dma-mapping: split <linux/dma-mapping.h>
[linux-block.git] / kernel / dma / direct.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a8463d4b 2/*
efa70f2f 3 * Copyright (C) 2018-2020 Christoph Hellwig.
bc3ec75d
CH
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
a8463d4b 6 */
57c8a661 7#include <linux/memblock.h> /* for max_pfn */
a8463d4b
CB
8#include <linux/export.h>
9#include <linux/mm.h>
2e86a047 10#include <linux/dma-direct.h>
0a0f0d8b 11#include <linux/dma-map-ops.h>
a8463d4b 12#include <linux/scatterlist.h>
080321d3 13#include <linux/dma-contiguous.h>
25f1e188 14#include <linux/pfn.h>
3acac065 15#include <linux/vmalloc.h>
c10f07aa 16#include <linux/set_memory.h>
e0d07278 17#include <linux/slab.h>
a8463d4b 18
c61e9637 19/*
8b5369ea
NSJ
20 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21 * it for entirely different regions. In that case the arch code needs to
22 * override the variable below for dma-direct to work properly.
c61e9637 23 */
8b5369ea 24unsigned int zone_dma_bits __ro_after_init = 24;
c61e9637 25
a20bb058
CH
26static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 phys_addr_t phys)
28{
9087c375 29 if (force_dma_unencrypted(dev))
5ceda740 30 return phys_to_dma_unencrypted(dev, phys);
a20bb058
CH
31 return phys_to_dma(dev, phys);
32}
33
34dc0ea6
CH
34static inline struct page *dma_direct_to_page(struct device *dev,
35 dma_addr_t dma_addr)
36{
37 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38}
39
a20bb058
CH
40u64 dma_direct_get_required_mask(struct device *dev)
41{
cdcda0d1
KVA
42 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 u64 max_dma = phys_to_dma_direct(dev, phys);
a20bb058
CH
44
45 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46}
47
9420139f 48static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
c84dc6e6 49 u64 *phys_limit)
7d21ee4c 50{
a7ba70f1 51 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
b4ebe606 52
79ac32a4
CH
53 /*
54 * Optimistically try the zone that the physical address mask falls
55 * into first. If that returns memory that isn't actually addressable
56 * we will fallback to the next lower zone and try again.
57 *
58 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 * zones.
60 */
7bc5c428 61 *phys_limit = dma_to_phys(dev, dma_limit);
a7ba70f1 62 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
7d21ee4c 63 return GFP_DMA;
a7ba70f1 64 if (*phys_limit <= DMA_BIT_MASK(32))
7d21ee4c
CH
65 return GFP_DMA32;
66 return 0;
67}
68
9420139f 69static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
95f18391 70{
e0d07278
JQ
71 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72
73 if (dma_addr == DMA_MAPPING_ERROR)
74 return false;
75 return dma_addr + size - 1 <=
76 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
95f18391
CH
77}
78
76a19940
DR
79/*
80 * Decrypting memory is allowed to block, so if this device requires
81 * unencrypted memory it must come from atomic pools.
82 */
83static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
84 unsigned long attrs)
85{
86 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
87 return false;
88 if (gfpflags_allow_blocking(gfp))
89 return false;
90 if (force_dma_unencrypted(dev))
91 return true;
92 if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
93 return false;
94 if (dma_alloc_need_uncached(dev, attrs))
95 return true;
96 return false;
97}
98
99static inline bool dma_should_free_from_pool(struct device *dev,
100 unsigned long attrs)
101{
102 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
103 return true;
104 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
105 !force_dma_unencrypted(dev))
106 return false;
107 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
108 return true;
109 return false;
110}
111
26749b32 112static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
3773dfe6 113 gfp_t gfp)
a8463d4b 114{
90ae409f 115 int node = dev_to_node(dev);
080321d3 116 struct page *page = NULL;
a7ba70f1 117 u64 phys_limit;
a8463d4b 118
633d5fce
DR
119 WARN_ON_ONCE(!PAGE_ALIGNED(size));
120
c84dc6e6
DR
121 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
122 &phys_limit);
633d5fce 123 page = dma_alloc_contiguous(dev, size, gfp);
90ae409f 124 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
633d5fce 125 dma_free_contiguous(dev, page, size);
90ae409f
CH
126 page = NULL;
127 }
95f18391 128again:
90ae409f 129 if (!page)
633d5fce 130 page = alloc_pages_node(node, gfp, get_order(size));
95f18391 131 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
b1d2dc00 132 dma_free_contiguous(dev, page, size);
95f18391
CH
133 page = NULL;
134
de7eab30 135 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
a7ba70f1 136 phys_limit < DMA_BIT_MASK(64) &&
de7eab30
TI
137 !(gfp & (GFP_DMA32 | GFP_DMA))) {
138 gfp |= GFP_DMA32;
139 goto again;
140 }
141
fbce251b 142 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
95f18391
CH
143 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
144 goto again;
145 }
146 }
147
b18814e7
CH
148 return page;
149}
150
2f5388a2 151void *dma_direct_alloc(struct device *dev, size_t size,
b18814e7
CH
152 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
153{
154 struct page *page;
155 void *ret;
56fccf21 156 int err;
b18814e7 157
2f5388a2
CH
158 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
159 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
160 dma_alloc_need_uncached(dev, attrs))
161 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
162
633d5fce 163 size = PAGE_ALIGN(size);
3773dfe6
CH
164 if (attrs & DMA_ATTR_NO_WARN)
165 gfp |= __GFP_NOWARN;
633d5fce 166
76a19940 167 if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
9420139f
CH
168 u64 phys_mask;
169
170 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
171 &phys_mask);
172 page = dma_alloc_from_pool(dev, size, &ret, gfp,
173 dma_coherent_ok);
174 if (!page)
3acac065
CH
175 return NULL;
176 goto done;
177 }
178
3773dfe6
CH
179 /* we always manually zero the memory once we are done */
180 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
080321d3
CH
181 if (!page)
182 return NULL;
b18814e7 183
cf14be0b
CH
184 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
185 !force_dma_unencrypted(dev)) {
d98849af
CH
186 /* remove any dirty cache lines on the kernel alias */
187 if (!PageHighMem(page))
188 arch_dma_prep_coherent(page, size);
189 /* return the page pointer as the opaque cookie */
3acac065
CH
190 ret = page;
191 goto done;
192 }
193
194 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
195 dma_alloc_need_uncached(dev, attrs)) ||
196 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
197 /* remove any dirty cache lines on the kernel alias */
633d5fce 198 arch_dma_prep_coherent(page, size);
3acac065
CH
199
200 /* create a coherent mapping */
633d5fce 201 ret = dma_common_contiguous_remap(page, size,
3acac065
CH
202 dma_pgprot(dev, PAGE_KERNEL, attrs),
203 __builtin_return_address(0));
3d0fc341
CH
204 if (!ret)
205 goto out_free_pages;
1a2b3357
DR
206 if (force_dma_unencrypted(dev)) {
207 err = set_memory_decrypted((unsigned long)ret,
208 1 << get_order(size));
209 if (err)
210 goto out_free_pages;
211 }
3acac065
CH
212 memset(ret, 0, size);
213 goto done;
d98849af
CH
214 }
215
704f2c20
CH
216 if (PageHighMem(page)) {
217 /*
218 * Depending on the cma= arguments and per-arch setup
b1d2dc00 219 * dma_alloc_contiguous could return highmem pages.
704f2c20
CH
220 * Without remapping there is no way to return them here,
221 * so log an error and fail.
222 */
223 dev_info(dev, "Rejecting highmem page from CMA.\n");
3d0fc341 224 goto out_free_pages;
704f2c20
CH
225 }
226
c10f07aa 227 ret = page_address(page);
56fccf21
DR
228 if (force_dma_unencrypted(dev)) {
229 err = set_memory_decrypted((unsigned long)ret,
230 1 << get_order(size));
231 if (err)
232 goto out_free_pages;
233 }
3acac065 234
c10f07aa 235 memset(ret, 0, size);
c30700db 236
fa7e2247 237 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
4b85faed 238 dma_alloc_need_uncached(dev, attrs)) {
c30700db 239 arch_dma_prep_coherent(page, size);
fa7e2247
CH
240 ret = arch_dma_set_uncached(ret, size);
241 if (IS_ERR(ret))
96a539fa 242 goto out_encrypt_pages;
c30700db 243 }
3acac065 244done:
96eb89ca 245 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
c10f07aa 246 return ret;
96a539fa
DR
247
248out_encrypt_pages:
56fccf21
DR
249 if (force_dma_unencrypted(dev)) {
250 err = set_memory_encrypted((unsigned long)page_address(page),
251 1 << get_order(size));
252 /* If memory cannot be re-encrypted, it must be leaked */
253 if (err)
254 return NULL;
255 }
3d0fc341
CH
256out_free_pages:
257 dma_free_contiguous(dev, page, size);
258 return NULL;
a8463d4b
CB
259}
260
2f5388a2
CH
261void dma_direct_free(struct device *dev, size_t size,
262 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
a8463d4b 263{
c10f07aa 264 unsigned int page_order = get_order(size);
080321d3 265
2f5388a2
CH
266 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
267 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
268 dma_alloc_need_uncached(dev, attrs)) {
269 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
270 return;
271 }
272
76a19940
DR
273 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
274 if (dma_should_free_from_pool(dev, attrs) &&
275 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
276 return;
277
cf14be0b
CH
278 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
279 !force_dma_unencrypted(dev)) {
d98849af 280 /* cpu_addr is a struct page cookie, not a kernel address */
acaade1a 281 dma_free_contiguous(dev, cpu_addr, size);
d98849af
CH
282 return;
283 }
284
9087c375 285 if (force_dma_unencrypted(dev))
c10f07aa 286 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
c30700db 287
3acac065
CH
288 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
289 vunmap(cpu_addr);
999a5d12
CH
290 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
291 arch_dma_clear_uncached(cpu_addr, size);
3acac065
CH
292
293 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
a8463d4b
CB
294}
295
efa70f2f
CH
296struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
297 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
298{
299 struct page *page;
300 void *ret;
301
302 if (dma_should_alloc_from_pool(dev, gfp, 0)) {
303 page = dma_alloc_from_pool(dev, size, &ret, gfp,
304 dma_coherent_ok);
305 if (!page)
306 return NULL;
307 goto done;
308 }
309
310 page = __dma_direct_alloc_pages(dev, size, gfp);
311 if (!page)
312 return NULL;
313 ret = page_address(page);
314 if (force_dma_unencrypted(dev)) {
315 if (set_memory_decrypted((unsigned long)ret,
316 1 << get_order(size)))
317 goto out_free_pages;
318 }
319 memset(ret, 0, size);
320done:
321 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
322 return page;
323out_free_pages:
324 dma_free_contiguous(dev, page, size);
325 return NULL;
326}
327
328void dma_direct_free_pages(struct device *dev, size_t size,
329 struct page *page, dma_addr_t dma_addr,
330 enum dma_data_direction dir)
331{
332 unsigned int page_order = get_order(size);
333 void *vaddr = page_address(page);
334
335 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
336 if (dma_should_free_from_pool(dev, 0) &&
337 dma_free_from_pool(dev, vaddr, size))
338 return;
339
340 if (force_dma_unencrypted(dev))
341 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
342
343 dma_free_contiguous(dev, page, size);
344}
345
55897af6
CH
346#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
347 defined(CONFIG_SWIOTLB)
55897af6 348void dma_direct_sync_sg_for_device(struct device *dev,
bc3ec75d
CH
349 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
350{
351 struct scatterlist *sg;
352 int i;
353
55897af6 354 for_each_sg(sgl, sg, nents, i) {
449fa54d
FD
355 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
356
357 if (unlikely(is_swiotlb_buffer(paddr)))
358 swiotlb_tbl_sync_single(dev, paddr, sg->length,
55897af6 359 dir, SYNC_FOR_DEVICE);
bc3ec75d 360
55897af6 361 if (!dev_is_dma_coherent(dev))
56e35f9c 362 arch_sync_dma_for_device(paddr, sg->length,
55897af6
CH
363 dir);
364 }
bc3ec75d 365}
17ac5247 366#endif
bc3ec75d
CH
367
368#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
55897af6
CH
369 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
370 defined(CONFIG_SWIOTLB)
55897af6 371void dma_direct_sync_sg_for_cpu(struct device *dev,
bc3ec75d
CH
372 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
373{
374 struct scatterlist *sg;
375 int i;
376
55897af6 377 for_each_sg(sgl, sg, nents, i) {
449fa54d
FD
378 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
379
55897af6 380 if (!dev_is_dma_coherent(dev))
56e35f9c 381 arch_sync_dma_for_cpu(paddr, sg->length, dir);
449fa54d
FD
382
383 if (unlikely(is_swiotlb_buffer(paddr)))
384 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
55897af6 385 SYNC_FOR_CPU);
abdaf11a
CH
386
387 if (dir == DMA_FROM_DEVICE)
388 arch_dma_mark_clean(paddr, sg->length);
55897af6 389 }
bc3ec75d 390
55897af6 391 if (!dev_is_dma_coherent(dev))
56e35f9c 392 arch_sync_dma_for_cpu_all();
bc3ec75d
CH
393}
394
55897af6 395void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
bc3ec75d
CH
396 int nents, enum dma_data_direction dir, unsigned long attrs)
397{
55897af6
CH
398 struct scatterlist *sg;
399 int i;
400
401 for_each_sg(sgl, sg, nents, i)
402 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
403 attrs);
bc3ec75d
CH
404}
405#endif
406
782e6769
CH
407int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
408 enum dma_data_direction dir, unsigned long attrs)
a8463d4b
CB
409{
410 int i;
411 struct scatterlist *sg;
412
413 for_each_sg(sgl, sg, nents, i) {
17ac5247
CH
414 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
415 sg->offset, sg->length, dir, attrs);
416 if (sg->dma_address == DMA_MAPPING_ERROR)
55897af6 417 goto out_unmap;
a8463d4b
CB
418 sg_dma_len(sg) = sg->length;
419 }
420
421 return nents;
55897af6
CH
422
423out_unmap:
424 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
425 return 0;
a8463d4b
CB
426}
427
cfced786
CH
428dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
429 size_t size, enum dma_data_direction dir, unsigned long attrs)
430{
431 dma_addr_t dma_addr = paddr;
432
68a33b17 433 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
75467ee4
CH
434 dev_err_once(dev,
435 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
436 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
437 WARN_ON_ONCE(1);
cfced786
CH
438 return DMA_MAPPING_ERROR;
439 }
440
441 return dma_addr;
442}
cfced786 443
34dc0ea6
CH
444int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
445 void *cpu_addr, dma_addr_t dma_addr, size_t size,
446 unsigned long attrs)
447{
448 struct page *page = dma_direct_to_page(dev, dma_addr);
449 int ret;
450
451 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
452 if (!ret)
453 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
454 return ret;
455}
456
34dc0ea6
CH
457bool dma_direct_can_mmap(struct device *dev)
458{
459 return dev_is_dma_coherent(dev) ||
460 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
461}
462
463int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
464 void *cpu_addr, dma_addr_t dma_addr, size_t size,
465 unsigned long attrs)
466{
467 unsigned long user_count = vma_pages(vma);
468 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
469 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
470 int ret = -ENXIO;
471
472 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
473
474 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
475 return ret;
476
477 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
478 return -ENXIO;
479 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
480 user_count << PAGE_SHIFT, vma->vm_page_prot);
481}
34dc0ea6 482
1a9777a8
CH
483int dma_direct_supported(struct device *dev, u64 mask)
484{
91ef26f9 485 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
9d7a224b 486
91ef26f9
CH
487 /*
488 * Because 32-bit DMA masks are so common we expect every architecture
489 * to be able to satisfy them - either by not supporting more physical
490 * memory, or by providing a ZONE_DMA32. If neither is the case, the
491 * architecture needs to use an IOMMU instead of the direct mapping.
492 */
493 if (mask >= DMA_BIT_MASK(32))
494 return 1;
9d7a224b 495
c92a54cf 496 /*
5ceda740
CH
497 * This check needs to be against the actual bit mask value, so use
498 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
c92a54cf
LT
499 * part of the check.
500 */
91ef26f9
CH
501 if (IS_ENABLED(CONFIG_ZONE_DMA))
502 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
5ceda740 503 return mask >= phys_to_dma_unencrypted(dev, min_mask);
1a9777a8 504}
133d624b
JR
505
506size_t dma_direct_max_mapping_size(struct device *dev)
507{
133d624b 508 /* If SWIOTLB is active, use its maximum mapping size */
a5008b59
CH
509 if (is_swiotlb_active() &&
510 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
511 return swiotlb_max_mapping_size(dev);
512 return SIZE_MAX;
133d624b 513}
3aa91625
CH
514
515bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
516{
517 return !dev_is_dma_coherent(dev) ||
518 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
519}
e0d07278
JQ
520
521/**
522 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
523 * @dev: device pointer; needed to "own" the alloced memory.
524 * @cpu_start: beginning of memory region covered by this offset.
525 * @dma_start: beginning of DMA/PCI region covered by this offset.
526 * @size: size of the region.
527 *
528 * This is for the simple case of a uniform offset which cannot
529 * be discovered by "dma-ranges".
530 *
531 * It returns -ENOMEM if out of memory, -EINVAL if a map
532 * already exists, 0 otherwise.
533 *
534 * Note: any call to this from a driver is a bug. The mapping needs
535 * to be described by the device tree or other firmware interfaces.
536 */
537int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
538 dma_addr_t dma_start, u64 size)
539{
540 struct bus_dma_region *map;
541 u64 offset = (u64)cpu_start - (u64)dma_start;
542
543 if (dev->dma_range_map) {
544 dev_err(dev, "attempt to add DMA range to existing map\n");
545 return -EINVAL;
546 }
547
548 if (!offset)
549 return 0;
550
551 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
552 if (!map)
553 return -ENOMEM;
554 map[0].cpu_start = cpu_start;
555 map[0].dma_start = dma_start;
556 map[0].offset = offset;
557 map[0].size = size;
558 dev->dma_range_map = map;
559 return 0;
560}
561EXPORT_SYMBOL_GPL(dma_direct_set_offset);