Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
9ee318a7 166
108b02cf
PZ
167static LIST_HEAD(pmus);
168static DEFINE_MUTEX(pmus_lock);
169static struct srcu_struct pmus_srcu;
170
0764771d 171/*
cdd6c482 172 * perf event paranoia level:
0fbdea19
IM
173 * -1 - not paranoid at all
174 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 175 * 1 - disallow cpu events for unpriv
0fbdea19 176 * 2 - disallow kernel profiling for unpriv
0764771d 177 */
cdd6c482 178int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 179
20443384
FW
180/* Minimum for 512 kiB + 1 user control page */
181int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
182
183/*
cdd6c482 184 * max perf event sample rate
df58ab24 185 */
14c63f17
DH
186#define DEFAULT_MAX_SAMPLE_RATE 100000
187#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
188#define DEFAULT_CPU_TIME_MAX_PERCENT 25
189
190int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
191
192static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
193static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
194
d9494cb4
PZ
195static int perf_sample_allowed_ns __read_mostly =
196 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
197
198void update_perf_cpu_limits(void)
199{
200 u64 tmp = perf_sample_period_ns;
201
202 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 203 do_div(tmp, 100);
d9494cb4 204 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 205}
163ec435 206
9e630205
SE
207static int perf_rotate_context(struct perf_cpu_context *cpuctx);
208
163ec435
PZ
209int perf_proc_update_handler(struct ctl_table *table, int write,
210 void __user *buffer, size_t *lenp,
211 loff_t *ppos)
212{
723478c8 213 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
214
215 if (ret || !write)
216 return ret;
217
218 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
219 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
220 update_perf_cpu_limits();
221
222 return 0;
223}
224
225int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
226
227int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
228 void __user *buffer, size_t *lenp,
229 loff_t *ppos)
230{
231 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
232
233 if (ret || !write)
234 return ret;
235
236 update_perf_cpu_limits();
163ec435
PZ
237
238 return 0;
239}
1ccd1549 240
14c63f17
DH
241/*
242 * perf samples are done in some very critical code paths (NMIs).
243 * If they take too much CPU time, the system can lock up and not
244 * get any real work done. This will drop the sample rate when
245 * we detect that events are taking too long.
246 */
247#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 248static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 249
6a02ad66 250static void perf_duration_warn(struct irq_work *w)
14c63f17 251{
6a02ad66 252 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 253 u64 avg_local_sample_len;
e5302920 254 u64 local_samples_len;
6a02ad66 255
4a32fea9 256 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
257 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
258
259 printk_ratelimited(KERN_WARNING
260 "perf interrupt took too long (%lld > %lld), lowering "
261 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 262 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
263 sysctl_perf_event_sample_rate);
264}
265
266static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
267
268void perf_sample_event_took(u64 sample_len_ns)
269{
d9494cb4 270 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
271 u64 avg_local_sample_len;
272 u64 local_samples_len;
14c63f17 273
d9494cb4 274 if (allowed_ns == 0)
14c63f17
DH
275 return;
276
277 /* decay the counter by 1 average sample */
4a32fea9 278 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
279 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
280 local_samples_len += sample_len_ns;
4a32fea9 281 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
282
283 /*
284 * note: this will be biased artifically low until we have
285 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
286 * from having to maintain a count.
287 */
288 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
289
d9494cb4 290 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
291 return;
292
293 if (max_samples_per_tick <= 1)
294 return;
295
296 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
297 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
298 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
299
14c63f17 300 update_perf_cpu_limits();
6a02ad66 301
cd578abb
PZ
302 if (!irq_work_queue(&perf_duration_work)) {
303 early_printk("perf interrupt took too long (%lld > %lld), lowering "
304 "kernel.perf_event_max_sample_rate to %d\n",
305 avg_local_sample_len, allowed_ns >> 1,
306 sysctl_perf_event_sample_rate);
307 }
14c63f17
DH
308}
309
cdd6c482 310static atomic64_t perf_event_id;
a96bbc16 311
0b3fcf17
SE
312static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
313 enum event_type_t event_type);
314
315static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
316 enum event_type_t event_type,
317 struct task_struct *task);
318
319static void update_context_time(struct perf_event_context *ctx);
320static u64 perf_event_time(struct perf_event *event);
0b3fcf17 321
cdd6c482 322void __weak perf_event_print_debug(void) { }
0793a61d 323
84c79910 324extern __weak const char *perf_pmu_name(void)
0793a61d 325{
84c79910 326 return "pmu";
0793a61d
TG
327}
328
0b3fcf17
SE
329static inline u64 perf_clock(void)
330{
331 return local_clock();
332}
333
34f43927
PZ
334static inline u64 perf_event_clock(struct perf_event *event)
335{
336 return event->clock();
337}
338
e5d1367f
SE
339static inline struct perf_cpu_context *
340__get_cpu_context(struct perf_event_context *ctx)
341{
342 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
343}
344
facc4307
PZ
345static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
346 struct perf_event_context *ctx)
347{
348 raw_spin_lock(&cpuctx->ctx.lock);
349 if (ctx)
350 raw_spin_lock(&ctx->lock);
351}
352
353static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
354 struct perf_event_context *ctx)
355{
356 if (ctx)
357 raw_spin_unlock(&ctx->lock);
358 raw_spin_unlock(&cpuctx->ctx.lock);
359}
360
e5d1367f
SE
361#ifdef CONFIG_CGROUP_PERF
362
e5d1367f
SE
363static inline bool
364perf_cgroup_match(struct perf_event *event)
365{
366 struct perf_event_context *ctx = event->ctx;
367 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
368
ef824fa1
TH
369 /* @event doesn't care about cgroup */
370 if (!event->cgrp)
371 return true;
372
373 /* wants specific cgroup scope but @cpuctx isn't associated with any */
374 if (!cpuctx->cgrp)
375 return false;
376
377 /*
378 * Cgroup scoping is recursive. An event enabled for a cgroup is
379 * also enabled for all its descendant cgroups. If @cpuctx's
380 * cgroup is a descendant of @event's (the test covers identity
381 * case), it's a match.
382 */
383 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
384 event->cgrp->css.cgroup);
e5d1367f
SE
385}
386
e5d1367f
SE
387static inline void perf_detach_cgroup(struct perf_event *event)
388{
4e2ba650 389 css_put(&event->cgrp->css);
e5d1367f
SE
390 event->cgrp = NULL;
391}
392
393static inline int is_cgroup_event(struct perf_event *event)
394{
395 return event->cgrp != NULL;
396}
397
398static inline u64 perf_cgroup_event_time(struct perf_event *event)
399{
400 struct perf_cgroup_info *t;
401
402 t = per_cpu_ptr(event->cgrp->info, event->cpu);
403 return t->time;
404}
405
406static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
407{
408 struct perf_cgroup_info *info;
409 u64 now;
410
411 now = perf_clock();
412
413 info = this_cpu_ptr(cgrp->info);
414
415 info->time += now - info->timestamp;
416 info->timestamp = now;
417}
418
419static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
420{
421 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
422 if (cgrp_out)
423 __update_cgrp_time(cgrp_out);
424}
425
426static inline void update_cgrp_time_from_event(struct perf_event *event)
427{
3f7cce3c
SE
428 struct perf_cgroup *cgrp;
429
e5d1367f 430 /*
3f7cce3c
SE
431 * ensure we access cgroup data only when needed and
432 * when we know the cgroup is pinned (css_get)
e5d1367f 433 */
3f7cce3c 434 if (!is_cgroup_event(event))
e5d1367f
SE
435 return;
436
3f7cce3c
SE
437 cgrp = perf_cgroup_from_task(current);
438 /*
439 * Do not update time when cgroup is not active
440 */
441 if (cgrp == event->cgrp)
442 __update_cgrp_time(event->cgrp);
e5d1367f
SE
443}
444
445static inline void
3f7cce3c
SE
446perf_cgroup_set_timestamp(struct task_struct *task,
447 struct perf_event_context *ctx)
e5d1367f
SE
448{
449 struct perf_cgroup *cgrp;
450 struct perf_cgroup_info *info;
451
3f7cce3c
SE
452 /*
453 * ctx->lock held by caller
454 * ensure we do not access cgroup data
455 * unless we have the cgroup pinned (css_get)
456 */
457 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
458 return;
459
460 cgrp = perf_cgroup_from_task(task);
461 info = this_cpu_ptr(cgrp->info);
3f7cce3c 462 info->timestamp = ctx->timestamp;
e5d1367f
SE
463}
464
465#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
466#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
467
468/*
469 * reschedule events based on the cgroup constraint of task.
470 *
471 * mode SWOUT : schedule out everything
472 * mode SWIN : schedule in based on cgroup for next
473 */
474void perf_cgroup_switch(struct task_struct *task, int mode)
475{
476 struct perf_cpu_context *cpuctx;
477 struct pmu *pmu;
478 unsigned long flags;
479
480 /*
481 * disable interrupts to avoid geting nr_cgroup
482 * changes via __perf_event_disable(). Also
483 * avoids preemption.
484 */
485 local_irq_save(flags);
486
487 /*
488 * we reschedule only in the presence of cgroup
489 * constrained events.
490 */
491 rcu_read_lock();
492
493 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
495 if (cpuctx->unique_pmu != pmu)
496 continue; /* ensure we process each cpuctx once */
e5d1367f 497
e5d1367f
SE
498 /*
499 * perf_cgroup_events says at least one
500 * context on this CPU has cgroup events.
501 *
502 * ctx->nr_cgroups reports the number of cgroup
503 * events for a context.
504 */
505 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
506 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
508
509 if (mode & PERF_CGROUP_SWOUT) {
510 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 /*
512 * must not be done before ctxswout due
513 * to event_filter_match() in event_sched_out()
514 */
515 cpuctx->cgrp = NULL;
516 }
517
518 if (mode & PERF_CGROUP_SWIN) {
e566b76e 519 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
520 /*
521 * set cgrp before ctxsw in to allow
522 * event_filter_match() to not have to pass
523 * task around
e5d1367f
SE
524 */
525 cpuctx->cgrp = perf_cgroup_from_task(task);
526 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
527 }
facc4307
PZ
528 perf_pmu_enable(cpuctx->ctx.pmu);
529 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 530 }
e5d1367f
SE
531 }
532
533 rcu_read_unlock();
534
535 local_irq_restore(flags);
536}
537
a8d757ef
SE
538static inline void perf_cgroup_sched_out(struct task_struct *task,
539 struct task_struct *next)
e5d1367f 540{
a8d757ef
SE
541 struct perf_cgroup *cgrp1;
542 struct perf_cgroup *cgrp2 = NULL;
543
544 /*
545 * we come here when we know perf_cgroup_events > 0
546 */
547 cgrp1 = perf_cgroup_from_task(task);
548
549 /*
550 * next is NULL when called from perf_event_enable_on_exec()
551 * that will systematically cause a cgroup_switch()
552 */
553 if (next)
554 cgrp2 = perf_cgroup_from_task(next);
555
556 /*
557 * only schedule out current cgroup events if we know
558 * that we are switching to a different cgroup. Otherwise,
559 * do no touch the cgroup events.
560 */
561 if (cgrp1 != cgrp2)
562 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
563}
564
a8d757ef
SE
565static inline void perf_cgroup_sched_in(struct task_struct *prev,
566 struct task_struct *task)
e5d1367f 567{
a8d757ef
SE
568 struct perf_cgroup *cgrp1;
569 struct perf_cgroup *cgrp2 = NULL;
570
571 /*
572 * we come here when we know perf_cgroup_events > 0
573 */
574 cgrp1 = perf_cgroup_from_task(task);
575
576 /* prev can never be NULL */
577 cgrp2 = perf_cgroup_from_task(prev);
578
579 /*
580 * only need to schedule in cgroup events if we are changing
581 * cgroup during ctxsw. Cgroup events were not scheduled
582 * out of ctxsw out if that was not the case.
583 */
584 if (cgrp1 != cgrp2)
585 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
586}
587
588static inline int perf_cgroup_connect(int fd, struct perf_event *event,
589 struct perf_event_attr *attr,
590 struct perf_event *group_leader)
591{
592 struct perf_cgroup *cgrp;
593 struct cgroup_subsys_state *css;
2903ff01
AV
594 struct fd f = fdget(fd);
595 int ret = 0;
e5d1367f 596
2903ff01 597 if (!f.file)
e5d1367f
SE
598 return -EBADF;
599
b583043e 600 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 601 &perf_event_cgrp_subsys);
3db272c0
LZ
602 if (IS_ERR(css)) {
603 ret = PTR_ERR(css);
604 goto out;
605 }
e5d1367f
SE
606
607 cgrp = container_of(css, struct perf_cgroup, css);
608 event->cgrp = cgrp;
609
610 /*
611 * all events in a group must monitor
612 * the same cgroup because a task belongs
613 * to only one perf cgroup at a time
614 */
615 if (group_leader && group_leader->cgrp != cgrp) {
616 perf_detach_cgroup(event);
617 ret = -EINVAL;
e5d1367f 618 }
3db272c0 619out:
2903ff01 620 fdput(f);
e5d1367f
SE
621 return ret;
622}
623
624static inline void
625perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626{
627 struct perf_cgroup_info *t;
628 t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 event->shadow_ctx_time = now - t->timestamp;
630}
631
632static inline void
633perf_cgroup_defer_enabled(struct perf_event *event)
634{
635 /*
636 * when the current task's perf cgroup does not match
637 * the event's, we need to remember to call the
638 * perf_mark_enable() function the first time a task with
639 * a matching perf cgroup is scheduled in.
640 */
641 if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 event->cgrp_defer_enabled = 1;
643}
644
645static inline void
646perf_cgroup_mark_enabled(struct perf_event *event,
647 struct perf_event_context *ctx)
648{
649 struct perf_event *sub;
650 u64 tstamp = perf_event_time(event);
651
652 if (!event->cgrp_defer_enabled)
653 return;
654
655 event->cgrp_defer_enabled = 0;
656
657 event->tstamp_enabled = tstamp - event->total_time_enabled;
658 list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 sub->cgrp_defer_enabled = 0;
662 }
663 }
664}
665#else /* !CONFIG_CGROUP_PERF */
666
667static inline bool
668perf_cgroup_match(struct perf_event *event)
669{
670 return true;
671}
672
673static inline void perf_detach_cgroup(struct perf_event *event)
674{}
675
676static inline int is_cgroup_event(struct perf_event *event)
677{
678 return 0;
679}
680
681static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682{
683 return 0;
684}
685
686static inline void update_cgrp_time_from_event(struct perf_event *event)
687{
688}
689
690static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691{
692}
693
a8d757ef
SE
694static inline void perf_cgroup_sched_out(struct task_struct *task,
695 struct task_struct *next)
e5d1367f
SE
696{
697}
698
a8d757ef
SE
699static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 struct task_struct *task)
e5d1367f
SE
701{
702}
703
704static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 struct perf_event_attr *attr,
706 struct perf_event *group_leader)
707{
708 return -EINVAL;
709}
710
711static inline void
3f7cce3c
SE
712perf_cgroup_set_timestamp(struct task_struct *task,
713 struct perf_event_context *ctx)
e5d1367f
SE
714{
715}
716
717void
718perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719{
720}
721
722static inline void
723perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724{
725}
726
727static inline u64 perf_cgroup_event_time(struct perf_event *event)
728{
729 return 0;
730}
731
732static inline void
733perf_cgroup_defer_enabled(struct perf_event *event)
734{
735}
736
737static inline void
738perf_cgroup_mark_enabled(struct perf_event *event,
739 struct perf_event_context *ctx)
740{
741}
742#endif
743
9e630205
SE
744/*
745 * set default to be dependent on timer tick just
746 * like original code
747 */
748#define PERF_CPU_HRTIMER (1000 / HZ)
749/*
750 * function must be called with interrupts disbled
751 */
272325c4 752static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
753{
754 struct perf_cpu_context *cpuctx;
9e630205
SE
755 int rotations = 0;
756
757 WARN_ON(!irqs_disabled());
758
759 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
760 rotations = perf_rotate_context(cpuctx);
761
4cfafd30
PZ
762 raw_spin_lock(&cpuctx->hrtimer_lock);
763 if (rotations)
9e630205 764 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
765 else
766 cpuctx->hrtimer_active = 0;
767 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 768
4cfafd30 769 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
770}
771
272325c4 772static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 773{
272325c4 774 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 775 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 776 u64 interval;
9e630205
SE
777
778 /* no multiplexing needed for SW PMU */
779 if (pmu->task_ctx_nr == perf_sw_context)
780 return;
781
62b85639
SE
782 /*
783 * check default is sane, if not set then force to
784 * default interval (1/tick)
785 */
272325c4
PZ
786 interval = pmu->hrtimer_interval_ms;
787 if (interval < 1)
788 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 789
272325c4 790 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 791
4cfafd30
PZ
792 raw_spin_lock_init(&cpuctx->hrtimer_lock);
793 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 794 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
795}
796
272325c4 797static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 798{
272325c4 799 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 800 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 801 unsigned long flags;
9e630205
SE
802
803 /* not for SW PMU */
804 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 805 return 0;
9e630205 806
4cfafd30
PZ
807 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
808 if (!cpuctx->hrtimer_active) {
809 cpuctx->hrtimer_active = 1;
810 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
811 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
812 }
813 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 814
272325c4 815 return 0;
9e630205
SE
816}
817
33696fc0 818void perf_pmu_disable(struct pmu *pmu)
9e35ad38 819{
33696fc0
PZ
820 int *count = this_cpu_ptr(pmu->pmu_disable_count);
821 if (!(*count)++)
822 pmu->pmu_disable(pmu);
9e35ad38 823}
9e35ad38 824
33696fc0 825void perf_pmu_enable(struct pmu *pmu)
9e35ad38 826{
33696fc0
PZ
827 int *count = this_cpu_ptr(pmu->pmu_disable_count);
828 if (!--(*count))
829 pmu->pmu_enable(pmu);
9e35ad38 830}
9e35ad38 831
2fde4f94 832static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
833
834/*
2fde4f94
MR
835 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
836 * perf_event_task_tick() are fully serialized because they're strictly cpu
837 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
838 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 839 */
2fde4f94 840static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 841{
2fde4f94 842 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 843
e9d2b064 844 WARN_ON(!irqs_disabled());
b5ab4cd5 845
2fde4f94
MR
846 WARN_ON(!list_empty(&ctx->active_ctx_list));
847
848 list_add(&ctx->active_ctx_list, head);
849}
850
851static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
852{
853 WARN_ON(!irqs_disabled());
854
855 WARN_ON(list_empty(&ctx->active_ctx_list));
856
857 list_del_init(&ctx->active_ctx_list);
9e35ad38 858}
9e35ad38 859
cdd6c482 860static void get_ctx(struct perf_event_context *ctx)
a63eaf34 861{
e5289d4a 862 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
863}
864
4af57ef2
YZ
865static void free_ctx(struct rcu_head *head)
866{
867 struct perf_event_context *ctx;
868
869 ctx = container_of(head, struct perf_event_context, rcu_head);
870 kfree(ctx->task_ctx_data);
871 kfree(ctx);
872}
873
cdd6c482 874static void put_ctx(struct perf_event_context *ctx)
a63eaf34 875{
564c2b21
PM
876 if (atomic_dec_and_test(&ctx->refcount)) {
877 if (ctx->parent_ctx)
878 put_ctx(ctx->parent_ctx);
c93f7669
PM
879 if (ctx->task)
880 put_task_struct(ctx->task);
4af57ef2 881 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 882 }
a63eaf34
PM
883}
884
f63a8daa
PZ
885/*
886 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
887 * perf_pmu_migrate_context() we need some magic.
888 *
889 * Those places that change perf_event::ctx will hold both
890 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
891 *
8b10c5e2
PZ
892 * Lock ordering is by mutex address. There are two other sites where
893 * perf_event_context::mutex nests and those are:
894 *
895 * - perf_event_exit_task_context() [ child , 0 ]
896 * __perf_event_exit_task()
897 * sync_child_event()
898 * put_event() [ parent, 1 ]
899 *
900 * - perf_event_init_context() [ parent, 0 ]
901 * inherit_task_group()
902 * inherit_group()
903 * inherit_event()
904 * perf_event_alloc()
905 * perf_init_event()
906 * perf_try_init_event() [ child , 1 ]
907 *
908 * While it appears there is an obvious deadlock here -- the parent and child
909 * nesting levels are inverted between the two. This is in fact safe because
910 * life-time rules separate them. That is an exiting task cannot fork, and a
911 * spawning task cannot (yet) exit.
912 *
913 * But remember that that these are parent<->child context relations, and
914 * migration does not affect children, therefore these two orderings should not
915 * interact.
f63a8daa
PZ
916 *
917 * The change in perf_event::ctx does not affect children (as claimed above)
918 * because the sys_perf_event_open() case will install a new event and break
919 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
920 * concerned with cpuctx and that doesn't have children.
921 *
922 * The places that change perf_event::ctx will issue:
923 *
924 * perf_remove_from_context();
925 * synchronize_rcu();
926 * perf_install_in_context();
927 *
928 * to affect the change. The remove_from_context() + synchronize_rcu() should
929 * quiesce the event, after which we can install it in the new location. This
930 * means that only external vectors (perf_fops, prctl) can perturb the event
931 * while in transit. Therefore all such accessors should also acquire
932 * perf_event_context::mutex to serialize against this.
933 *
934 * However; because event->ctx can change while we're waiting to acquire
935 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
936 * function.
937 *
938 * Lock order:
939 * task_struct::perf_event_mutex
940 * perf_event_context::mutex
941 * perf_event_context::lock
942 * perf_event::child_mutex;
943 * perf_event::mmap_mutex
944 * mmap_sem
945 */
a83fe28e
PZ
946static struct perf_event_context *
947perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
948{
949 struct perf_event_context *ctx;
950
951again:
952 rcu_read_lock();
953 ctx = ACCESS_ONCE(event->ctx);
954 if (!atomic_inc_not_zero(&ctx->refcount)) {
955 rcu_read_unlock();
956 goto again;
957 }
958 rcu_read_unlock();
959
a83fe28e 960 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
961 if (event->ctx != ctx) {
962 mutex_unlock(&ctx->mutex);
963 put_ctx(ctx);
964 goto again;
965 }
966
967 return ctx;
968}
969
a83fe28e
PZ
970static inline struct perf_event_context *
971perf_event_ctx_lock(struct perf_event *event)
972{
973 return perf_event_ctx_lock_nested(event, 0);
974}
975
f63a8daa
PZ
976static void perf_event_ctx_unlock(struct perf_event *event,
977 struct perf_event_context *ctx)
978{
979 mutex_unlock(&ctx->mutex);
980 put_ctx(ctx);
981}
982
211de6eb
PZ
983/*
984 * This must be done under the ctx->lock, such as to serialize against
985 * context_equiv(), therefore we cannot call put_ctx() since that might end up
986 * calling scheduler related locks and ctx->lock nests inside those.
987 */
988static __must_check struct perf_event_context *
989unclone_ctx(struct perf_event_context *ctx)
71a851b4 990{
211de6eb
PZ
991 struct perf_event_context *parent_ctx = ctx->parent_ctx;
992
993 lockdep_assert_held(&ctx->lock);
994
995 if (parent_ctx)
71a851b4 996 ctx->parent_ctx = NULL;
5a3126d4 997 ctx->generation++;
211de6eb
PZ
998
999 return parent_ctx;
71a851b4
PZ
1000}
1001
6844c09d
ACM
1002static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1003{
1004 /*
1005 * only top level events have the pid namespace they were created in
1006 */
1007 if (event->parent)
1008 event = event->parent;
1009
1010 return task_tgid_nr_ns(p, event->ns);
1011}
1012
1013static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1014{
1015 /*
1016 * only top level events have the pid namespace they were created in
1017 */
1018 if (event->parent)
1019 event = event->parent;
1020
1021 return task_pid_nr_ns(p, event->ns);
1022}
1023
7f453c24 1024/*
cdd6c482 1025 * If we inherit events we want to return the parent event id
7f453c24
PZ
1026 * to userspace.
1027 */
cdd6c482 1028static u64 primary_event_id(struct perf_event *event)
7f453c24 1029{
cdd6c482 1030 u64 id = event->id;
7f453c24 1031
cdd6c482
IM
1032 if (event->parent)
1033 id = event->parent->id;
7f453c24
PZ
1034
1035 return id;
1036}
1037
25346b93 1038/*
cdd6c482 1039 * Get the perf_event_context for a task and lock it.
25346b93
PM
1040 * This has to cope with with the fact that until it is locked,
1041 * the context could get moved to another task.
1042 */
cdd6c482 1043static struct perf_event_context *
8dc85d54 1044perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1045{
cdd6c482 1046 struct perf_event_context *ctx;
25346b93 1047
9ed6060d 1048retry:
058ebd0e
PZ
1049 /*
1050 * One of the few rules of preemptible RCU is that one cannot do
1051 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1052 * part of the read side critical section was preemptible -- see
1053 * rcu_read_unlock_special().
1054 *
1055 * Since ctx->lock nests under rq->lock we must ensure the entire read
1056 * side critical section is non-preemptible.
1057 */
1058 preempt_disable();
1059 rcu_read_lock();
8dc85d54 1060 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1061 if (ctx) {
1062 /*
1063 * If this context is a clone of another, it might
1064 * get swapped for another underneath us by
cdd6c482 1065 * perf_event_task_sched_out, though the
25346b93
PM
1066 * rcu_read_lock() protects us from any context
1067 * getting freed. Lock the context and check if it
1068 * got swapped before we could get the lock, and retry
1069 * if so. If we locked the right context, then it
1070 * can't get swapped on us any more.
1071 */
e625cce1 1072 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1073 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1074 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1075 rcu_read_unlock();
1076 preempt_enable();
25346b93
PM
1077 goto retry;
1078 }
b49a9e7e
PZ
1079
1080 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1081 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1082 ctx = NULL;
1083 }
25346b93
PM
1084 }
1085 rcu_read_unlock();
058ebd0e 1086 preempt_enable();
25346b93
PM
1087 return ctx;
1088}
1089
1090/*
1091 * Get the context for a task and increment its pin_count so it
1092 * can't get swapped to another task. This also increments its
1093 * reference count so that the context can't get freed.
1094 */
8dc85d54
PZ
1095static struct perf_event_context *
1096perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1097{
cdd6c482 1098 struct perf_event_context *ctx;
25346b93
PM
1099 unsigned long flags;
1100
8dc85d54 1101 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1102 if (ctx) {
1103 ++ctx->pin_count;
e625cce1 1104 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1105 }
1106 return ctx;
1107}
1108
cdd6c482 1109static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1110{
1111 unsigned long flags;
1112
e625cce1 1113 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1114 --ctx->pin_count;
e625cce1 1115 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1116}
1117
f67218c3
PZ
1118/*
1119 * Update the record of the current time in a context.
1120 */
1121static void update_context_time(struct perf_event_context *ctx)
1122{
1123 u64 now = perf_clock();
1124
1125 ctx->time += now - ctx->timestamp;
1126 ctx->timestamp = now;
1127}
1128
4158755d
SE
1129static u64 perf_event_time(struct perf_event *event)
1130{
1131 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1132
1133 if (is_cgroup_event(event))
1134 return perf_cgroup_event_time(event);
1135
4158755d
SE
1136 return ctx ? ctx->time : 0;
1137}
1138
f67218c3
PZ
1139/*
1140 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1141 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1142 */
1143static void update_event_times(struct perf_event *event)
1144{
1145 struct perf_event_context *ctx = event->ctx;
1146 u64 run_end;
1147
1148 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1149 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1150 return;
e5d1367f
SE
1151 /*
1152 * in cgroup mode, time_enabled represents
1153 * the time the event was enabled AND active
1154 * tasks were in the monitored cgroup. This is
1155 * independent of the activity of the context as
1156 * there may be a mix of cgroup and non-cgroup events.
1157 *
1158 * That is why we treat cgroup events differently
1159 * here.
1160 */
1161 if (is_cgroup_event(event))
46cd6a7f 1162 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1163 else if (ctx->is_active)
1164 run_end = ctx->time;
acd1d7c1
PZ
1165 else
1166 run_end = event->tstamp_stopped;
1167
1168 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1169
1170 if (event->state == PERF_EVENT_STATE_INACTIVE)
1171 run_end = event->tstamp_stopped;
1172 else
4158755d 1173 run_end = perf_event_time(event);
f67218c3
PZ
1174
1175 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1176
f67218c3
PZ
1177}
1178
96c21a46
PZ
1179/*
1180 * Update total_time_enabled and total_time_running for all events in a group.
1181 */
1182static void update_group_times(struct perf_event *leader)
1183{
1184 struct perf_event *event;
1185
1186 update_event_times(leader);
1187 list_for_each_entry(event, &leader->sibling_list, group_entry)
1188 update_event_times(event);
1189}
1190
889ff015
FW
1191static struct list_head *
1192ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1193{
1194 if (event->attr.pinned)
1195 return &ctx->pinned_groups;
1196 else
1197 return &ctx->flexible_groups;
1198}
1199
fccc714b 1200/*
cdd6c482 1201 * Add a event from the lists for its context.
fccc714b
PZ
1202 * Must be called with ctx->mutex and ctx->lock held.
1203 */
04289bb9 1204static void
cdd6c482 1205list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1206{
8a49542c
PZ
1207 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1208 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1209
1210 /*
8a49542c
PZ
1211 * If we're a stand alone event or group leader, we go to the context
1212 * list, group events are kept attached to the group so that
1213 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1214 */
8a49542c 1215 if (event->group_leader == event) {
889ff015
FW
1216 struct list_head *list;
1217
d6f962b5
FW
1218 if (is_software_event(event))
1219 event->group_flags |= PERF_GROUP_SOFTWARE;
1220
889ff015
FW
1221 list = ctx_group_list(event, ctx);
1222 list_add_tail(&event->group_entry, list);
5c148194 1223 }
592903cd 1224
08309379 1225 if (is_cgroup_event(event))
e5d1367f 1226 ctx->nr_cgroups++;
e5d1367f 1227
cdd6c482
IM
1228 list_add_rcu(&event->event_entry, &ctx->event_list);
1229 ctx->nr_events++;
1230 if (event->attr.inherit_stat)
bfbd3381 1231 ctx->nr_stat++;
5a3126d4
PZ
1232
1233 ctx->generation++;
04289bb9
IM
1234}
1235
0231bb53
JO
1236/*
1237 * Initialize event state based on the perf_event_attr::disabled.
1238 */
1239static inline void perf_event__state_init(struct perf_event *event)
1240{
1241 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1242 PERF_EVENT_STATE_INACTIVE;
1243}
1244
c320c7b7
ACM
1245/*
1246 * Called at perf_event creation and when events are attached/detached from a
1247 * group.
1248 */
1249static void perf_event__read_size(struct perf_event *event)
1250{
1251 int entry = sizeof(u64); /* value */
1252 int size = 0;
1253 int nr = 1;
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1259 size += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_ID)
1262 entry += sizeof(u64);
1263
1264 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1265 nr += event->group_leader->nr_siblings;
1266 size += sizeof(u64);
1267 }
1268
1269 size += entry * nr;
1270 event->read_size = size;
1271}
1272
1273static void perf_event__header_size(struct perf_event *event)
1274{
1275 struct perf_sample_data *data;
1276 u64 sample_type = event->attr.sample_type;
1277 u16 size = 0;
1278
1279 perf_event__read_size(event);
1280
1281 if (sample_type & PERF_SAMPLE_IP)
1282 size += sizeof(data->ip);
1283
6844c09d
ACM
1284 if (sample_type & PERF_SAMPLE_ADDR)
1285 size += sizeof(data->addr);
1286
1287 if (sample_type & PERF_SAMPLE_PERIOD)
1288 size += sizeof(data->period);
1289
c3feedf2
AK
1290 if (sample_type & PERF_SAMPLE_WEIGHT)
1291 size += sizeof(data->weight);
1292
6844c09d
ACM
1293 if (sample_type & PERF_SAMPLE_READ)
1294 size += event->read_size;
1295
d6be9ad6
SE
1296 if (sample_type & PERF_SAMPLE_DATA_SRC)
1297 size += sizeof(data->data_src.val);
1298
fdfbbd07
AK
1299 if (sample_type & PERF_SAMPLE_TRANSACTION)
1300 size += sizeof(data->txn);
1301
6844c09d
ACM
1302 event->header_size = size;
1303}
1304
1305static void perf_event__id_header_size(struct perf_event *event)
1306{
1307 struct perf_sample_data *data;
1308 u64 sample_type = event->attr.sample_type;
1309 u16 size = 0;
1310
c320c7b7
ACM
1311 if (sample_type & PERF_SAMPLE_TID)
1312 size += sizeof(data->tid_entry);
1313
1314 if (sample_type & PERF_SAMPLE_TIME)
1315 size += sizeof(data->time);
1316
ff3d527c
AH
1317 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1318 size += sizeof(data->id);
1319
c320c7b7
ACM
1320 if (sample_type & PERF_SAMPLE_ID)
1321 size += sizeof(data->id);
1322
1323 if (sample_type & PERF_SAMPLE_STREAM_ID)
1324 size += sizeof(data->stream_id);
1325
1326 if (sample_type & PERF_SAMPLE_CPU)
1327 size += sizeof(data->cpu_entry);
1328
6844c09d 1329 event->id_header_size = size;
c320c7b7
ACM
1330}
1331
8a49542c
PZ
1332static void perf_group_attach(struct perf_event *event)
1333{
c320c7b7 1334 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1335
74c3337c
PZ
1336 /*
1337 * We can have double attach due to group movement in perf_event_open.
1338 */
1339 if (event->attach_state & PERF_ATTACH_GROUP)
1340 return;
1341
8a49542c
PZ
1342 event->attach_state |= PERF_ATTACH_GROUP;
1343
1344 if (group_leader == event)
1345 return;
1346
652884fe
PZ
1347 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1348
8a49542c
PZ
1349 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1350 !is_software_event(event))
1351 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1352
1353 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1354 group_leader->nr_siblings++;
c320c7b7
ACM
1355
1356 perf_event__header_size(group_leader);
1357
1358 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1359 perf_event__header_size(pos);
8a49542c
PZ
1360}
1361
a63eaf34 1362/*
cdd6c482 1363 * Remove a event from the lists for its context.
fccc714b 1364 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1365 */
04289bb9 1366static void
cdd6c482 1367list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1368{
68cacd29 1369 struct perf_cpu_context *cpuctx;
652884fe
PZ
1370
1371 WARN_ON_ONCE(event->ctx != ctx);
1372 lockdep_assert_held(&ctx->lock);
1373
8a49542c
PZ
1374 /*
1375 * We can have double detach due to exit/hot-unplug + close.
1376 */
1377 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1378 return;
8a49542c
PZ
1379
1380 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1381
68cacd29 1382 if (is_cgroup_event(event)) {
e5d1367f 1383 ctx->nr_cgroups--;
68cacd29
SE
1384 cpuctx = __get_cpu_context(ctx);
1385 /*
1386 * if there are no more cgroup events
1387 * then cler cgrp to avoid stale pointer
1388 * in update_cgrp_time_from_cpuctx()
1389 */
1390 if (!ctx->nr_cgroups)
1391 cpuctx->cgrp = NULL;
1392 }
e5d1367f 1393
cdd6c482
IM
1394 ctx->nr_events--;
1395 if (event->attr.inherit_stat)
bfbd3381 1396 ctx->nr_stat--;
8bc20959 1397
cdd6c482 1398 list_del_rcu(&event->event_entry);
04289bb9 1399
8a49542c
PZ
1400 if (event->group_leader == event)
1401 list_del_init(&event->group_entry);
5c148194 1402
96c21a46 1403 update_group_times(event);
b2e74a26
SE
1404
1405 /*
1406 * If event was in error state, then keep it
1407 * that way, otherwise bogus counts will be
1408 * returned on read(). The only way to get out
1409 * of error state is by explicit re-enabling
1410 * of the event
1411 */
1412 if (event->state > PERF_EVENT_STATE_OFF)
1413 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1414
1415 ctx->generation++;
050735b0
PZ
1416}
1417
8a49542c 1418static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1419{
1420 struct perf_event *sibling, *tmp;
8a49542c
PZ
1421 struct list_head *list = NULL;
1422
1423 /*
1424 * We can have double detach due to exit/hot-unplug + close.
1425 */
1426 if (!(event->attach_state & PERF_ATTACH_GROUP))
1427 return;
1428
1429 event->attach_state &= ~PERF_ATTACH_GROUP;
1430
1431 /*
1432 * If this is a sibling, remove it from its group.
1433 */
1434 if (event->group_leader != event) {
1435 list_del_init(&event->group_entry);
1436 event->group_leader->nr_siblings--;
c320c7b7 1437 goto out;
8a49542c
PZ
1438 }
1439
1440 if (!list_empty(&event->group_entry))
1441 list = &event->group_entry;
2e2af50b 1442
04289bb9 1443 /*
cdd6c482
IM
1444 * If this was a group event with sibling events then
1445 * upgrade the siblings to singleton events by adding them
8a49542c 1446 * to whatever list we are on.
04289bb9 1447 */
cdd6c482 1448 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1449 if (list)
1450 list_move_tail(&sibling->group_entry, list);
04289bb9 1451 sibling->group_leader = sibling;
d6f962b5
FW
1452
1453 /* Inherit group flags from the previous leader */
1454 sibling->group_flags = event->group_flags;
652884fe
PZ
1455
1456 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1457 }
c320c7b7
ACM
1458
1459out:
1460 perf_event__header_size(event->group_leader);
1461
1462 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1463 perf_event__header_size(tmp);
04289bb9
IM
1464}
1465
fadfe7be
JO
1466/*
1467 * User event without the task.
1468 */
1469static bool is_orphaned_event(struct perf_event *event)
1470{
1471 return event && !is_kernel_event(event) && !event->owner;
1472}
1473
1474/*
1475 * Event has a parent but parent's task finished and it's
1476 * alive only because of children holding refference.
1477 */
1478static bool is_orphaned_child(struct perf_event *event)
1479{
1480 return is_orphaned_event(event->parent);
1481}
1482
1483static void orphans_remove_work(struct work_struct *work);
1484
1485static void schedule_orphans_remove(struct perf_event_context *ctx)
1486{
1487 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1488 return;
1489
1490 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1491 get_ctx(ctx);
1492 ctx->orphans_remove_sched = true;
1493 }
1494}
1495
1496static int __init perf_workqueue_init(void)
1497{
1498 perf_wq = create_singlethread_workqueue("perf");
1499 WARN(!perf_wq, "failed to create perf workqueue\n");
1500 return perf_wq ? 0 : -1;
1501}
1502
1503core_initcall(perf_workqueue_init);
1504
66eb579e
MR
1505static inline int pmu_filter_match(struct perf_event *event)
1506{
1507 struct pmu *pmu = event->pmu;
1508 return pmu->filter_match ? pmu->filter_match(event) : 1;
1509}
1510
fa66f07a
SE
1511static inline int
1512event_filter_match(struct perf_event *event)
1513{
e5d1367f 1514 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1515 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1516}
1517
9ffcfa6f
SE
1518static void
1519event_sched_out(struct perf_event *event,
3b6f9e5c 1520 struct perf_cpu_context *cpuctx,
cdd6c482 1521 struct perf_event_context *ctx)
3b6f9e5c 1522{
4158755d 1523 u64 tstamp = perf_event_time(event);
fa66f07a 1524 u64 delta;
652884fe
PZ
1525
1526 WARN_ON_ONCE(event->ctx != ctx);
1527 lockdep_assert_held(&ctx->lock);
1528
fa66f07a
SE
1529 /*
1530 * An event which could not be activated because of
1531 * filter mismatch still needs to have its timings
1532 * maintained, otherwise bogus information is return
1533 * via read() for time_enabled, time_running:
1534 */
1535 if (event->state == PERF_EVENT_STATE_INACTIVE
1536 && !event_filter_match(event)) {
e5d1367f 1537 delta = tstamp - event->tstamp_stopped;
fa66f07a 1538 event->tstamp_running += delta;
4158755d 1539 event->tstamp_stopped = tstamp;
fa66f07a
SE
1540 }
1541
cdd6c482 1542 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1543 return;
3b6f9e5c 1544
44377277
AS
1545 perf_pmu_disable(event->pmu);
1546
cdd6c482
IM
1547 event->state = PERF_EVENT_STATE_INACTIVE;
1548 if (event->pending_disable) {
1549 event->pending_disable = 0;
1550 event->state = PERF_EVENT_STATE_OFF;
970892a9 1551 }
4158755d 1552 event->tstamp_stopped = tstamp;
a4eaf7f1 1553 event->pmu->del(event, 0);
cdd6c482 1554 event->oncpu = -1;
3b6f9e5c 1555
cdd6c482 1556 if (!is_software_event(event))
3b6f9e5c 1557 cpuctx->active_oncpu--;
2fde4f94
MR
1558 if (!--ctx->nr_active)
1559 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1560 if (event->attr.freq && event->attr.sample_freq)
1561 ctx->nr_freq--;
cdd6c482 1562 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1563 cpuctx->exclusive = 0;
44377277 1564
fadfe7be
JO
1565 if (is_orphaned_child(event))
1566 schedule_orphans_remove(ctx);
1567
44377277 1568 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1569}
1570
d859e29f 1571static void
cdd6c482 1572group_sched_out(struct perf_event *group_event,
d859e29f 1573 struct perf_cpu_context *cpuctx,
cdd6c482 1574 struct perf_event_context *ctx)
d859e29f 1575{
cdd6c482 1576 struct perf_event *event;
fa66f07a 1577 int state = group_event->state;
d859e29f 1578
cdd6c482 1579 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1580
1581 /*
1582 * Schedule out siblings (if any):
1583 */
cdd6c482
IM
1584 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1585 event_sched_out(event, cpuctx, ctx);
d859e29f 1586
fa66f07a 1587 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1588 cpuctx->exclusive = 0;
1589}
1590
46ce0fe9
PZ
1591struct remove_event {
1592 struct perf_event *event;
1593 bool detach_group;
1594};
1595
0793a61d 1596/*
cdd6c482 1597 * Cross CPU call to remove a performance event
0793a61d 1598 *
cdd6c482 1599 * We disable the event on the hardware level first. After that we
0793a61d
TG
1600 * remove it from the context list.
1601 */
fe4b04fa 1602static int __perf_remove_from_context(void *info)
0793a61d 1603{
46ce0fe9
PZ
1604 struct remove_event *re = info;
1605 struct perf_event *event = re->event;
cdd6c482 1606 struct perf_event_context *ctx = event->ctx;
108b02cf 1607 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1608
e625cce1 1609 raw_spin_lock(&ctx->lock);
cdd6c482 1610 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1611 if (re->detach_group)
1612 perf_group_detach(event);
cdd6c482 1613 list_del_event(event, ctx);
64ce3126
PZ
1614 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1615 ctx->is_active = 0;
1616 cpuctx->task_ctx = NULL;
1617 }
e625cce1 1618 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1619
1620 return 0;
0793a61d
TG
1621}
1622
1623
1624/*
cdd6c482 1625 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1626 *
cdd6c482 1627 * CPU events are removed with a smp call. For task events we only
0793a61d 1628 * call when the task is on a CPU.
c93f7669 1629 *
cdd6c482
IM
1630 * If event->ctx is a cloned context, callers must make sure that
1631 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1632 * remains valid. This is OK when called from perf_release since
1633 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1634 * When called from perf_event_exit_task, it's OK because the
c93f7669 1635 * context has been detached from its task.
0793a61d 1636 */
46ce0fe9 1637static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1638{
cdd6c482 1639 struct perf_event_context *ctx = event->ctx;
0793a61d 1640 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1641 struct remove_event re = {
1642 .event = event,
1643 .detach_group = detach_group,
1644 };
0793a61d 1645
fe4b04fa
PZ
1646 lockdep_assert_held(&ctx->mutex);
1647
0793a61d
TG
1648 if (!task) {
1649 /*
226424ee
MR
1650 * Per cpu events are removed via an smp call. The removal can
1651 * fail if the CPU is currently offline, but in that case we
1652 * already called __perf_remove_from_context from
1653 * perf_event_exit_cpu.
0793a61d 1654 */
46ce0fe9 1655 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1656 return;
1657 }
1658
1659retry:
46ce0fe9 1660 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1661 return;
0793a61d 1662
e625cce1 1663 raw_spin_lock_irq(&ctx->lock);
0793a61d 1664 /*
fe4b04fa
PZ
1665 * If we failed to find a running task, but find the context active now
1666 * that we've acquired the ctx->lock, retry.
0793a61d 1667 */
fe4b04fa 1668 if (ctx->is_active) {
e625cce1 1669 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1670 /*
1671 * Reload the task pointer, it might have been changed by
1672 * a concurrent perf_event_context_sched_out().
1673 */
1674 task = ctx->task;
0793a61d
TG
1675 goto retry;
1676 }
1677
1678 /*
fe4b04fa
PZ
1679 * Since the task isn't running, its safe to remove the event, us
1680 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1681 */
46ce0fe9
PZ
1682 if (detach_group)
1683 perf_group_detach(event);
fe4b04fa 1684 list_del_event(event, ctx);
e625cce1 1685 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1686}
1687
d859e29f 1688/*
cdd6c482 1689 * Cross CPU call to disable a performance event
d859e29f 1690 */
500ad2d8 1691int __perf_event_disable(void *info)
d859e29f 1692{
cdd6c482 1693 struct perf_event *event = info;
cdd6c482 1694 struct perf_event_context *ctx = event->ctx;
108b02cf 1695 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1696
1697 /*
cdd6c482
IM
1698 * If this is a per-task event, need to check whether this
1699 * event's task is the current task on this cpu.
fe4b04fa
PZ
1700 *
1701 * Can trigger due to concurrent perf_event_context_sched_out()
1702 * flipping contexts around.
d859e29f 1703 */
665c2142 1704 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1705 return -EINVAL;
d859e29f 1706
e625cce1 1707 raw_spin_lock(&ctx->lock);
d859e29f
PM
1708
1709 /*
cdd6c482 1710 * If the event is on, turn it off.
d859e29f
PM
1711 * If it is in error state, leave it in error state.
1712 */
cdd6c482 1713 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1714 update_context_time(ctx);
e5d1367f 1715 update_cgrp_time_from_event(event);
cdd6c482
IM
1716 update_group_times(event);
1717 if (event == event->group_leader)
1718 group_sched_out(event, cpuctx, ctx);
d859e29f 1719 else
cdd6c482
IM
1720 event_sched_out(event, cpuctx, ctx);
1721 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1722 }
1723
e625cce1 1724 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1725
1726 return 0;
d859e29f
PM
1727}
1728
1729/*
cdd6c482 1730 * Disable a event.
c93f7669 1731 *
cdd6c482
IM
1732 * If event->ctx is a cloned context, callers must make sure that
1733 * every task struct that event->ctx->task could possibly point to
c93f7669 1734 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1735 * perf_event_for_each_child or perf_event_for_each because they
1736 * hold the top-level event's child_mutex, so any descendant that
1737 * goes to exit will block in sync_child_event.
1738 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1739 * is the current context on this CPU and preemption is disabled,
cdd6c482 1740 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1741 */
f63a8daa 1742static void _perf_event_disable(struct perf_event *event)
d859e29f 1743{
cdd6c482 1744 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1745 struct task_struct *task = ctx->task;
1746
1747 if (!task) {
1748 /*
cdd6c482 1749 * Disable the event on the cpu that it's on
d859e29f 1750 */
fe4b04fa 1751 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1752 return;
1753 }
1754
9ed6060d 1755retry:
fe4b04fa
PZ
1756 if (!task_function_call(task, __perf_event_disable, event))
1757 return;
d859e29f 1758
e625cce1 1759 raw_spin_lock_irq(&ctx->lock);
d859e29f 1760 /*
cdd6c482 1761 * If the event is still active, we need to retry the cross-call.
d859e29f 1762 */
cdd6c482 1763 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1764 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1765 /*
1766 * Reload the task pointer, it might have been changed by
1767 * a concurrent perf_event_context_sched_out().
1768 */
1769 task = ctx->task;
d859e29f
PM
1770 goto retry;
1771 }
1772
1773 /*
1774 * Since we have the lock this context can't be scheduled
1775 * in, so we can change the state safely.
1776 */
cdd6c482
IM
1777 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1778 update_group_times(event);
1779 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1780 }
e625cce1 1781 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1782}
f63a8daa
PZ
1783
1784/*
1785 * Strictly speaking kernel users cannot create groups and therefore this
1786 * interface does not need the perf_event_ctx_lock() magic.
1787 */
1788void perf_event_disable(struct perf_event *event)
1789{
1790 struct perf_event_context *ctx;
1791
1792 ctx = perf_event_ctx_lock(event);
1793 _perf_event_disable(event);
1794 perf_event_ctx_unlock(event, ctx);
1795}
dcfce4a0 1796EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1797
e5d1367f
SE
1798static void perf_set_shadow_time(struct perf_event *event,
1799 struct perf_event_context *ctx,
1800 u64 tstamp)
1801{
1802 /*
1803 * use the correct time source for the time snapshot
1804 *
1805 * We could get by without this by leveraging the
1806 * fact that to get to this function, the caller
1807 * has most likely already called update_context_time()
1808 * and update_cgrp_time_xx() and thus both timestamp
1809 * are identical (or very close). Given that tstamp is,
1810 * already adjusted for cgroup, we could say that:
1811 * tstamp - ctx->timestamp
1812 * is equivalent to
1813 * tstamp - cgrp->timestamp.
1814 *
1815 * Then, in perf_output_read(), the calculation would
1816 * work with no changes because:
1817 * - event is guaranteed scheduled in
1818 * - no scheduled out in between
1819 * - thus the timestamp would be the same
1820 *
1821 * But this is a bit hairy.
1822 *
1823 * So instead, we have an explicit cgroup call to remain
1824 * within the time time source all along. We believe it
1825 * is cleaner and simpler to understand.
1826 */
1827 if (is_cgroup_event(event))
1828 perf_cgroup_set_shadow_time(event, tstamp);
1829 else
1830 event->shadow_ctx_time = tstamp - ctx->timestamp;
1831}
1832
4fe757dd
PZ
1833#define MAX_INTERRUPTS (~0ULL)
1834
1835static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1836static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1837
235c7fc7 1838static int
9ffcfa6f 1839event_sched_in(struct perf_event *event,
235c7fc7 1840 struct perf_cpu_context *cpuctx,
6e37738a 1841 struct perf_event_context *ctx)
235c7fc7 1842{
4158755d 1843 u64 tstamp = perf_event_time(event);
44377277 1844 int ret = 0;
4158755d 1845
63342411
PZ
1846 lockdep_assert_held(&ctx->lock);
1847
cdd6c482 1848 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1849 return 0;
1850
cdd6c482 1851 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1852 event->oncpu = smp_processor_id();
4fe757dd
PZ
1853
1854 /*
1855 * Unthrottle events, since we scheduled we might have missed several
1856 * ticks already, also for a heavily scheduling task there is little
1857 * guarantee it'll get a tick in a timely manner.
1858 */
1859 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1860 perf_log_throttle(event, 1);
1861 event->hw.interrupts = 0;
1862 }
1863
235c7fc7
IM
1864 /*
1865 * The new state must be visible before we turn it on in the hardware:
1866 */
1867 smp_wmb();
1868
44377277
AS
1869 perf_pmu_disable(event->pmu);
1870
72f669c0
SL
1871 perf_set_shadow_time(event, ctx, tstamp);
1872
ec0d7729
AS
1873 perf_log_itrace_start(event);
1874
a4eaf7f1 1875 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1876 event->state = PERF_EVENT_STATE_INACTIVE;
1877 event->oncpu = -1;
44377277
AS
1878 ret = -EAGAIN;
1879 goto out;
235c7fc7
IM
1880 }
1881
00a2916f
PZ
1882 event->tstamp_running += tstamp - event->tstamp_stopped;
1883
cdd6c482 1884 if (!is_software_event(event))
3b6f9e5c 1885 cpuctx->active_oncpu++;
2fde4f94
MR
1886 if (!ctx->nr_active++)
1887 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1888 if (event->attr.freq && event->attr.sample_freq)
1889 ctx->nr_freq++;
235c7fc7 1890
cdd6c482 1891 if (event->attr.exclusive)
3b6f9e5c
PM
1892 cpuctx->exclusive = 1;
1893
fadfe7be
JO
1894 if (is_orphaned_child(event))
1895 schedule_orphans_remove(ctx);
1896
44377277
AS
1897out:
1898 perf_pmu_enable(event->pmu);
1899
1900 return ret;
235c7fc7
IM
1901}
1902
6751b71e 1903static int
cdd6c482 1904group_sched_in(struct perf_event *group_event,
6751b71e 1905 struct perf_cpu_context *cpuctx,
6e37738a 1906 struct perf_event_context *ctx)
6751b71e 1907{
6bde9b6c 1908 struct perf_event *event, *partial_group = NULL;
4a234593 1909 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1910 u64 now = ctx->time;
1911 bool simulate = false;
6751b71e 1912
cdd6c482 1913 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1914 return 0;
1915
ad5133b7 1916 pmu->start_txn(pmu);
6bde9b6c 1917
9ffcfa6f 1918 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1919 pmu->cancel_txn(pmu);
272325c4 1920 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1921 return -EAGAIN;
90151c35 1922 }
6751b71e
PM
1923
1924 /*
1925 * Schedule in siblings as one group (if any):
1926 */
cdd6c482 1927 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1928 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1929 partial_group = event;
6751b71e
PM
1930 goto group_error;
1931 }
1932 }
1933
9ffcfa6f 1934 if (!pmu->commit_txn(pmu))
6e85158c 1935 return 0;
9ffcfa6f 1936
6751b71e
PM
1937group_error:
1938 /*
1939 * Groups can be scheduled in as one unit only, so undo any
1940 * partial group before returning:
d7842da4
SE
1941 * The events up to the failed event are scheduled out normally,
1942 * tstamp_stopped will be updated.
1943 *
1944 * The failed events and the remaining siblings need to have
1945 * their timings updated as if they had gone thru event_sched_in()
1946 * and event_sched_out(). This is required to get consistent timings
1947 * across the group. This also takes care of the case where the group
1948 * could never be scheduled by ensuring tstamp_stopped is set to mark
1949 * the time the event was actually stopped, such that time delta
1950 * calculation in update_event_times() is correct.
6751b71e 1951 */
cdd6c482
IM
1952 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1953 if (event == partial_group)
d7842da4
SE
1954 simulate = true;
1955
1956 if (simulate) {
1957 event->tstamp_running += now - event->tstamp_stopped;
1958 event->tstamp_stopped = now;
1959 } else {
1960 event_sched_out(event, cpuctx, ctx);
1961 }
6751b71e 1962 }
9ffcfa6f 1963 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1964
ad5133b7 1965 pmu->cancel_txn(pmu);
90151c35 1966
272325c4 1967 perf_mux_hrtimer_restart(cpuctx);
9e630205 1968
6751b71e
PM
1969 return -EAGAIN;
1970}
1971
3b6f9e5c 1972/*
cdd6c482 1973 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1974 */
cdd6c482 1975static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1976 struct perf_cpu_context *cpuctx,
1977 int can_add_hw)
1978{
1979 /*
cdd6c482 1980 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1981 */
d6f962b5 1982 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1983 return 1;
1984 /*
1985 * If an exclusive group is already on, no other hardware
cdd6c482 1986 * events can go on.
3b6f9e5c
PM
1987 */
1988 if (cpuctx->exclusive)
1989 return 0;
1990 /*
1991 * If this group is exclusive and there are already
cdd6c482 1992 * events on the CPU, it can't go on.
3b6f9e5c 1993 */
cdd6c482 1994 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1995 return 0;
1996 /*
1997 * Otherwise, try to add it if all previous groups were able
1998 * to go on.
1999 */
2000 return can_add_hw;
2001}
2002
cdd6c482
IM
2003static void add_event_to_ctx(struct perf_event *event,
2004 struct perf_event_context *ctx)
53cfbf59 2005{
4158755d
SE
2006 u64 tstamp = perf_event_time(event);
2007
cdd6c482 2008 list_add_event(event, ctx);
8a49542c 2009 perf_group_attach(event);
4158755d
SE
2010 event->tstamp_enabled = tstamp;
2011 event->tstamp_running = tstamp;
2012 event->tstamp_stopped = tstamp;
53cfbf59
PM
2013}
2014
2c29ef0f
PZ
2015static void task_ctx_sched_out(struct perf_event_context *ctx);
2016static void
2017ctx_sched_in(struct perf_event_context *ctx,
2018 struct perf_cpu_context *cpuctx,
2019 enum event_type_t event_type,
2020 struct task_struct *task);
fe4b04fa 2021
dce5855b
PZ
2022static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2023 struct perf_event_context *ctx,
2024 struct task_struct *task)
2025{
2026 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2027 if (ctx)
2028 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2029 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2030 if (ctx)
2031 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2032}
2033
0793a61d 2034/*
cdd6c482 2035 * Cross CPU call to install and enable a performance event
682076ae
PZ
2036 *
2037 * Must be called with ctx->mutex held
0793a61d 2038 */
fe4b04fa 2039static int __perf_install_in_context(void *info)
0793a61d 2040{
cdd6c482
IM
2041 struct perf_event *event = info;
2042 struct perf_event_context *ctx = event->ctx;
108b02cf 2043 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2044 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2045 struct task_struct *task = current;
2046
b58f6b0d 2047 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2048 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2049
2050 /*
2c29ef0f 2051 * If there was an active task_ctx schedule it out.
0793a61d 2052 */
b58f6b0d 2053 if (task_ctx)
2c29ef0f 2054 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2055
2056 /*
2057 * If the context we're installing events in is not the
2058 * active task_ctx, flip them.
2059 */
2060 if (ctx->task && task_ctx != ctx) {
2061 if (task_ctx)
2062 raw_spin_unlock(&task_ctx->lock);
2063 raw_spin_lock(&ctx->lock);
2064 task_ctx = ctx;
2065 }
2066
2067 if (task_ctx) {
2068 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2069 task = task_ctx->task;
2070 }
b58f6b0d 2071
2c29ef0f 2072 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2073
4af4998b 2074 update_context_time(ctx);
e5d1367f
SE
2075 /*
2076 * update cgrp time only if current cgrp
2077 * matches event->cgrp. Must be done before
2078 * calling add_event_to_ctx()
2079 */
2080 update_cgrp_time_from_event(event);
0793a61d 2081
cdd6c482 2082 add_event_to_ctx(event, ctx);
0793a61d 2083
d859e29f 2084 /*
2c29ef0f 2085 * Schedule everything back in
d859e29f 2086 */
dce5855b 2087 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2088
2089 perf_pmu_enable(cpuctx->ctx.pmu);
2090 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2091
2092 return 0;
0793a61d
TG
2093}
2094
2095/*
cdd6c482 2096 * Attach a performance event to a context
0793a61d 2097 *
cdd6c482
IM
2098 * First we add the event to the list with the hardware enable bit
2099 * in event->hw_config cleared.
0793a61d 2100 *
cdd6c482 2101 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2102 * call to enable it in the task context. The task might have been
2103 * scheduled away, but we check this in the smp call again.
2104 */
2105static void
cdd6c482
IM
2106perf_install_in_context(struct perf_event_context *ctx,
2107 struct perf_event *event,
0793a61d
TG
2108 int cpu)
2109{
2110 struct task_struct *task = ctx->task;
2111
fe4b04fa
PZ
2112 lockdep_assert_held(&ctx->mutex);
2113
c3f00c70 2114 event->ctx = ctx;
0cda4c02
YZ
2115 if (event->cpu != -1)
2116 event->cpu = cpu;
c3f00c70 2117
0793a61d
TG
2118 if (!task) {
2119 /*
cdd6c482 2120 * Per cpu events are installed via an smp call and
af901ca1 2121 * the install is always successful.
0793a61d 2122 */
fe4b04fa 2123 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2124 return;
2125 }
2126
0793a61d 2127retry:
fe4b04fa
PZ
2128 if (!task_function_call(task, __perf_install_in_context, event))
2129 return;
0793a61d 2130
e625cce1 2131 raw_spin_lock_irq(&ctx->lock);
0793a61d 2132 /*
fe4b04fa
PZ
2133 * If we failed to find a running task, but find the context active now
2134 * that we've acquired the ctx->lock, retry.
0793a61d 2135 */
fe4b04fa 2136 if (ctx->is_active) {
e625cce1 2137 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2138 /*
2139 * Reload the task pointer, it might have been changed by
2140 * a concurrent perf_event_context_sched_out().
2141 */
2142 task = ctx->task;
0793a61d
TG
2143 goto retry;
2144 }
2145
2146 /*
fe4b04fa
PZ
2147 * Since the task isn't running, its safe to add the event, us holding
2148 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2149 */
fe4b04fa 2150 add_event_to_ctx(event, ctx);
e625cce1 2151 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2152}
2153
fa289bec 2154/*
cdd6c482 2155 * Put a event into inactive state and update time fields.
fa289bec
PM
2156 * Enabling the leader of a group effectively enables all
2157 * the group members that aren't explicitly disabled, so we
2158 * have to update their ->tstamp_enabled also.
2159 * Note: this works for group members as well as group leaders
2160 * since the non-leader members' sibling_lists will be empty.
2161 */
1d9b482e 2162static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2163{
cdd6c482 2164 struct perf_event *sub;
4158755d 2165 u64 tstamp = perf_event_time(event);
fa289bec 2166
cdd6c482 2167 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2168 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2169 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2170 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2171 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2172 }
fa289bec
PM
2173}
2174
d859e29f 2175/*
cdd6c482 2176 * Cross CPU call to enable a performance event
d859e29f 2177 */
fe4b04fa 2178static int __perf_event_enable(void *info)
04289bb9 2179{
cdd6c482 2180 struct perf_event *event = info;
cdd6c482
IM
2181 struct perf_event_context *ctx = event->ctx;
2182 struct perf_event *leader = event->group_leader;
108b02cf 2183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2184 int err;
04289bb9 2185
06f41796
JO
2186 /*
2187 * There's a time window between 'ctx->is_active' check
2188 * in perf_event_enable function and this place having:
2189 * - IRQs on
2190 * - ctx->lock unlocked
2191 *
2192 * where the task could be killed and 'ctx' deactivated
2193 * by perf_event_exit_task.
2194 */
2195 if (!ctx->is_active)
fe4b04fa 2196 return -EINVAL;
3cbed429 2197
e625cce1 2198 raw_spin_lock(&ctx->lock);
4af4998b 2199 update_context_time(ctx);
d859e29f 2200
cdd6c482 2201 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2202 goto unlock;
e5d1367f
SE
2203
2204 /*
2205 * set current task's cgroup time reference point
2206 */
3f7cce3c 2207 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2208
1d9b482e 2209 __perf_event_mark_enabled(event);
04289bb9 2210
e5d1367f
SE
2211 if (!event_filter_match(event)) {
2212 if (is_cgroup_event(event))
2213 perf_cgroup_defer_enabled(event);
f4c4176f 2214 goto unlock;
e5d1367f 2215 }
f4c4176f 2216
04289bb9 2217 /*
cdd6c482 2218 * If the event is in a group and isn't the group leader,
d859e29f 2219 * then don't put it on unless the group is on.
04289bb9 2220 */
cdd6c482 2221 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2222 goto unlock;
3b6f9e5c 2223
cdd6c482 2224 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2225 err = -EEXIST;
e758a33d 2226 } else {
cdd6c482 2227 if (event == leader)
6e37738a 2228 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2229 else
6e37738a 2230 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2231 }
d859e29f
PM
2232
2233 if (err) {
2234 /*
cdd6c482 2235 * If this event can't go on and it's part of a
d859e29f
PM
2236 * group, then the whole group has to come off.
2237 */
9e630205 2238 if (leader != event) {
d859e29f 2239 group_sched_out(leader, cpuctx, ctx);
272325c4 2240 perf_mux_hrtimer_restart(cpuctx);
9e630205 2241 }
0d48696f 2242 if (leader->attr.pinned) {
53cfbf59 2243 update_group_times(leader);
cdd6c482 2244 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2245 }
d859e29f
PM
2246 }
2247
9ed6060d 2248unlock:
e625cce1 2249 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2250
2251 return 0;
d859e29f
PM
2252}
2253
2254/*
cdd6c482 2255 * Enable a event.
c93f7669 2256 *
cdd6c482
IM
2257 * If event->ctx is a cloned context, callers must make sure that
2258 * every task struct that event->ctx->task could possibly point to
c93f7669 2259 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2260 * perf_event_for_each_child or perf_event_for_each as described
2261 * for perf_event_disable.
d859e29f 2262 */
f63a8daa 2263static void _perf_event_enable(struct perf_event *event)
d859e29f 2264{
cdd6c482 2265 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2266 struct task_struct *task = ctx->task;
2267
2268 if (!task) {
2269 /*
cdd6c482 2270 * Enable the event on the cpu that it's on
d859e29f 2271 */
fe4b04fa 2272 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2273 return;
2274 }
2275
e625cce1 2276 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2277 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2278 goto out;
2279
2280 /*
cdd6c482
IM
2281 * If the event is in error state, clear that first.
2282 * That way, if we see the event in error state below, we
d859e29f
PM
2283 * know that it has gone back into error state, as distinct
2284 * from the task having been scheduled away before the
2285 * cross-call arrived.
2286 */
cdd6c482
IM
2287 if (event->state == PERF_EVENT_STATE_ERROR)
2288 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2289
9ed6060d 2290retry:
fe4b04fa 2291 if (!ctx->is_active) {
1d9b482e 2292 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2293 goto out;
2294 }
2295
e625cce1 2296 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2297
2298 if (!task_function_call(task, __perf_event_enable, event))
2299 return;
d859e29f 2300
e625cce1 2301 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2302
2303 /*
cdd6c482 2304 * If the context is active and the event is still off,
d859e29f
PM
2305 * we need to retry the cross-call.
2306 */
fe4b04fa
PZ
2307 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2308 /*
2309 * task could have been flipped by a concurrent
2310 * perf_event_context_sched_out()
2311 */
2312 task = ctx->task;
d859e29f 2313 goto retry;
fe4b04fa 2314 }
fa289bec 2315
9ed6060d 2316out:
e625cce1 2317 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2318}
f63a8daa
PZ
2319
2320/*
2321 * See perf_event_disable();
2322 */
2323void perf_event_enable(struct perf_event *event)
2324{
2325 struct perf_event_context *ctx;
2326
2327 ctx = perf_event_ctx_lock(event);
2328 _perf_event_enable(event);
2329 perf_event_ctx_unlock(event, ctx);
2330}
dcfce4a0 2331EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2332
f63a8daa 2333static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2334{
2023b359 2335 /*
cdd6c482 2336 * not supported on inherited events
2023b359 2337 */
2e939d1d 2338 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2339 return -EINVAL;
2340
cdd6c482 2341 atomic_add(refresh, &event->event_limit);
f63a8daa 2342 _perf_event_enable(event);
2023b359
PZ
2343
2344 return 0;
79f14641 2345}
f63a8daa
PZ
2346
2347/*
2348 * See perf_event_disable()
2349 */
2350int perf_event_refresh(struct perf_event *event, int refresh)
2351{
2352 struct perf_event_context *ctx;
2353 int ret;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 ret = _perf_event_refresh(event, refresh);
2357 perf_event_ctx_unlock(event, ctx);
2358
2359 return ret;
2360}
26ca5c11 2361EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2362
5b0311e1
FW
2363static void ctx_sched_out(struct perf_event_context *ctx,
2364 struct perf_cpu_context *cpuctx,
2365 enum event_type_t event_type)
235c7fc7 2366{
cdd6c482 2367 struct perf_event *event;
db24d33e 2368 int is_active = ctx->is_active;
235c7fc7 2369
db24d33e 2370 ctx->is_active &= ~event_type;
cdd6c482 2371 if (likely(!ctx->nr_events))
facc4307
PZ
2372 return;
2373
4af4998b 2374 update_context_time(ctx);
e5d1367f 2375 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2376 if (!ctx->nr_active)
facc4307 2377 return;
5b0311e1 2378
075e0b00 2379 perf_pmu_disable(ctx->pmu);
db24d33e 2380 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2381 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2382 group_sched_out(event, cpuctx, ctx);
9ed6060d 2383 }
889ff015 2384
db24d33e 2385 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2386 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2387 group_sched_out(event, cpuctx, ctx);
9ed6060d 2388 }
1b9a644f 2389 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2390}
2391
564c2b21 2392/*
5a3126d4
PZ
2393 * Test whether two contexts are equivalent, i.e. whether they have both been
2394 * cloned from the same version of the same context.
2395 *
2396 * Equivalence is measured using a generation number in the context that is
2397 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2398 * and list_del_event().
564c2b21 2399 */
cdd6c482
IM
2400static int context_equiv(struct perf_event_context *ctx1,
2401 struct perf_event_context *ctx2)
564c2b21 2402{
211de6eb
PZ
2403 lockdep_assert_held(&ctx1->lock);
2404 lockdep_assert_held(&ctx2->lock);
2405
5a3126d4
PZ
2406 /* Pinning disables the swap optimization */
2407 if (ctx1->pin_count || ctx2->pin_count)
2408 return 0;
2409
2410 /* If ctx1 is the parent of ctx2 */
2411 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2412 return 1;
2413
2414 /* If ctx2 is the parent of ctx1 */
2415 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2416 return 1;
2417
2418 /*
2419 * If ctx1 and ctx2 have the same parent; we flatten the parent
2420 * hierarchy, see perf_event_init_context().
2421 */
2422 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2423 ctx1->parent_gen == ctx2->parent_gen)
2424 return 1;
2425
2426 /* Unmatched */
2427 return 0;
564c2b21
PM
2428}
2429
cdd6c482
IM
2430static void __perf_event_sync_stat(struct perf_event *event,
2431 struct perf_event *next_event)
bfbd3381
PZ
2432{
2433 u64 value;
2434
cdd6c482 2435 if (!event->attr.inherit_stat)
bfbd3381
PZ
2436 return;
2437
2438 /*
cdd6c482 2439 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2440 * because we're in the middle of a context switch and have IRQs
2441 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2442 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2443 * don't need to use it.
2444 */
cdd6c482
IM
2445 switch (event->state) {
2446 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2447 event->pmu->read(event);
2448 /* fall-through */
bfbd3381 2449
cdd6c482
IM
2450 case PERF_EVENT_STATE_INACTIVE:
2451 update_event_times(event);
bfbd3381
PZ
2452 break;
2453
2454 default:
2455 break;
2456 }
2457
2458 /*
cdd6c482 2459 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2460 * values when we flip the contexts.
2461 */
e7850595
PZ
2462 value = local64_read(&next_event->count);
2463 value = local64_xchg(&event->count, value);
2464 local64_set(&next_event->count, value);
bfbd3381 2465
cdd6c482
IM
2466 swap(event->total_time_enabled, next_event->total_time_enabled);
2467 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2468
bfbd3381 2469 /*
19d2e755 2470 * Since we swizzled the values, update the user visible data too.
bfbd3381 2471 */
cdd6c482
IM
2472 perf_event_update_userpage(event);
2473 perf_event_update_userpage(next_event);
bfbd3381
PZ
2474}
2475
cdd6c482
IM
2476static void perf_event_sync_stat(struct perf_event_context *ctx,
2477 struct perf_event_context *next_ctx)
bfbd3381 2478{
cdd6c482 2479 struct perf_event *event, *next_event;
bfbd3381
PZ
2480
2481 if (!ctx->nr_stat)
2482 return;
2483
02ffdbc8
PZ
2484 update_context_time(ctx);
2485
cdd6c482
IM
2486 event = list_first_entry(&ctx->event_list,
2487 struct perf_event, event_entry);
bfbd3381 2488
cdd6c482
IM
2489 next_event = list_first_entry(&next_ctx->event_list,
2490 struct perf_event, event_entry);
bfbd3381 2491
cdd6c482
IM
2492 while (&event->event_entry != &ctx->event_list &&
2493 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2494
cdd6c482 2495 __perf_event_sync_stat(event, next_event);
bfbd3381 2496
cdd6c482
IM
2497 event = list_next_entry(event, event_entry);
2498 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2499 }
2500}
2501
fe4b04fa
PZ
2502static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2503 struct task_struct *next)
0793a61d 2504{
8dc85d54 2505 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2506 struct perf_event_context *next_ctx;
5a3126d4 2507 struct perf_event_context *parent, *next_parent;
108b02cf 2508 struct perf_cpu_context *cpuctx;
c93f7669 2509 int do_switch = 1;
0793a61d 2510
108b02cf
PZ
2511 if (likely(!ctx))
2512 return;
10989fb2 2513
108b02cf
PZ
2514 cpuctx = __get_cpu_context(ctx);
2515 if (!cpuctx->task_ctx)
0793a61d
TG
2516 return;
2517
c93f7669 2518 rcu_read_lock();
8dc85d54 2519 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2520 if (!next_ctx)
2521 goto unlock;
2522
2523 parent = rcu_dereference(ctx->parent_ctx);
2524 next_parent = rcu_dereference(next_ctx->parent_ctx);
2525
2526 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2527 if (!parent && !next_parent)
5a3126d4
PZ
2528 goto unlock;
2529
2530 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2531 /*
2532 * Looks like the two contexts are clones, so we might be
2533 * able to optimize the context switch. We lock both
2534 * contexts and check that they are clones under the
2535 * lock (including re-checking that neither has been
2536 * uncloned in the meantime). It doesn't matter which
2537 * order we take the locks because no other cpu could
2538 * be trying to lock both of these tasks.
2539 */
e625cce1
TG
2540 raw_spin_lock(&ctx->lock);
2541 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2542 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2543 /*
2544 * XXX do we need a memory barrier of sorts
cdd6c482 2545 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2546 */
8dc85d54
PZ
2547 task->perf_event_ctxp[ctxn] = next_ctx;
2548 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2549 ctx->task = next;
2550 next_ctx->task = task;
5a158c3c
YZ
2551
2552 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2553
c93f7669 2554 do_switch = 0;
bfbd3381 2555
cdd6c482 2556 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2557 }
e625cce1
TG
2558 raw_spin_unlock(&next_ctx->lock);
2559 raw_spin_unlock(&ctx->lock);
564c2b21 2560 }
5a3126d4 2561unlock:
c93f7669 2562 rcu_read_unlock();
564c2b21 2563
c93f7669 2564 if (do_switch) {
facc4307 2565 raw_spin_lock(&ctx->lock);
5b0311e1 2566 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2567 cpuctx->task_ctx = NULL;
facc4307 2568 raw_spin_unlock(&ctx->lock);
c93f7669 2569 }
0793a61d
TG
2570}
2571
ba532500
YZ
2572void perf_sched_cb_dec(struct pmu *pmu)
2573{
2574 this_cpu_dec(perf_sched_cb_usages);
2575}
2576
2577void perf_sched_cb_inc(struct pmu *pmu)
2578{
2579 this_cpu_inc(perf_sched_cb_usages);
2580}
2581
2582/*
2583 * This function provides the context switch callback to the lower code
2584 * layer. It is invoked ONLY when the context switch callback is enabled.
2585 */
2586static void perf_pmu_sched_task(struct task_struct *prev,
2587 struct task_struct *next,
2588 bool sched_in)
2589{
2590 struct perf_cpu_context *cpuctx;
2591 struct pmu *pmu;
2592 unsigned long flags;
2593
2594 if (prev == next)
2595 return;
2596
2597 local_irq_save(flags);
2598
2599 rcu_read_lock();
2600
2601 list_for_each_entry_rcu(pmu, &pmus, entry) {
2602 if (pmu->sched_task) {
2603 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2604
2605 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2606
2607 perf_pmu_disable(pmu);
2608
2609 pmu->sched_task(cpuctx->task_ctx, sched_in);
2610
2611 perf_pmu_enable(pmu);
2612
2613 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2614 }
2615 }
2616
2617 rcu_read_unlock();
2618
2619 local_irq_restore(flags);
2620}
2621
8dc85d54
PZ
2622#define for_each_task_context_nr(ctxn) \
2623 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2624
2625/*
2626 * Called from scheduler to remove the events of the current task,
2627 * with interrupts disabled.
2628 *
2629 * We stop each event and update the event value in event->count.
2630 *
2631 * This does not protect us against NMI, but disable()
2632 * sets the disabled bit in the control field of event _before_
2633 * accessing the event control register. If a NMI hits, then it will
2634 * not restart the event.
2635 */
ab0cce56
JO
2636void __perf_event_task_sched_out(struct task_struct *task,
2637 struct task_struct *next)
8dc85d54
PZ
2638{
2639 int ctxn;
2640
ba532500
YZ
2641 if (__this_cpu_read(perf_sched_cb_usages))
2642 perf_pmu_sched_task(task, next, false);
2643
8dc85d54
PZ
2644 for_each_task_context_nr(ctxn)
2645 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2646
2647 /*
2648 * if cgroup events exist on this CPU, then we need
2649 * to check if we have to switch out PMU state.
2650 * cgroup event are system-wide mode only
2651 */
4a32fea9 2652 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2653 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2654}
2655
04dc2dbb 2656static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2657{
108b02cf 2658 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2659
a63eaf34
PM
2660 if (!cpuctx->task_ctx)
2661 return;
012b84da
IM
2662
2663 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 return;
2665
04dc2dbb 2666 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2667 cpuctx->task_ctx = NULL;
2668}
2669
5b0311e1
FW
2670/*
2671 * Called with IRQs disabled
2672 */
2673static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2674 enum event_type_t event_type)
2675{
2676 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2677}
2678
235c7fc7 2679static void
5b0311e1 2680ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2681 struct perf_cpu_context *cpuctx)
0793a61d 2682{
cdd6c482 2683 struct perf_event *event;
0793a61d 2684
889ff015
FW
2685 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2686 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2687 continue;
5632ab12 2688 if (!event_filter_match(event))
3b6f9e5c
PM
2689 continue;
2690
e5d1367f
SE
2691 /* may need to reset tstamp_enabled */
2692 if (is_cgroup_event(event))
2693 perf_cgroup_mark_enabled(event, ctx);
2694
8c9ed8e1 2695 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2696 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2697
2698 /*
2699 * If this pinned group hasn't been scheduled,
2700 * put it in error state.
2701 */
cdd6c482
IM
2702 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2703 update_group_times(event);
2704 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2705 }
3b6f9e5c 2706 }
5b0311e1
FW
2707}
2708
2709static void
2710ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2711 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2712{
2713 struct perf_event *event;
2714 int can_add_hw = 1;
3b6f9e5c 2715
889ff015
FW
2716 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2717 /* Ignore events in OFF or ERROR state */
2718 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2719 continue;
04289bb9
IM
2720 /*
2721 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2722 * of events:
04289bb9 2723 */
5632ab12 2724 if (!event_filter_match(event))
0793a61d
TG
2725 continue;
2726
e5d1367f
SE
2727 /* may need to reset tstamp_enabled */
2728 if (is_cgroup_event(event))
2729 perf_cgroup_mark_enabled(event, ctx);
2730
9ed6060d 2731 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2732 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2733 can_add_hw = 0;
9ed6060d 2734 }
0793a61d 2735 }
5b0311e1
FW
2736}
2737
2738static void
2739ctx_sched_in(struct perf_event_context *ctx,
2740 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2741 enum event_type_t event_type,
2742 struct task_struct *task)
5b0311e1 2743{
e5d1367f 2744 u64 now;
db24d33e 2745 int is_active = ctx->is_active;
e5d1367f 2746
db24d33e 2747 ctx->is_active |= event_type;
5b0311e1 2748 if (likely(!ctx->nr_events))
facc4307 2749 return;
5b0311e1 2750
e5d1367f
SE
2751 now = perf_clock();
2752 ctx->timestamp = now;
3f7cce3c 2753 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2754 /*
2755 * First go through the list and put on any pinned groups
2756 * in order to give them the best chance of going on.
2757 */
db24d33e 2758 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2759 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2760
2761 /* Then walk through the lower prio flexible groups */
db24d33e 2762 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2763 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2764}
2765
329c0e01 2766static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2767 enum event_type_t event_type,
2768 struct task_struct *task)
329c0e01
FW
2769{
2770 struct perf_event_context *ctx = &cpuctx->ctx;
2771
e5d1367f 2772 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2773}
2774
e5d1367f
SE
2775static void perf_event_context_sched_in(struct perf_event_context *ctx,
2776 struct task_struct *task)
235c7fc7 2777{
108b02cf 2778 struct perf_cpu_context *cpuctx;
235c7fc7 2779
108b02cf 2780 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2781 if (cpuctx->task_ctx == ctx)
2782 return;
2783
facc4307 2784 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2785 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2786 /*
2787 * We want to keep the following priority order:
2788 * cpu pinned (that don't need to move), task pinned,
2789 * cpu flexible, task flexible.
2790 */
2791 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2792
1d5f003f
GN
2793 if (ctx->nr_events)
2794 cpuctx->task_ctx = ctx;
9b33fa6b 2795
86b47c25
GN
2796 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2797
facc4307
PZ
2798 perf_pmu_enable(ctx->pmu);
2799 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2800}
2801
8dc85d54
PZ
2802/*
2803 * Called from scheduler to add the events of the current task
2804 * with interrupts disabled.
2805 *
2806 * We restore the event value and then enable it.
2807 *
2808 * This does not protect us against NMI, but enable()
2809 * sets the enabled bit in the control field of event _before_
2810 * accessing the event control register. If a NMI hits, then it will
2811 * keep the event running.
2812 */
ab0cce56
JO
2813void __perf_event_task_sched_in(struct task_struct *prev,
2814 struct task_struct *task)
8dc85d54
PZ
2815{
2816 struct perf_event_context *ctx;
2817 int ctxn;
2818
2819 for_each_task_context_nr(ctxn) {
2820 ctx = task->perf_event_ctxp[ctxn];
2821 if (likely(!ctx))
2822 continue;
2823
e5d1367f 2824 perf_event_context_sched_in(ctx, task);
8dc85d54 2825 }
e5d1367f
SE
2826 /*
2827 * if cgroup events exist on this CPU, then we need
2828 * to check if we have to switch in PMU state.
2829 * cgroup event are system-wide mode only
2830 */
4a32fea9 2831 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2832 perf_cgroup_sched_in(prev, task);
d010b332 2833
ba532500
YZ
2834 if (__this_cpu_read(perf_sched_cb_usages))
2835 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2836}
2837
abd50713
PZ
2838static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2839{
2840 u64 frequency = event->attr.sample_freq;
2841 u64 sec = NSEC_PER_SEC;
2842 u64 divisor, dividend;
2843
2844 int count_fls, nsec_fls, frequency_fls, sec_fls;
2845
2846 count_fls = fls64(count);
2847 nsec_fls = fls64(nsec);
2848 frequency_fls = fls64(frequency);
2849 sec_fls = 30;
2850
2851 /*
2852 * We got @count in @nsec, with a target of sample_freq HZ
2853 * the target period becomes:
2854 *
2855 * @count * 10^9
2856 * period = -------------------
2857 * @nsec * sample_freq
2858 *
2859 */
2860
2861 /*
2862 * Reduce accuracy by one bit such that @a and @b converge
2863 * to a similar magnitude.
2864 */
fe4b04fa 2865#define REDUCE_FLS(a, b) \
abd50713
PZ
2866do { \
2867 if (a##_fls > b##_fls) { \
2868 a >>= 1; \
2869 a##_fls--; \
2870 } else { \
2871 b >>= 1; \
2872 b##_fls--; \
2873 } \
2874} while (0)
2875
2876 /*
2877 * Reduce accuracy until either term fits in a u64, then proceed with
2878 * the other, so that finally we can do a u64/u64 division.
2879 */
2880 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2881 REDUCE_FLS(nsec, frequency);
2882 REDUCE_FLS(sec, count);
2883 }
2884
2885 if (count_fls + sec_fls > 64) {
2886 divisor = nsec * frequency;
2887
2888 while (count_fls + sec_fls > 64) {
2889 REDUCE_FLS(count, sec);
2890 divisor >>= 1;
2891 }
2892
2893 dividend = count * sec;
2894 } else {
2895 dividend = count * sec;
2896
2897 while (nsec_fls + frequency_fls > 64) {
2898 REDUCE_FLS(nsec, frequency);
2899 dividend >>= 1;
2900 }
2901
2902 divisor = nsec * frequency;
2903 }
2904
f6ab91ad
PZ
2905 if (!divisor)
2906 return dividend;
2907
abd50713
PZ
2908 return div64_u64(dividend, divisor);
2909}
2910
e050e3f0
SE
2911static DEFINE_PER_CPU(int, perf_throttled_count);
2912static DEFINE_PER_CPU(u64, perf_throttled_seq);
2913
f39d47ff 2914static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2915{
cdd6c482 2916 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2917 s64 period, sample_period;
bd2b5b12
PZ
2918 s64 delta;
2919
abd50713 2920 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2921
2922 delta = (s64)(period - hwc->sample_period);
2923 delta = (delta + 7) / 8; /* low pass filter */
2924
2925 sample_period = hwc->sample_period + delta;
2926
2927 if (!sample_period)
2928 sample_period = 1;
2929
bd2b5b12 2930 hwc->sample_period = sample_period;
abd50713 2931
e7850595 2932 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2933 if (disable)
2934 event->pmu->stop(event, PERF_EF_UPDATE);
2935
e7850595 2936 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2937
2938 if (disable)
2939 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2940 }
bd2b5b12
PZ
2941}
2942
e050e3f0
SE
2943/*
2944 * combine freq adjustment with unthrottling to avoid two passes over the
2945 * events. At the same time, make sure, having freq events does not change
2946 * the rate of unthrottling as that would introduce bias.
2947 */
2948static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2949 int needs_unthr)
60db5e09 2950{
cdd6c482
IM
2951 struct perf_event *event;
2952 struct hw_perf_event *hwc;
e050e3f0 2953 u64 now, period = TICK_NSEC;
abd50713 2954 s64 delta;
60db5e09 2955
e050e3f0
SE
2956 /*
2957 * only need to iterate over all events iff:
2958 * - context have events in frequency mode (needs freq adjust)
2959 * - there are events to unthrottle on this cpu
2960 */
2961 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2962 return;
2963
e050e3f0 2964 raw_spin_lock(&ctx->lock);
f39d47ff 2965 perf_pmu_disable(ctx->pmu);
e050e3f0 2966
03541f8b 2967 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2968 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2969 continue;
2970
5632ab12 2971 if (!event_filter_match(event))
5d27c23d
PZ
2972 continue;
2973
44377277
AS
2974 perf_pmu_disable(event->pmu);
2975
cdd6c482 2976 hwc = &event->hw;
6a24ed6c 2977
ae23bff1 2978 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2979 hwc->interrupts = 0;
cdd6c482 2980 perf_log_throttle(event, 1);
a4eaf7f1 2981 event->pmu->start(event, 0);
a78ac325
PZ
2982 }
2983
cdd6c482 2984 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2985 goto next;
60db5e09 2986
e050e3f0
SE
2987 /*
2988 * stop the event and update event->count
2989 */
2990 event->pmu->stop(event, PERF_EF_UPDATE);
2991
e7850595 2992 now = local64_read(&event->count);
abd50713
PZ
2993 delta = now - hwc->freq_count_stamp;
2994 hwc->freq_count_stamp = now;
60db5e09 2995
e050e3f0
SE
2996 /*
2997 * restart the event
2998 * reload only if value has changed
f39d47ff
SE
2999 * we have stopped the event so tell that
3000 * to perf_adjust_period() to avoid stopping it
3001 * twice.
e050e3f0 3002 */
abd50713 3003 if (delta > 0)
f39d47ff 3004 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3005
3006 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3007 next:
3008 perf_pmu_enable(event->pmu);
60db5e09 3009 }
e050e3f0 3010
f39d47ff 3011 perf_pmu_enable(ctx->pmu);
e050e3f0 3012 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3013}
3014
235c7fc7 3015/*
cdd6c482 3016 * Round-robin a context's events:
235c7fc7 3017 */
cdd6c482 3018static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3019{
dddd3379
TG
3020 /*
3021 * Rotate the first entry last of non-pinned groups. Rotation might be
3022 * disabled by the inheritance code.
3023 */
3024 if (!ctx->rotate_disable)
3025 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3026}
3027
9e630205 3028static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3029{
8dc85d54 3030 struct perf_event_context *ctx = NULL;
2fde4f94 3031 int rotate = 0;
7fc23a53 3032
b5ab4cd5 3033 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3034 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3035 rotate = 1;
3036 }
235c7fc7 3037
8dc85d54 3038 ctx = cpuctx->task_ctx;
b5ab4cd5 3039 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3040 if (ctx->nr_events != ctx->nr_active)
3041 rotate = 1;
3042 }
9717e6cd 3043
e050e3f0 3044 if (!rotate)
0f5a2601
PZ
3045 goto done;
3046
facc4307 3047 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3048 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3049
e050e3f0
SE
3050 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3051 if (ctx)
3052 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3053
e050e3f0
SE
3054 rotate_ctx(&cpuctx->ctx);
3055 if (ctx)
3056 rotate_ctx(ctx);
235c7fc7 3057
e050e3f0 3058 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3059
0f5a2601
PZ
3060 perf_pmu_enable(cpuctx->ctx.pmu);
3061 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3062done:
9e630205
SE
3063
3064 return rotate;
e9d2b064
PZ
3065}
3066
026249ef
FW
3067#ifdef CONFIG_NO_HZ_FULL
3068bool perf_event_can_stop_tick(void)
3069{
948b26b6 3070 if (atomic_read(&nr_freq_events) ||
d84153d6 3071 __this_cpu_read(perf_throttled_count))
026249ef 3072 return false;
d84153d6
FW
3073 else
3074 return true;
026249ef
FW
3075}
3076#endif
3077
e9d2b064
PZ
3078void perf_event_task_tick(void)
3079{
2fde4f94
MR
3080 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3081 struct perf_event_context *ctx, *tmp;
e050e3f0 3082 int throttled;
b5ab4cd5 3083
e9d2b064
PZ
3084 WARN_ON(!irqs_disabled());
3085
e050e3f0
SE
3086 __this_cpu_inc(perf_throttled_seq);
3087 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3088
2fde4f94 3089 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3090 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3091}
3092
889ff015
FW
3093static int event_enable_on_exec(struct perf_event *event,
3094 struct perf_event_context *ctx)
3095{
3096 if (!event->attr.enable_on_exec)
3097 return 0;
3098
3099 event->attr.enable_on_exec = 0;
3100 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3101 return 0;
3102
1d9b482e 3103 __perf_event_mark_enabled(event);
889ff015
FW
3104
3105 return 1;
3106}
3107
57e7986e 3108/*
cdd6c482 3109 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3110 * This expects task == current.
3111 */
8dc85d54 3112static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3113{
211de6eb 3114 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3115 struct perf_event *event;
57e7986e
PM
3116 unsigned long flags;
3117 int enabled = 0;
889ff015 3118 int ret;
57e7986e
PM
3119
3120 local_irq_save(flags);
cdd6c482 3121 if (!ctx || !ctx->nr_events)
57e7986e
PM
3122 goto out;
3123
e566b76e
SE
3124 /*
3125 * We must ctxsw out cgroup events to avoid conflict
3126 * when invoking perf_task_event_sched_in() later on
3127 * in this function. Otherwise we end up trying to
3128 * ctxswin cgroup events which are already scheduled
3129 * in.
3130 */
a8d757ef 3131 perf_cgroup_sched_out(current, NULL);
57e7986e 3132
e625cce1 3133 raw_spin_lock(&ctx->lock);
04dc2dbb 3134 task_ctx_sched_out(ctx);
57e7986e 3135
b79387ef 3136 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3137 ret = event_enable_on_exec(event, ctx);
3138 if (ret)
3139 enabled = 1;
57e7986e
PM
3140 }
3141
3142 /*
cdd6c482 3143 * Unclone this context if we enabled any event.
57e7986e 3144 */
71a851b4 3145 if (enabled)
211de6eb 3146 clone_ctx = unclone_ctx(ctx);
57e7986e 3147
e625cce1 3148 raw_spin_unlock(&ctx->lock);
57e7986e 3149
e566b76e
SE
3150 /*
3151 * Also calls ctxswin for cgroup events, if any:
3152 */
e5d1367f 3153 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3154out:
57e7986e 3155 local_irq_restore(flags);
211de6eb
PZ
3156
3157 if (clone_ctx)
3158 put_ctx(clone_ctx);
57e7986e
PM
3159}
3160
e041e328
PZ
3161void perf_event_exec(void)
3162{
3163 struct perf_event_context *ctx;
3164 int ctxn;
3165
3166 rcu_read_lock();
3167 for_each_task_context_nr(ctxn) {
3168 ctx = current->perf_event_ctxp[ctxn];
3169 if (!ctx)
3170 continue;
3171
3172 perf_event_enable_on_exec(ctx);
3173 }
3174 rcu_read_unlock();
3175}
3176
0793a61d 3177/*
cdd6c482 3178 * Cross CPU call to read the hardware event
0793a61d 3179 */
cdd6c482 3180static void __perf_event_read(void *info)
0793a61d 3181{
cdd6c482
IM
3182 struct perf_event *event = info;
3183 struct perf_event_context *ctx = event->ctx;
108b02cf 3184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3185
e1ac3614
PM
3186 /*
3187 * If this is a task context, we need to check whether it is
3188 * the current task context of this cpu. If not it has been
3189 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3190 * event->count would have been updated to a recent sample
3191 * when the event was scheduled out.
e1ac3614
PM
3192 */
3193 if (ctx->task && cpuctx->task_ctx != ctx)
3194 return;
3195
e625cce1 3196 raw_spin_lock(&ctx->lock);
e5d1367f 3197 if (ctx->is_active) {
542e72fc 3198 update_context_time(ctx);
e5d1367f
SE
3199 update_cgrp_time_from_event(event);
3200 }
cdd6c482 3201 update_event_times(event);
542e72fc
PZ
3202 if (event->state == PERF_EVENT_STATE_ACTIVE)
3203 event->pmu->read(event);
e625cce1 3204 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3205}
3206
b5e58793
PZ
3207static inline u64 perf_event_count(struct perf_event *event)
3208{
eacd3ecc
MF
3209 if (event->pmu->count)
3210 return event->pmu->count(event);
3211
3212 return __perf_event_count(event);
b5e58793
PZ
3213}
3214
cdd6c482 3215static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3216{
3217 /*
cdd6c482
IM
3218 * If event is enabled and currently active on a CPU, update the
3219 * value in the event structure:
0793a61d 3220 */
cdd6c482
IM
3221 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3222 smp_call_function_single(event->oncpu,
3223 __perf_event_read, event, 1);
3224 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3225 struct perf_event_context *ctx = event->ctx;
3226 unsigned long flags;
3227
e625cce1 3228 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3229 /*
3230 * may read while context is not active
3231 * (e.g., thread is blocked), in that case
3232 * we cannot update context time
3233 */
e5d1367f 3234 if (ctx->is_active) {
c530ccd9 3235 update_context_time(ctx);
e5d1367f
SE
3236 update_cgrp_time_from_event(event);
3237 }
cdd6c482 3238 update_event_times(event);
e625cce1 3239 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3240 }
3241
b5e58793 3242 return perf_event_count(event);
0793a61d
TG
3243}
3244
a63eaf34 3245/*
cdd6c482 3246 * Initialize the perf_event context in a task_struct:
a63eaf34 3247 */
eb184479 3248static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3249{
e625cce1 3250 raw_spin_lock_init(&ctx->lock);
a63eaf34 3251 mutex_init(&ctx->mutex);
2fde4f94 3252 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3253 INIT_LIST_HEAD(&ctx->pinned_groups);
3254 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3255 INIT_LIST_HEAD(&ctx->event_list);
3256 atomic_set(&ctx->refcount, 1);
fadfe7be 3257 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3258}
3259
3260static struct perf_event_context *
3261alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3262{
3263 struct perf_event_context *ctx;
3264
3265 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3266 if (!ctx)
3267 return NULL;
3268
3269 __perf_event_init_context(ctx);
3270 if (task) {
3271 ctx->task = task;
3272 get_task_struct(task);
0793a61d 3273 }
eb184479
PZ
3274 ctx->pmu = pmu;
3275
3276 return ctx;
a63eaf34
PM
3277}
3278
2ebd4ffb
MH
3279static struct task_struct *
3280find_lively_task_by_vpid(pid_t vpid)
3281{
3282 struct task_struct *task;
3283 int err;
0793a61d
TG
3284
3285 rcu_read_lock();
2ebd4ffb 3286 if (!vpid)
0793a61d
TG
3287 task = current;
3288 else
2ebd4ffb 3289 task = find_task_by_vpid(vpid);
0793a61d
TG
3290 if (task)
3291 get_task_struct(task);
3292 rcu_read_unlock();
3293
3294 if (!task)
3295 return ERR_PTR(-ESRCH);
3296
0793a61d 3297 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3298 err = -EACCES;
3299 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3300 goto errout;
3301
2ebd4ffb
MH
3302 return task;
3303errout:
3304 put_task_struct(task);
3305 return ERR_PTR(err);
3306
3307}
3308
fe4b04fa
PZ
3309/*
3310 * Returns a matching context with refcount and pincount.
3311 */
108b02cf 3312static struct perf_event_context *
4af57ef2
YZ
3313find_get_context(struct pmu *pmu, struct task_struct *task,
3314 struct perf_event *event)
0793a61d 3315{
211de6eb 3316 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3317 struct perf_cpu_context *cpuctx;
4af57ef2 3318 void *task_ctx_data = NULL;
25346b93 3319 unsigned long flags;
8dc85d54 3320 int ctxn, err;
4af57ef2 3321 int cpu = event->cpu;
0793a61d 3322
22a4ec72 3323 if (!task) {
cdd6c482 3324 /* Must be root to operate on a CPU event: */
0764771d 3325 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3326 return ERR_PTR(-EACCES);
3327
0793a61d 3328 /*
cdd6c482 3329 * We could be clever and allow to attach a event to an
0793a61d
TG
3330 * offline CPU and activate it when the CPU comes up, but
3331 * that's for later.
3332 */
f6325e30 3333 if (!cpu_online(cpu))
0793a61d
TG
3334 return ERR_PTR(-ENODEV);
3335
108b02cf 3336 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3337 ctx = &cpuctx->ctx;
c93f7669 3338 get_ctx(ctx);
fe4b04fa 3339 ++ctx->pin_count;
0793a61d 3340
0793a61d
TG
3341 return ctx;
3342 }
3343
8dc85d54
PZ
3344 err = -EINVAL;
3345 ctxn = pmu->task_ctx_nr;
3346 if (ctxn < 0)
3347 goto errout;
3348
4af57ef2
YZ
3349 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3350 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3351 if (!task_ctx_data) {
3352 err = -ENOMEM;
3353 goto errout;
3354 }
3355 }
3356
9ed6060d 3357retry:
8dc85d54 3358 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3359 if (ctx) {
211de6eb 3360 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3361 ++ctx->pin_count;
4af57ef2
YZ
3362
3363 if (task_ctx_data && !ctx->task_ctx_data) {
3364 ctx->task_ctx_data = task_ctx_data;
3365 task_ctx_data = NULL;
3366 }
e625cce1 3367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3368
3369 if (clone_ctx)
3370 put_ctx(clone_ctx);
9137fb28 3371 } else {
eb184479 3372 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3373 err = -ENOMEM;
3374 if (!ctx)
3375 goto errout;
eb184479 3376
4af57ef2
YZ
3377 if (task_ctx_data) {
3378 ctx->task_ctx_data = task_ctx_data;
3379 task_ctx_data = NULL;
3380 }
3381
dbe08d82
ON
3382 err = 0;
3383 mutex_lock(&task->perf_event_mutex);
3384 /*
3385 * If it has already passed perf_event_exit_task().
3386 * we must see PF_EXITING, it takes this mutex too.
3387 */
3388 if (task->flags & PF_EXITING)
3389 err = -ESRCH;
3390 else if (task->perf_event_ctxp[ctxn])
3391 err = -EAGAIN;
fe4b04fa 3392 else {
9137fb28 3393 get_ctx(ctx);
fe4b04fa 3394 ++ctx->pin_count;
dbe08d82 3395 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3396 }
dbe08d82
ON
3397 mutex_unlock(&task->perf_event_mutex);
3398
3399 if (unlikely(err)) {
9137fb28 3400 put_ctx(ctx);
dbe08d82
ON
3401
3402 if (err == -EAGAIN)
3403 goto retry;
3404 goto errout;
a63eaf34
PM
3405 }
3406 }
3407
4af57ef2 3408 kfree(task_ctx_data);
0793a61d 3409 return ctx;
c93f7669 3410
9ed6060d 3411errout:
4af57ef2 3412 kfree(task_ctx_data);
c93f7669 3413 return ERR_PTR(err);
0793a61d
TG
3414}
3415
6fb2915d 3416static void perf_event_free_filter(struct perf_event *event);
2541517c 3417static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3418
cdd6c482 3419static void free_event_rcu(struct rcu_head *head)
592903cd 3420{
cdd6c482 3421 struct perf_event *event;
592903cd 3422
cdd6c482
IM
3423 event = container_of(head, struct perf_event, rcu_head);
3424 if (event->ns)
3425 put_pid_ns(event->ns);
6fb2915d 3426 perf_event_free_filter(event);
cdd6c482 3427 kfree(event);
592903cd
PZ
3428}
3429
b69cf536
PZ
3430static void ring_buffer_attach(struct perf_event *event,
3431 struct ring_buffer *rb);
925d519a 3432
4beb31f3 3433static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3434{
4beb31f3
FW
3435 if (event->parent)
3436 return;
3437
4beb31f3
FW
3438 if (is_cgroup_event(event))
3439 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3440}
925d519a 3441
4beb31f3
FW
3442static void unaccount_event(struct perf_event *event)
3443{
3444 if (event->parent)
3445 return;
3446
3447 if (event->attach_state & PERF_ATTACH_TASK)
3448 static_key_slow_dec_deferred(&perf_sched_events);
3449 if (event->attr.mmap || event->attr.mmap_data)
3450 atomic_dec(&nr_mmap_events);
3451 if (event->attr.comm)
3452 atomic_dec(&nr_comm_events);
3453 if (event->attr.task)
3454 atomic_dec(&nr_task_events);
948b26b6
FW
3455 if (event->attr.freq)
3456 atomic_dec(&nr_freq_events);
4beb31f3
FW
3457 if (is_cgroup_event(event))
3458 static_key_slow_dec_deferred(&perf_sched_events);
3459 if (has_branch_stack(event))
3460 static_key_slow_dec_deferred(&perf_sched_events);
3461
3462 unaccount_event_cpu(event, event->cpu);
3463}
925d519a 3464
bed5b25a
AS
3465/*
3466 * The following implement mutual exclusion of events on "exclusive" pmus
3467 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3468 * at a time, so we disallow creating events that might conflict, namely:
3469 *
3470 * 1) cpu-wide events in the presence of per-task events,
3471 * 2) per-task events in the presence of cpu-wide events,
3472 * 3) two matching events on the same context.
3473 *
3474 * The former two cases are handled in the allocation path (perf_event_alloc(),
3475 * __free_event()), the latter -- before the first perf_install_in_context().
3476 */
3477static int exclusive_event_init(struct perf_event *event)
3478{
3479 struct pmu *pmu = event->pmu;
3480
3481 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3482 return 0;
3483
3484 /*
3485 * Prevent co-existence of per-task and cpu-wide events on the
3486 * same exclusive pmu.
3487 *
3488 * Negative pmu::exclusive_cnt means there are cpu-wide
3489 * events on this "exclusive" pmu, positive means there are
3490 * per-task events.
3491 *
3492 * Since this is called in perf_event_alloc() path, event::ctx
3493 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3494 * to mean "per-task event", because unlike other attach states it
3495 * never gets cleared.
3496 */
3497 if (event->attach_state & PERF_ATTACH_TASK) {
3498 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3499 return -EBUSY;
3500 } else {
3501 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3502 return -EBUSY;
3503 }
3504
3505 return 0;
3506}
3507
3508static void exclusive_event_destroy(struct perf_event *event)
3509{
3510 struct pmu *pmu = event->pmu;
3511
3512 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3513 return;
3514
3515 /* see comment in exclusive_event_init() */
3516 if (event->attach_state & PERF_ATTACH_TASK)
3517 atomic_dec(&pmu->exclusive_cnt);
3518 else
3519 atomic_inc(&pmu->exclusive_cnt);
3520}
3521
3522static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3523{
3524 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3525 (e1->cpu == e2->cpu ||
3526 e1->cpu == -1 ||
3527 e2->cpu == -1))
3528 return true;
3529 return false;
3530}
3531
3532/* Called under the same ctx::mutex as perf_install_in_context() */
3533static bool exclusive_event_installable(struct perf_event *event,
3534 struct perf_event_context *ctx)
3535{
3536 struct perf_event *iter_event;
3537 struct pmu *pmu = event->pmu;
3538
3539 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3540 return true;
3541
3542 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3543 if (exclusive_event_match(iter_event, event))
3544 return false;
3545 }
3546
3547 return true;
3548}
3549
766d6c07
FW
3550static void __free_event(struct perf_event *event)
3551{
cdd6c482 3552 if (!event->parent) {
927c7a9e
FW
3553 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3554 put_callchain_buffers();
f344011c 3555 }
9ee318a7 3556
dead9f29
AS
3557 perf_event_free_bpf_prog(event);
3558
766d6c07
FW
3559 if (event->destroy)
3560 event->destroy(event);
3561
3562 if (event->ctx)
3563 put_ctx(event->ctx);
3564
bed5b25a
AS
3565 if (event->pmu) {
3566 exclusive_event_destroy(event);
c464c76e 3567 module_put(event->pmu->module);
bed5b25a 3568 }
c464c76e 3569
766d6c07
FW
3570 call_rcu(&event->rcu_head, free_event_rcu);
3571}
683ede43
PZ
3572
3573static void _free_event(struct perf_event *event)
f1600952 3574{
e360adbe 3575 irq_work_sync(&event->pending);
925d519a 3576
4beb31f3 3577 unaccount_event(event);
9ee318a7 3578
76369139 3579 if (event->rb) {
9bb5d40c
PZ
3580 /*
3581 * Can happen when we close an event with re-directed output.
3582 *
3583 * Since we have a 0 refcount, perf_mmap_close() will skip
3584 * over us; possibly making our ring_buffer_put() the last.
3585 */
3586 mutex_lock(&event->mmap_mutex);
b69cf536 3587 ring_buffer_attach(event, NULL);
9bb5d40c 3588 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3589 }
3590
e5d1367f
SE
3591 if (is_cgroup_event(event))
3592 perf_detach_cgroup(event);
3593
766d6c07 3594 __free_event(event);
f1600952
PZ
3595}
3596
683ede43
PZ
3597/*
3598 * Used to free events which have a known refcount of 1, such as in error paths
3599 * where the event isn't exposed yet and inherited events.
3600 */
3601static void free_event(struct perf_event *event)
0793a61d 3602{
683ede43
PZ
3603 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3604 "unexpected event refcount: %ld; ptr=%p\n",
3605 atomic_long_read(&event->refcount), event)) {
3606 /* leak to avoid use-after-free */
3607 return;
3608 }
0793a61d 3609
683ede43 3610 _free_event(event);
0793a61d
TG
3611}
3612
a66a3052 3613/*
f8697762 3614 * Remove user event from the owner task.
a66a3052 3615 */
f8697762 3616static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3617{
8882135b 3618 struct task_struct *owner;
fb0459d7 3619
8882135b
PZ
3620 rcu_read_lock();
3621 owner = ACCESS_ONCE(event->owner);
3622 /*
3623 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3624 * !owner it means the list deletion is complete and we can indeed
3625 * free this event, otherwise we need to serialize on
3626 * owner->perf_event_mutex.
3627 */
3628 smp_read_barrier_depends();
3629 if (owner) {
3630 /*
3631 * Since delayed_put_task_struct() also drops the last
3632 * task reference we can safely take a new reference
3633 * while holding the rcu_read_lock().
3634 */
3635 get_task_struct(owner);
3636 }
3637 rcu_read_unlock();
3638
3639 if (owner) {
f63a8daa
PZ
3640 /*
3641 * If we're here through perf_event_exit_task() we're already
3642 * holding ctx->mutex which would be an inversion wrt. the
3643 * normal lock order.
3644 *
3645 * However we can safely take this lock because its the child
3646 * ctx->mutex.
3647 */
3648 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3649
8882135b
PZ
3650 /*
3651 * We have to re-check the event->owner field, if it is cleared
3652 * we raced with perf_event_exit_task(), acquiring the mutex
3653 * ensured they're done, and we can proceed with freeing the
3654 * event.
3655 */
3656 if (event->owner)
3657 list_del_init(&event->owner_entry);
3658 mutex_unlock(&owner->perf_event_mutex);
3659 put_task_struct(owner);
3660 }
f8697762
JO
3661}
3662
f8697762
JO
3663static void put_event(struct perf_event *event)
3664{
a83fe28e 3665 struct perf_event_context *ctx;
f8697762
JO
3666
3667 if (!atomic_long_dec_and_test(&event->refcount))
3668 return;
3669
3670 if (!is_kernel_event(event))
3671 perf_remove_from_owner(event);
8882135b 3672
683ede43
PZ
3673 /*
3674 * There are two ways this annotation is useful:
3675 *
3676 * 1) there is a lock recursion from perf_event_exit_task
3677 * see the comment there.
3678 *
3679 * 2) there is a lock-inversion with mmap_sem through
3680 * perf_event_read_group(), which takes faults while
3681 * holding ctx->mutex, however this is called after
3682 * the last filedesc died, so there is no possibility
3683 * to trigger the AB-BA case.
3684 */
a83fe28e
PZ
3685 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3686 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3687 perf_remove_from_context(event, true);
d415a7f1 3688 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3689
3690 _free_event(event);
a6fa941d
AV
3691}
3692
683ede43
PZ
3693int perf_event_release_kernel(struct perf_event *event)
3694{
3695 put_event(event);
3696 return 0;
3697}
3698EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3699
8b10c5e2
PZ
3700/*
3701 * Called when the last reference to the file is gone.
3702 */
a6fa941d
AV
3703static int perf_release(struct inode *inode, struct file *file)
3704{
3705 put_event(file->private_data);
3706 return 0;
fb0459d7 3707}
fb0459d7 3708
fadfe7be
JO
3709/*
3710 * Remove all orphanes events from the context.
3711 */
3712static void orphans_remove_work(struct work_struct *work)
3713{
3714 struct perf_event_context *ctx;
3715 struct perf_event *event, *tmp;
3716
3717 ctx = container_of(work, struct perf_event_context,
3718 orphans_remove.work);
3719
3720 mutex_lock(&ctx->mutex);
3721 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3722 struct perf_event *parent_event = event->parent;
3723
3724 if (!is_orphaned_child(event))
3725 continue;
3726
3727 perf_remove_from_context(event, true);
3728
3729 mutex_lock(&parent_event->child_mutex);
3730 list_del_init(&event->child_list);
3731 mutex_unlock(&parent_event->child_mutex);
3732
3733 free_event(event);
3734 put_event(parent_event);
3735 }
3736
3737 raw_spin_lock_irq(&ctx->lock);
3738 ctx->orphans_remove_sched = false;
3739 raw_spin_unlock_irq(&ctx->lock);
3740 mutex_unlock(&ctx->mutex);
3741
3742 put_ctx(ctx);
3743}
3744
59ed446f 3745u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3746{
cdd6c482 3747 struct perf_event *child;
e53c0994
PZ
3748 u64 total = 0;
3749
59ed446f
PZ
3750 *enabled = 0;
3751 *running = 0;
3752
6f10581a 3753 mutex_lock(&event->child_mutex);
cdd6c482 3754 total += perf_event_read(event);
59ed446f
PZ
3755 *enabled += event->total_time_enabled +
3756 atomic64_read(&event->child_total_time_enabled);
3757 *running += event->total_time_running +
3758 atomic64_read(&event->child_total_time_running);
3759
3760 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3761 total += perf_event_read(child);
59ed446f
PZ
3762 *enabled += child->total_time_enabled;
3763 *running += child->total_time_running;
3764 }
6f10581a 3765 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3766
3767 return total;
3768}
fb0459d7 3769EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3770
cdd6c482 3771static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3772 u64 read_format, char __user *buf)
3773{
cdd6c482 3774 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3775 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3776 int n = 0, size = 0, ret;
59ed446f 3777 u64 count, enabled, running;
f63a8daa
PZ
3778 u64 values[5];
3779
3780 lockdep_assert_held(&ctx->mutex);
abf4868b 3781
59ed446f 3782 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3783
3784 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3785 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3786 values[n++] = enabled;
3787 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3788 values[n++] = running;
abf4868b
PZ
3789 values[n++] = count;
3790 if (read_format & PERF_FORMAT_ID)
3791 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3792
3793 size = n * sizeof(u64);
3794
3795 if (copy_to_user(buf, values, size))
f63a8daa 3796 return -EFAULT;
3dab77fb 3797
6f10581a 3798 ret = size;
3dab77fb 3799
65abc865 3800 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3801 n = 0;
3dab77fb 3802
59ed446f 3803 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3804 if (read_format & PERF_FORMAT_ID)
3805 values[n++] = primary_event_id(sub);
3806
3807 size = n * sizeof(u64);
3808
184d3da8 3809 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3810 return -EFAULT;
6f10581a 3811 }
abf4868b
PZ
3812
3813 ret += size;
3dab77fb
PZ
3814 }
3815
abf4868b 3816 return ret;
3dab77fb
PZ
3817}
3818
cdd6c482 3819static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3820 u64 read_format, char __user *buf)
3821{
59ed446f 3822 u64 enabled, running;
3dab77fb
PZ
3823 u64 values[4];
3824 int n = 0;
3825
59ed446f
PZ
3826 values[n++] = perf_event_read_value(event, &enabled, &running);
3827 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3828 values[n++] = enabled;
3829 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3830 values[n++] = running;
3dab77fb 3831 if (read_format & PERF_FORMAT_ID)
cdd6c482 3832 values[n++] = primary_event_id(event);
3dab77fb
PZ
3833
3834 if (copy_to_user(buf, values, n * sizeof(u64)))
3835 return -EFAULT;
3836
3837 return n * sizeof(u64);
3838}
3839
dc633982
JO
3840static bool is_event_hup(struct perf_event *event)
3841{
3842 bool no_children;
3843
3844 if (event->state != PERF_EVENT_STATE_EXIT)
3845 return false;
3846
3847 mutex_lock(&event->child_mutex);
3848 no_children = list_empty(&event->child_list);
3849 mutex_unlock(&event->child_mutex);
3850 return no_children;
3851}
3852
0793a61d 3853/*
cdd6c482 3854 * Read the performance event - simple non blocking version for now
0793a61d
TG
3855 */
3856static ssize_t
cdd6c482 3857perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3858{
cdd6c482 3859 u64 read_format = event->attr.read_format;
3dab77fb 3860 int ret;
0793a61d 3861
3b6f9e5c 3862 /*
cdd6c482 3863 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3864 * error state (i.e. because it was pinned but it couldn't be
3865 * scheduled on to the CPU at some point).
3866 */
cdd6c482 3867 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3868 return 0;
3869
c320c7b7 3870 if (count < event->read_size)
3dab77fb
PZ
3871 return -ENOSPC;
3872
cdd6c482 3873 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3874 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3875 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3876 else
cdd6c482 3877 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3878
3dab77fb 3879 return ret;
0793a61d
TG
3880}
3881
0793a61d
TG
3882static ssize_t
3883perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3884{
cdd6c482 3885 struct perf_event *event = file->private_data;
f63a8daa
PZ
3886 struct perf_event_context *ctx;
3887 int ret;
0793a61d 3888
f63a8daa
PZ
3889 ctx = perf_event_ctx_lock(event);
3890 ret = perf_read_hw(event, buf, count);
3891 perf_event_ctx_unlock(event, ctx);
3892
3893 return ret;
0793a61d
TG
3894}
3895
3896static unsigned int perf_poll(struct file *file, poll_table *wait)
3897{
cdd6c482 3898 struct perf_event *event = file->private_data;
76369139 3899 struct ring_buffer *rb;
61b67684 3900 unsigned int events = POLLHUP;
c7138f37 3901
e708d7ad 3902 poll_wait(file, &event->waitq, wait);
179033b3 3903
dc633982 3904 if (is_event_hup(event))
179033b3 3905 return events;
c7138f37 3906
10c6db11 3907 /*
9bb5d40c
PZ
3908 * Pin the event->rb by taking event->mmap_mutex; otherwise
3909 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3910 */
3911 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3912 rb = event->rb;
3913 if (rb)
76369139 3914 events = atomic_xchg(&rb->poll, 0);
10c6db11 3915 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3916 return events;
3917}
3918
f63a8daa 3919static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3920{
cdd6c482 3921 (void)perf_event_read(event);
e7850595 3922 local64_set(&event->count, 0);
cdd6c482 3923 perf_event_update_userpage(event);
3df5edad
PZ
3924}
3925
c93f7669 3926/*
cdd6c482
IM
3927 * Holding the top-level event's child_mutex means that any
3928 * descendant process that has inherited this event will block
3929 * in sync_child_event if it goes to exit, thus satisfying the
3930 * task existence requirements of perf_event_enable/disable.
c93f7669 3931 */
cdd6c482
IM
3932static void perf_event_for_each_child(struct perf_event *event,
3933 void (*func)(struct perf_event *))
3df5edad 3934{
cdd6c482 3935 struct perf_event *child;
3df5edad 3936
cdd6c482 3937 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3938
cdd6c482
IM
3939 mutex_lock(&event->child_mutex);
3940 func(event);
3941 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3942 func(child);
cdd6c482 3943 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3944}
3945
cdd6c482
IM
3946static void perf_event_for_each(struct perf_event *event,
3947 void (*func)(struct perf_event *))
3df5edad 3948{
cdd6c482
IM
3949 struct perf_event_context *ctx = event->ctx;
3950 struct perf_event *sibling;
3df5edad 3951
f63a8daa
PZ
3952 lockdep_assert_held(&ctx->mutex);
3953
cdd6c482 3954 event = event->group_leader;
75f937f2 3955
cdd6c482 3956 perf_event_for_each_child(event, func);
cdd6c482 3957 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3958 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3959}
3960
c7999c6f
PZ
3961struct period_event {
3962 struct perf_event *event;
08247e31 3963 u64 value;
c7999c6f 3964};
08247e31 3965
c7999c6f
PZ
3966static int __perf_event_period(void *info)
3967{
3968 struct period_event *pe = info;
3969 struct perf_event *event = pe->event;
3970 struct perf_event_context *ctx = event->ctx;
3971 u64 value = pe->value;
3972 bool active;
08247e31 3973
c7999c6f 3974 raw_spin_lock(&ctx->lock);
cdd6c482 3975 if (event->attr.freq) {
cdd6c482 3976 event->attr.sample_freq = value;
08247e31 3977 } else {
cdd6c482
IM
3978 event->attr.sample_period = value;
3979 event->hw.sample_period = value;
08247e31 3980 }
bad7192b
PZ
3981
3982 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3983 if (active) {
3984 perf_pmu_disable(ctx->pmu);
3985 event->pmu->stop(event, PERF_EF_UPDATE);
3986 }
3987
3988 local64_set(&event->hw.period_left, 0);
3989
3990 if (active) {
3991 event->pmu->start(event, PERF_EF_RELOAD);
3992 perf_pmu_enable(ctx->pmu);
3993 }
c7999c6f 3994 raw_spin_unlock(&ctx->lock);
bad7192b 3995
c7999c6f
PZ
3996 return 0;
3997}
3998
3999static int perf_event_period(struct perf_event *event, u64 __user *arg)
4000{
4001 struct period_event pe = { .event = event, };
4002 struct perf_event_context *ctx = event->ctx;
4003 struct task_struct *task;
4004 u64 value;
4005
4006 if (!is_sampling_event(event))
4007 return -EINVAL;
4008
4009 if (copy_from_user(&value, arg, sizeof(value)))
4010 return -EFAULT;
4011
4012 if (!value)
4013 return -EINVAL;
4014
4015 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4016 return -EINVAL;
4017
4018 task = ctx->task;
4019 pe.value = value;
4020
4021 if (!task) {
4022 cpu_function_call(event->cpu, __perf_event_period, &pe);
4023 return 0;
4024 }
4025
4026retry:
4027 if (!task_function_call(task, __perf_event_period, &pe))
4028 return 0;
4029
4030 raw_spin_lock_irq(&ctx->lock);
4031 if (ctx->is_active) {
4032 raw_spin_unlock_irq(&ctx->lock);
4033 task = ctx->task;
4034 goto retry;
4035 }
4036
4037 __perf_event_period(&pe);
e625cce1 4038 raw_spin_unlock_irq(&ctx->lock);
08247e31 4039
c7999c6f 4040 return 0;
08247e31
PZ
4041}
4042
ac9721f3
PZ
4043static const struct file_operations perf_fops;
4044
2903ff01 4045static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4046{
2903ff01
AV
4047 struct fd f = fdget(fd);
4048 if (!f.file)
4049 return -EBADF;
ac9721f3 4050
2903ff01
AV
4051 if (f.file->f_op != &perf_fops) {
4052 fdput(f);
4053 return -EBADF;
ac9721f3 4054 }
2903ff01
AV
4055 *p = f;
4056 return 0;
ac9721f3
PZ
4057}
4058
4059static int perf_event_set_output(struct perf_event *event,
4060 struct perf_event *output_event);
6fb2915d 4061static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4062static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4063
f63a8daa 4064static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4065{
cdd6c482 4066 void (*func)(struct perf_event *);
3df5edad 4067 u32 flags = arg;
d859e29f
PM
4068
4069 switch (cmd) {
cdd6c482 4070 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4071 func = _perf_event_enable;
d859e29f 4072 break;
cdd6c482 4073 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4074 func = _perf_event_disable;
79f14641 4075 break;
cdd6c482 4076 case PERF_EVENT_IOC_RESET:
f63a8daa 4077 func = _perf_event_reset;
6de6a7b9 4078 break;
3df5edad 4079
cdd6c482 4080 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4081 return _perf_event_refresh(event, arg);
08247e31 4082
cdd6c482
IM
4083 case PERF_EVENT_IOC_PERIOD:
4084 return perf_event_period(event, (u64 __user *)arg);
08247e31 4085
cf4957f1
JO
4086 case PERF_EVENT_IOC_ID:
4087 {
4088 u64 id = primary_event_id(event);
4089
4090 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4091 return -EFAULT;
4092 return 0;
4093 }
4094
cdd6c482 4095 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4096 {
ac9721f3 4097 int ret;
ac9721f3 4098 if (arg != -1) {
2903ff01
AV
4099 struct perf_event *output_event;
4100 struct fd output;
4101 ret = perf_fget_light(arg, &output);
4102 if (ret)
4103 return ret;
4104 output_event = output.file->private_data;
4105 ret = perf_event_set_output(event, output_event);
4106 fdput(output);
4107 } else {
4108 ret = perf_event_set_output(event, NULL);
ac9721f3 4109 }
ac9721f3
PZ
4110 return ret;
4111 }
a4be7c27 4112
6fb2915d
LZ
4113 case PERF_EVENT_IOC_SET_FILTER:
4114 return perf_event_set_filter(event, (void __user *)arg);
4115
2541517c
AS
4116 case PERF_EVENT_IOC_SET_BPF:
4117 return perf_event_set_bpf_prog(event, arg);
4118
d859e29f 4119 default:
3df5edad 4120 return -ENOTTY;
d859e29f 4121 }
3df5edad
PZ
4122
4123 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4124 perf_event_for_each(event, func);
3df5edad 4125 else
cdd6c482 4126 perf_event_for_each_child(event, func);
3df5edad
PZ
4127
4128 return 0;
d859e29f
PM
4129}
4130
f63a8daa
PZ
4131static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4132{
4133 struct perf_event *event = file->private_data;
4134 struct perf_event_context *ctx;
4135 long ret;
4136
4137 ctx = perf_event_ctx_lock(event);
4138 ret = _perf_ioctl(event, cmd, arg);
4139 perf_event_ctx_unlock(event, ctx);
4140
4141 return ret;
4142}
4143
b3f20785
PM
4144#ifdef CONFIG_COMPAT
4145static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4146 unsigned long arg)
4147{
4148 switch (_IOC_NR(cmd)) {
4149 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4150 case _IOC_NR(PERF_EVENT_IOC_ID):
4151 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4152 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4153 cmd &= ~IOCSIZE_MASK;
4154 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4155 }
4156 break;
4157 }
4158 return perf_ioctl(file, cmd, arg);
4159}
4160#else
4161# define perf_compat_ioctl NULL
4162#endif
4163
cdd6c482 4164int perf_event_task_enable(void)
771d7cde 4165{
f63a8daa 4166 struct perf_event_context *ctx;
cdd6c482 4167 struct perf_event *event;
771d7cde 4168
cdd6c482 4169 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4170 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4171 ctx = perf_event_ctx_lock(event);
4172 perf_event_for_each_child(event, _perf_event_enable);
4173 perf_event_ctx_unlock(event, ctx);
4174 }
cdd6c482 4175 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4176
4177 return 0;
4178}
4179
cdd6c482 4180int perf_event_task_disable(void)
771d7cde 4181{
f63a8daa 4182 struct perf_event_context *ctx;
cdd6c482 4183 struct perf_event *event;
771d7cde 4184
cdd6c482 4185 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4186 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4187 ctx = perf_event_ctx_lock(event);
4188 perf_event_for_each_child(event, _perf_event_disable);
4189 perf_event_ctx_unlock(event, ctx);
4190 }
cdd6c482 4191 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4192
4193 return 0;
4194}
4195
cdd6c482 4196static int perf_event_index(struct perf_event *event)
194002b2 4197{
a4eaf7f1
PZ
4198 if (event->hw.state & PERF_HES_STOPPED)
4199 return 0;
4200
cdd6c482 4201 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4202 return 0;
4203
35edc2a5 4204 return event->pmu->event_idx(event);
194002b2
PZ
4205}
4206
c4794295 4207static void calc_timer_values(struct perf_event *event,
e3f3541c 4208 u64 *now,
7f310a5d
EM
4209 u64 *enabled,
4210 u64 *running)
c4794295 4211{
e3f3541c 4212 u64 ctx_time;
c4794295 4213
e3f3541c
PZ
4214 *now = perf_clock();
4215 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4216 *enabled = ctx_time - event->tstamp_enabled;
4217 *running = ctx_time - event->tstamp_running;
4218}
4219
fa731587
PZ
4220static void perf_event_init_userpage(struct perf_event *event)
4221{
4222 struct perf_event_mmap_page *userpg;
4223 struct ring_buffer *rb;
4224
4225 rcu_read_lock();
4226 rb = rcu_dereference(event->rb);
4227 if (!rb)
4228 goto unlock;
4229
4230 userpg = rb->user_page;
4231
4232 /* Allow new userspace to detect that bit 0 is deprecated */
4233 userpg->cap_bit0_is_deprecated = 1;
4234 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4235 userpg->data_offset = PAGE_SIZE;
4236 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4237
4238unlock:
4239 rcu_read_unlock();
4240}
4241
c1317ec2
AL
4242void __weak arch_perf_update_userpage(
4243 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4244{
4245}
4246
38ff667b
PZ
4247/*
4248 * Callers need to ensure there can be no nesting of this function, otherwise
4249 * the seqlock logic goes bad. We can not serialize this because the arch
4250 * code calls this from NMI context.
4251 */
cdd6c482 4252void perf_event_update_userpage(struct perf_event *event)
37d81828 4253{
cdd6c482 4254 struct perf_event_mmap_page *userpg;
76369139 4255 struct ring_buffer *rb;
e3f3541c 4256 u64 enabled, running, now;
38ff667b
PZ
4257
4258 rcu_read_lock();
5ec4c599
PZ
4259 rb = rcu_dereference(event->rb);
4260 if (!rb)
4261 goto unlock;
4262
0d641208
EM
4263 /*
4264 * compute total_time_enabled, total_time_running
4265 * based on snapshot values taken when the event
4266 * was last scheduled in.
4267 *
4268 * we cannot simply called update_context_time()
4269 * because of locking issue as we can be called in
4270 * NMI context
4271 */
e3f3541c 4272 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4273
76369139 4274 userpg = rb->user_page;
7b732a75
PZ
4275 /*
4276 * Disable preemption so as to not let the corresponding user-space
4277 * spin too long if we get preempted.
4278 */
4279 preempt_disable();
37d81828 4280 ++userpg->lock;
92f22a38 4281 barrier();
cdd6c482 4282 userpg->index = perf_event_index(event);
b5e58793 4283 userpg->offset = perf_event_count(event);
365a4038 4284 if (userpg->index)
e7850595 4285 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4286
0d641208 4287 userpg->time_enabled = enabled +
cdd6c482 4288 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4289
0d641208 4290 userpg->time_running = running +
cdd6c482 4291 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4292
c1317ec2 4293 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4294
92f22a38 4295 barrier();
37d81828 4296 ++userpg->lock;
7b732a75 4297 preempt_enable();
38ff667b 4298unlock:
7b732a75 4299 rcu_read_unlock();
37d81828
PM
4300}
4301
906010b2
PZ
4302static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4303{
4304 struct perf_event *event = vma->vm_file->private_data;
76369139 4305 struct ring_buffer *rb;
906010b2
PZ
4306 int ret = VM_FAULT_SIGBUS;
4307
4308 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4309 if (vmf->pgoff == 0)
4310 ret = 0;
4311 return ret;
4312 }
4313
4314 rcu_read_lock();
76369139
FW
4315 rb = rcu_dereference(event->rb);
4316 if (!rb)
906010b2
PZ
4317 goto unlock;
4318
4319 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4320 goto unlock;
4321
76369139 4322 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4323 if (!vmf->page)
4324 goto unlock;
4325
4326 get_page(vmf->page);
4327 vmf->page->mapping = vma->vm_file->f_mapping;
4328 vmf->page->index = vmf->pgoff;
4329
4330 ret = 0;
4331unlock:
4332 rcu_read_unlock();
4333
4334 return ret;
4335}
4336
10c6db11
PZ
4337static void ring_buffer_attach(struct perf_event *event,
4338 struct ring_buffer *rb)
4339{
b69cf536 4340 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4341 unsigned long flags;
4342
b69cf536
PZ
4343 if (event->rb) {
4344 /*
4345 * Should be impossible, we set this when removing
4346 * event->rb_entry and wait/clear when adding event->rb_entry.
4347 */
4348 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4349
b69cf536 4350 old_rb = event->rb;
b69cf536
PZ
4351 spin_lock_irqsave(&old_rb->event_lock, flags);
4352 list_del_rcu(&event->rb_entry);
4353 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4354
2f993cf0
ON
4355 event->rcu_batches = get_state_synchronize_rcu();
4356 event->rcu_pending = 1;
b69cf536 4357 }
10c6db11 4358
b69cf536 4359 if (rb) {
2f993cf0
ON
4360 if (event->rcu_pending) {
4361 cond_synchronize_rcu(event->rcu_batches);
4362 event->rcu_pending = 0;
4363 }
4364
b69cf536
PZ
4365 spin_lock_irqsave(&rb->event_lock, flags);
4366 list_add_rcu(&event->rb_entry, &rb->event_list);
4367 spin_unlock_irqrestore(&rb->event_lock, flags);
4368 }
4369
4370 rcu_assign_pointer(event->rb, rb);
4371
4372 if (old_rb) {
4373 ring_buffer_put(old_rb);
4374 /*
4375 * Since we detached before setting the new rb, so that we
4376 * could attach the new rb, we could have missed a wakeup.
4377 * Provide it now.
4378 */
4379 wake_up_all(&event->waitq);
4380 }
10c6db11
PZ
4381}
4382
4383static void ring_buffer_wakeup(struct perf_event *event)
4384{
4385 struct ring_buffer *rb;
4386
4387 rcu_read_lock();
4388 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4389 if (rb) {
4390 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4391 wake_up_all(&event->waitq);
4392 }
10c6db11
PZ
4393 rcu_read_unlock();
4394}
4395
fdc26706 4396struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4397{
76369139 4398 struct ring_buffer *rb;
7b732a75 4399
ac9721f3 4400 rcu_read_lock();
76369139
FW
4401 rb = rcu_dereference(event->rb);
4402 if (rb) {
4403 if (!atomic_inc_not_zero(&rb->refcount))
4404 rb = NULL;
ac9721f3
PZ
4405 }
4406 rcu_read_unlock();
4407
76369139 4408 return rb;
ac9721f3
PZ
4409}
4410
fdc26706 4411void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4412{
76369139 4413 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4414 return;
7b732a75 4415
9bb5d40c 4416 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4417
76369139 4418 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4419}
4420
4421static void perf_mmap_open(struct vm_area_struct *vma)
4422{
cdd6c482 4423 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4424
cdd6c482 4425 atomic_inc(&event->mmap_count);
9bb5d40c 4426 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4427
45bfb2e5
PZ
4428 if (vma->vm_pgoff)
4429 atomic_inc(&event->rb->aux_mmap_count);
4430
1e0fb9ec
AL
4431 if (event->pmu->event_mapped)
4432 event->pmu->event_mapped(event);
7b732a75
PZ
4433}
4434
9bb5d40c
PZ
4435/*
4436 * A buffer can be mmap()ed multiple times; either directly through the same
4437 * event, or through other events by use of perf_event_set_output().
4438 *
4439 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4440 * the buffer here, where we still have a VM context. This means we need
4441 * to detach all events redirecting to us.
4442 */
7b732a75
PZ
4443static void perf_mmap_close(struct vm_area_struct *vma)
4444{
cdd6c482 4445 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4446
b69cf536 4447 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4448 struct user_struct *mmap_user = rb->mmap_user;
4449 int mmap_locked = rb->mmap_locked;
4450 unsigned long size = perf_data_size(rb);
789f90fc 4451
1e0fb9ec
AL
4452 if (event->pmu->event_unmapped)
4453 event->pmu->event_unmapped(event);
4454
45bfb2e5
PZ
4455 /*
4456 * rb->aux_mmap_count will always drop before rb->mmap_count and
4457 * event->mmap_count, so it is ok to use event->mmap_mutex to
4458 * serialize with perf_mmap here.
4459 */
4460 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4461 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4462 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4463 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4464
4465 rb_free_aux(rb);
4466 mutex_unlock(&event->mmap_mutex);
4467 }
4468
9bb5d40c
PZ
4469 atomic_dec(&rb->mmap_count);
4470
4471 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4472 goto out_put;
9bb5d40c 4473
b69cf536 4474 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4475 mutex_unlock(&event->mmap_mutex);
4476
4477 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4478 if (atomic_read(&rb->mmap_count))
4479 goto out_put;
ac9721f3 4480
9bb5d40c
PZ
4481 /*
4482 * No other mmap()s, detach from all other events that might redirect
4483 * into the now unreachable buffer. Somewhat complicated by the
4484 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4485 */
4486again:
4487 rcu_read_lock();
4488 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4489 if (!atomic_long_inc_not_zero(&event->refcount)) {
4490 /*
4491 * This event is en-route to free_event() which will
4492 * detach it and remove it from the list.
4493 */
4494 continue;
4495 }
4496 rcu_read_unlock();
789f90fc 4497
9bb5d40c
PZ
4498 mutex_lock(&event->mmap_mutex);
4499 /*
4500 * Check we didn't race with perf_event_set_output() which can
4501 * swizzle the rb from under us while we were waiting to
4502 * acquire mmap_mutex.
4503 *
4504 * If we find a different rb; ignore this event, a next
4505 * iteration will no longer find it on the list. We have to
4506 * still restart the iteration to make sure we're not now
4507 * iterating the wrong list.
4508 */
b69cf536
PZ
4509 if (event->rb == rb)
4510 ring_buffer_attach(event, NULL);
4511
cdd6c482 4512 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4513 put_event(event);
ac9721f3 4514
9bb5d40c
PZ
4515 /*
4516 * Restart the iteration; either we're on the wrong list or
4517 * destroyed its integrity by doing a deletion.
4518 */
4519 goto again;
7b732a75 4520 }
9bb5d40c
PZ
4521 rcu_read_unlock();
4522
4523 /*
4524 * It could be there's still a few 0-ref events on the list; they'll
4525 * get cleaned up by free_event() -- they'll also still have their
4526 * ref on the rb and will free it whenever they are done with it.
4527 *
4528 * Aside from that, this buffer is 'fully' detached and unmapped,
4529 * undo the VM accounting.
4530 */
4531
4532 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4533 vma->vm_mm->pinned_vm -= mmap_locked;
4534 free_uid(mmap_user);
4535
b69cf536 4536out_put:
9bb5d40c 4537 ring_buffer_put(rb); /* could be last */
37d81828
PM
4538}
4539
f0f37e2f 4540static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4541 .open = perf_mmap_open,
45bfb2e5 4542 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4543 .fault = perf_mmap_fault,
4544 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4545};
4546
4547static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4548{
cdd6c482 4549 struct perf_event *event = file->private_data;
22a4f650 4550 unsigned long user_locked, user_lock_limit;
789f90fc 4551 struct user_struct *user = current_user();
22a4f650 4552 unsigned long locked, lock_limit;
45bfb2e5 4553 struct ring_buffer *rb = NULL;
7b732a75
PZ
4554 unsigned long vma_size;
4555 unsigned long nr_pages;
45bfb2e5 4556 long user_extra = 0, extra = 0;
d57e34fd 4557 int ret = 0, flags = 0;
37d81828 4558
c7920614
PZ
4559 /*
4560 * Don't allow mmap() of inherited per-task counters. This would
4561 * create a performance issue due to all children writing to the
76369139 4562 * same rb.
c7920614
PZ
4563 */
4564 if (event->cpu == -1 && event->attr.inherit)
4565 return -EINVAL;
4566
43a21ea8 4567 if (!(vma->vm_flags & VM_SHARED))
37d81828 4568 return -EINVAL;
7b732a75
PZ
4569
4570 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4571
4572 if (vma->vm_pgoff == 0) {
4573 nr_pages = (vma_size / PAGE_SIZE) - 1;
4574 } else {
4575 /*
4576 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4577 * mapped, all subsequent mappings should have the same size
4578 * and offset. Must be above the normal perf buffer.
4579 */
4580 u64 aux_offset, aux_size;
4581
4582 if (!event->rb)
4583 return -EINVAL;
4584
4585 nr_pages = vma_size / PAGE_SIZE;
4586
4587 mutex_lock(&event->mmap_mutex);
4588 ret = -EINVAL;
4589
4590 rb = event->rb;
4591 if (!rb)
4592 goto aux_unlock;
4593
4594 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4595 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4596
4597 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4598 goto aux_unlock;
4599
4600 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4601 goto aux_unlock;
4602
4603 /* already mapped with a different offset */
4604 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4605 goto aux_unlock;
4606
4607 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4608 goto aux_unlock;
4609
4610 /* already mapped with a different size */
4611 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4612 goto aux_unlock;
4613
4614 if (!is_power_of_2(nr_pages))
4615 goto aux_unlock;
4616
4617 if (!atomic_inc_not_zero(&rb->mmap_count))
4618 goto aux_unlock;
4619
4620 if (rb_has_aux(rb)) {
4621 atomic_inc(&rb->aux_mmap_count);
4622 ret = 0;
4623 goto unlock;
4624 }
4625
4626 atomic_set(&rb->aux_mmap_count, 1);
4627 user_extra = nr_pages;
4628
4629 goto accounting;
4630 }
7b732a75 4631
7730d865 4632 /*
76369139 4633 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4634 * can do bitmasks instead of modulo.
4635 */
2ed11312 4636 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4637 return -EINVAL;
4638
7b732a75 4639 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4640 return -EINVAL;
4641
cdd6c482 4642 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4643again:
cdd6c482 4644 mutex_lock(&event->mmap_mutex);
76369139 4645 if (event->rb) {
9bb5d40c 4646 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4647 ret = -EINVAL;
9bb5d40c
PZ
4648 goto unlock;
4649 }
4650
4651 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4652 /*
4653 * Raced against perf_mmap_close() through
4654 * perf_event_set_output(). Try again, hope for better
4655 * luck.
4656 */
4657 mutex_unlock(&event->mmap_mutex);
4658 goto again;
4659 }
4660
ebb3c4c4
PZ
4661 goto unlock;
4662 }
4663
789f90fc 4664 user_extra = nr_pages + 1;
45bfb2e5
PZ
4665
4666accounting:
cdd6c482 4667 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4668
4669 /*
4670 * Increase the limit linearly with more CPUs:
4671 */
4672 user_lock_limit *= num_online_cpus();
4673
789f90fc 4674 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4675
789f90fc
PZ
4676 if (user_locked > user_lock_limit)
4677 extra = user_locked - user_lock_limit;
7b732a75 4678
78d7d407 4679 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4680 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4681 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4682
459ec28a
IM
4683 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4684 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4685 ret = -EPERM;
4686 goto unlock;
4687 }
7b732a75 4688
45bfb2e5 4689 WARN_ON(!rb && event->rb);
906010b2 4690
d57e34fd 4691 if (vma->vm_flags & VM_WRITE)
76369139 4692 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4693
76369139 4694 if (!rb) {
45bfb2e5
PZ
4695 rb = rb_alloc(nr_pages,
4696 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4697 event->cpu, flags);
26cb63ad 4698
45bfb2e5
PZ
4699 if (!rb) {
4700 ret = -ENOMEM;
4701 goto unlock;
4702 }
43a21ea8 4703
45bfb2e5
PZ
4704 atomic_set(&rb->mmap_count, 1);
4705 rb->mmap_user = get_current_user();
4706 rb->mmap_locked = extra;
26cb63ad 4707
45bfb2e5 4708 ring_buffer_attach(event, rb);
ac9721f3 4709
45bfb2e5
PZ
4710 perf_event_init_userpage(event);
4711 perf_event_update_userpage(event);
4712 } else {
1a594131
AS
4713 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4714 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4715 if (!ret)
4716 rb->aux_mmap_locked = extra;
4717 }
9a0f05cb 4718
ebb3c4c4 4719unlock:
45bfb2e5
PZ
4720 if (!ret) {
4721 atomic_long_add(user_extra, &user->locked_vm);
4722 vma->vm_mm->pinned_vm += extra;
4723
ac9721f3 4724 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4725 } else if (rb) {
4726 atomic_dec(&rb->mmap_count);
4727 }
4728aux_unlock:
cdd6c482 4729 mutex_unlock(&event->mmap_mutex);
37d81828 4730
9bb5d40c
PZ
4731 /*
4732 * Since pinned accounting is per vm we cannot allow fork() to copy our
4733 * vma.
4734 */
26cb63ad 4735 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4736 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4737
1e0fb9ec
AL
4738 if (event->pmu->event_mapped)
4739 event->pmu->event_mapped(event);
4740
7b732a75 4741 return ret;
37d81828
PM
4742}
4743
3c446b3d
PZ
4744static int perf_fasync(int fd, struct file *filp, int on)
4745{
496ad9aa 4746 struct inode *inode = file_inode(filp);
cdd6c482 4747 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4748 int retval;
4749
4750 mutex_lock(&inode->i_mutex);
cdd6c482 4751 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4752 mutex_unlock(&inode->i_mutex);
4753
4754 if (retval < 0)
4755 return retval;
4756
4757 return 0;
4758}
4759
0793a61d 4760static const struct file_operations perf_fops = {
3326c1ce 4761 .llseek = no_llseek,
0793a61d
TG
4762 .release = perf_release,
4763 .read = perf_read,
4764 .poll = perf_poll,
d859e29f 4765 .unlocked_ioctl = perf_ioctl,
b3f20785 4766 .compat_ioctl = perf_compat_ioctl,
37d81828 4767 .mmap = perf_mmap,
3c446b3d 4768 .fasync = perf_fasync,
0793a61d
TG
4769};
4770
925d519a 4771/*
cdd6c482 4772 * Perf event wakeup
925d519a
PZ
4773 *
4774 * If there's data, ensure we set the poll() state and publish everything
4775 * to user-space before waking everybody up.
4776 */
4777
fed66e2c
PZ
4778static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4779{
4780 /* only the parent has fasync state */
4781 if (event->parent)
4782 event = event->parent;
4783 return &event->fasync;
4784}
4785
cdd6c482 4786void perf_event_wakeup(struct perf_event *event)
925d519a 4787{
10c6db11 4788 ring_buffer_wakeup(event);
4c9e2542 4789
cdd6c482 4790 if (event->pending_kill) {
fed66e2c 4791 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4792 event->pending_kill = 0;
4c9e2542 4793 }
925d519a
PZ
4794}
4795
e360adbe 4796static void perf_pending_event(struct irq_work *entry)
79f14641 4797{
cdd6c482
IM
4798 struct perf_event *event = container_of(entry,
4799 struct perf_event, pending);
d525211f
PZ
4800 int rctx;
4801
4802 rctx = perf_swevent_get_recursion_context();
4803 /*
4804 * If we 'fail' here, that's OK, it means recursion is already disabled
4805 * and we won't recurse 'further'.
4806 */
79f14641 4807
cdd6c482
IM
4808 if (event->pending_disable) {
4809 event->pending_disable = 0;
4810 __perf_event_disable(event);
79f14641
PZ
4811 }
4812
cdd6c482
IM
4813 if (event->pending_wakeup) {
4814 event->pending_wakeup = 0;
4815 perf_event_wakeup(event);
79f14641 4816 }
d525211f
PZ
4817
4818 if (rctx >= 0)
4819 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4820}
4821
39447b38
ZY
4822/*
4823 * We assume there is only KVM supporting the callbacks.
4824 * Later on, we might change it to a list if there is
4825 * another virtualization implementation supporting the callbacks.
4826 */
4827struct perf_guest_info_callbacks *perf_guest_cbs;
4828
4829int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4830{
4831 perf_guest_cbs = cbs;
4832 return 0;
4833}
4834EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4835
4836int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4837{
4838 perf_guest_cbs = NULL;
4839 return 0;
4840}
4841EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4842
4018994f
JO
4843static void
4844perf_output_sample_regs(struct perf_output_handle *handle,
4845 struct pt_regs *regs, u64 mask)
4846{
4847 int bit;
4848
4849 for_each_set_bit(bit, (const unsigned long *) &mask,
4850 sizeof(mask) * BITS_PER_BYTE) {
4851 u64 val;
4852
4853 val = perf_reg_value(regs, bit);
4854 perf_output_put(handle, val);
4855 }
4856}
4857
60e2364e 4858static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4859 struct pt_regs *regs,
4860 struct pt_regs *regs_user_copy)
4018994f 4861{
88a7c26a
AL
4862 if (user_mode(regs)) {
4863 regs_user->abi = perf_reg_abi(current);
2565711f 4864 regs_user->regs = regs;
88a7c26a
AL
4865 } else if (current->mm) {
4866 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4867 } else {
4868 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4869 regs_user->regs = NULL;
4018994f
JO
4870 }
4871}
4872
60e2364e
SE
4873static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4874 struct pt_regs *regs)
4875{
4876 regs_intr->regs = regs;
4877 regs_intr->abi = perf_reg_abi(current);
4878}
4879
4880
c5ebcedb
JO
4881/*
4882 * Get remaining task size from user stack pointer.
4883 *
4884 * It'd be better to take stack vma map and limit this more
4885 * precisly, but there's no way to get it safely under interrupt,
4886 * so using TASK_SIZE as limit.
4887 */
4888static u64 perf_ustack_task_size(struct pt_regs *regs)
4889{
4890 unsigned long addr = perf_user_stack_pointer(regs);
4891
4892 if (!addr || addr >= TASK_SIZE)
4893 return 0;
4894
4895 return TASK_SIZE - addr;
4896}
4897
4898static u16
4899perf_sample_ustack_size(u16 stack_size, u16 header_size,
4900 struct pt_regs *regs)
4901{
4902 u64 task_size;
4903
4904 /* No regs, no stack pointer, no dump. */
4905 if (!regs)
4906 return 0;
4907
4908 /*
4909 * Check if we fit in with the requested stack size into the:
4910 * - TASK_SIZE
4911 * If we don't, we limit the size to the TASK_SIZE.
4912 *
4913 * - remaining sample size
4914 * If we don't, we customize the stack size to
4915 * fit in to the remaining sample size.
4916 */
4917
4918 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4919 stack_size = min(stack_size, (u16) task_size);
4920
4921 /* Current header size plus static size and dynamic size. */
4922 header_size += 2 * sizeof(u64);
4923
4924 /* Do we fit in with the current stack dump size? */
4925 if ((u16) (header_size + stack_size) < header_size) {
4926 /*
4927 * If we overflow the maximum size for the sample,
4928 * we customize the stack dump size to fit in.
4929 */
4930 stack_size = USHRT_MAX - header_size - sizeof(u64);
4931 stack_size = round_up(stack_size, sizeof(u64));
4932 }
4933
4934 return stack_size;
4935}
4936
4937static void
4938perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4939 struct pt_regs *regs)
4940{
4941 /* Case of a kernel thread, nothing to dump */
4942 if (!regs) {
4943 u64 size = 0;
4944 perf_output_put(handle, size);
4945 } else {
4946 unsigned long sp;
4947 unsigned int rem;
4948 u64 dyn_size;
4949
4950 /*
4951 * We dump:
4952 * static size
4953 * - the size requested by user or the best one we can fit
4954 * in to the sample max size
4955 * data
4956 * - user stack dump data
4957 * dynamic size
4958 * - the actual dumped size
4959 */
4960
4961 /* Static size. */
4962 perf_output_put(handle, dump_size);
4963
4964 /* Data. */
4965 sp = perf_user_stack_pointer(regs);
4966 rem = __output_copy_user(handle, (void *) sp, dump_size);
4967 dyn_size = dump_size - rem;
4968
4969 perf_output_skip(handle, rem);
4970
4971 /* Dynamic size. */
4972 perf_output_put(handle, dyn_size);
4973 }
4974}
4975
c980d109
ACM
4976static void __perf_event_header__init_id(struct perf_event_header *header,
4977 struct perf_sample_data *data,
4978 struct perf_event *event)
6844c09d
ACM
4979{
4980 u64 sample_type = event->attr.sample_type;
4981
4982 data->type = sample_type;
4983 header->size += event->id_header_size;
4984
4985 if (sample_type & PERF_SAMPLE_TID) {
4986 /* namespace issues */
4987 data->tid_entry.pid = perf_event_pid(event, current);
4988 data->tid_entry.tid = perf_event_tid(event, current);
4989 }
4990
4991 if (sample_type & PERF_SAMPLE_TIME)
34f43927 4992 data->time = perf_event_clock(event);
6844c09d 4993
ff3d527c 4994 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4995 data->id = primary_event_id(event);
4996
4997 if (sample_type & PERF_SAMPLE_STREAM_ID)
4998 data->stream_id = event->id;
4999
5000 if (sample_type & PERF_SAMPLE_CPU) {
5001 data->cpu_entry.cpu = raw_smp_processor_id();
5002 data->cpu_entry.reserved = 0;
5003 }
5004}
5005
76369139
FW
5006void perf_event_header__init_id(struct perf_event_header *header,
5007 struct perf_sample_data *data,
5008 struct perf_event *event)
c980d109
ACM
5009{
5010 if (event->attr.sample_id_all)
5011 __perf_event_header__init_id(header, data, event);
5012}
5013
5014static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5015 struct perf_sample_data *data)
5016{
5017 u64 sample_type = data->type;
5018
5019 if (sample_type & PERF_SAMPLE_TID)
5020 perf_output_put(handle, data->tid_entry);
5021
5022 if (sample_type & PERF_SAMPLE_TIME)
5023 perf_output_put(handle, data->time);
5024
5025 if (sample_type & PERF_SAMPLE_ID)
5026 perf_output_put(handle, data->id);
5027
5028 if (sample_type & PERF_SAMPLE_STREAM_ID)
5029 perf_output_put(handle, data->stream_id);
5030
5031 if (sample_type & PERF_SAMPLE_CPU)
5032 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5033
5034 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5035 perf_output_put(handle, data->id);
c980d109
ACM
5036}
5037
76369139
FW
5038void perf_event__output_id_sample(struct perf_event *event,
5039 struct perf_output_handle *handle,
5040 struct perf_sample_data *sample)
c980d109
ACM
5041{
5042 if (event->attr.sample_id_all)
5043 __perf_event__output_id_sample(handle, sample);
5044}
5045
3dab77fb 5046static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5047 struct perf_event *event,
5048 u64 enabled, u64 running)
3dab77fb 5049{
cdd6c482 5050 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5051 u64 values[4];
5052 int n = 0;
5053
b5e58793 5054 values[n++] = perf_event_count(event);
3dab77fb 5055 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5056 values[n++] = enabled +
cdd6c482 5057 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5058 }
5059 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5060 values[n++] = running +
cdd6c482 5061 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5062 }
5063 if (read_format & PERF_FORMAT_ID)
cdd6c482 5064 values[n++] = primary_event_id(event);
3dab77fb 5065
76369139 5066 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5067}
5068
5069/*
cdd6c482 5070 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5071 */
5072static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5073 struct perf_event *event,
5074 u64 enabled, u64 running)
3dab77fb 5075{
cdd6c482
IM
5076 struct perf_event *leader = event->group_leader, *sub;
5077 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5078 u64 values[5];
5079 int n = 0;
5080
5081 values[n++] = 1 + leader->nr_siblings;
5082
5083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5084 values[n++] = enabled;
3dab77fb
PZ
5085
5086 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5087 values[n++] = running;
3dab77fb 5088
cdd6c482 5089 if (leader != event)
3dab77fb
PZ
5090 leader->pmu->read(leader);
5091
b5e58793 5092 values[n++] = perf_event_count(leader);
3dab77fb 5093 if (read_format & PERF_FORMAT_ID)
cdd6c482 5094 values[n++] = primary_event_id(leader);
3dab77fb 5095
76369139 5096 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5097
65abc865 5098 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5099 n = 0;
5100
6f5ab001
JO
5101 if ((sub != event) &&
5102 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5103 sub->pmu->read(sub);
5104
b5e58793 5105 values[n++] = perf_event_count(sub);
3dab77fb 5106 if (read_format & PERF_FORMAT_ID)
cdd6c482 5107 values[n++] = primary_event_id(sub);
3dab77fb 5108
76369139 5109 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5110 }
5111}
5112
eed01528
SE
5113#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5114 PERF_FORMAT_TOTAL_TIME_RUNNING)
5115
3dab77fb 5116static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5117 struct perf_event *event)
3dab77fb 5118{
e3f3541c 5119 u64 enabled = 0, running = 0, now;
eed01528
SE
5120 u64 read_format = event->attr.read_format;
5121
5122 /*
5123 * compute total_time_enabled, total_time_running
5124 * based on snapshot values taken when the event
5125 * was last scheduled in.
5126 *
5127 * we cannot simply called update_context_time()
5128 * because of locking issue as we are called in
5129 * NMI context
5130 */
c4794295 5131 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5132 calc_timer_values(event, &now, &enabled, &running);
eed01528 5133
cdd6c482 5134 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5135 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5136 else
eed01528 5137 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5138}
5139
5622f295
MM
5140void perf_output_sample(struct perf_output_handle *handle,
5141 struct perf_event_header *header,
5142 struct perf_sample_data *data,
cdd6c482 5143 struct perf_event *event)
5622f295
MM
5144{
5145 u64 sample_type = data->type;
5146
5147 perf_output_put(handle, *header);
5148
ff3d527c
AH
5149 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5150 perf_output_put(handle, data->id);
5151
5622f295
MM
5152 if (sample_type & PERF_SAMPLE_IP)
5153 perf_output_put(handle, data->ip);
5154
5155 if (sample_type & PERF_SAMPLE_TID)
5156 perf_output_put(handle, data->tid_entry);
5157
5158 if (sample_type & PERF_SAMPLE_TIME)
5159 perf_output_put(handle, data->time);
5160
5161 if (sample_type & PERF_SAMPLE_ADDR)
5162 perf_output_put(handle, data->addr);
5163
5164 if (sample_type & PERF_SAMPLE_ID)
5165 perf_output_put(handle, data->id);
5166
5167 if (sample_type & PERF_SAMPLE_STREAM_ID)
5168 perf_output_put(handle, data->stream_id);
5169
5170 if (sample_type & PERF_SAMPLE_CPU)
5171 perf_output_put(handle, data->cpu_entry);
5172
5173 if (sample_type & PERF_SAMPLE_PERIOD)
5174 perf_output_put(handle, data->period);
5175
5176 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5177 perf_output_read(handle, event);
5622f295
MM
5178
5179 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5180 if (data->callchain) {
5181 int size = 1;
5182
5183 if (data->callchain)
5184 size += data->callchain->nr;
5185
5186 size *= sizeof(u64);
5187
76369139 5188 __output_copy(handle, data->callchain, size);
5622f295
MM
5189 } else {
5190 u64 nr = 0;
5191 perf_output_put(handle, nr);
5192 }
5193 }
5194
5195 if (sample_type & PERF_SAMPLE_RAW) {
5196 if (data->raw) {
5197 perf_output_put(handle, data->raw->size);
76369139
FW
5198 __output_copy(handle, data->raw->data,
5199 data->raw->size);
5622f295
MM
5200 } else {
5201 struct {
5202 u32 size;
5203 u32 data;
5204 } raw = {
5205 .size = sizeof(u32),
5206 .data = 0,
5207 };
5208 perf_output_put(handle, raw);
5209 }
5210 }
a7ac67ea 5211
bce38cd5
SE
5212 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5213 if (data->br_stack) {
5214 size_t size;
5215
5216 size = data->br_stack->nr
5217 * sizeof(struct perf_branch_entry);
5218
5219 perf_output_put(handle, data->br_stack->nr);
5220 perf_output_copy(handle, data->br_stack->entries, size);
5221 } else {
5222 /*
5223 * we always store at least the value of nr
5224 */
5225 u64 nr = 0;
5226 perf_output_put(handle, nr);
5227 }
5228 }
4018994f
JO
5229
5230 if (sample_type & PERF_SAMPLE_REGS_USER) {
5231 u64 abi = data->regs_user.abi;
5232
5233 /*
5234 * If there are no regs to dump, notice it through
5235 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5236 */
5237 perf_output_put(handle, abi);
5238
5239 if (abi) {
5240 u64 mask = event->attr.sample_regs_user;
5241 perf_output_sample_regs(handle,
5242 data->regs_user.regs,
5243 mask);
5244 }
5245 }
c5ebcedb 5246
a5cdd40c 5247 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5248 perf_output_sample_ustack(handle,
5249 data->stack_user_size,
5250 data->regs_user.regs);
a5cdd40c 5251 }
c3feedf2
AK
5252
5253 if (sample_type & PERF_SAMPLE_WEIGHT)
5254 perf_output_put(handle, data->weight);
d6be9ad6
SE
5255
5256 if (sample_type & PERF_SAMPLE_DATA_SRC)
5257 perf_output_put(handle, data->data_src.val);
a5cdd40c 5258
fdfbbd07
AK
5259 if (sample_type & PERF_SAMPLE_TRANSACTION)
5260 perf_output_put(handle, data->txn);
5261
60e2364e
SE
5262 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5263 u64 abi = data->regs_intr.abi;
5264 /*
5265 * If there are no regs to dump, notice it through
5266 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5267 */
5268 perf_output_put(handle, abi);
5269
5270 if (abi) {
5271 u64 mask = event->attr.sample_regs_intr;
5272
5273 perf_output_sample_regs(handle,
5274 data->regs_intr.regs,
5275 mask);
5276 }
5277 }
5278
a5cdd40c
PZ
5279 if (!event->attr.watermark) {
5280 int wakeup_events = event->attr.wakeup_events;
5281
5282 if (wakeup_events) {
5283 struct ring_buffer *rb = handle->rb;
5284 int events = local_inc_return(&rb->events);
5285
5286 if (events >= wakeup_events) {
5287 local_sub(wakeup_events, &rb->events);
5288 local_inc(&rb->wakeup);
5289 }
5290 }
5291 }
5622f295
MM
5292}
5293
5294void perf_prepare_sample(struct perf_event_header *header,
5295 struct perf_sample_data *data,
cdd6c482 5296 struct perf_event *event,
5622f295 5297 struct pt_regs *regs)
7b732a75 5298{
cdd6c482 5299 u64 sample_type = event->attr.sample_type;
7b732a75 5300
cdd6c482 5301 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5302 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5303
5304 header->misc = 0;
5305 header->misc |= perf_misc_flags(regs);
6fab0192 5306
c980d109 5307 __perf_event_header__init_id(header, data, event);
6844c09d 5308
c320c7b7 5309 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5310 data->ip = perf_instruction_pointer(regs);
5311
b23f3325 5312 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5313 int size = 1;
394ee076 5314
e6dab5ff 5315 data->callchain = perf_callchain(event, regs);
5622f295
MM
5316
5317 if (data->callchain)
5318 size += data->callchain->nr;
5319
5320 header->size += size * sizeof(u64);
394ee076
PZ
5321 }
5322
3a43ce68 5323 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5324 int size = sizeof(u32);
5325
5326 if (data->raw)
5327 size += data->raw->size;
5328 else
5329 size += sizeof(u32);
5330
5331 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5332 header->size += size;
7f453c24 5333 }
bce38cd5
SE
5334
5335 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5336 int size = sizeof(u64); /* nr */
5337 if (data->br_stack) {
5338 size += data->br_stack->nr
5339 * sizeof(struct perf_branch_entry);
5340 }
5341 header->size += size;
5342 }
4018994f 5343
2565711f 5344 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5345 perf_sample_regs_user(&data->regs_user, regs,
5346 &data->regs_user_copy);
2565711f 5347
4018994f
JO
5348 if (sample_type & PERF_SAMPLE_REGS_USER) {
5349 /* regs dump ABI info */
5350 int size = sizeof(u64);
5351
4018994f
JO
5352 if (data->regs_user.regs) {
5353 u64 mask = event->attr.sample_regs_user;
5354 size += hweight64(mask) * sizeof(u64);
5355 }
5356
5357 header->size += size;
5358 }
c5ebcedb
JO
5359
5360 if (sample_type & PERF_SAMPLE_STACK_USER) {
5361 /*
5362 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5363 * processed as the last one or have additional check added
5364 * in case new sample type is added, because we could eat
5365 * up the rest of the sample size.
5366 */
c5ebcedb
JO
5367 u16 stack_size = event->attr.sample_stack_user;
5368 u16 size = sizeof(u64);
5369
c5ebcedb 5370 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5371 data->regs_user.regs);
c5ebcedb
JO
5372
5373 /*
5374 * If there is something to dump, add space for the dump
5375 * itself and for the field that tells the dynamic size,
5376 * which is how many have been actually dumped.
5377 */
5378 if (stack_size)
5379 size += sizeof(u64) + stack_size;
5380
5381 data->stack_user_size = stack_size;
5382 header->size += size;
5383 }
60e2364e
SE
5384
5385 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5386 /* regs dump ABI info */
5387 int size = sizeof(u64);
5388
5389 perf_sample_regs_intr(&data->regs_intr, regs);
5390
5391 if (data->regs_intr.regs) {
5392 u64 mask = event->attr.sample_regs_intr;
5393
5394 size += hweight64(mask) * sizeof(u64);
5395 }
5396
5397 header->size += size;
5398 }
5622f295 5399}
7f453c24 5400
21509084
YZ
5401void perf_event_output(struct perf_event *event,
5402 struct perf_sample_data *data,
5403 struct pt_regs *regs)
5622f295
MM
5404{
5405 struct perf_output_handle handle;
5406 struct perf_event_header header;
689802b2 5407
927c7a9e
FW
5408 /* protect the callchain buffers */
5409 rcu_read_lock();
5410
cdd6c482 5411 perf_prepare_sample(&header, data, event, regs);
5c148194 5412
a7ac67ea 5413 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5414 goto exit;
0322cd6e 5415
cdd6c482 5416 perf_output_sample(&handle, &header, data, event);
f413cdb8 5417
8a057d84 5418 perf_output_end(&handle);
927c7a9e
FW
5419
5420exit:
5421 rcu_read_unlock();
0322cd6e
PZ
5422}
5423
38b200d6 5424/*
cdd6c482 5425 * read event_id
38b200d6
PZ
5426 */
5427
5428struct perf_read_event {
5429 struct perf_event_header header;
5430
5431 u32 pid;
5432 u32 tid;
38b200d6
PZ
5433};
5434
5435static void
cdd6c482 5436perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5437 struct task_struct *task)
5438{
5439 struct perf_output_handle handle;
c980d109 5440 struct perf_sample_data sample;
dfc65094 5441 struct perf_read_event read_event = {
38b200d6 5442 .header = {
cdd6c482 5443 .type = PERF_RECORD_READ,
38b200d6 5444 .misc = 0,
c320c7b7 5445 .size = sizeof(read_event) + event->read_size,
38b200d6 5446 },
cdd6c482
IM
5447 .pid = perf_event_pid(event, task),
5448 .tid = perf_event_tid(event, task),
38b200d6 5449 };
3dab77fb 5450 int ret;
38b200d6 5451
c980d109 5452 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5453 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5454 if (ret)
5455 return;
5456
dfc65094 5457 perf_output_put(&handle, read_event);
cdd6c482 5458 perf_output_read(&handle, event);
c980d109 5459 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5460
38b200d6
PZ
5461 perf_output_end(&handle);
5462}
5463
52d857a8
JO
5464typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5465
5466static void
5467perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5468 perf_event_aux_output_cb output,
5469 void *data)
5470{
5471 struct perf_event *event;
5472
5473 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5474 if (event->state < PERF_EVENT_STATE_INACTIVE)
5475 continue;
5476 if (!event_filter_match(event))
5477 continue;
67516844 5478 output(event, data);
52d857a8
JO
5479 }
5480}
5481
5482static void
67516844 5483perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5484 struct perf_event_context *task_ctx)
5485{
5486 struct perf_cpu_context *cpuctx;
5487 struct perf_event_context *ctx;
5488 struct pmu *pmu;
5489 int ctxn;
5490
5491 rcu_read_lock();
5492 list_for_each_entry_rcu(pmu, &pmus, entry) {
5493 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5494 if (cpuctx->unique_pmu != pmu)
5495 goto next;
67516844 5496 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5497 if (task_ctx)
5498 goto next;
5499 ctxn = pmu->task_ctx_nr;
5500 if (ctxn < 0)
5501 goto next;
5502 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5503 if (ctx)
67516844 5504 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5505next:
5506 put_cpu_ptr(pmu->pmu_cpu_context);
5507 }
5508
5509 if (task_ctx) {
5510 preempt_disable();
67516844 5511 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5512 preempt_enable();
5513 }
5514 rcu_read_unlock();
5515}
5516
60313ebe 5517/*
9f498cc5
PZ
5518 * task tracking -- fork/exit
5519 *
13d7a241 5520 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5521 */
5522
9f498cc5 5523struct perf_task_event {
3a80b4a3 5524 struct task_struct *task;
cdd6c482 5525 struct perf_event_context *task_ctx;
60313ebe
PZ
5526
5527 struct {
5528 struct perf_event_header header;
5529
5530 u32 pid;
5531 u32 ppid;
9f498cc5
PZ
5532 u32 tid;
5533 u32 ptid;
393b2ad8 5534 u64 time;
cdd6c482 5535 } event_id;
60313ebe
PZ
5536};
5537
67516844
JO
5538static int perf_event_task_match(struct perf_event *event)
5539{
13d7a241
SE
5540 return event->attr.comm || event->attr.mmap ||
5541 event->attr.mmap2 || event->attr.mmap_data ||
5542 event->attr.task;
67516844
JO
5543}
5544
cdd6c482 5545static void perf_event_task_output(struct perf_event *event,
52d857a8 5546 void *data)
60313ebe 5547{
52d857a8 5548 struct perf_task_event *task_event = data;
60313ebe 5549 struct perf_output_handle handle;
c980d109 5550 struct perf_sample_data sample;
9f498cc5 5551 struct task_struct *task = task_event->task;
c980d109 5552 int ret, size = task_event->event_id.header.size;
8bb39f9a 5553
67516844
JO
5554 if (!perf_event_task_match(event))
5555 return;
5556
c980d109 5557 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5558
c980d109 5559 ret = perf_output_begin(&handle, event,
a7ac67ea 5560 task_event->event_id.header.size);
ef60777c 5561 if (ret)
c980d109 5562 goto out;
60313ebe 5563
cdd6c482
IM
5564 task_event->event_id.pid = perf_event_pid(event, task);
5565 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5566
cdd6c482
IM
5567 task_event->event_id.tid = perf_event_tid(event, task);
5568 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5569
34f43927
PZ
5570 task_event->event_id.time = perf_event_clock(event);
5571
cdd6c482 5572 perf_output_put(&handle, task_event->event_id);
393b2ad8 5573
c980d109
ACM
5574 perf_event__output_id_sample(event, &handle, &sample);
5575
60313ebe 5576 perf_output_end(&handle);
c980d109
ACM
5577out:
5578 task_event->event_id.header.size = size;
60313ebe
PZ
5579}
5580
cdd6c482
IM
5581static void perf_event_task(struct task_struct *task,
5582 struct perf_event_context *task_ctx,
3a80b4a3 5583 int new)
60313ebe 5584{
9f498cc5 5585 struct perf_task_event task_event;
60313ebe 5586
cdd6c482
IM
5587 if (!atomic_read(&nr_comm_events) &&
5588 !atomic_read(&nr_mmap_events) &&
5589 !atomic_read(&nr_task_events))
60313ebe
PZ
5590 return;
5591
9f498cc5 5592 task_event = (struct perf_task_event){
3a80b4a3
PZ
5593 .task = task,
5594 .task_ctx = task_ctx,
cdd6c482 5595 .event_id = {
60313ebe 5596 .header = {
cdd6c482 5597 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5598 .misc = 0,
cdd6c482 5599 .size = sizeof(task_event.event_id),
60313ebe 5600 },
573402db
PZ
5601 /* .pid */
5602 /* .ppid */
9f498cc5
PZ
5603 /* .tid */
5604 /* .ptid */
34f43927 5605 /* .time */
60313ebe
PZ
5606 },
5607 };
5608
67516844 5609 perf_event_aux(perf_event_task_output,
52d857a8
JO
5610 &task_event,
5611 task_ctx);
9f498cc5
PZ
5612}
5613
cdd6c482 5614void perf_event_fork(struct task_struct *task)
9f498cc5 5615{
cdd6c482 5616 perf_event_task(task, NULL, 1);
60313ebe
PZ
5617}
5618
8d1b2d93
PZ
5619/*
5620 * comm tracking
5621 */
5622
5623struct perf_comm_event {
22a4f650
IM
5624 struct task_struct *task;
5625 char *comm;
8d1b2d93
PZ
5626 int comm_size;
5627
5628 struct {
5629 struct perf_event_header header;
5630
5631 u32 pid;
5632 u32 tid;
cdd6c482 5633 } event_id;
8d1b2d93
PZ
5634};
5635
67516844
JO
5636static int perf_event_comm_match(struct perf_event *event)
5637{
5638 return event->attr.comm;
5639}
5640
cdd6c482 5641static void perf_event_comm_output(struct perf_event *event,
52d857a8 5642 void *data)
8d1b2d93 5643{
52d857a8 5644 struct perf_comm_event *comm_event = data;
8d1b2d93 5645 struct perf_output_handle handle;
c980d109 5646 struct perf_sample_data sample;
cdd6c482 5647 int size = comm_event->event_id.header.size;
c980d109
ACM
5648 int ret;
5649
67516844
JO
5650 if (!perf_event_comm_match(event))
5651 return;
5652
c980d109
ACM
5653 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5654 ret = perf_output_begin(&handle, event,
a7ac67ea 5655 comm_event->event_id.header.size);
8d1b2d93
PZ
5656
5657 if (ret)
c980d109 5658 goto out;
8d1b2d93 5659
cdd6c482
IM
5660 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5661 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5662
cdd6c482 5663 perf_output_put(&handle, comm_event->event_id);
76369139 5664 __output_copy(&handle, comm_event->comm,
8d1b2d93 5665 comm_event->comm_size);
c980d109
ACM
5666
5667 perf_event__output_id_sample(event, &handle, &sample);
5668
8d1b2d93 5669 perf_output_end(&handle);
c980d109
ACM
5670out:
5671 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5672}
5673
cdd6c482 5674static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5675{
413ee3b4 5676 char comm[TASK_COMM_LEN];
8d1b2d93 5677 unsigned int size;
8d1b2d93 5678
413ee3b4 5679 memset(comm, 0, sizeof(comm));
96b02d78 5680 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5681 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5682
5683 comm_event->comm = comm;
5684 comm_event->comm_size = size;
5685
cdd6c482 5686 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5687
67516844 5688 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5689 comm_event,
5690 NULL);
8d1b2d93
PZ
5691}
5692
82b89778 5693void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5694{
9ee318a7
PZ
5695 struct perf_comm_event comm_event;
5696
cdd6c482 5697 if (!atomic_read(&nr_comm_events))
9ee318a7 5698 return;
a63eaf34 5699
9ee318a7 5700 comm_event = (struct perf_comm_event){
8d1b2d93 5701 .task = task,
573402db
PZ
5702 /* .comm */
5703 /* .comm_size */
cdd6c482 5704 .event_id = {
573402db 5705 .header = {
cdd6c482 5706 .type = PERF_RECORD_COMM,
82b89778 5707 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5708 /* .size */
5709 },
5710 /* .pid */
5711 /* .tid */
8d1b2d93
PZ
5712 },
5713 };
5714
cdd6c482 5715 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5716}
5717
0a4a9391
PZ
5718/*
5719 * mmap tracking
5720 */
5721
5722struct perf_mmap_event {
089dd79d
PZ
5723 struct vm_area_struct *vma;
5724
5725 const char *file_name;
5726 int file_size;
13d7a241
SE
5727 int maj, min;
5728 u64 ino;
5729 u64 ino_generation;
f972eb63 5730 u32 prot, flags;
0a4a9391
PZ
5731
5732 struct {
5733 struct perf_event_header header;
5734
5735 u32 pid;
5736 u32 tid;
5737 u64 start;
5738 u64 len;
5739 u64 pgoff;
cdd6c482 5740 } event_id;
0a4a9391
PZ
5741};
5742
67516844
JO
5743static int perf_event_mmap_match(struct perf_event *event,
5744 void *data)
5745{
5746 struct perf_mmap_event *mmap_event = data;
5747 struct vm_area_struct *vma = mmap_event->vma;
5748 int executable = vma->vm_flags & VM_EXEC;
5749
5750 return (!executable && event->attr.mmap_data) ||
13d7a241 5751 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5752}
5753
cdd6c482 5754static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5755 void *data)
0a4a9391 5756{
52d857a8 5757 struct perf_mmap_event *mmap_event = data;
0a4a9391 5758 struct perf_output_handle handle;
c980d109 5759 struct perf_sample_data sample;
cdd6c482 5760 int size = mmap_event->event_id.header.size;
c980d109 5761 int ret;
0a4a9391 5762
67516844
JO
5763 if (!perf_event_mmap_match(event, data))
5764 return;
5765
13d7a241
SE
5766 if (event->attr.mmap2) {
5767 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5768 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5769 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5770 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5771 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5772 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5773 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5774 }
5775
c980d109
ACM
5776 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5777 ret = perf_output_begin(&handle, event,
a7ac67ea 5778 mmap_event->event_id.header.size);
0a4a9391 5779 if (ret)
c980d109 5780 goto out;
0a4a9391 5781
cdd6c482
IM
5782 mmap_event->event_id.pid = perf_event_pid(event, current);
5783 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5784
cdd6c482 5785 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5786
5787 if (event->attr.mmap2) {
5788 perf_output_put(&handle, mmap_event->maj);
5789 perf_output_put(&handle, mmap_event->min);
5790 perf_output_put(&handle, mmap_event->ino);
5791 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5792 perf_output_put(&handle, mmap_event->prot);
5793 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5794 }
5795
76369139 5796 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5797 mmap_event->file_size);
c980d109
ACM
5798
5799 perf_event__output_id_sample(event, &handle, &sample);
5800
78d613eb 5801 perf_output_end(&handle);
c980d109
ACM
5802out:
5803 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5804}
5805
cdd6c482 5806static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5807{
089dd79d
PZ
5808 struct vm_area_struct *vma = mmap_event->vma;
5809 struct file *file = vma->vm_file;
13d7a241
SE
5810 int maj = 0, min = 0;
5811 u64 ino = 0, gen = 0;
f972eb63 5812 u32 prot = 0, flags = 0;
0a4a9391
PZ
5813 unsigned int size;
5814 char tmp[16];
5815 char *buf = NULL;
2c42cfbf 5816 char *name;
413ee3b4 5817
0a4a9391 5818 if (file) {
13d7a241
SE
5819 struct inode *inode;
5820 dev_t dev;
3ea2f2b9 5821
2c42cfbf 5822 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5823 if (!buf) {
c7e548b4
ON
5824 name = "//enomem";
5825 goto cpy_name;
0a4a9391 5826 }
413ee3b4 5827 /*
3ea2f2b9 5828 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5829 * need to add enough zero bytes after the string to handle
5830 * the 64bit alignment we do later.
5831 */
9bf39ab2 5832 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5833 if (IS_ERR(name)) {
c7e548b4
ON
5834 name = "//toolong";
5835 goto cpy_name;
0a4a9391 5836 }
13d7a241
SE
5837 inode = file_inode(vma->vm_file);
5838 dev = inode->i_sb->s_dev;
5839 ino = inode->i_ino;
5840 gen = inode->i_generation;
5841 maj = MAJOR(dev);
5842 min = MINOR(dev);
f972eb63
PZ
5843
5844 if (vma->vm_flags & VM_READ)
5845 prot |= PROT_READ;
5846 if (vma->vm_flags & VM_WRITE)
5847 prot |= PROT_WRITE;
5848 if (vma->vm_flags & VM_EXEC)
5849 prot |= PROT_EXEC;
5850
5851 if (vma->vm_flags & VM_MAYSHARE)
5852 flags = MAP_SHARED;
5853 else
5854 flags = MAP_PRIVATE;
5855
5856 if (vma->vm_flags & VM_DENYWRITE)
5857 flags |= MAP_DENYWRITE;
5858 if (vma->vm_flags & VM_MAYEXEC)
5859 flags |= MAP_EXECUTABLE;
5860 if (vma->vm_flags & VM_LOCKED)
5861 flags |= MAP_LOCKED;
5862 if (vma->vm_flags & VM_HUGETLB)
5863 flags |= MAP_HUGETLB;
5864
c7e548b4 5865 goto got_name;
0a4a9391 5866 } else {
fbe26abe
JO
5867 if (vma->vm_ops && vma->vm_ops->name) {
5868 name = (char *) vma->vm_ops->name(vma);
5869 if (name)
5870 goto cpy_name;
5871 }
5872
2c42cfbf 5873 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5874 if (name)
5875 goto cpy_name;
089dd79d 5876
32c5fb7e 5877 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5878 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5879 name = "[heap]";
5880 goto cpy_name;
32c5fb7e
ON
5881 }
5882 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5883 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5884 name = "[stack]";
5885 goto cpy_name;
089dd79d
PZ
5886 }
5887
c7e548b4
ON
5888 name = "//anon";
5889 goto cpy_name;
0a4a9391
PZ
5890 }
5891
c7e548b4
ON
5892cpy_name:
5893 strlcpy(tmp, name, sizeof(tmp));
5894 name = tmp;
0a4a9391 5895got_name:
2c42cfbf
PZ
5896 /*
5897 * Since our buffer works in 8 byte units we need to align our string
5898 * size to a multiple of 8. However, we must guarantee the tail end is
5899 * zero'd out to avoid leaking random bits to userspace.
5900 */
5901 size = strlen(name)+1;
5902 while (!IS_ALIGNED(size, sizeof(u64)))
5903 name[size++] = '\0';
0a4a9391
PZ
5904
5905 mmap_event->file_name = name;
5906 mmap_event->file_size = size;
13d7a241
SE
5907 mmap_event->maj = maj;
5908 mmap_event->min = min;
5909 mmap_event->ino = ino;
5910 mmap_event->ino_generation = gen;
f972eb63
PZ
5911 mmap_event->prot = prot;
5912 mmap_event->flags = flags;
0a4a9391 5913
2fe85427
SE
5914 if (!(vma->vm_flags & VM_EXEC))
5915 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5916
cdd6c482 5917 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5918
67516844 5919 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5920 mmap_event,
5921 NULL);
665c2142 5922
0a4a9391
PZ
5923 kfree(buf);
5924}
5925
3af9e859 5926void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5927{
9ee318a7
PZ
5928 struct perf_mmap_event mmap_event;
5929
cdd6c482 5930 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5931 return;
5932
5933 mmap_event = (struct perf_mmap_event){
089dd79d 5934 .vma = vma,
573402db
PZ
5935 /* .file_name */
5936 /* .file_size */
cdd6c482 5937 .event_id = {
573402db 5938 .header = {
cdd6c482 5939 .type = PERF_RECORD_MMAP,
39447b38 5940 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5941 /* .size */
5942 },
5943 /* .pid */
5944 /* .tid */
089dd79d
PZ
5945 .start = vma->vm_start,
5946 .len = vma->vm_end - vma->vm_start,
3a0304e9 5947 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5948 },
13d7a241
SE
5949 /* .maj (attr_mmap2 only) */
5950 /* .min (attr_mmap2 only) */
5951 /* .ino (attr_mmap2 only) */
5952 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5953 /* .prot (attr_mmap2 only) */
5954 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5955 };
5956
cdd6c482 5957 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5958}
5959
68db7e98
AS
5960void perf_event_aux_event(struct perf_event *event, unsigned long head,
5961 unsigned long size, u64 flags)
5962{
5963 struct perf_output_handle handle;
5964 struct perf_sample_data sample;
5965 struct perf_aux_event {
5966 struct perf_event_header header;
5967 u64 offset;
5968 u64 size;
5969 u64 flags;
5970 } rec = {
5971 .header = {
5972 .type = PERF_RECORD_AUX,
5973 .misc = 0,
5974 .size = sizeof(rec),
5975 },
5976 .offset = head,
5977 .size = size,
5978 .flags = flags,
5979 };
5980 int ret;
5981
5982 perf_event_header__init_id(&rec.header, &sample, event);
5983 ret = perf_output_begin(&handle, event, rec.header.size);
5984
5985 if (ret)
5986 return;
5987
5988 perf_output_put(&handle, rec);
5989 perf_event__output_id_sample(event, &handle, &sample);
5990
5991 perf_output_end(&handle);
5992}
5993
f38b0dbb
KL
5994/*
5995 * Lost/dropped samples logging
5996 */
5997void perf_log_lost_samples(struct perf_event *event, u64 lost)
5998{
5999 struct perf_output_handle handle;
6000 struct perf_sample_data sample;
6001 int ret;
6002
6003 struct {
6004 struct perf_event_header header;
6005 u64 lost;
6006 } lost_samples_event = {
6007 .header = {
6008 .type = PERF_RECORD_LOST_SAMPLES,
6009 .misc = 0,
6010 .size = sizeof(lost_samples_event),
6011 },
6012 .lost = lost,
6013 };
6014
6015 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6016
6017 ret = perf_output_begin(&handle, event,
6018 lost_samples_event.header.size);
6019 if (ret)
6020 return;
6021
6022 perf_output_put(&handle, lost_samples_event);
6023 perf_event__output_id_sample(event, &handle, &sample);
6024 perf_output_end(&handle);
6025}
6026
a78ac325
PZ
6027/*
6028 * IRQ throttle logging
6029 */
6030
cdd6c482 6031static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6032{
6033 struct perf_output_handle handle;
c980d109 6034 struct perf_sample_data sample;
a78ac325
PZ
6035 int ret;
6036
6037 struct {
6038 struct perf_event_header header;
6039 u64 time;
cca3f454 6040 u64 id;
7f453c24 6041 u64 stream_id;
a78ac325
PZ
6042 } throttle_event = {
6043 .header = {
cdd6c482 6044 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6045 .misc = 0,
6046 .size = sizeof(throttle_event),
6047 },
34f43927 6048 .time = perf_event_clock(event),
cdd6c482
IM
6049 .id = primary_event_id(event),
6050 .stream_id = event->id,
a78ac325
PZ
6051 };
6052
966ee4d6 6053 if (enable)
cdd6c482 6054 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6055
c980d109
ACM
6056 perf_event_header__init_id(&throttle_event.header, &sample, event);
6057
6058 ret = perf_output_begin(&handle, event,
a7ac67ea 6059 throttle_event.header.size);
a78ac325
PZ
6060 if (ret)
6061 return;
6062
6063 perf_output_put(&handle, throttle_event);
c980d109 6064 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6065 perf_output_end(&handle);
6066}
6067
ec0d7729
AS
6068static void perf_log_itrace_start(struct perf_event *event)
6069{
6070 struct perf_output_handle handle;
6071 struct perf_sample_data sample;
6072 struct perf_aux_event {
6073 struct perf_event_header header;
6074 u32 pid;
6075 u32 tid;
6076 } rec;
6077 int ret;
6078
6079 if (event->parent)
6080 event = event->parent;
6081
6082 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6083 event->hw.itrace_started)
6084 return;
6085
6086 event->hw.itrace_started = 1;
6087
6088 rec.header.type = PERF_RECORD_ITRACE_START;
6089 rec.header.misc = 0;
6090 rec.header.size = sizeof(rec);
6091 rec.pid = perf_event_pid(event, current);
6092 rec.tid = perf_event_tid(event, current);
6093
6094 perf_event_header__init_id(&rec.header, &sample, event);
6095 ret = perf_output_begin(&handle, event, rec.header.size);
6096
6097 if (ret)
6098 return;
6099
6100 perf_output_put(&handle, rec);
6101 perf_event__output_id_sample(event, &handle, &sample);
6102
6103 perf_output_end(&handle);
6104}
6105
f6c7d5fe 6106/*
cdd6c482 6107 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6108 */
6109
a8b0ca17 6110static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6111 int throttle, struct perf_sample_data *data,
6112 struct pt_regs *regs)
f6c7d5fe 6113{
cdd6c482
IM
6114 int events = atomic_read(&event->event_limit);
6115 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6116 u64 seq;
79f14641
PZ
6117 int ret = 0;
6118
96398826
PZ
6119 /*
6120 * Non-sampling counters might still use the PMI to fold short
6121 * hardware counters, ignore those.
6122 */
6123 if (unlikely(!is_sampling_event(event)))
6124 return 0;
6125
e050e3f0
SE
6126 seq = __this_cpu_read(perf_throttled_seq);
6127 if (seq != hwc->interrupts_seq) {
6128 hwc->interrupts_seq = seq;
6129 hwc->interrupts = 1;
6130 } else {
6131 hwc->interrupts++;
6132 if (unlikely(throttle
6133 && hwc->interrupts >= max_samples_per_tick)) {
6134 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6135 hwc->interrupts = MAX_INTERRUPTS;
6136 perf_log_throttle(event, 0);
d84153d6 6137 tick_nohz_full_kick();
a78ac325
PZ
6138 ret = 1;
6139 }
e050e3f0 6140 }
60db5e09 6141
cdd6c482 6142 if (event->attr.freq) {
def0a9b2 6143 u64 now = perf_clock();
abd50713 6144 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6145
abd50713 6146 hwc->freq_time_stamp = now;
bd2b5b12 6147
abd50713 6148 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6149 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6150 }
6151
2023b359
PZ
6152 /*
6153 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6154 * events
2023b359
PZ
6155 */
6156
cdd6c482
IM
6157 event->pending_kill = POLL_IN;
6158 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6159 ret = 1;
cdd6c482 6160 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6161 event->pending_disable = 1;
6162 irq_work_queue(&event->pending);
79f14641
PZ
6163 }
6164
453f19ee 6165 if (event->overflow_handler)
a8b0ca17 6166 event->overflow_handler(event, data, regs);
453f19ee 6167 else
a8b0ca17 6168 perf_event_output(event, data, regs);
453f19ee 6169
fed66e2c 6170 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6171 event->pending_wakeup = 1;
6172 irq_work_queue(&event->pending);
f506b3dc
PZ
6173 }
6174
79f14641 6175 return ret;
f6c7d5fe
PZ
6176}
6177
a8b0ca17 6178int perf_event_overflow(struct perf_event *event,
5622f295
MM
6179 struct perf_sample_data *data,
6180 struct pt_regs *regs)
850bc73f 6181{
a8b0ca17 6182 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6183}
6184
15dbf27c 6185/*
cdd6c482 6186 * Generic software event infrastructure
15dbf27c
PZ
6187 */
6188
b28ab83c
PZ
6189struct swevent_htable {
6190 struct swevent_hlist *swevent_hlist;
6191 struct mutex hlist_mutex;
6192 int hlist_refcount;
6193
6194 /* Recursion avoidance in each contexts */
6195 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6196
6197 /* Keeps track of cpu being initialized/exited */
6198 bool online;
b28ab83c
PZ
6199};
6200
6201static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6202
7b4b6658 6203/*
cdd6c482
IM
6204 * We directly increment event->count and keep a second value in
6205 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6206 * is kept in the range [-sample_period, 0] so that we can use the
6207 * sign as trigger.
6208 */
6209
ab573844 6210u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6211{
cdd6c482 6212 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6213 u64 period = hwc->last_period;
6214 u64 nr, offset;
6215 s64 old, val;
6216
6217 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6218
6219again:
e7850595 6220 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6221 if (val < 0)
6222 return 0;
15dbf27c 6223
7b4b6658
PZ
6224 nr = div64_u64(period + val, period);
6225 offset = nr * period;
6226 val -= offset;
e7850595 6227 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6228 goto again;
15dbf27c 6229
7b4b6658 6230 return nr;
15dbf27c
PZ
6231}
6232
0cff784a 6233static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6234 struct perf_sample_data *data,
5622f295 6235 struct pt_regs *regs)
15dbf27c 6236{
cdd6c482 6237 struct hw_perf_event *hwc = &event->hw;
850bc73f 6238 int throttle = 0;
15dbf27c 6239
0cff784a
PZ
6240 if (!overflow)
6241 overflow = perf_swevent_set_period(event);
15dbf27c 6242
7b4b6658
PZ
6243 if (hwc->interrupts == MAX_INTERRUPTS)
6244 return;
15dbf27c 6245
7b4b6658 6246 for (; overflow; overflow--) {
a8b0ca17 6247 if (__perf_event_overflow(event, throttle,
5622f295 6248 data, regs)) {
7b4b6658
PZ
6249 /*
6250 * We inhibit the overflow from happening when
6251 * hwc->interrupts == MAX_INTERRUPTS.
6252 */
6253 break;
6254 }
cf450a73 6255 throttle = 1;
7b4b6658 6256 }
15dbf27c
PZ
6257}
6258
a4eaf7f1 6259static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6260 struct perf_sample_data *data,
5622f295 6261 struct pt_regs *regs)
7b4b6658 6262{
cdd6c482 6263 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6264
e7850595 6265 local64_add(nr, &event->count);
d6d020e9 6266
0cff784a
PZ
6267 if (!regs)
6268 return;
6269
6c7e550f 6270 if (!is_sampling_event(event))
7b4b6658 6271 return;
d6d020e9 6272
5d81e5cf
AV
6273 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6274 data->period = nr;
6275 return perf_swevent_overflow(event, 1, data, regs);
6276 } else
6277 data->period = event->hw.last_period;
6278
0cff784a 6279 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6280 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6281
e7850595 6282 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6283 return;
df1a132b 6284
a8b0ca17 6285 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6286}
6287
f5ffe02e
FW
6288static int perf_exclude_event(struct perf_event *event,
6289 struct pt_regs *regs)
6290{
a4eaf7f1 6291 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6292 return 1;
a4eaf7f1 6293
f5ffe02e
FW
6294 if (regs) {
6295 if (event->attr.exclude_user && user_mode(regs))
6296 return 1;
6297
6298 if (event->attr.exclude_kernel && !user_mode(regs))
6299 return 1;
6300 }
6301
6302 return 0;
6303}
6304
cdd6c482 6305static int perf_swevent_match(struct perf_event *event,
1c432d89 6306 enum perf_type_id type,
6fb2915d
LZ
6307 u32 event_id,
6308 struct perf_sample_data *data,
6309 struct pt_regs *regs)
15dbf27c 6310{
cdd6c482 6311 if (event->attr.type != type)
a21ca2ca 6312 return 0;
f5ffe02e 6313
cdd6c482 6314 if (event->attr.config != event_id)
15dbf27c
PZ
6315 return 0;
6316
f5ffe02e
FW
6317 if (perf_exclude_event(event, regs))
6318 return 0;
15dbf27c
PZ
6319
6320 return 1;
6321}
6322
76e1d904
FW
6323static inline u64 swevent_hash(u64 type, u32 event_id)
6324{
6325 u64 val = event_id | (type << 32);
6326
6327 return hash_64(val, SWEVENT_HLIST_BITS);
6328}
6329
49f135ed
FW
6330static inline struct hlist_head *
6331__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6332{
49f135ed
FW
6333 u64 hash = swevent_hash(type, event_id);
6334
6335 return &hlist->heads[hash];
6336}
76e1d904 6337
49f135ed
FW
6338/* For the read side: events when they trigger */
6339static inline struct hlist_head *
b28ab83c 6340find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6341{
6342 struct swevent_hlist *hlist;
76e1d904 6343
b28ab83c 6344 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6345 if (!hlist)
6346 return NULL;
6347
49f135ed
FW
6348 return __find_swevent_head(hlist, type, event_id);
6349}
6350
6351/* For the event head insertion and removal in the hlist */
6352static inline struct hlist_head *
b28ab83c 6353find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6354{
6355 struct swevent_hlist *hlist;
6356 u32 event_id = event->attr.config;
6357 u64 type = event->attr.type;
6358
6359 /*
6360 * Event scheduling is always serialized against hlist allocation
6361 * and release. Which makes the protected version suitable here.
6362 * The context lock guarantees that.
6363 */
b28ab83c 6364 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6365 lockdep_is_held(&event->ctx->lock));
6366 if (!hlist)
6367 return NULL;
6368
6369 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6370}
6371
6372static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6373 u64 nr,
76e1d904
FW
6374 struct perf_sample_data *data,
6375 struct pt_regs *regs)
15dbf27c 6376{
4a32fea9 6377 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6378 struct perf_event *event;
76e1d904 6379 struct hlist_head *head;
15dbf27c 6380
76e1d904 6381 rcu_read_lock();
b28ab83c 6382 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6383 if (!head)
6384 goto end;
6385
b67bfe0d 6386 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6387 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6388 perf_swevent_event(event, nr, data, regs);
15dbf27c 6389 }
76e1d904
FW
6390end:
6391 rcu_read_unlock();
15dbf27c
PZ
6392}
6393
86038c5e
PZI
6394DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6395
4ed7c92d 6396int perf_swevent_get_recursion_context(void)
96f6d444 6397{
4a32fea9 6398 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6399
b28ab83c 6400 return get_recursion_context(swhash->recursion);
96f6d444 6401}
645e8cc0 6402EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6403
fa9f90be 6404inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6405{
4a32fea9 6406 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6407
b28ab83c 6408 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6409}
15dbf27c 6410
86038c5e 6411void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6412{
a4234bfc 6413 struct perf_sample_data data;
4ed7c92d 6414
86038c5e 6415 if (WARN_ON_ONCE(!regs))
4ed7c92d 6416 return;
a4234bfc 6417
fd0d000b 6418 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6419 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6420}
6421
6422void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6423{
6424 int rctx;
6425
6426 preempt_disable_notrace();
6427 rctx = perf_swevent_get_recursion_context();
6428 if (unlikely(rctx < 0))
6429 goto fail;
6430
6431 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6432
6433 perf_swevent_put_recursion_context(rctx);
86038c5e 6434fail:
1c024eca 6435 preempt_enable_notrace();
b8e83514
PZ
6436}
6437
cdd6c482 6438static void perf_swevent_read(struct perf_event *event)
15dbf27c 6439{
15dbf27c
PZ
6440}
6441
a4eaf7f1 6442static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6443{
4a32fea9 6444 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6445 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6446 struct hlist_head *head;
6447
6c7e550f 6448 if (is_sampling_event(event)) {
7b4b6658 6449 hwc->last_period = hwc->sample_period;
cdd6c482 6450 perf_swevent_set_period(event);
7b4b6658 6451 }
76e1d904 6452
a4eaf7f1
PZ
6453 hwc->state = !(flags & PERF_EF_START);
6454
b28ab83c 6455 head = find_swevent_head(swhash, event);
39af6b16
JO
6456 if (!head) {
6457 /*
6458 * We can race with cpu hotplug code. Do not
6459 * WARN if the cpu just got unplugged.
6460 */
6461 WARN_ON_ONCE(swhash->online);
76e1d904 6462 return -EINVAL;
39af6b16 6463 }
76e1d904
FW
6464
6465 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6466 perf_event_update_userpage(event);
76e1d904 6467
15dbf27c
PZ
6468 return 0;
6469}
6470
a4eaf7f1 6471static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6472{
76e1d904 6473 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6474}
6475
a4eaf7f1 6476static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6477{
a4eaf7f1 6478 event->hw.state = 0;
d6d020e9 6479}
aa9c4c0f 6480
a4eaf7f1 6481static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6482{
a4eaf7f1 6483 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6484}
6485
49f135ed
FW
6486/* Deref the hlist from the update side */
6487static inline struct swevent_hlist *
b28ab83c 6488swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6489{
b28ab83c
PZ
6490 return rcu_dereference_protected(swhash->swevent_hlist,
6491 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6492}
6493
b28ab83c 6494static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6495{
b28ab83c 6496 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6497
49f135ed 6498 if (!hlist)
76e1d904
FW
6499 return;
6500
70691d4a 6501 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6502 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6503}
6504
6505static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6506{
b28ab83c 6507 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6508
b28ab83c 6509 mutex_lock(&swhash->hlist_mutex);
76e1d904 6510
b28ab83c
PZ
6511 if (!--swhash->hlist_refcount)
6512 swevent_hlist_release(swhash);
76e1d904 6513
b28ab83c 6514 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6515}
6516
6517static void swevent_hlist_put(struct perf_event *event)
6518{
6519 int cpu;
6520
76e1d904
FW
6521 for_each_possible_cpu(cpu)
6522 swevent_hlist_put_cpu(event, cpu);
6523}
6524
6525static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6526{
b28ab83c 6527 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6528 int err = 0;
6529
b28ab83c 6530 mutex_lock(&swhash->hlist_mutex);
76e1d904 6531
b28ab83c 6532 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6533 struct swevent_hlist *hlist;
6534
6535 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6536 if (!hlist) {
6537 err = -ENOMEM;
6538 goto exit;
6539 }
b28ab83c 6540 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6541 }
b28ab83c 6542 swhash->hlist_refcount++;
9ed6060d 6543exit:
b28ab83c 6544 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6545
6546 return err;
6547}
6548
6549static int swevent_hlist_get(struct perf_event *event)
6550{
6551 int err;
6552 int cpu, failed_cpu;
6553
76e1d904
FW
6554 get_online_cpus();
6555 for_each_possible_cpu(cpu) {
6556 err = swevent_hlist_get_cpu(event, cpu);
6557 if (err) {
6558 failed_cpu = cpu;
6559 goto fail;
6560 }
6561 }
6562 put_online_cpus();
6563
6564 return 0;
9ed6060d 6565fail:
76e1d904
FW
6566 for_each_possible_cpu(cpu) {
6567 if (cpu == failed_cpu)
6568 break;
6569 swevent_hlist_put_cpu(event, cpu);
6570 }
6571
6572 put_online_cpus();
6573 return err;
6574}
6575
c5905afb 6576struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6577
b0a873eb
PZ
6578static void sw_perf_event_destroy(struct perf_event *event)
6579{
6580 u64 event_id = event->attr.config;
95476b64 6581
b0a873eb
PZ
6582 WARN_ON(event->parent);
6583
c5905afb 6584 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6585 swevent_hlist_put(event);
6586}
6587
6588static int perf_swevent_init(struct perf_event *event)
6589{
8176cced 6590 u64 event_id = event->attr.config;
b0a873eb
PZ
6591
6592 if (event->attr.type != PERF_TYPE_SOFTWARE)
6593 return -ENOENT;
6594
2481c5fa
SE
6595 /*
6596 * no branch sampling for software events
6597 */
6598 if (has_branch_stack(event))
6599 return -EOPNOTSUPP;
6600
b0a873eb
PZ
6601 switch (event_id) {
6602 case PERF_COUNT_SW_CPU_CLOCK:
6603 case PERF_COUNT_SW_TASK_CLOCK:
6604 return -ENOENT;
6605
6606 default:
6607 break;
6608 }
6609
ce677831 6610 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6611 return -ENOENT;
6612
6613 if (!event->parent) {
6614 int err;
6615
6616 err = swevent_hlist_get(event);
6617 if (err)
6618 return err;
6619
c5905afb 6620 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6621 event->destroy = sw_perf_event_destroy;
6622 }
6623
6624 return 0;
6625}
6626
6627static struct pmu perf_swevent = {
89a1e187 6628 .task_ctx_nr = perf_sw_context,
95476b64 6629
34f43927
PZ
6630 .capabilities = PERF_PMU_CAP_NO_NMI,
6631
b0a873eb 6632 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6633 .add = perf_swevent_add,
6634 .del = perf_swevent_del,
6635 .start = perf_swevent_start,
6636 .stop = perf_swevent_stop,
1c024eca 6637 .read = perf_swevent_read,
1c024eca
PZ
6638};
6639
b0a873eb
PZ
6640#ifdef CONFIG_EVENT_TRACING
6641
1c024eca
PZ
6642static int perf_tp_filter_match(struct perf_event *event,
6643 struct perf_sample_data *data)
6644{
6645 void *record = data->raw->data;
6646
6647 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6648 return 1;
6649 return 0;
6650}
6651
6652static int perf_tp_event_match(struct perf_event *event,
6653 struct perf_sample_data *data,
6654 struct pt_regs *regs)
6655{
a0f7d0f7
FW
6656 if (event->hw.state & PERF_HES_STOPPED)
6657 return 0;
580d607c
PZ
6658 /*
6659 * All tracepoints are from kernel-space.
6660 */
6661 if (event->attr.exclude_kernel)
1c024eca
PZ
6662 return 0;
6663
6664 if (!perf_tp_filter_match(event, data))
6665 return 0;
6666
6667 return 1;
6668}
6669
6670void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6671 struct pt_regs *regs, struct hlist_head *head, int rctx,
6672 struct task_struct *task)
95476b64
FW
6673{
6674 struct perf_sample_data data;
1c024eca 6675 struct perf_event *event;
1c024eca 6676
95476b64
FW
6677 struct perf_raw_record raw = {
6678 .size = entry_size,
6679 .data = record,
6680 };
6681
fd0d000b 6682 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6683 data.raw = &raw;
6684
b67bfe0d 6685 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6686 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6687 perf_swevent_event(event, count, &data, regs);
4f41c013 6688 }
ecc55f84 6689
e6dab5ff
AV
6690 /*
6691 * If we got specified a target task, also iterate its context and
6692 * deliver this event there too.
6693 */
6694 if (task && task != current) {
6695 struct perf_event_context *ctx;
6696 struct trace_entry *entry = record;
6697
6698 rcu_read_lock();
6699 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6700 if (!ctx)
6701 goto unlock;
6702
6703 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6704 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6705 continue;
6706 if (event->attr.config != entry->type)
6707 continue;
6708 if (perf_tp_event_match(event, &data, regs))
6709 perf_swevent_event(event, count, &data, regs);
6710 }
6711unlock:
6712 rcu_read_unlock();
6713 }
6714
ecc55f84 6715 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6716}
6717EXPORT_SYMBOL_GPL(perf_tp_event);
6718
cdd6c482 6719static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6720{
1c024eca 6721 perf_trace_destroy(event);
e077df4f
PZ
6722}
6723
b0a873eb 6724static int perf_tp_event_init(struct perf_event *event)
e077df4f 6725{
76e1d904
FW
6726 int err;
6727
b0a873eb
PZ
6728 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6729 return -ENOENT;
6730
2481c5fa
SE
6731 /*
6732 * no branch sampling for tracepoint events
6733 */
6734 if (has_branch_stack(event))
6735 return -EOPNOTSUPP;
6736
1c024eca
PZ
6737 err = perf_trace_init(event);
6738 if (err)
b0a873eb 6739 return err;
e077df4f 6740
cdd6c482 6741 event->destroy = tp_perf_event_destroy;
e077df4f 6742
b0a873eb
PZ
6743 return 0;
6744}
6745
6746static struct pmu perf_tracepoint = {
89a1e187
PZ
6747 .task_ctx_nr = perf_sw_context,
6748
b0a873eb 6749 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6750 .add = perf_trace_add,
6751 .del = perf_trace_del,
6752 .start = perf_swevent_start,
6753 .stop = perf_swevent_stop,
b0a873eb 6754 .read = perf_swevent_read,
b0a873eb
PZ
6755};
6756
6757static inline void perf_tp_register(void)
6758{
2e80a82a 6759 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6760}
6fb2915d
LZ
6761
6762static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6763{
6764 char *filter_str;
6765 int ret;
6766
6767 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6768 return -EINVAL;
6769
6770 filter_str = strndup_user(arg, PAGE_SIZE);
6771 if (IS_ERR(filter_str))
6772 return PTR_ERR(filter_str);
6773
6774 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6775
6776 kfree(filter_str);
6777 return ret;
6778}
6779
6780static void perf_event_free_filter(struct perf_event *event)
6781{
6782 ftrace_profile_free_filter(event);
6783}
6784
2541517c
AS
6785static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6786{
6787 struct bpf_prog *prog;
6788
6789 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6790 return -EINVAL;
6791
6792 if (event->tp_event->prog)
6793 return -EEXIST;
6794
6795 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6796 /* bpf programs can only be attached to kprobes */
6797 return -EINVAL;
6798
6799 prog = bpf_prog_get(prog_fd);
6800 if (IS_ERR(prog))
6801 return PTR_ERR(prog);
6802
6c373ca8 6803 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
6804 /* valid fd, but invalid bpf program type */
6805 bpf_prog_put(prog);
6806 return -EINVAL;
6807 }
6808
6809 event->tp_event->prog = prog;
6810
6811 return 0;
6812}
6813
6814static void perf_event_free_bpf_prog(struct perf_event *event)
6815{
6816 struct bpf_prog *prog;
6817
6818 if (!event->tp_event)
6819 return;
6820
6821 prog = event->tp_event->prog;
6822 if (prog) {
6823 event->tp_event->prog = NULL;
6824 bpf_prog_put(prog);
6825 }
6826}
6827
e077df4f 6828#else
6fb2915d 6829
b0a873eb 6830static inline void perf_tp_register(void)
e077df4f 6831{
e077df4f 6832}
6fb2915d
LZ
6833
6834static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6835{
6836 return -ENOENT;
6837}
6838
6839static void perf_event_free_filter(struct perf_event *event)
6840{
6841}
6842
2541517c
AS
6843static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6844{
6845 return -ENOENT;
6846}
6847
6848static void perf_event_free_bpf_prog(struct perf_event *event)
6849{
6850}
07b139c8 6851#endif /* CONFIG_EVENT_TRACING */
e077df4f 6852
24f1e32c 6853#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6854void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6855{
f5ffe02e
FW
6856 struct perf_sample_data sample;
6857 struct pt_regs *regs = data;
6858
fd0d000b 6859 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6860
a4eaf7f1 6861 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6862 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6863}
6864#endif
6865
b0a873eb
PZ
6866/*
6867 * hrtimer based swevent callback
6868 */
f29ac756 6869
b0a873eb 6870static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6871{
b0a873eb
PZ
6872 enum hrtimer_restart ret = HRTIMER_RESTART;
6873 struct perf_sample_data data;
6874 struct pt_regs *regs;
6875 struct perf_event *event;
6876 u64 period;
f29ac756 6877
b0a873eb 6878 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6879
6880 if (event->state != PERF_EVENT_STATE_ACTIVE)
6881 return HRTIMER_NORESTART;
6882
b0a873eb 6883 event->pmu->read(event);
f344011c 6884
fd0d000b 6885 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6886 regs = get_irq_regs();
6887
6888 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6889 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6890 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6891 ret = HRTIMER_NORESTART;
6892 }
24f1e32c 6893
b0a873eb
PZ
6894 period = max_t(u64, 10000, event->hw.sample_period);
6895 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6896
b0a873eb 6897 return ret;
f29ac756
PZ
6898}
6899
b0a873eb 6900static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6901{
b0a873eb 6902 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6903 s64 period;
6904
6905 if (!is_sampling_event(event))
6906 return;
f5ffe02e 6907
5d508e82
FBH
6908 period = local64_read(&hwc->period_left);
6909 if (period) {
6910 if (period < 0)
6911 period = 10000;
fa407f35 6912
5d508e82
FBH
6913 local64_set(&hwc->period_left, 0);
6914 } else {
6915 period = max_t(u64, 10000, hwc->sample_period);
6916 }
3497d206
TG
6917 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
6918 HRTIMER_MODE_REL_PINNED);
24f1e32c 6919}
b0a873eb
PZ
6920
6921static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6922{
b0a873eb
PZ
6923 struct hw_perf_event *hwc = &event->hw;
6924
6c7e550f 6925 if (is_sampling_event(event)) {
b0a873eb 6926 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6927 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6928
6929 hrtimer_cancel(&hwc->hrtimer);
6930 }
24f1e32c
FW
6931}
6932
ba3dd36c
PZ
6933static void perf_swevent_init_hrtimer(struct perf_event *event)
6934{
6935 struct hw_perf_event *hwc = &event->hw;
6936
6937 if (!is_sampling_event(event))
6938 return;
6939
6940 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6941 hwc->hrtimer.function = perf_swevent_hrtimer;
6942
6943 /*
6944 * Since hrtimers have a fixed rate, we can do a static freq->period
6945 * mapping and avoid the whole period adjust feedback stuff.
6946 */
6947 if (event->attr.freq) {
6948 long freq = event->attr.sample_freq;
6949
6950 event->attr.sample_period = NSEC_PER_SEC / freq;
6951 hwc->sample_period = event->attr.sample_period;
6952 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6953 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6954 event->attr.freq = 0;
6955 }
6956}
6957
b0a873eb
PZ
6958/*
6959 * Software event: cpu wall time clock
6960 */
6961
6962static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6963{
b0a873eb
PZ
6964 s64 prev;
6965 u64 now;
6966
a4eaf7f1 6967 now = local_clock();
b0a873eb
PZ
6968 prev = local64_xchg(&event->hw.prev_count, now);
6969 local64_add(now - prev, &event->count);
24f1e32c 6970}
24f1e32c 6971
a4eaf7f1 6972static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6973{
a4eaf7f1 6974 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6975 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6976}
6977
a4eaf7f1 6978static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6979{
b0a873eb
PZ
6980 perf_swevent_cancel_hrtimer(event);
6981 cpu_clock_event_update(event);
6982}
f29ac756 6983
a4eaf7f1
PZ
6984static int cpu_clock_event_add(struct perf_event *event, int flags)
6985{
6986 if (flags & PERF_EF_START)
6987 cpu_clock_event_start(event, flags);
6a694a60 6988 perf_event_update_userpage(event);
a4eaf7f1
PZ
6989
6990 return 0;
6991}
6992
6993static void cpu_clock_event_del(struct perf_event *event, int flags)
6994{
6995 cpu_clock_event_stop(event, flags);
6996}
6997
b0a873eb
PZ
6998static void cpu_clock_event_read(struct perf_event *event)
6999{
7000 cpu_clock_event_update(event);
7001}
f344011c 7002
b0a873eb
PZ
7003static int cpu_clock_event_init(struct perf_event *event)
7004{
7005 if (event->attr.type != PERF_TYPE_SOFTWARE)
7006 return -ENOENT;
7007
7008 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7009 return -ENOENT;
7010
2481c5fa
SE
7011 /*
7012 * no branch sampling for software events
7013 */
7014 if (has_branch_stack(event))
7015 return -EOPNOTSUPP;
7016
ba3dd36c
PZ
7017 perf_swevent_init_hrtimer(event);
7018
b0a873eb 7019 return 0;
f29ac756
PZ
7020}
7021
b0a873eb 7022static struct pmu perf_cpu_clock = {
89a1e187
PZ
7023 .task_ctx_nr = perf_sw_context,
7024
34f43927
PZ
7025 .capabilities = PERF_PMU_CAP_NO_NMI,
7026
b0a873eb 7027 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7028 .add = cpu_clock_event_add,
7029 .del = cpu_clock_event_del,
7030 .start = cpu_clock_event_start,
7031 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7032 .read = cpu_clock_event_read,
7033};
7034
7035/*
7036 * Software event: task time clock
7037 */
7038
7039static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7040{
b0a873eb
PZ
7041 u64 prev;
7042 s64 delta;
5c92d124 7043
b0a873eb
PZ
7044 prev = local64_xchg(&event->hw.prev_count, now);
7045 delta = now - prev;
7046 local64_add(delta, &event->count);
7047}
5c92d124 7048
a4eaf7f1 7049static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7050{
a4eaf7f1 7051 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7052 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7053}
7054
a4eaf7f1 7055static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7056{
7057 perf_swevent_cancel_hrtimer(event);
7058 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7059}
7060
7061static int task_clock_event_add(struct perf_event *event, int flags)
7062{
7063 if (flags & PERF_EF_START)
7064 task_clock_event_start(event, flags);
6a694a60 7065 perf_event_update_userpage(event);
b0a873eb 7066
a4eaf7f1
PZ
7067 return 0;
7068}
7069
7070static void task_clock_event_del(struct perf_event *event, int flags)
7071{
7072 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7073}
7074
7075static void task_clock_event_read(struct perf_event *event)
7076{
768a06e2
PZ
7077 u64 now = perf_clock();
7078 u64 delta = now - event->ctx->timestamp;
7079 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7080
7081 task_clock_event_update(event, time);
7082}
7083
7084static int task_clock_event_init(struct perf_event *event)
6fb2915d 7085{
b0a873eb
PZ
7086 if (event->attr.type != PERF_TYPE_SOFTWARE)
7087 return -ENOENT;
7088
7089 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7090 return -ENOENT;
7091
2481c5fa
SE
7092 /*
7093 * no branch sampling for software events
7094 */
7095 if (has_branch_stack(event))
7096 return -EOPNOTSUPP;
7097
ba3dd36c
PZ
7098 perf_swevent_init_hrtimer(event);
7099
b0a873eb 7100 return 0;
6fb2915d
LZ
7101}
7102
b0a873eb 7103static struct pmu perf_task_clock = {
89a1e187
PZ
7104 .task_ctx_nr = perf_sw_context,
7105
34f43927
PZ
7106 .capabilities = PERF_PMU_CAP_NO_NMI,
7107
b0a873eb 7108 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7109 .add = task_clock_event_add,
7110 .del = task_clock_event_del,
7111 .start = task_clock_event_start,
7112 .stop = task_clock_event_stop,
b0a873eb
PZ
7113 .read = task_clock_event_read,
7114};
6fb2915d 7115
ad5133b7 7116static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7117{
e077df4f 7118}
6fb2915d 7119
ad5133b7 7120static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7121{
ad5133b7 7122 return 0;
6fb2915d
LZ
7123}
7124
ad5133b7 7125static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 7126{
ad5133b7 7127 perf_pmu_disable(pmu);
6fb2915d
LZ
7128}
7129
ad5133b7
PZ
7130static int perf_pmu_commit_txn(struct pmu *pmu)
7131{
7132 perf_pmu_enable(pmu);
7133 return 0;
7134}
e077df4f 7135
ad5133b7 7136static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7137{
ad5133b7 7138 perf_pmu_enable(pmu);
24f1e32c
FW
7139}
7140
35edc2a5
PZ
7141static int perf_event_idx_default(struct perf_event *event)
7142{
c719f560 7143 return 0;
35edc2a5
PZ
7144}
7145
8dc85d54
PZ
7146/*
7147 * Ensures all contexts with the same task_ctx_nr have the same
7148 * pmu_cpu_context too.
7149 */
9e317041 7150static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7151{
8dc85d54 7152 struct pmu *pmu;
b326e956 7153
8dc85d54
PZ
7154 if (ctxn < 0)
7155 return NULL;
24f1e32c 7156
8dc85d54
PZ
7157 list_for_each_entry(pmu, &pmus, entry) {
7158 if (pmu->task_ctx_nr == ctxn)
7159 return pmu->pmu_cpu_context;
7160 }
24f1e32c 7161
8dc85d54 7162 return NULL;
24f1e32c
FW
7163}
7164
51676957 7165static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7166{
51676957
PZ
7167 int cpu;
7168
7169 for_each_possible_cpu(cpu) {
7170 struct perf_cpu_context *cpuctx;
7171
7172 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7173
3f1f3320
PZ
7174 if (cpuctx->unique_pmu == old_pmu)
7175 cpuctx->unique_pmu = pmu;
51676957
PZ
7176 }
7177}
7178
7179static void free_pmu_context(struct pmu *pmu)
7180{
7181 struct pmu *i;
f5ffe02e 7182
8dc85d54 7183 mutex_lock(&pmus_lock);
0475f9ea 7184 /*
8dc85d54 7185 * Like a real lame refcount.
0475f9ea 7186 */
51676957
PZ
7187 list_for_each_entry(i, &pmus, entry) {
7188 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7189 update_pmu_context(i, pmu);
8dc85d54 7190 goto out;
51676957 7191 }
8dc85d54 7192 }
d6d020e9 7193
51676957 7194 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7195out:
7196 mutex_unlock(&pmus_lock);
24f1e32c 7197}
2e80a82a 7198static struct idr pmu_idr;
d6d020e9 7199
abe43400
PZ
7200static ssize_t
7201type_show(struct device *dev, struct device_attribute *attr, char *page)
7202{
7203 struct pmu *pmu = dev_get_drvdata(dev);
7204
7205 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7206}
90826ca7 7207static DEVICE_ATTR_RO(type);
abe43400 7208
62b85639
SE
7209static ssize_t
7210perf_event_mux_interval_ms_show(struct device *dev,
7211 struct device_attribute *attr,
7212 char *page)
7213{
7214 struct pmu *pmu = dev_get_drvdata(dev);
7215
7216 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7217}
7218
272325c4
PZ
7219static DEFINE_MUTEX(mux_interval_mutex);
7220
62b85639
SE
7221static ssize_t
7222perf_event_mux_interval_ms_store(struct device *dev,
7223 struct device_attribute *attr,
7224 const char *buf, size_t count)
7225{
7226 struct pmu *pmu = dev_get_drvdata(dev);
7227 int timer, cpu, ret;
7228
7229 ret = kstrtoint(buf, 0, &timer);
7230 if (ret)
7231 return ret;
7232
7233 if (timer < 1)
7234 return -EINVAL;
7235
7236 /* same value, noting to do */
7237 if (timer == pmu->hrtimer_interval_ms)
7238 return count;
7239
272325c4 7240 mutex_lock(&mux_interval_mutex);
62b85639
SE
7241 pmu->hrtimer_interval_ms = timer;
7242
7243 /* update all cpuctx for this PMU */
272325c4
PZ
7244 get_online_cpus();
7245 for_each_online_cpu(cpu) {
62b85639
SE
7246 struct perf_cpu_context *cpuctx;
7247 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7248 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7249
272325c4
PZ
7250 cpu_function_call(cpu,
7251 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7252 }
272325c4
PZ
7253 put_online_cpus();
7254 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7255
7256 return count;
7257}
90826ca7 7258static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7259
90826ca7
GKH
7260static struct attribute *pmu_dev_attrs[] = {
7261 &dev_attr_type.attr,
7262 &dev_attr_perf_event_mux_interval_ms.attr,
7263 NULL,
abe43400 7264};
90826ca7 7265ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7266
7267static int pmu_bus_running;
7268static struct bus_type pmu_bus = {
7269 .name = "event_source",
90826ca7 7270 .dev_groups = pmu_dev_groups,
abe43400
PZ
7271};
7272
7273static void pmu_dev_release(struct device *dev)
7274{
7275 kfree(dev);
7276}
7277
7278static int pmu_dev_alloc(struct pmu *pmu)
7279{
7280 int ret = -ENOMEM;
7281
7282 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7283 if (!pmu->dev)
7284 goto out;
7285
0c9d42ed 7286 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7287 device_initialize(pmu->dev);
7288 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7289 if (ret)
7290 goto free_dev;
7291
7292 dev_set_drvdata(pmu->dev, pmu);
7293 pmu->dev->bus = &pmu_bus;
7294 pmu->dev->release = pmu_dev_release;
7295 ret = device_add(pmu->dev);
7296 if (ret)
7297 goto free_dev;
7298
7299out:
7300 return ret;
7301
7302free_dev:
7303 put_device(pmu->dev);
7304 goto out;
7305}
7306
547e9fd7 7307static struct lock_class_key cpuctx_mutex;
facc4307 7308static struct lock_class_key cpuctx_lock;
547e9fd7 7309
03d8e80b 7310int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7311{
108b02cf 7312 int cpu, ret;
24f1e32c 7313
b0a873eb 7314 mutex_lock(&pmus_lock);
33696fc0
PZ
7315 ret = -ENOMEM;
7316 pmu->pmu_disable_count = alloc_percpu(int);
7317 if (!pmu->pmu_disable_count)
7318 goto unlock;
f29ac756 7319
2e80a82a
PZ
7320 pmu->type = -1;
7321 if (!name)
7322 goto skip_type;
7323 pmu->name = name;
7324
7325 if (type < 0) {
0e9c3be2
TH
7326 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7327 if (type < 0) {
7328 ret = type;
2e80a82a
PZ
7329 goto free_pdc;
7330 }
7331 }
7332 pmu->type = type;
7333
abe43400
PZ
7334 if (pmu_bus_running) {
7335 ret = pmu_dev_alloc(pmu);
7336 if (ret)
7337 goto free_idr;
7338 }
7339
2e80a82a 7340skip_type:
8dc85d54
PZ
7341 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7342 if (pmu->pmu_cpu_context)
7343 goto got_cpu_context;
f29ac756 7344
c4814202 7345 ret = -ENOMEM;
108b02cf
PZ
7346 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7347 if (!pmu->pmu_cpu_context)
abe43400 7348 goto free_dev;
f344011c 7349
108b02cf
PZ
7350 for_each_possible_cpu(cpu) {
7351 struct perf_cpu_context *cpuctx;
7352
7353 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7354 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7355 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7356 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7357 cpuctx->ctx.pmu = pmu;
9e630205 7358
272325c4 7359 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7360
3f1f3320 7361 cpuctx->unique_pmu = pmu;
108b02cf 7362 }
76e1d904 7363
8dc85d54 7364got_cpu_context:
ad5133b7
PZ
7365 if (!pmu->start_txn) {
7366 if (pmu->pmu_enable) {
7367 /*
7368 * If we have pmu_enable/pmu_disable calls, install
7369 * transaction stubs that use that to try and batch
7370 * hardware accesses.
7371 */
7372 pmu->start_txn = perf_pmu_start_txn;
7373 pmu->commit_txn = perf_pmu_commit_txn;
7374 pmu->cancel_txn = perf_pmu_cancel_txn;
7375 } else {
7376 pmu->start_txn = perf_pmu_nop_void;
7377 pmu->commit_txn = perf_pmu_nop_int;
7378 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7379 }
5c92d124 7380 }
15dbf27c 7381
ad5133b7
PZ
7382 if (!pmu->pmu_enable) {
7383 pmu->pmu_enable = perf_pmu_nop_void;
7384 pmu->pmu_disable = perf_pmu_nop_void;
7385 }
7386
35edc2a5
PZ
7387 if (!pmu->event_idx)
7388 pmu->event_idx = perf_event_idx_default;
7389
b0a873eb 7390 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7391 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7392 ret = 0;
7393unlock:
b0a873eb
PZ
7394 mutex_unlock(&pmus_lock);
7395
33696fc0 7396 return ret;
108b02cf 7397
abe43400
PZ
7398free_dev:
7399 device_del(pmu->dev);
7400 put_device(pmu->dev);
7401
2e80a82a
PZ
7402free_idr:
7403 if (pmu->type >= PERF_TYPE_MAX)
7404 idr_remove(&pmu_idr, pmu->type);
7405
108b02cf
PZ
7406free_pdc:
7407 free_percpu(pmu->pmu_disable_count);
7408 goto unlock;
f29ac756 7409}
c464c76e 7410EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7411
b0a873eb 7412void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7413{
b0a873eb
PZ
7414 mutex_lock(&pmus_lock);
7415 list_del_rcu(&pmu->entry);
7416 mutex_unlock(&pmus_lock);
5c92d124 7417
0475f9ea 7418 /*
cde8e884
PZ
7419 * We dereference the pmu list under both SRCU and regular RCU, so
7420 * synchronize against both of those.
0475f9ea 7421 */
b0a873eb 7422 synchronize_srcu(&pmus_srcu);
cde8e884 7423 synchronize_rcu();
d6d020e9 7424
33696fc0 7425 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7426 if (pmu->type >= PERF_TYPE_MAX)
7427 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7428 device_del(pmu->dev);
7429 put_device(pmu->dev);
51676957 7430 free_pmu_context(pmu);
b0a873eb 7431}
c464c76e 7432EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7433
cc34b98b
MR
7434static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7435{
ccd41c86 7436 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7437 int ret;
7438
7439 if (!try_module_get(pmu->module))
7440 return -ENODEV;
ccd41c86
PZ
7441
7442 if (event->group_leader != event) {
8b10c5e2
PZ
7443 /*
7444 * This ctx->mutex can nest when we're called through
7445 * inheritance. See the perf_event_ctx_lock_nested() comment.
7446 */
7447 ctx = perf_event_ctx_lock_nested(event->group_leader,
7448 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7449 BUG_ON(!ctx);
7450 }
7451
cc34b98b
MR
7452 event->pmu = pmu;
7453 ret = pmu->event_init(event);
ccd41c86
PZ
7454
7455 if (ctx)
7456 perf_event_ctx_unlock(event->group_leader, ctx);
7457
cc34b98b
MR
7458 if (ret)
7459 module_put(pmu->module);
7460
7461 return ret;
7462}
7463
b0a873eb
PZ
7464struct pmu *perf_init_event(struct perf_event *event)
7465{
7466 struct pmu *pmu = NULL;
7467 int idx;
940c5b29 7468 int ret;
b0a873eb
PZ
7469
7470 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7471
7472 rcu_read_lock();
7473 pmu = idr_find(&pmu_idr, event->attr.type);
7474 rcu_read_unlock();
940c5b29 7475 if (pmu) {
cc34b98b 7476 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7477 if (ret)
7478 pmu = ERR_PTR(ret);
2e80a82a 7479 goto unlock;
940c5b29 7480 }
2e80a82a 7481
b0a873eb 7482 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7483 ret = perf_try_init_event(pmu, event);
b0a873eb 7484 if (!ret)
e5f4d339 7485 goto unlock;
76e1d904 7486
b0a873eb
PZ
7487 if (ret != -ENOENT) {
7488 pmu = ERR_PTR(ret);
e5f4d339 7489 goto unlock;
f344011c 7490 }
5c92d124 7491 }
e5f4d339
PZ
7492 pmu = ERR_PTR(-ENOENT);
7493unlock:
b0a873eb 7494 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7495
4aeb0b42 7496 return pmu;
5c92d124
IM
7497}
7498
4beb31f3
FW
7499static void account_event_cpu(struct perf_event *event, int cpu)
7500{
7501 if (event->parent)
7502 return;
7503
4beb31f3
FW
7504 if (is_cgroup_event(event))
7505 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7506}
7507
766d6c07
FW
7508static void account_event(struct perf_event *event)
7509{
4beb31f3
FW
7510 if (event->parent)
7511 return;
7512
766d6c07
FW
7513 if (event->attach_state & PERF_ATTACH_TASK)
7514 static_key_slow_inc(&perf_sched_events.key);
7515 if (event->attr.mmap || event->attr.mmap_data)
7516 atomic_inc(&nr_mmap_events);
7517 if (event->attr.comm)
7518 atomic_inc(&nr_comm_events);
7519 if (event->attr.task)
7520 atomic_inc(&nr_task_events);
948b26b6
FW
7521 if (event->attr.freq) {
7522 if (atomic_inc_return(&nr_freq_events) == 1)
7523 tick_nohz_full_kick_all();
7524 }
4beb31f3 7525 if (has_branch_stack(event))
766d6c07 7526 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7527 if (is_cgroup_event(event))
766d6c07 7528 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7529
7530 account_event_cpu(event, event->cpu);
766d6c07
FW
7531}
7532
0793a61d 7533/*
cdd6c482 7534 * Allocate and initialize a event structure
0793a61d 7535 */
cdd6c482 7536static struct perf_event *
c3f00c70 7537perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7538 struct task_struct *task,
7539 struct perf_event *group_leader,
7540 struct perf_event *parent_event,
4dc0da86 7541 perf_overflow_handler_t overflow_handler,
79dff51e 7542 void *context, int cgroup_fd)
0793a61d 7543{
51b0fe39 7544 struct pmu *pmu;
cdd6c482
IM
7545 struct perf_event *event;
7546 struct hw_perf_event *hwc;
90983b16 7547 long err = -EINVAL;
0793a61d 7548
66832eb4
ON
7549 if ((unsigned)cpu >= nr_cpu_ids) {
7550 if (!task || cpu != -1)
7551 return ERR_PTR(-EINVAL);
7552 }
7553
c3f00c70 7554 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7555 if (!event)
d5d2bc0d 7556 return ERR_PTR(-ENOMEM);
0793a61d 7557
04289bb9 7558 /*
cdd6c482 7559 * Single events are their own group leaders, with an
04289bb9
IM
7560 * empty sibling list:
7561 */
7562 if (!group_leader)
cdd6c482 7563 group_leader = event;
04289bb9 7564
cdd6c482
IM
7565 mutex_init(&event->child_mutex);
7566 INIT_LIST_HEAD(&event->child_list);
fccc714b 7567
cdd6c482
IM
7568 INIT_LIST_HEAD(&event->group_entry);
7569 INIT_LIST_HEAD(&event->event_entry);
7570 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7571 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7572 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7573 INIT_HLIST_NODE(&event->hlist_entry);
7574
10c6db11 7575
cdd6c482 7576 init_waitqueue_head(&event->waitq);
e360adbe 7577 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7578
cdd6c482 7579 mutex_init(&event->mmap_mutex);
7b732a75 7580
a6fa941d 7581 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7582 event->cpu = cpu;
7583 event->attr = *attr;
7584 event->group_leader = group_leader;
7585 event->pmu = NULL;
cdd6c482 7586 event->oncpu = -1;
a96bbc16 7587
cdd6c482 7588 event->parent = parent_event;
b84fbc9f 7589
17cf22c3 7590 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7591 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7592
cdd6c482 7593 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7594
d580ff86
PZ
7595 if (task) {
7596 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7597 /*
50f16a8b
PZ
7598 * XXX pmu::event_init needs to know what task to account to
7599 * and we cannot use the ctx information because we need the
7600 * pmu before we get a ctx.
d580ff86 7601 */
50f16a8b 7602 event->hw.target = task;
d580ff86
PZ
7603 }
7604
34f43927
PZ
7605 event->clock = &local_clock;
7606 if (parent_event)
7607 event->clock = parent_event->clock;
7608
4dc0da86 7609 if (!overflow_handler && parent_event) {
b326e956 7610 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7611 context = parent_event->overflow_handler_context;
7612 }
66832eb4 7613
b326e956 7614 event->overflow_handler = overflow_handler;
4dc0da86 7615 event->overflow_handler_context = context;
97eaf530 7616
0231bb53 7617 perf_event__state_init(event);
a86ed508 7618
4aeb0b42 7619 pmu = NULL;
b8e83514 7620
cdd6c482 7621 hwc = &event->hw;
bd2b5b12 7622 hwc->sample_period = attr->sample_period;
0d48696f 7623 if (attr->freq && attr->sample_freq)
bd2b5b12 7624 hwc->sample_period = 1;
eced1dfc 7625 hwc->last_period = hwc->sample_period;
bd2b5b12 7626
e7850595 7627 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7628
2023b359 7629 /*
cdd6c482 7630 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7631 */
3dab77fb 7632 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7633 goto err_ns;
a46a2300
YZ
7634
7635 if (!has_branch_stack(event))
7636 event->attr.branch_sample_type = 0;
2023b359 7637
79dff51e
MF
7638 if (cgroup_fd != -1) {
7639 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7640 if (err)
7641 goto err_ns;
7642 }
7643
b0a873eb 7644 pmu = perf_init_event(event);
4aeb0b42 7645 if (!pmu)
90983b16
FW
7646 goto err_ns;
7647 else if (IS_ERR(pmu)) {
4aeb0b42 7648 err = PTR_ERR(pmu);
90983b16 7649 goto err_ns;
621a01ea 7650 }
d5d2bc0d 7651
bed5b25a
AS
7652 err = exclusive_event_init(event);
7653 if (err)
7654 goto err_pmu;
7655
cdd6c482 7656 if (!event->parent) {
927c7a9e
FW
7657 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7658 err = get_callchain_buffers();
90983b16 7659 if (err)
bed5b25a 7660 goto err_per_task;
d010b332 7661 }
f344011c 7662 }
9ee318a7 7663
cdd6c482 7664 return event;
90983b16 7665
bed5b25a
AS
7666err_per_task:
7667 exclusive_event_destroy(event);
7668
90983b16
FW
7669err_pmu:
7670 if (event->destroy)
7671 event->destroy(event);
c464c76e 7672 module_put(pmu->module);
90983b16 7673err_ns:
79dff51e
MF
7674 if (is_cgroup_event(event))
7675 perf_detach_cgroup(event);
90983b16
FW
7676 if (event->ns)
7677 put_pid_ns(event->ns);
7678 kfree(event);
7679
7680 return ERR_PTR(err);
0793a61d
TG
7681}
7682
cdd6c482
IM
7683static int perf_copy_attr(struct perf_event_attr __user *uattr,
7684 struct perf_event_attr *attr)
974802ea 7685{
974802ea 7686 u32 size;
cdf8073d 7687 int ret;
974802ea
PZ
7688
7689 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7690 return -EFAULT;
7691
7692 /*
7693 * zero the full structure, so that a short copy will be nice.
7694 */
7695 memset(attr, 0, sizeof(*attr));
7696
7697 ret = get_user(size, &uattr->size);
7698 if (ret)
7699 return ret;
7700
7701 if (size > PAGE_SIZE) /* silly large */
7702 goto err_size;
7703
7704 if (!size) /* abi compat */
7705 size = PERF_ATTR_SIZE_VER0;
7706
7707 if (size < PERF_ATTR_SIZE_VER0)
7708 goto err_size;
7709
7710 /*
7711 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7712 * ensure all the unknown bits are 0 - i.e. new
7713 * user-space does not rely on any kernel feature
7714 * extensions we dont know about yet.
974802ea
PZ
7715 */
7716 if (size > sizeof(*attr)) {
cdf8073d
IS
7717 unsigned char __user *addr;
7718 unsigned char __user *end;
7719 unsigned char val;
974802ea 7720
cdf8073d
IS
7721 addr = (void __user *)uattr + sizeof(*attr);
7722 end = (void __user *)uattr + size;
974802ea 7723
cdf8073d 7724 for (; addr < end; addr++) {
974802ea
PZ
7725 ret = get_user(val, addr);
7726 if (ret)
7727 return ret;
7728 if (val)
7729 goto err_size;
7730 }
b3e62e35 7731 size = sizeof(*attr);
974802ea
PZ
7732 }
7733
7734 ret = copy_from_user(attr, uattr, size);
7735 if (ret)
7736 return -EFAULT;
7737
cd757645 7738 if (attr->__reserved_1)
974802ea
PZ
7739 return -EINVAL;
7740
7741 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7742 return -EINVAL;
7743
7744 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7745 return -EINVAL;
7746
bce38cd5
SE
7747 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7748 u64 mask = attr->branch_sample_type;
7749
7750 /* only using defined bits */
7751 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7752 return -EINVAL;
7753
7754 /* at least one branch bit must be set */
7755 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7756 return -EINVAL;
7757
bce38cd5
SE
7758 /* propagate priv level, when not set for branch */
7759 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7760
7761 /* exclude_kernel checked on syscall entry */
7762 if (!attr->exclude_kernel)
7763 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7764
7765 if (!attr->exclude_user)
7766 mask |= PERF_SAMPLE_BRANCH_USER;
7767
7768 if (!attr->exclude_hv)
7769 mask |= PERF_SAMPLE_BRANCH_HV;
7770 /*
7771 * adjust user setting (for HW filter setup)
7772 */
7773 attr->branch_sample_type = mask;
7774 }
e712209a
SE
7775 /* privileged levels capture (kernel, hv): check permissions */
7776 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7777 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7778 return -EACCES;
bce38cd5 7779 }
4018994f 7780
c5ebcedb 7781 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7782 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7783 if (ret)
7784 return ret;
7785 }
7786
7787 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7788 if (!arch_perf_have_user_stack_dump())
7789 return -ENOSYS;
7790
7791 /*
7792 * We have __u32 type for the size, but so far
7793 * we can only use __u16 as maximum due to the
7794 * __u16 sample size limit.
7795 */
7796 if (attr->sample_stack_user >= USHRT_MAX)
7797 ret = -EINVAL;
7798 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7799 ret = -EINVAL;
7800 }
4018994f 7801
60e2364e
SE
7802 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7803 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7804out:
7805 return ret;
7806
7807err_size:
7808 put_user(sizeof(*attr), &uattr->size);
7809 ret = -E2BIG;
7810 goto out;
7811}
7812
ac9721f3
PZ
7813static int
7814perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7815{
b69cf536 7816 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7817 int ret = -EINVAL;
7818
ac9721f3 7819 if (!output_event)
a4be7c27
PZ
7820 goto set;
7821
ac9721f3
PZ
7822 /* don't allow circular references */
7823 if (event == output_event)
a4be7c27
PZ
7824 goto out;
7825
0f139300
PZ
7826 /*
7827 * Don't allow cross-cpu buffers
7828 */
7829 if (output_event->cpu != event->cpu)
7830 goto out;
7831
7832 /*
76369139 7833 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7834 */
7835 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7836 goto out;
7837
34f43927
PZ
7838 /*
7839 * Mixing clocks in the same buffer is trouble you don't need.
7840 */
7841 if (output_event->clock != event->clock)
7842 goto out;
7843
45bfb2e5
PZ
7844 /*
7845 * If both events generate aux data, they must be on the same PMU
7846 */
7847 if (has_aux(event) && has_aux(output_event) &&
7848 event->pmu != output_event->pmu)
7849 goto out;
7850
a4be7c27 7851set:
cdd6c482 7852 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7853 /* Can't redirect output if we've got an active mmap() */
7854 if (atomic_read(&event->mmap_count))
7855 goto unlock;
a4be7c27 7856
ac9721f3 7857 if (output_event) {
76369139
FW
7858 /* get the rb we want to redirect to */
7859 rb = ring_buffer_get(output_event);
7860 if (!rb)
ac9721f3 7861 goto unlock;
a4be7c27
PZ
7862 }
7863
b69cf536 7864 ring_buffer_attach(event, rb);
9bb5d40c 7865
a4be7c27 7866 ret = 0;
ac9721f3
PZ
7867unlock:
7868 mutex_unlock(&event->mmap_mutex);
7869
a4be7c27 7870out:
a4be7c27
PZ
7871 return ret;
7872}
7873
f63a8daa
PZ
7874static void mutex_lock_double(struct mutex *a, struct mutex *b)
7875{
7876 if (b < a)
7877 swap(a, b);
7878
7879 mutex_lock(a);
7880 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7881}
7882
34f43927
PZ
7883static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7884{
7885 bool nmi_safe = false;
7886
7887 switch (clk_id) {
7888 case CLOCK_MONOTONIC:
7889 event->clock = &ktime_get_mono_fast_ns;
7890 nmi_safe = true;
7891 break;
7892
7893 case CLOCK_MONOTONIC_RAW:
7894 event->clock = &ktime_get_raw_fast_ns;
7895 nmi_safe = true;
7896 break;
7897
7898 case CLOCK_REALTIME:
7899 event->clock = &ktime_get_real_ns;
7900 break;
7901
7902 case CLOCK_BOOTTIME:
7903 event->clock = &ktime_get_boot_ns;
7904 break;
7905
7906 case CLOCK_TAI:
7907 event->clock = &ktime_get_tai_ns;
7908 break;
7909
7910 default:
7911 return -EINVAL;
7912 }
7913
7914 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7915 return -EINVAL;
7916
7917 return 0;
7918}
7919
0793a61d 7920/**
cdd6c482 7921 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7922 *
cdd6c482 7923 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7924 * @pid: target pid
9f66a381 7925 * @cpu: target cpu
cdd6c482 7926 * @group_fd: group leader event fd
0793a61d 7927 */
cdd6c482
IM
7928SYSCALL_DEFINE5(perf_event_open,
7929 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7930 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7931{
b04243ef
PZ
7932 struct perf_event *group_leader = NULL, *output_event = NULL;
7933 struct perf_event *event, *sibling;
cdd6c482 7934 struct perf_event_attr attr;
f63a8daa 7935 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7936 struct file *event_file = NULL;
2903ff01 7937 struct fd group = {NULL, 0};
38a81da2 7938 struct task_struct *task = NULL;
89a1e187 7939 struct pmu *pmu;
ea635c64 7940 int event_fd;
b04243ef 7941 int move_group = 0;
dc86cabe 7942 int err;
a21b0b35 7943 int f_flags = O_RDWR;
79dff51e 7944 int cgroup_fd = -1;
0793a61d 7945
2743a5b0 7946 /* for future expandability... */
e5d1367f 7947 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7948 return -EINVAL;
7949
dc86cabe
IM
7950 err = perf_copy_attr(attr_uptr, &attr);
7951 if (err)
7952 return err;
eab656ae 7953
0764771d
PZ
7954 if (!attr.exclude_kernel) {
7955 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7956 return -EACCES;
7957 }
7958
df58ab24 7959 if (attr.freq) {
cdd6c482 7960 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7961 return -EINVAL;
0819b2e3
PZ
7962 } else {
7963 if (attr.sample_period & (1ULL << 63))
7964 return -EINVAL;
df58ab24
PZ
7965 }
7966
e5d1367f
SE
7967 /*
7968 * In cgroup mode, the pid argument is used to pass the fd
7969 * opened to the cgroup directory in cgroupfs. The cpu argument
7970 * designates the cpu on which to monitor threads from that
7971 * cgroup.
7972 */
7973 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7974 return -EINVAL;
7975
a21b0b35
YD
7976 if (flags & PERF_FLAG_FD_CLOEXEC)
7977 f_flags |= O_CLOEXEC;
7978
7979 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7980 if (event_fd < 0)
7981 return event_fd;
7982
ac9721f3 7983 if (group_fd != -1) {
2903ff01
AV
7984 err = perf_fget_light(group_fd, &group);
7985 if (err)
d14b12d7 7986 goto err_fd;
2903ff01 7987 group_leader = group.file->private_data;
ac9721f3
PZ
7988 if (flags & PERF_FLAG_FD_OUTPUT)
7989 output_event = group_leader;
7990 if (flags & PERF_FLAG_FD_NO_GROUP)
7991 group_leader = NULL;
7992 }
7993
e5d1367f 7994 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7995 task = find_lively_task_by_vpid(pid);
7996 if (IS_ERR(task)) {
7997 err = PTR_ERR(task);
7998 goto err_group_fd;
7999 }
8000 }
8001
1f4ee503
PZ
8002 if (task && group_leader &&
8003 group_leader->attr.inherit != attr.inherit) {
8004 err = -EINVAL;
8005 goto err_task;
8006 }
8007
fbfc623f
YZ
8008 get_online_cpus();
8009
79dff51e
MF
8010 if (flags & PERF_FLAG_PID_CGROUP)
8011 cgroup_fd = pid;
8012
4dc0da86 8013 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8014 NULL, NULL, cgroup_fd);
d14b12d7
SE
8015 if (IS_ERR(event)) {
8016 err = PTR_ERR(event);
1f4ee503 8017 goto err_cpus;
d14b12d7
SE
8018 }
8019
53b25335
VW
8020 if (is_sampling_event(event)) {
8021 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8022 err = -ENOTSUPP;
8023 goto err_alloc;
8024 }
8025 }
8026
766d6c07
FW
8027 account_event(event);
8028
89a1e187
PZ
8029 /*
8030 * Special case software events and allow them to be part of
8031 * any hardware group.
8032 */
8033 pmu = event->pmu;
b04243ef 8034
34f43927
PZ
8035 if (attr.use_clockid) {
8036 err = perf_event_set_clock(event, attr.clockid);
8037 if (err)
8038 goto err_alloc;
8039 }
8040
b04243ef
PZ
8041 if (group_leader &&
8042 (is_software_event(event) != is_software_event(group_leader))) {
8043 if (is_software_event(event)) {
8044 /*
8045 * If event and group_leader are not both a software
8046 * event, and event is, then group leader is not.
8047 *
8048 * Allow the addition of software events to !software
8049 * groups, this is safe because software events never
8050 * fail to schedule.
8051 */
8052 pmu = group_leader->pmu;
8053 } else if (is_software_event(group_leader) &&
8054 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8055 /*
8056 * In case the group is a pure software group, and we
8057 * try to add a hardware event, move the whole group to
8058 * the hardware context.
8059 */
8060 move_group = 1;
8061 }
8062 }
89a1e187
PZ
8063
8064 /*
8065 * Get the target context (task or percpu):
8066 */
4af57ef2 8067 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8068 if (IS_ERR(ctx)) {
8069 err = PTR_ERR(ctx);
c6be5a5c 8070 goto err_alloc;
89a1e187
PZ
8071 }
8072
bed5b25a
AS
8073 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8074 err = -EBUSY;
8075 goto err_context;
8076 }
8077
fd1edb3a
PZ
8078 if (task) {
8079 put_task_struct(task);
8080 task = NULL;
8081 }
8082
ccff286d 8083 /*
cdd6c482 8084 * Look up the group leader (we will attach this event to it):
04289bb9 8085 */
ac9721f3 8086 if (group_leader) {
dc86cabe 8087 err = -EINVAL;
04289bb9 8088
04289bb9 8089 /*
ccff286d
IM
8090 * Do not allow a recursive hierarchy (this new sibling
8091 * becoming part of another group-sibling):
8092 */
8093 if (group_leader->group_leader != group_leader)
c3f00c70 8094 goto err_context;
34f43927
PZ
8095
8096 /* All events in a group should have the same clock */
8097 if (group_leader->clock != event->clock)
8098 goto err_context;
8099
ccff286d
IM
8100 /*
8101 * Do not allow to attach to a group in a different
8102 * task or CPU context:
04289bb9 8103 */
b04243ef 8104 if (move_group) {
c3c87e77
PZ
8105 /*
8106 * Make sure we're both on the same task, or both
8107 * per-cpu events.
8108 */
8109 if (group_leader->ctx->task != ctx->task)
8110 goto err_context;
8111
8112 /*
8113 * Make sure we're both events for the same CPU;
8114 * grouping events for different CPUs is broken; since
8115 * you can never concurrently schedule them anyhow.
8116 */
8117 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8118 goto err_context;
8119 } else {
8120 if (group_leader->ctx != ctx)
8121 goto err_context;
8122 }
8123
3b6f9e5c
PM
8124 /*
8125 * Only a group leader can be exclusive or pinned
8126 */
0d48696f 8127 if (attr.exclusive || attr.pinned)
c3f00c70 8128 goto err_context;
ac9721f3
PZ
8129 }
8130
8131 if (output_event) {
8132 err = perf_event_set_output(event, output_event);
8133 if (err)
c3f00c70 8134 goto err_context;
ac9721f3 8135 }
0793a61d 8136
a21b0b35
YD
8137 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8138 f_flags);
ea635c64
AV
8139 if (IS_ERR(event_file)) {
8140 err = PTR_ERR(event_file);
c3f00c70 8141 goto err_context;
ea635c64 8142 }
9b51f66d 8143
b04243ef 8144 if (move_group) {
f63a8daa
PZ
8145 gctx = group_leader->ctx;
8146
8147 /*
8148 * See perf_event_ctx_lock() for comments on the details
8149 * of swizzling perf_event::ctx.
8150 */
8151 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8152
46ce0fe9 8153 perf_remove_from_context(group_leader, false);
0231bb53 8154
b04243ef
PZ
8155 list_for_each_entry(sibling, &group_leader->sibling_list,
8156 group_entry) {
46ce0fe9 8157 perf_remove_from_context(sibling, false);
b04243ef
PZ
8158 put_ctx(gctx);
8159 }
f63a8daa
PZ
8160 } else {
8161 mutex_lock(&ctx->mutex);
ea635c64 8162 }
9b51f66d 8163
ad3a37de 8164 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8165
8166 if (move_group) {
f63a8daa
PZ
8167 /*
8168 * Wait for everybody to stop referencing the events through
8169 * the old lists, before installing it on new lists.
8170 */
0cda4c02 8171 synchronize_rcu();
f63a8daa 8172
8f95b435
PZI
8173 /*
8174 * Install the group siblings before the group leader.
8175 *
8176 * Because a group leader will try and install the entire group
8177 * (through the sibling list, which is still in-tact), we can
8178 * end up with siblings installed in the wrong context.
8179 *
8180 * By installing siblings first we NO-OP because they're not
8181 * reachable through the group lists.
8182 */
b04243ef
PZ
8183 list_for_each_entry(sibling, &group_leader->sibling_list,
8184 group_entry) {
8f95b435 8185 perf_event__state_init(sibling);
9fc81d87 8186 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8187 get_ctx(ctx);
8188 }
8f95b435
PZI
8189
8190 /*
8191 * Removing from the context ends up with disabled
8192 * event. What we want here is event in the initial
8193 * startup state, ready to be add into new context.
8194 */
8195 perf_event__state_init(group_leader);
8196 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8197 get_ctx(ctx);
b04243ef
PZ
8198 }
8199
bed5b25a
AS
8200 if (!exclusive_event_installable(event, ctx)) {
8201 err = -EBUSY;
8202 mutex_unlock(&ctx->mutex);
8203 fput(event_file);
8204 goto err_context;
8205 }
8206
e2d37cd2 8207 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8208 perf_unpin_context(ctx);
f63a8daa
PZ
8209
8210 if (move_group) {
8211 mutex_unlock(&gctx->mutex);
8212 put_ctx(gctx);
8213 }
d859e29f 8214 mutex_unlock(&ctx->mutex);
9b51f66d 8215
fbfc623f
YZ
8216 put_online_cpus();
8217
cdd6c482 8218 event->owner = current;
8882135b 8219
cdd6c482
IM
8220 mutex_lock(&current->perf_event_mutex);
8221 list_add_tail(&event->owner_entry, &current->perf_event_list);
8222 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8223
c320c7b7
ACM
8224 /*
8225 * Precalculate sample_data sizes
8226 */
8227 perf_event__header_size(event);
6844c09d 8228 perf_event__id_header_size(event);
c320c7b7 8229
8a49542c
PZ
8230 /*
8231 * Drop the reference on the group_event after placing the
8232 * new event on the sibling_list. This ensures destruction
8233 * of the group leader will find the pointer to itself in
8234 * perf_group_detach().
8235 */
2903ff01 8236 fdput(group);
ea635c64
AV
8237 fd_install(event_fd, event_file);
8238 return event_fd;
0793a61d 8239
c3f00c70 8240err_context:
fe4b04fa 8241 perf_unpin_context(ctx);
ea635c64 8242 put_ctx(ctx);
c6be5a5c 8243err_alloc:
ea635c64 8244 free_event(event);
1f4ee503 8245err_cpus:
fbfc623f 8246 put_online_cpus();
1f4ee503 8247err_task:
e7d0bc04
PZ
8248 if (task)
8249 put_task_struct(task);
89a1e187 8250err_group_fd:
2903ff01 8251 fdput(group);
ea635c64
AV
8252err_fd:
8253 put_unused_fd(event_fd);
dc86cabe 8254 return err;
0793a61d
TG
8255}
8256
fb0459d7
AV
8257/**
8258 * perf_event_create_kernel_counter
8259 *
8260 * @attr: attributes of the counter to create
8261 * @cpu: cpu in which the counter is bound
38a81da2 8262 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8263 */
8264struct perf_event *
8265perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8266 struct task_struct *task,
4dc0da86
AK
8267 perf_overflow_handler_t overflow_handler,
8268 void *context)
fb0459d7 8269{
fb0459d7 8270 struct perf_event_context *ctx;
c3f00c70 8271 struct perf_event *event;
fb0459d7 8272 int err;
d859e29f 8273
fb0459d7
AV
8274 /*
8275 * Get the target context (task or percpu):
8276 */
d859e29f 8277
4dc0da86 8278 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8279 overflow_handler, context, -1);
c3f00c70
PZ
8280 if (IS_ERR(event)) {
8281 err = PTR_ERR(event);
8282 goto err;
8283 }
d859e29f 8284
f8697762
JO
8285 /* Mark owner so we could distinguish it from user events. */
8286 event->owner = EVENT_OWNER_KERNEL;
8287
766d6c07
FW
8288 account_event(event);
8289
4af57ef2 8290 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8291 if (IS_ERR(ctx)) {
8292 err = PTR_ERR(ctx);
c3f00c70 8293 goto err_free;
d859e29f 8294 }
fb0459d7 8295
fb0459d7
AV
8296 WARN_ON_ONCE(ctx->parent_ctx);
8297 mutex_lock(&ctx->mutex);
bed5b25a
AS
8298 if (!exclusive_event_installable(event, ctx)) {
8299 mutex_unlock(&ctx->mutex);
8300 perf_unpin_context(ctx);
8301 put_ctx(ctx);
8302 err = -EBUSY;
8303 goto err_free;
8304 }
8305
fb0459d7 8306 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8307 perf_unpin_context(ctx);
fb0459d7
AV
8308 mutex_unlock(&ctx->mutex);
8309
fb0459d7
AV
8310 return event;
8311
c3f00c70
PZ
8312err_free:
8313 free_event(event);
8314err:
c6567f64 8315 return ERR_PTR(err);
9b51f66d 8316}
fb0459d7 8317EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8318
0cda4c02
YZ
8319void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8320{
8321 struct perf_event_context *src_ctx;
8322 struct perf_event_context *dst_ctx;
8323 struct perf_event *event, *tmp;
8324 LIST_HEAD(events);
8325
8326 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8327 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8328
f63a8daa
PZ
8329 /*
8330 * See perf_event_ctx_lock() for comments on the details
8331 * of swizzling perf_event::ctx.
8332 */
8333 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8334 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8335 event_entry) {
46ce0fe9 8336 perf_remove_from_context(event, false);
9a545de0 8337 unaccount_event_cpu(event, src_cpu);
0cda4c02 8338 put_ctx(src_ctx);
9886167d 8339 list_add(&event->migrate_entry, &events);
0cda4c02 8340 }
0cda4c02 8341
8f95b435
PZI
8342 /*
8343 * Wait for the events to quiesce before re-instating them.
8344 */
0cda4c02
YZ
8345 synchronize_rcu();
8346
8f95b435
PZI
8347 /*
8348 * Re-instate events in 2 passes.
8349 *
8350 * Skip over group leaders and only install siblings on this first
8351 * pass, siblings will not get enabled without a leader, however a
8352 * leader will enable its siblings, even if those are still on the old
8353 * context.
8354 */
8355 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8356 if (event->group_leader == event)
8357 continue;
8358
8359 list_del(&event->migrate_entry);
8360 if (event->state >= PERF_EVENT_STATE_OFF)
8361 event->state = PERF_EVENT_STATE_INACTIVE;
8362 account_event_cpu(event, dst_cpu);
8363 perf_install_in_context(dst_ctx, event, dst_cpu);
8364 get_ctx(dst_ctx);
8365 }
8366
8367 /*
8368 * Once all the siblings are setup properly, install the group leaders
8369 * to make it go.
8370 */
9886167d
PZ
8371 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8372 list_del(&event->migrate_entry);
0cda4c02
YZ
8373 if (event->state >= PERF_EVENT_STATE_OFF)
8374 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8375 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8376 perf_install_in_context(dst_ctx, event, dst_cpu);
8377 get_ctx(dst_ctx);
8378 }
8379 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8380 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8381}
8382EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8383
cdd6c482 8384static void sync_child_event(struct perf_event *child_event,
38b200d6 8385 struct task_struct *child)
d859e29f 8386{
cdd6c482 8387 struct perf_event *parent_event = child_event->parent;
8bc20959 8388 u64 child_val;
d859e29f 8389
cdd6c482
IM
8390 if (child_event->attr.inherit_stat)
8391 perf_event_read_event(child_event, child);
38b200d6 8392
b5e58793 8393 child_val = perf_event_count(child_event);
d859e29f
PM
8394
8395 /*
8396 * Add back the child's count to the parent's count:
8397 */
a6e6dea6 8398 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8399 atomic64_add(child_event->total_time_enabled,
8400 &parent_event->child_total_time_enabled);
8401 atomic64_add(child_event->total_time_running,
8402 &parent_event->child_total_time_running);
d859e29f
PM
8403
8404 /*
cdd6c482 8405 * Remove this event from the parent's list
d859e29f 8406 */
cdd6c482
IM
8407 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8408 mutex_lock(&parent_event->child_mutex);
8409 list_del_init(&child_event->child_list);
8410 mutex_unlock(&parent_event->child_mutex);
d859e29f 8411
dc633982
JO
8412 /*
8413 * Make sure user/parent get notified, that we just
8414 * lost one event.
8415 */
8416 perf_event_wakeup(parent_event);
8417
d859e29f 8418 /*
cdd6c482 8419 * Release the parent event, if this was the last
d859e29f
PM
8420 * reference to it.
8421 */
a6fa941d 8422 put_event(parent_event);
d859e29f
PM
8423}
8424
9b51f66d 8425static void
cdd6c482
IM
8426__perf_event_exit_task(struct perf_event *child_event,
8427 struct perf_event_context *child_ctx,
38b200d6 8428 struct task_struct *child)
9b51f66d 8429{
1903d50c
PZ
8430 /*
8431 * Do not destroy the 'original' grouping; because of the context
8432 * switch optimization the original events could've ended up in a
8433 * random child task.
8434 *
8435 * If we were to destroy the original group, all group related
8436 * operations would cease to function properly after this random
8437 * child dies.
8438 *
8439 * Do destroy all inherited groups, we don't care about those
8440 * and being thorough is better.
8441 */
8442 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8443
9b51f66d 8444 /*
38b435b1 8445 * It can happen that the parent exits first, and has events
9b51f66d 8446 * that are still around due to the child reference. These
38b435b1 8447 * events need to be zapped.
9b51f66d 8448 */
38b435b1 8449 if (child_event->parent) {
cdd6c482
IM
8450 sync_child_event(child_event, child);
8451 free_event(child_event);
179033b3
JO
8452 } else {
8453 child_event->state = PERF_EVENT_STATE_EXIT;
8454 perf_event_wakeup(child_event);
4bcf349a 8455 }
9b51f66d
IM
8456}
8457
8dc85d54 8458static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8459{
ebf905fc 8460 struct perf_event *child_event, *next;
211de6eb 8461 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8462 unsigned long flags;
9b51f66d 8463
8dc85d54 8464 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8465 perf_event_task(child, NULL, 0);
9b51f66d 8466 return;
9f498cc5 8467 }
9b51f66d 8468
a63eaf34 8469 local_irq_save(flags);
ad3a37de
PM
8470 /*
8471 * We can't reschedule here because interrupts are disabled,
8472 * and either child is current or it is a task that can't be
8473 * scheduled, so we are now safe from rescheduling changing
8474 * our context.
8475 */
806839b2 8476 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8477
8478 /*
8479 * Take the context lock here so that if find_get_context is
cdd6c482 8480 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8481 * incremented the context's refcount before we do put_ctx below.
8482 */
e625cce1 8483 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8484 task_ctx_sched_out(child_ctx);
8dc85d54 8485 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8486
71a851b4
PZ
8487 /*
8488 * If this context is a clone; unclone it so it can't get
8489 * swapped to another process while we're removing all
cdd6c482 8490 * the events from it.
71a851b4 8491 */
211de6eb 8492 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8493 update_context_time(child_ctx);
e625cce1 8494 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8495
211de6eb
PZ
8496 if (clone_ctx)
8497 put_ctx(clone_ctx);
4a1c0f26 8498
9f498cc5 8499 /*
cdd6c482
IM
8500 * Report the task dead after unscheduling the events so that we
8501 * won't get any samples after PERF_RECORD_EXIT. We can however still
8502 * get a few PERF_RECORD_READ events.
9f498cc5 8503 */
cdd6c482 8504 perf_event_task(child, child_ctx, 0);
a63eaf34 8505
66fff224
PZ
8506 /*
8507 * We can recurse on the same lock type through:
8508 *
cdd6c482
IM
8509 * __perf_event_exit_task()
8510 * sync_child_event()
a6fa941d
AV
8511 * put_event()
8512 * mutex_lock(&ctx->mutex)
66fff224
PZ
8513 *
8514 * But since its the parent context it won't be the same instance.
8515 */
a0507c84 8516 mutex_lock(&child_ctx->mutex);
a63eaf34 8517
ebf905fc 8518 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8519 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8520
a63eaf34
PM
8521 mutex_unlock(&child_ctx->mutex);
8522
8523 put_ctx(child_ctx);
9b51f66d
IM
8524}
8525
8dc85d54
PZ
8526/*
8527 * When a child task exits, feed back event values to parent events.
8528 */
8529void perf_event_exit_task(struct task_struct *child)
8530{
8882135b 8531 struct perf_event *event, *tmp;
8dc85d54
PZ
8532 int ctxn;
8533
8882135b
PZ
8534 mutex_lock(&child->perf_event_mutex);
8535 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8536 owner_entry) {
8537 list_del_init(&event->owner_entry);
8538
8539 /*
8540 * Ensure the list deletion is visible before we clear
8541 * the owner, closes a race against perf_release() where
8542 * we need to serialize on the owner->perf_event_mutex.
8543 */
8544 smp_wmb();
8545 event->owner = NULL;
8546 }
8547 mutex_unlock(&child->perf_event_mutex);
8548
8dc85d54
PZ
8549 for_each_task_context_nr(ctxn)
8550 perf_event_exit_task_context(child, ctxn);
8551}
8552
889ff015
FW
8553static void perf_free_event(struct perf_event *event,
8554 struct perf_event_context *ctx)
8555{
8556 struct perf_event *parent = event->parent;
8557
8558 if (WARN_ON_ONCE(!parent))
8559 return;
8560
8561 mutex_lock(&parent->child_mutex);
8562 list_del_init(&event->child_list);
8563 mutex_unlock(&parent->child_mutex);
8564
a6fa941d 8565 put_event(parent);
889ff015 8566
652884fe 8567 raw_spin_lock_irq(&ctx->lock);
8a49542c 8568 perf_group_detach(event);
889ff015 8569 list_del_event(event, ctx);
652884fe 8570 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8571 free_event(event);
8572}
8573
bbbee908 8574/*
652884fe 8575 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8576 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8577 *
8578 * Not all locks are strictly required, but take them anyway to be nice and
8579 * help out with the lockdep assertions.
bbbee908 8580 */
cdd6c482 8581void perf_event_free_task(struct task_struct *task)
bbbee908 8582{
8dc85d54 8583 struct perf_event_context *ctx;
cdd6c482 8584 struct perf_event *event, *tmp;
8dc85d54 8585 int ctxn;
bbbee908 8586
8dc85d54
PZ
8587 for_each_task_context_nr(ctxn) {
8588 ctx = task->perf_event_ctxp[ctxn];
8589 if (!ctx)
8590 continue;
bbbee908 8591
8dc85d54 8592 mutex_lock(&ctx->mutex);
bbbee908 8593again:
8dc85d54
PZ
8594 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8595 group_entry)
8596 perf_free_event(event, ctx);
bbbee908 8597
8dc85d54
PZ
8598 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8599 group_entry)
8600 perf_free_event(event, ctx);
bbbee908 8601
8dc85d54
PZ
8602 if (!list_empty(&ctx->pinned_groups) ||
8603 !list_empty(&ctx->flexible_groups))
8604 goto again;
bbbee908 8605
8dc85d54 8606 mutex_unlock(&ctx->mutex);
bbbee908 8607
8dc85d54
PZ
8608 put_ctx(ctx);
8609 }
889ff015
FW
8610}
8611
4e231c79
PZ
8612void perf_event_delayed_put(struct task_struct *task)
8613{
8614 int ctxn;
8615
8616 for_each_task_context_nr(ctxn)
8617 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8618}
8619
97dee4f3
PZ
8620/*
8621 * inherit a event from parent task to child task:
8622 */
8623static struct perf_event *
8624inherit_event(struct perf_event *parent_event,
8625 struct task_struct *parent,
8626 struct perf_event_context *parent_ctx,
8627 struct task_struct *child,
8628 struct perf_event *group_leader,
8629 struct perf_event_context *child_ctx)
8630{
1929def9 8631 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8632 struct perf_event *child_event;
cee010ec 8633 unsigned long flags;
97dee4f3
PZ
8634
8635 /*
8636 * Instead of creating recursive hierarchies of events,
8637 * we link inherited events back to the original parent,
8638 * which has a filp for sure, which we use as the reference
8639 * count:
8640 */
8641 if (parent_event->parent)
8642 parent_event = parent_event->parent;
8643
8644 child_event = perf_event_alloc(&parent_event->attr,
8645 parent_event->cpu,
d580ff86 8646 child,
97dee4f3 8647 group_leader, parent_event,
79dff51e 8648 NULL, NULL, -1);
97dee4f3
PZ
8649 if (IS_ERR(child_event))
8650 return child_event;
a6fa941d 8651
fadfe7be
JO
8652 if (is_orphaned_event(parent_event) ||
8653 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8654 free_event(child_event);
8655 return NULL;
8656 }
8657
97dee4f3
PZ
8658 get_ctx(child_ctx);
8659
8660 /*
8661 * Make the child state follow the state of the parent event,
8662 * not its attr.disabled bit. We hold the parent's mutex,
8663 * so we won't race with perf_event_{en, dis}able_family.
8664 */
1929def9 8665 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8666 child_event->state = PERF_EVENT_STATE_INACTIVE;
8667 else
8668 child_event->state = PERF_EVENT_STATE_OFF;
8669
8670 if (parent_event->attr.freq) {
8671 u64 sample_period = parent_event->hw.sample_period;
8672 struct hw_perf_event *hwc = &child_event->hw;
8673
8674 hwc->sample_period = sample_period;
8675 hwc->last_period = sample_period;
8676
8677 local64_set(&hwc->period_left, sample_period);
8678 }
8679
8680 child_event->ctx = child_ctx;
8681 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8682 child_event->overflow_handler_context
8683 = parent_event->overflow_handler_context;
97dee4f3 8684
614b6780
TG
8685 /*
8686 * Precalculate sample_data sizes
8687 */
8688 perf_event__header_size(child_event);
6844c09d 8689 perf_event__id_header_size(child_event);
614b6780 8690
97dee4f3
PZ
8691 /*
8692 * Link it up in the child's context:
8693 */
cee010ec 8694 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8695 add_event_to_ctx(child_event, child_ctx);
cee010ec 8696 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8697
97dee4f3
PZ
8698 /*
8699 * Link this into the parent event's child list
8700 */
8701 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8702 mutex_lock(&parent_event->child_mutex);
8703 list_add_tail(&child_event->child_list, &parent_event->child_list);
8704 mutex_unlock(&parent_event->child_mutex);
8705
8706 return child_event;
8707}
8708
8709static int inherit_group(struct perf_event *parent_event,
8710 struct task_struct *parent,
8711 struct perf_event_context *parent_ctx,
8712 struct task_struct *child,
8713 struct perf_event_context *child_ctx)
8714{
8715 struct perf_event *leader;
8716 struct perf_event *sub;
8717 struct perf_event *child_ctr;
8718
8719 leader = inherit_event(parent_event, parent, parent_ctx,
8720 child, NULL, child_ctx);
8721 if (IS_ERR(leader))
8722 return PTR_ERR(leader);
8723 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8724 child_ctr = inherit_event(sub, parent, parent_ctx,
8725 child, leader, child_ctx);
8726 if (IS_ERR(child_ctr))
8727 return PTR_ERR(child_ctr);
8728 }
8729 return 0;
889ff015
FW
8730}
8731
8732static int
8733inherit_task_group(struct perf_event *event, struct task_struct *parent,
8734 struct perf_event_context *parent_ctx,
8dc85d54 8735 struct task_struct *child, int ctxn,
889ff015
FW
8736 int *inherited_all)
8737{
8738 int ret;
8dc85d54 8739 struct perf_event_context *child_ctx;
889ff015
FW
8740
8741 if (!event->attr.inherit) {
8742 *inherited_all = 0;
8743 return 0;
bbbee908
PZ
8744 }
8745
fe4b04fa 8746 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8747 if (!child_ctx) {
8748 /*
8749 * This is executed from the parent task context, so
8750 * inherit events that have been marked for cloning.
8751 * First allocate and initialize a context for the
8752 * child.
8753 */
bbbee908 8754
734df5ab 8755 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8756 if (!child_ctx)
8757 return -ENOMEM;
bbbee908 8758
8dc85d54 8759 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8760 }
8761
8762 ret = inherit_group(event, parent, parent_ctx,
8763 child, child_ctx);
8764
8765 if (ret)
8766 *inherited_all = 0;
8767
8768 return ret;
bbbee908
PZ
8769}
8770
9b51f66d 8771/*
cdd6c482 8772 * Initialize the perf_event context in task_struct
9b51f66d 8773 */
985c8dcb 8774static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8775{
889ff015 8776 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8777 struct perf_event_context *cloned_ctx;
8778 struct perf_event *event;
9b51f66d 8779 struct task_struct *parent = current;
564c2b21 8780 int inherited_all = 1;
dddd3379 8781 unsigned long flags;
6ab423e0 8782 int ret = 0;
9b51f66d 8783
8dc85d54 8784 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8785 return 0;
8786
ad3a37de 8787 /*
25346b93
PM
8788 * If the parent's context is a clone, pin it so it won't get
8789 * swapped under us.
ad3a37de 8790 */
8dc85d54 8791 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8792 if (!parent_ctx)
8793 return 0;
25346b93 8794
ad3a37de
PM
8795 /*
8796 * No need to check if parent_ctx != NULL here; since we saw
8797 * it non-NULL earlier, the only reason for it to become NULL
8798 * is if we exit, and since we're currently in the middle of
8799 * a fork we can't be exiting at the same time.
8800 */
ad3a37de 8801
9b51f66d
IM
8802 /*
8803 * Lock the parent list. No need to lock the child - not PID
8804 * hashed yet and not running, so nobody can access it.
8805 */
d859e29f 8806 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8807
8808 /*
8809 * We dont have to disable NMIs - we are only looking at
8810 * the list, not manipulating it:
8811 */
889ff015 8812 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8813 ret = inherit_task_group(event, parent, parent_ctx,
8814 child, ctxn, &inherited_all);
889ff015
FW
8815 if (ret)
8816 break;
8817 }
b93f7978 8818
dddd3379
TG
8819 /*
8820 * We can't hold ctx->lock when iterating the ->flexible_group list due
8821 * to allocations, but we need to prevent rotation because
8822 * rotate_ctx() will change the list from interrupt context.
8823 */
8824 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8825 parent_ctx->rotate_disable = 1;
8826 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8827
889ff015 8828 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8829 ret = inherit_task_group(event, parent, parent_ctx,
8830 child, ctxn, &inherited_all);
889ff015 8831 if (ret)
9b51f66d 8832 break;
564c2b21
PM
8833 }
8834
dddd3379
TG
8835 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8836 parent_ctx->rotate_disable = 0;
dddd3379 8837
8dc85d54 8838 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8839
05cbaa28 8840 if (child_ctx && inherited_all) {
564c2b21
PM
8841 /*
8842 * Mark the child context as a clone of the parent
8843 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8844 *
8845 * Note that if the parent is a clone, the holding of
8846 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8847 */
c5ed5145 8848 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8849 if (cloned_ctx) {
8850 child_ctx->parent_ctx = cloned_ctx;
25346b93 8851 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8852 } else {
8853 child_ctx->parent_ctx = parent_ctx;
8854 child_ctx->parent_gen = parent_ctx->generation;
8855 }
8856 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8857 }
8858
c5ed5145 8859 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8860 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8861
25346b93 8862 perf_unpin_context(parent_ctx);
fe4b04fa 8863 put_ctx(parent_ctx);
ad3a37de 8864
6ab423e0 8865 return ret;
9b51f66d
IM
8866}
8867
8dc85d54
PZ
8868/*
8869 * Initialize the perf_event context in task_struct
8870 */
8871int perf_event_init_task(struct task_struct *child)
8872{
8873 int ctxn, ret;
8874
8550d7cb
ON
8875 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8876 mutex_init(&child->perf_event_mutex);
8877 INIT_LIST_HEAD(&child->perf_event_list);
8878
8dc85d54
PZ
8879 for_each_task_context_nr(ctxn) {
8880 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8881 if (ret) {
8882 perf_event_free_task(child);
8dc85d54 8883 return ret;
6c72e350 8884 }
8dc85d54
PZ
8885 }
8886
8887 return 0;
8888}
8889
220b140b
PM
8890static void __init perf_event_init_all_cpus(void)
8891{
b28ab83c 8892 struct swevent_htable *swhash;
220b140b 8893 int cpu;
220b140b
PM
8894
8895 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8896 swhash = &per_cpu(swevent_htable, cpu);
8897 mutex_init(&swhash->hlist_mutex);
2fde4f94 8898 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8899 }
8900}
8901
0db0628d 8902static void perf_event_init_cpu(int cpu)
0793a61d 8903{
108b02cf 8904 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8905
b28ab83c 8906 mutex_lock(&swhash->hlist_mutex);
39af6b16 8907 swhash->online = true;
4536e4d1 8908 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8909 struct swevent_hlist *hlist;
8910
b28ab83c
PZ
8911 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8912 WARN_ON(!hlist);
8913 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8914 }
b28ab83c 8915 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8916}
8917
c277443c 8918#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8919static void __perf_event_exit_context(void *__info)
0793a61d 8920{
226424ee 8921 struct remove_event re = { .detach_group = true };
108b02cf 8922 struct perf_event_context *ctx = __info;
0793a61d 8923
e3703f8c 8924 rcu_read_lock();
46ce0fe9
PZ
8925 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8926 __perf_remove_from_context(&re);
e3703f8c 8927 rcu_read_unlock();
0793a61d 8928}
108b02cf
PZ
8929
8930static void perf_event_exit_cpu_context(int cpu)
8931{
8932 struct perf_event_context *ctx;
8933 struct pmu *pmu;
8934 int idx;
8935
8936 idx = srcu_read_lock(&pmus_srcu);
8937 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8938 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8939
8940 mutex_lock(&ctx->mutex);
8941 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8942 mutex_unlock(&ctx->mutex);
8943 }
8944 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8945}
8946
cdd6c482 8947static void perf_event_exit_cpu(int cpu)
0793a61d 8948{
b28ab83c 8949 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8950
e3703f8c
PZ
8951 perf_event_exit_cpu_context(cpu);
8952
b28ab83c 8953 mutex_lock(&swhash->hlist_mutex);
39af6b16 8954 swhash->online = false;
b28ab83c
PZ
8955 swevent_hlist_release(swhash);
8956 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8957}
8958#else
cdd6c482 8959static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8960#endif
8961
c277443c
PZ
8962static int
8963perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8964{
8965 int cpu;
8966
8967 for_each_online_cpu(cpu)
8968 perf_event_exit_cpu(cpu);
8969
8970 return NOTIFY_OK;
8971}
8972
8973/*
8974 * Run the perf reboot notifier at the very last possible moment so that
8975 * the generic watchdog code runs as long as possible.
8976 */
8977static struct notifier_block perf_reboot_notifier = {
8978 .notifier_call = perf_reboot,
8979 .priority = INT_MIN,
8980};
8981
0db0628d 8982static int
0793a61d
TG
8983perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8984{
8985 unsigned int cpu = (long)hcpu;
8986
4536e4d1 8987 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8988
8989 case CPU_UP_PREPARE:
5e11637e 8990 case CPU_DOWN_FAILED:
cdd6c482 8991 perf_event_init_cpu(cpu);
0793a61d
TG
8992 break;
8993
5e11637e 8994 case CPU_UP_CANCELED:
0793a61d 8995 case CPU_DOWN_PREPARE:
cdd6c482 8996 perf_event_exit_cpu(cpu);
0793a61d 8997 break;
0793a61d
TG
8998 default:
8999 break;
9000 }
9001
9002 return NOTIFY_OK;
9003}
9004
cdd6c482 9005void __init perf_event_init(void)
0793a61d 9006{
3c502e7a
JW
9007 int ret;
9008
2e80a82a
PZ
9009 idr_init(&pmu_idr);
9010
220b140b 9011 perf_event_init_all_cpus();
b0a873eb 9012 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9013 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9014 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9015 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9016 perf_tp_register();
9017 perf_cpu_notifier(perf_cpu_notify);
c277443c 9018 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9019
9020 ret = init_hw_breakpoint();
9021 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9022
9023 /* do not patch jump label more than once per second */
9024 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9025
9026 /*
9027 * Build time assertion that we keep the data_head at the intended
9028 * location. IOW, validation we got the __reserved[] size right.
9029 */
9030 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9031 != 1024);
0793a61d 9032}
abe43400 9033
fd979c01
CS
9034ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9035 char *page)
9036{
9037 struct perf_pmu_events_attr *pmu_attr =
9038 container_of(attr, struct perf_pmu_events_attr, attr);
9039
9040 if (pmu_attr->event_str)
9041 return sprintf(page, "%s\n", pmu_attr->event_str);
9042
9043 return 0;
9044}
9045
abe43400
PZ
9046static int __init perf_event_sysfs_init(void)
9047{
9048 struct pmu *pmu;
9049 int ret;
9050
9051 mutex_lock(&pmus_lock);
9052
9053 ret = bus_register(&pmu_bus);
9054 if (ret)
9055 goto unlock;
9056
9057 list_for_each_entry(pmu, &pmus, entry) {
9058 if (!pmu->name || pmu->type < 0)
9059 continue;
9060
9061 ret = pmu_dev_alloc(pmu);
9062 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9063 }
9064 pmu_bus_running = 1;
9065 ret = 0;
9066
9067unlock:
9068 mutex_unlock(&pmus_lock);
9069
9070 return ret;
9071}
9072device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9073
9074#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9075static struct cgroup_subsys_state *
9076perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9077{
9078 struct perf_cgroup *jc;
e5d1367f 9079
1b15d055 9080 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9081 if (!jc)
9082 return ERR_PTR(-ENOMEM);
9083
e5d1367f
SE
9084 jc->info = alloc_percpu(struct perf_cgroup_info);
9085 if (!jc->info) {
9086 kfree(jc);
9087 return ERR_PTR(-ENOMEM);
9088 }
9089
e5d1367f
SE
9090 return &jc->css;
9091}
9092
eb95419b 9093static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9094{
eb95419b
TH
9095 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9096
e5d1367f
SE
9097 free_percpu(jc->info);
9098 kfree(jc);
9099}
9100
9101static int __perf_cgroup_move(void *info)
9102{
9103 struct task_struct *task = info;
9104 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9105 return 0;
9106}
9107
eb95419b
TH
9108static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9109 struct cgroup_taskset *tset)
e5d1367f 9110{
bb9d97b6
TH
9111 struct task_struct *task;
9112
924f0d9a 9113 cgroup_taskset_for_each(task, tset)
bb9d97b6 9114 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9115}
9116
eb95419b
TH
9117static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9118 struct cgroup_subsys_state *old_css,
761b3ef5 9119 struct task_struct *task)
e5d1367f
SE
9120{
9121 /*
9122 * cgroup_exit() is called in the copy_process() failure path.
9123 * Ignore this case since the task hasn't ran yet, this avoids
9124 * trying to poke a half freed task state from generic code.
9125 */
9126 if (!(task->flags & PF_EXITING))
9127 return;
9128
bb9d97b6 9129 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9130}
9131
073219e9 9132struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9133 .css_alloc = perf_cgroup_css_alloc,
9134 .css_free = perf_cgroup_css_free,
e7e7ee2e 9135 .exit = perf_cgroup_exit,
bb9d97b6 9136 .attach = perf_cgroup_attach,
e5d1367f
SE
9137};
9138#endif /* CONFIG_CGROUP_PERF */