Merge tag 'ntb-5.7' of git://github.com/jonmason/ntb
[linux-block.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
6eef8a71 52#include <linux/min_heap.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
76193a94 388static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 389static atomic_t nr_bpf_events __read_mostly;
9ee318a7 390
108b02cf
PZ
391static LIST_HEAD(pmus);
392static DEFINE_MUTEX(pmus_lock);
393static struct srcu_struct pmus_srcu;
a63fbed7 394static cpumask_var_t perf_online_mask;
108b02cf 395
0764771d 396/*
cdd6c482 397 * perf event paranoia level:
0fbdea19
IM
398 * -1 - not paranoid at all
399 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 400 * 1 - disallow cpu events for unpriv
0fbdea19 401 * 2 - disallow kernel profiling for unpriv
0764771d 402 */
0161028b 403int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 404
20443384
FW
405/* Minimum for 512 kiB + 1 user control page */
406int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
407
408/*
cdd6c482 409 * max perf event sample rate
df58ab24 410 */
14c63f17
DH
411#define DEFAULT_MAX_SAMPLE_RATE 100000
412#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
413#define DEFAULT_CPU_TIME_MAX_PERCENT 25
414
415int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
416
417static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
418static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
419
d9494cb4
PZ
420static int perf_sample_allowed_ns __read_mostly =
421 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 422
18ab2cd3 423static void update_perf_cpu_limits(void)
14c63f17
DH
424{
425 u64 tmp = perf_sample_period_ns;
426
427 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
428 tmp = div_u64(tmp, 100);
429 if (!tmp)
430 tmp = 1;
431
432 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 433}
163ec435 434
8d5bce0c 435static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 436
163ec435
PZ
437int perf_proc_update_handler(struct ctl_table *table, int write,
438 void __user *buffer, size_t *lenp,
439 loff_t *ppos)
440{
1a51c5da
SE
441 int ret;
442 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
443 /*
444 * If throttling is disabled don't allow the write:
445 */
1a51c5da 446 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
447 return -EINVAL;
448
1a51c5da
SE
449 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
450 if (ret || !write)
451 return ret;
452
163ec435 453 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
454 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
455 update_perf_cpu_limits();
456
457 return 0;
458}
459
460int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
461
462int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
463 void __user *buffer, size_t *lenp,
464 loff_t *ppos)
465{
1572e45a 466 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
467
468 if (ret || !write)
469 return ret;
470
b303e7c1
PZ
471 if (sysctl_perf_cpu_time_max_percent == 100 ||
472 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
473 printk(KERN_WARNING
474 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
475 WRITE_ONCE(perf_sample_allowed_ns, 0);
476 } else {
477 update_perf_cpu_limits();
478 }
163ec435
PZ
479
480 return 0;
481}
1ccd1549 482
14c63f17
DH
483/*
484 * perf samples are done in some very critical code paths (NMIs).
485 * If they take too much CPU time, the system can lock up and not
486 * get any real work done. This will drop the sample rate when
487 * we detect that events are taking too long.
488 */
489#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 490static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 491
91a612ee
PZ
492static u64 __report_avg;
493static u64 __report_allowed;
494
6a02ad66 495static void perf_duration_warn(struct irq_work *w)
14c63f17 496{
0d87d7ec 497 printk_ratelimited(KERN_INFO
91a612ee
PZ
498 "perf: interrupt took too long (%lld > %lld), lowering "
499 "kernel.perf_event_max_sample_rate to %d\n",
500 __report_avg, __report_allowed,
501 sysctl_perf_event_sample_rate);
6a02ad66
PZ
502}
503
504static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
505
506void perf_sample_event_took(u64 sample_len_ns)
507{
91a612ee
PZ
508 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
509 u64 running_len;
510 u64 avg_len;
511 u32 max;
14c63f17 512
91a612ee 513 if (max_len == 0)
14c63f17
DH
514 return;
515
91a612ee
PZ
516 /* Decay the counter by 1 average sample. */
517 running_len = __this_cpu_read(running_sample_length);
518 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
519 running_len += sample_len_ns;
520 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
521
522 /*
91a612ee
PZ
523 * Note: this will be biased artifically low until we have
524 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
525 * from having to maintain a count.
526 */
91a612ee
PZ
527 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
528 if (avg_len <= max_len)
14c63f17
DH
529 return;
530
91a612ee
PZ
531 __report_avg = avg_len;
532 __report_allowed = max_len;
14c63f17 533
91a612ee
PZ
534 /*
535 * Compute a throttle threshold 25% below the current duration.
536 */
537 avg_len += avg_len / 4;
538 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
539 if (avg_len < max)
540 max /= (u32)avg_len;
541 else
542 max = 1;
14c63f17 543
91a612ee
PZ
544 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
545 WRITE_ONCE(max_samples_per_tick, max);
546
547 sysctl_perf_event_sample_rate = max * HZ;
548 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 549
cd578abb 550 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 551 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 552 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 553 __report_avg, __report_allowed,
cd578abb
PZ
554 sysctl_perf_event_sample_rate);
555 }
14c63f17
DH
556}
557
cdd6c482 558static atomic64_t perf_event_id;
a96bbc16 559
0b3fcf17
SE
560static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
561 enum event_type_t event_type);
562
563static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
564 enum event_type_t event_type,
565 struct task_struct *task);
566
567static void update_context_time(struct perf_event_context *ctx);
568static u64 perf_event_time(struct perf_event *event);
0b3fcf17 569
cdd6c482 570void __weak perf_event_print_debug(void) { }
0793a61d 571
84c79910 572extern __weak const char *perf_pmu_name(void)
0793a61d 573{
84c79910 574 return "pmu";
0793a61d
TG
575}
576
0b3fcf17
SE
577static inline u64 perf_clock(void)
578{
579 return local_clock();
580}
581
34f43927
PZ
582static inline u64 perf_event_clock(struct perf_event *event)
583{
584 return event->clock();
585}
586
0d3d73aa
PZ
587/*
588 * State based event timekeeping...
589 *
590 * The basic idea is to use event->state to determine which (if any) time
591 * fields to increment with the current delta. This means we only need to
592 * update timestamps when we change state or when they are explicitly requested
593 * (read).
594 *
595 * Event groups make things a little more complicated, but not terribly so. The
596 * rules for a group are that if the group leader is OFF the entire group is
597 * OFF, irrespecive of what the group member states are. This results in
598 * __perf_effective_state().
599 *
600 * A futher ramification is that when a group leader flips between OFF and
601 * !OFF, we need to update all group member times.
602 *
603 *
604 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
605 * need to make sure the relevant context time is updated before we try and
606 * update our timestamps.
607 */
608
609static __always_inline enum perf_event_state
610__perf_effective_state(struct perf_event *event)
611{
612 struct perf_event *leader = event->group_leader;
613
614 if (leader->state <= PERF_EVENT_STATE_OFF)
615 return leader->state;
616
617 return event->state;
618}
619
620static __always_inline void
621__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
622{
623 enum perf_event_state state = __perf_effective_state(event);
624 u64 delta = now - event->tstamp;
625
626 *enabled = event->total_time_enabled;
627 if (state >= PERF_EVENT_STATE_INACTIVE)
628 *enabled += delta;
629
630 *running = event->total_time_running;
631 if (state >= PERF_EVENT_STATE_ACTIVE)
632 *running += delta;
633}
634
635static void perf_event_update_time(struct perf_event *event)
636{
637 u64 now = perf_event_time(event);
638
639 __perf_update_times(event, now, &event->total_time_enabled,
640 &event->total_time_running);
641 event->tstamp = now;
642}
643
644static void perf_event_update_sibling_time(struct perf_event *leader)
645{
646 struct perf_event *sibling;
647
edb39592 648 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
649 perf_event_update_time(sibling);
650}
651
652static void
653perf_event_set_state(struct perf_event *event, enum perf_event_state state)
654{
655 if (event->state == state)
656 return;
657
658 perf_event_update_time(event);
659 /*
660 * If a group leader gets enabled/disabled all its siblings
661 * are affected too.
662 */
663 if ((event->state < 0) ^ (state < 0))
664 perf_event_update_sibling_time(event);
665
666 WRITE_ONCE(event->state, state);
667}
668
e5d1367f
SE
669#ifdef CONFIG_CGROUP_PERF
670
e5d1367f
SE
671static inline bool
672perf_cgroup_match(struct perf_event *event)
673{
674 struct perf_event_context *ctx = event->ctx;
675 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
676
ef824fa1
TH
677 /* @event doesn't care about cgroup */
678 if (!event->cgrp)
679 return true;
680
681 /* wants specific cgroup scope but @cpuctx isn't associated with any */
682 if (!cpuctx->cgrp)
683 return false;
684
685 /*
686 * Cgroup scoping is recursive. An event enabled for a cgroup is
687 * also enabled for all its descendant cgroups. If @cpuctx's
688 * cgroup is a descendant of @event's (the test covers identity
689 * case), it's a match.
690 */
691 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
692 event->cgrp->css.cgroup);
e5d1367f
SE
693}
694
e5d1367f
SE
695static inline void perf_detach_cgroup(struct perf_event *event)
696{
4e2ba650 697 css_put(&event->cgrp->css);
e5d1367f
SE
698 event->cgrp = NULL;
699}
700
701static inline int is_cgroup_event(struct perf_event *event)
702{
703 return event->cgrp != NULL;
704}
705
706static inline u64 perf_cgroup_event_time(struct perf_event *event)
707{
708 struct perf_cgroup_info *t;
709
710 t = per_cpu_ptr(event->cgrp->info, event->cpu);
711 return t->time;
712}
713
714static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
715{
716 struct perf_cgroup_info *info;
717 u64 now;
718
719 now = perf_clock();
720
721 info = this_cpu_ptr(cgrp->info);
722
723 info->time += now - info->timestamp;
724 info->timestamp = now;
725}
726
727static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
728{
c917e0f2
SL
729 struct perf_cgroup *cgrp = cpuctx->cgrp;
730 struct cgroup_subsys_state *css;
731
732 if (cgrp) {
733 for (css = &cgrp->css; css; css = css->parent) {
734 cgrp = container_of(css, struct perf_cgroup, css);
735 __update_cgrp_time(cgrp);
736 }
737 }
e5d1367f
SE
738}
739
740static inline void update_cgrp_time_from_event(struct perf_event *event)
741{
3f7cce3c
SE
742 struct perf_cgroup *cgrp;
743
e5d1367f 744 /*
3f7cce3c
SE
745 * ensure we access cgroup data only when needed and
746 * when we know the cgroup is pinned (css_get)
e5d1367f 747 */
3f7cce3c 748 if (!is_cgroup_event(event))
e5d1367f
SE
749 return;
750
614e4c4e 751 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
752 /*
753 * Do not update time when cgroup is not active
754 */
28fa741c 755 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 756 __update_cgrp_time(event->cgrp);
e5d1367f
SE
757}
758
759static inline void
3f7cce3c
SE
760perf_cgroup_set_timestamp(struct task_struct *task,
761 struct perf_event_context *ctx)
e5d1367f
SE
762{
763 struct perf_cgroup *cgrp;
764 struct perf_cgroup_info *info;
c917e0f2 765 struct cgroup_subsys_state *css;
e5d1367f 766
3f7cce3c
SE
767 /*
768 * ctx->lock held by caller
769 * ensure we do not access cgroup data
770 * unless we have the cgroup pinned (css_get)
771 */
772 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
773 return;
774
614e4c4e 775 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
776
777 for (css = &cgrp->css; css; css = css->parent) {
778 cgrp = container_of(css, struct perf_cgroup, css);
779 info = this_cpu_ptr(cgrp->info);
780 info->timestamp = ctx->timestamp;
781 }
e5d1367f
SE
782}
783
058fe1c0
DCC
784static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
785
e5d1367f
SE
786#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
787#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
788
789/*
790 * reschedule events based on the cgroup constraint of task.
791 *
792 * mode SWOUT : schedule out everything
793 * mode SWIN : schedule in based on cgroup for next
794 */
18ab2cd3 795static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
796{
797 struct perf_cpu_context *cpuctx;
058fe1c0 798 struct list_head *list;
e5d1367f
SE
799 unsigned long flags;
800
801 /*
058fe1c0
DCC
802 * Disable interrupts and preemption to avoid this CPU's
803 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
804 */
805 local_irq_save(flags);
806
058fe1c0
DCC
807 list = this_cpu_ptr(&cgrp_cpuctx_list);
808 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
809 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 810
058fe1c0
DCC
811 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
812 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 813
058fe1c0
DCC
814 if (mode & PERF_CGROUP_SWOUT) {
815 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
816 /*
817 * must not be done before ctxswout due
818 * to event_filter_match() in event_sched_out()
819 */
820 cpuctx->cgrp = NULL;
821 }
e5d1367f 822
058fe1c0
DCC
823 if (mode & PERF_CGROUP_SWIN) {
824 WARN_ON_ONCE(cpuctx->cgrp);
825 /*
826 * set cgrp before ctxsw in to allow
827 * event_filter_match() to not have to pass
828 * task around
829 * we pass the cpuctx->ctx to perf_cgroup_from_task()
830 * because cgorup events are only per-cpu
831 */
832 cpuctx->cgrp = perf_cgroup_from_task(task,
833 &cpuctx->ctx);
834 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 835 }
058fe1c0
DCC
836 perf_pmu_enable(cpuctx->ctx.pmu);
837 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
838 }
839
e5d1367f
SE
840 local_irq_restore(flags);
841}
842
a8d757ef
SE
843static inline void perf_cgroup_sched_out(struct task_struct *task,
844 struct task_struct *next)
e5d1367f 845{
a8d757ef
SE
846 struct perf_cgroup *cgrp1;
847 struct perf_cgroup *cgrp2 = NULL;
848
ddaaf4e2 849 rcu_read_lock();
a8d757ef
SE
850 /*
851 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
852 * we do not need to pass the ctx here because we know
853 * we are holding the rcu lock
a8d757ef 854 */
614e4c4e 855 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 856 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
857
858 /*
859 * only schedule out current cgroup events if we know
860 * that we are switching to a different cgroup. Otherwise,
861 * do no touch the cgroup events.
862 */
863 if (cgrp1 != cgrp2)
864 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
865
866 rcu_read_unlock();
e5d1367f
SE
867}
868
a8d757ef
SE
869static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 struct task_struct *task)
e5d1367f 871{
a8d757ef
SE
872 struct perf_cgroup *cgrp1;
873 struct perf_cgroup *cgrp2 = NULL;
874
ddaaf4e2 875 rcu_read_lock();
a8d757ef
SE
876 /*
877 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
878 * we do not need to pass the ctx here because we know
879 * we are holding the rcu lock
a8d757ef 880 */
614e4c4e 881 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 882 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
883
884 /*
885 * only need to schedule in cgroup events if we are changing
886 * cgroup during ctxsw. Cgroup events were not scheduled
887 * out of ctxsw out if that was not the case.
888 */
889 if (cgrp1 != cgrp2)
890 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
891
892 rcu_read_unlock();
e5d1367f
SE
893}
894
c2283c93
IR
895static int perf_cgroup_ensure_storage(struct perf_event *event,
896 struct cgroup_subsys_state *css)
897{
898 struct perf_cpu_context *cpuctx;
899 struct perf_event **storage;
900 int cpu, heap_size, ret = 0;
901
902 /*
903 * Allow storage to have sufficent space for an iterator for each
904 * possibly nested cgroup plus an iterator for events with no cgroup.
905 */
906 for (heap_size = 1; css; css = css->parent)
907 heap_size++;
908
909 for_each_possible_cpu(cpu) {
910 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
911 if (heap_size <= cpuctx->heap_size)
912 continue;
913
914 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
915 GFP_KERNEL, cpu_to_node(cpu));
916 if (!storage) {
917 ret = -ENOMEM;
918 break;
919 }
920
921 raw_spin_lock_irq(&cpuctx->ctx.lock);
922 if (cpuctx->heap_size < heap_size) {
923 swap(cpuctx->heap, storage);
924 if (storage == cpuctx->heap_default)
925 storage = NULL;
926 cpuctx->heap_size = heap_size;
927 }
928 raw_spin_unlock_irq(&cpuctx->ctx.lock);
929
930 kfree(storage);
931 }
932
933 return ret;
934}
935
e5d1367f
SE
936static inline int perf_cgroup_connect(int fd, struct perf_event *event,
937 struct perf_event_attr *attr,
938 struct perf_event *group_leader)
939{
940 struct perf_cgroup *cgrp;
941 struct cgroup_subsys_state *css;
2903ff01
AV
942 struct fd f = fdget(fd);
943 int ret = 0;
e5d1367f 944
2903ff01 945 if (!f.file)
e5d1367f
SE
946 return -EBADF;
947
b583043e 948 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 949 &perf_event_cgrp_subsys);
3db272c0
LZ
950 if (IS_ERR(css)) {
951 ret = PTR_ERR(css);
952 goto out;
953 }
e5d1367f 954
c2283c93
IR
955 ret = perf_cgroup_ensure_storage(event, css);
956 if (ret)
957 goto out;
958
e5d1367f
SE
959 cgrp = container_of(css, struct perf_cgroup, css);
960 event->cgrp = cgrp;
961
962 /*
963 * all events in a group must monitor
964 * the same cgroup because a task belongs
965 * to only one perf cgroup at a time
966 */
967 if (group_leader && group_leader->cgrp != cgrp) {
968 perf_detach_cgroup(event);
969 ret = -EINVAL;
e5d1367f 970 }
3db272c0 971out:
2903ff01 972 fdput(f);
e5d1367f
SE
973 return ret;
974}
975
976static inline void
977perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
978{
979 struct perf_cgroup_info *t;
980 t = per_cpu_ptr(event->cgrp->info, event->cpu);
981 event->shadow_ctx_time = now - t->timestamp;
982}
983
db4a8356
DCC
984/*
985 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
986 * cleared when last cgroup event is removed.
987 */
988static inline void
989list_update_cgroup_event(struct perf_event *event,
990 struct perf_event_context *ctx, bool add)
991{
992 struct perf_cpu_context *cpuctx;
058fe1c0 993 struct list_head *cpuctx_entry;
db4a8356
DCC
994
995 if (!is_cgroup_event(event))
996 return;
997
db4a8356
DCC
998 /*
999 * Because cgroup events are always per-cpu events,
07c59729 1000 * @ctx == &cpuctx->ctx.
db4a8356 1001 */
07c59729 1002 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
33801b94 1003
1004 /*
1005 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006 * matching the event's cgroup, we must do this for every new event,
1007 * because if the first would mismatch, the second would not try again
1008 * and we would leave cpuctx->cgrp unset.
1009 */
1010 if (add && !cpuctx->cgrp) {
be96b316
TH
1011 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012
be96b316
TH
1013 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014 cpuctx->cgrp = cgrp;
058fe1c0 1015 }
33801b94 1016
1017 if (add && ctx->nr_cgroups++)
1018 return;
1019 else if (!add && --ctx->nr_cgroups)
1020 return;
1021
1022 /* no cgroup running */
1023 if (!add)
1024 cpuctx->cgrp = NULL;
1025
1026 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
1027 if (add)
07c59729
SL
1028 list_add(cpuctx_entry,
1029 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
33801b94 1030 else
1031 list_del(cpuctx_entry);
db4a8356
DCC
1032}
1033
e5d1367f
SE
1034#else /* !CONFIG_CGROUP_PERF */
1035
1036static inline bool
1037perf_cgroup_match(struct perf_event *event)
1038{
1039 return true;
1040}
1041
1042static inline void perf_detach_cgroup(struct perf_event *event)
1043{}
1044
1045static inline int is_cgroup_event(struct perf_event *event)
1046{
1047 return 0;
1048}
1049
e5d1367f
SE
1050static inline void update_cgrp_time_from_event(struct perf_event *event)
1051{
1052}
1053
1054static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1055{
1056}
1057
a8d757ef
SE
1058static inline void perf_cgroup_sched_out(struct task_struct *task,
1059 struct task_struct *next)
e5d1367f
SE
1060{
1061}
1062
a8d757ef
SE
1063static inline void perf_cgroup_sched_in(struct task_struct *prev,
1064 struct task_struct *task)
e5d1367f
SE
1065{
1066}
1067
1068static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 struct perf_event_attr *attr,
1070 struct perf_event *group_leader)
1071{
1072 return -EINVAL;
1073}
1074
1075static inline void
3f7cce3c
SE
1076perf_cgroup_set_timestamp(struct task_struct *task,
1077 struct perf_event_context *ctx)
e5d1367f
SE
1078{
1079}
1080
d00dbd29 1081static inline void
e5d1367f
SE
1082perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1083{
1084}
1085
1086static inline void
1087perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1088{
1089}
1090
1091static inline u64 perf_cgroup_event_time(struct perf_event *event)
1092{
1093 return 0;
1094}
1095
db4a8356
DCC
1096static inline void
1097list_update_cgroup_event(struct perf_event *event,
1098 struct perf_event_context *ctx, bool add)
1099{
1100}
1101
e5d1367f
SE
1102#endif
1103
9e630205
SE
1104/*
1105 * set default to be dependent on timer tick just
1106 * like original code
1107 */
1108#define PERF_CPU_HRTIMER (1000 / HZ)
1109/*
8a1115ff 1110 * function must be called with interrupts disabled
9e630205 1111 */
272325c4 1112static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1113{
1114 struct perf_cpu_context *cpuctx;
8d5bce0c 1115 bool rotations;
9e630205 1116
16444645 1117 lockdep_assert_irqs_disabled();
9e630205
SE
1118
1119 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1120 rotations = perf_rotate_context(cpuctx);
1121
4cfafd30
PZ
1122 raw_spin_lock(&cpuctx->hrtimer_lock);
1123 if (rotations)
9e630205 1124 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1125 else
1126 cpuctx->hrtimer_active = 0;
1127 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1128
4cfafd30 1129 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1130}
1131
272325c4 1132static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1133{
272325c4 1134 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1135 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1136 u64 interval;
9e630205
SE
1137
1138 /* no multiplexing needed for SW PMU */
1139 if (pmu->task_ctx_nr == perf_sw_context)
1140 return;
1141
62b85639
SE
1142 /*
1143 * check default is sane, if not set then force to
1144 * default interval (1/tick)
1145 */
272325c4
PZ
1146 interval = pmu->hrtimer_interval_ms;
1147 if (interval < 1)
1148 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1149
272325c4 1150 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1151
4cfafd30 1152 raw_spin_lock_init(&cpuctx->hrtimer_lock);
30f9028b 1153 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
272325c4 1154 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1155}
1156
272325c4 1157static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1158{
272325c4 1159 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1160 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1161 unsigned long flags;
9e630205
SE
1162
1163 /* not for SW PMU */
1164 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1165 return 0;
9e630205 1166
4cfafd30
PZ
1167 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1168 if (!cpuctx->hrtimer_active) {
1169 cpuctx->hrtimer_active = 1;
1170 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
30f9028b 1171 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
4cfafd30
PZ
1172 }
1173 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1174
272325c4 1175 return 0;
9e630205
SE
1176}
1177
33696fc0 1178void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1179{
33696fc0
PZ
1180 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1181 if (!(*count)++)
1182 pmu->pmu_disable(pmu);
9e35ad38 1183}
9e35ad38 1184
33696fc0 1185void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1186{
33696fc0
PZ
1187 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1188 if (!--(*count))
1189 pmu->pmu_enable(pmu);
9e35ad38 1190}
9e35ad38 1191
2fde4f94 1192static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1193
1194/*
2fde4f94
MR
1195 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1196 * perf_event_task_tick() are fully serialized because they're strictly cpu
1197 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1198 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1199 */
2fde4f94 1200static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1201{
2fde4f94 1202 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1203
16444645 1204 lockdep_assert_irqs_disabled();
b5ab4cd5 1205
2fde4f94
MR
1206 WARN_ON(!list_empty(&ctx->active_ctx_list));
1207
1208 list_add(&ctx->active_ctx_list, head);
1209}
1210
1211static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1212{
16444645 1213 lockdep_assert_irqs_disabled();
2fde4f94
MR
1214
1215 WARN_ON(list_empty(&ctx->active_ctx_list));
1216
1217 list_del_init(&ctx->active_ctx_list);
9e35ad38 1218}
9e35ad38 1219
cdd6c482 1220static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1221{
8c94abbb 1222 refcount_inc(&ctx->refcount);
a63eaf34
PM
1223}
1224
4af57ef2
YZ
1225static void free_ctx(struct rcu_head *head)
1226{
1227 struct perf_event_context *ctx;
1228
1229 ctx = container_of(head, struct perf_event_context, rcu_head);
1230 kfree(ctx->task_ctx_data);
1231 kfree(ctx);
1232}
1233
cdd6c482 1234static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1235{
8c94abbb 1236 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1237 if (ctx->parent_ctx)
1238 put_ctx(ctx->parent_ctx);
63b6da39 1239 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1240 put_task_struct(ctx->task);
4af57ef2 1241 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1242 }
a63eaf34
PM
1243}
1244
f63a8daa
PZ
1245/*
1246 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1247 * perf_pmu_migrate_context() we need some magic.
1248 *
1249 * Those places that change perf_event::ctx will hold both
1250 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1251 *
8b10c5e2
PZ
1252 * Lock ordering is by mutex address. There are two other sites where
1253 * perf_event_context::mutex nests and those are:
1254 *
1255 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1256 * perf_event_exit_event()
1257 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1258 *
1259 * - perf_event_init_context() [ parent, 0 ]
1260 * inherit_task_group()
1261 * inherit_group()
1262 * inherit_event()
1263 * perf_event_alloc()
1264 * perf_init_event()
1265 * perf_try_init_event() [ child , 1 ]
1266 *
1267 * While it appears there is an obvious deadlock here -- the parent and child
1268 * nesting levels are inverted between the two. This is in fact safe because
1269 * life-time rules separate them. That is an exiting task cannot fork, and a
1270 * spawning task cannot (yet) exit.
1271 *
1272 * But remember that that these are parent<->child context relations, and
1273 * migration does not affect children, therefore these two orderings should not
1274 * interact.
f63a8daa
PZ
1275 *
1276 * The change in perf_event::ctx does not affect children (as claimed above)
1277 * because the sys_perf_event_open() case will install a new event and break
1278 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1279 * concerned with cpuctx and that doesn't have children.
1280 *
1281 * The places that change perf_event::ctx will issue:
1282 *
1283 * perf_remove_from_context();
1284 * synchronize_rcu();
1285 * perf_install_in_context();
1286 *
1287 * to affect the change. The remove_from_context() + synchronize_rcu() should
1288 * quiesce the event, after which we can install it in the new location. This
1289 * means that only external vectors (perf_fops, prctl) can perturb the event
1290 * while in transit. Therefore all such accessors should also acquire
1291 * perf_event_context::mutex to serialize against this.
1292 *
1293 * However; because event->ctx can change while we're waiting to acquire
1294 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1295 * function.
1296 *
1297 * Lock order:
79c9ce57 1298 * cred_guard_mutex
f63a8daa
PZ
1299 * task_struct::perf_event_mutex
1300 * perf_event_context::mutex
f63a8daa 1301 * perf_event::child_mutex;
07c4a776 1302 * perf_event_context::lock
f63a8daa
PZ
1303 * perf_event::mmap_mutex
1304 * mmap_sem
18736eef 1305 * perf_addr_filters_head::lock
82d94856
PZ
1306 *
1307 * cpu_hotplug_lock
1308 * pmus_lock
1309 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1310 */
a83fe28e
PZ
1311static struct perf_event_context *
1312perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1313{
1314 struct perf_event_context *ctx;
1315
1316again:
1317 rcu_read_lock();
6aa7de05 1318 ctx = READ_ONCE(event->ctx);
8c94abbb 1319 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1320 rcu_read_unlock();
1321 goto again;
1322 }
1323 rcu_read_unlock();
1324
a83fe28e 1325 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1326 if (event->ctx != ctx) {
1327 mutex_unlock(&ctx->mutex);
1328 put_ctx(ctx);
1329 goto again;
1330 }
1331
1332 return ctx;
1333}
1334
a83fe28e
PZ
1335static inline struct perf_event_context *
1336perf_event_ctx_lock(struct perf_event *event)
1337{
1338 return perf_event_ctx_lock_nested(event, 0);
1339}
1340
f63a8daa
PZ
1341static void perf_event_ctx_unlock(struct perf_event *event,
1342 struct perf_event_context *ctx)
1343{
1344 mutex_unlock(&ctx->mutex);
1345 put_ctx(ctx);
1346}
1347
211de6eb
PZ
1348/*
1349 * This must be done under the ctx->lock, such as to serialize against
1350 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1351 * calling scheduler related locks and ctx->lock nests inside those.
1352 */
1353static __must_check struct perf_event_context *
1354unclone_ctx(struct perf_event_context *ctx)
71a851b4 1355{
211de6eb
PZ
1356 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1357
1358 lockdep_assert_held(&ctx->lock);
1359
1360 if (parent_ctx)
71a851b4 1361 ctx->parent_ctx = NULL;
5a3126d4 1362 ctx->generation++;
211de6eb
PZ
1363
1364 return parent_ctx;
71a851b4
PZ
1365}
1366
1d953111
ON
1367static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1368 enum pid_type type)
6844c09d 1369{
1d953111 1370 u32 nr;
6844c09d
ACM
1371 /*
1372 * only top level events have the pid namespace they were created in
1373 */
1374 if (event->parent)
1375 event = event->parent;
1376
1d953111
ON
1377 nr = __task_pid_nr_ns(p, type, event->ns);
1378 /* avoid -1 if it is idle thread or runs in another ns */
1379 if (!nr && !pid_alive(p))
1380 nr = -1;
1381 return nr;
6844c09d
ACM
1382}
1383
1d953111 1384static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1385{
6883f81a 1386 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1387}
6844c09d 1388
1d953111
ON
1389static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1390{
1391 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1392}
1393
7f453c24 1394/*
cdd6c482 1395 * If we inherit events we want to return the parent event id
7f453c24
PZ
1396 * to userspace.
1397 */
cdd6c482 1398static u64 primary_event_id(struct perf_event *event)
7f453c24 1399{
cdd6c482 1400 u64 id = event->id;
7f453c24 1401
cdd6c482
IM
1402 if (event->parent)
1403 id = event->parent->id;
7f453c24
PZ
1404
1405 return id;
1406}
1407
25346b93 1408/*
cdd6c482 1409 * Get the perf_event_context for a task and lock it.
63b6da39 1410 *
25346b93
PM
1411 * This has to cope with with the fact that until it is locked,
1412 * the context could get moved to another task.
1413 */
cdd6c482 1414static struct perf_event_context *
8dc85d54 1415perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1416{
cdd6c482 1417 struct perf_event_context *ctx;
25346b93 1418
9ed6060d 1419retry:
058ebd0e
PZ
1420 /*
1421 * One of the few rules of preemptible RCU is that one cannot do
1422 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1423 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1424 * rcu_read_unlock_special().
1425 *
1426 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1427 * side critical section has interrupts disabled.
058ebd0e 1428 */
2fd59077 1429 local_irq_save(*flags);
058ebd0e 1430 rcu_read_lock();
8dc85d54 1431 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1432 if (ctx) {
1433 /*
1434 * If this context is a clone of another, it might
1435 * get swapped for another underneath us by
cdd6c482 1436 * perf_event_task_sched_out, though the
25346b93
PM
1437 * rcu_read_lock() protects us from any context
1438 * getting freed. Lock the context and check if it
1439 * got swapped before we could get the lock, and retry
1440 * if so. If we locked the right context, then it
1441 * can't get swapped on us any more.
1442 */
2fd59077 1443 raw_spin_lock(&ctx->lock);
8dc85d54 1444 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1445 raw_spin_unlock(&ctx->lock);
058ebd0e 1446 rcu_read_unlock();
2fd59077 1447 local_irq_restore(*flags);
25346b93
PM
1448 goto retry;
1449 }
b49a9e7e 1450
63b6da39 1451 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1452 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1453 raw_spin_unlock(&ctx->lock);
b49a9e7e 1454 ctx = NULL;
828b6f0e
PZ
1455 } else {
1456 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1457 }
25346b93
PM
1458 }
1459 rcu_read_unlock();
2fd59077
PM
1460 if (!ctx)
1461 local_irq_restore(*flags);
25346b93
PM
1462 return ctx;
1463}
1464
1465/*
1466 * Get the context for a task and increment its pin_count so it
1467 * can't get swapped to another task. This also increments its
1468 * reference count so that the context can't get freed.
1469 */
8dc85d54
PZ
1470static struct perf_event_context *
1471perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1472{
cdd6c482 1473 struct perf_event_context *ctx;
25346b93
PM
1474 unsigned long flags;
1475
8dc85d54 1476 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1477 if (ctx) {
1478 ++ctx->pin_count;
e625cce1 1479 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1480 }
1481 return ctx;
1482}
1483
cdd6c482 1484static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1485{
1486 unsigned long flags;
1487
e625cce1 1488 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1489 --ctx->pin_count;
e625cce1 1490 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1491}
1492
f67218c3
PZ
1493/*
1494 * Update the record of the current time in a context.
1495 */
1496static void update_context_time(struct perf_event_context *ctx)
1497{
1498 u64 now = perf_clock();
1499
1500 ctx->time += now - ctx->timestamp;
1501 ctx->timestamp = now;
1502}
1503
4158755d
SE
1504static u64 perf_event_time(struct perf_event *event)
1505{
1506 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1507
1508 if (is_cgroup_event(event))
1509 return perf_cgroup_event_time(event);
1510
4158755d
SE
1511 return ctx ? ctx->time : 0;
1512}
1513
487f05e1
AS
1514static enum event_type_t get_event_type(struct perf_event *event)
1515{
1516 struct perf_event_context *ctx = event->ctx;
1517 enum event_type_t event_type;
1518
1519 lockdep_assert_held(&ctx->lock);
1520
3bda69c1
AS
1521 /*
1522 * It's 'group type', really, because if our group leader is
1523 * pinned, so are we.
1524 */
1525 if (event->group_leader != event)
1526 event = event->group_leader;
1527
487f05e1
AS
1528 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1529 if (!ctx->task)
1530 event_type |= EVENT_CPU;
1531
1532 return event_type;
1533}
1534
8e1a2031 1535/*
161c85fa 1536 * Helper function to initialize event group nodes.
8e1a2031 1537 */
161c85fa 1538static void init_event_group(struct perf_event *event)
8e1a2031
AB
1539{
1540 RB_CLEAR_NODE(&event->group_node);
1541 event->group_index = 0;
1542}
1543
1544/*
1545 * Extract pinned or flexible groups from the context
161c85fa 1546 * based on event attrs bits.
8e1a2031
AB
1547 */
1548static struct perf_event_groups *
1549get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1550{
1551 if (event->attr.pinned)
1552 return &ctx->pinned_groups;
1553 else
1554 return &ctx->flexible_groups;
1555}
1556
8e1a2031 1557/*
161c85fa 1558 * Helper function to initializes perf_event_group trees.
8e1a2031 1559 */
161c85fa 1560static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1561{
1562 groups->tree = RB_ROOT;
1563 groups->index = 0;
1564}
1565
1566/*
1567 * Compare function for event groups;
161c85fa
PZ
1568 *
1569 * Implements complex key that first sorts by CPU and then by virtual index
1570 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1571 */
161c85fa
PZ
1572static bool
1573perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1574{
161c85fa
PZ
1575 if (left->cpu < right->cpu)
1576 return true;
1577 if (left->cpu > right->cpu)
1578 return false;
1579
95ed6c70
IR
1580#ifdef CONFIG_CGROUP_PERF
1581 if (left->cgrp != right->cgrp) {
1582 if (!left->cgrp || !left->cgrp->css.cgroup) {
1583 /*
1584 * Left has no cgroup but right does, no cgroups come
1585 * first.
1586 */
1587 return true;
1588 }
a6763625 1589 if (!right->cgrp || !right->cgrp->css.cgroup) {
95ed6c70
IR
1590 /*
1591 * Right has no cgroup but left does, no cgroups come
1592 * first.
1593 */
1594 return false;
1595 }
1596 /* Two dissimilar cgroups, order by id. */
1597 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1598 return true;
1599
1600 return false;
1601 }
1602#endif
1603
161c85fa
PZ
1604 if (left->group_index < right->group_index)
1605 return true;
1606 if (left->group_index > right->group_index)
1607 return false;
1608
1609 return false;
8e1a2031
AB
1610}
1611
1612/*
161c85fa
PZ
1613 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1614 * key (see perf_event_groups_less). This places it last inside the CPU
1615 * subtree.
8e1a2031
AB
1616 */
1617static void
1618perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1619 struct perf_event *event)
8e1a2031
AB
1620{
1621 struct perf_event *node_event;
1622 struct rb_node *parent;
1623 struct rb_node **node;
1624
1625 event->group_index = ++groups->index;
1626
1627 node = &groups->tree.rb_node;
1628 parent = *node;
1629
1630 while (*node) {
1631 parent = *node;
161c85fa 1632 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1633
1634 if (perf_event_groups_less(event, node_event))
1635 node = &parent->rb_left;
1636 else
1637 node = &parent->rb_right;
1638 }
1639
1640 rb_link_node(&event->group_node, parent, node);
1641 rb_insert_color(&event->group_node, &groups->tree);
1642}
1643
1644/*
161c85fa 1645 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1646 */
1647static void
1648add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1649{
1650 struct perf_event_groups *groups;
1651
1652 groups = get_event_groups(event, ctx);
1653 perf_event_groups_insert(groups, event);
1654}
1655
1656/*
161c85fa 1657 * Delete a group from a tree.
8e1a2031
AB
1658 */
1659static void
1660perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1661 struct perf_event *event)
8e1a2031 1662{
161c85fa
PZ
1663 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1664 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1665
161c85fa 1666 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1667 init_event_group(event);
1668}
1669
1670/*
161c85fa 1671 * Helper function to delete event from its groups.
8e1a2031
AB
1672 */
1673static void
1674del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1675{
1676 struct perf_event_groups *groups;
1677
1678 groups = get_event_groups(event, ctx);
1679 perf_event_groups_delete(groups, event);
1680}
1681
1682/*
95ed6c70 1683 * Get the leftmost event in the cpu/cgroup subtree.
8e1a2031
AB
1684 */
1685static struct perf_event *
95ed6c70
IR
1686perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1687 struct cgroup *cgrp)
8e1a2031
AB
1688{
1689 struct perf_event *node_event = NULL, *match = NULL;
1690 struct rb_node *node = groups->tree.rb_node;
95ed6c70
IR
1691#ifdef CONFIG_CGROUP_PERF
1692 u64 node_cgrp_id, cgrp_id = 0;
1693
1694 if (cgrp)
1695 cgrp_id = cgrp->kn->id;
1696#endif
8e1a2031
AB
1697
1698 while (node) {
161c85fa 1699 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1700
1701 if (cpu < node_event->cpu) {
1702 node = node->rb_left;
95ed6c70
IR
1703 continue;
1704 }
1705 if (cpu > node_event->cpu) {
8e1a2031 1706 node = node->rb_right;
95ed6c70
IR
1707 continue;
1708 }
1709#ifdef CONFIG_CGROUP_PERF
1710 node_cgrp_id = 0;
1711 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1712 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1713
1714 if (cgrp_id < node_cgrp_id) {
8e1a2031 1715 node = node->rb_left;
95ed6c70
IR
1716 continue;
1717 }
1718 if (cgrp_id > node_cgrp_id) {
1719 node = node->rb_right;
1720 continue;
8e1a2031 1721 }
95ed6c70
IR
1722#endif
1723 match = node_event;
1724 node = node->rb_left;
8e1a2031
AB
1725 }
1726
1727 return match;
1728}
1729
1cac7b1a
PZ
1730/*
1731 * Like rb_entry_next_safe() for the @cpu subtree.
1732 */
1733static struct perf_event *
1734perf_event_groups_next(struct perf_event *event)
1735{
1736 struct perf_event *next;
95ed6c70
IR
1737#ifdef CONFIG_CGROUP_PERF
1738 u64 curr_cgrp_id = 0;
1739 u64 next_cgrp_id = 0;
1740#endif
1cac7b1a
PZ
1741
1742 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
95ed6c70
IR
1743 if (next == NULL || next->cpu != event->cpu)
1744 return NULL;
1745
1746#ifdef CONFIG_CGROUP_PERF
1747 if (event->cgrp && event->cgrp->css.cgroup)
1748 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1cac7b1a 1749
95ed6c70
IR
1750 if (next->cgrp && next->cgrp->css.cgroup)
1751 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1752
1753 if (curr_cgrp_id != next_cgrp_id)
1754 return NULL;
1755#endif
1756 return next;
1cac7b1a
PZ
1757}
1758
8e1a2031 1759/*
161c85fa 1760 * Iterate through the whole groups tree.
8e1a2031 1761 */
6e6804d2
PZ
1762#define perf_event_groups_for_each(event, groups) \
1763 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1764 typeof(*event), group_node); event; \
1765 event = rb_entry_safe(rb_next(&event->group_node), \
1766 typeof(*event), group_node))
8e1a2031 1767
fccc714b 1768/*
788faab7 1769 * Add an event from the lists for its context.
fccc714b
PZ
1770 * Must be called with ctx->mutex and ctx->lock held.
1771 */
04289bb9 1772static void
cdd6c482 1773list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1774{
c994d613
PZ
1775 lockdep_assert_held(&ctx->lock);
1776
8a49542c
PZ
1777 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1778 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1779
0d3d73aa
PZ
1780 event->tstamp = perf_event_time(event);
1781
04289bb9 1782 /*
8a49542c
PZ
1783 * If we're a stand alone event or group leader, we go to the context
1784 * list, group events are kept attached to the group so that
1785 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1786 */
8a49542c 1787 if (event->group_leader == event) {
4ff6a8de 1788 event->group_caps = event->event_caps;
8e1a2031 1789 add_event_to_groups(event, ctx);
5c148194 1790 }
592903cd 1791
db4a8356 1792 list_update_cgroup_event(event, ctx, true);
e5d1367f 1793
cdd6c482
IM
1794 list_add_rcu(&event->event_entry, &ctx->event_list);
1795 ctx->nr_events++;
1796 if (event->attr.inherit_stat)
bfbd3381 1797 ctx->nr_stat++;
5a3126d4
PZ
1798
1799 ctx->generation++;
04289bb9
IM
1800}
1801
0231bb53
JO
1802/*
1803 * Initialize event state based on the perf_event_attr::disabled.
1804 */
1805static inline void perf_event__state_init(struct perf_event *event)
1806{
1807 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1808 PERF_EVENT_STATE_INACTIVE;
1809}
1810
a723968c 1811static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1812{
1813 int entry = sizeof(u64); /* value */
1814 int size = 0;
1815 int nr = 1;
1816
1817 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1818 size += sizeof(u64);
1819
1820 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1821 size += sizeof(u64);
1822
1823 if (event->attr.read_format & PERF_FORMAT_ID)
1824 entry += sizeof(u64);
1825
1826 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1827 nr += nr_siblings;
c320c7b7
ACM
1828 size += sizeof(u64);
1829 }
1830
1831 size += entry * nr;
1832 event->read_size = size;
1833}
1834
a723968c 1835static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1836{
1837 struct perf_sample_data *data;
c320c7b7
ACM
1838 u16 size = 0;
1839
c320c7b7
ACM
1840 if (sample_type & PERF_SAMPLE_IP)
1841 size += sizeof(data->ip);
1842
6844c09d
ACM
1843 if (sample_type & PERF_SAMPLE_ADDR)
1844 size += sizeof(data->addr);
1845
1846 if (sample_type & PERF_SAMPLE_PERIOD)
1847 size += sizeof(data->period);
1848
c3feedf2
AK
1849 if (sample_type & PERF_SAMPLE_WEIGHT)
1850 size += sizeof(data->weight);
1851
6844c09d
ACM
1852 if (sample_type & PERF_SAMPLE_READ)
1853 size += event->read_size;
1854
d6be9ad6
SE
1855 if (sample_type & PERF_SAMPLE_DATA_SRC)
1856 size += sizeof(data->data_src.val);
1857
fdfbbd07
AK
1858 if (sample_type & PERF_SAMPLE_TRANSACTION)
1859 size += sizeof(data->txn);
1860
fc7ce9c7
KL
1861 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1862 size += sizeof(data->phys_addr);
1863
6844c09d
ACM
1864 event->header_size = size;
1865}
1866
a723968c
PZ
1867/*
1868 * Called at perf_event creation and when events are attached/detached from a
1869 * group.
1870 */
1871static void perf_event__header_size(struct perf_event *event)
1872{
1873 __perf_event_read_size(event,
1874 event->group_leader->nr_siblings);
1875 __perf_event_header_size(event, event->attr.sample_type);
1876}
1877
6844c09d
ACM
1878static void perf_event__id_header_size(struct perf_event *event)
1879{
1880 struct perf_sample_data *data;
1881 u64 sample_type = event->attr.sample_type;
1882 u16 size = 0;
1883
c320c7b7
ACM
1884 if (sample_type & PERF_SAMPLE_TID)
1885 size += sizeof(data->tid_entry);
1886
1887 if (sample_type & PERF_SAMPLE_TIME)
1888 size += sizeof(data->time);
1889
ff3d527c
AH
1890 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1891 size += sizeof(data->id);
1892
c320c7b7
ACM
1893 if (sample_type & PERF_SAMPLE_ID)
1894 size += sizeof(data->id);
1895
1896 if (sample_type & PERF_SAMPLE_STREAM_ID)
1897 size += sizeof(data->stream_id);
1898
1899 if (sample_type & PERF_SAMPLE_CPU)
1900 size += sizeof(data->cpu_entry);
1901
6844c09d 1902 event->id_header_size = size;
c320c7b7
ACM
1903}
1904
a723968c
PZ
1905static bool perf_event_validate_size(struct perf_event *event)
1906{
1907 /*
1908 * The values computed here will be over-written when we actually
1909 * attach the event.
1910 */
1911 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1912 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1913 perf_event__id_header_size(event);
1914
1915 /*
1916 * Sum the lot; should not exceed the 64k limit we have on records.
1917 * Conservative limit to allow for callchains and other variable fields.
1918 */
1919 if (event->read_size + event->header_size +
1920 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1921 return false;
1922
1923 return true;
1924}
1925
8a49542c
PZ
1926static void perf_group_attach(struct perf_event *event)
1927{
c320c7b7 1928 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1929
a76a82a3
PZ
1930 lockdep_assert_held(&event->ctx->lock);
1931
74c3337c
PZ
1932 /*
1933 * We can have double attach due to group movement in perf_event_open.
1934 */
1935 if (event->attach_state & PERF_ATTACH_GROUP)
1936 return;
1937
8a49542c
PZ
1938 event->attach_state |= PERF_ATTACH_GROUP;
1939
1940 if (group_leader == event)
1941 return;
1942
652884fe
PZ
1943 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1944
4ff6a8de 1945 group_leader->group_caps &= event->event_caps;
8a49542c 1946
8343aae6 1947 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1948 group_leader->nr_siblings++;
c320c7b7
ACM
1949
1950 perf_event__header_size(group_leader);
1951
edb39592 1952 for_each_sibling_event(pos, group_leader)
c320c7b7 1953 perf_event__header_size(pos);
8a49542c
PZ
1954}
1955
a63eaf34 1956/*
788faab7 1957 * Remove an event from the lists for its context.
fccc714b 1958 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1959 */
04289bb9 1960static void
cdd6c482 1961list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1962{
652884fe
PZ
1963 WARN_ON_ONCE(event->ctx != ctx);
1964 lockdep_assert_held(&ctx->lock);
1965
8a49542c
PZ
1966 /*
1967 * We can have double detach due to exit/hot-unplug + close.
1968 */
1969 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1970 return;
8a49542c
PZ
1971
1972 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1973
db4a8356 1974 list_update_cgroup_event(event, ctx, false);
e5d1367f 1975
cdd6c482
IM
1976 ctx->nr_events--;
1977 if (event->attr.inherit_stat)
bfbd3381 1978 ctx->nr_stat--;
8bc20959 1979
cdd6c482 1980 list_del_rcu(&event->event_entry);
04289bb9 1981
8a49542c 1982 if (event->group_leader == event)
8e1a2031 1983 del_event_from_groups(event, ctx);
5c148194 1984
b2e74a26
SE
1985 /*
1986 * If event was in error state, then keep it
1987 * that way, otherwise bogus counts will be
1988 * returned on read(). The only way to get out
1989 * of error state is by explicit re-enabling
1990 * of the event
1991 */
1992 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1993 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1994
1995 ctx->generation++;
050735b0
PZ
1996}
1997
ab43762e
AS
1998static int
1999perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2000{
2001 if (!has_aux(aux_event))
2002 return 0;
2003
2004 if (!event->pmu->aux_output_match)
2005 return 0;
2006
2007 return event->pmu->aux_output_match(aux_event);
2008}
2009
2010static void put_event(struct perf_event *event);
2011static void event_sched_out(struct perf_event *event,
2012 struct perf_cpu_context *cpuctx,
2013 struct perf_event_context *ctx);
2014
2015static void perf_put_aux_event(struct perf_event *event)
2016{
2017 struct perf_event_context *ctx = event->ctx;
2018 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2019 struct perf_event *iter;
2020
2021 /*
2022 * If event uses aux_event tear down the link
2023 */
2024 if (event->aux_event) {
2025 iter = event->aux_event;
2026 event->aux_event = NULL;
2027 put_event(iter);
2028 return;
2029 }
2030
2031 /*
2032 * If the event is an aux_event, tear down all links to
2033 * it from other events.
2034 */
2035 for_each_sibling_event(iter, event->group_leader) {
2036 if (iter->aux_event != event)
2037 continue;
2038
2039 iter->aux_event = NULL;
2040 put_event(event);
2041
2042 /*
2043 * If it's ACTIVE, schedule it out and put it into ERROR
2044 * state so that we don't try to schedule it again. Note
2045 * that perf_event_enable() will clear the ERROR status.
2046 */
2047 event_sched_out(iter, cpuctx, ctx);
2048 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2049 }
2050}
2051
a4faf00d
AS
2052static bool perf_need_aux_event(struct perf_event *event)
2053{
2054 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2055}
2056
ab43762e
AS
2057static int perf_get_aux_event(struct perf_event *event,
2058 struct perf_event *group_leader)
2059{
2060 /*
2061 * Our group leader must be an aux event if we want to be
2062 * an aux_output. This way, the aux event will precede its
2063 * aux_output events in the group, and therefore will always
2064 * schedule first.
2065 */
2066 if (!group_leader)
2067 return 0;
2068
a4faf00d
AS
2069 /*
2070 * aux_output and aux_sample_size are mutually exclusive.
2071 */
2072 if (event->attr.aux_output && event->attr.aux_sample_size)
2073 return 0;
2074
2075 if (event->attr.aux_output &&
2076 !perf_aux_output_match(event, group_leader))
2077 return 0;
2078
2079 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
ab43762e
AS
2080 return 0;
2081
2082 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2083 return 0;
2084
2085 /*
2086 * Link aux_outputs to their aux event; this is undone in
2087 * perf_group_detach() by perf_put_aux_event(). When the
2088 * group in torn down, the aux_output events loose their
2089 * link to the aux_event and can't schedule any more.
2090 */
2091 event->aux_event = group_leader;
2092
2093 return 1;
2094}
2095
ab6f824c
PZ
2096static inline struct list_head *get_event_list(struct perf_event *event)
2097{
2098 struct perf_event_context *ctx = event->ctx;
2099 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2100}
2101
8a49542c 2102static void perf_group_detach(struct perf_event *event)
050735b0
PZ
2103{
2104 struct perf_event *sibling, *tmp;
6668128a 2105 struct perf_event_context *ctx = event->ctx;
8a49542c 2106
6668128a 2107 lockdep_assert_held(&ctx->lock);
a76a82a3 2108
8a49542c
PZ
2109 /*
2110 * We can have double detach due to exit/hot-unplug + close.
2111 */
2112 if (!(event->attach_state & PERF_ATTACH_GROUP))
2113 return;
2114
2115 event->attach_state &= ~PERF_ATTACH_GROUP;
2116
ab43762e
AS
2117 perf_put_aux_event(event);
2118
8a49542c
PZ
2119 /*
2120 * If this is a sibling, remove it from its group.
2121 */
2122 if (event->group_leader != event) {
8343aae6 2123 list_del_init(&event->sibling_list);
8a49542c 2124 event->group_leader->nr_siblings--;
c320c7b7 2125 goto out;
8a49542c
PZ
2126 }
2127
04289bb9 2128 /*
cdd6c482
IM
2129 * If this was a group event with sibling events then
2130 * upgrade the siblings to singleton events by adding them
8a49542c 2131 * to whatever list we are on.
04289bb9 2132 */
8343aae6 2133 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 2134
04289bb9 2135 sibling->group_leader = sibling;
24868367 2136 list_del_init(&sibling->sibling_list);
d6f962b5
FW
2137
2138 /* Inherit group flags from the previous leader */
4ff6a8de 2139 sibling->group_caps = event->group_caps;
652884fe 2140
8e1a2031 2141 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 2142 add_event_to_groups(sibling, event->ctx);
6668128a 2143
ab6f824c
PZ
2144 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2145 list_add_tail(&sibling->active_list, get_event_list(sibling));
8e1a2031
AB
2146 }
2147
652884fe 2148 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 2149 }
c320c7b7
ACM
2150
2151out:
2152 perf_event__header_size(event->group_leader);
2153
edb39592 2154 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 2155 perf_event__header_size(tmp);
04289bb9
IM
2156}
2157
fadfe7be
JO
2158static bool is_orphaned_event(struct perf_event *event)
2159{
a69b0ca4 2160 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
2161}
2162
2c81a647 2163static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
2164{
2165 struct pmu *pmu = event->pmu;
2166 return pmu->filter_match ? pmu->filter_match(event) : 1;
2167}
2168
2c81a647
MR
2169/*
2170 * Check whether we should attempt to schedule an event group based on
2171 * PMU-specific filtering. An event group can consist of HW and SW events,
2172 * potentially with a SW leader, so we must check all the filters, to
2173 * determine whether a group is schedulable:
2174 */
2175static inline int pmu_filter_match(struct perf_event *event)
2176{
edb39592 2177 struct perf_event *sibling;
2c81a647
MR
2178
2179 if (!__pmu_filter_match(event))
2180 return 0;
2181
edb39592
PZ
2182 for_each_sibling_event(sibling, event) {
2183 if (!__pmu_filter_match(sibling))
2c81a647
MR
2184 return 0;
2185 }
2186
2187 return 1;
2188}
2189
fa66f07a
SE
2190static inline int
2191event_filter_match(struct perf_event *event)
2192{
0b8f1e2e
PZ
2193 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2194 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
2195}
2196
9ffcfa6f
SE
2197static void
2198event_sched_out(struct perf_event *event,
3b6f9e5c 2199 struct perf_cpu_context *cpuctx,
cdd6c482 2200 struct perf_event_context *ctx)
3b6f9e5c 2201{
0d3d73aa 2202 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
2203
2204 WARN_ON_ONCE(event->ctx != ctx);
2205 lockdep_assert_held(&ctx->lock);
2206
cdd6c482 2207 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 2208 return;
3b6f9e5c 2209
6668128a
PZ
2210 /*
2211 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2212 * we can schedule events _OUT_ individually through things like
2213 * __perf_remove_from_context().
2214 */
2215 list_del_init(&event->active_list);
2216
44377277
AS
2217 perf_pmu_disable(event->pmu);
2218
28a967c3
PZ
2219 event->pmu->del(event, 0);
2220 event->oncpu = -1;
0d3d73aa 2221
1d54ad94
PZ
2222 if (READ_ONCE(event->pending_disable) >= 0) {
2223 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2224 state = PERF_EVENT_STATE_OFF;
970892a9 2225 }
0d3d73aa 2226 perf_event_set_state(event, state);
3b6f9e5c 2227
cdd6c482 2228 if (!is_software_event(event))
3b6f9e5c 2229 cpuctx->active_oncpu--;
2fde4f94
MR
2230 if (!--ctx->nr_active)
2231 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2232 if (event->attr.freq && event->attr.sample_freq)
2233 ctx->nr_freq--;
cdd6c482 2234 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2235 cpuctx->exclusive = 0;
44377277
AS
2236
2237 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2238}
2239
d859e29f 2240static void
cdd6c482 2241group_sched_out(struct perf_event *group_event,
d859e29f 2242 struct perf_cpu_context *cpuctx,
cdd6c482 2243 struct perf_event_context *ctx)
d859e29f 2244{
cdd6c482 2245 struct perf_event *event;
0d3d73aa
PZ
2246
2247 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2248 return;
d859e29f 2249
3f005e7d
MR
2250 perf_pmu_disable(ctx->pmu);
2251
cdd6c482 2252 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2253
2254 /*
2255 * Schedule out siblings (if any):
2256 */
edb39592 2257 for_each_sibling_event(event, group_event)
cdd6c482 2258 event_sched_out(event, cpuctx, ctx);
d859e29f 2259
3f005e7d
MR
2260 perf_pmu_enable(ctx->pmu);
2261
0d3d73aa 2262 if (group_event->attr.exclusive)
d859e29f
PM
2263 cpuctx->exclusive = 0;
2264}
2265
45a0e07a 2266#define DETACH_GROUP 0x01UL
0017960f 2267
0793a61d 2268/*
cdd6c482 2269 * Cross CPU call to remove a performance event
0793a61d 2270 *
cdd6c482 2271 * We disable the event on the hardware level first. After that we
0793a61d
TG
2272 * remove it from the context list.
2273 */
fae3fde6
PZ
2274static void
2275__perf_remove_from_context(struct perf_event *event,
2276 struct perf_cpu_context *cpuctx,
2277 struct perf_event_context *ctx,
2278 void *info)
0793a61d 2279{
45a0e07a 2280 unsigned long flags = (unsigned long)info;
0793a61d 2281
3c5c8711
PZ
2282 if (ctx->is_active & EVENT_TIME) {
2283 update_context_time(ctx);
2284 update_cgrp_time_from_cpuctx(cpuctx);
2285 }
2286
cdd6c482 2287 event_sched_out(event, cpuctx, ctx);
45a0e07a 2288 if (flags & DETACH_GROUP)
46ce0fe9 2289 perf_group_detach(event);
cdd6c482 2290 list_del_event(event, ctx);
39a43640
PZ
2291
2292 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2293 ctx->is_active = 0;
90c91dfb 2294 ctx->rotate_necessary = 0;
39a43640
PZ
2295 if (ctx->task) {
2296 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2297 cpuctx->task_ctx = NULL;
2298 }
64ce3126 2299 }
0793a61d
TG
2300}
2301
0793a61d 2302/*
cdd6c482 2303 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2304 *
cdd6c482
IM
2305 * If event->ctx is a cloned context, callers must make sure that
2306 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2307 * remains valid. This is OK when called from perf_release since
2308 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2309 * When called from perf_event_exit_task, it's OK because the
c93f7669 2310 * context has been detached from its task.
0793a61d 2311 */
45a0e07a 2312static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2313{
a76a82a3
PZ
2314 struct perf_event_context *ctx = event->ctx;
2315
2316 lockdep_assert_held(&ctx->mutex);
0793a61d 2317
45a0e07a 2318 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2319
2320 /*
2321 * The above event_function_call() can NO-OP when it hits
2322 * TASK_TOMBSTONE. In that case we must already have been detached
2323 * from the context (by perf_event_exit_event()) but the grouping
2324 * might still be in-tact.
2325 */
2326 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2327 if ((flags & DETACH_GROUP) &&
2328 (event->attach_state & PERF_ATTACH_GROUP)) {
2329 /*
2330 * Since in that case we cannot possibly be scheduled, simply
2331 * detach now.
2332 */
2333 raw_spin_lock_irq(&ctx->lock);
2334 perf_group_detach(event);
2335 raw_spin_unlock_irq(&ctx->lock);
2336 }
0793a61d
TG
2337}
2338
d859e29f 2339/*
cdd6c482 2340 * Cross CPU call to disable a performance event
d859e29f 2341 */
fae3fde6
PZ
2342static void __perf_event_disable(struct perf_event *event,
2343 struct perf_cpu_context *cpuctx,
2344 struct perf_event_context *ctx,
2345 void *info)
7b648018 2346{
fae3fde6
PZ
2347 if (event->state < PERF_EVENT_STATE_INACTIVE)
2348 return;
7b648018 2349
3c5c8711
PZ
2350 if (ctx->is_active & EVENT_TIME) {
2351 update_context_time(ctx);
2352 update_cgrp_time_from_event(event);
2353 }
2354
fae3fde6
PZ
2355 if (event == event->group_leader)
2356 group_sched_out(event, cpuctx, ctx);
2357 else
2358 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2359
2360 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2361}
2362
d859e29f 2363/*
788faab7 2364 * Disable an event.
c93f7669 2365 *
cdd6c482
IM
2366 * If event->ctx is a cloned context, callers must make sure that
2367 * every task struct that event->ctx->task could possibly point to
9f014e3a 2368 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2369 * perf_event_for_each_child or perf_event_for_each because they
2370 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2371 * goes to exit will block in perf_event_exit_event().
2372 *
cdd6c482 2373 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2374 * is the current context on this CPU and preemption is disabled,
cdd6c482 2375 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2376 */
f63a8daa 2377static void _perf_event_disable(struct perf_event *event)
d859e29f 2378{
cdd6c482 2379 struct perf_event_context *ctx = event->ctx;
d859e29f 2380
e625cce1 2381 raw_spin_lock_irq(&ctx->lock);
7b648018 2382 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2383 raw_spin_unlock_irq(&ctx->lock);
7b648018 2384 return;
53cfbf59 2385 }
e625cce1 2386 raw_spin_unlock_irq(&ctx->lock);
7b648018 2387
fae3fde6
PZ
2388 event_function_call(event, __perf_event_disable, NULL);
2389}
2390
2391void perf_event_disable_local(struct perf_event *event)
2392{
2393 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2394}
f63a8daa
PZ
2395
2396/*
2397 * Strictly speaking kernel users cannot create groups and therefore this
2398 * interface does not need the perf_event_ctx_lock() magic.
2399 */
2400void perf_event_disable(struct perf_event *event)
2401{
2402 struct perf_event_context *ctx;
2403
2404 ctx = perf_event_ctx_lock(event);
2405 _perf_event_disable(event);
2406 perf_event_ctx_unlock(event, ctx);
2407}
dcfce4a0 2408EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2409
5aab90ce
JO
2410void perf_event_disable_inatomic(struct perf_event *event)
2411{
1d54ad94
PZ
2412 WRITE_ONCE(event->pending_disable, smp_processor_id());
2413 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2414 irq_work_queue(&event->pending);
2415}
2416
e5d1367f 2417static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2418 struct perf_event_context *ctx)
e5d1367f
SE
2419{
2420 /*
2421 * use the correct time source for the time snapshot
2422 *
2423 * We could get by without this by leveraging the
2424 * fact that to get to this function, the caller
2425 * has most likely already called update_context_time()
2426 * and update_cgrp_time_xx() and thus both timestamp
2427 * are identical (or very close). Given that tstamp is,
2428 * already adjusted for cgroup, we could say that:
2429 * tstamp - ctx->timestamp
2430 * is equivalent to
2431 * tstamp - cgrp->timestamp.
2432 *
2433 * Then, in perf_output_read(), the calculation would
2434 * work with no changes because:
2435 * - event is guaranteed scheduled in
2436 * - no scheduled out in between
2437 * - thus the timestamp would be the same
2438 *
2439 * But this is a bit hairy.
2440 *
2441 * So instead, we have an explicit cgroup call to remain
2442 * within the time time source all along. We believe it
2443 * is cleaner and simpler to understand.
2444 */
2445 if (is_cgroup_event(event))
0d3d73aa 2446 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2447 else
0d3d73aa 2448 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2449}
2450
4fe757dd
PZ
2451#define MAX_INTERRUPTS (~0ULL)
2452
2453static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2454static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2455
235c7fc7 2456static int
9ffcfa6f 2457event_sched_in(struct perf_event *event,
235c7fc7 2458 struct perf_cpu_context *cpuctx,
6e37738a 2459 struct perf_event_context *ctx)
235c7fc7 2460{
44377277 2461 int ret = 0;
4158755d 2462
ab6f824c
PZ
2463 WARN_ON_ONCE(event->ctx != ctx);
2464
63342411
PZ
2465 lockdep_assert_held(&ctx->lock);
2466
cdd6c482 2467 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2468 return 0;
2469
95ff4ca2
AS
2470 WRITE_ONCE(event->oncpu, smp_processor_id());
2471 /*
0c1cbc18
PZ
2472 * Order event::oncpu write to happen before the ACTIVE state is
2473 * visible. This allows perf_event_{stop,read}() to observe the correct
2474 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2475 */
2476 smp_wmb();
0d3d73aa 2477 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2478
2479 /*
2480 * Unthrottle events, since we scheduled we might have missed several
2481 * ticks already, also for a heavily scheduling task there is little
2482 * guarantee it'll get a tick in a timely manner.
2483 */
2484 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2485 perf_log_throttle(event, 1);
2486 event->hw.interrupts = 0;
2487 }
2488
44377277
AS
2489 perf_pmu_disable(event->pmu);
2490
0d3d73aa 2491 perf_set_shadow_time(event, ctx);
72f669c0 2492
ec0d7729
AS
2493 perf_log_itrace_start(event);
2494
a4eaf7f1 2495 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2496 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2497 event->oncpu = -1;
44377277
AS
2498 ret = -EAGAIN;
2499 goto out;
235c7fc7
IM
2500 }
2501
cdd6c482 2502 if (!is_software_event(event))
3b6f9e5c 2503 cpuctx->active_oncpu++;
2fde4f94
MR
2504 if (!ctx->nr_active++)
2505 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2506 if (event->attr.freq && event->attr.sample_freq)
2507 ctx->nr_freq++;
235c7fc7 2508
cdd6c482 2509 if (event->attr.exclusive)
3b6f9e5c
PM
2510 cpuctx->exclusive = 1;
2511
44377277
AS
2512out:
2513 perf_pmu_enable(event->pmu);
2514
2515 return ret;
235c7fc7
IM
2516}
2517
6751b71e 2518static int
cdd6c482 2519group_sched_in(struct perf_event *group_event,
6751b71e 2520 struct perf_cpu_context *cpuctx,
6e37738a 2521 struct perf_event_context *ctx)
6751b71e 2522{
6bde9b6c 2523 struct perf_event *event, *partial_group = NULL;
4a234593 2524 struct pmu *pmu = ctx->pmu;
6751b71e 2525
cdd6c482 2526 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2527 return 0;
2528
fbbe0701 2529 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2530
9ffcfa6f 2531 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2532 pmu->cancel_txn(pmu);
272325c4 2533 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2534 return -EAGAIN;
90151c35 2535 }
6751b71e
PM
2536
2537 /*
2538 * Schedule in siblings as one group (if any):
2539 */
edb39592 2540 for_each_sibling_event(event, group_event) {
9ffcfa6f 2541 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2542 partial_group = event;
6751b71e
PM
2543 goto group_error;
2544 }
2545 }
2546
9ffcfa6f 2547 if (!pmu->commit_txn(pmu))
6e85158c 2548 return 0;
9ffcfa6f 2549
6751b71e
PM
2550group_error:
2551 /*
2552 * Groups can be scheduled in as one unit only, so undo any
2553 * partial group before returning:
0d3d73aa 2554 * The events up to the failed event are scheduled out normally.
6751b71e 2555 */
edb39592 2556 for_each_sibling_event(event, group_event) {
cdd6c482 2557 if (event == partial_group)
0d3d73aa 2558 break;
d7842da4 2559
0d3d73aa 2560 event_sched_out(event, cpuctx, ctx);
6751b71e 2561 }
9ffcfa6f 2562 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2563
ad5133b7 2564 pmu->cancel_txn(pmu);
90151c35 2565
272325c4 2566 perf_mux_hrtimer_restart(cpuctx);
9e630205 2567
6751b71e
PM
2568 return -EAGAIN;
2569}
2570
3b6f9e5c 2571/*
cdd6c482 2572 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2573 */
cdd6c482 2574static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2575 struct perf_cpu_context *cpuctx,
2576 int can_add_hw)
2577{
2578 /*
cdd6c482 2579 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2580 */
4ff6a8de 2581 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2582 return 1;
2583 /*
2584 * If an exclusive group is already on, no other hardware
cdd6c482 2585 * events can go on.
3b6f9e5c
PM
2586 */
2587 if (cpuctx->exclusive)
2588 return 0;
2589 /*
2590 * If this group is exclusive and there are already
cdd6c482 2591 * events on the CPU, it can't go on.
3b6f9e5c 2592 */
cdd6c482 2593 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2594 return 0;
2595 /*
2596 * Otherwise, try to add it if all previous groups were able
2597 * to go on.
2598 */
2599 return can_add_hw;
2600}
2601
cdd6c482
IM
2602static void add_event_to_ctx(struct perf_event *event,
2603 struct perf_event_context *ctx)
53cfbf59 2604{
cdd6c482 2605 list_add_event(event, ctx);
8a49542c 2606 perf_group_attach(event);
53cfbf59
PM
2607}
2608
bd2afa49
PZ
2609static void ctx_sched_out(struct perf_event_context *ctx,
2610 struct perf_cpu_context *cpuctx,
2611 enum event_type_t event_type);
2c29ef0f
PZ
2612static void
2613ctx_sched_in(struct perf_event_context *ctx,
2614 struct perf_cpu_context *cpuctx,
2615 enum event_type_t event_type,
2616 struct task_struct *task);
fe4b04fa 2617
bd2afa49 2618static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2619 struct perf_event_context *ctx,
2620 enum event_type_t event_type)
bd2afa49
PZ
2621{
2622 if (!cpuctx->task_ctx)
2623 return;
2624
2625 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2626 return;
2627
487f05e1 2628 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2629}
2630
dce5855b
PZ
2631static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2632 struct perf_event_context *ctx,
2633 struct task_struct *task)
2634{
2635 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2636 if (ctx)
2637 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2638 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2639 if (ctx)
2640 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2641}
2642
487f05e1
AS
2643/*
2644 * We want to maintain the following priority of scheduling:
2645 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2646 * - task pinned (EVENT_PINNED)
2647 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2648 * - task flexible (EVENT_FLEXIBLE).
2649 *
2650 * In order to avoid unscheduling and scheduling back in everything every
2651 * time an event is added, only do it for the groups of equal priority and
2652 * below.
2653 *
2654 * This can be called after a batch operation on task events, in which case
2655 * event_type is a bit mask of the types of events involved. For CPU events,
2656 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2657 */
3e349507 2658static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2659 struct perf_event_context *task_ctx,
2660 enum event_type_t event_type)
0017960f 2661{
bd903afe 2662 enum event_type_t ctx_event_type;
487f05e1
AS
2663 bool cpu_event = !!(event_type & EVENT_CPU);
2664
2665 /*
2666 * If pinned groups are involved, flexible groups also need to be
2667 * scheduled out.
2668 */
2669 if (event_type & EVENT_PINNED)
2670 event_type |= EVENT_FLEXIBLE;
2671
bd903afe
SL
2672 ctx_event_type = event_type & EVENT_ALL;
2673
3e349507
PZ
2674 perf_pmu_disable(cpuctx->ctx.pmu);
2675 if (task_ctx)
487f05e1
AS
2676 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2677
2678 /*
2679 * Decide which cpu ctx groups to schedule out based on the types
2680 * of events that caused rescheduling:
2681 * - EVENT_CPU: schedule out corresponding groups;
2682 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2683 * - otherwise, do nothing more.
2684 */
2685 if (cpu_event)
2686 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2687 else if (ctx_event_type & EVENT_PINNED)
2688 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2689
3e349507
PZ
2690 perf_event_sched_in(cpuctx, task_ctx, current);
2691 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2692}
2693
c68d224e
SE
2694void perf_pmu_resched(struct pmu *pmu)
2695{
2696 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2697 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2698
2699 perf_ctx_lock(cpuctx, task_ctx);
2700 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2701 perf_ctx_unlock(cpuctx, task_ctx);
2702}
2703
0793a61d 2704/*
cdd6c482 2705 * Cross CPU call to install and enable a performance event
682076ae 2706 *
a096309b
PZ
2707 * Very similar to remote_function() + event_function() but cannot assume that
2708 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2709 */
fe4b04fa 2710static int __perf_install_in_context(void *info)
0793a61d 2711{
a096309b
PZ
2712 struct perf_event *event = info;
2713 struct perf_event_context *ctx = event->ctx;
108b02cf 2714 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2715 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2716 bool reprogram = true;
a096309b 2717 int ret = 0;
0793a61d 2718
63b6da39 2719 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2720 if (ctx->task) {
b58f6b0d
PZ
2721 raw_spin_lock(&ctx->lock);
2722 task_ctx = ctx;
a096309b 2723
63cae12b 2724 reprogram = (ctx->task == current);
b58f6b0d 2725
39a43640 2726 /*
63cae12b
PZ
2727 * If the task is running, it must be running on this CPU,
2728 * otherwise we cannot reprogram things.
2729 *
2730 * If its not running, we don't care, ctx->lock will
2731 * serialize against it becoming runnable.
39a43640 2732 */
63cae12b
PZ
2733 if (task_curr(ctx->task) && !reprogram) {
2734 ret = -ESRCH;
2735 goto unlock;
2736 }
a096309b 2737
63cae12b 2738 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2739 } else if (task_ctx) {
2740 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2741 }
b58f6b0d 2742
33801b94 2743#ifdef CONFIG_CGROUP_PERF
2744 if (is_cgroup_event(event)) {
2745 /*
2746 * If the current cgroup doesn't match the event's
2747 * cgroup, we should not try to schedule it.
2748 */
2749 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2750 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2751 event->cgrp->css.cgroup);
2752 }
2753#endif
2754
63cae12b 2755 if (reprogram) {
a096309b
PZ
2756 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2757 add_event_to_ctx(event, ctx);
487f05e1 2758 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2759 } else {
2760 add_event_to_ctx(event, ctx);
2761 }
2762
63b6da39 2763unlock:
2c29ef0f 2764 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2765
a096309b 2766 return ret;
0793a61d
TG
2767}
2768
8a58ddae
AS
2769static bool exclusive_event_installable(struct perf_event *event,
2770 struct perf_event_context *ctx);
2771
0793a61d 2772/*
a096309b
PZ
2773 * Attach a performance event to a context.
2774 *
2775 * Very similar to event_function_call, see comment there.
0793a61d
TG
2776 */
2777static void
cdd6c482
IM
2778perf_install_in_context(struct perf_event_context *ctx,
2779 struct perf_event *event,
0793a61d
TG
2780 int cpu)
2781{
a096309b 2782 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2783
fe4b04fa
PZ
2784 lockdep_assert_held(&ctx->mutex);
2785
8a58ddae
AS
2786 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2787
0cda4c02
YZ
2788 if (event->cpu != -1)
2789 event->cpu = cpu;
c3f00c70 2790
0b8f1e2e
PZ
2791 /*
2792 * Ensures that if we can observe event->ctx, both the event and ctx
2793 * will be 'complete'. See perf_iterate_sb_cpu().
2794 */
2795 smp_store_release(&event->ctx, ctx);
2796
db0503e4
PZ
2797 /*
2798 * perf_event_attr::disabled events will not run and can be initialized
2799 * without IPI. Except when this is the first event for the context, in
2800 * that case we need the magic of the IPI to set ctx->is_active.
2801 *
2802 * The IOC_ENABLE that is sure to follow the creation of a disabled
2803 * event will issue the IPI and reprogram the hardware.
2804 */
2805 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2806 raw_spin_lock_irq(&ctx->lock);
2807 if (ctx->task == TASK_TOMBSTONE) {
2808 raw_spin_unlock_irq(&ctx->lock);
2809 return;
2810 }
2811 add_event_to_ctx(event, ctx);
2812 raw_spin_unlock_irq(&ctx->lock);
2813 return;
2814 }
2815
a096309b
PZ
2816 if (!task) {
2817 cpu_function_call(cpu, __perf_install_in_context, event);
2818 return;
2819 }
2820
2821 /*
2822 * Should not happen, we validate the ctx is still alive before calling.
2823 */
2824 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2825 return;
2826
39a43640
PZ
2827 /*
2828 * Installing events is tricky because we cannot rely on ctx->is_active
2829 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2830 *
2831 * Instead we use task_curr(), which tells us if the task is running.
2832 * However, since we use task_curr() outside of rq::lock, we can race
2833 * against the actual state. This means the result can be wrong.
2834 *
2835 * If we get a false positive, we retry, this is harmless.
2836 *
2837 * If we get a false negative, things are complicated. If we are after
2838 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2839 * value must be correct. If we're before, it doesn't matter since
2840 * perf_event_context_sched_in() will program the counter.
2841 *
2842 * However, this hinges on the remote context switch having observed
2843 * our task->perf_event_ctxp[] store, such that it will in fact take
2844 * ctx::lock in perf_event_context_sched_in().
2845 *
2846 * We do this by task_function_call(), if the IPI fails to hit the task
2847 * we know any future context switch of task must see the
2848 * perf_event_ctpx[] store.
39a43640 2849 */
63cae12b 2850
63b6da39 2851 /*
63cae12b
PZ
2852 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2853 * task_cpu() load, such that if the IPI then does not find the task
2854 * running, a future context switch of that task must observe the
2855 * store.
63b6da39 2856 */
63cae12b
PZ
2857 smp_mb();
2858again:
2859 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2860 return;
2861
2862 raw_spin_lock_irq(&ctx->lock);
2863 task = ctx->task;
84c4e620 2864 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2865 /*
2866 * Cannot happen because we already checked above (which also
2867 * cannot happen), and we hold ctx->mutex, which serializes us
2868 * against perf_event_exit_task_context().
2869 */
63b6da39
PZ
2870 raw_spin_unlock_irq(&ctx->lock);
2871 return;
2872 }
39a43640 2873 /*
63cae12b
PZ
2874 * If the task is not running, ctx->lock will avoid it becoming so,
2875 * thus we can safely install the event.
39a43640 2876 */
63cae12b
PZ
2877 if (task_curr(task)) {
2878 raw_spin_unlock_irq(&ctx->lock);
2879 goto again;
2880 }
2881 add_event_to_ctx(event, ctx);
2882 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2883}
2884
d859e29f 2885/*
cdd6c482 2886 * Cross CPU call to enable a performance event
d859e29f 2887 */
fae3fde6
PZ
2888static void __perf_event_enable(struct perf_event *event,
2889 struct perf_cpu_context *cpuctx,
2890 struct perf_event_context *ctx,
2891 void *info)
04289bb9 2892{
cdd6c482 2893 struct perf_event *leader = event->group_leader;
fae3fde6 2894 struct perf_event_context *task_ctx;
04289bb9 2895
6e801e01
PZ
2896 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2897 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2898 return;
3cbed429 2899
bd2afa49
PZ
2900 if (ctx->is_active)
2901 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2902
0d3d73aa 2903 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2904
fae3fde6
PZ
2905 if (!ctx->is_active)
2906 return;
2907
e5d1367f 2908 if (!event_filter_match(event)) {
bd2afa49 2909 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2910 return;
e5d1367f 2911 }
f4c4176f 2912
04289bb9 2913 /*
cdd6c482 2914 * If the event is in a group and isn't the group leader,
d859e29f 2915 * then don't put it on unless the group is on.
04289bb9 2916 */
bd2afa49
PZ
2917 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2918 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2919 return;
bd2afa49 2920 }
fe4b04fa 2921
fae3fde6
PZ
2922 task_ctx = cpuctx->task_ctx;
2923 if (ctx->task)
2924 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2925
487f05e1 2926 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2927}
2928
d859e29f 2929/*
788faab7 2930 * Enable an event.
c93f7669 2931 *
cdd6c482
IM
2932 * If event->ctx is a cloned context, callers must make sure that
2933 * every task struct that event->ctx->task could possibly point to
c93f7669 2934 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2935 * perf_event_for_each_child or perf_event_for_each as described
2936 * for perf_event_disable.
d859e29f 2937 */
f63a8daa 2938static void _perf_event_enable(struct perf_event *event)
d859e29f 2939{
cdd6c482 2940 struct perf_event_context *ctx = event->ctx;
d859e29f 2941
7b648018 2942 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2943 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2945 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2946 return;
2947 }
2948
d859e29f 2949 /*
cdd6c482 2950 * If the event is in error state, clear that first.
7b648018
PZ
2951 *
2952 * That way, if we see the event in error state below, we know that it
2953 * has gone back into error state, as distinct from the task having
2954 * been scheduled away before the cross-call arrived.
d859e29f 2955 */
cdd6c482
IM
2956 if (event->state == PERF_EVENT_STATE_ERROR)
2957 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2958 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2959
fae3fde6 2960 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2961}
f63a8daa
PZ
2962
2963/*
2964 * See perf_event_disable();
2965 */
2966void perf_event_enable(struct perf_event *event)
2967{
2968 struct perf_event_context *ctx;
2969
2970 ctx = perf_event_ctx_lock(event);
2971 _perf_event_enable(event);
2972 perf_event_ctx_unlock(event, ctx);
2973}
dcfce4a0 2974EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2975
375637bc
AS
2976struct stop_event_data {
2977 struct perf_event *event;
2978 unsigned int restart;
2979};
2980
95ff4ca2
AS
2981static int __perf_event_stop(void *info)
2982{
375637bc
AS
2983 struct stop_event_data *sd = info;
2984 struct perf_event *event = sd->event;
95ff4ca2 2985
375637bc 2986 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2987 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2988 return 0;
2989
2990 /* matches smp_wmb() in event_sched_in() */
2991 smp_rmb();
2992
2993 /*
2994 * There is a window with interrupts enabled before we get here,
2995 * so we need to check again lest we try to stop another CPU's event.
2996 */
2997 if (READ_ONCE(event->oncpu) != smp_processor_id())
2998 return -EAGAIN;
2999
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
375637bc
AS
3002 /*
3003 * May race with the actual stop (through perf_pmu_output_stop()),
3004 * but it is only used for events with AUX ring buffer, and such
3005 * events will refuse to restart because of rb::aux_mmap_count==0,
3006 * see comments in perf_aux_output_begin().
3007 *
788faab7 3008 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
3009 * while restarting.
3010 */
3011 if (sd->restart)
c9bbdd48 3012 event->pmu->start(event, 0);
375637bc 3013
95ff4ca2
AS
3014 return 0;
3015}
3016
767ae086 3017static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
3018{
3019 struct stop_event_data sd = {
3020 .event = event,
767ae086 3021 .restart = restart,
375637bc
AS
3022 };
3023 int ret = 0;
3024
3025 do {
3026 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3027 return 0;
3028
3029 /* matches smp_wmb() in event_sched_in() */
3030 smp_rmb();
3031
3032 /*
3033 * We only want to restart ACTIVE events, so if the event goes
3034 * inactive here (event->oncpu==-1), there's nothing more to do;
3035 * fall through with ret==-ENXIO.
3036 */
3037 ret = cpu_function_call(READ_ONCE(event->oncpu),
3038 __perf_event_stop, &sd);
3039 } while (ret == -EAGAIN);
3040
3041 return ret;
3042}
3043
3044/*
3045 * In order to contain the amount of racy and tricky in the address filter
3046 * configuration management, it is a two part process:
3047 *
3048 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3049 * we update the addresses of corresponding vmas in
c60f83b8 3050 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
3051 * (p2) when an event is scheduled in (pmu::add), it calls
3052 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3053 * if the generation has changed since the previous call.
3054 *
3055 * If (p1) happens while the event is active, we restart it to force (p2).
3056 *
3057 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3058 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3059 * ioctl;
3060 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3061 * registered mapping, called for every new mmap(), with mm::mmap_sem down
3062 * for reading;
3063 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3064 * of exec.
3065 */
3066void perf_event_addr_filters_sync(struct perf_event *event)
3067{
3068 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3069
3070 if (!has_addr_filter(event))
3071 return;
3072
3073 raw_spin_lock(&ifh->lock);
3074 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3075 event->pmu->addr_filters_sync(event);
3076 event->hw.addr_filters_gen = event->addr_filters_gen;
3077 }
3078 raw_spin_unlock(&ifh->lock);
3079}
3080EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3081
f63a8daa 3082static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 3083{
2023b359 3084 /*
cdd6c482 3085 * not supported on inherited events
2023b359 3086 */
2e939d1d 3087 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
3088 return -EINVAL;
3089
cdd6c482 3090 atomic_add(refresh, &event->event_limit);
f63a8daa 3091 _perf_event_enable(event);
2023b359
PZ
3092
3093 return 0;
79f14641 3094}
f63a8daa
PZ
3095
3096/*
3097 * See perf_event_disable()
3098 */
3099int perf_event_refresh(struct perf_event *event, int refresh)
3100{
3101 struct perf_event_context *ctx;
3102 int ret;
3103
3104 ctx = perf_event_ctx_lock(event);
3105 ret = _perf_event_refresh(event, refresh);
3106 perf_event_ctx_unlock(event, ctx);
3107
3108 return ret;
3109}
26ca5c11 3110EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 3111
32ff77e8
MC
3112static int perf_event_modify_breakpoint(struct perf_event *bp,
3113 struct perf_event_attr *attr)
3114{
3115 int err;
3116
3117 _perf_event_disable(bp);
3118
3119 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 3120
bf06278c 3121 if (!bp->attr.disabled)
32ff77e8 3122 _perf_event_enable(bp);
bf06278c
JO
3123
3124 return err;
32ff77e8
MC
3125}
3126
3127static int perf_event_modify_attr(struct perf_event *event,
3128 struct perf_event_attr *attr)
3129{
3130 if (event->attr.type != attr->type)
3131 return -EINVAL;
3132
3133 switch (event->attr.type) {
3134 case PERF_TYPE_BREAKPOINT:
3135 return perf_event_modify_breakpoint(event, attr);
3136 default:
3137 /* Place holder for future additions. */
3138 return -EOPNOTSUPP;
3139 }
3140}
3141
5b0311e1
FW
3142static void ctx_sched_out(struct perf_event_context *ctx,
3143 struct perf_cpu_context *cpuctx,
3144 enum event_type_t event_type)
235c7fc7 3145{
6668128a 3146 struct perf_event *event, *tmp;
db24d33e 3147 int is_active = ctx->is_active;
235c7fc7 3148
c994d613 3149 lockdep_assert_held(&ctx->lock);
235c7fc7 3150
39a43640
PZ
3151 if (likely(!ctx->nr_events)) {
3152 /*
3153 * See __perf_remove_from_context().
3154 */
3155 WARN_ON_ONCE(ctx->is_active);
3156 if (ctx->task)
3157 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 3158 return;
39a43640
PZ
3159 }
3160
db24d33e 3161 ctx->is_active &= ~event_type;
3cbaa590
PZ
3162 if (!(ctx->is_active & EVENT_ALL))
3163 ctx->is_active = 0;
3164
63e30d3e
PZ
3165 if (ctx->task) {
3166 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3167 if (!ctx->is_active)
3168 cpuctx->task_ctx = NULL;
3169 }
facc4307 3170
8fdc6539
PZ
3171 /*
3172 * Always update time if it was set; not only when it changes.
3173 * Otherwise we can 'forget' to update time for any but the last
3174 * context we sched out. For example:
3175 *
3176 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3177 * ctx_sched_out(.event_type = EVENT_PINNED)
3178 *
3179 * would only update time for the pinned events.
3180 */
3cbaa590
PZ
3181 if (is_active & EVENT_TIME) {
3182 /* update (and stop) ctx time */
3183 update_context_time(ctx);
3184 update_cgrp_time_from_cpuctx(cpuctx);
3185 }
3186
8fdc6539
PZ
3187 is_active ^= ctx->is_active; /* changed bits */
3188
3cbaa590 3189 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 3190 return;
5b0311e1 3191
075e0b00 3192 perf_pmu_disable(ctx->pmu);
3cbaa590 3193 if (is_active & EVENT_PINNED) {
6668128a 3194 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 3195 group_sched_out(event, cpuctx, ctx);
9ed6060d 3196 }
889ff015 3197
3cbaa590 3198 if (is_active & EVENT_FLEXIBLE) {
6668128a 3199 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 3200 group_sched_out(event, cpuctx, ctx);
90c91dfb
PZ
3201
3202 /*
3203 * Since we cleared EVENT_FLEXIBLE, also clear
3204 * rotate_necessary, is will be reset by
3205 * ctx_flexible_sched_in() when needed.
3206 */
3207 ctx->rotate_necessary = 0;
9ed6060d 3208 }
1b9a644f 3209 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
3210}
3211
564c2b21 3212/*
5a3126d4
PZ
3213 * Test whether two contexts are equivalent, i.e. whether they have both been
3214 * cloned from the same version of the same context.
3215 *
3216 * Equivalence is measured using a generation number in the context that is
3217 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3218 * and list_del_event().
564c2b21 3219 */
cdd6c482
IM
3220static int context_equiv(struct perf_event_context *ctx1,
3221 struct perf_event_context *ctx2)
564c2b21 3222{
211de6eb
PZ
3223 lockdep_assert_held(&ctx1->lock);
3224 lockdep_assert_held(&ctx2->lock);
3225
5a3126d4
PZ
3226 /* Pinning disables the swap optimization */
3227 if (ctx1->pin_count || ctx2->pin_count)
3228 return 0;
3229
3230 /* If ctx1 is the parent of ctx2 */
3231 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3232 return 1;
3233
3234 /* If ctx2 is the parent of ctx1 */
3235 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3236 return 1;
3237
3238 /*
3239 * If ctx1 and ctx2 have the same parent; we flatten the parent
3240 * hierarchy, see perf_event_init_context().
3241 */
3242 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3243 ctx1->parent_gen == ctx2->parent_gen)
3244 return 1;
3245
3246 /* Unmatched */
3247 return 0;
564c2b21
PM
3248}
3249
cdd6c482
IM
3250static void __perf_event_sync_stat(struct perf_event *event,
3251 struct perf_event *next_event)
bfbd3381
PZ
3252{
3253 u64 value;
3254
cdd6c482 3255 if (!event->attr.inherit_stat)
bfbd3381
PZ
3256 return;
3257
3258 /*
cdd6c482 3259 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3260 * because we're in the middle of a context switch and have IRQs
3261 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3262 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3263 * don't need to use it.
3264 */
0d3d73aa 3265 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3266 event->pmu->read(event);
bfbd3381 3267
0d3d73aa 3268 perf_event_update_time(event);
bfbd3381
PZ
3269
3270 /*
cdd6c482 3271 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3272 * values when we flip the contexts.
3273 */
e7850595
PZ
3274 value = local64_read(&next_event->count);
3275 value = local64_xchg(&event->count, value);
3276 local64_set(&next_event->count, value);
bfbd3381 3277
cdd6c482
IM
3278 swap(event->total_time_enabled, next_event->total_time_enabled);
3279 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3280
bfbd3381 3281 /*
19d2e755 3282 * Since we swizzled the values, update the user visible data too.
bfbd3381 3283 */
cdd6c482
IM
3284 perf_event_update_userpage(event);
3285 perf_event_update_userpage(next_event);
bfbd3381
PZ
3286}
3287
cdd6c482
IM
3288static void perf_event_sync_stat(struct perf_event_context *ctx,
3289 struct perf_event_context *next_ctx)
bfbd3381 3290{
cdd6c482 3291 struct perf_event *event, *next_event;
bfbd3381
PZ
3292
3293 if (!ctx->nr_stat)
3294 return;
3295
02ffdbc8
PZ
3296 update_context_time(ctx);
3297
cdd6c482
IM
3298 event = list_first_entry(&ctx->event_list,
3299 struct perf_event, event_entry);
bfbd3381 3300
cdd6c482
IM
3301 next_event = list_first_entry(&next_ctx->event_list,
3302 struct perf_event, event_entry);
bfbd3381 3303
cdd6c482
IM
3304 while (&event->event_entry != &ctx->event_list &&
3305 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3306
cdd6c482 3307 __perf_event_sync_stat(event, next_event);
bfbd3381 3308
cdd6c482
IM
3309 event = list_next_entry(event, event_entry);
3310 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3311 }
3312}
3313
fe4b04fa
PZ
3314static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3315 struct task_struct *next)
0793a61d 3316{
8dc85d54 3317 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3318 struct perf_event_context *next_ctx;
5a3126d4 3319 struct perf_event_context *parent, *next_parent;
108b02cf 3320 struct perf_cpu_context *cpuctx;
c93f7669 3321 int do_switch = 1;
0793a61d 3322
108b02cf
PZ
3323 if (likely(!ctx))
3324 return;
10989fb2 3325
108b02cf
PZ
3326 cpuctx = __get_cpu_context(ctx);
3327 if (!cpuctx->task_ctx)
0793a61d
TG
3328 return;
3329
c93f7669 3330 rcu_read_lock();
8dc85d54 3331 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3332 if (!next_ctx)
3333 goto unlock;
3334
3335 parent = rcu_dereference(ctx->parent_ctx);
3336 next_parent = rcu_dereference(next_ctx->parent_ctx);
3337
3338 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3339 if (!parent && !next_parent)
5a3126d4
PZ
3340 goto unlock;
3341
3342 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3343 /*
3344 * Looks like the two contexts are clones, so we might be
3345 * able to optimize the context switch. We lock both
3346 * contexts and check that they are clones under the
3347 * lock (including re-checking that neither has been
3348 * uncloned in the meantime). It doesn't matter which
3349 * order we take the locks because no other cpu could
3350 * be trying to lock both of these tasks.
3351 */
e625cce1
TG
3352 raw_spin_lock(&ctx->lock);
3353 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3354 if (context_equiv(ctx, next_ctx)) {
c2b98a86
AB
3355 struct pmu *pmu = ctx->pmu;
3356
63b6da39
PZ
3357 WRITE_ONCE(ctx->task, next);
3358 WRITE_ONCE(next_ctx->task, task);
5a158c3c 3359
c2b98a86
AB
3360 /*
3361 * PMU specific parts of task perf context can require
3362 * additional synchronization. As an example of such
3363 * synchronization see implementation details of Intel
3364 * LBR call stack data profiling;
3365 */
3366 if (pmu->swap_task_ctx)
3367 pmu->swap_task_ctx(ctx, next_ctx);
3368 else
3369 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
5a158c3c 3370
63b6da39
PZ
3371 /*
3372 * RCU_INIT_POINTER here is safe because we've not
3373 * modified the ctx and the above modification of
3374 * ctx->task and ctx->task_ctx_data are immaterial
3375 * since those values are always verified under
3376 * ctx->lock which we're now holding.
3377 */
3378 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3379 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3380
c93f7669 3381 do_switch = 0;
bfbd3381 3382
cdd6c482 3383 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3384 }
e625cce1
TG
3385 raw_spin_unlock(&next_ctx->lock);
3386 raw_spin_unlock(&ctx->lock);
564c2b21 3387 }
5a3126d4 3388unlock:
c93f7669 3389 rcu_read_unlock();
564c2b21 3390
c93f7669 3391 if (do_switch) {
facc4307 3392 raw_spin_lock(&ctx->lock);
487f05e1 3393 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3394 raw_spin_unlock(&ctx->lock);
c93f7669 3395 }
0793a61d
TG
3396}
3397
e48c1788
PZ
3398static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3399
ba532500
YZ
3400void perf_sched_cb_dec(struct pmu *pmu)
3401{
e48c1788
PZ
3402 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3403
ba532500 3404 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3405
3406 if (!--cpuctx->sched_cb_usage)
3407 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3408}
3409
e48c1788 3410
ba532500
YZ
3411void perf_sched_cb_inc(struct pmu *pmu)
3412{
e48c1788
PZ
3413 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3414
3415 if (!cpuctx->sched_cb_usage++)
3416 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3417
ba532500
YZ
3418 this_cpu_inc(perf_sched_cb_usages);
3419}
3420
3421/*
3422 * This function provides the context switch callback to the lower code
3423 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3424 *
3425 * This callback is relevant even to per-cpu events; for example multi event
3426 * PEBS requires this to provide PID/TID information. This requires we flush
3427 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3428 */
3429static void perf_pmu_sched_task(struct task_struct *prev,
3430 struct task_struct *next,
3431 bool sched_in)
3432{
3433 struct perf_cpu_context *cpuctx;
3434 struct pmu *pmu;
ba532500
YZ
3435
3436 if (prev == next)
3437 return;
3438
e48c1788 3439 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3440 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3441
e48c1788
PZ
3442 if (WARN_ON_ONCE(!pmu->sched_task))
3443 continue;
ba532500 3444
e48c1788
PZ
3445 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3446 perf_pmu_disable(pmu);
ba532500 3447
e48c1788 3448 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3449
e48c1788
PZ
3450 perf_pmu_enable(pmu);
3451 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3452 }
ba532500
YZ
3453}
3454
45ac1403
AH
3455static void perf_event_switch(struct task_struct *task,
3456 struct task_struct *next_prev, bool sched_in);
3457
8dc85d54
PZ
3458#define for_each_task_context_nr(ctxn) \
3459 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3460
3461/*
3462 * Called from scheduler to remove the events of the current task,
3463 * with interrupts disabled.
3464 *
3465 * We stop each event and update the event value in event->count.
3466 *
3467 * This does not protect us against NMI, but disable()
3468 * sets the disabled bit in the control field of event _before_
3469 * accessing the event control register. If a NMI hits, then it will
3470 * not restart the event.
3471 */
ab0cce56
JO
3472void __perf_event_task_sched_out(struct task_struct *task,
3473 struct task_struct *next)
8dc85d54
PZ
3474{
3475 int ctxn;
3476
ba532500
YZ
3477 if (__this_cpu_read(perf_sched_cb_usages))
3478 perf_pmu_sched_task(task, next, false);
3479
45ac1403
AH
3480 if (atomic_read(&nr_switch_events))
3481 perf_event_switch(task, next, false);
3482
8dc85d54
PZ
3483 for_each_task_context_nr(ctxn)
3484 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3485
3486 /*
3487 * if cgroup events exist on this CPU, then we need
3488 * to check if we have to switch out PMU state.
3489 * cgroup event are system-wide mode only
3490 */
4a32fea9 3491 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3492 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3493}
3494
5b0311e1
FW
3495/*
3496 * Called with IRQs disabled
3497 */
3498static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3499 enum event_type_t event_type)
3500{
3501 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3502}
3503
6eef8a71 3504static bool perf_less_group_idx(const void *l, const void *r)
0793a61d 3505{
6eef8a71
IR
3506 const struct perf_event *le = l, *re = r;
3507
3508 return le->group_index < re->group_index;
3509}
3510
3511static void swap_ptr(void *l, void *r)
3512{
3513 void **lp = l, **rp = r;
3514
3515 swap(*lp, *rp);
3516}
3517
3518static const struct min_heap_callbacks perf_min_heap = {
3519 .elem_size = sizeof(struct perf_event *),
3520 .less = perf_less_group_idx,
3521 .swp = swap_ptr,
3522};
3523
3524static void __heap_add(struct min_heap *heap, struct perf_event *event)
3525{
3526 struct perf_event **itrs = heap->data;
3527
3528 if (event) {
3529 itrs[heap->nr] = event;
3530 heap->nr++;
3531 }
3532}
3533
836196be
IR
3534static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3535 struct perf_event_groups *groups, int cpu,
6eef8a71
IR
3536 int (*func)(struct perf_event *, void *),
3537 void *data)
3538{
95ed6c70
IR
3539#ifdef CONFIG_CGROUP_PERF
3540 struct cgroup_subsys_state *css = NULL;
3541#endif
6eef8a71
IR
3542 /* Space for per CPU and/or any CPU event iterators. */
3543 struct perf_event *itrs[2];
836196be
IR
3544 struct min_heap event_heap;
3545 struct perf_event **evt;
1cac7b1a 3546 int ret;
8e1a2031 3547
836196be
IR
3548 if (cpuctx) {
3549 event_heap = (struct min_heap){
3550 .data = cpuctx->heap,
3551 .nr = 0,
3552 .size = cpuctx->heap_size,
3553 };
c2283c93
IR
3554
3555 lockdep_assert_held(&cpuctx->ctx.lock);
95ed6c70
IR
3556
3557#ifdef CONFIG_CGROUP_PERF
3558 if (cpuctx->cgrp)
3559 css = &cpuctx->cgrp->css;
3560#endif
836196be
IR
3561 } else {
3562 event_heap = (struct min_heap){
3563 .data = itrs,
3564 .nr = 0,
3565 .size = ARRAY_SIZE(itrs),
3566 };
3567 /* Events not within a CPU context may be on any CPU. */
95ed6c70 3568 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
836196be
IR
3569 }
3570 evt = event_heap.data;
3571
95ed6c70
IR
3572 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3573
3574#ifdef CONFIG_CGROUP_PERF
3575 for (; css; css = css->parent)
3576 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3577#endif
1cac7b1a 3578
6eef8a71 3579 min_heapify_all(&event_heap, &perf_min_heap);
1cac7b1a 3580
6eef8a71 3581 while (event_heap.nr) {
1cac7b1a
PZ
3582 ret = func(*evt, data);
3583 if (ret)
3584 return ret;
3585
3586 *evt = perf_event_groups_next(*evt);
6eef8a71
IR
3587 if (*evt)
3588 min_heapify(&event_heap, 0, &perf_min_heap);
3589 else
3590 min_heap_pop(&event_heap, &perf_min_heap);
8e1a2031 3591 }
0793a61d 3592
1cac7b1a
PZ
3593 return 0;
3594}
3595
ab6f824c 3596static int merge_sched_in(struct perf_event *event, void *data)
1cac7b1a 3597{
2c2366c7
PZ
3598 struct perf_event_context *ctx = event->ctx;
3599 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3600 int *can_add_hw = data;
ab6f824c 3601
1cac7b1a
PZ
3602 if (event->state <= PERF_EVENT_STATE_OFF)
3603 return 0;
3604
3605 if (!event_filter_match(event))
3606 return 0;
3607
2c2366c7
PZ
3608 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3609 if (!group_sched_in(event, cpuctx, ctx))
ab6f824c 3610 list_add_tail(&event->active_list, get_event_list(event));
6668128a 3611 }
1cac7b1a 3612
ab6f824c
PZ
3613 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3614 if (event->attr.pinned)
3615 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1cac7b1a 3616
2c2366c7
PZ
3617 *can_add_hw = 0;
3618 ctx->rotate_necessary = 1;
3b6f9e5c 3619 }
1cac7b1a
PZ
3620
3621 return 0;
5b0311e1
FW
3622}
3623
3624static void
1cac7b1a
PZ
3625ctx_pinned_sched_in(struct perf_event_context *ctx,
3626 struct perf_cpu_context *cpuctx)
5b0311e1 3627{
2c2366c7 3628 int can_add_hw = 1;
3b6f9e5c 3629
836196be
IR
3630 if (ctx != &cpuctx->ctx)
3631 cpuctx = NULL;
3632
3633 visit_groups_merge(cpuctx, &ctx->pinned_groups,
1cac7b1a 3634 smp_processor_id(),
2c2366c7 3635 merge_sched_in, &can_add_hw);
1cac7b1a 3636}
8e1a2031 3637
1cac7b1a
PZ
3638static void
3639ctx_flexible_sched_in(struct perf_event_context *ctx,
3640 struct perf_cpu_context *cpuctx)
3641{
2c2366c7 3642 int can_add_hw = 1;
0793a61d 3643
836196be
IR
3644 if (ctx != &cpuctx->ctx)
3645 cpuctx = NULL;
3646
3647 visit_groups_merge(cpuctx, &ctx->flexible_groups,
1cac7b1a 3648 smp_processor_id(),
2c2366c7 3649 merge_sched_in, &can_add_hw);
5b0311e1
FW
3650}
3651
3652static void
3653ctx_sched_in(struct perf_event_context *ctx,
3654 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3655 enum event_type_t event_type,
3656 struct task_struct *task)
5b0311e1 3657{
db24d33e 3658 int is_active = ctx->is_active;
c994d613
PZ
3659 u64 now;
3660
3661 lockdep_assert_held(&ctx->lock);
e5d1367f 3662
5b0311e1 3663 if (likely(!ctx->nr_events))
facc4307 3664 return;
5b0311e1 3665
3cbaa590 3666 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3667 if (ctx->task) {
3668 if (!is_active)
3669 cpuctx->task_ctx = ctx;
3670 else
3671 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3672 }
3673
3cbaa590
PZ
3674 is_active ^= ctx->is_active; /* changed bits */
3675
3676 if (is_active & EVENT_TIME) {
3677 /* start ctx time */
3678 now = perf_clock();
3679 ctx->timestamp = now;
3680 perf_cgroup_set_timestamp(task, ctx);
3681 }
3682
5b0311e1
FW
3683 /*
3684 * First go through the list and put on any pinned groups
3685 * in order to give them the best chance of going on.
3686 */
3cbaa590 3687 if (is_active & EVENT_PINNED)
6e37738a 3688 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3689
3690 /* Then walk through the lower prio flexible groups */
3cbaa590 3691 if (is_active & EVENT_FLEXIBLE)
6e37738a 3692 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3693}
3694
329c0e01 3695static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3696 enum event_type_t event_type,
3697 struct task_struct *task)
329c0e01
FW
3698{
3699 struct perf_event_context *ctx = &cpuctx->ctx;
3700
e5d1367f 3701 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3702}
3703
e5d1367f
SE
3704static void perf_event_context_sched_in(struct perf_event_context *ctx,
3705 struct task_struct *task)
235c7fc7 3706{
108b02cf 3707 struct perf_cpu_context *cpuctx;
235c7fc7 3708
108b02cf 3709 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3710 if (cpuctx->task_ctx == ctx)
3711 return;
3712
facc4307 3713 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3714 /*
3715 * We must check ctx->nr_events while holding ctx->lock, such
3716 * that we serialize against perf_install_in_context().
3717 */
3718 if (!ctx->nr_events)
3719 goto unlock;
3720
1b9a644f 3721 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3722 /*
3723 * We want to keep the following priority order:
3724 * cpu pinned (that don't need to move), task pinned,
3725 * cpu flexible, task flexible.
fe45bafb
AS
3726 *
3727 * However, if task's ctx is not carrying any pinned
3728 * events, no need to flip the cpuctx's events around.
329c0e01 3729 */
8e1a2031 3730 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3731 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3732 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3733 perf_pmu_enable(ctx->pmu);
fdccc3fb 3734
3735unlock:
facc4307 3736 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3737}
3738
8dc85d54
PZ
3739/*
3740 * Called from scheduler to add the events of the current task
3741 * with interrupts disabled.
3742 *
3743 * We restore the event value and then enable it.
3744 *
3745 * This does not protect us against NMI, but enable()
3746 * sets the enabled bit in the control field of event _before_
3747 * accessing the event control register. If a NMI hits, then it will
3748 * keep the event running.
3749 */
ab0cce56
JO
3750void __perf_event_task_sched_in(struct task_struct *prev,
3751 struct task_struct *task)
8dc85d54
PZ
3752{
3753 struct perf_event_context *ctx;
3754 int ctxn;
3755
7e41d177
PZ
3756 /*
3757 * If cgroup events exist on this CPU, then we need to check if we have
3758 * to switch in PMU state; cgroup event are system-wide mode only.
3759 *
3760 * Since cgroup events are CPU events, we must schedule these in before
3761 * we schedule in the task events.
3762 */
3763 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3764 perf_cgroup_sched_in(prev, task);
3765
8dc85d54
PZ
3766 for_each_task_context_nr(ctxn) {
3767 ctx = task->perf_event_ctxp[ctxn];
3768 if (likely(!ctx))
3769 continue;
3770
e5d1367f 3771 perf_event_context_sched_in(ctx, task);
8dc85d54 3772 }
d010b332 3773
45ac1403
AH
3774 if (atomic_read(&nr_switch_events))
3775 perf_event_switch(task, prev, true);
3776
ba532500
YZ
3777 if (__this_cpu_read(perf_sched_cb_usages))
3778 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3779}
3780
abd50713
PZ
3781static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3782{
3783 u64 frequency = event->attr.sample_freq;
3784 u64 sec = NSEC_PER_SEC;
3785 u64 divisor, dividend;
3786
3787 int count_fls, nsec_fls, frequency_fls, sec_fls;
3788
3789 count_fls = fls64(count);
3790 nsec_fls = fls64(nsec);
3791 frequency_fls = fls64(frequency);
3792 sec_fls = 30;
3793
3794 /*
3795 * We got @count in @nsec, with a target of sample_freq HZ
3796 * the target period becomes:
3797 *
3798 * @count * 10^9
3799 * period = -------------------
3800 * @nsec * sample_freq
3801 *
3802 */
3803
3804 /*
3805 * Reduce accuracy by one bit such that @a and @b converge
3806 * to a similar magnitude.
3807 */
fe4b04fa 3808#define REDUCE_FLS(a, b) \
abd50713
PZ
3809do { \
3810 if (a##_fls > b##_fls) { \
3811 a >>= 1; \
3812 a##_fls--; \
3813 } else { \
3814 b >>= 1; \
3815 b##_fls--; \
3816 } \
3817} while (0)
3818
3819 /*
3820 * Reduce accuracy until either term fits in a u64, then proceed with
3821 * the other, so that finally we can do a u64/u64 division.
3822 */
3823 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3824 REDUCE_FLS(nsec, frequency);
3825 REDUCE_FLS(sec, count);
3826 }
3827
3828 if (count_fls + sec_fls > 64) {
3829 divisor = nsec * frequency;
3830
3831 while (count_fls + sec_fls > 64) {
3832 REDUCE_FLS(count, sec);
3833 divisor >>= 1;
3834 }
3835
3836 dividend = count * sec;
3837 } else {
3838 dividend = count * sec;
3839
3840 while (nsec_fls + frequency_fls > 64) {
3841 REDUCE_FLS(nsec, frequency);
3842 dividend >>= 1;
3843 }
3844
3845 divisor = nsec * frequency;
3846 }
3847
f6ab91ad
PZ
3848 if (!divisor)
3849 return dividend;
3850
abd50713
PZ
3851 return div64_u64(dividend, divisor);
3852}
3853
e050e3f0
SE
3854static DEFINE_PER_CPU(int, perf_throttled_count);
3855static DEFINE_PER_CPU(u64, perf_throttled_seq);
3856
f39d47ff 3857static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3858{
cdd6c482 3859 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3860 s64 period, sample_period;
bd2b5b12
PZ
3861 s64 delta;
3862
abd50713 3863 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3864
3865 delta = (s64)(period - hwc->sample_period);
3866 delta = (delta + 7) / 8; /* low pass filter */
3867
3868 sample_period = hwc->sample_period + delta;
3869
3870 if (!sample_period)
3871 sample_period = 1;
3872
bd2b5b12 3873 hwc->sample_period = sample_period;
abd50713 3874
e7850595 3875 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3876 if (disable)
3877 event->pmu->stop(event, PERF_EF_UPDATE);
3878
e7850595 3879 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3880
3881 if (disable)
3882 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3883 }
bd2b5b12
PZ
3884}
3885
e050e3f0
SE
3886/*
3887 * combine freq adjustment with unthrottling to avoid two passes over the
3888 * events. At the same time, make sure, having freq events does not change
3889 * the rate of unthrottling as that would introduce bias.
3890 */
3891static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3892 int needs_unthr)
60db5e09 3893{
cdd6c482
IM
3894 struct perf_event *event;
3895 struct hw_perf_event *hwc;
e050e3f0 3896 u64 now, period = TICK_NSEC;
abd50713 3897 s64 delta;
60db5e09 3898
e050e3f0
SE
3899 /*
3900 * only need to iterate over all events iff:
3901 * - context have events in frequency mode (needs freq adjust)
3902 * - there are events to unthrottle on this cpu
3903 */
3904 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3905 return;
3906
e050e3f0 3907 raw_spin_lock(&ctx->lock);
f39d47ff 3908 perf_pmu_disable(ctx->pmu);
e050e3f0 3909
03541f8b 3910 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3911 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3912 continue;
3913
5632ab12 3914 if (!event_filter_match(event))
5d27c23d
PZ
3915 continue;
3916
44377277
AS
3917 perf_pmu_disable(event->pmu);
3918
cdd6c482 3919 hwc = &event->hw;
6a24ed6c 3920
ae23bff1 3921 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3922 hwc->interrupts = 0;
cdd6c482 3923 perf_log_throttle(event, 1);
a4eaf7f1 3924 event->pmu->start(event, 0);
a78ac325
PZ
3925 }
3926
cdd6c482 3927 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3928 goto next;
60db5e09 3929
e050e3f0
SE
3930 /*
3931 * stop the event and update event->count
3932 */
3933 event->pmu->stop(event, PERF_EF_UPDATE);
3934
e7850595 3935 now = local64_read(&event->count);
abd50713
PZ
3936 delta = now - hwc->freq_count_stamp;
3937 hwc->freq_count_stamp = now;
60db5e09 3938
e050e3f0
SE
3939 /*
3940 * restart the event
3941 * reload only if value has changed
f39d47ff
SE
3942 * we have stopped the event so tell that
3943 * to perf_adjust_period() to avoid stopping it
3944 * twice.
e050e3f0 3945 */
abd50713 3946 if (delta > 0)
f39d47ff 3947 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3948
3949 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3950 next:
3951 perf_pmu_enable(event->pmu);
60db5e09 3952 }
e050e3f0 3953
f39d47ff 3954 perf_pmu_enable(ctx->pmu);
e050e3f0 3955 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3956}
3957
235c7fc7 3958/*
8703a7cf 3959 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3960 */
8703a7cf 3961static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3962{
dddd3379
TG
3963 /*
3964 * Rotate the first entry last of non-pinned groups. Rotation might be
3965 * disabled by the inheritance code.
3966 */
8703a7cf
PZ
3967 if (ctx->rotate_disable)
3968 return;
8e1a2031 3969
8703a7cf
PZ
3970 perf_event_groups_delete(&ctx->flexible_groups, event);
3971 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3972}
3973
7fa343b7 3974/* pick an event from the flexible_groups to rotate */
8d5bce0c 3975static inline struct perf_event *
7fa343b7 3976ctx_event_to_rotate(struct perf_event_context *ctx)
235c7fc7 3977{
7fa343b7
SL
3978 struct perf_event *event;
3979
3980 /* pick the first active flexible event */
3981 event = list_first_entry_or_null(&ctx->flexible_active,
3982 struct perf_event, active_list);
3983
3984 /* if no active flexible event, pick the first event */
3985 if (!event) {
3986 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3987 typeof(*event), group_node);
3988 }
3989
90c91dfb
PZ
3990 /*
3991 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3992 * finds there are unschedulable events, it will set it again.
3993 */
3994 ctx->rotate_necessary = 0;
3995
7fa343b7 3996 return event;
8d5bce0c
PZ
3997}
3998
3999static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4000{
4001 struct perf_event *cpu_event = NULL, *task_event = NULL;
fd7d5517
IR
4002 struct perf_event_context *task_ctx = NULL;
4003 int cpu_rotate, task_rotate;
8d5bce0c
PZ
4004
4005 /*
4006 * Since we run this from IRQ context, nobody can install new
4007 * events, thus the event count values are stable.
4008 */
7fc23a53 4009
fd7d5517
IR
4010 cpu_rotate = cpuctx->ctx.rotate_necessary;
4011 task_ctx = cpuctx->task_ctx;
4012 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
9717e6cd 4013
8d5bce0c
PZ
4014 if (!(cpu_rotate || task_rotate))
4015 return false;
0f5a2601 4016
facc4307 4017 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 4018 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 4019
8d5bce0c 4020 if (task_rotate)
7fa343b7 4021 task_event = ctx_event_to_rotate(task_ctx);
8d5bce0c 4022 if (cpu_rotate)
7fa343b7 4023 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
8703a7cf 4024
8d5bce0c
PZ
4025 /*
4026 * As per the order given at ctx_resched() first 'pop' task flexible
4027 * and then, if needed CPU flexible.
4028 */
fd7d5517
IR
4029 if (task_event || (task_ctx && cpu_event))
4030 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
4031 if (cpu_event)
4032 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 4033
8d5bce0c 4034 if (task_event)
fd7d5517 4035 rotate_ctx(task_ctx, task_event);
8d5bce0c
PZ
4036 if (cpu_event)
4037 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 4038
fd7d5517 4039 perf_event_sched_in(cpuctx, task_ctx, current);
235c7fc7 4040
0f5a2601
PZ
4041 perf_pmu_enable(cpuctx->ctx.pmu);
4042 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 4043
8d5bce0c 4044 return true;
e9d2b064
PZ
4045}
4046
4047void perf_event_task_tick(void)
4048{
2fde4f94
MR
4049 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4050 struct perf_event_context *ctx, *tmp;
e050e3f0 4051 int throttled;
b5ab4cd5 4052
16444645 4053 lockdep_assert_irqs_disabled();
e9d2b064 4054
e050e3f0
SE
4055 __this_cpu_inc(perf_throttled_seq);
4056 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 4057 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 4058
2fde4f94 4059 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 4060 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
4061}
4062
889ff015
FW
4063static int event_enable_on_exec(struct perf_event *event,
4064 struct perf_event_context *ctx)
4065{
4066 if (!event->attr.enable_on_exec)
4067 return 0;
4068
4069 event->attr.enable_on_exec = 0;
4070 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4071 return 0;
4072
0d3d73aa 4073 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
4074
4075 return 1;
4076}
4077
57e7986e 4078/*
cdd6c482 4079 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
4080 * This expects task == current.
4081 */
c1274499 4082static void perf_event_enable_on_exec(int ctxn)
57e7986e 4083{
c1274499 4084 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 4085 enum event_type_t event_type = 0;
3e349507 4086 struct perf_cpu_context *cpuctx;
cdd6c482 4087 struct perf_event *event;
57e7986e
PM
4088 unsigned long flags;
4089 int enabled = 0;
4090
4091 local_irq_save(flags);
c1274499 4092 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 4093 if (!ctx || !ctx->nr_events)
57e7986e
PM
4094 goto out;
4095
3e349507
PZ
4096 cpuctx = __get_cpu_context(ctx);
4097 perf_ctx_lock(cpuctx, ctx);
7fce2509 4098 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 4099 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 4100 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
4101 event_type |= get_event_type(event);
4102 }
57e7986e
PM
4103
4104 /*
3e349507 4105 * Unclone and reschedule this context if we enabled any event.
57e7986e 4106 */
3e349507 4107 if (enabled) {
211de6eb 4108 clone_ctx = unclone_ctx(ctx);
487f05e1 4109 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
4110 } else {
4111 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
4112 }
4113 perf_ctx_unlock(cpuctx, ctx);
57e7986e 4114
9ed6060d 4115out:
57e7986e 4116 local_irq_restore(flags);
211de6eb
PZ
4117
4118 if (clone_ctx)
4119 put_ctx(clone_ctx);
57e7986e
PM
4120}
4121
0492d4c5
PZ
4122struct perf_read_data {
4123 struct perf_event *event;
4124 bool group;
7d88962e 4125 int ret;
0492d4c5
PZ
4126};
4127
451d24d1 4128static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 4129{
d6a2f903
DCC
4130 u16 local_pkg, event_pkg;
4131
4132 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
4133 int local_cpu = smp_processor_id();
4134
4135 event_pkg = topology_physical_package_id(event_cpu);
4136 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
4137
4138 if (event_pkg == local_pkg)
4139 return local_cpu;
4140 }
4141
4142 return event_cpu;
4143}
4144
0793a61d 4145/*
cdd6c482 4146 * Cross CPU call to read the hardware event
0793a61d 4147 */
cdd6c482 4148static void __perf_event_read(void *info)
0793a61d 4149{
0492d4c5
PZ
4150 struct perf_read_data *data = info;
4151 struct perf_event *sub, *event = data->event;
cdd6c482 4152 struct perf_event_context *ctx = event->ctx;
108b02cf 4153 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 4154 struct pmu *pmu = event->pmu;
621a01ea 4155
e1ac3614
PM
4156 /*
4157 * If this is a task context, we need to check whether it is
4158 * the current task context of this cpu. If not it has been
4159 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
4160 * event->count would have been updated to a recent sample
4161 * when the event was scheduled out.
e1ac3614
PM
4162 */
4163 if (ctx->task && cpuctx->task_ctx != ctx)
4164 return;
4165
e625cce1 4166 raw_spin_lock(&ctx->lock);
0c1cbc18 4167 if (ctx->is_active & EVENT_TIME) {
542e72fc 4168 update_context_time(ctx);
e5d1367f
SE
4169 update_cgrp_time_from_event(event);
4170 }
0492d4c5 4171
0d3d73aa
PZ
4172 perf_event_update_time(event);
4173 if (data->group)
4174 perf_event_update_sibling_time(event);
0c1cbc18 4175
4a00c16e
SB
4176 if (event->state != PERF_EVENT_STATE_ACTIVE)
4177 goto unlock;
0492d4c5 4178
4a00c16e
SB
4179 if (!data->group) {
4180 pmu->read(event);
4181 data->ret = 0;
0492d4c5 4182 goto unlock;
4a00c16e
SB
4183 }
4184
4185 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4186
4187 pmu->read(event);
0492d4c5 4188
edb39592 4189 for_each_sibling_event(sub, event) {
4a00c16e
SB
4190 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4191 /*
4192 * Use sibling's PMU rather than @event's since
4193 * sibling could be on different (eg: software) PMU.
4194 */
0492d4c5 4195 sub->pmu->read(sub);
4a00c16e 4196 }
0492d4c5 4197 }
4a00c16e
SB
4198
4199 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
4200
4201unlock:
e625cce1 4202 raw_spin_unlock(&ctx->lock);
0793a61d
TG
4203}
4204
b5e58793
PZ
4205static inline u64 perf_event_count(struct perf_event *event)
4206{
c39a0e2c 4207 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
4208}
4209
ffe8690c
KX
4210/*
4211 * NMI-safe method to read a local event, that is an event that
4212 * is:
4213 * - either for the current task, or for this CPU
4214 * - does not have inherit set, for inherited task events
4215 * will not be local and we cannot read them atomically
4216 * - must not have a pmu::count method
4217 */
7d9285e8
YS
4218int perf_event_read_local(struct perf_event *event, u64 *value,
4219 u64 *enabled, u64 *running)
ffe8690c
KX
4220{
4221 unsigned long flags;
f91840a3 4222 int ret = 0;
ffe8690c
KX
4223
4224 /*
4225 * Disabling interrupts avoids all counter scheduling (context
4226 * switches, timer based rotation and IPIs).
4227 */
4228 local_irq_save(flags);
4229
ffe8690c
KX
4230 /*
4231 * It must not be an event with inherit set, we cannot read
4232 * all child counters from atomic context.
4233 */
f91840a3
AS
4234 if (event->attr.inherit) {
4235 ret = -EOPNOTSUPP;
4236 goto out;
4237 }
ffe8690c 4238
f91840a3
AS
4239 /* If this is a per-task event, it must be for current */
4240 if ((event->attach_state & PERF_ATTACH_TASK) &&
4241 event->hw.target != current) {
4242 ret = -EINVAL;
4243 goto out;
4244 }
4245
4246 /* If this is a per-CPU event, it must be for this CPU */
4247 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4248 event->cpu != smp_processor_id()) {
4249 ret = -EINVAL;
4250 goto out;
4251 }
ffe8690c 4252
befb1b3c
RC
4253 /* If this is a pinned event it must be running on this CPU */
4254 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4255 ret = -EBUSY;
4256 goto out;
4257 }
4258
ffe8690c
KX
4259 /*
4260 * If the event is currently on this CPU, its either a per-task event,
4261 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4262 * oncpu == -1).
4263 */
4264 if (event->oncpu == smp_processor_id())
4265 event->pmu->read(event);
4266
f91840a3 4267 *value = local64_read(&event->count);
0d3d73aa
PZ
4268 if (enabled || running) {
4269 u64 now = event->shadow_ctx_time + perf_clock();
4270 u64 __enabled, __running;
4271
4272 __perf_update_times(event, now, &__enabled, &__running);
4273 if (enabled)
4274 *enabled = __enabled;
4275 if (running)
4276 *running = __running;
4277 }
f91840a3 4278out:
ffe8690c
KX
4279 local_irq_restore(flags);
4280
f91840a3 4281 return ret;
ffe8690c
KX
4282}
4283
7d88962e 4284static int perf_event_read(struct perf_event *event, bool group)
0793a61d 4285{
0c1cbc18 4286 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 4287 int event_cpu, ret = 0;
7d88962e 4288
0793a61d 4289 /*
cdd6c482
IM
4290 * If event is enabled and currently active on a CPU, update the
4291 * value in the event structure:
0793a61d 4292 */
0c1cbc18
PZ
4293again:
4294 if (state == PERF_EVENT_STATE_ACTIVE) {
4295 struct perf_read_data data;
4296
4297 /*
4298 * Orders the ->state and ->oncpu loads such that if we see
4299 * ACTIVE we must also see the right ->oncpu.
4300 *
4301 * Matches the smp_wmb() from event_sched_in().
4302 */
4303 smp_rmb();
d6a2f903 4304
451d24d1
PZ
4305 event_cpu = READ_ONCE(event->oncpu);
4306 if ((unsigned)event_cpu >= nr_cpu_ids)
4307 return 0;
4308
0c1cbc18
PZ
4309 data = (struct perf_read_data){
4310 .event = event,
4311 .group = group,
4312 .ret = 0,
4313 };
4314
451d24d1
PZ
4315 preempt_disable();
4316 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4317
58763148
PZ
4318 /*
4319 * Purposely ignore the smp_call_function_single() return
4320 * value.
4321 *
451d24d1 4322 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4323 * scheduled out and that will have updated the event count.
4324 *
4325 * Therefore, either way, we'll have an up-to-date event count
4326 * after this.
4327 */
451d24d1
PZ
4328 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4329 preempt_enable();
58763148 4330 ret = data.ret;
0c1cbc18
PZ
4331
4332 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4333 struct perf_event_context *ctx = event->ctx;
4334 unsigned long flags;
4335
e625cce1 4336 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4337 state = event->state;
4338 if (state != PERF_EVENT_STATE_INACTIVE) {
4339 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4340 goto again;
4341 }
4342
c530ccd9 4343 /*
0c1cbc18
PZ
4344 * May read while context is not active (e.g., thread is
4345 * blocked), in that case we cannot update context time
c530ccd9 4346 */
0c1cbc18 4347 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4348 update_context_time(ctx);
e5d1367f
SE
4349 update_cgrp_time_from_event(event);
4350 }
0c1cbc18 4351
0d3d73aa 4352 perf_event_update_time(event);
0492d4c5 4353 if (group)
0d3d73aa 4354 perf_event_update_sibling_time(event);
e625cce1 4355 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4356 }
7d88962e
SB
4357
4358 return ret;
0793a61d
TG
4359}
4360
a63eaf34 4361/*
cdd6c482 4362 * Initialize the perf_event context in a task_struct:
a63eaf34 4363 */
eb184479 4364static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4365{
e625cce1 4366 raw_spin_lock_init(&ctx->lock);
a63eaf34 4367 mutex_init(&ctx->mutex);
2fde4f94 4368 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4369 perf_event_groups_init(&ctx->pinned_groups);
4370 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4371 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4372 INIT_LIST_HEAD(&ctx->pinned_active);
4373 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4374 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4375}
4376
4377static struct perf_event_context *
4378alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4379{
4380 struct perf_event_context *ctx;
4381
4382 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4383 if (!ctx)
4384 return NULL;
4385
4386 __perf_event_init_context(ctx);
7b3c92b8
MWO
4387 if (task)
4388 ctx->task = get_task_struct(task);
eb184479
PZ
4389 ctx->pmu = pmu;
4390
4391 return ctx;
a63eaf34
PM
4392}
4393
2ebd4ffb
MH
4394static struct task_struct *
4395find_lively_task_by_vpid(pid_t vpid)
4396{
4397 struct task_struct *task;
0793a61d
TG
4398
4399 rcu_read_lock();
2ebd4ffb 4400 if (!vpid)
0793a61d
TG
4401 task = current;
4402 else
2ebd4ffb 4403 task = find_task_by_vpid(vpid);
0793a61d
TG
4404 if (task)
4405 get_task_struct(task);
4406 rcu_read_unlock();
4407
4408 if (!task)
4409 return ERR_PTR(-ESRCH);
4410
2ebd4ffb 4411 return task;
2ebd4ffb
MH
4412}
4413
fe4b04fa
PZ
4414/*
4415 * Returns a matching context with refcount and pincount.
4416 */
108b02cf 4417static struct perf_event_context *
4af57ef2
YZ
4418find_get_context(struct pmu *pmu, struct task_struct *task,
4419 struct perf_event *event)
0793a61d 4420{
211de6eb 4421 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4422 struct perf_cpu_context *cpuctx;
4af57ef2 4423 void *task_ctx_data = NULL;
25346b93 4424 unsigned long flags;
8dc85d54 4425 int ctxn, err;
4af57ef2 4426 int cpu = event->cpu;
0793a61d 4427
22a4ec72 4428 if (!task) {
cdd6c482 4429 /* Must be root to operate on a CPU event: */
da97e184
JFG
4430 err = perf_allow_cpu(&event->attr);
4431 if (err)
4432 return ERR_PTR(err);
0793a61d 4433
108b02cf 4434 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4435 ctx = &cpuctx->ctx;
c93f7669 4436 get_ctx(ctx);
fe4b04fa 4437 ++ctx->pin_count;
0793a61d 4438
0793a61d
TG
4439 return ctx;
4440 }
4441
8dc85d54
PZ
4442 err = -EINVAL;
4443 ctxn = pmu->task_ctx_nr;
4444 if (ctxn < 0)
4445 goto errout;
4446
4af57ef2
YZ
4447 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4448 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4449 if (!task_ctx_data) {
4450 err = -ENOMEM;
4451 goto errout;
4452 }
4453 }
4454
9ed6060d 4455retry:
8dc85d54 4456 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4457 if (ctx) {
211de6eb 4458 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4459 ++ctx->pin_count;
4af57ef2
YZ
4460
4461 if (task_ctx_data && !ctx->task_ctx_data) {
4462 ctx->task_ctx_data = task_ctx_data;
4463 task_ctx_data = NULL;
4464 }
e625cce1 4465 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4466
4467 if (clone_ctx)
4468 put_ctx(clone_ctx);
9137fb28 4469 } else {
eb184479 4470 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4471 err = -ENOMEM;
4472 if (!ctx)
4473 goto errout;
eb184479 4474
4af57ef2
YZ
4475 if (task_ctx_data) {
4476 ctx->task_ctx_data = task_ctx_data;
4477 task_ctx_data = NULL;
4478 }
4479
dbe08d82
ON
4480 err = 0;
4481 mutex_lock(&task->perf_event_mutex);
4482 /*
4483 * If it has already passed perf_event_exit_task().
4484 * we must see PF_EXITING, it takes this mutex too.
4485 */
4486 if (task->flags & PF_EXITING)
4487 err = -ESRCH;
4488 else if (task->perf_event_ctxp[ctxn])
4489 err = -EAGAIN;
fe4b04fa 4490 else {
9137fb28 4491 get_ctx(ctx);
fe4b04fa 4492 ++ctx->pin_count;
dbe08d82 4493 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4494 }
dbe08d82
ON
4495 mutex_unlock(&task->perf_event_mutex);
4496
4497 if (unlikely(err)) {
9137fb28 4498 put_ctx(ctx);
dbe08d82
ON
4499
4500 if (err == -EAGAIN)
4501 goto retry;
4502 goto errout;
a63eaf34
PM
4503 }
4504 }
4505
4af57ef2 4506 kfree(task_ctx_data);
0793a61d 4507 return ctx;
c93f7669 4508
9ed6060d 4509errout:
4af57ef2 4510 kfree(task_ctx_data);
c93f7669 4511 return ERR_PTR(err);
0793a61d
TG
4512}
4513
6fb2915d 4514static void perf_event_free_filter(struct perf_event *event);
2541517c 4515static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4516
cdd6c482 4517static void free_event_rcu(struct rcu_head *head)
592903cd 4518{
cdd6c482 4519 struct perf_event *event;
592903cd 4520
cdd6c482
IM
4521 event = container_of(head, struct perf_event, rcu_head);
4522 if (event->ns)
4523 put_pid_ns(event->ns);
6fb2915d 4524 perf_event_free_filter(event);
cdd6c482 4525 kfree(event);
592903cd
PZ
4526}
4527
b69cf536 4528static void ring_buffer_attach(struct perf_event *event,
56de4e8f 4529 struct perf_buffer *rb);
925d519a 4530
f2fb6bef
KL
4531static void detach_sb_event(struct perf_event *event)
4532{
4533 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4534
4535 raw_spin_lock(&pel->lock);
4536 list_del_rcu(&event->sb_list);
4537 raw_spin_unlock(&pel->lock);
4538}
4539
a4f144eb 4540static bool is_sb_event(struct perf_event *event)
f2fb6bef 4541{
a4f144eb
DCC
4542 struct perf_event_attr *attr = &event->attr;
4543
f2fb6bef 4544 if (event->parent)
a4f144eb 4545 return false;
f2fb6bef
KL
4546
4547 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4548 return false;
f2fb6bef 4549
a4f144eb
DCC
4550 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4551 attr->comm || attr->comm_exec ||
76193a94 4552 attr->task || attr->ksymbol ||
21038f2b
SL
4553 attr->context_switch ||
4554 attr->bpf_event)
a4f144eb
DCC
4555 return true;
4556 return false;
4557}
4558
4559static void unaccount_pmu_sb_event(struct perf_event *event)
4560{
4561 if (is_sb_event(event))
4562 detach_sb_event(event);
f2fb6bef
KL
4563}
4564
4beb31f3 4565static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4566{
4beb31f3
FW
4567 if (event->parent)
4568 return;
4569
4beb31f3
FW
4570 if (is_cgroup_event(event))
4571 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4572}
925d519a 4573
555e0c1e
FW
4574#ifdef CONFIG_NO_HZ_FULL
4575static DEFINE_SPINLOCK(nr_freq_lock);
4576#endif
4577
4578static void unaccount_freq_event_nohz(void)
4579{
4580#ifdef CONFIG_NO_HZ_FULL
4581 spin_lock(&nr_freq_lock);
4582 if (atomic_dec_and_test(&nr_freq_events))
4583 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4584 spin_unlock(&nr_freq_lock);
4585#endif
4586}
4587
4588static void unaccount_freq_event(void)
4589{
4590 if (tick_nohz_full_enabled())
4591 unaccount_freq_event_nohz();
4592 else
4593 atomic_dec(&nr_freq_events);
4594}
4595
4beb31f3
FW
4596static void unaccount_event(struct perf_event *event)
4597{
25432ae9
PZ
4598 bool dec = false;
4599
4beb31f3
FW
4600 if (event->parent)
4601 return;
4602
4603 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4604 dec = true;
4beb31f3
FW
4605 if (event->attr.mmap || event->attr.mmap_data)
4606 atomic_dec(&nr_mmap_events);
4607 if (event->attr.comm)
4608 atomic_dec(&nr_comm_events);
e4222673
HB
4609 if (event->attr.namespaces)
4610 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4611 if (event->attr.task)
4612 atomic_dec(&nr_task_events);
948b26b6 4613 if (event->attr.freq)
555e0c1e 4614 unaccount_freq_event();
45ac1403 4615 if (event->attr.context_switch) {
25432ae9 4616 dec = true;
45ac1403
AH
4617 atomic_dec(&nr_switch_events);
4618 }
4beb31f3 4619 if (is_cgroup_event(event))
25432ae9 4620 dec = true;
4beb31f3 4621 if (has_branch_stack(event))
25432ae9 4622 dec = true;
76193a94
SL
4623 if (event->attr.ksymbol)
4624 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4625 if (event->attr.bpf_event)
4626 atomic_dec(&nr_bpf_events);
25432ae9 4627
9107c89e
PZ
4628 if (dec) {
4629 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4630 schedule_delayed_work(&perf_sched_work, HZ);
4631 }
4beb31f3
FW
4632
4633 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4634
4635 unaccount_pmu_sb_event(event);
4beb31f3 4636}
925d519a 4637
9107c89e
PZ
4638static void perf_sched_delayed(struct work_struct *work)
4639{
4640 mutex_lock(&perf_sched_mutex);
4641 if (atomic_dec_and_test(&perf_sched_count))
4642 static_branch_disable(&perf_sched_events);
4643 mutex_unlock(&perf_sched_mutex);
4644}
4645
bed5b25a
AS
4646/*
4647 * The following implement mutual exclusion of events on "exclusive" pmus
4648 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4649 * at a time, so we disallow creating events that might conflict, namely:
4650 *
4651 * 1) cpu-wide events in the presence of per-task events,
4652 * 2) per-task events in the presence of cpu-wide events,
4653 * 3) two matching events on the same context.
4654 *
4655 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4656 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4657 */
4658static int exclusive_event_init(struct perf_event *event)
4659{
4660 struct pmu *pmu = event->pmu;
4661
8a58ddae 4662 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4663 return 0;
4664
4665 /*
4666 * Prevent co-existence of per-task and cpu-wide events on the
4667 * same exclusive pmu.
4668 *
4669 * Negative pmu::exclusive_cnt means there are cpu-wide
4670 * events on this "exclusive" pmu, positive means there are
4671 * per-task events.
4672 *
4673 * Since this is called in perf_event_alloc() path, event::ctx
4674 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4675 * to mean "per-task event", because unlike other attach states it
4676 * never gets cleared.
4677 */
4678 if (event->attach_state & PERF_ATTACH_TASK) {
4679 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4680 return -EBUSY;
4681 } else {
4682 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4683 return -EBUSY;
4684 }
4685
4686 return 0;
4687}
4688
4689static void exclusive_event_destroy(struct perf_event *event)
4690{
4691 struct pmu *pmu = event->pmu;
4692
8a58ddae 4693 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4694 return;
4695
4696 /* see comment in exclusive_event_init() */
4697 if (event->attach_state & PERF_ATTACH_TASK)
4698 atomic_dec(&pmu->exclusive_cnt);
4699 else
4700 atomic_inc(&pmu->exclusive_cnt);
4701}
4702
4703static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4704{
3bf6215a 4705 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4706 (e1->cpu == e2->cpu ||
4707 e1->cpu == -1 ||
4708 e2->cpu == -1))
4709 return true;
4710 return false;
4711}
4712
bed5b25a
AS
4713static bool exclusive_event_installable(struct perf_event *event,
4714 struct perf_event_context *ctx)
4715{
4716 struct perf_event *iter_event;
4717 struct pmu *pmu = event->pmu;
4718
8a58ddae
AS
4719 lockdep_assert_held(&ctx->mutex);
4720
4721 if (!is_exclusive_pmu(pmu))
bed5b25a
AS
4722 return true;
4723
4724 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4725 if (exclusive_event_match(iter_event, event))
4726 return false;
4727 }
4728
4729 return true;
4730}
4731
375637bc
AS
4732static void perf_addr_filters_splice(struct perf_event *event,
4733 struct list_head *head);
4734
683ede43 4735static void _free_event(struct perf_event *event)
f1600952 4736{
e360adbe 4737 irq_work_sync(&event->pending);
925d519a 4738
4beb31f3 4739 unaccount_event(event);
9ee318a7 4740
da97e184
JFG
4741 security_perf_event_free(event);
4742
76369139 4743 if (event->rb) {
9bb5d40c
PZ
4744 /*
4745 * Can happen when we close an event with re-directed output.
4746 *
4747 * Since we have a 0 refcount, perf_mmap_close() will skip
4748 * over us; possibly making our ring_buffer_put() the last.
4749 */
4750 mutex_lock(&event->mmap_mutex);
b69cf536 4751 ring_buffer_attach(event, NULL);
9bb5d40c 4752 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4753 }
4754
e5d1367f
SE
4755 if (is_cgroup_event(event))
4756 perf_detach_cgroup(event);
4757
a0733e69
PZ
4758 if (!event->parent) {
4759 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4760 put_callchain_buffers();
4761 }
4762
4763 perf_event_free_bpf_prog(event);
375637bc 4764 perf_addr_filters_splice(event, NULL);
c60f83b8 4765 kfree(event->addr_filter_ranges);
a0733e69
PZ
4766
4767 if (event->destroy)
4768 event->destroy(event);
4769
1cf8dfe8
PZ
4770 /*
4771 * Must be after ->destroy(), due to uprobe_perf_close() using
4772 * hw.target.
4773 */
621b6d2e
PB
4774 if (event->hw.target)
4775 put_task_struct(event->hw.target);
4776
1cf8dfe8
PZ
4777 /*
4778 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4779 * all task references must be cleaned up.
4780 */
4781 if (event->ctx)
4782 put_ctx(event->ctx);
4783
62a92c8f
AS
4784 exclusive_event_destroy(event);
4785 module_put(event->pmu->module);
a0733e69
PZ
4786
4787 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4788}
4789
683ede43
PZ
4790/*
4791 * Used to free events which have a known refcount of 1, such as in error paths
4792 * where the event isn't exposed yet and inherited events.
4793 */
4794static void free_event(struct perf_event *event)
0793a61d 4795{
683ede43
PZ
4796 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4797 "unexpected event refcount: %ld; ptr=%p\n",
4798 atomic_long_read(&event->refcount), event)) {
4799 /* leak to avoid use-after-free */
4800 return;
4801 }
0793a61d 4802
683ede43 4803 _free_event(event);
0793a61d
TG
4804}
4805
a66a3052 4806/*
f8697762 4807 * Remove user event from the owner task.
a66a3052 4808 */
f8697762 4809static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4810{
8882135b 4811 struct task_struct *owner;
fb0459d7 4812
8882135b 4813 rcu_read_lock();
8882135b 4814 /*
f47c02c0
PZ
4815 * Matches the smp_store_release() in perf_event_exit_task(). If we
4816 * observe !owner it means the list deletion is complete and we can
4817 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4818 * owner->perf_event_mutex.
4819 */
506458ef 4820 owner = READ_ONCE(event->owner);
8882135b
PZ
4821 if (owner) {
4822 /*
4823 * Since delayed_put_task_struct() also drops the last
4824 * task reference we can safely take a new reference
4825 * while holding the rcu_read_lock().
4826 */
4827 get_task_struct(owner);
4828 }
4829 rcu_read_unlock();
4830
4831 if (owner) {
f63a8daa
PZ
4832 /*
4833 * If we're here through perf_event_exit_task() we're already
4834 * holding ctx->mutex which would be an inversion wrt. the
4835 * normal lock order.
4836 *
4837 * However we can safely take this lock because its the child
4838 * ctx->mutex.
4839 */
4840 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4841
8882135b
PZ
4842 /*
4843 * We have to re-check the event->owner field, if it is cleared
4844 * we raced with perf_event_exit_task(), acquiring the mutex
4845 * ensured they're done, and we can proceed with freeing the
4846 * event.
4847 */
f47c02c0 4848 if (event->owner) {
8882135b 4849 list_del_init(&event->owner_entry);
f47c02c0
PZ
4850 smp_store_release(&event->owner, NULL);
4851 }
8882135b
PZ
4852 mutex_unlock(&owner->perf_event_mutex);
4853 put_task_struct(owner);
4854 }
f8697762
JO
4855}
4856
f8697762
JO
4857static void put_event(struct perf_event *event)
4858{
f8697762
JO
4859 if (!atomic_long_dec_and_test(&event->refcount))
4860 return;
4861
c6e5b732
PZ
4862 _free_event(event);
4863}
4864
4865/*
4866 * Kill an event dead; while event:refcount will preserve the event
4867 * object, it will not preserve its functionality. Once the last 'user'
4868 * gives up the object, we'll destroy the thing.
4869 */
4870int perf_event_release_kernel(struct perf_event *event)
4871{
a4f4bb6d 4872 struct perf_event_context *ctx = event->ctx;
c6e5b732 4873 struct perf_event *child, *tmp;
82d94856 4874 LIST_HEAD(free_list);
c6e5b732 4875
a4f4bb6d
PZ
4876 /*
4877 * If we got here through err_file: fput(event_file); we will not have
4878 * attached to a context yet.
4879 */
4880 if (!ctx) {
4881 WARN_ON_ONCE(event->attach_state &
4882 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4883 goto no_ctx;
4884 }
4885
f8697762
JO
4886 if (!is_kernel_event(event))
4887 perf_remove_from_owner(event);
8882135b 4888
5fa7c8ec 4889 ctx = perf_event_ctx_lock(event);
a83fe28e 4890 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4891 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4892
a69b0ca4 4893 raw_spin_lock_irq(&ctx->lock);
683ede43 4894 /*
d8a8cfc7 4895 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4896 * anymore.
683ede43 4897 *
a69b0ca4
PZ
4898 * Anybody acquiring event->child_mutex after the below loop _must_
4899 * also see this, most importantly inherit_event() which will avoid
4900 * placing more children on the list.
683ede43 4901 *
c6e5b732
PZ
4902 * Thus this guarantees that we will in fact observe and kill _ALL_
4903 * child events.
683ede43 4904 */
a69b0ca4
PZ
4905 event->state = PERF_EVENT_STATE_DEAD;
4906 raw_spin_unlock_irq(&ctx->lock);
4907
4908 perf_event_ctx_unlock(event, ctx);
683ede43 4909
c6e5b732
PZ
4910again:
4911 mutex_lock(&event->child_mutex);
4912 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4913
c6e5b732
PZ
4914 /*
4915 * Cannot change, child events are not migrated, see the
4916 * comment with perf_event_ctx_lock_nested().
4917 */
506458ef 4918 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4919 /*
4920 * Since child_mutex nests inside ctx::mutex, we must jump
4921 * through hoops. We start by grabbing a reference on the ctx.
4922 *
4923 * Since the event cannot get freed while we hold the
4924 * child_mutex, the context must also exist and have a !0
4925 * reference count.
4926 */
4927 get_ctx(ctx);
4928
4929 /*
4930 * Now that we have a ctx ref, we can drop child_mutex, and
4931 * acquire ctx::mutex without fear of it going away. Then we
4932 * can re-acquire child_mutex.
4933 */
4934 mutex_unlock(&event->child_mutex);
4935 mutex_lock(&ctx->mutex);
4936 mutex_lock(&event->child_mutex);
4937
4938 /*
4939 * Now that we hold ctx::mutex and child_mutex, revalidate our
4940 * state, if child is still the first entry, it didn't get freed
4941 * and we can continue doing so.
4942 */
4943 tmp = list_first_entry_or_null(&event->child_list,
4944 struct perf_event, child_list);
4945 if (tmp == child) {
4946 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4947 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4948 /*
4949 * This matches the refcount bump in inherit_event();
4950 * this can't be the last reference.
4951 */
4952 put_event(event);
4953 }
4954
4955 mutex_unlock(&event->child_mutex);
4956 mutex_unlock(&ctx->mutex);
4957 put_ctx(ctx);
4958 goto again;
4959 }
4960 mutex_unlock(&event->child_mutex);
4961
82d94856 4962 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
1cf8dfe8
PZ
4963 void *var = &child->ctx->refcount;
4964
82d94856
PZ
4965 list_del(&child->child_list);
4966 free_event(child);
1cf8dfe8
PZ
4967
4968 /*
4969 * Wake any perf_event_free_task() waiting for this event to be
4970 * freed.
4971 */
4972 smp_mb(); /* pairs with wait_var_event() */
4973 wake_up_var(var);
82d94856
PZ
4974 }
4975
a4f4bb6d
PZ
4976no_ctx:
4977 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4978 return 0;
4979}
4980EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4981
8b10c5e2
PZ
4982/*
4983 * Called when the last reference to the file is gone.
4984 */
a6fa941d
AV
4985static int perf_release(struct inode *inode, struct file *file)
4986{
c6e5b732 4987 perf_event_release_kernel(file->private_data);
a6fa941d 4988 return 0;
fb0459d7 4989}
fb0459d7 4990
ca0dd44c 4991static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4992{
cdd6c482 4993 struct perf_event *child;
e53c0994
PZ
4994 u64 total = 0;
4995
59ed446f
PZ
4996 *enabled = 0;
4997 *running = 0;
4998
6f10581a 4999 mutex_lock(&event->child_mutex);
01add3ea 5000
7d88962e 5001 (void)perf_event_read(event, false);
01add3ea
SB
5002 total += perf_event_count(event);
5003
59ed446f
PZ
5004 *enabled += event->total_time_enabled +
5005 atomic64_read(&event->child_total_time_enabled);
5006 *running += event->total_time_running +
5007 atomic64_read(&event->child_total_time_running);
5008
5009 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 5010 (void)perf_event_read(child, false);
01add3ea 5011 total += perf_event_count(child);
59ed446f
PZ
5012 *enabled += child->total_time_enabled;
5013 *running += child->total_time_running;
5014 }
6f10581a 5015 mutex_unlock(&event->child_mutex);
e53c0994
PZ
5016
5017 return total;
5018}
ca0dd44c
PZ
5019
5020u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5021{
5022 struct perf_event_context *ctx;
5023 u64 count;
5024
5025 ctx = perf_event_ctx_lock(event);
5026 count = __perf_event_read_value(event, enabled, running);
5027 perf_event_ctx_unlock(event, ctx);
5028
5029 return count;
5030}
fb0459d7 5031EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 5032
7d88962e 5033static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 5034 u64 read_format, u64 *values)
3dab77fb 5035{
2aeb1883 5036 struct perf_event_context *ctx = leader->ctx;
fa8c2693 5037 struct perf_event *sub;
2aeb1883 5038 unsigned long flags;
fa8c2693 5039 int n = 1; /* skip @nr */
7d88962e 5040 int ret;
f63a8daa 5041
7d88962e
SB
5042 ret = perf_event_read(leader, true);
5043 if (ret)
5044 return ret;
abf4868b 5045
a9cd8194
PZ
5046 raw_spin_lock_irqsave(&ctx->lock, flags);
5047
fa8c2693
PZ
5048 /*
5049 * Since we co-schedule groups, {enabled,running} times of siblings
5050 * will be identical to those of the leader, so we only publish one
5051 * set.
5052 */
5053 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5054 values[n++] += leader->total_time_enabled +
5055 atomic64_read(&leader->child_total_time_enabled);
5056 }
3dab77fb 5057
fa8c2693
PZ
5058 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5059 values[n++] += leader->total_time_running +
5060 atomic64_read(&leader->child_total_time_running);
5061 }
5062
5063 /*
5064 * Write {count,id} tuples for every sibling.
5065 */
5066 values[n++] += perf_event_count(leader);
abf4868b
PZ
5067 if (read_format & PERF_FORMAT_ID)
5068 values[n++] = primary_event_id(leader);
3dab77fb 5069
edb39592 5070 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
5071 values[n++] += perf_event_count(sub);
5072 if (read_format & PERF_FORMAT_ID)
5073 values[n++] = primary_event_id(sub);
5074 }
7d88962e 5075
2aeb1883 5076 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 5077 return 0;
fa8c2693 5078}
3dab77fb 5079
fa8c2693
PZ
5080static int perf_read_group(struct perf_event *event,
5081 u64 read_format, char __user *buf)
5082{
5083 struct perf_event *leader = event->group_leader, *child;
5084 struct perf_event_context *ctx = leader->ctx;
7d88962e 5085 int ret;
fa8c2693 5086 u64 *values;
3dab77fb 5087
fa8c2693 5088 lockdep_assert_held(&ctx->mutex);
3dab77fb 5089
fa8c2693
PZ
5090 values = kzalloc(event->read_size, GFP_KERNEL);
5091 if (!values)
5092 return -ENOMEM;
3dab77fb 5093
fa8c2693
PZ
5094 values[0] = 1 + leader->nr_siblings;
5095
5096 /*
5097 * By locking the child_mutex of the leader we effectively
5098 * lock the child list of all siblings.. XXX explain how.
5099 */
5100 mutex_lock(&leader->child_mutex);
abf4868b 5101
7d88962e
SB
5102 ret = __perf_read_group_add(leader, read_format, values);
5103 if (ret)
5104 goto unlock;
5105
5106 list_for_each_entry(child, &leader->child_list, child_list) {
5107 ret = __perf_read_group_add(child, read_format, values);
5108 if (ret)
5109 goto unlock;
5110 }
abf4868b 5111
fa8c2693 5112 mutex_unlock(&leader->child_mutex);
abf4868b 5113
7d88962e 5114 ret = event->read_size;
fa8c2693
PZ
5115 if (copy_to_user(buf, values, event->read_size))
5116 ret = -EFAULT;
7d88962e 5117 goto out;
fa8c2693 5118
7d88962e
SB
5119unlock:
5120 mutex_unlock(&leader->child_mutex);
5121out:
fa8c2693 5122 kfree(values);
abf4868b 5123 return ret;
3dab77fb
PZ
5124}
5125
b15f495b 5126static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
5127 u64 read_format, char __user *buf)
5128{
59ed446f 5129 u64 enabled, running;
3dab77fb
PZ
5130 u64 values[4];
5131 int n = 0;
5132
ca0dd44c 5133 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
5134 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5135 values[n++] = enabled;
5136 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5137 values[n++] = running;
3dab77fb 5138 if (read_format & PERF_FORMAT_ID)
cdd6c482 5139 values[n++] = primary_event_id(event);
3dab77fb
PZ
5140
5141 if (copy_to_user(buf, values, n * sizeof(u64)))
5142 return -EFAULT;
5143
5144 return n * sizeof(u64);
5145}
5146
dc633982
JO
5147static bool is_event_hup(struct perf_event *event)
5148{
5149 bool no_children;
5150
a69b0ca4 5151 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
5152 return false;
5153
5154 mutex_lock(&event->child_mutex);
5155 no_children = list_empty(&event->child_list);
5156 mutex_unlock(&event->child_mutex);
5157 return no_children;
5158}
5159
0793a61d 5160/*
cdd6c482 5161 * Read the performance event - simple non blocking version for now
0793a61d
TG
5162 */
5163static ssize_t
b15f495b 5164__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 5165{
cdd6c482 5166 u64 read_format = event->attr.read_format;
3dab77fb 5167 int ret;
0793a61d 5168
3b6f9e5c 5169 /*
788faab7 5170 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
5171 * error state (i.e. because it was pinned but it couldn't be
5172 * scheduled on to the CPU at some point).
5173 */
cdd6c482 5174 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
5175 return 0;
5176
c320c7b7 5177 if (count < event->read_size)
3dab77fb
PZ
5178 return -ENOSPC;
5179
cdd6c482 5180 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 5181 if (read_format & PERF_FORMAT_GROUP)
b15f495b 5182 ret = perf_read_group(event, read_format, buf);
3dab77fb 5183 else
b15f495b 5184 ret = perf_read_one(event, read_format, buf);
0793a61d 5185
3dab77fb 5186 return ret;
0793a61d
TG
5187}
5188
0793a61d
TG
5189static ssize_t
5190perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5191{
cdd6c482 5192 struct perf_event *event = file->private_data;
f63a8daa
PZ
5193 struct perf_event_context *ctx;
5194 int ret;
0793a61d 5195
da97e184
JFG
5196 ret = security_perf_event_read(event);
5197 if (ret)
5198 return ret;
5199
f63a8daa 5200 ctx = perf_event_ctx_lock(event);
b15f495b 5201 ret = __perf_read(event, buf, count);
f63a8daa
PZ
5202 perf_event_ctx_unlock(event, ctx);
5203
5204 return ret;
0793a61d
TG
5205}
5206
9dd95748 5207static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 5208{
cdd6c482 5209 struct perf_event *event = file->private_data;
56de4e8f 5210 struct perf_buffer *rb;
a9a08845 5211 __poll_t events = EPOLLHUP;
c7138f37 5212
e708d7ad 5213 poll_wait(file, &event->waitq, wait);
179033b3 5214
dc633982 5215 if (is_event_hup(event))
179033b3 5216 return events;
c7138f37 5217
10c6db11 5218 /*
9bb5d40c
PZ
5219 * Pin the event->rb by taking event->mmap_mutex; otherwise
5220 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
5221 */
5222 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
5223 rb = event->rb;
5224 if (rb)
76369139 5225 events = atomic_xchg(&rb->poll, 0);
10c6db11 5226 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
5227 return events;
5228}
5229
f63a8daa 5230static void _perf_event_reset(struct perf_event *event)
6de6a7b9 5231{
7d88962e 5232 (void)perf_event_read(event, false);
e7850595 5233 local64_set(&event->count, 0);
cdd6c482 5234 perf_event_update_userpage(event);
3df5edad
PZ
5235}
5236
52ba4b0b
LX
5237/* Assume it's not an event with inherit set. */
5238u64 perf_event_pause(struct perf_event *event, bool reset)
5239{
5240 struct perf_event_context *ctx;
5241 u64 count;
5242
5243 ctx = perf_event_ctx_lock(event);
5244 WARN_ON_ONCE(event->attr.inherit);
5245 _perf_event_disable(event);
5246 count = local64_read(&event->count);
5247 if (reset)
5248 local64_set(&event->count, 0);
5249 perf_event_ctx_unlock(event, ctx);
5250
5251 return count;
5252}
5253EXPORT_SYMBOL_GPL(perf_event_pause);
5254
c93f7669 5255/*
cdd6c482
IM
5256 * Holding the top-level event's child_mutex means that any
5257 * descendant process that has inherited this event will block
8ba289b8 5258 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 5259 * task existence requirements of perf_event_enable/disable.
c93f7669 5260 */
cdd6c482
IM
5261static void perf_event_for_each_child(struct perf_event *event,
5262 void (*func)(struct perf_event *))
3df5edad 5263{
cdd6c482 5264 struct perf_event *child;
3df5edad 5265
cdd6c482 5266 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 5267
cdd6c482
IM
5268 mutex_lock(&event->child_mutex);
5269 func(event);
5270 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 5271 func(child);
cdd6c482 5272 mutex_unlock(&event->child_mutex);
3df5edad
PZ
5273}
5274
cdd6c482
IM
5275static void perf_event_for_each(struct perf_event *event,
5276 void (*func)(struct perf_event *))
3df5edad 5277{
cdd6c482
IM
5278 struct perf_event_context *ctx = event->ctx;
5279 struct perf_event *sibling;
3df5edad 5280
f63a8daa
PZ
5281 lockdep_assert_held(&ctx->mutex);
5282
cdd6c482 5283 event = event->group_leader;
75f937f2 5284
cdd6c482 5285 perf_event_for_each_child(event, func);
edb39592 5286 for_each_sibling_event(sibling, event)
724b6daa 5287 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
5288}
5289
fae3fde6
PZ
5290static void __perf_event_period(struct perf_event *event,
5291 struct perf_cpu_context *cpuctx,
5292 struct perf_event_context *ctx,
5293 void *info)
c7999c6f 5294{
fae3fde6 5295 u64 value = *((u64 *)info);
c7999c6f 5296 bool active;
08247e31 5297
cdd6c482 5298 if (event->attr.freq) {
cdd6c482 5299 event->attr.sample_freq = value;
08247e31 5300 } else {
cdd6c482
IM
5301 event->attr.sample_period = value;
5302 event->hw.sample_period = value;
08247e31 5303 }
bad7192b
PZ
5304
5305 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5306 if (active) {
5307 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
5308 /*
5309 * We could be throttled; unthrottle now to avoid the tick
5310 * trying to unthrottle while we already re-started the event.
5311 */
5312 if (event->hw.interrupts == MAX_INTERRUPTS) {
5313 event->hw.interrupts = 0;
5314 perf_log_throttle(event, 1);
5315 }
bad7192b
PZ
5316 event->pmu->stop(event, PERF_EF_UPDATE);
5317 }
5318
5319 local64_set(&event->hw.period_left, 0);
5320
5321 if (active) {
5322 event->pmu->start(event, PERF_EF_RELOAD);
5323 perf_pmu_enable(ctx->pmu);
5324 }
c7999c6f
PZ
5325}
5326
81ec3f3c
JO
5327static int perf_event_check_period(struct perf_event *event, u64 value)
5328{
5329 return event->pmu->check_period(event, value);
5330}
5331
3ca270fc 5332static int _perf_event_period(struct perf_event *event, u64 value)
c7999c6f 5333{
c7999c6f
PZ
5334 if (!is_sampling_event(event))
5335 return -EINVAL;
5336
c7999c6f
PZ
5337 if (!value)
5338 return -EINVAL;
5339
5340 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5341 return -EINVAL;
5342
81ec3f3c
JO
5343 if (perf_event_check_period(event, value))
5344 return -EINVAL;
5345
913a90bc
RB
5346 if (!event->attr.freq && (value & (1ULL << 63)))
5347 return -EINVAL;
5348
fae3fde6 5349 event_function_call(event, __perf_event_period, &value);
08247e31 5350
c7999c6f 5351 return 0;
08247e31
PZ
5352}
5353
3ca270fc
LX
5354int perf_event_period(struct perf_event *event, u64 value)
5355{
5356 struct perf_event_context *ctx;
5357 int ret;
5358
5359 ctx = perf_event_ctx_lock(event);
5360 ret = _perf_event_period(event, value);
5361 perf_event_ctx_unlock(event, ctx);
5362
5363 return ret;
5364}
5365EXPORT_SYMBOL_GPL(perf_event_period);
5366
ac9721f3
PZ
5367static const struct file_operations perf_fops;
5368
2903ff01 5369static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5370{
2903ff01
AV
5371 struct fd f = fdget(fd);
5372 if (!f.file)
5373 return -EBADF;
ac9721f3 5374
2903ff01
AV
5375 if (f.file->f_op != &perf_fops) {
5376 fdput(f);
5377 return -EBADF;
ac9721f3 5378 }
2903ff01
AV
5379 *p = f;
5380 return 0;
ac9721f3
PZ
5381}
5382
5383static int perf_event_set_output(struct perf_event *event,
5384 struct perf_event *output_event);
6fb2915d 5385static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5386static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5387static int perf_copy_attr(struct perf_event_attr __user *uattr,
5388 struct perf_event_attr *attr);
a4be7c27 5389
f63a8daa 5390static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5391{
cdd6c482 5392 void (*func)(struct perf_event *);
3df5edad 5393 u32 flags = arg;
d859e29f
PM
5394
5395 switch (cmd) {
cdd6c482 5396 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5397 func = _perf_event_enable;
d859e29f 5398 break;
cdd6c482 5399 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5400 func = _perf_event_disable;
79f14641 5401 break;
cdd6c482 5402 case PERF_EVENT_IOC_RESET:
f63a8daa 5403 func = _perf_event_reset;
6de6a7b9 5404 break;
3df5edad 5405
cdd6c482 5406 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5407 return _perf_event_refresh(event, arg);
08247e31 5408
cdd6c482 5409 case PERF_EVENT_IOC_PERIOD:
3ca270fc
LX
5410 {
5411 u64 value;
08247e31 5412
3ca270fc
LX
5413 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5414 return -EFAULT;
08247e31 5415
3ca270fc
LX
5416 return _perf_event_period(event, value);
5417 }
cf4957f1
JO
5418 case PERF_EVENT_IOC_ID:
5419 {
5420 u64 id = primary_event_id(event);
5421
5422 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5423 return -EFAULT;
5424 return 0;
5425 }
5426
cdd6c482 5427 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5428 {
ac9721f3 5429 int ret;
ac9721f3 5430 if (arg != -1) {
2903ff01
AV
5431 struct perf_event *output_event;
5432 struct fd output;
5433 ret = perf_fget_light(arg, &output);
5434 if (ret)
5435 return ret;
5436 output_event = output.file->private_data;
5437 ret = perf_event_set_output(event, output_event);
5438 fdput(output);
5439 } else {
5440 ret = perf_event_set_output(event, NULL);
ac9721f3 5441 }
ac9721f3
PZ
5442 return ret;
5443 }
a4be7c27 5444
6fb2915d
LZ
5445 case PERF_EVENT_IOC_SET_FILTER:
5446 return perf_event_set_filter(event, (void __user *)arg);
5447
2541517c
AS
5448 case PERF_EVENT_IOC_SET_BPF:
5449 return perf_event_set_bpf_prog(event, arg);
5450
86e7972f 5451 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
56de4e8f 5452 struct perf_buffer *rb;
86e7972f
WN
5453
5454 rcu_read_lock();
5455 rb = rcu_dereference(event->rb);
5456 if (!rb || !rb->nr_pages) {
5457 rcu_read_unlock();
5458 return -EINVAL;
5459 }
5460 rb_toggle_paused(rb, !!arg);
5461 rcu_read_unlock();
5462 return 0;
5463 }
f371b304
YS
5464
5465 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5466 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5467
5468 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5469 struct perf_event_attr new_attr;
5470 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5471 &new_attr);
5472
5473 if (err)
5474 return err;
5475
5476 return perf_event_modify_attr(event, &new_attr);
5477 }
d859e29f 5478 default:
3df5edad 5479 return -ENOTTY;
d859e29f 5480 }
3df5edad
PZ
5481
5482 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5483 perf_event_for_each(event, func);
3df5edad 5484 else
cdd6c482 5485 perf_event_for_each_child(event, func);
3df5edad
PZ
5486
5487 return 0;
d859e29f
PM
5488}
5489
f63a8daa
PZ
5490static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5491{
5492 struct perf_event *event = file->private_data;
5493 struct perf_event_context *ctx;
5494 long ret;
5495
da97e184
JFG
5496 /* Treat ioctl like writes as it is likely a mutating operation. */
5497 ret = security_perf_event_write(event);
5498 if (ret)
5499 return ret;
5500
f63a8daa
PZ
5501 ctx = perf_event_ctx_lock(event);
5502 ret = _perf_ioctl(event, cmd, arg);
5503 perf_event_ctx_unlock(event, ctx);
5504
5505 return ret;
5506}
5507
b3f20785
PM
5508#ifdef CONFIG_COMPAT
5509static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5510 unsigned long arg)
5511{
5512 switch (_IOC_NR(cmd)) {
5513 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5514 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5515 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5516 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5517 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5518 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5519 cmd &= ~IOCSIZE_MASK;
5520 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5521 }
5522 break;
5523 }
5524 return perf_ioctl(file, cmd, arg);
5525}
5526#else
5527# define perf_compat_ioctl NULL
5528#endif
5529
cdd6c482 5530int perf_event_task_enable(void)
771d7cde 5531{
f63a8daa 5532 struct perf_event_context *ctx;
cdd6c482 5533 struct perf_event *event;
771d7cde 5534
cdd6c482 5535 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5536 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5537 ctx = perf_event_ctx_lock(event);
5538 perf_event_for_each_child(event, _perf_event_enable);
5539 perf_event_ctx_unlock(event, ctx);
5540 }
cdd6c482 5541 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5542
5543 return 0;
5544}
5545
cdd6c482 5546int perf_event_task_disable(void)
771d7cde 5547{
f63a8daa 5548 struct perf_event_context *ctx;
cdd6c482 5549 struct perf_event *event;
771d7cde 5550
cdd6c482 5551 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5552 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5553 ctx = perf_event_ctx_lock(event);
5554 perf_event_for_each_child(event, _perf_event_disable);
5555 perf_event_ctx_unlock(event, ctx);
5556 }
cdd6c482 5557 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5558
5559 return 0;
5560}
5561
cdd6c482 5562static int perf_event_index(struct perf_event *event)
194002b2 5563{
a4eaf7f1
PZ
5564 if (event->hw.state & PERF_HES_STOPPED)
5565 return 0;
5566
cdd6c482 5567 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5568 return 0;
5569
35edc2a5 5570 return event->pmu->event_idx(event);
194002b2
PZ
5571}
5572
c4794295 5573static void calc_timer_values(struct perf_event *event,
e3f3541c 5574 u64 *now,
7f310a5d
EM
5575 u64 *enabled,
5576 u64 *running)
c4794295 5577{
e3f3541c 5578 u64 ctx_time;
c4794295 5579
e3f3541c
PZ
5580 *now = perf_clock();
5581 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5582 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5583}
5584
fa731587
PZ
5585static void perf_event_init_userpage(struct perf_event *event)
5586{
5587 struct perf_event_mmap_page *userpg;
56de4e8f 5588 struct perf_buffer *rb;
fa731587
PZ
5589
5590 rcu_read_lock();
5591 rb = rcu_dereference(event->rb);
5592 if (!rb)
5593 goto unlock;
5594
5595 userpg = rb->user_page;
5596
5597 /* Allow new userspace to detect that bit 0 is deprecated */
5598 userpg->cap_bit0_is_deprecated = 1;
5599 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5600 userpg->data_offset = PAGE_SIZE;
5601 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5602
5603unlock:
5604 rcu_read_unlock();
5605}
5606
c1317ec2
AL
5607void __weak arch_perf_update_userpage(
5608 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5609{
5610}
5611
38ff667b
PZ
5612/*
5613 * Callers need to ensure there can be no nesting of this function, otherwise
5614 * the seqlock logic goes bad. We can not serialize this because the arch
5615 * code calls this from NMI context.
5616 */
cdd6c482 5617void perf_event_update_userpage(struct perf_event *event)
37d81828 5618{
cdd6c482 5619 struct perf_event_mmap_page *userpg;
56de4e8f 5620 struct perf_buffer *rb;
e3f3541c 5621 u64 enabled, running, now;
38ff667b
PZ
5622
5623 rcu_read_lock();
5ec4c599
PZ
5624 rb = rcu_dereference(event->rb);
5625 if (!rb)
5626 goto unlock;
5627
0d641208
EM
5628 /*
5629 * compute total_time_enabled, total_time_running
5630 * based on snapshot values taken when the event
5631 * was last scheduled in.
5632 *
5633 * we cannot simply called update_context_time()
5634 * because of locking issue as we can be called in
5635 * NMI context
5636 */
e3f3541c 5637 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5638
76369139 5639 userpg = rb->user_page;
7b732a75 5640 /*
9d2dcc8f
MF
5641 * Disable preemption to guarantee consistent time stamps are stored to
5642 * the user page.
7b732a75
PZ
5643 */
5644 preempt_disable();
37d81828 5645 ++userpg->lock;
92f22a38 5646 barrier();
cdd6c482 5647 userpg->index = perf_event_index(event);
b5e58793 5648 userpg->offset = perf_event_count(event);
365a4038 5649 if (userpg->index)
e7850595 5650 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5651
0d641208 5652 userpg->time_enabled = enabled +
cdd6c482 5653 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5654
0d641208 5655 userpg->time_running = running +
cdd6c482 5656 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5657
c1317ec2 5658 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5659
92f22a38 5660 barrier();
37d81828 5661 ++userpg->lock;
7b732a75 5662 preempt_enable();
38ff667b 5663unlock:
7b732a75 5664 rcu_read_unlock();
37d81828 5665}
82975c46 5666EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5667
9e3ed2d7 5668static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5669{
11bac800 5670 struct perf_event *event = vmf->vma->vm_file->private_data;
56de4e8f 5671 struct perf_buffer *rb;
9e3ed2d7 5672 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5673
5674 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5675 if (vmf->pgoff == 0)
5676 ret = 0;
5677 return ret;
5678 }
5679
5680 rcu_read_lock();
76369139
FW
5681 rb = rcu_dereference(event->rb);
5682 if (!rb)
906010b2
PZ
5683 goto unlock;
5684
5685 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5686 goto unlock;
5687
76369139 5688 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5689 if (!vmf->page)
5690 goto unlock;
5691
5692 get_page(vmf->page);
11bac800 5693 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5694 vmf->page->index = vmf->pgoff;
5695
5696 ret = 0;
5697unlock:
5698 rcu_read_unlock();
5699
5700 return ret;
5701}
5702
10c6db11 5703static void ring_buffer_attach(struct perf_event *event,
56de4e8f 5704 struct perf_buffer *rb)
10c6db11 5705{
56de4e8f 5706 struct perf_buffer *old_rb = NULL;
10c6db11
PZ
5707 unsigned long flags;
5708
b69cf536
PZ
5709 if (event->rb) {
5710 /*
5711 * Should be impossible, we set this when removing
5712 * event->rb_entry and wait/clear when adding event->rb_entry.
5713 */
5714 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5715
b69cf536 5716 old_rb = event->rb;
b69cf536
PZ
5717 spin_lock_irqsave(&old_rb->event_lock, flags);
5718 list_del_rcu(&event->rb_entry);
5719 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5720
2f993cf0
ON
5721 event->rcu_batches = get_state_synchronize_rcu();
5722 event->rcu_pending = 1;
b69cf536 5723 }
10c6db11 5724
b69cf536 5725 if (rb) {
2f993cf0
ON
5726 if (event->rcu_pending) {
5727 cond_synchronize_rcu(event->rcu_batches);
5728 event->rcu_pending = 0;
5729 }
5730
b69cf536
PZ
5731 spin_lock_irqsave(&rb->event_lock, flags);
5732 list_add_rcu(&event->rb_entry, &rb->event_list);
5733 spin_unlock_irqrestore(&rb->event_lock, flags);
5734 }
5735
767ae086
AS
5736 /*
5737 * Avoid racing with perf_mmap_close(AUX): stop the event
5738 * before swizzling the event::rb pointer; if it's getting
5739 * unmapped, its aux_mmap_count will be 0 and it won't
5740 * restart. See the comment in __perf_pmu_output_stop().
5741 *
5742 * Data will inevitably be lost when set_output is done in
5743 * mid-air, but then again, whoever does it like this is
5744 * not in for the data anyway.
5745 */
5746 if (has_aux(event))
5747 perf_event_stop(event, 0);
5748
b69cf536
PZ
5749 rcu_assign_pointer(event->rb, rb);
5750
5751 if (old_rb) {
5752 ring_buffer_put(old_rb);
5753 /*
5754 * Since we detached before setting the new rb, so that we
5755 * could attach the new rb, we could have missed a wakeup.
5756 * Provide it now.
5757 */
5758 wake_up_all(&event->waitq);
5759 }
10c6db11
PZ
5760}
5761
5762static void ring_buffer_wakeup(struct perf_event *event)
5763{
56de4e8f 5764 struct perf_buffer *rb;
10c6db11
PZ
5765
5766 rcu_read_lock();
5767 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5768 if (rb) {
5769 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5770 wake_up_all(&event->waitq);
5771 }
10c6db11
PZ
5772 rcu_read_unlock();
5773}
5774
56de4e8f 5775struct perf_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5776{
56de4e8f 5777 struct perf_buffer *rb;
7b732a75 5778
ac9721f3 5779 rcu_read_lock();
76369139
FW
5780 rb = rcu_dereference(event->rb);
5781 if (rb) {
fecb8ed2 5782 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5783 rb = NULL;
ac9721f3
PZ
5784 }
5785 rcu_read_unlock();
5786
76369139 5787 return rb;
ac9721f3
PZ
5788}
5789
56de4e8f 5790void ring_buffer_put(struct perf_buffer *rb)
ac9721f3 5791{
fecb8ed2 5792 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5793 return;
7b732a75 5794
9bb5d40c 5795 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5796
76369139 5797 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5798}
5799
5800static void perf_mmap_open(struct vm_area_struct *vma)
5801{
cdd6c482 5802 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5803
cdd6c482 5804 atomic_inc(&event->mmap_count);
9bb5d40c 5805 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5806
45bfb2e5
PZ
5807 if (vma->vm_pgoff)
5808 atomic_inc(&event->rb->aux_mmap_count);
5809
1e0fb9ec 5810 if (event->pmu->event_mapped)
bfe33492 5811 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5812}
5813
95ff4ca2
AS
5814static void perf_pmu_output_stop(struct perf_event *event);
5815
9bb5d40c
PZ
5816/*
5817 * A buffer can be mmap()ed multiple times; either directly through the same
5818 * event, or through other events by use of perf_event_set_output().
5819 *
5820 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5821 * the buffer here, where we still have a VM context. This means we need
5822 * to detach all events redirecting to us.
5823 */
7b732a75
PZ
5824static void perf_mmap_close(struct vm_area_struct *vma)
5825{
cdd6c482 5826 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5827
56de4e8f 5828 struct perf_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5829 struct user_struct *mmap_user = rb->mmap_user;
5830 int mmap_locked = rb->mmap_locked;
5831 unsigned long size = perf_data_size(rb);
789f90fc 5832
1e0fb9ec 5833 if (event->pmu->event_unmapped)
bfe33492 5834 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5835
45bfb2e5
PZ
5836 /*
5837 * rb->aux_mmap_count will always drop before rb->mmap_count and
5838 * event->mmap_count, so it is ok to use event->mmap_mutex to
5839 * serialize with perf_mmap here.
5840 */
5841 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5842 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5843 /*
5844 * Stop all AUX events that are writing to this buffer,
5845 * so that we can free its AUX pages and corresponding PMU
5846 * data. Note that after rb::aux_mmap_count dropped to zero,
5847 * they won't start any more (see perf_aux_output_begin()).
5848 */
5849 perf_pmu_output_stop(event);
5850
5851 /* now it's safe to free the pages */
36b3db03
AS
5852 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5853 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5854
95ff4ca2 5855 /* this has to be the last one */
45bfb2e5 5856 rb_free_aux(rb);
ca3bb3d0 5857 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5858
45bfb2e5
PZ
5859 mutex_unlock(&event->mmap_mutex);
5860 }
5861
9bb5d40c
PZ
5862 atomic_dec(&rb->mmap_count);
5863
5864 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5865 goto out_put;
9bb5d40c 5866
b69cf536 5867 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5868 mutex_unlock(&event->mmap_mutex);
5869
5870 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5871 if (atomic_read(&rb->mmap_count))
5872 goto out_put;
ac9721f3 5873
9bb5d40c
PZ
5874 /*
5875 * No other mmap()s, detach from all other events that might redirect
5876 * into the now unreachable buffer. Somewhat complicated by the
5877 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5878 */
5879again:
5880 rcu_read_lock();
5881 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5882 if (!atomic_long_inc_not_zero(&event->refcount)) {
5883 /*
5884 * This event is en-route to free_event() which will
5885 * detach it and remove it from the list.
5886 */
5887 continue;
5888 }
5889 rcu_read_unlock();
789f90fc 5890
9bb5d40c
PZ
5891 mutex_lock(&event->mmap_mutex);
5892 /*
5893 * Check we didn't race with perf_event_set_output() which can
5894 * swizzle the rb from under us while we were waiting to
5895 * acquire mmap_mutex.
5896 *
5897 * If we find a different rb; ignore this event, a next
5898 * iteration will no longer find it on the list. We have to
5899 * still restart the iteration to make sure we're not now
5900 * iterating the wrong list.
5901 */
b69cf536
PZ
5902 if (event->rb == rb)
5903 ring_buffer_attach(event, NULL);
5904
cdd6c482 5905 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5906 put_event(event);
ac9721f3 5907
9bb5d40c
PZ
5908 /*
5909 * Restart the iteration; either we're on the wrong list or
5910 * destroyed its integrity by doing a deletion.
5911 */
5912 goto again;
7b732a75 5913 }
9bb5d40c
PZ
5914 rcu_read_unlock();
5915
5916 /*
5917 * It could be there's still a few 0-ref events on the list; they'll
5918 * get cleaned up by free_event() -- they'll also still have their
5919 * ref on the rb and will free it whenever they are done with it.
5920 *
5921 * Aside from that, this buffer is 'fully' detached and unmapped,
5922 * undo the VM accounting.
5923 */
5924
d44248a4
SL
5925 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5926 &mmap_user->locked_vm);
70f8a3ca 5927 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5928 free_uid(mmap_user);
5929
b69cf536 5930out_put:
9bb5d40c 5931 ring_buffer_put(rb); /* could be last */
37d81828
PM
5932}
5933
f0f37e2f 5934static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5935 .open = perf_mmap_open,
fca0c116 5936 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5937 .fault = perf_mmap_fault,
5938 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5939};
5940
5941static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5942{
cdd6c482 5943 struct perf_event *event = file->private_data;
22a4f650 5944 unsigned long user_locked, user_lock_limit;
789f90fc 5945 struct user_struct *user = current_user();
56de4e8f 5946 struct perf_buffer *rb = NULL;
22a4f650 5947 unsigned long locked, lock_limit;
7b732a75
PZ
5948 unsigned long vma_size;
5949 unsigned long nr_pages;
45bfb2e5 5950 long user_extra = 0, extra = 0;
d57e34fd 5951 int ret = 0, flags = 0;
37d81828 5952
c7920614
PZ
5953 /*
5954 * Don't allow mmap() of inherited per-task counters. This would
5955 * create a performance issue due to all children writing to the
76369139 5956 * same rb.
c7920614
PZ
5957 */
5958 if (event->cpu == -1 && event->attr.inherit)
5959 return -EINVAL;
5960
43a21ea8 5961 if (!(vma->vm_flags & VM_SHARED))
37d81828 5962 return -EINVAL;
7b732a75 5963
da97e184
JFG
5964 ret = security_perf_event_read(event);
5965 if (ret)
5966 return ret;
5967
7b732a75 5968 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5969
5970 if (vma->vm_pgoff == 0) {
5971 nr_pages = (vma_size / PAGE_SIZE) - 1;
5972 } else {
5973 /*
5974 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5975 * mapped, all subsequent mappings should have the same size
5976 * and offset. Must be above the normal perf buffer.
5977 */
5978 u64 aux_offset, aux_size;
5979
5980 if (!event->rb)
5981 return -EINVAL;
5982
5983 nr_pages = vma_size / PAGE_SIZE;
5984
5985 mutex_lock(&event->mmap_mutex);
5986 ret = -EINVAL;
5987
5988 rb = event->rb;
5989 if (!rb)
5990 goto aux_unlock;
5991
6aa7de05
MR
5992 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5993 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5994
5995 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5996 goto aux_unlock;
5997
5998 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5999 goto aux_unlock;
6000
6001 /* already mapped with a different offset */
6002 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6003 goto aux_unlock;
6004
6005 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6006 goto aux_unlock;
6007
6008 /* already mapped with a different size */
6009 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6010 goto aux_unlock;
6011
6012 if (!is_power_of_2(nr_pages))
6013 goto aux_unlock;
6014
6015 if (!atomic_inc_not_zero(&rb->mmap_count))
6016 goto aux_unlock;
6017
6018 if (rb_has_aux(rb)) {
6019 atomic_inc(&rb->aux_mmap_count);
6020 ret = 0;
6021 goto unlock;
6022 }
6023
6024 atomic_set(&rb->aux_mmap_count, 1);
6025 user_extra = nr_pages;
6026
6027 goto accounting;
6028 }
7b732a75 6029
7730d865 6030 /*
76369139 6031 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
6032 * can do bitmasks instead of modulo.
6033 */
2ed11312 6034 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
6035 return -EINVAL;
6036
7b732a75 6037 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
6038 return -EINVAL;
6039
cdd6c482 6040 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 6041again:
cdd6c482 6042 mutex_lock(&event->mmap_mutex);
76369139 6043 if (event->rb) {
9bb5d40c 6044 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 6045 ret = -EINVAL;
9bb5d40c
PZ
6046 goto unlock;
6047 }
6048
6049 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6050 /*
6051 * Raced against perf_mmap_close() through
6052 * perf_event_set_output(). Try again, hope for better
6053 * luck.
6054 */
6055 mutex_unlock(&event->mmap_mutex);
6056 goto again;
6057 }
6058
ebb3c4c4
PZ
6059 goto unlock;
6060 }
6061
789f90fc 6062 user_extra = nr_pages + 1;
45bfb2e5
PZ
6063
6064accounting:
cdd6c482 6065 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
6066
6067 /*
6068 * Increase the limit linearly with more CPUs:
6069 */
6070 user_lock_limit *= num_online_cpus();
6071
00346155
SL
6072 user_locked = atomic_long_read(&user->locked_vm);
6073
6074 /*
6075 * sysctl_perf_event_mlock may have changed, so that
6076 * user->locked_vm > user_lock_limit
6077 */
6078 if (user_locked > user_lock_limit)
6079 user_locked = user_lock_limit;
6080 user_locked += user_extra;
c5078f78 6081
c4b75479 6082 if (user_locked > user_lock_limit) {
d44248a4
SL
6083 /*
6084 * charge locked_vm until it hits user_lock_limit;
6085 * charge the rest from pinned_vm
6086 */
789f90fc 6087 extra = user_locked - user_lock_limit;
d44248a4
SL
6088 user_extra -= extra;
6089 }
7b732a75 6090
78d7d407 6091 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 6092 lock_limit >>= PAGE_SHIFT;
70f8a3ca 6093 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 6094
da97e184 6095 if ((locked > lock_limit) && perf_is_paranoid() &&
459ec28a 6096 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
6097 ret = -EPERM;
6098 goto unlock;
6099 }
7b732a75 6100
45bfb2e5 6101 WARN_ON(!rb && event->rb);
906010b2 6102
d57e34fd 6103 if (vma->vm_flags & VM_WRITE)
76369139 6104 flags |= RING_BUFFER_WRITABLE;
d57e34fd 6105
76369139 6106 if (!rb) {
45bfb2e5
PZ
6107 rb = rb_alloc(nr_pages,
6108 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6109 event->cpu, flags);
26cb63ad 6110
45bfb2e5
PZ
6111 if (!rb) {
6112 ret = -ENOMEM;
6113 goto unlock;
6114 }
43a21ea8 6115
45bfb2e5
PZ
6116 atomic_set(&rb->mmap_count, 1);
6117 rb->mmap_user = get_current_user();
6118 rb->mmap_locked = extra;
26cb63ad 6119
45bfb2e5 6120 ring_buffer_attach(event, rb);
ac9721f3 6121
45bfb2e5
PZ
6122 perf_event_init_userpage(event);
6123 perf_event_update_userpage(event);
6124 } else {
1a594131
AS
6125 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6126 event->attr.aux_watermark, flags);
45bfb2e5
PZ
6127 if (!ret)
6128 rb->aux_mmap_locked = extra;
6129 }
9a0f05cb 6130
ebb3c4c4 6131unlock:
45bfb2e5
PZ
6132 if (!ret) {
6133 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 6134 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 6135
ac9721f3 6136 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
6137 } else if (rb) {
6138 atomic_dec(&rb->mmap_count);
6139 }
6140aux_unlock:
cdd6c482 6141 mutex_unlock(&event->mmap_mutex);
37d81828 6142
9bb5d40c
PZ
6143 /*
6144 * Since pinned accounting is per vm we cannot allow fork() to copy our
6145 * vma.
6146 */
26cb63ad 6147 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 6148 vma->vm_ops = &perf_mmap_vmops;
7b732a75 6149
1e0fb9ec 6150 if (event->pmu->event_mapped)
bfe33492 6151 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 6152
7b732a75 6153 return ret;
37d81828
PM
6154}
6155
3c446b3d
PZ
6156static int perf_fasync(int fd, struct file *filp, int on)
6157{
496ad9aa 6158 struct inode *inode = file_inode(filp);
cdd6c482 6159 struct perf_event *event = filp->private_data;
3c446b3d
PZ
6160 int retval;
6161
5955102c 6162 inode_lock(inode);
cdd6c482 6163 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 6164 inode_unlock(inode);
3c446b3d
PZ
6165
6166 if (retval < 0)
6167 return retval;
6168
6169 return 0;
6170}
6171
0793a61d 6172static const struct file_operations perf_fops = {
3326c1ce 6173 .llseek = no_llseek,
0793a61d
TG
6174 .release = perf_release,
6175 .read = perf_read,
6176 .poll = perf_poll,
d859e29f 6177 .unlocked_ioctl = perf_ioctl,
b3f20785 6178 .compat_ioctl = perf_compat_ioctl,
37d81828 6179 .mmap = perf_mmap,
3c446b3d 6180 .fasync = perf_fasync,
0793a61d
TG
6181};
6182
925d519a 6183/*
cdd6c482 6184 * Perf event wakeup
925d519a
PZ
6185 *
6186 * If there's data, ensure we set the poll() state and publish everything
6187 * to user-space before waking everybody up.
6188 */
6189
fed66e2c
PZ
6190static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6191{
6192 /* only the parent has fasync state */
6193 if (event->parent)
6194 event = event->parent;
6195 return &event->fasync;
6196}
6197
cdd6c482 6198void perf_event_wakeup(struct perf_event *event)
925d519a 6199{
10c6db11 6200 ring_buffer_wakeup(event);
4c9e2542 6201
cdd6c482 6202 if (event->pending_kill) {
fed66e2c 6203 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 6204 event->pending_kill = 0;
4c9e2542 6205 }
925d519a
PZ
6206}
6207
1d54ad94
PZ
6208static void perf_pending_event_disable(struct perf_event *event)
6209{
6210 int cpu = READ_ONCE(event->pending_disable);
6211
6212 if (cpu < 0)
6213 return;
6214
6215 if (cpu == smp_processor_id()) {
6216 WRITE_ONCE(event->pending_disable, -1);
6217 perf_event_disable_local(event);
6218 return;
6219 }
6220
6221 /*
6222 * CPU-A CPU-B
6223 *
6224 * perf_event_disable_inatomic()
6225 * @pending_disable = CPU-A;
6226 * irq_work_queue();
6227 *
6228 * sched-out
6229 * @pending_disable = -1;
6230 *
6231 * sched-in
6232 * perf_event_disable_inatomic()
6233 * @pending_disable = CPU-B;
6234 * irq_work_queue(); // FAILS
6235 *
6236 * irq_work_run()
6237 * perf_pending_event()
6238 *
6239 * But the event runs on CPU-B and wants disabling there.
6240 */
6241 irq_work_queue_on(&event->pending, cpu);
6242}
6243
e360adbe 6244static void perf_pending_event(struct irq_work *entry)
79f14641 6245{
1d54ad94 6246 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
6247 int rctx;
6248
6249 rctx = perf_swevent_get_recursion_context();
6250 /*
6251 * If we 'fail' here, that's OK, it means recursion is already disabled
6252 * and we won't recurse 'further'.
6253 */
79f14641 6254
1d54ad94 6255 perf_pending_event_disable(event);
79f14641 6256
cdd6c482
IM
6257 if (event->pending_wakeup) {
6258 event->pending_wakeup = 0;
6259 perf_event_wakeup(event);
79f14641 6260 }
d525211f
PZ
6261
6262 if (rctx >= 0)
6263 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
6264}
6265
39447b38
ZY
6266/*
6267 * We assume there is only KVM supporting the callbacks.
6268 * Later on, we might change it to a list if there is
6269 * another virtualization implementation supporting the callbacks.
6270 */
6271struct perf_guest_info_callbacks *perf_guest_cbs;
6272
6273int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6274{
6275 perf_guest_cbs = cbs;
6276 return 0;
6277}
6278EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6279
6280int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6281{
6282 perf_guest_cbs = NULL;
6283 return 0;
6284}
6285EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6286
4018994f
JO
6287static void
6288perf_output_sample_regs(struct perf_output_handle *handle,
6289 struct pt_regs *regs, u64 mask)
6290{
6291 int bit;
29dd3288 6292 DECLARE_BITMAP(_mask, 64);
4018994f 6293
29dd3288
MS
6294 bitmap_from_u64(_mask, mask);
6295 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
6296 u64 val;
6297
6298 val = perf_reg_value(regs, bit);
6299 perf_output_put(handle, val);
6300 }
6301}
6302
60e2364e 6303static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
6304 struct pt_regs *regs,
6305 struct pt_regs *regs_user_copy)
4018994f 6306{
88a7c26a
AL
6307 if (user_mode(regs)) {
6308 regs_user->abi = perf_reg_abi(current);
2565711f 6309 regs_user->regs = regs;
085ebfe9 6310 } else if (!(current->flags & PF_KTHREAD)) {
88a7c26a 6311 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
6312 } else {
6313 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6314 regs_user->regs = NULL;
4018994f
JO
6315 }
6316}
6317
60e2364e
SE
6318static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6319 struct pt_regs *regs)
6320{
6321 regs_intr->regs = regs;
6322 regs_intr->abi = perf_reg_abi(current);
6323}
6324
6325
c5ebcedb
JO
6326/*
6327 * Get remaining task size from user stack pointer.
6328 *
6329 * It'd be better to take stack vma map and limit this more
9f014e3a 6330 * precisely, but there's no way to get it safely under interrupt,
c5ebcedb
JO
6331 * so using TASK_SIZE as limit.
6332 */
6333static u64 perf_ustack_task_size(struct pt_regs *regs)
6334{
6335 unsigned long addr = perf_user_stack_pointer(regs);
6336
6337 if (!addr || addr >= TASK_SIZE)
6338 return 0;
6339
6340 return TASK_SIZE - addr;
6341}
6342
6343static u16
6344perf_sample_ustack_size(u16 stack_size, u16 header_size,
6345 struct pt_regs *regs)
6346{
6347 u64 task_size;
6348
6349 /* No regs, no stack pointer, no dump. */
6350 if (!regs)
6351 return 0;
6352
6353 /*
6354 * Check if we fit in with the requested stack size into the:
6355 * - TASK_SIZE
6356 * If we don't, we limit the size to the TASK_SIZE.
6357 *
6358 * - remaining sample size
6359 * If we don't, we customize the stack size to
6360 * fit in to the remaining sample size.
6361 */
6362
6363 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6364 stack_size = min(stack_size, (u16) task_size);
6365
6366 /* Current header size plus static size and dynamic size. */
6367 header_size += 2 * sizeof(u64);
6368
6369 /* Do we fit in with the current stack dump size? */
6370 if ((u16) (header_size + stack_size) < header_size) {
6371 /*
6372 * If we overflow the maximum size for the sample,
6373 * we customize the stack dump size to fit in.
6374 */
6375 stack_size = USHRT_MAX - header_size - sizeof(u64);
6376 stack_size = round_up(stack_size, sizeof(u64));
6377 }
6378
6379 return stack_size;
6380}
6381
6382static void
6383perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6384 struct pt_regs *regs)
6385{
6386 /* Case of a kernel thread, nothing to dump */
6387 if (!regs) {
6388 u64 size = 0;
6389 perf_output_put(handle, size);
6390 } else {
6391 unsigned long sp;
6392 unsigned int rem;
6393 u64 dyn_size;
02e18447 6394 mm_segment_t fs;
c5ebcedb
JO
6395
6396 /*
6397 * We dump:
6398 * static size
6399 * - the size requested by user or the best one we can fit
6400 * in to the sample max size
6401 * data
6402 * - user stack dump data
6403 * dynamic size
6404 * - the actual dumped size
6405 */
6406
6407 /* Static size. */
6408 perf_output_put(handle, dump_size);
6409
6410 /* Data. */
6411 sp = perf_user_stack_pointer(regs);
02e18447
YC
6412 fs = get_fs();
6413 set_fs(USER_DS);
c5ebcedb 6414 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6415 set_fs(fs);
c5ebcedb
JO
6416 dyn_size = dump_size - rem;
6417
6418 perf_output_skip(handle, rem);
6419
6420 /* Dynamic size. */
6421 perf_output_put(handle, dyn_size);
6422 }
6423}
6424
a4faf00d
AS
6425static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6426 struct perf_sample_data *data,
6427 size_t size)
6428{
6429 struct perf_event *sampler = event->aux_event;
56de4e8f 6430 struct perf_buffer *rb;
a4faf00d
AS
6431
6432 data->aux_size = 0;
6433
6434 if (!sampler)
6435 goto out;
6436
6437 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6438 goto out;
6439
6440 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6441 goto out;
6442
6443 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6444 if (!rb)
6445 goto out;
6446
6447 /*
6448 * If this is an NMI hit inside sampling code, don't take
6449 * the sample. See also perf_aux_sample_output().
6450 */
6451 if (READ_ONCE(rb->aux_in_sampling)) {
6452 data->aux_size = 0;
6453 } else {
6454 size = min_t(size_t, size, perf_aux_size(rb));
6455 data->aux_size = ALIGN(size, sizeof(u64));
6456 }
6457 ring_buffer_put(rb);
6458
6459out:
6460 return data->aux_size;
6461}
6462
56de4e8f 6463long perf_pmu_snapshot_aux(struct perf_buffer *rb,
a4faf00d
AS
6464 struct perf_event *event,
6465 struct perf_output_handle *handle,
6466 unsigned long size)
6467{
6468 unsigned long flags;
6469 long ret;
6470
6471 /*
6472 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6473 * paths. If we start calling them in NMI context, they may race with
6474 * the IRQ ones, that is, for example, re-starting an event that's just
6475 * been stopped, which is why we're using a separate callback that
6476 * doesn't change the event state.
6477 *
6478 * IRQs need to be disabled to prevent IPIs from racing with us.
6479 */
6480 local_irq_save(flags);
6481 /*
6482 * Guard against NMI hits inside the critical section;
6483 * see also perf_prepare_sample_aux().
6484 */
6485 WRITE_ONCE(rb->aux_in_sampling, 1);
6486 barrier();
6487
6488 ret = event->pmu->snapshot_aux(event, handle, size);
6489
6490 barrier();
6491 WRITE_ONCE(rb->aux_in_sampling, 0);
6492 local_irq_restore(flags);
6493
6494 return ret;
6495}
6496
6497static void perf_aux_sample_output(struct perf_event *event,
6498 struct perf_output_handle *handle,
6499 struct perf_sample_data *data)
6500{
6501 struct perf_event *sampler = event->aux_event;
56de4e8f 6502 struct perf_buffer *rb;
a4faf00d 6503 unsigned long pad;
a4faf00d
AS
6504 long size;
6505
6506 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6507 return;
6508
6509 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6510 if (!rb)
6511 return;
6512
6513 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6514
6515 /*
6516 * An error here means that perf_output_copy() failed (returned a
6517 * non-zero surplus that it didn't copy), which in its current
6518 * enlightened implementation is not possible. If that changes, we'd
6519 * like to know.
6520 */
6521 if (WARN_ON_ONCE(size < 0))
6522 goto out_put;
6523
6524 /*
6525 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6526 * perf_prepare_sample_aux(), so should not be more than that.
6527 */
6528 pad = data->aux_size - size;
6529 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6530 pad = 8;
6531
6532 if (pad) {
6533 u64 zero = 0;
6534 perf_output_copy(handle, &zero, pad);
6535 }
6536
6537out_put:
6538 ring_buffer_put(rb);
6539}
6540
c980d109
ACM
6541static void __perf_event_header__init_id(struct perf_event_header *header,
6542 struct perf_sample_data *data,
6543 struct perf_event *event)
6844c09d
ACM
6544{
6545 u64 sample_type = event->attr.sample_type;
6546
6547 data->type = sample_type;
6548 header->size += event->id_header_size;
6549
6550 if (sample_type & PERF_SAMPLE_TID) {
6551 /* namespace issues */
6552 data->tid_entry.pid = perf_event_pid(event, current);
6553 data->tid_entry.tid = perf_event_tid(event, current);
6554 }
6555
6556 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6557 data->time = perf_event_clock(event);
6844c09d 6558
ff3d527c 6559 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6560 data->id = primary_event_id(event);
6561
6562 if (sample_type & PERF_SAMPLE_STREAM_ID)
6563 data->stream_id = event->id;
6564
6565 if (sample_type & PERF_SAMPLE_CPU) {
6566 data->cpu_entry.cpu = raw_smp_processor_id();
6567 data->cpu_entry.reserved = 0;
6568 }
6569}
6570
76369139
FW
6571void perf_event_header__init_id(struct perf_event_header *header,
6572 struct perf_sample_data *data,
6573 struct perf_event *event)
c980d109
ACM
6574{
6575 if (event->attr.sample_id_all)
6576 __perf_event_header__init_id(header, data, event);
6577}
6578
6579static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6580 struct perf_sample_data *data)
6581{
6582 u64 sample_type = data->type;
6583
6584 if (sample_type & PERF_SAMPLE_TID)
6585 perf_output_put(handle, data->tid_entry);
6586
6587 if (sample_type & PERF_SAMPLE_TIME)
6588 perf_output_put(handle, data->time);
6589
6590 if (sample_type & PERF_SAMPLE_ID)
6591 perf_output_put(handle, data->id);
6592
6593 if (sample_type & PERF_SAMPLE_STREAM_ID)
6594 perf_output_put(handle, data->stream_id);
6595
6596 if (sample_type & PERF_SAMPLE_CPU)
6597 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6598
6599 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6600 perf_output_put(handle, data->id);
c980d109
ACM
6601}
6602
76369139
FW
6603void perf_event__output_id_sample(struct perf_event *event,
6604 struct perf_output_handle *handle,
6605 struct perf_sample_data *sample)
c980d109
ACM
6606{
6607 if (event->attr.sample_id_all)
6608 __perf_event__output_id_sample(handle, sample);
6609}
6610
3dab77fb 6611static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6612 struct perf_event *event,
6613 u64 enabled, u64 running)
3dab77fb 6614{
cdd6c482 6615 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6616 u64 values[4];
6617 int n = 0;
6618
b5e58793 6619 values[n++] = perf_event_count(event);
3dab77fb 6620 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6621 values[n++] = enabled +
cdd6c482 6622 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6623 }
6624 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6625 values[n++] = running +
cdd6c482 6626 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6627 }
6628 if (read_format & PERF_FORMAT_ID)
cdd6c482 6629 values[n++] = primary_event_id(event);
3dab77fb 6630
76369139 6631 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6632}
6633
3dab77fb 6634static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6635 struct perf_event *event,
6636 u64 enabled, u64 running)
3dab77fb 6637{
cdd6c482
IM
6638 struct perf_event *leader = event->group_leader, *sub;
6639 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6640 u64 values[5];
6641 int n = 0;
6642
6643 values[n++] = 1 + leader->nr_siblings;
6644
6645 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6646 values[n++] = enabled;
3dab77fb
PZ
6647
6648 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6649 values[n++] = running;
3dab77fb 6650
9e5b127d
PZ
6651 if ((leader != event) &&
6652 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6653 leader->pmu->read(leader);
6654
b5e58793 6655 values[n++] = perf_event_count(leader);
3dab77fb 6656 if (read_format & PERF_FORMAT_ID)
cdd6c482 6657 values[n++] = primary_event_id(leader);
3dab77fb 6658
76369139 6659 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6660
edb39592 6661 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6662 n = 0;
6663
6f5ab001
JO
6664 if ((sub != event) &&
6665 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6666 sub->pmu->read(sub);
6667
b5e58793 6668 values[n++] = perf_event_count(sub);
3dab77fb 6669 if (read_format & PERF_FORMAT_ID)
cdd6c482 6670 values[n++] = primary_event_id(sub);
3dab77fb 6671
76369139 6672 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6673 }
6674}
6675
eed01528
SE
6676#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6677 PERF_FORMAT_TOTAL_TIME_RUNNING)
6678
ba5213ae
PZ
6679/*
6680 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6681 *
6682 * The problem is that its both hard and excessively expensive to iterate the
6683 * child list, not to mention that its impossible to IPI the children running
6684 * on another CPU, from interrupt/NMI context.
6685 */
3dab77fb 6686static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6687 struct perf_event *event)
3dab77fb 6688{
e3f3541c 6689 u64 enabled = 0, running = 0, now;
eed01528
SE
6690 u64 read_format = event->attr.read_format;
6691
6692 /*
6693 * compute total_time_enabled, total_time_running
6694 * based on snapshot values taken when the event
6695 * was last scheduled in.
6696 *
6697 * we cannot simply called update_context_time()
6698 * because of locking issue as we are called in
6699 * NMI context
6700 */
c4794295 6701 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6702 calc_timer_values(event, &now, &enabled, &running);
eed01528 6703
cdd6c482 6704 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6705 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6706 else
eed01528 6707 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6708}
6709
bbfd5e4f
KL
6710static inline bool perf_sample_save_hw_index(struct perf_event *event)
6711{
6712 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6713}
6714
5622f295
MM
6715void perf_output_sample(struct perf_output_handle *handle,
6716 struct perf_event_header *header,
6717 struct perf_sample_data *data,
cdd6c482 6718 struct perf_event *event)
5622f295
MM
6719{
6720 u64 sample_type = data->type;
6721
6722 perf_output_put(handle, *header);
6723
ff3d527c
AH
6724 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6725 perf_output_put(handle, data->id);
6726
5622f295
MM
6727 if (sample_type & PERF_SAMPLE_IP)
6728 perf_output_put(handle, data->ip);
6729
6730 if (sample_type & PERF_SAMPLE_TID)
6731 perf_output_put(handle, data->tid_entry);
6732
6733 if (sample_type & PERF_SAMPLE_TIME)
6734 perf_output_put(handle, data->time);
6735
6736 if (sample_type & PERF_SAMPLE_ADDR)
6737 perf_output_put(handle, data->addr);
6738
6739 if (sample_type & PERF_SAMPLE_ID)
6740 perf_output_put(handle, data->id);
6741
6742 if (sample_type & PERF_SAMPLE_STREAM_ID)
6743 perf_output_put(handle, data->stream_id);
6744
6745 if (sample_type & PERF_SAMPLE_CPU)
6746 perf_output_put(handle, data->cpu_entry);
6747
6748 if (sample_type & PERF_SAMPLE_PERIOD)
6749 perf_output_put(handle, data->period);
6750
6751 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6752 perf_output_read(handle, event);
5622f295
MM
6753
6754 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6755 int size = 1;
5622f295 6756
99e818cc
JO
6757 size += data->callchain->nr;
6758 size *= sizeof(u64);
6759 __output_copy(handle, data->callchain, size);
5622f295
MM
6760 }
6761
6762 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6763 struct perf_raw_record *raw = data->raw;
6764
6765 if (raw) {
6766 struct perf_raw_frag *frag = &raw->frag;
6767
6768 perf_output_put(handle, raw->size);
6769 do {
6770 if (frag->copy) {
6771 __output_custom(handle, frag->copy,
6772 frag->data, frag->size);
6773 } else {
6774 __output_copy(handle, frag->data,
6775 frag->size);
6776 }
6777 if (perf_raw_frag_last(frag))
6778 break;
6779 frag = frag->next;
6780 } while (1);
6781 if (frag->pad)
6782 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6783 } else {
6784 struct {
6785 u32 size;
6786 u32 data;
6787 } raw = {
6788 .size = sizeof(u32),
6789 .data = 0,
6790 };
6791 perf_output_put(handle, raw);
6792 }
6793 }
a7ac67ea 6794
bce38cd5
SE
6795 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6796 if (data->br_stack) {
6797 size_t size;
6798
6799 size = data->br_stack->nr
6800 * sizeof(struct perf_branch_entry);
6801
6802 perf_output_put(handle, data->br_stack->nr);
bbfd5e4f
KL
6803 if (perf_sample_save_hw_index(event))
6804 perf_output_put(handle, data->br_stack->hw_idx);
bce38cd5
SE
6805 perf_output_copy(handle, data->br_stack->entries, size);
6806 } else {
6807 /*
6808 * we always store at least the value of nr
6809 */
6810 u64 nr = 0;
6811 perf_output_put(handle, nr);
6812 }
6813 }
4018994f
JO
6814
6815 if (sample_type & PERF_SAMPLE_REGS_USER) {
6816 u64 abi = data->regs_user.abi;
6817
6818 /*
6819 * If there are no regs to dump, notice it through
6820 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6821 */
6822 perf_output_put(handle, abi);
6823
6824 if (abi) {
6825 u64 mask = event->attr.sample_regs_user;
6826 perf_output_sample_regs(handle,
6827 data->regs_user.regs,
6828 mask);
6829 }
6830 }
c5ebcedb 6831
a5cdd40c 6832 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6833 perf_output_sample_ustack(handle,
6834 data->stack_user_size,
6835 data->regs_user.regs);
a5cdd40c 6836 }
c3feedf2
AK
6837
6838 if (sample_type & PERF_SAMPLE_WEIGHT)
6839 perf_output_put(handle, data->weight);
d6be9ad6
SE
6840
6841 if (sample_type & PERF_SAMPLE_DATA_SRC)
6842 perf_output_put(handle, data->data_src.val);
a5cdd40c 6843
fdfbbd07
AK
6844 if (sample_type & PERF_SAMPLE_TRANSACTION)
6845 perf_output_put(handle, data->txn);
6846
60e2364e
SE
6847 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6848 u64 abi = data->regs_intr.abi;
6849 /*
6850 * If there are no regs to dump, notice it through
6851 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6852 */
6853 perf_output_put(handle, abi);
6854
6855 if (abi) {
6856 u64 mask = event->attr.sample_regs_intr;
6857
6858 perf_output_sample_regs(handle,
6859 data->regs_intr.regs,
6860 mask);
6861 }
6862 }
6863
fc7ce9c7
KL
6864 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6865 perf_output_put(handle, data->phys_addr);
6866
a4faf00d
AS
6867 if (sample_type & PERF_SAMPLE_AUX) {
6868 perf_output_put(handle, data->aux_size);
6869
6870 if (data->aux_size)
6871 perf_aux_sample_output(event, handle, data);
6872 }
6873
a5cdd40c
PZ
6874 if (!event->attr.watermark) {
6875 int wakeup_events = event->attr.wakeup_events;
6876
6877 if (wakeup_events) {
56de4e8f 6878 struct perf_buffer *rb = handle->rb;
a5cdd40c
PZ
6879 int events = local_inc_return(&rb->events);
6880
6881 if (events >= wakeup_events) {
6882 local_sub(wakeup_events, &rb->events);
6883 local_inc(&rb->wakeup);
6884 }
6885 }
6886 }
5622f295
MM
6887}
6888
fc7ce9c7
KL
6889static u64 perf_virt_to_phys(u64 virt)
6890{
6891 u64 phys_addr = 0;
6892 struct page *p = NULL;
6893
6894 if (!virt)
6895 return 0;
6896
6897 if (virt >= TASK_SIZE) {
6898 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6899 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6900 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6901 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6902 } else {
6903 /*
6904 * Walking the pages tables for user address.
6905 * Interrupts are disabled, so it prevents any tear down
6906 * of the page tables.
6907 * Try IRQ-safe __get_user_pages_fast first.
6908 * If failed, leave phys_addr as 0.
6909 */
6910 if ((current->mm != NULL) &&
6911 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6912 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6913
6914 if (p)
6915 put_page(p);
6916 }
6917
6918 return phys_addr;
6919}
6920
99e818cc
JO
6921static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6922
6cbc304f 6923struct perf_callchain_entry *
8cf7e0e2
JO
6924perf_callchain(struct perf_event *event, struct pt_regs *regs)
6925{
6926 bool kernel = !event->attr.exclude_callchain_kernel;
6927 bool user = !event->attr.exclude_callchain_user;
6928 /* Disallow cross-task user callchains. */
6929 bool crosstask = event->ctx->task && event->ctx->task != current;
6930 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6931 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6932
6933 if (!kernel && !user)
99e818cc 6934 return &__empty_callchain;
8cf7e0e2 6935
99e818cc
JO
6936 callchain = get_perf_callchain(regs, 0, kernel, user,
6937 max_stack, crosstask, true);
6938 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6939}
6940
5622f295
MM
6941void perf_prepare_sample(struct perf_event_header *header,
6942 struct perf_sample_data *data,
cdd6c482 6943 struct perf_event *event,
5622f295 6944 struct pt_regs *regs)
7b732a75 6945{
cdd6c482 6946 u64 sample_type = event->attr.sample_type;
7b732a75 6947
cdd6c482 6948 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6949 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6950
6951 header->misc = 0;
6952 header->misc |= perf_misc_flags(regs);
6fab0192 6953
c980d109 6954 __perf_event_header__init_id(header, data, event);
6844c09d 6955
c320c7b7 6956 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6957 data->ip = perf_instruction_pointer(regs);
6958
b23f3325 6959 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6960 int size = 1;
394ee076 6961
6cbc304f
PZ
6962 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6963 data->callchain = perf_callchain(event, regs);
6964
99e818cc 6965 size += data->callchain->nr;
5622f295
MM
6966
6967 header->size += size * sizeof(u64);
394ee076
PZ
6968 }
6969
3a43ce68 6970 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6971 struct perf_raw_record *raw = data->raw;
6972 int size;
6973
6974 if (raw) {
6975 struct perf_raw_frag *frag = &raw->frag;
6976 u32 sum = 0;
6977
6978 do {
6979 sum += frag->size;
6980 if (perf_raw_frag_last(frag))
6981 break;
6982 frag = frag->next;
6983 } while (1);
6984
6985 size = round_up(sum + sizeof(u32), sizeof(u64));
6986 raw->size = size - sizeof(u32);
6987 frag->pad = raw->size - sum;
6988 } else {
6989 size = sizeof(u64);
6990 }
a044560c 6991
7e3f977e 6992 header->size += size;
7f453c24 6993 }
bce38cd5
SE
6994
6995 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6996 int size = sizeof(u64); /* nr */
6997 if (data->br_stack) {
bbfd5e4f
KL
6998 if (perf_sample_save_hw_index(event))
6999 size += sizeof(u64);
7000
bce38cd5
SE
7001 size += data->br_stack->nr
7002 * sizeof(struct perf_branch_entry);
7003 }
7004 header->size += size;
7005 }
4018994f 7006
2565711f 7007 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
7008 perf_sample_regs_user(&data->regs_user, regs,
7009 &data->regs_user_copy);
2565711f 7010
4018994f
JO
7011 if (sample_type & PERF_SAMPLE_REGS_USER) {
7012 /* regs dump ABI info */
7013 int size = sizeof(u64);
7014
4018994f
JO
7015 if (data->regs_user.regs) {
7016 u64 mask = event->attr.sample_regs_user;
7017 size += hweight64(mask) * sizeof(u64);
7018 }
7019
7020 header->size += size;
7021 }
c5ebcedb
JO
7022
7023 if (sample_type & PERF_SAMPLE_STACK_USER) {
7024 /*
9f014e3a 7025 * Either we need PERF_SAMPLE_STACK_USER bit to be always
c5ebcedb
JO
7026 * processed as the last one or have additional check added
7027 * in case new sample type is added, because we could eat
7028 * up the rest of the sample size.
7029 */
c5ebcedb
JO
7030 u16 stack_size = event->attr.sample_stack_user;
7031 u16 size = sizeof(u64);
7032
c5ebcedb 7033 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 7034 data->regs_user.regs);
c5ebcedb
JO
7035
7036 /*
7037 * If there is something to dump, add space for the dump
7038 * itself and for the field that tells the dynamic size,
7039 * which is how many have been actually dumped.
7040 */
7041 if (stack_size)
7042 size += sizeof(u64) + stack_size;
7043
7044 data->stack_user_size = stack_size;
7045 header->size += size;
7046 }
60e2364e
SE
7047
7048 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7049 /* regs dump ABI info */
7050 int size = sizeof(u64);
7051
7052 perf_sample_regs_intr(&data->regs_intr, regs);
7053
7054 if (data->regs_intr.regs) {
7055 u64 mask = event->attr.sample_regs_intr;
7056
7057 size += hweight64(mask) * sizeof(u64);
7058 }
7059
7060 header->size += size;
7061 }
fc7ce9c7
KL
7062
7063 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7064 data->phys_addr = perf_virt_to_phys(data->addr);
a4faf00d
AS
7065
7066 if (sample_type & PERF_SAMPLE_AUX) {
7067 u64 size;
7068
7069 header->size += sizeof(u64); /* size */
7070
7071 /*
7072 * Given the 16bit nature of header::size, an AUX sample can
7073 * easily overflow it, what with all the preceding sample bits.
7074 * Make sure this doesn't happen by using up to U16_MAX bytes
7075 * per sample in total (rounded down to 8 byte boundary).
7076 */
7077 size = min_t(size_t, U16_MAX - header->size,
7078 event->attr.aux_sample_size);
7079 size = rounddown(size, 8);
7080 size = perf_prepare_sample_aux(event, data, size);
7081
7082 WARN_ON_ONCE(size + header->size > U16_MAX);
7083 header->size += size;
7084 }
7085 /*
7086 * If you're adding more sample types here, you likely need to do
7087 * something about the overflowing header::size, like repurpose the
7088 * lowest 3 bits of size, which should be always zero at the moment.
7089 * This raises a more important question, do we really need 512k sized
7090 * samples and why, so good argumentation is in order for whatever you
7091 * do here next.
7092 */
7093 WARN_ON_ONCE(header->size & 7);
5622f295 7094}
7f453c24 7095
56201969 7096static __always_inline int
9ecda41a
WN
7097__perf_event_output(struct perf_event *event,
7098 struct perf_sample_data *data,
7099 struct pt_regs *regs,
7100 int (*output_begin)(struct perf_output_handle *,
7101 struct perf_event *,
7102 unsigned int))
5622f295
MM
7103{
7104 struct perf_output_handle handle;
7105 struct perf_event_header header;
56201969 7106 int err;
689802b2 7107
927c7a9e
FW
7108 /* protect the callchain buffers */
7109 rcu_read_lock();
7110
cdd6c482 7111 perf_prepare_sample(&header, data, event, regs);
5c148194 7112
56201969
ACM
7113 err = output_begin(&handle, event, header.size);
7114 if (err)
927c7a9e 7115 goto exit;
0322cd6e 7116
cdd6c482 7117 perf_output_sample(&handle, &header, data, event);
f413cdb8 7118
8a057d84 7119 perf_output_end(&handle);
927c7a9e
FW
7120
7121exit:
7122 rcu_read_unlock();
56201969 7123 return err;
0322cd6e
PZ
7124}
7125
9ecda41a
WN
7126void
7127perf_event_output_forward(struct perf_event *event,
7128 struct perf_sample_data *data,
7129 struct pt_regs *regs)
7130{
7131 __perf_event_output(event, data, regs, perf_output_begin_forward);
7132}
7133
7134void
7135perf_event_output_backward(struct perf_event *event,
7136 struct perf_sample_data *data,
7137 struct pt_regs *regs)
7138{
7139 __perf_event_output(event, data, regs, perf_output_begin_backward);
7140}
7141
56201969 7142int
9ecda41a
WN
7143perf_event_output(struct perf_event *event,
7144 struct perf_sample_data *data,
7145 struct pt_regs *regs)
7146{
56201969 7147 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
7148}
7149
38b200d6 7150/*
cdd6c482 7151 * read event_id
38b200d6
PZ
7152 */
7153
7154struct perf_read_event {
7155 struct perf_event_header header;
7156
7157 u32 pid;
7158 u32 tid;
38b200d6
PZ
7159};
7160
7161static void
cdd6c482 7162perf_event_read_event(struct perf_event *event,
38b200d6
PZ
7163 struct task_struct *task)
7164{
7165 struct perf_output_handle handle;
c980d109 7166 struct perf_sample_data sample;
dfc65094 7167 struct perf_read_event read_event = {
38b200d6 7168 .header = {
cdd6c482 7169 .type = PERF_RECORD_READ,
38b200d6 7170 .misc = 0,
c320c7b7 7171 .size = sizeof(read_event) + event->read_size,
38b200d6 7172 },
cdd6c482
IM
7173 .pid = perf_event_pid(event, task),
7174 .tid = perf_event_tid(event, task),
38b200d6 7175 };
3dab77fb 7176 int ret;
38b200d6 7177
c980d109 7178 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 7179 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
7180 if (ret)
7181 return;
7182
dfc65094 7183 perf_output_put(&handle, read_event);
cdd6c482 7184 perf_output_read(&handle, event);
c980d109 7185 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 7186
38b200d6
PZ
7187 perf_output_end(&handle);
7188}
7189
aab5b71e 7190typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
7191
7192static void
aab5b71e
PZ
7193perf_iterate_ctx(struct perf_event_context *ctx,
7194 perf_iterate_f output,
b73e4fef 7195 void *data, bool all)
52d857a8
JO
7196{
7197 struct perf_event *event;
7198
7199 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
7200 if (!all) {
7201 if (event->state < PERF_EVENT_STATE_INACTIVE)
7202 continue;
7203 if (!event_filter_match(event))
7204 continue;
7205 }
7206
67516844 7207 output(event, data);
52d857a8
JO
7208 }
7209}
7210
aab5b71e 7211static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
7212{
7213 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7214 struct perf_event *event;
7215
7216 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
7217 /*
7218 * Skip events that are not fully formed yet; ensure that
7219 * if we observe event->ctx, both event and ctx will be
7220 * complete enough. See perf_install_in_context().
7221 */
7222 if (!smp_load_acquire(&event->ctx))
7223 continue;
7224
f2fb6bef
KL
7225 if (event->state < PERF_EVENT_STATE_INACTIVE)
7226 continue;
7227 if (!event_filter_match(event))
7228 continue;
7229 output(event, data);
7230 }
7231}
7232
aab5b71e
PZ
7233/*
7234 * Iterate all events that need to receive side-band events.
7235 *
7236 * For new callers; ensure that account_pmu_sb_event() includes
7237 * your event, otherwise it might not get delivered.
7238 */
52d857a8 7239static void
aab5b71e 7240perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
7241 struct perf_event_context *task_ctx)
7242{
52d857a8 7243 struct perf_event_context *ctx;
52d857a8
JO
7244 int ctxn;
7245
aab5b71e
PZ
7246 rcu_read_lock();
7247 preempt_disable();
7248
4e93ad60 7249 /*
aab5b71e
PZ
7250 * If we have task_ctx != NULL we only notify the task context itself.
7251 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
7252 * context.
7253 */
7254 if (task_ctx) {
aab5b71e
PZ
7255 perf_iterate_ctx(task_ctx, output, data, false);
7256 goto done;
4e93ad60
JO
7257 }
7258
aab5b71e 7259 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
7260
7261 for_each_task_context_nr(ctxn) {
52d857a8
JO
7262 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7263 if (ctx)
aab5b71e 7264 perf_iterate_ctx(ctx, output, data, false);
52d857a8 7265 }
aab5b71e 7266done:
f2fb6bef 7267 preempt_enable();
52d857a8 7268 rcu_read_unlock();
95ff4ca2
AS
7269}
7270
375637bc
AS
7271/*
7272 * Clear all file-based filters at exec, they'll have to be
7273 * re-instated when/if these objects are mmapped again.
7274 */
7275static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7276{
7277 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7278 struct perf_addr_filter *filter;
7279 unsigned int restart = 0, count = 0;
7280 unsigned long flags;
7281
7282 if (!has_addr_filter(event))
7283 return;
7284
7285 raw_spin_lock_irqsave(&ifh->lock, flags);
7286 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 7287 if (filter->path.dentry) {
c60f83b8
AS
7288 event->addr_filter_ranges[count].start = 0;
7289 event->addr_filter_ranges[count].size = 0;
375637bc
AS
7290 restart++;
7291 }
7292
7293 count++;
7294 }
7295
7296 if (restart)
7297 event->addr_filters_gen++;
7298 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7299
7300 if (restart)
767ae086 7301 perf_event_stop(event, 1);
375637bc
AS
7302}
7303
7304void perf_event_exec(void)
7305{
7306 struct perf_event_context *ctx;
7307 int ctxn;
7308
7309 rcu_read_lock();
7310 for_each_task_context_nr(ctxn) {
7311 ctx = current->perf_event_ctxp[ctxn];
7312 if (!ctx)
7313 continue;
7314
7315 perf_event_enable_on_exec(ctxn);
7316
aab5b71e 7317 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
7318 true);
7319 }
7320 rcu_read_unlock();
7321}
7322
95ff4ca2 7323struct remote_output {
56de4e8f 7324 struct perf_buffer *rb;
95ff4ca2
AS
7325 int err;
7326};
7327
7328static void __perf_event_output_stop(struct perf_event *event, void *data)
7329{
7330 struct perf_event *parent = event->parent;
7331 struct remote_output *ro = data;
56de4e8f 7332 struct perf_buffer *rb = ro->rb;
375637bc
AS
7333 struct stop_event_data sd = {
7334 .event = event,
7335 };
95ff4ca2
AS
7336
7337 if (!has_aux(event))
7338 return;
7339
7340 if (!parent)
7341 parent = event;
7342
7343 /*
7344 * In case of inheritance, it will be the parent that links to the
767ae086
AS
7345 * ring-buffer, but it will be the child that's actually using it.
7346 *
7347 * We are using event::rb to determine if the event should be stopped,
7348 * however this may race with ring_buffer_attach() (through set_output),
7349 * which will make us skip the event that actually needs to be stopped.
7350 * So ring_buffer_attach() has to stop an aux event before re-assigning
7351 * its rb pointer.
95ff4ca2
AS
7352 */
7353 if (rcu_dereference(parent->rb) == rb)
375637bc 7354 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
7355}
7356
7357static int __perf_pmu_output_stop(void *info)
7358{
7359 struct perf_event *event = info;
f3a519e4 7360 struct pmu *pmu = event->ctx->pmu;
8b6a3fe8 7361 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
7362 struct remote_output ro = {
7363 .rb = event->rb,
7364 };
7365
7366 rcu_read_lock();
aab5b71e 7367 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 7368 if (cpuctx->task_ctx)
aab5b71e 7369 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 7370 &ro, false);
95ff4ca2
AS
7371 rcu_read_unlock();
7372
7373 return ro.err;
7374}
7375
7376static void perf_pmu_output_stop(struct perf_event *event)
7377{
7378 struct perf_event *iter;
7379 int err, cpu;
7380
7381restart:
7382 rcu_read_lock();
7383 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7384 /*
7385 * For per-CPU events, we need to make sure that neither they
7386 * nor their children are running; for cpu==-1 events it's
7387 * sufficient to stop the event itself if it's active, since
7388 * it can't have children.
7389 */
7390 cpu = iter->cpu;
7391 if (cpu == -1)
7392 cpu = READ_ONCE(iter->oncpu);
7393
7394 if (cpu == -1)
7395 continue;
7396
7397 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7398 if (err == -EAGAIN) {
7399 rcu_read_unlock();
7400 goto restart;
7401 }
7402 }
7403 rcu_read_unlock();
52d857a8
JO
7404}
7405
60313ebe 7406/*
9f498cc5
PZ
7407 * task tracking -- fork/exit
7408 *
13d7a241 7409 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
7410 */
7411
9f498cc5 7412struct perf_task_event {
3a80b4a3 7413 struct task_struct *task;
cdd6c482 7414 struct perf_event_context *task_ctx;
60313ebe
PZ
7415
7416 struct {
7417 struct perf_event_header header;
7418
7419 u32 pid;
7420 u32 ppid;
9f498cc5
PZ
7421 u32 tid;
7422 u32 ptid;
393b2ad8 7423 u64 time;
cdd6c482 7424 } event_id;
60313ebe
PZ
7425};
7426
67516844
JO
7427static int perf_event_task_match(struct perf_event *event)
7428{
13d7a241
SE
7429 return event->attr.comm || event->attr.mmap ||
7430 event->attr.mmap2 || event->attr.mmap_data ||
7431 event->attr.task;
67516844
JO
7432}
7433
cdd6c482 7434static void perf_event_task_output(struct perf_event *event,
52d857a8 7435 void *data)
60313ebe 7436{
52d857a8 7437 struct perf_task_event *task_event = data;
60313ebe 7438 struct perf_output_handle handle;
c980d109 7439 struct perf_sample_data sample;
9f498cc5 7440 struct task_struct *task = task_event->task;
c980d109 7441 int ret, size = task_event->event_id.header.size;
8bb39f9a 7442
67516844
JO
7443 if (!perf_event_task_match(event))
7444 return;
7445
c980d109 7446 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 7447
c980d109 7448 ret = perf_output_begin(&handle, event,
a7ac67ea 7449 task_event->event_id.header.size);
ef60777c 7450 if (ret)
c980d109 7451 goto out;
60313ebe 7452
cdd6c482
IM
7453 task_event->event_id.pid = perf_event_pid(event, task);
7454 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 7455
cdd6c482
IM
7456 task_event->event_id.tid = perf_event_tid(event, task);
7457 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 7458
34f43927
PZ
7459 task_event->event_id.time = perf_event_clock(event);
7460
cdd6c482 7461 perf_output_put(&handle, task_event->event_id);
393b2ad8 7462
c980d109
ACM
7463 perf_event__output_id_sample(event, &handle, &sample);
7464
60313ebe 7465 perf_output_end(&handle);
c980d109
ACM
7466out:
7467 task_event->event_id.header.size = size;
60313ebe
PZ
7468}
7469
cdd6c482
IM
7470static void perf_event_task(struct task_struct *task,
7471 struct perf_event_context *task_ctx,
3a80b4a3 7472 int new)
60313ebe 7473{
9f498cc5 7474 struct perf_task_event task_event;
60313ebe 7475
cdd6c482
IM
7476 if (!atomic_read(&nr_comm_events) &&
7477 !atomic_read(&nr_mmap_events) &&
7478 !atomic_read(&nr_task_events))
60313ebe
PZ
7479 return;
7480
9f498cc5 7481 task_event = (struct perf_task_event){
3a80b4a3
PZ
7482 .task = task,
7483 .task_ctx = task_ctx,
cdd6c482 7484 .event_id = {
60313ebe 7485 .header = {
cdd6c482 7486 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 7487 .misc = 0,
cdd6c482 7488 .size = sizeof(task_event.event_id),
60313ebe 7489 },
573402db
PZ
7490 /* .pid */
7491 /* .ppid */
9f498cc5
PZ
7492 /* .tid */
7493 /* .ptid */
34f43927 7494 /* .time */
60313ebe
PZ
7495 },
7496 };
7497
aab5b71e 7498 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
7499 &task_event,
7500 task_ctx);
9f498cc5
PZ
7501}
7502
cdd6c482 7503void perf_event_fork(struct task_struct *task)
9f498cc5 7504{
cdd6c482 7505 perf_event_task(task, NULL, 1);
e4222673 7506 perf_event_namespaces(task);
60313ebe
PZ
7507}
7508
8d1b2d93
PZ
7509/*
7510 * comm tracking
7511 */
7512
7513struct perf_comm_event {
22a4f650
IM
7514 struct task_struct *task;
7515 char *comm;
8d1b2d93
PZ
7516 int comm_size;
7517
7518 struct {
7519 struct perf_event_header header;
7520
7521 u32 pid;
7522 u32 tid;
cdd6c482 7523 } event_id;
8d1b2d93
PZ
7524};
7525
67516844
JO
7526static int perf_event_comm_match(struct perf_event *event)
7527{
7528 return event->attr.comm;
7529}
7530
cdd6c482 7531static void perf_event_comm_output(struct perf_event *event,
52d857a8 7532 void *data)
8d1b2d93 7533{
52d857a8 7534 struct perf_comm_event *comm_event = data;
8d1b2d93 7535 struct perf_output_handle handle;
c980d109 7536 struct perf_sample_data sample;
cdd6c482 7537 int size = comm_event->event_id.header.size;
c980d109
ACM
7538 int ret;
7539
67516844
JO
7540 if (!perf_event_comm_match(event))
7541 return;
7542
c980d109
ACM
7543 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7544 ret = perf_output_begin(&handle, event,
a7ac67ea 7545 comm_event->event_id.header.size);
8d1b2d93
PZ
7546
7547 if (ret)
c980d109 7548 goto out;
8d1b2d93 7549
cdd6c482
IM
7550 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7551 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7552
cdd6c482 7553 perf_output_put(&handle, comm_event->event_id);
76369139 7554 __output_copy(&handle, comm_event->comm,
8d1b2d93 7555 comm_event->comm_size);
c980d109
ACM
7556
7557 perf_event__output_id_sample(event, &handle, &sample);
7558
8d1b2d93 7559 perf_output_end(&handle);
c980d109
ACM
7560out:
7561 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7562}
7563
cdd6c482 7564static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7565{
413ee3b4 7566 char comm[TASK_COMM_LEN];
8d1b2d93 7567 unsigned int size;
8d1b2d93 7568
413ee3b4 7569 memset(comm, 0, sizeof(comm));
96b02d78 7570 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7571 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7572
7573 comm_event->comm = comm;
7574 comm_event->comm_size = size;
7575
cdd6c482 7576 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7577
aab5b71e 7578 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7579 comm_event,
7580 NULL);
8d1b2d93
PZ
7581}
7582
82b89778 7583void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7584{
9ee318a7
PZ
7585 struct perf_comm_event comm_event;
7586
cdd6c482 7587 if (!atomic_read(&nr_comm_events))
9ee318a7 7588 return;
a63eaf34 7589
9ee318a7 7590 comm_event = (struct perf_comm_event){
8d1b2d93 7591 .task = task,
573402db
PZ
7592 /* .comm */
7593 /* .comm_size */
cdd6c482 7594 .event_id = {
573402db 7595 .header = {
cdd6c482 7596 .type = PERF_RECORD_COMM,
82b89778 7597 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7598 /* .size */
7599 },
7600 /* .pid */
7601 /* .tid */
8d1b2d93
PZ
7602 },
7603 };
7604
cdd6c482 7605 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7606}
7607
e4222673
HB
7608/*
7609 * namespaces tracking
7610 */
7611
7612struct perf_namespaces_event {
7613 struct task_struct *task;
7614
7615 struct {
7616 struct perf_event_header header;
7617
7618 u32 pid;
7619 u32 tid;
7620 u64 nr_namespaces;
7621 struct perf_ns_link_info link_info[NR_NAMESPACES];
7622 } event_id;
7623};
7624
7625static int perf_event_namespaces_match(struct perf_event *event)
7626{
7627 return event->attr.namespaces;
7628}
7629
7630static void perf_event_namespaces_output(struct perf_event *event,
7631 void *data)
7632{
7633 struct perf_namespaces_event *namespaces_event = data;
7634 struct perf_output_handle handle;
7635 struct perf_sample_data sample;
34900ec5 7636 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7637 int ret;
7638
7639 if (!perf_event_namespaces_match(event))
7640 return;
7641
7642 perf_event_header__init_id(&namespaces_event->event_id.header,
7643 &sample, event);
7644 ret = perf_output_begin(&handle, event,
7645 namespaces_event->event_id.header.size);
7646 if (ret)
34900ec5 7647 goto out;
e4222673
HB
7648
7649 namespaces_event->event_id.pid = perf_event_pid(event,
7650 namespaces_event->task);
7651 namespaces_event->event_id.tid = perf_event_tid(event,
7652 namespaces_event->task);
7653
7654 perf_output_put(&handle, namespaces_event->event_id);
7655
7656 perf_event__output_id_sample(event, &handle, &sample);
7657
7658 perf_output_end(&handle);
34900ec5
JO
7659out:
7660 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7661}
7662
7663static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7664 struct task_struct *task,
7665 const struct proc_ns_operations *ns_ops)
7666{
7667 struct path ns_path;
7668 struct inode *ns_inode;
ce623f89 7669 int error;
e4222673
HB
7670
7671 error = ns_get_path(&ns_path, task, ns_ops);
7672 if (!error) {
7673 ns_inode = ns_path.dentry->d_inode;
7674 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7675 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7676 path_put(&ns_path);
e4222673
HB
7677 }
7678}
7679
7680void perf_event_namespaces(struct task_struct *task)
7681{
7682 struct perf_namespaces_event namespaces_event;
7683 struct perf_ns_link_info *ns_link_info;
7684
7685 if (!atomic_read(&nr_namespaces_events))
7686 return;
7687
7688 namespaces_event = (struct perf_namespaces_event){
7689 .task = task,
7690 .event_id = {
7691 .header = {
7692 .type = PERF_RECORD_NAMESPACES,
7693 .misc = 0,
7694 .size = sizeof(namespaces_event.event_id),
7695 },
7696 /* .pid */
7697 /* .tid */
7698 .nr_namespaces = NR_NAMESPACES,
7699 /* .link_info[NR_NAMESPACES] */
7700 },
7701 };
7702
7703 ns_link_info = namespaces_event.event_id.link_info;
7704
7705 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7706 task, &mntns_operations);
7707
7708#ifdef CONFIG_USER_NS
7709 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7710 task, &userns_operations);
7711#endif
7712#ifdef CONFIG_NET_NS
7713 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7714 task, &netns_operations);
7715#endif
7716#ifdef CONFIG_UTS_NS
7717 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7718 task, &utsns_operations);
7719#endif
7720#ifdef CONFIG_IPC_NS
7721 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7722 task, &ipcns_operations);
7723#endif
7724#ifdef CONFIG_PID_NS
7725 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7726 task, &pidns_operations);
7727#endif
7728#ifdef CONFIG_CGROUPS
7729 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7730 task, &cgroupns_operations);
7731#endif
7732
7733 perf_iterate_sb(perf_event_namespaces_output,
7734 &namespaces_event,
7735 NULL);
7736}
7737
0a4a9391
PZ
7738/*
7739 * mmap tracking
7740 */
7741
7742struct perf_mmap_event {
089dd79d
PZ
7743 struct vm_area_struct *vma;
7744
7745 const char *file_name;
7746 int file_size;
13d7a241
SE
7747 int maj, min;
7748 u64 ino;
7749 u64 ino_generation;
f972eb63 7750 u32 prot, flags;
0a4a9391
PZ
7751
7752 struct {
7753 struct perf_event_header header;
7754
7755 u32 pid;
7756 u32 tid;
7757 u64 start;
7758 u64 len;
7759 u64 pgoff;
cdd6c482 7760 } event_id;
0a4a9391
PZ
7761};
7762
67516844
JO
7763static int perf_event_mmap_match(struct perf_event *event,
7764 void *data)
7765{
7766 struct perf_mmap_event *mmap_event = data;
7767 struct vm_area_struct *vma = mmap_event->vma;
7768 int executable = vma->vm_flags & VM_EXEC;
7769
7770 return (!executable && event->attr.mmap_data) ||
13d7a241 7771 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7772}
7773
cdd6c482 7774static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7775 void *data)
0a4a9391 7776{
52d857a8 7777 struct perf_mmap_event *mmap_event = data;
0a4a9391 7778 struct perf_output_handle handle;
c980d109 7779 struct perf_sample_data sample;
cdd6c482 7780 int size = mmap_event->event_id.header.size;
d9c1bb2f 7781 u32 type = mmap_event->event_id.header.type;
c980d109 7782 int ret;
0a4a9391 7783
67516844
JO
7784 if (!perf_event_mmap_match(event, data))
7785 return;
7786
13d7a241
SE
7787 if (event->attr.mmap2) {
7788 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7789 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7790 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7791 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7792 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7793 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7794 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7795 }
7796
c980d109
ACM
7797 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7798 ret = perf_output_begin(&handle, event,
a7ac67ea 7799 mmap_event->event_id.header.size);
0a4a9391 7800 if (ret)
c980d109 7801 goto out;
0a4a9391 7802
cdd6c482
IM
7803 mmap_event->event_id.pid = perf_event_pid(event, current);
7804 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7805
cdd6c482 7806 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7807
7808 if (event->attr.mmap2) {
7809 perf_output_put(&handle, mmap_event->maj);
7810 perf_output_put(&handle, mmap_event->min);
7811 perf_output_put(&handle, mmap_event->ino);
7812 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7813 perf_output_put(&handle, mmap_event->prot);
7814 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7815 }
7816
76369139 7817 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7818 mmap_event->file_size);
c980d109
ACM
7819
7820 perf_event__output_id_sample(event, &handle, &sample);
7821
78d613eb 7822 perf_output_end(&handle);
c980d109
ACM
7823out:
7824 mmap_event->event_id.header.size = size;
d9c1bb2f 7825 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7826}
7827
cdd6c482 7828static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7829{
089dd79d
PZ
7830 struct vm_area_struct *vma = mmap_event->vma;
7831 struct file *file = vma->vm_file;
13d7a241
SE
7832 int maj = 0, min = 0;
7833 u64 ino = 0, gen = 0;
f972eb63 7834 u32 prot = 0, flags = 0;
0a4a9391
PZ
7835 unsigned int size;
7836 char tmp[16];
7837 char *buf = NULL;
2c42cfbf 7838 char *name;
413ee3b4 7839
0b3589be
PZ
7840 if (vma->vm_flags & VM_READ)
7841 prot |= PROT_READ;
7842 if (vma->vm_flags & VM_WRITE)
7843 prot |= PROT_WRITE;
7844 if (vma->vm_flags & VM_EXEC)
7845 prot |= PROT_EXEC;
7846
7847 if (vma->vm_flags & VM_MAYSHARE)
7848 flags = MAP_SHARED;
7849 else
7850 flags = MAP_PRIVATE;
7851
7852 if (vma->vm_flags & VM_DENYWRITE)
7853 flags |= MAP_DENYWRITE;
7854 if (vma->vm_flags & VM_MAYEXEC)
7855 flags |= MAP_EXECUTABLE;
7856 if (vma->vm_flags & VM_LOCKED)
7857 flags |= MAP_LOCKED;
7858 if (vma->vm_flags & VM_HUGETLB)
7859 flags |= MAP_HUGETLB;
7860
0a4a9391 7861 if (file) {
13d7a241
SE
7862 struct inode *inode;
7863 dev_t dev;
3ea2f2b9 7864
2c42cfbf 7865 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7866 if (!buf) {
c7e548b4
ON
7867 name = "//enomem";
7868 goto cpy_name;
0a4a9391 7869 }
413ee3b4 7870 /*
3ea2f2b9 7871 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7872 * need to add enough zero bytes after the string to handle
7873 * the 64bit alignment we do later.
7874 */
9bf39ab2 7875 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7876 if (IS_ERR(name)) {
c7e548b4
ON
7877 name = "//toolong";
7878 goto cpy_name;
0a4a9391 7879 }
13d7a241
SE
7880 inode = file_inode(vma->vm_file);
7881 dev = inode->i_sb->s_dev;
7882 ino = inode->i_ino;
7883 gen = inode->i_generation;
7884 maj = MAJOR(dev);
7885 min = MINOR(dev);
f972eb63 7886
c7e548b4 7887 goto got_name;
0a4a9391 7888 } else {
fbe26abe
JO
7889 if (vma->vm_ops && vma->vm_ops->name) {
7890 name = (char *) vma->vm_ops->name(vma);
7891 if (name)
7892 goto cpy_name;
7893 }
7894
2c42cfbf 7895 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7896 if (name)
7897 goto cpy_name;
089dd79d 7898
32c5fb7e 7899 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7900 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7901 name = "[heap]";
7902 goto cpy_name;
32c5fb7e
ON
7903 }
7904 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7905 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7906 name = "[stack]";
7907 goto cpy_name;
089dd79d
PZ
7908 }
7909
c7e548b4
ON
7910 name = "//anon";
7911 goto cpy_name;
0a4a9391
PZ
7912 }
7913
c7e548b4
ON
7914cpy_name:
7915 strlcpy(tmp, name, sizeof(tmp));
7916 name = tmp;
0a4a9391 7917got_name:
2c42cfbf
PZ
7918 /*
7919 * Since our buffer works in 8 byte units we need to align our string
7920 * size to a multiple of 8. However, we must guarantee the tail end is
7921 * zero'd out to avoid leaking random bits to userspace.
7922 */
7923 size = strlen(name)+1;
7924 while (!IS_ALIGNED(size, sizeof(u64)))
7925 name[size++] = '\0';
0a4a9391
PZ
7926
7927 mmap_event->file_name = name;
7928 mmap_event->file_size = size;
13d7a241
SE
7929 mmap_event->maj = maj;
7930 mmap_event->min = min;
7931 mmap_event->ino = ino;
7932 mmap_event->ino_generation = gen;
f972eb63
PZ
7933 mmap_event->prot = prot;
7934 mmap_event->flags = flags;
0a4a9391 7935
2fe85427
SE
7936 if (!(vma->vm_flags & VM_EXEC))
7937 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7938
cdd6c482 7939 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7940
aab5b71e 7941 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7942 mmap_event,
7943 NULL);
665c2142 7944
0a4a9391
PZ
7945 kfree(buf);
7946}
7947
375637bc
AS
7948/*
7949 * Check whether inode and address range match filter criteria.
7950 */
7951static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7952 struct file *file, unsigned long offset,
7953 unsigned long size)
7954{
7f635ff1
MP
7955 /* d_inode(NULL) won't be equal to any mapped user-space file */
7956 if (!filter->path.dentry)
7957 return false;
7958
9511bce9 7959 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7960 return false;
7961
7962 if (filter->offset > offset + size)
7963 return false;
7964
7965 if (filter->offset + filter->size < offset)
7966 return false;
7967
7968 return true;
7969}
7970
c60f83b8
AS
7971static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7972 struct vm_area_struct *vma,
7973 struct perf_addr_filter_range *fr)
7974{
7975 unsigned long vma_size = vma->vm_end - vma->vm_start;
7976 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7977 struct file *file = vma->vm_file;
7978
7979 if (!perf_addr_filter_match(filter, file, off, vma_size))
7980 return false;
7981
7982 if (filter->offset < off) {
7983 fr->start = vma->vm_start;
7984 fr->size = min(vma_size, filter->size - (off - filter->offset));
7985 } else {
7986 fr->start = vma->vm_start + filter->offset - off;
7987 fr->size = min(vma->vm_end - fr->start, filter->size);
7988 }
7989
7990 return true;
7991}
7992
375637bc
AS
7993static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7994{
7995 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7996 struct vm_area_struct *vma = data;
375637bc
AS
7997 struct perf_addr_filter *filter;
7998 unsigned int restart = 0, count = 0;
c60f83b8 7999 unsigned long flags;
375637bc
AS
8000
8001 if (!has_addr_filter(event))
8002 return;
8003
c60f83b8 8004 if (!vma->vm_file)
375637bc
AS
8005 return;
8006
8007 raw_spin_lock_irqsave(&ifh->lock, flags);
8008 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
8009 if (perf_addr_filter_vma_adjust(filter, vma,
8010 &event->addr_filter_ranges[count]))
375637bc 8011 restart++;
375637bc
AS
8012
8013 count++;
8014 }
8015
8016 if (restart)
8017 event->addr_filters_gen++;
8018 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8019
8020 if (restart)
767ae086 8021 perf_event_stop(event, 1);
375637bc
AS
8022}
8023
8024/*
8025 * Adjust all task's events' filters to the new vma
8026 */
8027static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8028{
8029 struct perf_event_context *ctx;
8030 int ctxn;
8031
12b40a23
MP
8032 /*
8033 * Data tracing isn't supported yet and as such there is no need
8034 * to keep track of anything that isn't related to executable code:
8035 */
8036 if (!(vma->vm_flags & VM_EXEC))
8037 return;
8038
375637bc
AS
8039 rcu_read_lock();
8040 for_each_task_context_nr(ctxn) {
8041 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8042 if (!ctx)
8043 continue;
8044
aab5b71e 8045 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
8046 }
8047 rcu_read_unlock();
8048}
8049
3af9e859 8050void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 8051{
9ee318a7
PZ
8052 struct perf_mmap_event mmap_event;
8053
cdd6c482 8054 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
8055 return;
8056
8057 mmap_event = (struct perf_mmap_event){
089dd79d 8058 .vma = vma,
573402db
PZ
8059 /* .file_name */
8060 /* .file_size */
cdd6c482 8061 .event_id = {
573402db 8062 .header = {
cdd6c482 8063 .type = PERF_RECORD_MMAP,
39447b38 8064 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
8065 /* .size */
8066 },
8067 /* .pid */
8068 /* .tid */
089dd79d
PZ
8069 .start = vma->vm_start,
8070 .len = vma->vm_end - vma->vm_start,
3a0304e9 8071 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 8072 },
13d7a241
SE
8073 /* .maj (attr_mmap2 only) */
8074 /* .min (attr_mmap2 only) */
8075 /* .ino (attr_mmap2 only) */
8076 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
8077 /* .prot (attr_mmap2 only) */
8078 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
8079 };
8080
375637bc 8081 perf_addr_filters_adjust(vma);
cdd6c482 8082 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
8083}
8084
68db7e98
AS
8085void perf_event_aux_event(struct perf_event *event, unsigned long head,
8086 unsigned long size, u64 flags)
8087{
8088 struct perf_output_handle handle;
8089 struct perf_sample_data sample;
8090 struct perf_aux_event {
8091 struct perf_event_header header;
8092 u64 offset;
8093 u64 size;
8094 u64 flags;
8095 } rec = {
8096 .header = {
8097 .type = PERF_RECORD_AUX,
8098 .misc = 0,
8099 .size = sizeof(rec),
8100 },
8101 .offset = head,
8102 .size = size,
8103 .flags = flags,
8104 };
8105 int ret;
8106
8107 perf_event_header__init_id(&rec.header, &sample, event);
8108 ret = perf_output_begin(&handle, event, rec.header.size);
8109
8110 if (ret)
8111 return;
8112
8113 perf_output_put(&handle, rec);
8114 perf_event__output_id_sample(event, &handle, &sample);
8115
8116 perf_output_end(&handle);
8117}
8118
f38b0dbb
KL
8119/*
8120 * Lost/dropped samples logging
8121 */
8122void perf_log_lost_samples(struct perf_event *event, u64 lost)
8123{
8124 struct perf_output_handle handle;
8125 struct perf_sample_data sample;
8126 int ret;
8127
8128 struct {
8129 struct perf_event_header header;
8130 u64 lost;
8131 } lost_samples_event = {
8132 .header = {
8133 .type = PERF_RECORD_LOST_SAMPLES,
8134 .misc = 0,
8135 .size = sizeof(lost_samples_event),
8136 },
8137 .lost = lost,
8138 };
8139
8140 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8141
8142 ret = perf_output_begin(&handle, event,
8143 lost_samples_event.header.size);
8144 if (ret)
8145 return;
8146
8147 perf_output_put(&handle, lost_samples_event);
8148 perf_event__output_id_sample(event, &handle, &sample);
8149 perf_output_end(&handle);
8150}
8151
45ac1403
AH
8152/*
8153 * context_switch tracking
8154 */
8155
8156struct perf_switch_event {
8157 struct task_struct *task;
8158 struct task_struct *next_prev;
8159
8160 struct {
8161 struct perf_event_header header;
8162 u32 next_prev_pid;
8163 u32 next_prev_tid;
8164 } event_id;
8165};
8166
8167static int perf_event_switch_match(struct perf_event *event)
8168{
8169 return event->attr.context_switch;
8170}
8171
8172static void perf_event_switch_output(struct perf_event *event, void *data)
8173{
8174 struct perf_switch_event *se = data;
8175 struct perf_output_handle handle;
8176 struct perf_sample_data sample;
8177 int ret;
8178
8179 if (!perf_event_switch_match(event))
8180 return;
8181
8182 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8183 if (event->ctx->task) {
8184 se->event_id.header.type = PERF_RECORD_SWITCH;
8185 se->event_id.header.size = sizeof(se->event_id.header);
8186 } else {
8187 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8188 se->event_id.header.size = sizeof(se->event_id);
8189 se->event_id.next_prev_pid =
8190 perf_event_pid(event, se->next_prev);
8191 se->event_id.next_prev_tid =
8192 perf_event_tid(event, se->next_prev);
8193 }
8194
8195 perf_event_header__init_id(&se->event_id.header, &sample, event);
8196
8197 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8198 if (ret)
8199 return;
8200
8201 if (event->ctx->task)
8202 perf_output_put(&handle, se->event_id.header);
8203 else
8204 perf_output_put(&handle, se->event_id);
8205
8206 perf_event__output_id_sample(event, &handle, &sample);
8207
8208 perf_output_end(&handle);
8209}
8210
8211static void perf_event_switch(struct task_struct *task,
8212 struct task_struct *next_prev, bool sched_in)
8213{
8214 struct perf_switch_event switch_event;
8215
8216 /* N.B. caller checks nr_switch_events != 0 */
8217
8218 switch_event = (struct perf_switch_event){
8219 .task = task,
8220 .next_prev = next_prev,
8221 .event_id = {
8222 .header = {
8223 /* .type */
8224 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8225 /* .size */
8226 },
8227 /* .next_prev_pid */
8228 /* .next_prev_tid */
8229 },
8230 };
8231
101592b4
AB
8232 if (!sched_in && task->state == TASK_RUNNING)
8233 switch_event.event_id.header.misc |=
8234 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8235
aab5b71e 8236 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
8237 &switch_event,
8238 NULL);
8239}
8240
a78ac325
PZ
8241/*
8242 * IRQ throttle logging
8243 */
8244
cdd6c482 8245static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
8246{
8247 struct perf_output_handle handle;
c980d109 8248 struct perf_sample_data sample;
a78ac325
PZ
8249 int ret;
8250
8251 struct {
8252 struct perf_event_header header;
8253 u64 time;
cca3f454 8254 u64 id;
7f453c24 8255 u64 stream_id;
a78ac325
PZ
8256 } throttle_event = {
8257 .header = {
cdd6c482 8258 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
8259 .misc = 0,
8260 .size = sizeof(throttle_event),
8261 },
34f43927 8262 .time = perf_event_clock(event),
cdd6c482
IM
8263 .id = primary_event_id(event),
8264 .stream_id = event->id,
a78ac325
PZ
8265 };
8266
966ee4d6 8267 if (enable)
cdd6c482 8268 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 8269
c980d109
ACM
8270 perf_event_header__init_id(&throttle_event.header, &sample, event);
8271
8272 ret = perf_output_begin(&handle, event,
a7ac67ea 8273 throttle_event.header.size);
a78ac325
PZ
8274 if (ret)
8275 return;
8276
8277 perf_output_put(&handle, throttle_event);
c980d109 8278 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
8279 perf_output_end(&handle);
8280}
8281
76193a94
SL
8282/*
8283 * ksymbol register/unregister tracking
8284 */
8285
8286struct perf_ksymbol_event {
8287 const char *name;
8288 int name_len;
8289 struct {
8290 struct perf_event_header header;
8291 u64 addr;
8292 u32 len;
8293 u16 ksym_type;
8294 u16 flags;
8295 } event_id;
8296};
8297
8298static int perf_event_ksymbol_match(struct perf_event *event)
8299{
8300 return event->attr.ksymbol;
8301}
8302
8303static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8304{
8305 struct perf_ksymbol_event *ksymbol_event = data;
8306 struct perf_output_handle handle;
8307 struct perf_sample_data sample;
8308 int ret;
8309
8310 if (!perf_event_ksymbol_match(event))
8311 return;
8312
8313 perf_event_header__init_id(&ksymbol_event->event_id.header,
8314 &sample, event);
8315 ret = perf_output_begin(&handle, event,
8316 ksymbol_event->event_id.header.size);
8317 if (ret)
8318 return;
8319
8320 perf_output_put(&handle, ksymbol_event->event_id);
8321 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8322 perf_event__output_id_sample(event, &handle, &sample);
8323
8324 perf_output_end(&handle);
8325}
8326
8327void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8328 const char *sym)
8329{
8330 struct perf_ksymbol_event ksymbol_event;
8331 char name[KSYM_NAME_LEN];
8332 u16 flags = 0;
8333 int name_len;
8334
8335 if (!atomic_read(&nr_ksymbol_events))
8336 return;
8337
8338 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8339 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8340 goto err;
8341
8342 strlcpy(name, sym, KSYM_NAME_LEN);
8343 name_len = strlen(name) + 1;
8344 while (!IS_ALIGNED(name_len, sizeof(u64)))
8345 name[name_len++] = '\0';
8346 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8347
8348 if (unregister)
8349 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8350
8351 ksymbol_event = (struct perf_ksymbol_event){
8352 .name = name,
8353 .name_len = name_len,
8354 .event_id = {
8355 .header = {
8356 .type = PERF_RECORD_KSYMBOL,
8357 .size = sizeof(ksymbol_event.event_id) +
8358 name_len,
8359 },
8360 .addr = addr,
8361 .len = len,
8362 .ksym_type = ksym_type,
8363 .flags = flags,
8364 },
8365 };
8366
8367 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8368 return;
8369err:
8370 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8371}
8372
6ee52e2a
SL
8373/*
8374 * bpf program load/unload tracking
8375 */
8376
8377struct perf_bpf_event {
8378 struct bpf_prog *prog;
8379 struct {
8380 struct perf_event_header header;
8381 u16 type;
8382 u16 flags;
8383 u32 id;
8384 u8 tag[BPF_TAG_SIZE];
8385 } event_id;
8386};
8387
8388static int perf_event_bpf_match(struct perf_event *event)
8389{
8390 return event->attr.bpf_event;
8391}
8392
8393static void perf_event_bpf_output(struct perf_event *event, void *data)
8394{
8395 struct perf_bpf_event *bpf_event = data;
8396 struct perf_output_handle handle;
8397 struct perf_sample_data sample;
8398 int ret;
8399
8400 if (!perf_event_bpf_match(event))
8401 return;
8402
8403 perf_event_header__init_id(&bpf_event->event_id.header,
8404 &sample, event);
8405 ret = perf_output_begin(&handle, event,
8406 bpf_event->event_id.header.size);
8407 if (ret)
8408 return;
8409
8410 perf_output_put(&handle, bpf_event->event_id);
8411 perf_event__output_id_sample(event, &handle, &sample);
8412
8413 perf_output_end(&handle);
8414}
8415
8416static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8417 enum perf_bpf_event_type type)
8418{
8419 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8420 char sym[KSYM_NAME_LEN];
8421 int i;
8422
8423 if (prog->aux->func_cnt == 0) {
8424 bpf_get_prog_name(prog, sym);
8425 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8426 (u64)(unsigned long)prog->bpf_func,
8427 prog->jited_len, unregister, sym);
8428 } else {
8429 for (i = 0; i < prog->aux->func_cnt; i++) {
8430 struct bpf_prog *subprog = prog->aux->func[i];
8431
8432 bpf_get_prog_name(subprog, sym);
8433 perf_event_ksymbol(
8434 PERF_RECORD_KSYMBOL_TYPE_BPF,
8435 (u64)(unsigned long)subprog->bpf_func,
8436 subprog->jited_len, unregister, sym);
8437 }
8438 }
8439}
8440
8441void perf_event_bpf_event(struct bpf_prog *prog,
8442 enum perf_bpf_event_type type,
8443 u16 flags)
8444{
8445 struct perf_bpf_event bpf_event;
8446
8447 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8448 type >= PERF_BPF_EVENT_MAX)
8449 return;
8450
8451 switch (type) {
8452 case PERF_BPF_EVENT_PROG_LOAD:
8453 case PERF_BPF_EVENT_PROG_UNLOAD:
8454 if (atomic_read(&nr_ksymbol_events))
8455 perf_event_bpf_emit_ksymbols(prog, type);
8456 break;
8457 default:
8458 break;
8459 }
8460
8461 if (!atomic_read(&nr_bpf_events))
8462 return;
8463
8464 bpf_event = (struct perf_bpf_event){
8465 .prog = prog,
8466 .event_id = {
8467 .header = {
8468 .type = PERF_RECORD_BPF_EVENT,
8469 .size = sizeof(bpf_event.event_id),
8470 },
8471 .type = type,
8472 .flags = flags,
8473 .id = prog->aux->id,
8474 },
8475 };
8476
8477 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8478
8479 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8480 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8481}
8482
8d4e6c4c
AS
8483void perf_event_itrace_started(struct perf_event *event)
8484{
8485 event->attach_state |= PERF_ATTACH_ITRACE;
8486}
8487
ec0d7729
AS
8488static void perf_log_itrace_start(struct perf_event *event)
8489{
8490 struct perf_output_handle handle;
8491 struct perf_sample_data sample;
8492 struct perf_aux_event {
8493 struct perf_event_header header;
8494 u32 pid;
8495 u32 tid;
8496 } rec;
8497 int ret;
8498
8499 if (event->parent)
8500 event = event->parent;
8501
8502 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 8503 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
8504 return;
8505
ec0d7729
AS
8506 rec.header.type = PERF_RECORD_ITRACE_START;
8507 rec.header.misc = 0;
8508 rec.header.size = sizeof(rec);
8509 rec.pid = perf_event_pid(event, current);
8510 rec.tid = perf_event_tid(event, current);
8511
8512 perf_event_header__init_id(&rec.header, &sample, event);
8513 ret = perf_output_begin(&handle, event, rec.header.size);
8514
8515 if (ret)
8516 return;
8517
8518 perf_output_put(&handle, rec);
8519 perf_event__output_id_sample(event, &handle, &sample);
8520
8521 perf_output_end(&handle);
8522}
8523
475113d9
JO
8524static int
8525__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 8526{
cdd6c482 8527 struct hw_perf_event *hwc = &event->hw;
79f14641 8528 int ret = 0;
475113d9 8529 u64 seq;
96398826 8530
e050e3f0
SE
8531 seq = __this_cpu_read(perf_throttled_seq);
8532 if (seq != hwc->interrupts_seq) {
8533 hwc->interrupts_seq = seq;
8534 hwc->interrupts = 1;
8535 } else {
8536 hwc->interrupts++;
8537 if (unlikely(throttle
8538 && hwc->interrupts >= max_samples_per_tick)) {
8539 __this_cpu_inc(perf_throttled_count);
555e0c1e 8540 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
8541 hwc->interrupts = MAX_INTERRUPTS;
8542 perf_log_throttle(event, 0);
a78ac325
PZ
8543 ret = 1;
8544 }
e050e3f0 8545 }
60db5e09 8546
cdd6c482 8547 if (event->attr.freq) {
def0a9b2 8548 u64 now = perf_clock();
abd50713 8549 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8550
abd50713 8551 hwc->freq_time_stamp = now;
bd2b5b12 8552
abd50713 8553 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8554 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8555 }
8556
475113d9
JO
8557 return ret;
8558}
8559
8560int perf_event_account_interrupt(struct perf_event *event)
8561{
8562 return __perf_event_account_interrupt(event, 1);
8563}
8564
8565/*
8566 * Generic event overflow handling, sampling.
8567 */
8568
8569static int __perf_event_overflow(struct perf_event *event,
8570 int throttle, struct perf_sample_data *data,
8571 struct pt_regs *regs)
8572{
8573 int events = atomic_read(&event->event_limit);
8574 int ret = 0;
8575
8576 /*
8577 * Non-sampling counters might still use the PMI to fold short
8578 * hardware counters, ignore those.
8579 */
8580 if (unlikely(!is_sampling_event(event)))
8581 return 0;
8582
8583 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8584
2023b359
PZ
8585 /*
8586 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8587 * events
2023b359
PZ
8588 */
8589
cdd6c482
IM
8590 event->pending_kill = POLL_IN;
8591 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8592 ret = 1;
cdd6c482 8593 event->pending_kill = POLL_HUP;
5aab90ce
JO
8594
8595 perf_event_disable_inatomic(event);
79f14641
PZ
8596 }
8597
aa6a5f3c 8598 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8599
fed66e2c 8600 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8601 event->pending_wakeup = 1;
8602 irq_work_queue(&event->pending);
f506b3dc
PZ
8603 }
8604
79f14641 8605 return ret;
f6c7d5fe
PZ
8606}
8607
a8b0ca17 8608int perf_event_overflow(struct perf_event *event,
5622f295
MM
8609 struct perf_sample_data *data,
8610 struct pt_regs *regs)
850bc73f 8611{
a8b0ca17 8612 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8613}
8614
15dbf27c 8615/*
cdd6c482 8616 * Generic software event infrastructure
15dbf27c
PZ
8617 */
8618
b28ab83c
PZ
8619struct swevent_htable {
8620 struct swevent_hlist *swevent_hlist;
8621 struct mutex hlist_mutex;
8622 int hlist_refcount;
8623
8624 /* Recursion avoidance in each contexts */
8625 int recursion[PERF_NR_CONTEXTS];
8626};
8627
8628static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8629
7b4b6658 8630/*
cdd6c482
IM
8631 * We directly increment event->count and keep a second value in
8632 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8633 * is kept in the range [-sample_period, 0] so that we can use the
8634 * sign as trigger.
8635 */
8636
ab573844 8637u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8638{
cdd6c482 8639 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8640 u64 period = hwc->last_period;
8641 u64 nr, offset;
8642 s64 old, val;
8643
8644 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8645
8646again:
e7850595 8647 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8648 if (val < 0)
8649 return 0;
15dbf27c 8650
7b4b6658
PZ
8651 nr = div64_u64(period + val, period);
8652 offset = nr * period;
8653 val -= offset;
e7850595 8654 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8655 goto again;
15dbf27c 8656
7b4b6658 8657 return nr;
15dbf27c
PZ
8658}
8659
0cff784a 8660static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8661 struct perf_sample_data *data,
5622f295 8662 struct pt_regs *regs)
15dbf27c 8663{
cdd6c482 8664 struct hw_perf_event *hwc = &event->hw;
850bc73f 8665 int throttle = 0;
15dbf27c 8666
0cff784a
PZ
8667 if (!overflow)
8668 overflow = perf_swevent_set_period(event);
15dbf27c 8669
7b4b6658
PZ
8670 if (hwc->interrupts == MAX_INTERRUPTS)
8671 return;
15dbf27c 8672
7b4b6658 8673 for (; overflow; overflow--) {
a8b0ca17 8674 if (__perf_event_overflow(event, throttle,
5622f295 8675 data, regs)) {
7b4b6658
PZ
8676 /*
8677 * We inhibit the overflow from happening when
8678 * hwc->interrupts == MAX_INTERRUPTS.
8679 */
8680 break;
8681 }
cf450a73 8682 throttle = 1;
7b4b6658 8683 }
15dbf27c
PZ
8684}
8685
a4eaf7f1 8686static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8687 struct perf_sample_data *data,
5622f295 8688 struct pt_regs *regs)
7b4b6658 8689{
cdd6c482 8690 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8691
e7850595 8692 local64_add(nr, &event->count);
d6d020e9 8693
0cff784a
PZ
8694 if (!regs)
8695 return;
8696
6c7e550f 8697 if (!is_sampling_event(event))
7b4b6658 8698 return;
d6d020e9 8699
5d81e5cf
AV
8700 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8701 data->period = nr;
8702 return perf_swevent_overflow(event, 1, data, regs);
8703 } else
8704 data->period = event->hw.last_period;
8705
0cff784a 8706 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8707 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8708
e7850595 8709 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8710 return;
df1a132b 8711
a8b0ca17 8712 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8713}
8714
f5ffe02e
FW
8715static int perf_exclude_event(struct perf_event *event,
8716 struct pt_regs *regs)
8717{
a4eaf7f1 8718 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8719 return 1;
a4eaf7f1 8720
f5ffe02e
FW
8721 if (regs) {
8722 if (event->attr.exclude_user && user_mode(regs))
8723 return 1;
8724
8725 if (event->attr.exclude_kernel && !user_mode(regs))
8726 return 1;
8727 }
8728
8729 return 0;
8730}
8731
cdd6c482 8732static int perf_swevent_match(struct perf_event *event,
1c432d89 8733 enum perf_type_id type,
6fb2915d
LZ
8734 u32 event_id,
8735 struct perf_sample_data *data,
8736 struct pt_regs *regs)
15dbf27c 8737{
cdd6c482 8738 if (event->attr.type != type)
a21ca2ca 8739 return 0;
f5ffe02e 8740
cdd6c482 8741 if (event->attr.config != event_id)
15dbf27c
PZ
8742 return 0;
8743
f5ffe02e
FW
8744 if (perf_exclude_event(event, regs))
8745 return 0;
15dbf27c
PZ
8746
8747 return 1;
8748}
8749
76e1d904
FW
8750static inline u64 swevent_hash(u64 type, u32 event_id)
8751{
8752 u64 val = event_id | (type << 32);
8753
8754 return hash_64(val, SWEVENT_HLIST_BITS);
8755}
8756
49f135ed
FW
8757static inline struct hlist_head *
8758__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8759{
49f135ed
FW
8760 u64 hash = swevent_hash(type, event_id);
8761
8762 return &hlist->heads[hash];
8763}
76e1d904 8764
49f135ed
FW
8765/* For the read side: events when they trigger */
8766static inline struct hlist_head *
b28ab83c 8767find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8768{
8769 struct swevent_hlist *hlist;
76e1d904 8770
b28ab83c 8771 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8772 if (!hlist)
8773 return NULL;
8774
49f135ed
FW
8775 return __find_swevent_head(hlist, type, event_id);
8776}
8777
8778/* For the event head insertion and removal in the hlist */
8779static inline struct hlist_head *
b28ab83c 8780find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8781{
8782 struct swevent_hlist *hlist;
8783 u32 event_id = event->attr.config;
8784 u64 type = event->attr.type;
8785
8786 /*
8787 * Event scheduling is always serialized against hlist allocation
8788 * and release. Which makes the protected version suitable here.
8789 * The context lock guarantees that.
8790 */
b28ab83c 8791 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8792 lockdep_is_held(&event->ctx->lock));
8793 if (!hlist)
8794 return NULL;
8795
8796 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8797}
8798
8799static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8800 u64 nr,
76e1d904
FW
8801 struct perf_sample_data *data,
8802 struct pt_regs *regs)
15dbf27c 8803{
4a32fea9 8804 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8805 struct perf_event *event;
76e1d904 8806 struct hlist_head *head;
15dbf27c 8807
76e1d904 8808 rcu_read_lock();
b28ab83c 8809 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8810 if (!head)
8811 goto end;
8812
b67bfe0d 8813 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8814 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8815 perf_swevent_event(event, nr, data, regs);
15dbf27c 8816 }
76e1d904
FW
8817end:
8818 rcu_read_unlock();
15dbf27c
PZ
8819}
8820
86038c5e
PZI
8821DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8822
4ed7c92d 8823int perf_swevent_get_recursion_context(void)
96f6d444 8824{
4a32fea9 8825 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8826
b28ab83c 8827 return get_recursion_context(swhash->recursion);
96f6d444 8828}
645e8cc0 8829EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8830
98b5c2c6 8831void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8832{
4a32fea9 8833 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8834
b28ab83c 8835 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8836}
15dbf27c 8837
86038c5e 8838void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8839{
a4234bfc 8840 struct perf_sample_data data;
4ed7c92d 8841
86038c5e 8842 if (WARN_ON_ONCE(!regs))
4ed7c92d 8843 return;
a4234bfc 8844
fd0d000b 8845 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8846 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8847}
8848
8849void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8850{
8851 int rctx;
8852
8853 preempt_disable_notrace();
8854 rctx = perf_swevent_get_recursion_context();
8855 if (unlikely(rctx < 0))
8856 goto fail;
8857
8858 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8859
8860 perf_swevent_put_recursion_context(rctx);
86038c5e 8861fail:
1c024eca 8862 preempt_enable_notrace();
b8e83514
PZ
8863}
8864
cdd6c482 8865static void perf_swevent_read(struct perf_event *event)
15dbf27c 8866{
15dbf27c
PZ
8867}
8868
a4eaf7f1 8869static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8870{
4a32fea9 8871 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8872 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8873 struct hlist_head *head;
8874
6c7e550f 8875 if (is_sampling_event(event)) {
7b4b6658 8876 hwc->last_period = hwc->sample_period;
cdd6c482 8877 perf_swevent_set_period(event);
7b4b6658 8878 }
76e1d904 8879
a4eaf7f1
PZ
8880 hwc->state = !(flags & PERF_EF_START);
8881
b28ab83c 8882 head = find_swevent_head(swhash, event);
12ca6ad2 8883 if (WARN_ON_ONCE(!head))
76e1d904
FW
8884 return -EINVAL;
8885
8886 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8887 perf_event_update_userpage(event);
76e1d904 8888
15dbf27c
PZ
8889 return 0;
8890}
8891
a4eaf7f1 8892static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8893{
76e1d904 8894 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8895}
8896
a4eaf7f1 8897static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8898{
a4eaf7f1 8899 event->hw.state = 0;
d6d020e9 8900}
aa9c4c0f 8901
a4eaf7f1 8902static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8903{
a4eaf7f1 8904 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8905}
8906
49f135ed
FW
8907/* Deref the hlist from the update side */
8908static inline struct swevent_hlist *
b28ab83c 8909swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8910{
b28ab83c
PZ
8911 return rcu_dereference_protected(swhash->swevent_hlist,
8912 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8913}
8914
b28ab83c 8915static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8916{
b28ab83c 8917 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8918
49f135ed 8919 if (!hlist)
76e1d904
FW
8920 return;
8921
70691d4a 8922 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8923 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8924}
8925
3b364d7b 8926static void swevent_hlist_put_cpu(int cpu)
76e1d904 8927{
b28ab83c 8928 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8929
b28ab83c 8930 mutex_lock(&swhash->hlist_mutex);
76e1d904 8931
b28ab83c
PZ
8932 if (!--swhash->hlist_refcount)
8933 swevent_hlist_release(swhash);
76e1d904 8934
b28ab83c 8935 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8936}
8937
3b364d7b 8938static void swevent_hlist_put(void)
76e1d904
FW
8939{
8940 int cpu;
8941
76e1d904 8942 for_each_possible_cpu(cpu)
3b364d7b 8943 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8944}
8945
3b364d7b 8946static int swevent_hlist_get_cpu(int cpu)
76e1d904 8947{
b28ab83c 8948 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8949 int err = 0;
8950
b28ab83c 8951 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8952 if (!swevent_hlist_deref(swhash) &&
8953 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8954 struct swevent_hlist *hlist;
8955
8956 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8957 if (!hlist) {
8958 err = -ENOMEM;
8959 goto exit;
8960 }
b28ab83c 8961 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8962 }
b28ab83c 8963 swhash->hlist_refcount++;
9ed6060d 8964exit:
b28ab83c 8965 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8966
8967 return err;
8968}
8969
3b364d7b 8970static int swevent_hlist_get(void)
76e1d904 8971{
3b364d7b 8972 int err, cpu, failed_cpu;
76e1d904 8973
a63fbed7 8974 mutex_lock(&pmus_lock);
76e1d904 8975 for_each_possible_cpu(cpu) {
3b364d7b 8976 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8977 if (err) {
8978 failed_cpu = cpu;
8979 goto fail;
8980 }
8981 }
a63fbed7 8982 mutex_unlock(&pmus_lock);
76e1d904 8983 return 0;
9ed6060d 8984fail:
76e1d904
FW
8985 for_each_possible_cpu(cpu) {
8986 if (cpu == failed_cpu)
8987 break;
3b364d7b 8988 swevent_hlist_put_cpu(cpu);
76e1d904 8989 }
a63fbed7 8990 mutex_unlock(&pmus_lock);
76e1d904
FW
8991 return err;
8992}
8993
c5905afb 8994struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8995
b0a873eb
PZ
8996static void sw_perf_event_destroy(struct perf_event *event)
8997{
8998 u64 event_id = event->attr.config;
95476b64 8999
b0a873eb
PZ
9000 WARN_ON(event->parent);
9001
c5905afb 9002 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 9003 swevent_hlist_put();
b0a873eb
PZ
9004}
9005
9006static int perf_swevent_init(struct perf_event *event)
9007{
8176cced 9008 u64 event_id = event->attr.config;
b0a873eb
PZ
9009
9010 if (event->attr.type != PERF_TYPE_SOFTWARE)
9011 return -ENOENT;
9012
2481c5fa
SE
9013 /*
9014 * no branch sampling for software events
9015 */
9016 if (has_branch_stack(event))
9017 return -EOPNOTSUPP;
9018
b0a873eb
PZ
9019 switch (event_id) {
9020 case PERF_COUNT_SW_CPU_CLOCK:
9021 case PERF_COUNT_SW_TASK_CLOCK:
9022 return -ENOENT;
9023
9024 default:
9025 break;
9026 }
9027
ce677831 9028 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
9029 return -ENOENT;
9030
9031 if (!event->parent) {
9032 int err;
9033
3b364d7b 9034 err = swevent_hlist_get();
b0a873eb
PZ
9035 if (err)
9036 return err;
9037
c5905afb 9038 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
9039 event->destroy = sw_perf_event_destroy;
9040 }
9041
9042 return 0;
9043}
9044
9045static struct pmu perf_swevent = {
89a1e187 9046 .task_ctx_nr = perf_sw_context,
95476b64 9047
34f43927
PZ
9048 .capabilities = PERF_PMU_CAP_NO_NMI,
9049
b0a873eb 9050 .event_init = perf_swevent_init,
a4eaf7f1
PZ
9051 .add = perf_swevent_add,
9052 .del = perf_swevent_del,
9053 .start = perf_swevent_start,
9054 .stop = perf_swevent_stop,
1c024eca 9055 .read = perf_swevent_read,
1c024eca
PZ
9056};
9057
b0a873eb
PZ
9058#ifdef CONFIG_EVENT_TRACING
9059
1c024eca
PZ
9060static int perf_tp_filter_match(struct perf_event *event,
9061 struct perf_sample_data *data)
9062{
7e3f977e 9063 void *record = data->raw->frag.data;
1c024eca 9064
b71b437e
PZ
9065 /* only top level events have filters set */
9066 if (event->parent)
9067 event = event->parent;
9068
1c024eca
PZ
9069 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9070 return 1;
9071 return 0;
9072}
9073
9074static int perf_tp_event_match(struct perf_event *event,
9075 struct perf_sample_data *data,
9076 struct pt_regs *regs)
9077{
a0f7d0f7
FW
9078 if (event->hw.state & PERF_HES_STOPPED)
9079 return 0;
580d607c 9080 /*
9fd2e48b 9081 * If exclude_kernel, only trace user-space tracepoints (uprobes)
580d607c 9082 */
9fd2e48b 9083 if (event->attr.exclude_kernel && !user_mode(regs))
1c024eca
PZ
9084 return 0;
9085
9086 if (!perf_tp_filter_match(event, data))
9087 return 0;
9088
9089 return 1;
9090}
9091
85b67bcb
AS
9092void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9093 struct trace_event_call *call, u64 count,
9094 struct pt_regs *regs, struct hlist_head *head,
9095 struct task_struct *task)
9096{
e87c6bc3 9097 if (bpf_prog_array_valid(call)) {
85b67bcb 9098 *(struct pt_regs **)raw_data = regs;
e87c6bc3 9099 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
9100 perf_swevent_put_recursion_context(rctx);
9101 return;
9102 }
9103 }
9104 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 9105 rctx, task);
85b67bcb
AS
9106}
9107EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9108
1e1dcd93 9109void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 9110 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 9111 struct task_struct *task)
95476b64
FW
9112{
9113 struct perf_sample_data data;
8fd0fbbe 9114 struct perf_event *event;
1c024eca 9115
95476b64 9116 struct perf_raw_record raw = {
7e3f977e
DB
9117 .frag = {
9118 .size = entry_size,
9119 .data = record,
9120 },
95476b64
FW
9121 };
9122
1e1dcd93 9123 perf_sample_data_init(&data, 0, 0);
95476b64
FW
9124 data.raw = &raw;
9125
1e1dcd93
AS
9126 perf_trace_buf_update(record, event_type);
9127
8fd0fbbe 9128 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 9129 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 9130 perf_swevent_event(event, count, &data, regs);
4f41c013 9131 }
ecc55f84 9132
e6dab5ff
AV
9133 /*
9134 * If we got specified a target task, also iterate its context and
9135 * deliver this event there too.
9136 */
9137 if (task && task != current) {
9138 struct perf_event_context *ctx;
9139 struct trace_entry *entry = record;
9140
9141 rcu_read_lock();
9142 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9143 if (!ctx)
9144 goto unlock;
9145
9146 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
9147 if (event->cpu != smp_processor_id())
9148 continue;
e6dab5ff
AV
9149 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9150 continue;
9151 if (event->attr.config != entry->type)
9152 continue;
9153 if (perf_tp_event_match(event, &data, regs))
9154 perf_swevent_event(event, count, &data, regs);
9155 }
9156unlock:
9157 rcu_read_unlock();
9158 }
9159
ecc55f84 9160 perf_swevent_put_recursion_context(rctx);
95476b64
FW
9161}
9162EXPORT_SYMBOL_GPL(perf_tp_event);
9163
cdd6c482 9164static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 9165{
1c024eca 9166 perf_trace_destroy(event);
e077df4f
PZ
9167}
9168
b0a873eb 9169static int perf_tp_event_init(struct perf_event *event)
e077df4f 9170{
76e1d904
FW
9171 int err;
9172
b0a873eb
PZ
9173 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9174 return -ENOENT;
9175
2481c5fa
SE
9176 /*
9177 * no branch sampling for tracepoint events
9178 */
9179 if (has_branch_stack(event))
9180 return -EOPNOTSUPP;
9181
1c024eca
PZ
9182 err = perf_trace_init(event);
9183 if (err)
b0a873eb 9184 return err;
e077df4f 9185
cdd6c482 9186 event->destroy = tp_perf_event_destroy;
e077df4f 9187
b0a873eb
PZ
9188 return 0;
9189}
9190
9191static struct pmu perf_tracepoint = {
89a1e187
PZ
9192 .task_ctx_nr = perf_sw_context,
9193
b0a873eb 9194 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
9195 .add = perf_trace_add,
9196 .del = perf_trace_del,
9197 .start = perf_swevent_start,
9198 .stop = perf_swevent_stop,
b0a873eb 9199 .read = perf_swevent_read,
b0a873eb
PZ
9200};
9201
33ea4b24 9202#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
9203/*
9204 * Flags in config, used by dynamic PMU kprobe and uprobe
9205 * The flags should match following PMU_FORMAT_ATTR().
9206 *
9207 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9208 * if not set, create kprobe/uprobe
a6ca88b2
SL
9209 *
9210 * The following values specify a reference counter (or semaphore in the
9211 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9212 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9213 *
9214 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9215 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
9216 */
9217enum perf_probe_config {
9218 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
9219 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9220 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
9221};
9222
9223PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 9224#endif
e12f03d7 9225
a6ca88b2
SL
9226#ifdef CONFIG_KPROBE_EVENTS
9227static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
9228 &format_attr_retprobe.attr,
9229 NULL,
9230};
9231
a6ca88b2 9232static struct attribute_group kprobe_format_group = {
e12f03d7 9233 .name = "format",
a6ca88b2 9234 .attrs = kprobe_attrs,
e12f03d7
SL
9235};
9236
a6ca88b2
SL
9237static const struct attribute_group *kprobe_attr_groups[] = {
9238 &kprobe_format_group,
e12f03d7
SL
9239 NULL,
9240};
9241
9242static int perf_kprobe_event_init(struct perf_event *event);
9243static struct pmu perf_kprobe = {
9244 .task_ctx_nr = perf_sw_context,
9245 .event_init = perf_kprobe_event_init,
9246 .add = perf_trace_add,
9247 .del = perf_trace_del,
9248 .start = perf_swevent_start,
9249 .stop = perf_swevent_stop,
9250 .read = perf_swevent_read,
a6ca88b2 9251 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
9252};
9253
9254static int perf_kprobe_event_init(struct perf_event *event)
9255{
9256 int err;
9257 bool is_retprobe;
9258
9259 if (event->attr.type != perf_kprobe.type)
9260 return -ENOENT;
32e6e967
SL
9261
9262 if (!capable(CAP_SYS_ADMIN))
9263 return -EACCES;
9264
e12f03d7
SL
9265 /*
9266 * no branch sampling for probe events
9267 */
9268 if (has_branch_stack(event))
9269 return -EOPNOTSUPP;
9270
9271 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9272 err = perf_kprobe_init(event, is_retprobe);
9273 if (err)
9274 return err;
9275
9276 event->destroy = perf_kprobe_destroy;
9277
9278 return 0;
9279}
9280#endif /* CONFIG_KPROBE_EVENTS */
9281
33ea4b24 9282#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
9283PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9284
9285static struct attribute *uprobe_attrs[] = {
9286 &format_attr_retprobe.attr,
9287 &format_attr_ref_ctr_offset.attr,
9288 NULL,
9289};
9290
9291static struct attribute_group uprobe_format_group = {
9292 .name = "format",
9293 .attrs = uprobe_attrs,
9294};
9295
9296static const struct attribute_group *uprobe_attr_groups[] = {
9297 &uprobe_format_group,
9298 NULL,
9299};
9300
33ea4b24
SL
9301static int perf_uprobe_event_init(struct perf_event *event);
9302static struct pmu perf_uprobe = {
9303 .task_ctx_nr = perf_sw_context,
9304 .event_init = perf_uprobe_event_init,
9305 .add = perf_trace_add,
9306 .del = perf_trace_del,
9307 .start = perf_swevent_start,
9308 .stop = perf_swevent_stop,
9309 .read = perf_swevent_read,
a6ca88b2 9310 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
9311};
9312
9313static int perf_uprobe_event_init(struct perf_event *event)
9314{
9315 int err;
a6ca88b2 9316 unsigned long ref_ctr_offset;
33ea4b24
SL
9317 bool is_retprobe;
9318
9319 if (event->attr.type != perf_uprobe.type)
9320 return -ENOENT;
32e6e967
SL
9321
9322 if (!capable(CAP_SYS_ADMIN))
9323 return -EACCES;
9324
33ea4b24
SL
9325 /*
9326 * no branch sampling for probe events
9327 */
9328 if (has_branch_stack(event))
9329 return -EOPNOTSUPP;
9330
9331 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
9332 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9333 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
9334 if (err)
9335 return err;
9336
9337 event->destroy = perf_uprobe_destroy;
9338
9339 return 0;
9340}
9341#endif /* CONFIG_UPROBE_EVENTS */
9342
b0a873eb
PZ
9343static inline void perf_tp_register(void)
9344{
2e80a82a 9345 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
9346#ifdef CONFIG_KPROBE_EVENTS
9347 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9348#endif
33ea4b24
SL
9349#ifdef CONFIG_UPROBE_EVENTS
9350 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9351#endif
e077df4f 9352}
6fb2915d 9353
6fb2915d
LZ
9354static void perf_event_free_filter(struct perf_event *event)
9355{
9356 ftrace_profile_free_filter(event);
9357}
9358
aa6a5f3c
AS
9359#ifdef CONFIG_BPF_SYSCALL
9360static void bpf_overflow_handler(struct perf_event *event,
9361 struct perf_sample_data *data,
9362 struct pt_regs *regs)
9363{
9364 struct bpf_perf_event_data_kern ctx = {
9365 .data = data,
7d9285e8 9366 .event = event,
aa6a5f3c
AS
9367 };
9368 int ret = 0;
9369
c895f6f7 9370 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
9371 preempt_disable();
9372 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9373 goto out;
9374 rcu_read_lock();
88575199 9375 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
9376 rcu_read_unlock();
9377out:
9378 __this_cpu_dec(bpf_prog_active);
9379 preempt_enable();
9380 if (!ret)
9381 return;
9382
9383 event->orig_overflow_handler(event, data, regs);
9384}
9385
9386static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9387{
9388 struct bpf_prog *prog;
9389
9390 if (event->overflow_handler_context)
9391 /* hw breakpoint or kernel counter */
9392 return -EINVAL;
9393
9394 if (event->prog)
9395 return -EEXIST;
9396
9397 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9398 if (IS_ERR(prog))
9399 return PTR_ERR(prog);
9400
9401 event->prog = prog;
9402 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9403 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9404 return 0;
9405}
9406
9407static void perf_event_free_bpf_handler(struct perf_event *event)
9408{
9409 struct bpf_prog *prog = event->prog;
9410
9411 if (!prog)
9412 return;
9413
9414 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9415 event->prog = NULL;
9416 bpf_prog_put(prog);
9417}
9418#else
9419static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9420{
9421 return -EOPNOTSUPP;
9422}
9423static void perf_event_free_bpf_handler(struct perf_event *event)
9424{
9425}
9426#endif
9427
e12f03d7
SL
9428/*
9429 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9430 * with perf_event_open()
9431 */
9432static inline bool perf_event_is_tracing(struct perf_event *event)
9433{
9434 if (event->pmu == &perf_tracepoint)
9435 return true;
9436#ifdef CONFIG_KPROBE_EVENTS
9437 if (event->pmu == &perf_kprobe)
9438 return true;
33ea4b24
SL
9439#endif
9440#ifdef CONFIG_UPROBE_EVENTS
9441 if (event->pmu == &perf_uprobe)
9442 return true;
e12f03d7
SL
9443#endif
9444 return false;
9445}
9446
2541517c
AS
9447static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9448{
cf5f5cea 9449 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 9450 struct bpf_prog *prog;
e87c6bc3 9451 int ret;
2541517c 9452
e12f03d7 9453 if (!perf_event_is_tracing(event))
f91840a3 9454 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 9455
98b5c2c6
AS
9456 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9457 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
9458 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9459 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 9460 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
9461 return -EINVAL;
9462
9463 prog = bpf_prog_get(prog_fd);
9464 if (IS_ERR(prog))
9465 return PTR_ERR(prog);
9466
98b5c2c6 9467 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
9468 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9469 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
9470 /* valid fd, but invalid bpf program type */
9471 bpf_prog_put(prog);
9472 return -EINVAL;
9473 }
9474
9802d865
JB
9475 /* Kprobe override only works for kprobes, not uprobes. */
9476 if (prog->kprobe_override &&
9477 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9478 bpf_prog_put(prog);
9479 return -EINVAL;
9480 }
9481
cf5f5cea 9482 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
9483 int off = trace_event_get_offsets(event->tp_event);
9484
9485 if (prog->aux->max_ctx_offset > off) {
9486 bpf_prog_put(prog);
9487 return -EACCES;
9488 }
9489 }
2541517c 9490
e87c6bc3
YS
9491 ret = perf_event_attach_bpf_prog(event, prog);
9492 if (ret)
9493 bpf_prog_put(prog);
9494 return ret;
2541517c
AS
9495}
9496
9497static void perf_event_free_bpf_prog(struct perf_event *event)
9498{
e12f03d7 9499 if (!perf_event_is_tracing(event)) {
0b4c6841 9500 perf_event_free_bpf_handler(event);
2541517c 9501 return;
2541517c 9502 }
e87c6bc3 9503 perf_event_detach_bpf_prog(event);
2541517c
AS
9504}
9505
e077df4f 9506#else
6fb2915d 9507
b0a873eb 9508static inline void perf_tp_register(void)
e077df4f 9509{
e077df4f 9510}
6fb2915d 9511
6fb2915d
LZ
9512static void perf_event_free_filter(struct perf_event *event)
9513{
9514}
9515
2541517c
AS
9516static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9517{
9518 return -ENOENT;
9519}
9520
9521static void perf_event_free_bpf_prog(struct perf_event *event)
9522{
9523}
07b139c8 9524#endif /* CONFIG_EVENT_TRACING */
e077df4f 9525
24f1e32c 9526#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 9527void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 9528{
f5ffe02e
FW
9529 struct perf_sample_data sample;
9530 struct pt_regs *regs = data;
9531
fd0d000b 9532 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 9533
a4eaf7f1 9534 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 9535 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
9536}
9537#endif
9538
375637bc
AS
9539/*
9540 * Allocate a new address filter
9541 */
9542static struct perf_addr_filter *
9543perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9544{
9545 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9546 struct perf_addr_filter *filter;
9547
9548 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9549 if (!filter)
9550 return NULL;
9551
9552 INIT_LIST_HEAD(&filter->entry);
9553 list_add_tail(&filter->entry, filters);
9554
9555 return filter;
9556}
9557
9558static void free_filters_list(struct list_head *filters)
9559{
9560 struct perf_addr_filter *filter, *iter;
9561
9562 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9563 path_put(&filter->path);
375637bc
AS
9564 list_del(&filter->entry);
9565 kfree(filter);
9566 }
9567}
9568
9569/*
9570 * Free existing address filters and optionally install new ones
9571 */
9572static void perf_addr_filters_splice(struct perf_event *event,
9573 struct list_head *head)
9574{
9575 unsigned long flags;
9576 LIST_HEAD(list);
9577
9578 if (!has_addr_filter(event))
9579 return;
9580
9581 /* don't bother with children, they don't have their own filters */
9582 if (event->parent)
9583 return;
9584
9585 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9586
9587 list_splice_init(&event->addr_filters.list, &list);
9588 if (head)
9589 list_splice(head, &event->addr_filters.list);
9590
9591 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9592
9593 free_filters_list(&list);
9594}
9595
9596/*
9597 * Scan through mm's vmas and see if one of them matches the
9598 * @filter; if so, adjust filter's address range.
9599 * Called with mm::mmap_sem down for reading.
9600 */
c60f83b8
AS
9601static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9602 struct mm_struct *mm,
9603 struct perf_addr_filter_range *fr)
375637bc
AS
9604{
9605 struct vm_area_struct *vma;
9606
9607 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9608 if (!vma->vm_file)
375637bc
AS
9609 continue;
9610
c60f83b8
AS
9611 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9612 return;
375637bc 9613 }
375637bc
AS
9614}
9615
9616/*
9617 * Update event's address range filters based on the
9618 * task's existing mappings, if any.
9619 */
9620static void perf_event_addr_filters_apply(struct perf_event *event)
9621{
9622 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9623 struct task_struct *task = READ_ONCE(event->ctx->task);
9624 struct perf_addr_filter *filter;
9625 struct mm_struct *mm = NULL;
9626 unsigned int count = 0;
9627 unsigned long flags;
9628
9629 /*
9630 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9631 * will stop on the parent's child_mutex that our caller is also holding
9632 */
9633 if (task == TASK_TOMBSTONE)
9634 return;
9635
52a44f83
AS
9636 if (ifh->nr_file_filters) {
9637 mm = get_task_mm(event->ctx->task);
9638 if (!mm)
9639 goto restart;
375637bc 9640
52a44f83
AS
9641 down_read(&mm->mmap_sem);
9642 }
375637bc
AS
9643
9644 raw_spin_lock_irqsave(&ifh->lock, flags);
9645 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9646 if (filter->path.dentry) {
9647 /*
9648 * Adjust base offset if the filter is associated to a
9649 * binary that needs to be mapped:
9650 */
9651 event->addr_filter_ranges[count].start = 0;
9652 event->addr_filter_ranges[count].size = 0;
375637bc 9653
c60f83b8 9654 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9655 } else {
9656 event->addr_filter_ranges[count].start = filter->offset;
9657 event->addr_filter_ranges[count].size = filter->size;
9658 }
375637bc
AS
9659
9660 count++;
9661 }
9662
9663 event->addr_filters_gen++;
9664 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9665
52a44f83
AS
9666 if (ifh->nr_file_filters) {
9667 up_read(&mm->mmap_sem);
375637bc 9668
52a44f83
AS
9669 mmput(mm);
9670 }
375637bc
AS
9671
9672restart:
767ae086 9673 perf_event_stop(event, 1);
375637bc
AS
9674}
9675
9676/*
9677 * Address range filtering: limiting the data to certain
9678 * instruction address ranges. Filters are ioctl()ed to us from
9679 * userspace as ascii strings.
9680 *
9681 * Filter string format:
9682 *
9683 * ACTION RANGE_SPEC
9684 * where ACTION is one of the
9685 * * "filter": limit the trace to this region
9686 * * "start": start tracing from this address
9687 * * "stop": stop tracing at this address/region;
9688 * RANGE_SPEC is
9689 * * for kernel addresses: <start address>[/<size>]
9690 * * for object files: <start address>[/<size>]@</path/to/object/file>
9691 *
6ed70cf3
AS
9692 * if <size> is not specified or is zero, the range is treated as a single
9693 * address; not valid for ACTION=="filter".
375637bc
AS
9694 */
9695enum {
e96271f3 9696 IF_ACT_NONE = -1,
375637bc
AS
9697 IF_ACT_FILTER,
9698 IF_ACT_START,
9699 IF_ACT_STOP,
9700 IF_SRC_FILE,
9701 IF_SRC_KERNEL,
9702 IF_SRC_FILEADDR,
9703 IF_SRC_KERNELADDR,
9704};
9705
9706enum {
9707 IF_STATE_ACTION = 0,
9708 IF_STATE_SOURCE,
9709 IF_STATE_END,
9710};
9711
9712static const match_table_t if_tokens = {
9713 { IF_ACT_FILTER, "filter" },
9714 { IF_ACT_START, "start" },
9715 { IF_ACT_STOP, "stop" },
9716 { IF_SRC_FILE, "%u/%u@%s" },
9717 { IF_SRC_KERNEL, "%u/%u" },
9718 { IF_SRC_FILEADDR, "%u@%s" },
9719 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9720 { IF_ACT_NONE, NULL },
375637bc
AS
9721};
9722
9723/*
9724 * Address filter string parser
9725 */
9726static int
9727perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9728 struct list_head *filters)
9729{
9730 struct perf_addr_filter *filter = NULL;
9731 char *start, *orig, *filename = NULL;
375637bc
AS
9732 substring_t args[MAX_OPT_ARGS];
9733 int state = IF_STATE_ACTION, token;
9734 unsigned int kernel = 0;
9735 int ret = -EINVAL;
9736
9737 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9738 if (!fstr)
9739 return -ENOMEM;
9740
9741 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9742 static const enum perf_addr_filter_action_t actions[] = {
9743 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9744 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9745 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9746 };
375637bc
AS
9747 ret = -EINVAL;
9748
9749 if (!*start)
9750 continue;
9751
9752 /* filter definition begins */
9753 if (state == IF_STATE_ACTION) {
9754 filter = perf_addr_filter_new(event, filters);
9755 if (!filter)
9756 goto fail;
9757 }
9758
9759 token = match_token(start, if_tokens, args);
9760 switch (token) {
9761 case IF_ACT_FILTER:
9762 case IF_ACT_START:
375637bc
AS
9763 case IF_ACT_STOP:
9764 if (state != IF_STATE_ACTION)
9765 goto fail;
9766
6ed70cf3 9767 filter->action = actions[token];
375637bc
AS
9768 state = IF_STATE_SOURCE;
9769 break;
9770
9771 case IF_SRC_KERNELADDR:
9772 case IF_SRC_KERNEL:
9773 kernel = 1;
10c3405f 9774 /* fall through */
375637bc
AS
9775
9776 case IF_SRC_FILEADDR:
9777 case IF_SRC_FILE:
9778 if (state != IF_STATE_SOURCE)
9779 goto fail;
9780
375637bc
AS
9781 *args[0].to = 0;
9782 ret = kstrtoul(args[0].from, 0, &filter->offset);
9783 if (ret)
9784 goto fail;
9785
6ed70cf3 9786 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9787 *args[1].to = 0;
9788 ret = kstrtoul(args[1].from, 0, &filter->size);
9789 if (ret)
9790 goto fail;
9791 }
9792
4059ffd0 9793 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9794 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9795
9796 filename = match_strdup(&args[fpos]);
375637bc
AS
9797 if (!filename) {
9798 ret = -ENOMEM;
9799 goto fail;
9800 }
9801 }
9802
9803 state = IF_STATE_END;
9804 break;
9805
9806 default:
9807 goto fail;
9808 }
9809
9810 /*
9811 * Filter definition is fully parsed, validate and install it.
9812 * Make sure that it doesn't contradict itself or the event's
9813 * attribute.
9814 */
9815 if (state == IF_STATE_END) {
9ccbfbb1 9816 ret = -EINVAL;
375637bc
AS
9817 if (kernel && event->attr.exclude_kernel)
9818 goto fail;
9819
6ed70cf3
AS
9820 /*
9821 * ACTION "filter" must have a non-zero length region
9822 * specified.
9823 */
9824 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9825 !filter->size)
9826 goto fail;
9827
375637bc
AS
9828 if (!kernel) {
9829 if (!filename)
9830 goto fail;
9831
6ce77bfd
AS
9832 /*
9833 * For now, we only support file-based filters
9834 * in per-task events; doing so for CPU-wide
9835 * events requires additional context switching
9836 * trickery, since same object code will be
9837 * mapped at different virtual addresses in
9838 * different processes.
9839 */
9840 ret = -EOPNOTSUPP;
9841 if (!event->ctx->task)
9842 goto fail_free_name;
9843
375637bc 9844 /* look up the path and grab its inode */
9511bce9
SL
9845 ret = kern_path(filename, LOOKUP_FOLLOW,
9846 &filter->path);
375637bc
AS
9847 if (ret)
9848 goto fail_free_name;
9849
375637bc
AS
9850 kfree(filename);
9851 filename = NULL;
9852
9853 ret = -EINVAL;
9511bce9
SL
9854 if (!filter->path.dentry ||
9855 !S_ISREG(d_inode(filter->path.dentry)
9856 ->i_mode))
375637bc 9857 goto fail;
6ce77bfd
AS
9858
9859 event->addr_filters.nr_file_filters++;
375637bc
AS
9860 }
9861
9862 /* ready to consume more filters */
9863 state = IF_STATE_ACTION;
9864 filter = NULL;
9865 }
9866 }
9867
9868 if (state != IF_STATE_ACTION)
9869 goto fail;
9870
9871 kfree(orig);
9872
9873 return 0;
9874
9875fail_free_name:
9876 kfree(filename);
9877fail:
9878 free_filters_list(filters);
9879 kfree(orig);
9880
9881 return ret;
9882}
9883
9884static int
9885perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9886{
9887 LIST_HEAD(filters);
9888 int ret;
9889
9890 /*
9891 * Since this is called in perf_ioctl() path, we're already holding
9892 * ctx::mutex.
9893 */
9894 lockdep_assert_held(&event->ctx->mutex);
9895
9896 if (WARN_ON_ONCE(event->parent))
9897 return -EINVAL;
9898
375637bc
AS
9899 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9900 if (ret)
6ce77bfd 9901 goto fail_clear_files;
375637bc
AS
9902
9903 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9904 if (ret)
9905 goto fail_free_filters;
375637bc
AS
9906
9907 /* remove existing filters, if any */
9908 perf_addr_filters_splice(event, &filters);
9909
9910 /* install new filters */
9911 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9912
6ce77bfd
AS
9913 return ret;
9914
9915fail_free_filters:
9916 free_filters_list(&filters);
9917
9918fail_clear_files:
9919 event->addr_filters.nr_file_filters = 0;
9920
375637bc
AS
9921 return ret;
9922}
9923
c796bbbe
AS
9924static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9925{
c796bbbe 9926 int ret = -EINVAL;
e12f03d7 9927 char *filter_str;
c796bbbe
AS
9928
9929 filter_str = strndup_user(arg, PAGE_SIZE);
9930 if (IS_ERR(filter_str))
9931 return PTR_ERR(filter_str);
9932
e12f03d7
SL
9933#ifdef CONFIG_EVENT_TRACING
9934 if (perf_event_is_tracing(event)) {
9935 struct perf_event_context *ctx = event->ctx;
9936
9937 /*
9938 * Beware, here be dragons!!
9939 *
9940 * the tracepoint muck will deadlock against ctx->mutex, but
9941 * the tracepoint stuff does not actually need it. So
9942 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9943 * already have a reference on ctx.
9944 *
9945 * This can result in event getting moved to a different ctx,
9946 * but that does not affect the tracepoint state.
9947 */
9948 mutex_unlock(&ctx->mutex);
9949 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9950 mutex_lock(&ctx->mutex);
9951 } else
9952#endif
9953 if (has_addr_filter(event))
375637bc 9954 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9955
9956 kfree(filter_str);
9957 return ret;
9958}
9959
b0a873eb
PZ
9960/*
9961 * hrtimer based swevent callback
9962 */
f29ac756 9963
b0a873eb 9964static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9965{
b0a873eb
PZ
9966 enum hrtimer_restart ret = HRTIMER_RESTART;
9967 struct perf_sample_data data;
9968 struct pt_regs *regs;
9969 struct perf_event *event;
9970 u64 period;
f29ac756 9971
b0a873eb 9972 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9973
9974 if (event->state != PERF_EVENT_STATE_ACTIVE)
9975 return HRTIMER_NORESTART;
9976
b0a873eb 9977 event->pmu->read(event);
f344011c 9978
fd0d000b 9979 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9980 regs = get_irq_regs();
9981
9982 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9983 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9984 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9985 ret = HRTIMER_NORESTART;
9986 }
24f1e32c 9987
b0a873eb
PZ
9988 period = max_t(u64, 10000, event->hw.sample_period);
9989 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9990
b0a873eb 9991 return ret;
f29ac756
PZ
9992}
9993
b0a873eb 9994static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9995{
b0a873eb 9996 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9997 s64 period;
9998
9999 if (!is_sampling_event(event))
10000 return;
f5ffe02e 10001
5d508e82
FBH
10002 period = local64_read(&hwc->period_left);
10003 if (period) {
10004 if (period < 0)
10005 period = 10000;
fa407f35 10006
5d508e82
FBH
10007 local64_set(&hwc->period_left, 0);
10008 } else {
10009 period = max_t(u64, 10000, hwc->sample_period);
10010 }
3497d206 10011 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
30f9028b 10012 HRTIMER_MODE_REL_PINNED_HARD);
24f1e32c 10013}
b0a873eb
PZ
10014
10015static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 10016{
b0a873eb
PZ
10017 struct hw_perf_event *hwc = &event->hw;
10018
6c7e550f 10019 if (is_sampling_event(event)) {
b0a873eb 10020 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 10021 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
10022
10023 hrtimer_cancel(&hwc->hrtimer);
10024 }
24f1e32c
FW
10025}
10026
ba3dd36c
PZ
10027static void perf_swevent_init_hrtimer(struct perf_event *event)
10028{
10029 struct hw_perf_event *hwc = &event->hw;
10030
10031 if (!is_sampling_event(event))
10032 return;
10033
30f9028b 10034 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
ba3dd36c
PZ
10035 hwc->hrtimer.function = perf_swevent_hrtimer;
10036
10037 /*
10038 * Since hrtimers have a fixed rate, we can do a static freq->period
10039 * mapping and avoid the whole period adjust feedback stuff.
10040 */
10041 if (event->attr.freq) {
10042 long freq = event->attr.sample_freq;
10043
10044 event->attr.sample_period = NSEC_PER_SEC / freq;
10045 hwc->sample_period = event->attr.sample_period;
10046 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 10047 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
10048 event->attr.freq = 0;
10049 }
10050}
10051
b0a873eb
PZ
10052/*
10053 * Software event: cpu wall time clock
10054 */
10055
10056static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 10057{
b0a873eb
PZ
10058 s64 prev;
10059 u64 now;
10060
a4eaf7f1 10061 now = local_clock();
b0a873eb
PZ
10062 prev = local64_xchg(&event->hw.prev_count, now);
10063 local64_add(now - prev, &event->count);
24f1e32c 10064}
24f1e32c 10065
a4eaf7f1 10066static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10067{
a4eaf7f1 10068 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 10069 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10070}
10071
a4eaf7f1 10072static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 10073{
b0a873eb
PZ
10074 perf_swevent_cancel_hrtimer(event);
10075 cpu_clock_event_update(event);
10076}
f29ac756 10077
a4eaf7f1
PZ
10078static int cpu_clock_event_add(struct perf_event *event, int flags)
10079{
10080 if (flags & PERF_EF_START)
10081 cpu_clock_event_start(event, flags);
6a694a60 10082 perf_event_update_userpage(event);
a4eaf7f1
PZ
10083
10084 return 0;
10085}
10086
10087static void cpu_clock_event_del(struct perf_event *event, int flags)
10088{
10089 cpu_clock_event_stop(event, flags);
10090}
10091
b0a873eb
PZ
10092static void cpu_clock_event_read(struct perf_event *event)
10093{
10094 cpu_clock_event_update(event);
10095}
f344011c 10096
b0a873eb
PZ
10097static int cpu_clock_event_init(struct perf_event *event)
10098{
10099 if (event->attr.type != PERF_TYPE_SOFTWARE)
10100 return -ENOENT;
10101
10102 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10103 return -ENOENT;
10104
2481c5fa
SE
10105 /*
10106 * no branch sampling for software events
10107 */
10108 if (has_branch_stack(event))
10109 return -EOPNOTSUPP;
10110
ba3dd36c
PZ
10111 perf_swevent_init_hrtimer(event);
10112
b0a873eb 10113 return 0;
f29ac756
PZ
10114}
10115
b0a873eb 10116static struct pmu perf_cpu_clock = {
89a1e187
PZ
10117 .task_ctx_nr = perf_sw_context,
10118
34f43927
PZ
10119 .capabilities = PERF_PMU_CAP_NO_NMI,
10120
b0a873eb 10121 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
10122 .add = cpu_clock_event_add,
10123 .del = cpu_clock_event_del,
10124 .start = cpu_clock_event_start,
10125 .stop = cpu_clock_event_stop,
b0a873eb
PZ
10126 .read = cpu_clock_event_read,
10127};
10128
10129/*
10130 * Software event: task time clock
10131 */
10132
10133static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 10134{
b0a873eb
PZ
10135 u64 prev;
10136 s64 delta;
5c92d124 10137
b0a873eb
PZ
10138 prev = local64_xchg(&event->hw.prev_count, now);
10139 delta = now - prev;
10140 local64_add(delta, &event->count);
10141}
5c92d124 10142
a4eaf7f1 10143static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 10144{
a4eaf7f1 10145 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 10146 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
10147}
10148
a4eaf7f1 10149static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
10150{
10151 perf_swevent_cancel_hrtimer(event);
10152 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
10153}
10154
10155static int task_clock_event_add(struct perf_event *event, int flags)
10156{
10157 if (flags & PERF_EF_START)
10158 task_clock_event_start(event, flags);
6a694a60 10159 perf_event_update_userpage(event);
b0a873eb 10160
a4eaf7f1
PZ
10161 return 0;
10162}
10163
10164static void task_clock_event_del(struct perf_event *event, int flags)
10165{
10166 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
10167}
10168
10169static void task_clock_event_read(struct perf_event *event)
10170{
768a06e2
PZ
10171 u64 now = perf_clock();
10172 u64 delta = now - event->ctx->timestamp;
10173 u64 time = event->ctx->time + delta;
b0a873eb
PZ
10174
10175 task_clock_event_update(event, time);
10176}
10177
10178static int task_clock_event_init(struct perf_event *event)
6fb2915d 10179{
b0a873eb
PZ
10180 if (event->attr.type != PERF_TYPE_SOFTWARE)
10181 return -ENOENT;
10182
10183 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10184 return -ENOENT;
10185
2481c5fa
SE
10186 /*
10187 * no branch sampling for software events
10188 */
10189 if (has_branch_stack(event))
10190 return -EOPNOTSUPP;
10191
ba3dd36c
PZ
10192 perf_swevent_init_hrtimer(event);
10193
b0a873eb 10194 return 0;
6fb2915d
LZ
10195}
10196
b0a873eb 10197static struct pmu perf_task_clock = {
89a1e187
PZ
10198 .task_ctx_nr = perf_sw_context,
10199
34f43927
PZ
10200 .capabilities = PERF_PMU_CAP_NO_NMI,
10201
b0a873eb 10202 .event_init = task_clock_event_init,
a4eaf7f1
PZ
10203 .add = task_clock_event_add,
10204 .del = task_clock_event_del,
10205 .start = task_clock_event_start,
10206 .stop = task_clock_event_stop,
b0a873eb
PZ
10207 .read = task_clock_event_read,
10208};
6fb2915d 10209
ad5133b7 10210static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 10211{
e077df4f 10212}
6fb2915d 10213
fbbe0701
SB
10214static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10215{
10216}
10217
ad5133b7 10218static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 10219{
ad5133b7 10220 return 0;
6fb2915d
LZ
10221}
10222
81ec3f3c
JO
10223static int perf_event_nop_int(struct perf_event *event, u64 value)
10224{
10225 return 0;
10226}
10227
18ab2cd3 10228static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
10229
10230static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 10231{
fbbe0701
SB
10232 __this_cpu_write(nop_txn_flags, flags);
10233
10234 if (flags & ~PERF_PMU_TXN_ADD)
10235 return;
10236
ad5133b7 10237 perf_pmu_disable(pmu);
6fb2915d
LZ
10238}
10239
ad5133b7
PZ
10240static int perf_pmu_commit_txn(struct pmu *pmu)
10241{
fbbe0701
SB
10242 unsigned int flags = __this_cpu_read(nop_txn_flags);
10243
10244 __this_cpu_write(nop_txn_flags, 0);
10245
10246 if (flags & ~PERF_PMU_TXN_ADD)
10247 return 0;
10248
ad5133b7
PZ
10249 perf_pmu_enable(pmu);
10250 return 0;
10251}
e077df4f 10252
ad5133b7 10253static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 10254{
fbbe0701
SB
10255 unsigned int flags = __this_cpu_read(nop_txn_flags);
10256
10257 __this_cpu_write(nop_txn_flags, 0);
10258
10259 if (flags & ~PERF_PMU_TXN_ADD)
10260 return;
10261
ad5133b7 10262 perf_pmu_enable(pmu);
24f1e32c
FW
10263}
10264
35edc2a5
PZ
10265static int perf_event_idx_default(struct perf_event *event)
10266{
c719f560 10267 return 0;
35edc2a5
PZ
10268}
10269
8dc85d54
PZ
10270/*
10271 * Ensures all contexts with the same task_ctx_nr have the same
10272 * pmu_cpu_context too.
10273 */
9e317041 10274static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 10275{
8dc85d54 10276 struct pmu *pmu;
b326e956 10277
8dc85d54
PZ
10278 if (ctxn < 0)
10279 return NULL;
24f1e32c 10280
8dc85d54
PZ
10281 list_for_each_entry(pmu, &pmus, entry) {
10282 if (pmu->task_ctx_nr == ctxn)
10283 return pmu->pmu_cpu_context;
10284 }
24f1e32c 10285
8dc85d54 10286 return NULL;
24f1e32c
FW
10287}
10288
51676957
PZ
10289static void free_pmu_context(struct pmu *pmu)
10290{
df0062b2
WD
10291 /*
10292 * Static contexts such as perf_sw_context have a global lifetime
10293 * and may be shared between different PMUs. Avoid freeing them
10294 * when a single PMU is going away.
10295 */
10296 if (pmu->task_ctx_nr > perf_invalid_context)
10297 return;
10298
51676957 10299 free_percpu(pmu->pmu_cpu_context);
24f1e32c 10300}
6e855cd4
AS
10301
10302/*
10303 * Let userspace know that this PMU supports address range filtering:
10304 */
10305static ssize_t nr_addr_filters_show(struct device *dev,
10306 struct device_attribute *attr,
10307 char *page)
10308{
10309 struct pmu *pmu = dev_get_drvdata(dev);
10310
10311 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10312}
10313DEVICE_ATTR_RO(nr_addr_filters);
10314
2e80a82a 10315static struct idr pmu_idr;
d6d020e9 10316
abe43400
PZ
10317static ssize_t
10318type_show(struct device *dev, struct device_attribute *attr, char *page)
10319{
10320 struct pmu *pmu = dev_get_drvdata(dev);
10321
10322 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10323}
90826ca7 10324static DEVICE_ATTR_RO(type);
abe43400 10325
62b85639
SE
10326static ssize_t
10327perf_event_mux_interval_ms_show(struct device *dev,
10328 struct device_attribute *attr,
10329 char *page)
10330{
10331 struct pmu *pmu = dev_get_drvdata(dev);
10332
10333 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10334}
10335
272325c4
PZ
10336static DEFINE_MUTEX(mux_interval_mutex);
10337
62b85639
SE
10338static ssize_t
10339perf_event_mux_interval_ms_store(struct device *dev,
10340 struct device_attribute *attr,
10341 const char *buf, size_t count)
10342{
10343 struct pmu *pmu = dev_get_drvdata(dev);
10344 int timer, cpu, ret;
10345
10346 ret = kstrtoint(buf, 0, &timer);
10347 if (ret)
10348 return ret;
10349
10350 if (timer < 1)
10351 return -EINVAL;
10352
10353 /* same value, noting to do */
10354 if (timer == pmu->hrtimer_interval_ms)
10355 return count;
10356
272325c4 10357 mutex_lock(&mux_interval_mutex);
62b85639
SE
10358 pmu->hrtimer_interval_ms = timer;
10359
10360 /* update all cpuctx for this PMU */
a63fbed7 10361 cpus_read_lock();
272325c4 10362 for_each_online_cpu(cpu) {
62b85639
SE
10363 struct perf_cpu_context *cpuctx;
10364 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10365 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10366
272325c4
PZ
10367 cpu_function_call(cpu,
10368 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 10369 }
a63fbed7 10370 cpus_read_unlock();
272325c4 10371 mutex_unlock(&mux_interval_mutex);
62b85639
SE
10372
10373 return count;
10374}
90826ca7 10375static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 10376
90826ca7
GKH
10377static struct attribute *pmu_dev_attrs[] = {
10378 &dev_attr_type.attr,
10379 &dev_attr_perf_event_mux_interval_ms.attr,
10380 NULL,
abe43400 10381};
90826ca7 10382ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
10383
10384static int pmu_bus_running;
10385static struct bus_type pmu_bus = {
10386 .name = "event_source",
90826ca7 10387 .dev_groups = pmu_dev_groups,
abe43400
PZ
10388};
10389
10390static void pmu_dev_release(struct device *dev)
10391{
10392 kfree(dev);
10393}
10394
10395static int pmu_dev_alloc(struct pmu *pmu)
10396{
10397 int ret = -ENOMEM;
10398
10399 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10400 if (!pmu->dev)
10401 goto out;
10402
0c9d42ed 10403 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
10404 device_initialize(pmu->dev);
10405 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10406 if (ret)
10407 goto free_dev;
10408
10409 dev_set_drvdata(pmu->dev, pmu);
10410 pmu->dev->bus = &pmu_bus;
10411 pmu->dev->release = pmu_dev_release;
10412 ret = device_add(pmu->dev);
10413 if (ret)
10414 goto free_dev;
10415
6e855cd4
AS
10416 /* For PMUs with address filters, throw in an extra attribute: */
10417 if (pmu->nr_addr_filters)
10418 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10419
10420 if (ret)
10421 goto del_dev;
10422
f3a3a825
JO
10423 if (pmu->attr_update)
10424 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10425
10426 if (ret)
10427 goto del_dev;
10428
abe43400
PZ
10429out:
10430 return ret;
10431
6e855cd4
AS
10432del_dev:
10433 device_del(pmu->dev);
10434
abe43400
PZ
10435free_dev:
10436 put_device(pmu->dev);
10437 goto out;
10438}
10439
547e9fd7 10440static struct lock_class_key cpuctx_mutex;
facc4307 10441static struct lock_class_key cpuctx_lock;
547e9fd7 10442
03d8e80b 10443int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 10444{
66d258c5 10445 int cpu, ret, max = PERF_TYPE_MAX;
24f1e32c 10446
b0a873eb 10447 mutex_lock(&pmus_lock);
33696fc0
PZ
10448 ret = -ENOMEM;
10449 pmu->pmu_disable_count = alloc_percpu(int);
10450 if (!pmu->pmu_disable_count)
10451 goto unlock;
f29ac756 10452
2e80a82a
PZ
10453 pmu->type = -1;
10454 if (!name)
10455 goto skip_type;
10456 pmu->name = name;
10457
66d258c5
PZ
10458 if (type != PERF_TYPE_SOFTWARE) {
10459 if (type >= 0)
10460 max = type;
10461
10462 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10463 if (ret < 0)
2e80a82a 10464 goto free_pdc;
66d258c5
PZ
10465
10466 WARN_ON(type >= 0 && ret != type);
10467
10468 type = ret;
2e80a82a
PZ
10469 }
10470 pmu->type = type;
10471
abe43400
PZ
10472 if (pmu_bus_running) {
10473 ret = pmu_dev_alloc(pmu);
10474 if (ret)
10475 goto free_idr;
10476 }
10477
2e80a82a 10478skip_type:
26657848
PZ
10479 if (pmu->task_ctx_nr == perf_hw_context) {
10480 static int hw_context_taken = 0;
10481
5101ef20
MR
10482 /*
10483 * Other than systems with heterogeneous CPUs, it never makes
10484 * sense for two PMUs to share perf_hw_context. PMUs which are
10485 * uncore must use perf_invalid_context.
10486 */
10487 if (WARN_ON_ONCE(hw_context_taken &&
10488 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
10489 pmu->task_ctx_nr = perf_invalid_context;
10490
10491 hw_context_taken = 1;
10492 }
10493
8dc85d54
PZ
10494 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10495 if (pmu->pmu_cpu_context)
10496 goto got_cpu_context;
f29ac756 10497
c4814202 10498 ret = -ENOMEM;
108b02cf
PZ
10499 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10500 if (!pmu->pmu_cpu_context)
abe43400 10501 goto free_dev;
f344011c 10502
108b02cf
PZ
10503 for_each_possible_cpu(cpu) {
10504 struct perf_cpu_context *cpuctx;
10505
10506 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 10507 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 10508 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 10509 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 10510 cpuctx->ctx.pmu = pmu;
a63fbed7 10511 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 10512
272325c4 10513 __perf_mux_hrtimer_init(cpuctx, cpu);
836196be
IR
10514
10515 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10516 cpuctx->heap = cpuctx->heap_default;
108b02cf 10517 }
76e1d904 10518
8dc85d54 10519got_cpu_context:
ad5133b7
PZ
10520 if (!pmu->start_txn) {
10521 if (pmu->pmu_enable) {
10522 /*
10523 * If we have pmu_enable/pmu_disable calls, install
10524 * transaction stubs that use that to try and batch
10525 * hardware accesses.
10526 */
10527 pmu->start_txn = perf_pmu_start_txn;
10528 pmu->commit_txn = perf_pmu_commit_txn;
10529 pmu->cancel_txn = perf_pmu_cancel_txn;
10530 } else {
fbbe0701 10531 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
10532 pmu->commit_txn = perf_pmu_nop_int;
10533 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 10534 }
5c92d124 10535 }
15dbf27c 10536
ad5133b7
PZ
10537 if (!pmu->pmu_enable) {
10538 pmu->pmu_enable = perf_pmu_nop_void;
10539 pmu->pmu_disable = perf_pmu_nop_void;
10540 }
10541
81ec3f3c
JO
10542 if (!pmu->check_period)
10543 pmu->check_period = perf_event_nop_int;
10544
35edc2a5
PZ
10545 if (!pmu->event_idx)
10546 pmu->event_idx = perf_event_idx_default;
10547
d44f821b
LK
10548 /*
10549 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10550 * since these cannot be in the IDR. This way the linear search
10551 * is fast, provided a valid software event is provided.
10552 */
10553 if (type == PERF_TYPE_SOFTWARE || !name)
10554 list_add_rcu(&pmu->entry, &pmus);
10555 else
10556 list_add_tail_rcu(&pmu->entry, &pmus);
10557
bed5b25a 10558 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
10559 ret = 0;
10560unlock:
b0a873eb
PZ
10561 mutex_unlock(&pmus_lock);
10562
33696fc0 10563 return ret;
108b02cf 10564
abe43400
PZ
10565free_dev:
10566 device_del(pmu->dev);
10567 put_device(pmu->dev);
10568
2e80a82a 10569free_idr:
66d258c5 10570 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a
PZ
10571 idr_remove(&pmu_idr, pmu->type);
10572
108b02cf
PZ
10573free_pdc:
10574 free_percpu(pmu->pmu_disable_count);
10575 goto unlock;
f29ac756 10576}
c464c76e 10577EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10578
b0a873eb 10579void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10580{
b0a873eb
PZ
10581 mutex_lock(&pmus_lock);
10582 list_del_rcu(&pmu->entry);
5c92d124 10583
0475f9ea 10584 /*
cde8e884
PZ
10585 * We dereference the pmu list under both SRCU and regular RCU, so
10586 * synchronize against both of those.
0475f9ea 10587 */
b0a873eb 10588 synchronize_srcu(&pmus_srcu);
cde8e884 10589 synchronize_rcu();
d6d020e9 10590
33696fc0 10591 free_percpu(pmu->pmu_disable_count);
66d258c5 10592 if (pmu->type != PERF_TYPE_SOFTWARE)
2e80a82a 10593 idr_remove(&pmu_idr, pmu->type);
a9f97721 10594 if (pmu_bus_running) {
0933840a
JO
10595 if (pmu->nr_addr_filters)
10596 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10597 device_del(pmu->dev);
10598 put_device(pmu->dev);
10599 }
51676957 10600 free_pmu_context(pmu);
a9f97721 10601 mutex_unlock(&pmus_lock);
b0a873eb 10602}
c464c76e 10603EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10604
e321d02d
KL
10605static inline bool has_extended_regs(struct perf_event *event)
10606{
10607 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10608 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10609}
10610
cc34b98b
MR
10611static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10612{
ccd41c86 10613 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10614 int ret;
10615
10616 if (!try_module_get(pmu->module))
10617 return -ENODEV;
ccd41c86 10618
0c7296ca
PZ
10619 /*
10620 * A number of pmu->event_init() methods iterate the sibling_list to,
10621 * for example, validate if the group fits on the PMU. Therefore,
10622 * if this is a sibling event, acquire the ctx->mutex to protect
10623 * the sibling_list.
10624 */
10625 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10626 /*
10627 * This ctx->mutex can nest when we're called through
10628 * inheritance. See the perf_event_ctx_lock_nested() comment.
10629 */
10630 ctx = perf_event_ctx_lock_nested(event->group_leader,
10631 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10632 BUG_ON(!ctx);
10633 }
10634
cc34b98b
MR
10635 event->pmu = pmu;
10636 ret = pmu->event_init(event);
ccd41c86
PZ
10637
10638 if (ctx)
10639 perf_event_ctx_unlock(event->group_leader, ctx);
10640
cc6795ae 10641 if (!ret) {
e321d02d
KL
10642 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10643 has_extended_regs(event))
10644 ret = -EOPNOTSUPP;
10645
cc6795ae 10646 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
e321d02d 10647 event_has_any_exclude_flag(event))
cc6795ae 10648 ret = -EINVAL;
e321d02d
KL
10649
10650 if (ret && event->destroy)
10651 event->destroy(event);
cc6795ae
AM
10652 }
10653
cc34b98b
MR
10654 if (ret)
10655 module_put(pmu->module);
10656
10657 return ret;
10658}
10659
18ab2cd3 10660static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10661{
66d258c5 10662 int idx, type, ret;
85c617ab 10663 struct pmu *pmu;
b0a873eb
PZ
10664
10665 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10666
40999312
KL
10667 /* Try parent's PMU first: */
10668 if (event->parent && event->parent->pmu) {
10669 pmu = event->parent->pmu;
10670 ret = perf_try_init_event(pmu, event);
10671 if (!ret)
10672 goto unlock;
10673 }
10674
66d258c5
PZ
10675 /*
10676 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10677 * are often aliases for PERF_TYPE_RAW.
10678 */
10679 type = event->attr.type;
10680 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10681 type = PERF_TYPE_RAW;
10682
10683again:
2e80a82a 10684 rcu_read_lock();
66d258c5 10685 pmu = idr_find(&pmu_idr, type);
2e80a82a 10686 rcu_read_unlock();
940c5b29 10687 if (pmu) {
cc34b98b 10688 ret = perf_try_init_event(pmu, event);
66d258c5
PZ
10689 if (ret == -ENOENT && event->attr.type != type) {
10690 type = event->attr.type;
10691 goto again;
10692 }
10693
940c5b29
LM
10694 if (ret)
10695 pmu = ERR_PTR(ret);
66d258c5 10696
2e80a82a 10697 goto unlock;
940c5b29 10698 }
2e80a82a 10699
9f0bff11 10700 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
cc34b98b 10701 ret = perf_try_init_event(pmu, event);
b0a873eb 10702 if (!ret)
e5f4d339 10703 goto unlock;
76e1d904 10704
b0a873eb
PZ
10705 if (ret != -ENOENT) {
10706 pmu = ERR_PTR(ret);
e5f4d339 10707 goto unlock;
f344011c 10708 }
5c92d124 10709 }
e5f4d339
PZ
10710 pmu = ERR_PTR(-ENOENT);
10711unlock:
b0a873eb 10712 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10713
4aeb0b42 10714 return pmu;
5c92d124
IM
10715}
10716
f2fb6bef
KL
10717static void attach_sb_event(struct perf_event *event)
10718{
10719 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10720
10721 raw_spin_lock(&pel->lock);
10722 list_add_rcu(&event->sb_list, &pel->list);
10723 raw_spin_unlock(&pel->lock);
10724}
10725
aab5b71e
PZ
10726/*
10727 * We keep a list of all !task (and therefore per-cpu) events
10728 * that need to receive side-band records.
10729 *
10730 * This avoids having to scan all the various PMU per-cpu contexts
10731 * looking for them.
10732 */
f2fb6bef
KL
10733static void account_pmu_sb_event(struct perf_event *event)
10734{
a4f144eb 10735 if (is_sb_event(event))
f2fb6bef
KL
10736 attach_sb_event(event);
10737}
10738
4beb31f3
FW
10739static void account_event_cpu(struct perf_event *event, int cpu)
10740{
10741 if (event->parent)
10742 return;
10743
4beb31f3
FW
10744 if (is_cgroup_event(event))
10745 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10746}
10747
555e0c1e
FW
10748/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10749static void account_freq_event_nohz(void)
10750{
10751#ifdef CONFIG_NO_HZ_FULL
10752 /* Lock so we don't race with concurrent unaccount */
10753 spin_lock(&nr_freq_lock);
10754 if (atomic_inc_return(&nr_freq_events) == 1)
10755 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10756 spin_unlock(&nr_freq_lock);
10757#endif
10758}
10759
10760static void account_freq_event(void)
10761{
10762 if (tick_nohz_full_enabled())
10763 account_freq_event_nohz();
10764 else
10765 atomic_inc(&nr_freq_events);
10766}
10767
10768
766d6c07
FW
10769static void account_event(struct perf_event *event)
10770{
25432ae9
PZ
10771 bool inc = false;
10772
4beb31f3
FW
10773 if (event->parent)
10774 return;
10775
766d6c07 10776 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10777 inc = true;
766d6c07
FW
10778 if (event->attr.mmap || event->attr.mmap_data)
10779 atomic_inc(&nr_mmap_events);
10780 if (event->attr.comm)
10781 atomic_inc(&nr_comm_events);
e4222673
HB
10782 if (event->attr.namespaces)
10783 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10784 if (event->attr.task)
10785 atomic_inc(&nr_task_events);
555e0c1e
FW
10786 if (event->attr.freq)
10787 account_freq_event();
45ac1403
AH
10788 if (event->attr.context_switch) {
10789 atomic_inc(&nr_switch_events);
25432ae9 10790 inc = true;
45ac1403 10791 }
4beb31f3 10792 if (has_branch_stack(event))
25432ae9 10793 inc = true;
4beb31f3 10794 if (is_cgroup_event(event))
25432ae9 10795 inc = true;
76193a94
SL
10796 if (event->attr.ksymbol)
10797 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10798 if (event->attr.bpf_event)
10799 atomic_inc(&nr_bpf_events);
25432ae9 10800
9107c89e 10801 if (inc) {
5bce9db1
AS
10802 /*
10803 * We need the mutex here because static_branch_enable()
10804 * must complete *before* the perf_sched_count increment
10805 * becomes visible.
10806 */
9107c89e
PZ
10807 if (atomic_inc_not_zero(&perf_sched_count))
10808 goto enabled;
10809
10810 mutex_lock(&perf_sched_mutex);
10811 if (!atomic_read(&perf_sched_count)) {
10812 static_branch_enable(&perf_sched_events);
10813 /*
10814 * Guarantee that all CPUs observe they key change and
10815 * call the perf scheduling hooks before proceeding to
10816 * install events that need them.
10817 */
0809d954 10818 synchronize_rcu();
9107c89e
PZ
10819 }
10820 /*
10821 * Now that we have waited for the sync_sched(), allow further
10822 * increments to by-pass the mutex.
10823 */
10824 atomic_inc(&perf_sched_count);
10825 mutex_unlock(&perf_sched_mutex);
10826 }
10827enabled:
4beb31f3
FW
10828
10829 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10830
10831 account_pmu_sb_event(event);
766d6c07
FW
10832}
10833
0793a61d 10834/*
788faab7 10835 * Allocate and initialize an event structure
0793a61d 10836 */
cdd6c482 10837static struct perf_event *
c3f00c70 10838perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10839 struct task_struct *task,
10840 struct perf_event *group_leader,
10841 struct perf_event *parent_event,
4dc0da86 10842 perf_overflow_handler_t overflow_handler,
79dff51e 10843 void *context, int cgroup_fd)
0793a61d 10844{
51b0fe39 10845 struct pmu *pmu;
cdd6c482
IM
10846 struct perf_event *event;
10847 struct hw_perf_event *hwc;
90983b16 10848 long err = -EINVAL;
0793a61d 10849
66832eb4
ON
10850 if ((unsigned)cpu >= nr_cpu_ids) {
10851 if (!task || cpu != -1)
10852 return ERR_PTR(-EINVAL);
10853 }
10854
c3f00c70 10855 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10856 if (!event)
d5d2bc0d 10857 return ERR_PTR(-ENOMEM);
0793a61d 10858
04289bb9 10859 /*
cdd6c482 10860 * Single events are their own group leaders, with an
04289bb9
IM
10861 * empty sibling list:
10862 */
10863 if (!group_leader)
cdd6c482 10864 group_leader = event;
04289bb9 10865
cdd6c482
IM
10866 mutex_init(&event->child_mutex);
10867 INIT_LIST_HEAD(&event->child_list);
fccc714b 10868
cdd6c482
IM
10869 INIT_LIST_HEAD(&event->event_entry);
10870 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10871 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10872 init_event_group(event);
10c6db11 10873 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10874 INIT_LIST_HEAD(&event->active_entry);
375637bc 10875 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10876 INIT_HLIST_NODE(&event->hlist_entry);
10877
10c6db11 10878
cdd6c482 10879 init_waitqueue_head(&event->waitq);
1d54ad94 10880 event->pending_disable = -1;
e360adbe 10881 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10882
cdd6c482 10883 mutex_init(&event->mmap_mutex);
375637bc 10884 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10885
a6fa941d 10886 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10887 event->cpu = cpu;
10888 event->attr = *attr;
10889 event->group_leader = group_leader;
10890 event->pmu = NULL;
cdd6c482 10891 event->oncpu = -1;
a96bbc16 10892
cdd6c482 10893 event->parent = parent_event;
b84fbc9f 10894
17cf22c3 10895 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10896 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10897
cdd6c482 10898 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10899
d580ff86
PZ
10900 if (task) {
10901 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10902 /*
50f16a8b
PZ
10903 * XXX pmu::event_init needs to know what task to account to
10904 * and we cannot use the ctx information because we need the
10905 * pmu before we get a ctx.
d580ff86 10906 */
7b3c92b8 10907 event->hw.target = get_task_struct(task);
d580ff86
PZ
10908 }
10909
34f43927
PZ
10910 event->clock = &local_clock;
10911 if (parent_event)
10912 event->clock = parent_event->clock;
10913
4dc0da86 10914 if (!overflow_handler && parent_event) {
b326e956 10915 overflow_handler = parent_event->overflow_handler;
4dc0da86 10916 context = parent_event->overflow_handler_context;
f1e4ba5b 10917#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c 10918 if (overflow_handler == bpf_overflow_handler) {
85192dbf 10919 struct bpf_prog *prog = parent_event->prog;
aa6a5f3c 10920
85192dbf 10921 bpf_prog_inc(prog);
aa6a5f3c
AS
10922 event->prog = prog;
10923 event->orig_overflow_handler =
10924 parent_event->orig_overflow_handler;
10925 }
10926#endif
4dc0da86 10927 }
66832eb4 10928
1879445d
WN
10929 if (overflow_handler) {
10930 event->overflow_handler = overflow_handler;
10931 event->overflow_handler_context = context;
9ecda41a
WN
10932 } else if (is_write_backward(event)){
10933 event->overflow_handler = perf_event_output_backward;
10934 event->overflow_handler_context = NULL;
1879445d 10935 } else {
9ecda41a 10936 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10937 event->overflow_handler_context = NULL;
10938 }
97eaf530 10939
0231bb53 10940 perf_event__state_init(event);
a86ed508 10941
4aeb0b42 10942 pmu = NULL;
b8e83514 10943
cdd6c482 10944 hwc = &event->hw;
bd2b5b12 10945 hwc->sample_period = attr->sample_period;
0d48696f 10946 if (attr->freq && attr->sample_freq)
bd2b5b12 10947 hwc->sample_period = 1;
eced1dfc 10948 hwc->last_period = hwc->sample_period;
bd2b5b12 10949
e7850595 10950 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10951
2023b359 10952 /*
ba5213ae
PZ
10953 * We currently do not support PERF_SAMPLE_READ on inherited events.
10954 * See perf_output_read().
2023b359 10955 */
ba5213ae 10956 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10957 goto err_ns;
a46a2300
YZ
10958
10959 if (!has_branch_stack(event))
10960 event->attr.branch_sample_type = 0;
2023b359 10961
b0a873eb 10962 pmu = perf_init_event(event);
85c617ab 10963 if (IS_ERR(pmu)) {
4aeb0b42 10964 err = PTR_ERR(pmu);
90983b16 10965 goto err_ns;
621a01ea 10966 }
d5d2bc0d 10967
09f4e8f0
PZ
10968 /*
10969 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10970 * be different on other CPUs in the uncore mask.
10971 */
10972 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10973 err = -EINVAL;
10974 goto err_pmu;
10975 }
10976
ab43762e
AS
10977 if (event->attr.aux_output &&
10978 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10979 err = -EOPNOTSUPP;
10980 goto err_pmu;
10981 }
10982
98add2af
PZ
10983 if (cgroup_fd != -1) {
10984 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10985 if (err)
10986 goto err_pmu;
10987 }
10988
bed5b25a
AS
10989 err = exclusive_event_init(event);
10990 if (err)
10991 goto err_pmu;
10992
375637bc 10993 if (has_addr_filter(event)) {
c60f83b8
AS
10994 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10995 sizeof(struct perf_addr_filter_range),
10996 GFP_KERNEL);
10997 if (!event->addr_filter_ranges) {
36cc2b92 10998 err = -ENOMEM;
375637bc 10999 goto err_per_task;
36cc2b92 11000 }
375637bc 11001
18736eef
AS
11002 /*
11003 * Clone the parent's vma offsets: they are valid until exec()
11004 * even if the mm is not shared with the parent.
11005 */
11006 if (event->parent) {
11007 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11008
11009 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
11010 memcpy(event->addr_filter_ranges,
11011 event->parent->addr_filter_ranges,
11012 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
11013 raw_spin_unlock_irq(&ifh->lock);
11014 }
11015
375637bc
AS
11016 /* force hw sync on the address filters */
11017 event->addr_filters_gen = 1;
11018 }
11019
cdd6c482 11020 if (!event->parent) {
927c7a9e 11021 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 11022 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 11023 if (err)
375637bc 11024 goto err_addr_filters;
d010b332 11025 }
f344011c 11026 }
9ee318a7 11027
da97e184
JFG
11028 err = security_perf_event_alloc(event);
11029 if (err)
11030 goto err_callchain_buffer;
11031
927a5570
AS
11032 /* symmetric to unaccount_event() in _free_event() */
11033 account_event(event);
11034
cdd6c482 11035 return event;
90983b16 11036
da97e184
JFG
11037err_callchain_buffer:
11038 if (!event->parent) {
11039 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11040 put_callchain_buffers();
11041 }
375637bc 11042err_addr_filters:
c60f83b8 11043 kfree(event->addr_filter_ranges);
375637bc 11044
bed5b25a
AS
11045err_per_task:
11046 exclusive_event_destroy(event);
11047
90983b16 11048err_pmu:
98add2af
PZ
11049 if (is_cgroup_event(event))
11050 perf_detach_cgroup(event);
90983b16
FW
11051 if (event->destroy)
11052 event->destroy(event);
c464c76e 11053 module_put(pmu->module);
90983b16
FW
11054err_ns:
11055 if (event->ns)
11056 put_pid_ns(event->ns);
621b6d2e
PB
11057 if (event->hw.target)
11058 put_task_struct(event->hw.target);
90983b16
FW
11059 kfree(event);
11060
11061 return ERR_PTR(err);
0793a61d
TG
11062}
11063
cdd6c482
IM
11064static int perf_copy_attr(struct perf_event_attr __user *uattr,
11065 struct perf_event_attr *attr)
974802ea 11066{
974802ea 11067 u32 size;
cdf8073d 11068 int ret;
974802ea 11069
c2ba8f41 11070 /* Zero the full structure, so that a short copy will be nice. */
974802ea
PZ
11071 memset(attr, 0, sizeof(*attr));
11072
11073 ret = get_user(size, &uattr->size);
11074 if (ret)
11075 return ret;
11076
c2ba8f41
AS
11077 /* ABI compatibility quirk: */
11078 if (!size)
974802ea 11079 size = PERF_ATTR_SIZE_VER0;
c2ba8f41 11080 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
974802ea
PZ
11081 goto err_size;
11082
c2ba8f41
AS
11083 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11084 if (ret) {
11085 if (ret == -E2BIG)
11086 goto err_size;
11087 return ret;
974802ea
PZ
11088 }
11089
f12f42ac
MX
11090 attr->size = size;
11091
a4faf00d 11092 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
974802ea
PZ
11093 return -EINVAL;
11094
11095 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11096 return -EINVAL;
11097
11098 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11099 return -EINVAL;
11100
bce38cd5
SE
11101 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11102 u64 mask = attr->branch_sample_type;
11103
11104 /* only using defined bits */
11105 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11106 return -EINVAL;
11107
11108 /* at least one branch bit must be set */
11109 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11110 return -EINVAL;
11111
bce38cd5
SE
11112 /* propagate priv level, when not set for branch */
11113 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11114
11115 /* exclude_kernel checked on syscall entry */
11116 if (!attr->exclude_kernel)
11117 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11118
11119 if (!attr->exclude_user)
11120 mask |= PERF_SAMPLE_BRANCH_USER;
11121
11122 if (!attr->exclude_hv)
11123 mask |= PERF_SAMPLE_BRANCH_HV;
11124 /*
11125 * adjust user setting (for HW filter setup)
11126 */
11127 attr->branch_sample_type = mask;
11128 }
e712209a 11129 /* privileged levels capture (kernel, hv): check permissions */
da97e184
JFG
11130 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11131 ret = perf_allow_kernel(attr);
11132 if (ret)
11133 return ret;
11134 }
bce38cd5 11135 }
4018994f 11136
c5ebcedb 11137 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 11138 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
11139 if (ret)
11140 return ret;
11141 }
11142
11143 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11144 if (!arch_perf_have_user_stack_dump())
11145 return -ENOSYS;
11146
11147 /*
11148 * We have __u32 type for the size, but so far
11149 * we can only use __u16 as maximum due to the
11150 * __u16 sample size limit.
11151 */
11152 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 11153 return -EINVAL;
c5ebcedb 11154 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 11155 return -EINVAL;
c5ebcedb 11156 }
4018994f 11157
5f970521
JO
11158 if (!attr->sample_max_stack)
11159 attr->sample_max_stack = sysctl_perf_event_max_stack;
11160
60e2364e
SE
11161 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11162 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
11163out:
11164 return ret;
11165
11166err_size:
11167 put_user(sizeof(*attr), &uattr->size);
11168 ret = -E2BIG;
11169 goto out;
11170}
11171
ac9721f3
PZ
11172static int
11173perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 11174{
56de4e8f 11175 struct perf_buffer *rb = NULL;
a4be7c27
PZ
11176 int ret = -EINVAL;
11177
ac9721f3 11178 if (!output_event)
a4be7c27
PZ
11179 goto set;
11180
ac9721f3
PZ
11181 /* don't allow circular references */
11182 if (event == output_event)
a4be7c27
PZ
11183 goto out;
11184
0f139300
PZ
11185 /*
11186 * Don't allow cross-cpu buffers
11187 */
11188 if (output_event->cpu != event->cpu)
11189 goto out;
11190
11191 /*
76369139 11192 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
11193 */
11194 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11195 goto out;
11196
34f43927
PZ
11197 /*
11198 * Mixing clocks in the same buffer is trouble you don't need.
11199 */
11200 if (output_event->clock != event->clock)
11201 goto out;
11202
9ecda41a
WN
11203 /*
11204 * Either writing ring buffer from beginning or from end.
11205 * Mixing is not allowed.
11206 */
11207 if (is_write_backward(output_event) != is_write_backward(event))
11208 goto out;
11209
45bfb2e5
PZ
11210 /*
11211 * If both events generate aux data, they must be on the same PMU
11212 */
11213 if (has_aux(event) && has_aux(output_event) &&
11214 event->pmu != output_event->pmu)
11215 goto out;
11216
a4be7c27 11217set:
cdd6c482 11218 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
11219 /* Can't redirect output if we've got an active mmap() */
11220 if (atomic_read(&event->mmap_count))
11221 goto unlock;
a4be7c27 11222
ac9721f3 11223 if (output_event) {
76369139
FW
11224 /* get the rb we want to redirect to */
11225 rb = ring_buffer_get(output_event);
11226 if (!rb)
ac9721f3 11227 goto unlock;
a4be7c27
PZ
11228 }
11229
b69cf536 11230 ring_buffer_attach(event, rb);
9bb5d40c 11231
a4be7c27 11232 ret = 0;
ac9721f3
PZ
11233unlock:
11234 mutex_unlock(&event->mmap_mutex);
11235
a4be7c27 11236out:
a4be7c27
PZ
11237 return ret;
11238}
11239
f63a8daa
PZ
11240static void mutex_lock_double(struct mutex *a, struct mutex *b)
11241{
11242 if (b < a)
11243 swap(a, b);
11244
11245 mutex_lock(a);
11246 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11247}
11248
34f43927
PZ
11249static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11250{
11251 bool nmi_safe = false;
11252
11253 switch (clk_id) {
11254 case CLOCK_MONOTONIC:
11255 event->clock = &ktime_get_mono_fast_ns;
11256 nmi_safe = true;
11257 break;
11258
11259 case CLOCK_MONOTONIC_RAW:
11260 event->clock = &ktime_get_raw_fast_ns;
11261 nmi_safe = true;
11262 break;
11263
11264 case CLOCK_REALTIME:
11265 event->clock = &ktime_get_real_ns;
11266 break;
11267
11268 case CLOCK_BOOTTIME:
9285ec4c 11269 event->clock = &ktime_get_boottime_ns;
34f43927
PZ
11270 break;
11271
11272 case CLOCK_TAI:
9285ec4c 11273 event->clock = &ktime_get_clocktai_ns;
34f43927
PZ
11274 break;
11275
11276 default:
11277 return -EINVAL;
11278 }
11279
11280 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11281 return -EINVAL;
11282
11283 return 0;
11284}
11285
321027c1
PZ
11286/*
11287 * Variation on perf_event_ctx_lock_nested(), except we take two context
11288 * mutexes.
11289 */
11290static struct perf_event_context *
11291__perf_event_ctx_lock_double(struct perf_event *group_leader,
11292 struct perf_event_context *ctx)
11293{
11294 struct perf_event_context *gctx;
11295
11296again:
11297 rcu_read_lock();
11298 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 11299 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
11300 rcu_read_unlock();
11301 goto again;
11302 }
11303 rcu_read_unlock();
11304
11305 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11306
11307 if (group_leader->ctx != gctx) {
11308 mutex_unlock(&ctx->mutex);
11309 mutex_unlock(&gctx->mutex);
11310 put_ctx(gctx);
11311 goto again;
11312 }
11313
11314 return gctx;
11315}
11316
0793a61d 11317/**
cdd6c482 11318 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 11319 *
cdd6c482 11320 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 11321 * @pid: target pid
9f66a381 11322 * @cpu: target cpu
cdd6c482 11323 * @group_fd: group leader event fd
0793a61d 11324 */
cdd6c482
IM
11325SYSCALL_DEFINE5(perf_event_open,
11326 struct perf_event_attr __user *, attr_uptr,
2743a5b0 11327 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 11328{
b04243ef
PZ
11329 struct perf_event *group_leader = NULL, *output_event = NULL;
11330 struct perf_event *event, *sibling;
cdd6c482 11331 struct perf_event_attr attr;
f63a8daa 11332 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 11333 struct file *event_file = NULL;
2903ff01 11334 struct fd group = {NULL, 0};
38a81da2 11335 struct task_struct *task = NULL;
89a1e187 11336 struct pmu *pmu;
ea635c64 11337 int event_fd;
b04243ef 11338 int move_group = 0;
dc86cabe 11339 int err;
a21b0b35 11340 int f_flags = O_RDWR;
79dff51e 11341 int cgroup_fd = -1;
0793a61d 11342
2743a5b0 11343 /* for future expandability... */
e5d1367f 11344 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
11345 return -EINVAL;
11346
da97e184
JFG
11347 /* Do we allow access to perf_event_open(2) ? */
11348 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11349 if (err)
11350 return err;
11351
dc86cabe
IM
11352 err = perf_copy_attr(attr_uptr, &attr);
11353 if (err)
11354 return err;
eab656ae 11355
0764771d 11356 if (!attr.exclude_kernel) {
da97e184
JFG
11357 err = perf_allow_kernel(&attr);
11358 if (err)
11359 return err;
0764771d
PZ
11360 }
11361
e4222673
HB
11362 if (attr.namespaces) {
11363 if (!capable(CAP_SYS_ADMIN))
11364 return -EACCES;
11365 }
11366
df58ab24 11367 if (attr.freq) {
cdd6c482 11368 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 11369 return -EINVAL;
0819b2e3
PZ
11370 } else {
11371 if (attr.sample_period & (1ULL << 63))
11372 return -EINVAL;
df58ab24
PZ
11373 }
11374
fc7ce9c7 11375 /* Only privileged users can get physical addresses */
da97e184
JFG
11376 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11377 err = perf_allow_kernel(&attr);
11378 if (err)
11379 return err;
11380 }
fc7ce9c7 11381
b0c8fdc7
DH
11382 err = security_locked_down(LOCKDOWN_PERF);
11383 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11384 /* REGS_INTR can leak data, lockdown must prevent this */
11385 return err;
11386
11387 err = 0;
11388
e5d1367f
SE
11389 /*
11390 * In cgroup mode, the pid argument is used to pass the fd
11391 * opened to the cgroup directory in cgroupfs. The cpu argument
11392 * designates the cpu on which to monitor threads from that
11393 * cgroup.
11394 */
11395 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11396 return -EINVAL;
11397
a21b0b35
YD
11398 if (flags & PERF_FLAG_FD_CLOEXEC)
11399 f_flags |= O_CLOEXEC;
11400
11401 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
11402 if (event_fd < 0)
11403 return event_fd;
11404
ac9721f3 11405 if (group_fd != -1) {
2903ff01
AV
11406 err = perf_fget_light(group_fd, &group);
11407 if (err)
d14b12d7 11408 goto err_fd;
2903ff01 11409 group_leader = group.file->private_data;
ac9721f3
PZ
11410 if (flags & PERF_FLAG_FD_OUTPUT)
11411 output_event = group_leader;
11412 if (flags & PERF_FLAG_FD_NO_GROUP)
11413 group_leader = NULL;
11414 }
11415
e5d1367f 11416 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
11417 task = find_lively_task_by_vpid(pid);
11418 if (IS_ERR(task)) {
11419 err = PTR_ERR(task);
11420 goto err_group_fd;
11421 }
11422 }
11423
1f4ee503
PZ
11424 if (task && group_leader &&
11425 group_leader->attr.inherit != attr.inherit) {
11426 err = -EINVAL;
11427 goto err_task;
11428 }
11429
79c9ce57
PZ
11430 if (task) {
11431 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11432 if (err)
e5aeee51 11433 goto err_task;
79c9ce57
PZ
11434
11435 /*
11436 * Reuse ptrace permission checks for now.
11437 *
11438 * We must hold cred_guard_mutex across this and any potential
11439 * perf_install_in_context() call for this new event to
11440 * serialize against exec() altering our credentials (and the
11441 * perf_event_exit_task() that could imply).
11442 */
11443 err = -EACCES;
11444 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11445 goto err_cred;
11446 }
11447
79dff51e
MF
11448 if (flags & PERF_FLAG_PID_CGROUP)
11449 cgroup_fd = pid;
11450
4dc0da86 11451 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 11452 NULL, NULL, cgroup_fd);
d14b12d7
SE
11453 if (IS_ERR(event)) {
11454 err = PTR_ERR(event);
79c9ce57 11455 goto err_cred;
d14b12d7
SE
11456 }
11457
53b25335
VW
11458 if (is_sampling_event(event)) {
11459 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 11460 err = -EOPNOTSUPP;
53b25335
VW
11461 goto err_alloc;
11462 }
11463 }
11464
89a1e187
PZ
11465 /*
11466 * Special case software events and allow them to be part of
11467 * any hardware group.
11468 */
11469 pmu = event->pmu;
b04243ef 11470
34f43927
PZ
11471 if (attr.use_clockid) {
11472 err = perf_event_set_clock(event, attr.clockid);
11473 if (err)
11474 goto err_alloc;
11475 }
11476
4ff6a8de
DCC
11477 if (pmu->task_ctx_nr == perf_sw_context)
11478 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11479
a1150c20
SL
11480 if (group_leader) {
11481 if (is_software_event(event) &&
11482 !in_software_context(group_leader)) {
b04243ef 11483 /*
a1150c20
SL
11484 * If the event is a sw event, but the group_leader
11485 * is on hw context.
b04243ef 11486 *
a1150c20
SL
11487 * Allow the addition of software events to hw
11488 * groups, this is safe because software events
11489 * never fail to schedule.
b04243ef 11490 */
a1150c20
SL
11491 pmu = group_leader->ctx->pmu;
11492 } else if (!is_software_event(event) &&
11493 is_software_event(group_leader) &&
4ff6a8de 11494 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
11495 /*
11496 * In case the group is a pure software group, and we
11497 * try to add a hardware event, move the whole group to
11498 * the hardware context.
11499 */
11500 move_group = 1;
11501 }
11502 }
89a1e187
PZ
11503
11504 /*
11505 * Get the target context (task or percpu):
11506 */
4af57ef2 11507 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
11508 if (IS_ERR(ctx)) {
11509 err = PTR_ERR(ctx);
c6be5a5c 11510 goto err_alloc;
89a1e187
PZ
11511 }
11512
ccff286d 11513 /*
cdd6c482 11514 * Look up the group leader (we will attach this event to it):
04289bb9 11515 */
ac9721f3 11516 if (group_leader) {
dc86cabe 11517 err = -EINVAL;
04289bb9 11518
04289bb9 11519 /*
ccff286d
IM
11520 * Do not allow a recursive hierarchy (this new sibling
11521 * becoming part of another group-sibling):
11522 */
11523 if (group_leader->group_leader != group_leader)
c3f00c70 11524 goto err_context;
34f43927
PZ
11525
11526 /* All events in a group should have the same clock */
11527 if (group_leader->clock != event->clock)
11528 goto err_context;
11529
ccff286d 11530 /*
64aee2a9
MR
11531 * Make sure we're both events for the same CPU;
11532 * grouping events for different CPUs is broken; since
11533 * you can never concurrently schedule them anyhow.
04289bb9 11534 */
64aee2a9
MR
11535 if (group_leader->cpu != event->cpu)
11536 goto err_context;
c3c87e77 11537
64aee2a9
MR
11538 /*
11539 * Make sure we're both on the same task, or both
11540 * per-CPU events.
11541 */
11542 if (group_leader->ctx->task != ctx->task)
11543 goto err_context;
11544
11545 /*
11546 * Do not allow to attach to a group in a different task
11547 * or CPU context. If we're moving SW events, we'll fix
11548 * this up later, so allow that.
11549 */
11550 if (!move_group && group_leader->ctx != ctx)
11551 goto err_context;
b04243ef 11552
3b6f9e5c
PM
11553 /*
11554 * Only a group leader can be exclusive or pinned
11555 */
0d48696f 11556 if (attr.exclusive || attr.pinned)
c3f00c70 11557 goto err_context;
ac9721f3
PZ
11558 }
11559
11560 if (output_event) {
11561 err = perf_event_set_output(event, output_event);
11562 if (err)
c3f00c70 11563 goto err_context;
ac9721f3 11564 }
0793a61d 11565
a21b0b35
YD
11566 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11567 f_flags);
ea635c64
AV
11568 if (IS_ERR(event_file)) {
11569 err = PTR_ERR(event_file);
201c2f85 11570 event_file = NULL;
c3f00c70 11571 goto err_context;
ea635c64 11572 }
9b51f66d 11573
b04243ef 11574 if (move_group) {
321027c1
PZ
11575 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11576
84c4e620
PZ
11577 if (gctx->task == TASK_TOMBSTONE) {
11578 err = -ESRCH;
11579 goto err_locked;
11580 }
321027c1
PZ
11581
11582 /*
11583 * Check if we raced against another sys_perf_event_open() call
11584 * moving the software group underneath us.
11585 */
11586 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11587 /*
11588 * If someone moved the group out from under us, check
11589 * if this new event wound up on the same ctx, if so
11590 * its the regular !move_group case, otherwise fail.
11591 */
11592 if (gctx != ctx) {
11593 err = -EINVAL;
11594 goto err_locked;
11595 } else {
11596 perf_event_ctx_unlock(group_leader, gctx);
11597 move_group = 0;
11598 }
11599 }
8a58ddae
AS
11600
11601 /*
11602 * Failure to create exclusive events returns -EBUSY.
11603 */
11604 err = -EBUSY;
11605 if (!exclusive_event_installable(group_leader, ctx))
11606 goto err_locked;
11607
11608 for_each_sibling_event(sibling, group_leader) {
11609 if (!exclusive_event_installable(sibling, ctx))
11610 goto err_locked;
11611 }
f55fc2a5
PZ
11612 } else {
11613 mutex_lock(&ctx->mutex);
11614 }
11615
84c4e620
PZ
11616 if (ctx->task == TASK_TOMBSTONE) {
11617 err = -ESRCH;
11618 goto err_locked;
11619 }
11620
a723968c
PZ
11621 if (!perf_event_validate_size(event)) {
11622 err = -E2BIG;
11623 goto err_locked;
11624 }
11625
a63fbed7
TG
11626 if (!task) {
11627 /*
11628 * Check if the @cpu we're creating an event for is online.
11629 *
11630 * We use the perf_cpu_context::ctx::mutex to serialize against
11631 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11632 */
11633 struct perf_cpu_context *cpuctx =
11634 container_of(ctx, struct perf_cpu_context, ctx);
11635
11636 if (!cpuctx->online) {
11637 err = -ENODEV;
11638 goto err_locked;
11639 }
11640 }
11641
da9ec3d3
MR
11642 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11643 err = -EINVAL;
ab43762e 11644 goto err_locked;
da9ec3d3 11645 }
a63fbed7 11646
f55fc2a5
PZ
11647 /*
11648 * Must be under the same ctx::mutex as perf_install_in_context(),
11649 * because we need to serialize with concurrent event creation.
11650 */
11651 if (!exclusive_event_installable(event, ctx)) {
f55fc2a5
PZ
11652 err = -EBUSY;
11653 goto err_locked;
11654 }
f63a8daa 11655
f55fc2a5
PZ
11656 WARN_ON_ONCE(ctx->parent_ctx);
11657
79c9ce57
PZ
11658 /*
11659 * This is the point on no return; we cannot fail hereafter. This is
11660 * where we start modifying current state.
11661 */
11662
f55fc2a5 11663 if (move_group) {
f63a8daa
PZ
11664 /*
11665 * See perf_event_ctx_lock() for comments on the details
11666 * of swizzling perf_event::ctx.
11667 */
45a0e07a 11668 perf_remove_from_context(group_leader, 0);
279b5165 11669 put_ctx(gctx);
0231bb53 11670
edb39592 11671 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11672 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11673 put_ctx(gctx);
11674 }
b04243ef 11675
f63a8daa
PZ
11676 /*
11677 * Wait for everybody to stop referencing the events through
11678 * the old lists, before installing it on new lists.
11679 */
0cda4c02 11680 synchronize_rcu();
f63a8daa 11681
8f95b435
PZI
11682 /*
11683 * Install the group siblings before the group leader.
11684 *
11685 * Because a group leader will try and install the entire group
11686 * (through the sibling list, which is still in-tact), we can
11687 * end up with siblings installed in the wrong context.
11688 *
11689 * By installing siblings first we NO-OP because they're not
11690 * reachable through the group lists.
11691 */
edb39592 11692 for_each_sibling_event(sibling, group_leader) {
8f95b435 11693 perf_event__state_init(sibling);
9fc81d87 11694 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11695 get_ctx(ctx);
11696 }
8f95b435
PZI
11697
11698 /*
11699 * Removing from the context ends up with disabled
11700 * event. What we want here is event in the initial
11701 * startup state, ready to be add into new context.
11702 */
11703 perf_event__state_init(group_leader);
11704 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11705 get_ctx(ctx);
bed5b25a
AS
11706 }
11707
f73e22ab
PZ
11708 /*
11709 * Precalculate sample_data sizes; do while holding ctx::mutex such
11710 * that we're serialized against further additions and before
11711 * perf_install_in_context() which is the point the event is active and
11712 * can use these values.
11713 */
11714 perf_event__header_size(event);
11715 perf_event__id_header_size(event);
11716
78cd2c74
PZ
11717 event->owner = current;
11718
e2d37cd2 11719 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11720 perf_unpin_context(ctx);
f63a8daa 11721
f55fc2a5 11722 if (move_group)
321027c1 11723 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11724 mutex_unlock(&ctx->mutex);
9b51f66d 11725
79c9ce57
PZ
11726 if (task) {
11727 mutex_unlock(&task->signal->cred_guard_mutex);
11728 put_task_struct(task);
11729 }
11730
cdd6c482
IM
11731 mutex_lock(&current->perf_event_mutex);
11732 list_add_tail(&event->owner_entry, &current->perf_event_list);
11733 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11734
8a49542c
PZ
11735 /*
11736 * Drop the reference on the group_event after placing the
11737 * new event on the sibling_list. This ensures destruction
11738 * of the group leader will find the pointer to itself in
11739 * perf_group_detach().
11740 */
2903ff01 11741 fdput(group);
ea635c64
AV
11742 fd_install(event_fd, event_file);
11743 return event_fd;
0793a61d 11744
f55fc2a5
PZ
11745err_locked:
11746 if (move_group)
321027c1 11747 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11748 mutex_unlock(&ctx->mutex);
11749/* err_file: */
11750 fput(event_file);
c3f00c70 11751err_context:
fe4b04fa 11752 perf_unpin_context(ctx);
ea635c64 11753 put_ctx(ctx);
c6be5a5c 11754err_alloc:
13005627
PZ
11755 /*
11756 * If event_file is set, the fput() above will have called ->release()
11757 * and that will take care of freeing the event.
11758 */
11759 if (!event_file)
11760 free_event(event);
79c9ce57
PZ
11761err_cred:
11762 if (task)
11763 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11764err_task:
e7d0bc04
PZ
11765 if (task)
11766 put_task_struct(task);
89a1e187 11767err_group_fd:
2903ff01 11768 fdput(group);
ea635c64
AV
11769err_fd:
11770 put_unused_fd(event_fd);
dc86cabe 11771 return err;
0793a61d
TG
11772}
11773
fb0459d7
AV
11774/**
11775 * perf_event_create_kernel_counter
11776 *
11777 * @attr: attributes of the counter to create
11778 * @cpu: cpu in which the counter is bound
38a81da2 11779 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11780 */
11781struct perf_event *
11782perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11783 struct task_struct *task,
4dc0da86
AK
11784 perf_overflow_handler_t overflow_handler,
11785 void *context)
fb0459d7 11786{
fb0459d7 11787 struct perf_event_context *ctx;
c3f00c70 11788 struct perf_event *event;
fb0459d7 11789 int err;
d859e29f 11790
dce5affb
AS
11791 /*
11792 * Grouping is not supported for kernel events, neither is 'AUX',
11793 * make sure the caller's intentions are adjusted.
11794 */
11795 if (attr->aux_output)
11796 return ERR_PTR(-EINVAL);
11797
4dc0da86 11798 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11799 overflow_handler, context, -1);
c3f00c70
PZ
11800 if (IS_ERR(event)) {
11801 err = PTR_ERR(event);
11802 goto err;
11803 }
d859e29f 11804
f8697762 11805 /* Mark owner so we could distinguish it from user events. */
63b6da39 11806 event->owner = TASK_TOMBSTONE;
f8697762 11807
f25d8ba9
AS
11808 /*
11809 * Get the target context (task or percpu):
11810 */
4af57ef2 11811 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11812 if (IS_ERR(ctx)) {
11813 err = PTR_ERR(ctx);
c3f00c70 11814 goto err_free;
d859e29f 11815 }
fb0459d7 11816
fb0459d7
AV
11817 WARN_ON_ONCE(ctx->parent_ctx);
11818 mutex_lock(&ctx->mutex);
84c4e620
PZ
11819 if (ctx->task == TASK_TOMBSTONE) {
11820 err = -ESRCH;
11821 goto err_unlock;
11822 }
11823
a63fbed7
TG
11824 if (!task) {
11825 /*
11826 * Check if the @cpu we're creating an event for is online.
11827 *
11828 * We use the perf_cpu_context::ctx::mutex to serialize against
11829 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11830 */
11831 struct perf_cpu_context *cpuctx =
11832 container_of(ctx, struct perf_cpu_context, ctx);
11833 if (!cpuctx->online) {
11834 err = -ENODEV;
11835 goto err_unlock;
11836 }
11837 }
11838
bed5b25a 11839 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11840 err = -EBUSY;
84c4e620 11841 goto err_unlock;
bed5b25a
AS
11842 }
11843
4ce54af8 11844 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11845 perf_unpin_context(ctx);
fb0459d7
AV
11846 mutex_unlock(&ctx->mutex);
11847
fb0459d7
AV
11848 return event;
11849
84c4e620
PZ
11850err_unlock:
11851 mutex_unlock(&ctx->mutex);
11852 perf_unpin_context(ctx);
11853 put_ctx(ctx);
c3f00c70
PZ
11854err_free:
11855 free_event(event);
11856err:
c6567f64 11857 return ERR_PTR(err);
9b51f66d 11858}
fb0459d7 11859EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11860
0cda4c02
YZ
11861void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11862{
11863 struct perf_event_context *src_ctx;
11864 struct perf_event_context *dst_ctx;
11865 struct perf_event *event, *tmp;
11866 LIST_HEAD(events);
11867
11868 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11869 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11870
f63a8daa
PZ
11871 /*
11872 * See perf_event_ctx_lock() for comments on the details
11873 * of swizzling perf_event::ctx.
11874 */
11875 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11876 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11877 event_entry) {
45a0e07a 11878 perf_remove_from_context(event, 0);
9a545de0 11879 unaccount_event_cpu(event, src_cpu);
0cda4c02 11880 put_ctx(src_ctx);
9886167d 11881 list_add(&event->migrate_entry, &events);
0cda4c02 11882 }
0cda4c02 11883
8f95b435
PZI
11884 /*
11885 * Wait for the events to quiesce before re-instating them.
11886 */
0cda4c02
YZ
11887 synchronize_rcu();
11888
8f95b435
PZI
11889 /*
11890 * Re-instate events in 2 passes.
11891 *
11892 * Skip over group leaders and only install siblings on this first
11893 * pass, siblings will not get enabled without a leader, however a
11894 * leader will enable its siblings, even if those are still on the old
11895 * context.
11896 */
11897 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11898 if (event->group_leader == event)
11899 continue;
11900
11901 list_del(&event->migrate_entry);
11902 if (event->state >= PERF_EVENT_STATE_OFF)
11903 event->state = PERF_EVENT_STATE_INACTIVE;
11904 account_event_cpu(event, dst_cpu);
11905 perf_install_in_context(dst_ctx, event, dst_cpu);
11906 get_ctx(dst_ctx);
11907 }
11908
11909 /*
11910 * Once all the siblings are setup properly, install the group leaders
11911 * to make it go.
11912 */
9886167d
PZ
11913 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11914 list_del(&event->migrate_entry);
0cda4c02
YZ
11915 if (event->state >= PERF_EVENT_STATE_OFF)
11916 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11917 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11918 perf_install_in_context(dst_ctx, event, dst_cpu);
11919 get_ctx(dst_ctx);
11920 }
11921 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11922 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11923}
11924EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11925
cdd6c482 11926static void sync_child_event(struct perf_event *child_event,
38b200d6 11927 struct task_struct *child)
d859e29f 11928{
cdd6c482 11929 struct perf_event *parent_event = child_event->parent;
8bc20959 11930 u64 child_val;
d859e29f 11931
cdd6c482
IM
11932 if (child_event->attr.inherit_stat)
11933 perf_event_read_event(child_event, child);
38b200d6 11934
b5e58793 11935 child_val = perf_event_count(child_event);
d859e29f
PM
11936
11937 /*
11938 * Add back the child's count to the parent's count:
11939 */
a6e6dea6 11940 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11941 atomic64_add(child_event->total_time_enabled,
11942 &parent_event->child_total_time_enabled);
11943 atomic64_add(child_event->total_time_running,
11944 &parent_event->child_total_time_running);
d859e29f
PM
11945}
11946
9b51f66d 11947static void
8ba289b8
PZ
11948perf_event_exit_event(struct perf_event *child_event,
11949 struct perf_event_context *child_ctx,
11950 struct task_struct *child)
9b51f66d 11951{
8ba289b8
PZ
11952 struct perf_event *parent_event = child_event->parent;
11953
1903d50c
PZ
11954 /*
11955 * Do not destroy the 'original' grouping; because of the context
11956 * switch optimization the original events could've ended up in a
11957 * random child task.
11958 *
11959 * If we were to destroy the original group, all group related
11960 * operations would cease to function properly after this random
11961 * child dies.
11962 *
11963 * Do destroy all inherited groups, we don't care about those
11964 * and being thorough is better.
11965 */
32132a3d
PZ
11966 raw_spin_lock_irq(&child_ctx->lock);
11967 WARN_ON_ONCE(child_ctx->is_active);
11968
8ba289b8 11969 if (parent_event)
32132a3d
PZ
11970 perf_group_detach(child_event);
11971 list_del_event(child_event, child_ctx);
0d3d73aa 11972 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11973 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11974
9b51f66d 11975 /*
8ba289b8 11976 * Parent events are governed by their filedesc, retain them.
9b51f66d 11977 */
8ba289b8 11978 if (!parent_event) {
179033b3 11979 perf_event_wakeup(child_event);
8ba289b8 11980 return;
4bcf349a 11981 }
8ba289b8
PZ
11982 /*
11983 * Child events can be cleaned up.
11984 */
11985
11986 sync_child_event(child_event, child);
11987
11988 /*
11989 * Remove this event from the parent's list
11990 */
11991 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11992 mutex_lock(&parent_event->child_mutex);
11993 list_del_init(&child_event->child_list);
11994 mutex_unlock(&parent_event->child_mutex);
11995
11996 /*
11997 * Kick perf_poll() for is_event_hup().
11998 */
11999 perf_event_wakeup(parent_event);
12000 free_event(child_event);
12001 put_event(parent_event);
9b51f66d
IM
12002}
12003
8dc85d54 12004static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 12005{
211de6eb 12006 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 12007 struct perf_event *child_event, *next;
63b6da39
PZ
12008
12009 WARN_ON_ONCE(child != current);
9b51f66d 12010
6a3351b6 12011 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 12012 if (!child_ctx)
9b51f66d
IM
12013 return;
12014
ad3a37de 12015 /*
6a3351b6
PZ
12016 * In order to reduce the amount of tricky in ctx tear-down, we hold
12017 * ctx::mutex over the entire thing. This serializes against almost
12018 * everything that wants to access the ctx.
12019 *
12020 * The exception is sys_perf_event_open() /
12021 * perf_event_create_kernel_count() which does find_get_context()
12022 * without ctx::mutex (it cannot because of the move_group double mutex
12023 * lock thing). See the comments in perf_install_in_context().
ad3a37de 12024 */
6a3351b6 12025 mutex_lock(&child_ctx->mutex);
c93f7669
PM
12026
12027 /*
6a3351b6
PZ
12028 * In a single ctx::lock section, de-schedule the events and detach the
12029 * context from the task such that we cannot ever get it scheduled back
12030 * in.
c93f7669 12031 */
6a3351b6 12032 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 12033 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 12034
71a851b4 12035 /*
63b6da39
PZ
12036 * Now that the context is inactive, destroy the task <-> ctx relation
12037 * and mark the context dead.
71a851b4 12038 */
63b6da39
PZ
12039 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12040 put_ctx(child_ctx); /* cannot be last */
12041 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12042 put_task_struct(current); /* cannot be last */
4a1c0f26 12043
211de6eb 12044 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 12045 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 12046
211de6eb
PZ
12047 if (clone_ctx)
12048 put_ctx(clone_ctx);
4a1c0f26 12049
9f498cc5 12050 /*
cdd6c482
IM
12051 * Report the task dead after unscheduling the events so that we
12052 * won't get any samples after PERF_RECORD_EXIT. We can however still
12053 * get a few PERF_RECORD_READ events.
9f498cc5 12054 */
cdd6c482 12055 perf_event_task(child, child_ctx, 0);
a63eaf34 12056
ebf905fc 12057 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 12058 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 12059
a63eaf34
PM
12060 mutex_unlock(&child_ctx->mutex);
12061
12062 put_ctx(child_ctx);
9b51f66d
IM
12063}
12064
8dc85d54
PZ
12065/*
12066 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
12067 *
12068 * Can be called with cred_guard_mutex held when called from
12069 * install_exec_creds().
8dc85d54
PZ
12070 */
12071void perf_event_exit_task(struct task_struct *child)
12072{
8882135b 12073 struct perf_event *event, *tmp;
8dc85d54
PZ
12074 int ctxn;
12075
8882135b
PZ
12076 mutex_lock(&child->perf_event_mutex);
12077 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12078 owner_entry) {
12079 list_del_init(&event->owner_entry);
12080
12081 /*
12082 * Ensure the list deletion is visible before we clear
12083 * the owner, closes a race against perf_release() where
12084 * we need to serialize on the owner->perf_event_mutex.
12085 */
f47c02c0 12086 smp_store_release(&event->owner, NULL);
8882135b
PZ
12087 }
12088 mutex_unlock(&child->perf_event_mutex);
12089
8dc85d54
PZ
12090 for_each_task_context_nr(ctxn)
12091 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
12092
12093 /*
12094 * The perf_event_exit_task_context calls perf_event_task
12095 * with child's task_ctx, which generates EXIT events for
12096 * child contexts and sets child->perf_event_ctxp[] to NULL.
12097 * At this point we need to send EXIT events to cpu contexts.
12098 */
12099 perf_event_task(child, NULL, 0);
8dc85d54
PZ
12100}
12101
889ff015
FW
12102static void perf_free_event(struct perf_event *event,
12103 struct perf_event_context *ctx)
12104{
12105 struct perf_event *parent = event->parent;
12106
12107 if (WARN_ON_ONCE(!parent))
12108 return;
12109
12110 mutex_lock(&parent->child_mutex);
12111 list_del_init(&event->child_list);
12112 mutex_unlock(&parent->child_mutex);
12113
a6fa941d 12114 put_event(parent);
889ff015 12115
652884fe 12116 raw_spin_lock_irq(&ctx->lock);
8a49542c 12117 perf_group_detach(event);
889ff015 12118 list_del_event(event, ctx);
652884fe 12119 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
12120 free_event(event);
12121}
12122
bbbee908 12123/*
1cf8dfe8
PZ
12124 * Free a context as created by inheritance by perf_event_init_task() below,
12125 * used by fork() in case of fail.
652884fe 12126 *
1cf8dfe8
PZ
12127 * Even though the task has never lived, the context and events have been
12128 * exposed through the child_list, so we must take care tearing it all down.
bbbee908 12129 */
cdd6c482 12130void perf_event_free_task(struct task_struct *task)
bbbee908 12131{
8dc85d54 12132 struct perf_event_context *ctx;
cdd6c482 12133 struct perf_event *event, *tmp;
8dc85d54 12134 int ctxn;
bbbee908 12135
8dc85d54
PZ
12136 for_each_task_context_nr(ctxn) {
12137 ctx = task->perf_event_ctxp[ctxn];
12138 if (!ctx)
12139 continue;
bbbee908 12140
8dc85d54 12141 mutex_lock(&ctx->mutex);
e552a838
PZ
12142 raw_spin_lock_irq(&ctx->lock);
12143 /*
12144 * Destroy the task <-> ctx relation and mark the context dead.
12145 *
12146 * This is important because even though the task hasn't been
12147 * exposed yet the context has been (through child_list).
12148 */
12149 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12150 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12151 put_task_struct(task); /* cannot be last */
12152 raw_spin_unlock_irq(&ctx->lock);
bbbee908 12153
15121c78 12154 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 12155 perf_free_event(event, ctx);
bbbee908 12156
8dc85d54 12157 mutex_unlock(&ctx->mutex);
1cf8dfe8
PZ
12158
12159 /*
12160 * perf_event_release_kernel() could've stolen some of our
12161 * child events and still have them on its free_list. In that
12162 * case we must wait for these events to have been freed (in
12163 * particular all their references to this task must've been
12164 * dropped).
12165 *
12166 * Without this copy_process() will unconditionally free this
12167 * task (irrespective of its reference count) and
12168 * _free_event()'s put_task_struct(event->hw.target) will be a
12169 * use-after-free.
12170 *
12171 * Wait for all events to drop their context reference.
12172 */
12173 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12174 put_ctx(ctx); /* must be last */
8dc85d54 12175 }
889ff015
FW
12176}
12177
4e231c79
PZ
12178void perf_event_delayed_put(struct task_struct *task)
12179{
12180 int ctxn;
12181
12182 for_each_task_context_nr(ctxn)
12183 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12184}
12185
e03e7ee3 12186struct file *perf_event_get(unsigned int fd)
ffe8690c 12187{
02e5ad97 12188 struct file *file = fget(fd);
e03e7ee3
AS
12189 if (!file)
12190 return ERR_PTR(-EBADF);
ffe8690c 12191
e03e7ee3
AS
12192 if (file->f_op != &perf_fops) {
12193 fput(file);
12194 return ERR_PTR(-EBADF);
12195 }
ffe8690c 12196
e03e7ee3 12197 return file;
ffe8690c
KX
12198}
12199
f8d959a5
YS
12200const struct perf_event *perf_get_event(struct file *file)
12201{
12202 if (file->f_op != &perf_fops)
12203 return ERR_PTR(-EINVAL);
12204
12205 return file->private_data;
12206}
12207
ffe8690c
KX
12208const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12209{
12210 if (!event)
12211 return ERR_PTR(-EINVAL);
12212
12213 return &event->attr;
12214}
12215
97dee4f3 12216/*
788faab7 12217 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
12218 *
12219 * Returns:
12220 * - valid pointer on success
12221 * - NULL for orphaned events
12222 * - IS_ERR() on error
97dee4f3
PZ
12223 */
12224static struct perf_event *
12225inherit_event(struct perf_event *parent_event,
12226 struct task_struct *parent,
12227 struct perf_event_context *parent_ctx,
12228 struct task_struct *child,
12229 struct perf_event *group_leader,
12230 struct perf_event_context *child_ctx)
12231{
8ca2bd41 12232 enum perf_event_state parent_state = parent_event->state;
97dee4f3 12233 struct perf_event *child_event;
cee010ec 12234 unsigned long flags;
97dee4f3
PZ
12235
12236 /*
12237 * Instead of creating recursive hierarchies of events,
12238 * we link inherited events back to the original parent,
12239 * which has a filp for sure, which we use as the reference
12240 * count:
12241 */
12242 if (parent_event->parent)
12243 parent_event = parent_event->parent;
12244
12245 child_event = perf_event_alloc(&parent_event->attr,
12246 parent_event->cpu,
d580ff86 12247 child,
97dee4f3 12248 group_leader, parent_event,
79dff51e 12249 NULL, NULL, -1);
97dee4f3
PZ
12250 if (IS_ERR(child_event))
12251 return child_event;
a6fa941d 12252
313ccb96
JO
12253
12254 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12255 !child_ctx->task_ctx_data) {
12256 struct pmu *pmu = child_event->pmu;
12257
12258 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12259 GFP_KERNEL);
12260 if (!child_ctx->task_ctx_data) {
12261 free_event(child_event);
697d8778 12262 return ERR_PTR(-ENOMEM);
313ccb96
JO
12263 }
12264 }
12265
c6e5b732
PZ
12266 /*
12267 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12268 * must be under the same lock in order to serialize against
12269 * perf_event_release_kernel(), such that either we must observe
12270 * is_orphaned_event() or they will observe us on the child_list.
12271 */
12272 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
12273 if (is_orphaned_event(parent_event) ||
12274 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 12275 mutex_unlock(&parent_event->child_mutex);
313ccb96 12276 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
12277 free_event(child_event);
12278 return NULL;
12279 }
12280
97dee4f3
PZ
12281 get_ctx(child_ctx);
12282
12283 /*
12284 * Make the child state follow the state of the parent event,
12285 * not its attr.disabled bit. We hold the parent's mutex,
12286 * so we won't race with perf_event_{en, dis}able_family.
12287 */
1929def9 12288 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
12289 child_event->state = PERF_EVENT_STATE_INACTIVE;
12290 else
12291 child_event->state = PERF_EVENT_STATE_OFF;
12292
12293 if (parent_event->attr.freq) {
12294 u64 sample_period = parent_event->hw.sample_period;
12295 struct hw_perf_event *hwc = &child_event->hw;
12296
12297 hwc->sample_period = sample_period;
12298 hwc->last_period = sample_period;
12299
12300 local64_set(&hwc->period_left, sample_period);
12301 }
12302
12303 child_event->ctx = child_ctx;
12304 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
12305 child_event->overflow_handler_context
12306 = parent_event->overflow_handler_context;
97dee4f3 12307
614b6780
TG
12308 /*
12309 * Precalculate sample_data sizes
12310 */
12311 perf_event__header_size(child_event);
6844c09d 12312 perf_event__id_header_size(child_event);
614b6780 12313
97dee4f3
PZ
12314 /*
12315 * Link it up in the child's context:
12316 */
cee010ec 12317 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 12318 add_event_to_ctx(child_event, child_ctx);
cee010ec 12319 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 12320
97dee4f3
PZ
12321 /*
12322 * Link this into the parent event's child list
12323 */
97dee4f3
PZ
12324 list_add_tail(&child_event->child_list, &parent_event->child_list);
12325 mutex_unlock(&parent_event->child_mutex);
12326
12327 return child_event;
12328}
12329
d8a8cfc7
PZ
12330/*
12331 * Inherits an event group.
12332 *
12333 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12334 * This matches with perf_event_release_kernel() removing all child events.
12335 *
12336 * Returns:
12337 * - 0 on success
12338 * - <0 on error
12339 */
97dee4f3
PZ
12340static int inherit_group(struct perf_event *parent_event,
12341 struct task_struct *parent,
12342 struct perf_event_context *parent_ctx,
12343 struct task_struct *child,
12344 struct perf_event_context *child_ctx)
12345{
12346 struct perf_event *leader;
12347 struct perf_event *sub;
12348 struct perf_event *child_ctr;
12349
12350 leader = inherit_event(parent_event, parent, parent_ctx,
12351 child, NULL, child_ctx);
12352 if (IS_ERR(leader))
12353 return PTR_ERR(leader);
d8a8cfc7
PZ
12354 /*
12355 * @leader can be NULL here because of is_orphaned_event(). In this
12356 * case inherit_event() will create individual events, similar to what
12357 * perf_group_detach() would do anyway.
12358 */
edb39592 12359 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
12360 child_ctr = inherit_event(sub, parent, parent_ctx,
12361 child, leader, child_ctx);
12362 if (IS_ERR(child_ctr))
12363 return PTR_ERR(child_ctr);
f733c6b5 12364
00496fe5 12365 if (sub->aux_event == parent_event && child_ctr &&
f733c6b5
AS
12366 !perf_get_aux_event(child_ctr, leader))
12367 return -EINVAL;
97dee4f3
PZ
12368 }
12369 return 0;
889ff015
FW
12370}
12371
d8a8cfc7
PZ
12372/*
12373 * Creates the child task context and tries to inherit the event-group.
12374 *
12375 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12376 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12377 * consistent with perf_event_release_kernel() removing all child events.
12378 *
12379 * Returns:
12380 * - 0 on success
12381 * - <0 on error
12382 */
889ff015
FW
12383static int
12384inherit_task_group(struct perf_event *event, struct task_struct *parent,
12385 struct perf_event_context *parent_ctx,
8dc85d54 12386 struct task_struct *child, int ctxn,
889ff015
FW
12387 int *inherited_all)
12388{
12389 int ret;
8dc85d54 12390 struct perf_event_context *child_ctx;
889ff015
FW
12391
12392 if (!event->attr.inherit) {
12393 *inherited_all = 0;
12394 return 0;
bbbee908
PZ
12395 }
12396
fe4b04fa 12397 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
12398 if (!child_ctx) {
12399 /*
12400 * This is executed from the parent task context, so
12401 * inherit events that have been marked for cloning.
12402 * First allocate and initialize a context for the
12403 * child.
12404 */
734df5ab 12405 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
12406 if (!child_ctx)
12407 return -ENOMEM;
bbbee908 12408
8dc85d54 12409 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
12410 }
12411
12412 ret = inherit_group(event, parent, parent_ctx,
12413 child, child_ctx);
12414
12415 if (ret)
12416 *inherited_all = 0;
12417
12418 return ret;
bbbee908
PZ
12419}
12420
9b51f66d 12421/*
cdd6c482 12422 * Initialize the perf_event context in task_struct
9b51f66d 12423 */
985c8dcb 12424static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 12425{
889ff015 12426 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
12427 struct perf_event_context *cloned_ctx;
12428 struct perf_event *event;
9b51f66d 12429 struct task_struct *parent = current;
564c2b21 12430 int inherited_all = 1;
dddd3379 12431 unsigned long flags;
6ab423e0 12432 int ret = 0;
9b51f66d 12433
8dc85d54 12434 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
12435 return 0;
12436
ad3a37de 12437 /*
25346b93
PM
12438 * If the parent's context is a clone, pin it so it won't get
12439 * swapped under us.
ad3a37de 12440 */
8dc85d54 12441 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
12442 if (!parent_ctx)
12443 return 0;
25346b93 12444
ad3a37de
PM
12445 /*
12446 * No need to check if parent_ctx != NULL here; since we saw
12447 * it non-NULL earlier, the only reason for it to become NULL
12448 * is if we exit, and since we're currently in the middle of
12449 * a fork we can't be exiting at the same time.
12450 */
ad3a37de 12451
9b51f66d
IM
12452 /*
12453 * Lock the parent list. No need to lock the child - not PID
12454 * hashed yet and not running, so nobody can access it.
12455 */
d859e29f 12456 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
12457
12458 /*
12459 * We dont have to disable NMIs - we are only looking at
12460 * the list, not manipulating it:
12461 */
6e6804d2 12462 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
12463 ret = inherit_task_group(event, parent, parent_ctx,
12464 child, ctxn, &inherited_all);
889ff015 12465 if (ret)
e7cc4865 12466 goto out_unlock;
889ff015 12467 }
b93f7978 12468
dddd3379
TG
12469 /*
12470 * We can't hold ctx->lock when iterating the ->flexible_group list due
12471 * to allocations, but we need to prevent rotation because
12472 * rotate_ctx() will change the list from interrupt context.
12473 */
12474 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12475 parent_ctx->rotate_disable = 1;
12476 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12477
6e6804d2 12478 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
12479 ret = inherit_task_group(event, parent, parent_ctx,
12480 child, ctxn, &inherited_all);
889ff015 12481 if (ret)
e7cc4865 12482 goto out_unlock;
564c2b21
PM
12483 }
12484
dddd3379
TG
12485 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12486 parent_ctx->rotate_disable = 0;
dddd3379 12487
8dc85d54 12488 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 12489
05cbaa28 12490 if (child_ctx && inherited_all) {
564c2b21
PM
12491 /*
12492 * Mark the child context as a clone of the parent
12493 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
12494 *
12495 * Note that if the parent is a clone, the holding of
12496 * parent_ctx->lock avoids it from being uncloned.
564c2b21 12497 */
c5ed5145 12498 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
12499 if (cloned_ctx) {
12500 child_ctx->parent_ctx = cloned_ctx;
25346b93 12501 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
12502 } else {
12503 child_ctx->parent_ctx = parent_ctx;
12504 child_ctx->parent_gen = parent_ctx->generation;
12505 }
12506 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
12507 }
12508
c5ed5145 12509 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 12510out_unlock:
d859e29f 12511 mutex_unlock(&parent_ctx->mutex);
6ab423e0 12512
25346b93 12513 perf_unpin_context(parent_ctx);
fe4b04fa 12514 put_ctx(parent_ctx);
ad3a37de 12515
6ab423e0 12516 return ret;
9b51f66d
IM
12517}
12518
8dc85d54
PZ
12519/*
12520 * Initialize the perf_event context in task_struct
12521 */
12522int perf_event_init_task(struct task_struct *child)
12523{
12524 int ctxn, ret;
12525
8550d7cb
ON
12526 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12527 mutex_init(&child->perf_event_mutex);
12528 INIT_LIST_HEAD(&child->perf_event_list);
12529
8dc85d54
PZ
12530 for_each_task_context_nr(ctxn) {
12531 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
12532 if (ret) {
12533 perf_event_free_task(child);
8dc85d54 12534 return ret;
6c72e350 12535 }
8dc85d54
PZ
12536 }
12537
12538 return 0;
12539}
12540
220b140b
PM
12541static void __init perf_event_init_all_cpus(void)
12542{
b28ab83c 12543 struct swevent_htable *swhash;
220b140b 12544 int cpu;
220b140b 12545
a63fbed7
TG
12546 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12547
220b140b 12548 for_each_possible_cpu(cpu) {
b28ab83c
PZ
12549 swhash = &per_cpu(swevent_htable, cpu);
12550 mutex_init(&swhash->hlist_mutex);
2fde4f94 12551 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
12552
12553 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12554 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 12555
058fe1c0
DCC
12556#ifdef CONFIG_CGROUP_PERF
12557 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12558#endif
e48c1788 12559 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
12560 }
12561}
12562
d18bf422 12563static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 12564{
108b02cf 12565 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 12566
b28ab83c 12567 mutex_lock(&swhash->hlist_mutex);
059fcd8c 12568 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
12569 struct swevent_hlist *hlist;
12570
b28ab83c
PZ
12571 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12572 WARN_ON(!hlist);
12573 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 12574 }
b28ab83c 12575 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
12576}
12577
2965faa5 12578#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 12579static void __perf_event_exit_context(void *__info)
0793a61d 12580{
108b02cf 12581 struct perf_event_context *ctx = __info;
fae3fde6
PZ
12582 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12583 struct perf_event *event;
0793a61d 12584
fae3fde6 12585 raw_spin_lock(&ctx->lock);
0ee098c9 12586 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 12587 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 12588 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 12589 raw_spin_unlock(&ctx->lock);
0793a61d 12590}
108b02cf
PZ
12591
12592static void perf_event_exit_cpu_context(int cpu)
12593{
a63fbed7 12594 struct perf_cpu_context *cpuctx;
108b02cf
PZ
12595 struct perf_event_context *ctx;
12596 struct pmu *pmu;
108b02cf 12597
a63fbed7
TG
12598 mutex_lock(&pmus_lock);
12599 list_for_each_entry(pmu, &pmus, entry) {
12600 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12601 ctx = &cpuctx->ctx;
108b02cf
PZ
12602
12603 mutex_lock(&ctx->mutex);
12604 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 12605 cpuctx->online = 0;
108b02cf
PZ
12606 mutex_unlock(&ctx->mutex);
12607 }
a63fbed7
TG
12608 cpumask_clear_cpu(cpu, perf_online_mask);
12609 mutex_unlock(&pmus_lock);
108b02cf 12610}
00e16c3d
TG
12611#else
12612
12613static void perf_event_exit_cpu_context(int cpu) { }
12614
12615#endif
108b02cf 12616
a63fbed7
TG
12617int perf_event_init_cpu(unsigned int cpu)
12618{
12619 struct perf_cpu_context *cpuctx;
12620 struct perf_event_context *ctx;
12621 struct pmu *pmu;
12622
12623 perf_swevent_init_cpu(cpu);
12624
12625 mutex_lock(&pmus_lock);
12626 cpumask_set_cpu(cpu, perf_online_mask);
12627 list_for_each_entry(pmu, &pmus, entry) {
12628 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12629 ctx = &cpuctx->ctx;
12630
12631 mutex_lock(&ctx->mutex);
12632 cpuctx->online = 1;
12633 mutex_unlock(&ctx->mutex);
12634 }
12635 mutex_unlock(&pmus_lock);
12636
12637 return 0;
12638}
12639
00e16c3d 12640int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12641{
e3703f8c 12642 perf_event_exit_cpu_context(cpu);
00e16c3d 12643 return 0;
0793a61d 12644}
0793a61d 12645
c277443c
PZ
12646static int
12647perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12648{
12649 int cpu;
12650
12651 for_each_online_cpu(cpu)
12652 perf_event_exit_cpu(cpu);
12653
12654 return NOTIFY_OK;
12655}
12656
12657/*
12658 * Run the perf reboot notifier at the very last possible moment so that
12659 * the generic watchdog code runs as long as possible.
12660 */
12661static struct notifier_block perf_reboot_notifier = {
12662 .notifier_call = perf_reboot,
12663 .priority = INT_MIN,
12664};
12665
cdd6c482 12666void __init perf_event_init(void)
0793a61d 12667{
3c502e7a
JW
12668 int ret;
12669
2e80a82a
PZ
12670 idr_init(&pmu_idr);
12671
220b140b 12672 perf_event_init_all_cpus();
b0a873eb 12673 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12674 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12675 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12676 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12677 perf_tp_register();
00e16c3d 12678 perf_event_init_cpu(smp_processor_id());
c277443c 12679 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12680
12681 ret = init_hw_breakpoint();
12682 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12683
b01c3a00
JO
12684 /*
12685 * Build time assertion that we keep the data_head at the intended
12686 * location. IOW, validation we got the __reserved[] size right.
12687 */
12688 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12689 != 1024);
0793a61d 12690}
abe43400 12691
fd979c01
CS
12692ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12693 char *page)
12694{
12695 struct perf_pmu_events_attr *pmu_attr =
12696 container_of(attr, struct perf_pmu_events_attr, attr);
12697
12698 if (pmu_attr->event_str)
12699 return sprintf(page, "%s\n", pmu_attr->event_str);
12700
12701 return 0;
12702}
675965b0 12703EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12704
abe43400
PZ
12705static int __init perf_event_sysfs_init(void)
12706{
12707 struct pmu *pmu;
12708 int ret;
12709
12710 mutex_lock(&pmus_lock);
12711
12712 ret = bus_register(&pmu_bus);
12713 if (ret)
12714 goto unlock;
12715
12716 list_for_each_entry(pmu, &pmus, entry) {
12717 if (!pmu->name || pmu->type < 0)
12718 continue;
12719
12720 ret = pmu_dev_alloc(pmu);
12721 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12722 }
12723 pmu_bus_running = 1;
12724 ret = 0;
12725
12726unlock:
12727 mutex_unlock(&pmus_lock);
12728
12729 return ret;
12730}
12731device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12732
12733#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12734static struct cgroup_subsys_state *
12735perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12736{
12737 struct perf_cgroup *jc;
e5d1367f 12738
1b15d055 12739 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12740 if (!jc)
12741 return ERR_PTR(-ENOMEM);
12742
e5d1367f
SE
12743 jc->info = alloc_percpu(struct perf_cgroup_info);
12744 if (!jc->info) {
12745 kfree(jc);
12746 return ERR_PTR(-ENOMEM);
12747 }
12748
e5d1367f
SE
12749 return &jc->css;
12750}
12751
eb95419b 12752static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12753{
eb95419b
TH
12754 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12755
e5d1367f
SE
12756 free_percpu(jc->info);
12757 kfree(jc);
12758}
12759
12760static int __perf_cgroup_move(void *info)
12761{
12762 struct task_struct *task = info;
ddaaf4e2 12763 rcu_read_lock();
e5d1367f 12764 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12765 rcu_read_unlock();
e5d1367f
SE
12766 return 0;
12767}
12768
1f7dd3e5 12769static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12770{
bb9d97b6 12771 struct task_struct *task;
1f7dd3e5 12772 struct cgroup_subsys_state *css;
bb9d97b6 12773
1f7dd3e5 12774 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12775 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12776}
12777
073219e9 12778struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12779 .css_alloc = perf_cgroup_css_alloc,
12780 .css_free = perf_cgroup_css_free,
bb9d97b6 12781 .attach = perf_cgroup_attach,
968ebff1
TH
12782 /*
12783 * Implicitly enable on dfl hierarchy so that perf events can
12784 * always be filtered by cgroup2 path as long as perf_event
12785 * controller is not mounted on a legacy hierarchy.
12786 */
12787 .implicit_on_dfl = true,
8cfd8147 12788 .threaded = true,
e5d1367f
SE
12789};
12790#endif /* CONFIG_CGROUP_PERF */