Merge tag 'bpf-6.11-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-block.git] / kernel / dma / direct.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a8463d4b 2/*
efa70f2f 3 * Copyright (C) 2018-2020 Christoph Hellwig.
bc3ec75d
CH
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
a8463d4b 6 */
57c8a661 7#include <linux/memblock.h> /* for max_pfn */
a8463d4b
CB
8#include <linux/export.h>
9#include <linux/mm.h>
0a0f0d8b 10#include <linux/dma-map-ops.h>
a8463d4b 11#include <linux/scatterlist.h>
25f1e188 12#include <linux/pfn.h>
3acac065 13#include <linux/vmalloc.h>
c10f07aa 14#include <linux/set_memory.h>
e0d07278 15#include <linux/slab.h>
19c65c3d 16#include "direct.h"
a8463d4b 17
c61e9637 18/*
7b7b8a2c 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
8b5369ea
NSJ
20 * it for entirely different regions. In that case the arch code needs to
21 * override the variable below for dma-direct to work properly.
c61e9637 22 */
8b5369ea 23unsigned int zone_dma_bits __ro_after_init = 24;
c61e9637 24
a20bb058
CH
25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27{
9087c375 28 if (force_dma_unencrypted(dev))
5ceda740 29 return phys_to_dma_unencrypted(dev, phys);
a20bb058
CH
30 return phys_to_dma(dev, phys);
31}
32
34dc0ea6
CH
33static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35{
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37}
38
a20bb058
CH
39u64 dma_direct_get_required_mask(struct device *dev)
40{
cdcda0d1
KVA
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
a20bb058
CH
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45}
46
25a4ce56 47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
7d21ee4c 48{
25a4ce56
PT
49 u64 dma_limit = min_not_zero(
50 dev->coherent_dma_mask,
51 dev->bus_dma_limit);
b4ebe606 52
79ac32a4
CH
53 /*
54 * Optimistically try the zone that the physical address mask falls
55 * into first. If that returns memory that isn't actually addressable
56 * we will fallback to the next lower zone and try again.
57 *
58 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 * zones.
60 */
7bc5c428 61 *phys_limit = dma_to_phys(dev, dma_limit);
a7ba70f1 62 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
7d21ee4c 63 return GFP_DMA;
a7ba70f1 64 if (*phys_limit <= DMA_BIT_MASK(32))
7d21ee4c
CH
65 return GFP_DMA32;
66 return 0;
67}
68
79636caa 69bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
95f18391 70{
e0d07278
JQ
71 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72
73 if (dma_addr == DMA_MAPPING_ERROR)
74 return false;
75 return dma_addr + size - 1 <=
76 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
95f18391
CH
77}
78
4d056478
CH
79static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
80{
81 if (!force_dma_unencrypted(dev))
82 return 0;
4a37f3dd 83 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
4d056478
CH
84}
85
86static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
87{
a90cf304
CH
88 int ret;
89
4d056478
CH
90 if (!force_dma_unencrypted(dev))
91 return 0;
4a37f3dd 92 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
a90cf304
CH
93 if (ret)
94 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
95 return ret;
4d056478
CH
96}
97
f4111e39
CC
98static void __dma_direct_free_pages(struct device *dev, struct page *page,
99 size_t size)
100{
f5d3939a 101 if (swiotlb_free(dev, page, size))
f4111e39
CC
102 return;
103 dma_free_contiguous(dev, page, size);
104}
105
aea7e2a8
CH
106static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107{
108 struct page *page = swiotlb_alloc(dev, size);
109
110 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111 swiotlb_free(dev, page, size);
112 return NULL;
113 }
114
115 return page;
116}
117
26749b32 118static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
92826e96 119 gfp_t gfp, bool allow_highmem)
a8463d4b 120{
90ae409f 121 int node = dev_to_node(dev);
080321d3 122 struct page *page = NULL;
a7ba70f1 123 u64 phys_limit;
a8463d4b 124
633d5fce
DR
125 WARN_ON_ONCE(!PAGE_ALIGNED(size));
126
aea7e2a8
CH
127 if (is_swiotlb_for_alloc(dev))
128 return dma_direct_alloc_swiotlb(dev, size);
129
25a4ce56 130 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
633d5fce 131 page = dma_alloc_contiguous(dev, size, gfp);
92826e96
CH
132 if (page) {
133 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134 (!allow_highmem && PageHighMem(page))) {
135 dma_free_contiguous(dev, page, size);
136 page = NULL;
137 }
90ae409f 138 }
95f18391 139again:
90ae409f 140 if (!page)
633d5fce 141 page = alloc_pages_node(node, gfp, get_order(size));
95f18391 142 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
b1d2dc00 143 dma_free_contiguous(dev, page, size);
95f18391
CH
144 page = NULL;
145
de7eab30 146 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
a7ba70f1 147 phys_limit < DMA_BIT_MASK(64) &&
de7eab30
TI
148 !(gfp & (GFP_DMA32 | GFP_DMA))) {
149 gfp |= GFP_DMA32;
150 goto again;
151 }
152
fbce251b 153 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
95f18391
CH
154 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155 goto again;
156 }
157 }
158
b18814e7
CH
159 return page;
160}
161
28e4576d
CH
162/*
163 * Check if a potentially blocking operations needs to dip into the atomic
164 * pools for the given device/gfp.
165 */
166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167{
168 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169}
170
5b138c53
CH
171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172 dma_addr_t *dma_handle, gfp_t gfp)
173{
174 struct page *page;
25a4ce56 175 u64 phys_limit;
5b138c53
CH
176 void *ret;
177
78bc7278
CH
178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179 return NULL;
180
25a4ce56 181 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
5b138c53
CH
182 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183 if (!page)
184 return NULL;
185 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186 return ret;
187}
188
d541ae55
CH
189static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190 dma_addr_t *dma_handle, gfp_t gfp)
191{
192 struct page *page;
193
92826e96 194 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
d541ae55
CH
195 if (!page)
196 return NULL;
197
198 /* remove any dirty cache lines on the kernel alias */
199 if (!PageHighMem(page))
200 arch_dma_prep_coherent(page, size);
201
202 /* return the page pointer as the opaque cookie */
203 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204 return page;
205}
206
2f5388a2 207void *dma_direct_alloc(struct device *dev, size_t size,
b18814e7
CH
208 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209{
f3c96222 210 bool remap = false, set_uncached = false;
b18814e7
CH
211 struct page *page;
212 void *ret;
213
633d5fce 214 size = PAGE_ALIGN(size);
3773dfe6
CH
215 if (attrs & DMA_ATTR_NO_WARN)
216 gfp |= __GFP_NOWARN;
633d5fce 217
cf14be0b 218 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
d541ae55
CH
219 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
3acac065 221
a86d1094 222 if (!dev_is_dma_coherent(dev)) {
2c8ed1b9 223 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
a86d1094
CH
224 !is_swiotlb_for_alloc(dev))
225 return arch_dma_alloc(dev, size, dma_handle, gfp,
226 attrs);
849facea 227
a86d1094
CH
228 /*
229 * If there is a global pool, always allocate from it for
230 * non-coherent devices.
231 */
232 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
233 return dma_alloc_from_global_coherent(dev, size,
234 dma_handle);
235
236 /*
b1da46d7
CH
237 * Otherwise we require the architecture to either be able to
238 * mark arbitrary parts of the kernel direct mapping uncached,
239 * or remapped it uncached.
a86d1094 240 */
b1da46d7 241 set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
a86d1094 242 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
63f067e3
CH
243 if (!set_uncached && !remap) {
244 pr_warn_once("coherent DMA allocations not supported on this platform.\n");
b1da46d7 245 return NULL;
63f067e3 246 }
a86d1094 247 }
faf4ef82 248
849facea 249 /*
b1da46d7
CH
250 * Remapping or decrypting memory may block, allocate the memory from
251 * the atomic pools instead if we aren't allowed block.
849facea 252 */
b1da46d7
CH
253 if ((remap || force_dma_unencrypted(dev)) &&
254 dma_direct_use_pool(dev, gfp))
849facea
CH
255 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256
257 /* we always manually zero the memory once we are done */
92826e96 258 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
849facea
CH
259 if (!page)
260 return NULL;
f5ff79fd
CH
261
262 /*
263 * dma_alloc_contiguous can return highmem pages depending on a
264 * combination the cma= arguments and per-arch setup. These need to be
265 * remapped to return a kernel virtual address.
266 */
a86d1094 267 if (PageHighMem(page)) {
f3c96222 268 remap = true;
a86d1094
CH
269 set_uncached = false;
270 }
f3c96222
CH
271
272 if (remap) {
4fe87e81
CH
273 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
274
275 if (force_dma_unencrypted(dev))
276 prot = pgprot_decrypted(prot);
277
3acac065 278 /* remove any dirty cache lines on the kernel alias */
633d5fce 279 arch_dma_prep_coherent(page, size);
3acac065
CH
280
281 /* create a coherent mapping */
4fe87e81 282 ret = dma_common_contiguous_remap(page, size, prot,
3acac065 283 __builtin_return_address(0));
3d0fc341
CH
284 if (!ret)
285 goto out_free_pages;
f3c96222
CH
286 } else {
287 ret = page_address(page);
288 if (dma_set_decrypted(dev, ret, size))
b9fa1694 289 goto out_leak_pages;
704f2c20
CH
290 }
291
c10f07aa 292 memset(ret, 0, size);
c30700db 293
f3c96222 294 if (set_uncached) {
c30700db 295 arch_dma_prep_coherent(page, size);
fa7e2247
CH
296 ret = arch_dma_set_uncached(ret, size);
297 if (IS_ERR(ret))
96a539fa 298 goto out_encrypt_pages;
c30700db 299 }
f3c96222 300
96eb89ca 301 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
c10f07aa 302 return ret;
96a539fa
DR
303
304out_encrypt_pages:
4d056478
CH
305 if (dma_set_encrypted(dev, page_address(page), size))
306 return NULL;
3d0fc341 307out_free_pages:
f4111e39 308 __dma_direct_free_pages(dev, page, size);
3d0fc341 309 return NULL;
b9fa1694
RE
310out_leak_pages:
311 return NULL;
a8463d4b
CB
312}
313
2f5388a2
CH
314void dma_direct_free(struct device *dev, size_t size,
315 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
a8463d4b 316{
c10f07aa 317 unsigned int page_order = get_order(size);
080321d3 318
849facea 319 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
f4111e39 320 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
849facea
CH
321 /* cpu_addr is a struct page cookie, not a kernel address */
322 dma_free_contiguous(dev, cpu_addr, size);
323 return;
324 }
325
2c8ed1b9 326 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
3de18c86 327 !dev_is_dma_coherent(dev) &&
f4111e39 328 !is_swiotlb_for_alloc(dev)) {
2f5388a2
CH
329 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
330 return;
331 }
332
faf4ef82
CH
333 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334 !dev_is_dma_coherent(dev)) {
335 if (!dma_release_from_global_coherent(page_order, cpu_addr))
336 WARN_ON_ONCE(1);
337 return;
338 }
339
76a19940 340 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
849facea 341 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
76a19940
DR
342 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
343 return;
344
f5ff79fd 345 if (is_vmalloc_addr(cpu_addr)) {
3acac065 346 vunmap(cpu_addr);
5570449b
CH
347 } else {
348 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
349 arch_dma_clear_uncached(cpu_addr, size);
3be45625 350 if (dma_set_encrypted(dev, cpu_addr, size))
a90cf304 351 return;
5570449b 352 }
3acac065 353
f4111e39 354 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
a8463d4b
CB
355}
356
efa70f2f
CH
357struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
358 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
359{
360 struct page *page;
361 void *ret;
362
28e4576d 363 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
5b138c53 364 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
efa70f2f 365
92826e96 366 page = __dma_direct_alloc_pages(dev, size, gfp, false);
efa70f2f
CH
367 if (!page)
368 return NULL;
08a89c28 369
efa70f2f 370 ret = page_address(page);
4d056478 371 if (dma_set_decrypted(dev, ret, size))
b9fa1694 372 goto out_leak_pages;
efa70f2f 373 memset(ret, 0, size);
efa70f2f
CH
374 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
375 return page;
b9fa1694 376out_leak_pages:
efa70f2f
CH
377 return NULL;
378}
379
380void dma_direct_free_pages(struct device *dev, size_t size,
381 struct page *page, dma_addr_t dma_addr,
382 enum dma_data_direction dir)
383{
efa70f2f
CH
384 void *vaddr = page_address(page);
385
386 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
849facea 387 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
efa70f2f
CH
388 dma_free_from_pool(dev, vaddr, size))
389 return;
390
3be45625 391 if (dma_set_encrypted(dev, vaddr, size))
a90cf304 392 return;
f4111e39 393 __dma_direct_free_pages(dev, page, size);
efa70f2f
CH
394}
395
55897af6
CH
396#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
397 defined(CONFIG_SWIOTLB)
55897af6 398void dma_direct_sync_sg_for_device(struct device *dev,
bc3ec75d
CH
399 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400{
401 struct scatterlist *sg;
402 int i;
403
55897af6 404 for_each_sg(sgl, sg, nents, i) {
449fa54d
FD
405 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406
7296f230 407 swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
bc3ec75d 408
55897af6 409 if (!dev_is_dma_coherent(dev))
56e35f9c 410 arch_sync_dma_for_device(paddr, sg->length,
55897af6
CH
411 dir);
412 }
bc3ec75d 413}
17ac5247 414#endif
bc3ec75d
CH
415
416#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
55897af6
CH
417 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418 defined(CONFIG_SWIOTLB)
55897af6 419void dma_direct_sync_sg_for_cpu(struct device *dev,
bc3ec75d
CH
420 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421{
422 struct scatterlist *sg;
423 int i;
424
55897af6 425 for_each_sg(sgl, sg, nents, i) {
449fa54d
FD
426 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427
55897af6 428 if (!dev_is_dma_coherent(dev))
56e35f9c 429 arch_sync_dma_for_cpu(paddr, sg->length, dir);
449fa54d 430
7296f230 431 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
abdaf11a
CH
432
433 if (dir == DMA_FROM_DEVICE)
434 arch_dma_mark_clean(paddr, sg->length);
55897af6 435 }
bc3ec75d 436
55897af6 437 if (!dev_is_dma_coherent(dev))
56e35f9c 438 arch_sync_dma_for_cpu_all();
bc3ec75d
CH
439}
440
f02ad36d
LG
441/*
442 * Unmaps segments, except for ones marked as pci_p2pdma which do not
443 * require any further action as they contain a bus address.
444 */
55897af6 445void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
bc3ec75d
CH
446 int nents, enum dma_data_direction dir, unsigned long attrs)
447{
55897af6
CH
448 struct scatterlist *sg;
449 int i;
450
f02ad36d 451 for_each_sg(sgl, sg, nents, i) {
cb147bbe 452 if (sg_dma_is_bus_address(sg))
f02ad36d
LG
453 sg_dma_unmark_bus_address(sg);
454 else
455 dma_direct_unmap_page(dev, sg->dma_address,
456 sg_dma_len(sg), dir, attrs);
457 }
bc3ec75d
CH
458}
459#endif
460
782e6769
CH
461int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462 enum dma_data_direction dir, unsigned long attrs)
a8463d4b 463{
f02ad36d
LG
464 struct pci_p2pdma_map_state p2pdma_state = {};
465 enum pci_p2pdma_map_type map;
a8463d4b 466 struct scatterlist *sg;
f02ad36d 467 int i, ret;
a8463d4b
CB
468
469 for_each_sg(sgl, sg, nents, i) {
f02ad36d
LG
470 if (is_pci_p2pdma_page(sg_page(sg))) {
471 map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
472 switch (map) {
473 case PCI_P2PDMA_MAP_BUS_ADDR:
474 continue;
475 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
476 /*
477 * Any P2P mapping that traverses the PCI
478 * host bridge must be mapped with CPU physical
479 * address and not PCI bus addresses. This is
480 * done with dma_direct_map_page() below.
481 */
482 break;
483 default:
484 ret = -EREMOTEIO;
485 goto out_unmap;
486 }
487 }
488
17ac5247
CH
489 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490 sg->offset, sg->length, dir, attrs);
f02ad36d
LG
491 if (sg->dma_address == DMA_MAPPING_ERROR) {
492 ret = -EIO;
55897af6 493 goto out_unmap;
f02ad36d 494 }
a8463d4b
CB
495 sg_dma_len(sg) = sg->length;
496 }
497
498 return nents;
55897af6
CH
499
500out_unmap:
501 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
f02ad36d 502 return ret;
a8463d4b
CB
503}
504
cfced786
CH
505dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506 size_t size, enum dma_data_direction dir, unsigned long attrs)
507{
508 dma_addr_t dma_addr = paddr;
509
68a33b17 510 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
75467ee4
CH
511 dev_err_once(dev,
512 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514 WARN_ON_ONCE(1);
cfced786
CH
515 return DMA_MAPPING_ERROR;
516 }
517
518 return dma_addr;
519}
cfced786 520
34dc0ea6
CH
521int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523 unsigned long attrs)
524{
525 struct page *page = dma_direct_to_page(dev, dma_addr);
526 int ret;
527
528 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529 if (!ret)
530 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531 return ret;
532}
533
34dc0ea6
CH
534bool dma_direct_can_mmap(struct device *dev)
535{
536 return dev_is_dma_coherent(dev) ||
537 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538}
539
540int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542 unsigned long attrs)
543{
544 unsigned long user_count = vma_pages(vma);
545 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547 int ret = -ENXIO;
548
549 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
4fe87e81
CH
550 if (force_dma_unencrypted(dev))
551 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
34dc0ea6
CH
552
553 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554 return ret;
faf4ef82
CH
555 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556 return ret;
34dc0ea6
CH
557
558 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559 return -ENXIO;
560 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561 user_count << PAGE_SHIFT, vma->vm_page_prot);
562}
34dc0ea6 563
1a9777a8
CH
564int dma_direct_supported(struct device *dev, u64 mask)
565{
91ef26f9 566 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
9d7a224b 567
91ef26f9
CH
568 /*
569 * Because 32-bit DMA masks are so common we expect every architecture
570 * to be able to satisfy them - either by not supporting more physical
571 * memory, or by providing a ZONE_DMA32. If neither is the case, the
572 * architecture needs to use an IOMMU instead of the direct mapping.
573 */
574 if (mask >= DMA_BIT_MASK(32))
575 return 1;
9d7a224b 576
c92a54cf 577 /*
5ceda740
CH
578 * This check needs to be against the actual bit mask value, so use
579 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
c92a54cf
LT
580 * part of the check.
581 */
91ef26f9
CH
582 if (IS_ENABLED(CONFIG_ZONE_DMA))
583 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
5ceda740 584 return mask >= phys_to_dma_unencrypted(dev, min_mask);
1a9777a8 585}
133d624b 586
a409d960
JH
587/*
588 * To check whether all ram resource ranges are covered by dma range map
589 * Returns 0 when further check is needed
590 * Returns 1 if there is some RAM range can't be covered by dma_range_map
591 */
592static int check_ram_in_range_map(unsigned long start_pfn,
593 unsigned long nr_pages, void *data)
594{
595 unsigned long end_pfn = start_pfn + nr_pages;
596 const struct bus_dma_region *bdr = NULL;
597 const struct bus_dma_region *m;
598 struct device *dev = data;
599
600 while (start_pfn < end_pfn) {
601 for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
602 unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
603
604 if (start_pfn >= cpu_start_pfn &&
605 start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
606 bdr = m;
607 break;
608 }
609 }
610 if (!bdr)
611 return 1;
612
613 start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
614 }
615
616 return 0;
617}
618
619bool dma_direct_all_ram_mapped(struct device *dev)
620{
621 if (!dev->dma_range_map)
622 return true;
623 return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
624 check_ram_in_range_map);
625}
626
133d624b
JR
627size_t dma_direct_max_mapping_size(struct device *dev)
628{
133d624b 629 /* If SWIOTLB is active, use its maximum mapping size */
6f2beb26 630 if (is_swiotlb_active(dev) &&
903cd0f3 631 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
a5008b59
CH
632 return swiotlb_max_mapping_size(dev);
633 return SIZE_MAX;
133d624b 634}
3aa91625
CH
635
636bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637{
638 return !dev_is_dma_coherent(dev) ||
7296f230 639 swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
3aa91625 640}
e0d07278
JQ
641
642/**
643 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
644 * @dev: device pointer; needed to "own" the alloced memory.
645 * @cpu_start: beginning of memory region covered by this offset.
646 * @dma_start: beginning of DMA/PCI region covered by this offset.
647 * @size: size of the region.
648 *
649 * This is for the simple case of a uniform offset which cannot
650 * be discovered by "dma-ranges".
651 *
652 * It returns -ENOMEM if out of memory, -EINVAL if a map
653 * already exists, 0 otherwise.
654 *
655 * Note: any call to this from a driver is a bug. The mapping needs
656 * to be described by the device tree or other firmware interfaces.
657 */
658int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
659 dma_addr_t dma_start, u64 size)
660{
661 struct bus_dma_region *map;
662 u64 offset = (u64)cpu_start - (u64)dma_start;
663
664 if (dev->dma_range_map) {
665 dev_err(dev, "attempt to add DMA range to existing map\n");
666 return -EINVAL;
667 }
668
669 if (!offset)
670 return 0;
671
672 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
673 if (!map)
674 return -ENOMEM;
675 map[0].cpu_start = cpu_start;
676 map[0].dma_start = dma_start;
e0d07278
JQ
677 map[0].size = size;
678 dev->dma_range_map = map;
679 return 0;
680}