1->cpu == e2->cpu ||
4003 e1->cpu == -1 ||
4004 e2->cpu == -1))
4005 return true;
4006 return false;
4007}
4008
4009/* Called under the same ctx::mutex as perf_install_in_context() */
4010static bool exclusive_event_installable(struct perf_event *event,
4011 struct perf_event_context *ctx)
4012{
4013 struct perf_event *iter_event;
4014 struct pmu *pmu = event->pmu;
4015
4016 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4017 return true;
4018
4019 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4020 if (exclusive_event_match(iter_event, event))
4021 return false;
4022 }
4023
4024 return true;
4025}
4026
375637bc
AS
4027static void perf_addr_filters_splice(struct perf_event *event,
4028 struct list_head *head);
4029
683ede43 4030static void _free_event(struct perf_event *event)
f1600952 4031{
e360adbe 4032 irq_work_sync(&event->pending);
925d519a 4033
4beb31f3 4034 unaccount_event(event);
9ee318a7 4035
76369139 4036 if (event->rb) {
9bb5d40c
PZ
4037 /*
4038 * Can happen when we close an event with re-directed output.
4039 *
4040 * Since we have a 0 refcount, perf_mmap_close() will skip
4041 * over us; possibly making our ring_buffer_put() the last.
4042 */
4043 mutex_lock(&event->mmap_mutex);
b69cf536 4044 ring_buffer_attach(event, NULL);
9bb5d40c 4045 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4046 }
4047
e5d1367f
SE
4048 if (is_cgroup_event(event))
4049 perf_detach_cgroup(event);
4050
a0733e69
PZ
4051 if (!event->parent) {
4052 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4053 put_callchain_buffers();
4054 }
4055
4056 perf_event_free_bpf_prog(event);
375637bc
AS
4057 perf_addr_filters_splice(event, NULL);
4058 kfree(event->addr_filters_offs);
a0733e69
PZ
4059
4060 if (event->destroy)
4061 event->destroy(event);
4062
4063 if (event->ctx)
4064 put_ctx(event->ctx);
4065
62a92c8f
AS
4066 exclusive_event_destroy(event);
4067 module_put(event->pmu->module);
a0733e69
PZ
4068
4069 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4070}
4071
683ede43
PZ
4072/*
4073 * Used to free events which have a known refcount of 1, such as in error paths
4074 * where the event isn't exposed yet and inherited events.
4075 */
4076static void free_event(struct perf_event *event)
0793a61d 4077{
683ede43
PZ
4078 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4079 "unexpected event refcount: %ld; ptr=%p\n",
4080 atomic_long_read(&event->refcount), event)) {
4081 /* leak to avoid use-after-free */
4082 return;
4083 }
0793a61d 4084
683ede43 4085 _free_event(event);
0793a61d
TG
4086}
4087
a66a3052 4088/*
f8697762 4089 * Remove user event from the owner task.
a66a3052 4090 */
f8697762 4091static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4092{
8882135b 4093 struct task_struct *owner;
fb0459d7 4094
8882135b 4095 rcu_read_lock();
8882135b 4096 /*
f47c02c0
PZ
4097 * Matches the smp_store_release() in perf_event_exit_task(). If we
4098 * observe !owner it means the list deletion is complete and we can
4099 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4100 * owner->perf_event_mutex.
4101 */
f47c02c0 4102 owner = lockless_dereference(event->owner);
8882135b
PZ
4103 if (owner) {
4104 /*
4105 * Since delayed_put_task_struct() also drops the last
4106 * task reference we can safely take a new reference
4107 * while holding the rcu_read_lock().
4108 */
4109 get_task_struct(owner);
4110 }
4111 rcu_read_unlock();
4112
4113 if (owner) {
f63a8daa
PZ
4114 /*
4115 * If we're here through perf_event_exit_task() we're already
4116 * holding ctx->mutex which would be an inversion wrt. the
4117 * normal lock order.
4118 *
4119 * However we can safely take this lock because its the child
4120 * ctx->mutex.
4121 */
4122 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4123
8882135b
PZ
4124 /*
4125 * We have to re-check the event->owner field, if it is cleared
4126 * we raced with perf_event_exit_task(), acquiring the mutex
4127 * ensured they're done, and we can proceed with freeing the
4128 * event.
4129 */
f47c02c0 4130 if (event->owner) {
8882135b 4131 list_del_init(&event->owner_entry);
f47c02c0
PZ
4132 smp_store_release(&event->owner, NULL);
4133 }
8882135b
PZ
4134 mutex_unlock(&owner->perf_event_mutex);
4135 put_task_struct(owner);
4136 }
f8697762
JO
4137}
4138
f8697762
JO
4139static void put_event(struct perf_event *event)
4140{
f8697762
JO
4141 if (!atomic_long_dec_and_test(&event->refcount))
4142 return;
4143
c6e5b732
PZ
4144 _free_event(event);
4145}
4146
4147/*
4148 * Kill an event dead; while event:refcount will preserve the event
4149 * object, it will not preserve its functionality. Once the last 'user'
4150 * gives up the object, we'll destroy the thing.
4151 */
4152int perf_event_release_kernel(struct perf_event *event)
4153{
a4f4bb6d 4154 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4155 struct perf_event *child, *tmp;
4156
a4f4bb6d
PZ
4157 /*
4158 * If we got here through err_file: fput(event_file); we will not have
4159 * attached to a context yet.
4160 */
4161 if (!ctx) {
4162 WARN_ON_ONCE(event->attach_state &
4163 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4164 goto no_ctx;
4165 }
4166
f8697762
JO
4167 if (!is_kernel_event(event))
4168 perf_remove_from_owner(event);
8882135b 4169
5fa7c8ec 4170 ctx = perf_event_ctx_lock(event);
a83fe28e 4171 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4172 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4173
a69b0ca4 4174 raw_spin_lock_irq(&ctx->lock);
683ede43 4175 /*
a69b0ca4
PZ
4176 * Mark this even as STATE_DEAD, there is no external reference to it
4177 * anymore.
683ede43 4178 *
a69b0ca4
PZ
4179 * Anybody acquiring event->child_mutex after the below loop _must_
4180 * also see this, most importantly inherit_event() which will avoid
4181 * placing more children on the list.
683ede43 4182 *
c6e5b732
PZ
4183 * Thus this guarantees that we will in fact observe and kill _ALL_
4184 * child events.
683ede43 4185 */
a69b0ca4
PZ
4186 event->state = PERF_EVENT_STATE_DEAD;
4187 raw_spin_unlock_irq(&ctx->lock);
4188
4189 perf_event_ctx_unlock(event, ctx);
683ede43 4190
c6e5b732
PZ
4191again:
4192 mutex_lock(&event->child_mutex);
4193 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4194
c6e5b732
PZ
4195 /*
4196 * Cannot change, child events are not migrated, see the
4197 * comment with perf_event_ctx_lock_nested().
4198 */
4199 ctx = lockless_dereference(child->ctx);
4200 /*
4201 * Since child_mutex nests inside ctx::mutex, we must jump
4202 * through hoops. We start by grabbing a reference on the ctx.
4203 *
4204 * Since the event cannot get freed while we hold the
4205 * child_mutex, the context must also exist and have a !0
4206 * reference count.
4207 */
4208 get_ctx(ctx);
4209
4210 /*
4211 * Now that we have a ctx ref, we can drop child_mutex, and
4212 * acquire ctx::mutex without fear of it going away. Then we
4213 * can re-acquire child_mutex.
4214 */
4215 mutex_unlock(&event->child_mutex);
4216 mutex_lock(&ctx->mutex);
4217 mutex_lock(&event->child_mutex);
4218
4219 /*
4220 * Now that we hold ctx::mutex and child_mutex, revalidate our
4221 * state, if child is still the first entry, it didn't get freed
4222 * and we can continue doing so.
4223 */
4224 tmp = list_first_entry_or_null(&event->child_list,
4225 struct perf_event, child_list);
4226 if (tmp == child) {
4227 perf_remove_from_context(child, DETACH_GROUP);
4228 list_del(&child->child_list);
4229 free_event(child);
4230 /*
4231 * This matches the refcount bump in inherit_event();
4232 * this can't be the last reference.
4233 */
4234 put_event(event);
4235 }
4236
4237 mutex_unlock(&event->child_mutex);
4238 mutex_unlock(&ctx->mutex);
4239 put_ctx(ctx);
4240 goto again;
4241 }
4242 mutex_unlock(&event->child_mutex);
4243
a4f4bb6d
PZ
4244no_ctx:
4245 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4246 return 0;
4247}
4248EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4249
8b10c5e2
PZ
4250/*
4251 * Called when the last reference to the file is gone.
4252 */
a6fa941d
AV
4253static int perf_release(struct inode *inode, struct file *file)
4254{
c6e5b732 4255 perf_event_release_kernel(file->private_data);
a6fa941d 4256 return 0;
fb0459d7 4257}
fb0459d7 4258
59ed446f 4259u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4260{
cdd6c482 4261 struct perf_event *child;
e53c0994
PZ
4262 u64 total = 0;
4263
59ed446f
PZ
4264 *enabled = 0;
4265 *running = 0;
4266
6f10581a 4267 mutex_lock(&event->child_mutex);
01add3ea 4268
7d88962e 4269 (void)perf_event_read(event, false);
01add3ea
SB
4270 total += perf_event_count(event);
4271
59ed446f
PZ
4272 *enabled += event->total_time_enabled +
4273 atomic64_read(&event->child_total_time_enabled);
4274 *running += event->total_time_running +
4275 atomic64_read(&event->child_total_time_running);
4276
4277 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4278 (void)perf_event_read(child, false);
01add3ea 4279 total += perf_event_count(child);
59ed446f
PZ
4280 *enabled += child->total_time_enabled;
4281 *running += child->total_time_running;
4282 }
6f10581a 4283 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4284
4285 return total;
4286}
fb0459d7 4287EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4288
7d88962e 4289static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4290 u64 read_format, u64 *values)
3dab77fb 4291{
fa8c2693
PZ
4292 struct perf_event *sub;
4293 int n = 1; /* skip @nr */
7d88962e 4294 int ret;
f63a8daa 4295
7d88962e
SB
4296 ret = perf_event_read(leader, true);
4297 if (ret)
4298 return ret;
abf4868b 4299
fa8c2693
PZ
4300 /*
4301 * Since we co-schedule groups, {enabled,running} times of siblings
4302 * will be identical to those of the leader, so we only publish one
4303 * set.
4304 */
4305 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4306 values[n++] += leader->total_time_enabled +
4307 atomic64_read(&leader->child_total_time_enabled);
4308 }
3dab77fb 4309
fa8c2693
PZ
4310 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4311 values[n++] += leader->total_time_running +
4312 atomic64_read(&leader->child_total_time_running);
4313 }
4314
4315 /*
4316 * Write {count,id} tuples for every sibling.
4317 */
4318 values[n++] += perf_event_count(leader);
abf4868b
PZ
4319 if (read_format & PERF_FORMAT_ID)
4320 values[n++] = primary_event_id(leader);
3dab77fb 4321
fa8c2693
PZ
4322 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4323 values[n++] += perf_event_count(sub);
4324 if (read_format & PERF_FORMAT_ID)
4325 values[n++] = primary_event_id(sub);
4326 }
7d88962e
SB
4327
4328 return 0;
fa8c2693 4329}
3dab77fb 4330
fa8c2693
PZ
4331static int perf_read_group(struct perf_event *event,
4332 u64 read_format, char __user *buf)
4333{
4334 struct perf_event *leader = event->group_leader, *child;
4335 struct perf_event_context *ctx = leader->ctx;
7d88962e 4336 int ret;
fa8c2693 4337 u64 *values;
3dab77fb 4338
fa8c2693 4339 lockdep_assert_held(&ctx->mutex);
3dab77fb 4340
fa8c2693
PZ
4341 values = kzalloc(event->read_size, GFP_KERNEL);
4342 if (!values)
4343 return -ENOMEM;
3dab77fb 4344
fa8c2693
PZ
4345 values[0] = 1 + leader->nr_siblings;
4346
4347 /*
4348 * By locking the child_mutex of the leader we effectively
4349 * lock the child list of all siblings.. XXX explain how.
4350 */
4351 mutex_lock(&leader->child_mutex);
abf4868b 4352
7d88962e
SB
4353 ret = __perf_read_group_add(leader, read_format, values);
4354 if (ret)
4355 goto unlock;
4356
4357 list_for_each_entry(child, &leader->child_list, child_list) {
4358 ret = __perf_read_group_add(child, read_format, values);
4359 if (ret)
4360 goto unlock;
4361 }
abf4868b 4362
fa8c2693 4363 mutex_unlock(&leader->child_mutex);
abf4868b 4364
7d88962e 4365 ret = event->read_size;
fa8c2693
PZ
4366 if (copy_to_user(buf, values, event->read_size))
4367 ret = -EFAULT;
7d88962e 4368 goto out;
fa8c2693 4369
7d88962e
SB
4370unlock:
4371 mutex_unlock(&leader->child_mutex);
4372out:
fa8c2693 4373 kfree(values);
abf4868b 4374 return ret;
3dab77fb
PZ
4375}
4376
b15f495b 4377static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4378 u64 read_format, char __user *buf)
4379{
59ed446f 4380 u64 enabled, running;
3dab77fb
PZ
4381 u64 values[4];
4382 int n = 0;
4383
59ed446f
PZ
4384 values[n++] = perf_event_read_value(event, &enabled, &running);
4385 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4386 values[n++] = enabled;
4387 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4388 values[n++] = running;
3dab77fb 4389 if (read_format & PERF_FORMAT_ID)
cdd6c482 4390 values[n++] = primary_event_id(event);
3dab77fb
PZ
4391
4392 if (copy_to_user(buf, values, n * sizeof(u64)))
4393 return -EFAULT;
4394
4395 return n * sizeof(u64);
4396}
4397
dc633982
JO
4398static bool is_event_hup(struct perf_event *event)
4399{
4400 bool no_children;
4401
a69b0ca4 4402 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4403 return false;
4404
4405 mutex_lock(&event->child_mutex);
4406 no_children = list_empty(&event->child_list);
4407 mutex_unlock(&event->child_mutex);
4408 return no_children;
4409}
4410
0793a61d 4411/*
cdd6c482 4412 * Read the performance event - simple non blocking version for now
0793a61d
TG
4413 */
4414static ssize_t
b15f495b 4415__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4416{
cdd6c482 4417 u64 read_format = event->attr.read_format;
3dab77fb 4418 int ret;
0793a61d 4419
3b6f9e5c 4420 /*
cdd6c482 4421 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4422 * error state (i.e. because it was pinned but it couldn't be
4423 * scheduled on to the CPU at some point).
4424 */
cdd6c482 4425 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4426 return 0;
4427
c320c7b7 4428 if (count < event->read_size)
3dab77fb
PZ
4429 return -ENOSPC;
4430
cdd6c482 4431 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4432 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4433 ret = perf_read_group(event, read_format, buf);
3dab77fb 4434 else
b15f495b 4435 ret = perf_read_one(event, read_format, buf);
0793a61d 4436
3dab77fb 4437 return ret;
0793a61d
TG
4438}
4439
0793a61d
TG
4440static ssize_t
4441perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4442{
cdd6c482 4443 struct perf_event *event = file->private_data;
f63a8daa
PZ
4444 struct perf_event_context *ctx;
4445 int ret;
0793a61d 4446
f63a8daa 4447 ctx = perf_event_ctx_lock(event);
b15f495b 4448 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4449 perf_event_ctx_unlock(event, ctx);
4450
4451 return ret;
0793a61d
TG
4452}
4453
4454static unsigned int perf_poll(struct file *file, poll_table *wait)
4455{
cdd6c482 4456 struct perf_event *event = file->private_data;
76369139 4457 struct ring_buffer *rb;
61b67684 4458 unsigned int events = POLLHUP;
c7138f37 4459
e708d7ad 4460 poll_wait(file, &event->waitq, wait);
179033b3 4461
dc633982 4462 if (is_event_hup(event))
179033b3 4463 return events;
c7138f37 4464
10c6db11 4465 /*
9bb5d40c
PZ
4466 * Pin the event->rb by taking event->mmap_mutex; otherwise
4467 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4468 */
4469 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4470 rb = event->rb;
4471 if (rb)
76369139 4472 events = atomic_xchg(&rb->poll, 0);
10c6db11 4473 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4474 return events;
4475}
4476
f63a8daa 4477static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4478{
7d88962e 4479 (void)perf_event_read(event, false);
e7850595 4480 local64_set(&event->count, 0);
cdd6c482 4481 perf_event_update_userpage(event);
3df5edad
PZ
4482}
4483
c93f7669 4484/*
cdd6c482
IM
4485 * Holding the top-level event's child_mutex means that any
4486 * descendant process that has inherited this event will block
8ba289b8 4487 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4488 * task existence requirements of perf_event_enable/disable.
c93f7669 4489 */
cdd6c482
IM
4490static void perf_event_for_each_child(struct perf_event *event,
4491 void (*func)(struct perf_event *))
3df5edad 4492{
cdd6c482 4493 struct perf_event *child;
3df5edad 4494
cdd6c482 4495 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4496
cdd6c482
IM
4497 mutex_lock(&event->child_mutex);
4498 func(event);
4499 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4500 func(child);
cdd6c482 4501 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4502}
4503
cdd6c482
IM
4504static void perf_event_for_each(struct perf_event *event,
4505 void (*func)(struct perf_event *))
3df5edad 4506{
cdd6c482
IM
4507 struct perf_event_context *ctx = event->ctx;
4508 struct perf_event *sibling;
3df5edad 4509
f63a8daa
PZ
4510 lockdep_assert_held(&ctx->mutex);
4511
cdd6c482 4512 event = event->group_leader;
75f937f2 4513
cdd6c482 4514 perf_event_for_each_child(event, func);
cdd6c482 4515 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4516 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4517}
4518
fae3fde6
PZ
4519static void __perf_event_period(struct perf_event *event,
4520 struct perf_cpu_context *cpuctx,
4521 struct perf_event_context *ctx,
4522 void *info)
c7999c6f 4523{
fae3fde6 4524 u64 value = *((u64 *)info);
c7999c6f 4525 bool active;
08247e31 4526
cdd6c482 4527 if (event->attr.freq) {
cdd6c482 4528 event->attr.sample_freq = value;
08247e31 4529 } else {
cdd6c482
IM
4530 event->attr.sample_period = value;
4531 event->hw.sample_period = value;
08247e31 4532 }
bad7192b
PZ
4533
4534 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4535 if (active) {
4536 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4537 /*
4538 * We could be throttled; unthrottle now to avoid the tick
4539 * trying to unthrottle while we already re-started the event.
4540 */
4541 if (event->hw.interrupts == MAX_INTERRUPTS) {
4542 event->hw.interrupts = 0;
4543 perf_log_throttle(event, 1);
4544 }
bad7192b
PZ
4545 event->pmu->stop(event, PERF_EF_UPDATE);
4546 }
4547
4548 local64_set(&event->hw.period_left, 0);
4549
4550 if (active) {
4551 event->pmu->start(event, PERF_EF_RELOAD);
4552 perf_pmu_enable(ctx->pmu);
4553 }
c7999c6f
PZ
4554}
4555
4556static int perf_event_period(struct perf_event *event, u64 __user *arg)
4557{
c7999c6f
PZ
4558 u64 value;
4559
4560 if (!is_sampling_event(event))
4561 return -EINVAL;
4562
4563 if (copy_from_user(&value, arg, sizeof(value)))
4564 return -EFAULT;
4565
4566 if (!value)
4567 return -EINVAL;
4568
4569 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4570 return -EINVAL;
4571
fae3fde6 4572 event_function_call(event, __perf_event_period, &value);
08247e31 4573
c7999c6f 4574 return 0;
08247e31
PZ
4575}
4576
ac9721f3
PZ
4577static const struct file_operations perf_fops;
4578
2903ff01 4579static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4580{
2903ff01
AV
4581 struct fd f = fdget(fd);
4582 if (!f.file)
4583 return -EBADF;
ac9721f3 4584
2903ff01
AV
4585 if (f.file->f_op != &perf_fops) {
4586 fdput(f);
4587 return -EBADF;
ac9721f3 4588 }
2903ff01
AV
4589 *p = f;
4590 return 0;
ac9721f3
PZ
4591}
4592
4593static int perf_event_set_output(struct perf_event *event,
4594 struct perf_event *output_event);
6fb2915d 4595static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4596static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4597
f63a8daa 4598static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4599{
cdd6c482 4600 void (*func)(struct perf_event *);
3df5edad 4601 u32 flags = arg;
d859e29f
PM
4602
4603 switch (cmd) {
cdd6c482 4604 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4605 func = _perf_event_enable;
d859e29f 4606 break;
cdd6c482 4607 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4608 func = _perf_event_disable;
79f14641 4609 break;
cdd6c482 4610 case PERF_EVENT_IOC_RESET:
f63a8daa 4611 func = _perf_event_reset;
6de6a7b9 4612 break;
3df5edad 4613
cdd6c482 4614 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4615 return _perf_event_refresh(event, arg);
08247e31 4616
cdd6c482
IM
4617 case PERF_EVENT_IOC_PERIOD:
4618 return perf_event_period(event, (u64 __user *)arg);
08247e31 4619
cf4957f1
JO
4620 case PERF_EVENT_IOC_ID:
4621 {
4622 u64 id = primary_event_id(event);
4623
4624 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4625 return -EFAULT;
4626 return 0;
4627 }
4628
cdd6c482 4629 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4630 {
ac9721f3 4631 int ret;
ac9721f3 4632 if (arg != -1) {
2903ff01
AV
4633 struct perf_event *output_event;
4634 struct fd output;
4635 ret = perf_fget_light(arg, &output);
4636 if (ret)
4637 return ret;
4638 output_event = output.file->private_data;
4639 ret = perf_event_set_output(event, output_event);
4640 fdput(output);
4641 } else {
4642 ret = perf_event_set_output(event, NULL);
ac9721f3 4643 }
ac9721f3
PZ
4644 return ret;
4645 }
a4be7c27 4646
6fb2915d
LZ
4647 case PERF_EVENT_IOC_SET_FILTER:
4648 return perf_event_set_filter(event, (void __user *)arg);
4649
2541517c
AS
4650 case PERF_EVENT_IOC_SET_BPF:
4651 return perf_event_set_bpf_prog(event, arg);
4652
86e7972f
WN
4653 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4654 struct ring_buffer *rb;
4655
4656 rcu_read_lock();
4657 rb = rcu_dereference(event->rb);
4658 if (!rb || !rb->nr_pages) {
4659 rcu_read_unlock();
4660 return -EINVAL;
4661 }
4662 rb_toggle_paused(rb, !!arg);
4663 rcu_read_unlock();
4664 return 0;
4665 }
d859e29f 4666 default:
3df5edad 4667 return -ENOTTY;
d859e29f 4668 }
3df5edad
PZ
4669
4670 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4671 perf_event_for_each(event, func);
3df5edad 4672 else
cdd6c482 4673 perf_event_for_each_child(event, func);
3df5edad
PZ
4674
4675 return 0;
d859e29f
PM
4676}
4677
f63a8daa
PZ
4678static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4679{
4680 struct perf_event *event = file->private_data;
4681 struct perf_event_context *ctx;
4682 long ret;
4683
4684 ctx = perf_event_ctx_lock(event);
4685 ret = _perf_ioctl(event, cmd, arg);
4686 perf_event_ctx_unlock(event, ctx);
4687
4688 return ret;
4689}
4690
b3f20785
PM
4691#ifdef CONFIG_COMPAT
4692static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4693 unsigned long arg)
4694{
4695 switch (_IOC_NR(cmd)) {
4696 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4697 case _IOC_NR(PERF_EVENT_IOC_ID):
4698 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4699 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4700 cmd &= ~IOCSIZE_MASK;
4701 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4702 }
4703 break;
4704 }
4705 return perf_ioctl(file, cmd, arg);
4706}
4707#else
4708# define perf_compat_ioctl NULL
4709#endif
4710
cdd6c482 4711int perf_event_task_enable(void)
771d7cde 4712{
f63a8daa 4713 struct perf_event_context *ctx;
cdd6c482 4714 struct perf_event *event;
771d7cde 4715
cdd6c482 4716 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4717 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4718 ctx = perf_event_ctx_lock(event);
4719 perf_event_for_each_child(event, _perf_event_enable);
4720 perf_event_ctx_unlock(event, ctx);
4721 }
cdd6c482 4722 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4723
4724 return 0;
4725}
4726
cdd6c482 4727int perf_event_task_disable(void)
771d7cde 4728{
f63a8daa 4729 struct perf_event_context *ctx;
cdd6c482 4730 struct perf_event *event;
771d7cde 4731
cdd6c482 4732 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4733 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4734 ctx = perf_event_ctx_lock(event);
4735 perf_event_for_each_child(event, _perf_event_disable);
4736 perf_event_ctx_unlock(event, ctx);
4737 }
cdd6c482 4738 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4739
4740 return 0;
4741}
4742
cdd6c482 4743static int perf_event_index(struct perf_event *event)
194002b2 4744{
a4eaf7f1
PZ
4745 if (event->hw.state & PERF_HES_STOPPED)
4746 return 0;
4747
cdd6c482 4748 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4749 return 0;
4750
35edc2a5 4751 return event->pmu->event_idx(event);
194002b2
PZ
4752}
4753
c4794295 4754static void calc_timer_values(struct perf_event *event,
e3f3541c 4755 u64 *now,
7f310a5d
EM
4756 u64 *enabled,
4757 u64 *running)
c4794295 4758{
e3f3541c 4759 u64 ctx_time;
c4794295 4760
e3f3541c
PZ
4761 *now = perf_clock();
4762 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4763 *enabled = ctx_time - event->tstamp_enabled;
4764 *running = ctx_time - event->tstamp_running;
4765}
4766
fa731587
PZ
4767static void perf_event_init_userpage(struct perf_event *event)
4768{
4769 struct perf_event_mmap_page *userpg;
4770 struct ring_buffer *rb;
4771
4772 rcu_read_lock();
4773 rb = rcu_dereference(event->rb);
4774 if (!rb)
4775 goto unlock;
4776
4777 userpg = rb->user_page;
4778
4779 /* Allow new userspace to detect that bit 0 is deprecated */
4780 userpg->cap_bit0_is_deprecated = 1;
4781 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4782 userpg->data_offset = PAGE_SIZE;
4783 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4784
4785unlock:
4786 rcu_read_unlock();
4787}
4788
c1317ec2
AL
4789void __weak arch_perf_update_userpage(
4790 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4791{
4792}
4793
38ff667b
PZ
4794/*
4795 * Callers need to ensure there can be no nesting of this function, otherwise
4796 * the seqlock logic goes bad. We can not serialize this because the arch
4797 * code calls this from NMI context.
4798 */
cdd6c482 4799void perf_event_update_userpage(struct perf_event *event)
37d81828 4800{
cdd6c482 4801 struct perf_event_mmap_page *userpg;
76369139 4802 struct ring_buffer *rb;
e3f3541c 4803 u64 enabled, running, now;
38ff667b
PZ
4804
4805 rcu_read_lock();
5ec4c599
PZ
4806 rb = rcu_dereference(event->rb);
4807 if (!rb)
4808 goto unlock;
4809
0d641208
EM
4810 /*
4811 * compute total_time_enabled, total_time_running
4812 * based on snapshot values taken when the event
4813 * was last scheduled in.
4814 *
4815 * we cannot simply called update_context_time()
4816 * because of locking issue as we can be called in
4817 * NMI context
4818 */
e3f3541c 4819 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4820
76369139 4821 userpg = rb->user_page;
7b732a75
PZ
4822 /*
4823 * Disable preemption so as to not let the corresponding user-space
4824 * spin too long if we get preempted.
4825 */
4826 preempt_disable();
37d81828 4827 ++userpg->lock;
92f22a38 4828 barrier();
cdd6c482 4829 userpg->index = perf_event_index(event);
b5e58793 4830 userpg->offset = perf_event_count(event);
365a4038 4831 if (userpg->index)
e7850595 4832 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4833
0d641208 4834 userpg->time_enabled = enabled +
cdd6c482 4835 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4836
0d641208 4837 userpg->time_running = running +
cdd6c482 4838 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4839
c1317ec2 4840 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4841
92f22a38 4842 barrier();
37d81828 4843 ++userpg->lock;
7b732a75 4844 preempt_enable();
38ff667b 4845unlock:
7b732a75 4846 rcu_read_unlock();
37d81828
PM
4847}
4848
906010b2
PZ
4849static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4850{
4851 struct perf_event *event = vma->vm_file->private_data;
76369139 4852 struct ring_buffer *rb;
906010b2
PZ
4853 int ret = VM_FAULT_SIGBUS;
4854
4855 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4856 if (vmf->pgoff == 0)
4857 ret = 0;
4858 return ret;
4859 }
4860
4861 rcu_read_lock();
76369139
FW
4862 rb = rcu_dereference(event->rb);
4863 if (!rb)
906010b2
PZ
4864 goto unlock;
4865
4866 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4867 goto unlock;
4868
76369139 4869 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4870 if (!vmf->page)
4871 goto unlock;
4872
4873 get_page(vmf->page);
4874 vmf->page->mapping = vma->vm_file->f_mapping;
4875 vmf->page->index = vmf->pgoff;
4876
4877 ret = 0;
4878unlock:
4879 rcu_read_unlock();
4880
4881 return ret;
4882}
4883
10c6db11
PZ
4884static void ring_buffer_attach(struct perf_event *event,
4885 struct ring_buffer *rb)
4886{
b69cf536 4887 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4888 unsigned long flags;
4889
b69cf536
PZ
4890 if (event->rb) {
4891 /*
4892 * Should be impossible, we set this when removing
4893 * event->rb_entry and wait/clear when adding event->rb_entry.
4894 */
4895 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4896
b69cf536 4897 old_rb = event->rb;
b69cf536
PZ
4898 spin_lock_irqsave(&old_rb->event_lock, flags);
4899 list_del_rcu(&event->rb_entry);
4900 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4901
2f993cf0
ON
4902 event->rcu_batches = get_state_synchronize_rcu();
4903 event->rcu_pending = 1;
b69cf536 4904 }
10c6db11 4905
b69cf536 4906 if (rb) {
2f993cf0
ON
4907 if (event->rcu_pending) {
4908 cond_synchronize_rcu(event->rcu_batches);
4909 event->rcu_pending = 0;
4910 }
4911
b69cf536
PZ
4912 spin_lock_irqsave(&rb->event_lock, flags);
4913 list_add_rcu(&event->rb_entry, &rb->event_list);
4914 spin_unlock_irqrestore(&rb->event_lock, flags);
4915 }
4916
767ae086
AS
4917 /*
4918 * Avoid racing with perf_mmap_close(AUX): stop the event
4919 * before swizzling the event::rb pointer; if it's getting
4920 * unmapped, its aux_mmap_count will be 0 and it won't
4921 * restart. See the comment in __perf_pmu_output_stop().
4922 *
4923 * Data will inevitably be lost when set_output is done in
4924 * mid-air, but then again, whoever does it like this is
4925 * not in for the data anyway.
4926 */
4927 if (has_aux(event))
4928 perf_event_stop(event, 0);
4929
b69cf536
PZ
4930 rcu_assign_pointer(event->rb, rb);
4931
4932 if (old_rb) {
4933 ring_buffer_put(old_rb);
4934 /*
4935 * Since we detached before setting the new rb, so that we
4936 * could attach the new rb, we could have missed a wakeup.
4937 * Provide it now.
4938 */
4939 wake_up_all(&event->waitq);
4940 }
10c6db11
PZ
4941}
4942
4943static void ring_buffer_wakeup(struct perf_event *event)
4944{
4945 struct ring_buffer *rb;
4946
4947 rcu_read_lock();
4948 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4949 if (rb) {
4950 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4951 wake_up_all(&event->waitq);
4952 }
10c6db11
PZ
4953 rcu_read_unlock();
4954}
4955
fdc26706 4956struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4957{
76369139 4958 struct ring_buffer *rb;
7b732a75 4959
ac9721f3 4960 rcu_read_lock();
76369139
FW
4961 rb = rcu_dereference(event->rb);
4962 if (rb) {
4963 if (!atomic_inc_not_zero(&rb->refcount))
4964 rb = NULL;
ac9721f3
PZ
4965 }
4966 rcu_read_unlock();
4967
76369139 4968 return rb;
ac9721f3
PZ
4969}
4970
fdc26706 4971void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4972{
76369139 4973 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4974 return;
7b732a75 4975
9bb5d40c 4976 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4977
76369139 4978 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4979}
4980
4981static void perf_mmap_open(struct vm_area_struct *vma)
4982{
cdd6c482 4983 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4984
cdd6c482 4985 atomic_inc(&event->mmap_count);
9bb5d40c 4986 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4987
45bfb2e5
PZ
4988 if (vma->vm_pgoff)
4989 atomic_inc(&event->rb->aux_mmap_count);
4990
1e0fb9ec
AL
4991 if (event->pmu->event_mapped)
4992 event->pmu->event_mapped(event);
7b732a75
PZ
4993}
4994
95ff4ca2
AS
4995static void perf_pmu_output_stop(struct perf_event *event);
4996
9bb5d40c
PZ
4997/*
4998 * A buffer can be mmap()ed multiple times; either directly through the same
4999 * event, or through other events by use of perf_event_set_output().
5000 *
5001 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5002 * the buffer here, where we still have a VM context. This means we need
5003 * to detach all events redirecting to us.
5004 */
7b732a75
PZ
5005static void perf_mmap_close(struct vm_area_struct *vma)
5006{
cdd6c482 5007 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5008
b69cf536 5009 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5010 struct user_struct *mmap_user = rb->mmap_user;
5011 int mmap_locked = rb->mmap_locked;
5012 unsigned long size = perf_data_size(rb);
789f90fc 5013
1e0fb9ec
AL
5014 if (event->pmu->event_unmapped)
5015 event->pmu->event_unmapped(event);
5016
45bfb2e5
PZ
5017 /*
5018 * rb->aux_mmap_count will always drop before rb->mmap_count and
5019 * event->mmap_count, so it is ok to use event->mmap_mutex to
5020 * serialize with perf_mmap here.
5021 */
5022 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5023 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5024 /*
5025 * Stop all AUX events that are writing to this buffer,
5026 * so that we can free its AUX pages and corresponding PMU
5027 * data. Note that after rb::aux_mmap_count dropped to zero,
5028 * they won't start any more (see perf_aux_output_begin()).
5029 */
5030 perf_pmu_output_stop(event);
5031
5032 /* now it's safe to free the pages */
45bfb2e5
PZ
5033 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5034 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5035
95ff4ca2 5036 /* this has to be the last one */
45bfb2e5 5037 rb_free_aux(rb);
95ff4ca2
AS
5038 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5039
45bfb2e5
PZ
5040 mutex_unlock(&event->mmap_mutex);
5041 }
5042
9bb5d40c
PZ
5043 atomic_dec(&rb->mmap_count);
5044
5045 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5046 goto out_put;
9bb5d40c 5047
b69cf536 5048 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5049 mutex_unlock(&event->mmap_mutex);
5050
5051 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5052 if (atomic_read(&rb->mmap_count))
5053 goto out_put;
ac9721f3 5054
9bb5d40c
PZ
5055 /*
5056 * No other mmap()s, detach from all other events that might redirect
5057 * into the now unreachable buffer. Somewhat complicated by the
5058 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5059 */
5060again:
5061 rcu_read_lock();
5062 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5063 if (!atomic_long_inc_not_zero(&event->refcount)) {
5064 /*
5065 * This event is en-route to free_event() which will
5066 * detach it and remove it from the list.
5067 */
5068 continue;
5069 }
5070 rcu_read_unlock();
789f90fc 5071
9bb5d40c
PZ
5072 mutex_lock(&event->mmap_mutex);
5073 /*
5074 * Check we didn't race with perf_event_set_output() which can
5075 * swizzle the rb from under us while we were waiting to
5076 * acquire mmap_mutex.
5077 *
5078 * If we find a different rb; ignore this event, a next
5079 * iteration will no longer find it on the list. We have to
5080 * still restart the iteration to make sure we're not now
5081 * iterating the wrong list.
5082 */
b69cf536
PZ
5083 if (event->rb == rb)
5084 ring_buffer_attach(event, NULL);
5085
cdd6c482 5086 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5087 put_event(event);
ac9721f3 5088
9bb5d40c
PZ
5089 /*
5090 * Restart the iteration; either we're on the wrong list or
5091 * destroyed its integrity by doing a deletion.
5092 */
5093 goto again;
7b732a75 5094 }
9bb5d40c
PZ
5095 rcu_read_unlock();
5096
5097 /*
5098 * It could be there's still a few 0-ref events on the list; they'll
5099 * get cleaned up by free_event() -- they'll also still have their
5100 * ref on the rb and will free it whenever they are done with it.
5101 *
5102 * Aside from that, this buffer is 'fully' detached and unmapped,
5103 * undo the VM accounting.
5104 */
5105
5106 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5107 vma->vm_mm->pinned_vm -= mmap_locked;
5108 free_uid(mmap_user);
5109
b69cf536 5110out_put:
9bb5d40c 5111 ring_buffer_put(rb); /* could be last */
37d81828
PM
5112}
5113
f0f37e2f 5114static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5115 .open = perf_mmap_open,
45bfb2e5 5116 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5117 .fault = perf_mmap_fault,
5118 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5119};
5120
5121static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5122{
cdd6c482 5123 struct perf_event *event = file->private_data;
22a4f650 5124 unsigned long user_locked, user_lock_limit;
789f90fc 5125 struct user_struct *user = current_user();
22a4f650 5126 unsigned long locked, lock_limit;
45bfb2e5 5127 struct ring_buffer *rb = NULL;
7b732a75
PZ
5128 unsigned long vma_size;
5129 unsigned long nr_pages;
45bfb2e5 5130 long user_extra = 0, extra = 0;
d57e34fd 5131 int ret = 0, flags = 0;
37d81828 5132
c7920614
PZ
5133 /*
5134 * Don't allow mmap() of inherited per-task counters. This would
5135 * create a performance issue due to all children writing to the
76369139 5136 * same rb.
c7920614
PZ
5137 */
5138 if (event->cpu == -1 && event->attr.inherit)
5139 return -EINVAL;
5140
43a21ea8 5141 if (!(vma->vm_flags & VM_SHARED))
37d81828 5142 return -EINVAL;
7b732a75
PZ
5143
5144 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5145
5146 if (vma->vm_pgoff == 0) {
5147 nr_pages = (vma_size / PAGE_SIZE) - 1;
5148 } else {
5149 /*
5150 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5151 * mapped, all subsequent mappings should have the same size
5152 * and offset. Must be above the normal perf buffer.
5153 */
5154 u64 aux_offset, aux_size;
5155
5156 if (!event->rb)
5157 return -EINVAL;
5158
5159 nr_pages = vma_size / PAGE_SIZE;
5160
5161 mutex_lock(&event->mmap_mutex);
5162 ret = -EINVAL;
5163
5164 rb = event->rb;
5165 if (!rb)
5166 goto aux_unlock;
5167
5168 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5169 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5170
5171 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5172 goto aux_unlock;
5173
5174 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5175 goto aux_unlock;
5176
5177 /* already mapped with a different offset */
5178 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5179 goto aux_unlock;
5180
5181 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5182 goto aux_unlock;
5183
5184 /* already mapped with a different size */
5185 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5186 goto aux_unlock;
5187
5188 if (!is_power_of_2(nr_pages))
5189 goto aux_unlock;
5190
5191 if (!atomic_inc_not_zero(&rb->mmap_count))
5192 goto aux_unlock;
5193
5194 if (rb_has_aux(rb)) {
5195 atomic_inc(&rb->aux_mmap_count);
5196 ret = 0;
5197 goto unlock;
5198 }
5199
5200 atomic_set(&rb->aux_mmap_count, 1);
5201 user_extra = nr_pages;
5202
5203 goto accounting;
5204 }
7b732a75 5205
7730d865 5206 /*
76369139 5207 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5208 * can do bitmasks instead of modulo.
5209 */
2ed11312 5210 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5211 return -EINVAL;
5212
7b732a75 5213 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5214 return -EINVAL;
5215
cdd6c482 5216 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5217again:
cdd6c482 5218 mutex_lock(&event->mmap_mutex);
76369139 5219 if (event->rb) {
9bb5d40c 5220 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5221 ret = -EINVAL;
9bb5d40c
PZ
5222 goto unlock;
5223 }
5224
5225 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5226 /*
5227 * Raced against perf_mmap_close() through
5228 * perf_event_set_output(). Try again, hope for better
5229 * luck.
5230 */
5231 mutex_unlock(&event->mmap_mutex);
5232 goto again;
5233 }
5234
ebb3c4c4
PZ
5235 goto unlock;
5236 }
5237
789f90fc 5238 user_extra = nr_pages + 1;
45bfb2e5
PZ
5239
5240accounting:
cdd6c482 5241 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5242
5243 /*
5244 * Increase the limit linearly with more CPUs:
5245 */
5246 user_lock_limit *= num_online_cpus();
5247
789f90fc 5248 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5249
789f90fc
PZ
5250 if (user_locked > user_lock_limit)
5251 extra = user_locked - user_lock_limit;
7b732a75 5252
78d7d407 5253 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5254 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5255 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5256
459ec28a
IM
5257 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5258 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5259 ret = -EPERM;
5260 goto unlock;
5261 }
7b732a75 5262
45bfb2e5 5263 WARN_ON(!rb && event->rb);
906010b2 5264
d57e34fd 5265 if (vma->vm_flags & VM_WRITE)
76369139 5266 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5267
76369139 5268 if (!rb) {
45bfb2e5
PZ
5269 rb = rb_alloc(nr_pages,
5270 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5271 event->cpu, flags);
26cb63ad 5272
45bfb2e5
PZ
5273 if (!rb) {
5274 ret = -ENOMEM;
5275 goto unlock;
5276 }
43a21ea8 5277
45bfb2e5
PZ
5278 atomic_set(&rb->mmap_count, 1);
5279 rb->mmap_user = get_current_user();
5280 rb->mmap_locked = extra;
26cb63ad 5281
45bfb2e5 5282 ring_buffer_attach(event, rb);
ac9721f3 5283
45bfb2e5
PZ
5284 perf_event_init_userpage(event);
5285 perf_event_update_userpage(event);
5286 } else {
1a594131
AS
5287 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5288 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5289 if (!ret)
5290 rb->aux_mmap_locked = extra;
5291 }
9a0f05cb 5292
ebb3c4c4 5293unlock:
45bfb2e5
PZ
5294 if (!ret) {
5295 atomic_long_add(user_extra, &user->locked_vm);
5296 vma->vm_mm->pinned_vm += extra;
5297
ac9721f3 5298 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5299 } else if (rb) {
5300 atomic_dec(&rb->mmap_count);
5301 }
5302aux_unlock:
cdd6c482 5303 mutex_unlock(&event->mmap_mutex);
37d81828 5304
9bb5d40c
PZ
5305 /*
5306 * Since pinned accounting is per vm we cannot allow fork() to copy our
5307 * vma.
5308 */
26cb63ad 5309 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5310 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5311
1e0fb9ec
AL
5312 if (event->pmu->event_mapped)
5313 event->pmu->event_mapped(event);
5314
7b732a75 5315 return ret;
37d81828
PM
5316}
5317
3c446b3d
PZ
5318static int perf_fasync(int fd, struct file *filp, int on)
5319{
496ad9aa 5320 struct inode *inode = file_inode(filp);
cdd6c482 5321 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5322 int retval;
5323
5955102c 5324 inode_lock(inode);
cdd6c482 5325 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5326 inode_unlock(inode);
3c446b3d
PZ
5327
5328 if (retval < 0)
5329 return retval;
5330
5331 return 0;
5332}
5333
0793a61d 5334static const struct file_operations perf_fops = {
3326c1ce 5335 .llseek = no_llseek,
0793a61d
TG
5336 .release = perf_release,
5337 .read = perf_read,
5338 .poll = perf_poll,
d859e29f 5339 .unlocked_ioctl = perf_ioctl,
b3f20785 5340 .compat_ioctl = perf_compat_ioctl,
37d81828 5341 .mmap = perf_mmap,
3c446b3d 5342 .fasync = perf_fasync,
0793a61d
TG
5343};
5344
925d519a 5345/*
cdd6c482 5346 * Perf event wakeup
925d519a
PZ
5347 *
5348 * If there's data, ensure we set the poll() state and publish everything
5349 * to user-space before waking everybody up.
5350 */
5351
fed66e2c
PZ
5352static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5353{
5354 /* only the parent has fasync state */
5355 if (event->parent)
5356 event = event->parent;
5357 return &event->fasync;
5358}
5359
cdd6c482 5360void perf_event_wakeup(struct perf_event *event)
925d519a 5361{
10c6db11 5362 ring_buffer_wakeup(event);
4c9e2542 5363
cdd6c482 5364 if (event->pending_kill) {
fed66e2c 5365 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5366 event->pending_kill = 0;
4c9e2542 5367 }
925d519a
PZ
5368}
5369
e360adbe 5370static void perf_pending_event(struct irq_work *entry)
79f14641 5371{
cdd6c482
IM
5372 struct perf_event *event = container_of(entry,
5373 struct perf_event, pending);
d525211f
PZ
5374 int rctx;
5375
5376 rctx = perf_swevent_get_recursion_context();
5377 /*
5378 * If we 'fail' here, that's OK, it means recursion is already disabled
5379 * and we won't recurse 'further'.
5380 */
79f14641 5381
cdd6c482
IM
5382 if (event->pending_disable) {
5383 event->pending_disable = 0;
fae3fde6 5384 perf_event_disable_local(event);
79f14641
PZ
5385 }
5386
cdd6c482
IM
5387 if (event->pending_wakeup) {
5388 event->pending_wakeup = 0;
5389 perf_event_wakeup(event);
79f14641 5390 }
d525211f
PZ
5391
5392 if (rctx >= 0)
5393 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5394}
5395
39447b38
ZY
5396/*
5397 * We assume there is only KVM supporting the callbacks.
5398 * Later on, we might change it to a list if there is
5399 * another virtualization implementation supporting the callbacks.
5400 */
5401struct perf_guest_info_callbacks *perf_guest_cbs;
5402
5403int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5404{
5405 perf_guest_cbs = cbs;
5406 return 0;
5407}
5408EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5409
5410int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5411{
5412 perf_guest_cbs = NULL;
5413 return 0;
5414}
5415EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5416
4018994f
JO
5417static void
5418perf_output_sample_regs(struct perf_output_handle *handle,
5419 struct pt_regs *regs, u64 mask)
5420{
5421 int bit;
29dd3288 5422 DECLARE_BITMAP(_mask, 64);
4018994f 5423
29dd3288
MS
5424 bitmap_from_u64(_mask, mask);
5425 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5426 u64 val;
5427
5428 val = perf_reg_value(regs, bit);
5429 perf_output_put(handle, val);
5430 }
5431}
5432
60e2364e 5433static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5434 struct pt_regs *regs,
5435 struct pt_regs *regs_user_copy)
4018994f 5436{
88a7c26a
AL
5437 if (user_mode(regs)) {
5438 regs_user->abi = perf_reg_abi(current);
2565711f 5439 regs_user->regs = regs;
88a7c26a
AL
5440 } else if (current->mm) {
5441 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5442 } else {
5443 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5444 regs_user->regs = NULL;
4018994f
JO
5445 }
5446}
5447
60e2364e
SE
5448static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5449 struct pt_regs *regs)
5450{
5451 regs_intr->regs = regs;
5452 regs_intr->abi = perf_reg_abi(current);
5453}
5454
5455
c5ebcedb
JO
5456/*
5457 * Get remaining task size from user stack pointer.
5458 *
5459 * It'd be better to take stack vma map and limit this more
5460 * precisly, but there's no way to get it safely under interrupt,
5461 * so using TASK_SIZE as limit.
5462 */
5463static u64 perf_ustack_task_size(struct pt_regs *regs)
5464{
5465 unsigned long addr = perf_user_stack_pointer(regs);
5466
5467 if (!addr || addr >= TASK_SIZE)
5468 return 0;
5469
5470 return TASK_SIZE - addr;
5471}
5472
5473static u16
5474perf_sample_ustack_size(u16 stack_size, u16 header_size,
5475 struct pt_regs *regs)
5476{
5477 u64 task_size;
5478
5479 /* No regs, no stack pointer, no dump. */
5480 if (!regs)
5481 return 0;
5482
5483 /*
5484 * Check if we fit in with the requested stack size into the:
5485 * - TASK_SIZE
5486 * If we don't, we limit the size to the TASK_SIZE.
5487 *
5488 * - remaining sample size
5489 * If we don't, we customize the stack size to
5490 * fit in to the remaining sample size.
5491 */
5492
5493 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5494 stack_size = min(stack_size, (u16) task_size);
5495
5496 /* Current header size plus static size and dynamic size. */
5497 header_size += 2 * sizeof(u64);
5498
5499 /* Do we fit in with the current stack dump size? */
5500 if ((u16) (header_size + stack_size) < header_size) {
5501 /*
5502 * If we overflow the maximum size for the sample,
5503 * we customize the stack dump size to fit in.
5504 */
5505 stack_size = USHRT_MAX - header_size - sizeof(u64);
5506 stack_size = round_up(stack_size, sizeof(u64));
5507 }
5508
5509 return stack_size;
5510}
5511
5512static void
5513perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5514 struct pt_regs *regs)
5515{
5516 /* Case of a kernel thread, nothing to dump */
5517 if (!regs) {
5518 u64 size = 0;
5519 perf_output_put(handle, size);
5520 } else {
5521 unsigned long sp;
5522 unsigned int rem;
5523 u64 dyn_size;
5524
5525 /*
5526 * We dump:
5527 * static size
5528 * - the size requested by user or the best one we can fit
5529 * in to the sample max size
5530 * data
5531 * - user stack dump data
5532 * dynamic size
5533 * - the actual dumped size
5534 */
5535
5536 /* Static size. */
5537 perf_output_put(handle, dump_size);
5538
5539 /* Data. */
5540 sp = perf_user_stack_pointer(regs);
5541 rem = __output_copy_user(handle, (void *) sp, dump_size);
5542 dyn_size = dump_size - rem;
5543
5544 perf_output_skip(handle, rem);
5545
5546 /* Dynamic size. */
5547 perf_output_put(handle, dyn_size);
5548 }
5549}
5550
c980d109
ACM
5551static void __perf_event_header__init_id(struct perf_event_header *header,
5552 struct perf_sample_data *data,
5553 struct perf_event *event)
6844c09d
ACM
5554{
5555 u64 sample_type = event->attr.sample_type;
5556
5557 data->type = sample_type;
5558 header->size += event->id_header_size;
5559
5560 if (sample_type & PERF_SAMPLE_TID) {
5561 /* namespace issues */
5562 data->tid_entry.pid = perf_event_pid(event, current);
5563 data->tid_entry.tid = perf_event_tid(event, current);
5564 }
5565
5566 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5567 data->time = perf_event_clock(event);
6844c09d 5568
ff3d527c 5569 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5570 data->id = primary_event_id(event);
5571
5572 if (sample_type & PERF_SAMPLE_STREAM_ID)
5573 data->stream_id = event->id;
5574
5575 if (sample_type & PERF_SAMPLE_CPU) {
5576 data->cpu_entry.cpu = raw_smp_processor_id();
5577 data->cpu_entry.reserved = 0;
5578 }
5579}
5580
76369139
FW
5581void perf_event_header__init_id(struct perf_event_header *header,
5582 struct perf_sample_data *data,
5583 struct perf_event *event)
c980d109
ACM
5584{
5585 if (event->attr.sample_id_all)
5586 __perf_event_header__init_id(header, data, event);
5587}
5588
5589static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5590 struct perf_sample_data *data)
5591{
5592 u64 sample_type = data->type;
5593
5594 if (sample_type & PERF_SAMPLE_TID)
5595 perf_output_put(handle, data->tid_entry);
5596
5597 if (sample_type & PERF_SAMPLE_TIME)
5598 perf_output_put(handle, data->time);
5599
5600 if (sample_type & PERF_SAMPLE_ID)
5601 perf_output_put(handle, data->id);
5602
5603 if (sample_type & PERF_SAMPLE_STREAM_ID)
5604 perf_output_put(handle, data->stream_id);
5605
5606 if (sample_type & PERF_SAMPLE_CPU)
5607 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5608
5609 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5610 perf_output_put(handle, data->id);
c980d109
ACM
5611}
5612
76369139
FW
5613void perf_event__output_id_sample(struct perf_event *event,
5614 struct perf_output_handle *handle,
5615 struct perf_sample_data *sample)
c980d109
ACM
5616{
5617 if (event->attr.sample_id_all)
5618 __perf_event__output_id_sample(handle, sample);
5619}
5620
3dab77fb 5621static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5622 struct perf_event *event,
5623 u64 enabled, u64 running)
3dab77fb 5624{
cdd6c482 5625 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5626 u64 values[4];
5627 int n = 0;
5628
b5e58793 5629 values[n++] = perf_event_count(event);
3dab77fb 5630 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5631 values[n++] = enabled +
cdd6c482 5632 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5633 }
5634 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5635 values[n++] = running +
cdd6c482 5636 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5637 }
5638 if (read_format & PERF_FORMAT_ID)
cdd6c482 5639 values[n++] = primary_event_id(event);
3dab77fb 5640
76369139 5641 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5642}
5643
5644/*
cdd6c482 5645 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5646 */
5647static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5648 struct perf_event *event,
5649 u64 enabled, u64 running)
3dab77fb 5650{
cdd6c482
IM
5651 struct perf_event *leader = event->group_leader, *sub;
5652 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5653 u64 values[5];
5654 int n = 0;
5655
5656 values[n++] = 1 + leader->nr_siblings;
5657
5658 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5659 values[n++] = enabled;
3dab77fb
PZ
5660
5661 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5662 values[n++] = running;
3dab77fb 5663
cdd6c482 5664 if (leader != event)
3dab77fb
PZ
5665 leader->pmu->read(leader);
5666
b5e58793 5667 values[n++] = perf_event_count(leader);
3dab77fb 5668 if (read_format & PERF_FORMAT_ID)
cdd6c482 5669 values[n++] = primary_event_id(leader);
3dab77fb 5670
76369139 5671 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5672
65abc865 5673 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5674 n = 0;
5675
6f5ab001
JO
5676 if ((sub != event) &&
5677 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5678 sub->pmu->read(sub);
5679
b5e58793 5680 values[n++] = perf_event_count(sub);
3dab77fb 5681 if (read_format & PERF_FORMAT_ID)
cdd6c482 5682 values[n++] = primary_event_id(sub);
3dab77fb 5683
76369139 5684 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5685 }
5686}
5687
eed01528
SE
5688#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5689 PERF_FORMAT_TOTAL_TIME_RUNNING)
5690
3dab77fb 5691static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5692 struct perf_event *event)
3dab77fb 5693{
e3f3541c 5694 u64 enabled = 0, running = 0, now;
eed01528
SE
5695 u64 read_format = event->attr.read_format;
5696
5697 /*
5698 * compute total_time_enabled, total_time_running
5699 * based on snapshot values taken when the event
5700 * was last scheduled in.
5701 *
5702 * we cannot simply called update_context_time()
5703 * because of locking issue as we are called in
5704 * NMI context
5705 */
c4794295 5706 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5707 calc_timer_values(event, &now, &enabled, &running);
eed01528 5708
cdd6c482 5709 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5710 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5711 else
eed01528 5712 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5713}
5714
5622f295
MM
5715void perf_output_sample(struct perf_output_handle *handle,
5716 struct perf_event_header *header,
5717 struct perf_sample_data *data,
cdd6c482 5718 struct perf_event *event)
5622f295
MM
5719{
5720 u64 sample_type = data->type;
5721
5722 perf_output_put(handle, *header);
5723
ff3d527c
AH
5724 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5725 perf_output_put(handle, data->id);
5726
5622f295
MM
5727 if (sample_type & PERF_SAMPLE_IP)
5728 perf_output_put(handle, data->ip);
5729
5730 if (sample_type & PERF_SAMPLE_TID)
5731 perf_output_put(handle, data->tid_entry);
5732
5733 if (sample_type & PERF_SAMPLE_TIME)
5734 perf_output_put(handle, data->time);
5735
5736 if (sample_type & PERF_SAMPLE_ADDR)
5737 perf_output_put(handle, data->addr);
5738
5739 if (sample_type & PERF_SAMPLE_ID)
5740 perf_output_put(handle, data->id);
5741
5742 if (sample_type & PERF_SAMPLE_STREAM_ID)
5743 perf_output_put(handle, data->stream_id);
5744
5745 if (sample_type & PERF_SAMPLE_CPU)
5746 perf_output_put(handle, data->cpu_entry);
5747
5748 if (sample_type & PERF_SAMPLE_PERIOD)
5749 perf_output_put(handle, data->period);
5750
5751 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5752 perf_output_read(handle, event);
5622f295
MM
5753
5754 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5755 if (data->callchain) {
5756 int size = 1;
5757
5758 if (data->callchain)
5759 size += data->callchain->nr;
5760
5761 size *= sizeof(u64);
5762
76369139 5763 __output_copy(handle, data->callchain, size);
5622f295
MM
5764 } else {
5765 u64 nr = 0;
5766 perf_output_put(handle, nr);
5767 }
5768 }
5769
5770 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5771 struct perf_raw_record *raw = data->raw;
5772
5773 if (raw) {
5774 struct perf_raw_frag *frag = &raw->frag;
5775
5776 perf_output_put(handle, raw->size);
5777 do {
5778 if (frag->copy) {
5779 __output_custom(handle, frag->copy,
5780 frag->data, frag->size);
5781 } else {
5782 __output_copy(handle, frag->data,
5783 frag->size);
5784 }
5785 if (perf_raw_frag_last(frag))
5786 break;
5787 frag = frag->next;
5788 } while (1);
5789 if (frag->pad)
5790 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5791 } else {
5792 struct {
5793 u32 size;
5794 u32 data;
5795 } raw = {
5796 .size = sizeof(u32),
5797 .data = 0,
5798 };
5799 perf_output_put(handle, raw);
5800 }
5801 }
a7ac67ea 5802
bce38cd5
SE
5803 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5804 if (data->br_stack) {
5805 size_t size;
5806
5807 size = data->br_stack->nr
5808 * sizeof(struct perf_branch_entry);
5809
5810 perf_output_put(handle, data->br_stack->nr);
5811 perf_output_copy(handle, data->br_stack->entries, size);
5812 } else {
5813 /*
5814 * we always store at least the value of nr
5815 */
5816 u64 nr = 0;
5817 perf_output_put(handle, nr);
5818 }
5819 }
4018994f
JO
5820
5821 if (sample_type & PERF_SAMPLE_REGS_USER) {
5822 u64 abi = data->regs_user.abi;
5823
5824 /*
5825 * If there are no regs to dump, notice it through
5826 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5827 */
5828 perf_output_put(handle, abi);
5829
5830 if (abi) {
5831 u64 mask = event->attr.sample_regs_user;
5832 perf_output_sample_regs(handle,
5833 data->regs_user.regs,
5834 mask);
5835 }
5836 }
c5ebcedb 5837
a5cdd40c 5838 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5839 perf_output_sample_ustack(handle,
5840 data->stack_user_size,
5841 data->regs_user.regs);
a5cdd40c 5842 }
c3feedf2
AK
5843
5844 if (sample_type & PERF_SAMPLE_WEIGHT)
5845 perf_output_put(handle, data->weight);
d6be9ad6
SE
5846
5847 if (sample_type & PERF_SAMPLE_DATA_SRC)
5848 perf_output_put(handle, data->data_src.val);
a5cdd40c 5849
fdfbbd07
AK
5850 if (sample_type & PERF_SAMPLE_TRANSACTION)
5851 perf_output_put(handle, data->txn);
5852
60e2364e
SE
5853 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5854 u64 abi = data->regs_intr.abi;
5855 /*
5856 * If there are no regs to dump, notice it through
5857 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5858 */
5859 perf_output_put(handle, abi);
5860
5861 if (abi) {
5862 u64 mask = event->attr.sample_regs_intr;
5863
5864 perf_output_sample_regs(handle,
5865 data->regs_intr.regs,
5866 mask);
5867 }
5868 }
5869
a5cdd40c
PZ
5870 if (!event->attr.watermark) {
5871 int wakeup_events = event->attr.wakeup_events;
5872
5873 if (wakeup_events) {
5874 struct ring_buffer *rb = handle->rb;
5875 int events = local_inc_return(&rb->events);
5876
5877 if (events >= wakeup_events) {
5878 local_sub(wakeup_events, &rb->events);
5879 local_inc(&rb->wakeup);
5880 }
5881 }
5882 }
5622f295
MM
5883}
5884
5885void perf_prepare_sample(struct perf_event_header *header,
5886 struct perf_sample_data *data,
cdd6c482 5887 struct perf_event *event,
5622f295 5888 struct pt_regs *regs)
7b732a75 5889{
cdd6c482 5890 u64 sample_type = event->attr.sample_type;
7b732a75 5891
cdd6c482 5892 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5893 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5894
5895 header->misc = 0;
5896 header->misc |= perf_misc_flags(regs);
6fab0192 5897
c980d109 5898 __perf_event_header__init_id(header, data, event);
6844c09d 5899
c320c7b7 5900 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5901 data->ip = perf_instruction_pointer(regs);
5902
b23f3325 5903 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5904 int size = 1;
394ee076 5905
e6dab5ff 5906 data->callchain = perf_callchain(event, regs);
5622f295
MM
5907
5908 if (data->callchain)
5909 size += data->callchain->nr;
5910
5911 header->size += size * sizeof(u64);
394ee076
PZ
5912 }
5913
3a43ce68 5914 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5915 struct perf_raw_record *raw = data->raw;
5916 int size;
5917
5918 if (raw) {
5919 struct perf_raw_frag *frag = &raw->frag;
5920 u32 sum = 0;
5921
5922 do {
5923 sum += frag->size;
5924 if (perf_raw_frag_last(frag))
5925 break;
5926 frag = frag->next;
5927 } while (1);
5928
5929 size = round_up(sum + sizeof(u32), sizeof(u64));
5930 raw->size = size - sizeof(u32);
5931 frag->pad = raw->size - sum;
5932 } else {
5933 size = sizeof(u64);
5934 }
a044560c 5935
7e3f977e 5936 header->size += size;
7f453c24 5937 }
bce38cd5
SE
5938
5939 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5940 int size = sizeof(u64); /* nr */
5941 if (data->br_stack) {
5942 size += data->br_stack->nr
5943 * sizeof(struct perf_branch_entry);
5944 }
5945 header->size += size;
5946 }
4018994f 5947
2565711f 5948 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5949 perf_sample_regs_user(&data->regs_user, regs,
5950 &data->regs_user_copy);
2565711f 5951
4018994f
JO
5952 if (sample_type & PERF_SAMPLE_REGS_USER) {
5953 /* regs dump ABI info */
5954 int size = sizeof(u64);
5955
4018994f
JO
5956 if (data->regs_user.regs) {
5957 u64 mask = event->attr.sample_regs_user;
5958 size += hweight64(mask) * sizeof(u64);
5959 }
5960
5961 header->size += size;
5962 }
c5ebcedb
JO
5963
5964 if (sample_type & PERF_SAMPLE_STACK_USER) {
5965 /*
5966 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5967 * processed as the last one or have additional check added
5968 * in case new sample type is added, because we could eat
5969 * up the rest of the sample size.
5970 */
c5ebcedb
JO
5971 u16 stack_size = event->attr.sample_stack_user;
5972 u16 size = sizeof(u64);
5973
c5ebcedb 5974 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5975 data->regs_user.regs);
c5ebcedb
JO
5976
5977 /*
5978 * If there is something to dump, add space for the dump
5979 * itself and for the field that tells the dynamic size,
5980 * which is how many have been actually dumped.
5981 */
5982 if (stack_size)
5983 size += sizeof(u64) + stack_size;
5984
5985 data->stack_user_size = stack_size;
5986 header->size += size;
5987 }
60e2364e
SE
5988
5989 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5990 /* regs dump ABI info */
5991 int size = sizeof(u64);
5992
5993 perf_sample_regs_intr(&data->regs_intr, regs);
5994
5995 if (data->regs_intr.regs) {
5996 u64 mask = event->attr.sample_regs_intr;
5997
5998 size += hweight64(mask) * sizeof(u64);
5999 }
6000
6001 header->size += size;
6002 }
5622f295 6003}
7f453c24 6004
9ecda41a
WN
6005static void __always_inline
6006__perf_event_output(struct perf_event *event,
6007 struct perf_sample_data *data,
6008 struct pt_regs *regs,
6009 int (*output_begin)(struct perf_output_handle *,
6010 struct perf_event *,
6011 unsigned int))
5622f295
MM
6012{
6013 struct perf_output_handle handle;
6014 struct perf_event_header header;
689802b2 6015
927c7a9e
FW
6016 /* protect the callchain buffers */
6017 rcu_read_lock();
6018
cdd6c482 6019 perf_prepare_sample(&header, data, event, regs);
5c148194 6020
9ecda41a 6021 if (output_begin(&handle, event, header.size))
927c7a9e 6022 goto exit;
0322cd6e 6023
cdd6c482 6024 perf_output_sample(&handle, &header, data, event);
f413cdb8 6025
8a057d84 6026 perf_output_end(&handle);
927c7a9e
FW
6027
6028exit:
6029 rcu_read_unlock();
0322cd6e
PZ
6030}
6031
9ecda41a
WN
6032void
6033perf_event_output_forward(struct perf_event *event,
6034 struct perf_sample_data *data,
6035 struct pt_regs *regs)
6036{
6037 __perf_event_output(event, data, regs, perf_output_begin_forward);
6038}
6039
6040void
6041perf_event_output_backward(struct perf_event *event,
6042 struct perf_sample_data *data,
6043 struct pt_regs *regs)
6044{
6045 __perf_event_output(event, data, regs, perf_output_begin_backward);
6046}
6047
6048void
6049perf_event_output(struct perf_event *event,
6050 struct perf_sample_data *data,
6051 struct pt_regs *regs)
6052{
6053 __perf_event_output(event, data, regs, perf_output_begin);
6054}
6055
38b200d6 6056/*
cdd6c482 6057 * read event_id
38b200d6
PZ
6058 */
6059
6060struct perf_read_event {
6061 struct perf_event_header header;
6062
6063 u32 pid;
6064 u32 tid;
38b200d6
PZ
6065};
6066
6067static void
cdd6c482 6068perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6069 struct task_struct *task)
6070{
6071 struct perf_output_handle handle;
c980d109 6072 struct perf_sample_data sample;
dfc65094 6073 struct perf_read_event read_event = {
38b200d6 6074 .header = {
cdd6c482 6075 .type = PERF_RECORD_READ,
38b200d6 6076 .misc = 0,
c320c7b7 6077 .size = sizeof(read_event) + event->read_size,
38b200d6 6078 },
cdd6c482
IM
6079 .pid = perf_event_pid(event, task),
6080 .tid = perf_event_tid(event, task),
38b200d6 6081 };
3dab77fb 6082 int ret;
38b200d6 6083
c980d109 6084 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6085 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6086 if (ret)
6087 return;
6088
dfc65094 6089 perf_output_put(&handle, read_event);
cdd6c482 6090 perf_output_read(&handle, event);
c980d109 6091 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6092
38b200d6
PZ
6093 perf_output_end(&handle);
6094}
6095
aab5b71e 6096typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6097
6098static void
aab5b71e
PZ
6099perf_iterate_ctx(struct perf_event_context *ctx,
6100 perf_iterate_f output,
b73e4fef 6101 void *data, bool all)
52d857a8
JO
6102{
6103 struct perf_event *event;
6104
6105 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6106 if (!all) {
6107 if (event->state < PERF_EVENT_STATE_INACTIVE)
6108 continue;
6109 if (!event_filter_match(event))
6110 continue;
6111 }
6112
67516844 6113 output(event, data);
52d857a8
JO
6114 }
6115}
6116
aab5b71e 6117static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6118{
6119 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6120 struct perf_event *event;
6121
6122 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6123 /*
6124 * Skip events that are not fully formed yet; ensure that
6125 * if we observe event->ctx, both event and ctx will be
6126 * complete enough. See perf_install_in_context().
6127 */
6128 if (!smp_load_acquire(&event->ctx))
6129 continue;
6130
f2fb6bef
KL
6131 if (event->state < PERF_EVENT_STATE_INACTIVE)
6132 continue;
6133 if (!event_filter_match(event))
6134 continue;
6135 output(event, data);
6136 }
6137}
6138
aab5b71e
PZ
6139/*
6140 * Iterate all events that need to receive side-band events.
6141 *
6142 * For new callers; ensure that account_pmu_sb_event() includes
6143 * your event, otherwise it might not get delivered.
6144 */
52d857a8 6145static void
aab5b71e 6146perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6147 struct perf_event_context *task_ctx)
6148{
52d857a8 6149 struct perf_event_context *ctx;
52d857a8
JO
6150 int ctxn;
6151
aab5b71e
PZ
6152 rcu_read_lock();
6153 preempt_disable();
6154
4e93ad60 6155 /*
aab5b71e
PZ
6156 * If we have task_ctx != NULL we only notify the task context itself.
6157 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6158 * context.
6159 */
6160 if (task_ctx) {
aab5b71e
PZ
6161 perf_iterate_ctx(task_ctx, output, data, false);
6162 goto done;
4e93ad60
JO
6163 }
6164
aab5b71e 6165 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6166
6167 for_each_task_context_nr(ctxn) {
52d857a8
JO
6168 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6169 if (ctx)
aab5b71e 6170 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6171 }
aab5b71e 6172done:
f2fb6bef 6173 preempt_enable();
52d857a8 6174 rcu_read_unlock();
95ff4ca2
AS
6175}
6176
375637bc
AS
6177/*
6178 * Clear all file-based filters at exec, they'll have to be
6179 * re-instated when/if these objects are mmapped again.
6180 */
6181static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6182{
6183 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6184 struct perf_addr_filter *filter;
6185 unsigned int restart = 0, count = 0;
6186 unsigned long flags;
6187
6188 if (!has_addr_filter(event))
6189 return;
6190
6191 raw_spin_lock_irqsave(&ifh->lock, flags);
6192 list_for_each_entry(filter, &ifh->list, entry) {
6193 if (filter->inode) {
6194 event->addr_filters_offs[count] = 0;
6195 restart++;
6196 }
6197
6198 count++;
6199 }
6200
6201 if (restart)
6202 event->addr_filters_gen++;
6203 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6204
6205 if (restart)
767ae086 6206 perf_event_stop(event, 1);
375637bc
AS
6207}
6208
6209void perf_event_exec(void)
6210{
6211 struct perf_event_context *ctx;
6212 int ctxn;
6213
6214 rcu_read_lock();
6215 for_each_task_context_nr(ctxn) {
6216 ctx = current->perf_event_ctxp[ctxn];
6217 if (!ctx)
6218 continue;
6219
6220 perf_event_enable_on_exec(ctxn);
6221
aab5b71e 6222 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6223 true);
6224 }
6225 rcu_read_unlock();
6226}
6227
95ff4ca2
AS
6228struct remote_output {
6229 struct ring_buffer *rb;
6230 int err;
6231};
6232
6233static void __perf_event_output_stop(struct perf_event *event, void *data)
6234{
6235 struct perf_event *parent = event->parent;
6236 struct remote_output *ro = data;
6237 struct ring_buffer *rb = ro->rb;
375637bc
AS
6238 struct stop_event_data sd = {
6239 .event = event,
6240 };
95ff4ca2
AS
6241
6242 if (!has_aux(event))
6243 return;
6244
6245 if (!parent)
6246 parent = event;
6247
6248 /*
6249 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6250 * ring-buffer, but it will be the child that's actually using it.
6251 *
6252 * We are using event::rb to determine if the event should be stopped,
6253 * however this may race with ring_buffer_attach() (through set_output),
6254 * which will make us skip the event that actually needs to be stopped.
6255 * So ring_buffer_attach() has to stop an aux event before re-assigning
6256 * its rb pointer.
95ff4ca2
AS
6257 */
6258 if (rcu_dereference(parent->rb) == rb)
375637bc 6259 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6260}
6261
6262static int __perf_pmu_output_stop(void *info)
6263{
6264 struct perf_event *event = info;
6265 struct pmu *pmu = event->pmu;
8b6a3fe8 6266 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6267 struct remote_output ro = {
6268 .rb = event->rb,
6269 };
6270
6271 rcu_read_lock();
aab5b71e 6272 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6273 if (cpuctx->task_ctx)
aab5b71e 6274 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6275 &ro, false);
95ff4ca2
AS
6276 rcu_read_unlock();
6277
6278 return ro.err;
6279}
6280
6281static void perf_pmu_output_stop(struct perf_event *event)
6282{
6283 struct perf_event *iter;
6284 int err, cpu;
6285
6286restart:
6287 rcu_read_lock();
6288 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6289 /*
6290 * For per-CPU events, we need to make sure that neither they
6291 * nor their children are running; for cpu==-1 events it's
6292 * sufficient to stop the event itself if it's active, since
6293 * it can't have children.
6294 */
6295 cpu = iter->cpu;
6296 if (cpu == -1)
6297 cpu = READ_ONCE(iter->oncpu);
6298
6299 if (cpu == -1)
6300 continue;
6301
6302 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6303 if (err == -EAGAIN) {
6304 rcu_read_unlock();
6305 goto restart;
6306 }
6307 }
6308 rcu_read_unlock();
52d857a8
JO
6309}
6310
60313ebe 6311/*
9f498cc5
PZ
6312 * task tracking -- fork/exit
6313 *
13d7a241 6314 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6315 */
6316
9f498cc5 6317struct perf_task_event {
3a80b4a3 6318 struct task_struct *task;
cdd6c482 6319 struct perf_event_context *task_ctx;
60313ebe
PZ
6320
6321 struct {
6322 struct perf_event_header header;
6323
6324 u32 pid;
6325 u32 ppid;
9f498cc5
PZ
6326 u32 tid;
6327 u32 ptid;
393b2ad8 6328 u64 time;
cdd6c482 6329 } event_id;
60313ebe
PZ
6330};
6331
67516844
JO
6332static int perf_event_task_match(struct perf_event *event)
6333{
13d7a241
SE
6334 return event->attr.comm || event->attr.mmap ||
6335 event->attr.mmap2 || event->attr.mmap_data ||
6336 event->attr.task;
67516844
JO
6337}
6338
cdd6c482 6339static void perf_event_task_output(struct perf_event *event,
52d857a8 6340 void *data)
60313ebe 6341{
52d857a8 6342 struct perf_task_event *task_event = data;
60313ebe 6343 struct perf_output_handle handle;
c980d109 6344 struct perf_sample_data sample;
9f498cc5 6345 struct task_struct *task = task_event->task;
c980d109 6346 int ret, size = task_event->event_id.header.size;
8bb39f9a 6347
67516844
JO
6348 if (!perf_event_task_match(event))
6349 return;
6350
c980d109 6351 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6352
c980d109 6353 ret = perf_output_begin(&handle, event,
a7ac67ea 6354 task_event->event_id.header.size);
ef60777c 6355 if (ret)
c980d109 6356 goto out;
60313ebe 6357
cdd6c482
IM
6358 task_event->event_id.pid = perf_event_pid(event, task);
6359 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6360
cdd6c482
IM
6361 task_event->event_id.tid = perf_event_tid(event, task);
6362 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6363
34f43927
PZ
6364 task_event->event_id.time = perf_event_clock(event);
6365
cdd6c482 6366 perf_output_put(&handle, task_event->event_id);
393b2ad8 6367
c980d109
ACM
6368 perf_event__output_id_sample(event, &handle, &sample);
6369
60313ebe 6370 perf_output_end(&handle);
c980d109
ACM
6371out:
6372 task_event->event_id.header.size = size;
60313ebe
PZ
6373}
6374
cdd6c482
IM
6375static void perf_event_task(struct task_struct *task,
6376 struct perf_event_context *task_ctx,
3a80b4a3 6377 int new)
60313ebe 6378{
9f498cc5 6379 struct perf_task_event task_event;
60313ebe 6380
cdd6c482
IM
6381 if (!atomic_read(&nr_comm_events) &&
6382 !atomic_read(&nr_mmap_events) &&
6383 !atomic_read(&nr_task_events))
60313ebe
PZ
6384 return;
6385
9f498cc5 6386 task_event = (struct perf_task_event){
3a80b4a3
PZ
6387 .task = task,
6388 .task_ctx = task_ctx,
cdd6c482 6389 .event_id = {
60313ebe 6390 .header = {
cdd6c482 6391 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6392 .misc = 0,
cdd6c482 6393 .size = sizeof(task_event.event_id),
60313ebe 6394 },
573402db
PZ
6395 /* .pid */
6396 /* .ppid */
9f498cc5
PZ
6397 /* .tid */
6398 /* .ptid */
34f43927 6399 /* .time */
60313ebe
PZ
6400 },
6401 };
6402
aab5b71e 6403 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6404 &task_event,
6405 task_ctx);
9f498cc5
PZ
6406}
6407
cdd6c482 6408void perf_event_fork(struct task_struct *task)
9f498cc5 6409{
cdd6c482 6410 perf_event_task(task, NULL, 1);
60313ebe
PZ
6411}
6412
8d1b2d93
PZ
6413/*
6414 * comm tracking
6415 */
6416
6417struct perf_comm_event {
22a4f650
IM
6418 struct task_struct *task;
6419 char *comm;
8d1b2d93
PZ
6420 int comm_size;
6421
6422 struct {
6423 struct perf_event_header header;
6424
6425 u32 pid;
6426 u32 tid;
cdd6c482 6427 } event_id;
8d1b2d93
PZ
6428};
6429
67516844
JO
6430static int perf_event_comm_match(struct perf_event *event)
6431{
6432 return event->attr.comm;
6433}
6434
cdd6c482 6435static void perf_event_comm_output(struct perf_event *event,
52d857a8 6436 void *data)
8d1b2d93 6437{
52d857a8 6438 struct perf_comm_event *comm_event = data;
8d1b2d93 6439 struct perf_output_handle handle;
c980d109 6440 struct perf_sample_data sample;
cdd6c482 6441 int size = comm_event->event_id.header.size;
c980d109
ACM
6442 int ret;
6443
67516844
JO
6444 if (!perf_event_comm_match(event))
6445 return;
6446
c980d109
ACM
6447 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6448 ret = perf_output_begin(&handle, event,
a7ac67ea 6449 comm_event->event_id.header.size);
8d1b2d93
PZ
6450
6451 if (ret)
c980d109 6452 goto out;
8d1b2d93 6453
cdd6c482
IM
6454 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6455 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6456
cdd6c482 6457 perf_output_put(&handle, comm_event->event_id);
76369139 6458 __output_copy(&handle, comm_event->comm,
8d1b2d93 6459 comm_event->comm_size);
c980d109
ACM
6460
6461 perf_event__output_id_sample(event, &handle, &sample);
6462
8d1b2d93 6463 perf_output_end(&handle);
c980d109
ACM
6464out:
6465 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6466}
6467
cdd6c482 6468static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6469{
413ee3b4 6470 char comm[TASK_COMM_LEN];
8d1b2d93 6471 unsigned int size;
8d1b2d93 6472
413ee3b4 6473 memset(comm, 0, sizeof(comm));
96b02d78 6474 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6475 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6476
6477 comm_event->comm = comm;
6478 comm_event->comm_size = size;
6479
cdd6c482 6480 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6481
aab5b71e 6482 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6483 comm_event,
6484 NULL);
8d1b2d93
PZ
6485}
6486
82b89778 6487void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6488{
9ee318a7
PZ
6489 struct perf_comm_event comm_event;
6490
cdd6c482 6491 if (!atomic_read(&nr_comm_events))
9ee318a7 6492 return;
a63eaf34 6493
9ee318a7 6494 comm_event = (struct perf_comm_event){
8d1b2d93 6495 .task = task,
573402db
PZ
6496 /* .comm */
6497 /* .comm_size */
cdd6c482 6498 .event_id = {
573402db 6499 .header = {
cdd6c482 6500 .type = PERF_RECORD_COMM,
82b89778 6501 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6502 /* .size */
6503 },
6504 /* .pid */
6505 /* .tid */
8d1b2d93
PZ
6506 },
6507 };
6508
cdd6c482 6509 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6510}
6511
0a4a9391
PZ
6512/*
6513 * mmap tracking
6514 */
6515
6516struct perf_mmap_event {
089dd79d
PZ
6517 struct vm_area_struct *vma;
6518
6519 const char *file_name;
6520 int file_size;
13d7a241
SE
6521 int maj, min;
6522 u64 ino;
6523 u64 ino_generation;
f972eb63 6524 u32 prot, flags;
0a4a9391
PZ
6525
6526 struct {
6527 struct perf_event_header header;
6528
6529 u32 pid;
6530 u32 tid;
6531 u64 start;
6532 u64 len;
6533 u64 pgoff;
cdd6c482 6534 } event_id;
0a4a9391
PZ
6535};
6536
67516844
JO
6537static int perf_event_mmap_match(struct perf_event *event,
6538 void *data)
6539{
6540 struct perf_mmap_event *mmap_event = data;
6541 struct vm_area_struct *vma = mmap_event->vma;
6542 int executable = vma->vm_flags & VM_EXEC;
6543
6544 return (!executable && event->attr.mmap_data) ||
13d7a241 6545 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6546}
6547
cdd6c482 6548static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6549 void *data)
0a4a9391 6550{
52d857a8 6551 struct perf_mmap_event *mmap_event = data;
0a4a9391 6552 struct perf_output_handle handle;
c980d109 6553 struct perf_sample_data sample;
cdd6c482 6554 int size = mmap_event->event_id.header.size;
c980d109 6555 int ret;
0a4a9391 6556
67516844
JO
6557 if (!perf_event_mmap_match(event, data))
6558 return;
6559
13d7a241
SE
6560 if (event->attr.mmap2) {
6561 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6562 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6563 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6564 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6565 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6566 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6567 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6568 }
6569
c980d109
ACM
6570 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6571 ret = perf_output_begin(&handle, event,
a7ac67ea 6572 mmap_event->event_id.header.size);
0a4a9391 6573 if (ret)
c980d109 6574 goto out;
0a4a9391 6575
cdd6c482
IM
6576 mmap_event->event_id.pid = perf_event_pid(event, current);
6577 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6578
cdd6c482 6579 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6580
6581 if (event->attr.mmap2) {
6582 perf_output_put(&handle, mmap_event->maj);
6583 perf_output_put(&handle, mmap_event->min);
6584 perf_output_put(&handle, mmap_event->ino);
6585 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6586 perf_output_put(&handle, mmap_event->prot);
6587 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6588 }
6589
76369139 6590 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6591 mmap_event->file_size);
c980d109
ACM
6592
6593 perf_event__output_id_sample(event, &handle, &sample);
6594
78d613eb 6595 perf_output_end(&handle);
c980d109
ACM
6596out:
6597 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6598}
6599
cdd6c482 6600static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6601{
089dd79d
PZ
6602 struct vm_area_struct *vma = mmap_event->vma;
6603 struct file *file = vma->vm_file;
13d7a241
SE
6604 int maj = 0, min = 0;
6605 u64 ino = 0, gen = 0;
f972eb63 6606 u32 prot = 0, flags = 0;
0a4a9391
PZ
6607 unsigned int size;
6608 char tmp[16];
6609 char *buf = NULL;
2c42cfbf 6610 char *name;
413ee3b4 6611
0a4a9391 6612 if (file) {
13d7a241
SE
6613 struct inode *inode;
6614 dev_t dev;
3ea2f2b9 6615
2c42cfbf 6616 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6617 if (!buf) {
c7e548b4
ON
6618 name = "//enomem";
6619 goto cpy_name;
0a4a9391 6620 }
413ee3b4 6621 /*
3ea2f2b9 6622 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6623 * need to add enough zero bytes after the string to handle
6624 * the 64bit alignment we do later.
6625 */
9bf39ab2 6626 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6627 if (IS_ERR(name)) {
c7e548b4
ON
6628 name = "//toolong";
6629 goto cpy_name;
0a4a9391 6630 }
13d7a241
SE
6631 inode = file_inode(vma->vm_file);
6632 dev = inode->i_sb->s_dev;
6633 ino = inode->i_ino;
6634 gen = inode->i_generation;
6635 maj = MAJOR(dev);
6636 min = MINOR(dev);
f972eb63
PZ
6637
6638 if (vma->vm_flags & VM_READ)
6639 prot |= PROT_READ;
6640 if (vma->vm_flags & VM_WRITE)
6641 prot |= PROT_WRITE;
6642 if (vma->vm_flags & VM_EXEC)
6643 prot |= PROT_EXEC;
6644
6645 if (vma->vm_flags & VM_MAYSHARE)
6646 flags = MAP_SHARED;
6647 else
6648 flags = MAP_PRIVATE;
6649
6650 if (vma->vm_flags & VM_DENYWRITE)
6651 flags |= MAP_DENYWRITE;
6652 if (vma->vm_flags & VM_MAYEXEC)
6653 flags |= MAP_EXECUTABLE;
6654 if (vma->vm_flags & VM_LOCKED)
6655 flags |= MAP_LOCKED;
6656 if (vma->vm_flags & VM_HUGETLB)
6657 flags |= MAP_HUGETLB;
6658
c7e548b4 6659 goto got_name;
0a4a9391 6660 } else {
fbe26abe
JO
6661 if (vma->vm_ops && vma->vm_ops->name) {
6662 name = (char *) vma->vm_ops->name(vma);
6663 if (name)
6664 goto cpy_name;
6665 }
6666
2c42cfbf 6667 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6668 if (name)
6669 goto cpy_name;
089dd79d 6670
32c5fb7e 6671 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6672 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6673 name = "[heap]";
6674 goto cpy_name;
32c5fb7e
ON
6675 }
6676 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6677 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6678 name = "[stack]";
6679 goto cpy_name;
089dd79d
PZ
6680 }
6681
c7e548b4
ON
6682 name = "//anon";
6683 goto cpy_name;
0a4a9391
PZ
6684 }
6685
c7e548b4
ON
6686cpy_name:
6687 strlcpy(tmp, name, sizeof(tmp));
6688 name = tmp;
0a4a9391 6689got_name:
2c42cfbf
PZ
6690 /*
6691 * Since our buffer works in 8 byte units we need to align our string
6692 * size to a multiple of 8. However, we must guarantee the tail end is
6693 * zero'd out to avoid leaking random bits to userspace.
6694 */
6695 size = strlen(name)+1;
6696 while (!IS_ALIGNED(size, sizeof(u64)))
6697 name[size++] = '\0';
0a4a9391
PZ
6698
6699 mmap_event->file_name = name;
6700 mmap_event->file_size = size;
13d7a241
SE
6701 mmap_event->maj = maj;
6702 mmap_event->min = min;
6703 mmap_event->ino = ino;
6704 mmap_event->ino_generation = gen;
f972eb63
PZ
6705 mmap_event->prot = prot;
6706 mmap_event->flags = flags;
0a4a9391 6707
2fe85427
SE
6708 if (!(vma->vm_flags & VM_EXEC))
6709 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6710
cdd6c482 6711 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6712
aab5b71e 6713 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6714 mmap_event,
6715 NULL);
665c2142 6716
0a4a9391
PZ
6717 kfree(buf);
6718}
6719
375637bc
AS
6720/*
6721 * Check whether inode and address range match filter criteria.
6722 */
6723static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6724 struct file *file, unsigned long offset,
6725 unsigned long size)
6726{
45063097 6727 if (filter->inode != file_inode(file))
375637bc
AS
6728 return false;
6729
6730 if (filter->offset > offset + size)
6731 return false;
6732
6733 if (filter->offset + filter->size < offset)
6734 return false;
6735
6736 return true;
6737}
6738
6739static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6740{
6741 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6742 struct vm_area_struct *vma = data;
6743 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6744 struct file *file = vma->vm_file;
6745 struct perf_addr_filter *filter;
6746 unsigned int restart = 0, count = 0;
6747
6748 if (!has_addr_filter(event))
6749 return;
6750
6751 if (!file)
6752 return;
6753
6754 raw_spin_lock_irqsave(&ifh->lock, flags);
6755 list_for_each_entry(filter, &ifh->list, entry) {
6756 if (perf_addr_filter_match(filter, file, off,
6757 vma->vm_end - vma->vm_start)) {
6758 event->addr_filters_offs[count] = vma->vm_start;
6759 restart++;
6760 }
6761
6762 count++;
6763 }
6764
6765 if (restart)
6766 event->addr_filters_gen++;
6767 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6768
6769 if (restart)
767ae086 6770 perf_event_stop(event, 1);
375637bc
AS
6771}
6772
6773/*
6774 * Adjust all task's events' filters to the new vma
6775 */
6776static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6777{
6778 struct perf_event_context *ctx;
6779 int ctxn;
6780
12b40a23
MP
6781 /*
6782 * Data tracing isn't supported yet and as such there is no need
6783 * to keep track of anything that isn't related to executable code:
6784 */
6785 if (!(vma->vm_flags & VM_EXEC))
6786 return;
6787
375637bc
AS
6788 rcu_read_lock();
6789 for_each_task_context_nr(ctxn) {
6790 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6791 if (!ctx)
6792 continue;
6793
aab5b71e 6794 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6795 }
6796 rcu_read_unlock();
6797}
6798
3af9e859 6799void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6800{
9ee318a7
PZ
6801 struct perf_mmap_event mmap_event;
6802
cdd6c482 6803 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6804 return;
6805
6806 mmap_event = (struct perf_mmap_event){
089dd79d 6807 .vma = vma,
573402db
PZ
6808 /* .file_name */
6809 /* .file_size */
cdd6c482 6810 .event_id = {
573402db 6811 .header = {
cdd6c482 6812 .type = PERF_RECORD_MMAP,
39447b38 6813 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6814 /* .size */
6815 },
6816 /* .pid */
6817 /* .tid */
089dd79d
PZ
6818 .start = vma->vm_start,
6819 .len = vma->vm_end - vma->vm_start,
3a0304e9 6820 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6821 },
13d7a241
SE
6822 /* .maj (attr_mmap2 only) */
6823 /* .min (attr_mmap2 only) */
6824 /* .ino (attr_mmap2 only) */
6825 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6826 /* .prot (attr_mmap2 only) */
6827 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6828 };
6829
375637bc 6830 perf_addr_filters_adjust(vma);
cdd6c482 6831 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6832}
6833
68db7e98
AS
6834void perf_event_aux_event(struct perf_event *event, unsigned long head,
6835 unsigned long size, u64 flags)
6836{
6837 struct perf_output_handle handle;
6838 struct perf_sample_data sample;
6839 struct perf_aux_event {
6840 struct perf_event_header header;
6841 u64 offset;
6842 u64 size;
6843 u64 flags;
6844 } rec = {
6845 .header = {
6846 .type = PERF_RECORD_AUX,
6847 .misc = 0,
6848 .size = sizeof(rec),
6849 },
6850 .offset = head,
6851 .size = size,
6852 .flags = flags,
6853 };
6854 int ret;
6855
6856 perf_event_header__init_id(&rec.header, &sample, event);
6857 ret = perf_output_begin(&handle, event, rec.header.size);
6858
6859 if (ret)
6860 return;
6861
6862 perf_output_put(&handle, rec);
6863 perf_event__output_id_sample(event, &handle, &sample);
6864
6865 perf_output_end(&handle);
6866}
6867
f38b0dbb
KL
6868/*
6869 * Lost/dropped samples logging
6870 */
6871void perf_log_lost_samples(struct perf_event *event, u64 lost)
6872{
6873 struct perf_output_handle handle;
6874 struct perf_sample_data sample;
6875 int ret;
6876
6877 struct {
6878 struct perf_event_header header;
6879 u64 lost;
6880 } lost_samples_event = {
6881 .header = {
6882 .type = PERF_RECORD_LOST_SAMPLES,
6883 .misc = 0,
6884 .size = sizeof(lost_samples_event),
6885 },
6886 .lost = lost,
6887 };
6888
6889 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6890
6891 ret = perf_output_begin(&handle, event,
6892 lost_samples_event.header.size);
6893 if (ret)
6894 return;
6895
6896 perf_output_put(&handle, lost_samples_event);
6897 perf_event__output_id_sample(event, &handle, &sample);
6898 perf_output_end(&handle);
6899}
6900
45ac1403
AH
6901/*
6902 * context_switch tracking
6903 */
6904
6905struct perf_switch_event {
6906 struct task_struct *task;
6907 struct task_struct *next_prev;
6908
6909 struct {
6910 struct perf_event_header header;
6911 u32 next_prev_pid;
6912 u32 next_prev_tid;
6913 } event_id;
6914};
6915
6916static int perf_event_switch_match(struct perf_event *event)
6917{
6918 return event->attr.context_switch;
6919}
6920
6921static void perf_event_switch_output(struct perf_event *event, void *data)
6922{
6923 struct perf_switch_event *se = data;
6924 struct perf_output_handle handle;
6925 struct perf_sample_data sample;
6926 int ret;
6927
6928 if (!perf_event_switch_match(event))
6929 return;
6930
6931 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6932 if (event->ctx->task) {
6933 se->event_id.header.type = PERF_RECORD_SWITCH;
6934 se->event_id.header.size = sizeof(se->event_id.header);
6935 } else {
6936 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6937 se->event_id.header.size = sizeof(se->event_id);
6938 se->event_id.next_prev_pid =
6939 perf_event_pid(event, se->next_prev);
6940 se->event_id.next_prev_tid =
6941 perf_event_tid(event, se->next_prev);
6942 }
6943
6944 perf_event_header__init_id(&se->event_id.header, &sample, event);
6945
6946 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6947 if (ret)
6948 return;
6949
6950 if (event->ctx->task)
6951 perf_output_put(&handle, se->event_id.header);
6952 else
6953 perf_output_put(&handle, se->event_id);
6954
6955 perf_event__output_id_sample(event, &handle, &sample);
6956
6957 perf_output_end(&handle);
6958}
6959
6960static void perf_event_switch(struct task_struct *task,
6961 struct task_struct *next_prev, bool sched_in)
6962{
6963 struct perf_switch_event switch_event;
6964
6965 /* N.B. caller checks nr_switch_events != 0 */
6966
6967 switch_event = (struct perf_switch_event){
6968 .task = task,
6969 .next_prev = next_prev,
6970 .event_id = {
6971 .header = {
6972 /* .type */
6973 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6974 /* .size */
6975 },
6976 /* .next_prev_pid */
6977 /* .next_prev_tid */
6978 },
6979 };
6980
aab5b71e 6981 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
6982 &switch_event,
6983 NULL);
6984}
6985
a78ac325
PZ
6986/*
6987 * IRQ throttle logging
6988 */
6989
cdd6c482 6990static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6991{
6992 struct perf_output_handle handle;
c980d109 6993 struct perf_sample_data sample;
a78ac325
PZ
6994 int ret;
6995
6996 struct {
6997 struct perf_event_header header;
6998 u64 time;
cca3f454 6999 u64 id;
7f453c24 7000 u64 stream_id;
a78ac325
PZ
7001 } throttle_event = {
7002 .header = {
cdd6c482 7003 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7004 .misc = 0,
7005 .size = sizeof(throttle_event),
7006 },
34f43927 7007 .time = perf_event_clock(event),
cdd6c482
IM
7008 .id = primary_event_id(event),
7009 .stream_id = event->id,
a78ac325
PZ
7010 };
7011
966ee4d6 7012 if (enable)
cdd6c482 7013 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7014
c980d109
ACM
7015 perf_event_header__init_id(&throttle_event.header, &sample, event);
7016
7017 ret = perf_output_begin(&handle, event,
a7ac67ea 7018 throttle_event.header.size);
a78ac325
PZ
7019 if (ret)
7020 return;
7021
7022 perf_output_put(&handle, throttle_event);
c980d109 7023 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7024 perf_output_end(&handle);
7025}
7026
ec0d7729
AS
7027static void perf_log_itrace_start(struct perf_event *event)
7028{
7029 struct perf_output_handle handle;
7030 struct perf_sample_data sample;
7031 struct perf_aux_event {
7032 struct perf_event_header header;
7033 u32 pid;
7034 u32 tid;
7035 } rec;
7036 int ret;
7037
7038 if (event->parent)
7039 event = event->parent;
7040
7041 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7042 event->hw.itrace_started)
7043 return;
7044
ec0d7729
AS
7045 rec.header.type = PERF_RECORD_ITRACE_START;
7046 rec.header.misc = 0;
7047 rec.header.size = sizeof(rec);
7048 rec.pid = perf_event_pid(event, current);
7049 rec.tid = perf_event_tid(event, current);
7050
7051 perf_event_header__init_id(&rec.header, &sample, event);
7052 ret = perf_output_begin(&handle, event, rec.header.size);
7053
7054 if (ret)
7055 return;
7056
7057 perf_output_put(&handle, rec);
7058 perf_event__output_id_sample(event, &handle, &sample);
7059
7060 perf_output_end(&handle);
7061}
7062
475113d9
JO
7063static int
7064__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7065{
cdd6c482 7066 struct hw_perf_event *hwc = &event->hw;
79f14641 7067 int ret = 0;
475113d9 7068 u64 seq;
96398826 7069
e050e3f0
SE
7070 seq = __this_cpu_read(perf_throttled_seq);
7071 if (seq != hwc->interrupts_seq) {
7072 hwc->interrupts_seq = seq;
7073 hwc->interrupts = 1;
7074 } else {
7075 hwc->interrupts++;
7076 if (unlikely(throttle
7077 && hwc->interrupts >= max_samples_per_tick)) {
7078 __this_cpu_inc(perf_throttled_count);
555e0c1e 7079 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7080 hwc->interrupts = MAX_INTERRUPTS;
7081 perf_log_throttle(event, 0);
a78ac325
PZ
7082 ret = 1;
7083 }
e050e3f0 7084 }
60db5e09 7085
cdd6c482 7086 if (event->attr.freq) {
def0a9b2 7087 u64 now = perf_clock();
abd50713 7088 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7089
abd50713 7090 hwc->freq_time_stamp = now;
bd2b5b12 7091
abd50713 7092 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7093 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7094 }
7095
475113d9
JO
7096 return ret;
7097}
7098
7099int perf_event_account_interrupt(struct perf_event *event)
7100{
7101 return __perf_event_account_interrupt(event, 1);
7102}
7103
7104/*
7105 * Generic event overflow handling, sampling.
7106 */
7107
7108static int __perf_event_overflow(struct perf_event *event,
7109 int throttle, struct perf_sample_data *data,
7110 struct pt_regs *regs)
7111{
7112 int events = atomic_read(&event->event_limit);
7113 int ret = 0;
7114
7115 /*
7116 * Non-sampling counters might still use the PMI to fold short
7117 * hardware counters, ignore those.
7118 */
7119 if (unlikely(!is_sampling_event(event)))
7120 return 0;
7121
7122 ret = __perf_event_account_interrupt(event, throttle);
7123
2023b359
PZ
7124 /*
7125 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7126 * events
2023b359
PZ
7127 */
7128
cdd6c482
IM
7129 event->pending_kill = POLL_IN;
7130 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7131 ret = 1;
cdd6c482 7132 event->pending_kill = POLL_HUP;
5aab90ce
JO
7133
7134 perf_event_disable_inatomic(event);
79f14641
PZ
7135 }
7136
aa6a5f3c 7137 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7138
fed66e2c 7139 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7140 event->pending_wakeup = 1;
7141 irq_work_queue(&event->pending);
f506b3dc
PZ
7142 }
7143
79f14641 7144 return ret;
f6c7d5fe
PZ
7145}
7146
a8b0ca17 7147int perf_event_overflow(struct perf_event *event,
5622f295
MM
7148 struct perf_sample_data *data,
7149 struct pt_regs *regs)
850bc73f 7150{
a8b0ca17 7151 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7152}
7153
15dbf27c 7154/*
cdd6c482 7155 * Generic software event infrastructure
15dbf27c
PZ
7156 */
7157
b28ab83c
PZ
7158struct swevent_htable {
7159 struct swevent_hlist *swevent_hlist;
7160 struct mutex hlist_mutex;
7161 int hlist_refcount;
7162
7163 /* Recursion avoidance in each contexts */
7164 int recursion[PERF_NR_CONTEXTS];
7165};
7166
7167static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7168
7b4b6658 7169/*
cdd6c482
IM
7170 * We directly increment event->count and keep a second value in
7171 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7172 * is kept in the range [-sample_period, 0] so that we can use the
7173 * sign as trigger.
7174 */
7175
ab573844 7176u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7177{
cdd6c482 7178 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7179 u64 period = hwc->last_period;
7180 u64 nr, offset;
7181 s64 old, val;
7182
7183 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7184
7185again:
e7850595 7186 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7187 if (val < 0)
7188 return 0;
15dbf27c 7189
7b4b6658
PZ
7190 nr = div64_u64(period + val, period);
7191 offset = nr * period;
7192 val -= offset;
e7850595 7193 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7194 goto again;
15dbf27c 7195
7b4b6658 7196 return nr;
15dbf27c
PZ
7197}
7198
0cff784a 7199static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7200 struct perf_sample_data *data,
5622f295 7201 struct pt_regs *regs)
15dbf27c 7202{
cdd6c482 7203 struct hw_perf_event *hwc = &event->hw;
850bc73f 7204 int throttle = 0;
15dbf27c 7205
0cff784a
PZ
7206 if (!overflow)
7207 overflow = perf_swevent_set_period(event);
15dbf27c 7208
7b4b6658
PZ
7209 if (hwc->interrupts == MAX_INTERRUPTS)
7210 return;
15dbf27c 7211
7b4b6658 7212 for (; overflow; overflow--) {
a8b0ca17 7213 if (__perf_event_overflow(event, throttle,
5622f295 7214 data, regs)) {
7b4b6658
PZ
7215 /*
7216 * We inhibit the overflow from happening when
7217 * hwc->interrupts == MAX_INTERRUPTS.
7218 */
7219 break;
7220 }
cf450a73 7221 throttle = 1;
7b4b6658 7222 }
15dbf27c
PZ
7223}
7224
a4eaf7f1 7225static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7226 struct perf_sample_data *data,
5622f295 7227 struct pt_regs *regs)
7b4b6658 7228{
cdd6c482 7229 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7230
e7850595 7231 local64_add(nr, &event->count);
d6d020e9 7232
0cff784a
PZ
7233 if (!regs)
7234 return;
7235
6c7e550f 7236 if (!is_sampling_event(event))
7b4b6658 7237 return;
d6d020e9 7238
5d81e5cf
AV
7239 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7240 data->period = nr;
7241 return perf_swevent_overflow(event, 1, data, regs);
7242 } else
7243 data->period = event->hw.last_period;
7244
0cff784a 7245 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7246 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7247
e7850595 7248 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7249 return;
df1a132b 7250
a8b0ca17 7251 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7252}
7253
f5ffe02e
FW
7254static int perf_exclude_event(struct perf_event *event,
7255 struct pt_regs *regs)
7256{
a4eaf7f1 7257 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7258 return 1;
a4eaf7f1 7259
f5ffe02e
FW
7260 if (regs) {
7261 if (event->attr.exclude_user && user_mode(regs))
7262 return 1;
7263
7264 if (event->attr.exclude_kernel && !user_mode(regs))
7265 return 1;
7266 }
7267
7268 return 0;
7269}
7270
cdd6c482 7271static int perf_swevent_match(struct perf_event *event,
1c432d89 7272 enum perf_type_id type,
6fb2915d
LZ
7273 u32 event_id,
7274 struct perf_sample_data *data,
7275 struct pt_regs *regs)
15dbf27c 7276{
cdd6c482 7277 if (event->attr.type != type)
a21ca2ca 7278 return 0;
f5ffe02e 7279
cdd6c482 7280 if (event->attr.config != event_id)
15dbf27c
PZ
7281 return 0;
7282
f5ffe02e
FW
7283 if (perf_exclude_event(event, regs))
7284 return 0;
15dbf27c
PZ
7285
7286 return 1;
7287}
7288
76e1d904
FW
7289static inline u64 swevent_hash(u64 type, u32 event_id)
7290{
7291 u64 val = event_id | (type << 32);
7292
7293 return hash_64(val, SWEVENT_HLIST_BITS);
7294}
7295
49f135ed
FW
7296static inline struct hlist_head *
7297__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7298{
49f135ed
FW
7299 u64 hash = swevent_hash(type, event_id);
7300
7301 return &hlist->heads[hash];
7302}
76e1d904 7303
49f135ed
FW
7304/* For the read side: events when they trigger */
7305static inline struct hlist_head *
b28ab83c 7306find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7307{
7308 struct swevent_hlist *hlist;
76e1d904 7309
b28ab83c 7310 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7311 if (!hlist)
7312 return NULL;
7313
49f135ed
FW
7314 return __find_swevent_head(hlist, type, event_id);
7315}
7316
7317/* For the event head insertion and removal in the hlist */
7318static inline struct hlist_head *
b28ab83c 7319find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7320{
7321 struct swevent_hlist *hlist;
7322 u32 event_id = event->attr.config;
7323 u64 type = event->attr.type;
7324
7325 /*
7326 * Event scheduling is always serialized against hlist allocation
7327 * and release. Which makes the protected version suitable here.
7328 * The context lock guarantees that.
7329 */
b28ab83c 7330 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7331 lockdep_is_held(&event->ctx->lock));
7332 if (!hlist)
7333 return NULL;
7334
7335 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7336}
7337
7338static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7339 u64 nr,
76e1d904
FW
7340 struct perf_sample_data *data,
7341 struct pt_regs *regs)
15dbf27c 7342{
4a32fea9 7343 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7344 struct perf_event *event;
76e1d904 7345 struct hlist_head *head;
15dbf27c 7346
76e1d904 7347 rcu_read_lock();
b28ab83c 7348 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7349 if (!head)
7350 goto end;
7351
b67bfe0d 7352 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7353 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7354 perf_swevent_event(event, nr, data, regs);
15dbf27c 7355 }
76e1d904
FW
7356end:
7357 rcu_read_unlock();
15dbf27c
PZ
7358}
7359
86038c5e
PZI
7360DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7361
4ed7c92d 7362int perf_swevent_get_recursion_context(void)
96f6d444 7363{
4a32fea9 7364 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7365
b28ab83c 7366 return get_recursion_context(swhash->recursion);
96f6d444 7367}
645e8cc0 7368EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7369
98b5c2c6 7370void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7371{
4a32fea9 7372 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7373
b28ab83c 7374 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7375}
15dbf27c 7376
86038c5e 7377void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7378{
a4234bfc 7379 struct perf_sample_data data;
4ed7c92d 7380
86038c5e 7381 if (WARN_ON_ONCE(!regs))
4ed7c92d 7382 return;
a4234bfc 7383
fd0d000b 7384 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7385 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7386}
7387
7388void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7389{
7390 int rctx;
7391
7392 preempt_disable_notrace();
7393 rctx = perf_swevent_get_recursion_context();
7394 if (unlikely(rctx < 0))
7395 goto fail;
7396
7397 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7398
7399 perf_swevent_put_recursion_context(rctx);
86038c5e 7400fail:
1c024eca 7401 preempt_enable_notrace();
b8e83514
PZ
7402}
7403
cdd6c482 7404static void perf_swevent_read(struct perf_event *event)
15dbf27c 7405{
15dbf27c
PZ
7406}
7407
a4eaf7f1 7408static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7409{
4a32fea9 7410 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7411 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7412 struct hlist_head *head;
7413
6c7e550f 7414 if (is_sampling_event(event)) {
7b4b6658 7415 hwc->last_period = hwc->sample_period;
cdd6c482 7416 perf_swevent_set_period(event);
7b4b6658 7417 }
76e1d904 7418
a4eaf7f1
PZ
7419 hwc->state = !(flags & PERF_EF_START);
7420
b28ab83c 7421 head = find_swevent_head(swhash, event);
12ca6ad2 7422 if (WARN_ON_ONCE(!head))
76e1d904
FW
7423 return -EINVAL;
7424
7425 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7426 perf_event_update_userpage(event);
76e1d904 7427
15dbf27c
PZ
7428 return 0;
7429}
7430
a4eaf7f1 7431static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7432{
76e1d904 7433 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7434}
7435
a4eaf7f1 7436static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7437{
a4eaf7f1 7438 event->hw.state = 0;
d6d020e9 7439}
aa9c4c0f 7440
a4eaf7f1 7441static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7442{
a4eaf7f1 7443 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7444}
7445
49f135ed
FW
7446/* Deref the hlist from the update side */
7447static inline struct swevent_hlist *
b28ab83c 7448swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7449{
b28ab83c
PZ
7450 return rcu_dereference_protected(swhash->swevent_hlist,
7451 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7452}
7453
b28ab83c 7454static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7455{
b28ab83c 7456 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7457
49f135ed 7458 if (!hlist)
76e1d904
FW
7459 return;
7460
70691d4a 7461 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7462 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7463}
7464
3b364d7b 7465static void swevent_hlist_put_cpu(int cpu)
76e1d904 7466{
b28ab83c 7467 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7468
b28ab83c 7469 mutex_lock(&swhash->hlist_mutex);
76e1d904 7470
b28ab83c
PZ
7471 if (!--swhash->hlist_refcount)
7472 swevent_hlist_release(swhash);
76e1d904 7473
b28ab83c 7474 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7475}
7476
3b364d7b 7477static void swevent_hlist_put(void)
76e1d904
FW
7478{
7479 int cpu;
7480
76e1d904 7481 for_each_possible_cpu(cpu)
3b364d7b 7482 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7483}
7484
3b364d7b 7485static int swevent_hlist_get_cpu(int cpu)
76e1d904 7486{
b28ab83c 7487 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7488 int err = 0;
7489
b28ab83c 7490 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7491 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7492 struct swevent_hlist *hlist;
7493
7494 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7495 if (!hlist) {
7496 err = -ENOMEM;
7497 goto exit;
7498 }
b28ab83c 7499 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7500 }
b28ab83c 7501 swhash->hlist_refcount++;
9ed6060d 7502exit:
b28ab83c 7503 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7504
7505 return err;
7506}
7507
3b364d7b 7508static int swevent_hlist_get(void)
76e1d904 7509{
3b364d7b 7510 int err, cpu, failed_cpu;
76e1d904 7511
76e1d904
FW
7512 get_online_cpus();
7513 for_each_possible_cpu(cpu) {
3b364d7b 7514 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7515 if (err) {
7516 failed_cpu = cpu;
7517 goto fail;
7518 }
7519 }
7520 put_online_cpus();
7521
7522 return 0;
9ed6060d 7523fail:
76e1d904
FW
7524 for_each_possible_cpu(cpu) {
7525 if (cpu == failed_cpu)
7526 break;
3b364d7b 7527 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7528 }
7529
7530 put_online_cpus();
7531 return err;
7532}
7533
c5905afb 7534struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7535
b0a873eb
PZ
7536static void sw_perf_event_destroy(struct perf_event *event)
7537{
7538 u64 event_id = event->attr.config;
95476b64 7539
b0a873eb
PZ
7540 WARN_ON(event->parent);
7541
c5905afb 7542 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7543 swevent_hlist_put();
b0a873eb
PZ
7544}
7545
7546static int perf_swevent_init(struct perf_event *event)
7547{
8176cced 7548 u64 event_id = event->attr.config;
b0a873eb
PZ
7549
7550 if (event->attr.type != PERF_TYPE_SOFTWARE)
7551 return -ENOENT;
7552
2481c5fa
SE
7553 /*
7554 * no branch sampling for software events
7555 */
7556 if (has_branch_stack(event))
7557 return -EOPNOTSUPP;
7558
b0a873eb
PZ
7559 switch (event_id) {
7560 case PERF_COUNT_SW_CPU_CLOCK:
7561 case PERF_COUNT_SW_TASK_CLOCK:
7562 return -ENOENT;
7563
7564 default:
7565 break;
7566 }
7567
ce677831 7568 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7569 return -ENOENT;
7570
7571 if (!event->parent) {
7572 int err;
7573
3b364d7b 7574 err = swevent_hlist_get();
b0a873eb
PZ
7575 if (err)
7576 return err;
7577
c5905afb 7578 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7579 event->destroy = sw_perf_event_destroy;
7580 }
7581
7582 return 0;
7583}
7584
7585static struct pmu perf_swevent = {
89a1e187 7586 .task_ctx_nr = perf_sw_context,
95476b64 7587
34f43927
PZ
7588 .capabilities = PERF_PMU_CAP_NO_NMI,
7589
b0a873eb 7590 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7591 .add = perf_swevent_add,
7592 .del = perf_swevent_del,
7593 .start = perf_swevent_start,
7594 .stop = perf_swevent_stop,
1c024eca 7595 .read = perf_swevent_read,
1c024eca
PZ
7596};
7597
b0a873eb
PZ
7598#ifdef CONFIG_EVENT_TRACING
7599
1c024eca
PZ
7600static int perf_tp_filter_match(struct perf_event *event,
7601 struct perf_sample_data *data)
7602{
7e3f977e 7603 void *record = data->raw->frag.data;
1c024eca 7604
b71b437e
PZ
7605 /* only top level events have filters set */
7606 if (event->parent)
7607 event = event->parent;
7608
1c024eca
PZ
7609 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7610 return 1;
7611 return 0;
7612}
7613
7614static int perf_tp_event_match(struct perf_event *event,
7615 struct perf_sample_data *data,
7616 struct pt_regs *regs)
7617{
a0f7d0f7
FW
7618 if (event->hw.state & PERF_HES_STOPPED)
7619 return 0;
580d607c
PZ
7620 /*
7621 * All tracepoints are from kernel-space.
7622 */
7623 if (event->attr.exclude_kernel)
1c024eca
PZ
7624 return 0;
7625
7626 if (!perf_tp_filter_match(event, data))
7627 return 0;
7628
7629 return 1;
7630}
7631
85b67bcb
AS
7632void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7633 struct trace_event_call *call, u64 count,
7634 struct pt_regs *regs, struct hlist_head *head,
7635 struct task_struct *task)
7636{
7637 struct bpf_prog *prog = call->prog;
7638
7639 if (prog) {
7640 *(struct pt_regs **)raw_data = regs;
7641 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7642 perf_swevent_put_recursion_context(rctx);
7643 return;
7644 }
7645 }
7646 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7647 rctx, task);
7648}
7649EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7650
1e1dcd93 7651void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7652 struct pt_regs *regs, struct hlist_head *head, int rctx,
7653 struct task_struct *task)
95476b64
FW
7654{
7655 struct perf_sample_data data;
1c024eca 7656 struct perf_event *event;
1c024eca 7657
95476b64 7658 struct perf_raw_record raw = {
7e3f977e
DB
7659 .frag = {
7660 .size = entry_size,
7661 .data = record,
7662 },
95476b64
FW
7663 };
7664
1e1dcd93 7665 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7666 data.raw = &raw;
7667
1e1dcd93
AS
7668 perf_trace_buf_update(record, event_type);
7669
b67bfe0d 7670 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7671 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7672 perf_swevent_event(event, count, &data, regs);
4f41c013 7673 }
ecc55f84 7674
e6dab5ff
AV
7675 /*
7676 * If we got specified a target task, also iterate its context and
7677 * deliver this event there too.
7678 */
7679 if (task && task != current) {
7680 struct perf_event_context *ctx;
7681 struct trace_entry *entry = record;
7682
7683 rcu_read_lock();
7684 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7685 if (!ctx)
7686 goto unlock;
7687
7688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7689 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7690 continue;
7691 if (event->attr.config != entry->type)
7692 continue;
7693 if (perf_tp_event_match(event, &data, regs))
7694 perf_swevent_event(event, count, &data, regs);
7695 }
7696unlock:
7697 rcu_read_unlock();
7698 }
7699
ecc55f84 7700 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7701}
7702EXPORT_SYMBOL_GPL(perf_tp_event);
7703
cdd6c482 7704static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7705{
1c024eca 7706 perf_trace_destroy(event);
e077df4f
PZ
7707}
7708
b0a873eb 7709static int perf_tp_event_init(struct perf_event *event)
e077df4f 7710{
76e1d904
FW
7711 int err;
7712
b0a873eb
PZ
7713 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7714 return -ENOENT;
7715
2481c5fa
SE
7716 /*
7717 * no branch sampling for tracepoint events
7718 */
7719 if (has_branch_stack(event))
7720 return -EOPNOTSUPP;
7721
1c024eca
PZ
7722 err = perf_trace_init(event);
7723 if (err)
b0a873eb 7724 return err;
e077df4f 7725
cdd6c482 7726 event->destroy = tp_perf_event_destroy;
e077df4f 7727
b0a873eb
PZ
7728 return 0;
7729}
7730
7731static struct pmu perf_tracepoint = {
89a1e187
PZ
7732 .task_ctx_nr = perf_sw_context,
7733
b0a873eb 7734 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7735 .add = perf_trace_add,
7736 .del = perf_trace_del,
7737 .start = perf_swevent_start,
7738 .stop = perf_swevent_stop,
b0a873eb 7739 .read = perf_swevent_read,
b0a873eb
PZ
7740};
7741
7742static inline void perf_tp_register(void)
7743{
2e80a82a 7744 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7745}
6fb2915d 7746
6fb2915d
LZ
7747static void perf_event_free_filter(struct perf_event *event)
7748{
7749 ftrace_profile_free_filter(event);
7750}
7751
aa6a5f3c
AS
7752#ifdef CONFIG_BPF_SYSCALL
7753static void bpf_overflow_handler(struct perf_event *event,
7754 struct perf_sample_data *data,
7755 struct pt_regs *regs)
7756{
7757 struct bpf_perf_event_data_kern ctx = {
7758 .data = data,
7759 .regs = regs,
7760 };
7761 int ret = 0;
7762
7763 preempt_disable();
7764 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7765 goto out;
7766 rcu_read_lock();
88575199 7767 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7768 rcu_read_unlock();
7769out:
7770 __this_cpu_dec(bpf_prog_active);
7771 preempt_enable();
7772 if (!ret)
7773 return;
7774
7775 event->orig_overflow_handler(event, data, regs);
7776}
7777
7778static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7779{
7780 struct bpf_prog *prog;
7781
7782 if (event->overflow_handler_context)
7783 /* hw breakpoint or kernel counter */
7784 return -EINVAL;
7785
7786 if (event->prog)
7787 return -EEXIST;
7788
7789 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7790 if (IS_ERR(prog))
7791 return PTR_ERR(prog);
7792
7793 event->prog = prog;
7794 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7795 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7796 return 0;
7797}
7798
7799static void perf_event_free_bpf_handler(struct perf_event *event)
7800{
7801 struct bpf_prog *prog = event->prog;
7802
7803 if (!prog)
7804 return;
7805
7806 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7807 event->prog = NULL;
7808 bpf_prog_put(prog);
7809}
7810#else
7811static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7812{
7813 return -EOPNOTSUPP;
7814}
7815static void perf_event_free_bpf_handler(struct perf_event *event)
7816{
7817}
7818#endif
7819
2541517c
AS
7820static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7821{
98b5c2c6 7822 bool is_kprobe, is_tracepoint;
2541517c
AS
7823 struct bpf_prog *prog;
7824
aa6a5f3c
AS
7825 if (event->attr.type == PERF_TYPE_HARDWARE ||
7826 event->attr.type == PERF_TYPE_SOFTWARE)
7827 return perf_event_set_bpf_handler(event, prog_fd);
7828
2541517c
AS
7829 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7830 return -EINVAL;
7831
7832 if (event->tp_event->prog)
7833 return -EEXIST;
7834
98b5c2c6
AS
7835 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7836 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7837 if (!is_kprobe && !is_tracepoint)
7838 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7839 return -EINVAL;
7840
7841 prog = bpf_prog_get(prog_fd);
7842 if (IS_ERR(prog))
7843 return PTR_ERR(prog);
7844
98b5c2c6
AS
7845 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7846 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7847 /* valid fd, but invalid bpf program type */
7848 bpf_prog_put(prog);
7849 return -EINVAL;
7850 }
7851
32bbe007
AS
7852 if (is_tracepoint) {
7853 int off = trace_event_get_offsets(event->tp_event);
7854
7855 if (prog->aux->max_ctx_offset > off) {
7856 bpf_prog_put(prog);
7857 return -EACCES;
7858 }
7859 }
2541517c
AS
7860 event->tp_event->prog = prog;
7861
7862 return 0;
7863}
7864
7865static void perf_event_free_bpf_prog(struct perf_event *event)
7866{
7867 struct bpf_prog *prog;
7868
aa6a5f3c
AS
7869 perf_event_free_bpf_handler(event);
7870
2541517c
AS
7871 if (!event->tp_event)
7872 return;
7873
7874 prog = event->tp_event->prog;
7875 if (prog) {
7876 event->tp_event->prog = NULL;
1aacde3d 7877 bpf_prog_put(prog);
2541517c
AS
7878 }
7879}
7880
e077df4f 7881#else
6fb2915d 7882
b0a873eb 7883static inline void perf_tp_register(void)
e077df4f 7884{
e077df4f 7885}
6fb2915d 7886
6fb2915d
LZ
7887static void perf_event_free_filter(struct perf_event *event)
7888{
7889}
7890
2541517c
AS
7891static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7892{
7893 return -ENOENT;
7894}
7895
7896static void perf_event_free_bpf_prog(struct perf_event *event)
7897{
7898}
07b139c8 7899#endif /* CONFIG_EVENT_TRACING */
e077df4f 7900
24f1e32c 7901#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7902void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7903{
f5ffe02e
FW
7904 struct perf_sample_data sample;
7905 struct pt_regs *regs = data;
7906
fd0d000b 7907 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7908
a4eaf7f1 7909 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7910 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7911}
7912#endif
7913
375637bc
AS
7914/*
7915 * Allocate a new address filter
7916 */
7917static struct perf_addr_filter *
7918perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7919{
7920 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7921 struct perf_addr_filter *filter;
7922
7923 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7924 if (!filter)
7925 return NULL;
7926
7927 INIT_LIST_HEAD(&filter->entry);
7928 list_add_tail(&filter->entry, filters);
7929
7930 return filter;
7931}
7932
7933static void free_filters_list(struct list_head *filters)
7934{
7935 struct perf_addr_filter *filter, *iter;
7936
7937 list_for_each_entry_safe(filter, iter, filters, entry) {
7938 if (filter->inode)
7939 iput(filter->inode);
7940 list_del(&filter->entry);
7941 kfree(filter);
7942 }
7943}
7944
7945/*
7946 * Free existing address filters and optionally install new ones
7947 */
7948static void perf_addr_filters_splice(struct perf_event *event,
7949 struct list_head *head)
7950{
7951 unsigned long flags;
7952 LIST_HEAD(list);
7953
7954 if (!has_addr_filter(event))
7955 return;
7956
7957 /* don't bother with children, they don't have their own filters */
7958 if (event->parent)
7959 return;
7960
7961 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7962
7963 list_splice_init(&event->addr_filters.list, &list);
7964 if (head)
7965 list_splice(head, &event->addr_filters.list);
7966
7967 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7968
7969 free_filters_list(&list);
7970}
7971
7972/*
7973 * Scan through mm's vmas and see if one of them matches the
7974 * @filter; if so, adjust filter's address range.
7975 * Called with mm::mmap_sem down for reading.
7976 */
7977static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7978 struct mm_struct *mm)
7979{
7980 struct vm_area_struct *vma;
7981
7982 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7983 struct file *file = vma->vm_file;
7984 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7985 unsigned long vma_size = vma->vm_end - vma->vm_start;
7986
7987 if (!file)
7988 continue;
7989
7990 if (!perf_addr_filter_match(filter, file, off, vma_size))
7991 continue;
7992
7993 return vma->vm_start;
7994 }
7995
7996 return 0;
7997}
7998
7999/*
8000 * Update event's address range filters based on the
8001 * task's existing mappings, if any.
8002 */
8003static void perf_event_addr_filters_apply(struct perf_event *event)
8004{
8005 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8006 struct task_struct *task = READ_ONCE(event->ctx->task);
8007 struct perf_addr_filter *filter;
8008 struct mm_struct *mm = NULL;
8009 unsigned int count = 0;
8010 unsigned long flags;
8011
8012 /*
8013 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8014 * will stop on the parent's child_mutex that our caller is also holding
8015 */
8016 if (task == TASK_TOMBSTONE)
8017 return;
8018
8019 mm = get_task_mm(event->ctx->task);
8020 if (!mm)
8021 goto restart;
8022
8023 down_read(&mm->mmap_sem);
8024
8025 raw_spin_lock_irqsave(&ifh->lock, flags);
8026 list_for_each_entry(filter, &ifh->list, entry) {
8027 event->addr_filters_offs[count] = 0;
8028
99f5bc9b
MP
8029 /*
8030 * Adjust base offset if the filter is associated to a binary
8031 * that needs to be mapped:
8032 */
8033 if (filter->inode)
375637bc
AS
8034 event->addr_filters_offs[count] =
8035 perf_addr_filter_apply(filter, mm);
8036
8037 count++;
8038 }
8039
8040 event->addr_filters_gen++;
8041 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8042
8043 up_read(&mm->mmap_sem);
8044
8045 mmput(mm);
8046
8047restart:
767ae086 8048 perf_event_stop(event, 1);
375637bc
AS
8049}
8050
8051/*
8052 * Address range filtering: limiting the data to certain
8053 * instruction address ranges. Filters are ioctl()ed to us from
8054 * userspace as ascii strings.
8055 *
8056 * Filter string format:
8057 *
8058 * ACTION RANGE_SPEC
8059 * where ACTION is one of the
8060 * * "filter": limit the trace to this region
8061 * * "start": start tracing from this address
8062 * * "stop": stop tracing at this address/region;
8063 * RANGE_SPEC is
8064 * * for kernel addresses: <start address>[/<size>]
8065 * * for object files: <start address>[/<size>]@</path/to/object/file>
8066 *
8067 * if <size> is not specified, the range is treated as a single address.
8068 */
8069enum {
e96271f3 8070 IF_ACT_NONE = -1,
375637bc
AS
8071 IF_ACT_FILTER,
8072 IF_ACT_START,
8073 IF_ACT_STOP,
8074 IF_SRC_FILE,
8075 IF_SRC_KERNEL,
8076 IF_SRC_FILEADDR,
8077 IF_SRC_KERNELADDR,
8078};
8079
8080enum {
8081 IF_STATE_ACTION = 0,
8082 IF_STATE_SOURCE,
8083 IF_STATE_END,
8084};
8085
8086static const match_table_t if_tokens = {
8087 { IF_ACT_FILTER, "filter" },
8088 { IF_ACT_START, "start" },
8089 { IF_ACT_STOP, "stop" },
8090 { IF_SRC_FILE, "%u/%u@%s" },
8091 { IF_SRC_KERNEL, "%u/%u" },
8092 { IF_SRC_FILEADDR, "%u@%s" },
8093 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8094 { IF_ACT_NONE, NULL },
375637bc
AS
8095};
8096
8097/*
8098 * Address filter string parser
8099 */
8100static int
8101perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8102 struct list_head *filters)
8103{
8104 struct perf_addr_filter *filter = NULL;
8105 char *start, *orig, *filename = NULL;
8106 struct path path;
8107 substring_t args[MAX_OPT_ARGS];
8108 int state = IF_STATE_ACTION, token;
8109 unsigned int kernel = 0;
8110 int ret = -EINVAL;
8111
8112 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8113 if (!fstr)
8114 return -ENOMEM;
8115
8116 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8117 ret = -EINVAL;
8118
8119 if (!*start)
8120 continue;
8121
8122 /* filter definition begins */
8123 if (state == IF_STATE_ACTION) {
8124 filter = perf_addr_filter_new(event, filters);
8125 if (!filter)
8126 goto fail;
8127 }
8128
8129 token = match_token(start, if_tokens, args);
8130 switch (token) {
8131 case IF_ACT_FILTER:
8132 case IF_ACT_START:
8133 filter->filter = 1;
8134
8135 case IF_ACT_STOP:
8136 if (state != IF_STATE_ACTION)
8137 goto fail;
8138
8139 state = IF_STATE_SOURCE;
8140 break;
8141
8142 case IF_SRC_KERNELADDR:
8143 case IF_SRC_KERNEL:
8144 kernel = 1;
8145
8146 case IF_SRC_FILEADDR:
8147 case IF_SRC_FILE:
8148 if (state != IF_STATE_SOURCE)
8149 goto fail;
8150
8151 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8152 filter->range = 1;
8153
8154 *args[0].to = 0;
8155 ret = kstrtoul(args[0].from, 0, &filter->offset);
8156 if (ret)
8157 goto fail;
8158
8159 if (filter->range) {
8160 *args[1].to = 0;
8161 ret = kstrtoul(args[1].from, 0, &filter->size);
8162 if (ret)
8163 goto fail;
8164 }
8165
4059ffd0
MP
8166 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8167 int fpos = filter->range ? 2 : 1;
8168
8169 filename = match_strdup(&args[fpos]);
375637bc
AS
8170 if (!filename) {
8171 ret = -ENOMEM;
8172 goto fail;
8173 }
8174 }
8175
8176 state = IF_STATE_END;
8177 break;
8178
8179 default:
8180 goto fail;
8181 }
8182
8183 /*
8184 * Filter definition is fully parsed, validate and install it.
8185 * Make sure that it doesn't contradict itself or the event's
8186 * attribute.
8187 */
8188 if (state == IF_STATE_END) {
8189 if (kernel && event->attr.exclude_kernel)
8190 goto fail;
8191
8192 if (!kernel) {
8193 if (!filename)
8194 goto fail;
8195
8196 /* look up the path and grab its inode */
8197 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8198 if (ret)
8199 goto fail_free_name;
8200
8201 filter->inode = igrab(d_inode(path.dentry));
8202 path_put(&path);
8203 kfree(filename);
8204 filename = NULL;
8205
8206 ret = -EINVAL;
8207 if (!filter->inode ||
8208 !S_ISREG(filter->inode->i_mode))
8209 /* free_filters_list() will iput() */
8210 goto fail;
8211 }
8212
8213 /* ready to consume more filters */
8214 state = IF_STATE_ACTION;
8215 filter = NULL;
8216 }
8217 }
8218
8219 if (state != IF_STATE_ACTION)
8220 goto fail;
8221
8222 kfree(orig);
8223
8224 return 0;
8225
8226fail_free_name:
8227 kfree(filename);
8228fail:
8229 free_filters_list(filters);
8230 kfree(orig);
8231
8232 return ret;
8233}
8234
8235static int
8236perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8237{
8238 LIST_HEAD(filters);
8239 int ret;
8240
8241 /*
8242 * Since this is called in perf_ioctl() path, we're already holding
8243 * ctx::mutex.
8244 */
8245 lockdep_assert_held(&event->ctx->mutex);
8246
8247 if (WARN_ON_ONCE(event->parent))
8248 return -EINVAL;
8249
8250 /*
8251 * For now, we only support filtering in per-task events; doing so
8252 * for CPU-wide events requires additional context switching trickery,
8253 * since same object code will be mapped at different virtual
8254 * addresses in different processes.
8255 */
8256 if (!event->ctx->task)
8257 return -EOPNOTSUPP;
8258
8259 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8260 if (ret)
8261 return ret;
8262
8263 ret = event->pmu->addr_filters_validate(&filters);
8264 if (ret) {
8265 free_filters_list(&filters);
8266 return ret;
8267 }
8268
8269 /* remove existing filters, if any */
8270 perf_addr_filters_splice(event, &filters);
8271
8272 /* install new filters */
8273 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8274
8275 return ret;
8276}
8277
c796bbbe
AS
8278static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8279{
8280 char *filter_str;
8281 int ret = -EINVAL;
8282
375637bc
AS
8283 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8284 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8285 !has_addr_filter(event))
c796bbbe
AS
8286 return -EINVAL;
8287
8288 filter_str = strndup_user(arg, PAGE_SIZE);
8289 if (IS_ERR(filter_str))
8290 return PTR_ERR(filter_str);
8291
8292 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8293 event->attr.type == PERF_TYPE_TRACEPOINT)
8294 ret = ftrace_profile_set_filter(event, event->attr.config,
8295 filter_str);
375637bc
AS
8296 else if (has_addr_filter(event))
8297 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8298
8299 kfree(filter_str);
8300 return ret;
8301}
8302
b0a873eb
PZ
8303/*
8304 * hrtimer based swevent callback
8305 */
f29ac756 8306
b0a873eb 8307static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8308{
b0a873eb
PZ
8309 enum hrtimer_restart ret = HRTIMER_RESTART;
8310 struct perf_sample_data data;
8311 struct pt_regs *regs;
8312 struct perf_event *event;
8313 u64 period;
f29ac756 8314
b0a873eb 8315 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8316
8317 if (event->state != PERF_EVENT_STATE_ACTIVE)
8318 return HRTIMER_NORESTART;
8319
b0a873eb 8320 event->pmu->read(event);
f344011c 8321
fd0d000b 8322 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8323 regs = get_irq_regs();
8324
8325 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8326 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8327 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8328 ret = HRTIMER_NORESTART;
8329 }
24f1e32c 8330
b0a873eb
PZ
8331 period = max_t(u64, 10000, event->hw.sample_period);
8332 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8333
b0a873eb 8334 return ret;
f29ac756
PZ
8335}
8336
b0a873eb 8337static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8338{
b0a873eb 8339 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8340 s64 period;
8341
8342 if (!is_sampling_event(event))
8343 return;
f5ffe02e 8344
5d508e82
FBH
8345 period = local64_read(&hwc->period_left);
8346 if (period) {
8347 if (period < 0)
8348 period = 10000;
fa407f35 8349
5d508e82
FBH
8350 local64_set(&hwc->period_left, 0);
8351 } else {
8352 period = max_t(u64, 10000, hwc->sample_period);
8353 }
3497d206
TG
8354 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8355 HRTIMER_MODE_REL_PINNED);
24f1e32c 8356}
b0a873eb
PZ
8357
8358static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8359{
b0a873eb
PZ
8360 struct hw_perf_event *hwc = &event->hw;
8361
6c7e550f 8362 if (is_sampling_event(event)) {
b0a873eb 8363 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8364 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8365
8366 hrtimer_cancel(&hwc->hrtimer);
8367 }
24f1e32c
FW
8368}
8369
ba3dd36c
PZ
8370static void perf_swevent_init_hrtimer(struct perf_event *event)
8371{
8372 struct hw_perf_event *hwc = &event->hw;
8373
8374 if (!is_sampling_event(event))
8375 return;
8376
8377 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8378 hwc->hrtimer.function = perf_swevent_hrtimer;
8379
8380 /*
8381 * Since hrtimers have a fixed rate, we can do a static freq->period
8382 * mapping and avoid the whole period adjust feedback stuff.
8383 */
8384 if (event->attr.freq) {
8385 long freq = event->attr.sample_freq;
8386
8387 event->attr.sample_period = NSEC_PER_SEC / freq;
8388 hwc->sample_period = event->attr.sample_period;
8389 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8390 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8391 event->attr.freq = 0;
8392 }
8393}
8394
b0a873eb
PZ
8395/*
8396 * Software event: cpu wall time clock
8397 */
8398
8399static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8400{
b0a873eb
PZ
8401 s64 prev;
8402 u64 now;
8403
a4eaf7f1 8404 now = local_clock();
b0a873eb
PZ
8405 prev = local64_xchg(&event->hw.prev_count, now);
8406 local64_add(now - prev, &event->count);
24f1e32c 8407}
24f1e32c 8408
a4eaf7f1 8409static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8410{
a4eaf7f1 8411 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8412 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8413}
8414
a4eaf7f1 8415static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8416{
b0a873eb
PZ
8417 perf_swevent_cancel_hrtimer(event);
8418 cpu_clock_event_update(event);
8419}
f29ac756 8420
a4eaf7f1
PZ
8421static int cpu_clock_event_add(struct perf_event *event, int flags)
8422{
8423 if (flags & PERF_EF_START)
8424 cpu_clock_event_start(event, flags);
6a694a60 8425 perf_event_update_userpage(event);
a4eaf7f1
PZ
8426
8427 return 0;
8428}
8429
8430static void cpu_clock_event_del(struct perf_event *event, int flags)
8431{
8432 cpu_clock_event_stop(event, flags);
8433}
8434
b0a873eb
PZ
8435static void cpu_clock_event_read(struct perf_event *event)
8436{
8437 cpu_clock_event_update(event);
8438}
f344011c 8439
b0a873eb
PZ
8440static int cpu_clock_event_init(struct perf_event *event)
8441{
8442 if (event->attr.type != PERF_TYPE_SOFTWARE)
8443 return -ENOENT;
8444
8445 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8446 return -ENOENT;
8447
2481c5fa
SE
8448 /*
8449 * no branch sampling for software events
8450 */
8451 if (has_branch_stack(event))
8452 return -EOPNOTSUPP;
8453
ba3dd36c
PZ
8454 perf_swevent_init_hrtimer(event);
8455
b0a873eb 8456 return 0;
f29ac756
PZ
8457}
8458
b0a873eb 8459static struct pmu perf_cpu_clock = {
89a1e187
PZ
8460 .task_ctx_nr = perf_sw_context,
8461
34f43927
PZ
8462 .capabilities = PERF_PMU_CAP_NO_NMI,
8463
b0a873eb 8464 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8465 .add = cpu_clock_event_add,
8466 .del = cpu_clock_event_del,
8467 .start = cpu_clock_event_start,
8468 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8469 .read = cpu_clock_event_read,
8470};
8471
8472/*
8473 * Software event: task time clock
8474 */
8475
8476static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8477{
b0a873eb
PZ
8478 u64 prev;
8479 s64 delta;
5c92d124 8480
b0a873eb
PZ
8481 prev = local64_xchg(&event->hw.prev_count, now);
8482 delta = now - prev;
8483 local64_add(delta, &event->count);
8484}
5c92d124 8485
a4eaf7f1 8486static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8487{
a4eaf7f1 8488 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8489 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8490}
8491
a4eaf7f1 8492static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8493{
8494 perf_swevent_cancel_hrtimer(event);
8495 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8496}
8497
8498static int task_clock_event_add(struct perf_event *event, int flags)
8499{
8500 if (flags & PERF_EF_START)
8501 task_clock_event_start(event, flags);
6a694a60 8502 perf_event_update_userpage(event);
b0a873eb 8503
a4eaf7f1
PZ
8504 return 0;
8505}
8506
8507static void task_clock_event_del(struct perf_event *event, int flags)
8508{
8509 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8510}
8511
8512static void task_clock_event_read(struct perf_event *event)
8513{
768a06e2
PZ
8514 u64 now = perf_clock();
8515 u64 delta = now - event->ctx->timestamp;
8516 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8517
8518 task_clock_event_update(event, time);
8519}
8520
8521static int task_clock_event_init(struct perf_event *event)
6fb2915d 8522{
b0a873eb
PZ
8523 if (event->attr.type != PERF_TYPE_SOFTWARE)
8524 return -ENOENT;
8525
8526 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8527 return -ENOENT;
8528
2481c5fa
SE
8529 /*
8530 * no branch sampling for software events
8531 */
8532 if (has_branch_stack(event))
8533 return -EOPNOTSUPP;
8534
ba3dd36c
PZ
8535 perf_swevent_init_hrtimer(event);
8536
b0a873eb 8537 return 0;
6fb2915d
LZ
8538}
8539
b0a873eb 8540static struct pmu perf_task_clock = {
89a1e187
PZ
8541 .task_ctx_nr = perf_sw_context,
8542
34f43927
PZ
8543 .capabilities = PERF_PMU_CAP_NO_NMI,
8544
b0a873eb 8545 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8546 .add = task_clock_event_add,
8547 .del = task_clock_event_del,
8548 .start = task_clock_event_start,
8549 .stop = task_clock_event_stop,
b0a873eb
PZ
8550 .read = task_clock_event_read,
8551};
6fb2915d 8552
ad5133b7 8553static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8554{
e077df4f 8555}
6fb2915d 8556
fbbe0701
SB
8557static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8558{
8559}
8560
ad5133b7 8561static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8562{
ad5133b7 8563 return 0;
6fb2915d
LZ
8564}
8565
18ab2cd3 8566static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8567
8568static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8569{
fbbe0701
SB
8570 __this_cpu_write(nop_txn_flags, flags);
8571
8572 if (flags & ~PERF_PMU_TXN_ADD)
8573 return;
8574
ad5133b7 8575 perf_pmu_disable(pmu);
6fb2915d
LZ
8576}
8577
ad5133b7
PZ
8578static int perf_pmu_commit_txn(struct pmu *pmu)
8579{
fbbe0701
SB
8580 unsigned int flags = __this_cpu_read(nop_txn_flags);
8581
8582 __this_cpu_write(nop_txn_flags, 0);
8583
8584 if (flags & ~PERF_PMU_TXN_ADD)
8585 return 0;
8586
ad5133b7
PZ
8587 perf_pmu_enable(pmu);
8588 return 0;
8589}
e077df4f 8590
ad5133b7 8591static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8592{
fbbe0701
SB
8593 unsigned int flags = __this_cpu_read(nop_txn_flags);
8594
8595 __this_cpu_write(nop_txn_flags, 0);
8596
8597 if (flags & ~PERF_PMU_TXN_ADD)
8598 return;
8599
ad5133b7 8600 perf_pmu_enable(pmu);
24f1e32c
FW
8601}
8602
35edc2a5
PZ
8603static int perf_event_idx_default(struct perf_event *event)
8604{
c719f560 8605 return 0;
35edc2a5
PZ
8606}
8607
8dc85d54
PZ
8608/*
8609 * Ensures all contexts with the same task_ctx_nr have the same
8610 * pmu_cpu_context too.
8611 */
9e317041 8612static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8613{
8dc85d54 8614 struct pmu *pmu;
b326e956 8615
8dc85d54
PZ
8616 if (ctxn < 0)
8617 return NULL;
24f1e32c 8618
8dc85d54
PZ
8619 list_for_each_entry(pmu, &pmus, entry) {
8620 if (pmu->task_ctx_nr == ctxn)
8621 return pmu->pmu_cpu_context;
8622 }
24f1e32c 8623
8dc85d54 8624 return NULL;
24f1e32c
FW
8625}
8626
51676957 8627static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8628{
51676957
PZ
8629 int cpu;
8630
8631 for_each_possible_cpu(cpu) {
8632 struct perf_cpu_context *cpuctx;
8633
8634 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8635
3f1f3320
PZ
8636 if (cpuctx->unique_pmu == old_pmu)
8637 cpuctx->unique_pmu = pmu;
51676957
PZ
8638 }
8639}
8640
8641static void free_pmu_context(struct pmu *pmu)
8642{
8643 struct pmu *i;
f5ffe02e 8644
8dc85d54 8645 mutex_lock(&pmus_lock);
0475f9ea 8646 /*
8dc85d54 8647 * Like a real lame refcount.
0475f9ea 8648 */
51676957
PZ
8649 list_for_each_entry(i, &pmus, entry) {
8650 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8651 update_pmu_context(i, pmu);
8dc85d54 8652 goto out;
51676957 8653 }
8dc85d54 8654 }
d6d020e9 8655
51676957 8656 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8657out:
8658 mutex_unlock(&pmus_lock);
24f1e32c 8659}
6e855cd4
AS
8660
8661/*
8662 * Let userspace know that this PMU supports address range filtering:
8663 */
8664static ssize_t nr_addr_filters_show(struct device *dev,
8665 struct device_attribute *attr,
8666 char *page)
8667{
8668 struct pmu *pmu = dev_get_drvdata(dev);
8669
8670 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8671}
8672DEVICE_ATTR_RO(nr_addr_filters);
8673
2e80a82a 8674static struct idr pmu_idr;
d6d020e9 8675
abe43400
PZ
8676static ssize_t
8677type_show(struct device *dev, struct device_attribute *attr, char *page)
8678{
8679 struct pmu *pmu = dev_get_drvdata(dev);
8680
8681 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8682}
90826ca7 8683static DEVICE_ATTR_RO(type);
abe43400 8684
62b85639
SE
8685static ssize_t
8686perf_event_mux_interval_ms_show(struct device *dev,
8687 struct device_attribute *attr,
8688 char *page)
8689{
8690 struct pmu *pmu = dev_get_drvdata(dev);
8691
8692 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8693}
8694
272325c4
PZ
8695static DEFINE_MUTEX(mux_interval_mutex);
8696
62b85639
SE
8697static ssize_t
8698perf_event_mux_interval_ms_store(struct device *dev,
8699 struct device_attribute *attr,
8700 const char *buf, size_t count)
8701{
8702 struct pmu *pmu = dev_get_drvdata(dev);
8703 int timer, cpu, ret;
8704
8705 ret = kstrtoint(buf, 0, &timer);
8706 if (ret)
8707 return ret;
8708
8709 if (timer < 1)
8710 return -EINVAL;
8711
8712 /* same value, noting to do */
8713 if (timer == pmu->hrtimer_interval_ms)
8714 return count;
8715
272325c4 8716 mutex_lock(&mux_interval_mutex);
62b85639
SE
8717 pmu->hrtimer_interval_ms = timer;
8718
8719 /* update all cpuctx for this PMU */
272325c4
PZ
8720 get_online_cpus();
8721 for_each_online_cpu(cpu) {
62b85639
SE
8722 struct perf_cpu_context *cpuctx;
8723 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8724 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8725
272325c4
PZ
8726 cpu_function_call(cpu,
8727 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8728 }
272325c4
PZ
8729 put_online_cpus();
8730 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8731
8732 return count;
8733}
90826ca7 8734static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8735
90826ca7
GKH
8736static struct attribute *pmu_dev_attrs[] = {
8737 &dev_attr_type.attr,
8738 &dev_attr_perf_event_mux_interval_ms.attr,
8739 NULL,
abe43400 8740};
90826ca7 8741ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8742
8743static int pmu_bus_running;
8744static struct bus_type pmu_bus = {
8745 .name = "event_source",
90826ca7 8746 .dev_groups = pmu_dev_groups,
abe43400
PZ
8747};
8748
8749static void pmu_dev_release(struct device *dev)
8750{
8751 kfree(dev);
8752}
8753
8754static int pmu_dev_alloc(struct pmu *pmu)
8755{
8756 int ret = -ENOMEM;
8757
8758 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8759 if (!pmu->dev)
8760 goto out;
8761
0c9d42ed 8762 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8763 device_initialize(pmu->dev);
8764 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8765 if (ret)
8766 goto free_dev;
8767
8768 dev_set_drvdata(pmu->dev, pmu);
8769 pmu->dev->bus = &pmu_bus;
8770 pmu->dev->release = pmu_dev_release;
8771 ret = device_add(pmu->dev);
8772 if (ret)
8773 goto free_dev;
8774
6e855cd4
AS
8775 /* For PMUs with address filters, throw in an extra attribute: */
8776 if (pmu->nr_addr_filters)
8777 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8778
8779 if (ret)
8780 goto del_dev;
8781
abe43400
PZ
8782out:
8783 return ret;
8784
6e855cd4
AS
8785del_dev:
8786 device_del(pmu->dev);
8787
abe43400
PZ
8788free_dev:
8789 put_device(pmu->dev);
8790 goto out;
8791}
8792
547e9fd7 8793static struct lock_class_key cpuctx_mutex;
facc4307 8794static struct lock_class_key cpuctx_lock;
547e9fd7 8795
03d8e80b 8796int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8797{
108b02cf 8798 int cpu, ret;
24f1e32c 8799
b0a873eb 8800 mutex_lock(&pmus_lock);
33696fc0
PZ
8801 ret = -ENOMEM;
8802 pmu->pmu_disable_count = alloc_percpu(int);
8803 if (!pmu->pmu_disable_count)
8804 goto unlock;
f29ac756 8805
2e80a82a
PZ
8806 pmu->type = -1;
8807 if (!name)
8808 goto skip_type;
8809 pmu->name = name;
8810
8811 if (type < 0) {
0e9c3be2
TH
8812 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8813 if (type < 0) {
8814 ret = type;
2e80a82a
PZ
8815 goto free_pdc;
8816 }
8817 }
8818 pmu->type = type;
8819
abe43400
PZ
8820 if (pmu_bus_running) {
8821 ret = pmu_dev_alloc(pmu);
8822 if (ret)
8823 goto free_idr;
8824 }
8825
2e80a82a 8826skip_type:
26657848
PZ
8827 if (pmu->task_ctx_nr == perf_hw_context) {
8828 static int hw_context_taken = 0;
8829
5101ef20
MR
8830 /*
8831 * Other than systems with heterogeneous CPUs, it never makes
8832 * sense for two PMUs to share perf_hw_context. PMUs which are
8833 * uncore must use perf_invalid_context.
8834 */
8835 if (WARN_ON_ONCE(hw_context_taken &&
8836 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8837 pmu->task_ctx_nr = perf_invalid_context;
8838
8839 hw_context_taken = 1;
8840 }
8841
8dc85d54
PZ
8842 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8843 if (pmu->pmu_cpu_context)
8844 goto got_cpu_context;
f29ac756 8845
c4814202 8846 ret = -ENOMEM;
108b02cf
PZ
8847 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8848 if (!pmu->pmu_cpu_context)
abe43400 8849 goto free_dev;
f344011c 8850
108b02cf
PZ
8851 for_each_possible_cpu(cpu) {
8852 struct perf_cpu_context *cpuctx;
8853
8854 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8855 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8856 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8857 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8858 cpuctx->ctx.pmu = pmu;
9e630205 8859
272325c4 8860 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8861
3f1f3320 8862 cpuctx->unique_pmu = pmu;
108b02cf 8863 }
76e1d904 8864
8dc85d54 8865got_cpu_context:
ad5133b7
PZ
8866 if (!pmu->start_txn) {
8867 if (pmu->pmu_enable) {
8868 /*
8869 * If we have pmu_enable/pmu_disable calls, install
8870 * transaction stubs that use that to try and batch
8871 * hardware accesses.
8872 */
8873 pmu->start_txn = perf_pmu_start_txn;
8874 pmu->commit_txn = perf_pmu_commit_txn;
8875 pmu->cancel_txn = perf_pmu_cancel_txn;
8876 } else {
fbbe0701 8877 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8878 pmu->commit_txn = perf_pmu_nop_int;
8879 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8880 }
5c92d124 8881 }
15dbf27c 8882
ad5133b7
PZ
8883 if (!pmu->pmu_enable) {
8884 pmu->pmu_enable = perf_pmu_nop_void;
8885 pmu->pmu_disable = perf_pmu_nop_void;
8886 }
8887
35edc2a5
PZ
8888 if (!pmu->event_idx)
8889 pmu->event_idx = perf_event_idx_default;
8890
b0a873eb 8891 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8892 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8893 ret = 0;
8894unlock:
b0a873eb
PZ
8895 mutex_unlock(&pmus_lock);
8896
33696fc0 8897 return ret;
108b02cf 8898
abe43400
PZ
8899free_dev:
8900 device_del(pmu->dev);
8901 put_device(pmu->dev);
8902
2e80a82a
PZ
8903free_idr:
8904 if (pmu->type >= PERF_TYPE_MAX)
8905 idr_remove(&pmu_idr, pmu->type);
8906
108b02cf
PZ
8907free_pdc:
8908 free_percpu(pmu->pmu_disable_count);
8909 goto unlock;
f29ac756 8910}
c464c76e 8911EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8912
b0a873eb 8913void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8914{
0933840a
JO
8915 int remove_device;
8916
b0a873eb 8917 mutex_lock(&pmus_lock);
0933840a 8918 remove_device = pmu_bus_running;
b0a873eb
PZ
8919 list_del_rcu(&pmu->entry);
8920 mutex_unlock(&pmus_lock);
5c92d124 8921
0475f9ea 8922 /*
cde8e884
PZ
8923 * We dereference the pmu list under both SRCU and regular RCU, so
8924 * synchronize against both of those.
0475f9ea 8925 */
b0a873eb 8926 synchronize_srcu(&pmus_srcu);
cde8e884 8927 synchronize_rcu();
d6d020e9 8928
33696fc0 8929 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8930 if (pmu->type >= PERF_TYPE_MAX)
8931 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
8932 if (remove_device) {
8933 if (pmu->nr_addr_filters)
8934 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8935 device_del(pmu->dev);
8936 put_device(pmu->dev);
8937 }
51676957 8938 free_pmu_context(pmu);
b0a873eb 8939}
c464c76e 8940EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8941
cc34b98b
MR
8942static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8943{
ccd41c86 8944 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8945 int ret;
8946
8947 if (!try_module_get(pmu->module))
8948 return -ENODEV;
ccd41c86
PZ
8949
8950 if (event->group_leader != event) {
8b10c5e2
PZ
8951 /*
8952 * This ctx->mutex can nest when we're called through
8953 * inheritance. See the perf_event_ctx_lock_nested() comment.
8954 */
8955 ctx = perf_event_ctx_lock_nested(event->group_leader,
8956 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8957 BUG_ON(!ctx);
8958 }
8959
cc34b98b
MR
8960 event->pmu = pmu;
8961 ret = pmu->event_init(event);
ccd41c86
PZ
8962
8963 if (ctx)
8964 perf_event_ctx_unlock(event->group_leader, ctx);
8965
cc34b98b
MR
8966 if (ret)
8967 module_put(pmu->module);
8968
8969 return ret;
8970}
8971
18ab2cd3 8972static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
8973{
8974 struct pmu *pmu = NULL;
8975 int idx;
940c5b29 8976 int ret;
b0a873eb
PZ
8977
8978 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
8979
8980 rcu_read_lock();
8981 pmu = idr_find(&pmu_idr, event->attr.type);
8982 rcu_read_unlock();
940c5b29 8983 if (pmu) {
cc34b98b 8984 ret = perf_try_init_event(pmu, event);
940c5b29
LM
8985 if (ret)
8986 pmu = ERR_PTR(ret);
2e80a82a 8987 goto unlock;
940c5b29 8988 }
2e80a82a 8989
b0a873eb 8990 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 8991 ret = perf_try_init_event(pmu, event);
b0a873eb 8992 if (!ret)
e5f4d339 8993 goto unlock;
76e1d904 8994
b0a873eb
PZ
8995 if (ret != -ENOENT) {
8996 pmu = ERR_PTR(ret);
e5f4d339 8997 goto unlock;
f344011c 8998 }
5c92d124 8999 }
e5f4d339
PZ
9000 pmu = ERR_PTR(-ENOENT);
9001unlock:
b0a873eb 9002 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9003
4aeb0b42 9004 return pmu;
5c92d124
IM
9005}
9006
f2fb6bef
KL
9007static void attach_sb_event(struct perf_event *event)
9008{
9009 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9010
9011 raw_spin_lock(&pel->lock);
9012 list_add_rcu(&event->sb_list, &pel->list);
9013 raw_spin_unlock(&pel->lock);
9014}
9015
aab5b71e
PZ
9016/*
9017 * We keep a list of all !task (and therefore per-cpu) events
9018 * that need to receive side-band records.
9019 *
9020 * This avoids having to scan all the various PMU per-cpu contexts
9021 * looking for them.
9022 */
f2fb6bef
KL
9023static void account_pmu_sb_event(struct perf_event *event)
9024{
a4f144eb 9025 if (is_sb_event(event))
f2fb6bef
KL
9026 attach_sb_event(event);
9027}
9028
4beb31f3
FW
9029static void account_event_cpu(struct perf_event *event, int cpu)
9030{
9031 if (event->parent)
9032 return;
9033
4beb31f3
FW
9034 if (is_cgroup_event(event))
9035 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9036}
9037
555e0c1e
FW
9038/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9039static void account_freq_event_nohz(void)
9040{
9041#ifdef CONFIG_NO_HZ_FULL
9042 /* Lock so we don't race with concurrent unaccount */
9043 spin_lock(&nr_freq_lock);
9044 if (atomic_inc_return(&nr_freq_events) == 1)
9045 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9046 spin_unlock(&nr_freq_lock);
9047#endif
9048}
9049
9050static void account_freq_event(void)
9051{
9052 if (tick_nohz_full_enabled())
9053 account_freq_event_nohz();
9054 else
9055 atomic_inc(&nr_freq_events);
9056}
9057
9058
766d6c07
FW
9059static void account_event(struct perf_event *event)
9060{
25432ae9
PZ
9061 bool inc = false;
9062
4beb31f3
FW
9063 if (event->parent)
9064 return;
9065
766d6c07 9066 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9067 inc = true;
766d6c07
FW
9068 if (event->attr.mmap || event->attr.mmap_data)
9069 atomic_inc(&nr_mmap_events);
9070 if (event->attr.comm)
9071 atomic_inc(&nr_comm_events);
9072 if (event->attr.task)
9073 atomic_inc(&nr_task_events);
555e0c1e
FW
9074 if (event->attr.freq)
9075 account_freq_event();
45ac1403
AH
9076 if (event->attr.context_switch) {
9077 atomic_inc(&nr_switch_events);
25432ae9 9078 inc = true;
45ac1403 9079 }
4beb31f3 9080 if (has_branch_stack(event))
25432ae9 9081 inc = true;
4beb31f3 9082 if (is_cgroup_event(event))
25432ae9
PZ
9083 inc = true;
9084
9107c89e
PZ
9085 if (inc) {
9086 if (atomic_inc_not_zero(&perf_sched_count))
9087 goto enabled;
9088
9089 mutex_lock(&perf_sched_mutex);
9090 if (!atomic_read(&perf_sched_count)) {
9091 static_branch_enable(&perf_sched_events);
9092 /*
9093 * Guarantee that all CPUs observe they key change and
9094 * call the perf scheduling hooks before proceeding to
9095 * install events that need them.
9096 */
9097 synchronize_sched();
9098 }
9099 /*
9100 * Now that we have waited for the sync_sched(), allow further
9101 * increments to by-pass the mutex.
9102 */
9103 atomic_inc(&perf_sched_count);
9104 mutex_unlock(&perf_sched_mutex);
9105 }
9106enabled:
4beb31f3
FW
9107
9108 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9109
9110 account_pmu_sb_event(event);
766d6c07
FW
9111}
9112
0793a61d 9113/*
cdd6c482 9114 * Allocate and initialize a event structure
0793a61d 9115 */
cdd6c482 9116static struct perf_event *
c3f00c70 9117perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9118 struct task_struct *task,
9119 struct perf_event *group_leader,
9120 struct perf_event *parent_event,
4dc0da86 9121 perf_overflow_handler_t overflow_handler,
79dff51e 9122 void *context, int cgroup_fd)
0793a61d 9123{
51b0fe39 9124 struct pmu *pmu;
cdd6c482
IM
9125 struct perf_event *event;
9126 struct hw_perf_event *hwc;
90983b16 9127 long err = -EINVAL;
0793a61d 9128
66832eb4
ON
9129 if ((unsigned)cpu >= nr_cpu_ids) {
9130 if (!task || cpu != -1)
9131 return ERR_PTR(-EINVAL);
9132 }
9133
c3f00c70 9134 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9135 if (!event)
d5d2bc0d 9136 return ERR_PTR(-ENOMEM);
0793a61d 9137
04289bb9 9138 /*
cdd6c482 9139 * Single events are their own group leaders, with an
04289bb9
IM
9140 * empty sibling list:
9141 */
9142 if (!group_leader)
cdd6c482 9143 group_leader = event;
04289bb9 9144
cdd6c482
IM
9145 mutex_init(&event->child_mutex);
9146 INIT_LIST_HEAD(&event->child_list);
fccc714b 9147
cdd6c482
IM
9148 INIT_LIST_HEAD(&event->group_entry);
9149 INIT_LIST_HEAD(&event->event_entry);
9150 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9151 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9152 INIT_LIST_HEAD(&event->active_entry);
375637bc 9153 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9154 INIT_HLIST_NODE(&event->hlist_entry);
9155
10c6db11 9156
cdd6c482 9157 init_waitqueue_head(&event->waitq);
e360adbe 9158 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9159
cdd6c482 9160 mutex_init(&event->mmap_mutex);
375637bc 9161 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9162
a6fa941d 9163 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9164 event->cpu = cpu;
9165 event->attr = *attr;
9166 event->group_leader = group_leader;
9167 event->pmu = NULL;
cdd6c482 9168 event->oncpu = -1;
a96bbc16 9169
cdd6c482 9170 event->parent = parent_event;
b84fbc9f 9171
17cf22c3 9172 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9173 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9174
cdd6c482 9175 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9176
d580ff86
PZ
9177 if (task) {
9178 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9179 /*
50f16a8b
PZ
9180 * XXX pmu::event_init needs to know what task to account to
9181 * and we cannot use the ctx information because we need the
9182 * pmu before we get a ctx.
d580ff86 9183 */
50f16a8b 9184 event->hw.target = task;
d580ff86
PZ
9185 }
9186
34f43927
PZ
9187 event->clock = &local_clock;
9188 if (parent_event)
9189 event->clock = parent_event->clock;
9190
4dc0da86 9191 if (!overflow_handler && parent_event) {
b326e956 9192 overflow_handler = parent_event->overflow_handler;
4dc0da86 9193 context = parent_event->overflow_handler_context;
f1e4ba5b 9194#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9195 if (overflow_handler == bpf_overflow_handler) {
9196 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9197
9198 if (IS_ERR(prog)) {
9199 err = PTR_ERR(prog);
9200 goto err_ns;
9201 }
9202 event->prog = prog;
9203 event->orig_overflow_handler =
9204 parent_event->orig_overflow_handler;
9205 }
9206#endif
4dc0da86 9207 }
66832eb4 9208
1879445d
WN
9209 if (overflow_handler) {
9210 event->overflow_handler = overflow_handler;
9211 event->overflow_handler_context = context;
9ecda41a
WN
9212 } else if (is_write_backward(event)){
9213 event->overflow_handler = perf_event_output_backward;
9214 event->overflow_handler_context = NULL;
1879445d 9215 } else {
9ecda41a 9216 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9217 event->overflow_handler_context = NULL;
9218 }
97eaf530 9219
0231bb53 9220 perf_event__state_init(event);
a86ed508 9221
4aeb0b42 9222 pmu = NULL;
b8e83514 9223
cdd6c482 9224 hwc = &event->hw;
bd2b5b12 9225 hwc->sample_period = attr->sample_period;
0d48696f 9226 if (attr->freq && attr->sample_freq)
bd2b5b12 9227 hwc->sample_period = 1;
eced1dfc 9228 hwc->last_period = hwc->sample_period;
bd2b5b12 9229
e7850595 9230 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9231
2023b359 9232 /*
cdd6c482 9233 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9234 */
3dab77fb 9235 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9236 goto err_ns;
a46a2300
YZ
9237
9238 if (!has_branch_stack(event))
9239 event->attr.branch_sample_type = 0;
2023b359 9240
79dff51e
MF
9241 if (cgroup_fd != -1) {
9242 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9243 if (err)
9244 goto err_ns;
9245 }
9246
b0a873eb 9247 pmu = perf_init_event(event);
4aeb0b42 9248 if (!pmu)
90983b16
FW
9249 goto err_ns;
9250 else if (IS_ERR(pmu)) {
4aeb0b42 9251 err = PTR_ERR(pmu);
90983b16 9252 goto err_ns;
621a01ea 9253 }
d5d2bc0d 9254
bed5b25a
AS
9255 err = exclusive_event_init(event);
9256 if (err)
9257 goto err_pmu;
9258
375637bc
AS
9259 if (has_addr_filter(event)) {
9260 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9261 sizeof(unsigned long),
9262 GFP_KERNEL);
9263 if (!event->addr_filters_offs)
9264 goto err_per_task;
9265
9266 /* force hw sync on the address filters */
9267 event->addr_filters_gen = 1;
9268 }
9269
cdd6c482 9270 if (!event->parent) {
927c7a9e 9271 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9272 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9273 if (err)
375637bc 9274 goto err_addr_filters;
d010b332 9275 }
f344011c 9276 }
9ee318a7 9277
927a5570
AS
9278 /* symmetric to unaccount_event() in _free_event() */
9279 account_event(event);
9280
cdd6c482 9281 return event;
90983b16 9282
375637bc
AS
9283err_addr_filters:
9284 kfree(event->addr_filters_offs);
9285
bed5b25a
AS
9286err_per_task:
9287 exclusive_event_destroy(event);
9288
90983b16
FW
9289err_pmu:
9290 if (event->destroy)
9291 event->destroy(event);
c464c76e 9292 module_put(pmu->module);
90983b16 9293err_ns:
79dff51e
MF
9294 if (is_cgroup_event(event))
9295 perf_detach_cgroup(event);
90983b16
FW
9296 if (event->ns)
9297 put_pid_ns(event->ns);
9298 kfree(event);
9299
9300 return ERR_PTR(err);
0793a61d
TG
9301}
9302
cdd6c482
IM
9303static int perf_copy_attr(struct perf_event_attr __user *uattr,
9304 struct perf_event_attr *attr)
974802ea 9305{
974802ea 9306 u32 size;
cdf8073d 9307 int ret;
974802ea
PZ
9308
9309 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9310 return -EFAULT;
9311
9312 /*
9313 * zero the full structure, so that a short copy will be nice.
9314 */
9315 memset(attr, 0, sizeof(*attr));
9316
9317 ret = get_user(size, &uattr->size);
9318 if (ret)
9319 return ret;
9320
9321 if (size > PAGE_SIZE) /* silly large */
9322 goto err_size;
9323
9324 if (!size) /* abi compat */
9325 size = PERF_ATTR_SIZE_VER0;
9326
9327 if (size < PERF_ATTR_SIZE_VER0)
9328 goto err_size;
9329
9330 /*
9331 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9332 * ensure all the unknown bits are 0 - i.e. new
9333 * user-space does not rely on any kernel feature
9334 * extensions we dont know about yet.
974802ea
PZ
9335 */
9336 if (size > sizeof(*attr)) {
cdf8073d
IS
9337 unsigned char __user *addr;
9338 unsigned char __user *end;
9339 unsigned char val;
974802ea 9340
cdf8073d
IS
9341 addr = (void __user *)uattr + sizeof(*attr);
9342 end = (void __user *)uattr + size;
974802ea 9343
cdf8073d 9344 for (; addr < end; addr++) {
974802ea
PZ
9345 ret = get_user(val, addr);
9346 if (ret)
9347 return ret;
9348 if (val)
9349 goto err_size;
9350 }
b3e62e35 9351 size = sizeof(*attr);
974802ea
PZ
9352 }
9353
9354 ret = copy_from_user(attr, uattr, size);
9355 if (ret)
9356 return -EFAULT;
9357
cd757645 9358 if (attr->__reserved_1)
974802ea
PZ
9359 return -EINVAL;
9360
9361 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9362 return -EINVAL;
9363
9364 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9365 return -EINVAL;
9366
bce38cd5
SE
9367 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9368 u64 mask = attr->branch_sample_type;
9369
9370 /* only using defined bits */
9371 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9372 return -EINVAL;
9373
9374 /* at least one branch bit must be set */
9375 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9376 return -EINVAL;
9377
bce38cd5
SE
9378 /* propagate priv level, when not set for branch */
9379 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9380
9381 /* exclude_kernel checked on syscall entry */
9382 if (!attr->exclude_kernel)
9383 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9384
9385 if (!attr->exclude_user)
9386 mask |= PERF_SAMPLE_BRANCH_USER;
9387
9388 if (!attr->exclude_hv)
9389 mask |= PERF_SAMPLE_BRANCH_HV;
9390 /*
9391 * adjust user setting (for HW filter setup)
9392 */
9393 attr->branch_sample_type = mask;
9394 }
e712209a
SE
9395 /* privileged levels capture (kernel, hv): check permissions */
9396 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9397 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9398 return -EACCES;
bce38cd5 9399 }
4018994f 9400
c5ebcedb 9401 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9402 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9403 if (ret)
9404 return ret;
9405 }
9406
9407 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9408 if (!arch_perf_have_user_stack_dump())
9409 return -ENOSYS;
9410
9411 /*
9412 * We have __u32 type for the size, but so far
9413 * we can only use __u16 as maximum due to the
9414 * __u16 sample size limit.
9415 */
9416 if (attr->sample_stack_user >= USHRT_MAX)
9417 ret = -EINVAL;
9418 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9419 ret = -EINVAL;
9420 }
4018994f 9421
60e2364e
SE
9422 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9423 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9424out:
9425 return ret;
9426
9427err_size:
9428 put_user(sizeof(*attr), &uattr->size);
9429 ret = -E2BIG;
9430 goto out;
9431}
9432
ac9721f3
PZ
9433static int
9434perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9435{
b69cf536 9436 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9437 int ret = -EINVAL;
9438
ac9721f3 9439 if (!output_event)
a4be7c27
PZ
9440 goto set;
9441
ac9721f3
PZ
9442 /* don't allow circular references */
9443 if (event == output_event)
a4be7c27
PZ
9444 goto out;
9445
0f139300
PZ
9446 /*
9447 * Don't allow cross-cpu buffers
9448 */
9449 if (output_event->cpu != event->cpu)
9450 goto out;
9451
9452 /*
76369139 9453 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9454 */
9455 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9456 goto out;
9457
34f43927
PZ
9458 /*
9459 * Mixing clocks in the same buffer is trouble you don't need.
9460 */
9461 if (output_event->clock != event->clock)
9462 goto out;
9463
9ecda41a
WN
9464 /*
9465 * Either writing ring buffer from beginning or from end.
9466 * Mixing is not allowed.
9467 */
9468 if (is_write_backward(output_event) != is_write_backward(event))
9469 goto out;
9470
45bfb2e5
PZ
9471 /*
9472 * If both events generate aux data, they must be on the same PMU
9473 */
9474 if (has_aux(event) && has_aux(output_event) &&
9475 event->pmu != output_event->pmu)
9476 goto out;
9477
a4be7c27 9478set:
cdd6c482 9479 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9480 /* Can't redirect output if we've got an active mmap() */
9481 if (atomic_read(&event->mmap_count))
9482 goto unlock;
a4be7c27 9483
ac9721f3 9484 if (output_event) {
76369139
FW
9485 /* get the rb we want to redirect to */
9486 rb = ring_buffer_get(output_event);
9487 if (!rb)
ac9721f3 9488 goto unlock;
a4be7c27
PZ
9489 }
9490
b69cf536 9491 ring_buffer_attach(event, rb);
9bb5d40c 9492
a4be7c27 9493 ret = 0;
ac9721f3
PZ
9494unlock:
9495 mutex_unlock(&event->mmap_mutex);
9496
a4be7c27 9497out:
a4be7c27
PZ
9498 return ret;
9499}
9500
f63a8daa
PZ
9501static void mutex_lock_double(struct mutex *a, struct mutex *b)
9502{
9503 if (b < a)
9504 swap(a, b);
9505
9506 mutex_lock(a);
9507 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9508}
9509
34f43927
PZ
9510static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9511{
9512 bool nmi_safe = false;
9513
9514 switch (clk_id) {
9515 case CLOCK_MONOTONIC:
9516 event->clock = &ktime_get_mono_fast_ns;
9517 nmi_safe = true;
9518 break;
9519
9520 case CLOCK_MONOTONIC_RAW:
9521 event->clock = &ktime_get_raw_fast_ns;
9522 nmi_safe = true;
9523 break;
9524
9525 case CLOCK_REALTIME:
9526 event->clock = &ktime_get_real_ns;
9527 break;
9528
9529 case CLOCK_BOOTTIME:
9530 event->clock = &ktime_get_boot_ns;
9531 break;
9532
9533 case CLOCK_TAI:
9534 event->clock = &ktime_get_tai_ns;
9535 break;
9536
9537 default:
9538 return -EINVAL;
9539 }
9540
9541 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9542 return -EINVAL;
9543
9544 return 0;
9545}
9546
321027c1
PZ
9547/*
9548 * Variation on perf_event_ctx_lock_nested(), except we take two context
9549 * mutexes.
9550 */
9551static struct perf_event_context *
9552__perf_event_ctx_lock_double(struct perf_event *group_leader,
9553 struct perf_event_context *ctx)
9554{
9555 struct perf_event_context *gctx;
9556
9557again:
9558 rcu_read_lock();
9559 gctx = READ_ONCE(group_leader->ctx);
9560 if (!atomic_inc_not_zero(&gctx->refcount)) {
9561 rcu_read_unlock();
9562 goto again;
9563 }
9564 rcu_read_unlock();
9565
9566 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9567
9568 if (group_leader->ctx != gctx) {
9569 mutex_unlock(&ctx->mutex);
9570 mutex_unlock(&gctx->mutex);
9571 put_ctx(gctx);
9572 goto again;
9573 }
9574
9575 return gctx;
9576}
9577
0793a61d 9578/**
cdd6c482 9579 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9580 *
cdd6c482 9581 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9582 * @pid: target pid
9f66a381 9583 * @cpu: target cpu
cdd6c482 9584 * @group_fd: group leader event fd
0793a61d 9585 */
cdd6c482
IM
9586SYSCALL_DEFINE5(perf_event_open,
9587 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9588 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9589{
b04243ef
PZ
9590 struct perf_event *group_leader = NULL, *output_event = NULL;
9591 struct perf_event *event, *sibling;
cdd6c482 9592 struct perf_event_attr attr;
f63a8daa 9593 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9594 struct file *event_file = NULL;
2903ff01 9595 struct fd group = {NULL, 0};
38a81da2 9596 struct task_struct *task = NULL;
89a1e187 9597 struct pmu *pmu;
ea635c64 9598 int event_fd;
b04243ef 9599 int move_group = 0;
dc86cabe 9600 int err;
a21b0b35 9601 int f_flags = O_RDWR;
79dff51e 9602 int cgroup_fd = -1;
0793a61d 9603
2743a5b0 9604 /* for future expandability... */
e5d1367f 9605 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9606 return -EINVAL;
9607
dc86cabe
IM
9608 err = perf_copy_attr(attr_uptr, &attr);
9609 if (err)
9610 return err;
eab656ae 9611
0764771d
PZ
9612 if (!attr.exclude_kernel) {
9613 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9614 return -EACCES;
9615 }
9616
df58ab24 9617 if (attr.freq) {
cdd6c482 9618 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9619 return -EINVAL;
0819b2e3
PZ
9620 } else {
9621 if (attr.sample_period & (1ULL << 63))
9622 return -EINVAL;
df58ab24
PZ
9623 }
9624
97c79a38
ACM
9625 if (!attr.sample_max_stack)
9626 attr.sample_max_stack = sysctl_perf_event_max_stack;
9627
e5d1367f
SE
9628 /*
9629 * In cgroup mode, the pid argument is used to pass the fd
9630 * opened to the cgroup directory in cgroupfs. The cpu argument
9631 * designates the cpu on which to monitor threads from that
9632 * cgroup.
9633 */
9634 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9635 return -EINVAL;
9636
a21b0b35
YD
9637 if (flags & PERF_FLAG_FD_CLOEXEC)
9638 f_flags |= O_CLOEXEC;
9639
9640 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9641 if (event_fd < 0)
9642 return event_fd;
9643
ac9721f3 9644 if (group_fd != -1) {
2903ff01
AV
9645 err = perf_fget_light(group_fd, &group);
9646 if (err)
d14b12d7 9647 goto err_fd;
2903ff01 9648 group_leader = group.file->private_data;
ac9721f3
PZ
9649 if (flags & PERF_FLAG_FD_OUTPUT)
9650 output_event = group_leader;
9651 if (flags & PERF_FLAG_FD_NO_GROUP)
9652 group_leader = NULL;
9653 }
9654
e5d1367f 9655 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9656 task = find_lively_task_by_vpid(pid);
9657 if (IS_ERR(task)) {
9658 err = PTR_ERR(task);
9659 goto err_group_fd;
9660 }
9661 }
9662
1f4ee503
PZ
9663 if (task && group_leader &&
9664 group_leader->attr.inherit != attr.inherit) {
9665 err = -EINVAL;
9666 goto err_task;
9667 }
9668
fbfc623f
YZ
9669 get_online_cpus();
9670
79c9ce57
PZ
9671 if (task) {
9672 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9673 if (err)
9674 goto err_cpus;
9675
9676 /*
9677 * Reuse ptrace permission checks for now.
9678 *
9679 * We must hold cred_guard_mutex across this and any potential
9680 * perf_install_in_context() call for this new event to
9681 * serialize against exec() altering our credentials (and the
9682 * perf_event_exit_task() that could imply).
9683 */
9684 err = -EACCES;
9685 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9686 goto err_cred;
9687 }
9688
79dff51e
MF
9689 if (flags & PERF_FLAG_PID_CGROUP)
9690 cgroup_fd = pid;
9691
4dc0da86 9692 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9693 NULL, NULL, cgroup_fd);
d14b12d7
SE
9694 if (IS_ERR(event)) {
9695 err = PTR_ERR(event);
79c9ce57 9696 goto err_cred;
d14b12d7
SE
9697 }
9698
53b25335
VW
9699 if (is_sampling_event(event)) {
9700 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9701 err = -EOPNOTSUPP;
53b25335
VW
9702 goto err_alloc;
9703 }
9704 }
9705
89a1e187
PZ
9706 /*
9707 * Special case software events and allow them to be part of
9708 * any hardware group.
9709 */
9710 pmu = event->pmu;
b04243ef 9711
34f43927
PZ
9712 if (attr.use_clockid) {
9713 err = perf_event_set_clock(event, attr.clockid);
9714 if (err)
9715 goto err_alloc;
9716 }
9717
4ff6a8de
DCC
9718 if (pmu->task_ctx_nr == perf_sw_context)
9719 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9720
b04243ef
PZ
9721 if (group_leader &&
9722 (is_software_event(event) != is_software_event(group_leader))) {
9723 if (is_software_event(event)) {
9724 /*
9725 * If event and group_leader are not both a software
9726 * event, and event is, then group leader is not.
9727 *
9728 * Allow the addition of software events to !software
9729 * groups, this is safe because software events never
9730 * fail to schedule.
9731 */
9732 pmu = group_leader->pmu;
9733 } else if (is_software_event(group_leader) &&
4ff6a8de 9734 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9735 /*
9736 * In case the group is a pure software group, and we
9737 * try to add a hardware event, move the whole group to
9738 * the hardware context.
9739 */
9740 move_group = 1;
9741 }
9742 }
89a1e187
PZ
9743
9744 /*
9745 * Get the target context (task or percpu):
9746 */
4af57ef2 9747 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9748 if (IS_ERR(ctx)) {
9749 err = PTR_ERR(ctx);
c6be5a5c 9750 goto err_alloc;
89a1e187
PZ
9751 }
9752
bed5b25a
AS
9753 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9754 err = -EBUSY;
9755 goto err_context;
9756 }
9757
ccff286d 9758 /*
cdd6c482 9759 * Look up the group leader (we will attach this event to it):
04289bb9 9760 */
ac9721f3 9761 if (group_leader) {
dc86cabe 9762 err = -EINVAL;
04289bb9 9763
04289bb9 9764 /*
ccff286d
IM
9765 * Do not allow a recursive hierarchy (this new sibling
9766 * becoming part of another group-sibling):
9767 */
9768 if (group_leader->group_leader != group_leader)
c3f00c70 9769 goto err_context;
34f43927
PZ
9770
9771 /* All events in a group should have the same clock */
9772 if (group_leader->clock != event->clock)
9773 goto err_context;
9774
ccff286d
IM
9775 /*
9776 * Do not allow to attach to a group in a different
9777 * task or CPU context:
04289bb9 9778 */
b04243ef 9779 if (move_group) {
c3c87e77
PZ
9780 /*
9781 * Make sure we're both on the same task, or both
9782 * per-cpu events.
9783 */
9784 if (group_leader->ctx->task != ctx->task)
9785 goto err_context;
9786
9787 /*
9788 * Make sure we're both events for the same CPU;
9789 * grouping events for different CPUs is broken; since
9790 * you can never concurrently schedule them anyhow.
9791 */
9792 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9793 goto err_context;
9794 } else {
9795 if (group_leader->ctx != ctx)
9796 goto err_context;
9797 }
9798
3b6f9e5c
PM
9799 /*
9800 * Only a group leader can be exclusive or pinned
9801 */
0d48696f 9802 if (attr.exclusive || attr.pinned)
c3f00c70 9803 goto err_context;
ac9721f3
PZ
9804 }
9805
9806 if (output_event) {
9807 err = perf_event_set_output(event, output_event);
9808 if (err)
c3f00c70 9809 goto err_context;
ac9721f3 9810 }
0793a61d 9811
a21b0b35
YD
9812 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9813 f_flags);
ea635c64
AV
9814 if (IS_ERR(event_file)) {
9815 err = PTR_ERR(event_file);
201c2f85 9816 event_file = NULL;
c3f00c70 9817 goto err_context;
ea635c64 9818 }
9b51f66d 9819
b04243ef 9820 if (move_group) {
321027c1
PZ
9821 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9822
84c4e620
PZ
9823 if (gctx->task == TASK_TOMBSTONE) {
9824 err = -ESRCH;
9825 goto err_locked;
9826 }
321027c1
PZ
9827
9828 /*
9829 * Check if we raced against another sys_perf_event_open() call
9830 * moving the software group underneath us.
9831 */
9832 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9833 /*
9834 * If someone moved the group out from under us, check
9835 * if this new event wound up on the same ctx, if so
9836 * its the regular !move_group case, otherwise fail.
9837 */
9838 if (gctx != ctx) {
9839 err = -EINVAL;
9840 goto err_locked;
9841 } else {
9842 perf_event_ctx_unlock(group_leader, gctx);
9843 move_group = 0;
9844 }
9845 }
f55fc2a5
PZ
9846 } else {
9847 mutex_lock(&ctx->mutex);
9848 }
9849
84c4e620
PZ
9850 if (ctx->task == TASK_TOMBSTONE) {
9851 err = -ESRCH;
9852 goto err_locked;
9853 }
9854
a723968c
PZ
9855 if (!perf_event_validate_size(event)) {
9856 err = -E2BIG;
9857 goto err_locked;
9858 }
9859
f55fc2a5
PZ
9860 /*
9861 * Must be under the same ctx::mutex as perf_install_in_context(),
9862 * because we need to serialize with concurrent event creation.
9863 */
9864 if (!exclusive_event_installable(event, ctx)) {
9865 /* exclusive and group stuff are assumed mutually exclusive */
9866 WARN_ON_ONCE(move_group);
f63a8daa 9867
f55fc2a5
PZ
9868 err = -EBUSY;
9869 goto err_locked;
9870 }
f63a8daa 9871
f55fc2a5
PZ
9872 WARN_ON_ONCE(ctx->parent_ctx);
9873
79c9ce57
PZ
9874 /*
9875 * This is the point on no return; we cannot fail hereafter. This is
9876 * where we start modifying current state.
9877 */
9878
f55fc2a5 9879 if (move_group) {
f63a8daa
PZ
9880 /*
9881 * See perf_event_ctx_lock() for comments on the details
9882 * of swizzling perf_event::ctx.
9883 */
45a0e07a 9884 perf_remove_from_context(group_leader, 0);
0231bb53 9885
b04243ef
PZ
9886 list_for_each_entry(sibling, &group_leader->sibling_list,
9887 group_entry) {
45a0e07a 9888 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9889 put_ctx(gctx);
9890 }
b04243ef 9891
f63a8daa
PZ
9892 /*
9893 * Wait for everybody to stop referencing the events through
9894 * the old lists, before installing it on new lists.
9895 */
0cda4c02 9896 synchronize_rcu();
f63a8daa 9897
8f95b435
PZI
9898 /*
9899 * Install the group siblings before the group leader.
9900 *
9901 * Because a group leader will try and install the entire group
9902 * (through the sibling list, which is still in-tact), we can
9903 * end up with siblings installed in the wrong context.
9904 *
9905 * By installing siblings first we NO-OP because they're not
9906 * reachable through the group lists.
9907 */
b04243ef
PZ
9908 list_for_each_entry(sibling, &group_leader->sibling_list,
9909 group_entry) {
8f95b435 9910 perf_event__state_init(sibling);
9fc81d87 9911 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9912 get_ctx(ctx);
9913 }
8f95b435
PZI
9914
9915 /*
9916 * Removing from the context ends up with disabled
9917 * event. What we want here is event in the initial
9918 * startup state, ready to be add into new context.
9919 */
9920 perf_event__state_init(group_leader);
9921 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9922 get_ctx(ctx);
b04243ef 9923
f55fc2a5
PZ
9924 /*
9925 * Now that all events are installed in @ctx, nothing
9926 * references @gctx anymore, so drop the last reference we have
9927 * on it.
9928 */
9929 put_ctx(gctx);
bed5b25a
AS
9930 }
9931
f73e22ab
PZ
9932 /*
9933 * Precalculate sample_data sizes; do while holding ctx::mutex such
9934 * that we're serialized against further additions and before
9935 * perf_install_in_context() which is the point the event is active and
9936 * can use these values.
9937 */
9938 perf_event__header_size(event);
9939 perf_event__id_header_size(event);
9940
78cd2c74
PZ
9941 event->owner = current;
9942
e2d37cd2 9943 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9944 perf_unpin_context(ctx);
f63a8daa 9945
f55fc2a5 9946 if (move_group)
321027c1 9947 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 9948 mutex_unlock(&ctx->mutex);
9b51f66d 9949
79c9ce57
PZ
9950 if (task) {
9951 mutex_unlock(&task->signal->cred_guard_mutex);
9952 put_task_struct(task);
9953 }
9954
fbfc623f
YZ
9955 put_online_cpus();
9956
cdd6c482
IM
9957 mutex_lock(&current->perf_event_mutex);
9958 list_add_tail(&event->owner_entry, &current->perf_event_list);
9959 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9960
8a49542c
PZ
9961 /*
9962 * Drop the reference on the group_event after placing the
9963 * new event on the sibling_list. This ensures destruction
9964 * of the group leader will find the pointer to itself in
9965 * perf_group_detach().
9966 */
2903ff01 9967 fdput(group);
ea635c64
AV
9968 fd_install(event_fd, event_file);
9969 return event_fd;
0793a61d 9970
f55fc2a5
PZ
9971err_locked:
9972 if (move_group)
321027c1 9973 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
9974 mutex_unlock(&ctx->mutex);
9975/* err_file: */
9976 fput(event_file);
c3f00c70 9977err_context:
fe4b04fa 9978 perf_unpin_context(ctx);
ea635c64 9979 put_ctx(ctx);
c6be5a5c 9980err_alloc:
13005627
PZ
9981 /*
9982 * If event_file is set, the fput() above will have called ->release()
9983 * and that will take care of freeing the event.
9984 */
9985 if (!event_file)
9986 free_event(event);
79c9ce57
PZ
9987err_cred:
9988 if (task)
9989 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 9990err_cpus:
fbfc623f 9991 put_online_cpus();
1f4ee503 9992err_task:
e7d0bc04
PZ
9993 if (task)
9994 put_task_struct(task);
89a1e187 9995err_group_fd:
2903ff01 9996 fdput(group);
ea635c64
AV
9997err_fd:
9998 put_unused_fd(event_fd);
dc86cabe 9999 return err;
0793a61d
TG
10000}
10001
fb0459d7
AV
10002/**
10003 * perf_event_create_kernel_counter
10004 *
10005 * @attr: attributes of the counter to create
10006 * @cpu: cpu in which the counter is bound
38a81da2 10007 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10008 */
10009struct perf_event *
10010perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10011 struct task_struct *task,
4dc0da86
AK
10012 perf_overflow_handler_t overflow_handler,
10013 void *context)
fb0459d7 10014{
fb0459d7 10015 struct perf_event_context *ctx;
c3f00c70 10016 struct perf_event *event;
fb0459d7 10017 int err;
d859e29f 10018
fb0459d7
AV
10019 /*
10020 * Get the target context (task or percpu):
10021 */
d859e29f 10022
4dc0da86 10023 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10024 overflow_handler, context, -1);
c3f00c70
PZ
10025 if (IS_ERR(event)) {
10026 err = PTR_ERR(event);
10027 goto err;
10028 }
d859e29f 10029
f8697762 10030 /* Mark owner so we could distinguish it from user events. */
63b6da39 10031 event->owner = TASK_TOMBSTONE;
f8697762 10032
4af57ef2 10033 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10034 if (IS_ERR(ctx)) {
10035 err = PTR_ERR(ctx);
c3f00c70 10036 goto err_free;
d859e29f 10037 }
fb0459d7 10038
fb0459d7
AV
10039 WARN_ON_ONCE(ctx->parent_ctx);
10040 mutex_lock(&ctx->mutex);
84c4e620
PZ
10041 if (ctx->task == TASK_TOMBSTONE) {
10042 err = -ESRCH;
10043 goto err_unlock;
10044 }
10045
bed5b25a 10046 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10047 err = -EBUSY;
84c4e620 10048 goto err_unlock;
bed5b25a
AS
10049 }
10050
fb0459d7 10051 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10052 perf_unpin_context(ctx);
fb0459d7
AV
10053 mutex_unlock(&ctx->mutex);
10054
fb0459d7
AV
10055 return event;
10056
84c4e620
PZ
10057err_unlock:
10058 mutex_unlock(&ctx->mutex);
10059 perf_unpin_context(ctx);
10060 put_ctx(ctx);
c3f00c70
PZ
10061err_free:
10062 free_event(event);
10063err:
c6567f64 10064 return ERR_PTR(err);
9b51f66d 10065}
fb0459d7 10066EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10067
0cda4c02
YZ
10068void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10069{
10070 struct perf_event_context *src_ctx;
10071 struct perf_event_context *dst_ctx;
10072 struct perf_event *event, *tmp;
10073 LIST_HEAD(events);
10074
10075 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10076 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10077
f63a8daa
PZ
10078 /*
10079 * See perf_event_ctx_lock() for comments on the details
10080 * of swizzling perf_event::ctx.
10081 */
10082 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10083 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10084 event_entry) {
45a0e07a 10085 perf_remove_from_context(event, 0);
9a545de0 10086 unaccount_event_cpu(event, src_cpu);
0cda4c02 10087 put_ctx(src_ctx);
9886167d 10088 list_add(&event->migrate_entry, &events);
0cda4c02 10089 }
0cda4c02 10090
8f95b435
PZI
10091 /*
10092 * Wait for the events to quiesce before re-instating them.
10093 */
0cda4c02
YZ
10094 synchronize_rcu();
10095
8f95b435
PZI
10096 /*
10097 * Re-instate events in 2 passes.
10098 *
10099 * Skip over group leaders and only install siblings on this first
10100 * pass, siblings will not get enabled without a leader, however a
10101 * leader will enable its siblings, even if those are still on the old
10102 * context.
10103 */
10104 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10105 if (event->group_leader == event)
10106 continue;
10107
10108 list_del(&event->migrate_entry);
10109 if (event->state >= PERF_EVENT_STATE_OFF)
10110 event->state = PERF_EVENT_STATE_INACTIVE;
10111 account_event_cpu(event, dst_cpu);
10112 perf_install_in_context(dst_ctx, event, dst_cpu);
10113 get_ctx(dst_ctx);
10114 }
10115
10116 /*
10117 * Once all the siblings are setup properly, install the group leaders
10118 * to make it go.
10119 */
9886167d
PZ
10120 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10121 list_del(&event->migrate_entry);
0cda4c02
YZ
10122 if (event->state >= PERF_EVENT_STATE_OFF)
10123 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10124 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10125 perf_install_in_context(dst_ctx, event, dst_cpu);
10126 get_ctx(dst_ctx);
10127 }
10128 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10129 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10130}
10131EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10132
cdd6c482 10133static void sync_child_event(struct perf_event *child_event,
38b200d6 10134 struct task_struct *child)
d859e29f 10135{
cdd6c482 10136 struct perf_event *parent_event = child_event->parent;
8bc20959 10137 u64 child_val;
d859e29f 10138
cdd6c482
IM
10139 if (child_event->attr.inherit_stat)
10140 perf_event_read_event(child_event, child);
38b200d6 10141
b5e58793 10142 child_val = perf_event_count(child_event);
d859e29f
PM
10143
10144 /*
10145 * Add back the child's count to the parent's count:
10146 */
a6e6dea6 10147 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10148 atomic64_add(child_event->total_time_enabled,
10149 &parent_event->child_total_time_enabled);
10150 atomic64_add(child_event->total_time_running,
10151 &parent_event->child_total_time_running);
d859e29f
PM
10152}
10153
9b51f66d 10154static void
8ba289b8
PZ
10155perf_event_exit_event(struct perf_event *child_event,
10156 struct perf_event_context *child_ctx,
10157 struct task_struct *child)
9b51f66d 10158{
8ba289b8
PZ
10159 struct perf_event *parent_event = child_event->parent;
10160
1903d50c
PZ
10161 /*
10162 * Do not destroy the 'original' grouping; because of the context
10163 * switch optimization the original events could've ended up in a
10164 * random child task.
10165 *
10166 * If we were to destroy the original group, all group related
10167 * operations would cease to function properly after this random
10168 * child dies.
10169 *
10170 * Do destroy all inherited groups, we don't care about those
10171 * and being thorough is better.
10172 */
32132a3d
PZ
10173 raw_spin_lock_irq(&child_ctx->lock);
10174 WARN_ON_ONCE(child_ctx->is_active);
10175
8ba289b8 10176 if (parent_event)
32132a3d
PZ
10177 perf_group_detach(child_event);
10178 list_del_event(child_event, child_ctx);
a69b0ca4 10179 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10180 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10181
9b51f66d 10182 /*
8ba289b8 10183 * Parent events are governed by their filedesc, retain them.
9b51f66d 10184 */
8ba289b8 10185 if (!parent_event) {
179033b3 10186 perf_event_wakeup(child_event);
8ba289b8 10187 return;
4bcf349a 10188 }
8ba289b8
PZ
10189 /*
10190 * Child events can be cleaned up.
10191 */
10192
10193 sync_child_event(child_event, child);
10194
10195 /*
10196 * Remove this event from the parent's list
10197 */
10198 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10199 mutex_lock(&parent_event->child_mutex);
10200 list_del_init(&child_event->child_list);
10201 mutex_unlock(&parent_event->child_mutex);
10202
10203 /*
10204 * Kick perf_poll() for is_event_hup().
10205 */
10206 perf_event_wakeup(parent_event);
10207 free_event(child_event);
10208 put_event(parent_event);
9b51f66d
IM
10209}
10210
8dc85d54 10211static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10212{
211de6eb 10213 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10214 struct perf_event *child_event, *next;
63b6da39
PZ
10215
10216 WARN_ON_ONCE(child != current);
9b51f66d 10217
6a3351b6 10218 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10219 if (!child_ctx)
9b51f66d
IM
10220 return;
10221
ad3a37de 10222 /*
6a3351b6
PZ
10223 * In order to reduce the amount of tricky in ctx tear-down, we hold
10224 * ctx::mutex over the entire thing. This serializes against almost
10225 * everything that wants to access the ctx.
10226 *
10227 * The exception is sys_perf_event_open() /
10228 * perf_event_create_kernel_count() which does find_get_context()
10229 * without ctx::mutex (it cannot because of the move_group double mutex
10230 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10231 */
6a3351b6 10232 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10233
10234 /*
6a3351b6
PZ
10235 * In a single ctx::lock section, de-schedule the events and detach the
10236 * context from the task such that we cannot ever get it scheduled back
10237 * in.
c93f7669 10238 */
6a3351b6 10239 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 10240 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 10241
71a851b4 10242 /*
63b6da39
PZ
10243 * Now that the context is inactive, destroy the task <-> ctx relation
10244 * and mark the context dead.
71a851b4 10245 */
63b6da39
PZ
10246 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10247 put_ctx(child_ctx); /* cannot be last */
10248 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10249 put_task_struct(current); /* cannot be last */
4a1c0f26 10250
211de6eb 10251 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10252 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10253
211de6eb
PZ
10254 if (clone_ctx)
10255 put_ctx(clone_ctx);
4a1c0f26 10256
9f498cc5 10257 /*
cdd6c482
IM
10258 * Report the task dead after unscheduling the events so that we
10259 * won't get any samples after PERF_RECORD_EXIT. We can however still
10260 * get a few PERF_RECORD_READ events.
9f498cc5 10261 */
cdd6c482 10262 perf_event_task(child, child_ctx, 0);
a63eaf34 10263
ebf905fc 10264 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10265 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10266
a63eaf34
PM
10267 mutex_unlock(&child_ctx->mutex);
10268
10269 put_ctx(child_ctx);
9b51f66d
IM
10270}
10271
8dc85d54
PZ
10272/*
10273 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10274 *
10275 * Can be called with cred_guard_mutex held when called from
10276 * install_exec_creds().
8dc85d54
PZ
10277 */
10278void perf_event_exit_task(struct task_struct *child)
10279{
8882135b 10280 struct perf_event *event, *tmp;
8dc85d54
PZ
10281 int ctxn;
10282
8882135b
PZ
10283 mutex_lock(&child->perf_event_mutex);
10284 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10285 owner_entry) {
10286 list_del_init(&event->owner_entry);
10287
10288 /*
10289 * Ensure the list deletion is visible before we clear
10290 * the owner, closes a race against perf_release() where
10291 * we need to serialize on the owner->perf_event_mutex.
10292 */
f47c02c0 10293 smp_store_release(&event->owner, NULL);
8882135b
PZ
10294 }
10295 mutex_unlock(&child->perf_event_mutex);
10296
8dc85d54
PZ
10297 for_each_task_context_nr(ctxn)
10298 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10299
10300 /*
10301 * The perf_event_exit_task_context calls perf_event_task
10302 * with child's task_ctx, which generates EXIT events for
10303 * child contexts and sets child->perf_event_ctxp[] to NULL.
10304 * At this point we need to send EXIT events to cpu contexts.
10305 */
10306 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10307}
10308
889ff015
FW
10309static void perf_free_event(struct perf_event *event,
10310 struct perf_event_context *ctx)
10311{
10312 struct perf_event *parent = event->parent;
10313
10314 if (WARN_ON_ONCE(!parent))
10315 return;
10316
10317 mutex_lock(&parent->child_mutex);
10318 list_del_init(&event->child_list);
10319 mutex_unlock(&parent->child_mutex);
10320
a6fa941d 10321 put_event(parent);
889ff015 10322
652884fe 10323 raw_spin_lock_irq(&ctx->lock);
8a49542c 10324 perf_group_detach(event);
889ff015 10325 list_del_event(event, ctx);
652884fe 10326 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10327 free_event(event);
10328}
10329
bbbee908 10330/*
652884fe 10331 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10332 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10333 *
10334 * Not all locks are strictly required, but take them anyway to be nice and
10335 * help out with the lockdep assertions.
bbbee908 10336 */
cdd6c482 10337void perf_event_free_task(struct task_struct *task)
bbbee908 10338{
8dc85d54 10339 struct perf_event_context *ctx;
cdd6c482 10340 struct perf_event *event, *tmp;
8dc85d54 10341 int ctxn;
bbbee908 10342
8dc85d54
PZ
10343 for_each_task_context_nr(ctxn) {
10344 ctx = task->perf_event_ctxp[ctxn];
10345 if (!ctx)
10346 continue;
bbbee908 10347
8dc85d54 10348 mutex_lock(&ctx->mutex);
bbbee908 10349again:
8dc85d54
PZ
10350 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10351 group_entry)
10352 perf_free_event(event, ctx);
bbbee908 10353
8dc85d54
PZ
10354 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10355 group_entry)
10356 perf_free_event(event, ctx);
bbbee908 10357
8dc85d54
PZ
10358 if (!list_empty(&ctx->pinned_groups) ||
10359 !list_empty(&ctx->flexible_groups))
10360 goto again;
bbbee908 10361
8dc85d54 10362 mutex_unlock(&ctx->mutex);
bbbee908 10363
8dc85d54
PZ
10364 put_ctx(ctx);
10365 }
889ff015
FW
10366}
10367
4e231c79
PZ
10368void perf_event_delayed_put(struct task_struct *task)
10369{
10370 int ctxn;
10371
10372 for_each_task_context_nr(ctxn)
10373 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10374}
10375
e03e7ee3 10376struct file *perf_event_get(unsigned int fd)
ffe8690c 10377{
e03e7ee3 10378 struct file *file;
ffe8690c 10379
e03e7ee3
AS
10380 file = fget_raw(fd);
10381 if (!file)
10382 return ERR_PTR(-EBADF);
ffe8690c 10383
e03e7ee3
AS
10384 if (file->f_op != &perf_fops) {
10385 fput(file);
10386 return ERR_PTR(-EBADF);
10387 }
ffe8690c 10388
e03e7ee3 10389 return file;
ffe8690c
KX
10390}
10391
10392const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10393{
10394 if (!event)
10395 return ERR_PTR(-EINVAL);
10396
10397 return &event->attr;
10398}
10399
97dee4f3
PZ
10400/*
10401 * inherit a event from parent task to child task:
10402 */
10403static struct perf_event *
10404inherit_event(struct perf_event *parent_event,
10405 struct task_struct *parent,
10406 struct perf_event_context *parent_ctx,
10407 struct task_struct *child,
10408 struct perf_event *group_leader,
10409 struct perf_event_context *child_ctx)
10410{
1929def9 10411 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10412 struct perf_event *child_event;
cee010ec 10413 unsigned long flags;
97dee4f3
PZ
10414
10415 /*
10416 * Instead of creating recursive hierarchies of events,
10417 * we link inherited events back to the original parent,
10418 * which has a filp for sure, which we use as the reference
10419 * count:
10420 */
10421 if (parent_event->parent)
10422 parent_event = parent_event->parent;
10423
10424 child_event = perf_event_alloc(&parent_event->attr,
10425 parent_event->cpu,
d580ff86 10426 child,
97dee4f3 10427 group_leader, parent_event,
79dff51e 10428 NULL, NULL, -1);
97dee4f3
PZ
10429 if (IS_ERR(child_event))
10430 return child_event;
a6fa941d 10431
c6e5b732
PZ
10432 /*
10433 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10434 * must be under the same lock in order to serialize against
10435 * perf_event_release_kernel(), such that either we must observe
10436 * is_orphaned_event() or they will observe us on the child_list.
10437 */
10438 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10439 if (is_orphaned_event(parent_event) ||
10440 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10441 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10442 free_event(child_event);
10443 return NULL;
10444 }
10445
97dee4f3
PZ
10446 get_ctx(child_ctx);
10447
10448 /*
10449 * Make the child state follow the state of the parent event,
10450 * not its attr.disabled bit. We hold the parent's mutex,
10451 * so we won't race with perf_event_{en, dis}able_family.
10452 */
1929def9 10453 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10454 child_event->state = PERF_EVENT_STATE_INACTIVE;
10455 else
10456 child_event->state = PERF_EVENT_STATE_OFF;
10457
10458 if (parent_event->attr.freq) {
10459 u64 sample_period = parent_event->hw.sample_period;
10460 struct hw_perf_event *hwc = &child_event->hw;
10461
10462 hwc->sample_period = sample_period;
10463 hwc->last_period = sample_period;
10464
10465 local64_set(&hwc->period_left, sample_period);
10466 }
10467
10468 child_event->ctx = child_ctx;
10469 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10470 child_event->overflow_handler_context
10471 = parent_event->overflow_handler_context;
97dee4f3 10472
614b6780
TG
10473 /*
10474 * Precalculate sample_data sizes
10475 */
10476 perf_event__header_size(child_event);
6844c09d 10477 perf_event__id_header_size(child_event);
614b6780 10478
97dee4f3
PZ
10479 /*
10480 * Link it up in the child's context:
10481 */
cee010ec 10482 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10483 add_event_to_ctx(child_event, child_ctx);
cee010ec 10484 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10485
97dee4f3
PZ
10486 /*
10487 * Link this into the parent event's child list
10488 */
97dee4f3
PZ
10489 list_add_tail(&child_event->child_list, &parent_event->child_list);
10490 mutex_unlock(&parent_event->child_mutex);
10491
10492 return child_event;
10493}
10494
10495static int inherit_group(struct perf_event *parent_event,
10496 struct task_struct *parent,
10497 struct perf_event_context *parent_ctx,
10498 struct task_struct *child,
10499 struct perf_event_context *child_ctx)
10500{
10501 struct perf_event *leader;
10502 struct perf_event *sub;
10503 struct perf_event *child_ctr;
10504
10505 leader = inherit_event(parent_event, parent, parent_ctx,
10506 child, NULL, child_ctx);
10507 if (IS_ERR(leader))
10508 return PTR_ERR(leader);
10509 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10510 child_ctr = inherit_event(sub, parent, parent_ctx,
10511 child, leader, child_ctx);
10512 if (IS_ERR(child_ctr))
10513 return PTR_ERR(child_ctr);
10514 }
10515 return 0;
889ff015
FW
10516}
10517
10518static int
10519inherit_task_group(struct perf_event *event, struct task_struct *parent,
10520 struct perf_event_context *parent_ctx,
8dc85d54 10521 struct task_struct *child, int ctxn,
889ff015
FW
10522 int *inherited_all)
10523{
10524 int ret;
8dc85d54 10525 struct perf_event_context *child_ctx;
889ff015
FW
10526
10527 if (!event->attr.inherit) {
10528 *inherited_all = 0;
10529 return 0;
bbbee908
PZ
10530 }
10531
fe4b04fa 10532 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10533 if (!child_ctx) {
10534 /*
10535 * This is executed from the parent task context, so
10536 * inherit events that have been marked for cloning.
10537 * First allocate and initialize a context for the
10538 * child.
10539 */
bbbee908 10540
734df5ab 10541 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10542 if (!child_ctx)
10543 return -ENOMEM;
bbbee908 10544
8dc85d54 10545 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10546 }
10547
10548 ret = inherit_group(event, parent, parent_ctx,
10549 child, child_ctx);
10550
10551 if (ret)
10552 *inherited_all = 0;
10553
10554 return ret;
bbbee908
PZ
10555}
10556
9b51f66d 10557/*
cdd6c482 10558 * Initialize the perf_event context in task_struct
9b51f66d 10559 */
985c8dcb 10560static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10561{
889ff015 10562 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10563 struct perf_event_context *cloned_ctx;
10564 struct perf_event *event;
9b51f66d 10565 struct task_struct *parent = current;
564c2b21 10566 int inherited_all = 1;
dddd3379 10567 unsigned long flags;
6ab423e0 10568 int ret = 0;
9b51f66d 10569
8dc85d54 10570 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10571 return 0;
10572
ad3a37de 10573 /*
25346b93
PM
10574 * If the parent's context is a clone, pin it so it won't get
10575 * swapped under us.
ad3a37de 10576 */
8dc85d54 10577 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10578 if (!parent_ctx)
10579 return 0;
25346b93 10580
ad3a37de
PM
10581 /*
10582 * No need to check if parent_ctx != NULL here; since we saw
10583 * it non-NULL earlier, the only reason for it to become NULL
10584 * is if we exit, and since we're currently in the middle of
10585 * a fork we can't be exiting at the same time.
10586 */
ad3a37de 10587
9b51f66d
IM
10588 /*
10589 * Lock the parent list. No need to lock the child - not PID
10590 * hashed yet and not running, so nobody can access it.
10591 */
d859e29f 10592 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10593
10594 /*
10595 * We dont have to disable NMIs - we are only looking at
10596 * the list, not manipulating it:
10597 */
889ff015 10598 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10599 ret = inherit_task_group(event, parent, parent_ctx,
10600 child, ctxn, &inherited_all);
889ff015
FW
10601 if (ret)
10602 break;
10603 }
b93f7978 10604
dddd3379
TG
10605 /*
10606 * We can't hold ctx->lock when iterating the ->flexible_group list due
10607 * to allocations, but we need to prevent rotation because
10608 * rotate_ctx() will change the list from interrupt context.
10609 */
10610 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10611 parent_ctx->rotate_disable = 1;
10612 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10613
889ff015 10614 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10615 ret = inherit_task_group(event, parent, parent_ctx,
10616 child, ctxn, &inherited_all);
889ff015 10617 if (ret)
9b51f66d 10618 break;
564c2b21
PM
10619 }
10620
dddd3379
TG
10621 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10622 parent_ctx->rotate_disable = 0;
dddd3379 10623
8dc85d54 10624 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10625
05cbaa28 10626 if (child_ctx && inherited_all) {
564c2b21
PM
10627 /*
10628 * Mark the child context as a clone of the parent
10629 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10630 *
10631 * Note that if the parent is a clone, the holding of
10632 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10633 */
c5ed5145 10634 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10635 if (cloned_ctx) {
10636 child_ctx->parent_ctx = cloned_ctx;
25346b93 10637 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10638 } else {
10639 child_ctx->parent_ctx = parent_ctx;
10640 child_ctx->parent_gen = parent_ctx->generation;
10641 }
10642 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10643 }
10644
c5ed5145 10645 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10646 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10647
25346b93 10648 perf_unpin_context(parent_ctx);
fe4b04fa 10649 put_ctx(parent_ctx);
ad3a37de 10650
6ab423e0 10651 return ret;
9b51f66d
IM
10652}
10653
8dc85d54
PZ
10654/*
10655 * Initialize the perf_event context in task_struct
10656 */
10657int perf_event_init_task(struct task_struct *child)
10658{
10659 int ctxn, ret;
10660
8550d7cb
ON
10661 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10662 mutex_init(&child->perf_event_mutex);
10663 INIT_LIST_HEAD(&child->perf_event_list);
10664
8dc85d54
PZ
10665 for_each_task_context_nr(ctxn) {
10666 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10667 if (ret) {
10668 perf_event_free_task(child);
8dc85d54 10669 return ret;
6c72e350 10670 }
8dc85d54
PZ
10671 }
10672
10673 return 0;
10674}
10675
220b140b
PM
10676static void __init perf_event_init_all_cpus(void)
10677{
b28ab83c 10678 struct swevent_htable *swhash;
220b140b 10679 int cpu;
220b140b
PM
10680
10681 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10682 swhash = &per_cpu(swevent_htable, cpu);
10683 mutex_init(&swhash->hlist_mutex);
2fde4f94 10684 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10685
10686 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10687 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788
PZ
10688
10689 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10690 }
10691}
10692
00e16c3d 10693int perf_event_init_cpu(unsigned int cpu)
0793a61d 10694{
108b02cf 10695 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10696
b28ab83c 10697 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10698 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10699 struct swevent_hlist *hlist;
10700
b28ab83c
PZ
10701 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10702 WARN_ON(!hlist);
10703 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10704 }
b28ab83c 10705 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10706 return 0;
0793a61d
TG
10707}
10708
2965faa5 10709#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10710static void __perf_event_exit_context(void *__info)
0793a61d 10711{
108b02cf 10712 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10714 struct perf_event *event;
0793a61d 10715
fae3fde6
PZ
10716 raw_spin_lock(&ctx->lock);
10717 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10718 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10719 raw_spin_unlock(&ctx->lock);
0793a61d 10720}
108b02cf
PZ
10721
10722static void perf_event_exit_cpu_context(int cpu)
10723{
10724 struct perf_event_context *ctx;
10725 struct pmu *pmu;
10726 int idx;
10727
10728 idx = srcu_read_lock(&pmus_srcu);
10729 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10730 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10731
10732 mutex_lock(&ctx->mutex);
10733 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10734 mutex_unlock(&ctx->mutex);
10735 }
10736 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10737}
00e16c3d
TG
10738#else
10739
10740static void perf_event_exit_cpu_context(int cpu) { }
10741
10742#endif
108b02cf 10743
00e16c3d 10744int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10745{
e3703f8c 10746 perf_event_exit_cpu_context(cpu);
00e16c3d 10747 return 0;
0793a61d 10748}
0793a61d 10749
c277443c
PZ
10750static int
10751perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10752{
10753 int cpu;
10754
10755 for_each_online_cpu(cpu)
10756 perf_event_exit_cpu(cpu);
10757
10758 return NOTIFY_OK;
10759}
10760
10761/*
10762 * Run the perf reboot notifier at the very last possible moment so that
10763 * the generic watchdog code runs as long as possible.
10764 */
10765static struct notifier_block perf_reboot_notifier = {
10766 .notifier_call = perf_reboot,
10767 .priority = INT_MIN,
10768};
10769
cdd6c482 10770void __init perf_event_init(void)
0793a61d 10771{
3c502e7a
JW
10772 int ret;
10773
2e80a82a
PZ
10774 idr_init(&pmu_idr);
10775
220b140b 10776 perf_event_init_all_cpus();
b0a873eb 10777 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10778 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10779 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10780 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10781 perf_tp_register();
00e16c3d 10782 perf_event_init_cpu(smp_processor_id());
c277443c 10783 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10784
10785 ret = init_hw_breakpoint();
10786 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10787
b01c3a00
JO
10788 /*
10789 * Build time assertion that we keep the data_head at the intended
10790 * location. IOW, validation we got the __reserved[] size right.
10791 */
10792 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10793 != 1024);
0793a61d 10794}
abe43400 10795
fd979c01
CS
10796ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10797 char *page)
10798{
10799 struct perf_pmu_events_attr *pmu_attr =
10800 container_of(attr, struct perf_pmu_events_attr, attr);
10801
10802 if (pmu_attr->event_str)
10803 return sprintf(page, "%s\n", pmu_attr->event_str);
10804
10805 return 0;
10806}
675965b0 10807EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10808
abe43400
PZ
10809static int __init perf_event_sysfs_init(void)
10810{
10811 struct pmu *pmu;
10812 int ret;
10813
10814 mutex_lock(&pmus_lock);
10815
10816 ret = bus_register(&pmu_bus);
10817 if (ret)
10818 goto unlock;
10819
10820 list_for_each_entry(pmu, &pmus, entry) {
10821 if (!pmu->name || pmu->type < 0)
10822 continue;
10823
10824 ret = pmu_dev_alloc(pmu);
10825 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10826 }
10827 pmu_bus_running = 1;
10828 ret = 0;
10829
10830unlock:
10831 mutex_unlock(&pmus_lock);
10832
10833 return ret;
10834}
10835device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10836
10837#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10838static struct cgroup_subsys_state *
10839perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10840{
10841 struct perf_cgroup *jc;
e5d1367f 10842
1b15d055 10843 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10844 if (!jc)
10845 return ERR_PTR(-ENOMEM);
10846
e5d1367f
SE
10847 jc->info = alloc_percpu(struct perf_cgroup_info);
10848 if (!jc->info) {
10849 kfree(jc);
10850 return ERR_PTR(-ENOMEM);
10851 }
10852
e5d1367f
SE
10853 return &jc->css;
10854}
10855
eb95419b 10856static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10857{
eb95419b
TH
10858 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10859
e5d1367f
SE
10860 free_percpu(jc->info);
10861 kfree(jc);
10862}
10863
10864static int __perf_cgroup_move(void *info)
10865{
10866 struct task_struct *task = info;
ddaaf4e2 10867 rcu_read_lock();
e5d1367f 10868 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10869 rcu_read_unlock();
e5d1367f
SE
10870 return 0;
10871}
10872
1f7dd3e5 10873static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10874{
bb9d97b6 10875 struct task_struct *task;
1f7dd3e5 10876 struct cgroup_subsys_state *css;
bb9d97b6 10877
1f7dd3e5 10878 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10879 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10880}
10881
073219e9 10882struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10883 .css_alloc = perf_cgroup_css_alloc,
10884 .css_free = perf_cgroup_css_free,
bb9d97b6 10885 .attach = perf_cgroup_attach,
e5d1367f
SE
10886};
10887#endif /* CONFIG_CGROUP_PERF */