Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[linux-2.6-block.git] / kernel / dma / direct.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a8463d4b 2/*
bc3ec75d
CH
3 * Copyright (C) 2018 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
a8463d4b 6 */
57c8a661 7#include <linux/memblock.h> /* for max_pfn */
a8463d4b
CB
8#include <linux/export.h>
9#include <linux/mm.h>
2e86a047 10#include <linux/dma-direct.h>
a8463d4b 11#include <linux/scatterlist.h>
080321d3 12#include <linux/dma-contiguous.h>
bc3ec75d 13#include <linux/dma-noncoherent.h>
25f1e188 14#include <linux/pfn.h>
c10f07aa 15#include <linux/set_memory.h>
55897af6 16#include <linux/swiotlb.h>
a8463d4b 17
c61e9637
CH
18/*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20 * some use it for entirely different regions:
21 */
22#ifndef ARCH_ZONE_DMA_BITS
23#define ARCH_ZONE_DMA_BITS 24
24#endif
25
c10f07aa
CH
26/*
27 * For AMD SEV all DMA must be to unencrypted addresses.
28 */
29static inline bool force_dma_unencrypted(void)
30{
31 return sev_active();
32}
33
58dfd4ac 34static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27975969 35{
58dfd4ac
CH
36 if (!dev->dma_mask) {
37 dev_err_once(dev, "DMA map on device without dma_mask\n");
38 } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
39 dev_err_once(dev,
40 "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
41 &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
27975969 42 }
58dfd4ac 43 WARN_ON_ONCE(1);
27975969
CH
44}
45
a20bb058
CH
46static inline dma_addr_t phys_to_dma_direct(struct device *dev,
47 phys_addr_t phys)
48{
49 if (force_dma_unencrypted())
50 return __phys_to_dma(dev, phys);
51 return phys_to_dma(dev, phys);
52}
53
54u64 dma_direct_get_required_mask(struct device *dev)
55{
56 u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
57
b4ebe606
CH
58 if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
59 max_dma = dev->bus_dma_mask;
60
a20bb058
CH
61 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
62}
63
7d21ee4c
CH
64static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
65 u64 *phys_mask)
66{
b4ebe606
CH
67 if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
68 dma_mask = dev->bus_dma_mask;
69
7d21ee4c
CH
70 if (force_dma_unencrypted())
71 *phys_mask = __dma_to_phys(dev, dma_mask);
72 else
73 *phys_mask = dma_to_phys(dev, dma_mask);
74
79ac32a4
CH
75 /*
76 * Optimistically try the zone that the physical address mask falls
77 * into first. If that returns memory that isn't actually addressable
78 * we will fallback to the next lower zone and try again.
79 *
80 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
81 * zones.
82 */
7d21ee4c
CH
83 if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
84 return GFP_DMA;
85 if (*phys_mask <= DMA_BIT_MASK(32))
86 return GFP_DMA32;
87 return 0;
88}
89
95f18391
CH
90static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
91{
a20bb058 92 return phys_to_dma_direct(dev, phys) + size - 1 <=
b4ebe606 93 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
95f18391
CH
94}
95
b18814e7 96struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
bc3ec75d 97 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
a8463d4b 98{
080321d3
CH
99 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
100 int page_order = get_order(size);
101 struct page *page = NULL;
7d21ee4c 102 u64 phys_mask;
a8463d4b 103
b9fd0426
CH
104 if (attrs & DMA_ATTR_NO_WARN)
105 gfp |= __GFP_NOWARN;
106
e89f5b37
CH
107 /* we always manually zero the memory once we are done: */
108 gfp &= ~__GFP_ZERO;
7d21ee4c
CH
109 gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
110 &phys_mask);
95f18391 111again:
080321d3 112 /* CMA can be used only in the context which permits sleeping */
95f18391 113 if (gfpflags_allow_blocking(gfp)) {
d834c5ab
MS
114 page = dma_alloc_from_contiguous(dev, count, page_order,
115 gfp & __GFP_NOWARN);
95f18391
CH
116 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117 dma_release_from_contiguous(dev, page, count);
118 page = NULL;
119 }
120 }
080321d3 121 if (!page)
21f237e4 122 page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
95f18391
CH
123
124 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
125 __free_pages(page, page_order);
126 page = NULL;
127
de7eab30 128 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
7d21ee4c 129 phys_mask < DMA_BIT_MASK(64) &&
de7eab30
TI
130 !(gfp & (GFP_DMA32 | GFP_DMA))) {
131 gfp |= GFP_DMA32;
132 goto again;
133 }
134
fbce251b 135 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
95f18391
CH
136 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
137 goto again;
138 }
139 }
140
b18814e7
CH
141 return page;
142}
143
144void *dma_direct_alloc_pages(struct device *dev, size_t size,
145 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
146{
147 struct page *page;
148 void *ret;
149
150 page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
080321d3
CH
151 if (!page)
152 return NULL;
b18814e7 153
704f2c20
CH
154 if (PageHighMem(page)) {
155 /*
156 * Depending on the cma= arguments and per-arch setup
157 * dma_alloc_from_contiguous could return highmem pages.
158 * Without remapping there is no way to return them here,
159 * so log an error and fail.
160 */
161 dev_info(dev, "Rejecting highmem page from CMA.\n");
162 __dma_direct_free_pages(dev, size, page);
163 return NULL;
164 }
165
c10f07aa
CH
166 ret = page_address(page);
167 if (force_dma_unencrypted()) {
b18814e7 168 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
c10f07aa
CH
169 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
170 } else {
171 *dma_handle = phys_to_dma(dev, page_to_phys(page));
172 }
173 memset(ret, 0, size);
174 return ret;
a8463d4b
CB
175}
176
b18814e7
CH
177void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
178{
179 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
180
181 if (!dma_release_from_contiguous(dev, page, count))
182 __free_pages(page, get_order(size));
183}
184
bc3ec75d 185void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
002e6745 186 dma_addr_t dma_addr, unsigned long attrs)
a8463d4b 187{
c10f07aa 188 unsigned int page_order = get_order(size);
080321d3 189
c10f07aa
CH
190 if (force_dma_unencrypted())
191 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
b18814e7 192 __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
a8463d4b
CB
193}
194
bc3ec75d
CH
195void *dma_direct_alloc(struct device *dev, size_t size,
196 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
197{
198 if (!dev_is_dma_coherent(dev))
199 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
200 return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
201}
202
203void dma_direct_free(struct device *dev, size_t size,
204 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
205{
206 if (!dev_is_dma_coherent(dev))
207 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
208 else
209 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
210}
211
55897af6
CH
212#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
213 defined(CONFIG_SWIOTLB)
214void dma_direct_sync_single_for_device(struct device *dev,
bc3ec75d
CH
215 dma_addr_t addr, size_t size, enum dma_data_direction dir)
216{
55897af6
CH
217 phys_addr_t paddr = dma_to_phys(dev, addr);
218
219 if (unlikely(is_swiotlb_buffer(paddr)))
220 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
221
222 if (!dev_is_dma_coherent(dev))
223 arch_sync_dma_for_device(dev, paddr, size, dir);
bc3ec75d 224}
356da6d0 225EXPORT_SYMBOL(dma_direct_sync_single_for_device);
bc3ec75d 226
55897af6 227void dma_direct_sync_sg_for_device(struct device *dev,
bc3ec75d
CH
228 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
229{
230 struct scatterlist *sg;
231 int i;
232
55897af6
CH
233 for_each_sg(sgl, sg, nents, i) {
234 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
235 swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
236 dir, SYNC_FOR_DEVICE);
bc3ec75d 237
55897af6
CH
238 if (!dev_is_dma_coherent(dev))
239 arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
240 dir);
241 }
bc3ec75d 242}
356da6d0 243EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
17ac5247 244#endif
bc3ec75d
CH
245
246#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
55897af6
CH
247 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
248 defined(CONFIG_SWIOTLB)
249void dma_direct_sync_single_for_cpu(struct device *dev,
bc3ec75d
CH
250 dma_addr_t addr, size_t size, enum dma_data_direction dir)
251{
55897af6
CH
252 phys_addr_t paddr = dma_to_phys(dev, addr);
253
254 if (!dev_is_dma_coherent(dev)) {
255 arch_sync_dma_for_cpu(dev, paddr, size, dir);
256 arch_sync_dma_for_cpu_all(dev);
257 }
258
259 if (unlikely(is_swiotlb_buffer(paddr)))
260 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
bc3ec75d 261}
356da6d0 262EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
bc3ec75d 263
55897af6 264void dma_direct_sync_sg_for_cpu(struct device *dev,
bc3ec75d
CH
265 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
266{
267 struct scatterlist *sg;
268 int i;
269
55897af6
CH
270 for_each_sg(sgl, sg, nents, i) {
271 if (!dev_is_dma_coherent(dev))
272 arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
273
274 if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
275 swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
276 SYNC_FOR_CPU);
277 }
bc3ec75d 278
55897af6
CH
279 if (!dev_is_dma_coherent(dev))
280 arch_sync_dma_for_cpu_all(dev);
bc3ec75d 281}
356da6d0 282EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
bc3ec75d 283
55897af6 284void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
bc3ec75d
CH
285 size_t size, enum dma_data_direction dir, unsigned long attrs)
286{
55897af6
CH
287 phys_addr_t phys = dma_to_phys(dev, addr);
288
bc3ec75d
CH
289 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
290 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
55897af6
CH
291
292 if (unlikely(is_swiotlb_buffer(phys)))
293 swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
bc3ec75d 294}
356da6d0 295EXPORT_SYMBOL(dma_direct_unmap_page);
bc3ec75d 296
55897af6 297void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
bc3ec75d
CH
298 int nents, enum dma_data_direction dir, unsigned long attrs)
299{
55897af6
CH
300 struct scatterlist *sg;
301 int i;
302
303 for_each_sg(sgl, sg, nents, i)
304 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
305 attrs);
bc3ec75d 306}
356da6d0 307EXPORT_SYMBOL(dma_direct_unmap_sg);
bc3ec75d
CH
308#endif
309
55897af6
CH
310static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
311 size_t size)
312{
313 return swiotlb_force != SWIOTLB_FORCE &&
314 (!dev || dma_capable(dev, dma_addr, size));
315}
316
782e6769 317dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
002e6745
CH
318 unsigned long offset, size_t size, enum dma_data_direction dir,
319 unsigned long attrs)
a8463d4b 320{
bc3ec75d
CH
321 phys_addr_t phys = page_to_phys(page) + offset;
322 dma_addr_t dma_addr = phys_to_dma(dev, phys);
27975969 323
55897af6
CH
324 if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
325 !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
58dfd4ac 326 report_addr(dev, dma_addr, size);
b0cbeae4 327 return DMA_MAPPING_ERROR;
58dfd4ac 328 }
bc3ec75d 329
55897af6
CH
330 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
331 arch_sync_dma_for_device(dev, phys, size, dir);
27975969 332 return dma_addr;
a8463d4b 333}
356da6d0 334EXPORT_SYMBOL(dma_direct_map_page);
a8463d4b 335
782e6769
CH
336int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
337 enum dma_data_direction dir, unsigned long attrs)
a8463d4b
CB
338{
339 int i;
340 struct scatterlist *sg;
341
342 for_each_sg(sgl, sg, nents, i) {
17ac5247
CH
343 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
344 sg->offset, sg->length, dir, attrs);
345 if (sg->dma_address == DMA_MAPPING_ERROR)
55897af6 346 goto out_unmap;
a8463d4b
CB
347 sg_dma_len(sg) = sg->length;
348 }
349
350 return nents;
55897af6
CH
351
352out_unmap:
353 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
354 return 0;
a8463d4b 355}
356da6d0 356EXPORT_SYMBOL(dma_direct_map_sg);
a8463d4b 357
cfced786
CH
358dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
359 size_t size, enum dma_data_direction dir, unsigned long attrs)
360{
361 dma_addr_t dma_addr = paddr;
362
363 if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
364 report_addr(dev, dma_addr, size);
365 return DMA_MAPPING_ERROR;
366 }
367
368 return dma_addr;
369}
370EXPORT_SYMBOL(dma_direct_map_resource);
371
9d7a224b
CH
372/*
373 * Because 32-bit DMA masks are so common we expect every architecture to be
374 * able to satisfy them - either by not supporting more physical memory, or by
375 * providing a ZONE_DMA32. If neither is the case, the architecture needs to
376 * use an IOMMU instead of the direct mapping.
377 */
1a9777a8
CH
378int dma_direct_supported(struct device *dev, u64 mask)
379{
9d7a224b
CH
380 u64 min_mask;
381
382 if (IS_ENABLED(CONFIG_ZONE_DMA))
383 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
384 else
385 min_mask = DMA_BIT_MASK(32);
386
387 min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
388
c92a54cf
LT
389 /*
390 * This check needs to be against the actual bit mask value, so
391 * use __phys_to_dma() here so that the SME encryption mask isn't
392 * part of the check.
393 */
394 return mask >= __phys_to_dma(dev, min_mask);
1a9777a8 395}
133d624b
JR
396
397size_t dma_direct_max_mapping_size(struct device *dev)
398{
399 size_t size = SIZE_MAX;
400
401 /* If SWIOTLB is active, use its maximum mapping size */
402 if (is_swiotlb_active())
403 size = swiotlb_max_mapping_size(dev);
404
405 return size;
406}