Merge remote-tracking branches 'asoc/topic/rt5670', 'asoc/topic/rt5677', 'asoc/topic...
[linux-2.6-block.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
420c2b1b 15#include <linux/types.h>
5d5314d6
JW
16#include <linux/string.h>
17#include <linux/kernel.h>
bc792e61 18#include <linux/kmsg_dump.h>
5d5314d6
JW
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
ad394f66 25#include <linux/atomic.h>
5d5314d6 26#include <linux/module.h>
420c2b1b 27#include <linux/moduleparam.h>
5d5314d6
JW
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
420c2b1b
AV
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
b8017177 50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
420c2b1b
AV
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
5d5314d6
JW
53#define GREP_LEN 256
54char kdb_grep_string[GREP_LEN];
55int kdb_grepping_flag;
56EXPORT_SYMBOL(kdb_grepping_flag);
57int kdb_grep_leading;
58int kdb_grep_trailing;
59
60/*
61 * Kernel debugger state flags
62 */
63int kdb_flags;
64atomic_t kdb_event;
65
66/*
67 * kdb_lock protects updates to kdb_initial_cpu. Used to
68 * single thread processors through the kernel debugger.
69 */
70int kdb_initial_cpu = -1; /* cpu number that owns kdb */
71int kdb_nextline = 1;
72int kdb_state; /* General KDB state */
73
74struct task_struct *kdb_current_task;
75EXPORT_SYMBOL(kdb_current_task);
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_commands describes the available commands. */
88static kdbtab_t *kdb_commands;
89#define KDB_BASE_CMD_MAX 50
90static int kdb_max_commands = KDB_BASE_CMD_MAX;
27029c33 91static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
5d5314d6
JW
92#define for_each_kdbcmd(cmd, num) \
93 for ((cmd) = kdb_base_commands, (num) = 0; \
94 num < kdb_max_commands; \
5450d904 95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
5d5314d6
JW
96
97typedef struct _kdbmsg {
98 int km_diag; /* kdb diagnostic */
99 char *km_msg; /* Corresponding message text */
100} kdbmsg_t;
101
102#define KDBMSG(msgnum, text) \
103 { KDB_##msgnum, text }
104
105static kdbmsg_t kdbmsgs[] = {
106 KDBMSG(NOTFOUND, "Command Not Found"),
107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
109 "8 is only allowed on 64 bit systems"),
110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
111 KDBMSG(NOTENV, "Cannot find environment variable"),
112 KDBMSG(NOENVVALUE, "Environment variable should have value"),
113 KDBMSG(NOTIMP, "Command not implemented"),
114 KDBMSG(ENVFULL, "Environment full"),
115 KDBMSG(ENVBUFFULL, "Environment buffer full"),
116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
117#ifdef CONFIG_CPU_XSCALE
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
119#else
120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
121#endif
122 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
124 KDBMSG(BADMODE, "Invalid IDMODE"),
125 KDBMSG(BADINT, "Illegal numeric value"),
126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
127 KDBMSG(BADREG, "Invalid register name"),
128 KDBMSG(BADCPUNUM, "Invalid cpu number"),
129 KDBMSG(BADLENGTH, "Invalid length field"),
130 KDBMSG(NOBP, "No Breakpoint exists"),
131 KDBMSG(BADADDR, "Invalid address"),
420c2b1b 132 KDBMSG(NOPERM, "Permission denied"),
5d5314d6
JW
133};
134#undef KDBMSG
135
5f784f79 136static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
5d5314d6
JW
137
138
139/*
140 * Initial environment. This is all kept static and local to
141 * this file. We don't want to rely on the memory allocation
142 * mechanisms in the kernel, so we use a very limited allocate-only
143 * heap for new and altered environment variables. The entire
144 * environment is limited to a fixed number of entries (add more
145 * to __env[] if required) and a fixed amount of heap (add more to
146 * KDB_ENVBUFSIZE if required).
147 */
148
149static char *__env[] = {
150#if defined(CONFIG_SMP)
151 "PROMPT=[%d]kdb> ",
5d5314d6
JW
152#else
153 "PROMPT=kdb> ",
5d5314d6 154#endif
0f26d0e0 155 "MOREPROMPT=more> ",
5d5314d6
JW
156 "RADIX=16",
157 "MDCOUNT=8", /* lines of md output */
5d5314d6
JW
158 KDB_PLATFORM_ENV,
159 "DTABCOUNT=30",
160 "NOSECT=1",
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
3bdb65ec 175 (char *)0,
5d5314d6
JW
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185};
186
5f784f79 187static const int __nenv = ARRAY_SIZE(__env);
5d5314d6
JW
188
189struct task_struct *kdb_curr_task(int cpu)
190{
191 struct task_struct *p = curr_task(cpu);
192#ifdef _TIF_MCA_INIT
193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
194 p = krp->p;
195#endif
196 return p;
197}
198
9452e977
DT
199/*
200 * Check whether the flags of the current command and the permissions
201 * of the kdb console has allow a command to be run.
202 */
203static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
204 bool no_args)
205{
206 /* permissions comes from userspace so needs massaging slightly */
207 permissions &= KDB_ENABLE_MASK;
208 permissions |= KDB_ENABLE_ALWAYS_SAFE;
209
210 /* some commands change group when launched with no arguments */
211 if (no_args)
212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
213
214 flags |= KDB_ENABLE_ALL;
215
216 return permissions & flags;
217}
218
5d5314d6
JW
219/*
220 * kdbgetenv - This function will return the character string value of
221 * an environment variable.
222 * Parameters:
223 * match A character string representing an environment variable.
224 * Returns:
225 * NULL No environment variable matches 'match'
226 * char* Pointer to string value of environment variable.
227 */
228char *kdbgetenv(const char *match)
229{
230 char **ep = __env;
231 int matchlen = strlen(match);
232 int i;
233
234 for (i = 0; i < __nenv; i++) {
235 char *e = *ep++;
236
237 if (!e)
238 continue;
239
240 if ((strncmp(match, e, matchlen) == 0)
241 && ((e[matchlen] == '\0')
242 || (e[matchlen] == '='))) {
243 char *cp = strchr(e, '=');
244 return cp ? ++cp : "";
245 }
246 }
247 return NULL;
248}
249
250/*
251 * kdballocenv - This function is used to allocate bytes for
252 * environment entries.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 * Remarks:
260 * We use a static environment buffer (envbuffer) to hold the values
261 * of dynamically generated environment variables (see kdb_set). Buffer
262 * space once allocated is never free'd, so over time, the amount of space
263 * (currently 512 bytes) will be exhausted if env variables are changed
264 * frequently.
265 */
266static char *kdballocenv(size_t bytes)
267{
268#define KDB_ENVBUFSIZE 512
269 static char envbuffer[KDB_ENVBUFSIZE];
270 static int envbufsize;
271 char *ep = NULL;
272
273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
274 ep = &envbuffer[envbufsize];
275 envbufsize += bytes;
276 }
277 return ep;
278}
279
280/*
281 * kdbgetulenv - This function will return the value of an unsigned
282 * long-valued environment variable.
283 * Parameters:
284 * match A character string representing a numeric value
285 * Outputs:
286 * *value the unsigned long represntation of the env variable 'match'
287 * Returns:
288 * Zero on success, a kdb diagnostic on failure.
289 */
290static int kdbgetulenv(const char *match, unsigned long *value)
291{
292 char *ep;
293
294 ep = kdbgetenv(match);
295 if (!ep)
296 return KDB_NOTENV;
297 if (strlen(ep) == 0)
298 return KDB_NOENVVALUE;
299
300 *value = simple_strtoul(ep, NULL, 0);
301
302 return 0;
303}
304
305/*
306 * kdbgetintenv - This function will return the value of an
307 * integer-valued environment variable.
308 * Parameters:
309 * match A character string representing an integer-valued env variable
310 * Outputs:
311 * *value the integer representation of the environment variable 'match'
312 * Returns:
313 * Zero on success, a kdb diagnostic on failure.
314 */
315int kdbgetintenv(const char *match, int *value)
316{
317 unsigned long val;
318 int diag;
319
320 diag = kdbgetulenv(match, &val);
321 if (!diag)
322 *value = (int) val;
323 return diag;
324}
325
326/*
327 * kdbgetularg - This function will convert a numeric string into an
328 * unsigned long value.
329 * Parameters:
330 * arg A character string representing a numeric value
331 * Outputs:
332 * *value the unsigned long represntation of arg.
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetularg(const char *arg, unsigned long *value)
337{
338 char *endp;
339 unsigned long val;
340
341 val = simple_strtoul(arg, &endp, 0);
342
343 if (endp == arg) {
344 /*
534af108 345 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
346 * leading 0x...
347 */
348 val = simple_strtoul(arg, &endp, 16);
349 if (endp == arg)
350 return KDB_BADINT;
351 }
352
353 *value = val;
354
355 return 0;
356}
357
534af108
JW
358int kdbgetu64arg(const char *arg, u64 *value)
359{
360 char *endp;
361 u64 val;
362
363 val = simple_strtoull(arg, &endp, 0);
364
365 if (endp == arg) {
366
367 val = simple_strtoull(arg, &endp, 16);
368 if (endp == arg)
369 return KDB_BADINT;
370 }
371
372 *value = val;
373
374 return 0;
375}
376
5d5314d6
JW
377/*
378 * kdb_set - This function implements the 'set' command. Alter an
379 * existing environment variable or create a new one.
380 */
381int kdb_set(int argc, const char **argv)
382{
383 int i;
384 char *ep;
385 size_t varlen, vallen;
386
387 /*
388 * we can be invoked two ways:
389 * set var=value argv[1]="var", argv[2]="value"
390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
391 * - if the latter, shift 'em down.
392 */
393 if (argc == 3) {
394 argv[2] = argv[3];
395 argc--;
396 }
397
398 if (argc != 2)
399 return KDB_ARGCOUNT;
400
401 /*
402 * Check for internal variables
403 */
404 if (strcmp(argv[1], "KDBDEBUG") == 0) {
405 unsigned int debugflags;
406 char *cp;
407
408 debugflags = simple_strtoul(argv[2], &cp, 0);
409 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
410 kdb_printf("kdb: illegal debug flags '%s'\n",
411 argv[2]);
412 return 0;
413 }
414 kdb_flags = (kdb_flags &
415 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
416 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
417
418 return 0;
419 }
420
421 /*
422 * Tokenizer squashed the '=' sign. argv[1] is variable
423 * name, argv[2] = value.
424 */
425 varlen = strlen(argv[1]);
426 vallen = strlen(argv[2]);
427 ep = kdballocenv(varlen + vallen + 2);
428 if (ep == (char *)0)
429 return KDB_ENVBUFFULL;
430
431 sprintf(ep, "%s=%s", argv[1], argv[2]);
432
433 ep[varlen+vallen+1] = '\0';
434
435 for (i = 0; i < __nenv; i++) {
436 if (__env[i]
437 && ((strncmp(__env[i], argv[1], varlen) == 0)
438 && ((__env[i][varlen] == '\0')
439 || (__env[i][varlen] == '=')))) {
440 __env[i] = ep;
441 return 0;
442 }
443 }
444
445 /*
446 * Wasn't existing variable. Fit into slot.
447 */
448 for (i = 0; i < __nenv-1; i++) {
449 if (__env[i] == (char *)0) {
450 __env[i] = ep;
451 return 0;
452 }
453 }
454
455 return KDB_ENVFULL;
456}
457
458static int kdb_check_regs(void)
459{
460 if (!kdb_current_regs) {
461 kdb_printf("No current kdb registers."
462 " You may need to select another task\n");
463 return KDB_BADREG;
464 }
465 return 0;
466}
467
468/*
469 * kdbgetaddrarg - This function is responsible for parsing an
470 * address-expression and returning the value of the expression,
471 * symbol name, and offset to the caller.
472 *
473 * The argument may consist of a numeric value (decimal or
25985edc 474 * hexidecimal), a symbol name, a register name (preceded by the
5d5314d6 475 * percent sign), an environment variable with a numeric value
25985edc 476 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
477 * consisting of a symbol name, +/-, and a numeric constant value
478 * (offset).
479 * Parameters:
480 * argc - count of arguments in argv
481 * argv - argument vector
482 * *nextarg - index to next unparsed argument in argv[]
483 * regs - Register state at time of KDB entry
484 * Outputs:
485 * *value - receives the value of the address-expression
486 * *offset - receives the offset specified, if any
487 * *name - receives the symbol name, if any
488 * *nextarg - index to next unparsed argument in argv[]
489 * Returns:
490 * zero is returned on success, a kdb diagnostic code is
491 * returned on error.
492 */
493int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
494 unsigned long *value, long *offset,
495 char **name)
496{
497 unsigned long addr;
498 unsigned long off = 0;
499 int positive;
500 int diag;
501 int found = 0;
502 char *symname;
503 char symbol = '\0';
504 char *cp;
505 kdb_symtab_t symtab;
506
420c2b1b
AV
507 /*
508 * If the enable flags prohibit both arbitrary memory access
509 * and flow control then there are no reasonable grounds to
510 * provide symbol lookup.
511 */
512 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
513 kdb_cmd_enabled, false))
514 return KDB_NOPERM;
515
5d5314d6
JW
516 /*
517 * Process arguments which follow the following syntax:
518 *
519 * symbol | numeric-address [+/- numeric-offset]
520 * %register
521 * $environment-variable
522 */
523
524 if (*nextarg > argc)
525 return KDB_ARGCOUNT;
526
527 symname = (char *)argv[*nextarg];
528
529 /*
530 * If there is no whitespace between the symbol
531 * or address and the '+' or '-' symbols, we
532 * remember the character and replace it with a
533 * null so the symbol/value can be properly parsed
534 */
535 cp = strpbrk(symname, "+-");
536 if (cp != NULL) {
537 symbol = *cp;
538 *cp++ = '\0';
539 }
540
541 if (symname[0] == '$') {
542 diag = kdbgetulenv(&symname[1], &addr);
543 if (diag)
544 return diag;
545 } else if (symname[0] == '%') {
546 diag = kdb_check_regs();
547 if (diag)
548 return diag;
549 /* Implement register values with % at a later time as it is
550 * arch optional.
551 */
552 return KDB_NOTIMP;
553 } else {
554 found = kdbgetsymval(symname, &symtab);
555 if (found) {
556 addr = symtab.sym_start;
557 } else {
558 diag = kdbgetularg(argv[*nextarg], &addr);
559 if (diag)
560 return diag;
561 }
562 }
563
564 if (!found)
565 found = kdbnearsym(addr, &symtab);
566
567 (*nextarg)++;
568
569 if (name)
570 *name = symname;
571 if (value)
572 *value = addr;
573 if (offset && name && *name)
574 *offset = addr - symtab.sym_start;
575
576 if ((*nextarg > argc)
577 && (symbol == '\0'))
578 return 0;
579
580 /*
581 * check for +/- and offset
582 */
583
584 if (symbol == '\0') {
585 if ((argv[*nextarg][0] != '+')
586 && (argv[*nextarg][0] != '-')) {
587 /*
588 * Not our argument. Return.
589 */
590 return 0;
591 } else {
592 positive = (argv[*nextarg][0] == '+');
593 (*nextarg)++;
594 }
595 } else
596 positive = (symbol == '+');
597
598 /*
599 * Now there must be an offset!
600 */
601 if ((*nextarg > argc)
602 && (symbol == '\0')) {
603 return KDB_INVADDRFMT;
604 }
605
606 if (!symbol) {
607 cp = (char *)argv[*nextarg];
608 (*nextarg)++;
609 }
610
611 diag = kdbgetularg(cp, &off);
612 if (diag)
613 return diag;
614
615 if (!positive)
616 off = -off;
617
618 if (offset)
619 *offset += off;
620
621 if (value)
622 *value += off;
623
624 return 0;
625}
626
627static void kdb_cmderror(int diag)
628{
629 int i;
630
631 if (diag >= 0) {
632 kdb_printf("no error detected (diagnostic is %d)\n", diag);
633 return;
634 }
635
636 for (i = 0; i < __nkdb_err; i++) {
637 if (kdbmsgs[i].km_diag == diag) {
638 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
639 return;
640 }
641 }
642
643 kdb_printf("Unknown diag %d\n", -diag);
644}
645
646/*
647 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
648 * command which defines one command as a set of other commands,
649 * terminated by endefcmd. kdb_defcmd processes the initial
650 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
651 * the following commands until 'endefcmd'.
652 * Inputs:
653 * argc argument count
654 * argv argument vector
655 * Returns:
656 * zero for success, a kdb diagnostic if error
657 */
658struct defcmd_set {
659 int count;
660 int usable;
661 char *name;
662 char *usage;
663 char *help;
664 char **command;
665};
666static struct defcmd_set *defcmd_set;
667static int defcmd_set_count;
668static int defcmd_in_progress;
669
670/* Forward references */
671static int kdb_exec_defcmd(int argc, const char **argv);
672
673static int kdb_defcmd2(const char *cmdstr, const char *argv0)
674{
675 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
676 char **save_command = s->command;
677 if (strcmp(argv0, "endefcmd") == 0) {
678 defcmd_in_progress = 0;
679 if (!s->count)
680 s->usable = 0;
681 if (s->usable)
9452e977
DT
682 /* macros are always safe because when executed each
683 * internal command re-enters kdb_parse() and is
684 * safety checked individually.
685 */
686 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
687 s->help, 0,
688 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
689 return 0;
690 }
691 if (!s->usable)
692 return KDB_NOTIMP;
5450d904 693 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
5d5314d6
JW
694 if (!s->command) {
695 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
696 cmdstr);
697 s->usable = 0;
698 return KDB_NOTIMP;
699 }
700 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
701 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
702 kfree(save_command);
703 return 0;
704}
705
706static int kdb_defcmd(int argc, const char **argv)
707{
708 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
709 if (defcmd_in_progress) {
710 kdb_printf("kdb: nested defcmd detected, assuming missing "
711 "endefcmd\n");
712 kdb_defcmd2("endefcmd", "endefcmd");
713 }
714 if (argc == 0) {
715 int i;
716 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
717 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
718 s->usage, s->help);
719 for (i = 0; i < s->count; ++i)
720 kdb_printf("%s", s->command[i]);
721 kdb_printf("endefcmd\n");
722 }
723 return 0;
724 }
725 if (argc != 3)
726 return KDB_ARGCOUNT;
a37372f6
JW
727 if (in_dbg_master()) {
728 kdb_printf("Command only available during kdb_init()\n");
729 return KDB_NOTIMP;
730 }
5d5314d6
JW
731 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
732 GFP_KDB);
4eb7a66d
JW
733 if (!defcmd_set)
734 goto fail_defcmd;
5d5314d6
JW
735 memcpy(defcmd_set, save_defcmd_set,
736 defcmd_set_count * sizeof(*defcmd_set));
5d5314d6
JW
737 s = defcmd_set + defcmd_set_count;
738 memset(s, 0, sizeof(*s));
739 s->usable = 1;
740 s->name = kdb_strdup(argv[1], GFP_KDB);
4eb7a66d
JW
741 if (!s->name)
742 goto fail_name;
5d5314d6 743 s->usage = kdb_strdup(argv[2], GFP_KDB);
4eb7a66d
JW
744 if (!s->usage)
745 goto fail_usage;
5d5314d6 746 s->help = kdb_strdup(argv[3], GFP_KDB);
4eb7a66d
JW
747 if (!s->help)
748 goto fail_help;
5d5314d6 749 if (s->usage[0] == '"') {
4eb7a66d 750 strcpy(s->usage, argv[2]+1);
5d5314d6
JW
751 s->usage[strlen(s->usage)-1] = '\0';
752 }
753 if (s->help[0] == '"') {
4eb7a66d 754 strcpy(s->help, argv[3]+1);
5d5314d6
JW
755 s->help[strlen(s->help)-1] = '\0';
756 }
757 ++defcmd_set_count;
758 defcmd_in_progress = 1;
4eb7a66d 759 kfree(save_defcmd_set);
5d5314d6 760 return 0;
4eb7a66d
JW
761fail_help:
762 kfree(s->usage);
763fail_usage:
764 kfree(s->name);
765fail_name:
766 kfree(defcmd_set);
767fail_defcmd:
768 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
769 defcmd_set = save_defcmd_set;
770 return KDB_NOTIMP;
5d5314d6
JW
771}
772
773/*
774 * kdb_exec_defcmd - Execute the set of commands associated with this
775 * defcmd name.
776 * Inputs:
777 * argc argument count
778 * argv argument vector
779 * Returns:
780 * zero for success, a kdb diagnostic if error
781 */
782static int kdb_exec_defcmd(int argc, const char **argv)
783{
784 int i, ret;
785 struct defcmd_set *s;
786 if (argc != 0)
787 return KDB_ARGCOUNT;
788 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
789 if (strcmp(s->name, argv[0]) == 0)
790 break;
791 }
792 if (i == defcmd_set_count) {
793 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
794 argv[0]);
795 return KDB_NOTIMP;
796 }
797 for (i = 0; i < s->count; ++i) {
798 /* Recursive use of kdb_parse, do not use argv after
799 * this point */
800 argv = NULL;
801 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
802 ret = kdb_parse(s->command[i]);
803 if (ret)
804 return ret;
805 }
806 return 0;
807}
808
809/* Command history */
810#define KDB_CMD_HISTORY_COUNT 32
811#define CMD_BUFLEN 200 /* kdb_printf: max printline
812 * size == 256 */
813static unsigned int cmd_head, cmd_tail;
814static unsigned int cmdptr;
815static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
816static char cmd_cur[CMD_BUFLEN];
817
818/*
819 * The "str" argument may point to something like | grep xyz
820 */
821static void parse_grep(const char *str)
822{
823 int len;
824 char *cp = (char *)str, *cp2;
825
826 /* sanity check: we should have been called with the \ first */
827 if (*cp != '|')
828 return;
829 cp++;
830 while (isspace(*cp))
831 cp++;
832 if (strncmp(cp, "grep ", 5)) {
833 kdb_printf("invalid 'pipe', see grephelp\n");
834 return;
835 }
836 cp += 5;
837 while (isspace(*cp))
838 cp++;
839 cp2 = strchr(cp, '\n');
840 if (cp2)
841 *cp2 = '\0'; /* remove the trailing newline */
842 len = strlen(cp);
843 if (len == 0) {
844 kdb_printf("invalid 'pipe', see grephelp\n");
845 return;
846 }
847 /* now cp points to a nonzero length search string */
848 if (*cp == '"') {
849 /* allow it be "x y z" by removing the "'s - there must
850 be two of them */
851 cp++;
852 cp2 = strchr(cp, '"');
853 if (!cp2) {
854 kdb_printf("invalid quoted string, see grephelp\n");
855 return;
856 }
857 *cp2 = '\0'; /* end the string where the 2nd " was */
858 }
859 kdb_grep_leading = 0;
860 if (*cp == '^') {
861 kdb_grep_leading = 1;
862 cp++;
863 }
864 len = strlen(cp);
865 kdb_grep_trailing = 0;
866 if (*(cp+len-1) == '$') {
867 kdb_grep_trailing = 1;
868 *(cp+len-1) = '\0';
869 }
870 len = strlen(cp);
871 if (!len)
872 return;
873 if (len >= GREP_LEN) {
874 kdb_printf("search string too long\n");
875 return;
876 }
877 strcpy(kdb_grep_string, cp);
878 kdb_grepping_flag++;
879 return;
880}
881
882/*
883 * kdb_parse - Parse the command line, search the command table for a
884 * matching command and invoke the command function. This
885 * function may be called recursively, if it is, the second call
886 * will overwrite argv and cbuf. It is the caller's
887 * responsibility to save their argv if they recursively call
888 * kdb_parse().
889 * Parameters:
890 * cmdstr The input command line to be parsed.
891 * regs The registers at the time kdb was entered.
892 * Returns:
893 * Zero for success, a kdb diagnostic if failure.
894 * Remarks:
895 * Limited to 20 tokens.
896 *
897 * Real rudimentary tokenization. Basically only whitespace
898 * is considered a token delimeter (but special consideration
899 * is taken of the '=' sign as used by the 'set' command).
900 *
901 * The algorithm used to tokenize the input string relies on
902 * there being at least one whitespace (or otherwise useless)
903 * character between tokens as the character immediately following
904 * the token is altered in-place to a null-byte to terminate the
905 * token string.
906 */
907
908#define MAXARGC 20
909
910int kdb_parse(const char *cmdstr)
911{
912 static char *argv[MAXARGC];
913 static int argc;
914 static char cbuf[CMD_BUFLEN+2];
915 char *cp;
916 char *cpp, quoted;
917 kdbtab_t *tp;
918 int i, escaped, ignore_errors = 0, check_grep;
919
920 /*
921 * First tokenize the command string.
922 */
923 cp = (char *)cmdstr;
924 kdb_grepping_flag = check_grep = 0;
925
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
932 }
933
934 if (*cp != '\n' && *cp != '\0') {
935 argc = 0;
936 cpp = cbuf;
937 while (*cp) {
938 /* skip whitespace */
939 while (isspace(*cp))
940 cp++;
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
943 break;
944 /* special case: check for | grep pattern */
945 if (*cp == '|') {
946 check_grep++;
947 break;
948 }
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
952 cmdstr);
953 return KDB_NOTFOUND;
954 }
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
958 return KDB_NOTFOUND;
959 }
960 argv[argc++] = cpp;
961 escaped = 0;
962 quoted = '\0';
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
968 break;
969 if (escaped) {
970 escaped = 0;
971 *cpp++ = *cp++;
972 continue;
973 }
974 if (*cp == '\\') {
975 escaped = 1;
976 ++cp;
977 continue;
978 }
979 if (*cp == quoted)
980 quoted = '\0';
981 else if (*cp == '\'' || *cp == '"')
982 quoted = *cp;
983 *cpp = *cp++;
984 if (*cpp == '=' && !quoted)
985 break;
986 ++cpp;
987 }
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
989 }
990 }
991 if (!argc)
992 return 0;
993 if (check_grep)
994 parse_grep(cp);
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
999 *(argv[0]) = '\0';
1000 }
1001 return result;
1002 }
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 ignore_errors = 1;
1006 ++argv[0];
1007 }
1008
1009 for_each_kdbcmd(tp, i) {
1010 if (tp->cmd_name) {
1011 /*
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1014 */
1015
1016 if (tp->cmd_minlen
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1019 tp->cmd_name,
1020 tp->cmd_minlen) == 0) {
1021 break;
1022 }
1023 }
1024
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1034 */
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1037 if (tp->cmd_name) {
1038 if (strncmp(argv[0],
1039 tp->cmd_name,
1040 strlen(tp->cmd_name)) == 0) {
1041 break;
1042 }
1043 }
1044 }
1045 }
1046
1047 if (i < kdb_max_commands) {
1048 int result;
420c2b1b
AV
1049
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 return KDB_NOPERM;
1052
5d5314d6
JW
1053 KDB_STATE_SET(CMD);
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1056 result = 0;
1057 KDB_STATE_CLEAR(CMD);
04bb171e
AV
1058
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 return result;
1061
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 if (argv[argc])
1064 *(argv[argc]) = '\0';
5d5314d6
JW
1065 return result;
1066 }
1067
1068 /*
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1074 */
1075 {
1076 unsigned long value;
1077 char *name = NULL;
1078 long offset;
1079 int nextarg = 0;
1080
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1084 }
1085
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 kdb_printf("\n");
1089 return 0;
1090 }
1091}
1092
1093
1094static int handle_ctrl_cmd(char *cmd)
1095{
1096#define CTRL_P 16
1097#define CTRL_N 14
1098
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1101 return 0;
1102 switch (*cmd) {
1103 case CTRL_P:
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 return 1;
1108 case CTRL_N:
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 return 1;
1113 }
1114 return 0;
1115}
1116
1117/*
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1120 */
1121static int kdb_reboot(int argc, const char **argv)
1122{
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 while (1)
1126 cpu_relax();
1127 /* NOTREACHED */
1128 return 0;
1129}
1130
1131static void kdb_dumpregs(struct pt_regs *regs)
1132{
1133 int old_lvl = console_loglevel;
a8fe19eb 1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
d37d39ae 1135 kdb_trap_printk++;
5d5314d6 1136 show_regs(regs);
d37d39ae 1137 kdb_trap_printk--;
5d5314d6
JW
1138 kdb_printf("\n");
1139 console_loglevel = old_lvl;
1140}
1141
1142void kdb_set_current_task(struct task_struct *p)
1143{
1144 kdb_current_task = p;
1145
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 return;
1149 }
1150 kdb_current_regs = NULL;
1151}
1152
1153/*
1154 * kdb_local - The main code for kdb. This routine is invoked on a
1155 * specific processor, it is not global. The main kdb() routine
1156 * ensures that only one processor at a time is in this routine.
1157 * This code is called with the real reason code on the first
1158 * entry to a kdb session, thereafter it is called with reason
1159 * SWITCH, even if the user goes back to the original cpu.
1160 * Inputs:
1161 * reason The reason KDB was invoked
1162 * error The hardware-defined error code
1163 * regs The exception frame at time of fault/breakpoint.
1164 * db_result Result code from the break or debug point.
1165 * Returns:
1166 * 0 KDB was invoked for an event which it wasn't responsible
1167 * 1 KDB handled the event for which it was invoked.
1168 * KDB_CMD_GO User typed 'go'.
1169 * KDB_CMD_CPU User switched to another cpu.
1170 * KDB_CMD_SS Single step.
5d5314d6
JW
1171 */
1172static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1173 kdb_dbtrap_t db_result)
1174{
1175 char *cmdbuf;
1176 int diag;
1177 struct task_struct *kdb_current =
1178 kdb_curr_task(raw_smp_processor_id());
1179
1180 KDB_DEBUG_STATE("kdb_local 1", reason);
1181 kdb_go_count = 0;
1182 if (reason == KDB_REASON_DEBUG) {
1183 /* special case below */
1184 } else {
1185 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
578bd4df 1186 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1187#if defined(CONFIG_SMP)
1188 kdb_printf("on processor %d ", raw_smp_processor_id());
1189#endif
1190 }
1191
1192 switch (reason) {
1193 case KDB_REASON_DEBUG:
1194 {
1195 /*
1196 * If re-entering kdb after a single step
1197 * command, don't print the message.
1198 */
1199 switch (db_result) {
1200 case KDB_DB_BPT:
1201 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1202 kdb_current, kdb_current->pid);
1203#if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1205#endif
1206 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1207 instruction_pointer(regs));
1208 break;
5d5314d6
JW
1209 case KDB_DB_SS:
1210 break;
1211 case KDB_DB_SSBPT:
1212 KDB_DEBUG_STATE("kdb_local 4", reason);
1213 return 1; /* kdba_db_trap did the work */
1214 default:
1215 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1216 db_result);
1217 break;
1218 }
1219
1220 }
1221 break;
1222 case KDB_REASON_ENTER:
1223 if (KDB_STATE(KEYBOARD))
1224 kdb_printf("due to Keyboard Entry\n");
1225 else
1226 kdb_printf("due to KDB_ENTER()\n");
1227 break;
1228 case KDB_REASON_KEYBOARD:
1229 KDB_STATE_SET(KEYBOARD);
1230 kdb_printf("due to Keyboard Entry\n");
1231 break;
1232 case KDB_REASON_ENTER_SLAVE:
1233 /* drop through, slaves only get released via cpu switch */
1234 case KDB_REASON_SWITCH:
1235 kdb_printf("due to cpu switch\n");
1236 break;
1237 case KDB_REASON_OOPS:
1238 kdb_printf("Oops: %s\n", kdb_diemsg);
1239 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1240 instruction_pointer(regs));
1241 kdb_dumpregs(regs);
1242 break;
8daaa5f8
MT
1243 case KDB_REASON_SYSTEM_NMI:
1244 kdb_printf("due to System NonMaskable Interrupt\n");
1245 break;
5d5314d6
JW
1246 case KDB_REASON_NMI:
1247 kdb_printf("due to NonMaskable Interrupt @ "
1248 kdb_machreg_fmt "\n",
1249 instruction_pointer(regs));
1250 kdb_dumpregs(regs);
1251 break;
1252 case KDB_REASON_SSTEP:
1253 case KDB_REASON_BREAK:
1254 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1255 reason == KDB_REASON_BREAK ?
1256 "Breakpoint" : "SS trap", instruction_pointer(regs));
1257 /*
1258 * Determine if this breakpoint is one that we
1259 * are interested in.
1260 */
1261 if (db_result != KDB_DB_BPT) {
1262 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1263 db_result);
1264 KDB_DEBUG_STATE("kdb_local 6", reason);
1265 return 0; /* Not for us, dismiss it */
1266 }
1267 break;
1268 case KDB_REASON_RECURSE:
1269 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1270 instruction_pointer(regs));
1271 break;
1272 default:
1273 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1274 KDB_DEBUG_STATE("kdb_local 8", reason);
1275 return 0; /* Not for us, dismiss it */
1276 }
1277
1278 while (1) {
1279 /*
1280 * Initialize pager context.
1281 */
1282 kdb_nextline = 1;
1283 KDB_STATE_CLEAR(SUPPRESS);
1284
1285 cmdbuf = cmd_cur;
1286 *cmdbuf = '\0';
1287 *(cmd_hist[cmd_head]) = '\0';
1288
5d5314d6
JW
1289do_full_getstr:
1290#if defined(CONFIG_SMP)
1291 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292 raw_smp_processor_id());
1293#else
1294 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295#endif
1296 if (defcmd_in_progress)
1297 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298
1299 /*
1300 * Fetch command from keyboard
1301 */
1302 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303 if (*cmdbuf != '\n') {
1304 if (*cmdbuf < 32) {
1305 if (cmdptr == cmd_head) {
1306 strncpy(cmd_hist[cmd_head], cmd_cur,
1307 CMD_BUFLEN);
1308 *(cmd_hist[cmd_head] +
1309 strlen(cmd_hist[cmd_head])-1) = '\0';
1310 }
1311 if (!handle_ctrl_cmd(cmdbuf))
1312 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313 cmdbuf = cmd_cur;
1314 goto do_full_getstr;
1315 } else {
1316 strncpy(cmd_hist[cmd_head], cmd_cur,
1317 CMD_BUFLEN);
1318 }
1319
1320 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321 if (cmd_head == cmd_tail)
1322 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323 }
1324
1325 cmdptr = cmd_head;
1326 diag = kdb_parse(cmdbuf);
1327 if (diag == KDB_NOTFOUND) {
1328 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329 diag = 0;
1330 }
1331 if (diag == KDB_CMD_GO
1332 || diag == KDB_CMD_CPU
1333 || diag == KDB_CMD_SS
5d5314d6
JW
1334 || diag == KDB_CMD_KGDB)
1335 break;
1336
1337 if (diag)
1338 kdb_cmderror(diag);
1339 }
1340 KDB_DEBUG_STATE("kdb_local 9", diag);
1341 return diag;
1342}
1343
1344
1345/*
1346 * kdb_print_state - Print the state data for the current processor
1347 * for debugging.
1348 * Inputs:
1349 * text Identifies the debug point
1350 * value Any integer value to be printed, e.g. reason code.
1351 */
1352void kdb_print_state(const char *text, int value)
1353{
1354 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356 kdb_state);
1357}
1358
1359/*
1360 * kdb_main_loop - After initial setup and assignment of the
1361 * controlling cpu, all cpus are in this loop. One cpu is in
1362 * control and will issue the kdb prompt, the others will spin
1363 * until 'go' or cpu switch.
1364 *
1365 * To get a consistent view of the kernel stacks for all
1366 * processes, this routine is invoked from the main kdb code via
1367 * an architecture specific routine. kdba_main_loop is
1368 * responsible for making the kernel stacks consistent for all
1369 * processes, there should be no difference between a blocked
1370 * process and a running process as far as kdb is concerned.
1371 * Inputs:
1372 * reason The reason KDB was invoked
1373 * error The hardware-defined error code
1374 * reason2 kdb's current reason code.
1375 * Initially error but can change
25985edc 1376 * according to kdb state.
5d5314d6
JW
1377 * db_result Result code from break or debug point.
1378 * regs The exception frame at time of fault/breakpoint.
1379 * should always be valid.
1380 * Returns:
1381 * 0 KDB was invoked for an event which it wasn't responsible
1382 * 1 KDB handled the event for which it was invoked.
1383 */
1384int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385 kdb_dbtrap_t db_result, struct pt_regs *regs)
1386{
1387 int result = 1;
1388 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1389 while (1) {
1390 /*
1391 * All processors except the one that is in control
1392 * will spin here.
1393 */
1394 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395 while (KDB_STATE(HOLD_CPU)) {
1396 /* state KDB is turned off by kdb_cpu to see if the
1397 * other cpus are still live, each cpu in this loop
1398 * turns it back on.
1399 */
1400 if (!KDB_STATE(KDB))
1401 KDB_STATE_SET(KDB);
1402 }
1403
1404 KDB_STATE_CLEAR(SUPPRESS);
1405 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406 if (KDB_STATE(LEAVING))
1407 break; /* Another cpu said 'go' */
1408 /* Still using kdb, this processor is in control */
1409 result = kdb_local(reason2, error, regs, db_result);
1410 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411
1412 if (result == KDB_CMD_CPU)
1413 break;
1414
1415 if (result == KDB_CMD_SS) {
1416 KDB_STATE_SET(DOING_SS);
1417 break;
1418 }
1419
5d5314d6 1420 if (result == KDB_CMD_KGDB) {
d613d828 1421 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1422 kdb_printf("Entering please attach debugger "
1423 "or use $D#44+ or $3#33\n");
1424 break;
1425 }
1426 if (result && result != 1 && result != KDB_CMD_GO)
1427 kdb_printf("\nUnexpected kdb_local return code %d\n",
1428 result);
1429 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430 break;
1431 }
1432 if (KDB_STATE(DOING_SS))
1433 KDB_STATE_CLEAR(SSBPT);
1434
8f30d411
AW
1435 /* Clean up any keyboard devices before leaving */
1436 kdb_kbd_cleanup_state();
1437
5d5314d6
JW
1438 return result;
1439}
1440
1441/*
1442 * kdb_mdr - This function implements the guts of the 'mdr', memory
1443 * read command.
1444 * mdr <addr arg>,<byte count>
1445 * Inputs:
1446 * addr Start address
1447 * count Number of bytes
1448 * Returns:
1449 * Always 0. Any errors are detected and printed by kdb_getarea.
1450 */
1451static int kdb_mdr(unsigned long addr, unsigned int count)
1452{
1453 unsigned char c;
1454 while (count--) {
1455 if (kdb_getarea(c, addr))
1456 return 0;
1457 kdb_printf("%02x", c);
1458 addr++;
1459 }
1460 kdb_printf("\n");
1461 return 0;
1462}
1463
1464/*
1465 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466 * 'md8' 'mdr' and 'mds' commands.
1467 *
1468 * md|mds [<addr arg> [<line count> [<radix>]]]
1469 * mdWcN [<addr arg> [<line count> [<radix>]]]
1470 * where W = is the width (1, 2, 4 or 8) and N is the count.
1471 * for eg., md1c20 reads 20 bytes, 1 at a time.
1472 * mdr <addr arg>,<byte count>
1473 */
1474static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475 int symbolic, int nosect, int bytesperword,
1476 int num, int repeat, int phys)
1477{
1478 /* print just one line of data */
1479 kdb_symtab_t symtab;
1480 char cbuf[32];
1481 char *c = cbuf;
1482 int i;
1483 unsigned long word;
1484
1485 memset(cbuf, '\0', sizeof(cbuf));
1486 if (phys)
1487 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488 else
1489 kdb_printf(kdb_machreg_fmt0 " ", addr);
1490
1491 for (i = 0; i < num && repeat--; i++) {
1492 if (phys) {
1493 if (kdb_getphysword(&word, addr, bytesperword))
1494 break;
1495 } else if (kdb_getword(&word, addr, bytesperword))
1496 break;
1497 kdb_printf(fmtstr, word);
1498 if (symbolic)
1499 kdbnearsym(word, &symtab);
1500 else
1501 memset(&symtab, 0, sizeof(symtab));
1502 if (symtab.sym_name) {
1503 kdb_symbol_print(word, &symtab, 0);
1504 if (!nosect) {
1505 kdb_printf("\n");
1506 kdb_printf(" %s %s "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt " "
1509 kdb_machreg_fmt, symtab.mod_name,
1510 symtab.sec_name, symtab.sec_start,
1511 symtab.sym_start, symtab.sym_end);
1512 }
1513 addr += bytesperword;
1514 } else {
1515 union {
1516 u64 word;
1517 unsigned char c[8];
1518 } wc;
1519 unsigned char *cp;
1520#ifdef __BIG_ENDIAN
1521 cp = wc.c + 8 - bytesperword;
1522#else
1523 cp = wc.c;
1524#endif
1525 wc.word = word;
1526#define printable_char(c) \
1527 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528 switch (bytesperword) {
1529 case 8:
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 addr += 4;
1535 case 4:
1536 *c++ = printable_char(*cp++);
1537 *c++ = printable_char(*cp++);
1538 addr += 2;
1539 case 2:
1540 *c++ = printable_char(*cp++);
1541 addr++;
1542 case 1:
1543 *c++ = printable_char(*cp++);
1544 addr++;
1545 break;
1546 }
1547#undef printable_char
1548 }
1549 }
1550 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551 " ", cbuf);
1552}
1553
1554static int kdb_md(int argc, const char **argv)
1555{
1556 static unsigned long last_addr;
1557 static int last_radix, last_bytesperword, last_repeat;
1558 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559 int nosect = 0;
1560 char fmtchar, fmtstr[64];
1561 unsigned long addr;
1562 unsigned long word;
1563 long offset = 0;
1564 int symbolic = 0;
1565 int valid = 0;
1566 int phys = 0;
1567
1568 kdbgetintenv("MDCOUNT", &mdcount);
1569 kdbgetintenv("RADIX", &radix);
1570 kdbgetintenv("BYTESPERWORD", &bytesperword);
1571
1572 /* Assume 'md <addr>' and start with environment values */
1573 repeat = mdcount * 16 / bytesperword;
1574
1575 if (strcmp(argv[0], "mdr") == 0) {
1576 if (argc != 2)
1577 return KDB_ARGCOUNT;
1578 valid = 1;
1579 } else if (isdigit(argv[0][2])) {
1580 bytesperword = (int)(argv[0][2] - '0');
1581 if (bytesperword == 0) {
1582 bytesperword = last_bytesperword;
1583 if (bytesperword == 0)
1584 bytesperword = 4;
1585 }
1586 last_bytesperword = bytesperword;
1587 repeat = mdcount * 16 / bytesperword;
1588 if (!argv[0][3])
1589 valid = 1;
1590 else if (argv[0][3] == 'c' && argv[0][4]) {
1591 char *p;
1592 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593 mdcount = ((repeat * bytesperword) + 15) / 16;
1594 valid = !*p;
1595 }
1596 last_repeat = repeat;
1597 } else if (strcmp(argv[0], "md") == 0)
1598 valid = 1;
1599 else if (strcmp(argv[0], "mds") == 0)
1600 valid = 1;
1601 else if (strcmp(argv[0], "mdp") == 0) {
1602 phys = valid = 1;
1603 }
1604 if (!valid)
1605 return KDB_NOTFOUND;
1606
1607 if (argc == 0) {
1608 if (last_addr == 0)
1609 return KDB_ARGCOUNT;
1610 addr = last_addr;
1611 radix = last_radix;
1612 bytesperword = last_bytesperword;
1613 repeat = last_repeat;
1614 mdcount = ((repeat * bytesperword) + 15) / 16;
1615 }
1616
1617 if (argc) {
1618 unsigned long val;
1619 int diag, nextarg = 1;
1620 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621 &offset, NULL);
1622 if (diag)
1623 return diag;
1624 if (argc > nextarg+2)
1625 return KDB_ARGCOUNT;
1626
1627 if (argc >= nextarg) {
1628 diag = kdbgetularg(argv[nextarg], &val);
1629 if (!diag) {
1630 mdcount = (int) val;
1631 repeat = mdcount * 16 / bytesperword;
1632 }
1633 }
1634 if (argc >= nextarg+1) {
1635 diag = kdbgetularg(argv[nextarg+1], &val);
1636 if (!diag)
1637 radix = (int) val;
1638 }
1639 }
1640
1641 if (strcmp(argv[0], "mdr") == 0)
1642 return kdb_mdr(addr, mdcount);
1643
1644 switch (radix) {
1645 case 10:
1646 fmtchar = 'd';
1647 break;
1648 case 16:
1649 fmtchar = 'x';
1650 break;
1651 case 8:
1652 fmtchar = 'o';
1653 break;
1654 default:
1655 return KDB_BADRADIX;
1656 }
1657
1658 last_radix = radix;
1659
1660 if (bytesperword > KDB_WORD_SIZE)
1661 return KDB_BADWIDTH;
1662
1663 switch (bytesperword) {
1664 case 8:
1665 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666 break;
1667 case 4:
1668 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669 break;
1670 case 2:
1671 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672 break;
1673 case 1:
1674 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675 break;
1676 default:
1677 return KDB_BADWIDTH;
1678 }
1679
1680 last_repeat = repeat;
1681 last_bytesperword = bytesperword;
1682
1683 if (strcmp(argv[0], "mds") == 0) {
1684 symbolic = 1;
1685 /* Do not save these changes as last_*, they are temporary mds
1686 * overrides.
1687 */
1688 bytesperword = KDB_WORD_SIZE;
1689 repeat = mdcount;
1690 kdbgetintenv("NOSECT", &nosect);
1691 }
1692
1693 /* Round address down modulo BYTESPERWORD */
1694
1695 addr &= ~(bytesperword-1);
1696
1697 while (repeat > 0) {
1698 unsigned long a;
1699 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700
1701 if (KDB_FLAG(CMD_INTERRUPT))
1702 return 0;
1703 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704 if (phys) {
1705 if (kdb_getphysword(&word, a, bytesperword)
1706 || word)
1707 break;
1708 } else if (kdb_getword(&word, a, bytesperword) || word)
1709 break;
1710 }
1711 n = min(num, repeat);
1712 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713 num, repeat, phys);
1714 addr += bytesperword * n;
1715 repeat -= n;
1716 z = (z + num - 1) / num;
1717 if (z > 2) {
1718 int s = num * (z-2);
1719 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720 " zero suppressed\n",
1721 addr, addr + bytesperword * s - 1);
1722 addr += bytesperword * s;
1723 repeat -= s;
1724 }
1725 }
1726 last_addr = addr;
1727
1728 return 0;
1729}
1730
1731/*
1732 * kdb_mm - This function implements the 'mm' command.
1733 * mm address-expression new-value
1734 * Remarks:
1735 * mm works on machine words, mmW works on bytes.
1736 */
1737static int kdb_mm(int argc, const char **argv)
1738{
1739 int diag;
1740 unsigned long addr;
1741 long offset = 0;
1742 unsigned long contents;
1743 int nextarg;
1744 int width;
1745
1746 if (argv[0][2] && !isdigit(argv[0][2]))
1747 return KDB_NOTFOUND;
1748
1749 if (argc < 2)
1750 return KDB_ARGCOUNT;
1751
1752 nextarg = 1;
1753 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754 if (diag)
1755 return diag;
1756
1757 if (nextarg > argc)
1758 return KDB_ARGCOUNT;
1759 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760 if (diag)
1761 return diag;
1762
1763 if (nextarg != argc + 1)
1764 return KDB_ARGCOUNT;
1765
1766 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767 diag = kdb_putword(addr, contents, width);
1768 if (diag)
1769 return diag;
1770
1771 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772
1773 return 0;
1774}
1775
1776/*
1777 * kdb_go - This function implements the 'go' command.
1778 * go [address-expression]
1779 */
1780static int kdb_go(int argc, const char **argv)
1781{
1782 unsigned long addr;
1783 int diag;
1784 int nextarg;
1785 long offset;
1786
495363d3
JW
1787 if (raw_smp_processor_id() != kdb_initial_cpu) {
1788 kdb_printf("go must execute on the entry cpu, "
1789 "please use \"cpu %d\" and then execute go\n",
1790 kdb_initial_cpu);
1791 return KDB_BADCPUNUM;
1792 }
5d5314d6 1793 if (argc == 1) {
5d5314d6
JW
1794 nextarg = 1;
1795 diag = kdbgetaddrarg(argc, argv, &nextarg,
1796 &addr, &offset, NULL);
1797 if (diag)
1798 return diag;
1799 } else if (argc) {
1800 return KDB_ARGCOUNT;
1801 }
1802
1803 diag = KDB_CMD_GO;
1804 if (KDB_FLAG(CATASTROPHIC)) {
1805 kdb_printf("Catastrophic error detected\n");
1806 kdb_printf("kdb_continue_catastrophic=%d, ",
1807 kdb_continue_catastrophic);
1808 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809 kdb_printf("type go a second time if you really want "
1810 "to continue\n");
1811 return 0;
1812 }
1813 if (kdb_continue_catastrophic == 2) {
1814 kdb_printf("forcing reboot\n");
1815 kdb_reboot(0, NULL);
1816 }
1817 kdb_printf("attempting to continue\n");
1818 }
1819 return diag;
1820}
1821
1822/*
1823 * kdb_rd - This function implements the 'rd' command.
1824 */
1825static int kdb_rd(int argc, const char **argv)
1826{
534af108
JW
1827 int len = kdb_check_regs();
1828#if DBG_MAX_REG_NUM > 0
1829 int i;
1830 char *rname;
1831 int rsize;
1832 u64 reg64;
1833 u32 reg32;
1834 u16 reg16;
1835 u8 reg8;
1836
1837 if (len)
1838 return len;
1839
1840 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841 rsize = dbg_reg_def[i].size * 2;
1842 if (rsize > 16)
1843 rsize = 2;
1844 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845 len = 0;
1846 kdb_printf("\n");
1847 }
1848 if (len)
1849 len += kdb_printf(" ");
1850 switch(dbg_reg_def[i].size * 8) {
1851 case 8:
1852 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1853 if (!rname)
1854 break;
1855 len += kdb_printf("%s: %02x", rname, reg8);
1856 break;
1857 case 16:
1858 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1859 if (!rname)
1860 break;
1861 len += kdb_printf("%s: %04x", rname, reg16);
1862 break;
1863 case 32:
1864 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1865 if (!rname)
1866 break;
1867 len += kdb_printf("%s: %08x", rname, reg32);
1868 break;
1869 case 64:
1870 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1871 if (!rname)
1872 break;
1873 len += kdb_printf("%s: %016llx", rname, reg64);
1874 break;
1875 default:
1876 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877 }
1878 }
1879 kdb_printf("\n");
1880#else
1881 if (len)
1882 return len;
5d5314d6
JW
1883
1884 kdb_dumpregs(kdb_current_regs);
534af108 1885#endif
5d5314d6
JW
1886 return 0;
1887}
1888
1889/*
1890 * kdb_rm - This function implements the 'rm' (register modify) command.
1891 * rm register-name new-contents
1892 * Remarks:
534af108 1893 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1894 */
1895static int kdb_rm(int argc, const char **argv)
1896{
534af108 1897#if DBG_MAX_REG_NUM > 0
5d5314d6 1898 int diag;
534af108
JW
1899 const char *rname;
1900 int i;
1901 u64 reg64;
1902 u32 reg32;
1903 u16 reg16;
1904 u8 reg8;
5d5314d6
JW
1905
1906 if (argc != 2)
1907 return KDB_ARGCOUNT;
1908 /*
1909 * Allow presence or absence of leading '%' symbol.
1910 */
534af108
JW
1911 rname = argv[1];
1912 if (*rname == '%')
1913 rname++;
5d5314d6 1914
534af108 1915 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1916 if (diag)
1917 return diag;
1918
1919 diag = kdb_check_regs();
1920 if (diag)
1921 return diag;
534af108
JW
1922
1923 diag = KDB_BADREG;
1924 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926 diag = 0;
1927 break;
1928 }
1929 }
1930 if (!diag) {
1931 switch(dbg_reg_def[i].size * 8) {
1932 case 8:
1933 reg8 = reg64;
1934 dbg_set_reg(i, &reg8, kdb_current_regs);
1935 break;
1936 case 16:
1937 reg16 = reg64;
1938 dbg_set_reg(i, &reg16, kdb_current_regs);
1939 break;
1940 case 32:
1941 reg32 = reg64;
1942 dbg_set_reg(i, &reg32, kdb_current_regs);
1943 break;
1944 case 64:
1945 dbg_set_reg(i, &reg64, kdb_current_regs);
1946 break;
1947 }
1948 }
1949 return diag;
1950#else
5d5314d6 1951 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
1952 return 0;
1953#endif
5d5314d6
JW
1954}
1955
1956#if defined(CONFIG_MAGIC_SYSRQ)
1957/*
1958 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960 * sr <magic-sysrq-code>
1961 */
1962static int kdb_sr(int argc, const char **argv)
1963{
420c2b1b
AV
1964 bool check_mask =
1965 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966
5d5314d6
JW
1967 if (argc != 1)
1968 return KDB_ARGCOUNT;
420c2b1b 1969
d37d39ae 1970 kdb_trap_printk++;
420c2b1b 1971 __handle_sysrq(*argv[1], check_mask);
d37d39ae 1972 kdb_trap_printk--;
5d5314d6
JW
1973
1974 return 0;
1975}
1976#endif /* CONFIG_MAGIC_SYSRQ */
1977
1978/*
1979 * kdb_ef - This function implements the 'regs' (display exception
1980 * frame) command. This command takes an address and expects to
1981 * find an exception frame at that address, formats and prints
1982 * it.
1983 * regs address-expression
1984 * Remarks:
1985 * Not done yet.
1986 */
1987static int kdb_ef(int argc, const char **argv)
1988{
1989 int diag;
1990 unsigned long addr;
1991 long offset;
1992 int nextarg;
1993
1994 if (argc != 1)
1995 return KDB_ARGCOUNT;
1996
1997 nextarg = 1;
1998 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999 if (diag)
2000 return diag;
2001 show_regs((struct pt_regs *)addr);
2002 return 0;
2003}
2004
2005#if defined(CONFIG_MODULES)
5d5314d6
JW
2006/*
2007 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2008 * currently loaded kernel modules.
2009 * Mostly taken from userland lsmod.
2010 */
2011static int kdb_lsmod(int argc, const char **argv)
2012{
2013 struct module *mod;
2014
2015 if (argc != 0)
2016 return KDB_ARGCOUNT;
2017
2018 kdb_printf("Module Size modstruct Used by\n");
2019 list_for_each_entry(mod, kdb_modules, list) {
0d21b0e3
RR
2020 if (mod->state == MODULE_STATE_UNFORMED)
2021 continue;
5d5314d6
JW
2022
2023 kdb_printf("%-20s%8u 0x%p ", mod->name,
2024 mod->core_size, (void *)mod);
2025#ifdef CONFIG_MODULE_UNLOAD
d5db139a 2026 kdb_printf("%4d ", module_refcount(mod));
5d5314d6
JW
2027#endif
2028 if (mod->state == MODULE_STATE_GOING)
2029 kdb_printf(" (Unloading)");
2030 else if (mod->state == MODULE_STATE_COMING)
2031 kdb_printf(" (Loading)");
2032 else
2033 kdb_printf(" (Live)");
9e8b624f 2034 kdb_printf(" 0x%p", mod->module_core);
5d5314d6
JW
2035
2036#ifdef CONFIG_MODULE_UNLOAD
2037 {
2038 struct module_use *use;
2039 kdb_printf(" [ ");
c8e21ced
RR
2040 list_for_each_entry(use, &mod->source_list,
2041 source_list)
2042 kdb_printf("%s ", use->target->name);
5d5314d6
JW
2043 kdb_printf("]\n");
2044 }
2045#endif
2046 }
2047
2048 return 0;
2049}
2050
2051#endif /* CONFIG_MODULES */
2052
2053/*
2054 * kdb_env - This function implements the 'env' command. Display the
2055 * current environment variables.
2056 */
2057
2058static int kdb_env(int argc, const char **argv)
2059{
2060 int i;
2061
2062 for (i = 0; i < __nenv; i++) {
2063 if (__env[i])
2064 kdb_printf("%s\n", __env[i]);
2065 }
2066
2067 if (KDB_DEBUG(MASK))
2068 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2069
2070 return 0;
2071}
2072
2073#ifdef CONFIG_PRINTK
2074/*
2075 * kdb_dmesg - This function implements the 'dmesg' command to display
2076 * the contents of the syslog buffer.
2077 * dmesg [lines] [adjust]
2078 */
2079static int kdb_dmesg(int argc, const char **argv)
2080{
bc792e61
AV
2081 int diag;
2082 int logging;
2083 int lines = 0;
2084 int adjust = 0;
2085 int n = 0;
2086 int skip = 0;
2087 struct kmsg_dumper dumper = { .active = 1 };
2088 size_t len;
2089 char buf[201];
5d5314d6
JW
2090
2091 if (argc > 2)
2092 return KDB_ARGCOUNT;
2093 if (argc) {
2094 char *cp;
2095 lines = simple_strtol(argv[1], &cp, 0);
2096 if (*cp)
2097 lines = 0;
2098 if (argc > 1) {
2099 adjust = simple_strtoul(argv[2], &cp, 0);
2100 if (*cp || adjust < 0)
2101 adjust = 0;
2102 }
2103 }
2104
2105 /* disable LOGGING if set */
2106 diag = kdbgetintenv("LOGGING", &logging);
2107 if (!diag && logging) {
2108 const char *setargs[] = { "set", "LOGGING", "0" };
2109 kdb_set(2, setargs);
2110 }
2111
c064da47
AV
2112 kmsg_dump_rewind_nolock(&dumper);
2113 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
bc792e61
AV
2114 n++;
2115
5d5314d6
JW
2116 if (lines < 0) {
2117 if (adjust >= n)
2118 kdb_printf("buffer only contains %d lines, nothing "
2119 "printed\n", n);
2120 else if (adjust - lines >= n)
2121 kdb_printf("buffer only contains %d lines, last %d "
2122 "lines printed\n", n, n - adjust);
bc792e61
AV
2123 skip = adjust;
2124 lines = abs(lines);
5d5314d6 2125 } else if (lines > 0) {
bc792e61
AV
2126 skip = n - lines - adjust;
2127 lines = abs(lines);
5d5314d6
JW
2128 if (adjust >= n) {
2129 kdb_printf("buffer only contains %d lines, "
2130 "nothing printed\n", n);
2131 skip = n;
2132 } else if (skip < 0) {
2133 lines += skip;
2134 skip = 0;
2135 kdb_printf("buffer only contains %d lines, first "
2136 "%d lines printed\n", n, lines);
2137 }
bc792e61
AV
2138 } else {
2139 lines = n;
5d5314d6 2140 }
bc792e61
AV
2141
2142 if (skip >= n || skip < 0)
2143 return 0;
2144
c064da47
AV
2145 kmsg_dump_rewind_nolock(&dumper);
2146 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2147 if (skip) {
2148 skip--;
2149 continue;
5d5314d6 2150 }
bc792e61
AV
2151 if (!lines--)
2152 break;
d1871b38
JW
2153 if (KDB_FLAG(CMD_INTERRUPT))
2154 return 0;
bc792e61
AV
2155
2156 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2157 }
5d5314d6
JW
2158
2159 return 0;
2160}
2161#endif /* CONFIG_PRINTK */
ad394f66
AV
2162
2163/* Make sure we balance enable/disable calls, must disable first. */
2164static atomic_t kdb_nmi_disabled;
2165
2166static int kdb_disable_nmi(int argc, const char *argv[])
2167{
2168 if (atomic_read(&kdb_nmi_disabled))
2169 return 0;
2170 atomic_set(&kdb_nmi_disabled, 1);
2171 arch_kgdb_ops.enable_nmi(0);
2172 return 0;
2173}
2174
2175static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176{
2177 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178 return -EINVAL;
2179 arch_kgdb_ops.enable_nmi(1);
2180 return 0;
2181}
2182
2183static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184 .set = kdb_param_enable_nmi,
2185};
2186module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187
5d5314d6
JW
2188/*
2189 * kdb_cpu - This function implements the 'cpu' command.
2190 * cpu [<cpunum>]
2191 * Returns:
2192 * KDB_CMD_CPU for success, a kdb diagnostic if error
2193 */
2194static void kdb_cpu_status(void)
2195{
2196 int i, start_cpu, first_print = 1;
2197 char state, prev_state = '?';
2198
2199 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200 kdb_printf("Available cpus: ");
2201 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202 if (!cpu_online(i)) {
2203 state = 'F'; /* cpu is offline */
a1465d2f
DT
2204 } else if (!kgdb_info[i].enter_kgdb) {
2205 state = 'D'; /* cpu is online but unresponsive */
5d5314d6
JW
2206 } else {
2207 state = ' '; /* cpu is responding to kdb */
2208 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209 state = 'I'; /* idle task */
2210 }
2211 if (state != prev_state) {
2212 if (prev_state != '?') {
2213 if (!first_print)
2214 kdb_printf(", ");
2215 first_print = 0;
2216 kdb_printf("%d", start_cpu);
2217 if (start_cpu < i-1)
2218 kdb_printf("-%d", i-1);
2219 if (prev_state != ' ')
2220 kdb_printf("(%c)", prev_state);
2221 }
2222 prev_state = state;
2223 start_cpu = i;
2224 }
2225 }
2226 /* print the trailing cpus, ignoring them if they are all offline */
2227 if (prev_state != 'F') {
2228 if (!first_print)
2229 kdb_printf(", ");
2230 kdb_printf("%d", start_cpu);
2231 if (start_cpu < i-1)
2232 kdb_printf("-%d", i-1);
2233 if (prev_state != ' ')
2234 kdb_printf("(%c)", prev_state);
2235 }
2236 kdb_printf("\n");
2237}
2238
2239static int kdb_cpu(int argc, const char **argv)
2240{
2241 unsigned long cpunum;
2242 int diag;
2243
2244 if (argc == 0) {
2245 kdb_cpu_status();
2246 return 0;
2247 }
2248
2249 if (argc != 1)
2250 return KDB_ARGCOUNT;
2251
2252 diag = kdbgetularg(argv[1], &cpunum);
2253 if (diag)
2254 return diag;
2255
2256 /*
2257 * Validate cpunum
2258 */
a1465d2f 2259 if ((cpunum > NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
5d5314d6
JW
2260 return KDB_BADCPUNUM;
2261
2262 dbg_switch_cpu = cpunum;
2263
2264 /*
2265 * Switch to other cpu
2266 */
2267 return KDB_CMD_CPU;
2268}
2269
2270/* The user may not realize that ps/bta with no parameters does not print idle
2271 * or sleeping system daemon processes, so tell them how many were suppressed.
2272 */
2273void kdb_ps_suppressed(void)
2274{
2275 int idle = 0, daemon = 0;
2276 unsigned long mask_I = kdb_task_state_string("I"),
2277 mask_M = kdb_task_state_string("M");
2278 unsigned long cpu;
2279 const struct task_struct *p, *g;
2280 for_each_online_cpu(cpu) {
2281 p = kdb_curr_task(cpu);
2282 if (kdb_task_state(p, mask_I))
2283 ++idle;
2284 }
2285 kdb_do_each_thread(g, p) {
2286 if (kdb_task_state(p, mask_M))
2287 ++daemon;
2288 } kdb_while_each_thread(g, p);
2289 if (idle || daemon) {
2290 if (idle)
2291 kdb_printf("%d idle process%s (state I)%s\n",
2292 idle, idle == 1 ? "" : "es",
2293 daemon ? " and " : "");
2294 if (daemon)
2295 kdb_printf("%d sleeping system daemon (state M) "
2296 "process%s", daemon,
2297 daemon == 1 ? "" : "es");
2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 }
2300}
2301
2302/*
2303 * kdb_ps - This function implements the 'ps' command which shows a
2304 * list of the active processes.
2305 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2306 */
2307void kdb_ps1(const struct task_struct *p)
2308{
2309 int cpu;
2310 unsigned long tmp;
2311
2312 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2313 return;
2314
2315 cpu = kdb_process_cpu(p);
2316 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2317 (void *)p, p->pid, p->parent->pid,
2318 kdb_task_has_cpu(p), kdb_process_cpu(p),
2319 kdb_task_state_char(p),
2320 (void *)(&p->thread),
2321 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322 p->comm);
2323 if (kdb_task_has_cpu(p)) {
2324 if (!KDB_TSK(cpu)) {
2325 kdb_printf(" Error: no saved data for this cpu\n");
2326 } else {
2327 if (KDB_TSK(cpu) != p)
2328 kdb_printf(" Error: does not match running "
2329 "process table (0x%p)\n", KDB_TSK(cpu));
2330 }
2331 }
2332}
2333
2334static int kdb_ps(int argc, const char **argv)
2335{
2336 struct task_struct *g, *p;
2337 unsigned long mask, cpu;
2338
2339 if (argc == 0)
2340 kdb_ps_suppressed();
2341 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2342 (int)(2*sizeof(void *))+2, "Task Addr",
2343 (int)(2*sizeof(void *))+2, "Thread");
2344 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345 /* Run the active tasks first */
2346 for_each_online_cpu(cpu) {
2347 if (KDB_FLAG(CMD_INTERRUPT))
2348 return 0;
2349 p = kdb_curr_task(cpu);
2350 if (kdb_task_state(p, mask))
2351 kdb_ps1(p);
2352 }
2353 kdb_printf("\n");
2354 /* Now the real tasks */
2355 kdb_do_each_thread(g, p) {
2356 if (KDB_FLAG(CMD_INTERRUPT))
2357 return 0;
2358 if (kdb_task_state(p, mask))
2359 kdb_ps1(p);
2360 } kdb_while_each_thread(g, p);
2361
2362 return 0;
2363}
2364
2365/*
2366 * kdb_pid - This function implements the 'pid' command which switches
2367 * the currently active process.
2368 * pid [<pid> | R]
2369 */
2370static int kdb_pid(int argc, const char **argv)
2371{
2372 struct task_struct *p;
2373 unsigned long val;
2374 int diag;
2375
2376 if (argc > 1)
2377 return KDB_ARGCOUNT;
2378
2379 if (argc) {
2380 if (strcmp(argv[1], "R") == 0) {
2381 p = KDB_TSK(kdb_initial_cpu);
2382 } else {
2383 diag = kdbgetularg(argv[1], &val);
2384 if (diag)
2385 return KDB_BADINT;
2386
2387 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2388 if (!p) {
2389 kdb_printf("No task with pid=%d\n", (pid_t)val);
2390 return 0;
2391 }
2392 }
2393 kdb_set_current_task(p);
2394 }
2395 kdb_printf("KDB current process is %s(pid=%d)\n",
2396 kdb_current_task->comm,
2397 kdb_current_task->pid);
2398
2399 return 0;
2400}
2401
5d5314d6
JW
2402static int kdb_kgdb(int argc, const char **argv)
2403{
2404 return KDB_CMD_KGDB;
2405}
2406
2407/*
2408 * kdb_help - This function implements the 'help' and '?' commands.
2409 */
2410static int kdb_help(int argc, const char **argv)
2411{
2412 kdbtab_t *kt;
2413 int i;
2414
2415 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416 kdb_printf("-----------------------------"
2417 "-----------------------------\n");
2418 for_each_kdbcmd(kt, i) {
074604af 2419 char *space = "";
5d5314d6
JW
2420 if (KDB_FLAG(CMD_INTERRUPT))
2421 return 0;
074604af
JW
2422 if (!kt->cmd_name)
2423 continue;
420c2b1b
AV
2424 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425 continue;
074604af
JW
2426 if (strlen(kt->cmd_usage) > 20)
2427 space = "\n ";
2428 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429 kt->cmd_usage, space, kt->cmd_help);
5d5314d6
JW
2430 }
2431 return 0;
2432}
2433
2434/*
2435 * kdb_kill - This function implements the 'kill' commands.
2436 */
2437static int kdb_kill(int argc, const char **argv)
2438{
2439 long sig, pid;
2440 char *endp;
2441 struct task_struct *p;
2442 struct siginfo info;
2443
2444 if (argc != 2)
2445 return KDB_ARGCOUNT;
2446
2447 sig = simple_strtol(argv[1], &endp, 0);
2448 if (*endp)
2449 return KDB_BADINT;
2450 if (sig >= 0) {
2451 kdb_printf("Invalid signal parameter.<-signal>\n");
2452 return 0;
2453 }
2454 sig = -sig;
2455
2456 pid = simple_strtol(argv[2], &endp, 0);
2457 if (*endp)
2458 return KDB_BADINT;
2459 if (pid <= 0) {
2460 kdb_printf("Process ID must be large than 0.\n");
2461 return 0;
2462 }
2463
2464 /* Find the process. */
2465 p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 if (!p) {
2467 kdb_printf("The specified process isn't found.\n");
2468 return 0;
2469 }
2470 p = p->group_leader;
2471 info.si_signo = sig;
2472 info.si_errno = 0;
2473 info.si_code = SI_USER;
2474 info.si_pid = pid; /* same capabilities as process being signalled */
2475 info.si_uid = 0; /* kdb has root authority */
2476 kdb_send_sig_info(p, &info);
2477 return 0;
2478}
2479
2480struct kdb_tm {
2481 int tm_sec; /* seconds */
2482 int tm_min; /* minutes */
2483 int tm_hour; /* hours */
2484 int tm_mday; /* day of the month */
2485 int tm_mon; /* month */
2486 int tm_year; /* year */
2487};
2488
2489static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490{
2491 /* This will work from 1970-2099, 2100 is not a leap year */
2492 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493 31, 30, 31, 30, 31 };
2494 memset(tm, 0, sizeof(*tm));
2495 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2496 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2498 tm->tm_min = tm->tm_sec / 60 % 60;
2499 tm->tm_hour = tm->tm_sec / 60 / 60;
2500 tm->tm_sec = tm->tm_sec % 60;
2501 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502 tm->tm_mday %= (4*365+1);
2503 mon_day[1] = 29;
2504 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505 tm->tm_mday -= mon_day[tm->tm_mon];
2506 if (++tm->tm_mon == 12) {
2507 tm->tm_mon = 0;
2508 ++tm->tm_year;
2509 mon_day[1] = 28;
2510 }
2511 }
2512 ++tm->tm_mday;
2513}
2514
2515/*
2516 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517 * I cannot call that code directly from kdb, it has an unconditional
2518 * cli()/sti() and calls routines that take locks which can stop the debugger.
2519 */
2520static void kdb_sysinfo(struct sysinfo *val)
2521{
2522 struct timespec uptime;
a9821c74 2523 ktime_get_ts(&uptime);
5d5314d6
JW
2524 memset(val, 0, sizeof(*val));
2525 val->uptime = uptime.tv_sec;
2526 val->loads[0] = avenrun[0];
2527 val->loads[1] = avenrun[1];
2528 val->loads[2] = avenrun[2];
2529 val->procs = nr_threads-1;
2530 si_meminfo(val);
2531
2532 return;
2533}
2534
2535/*
2536 * kdb_summary - This function implements the 'summary' command.
2537 */
2538static int kdb_summary(int argc, const char **argv)
2539{
157b1a23 2540 struct timespec now;
5d5314d6
JW
2541 struct kdb_tm tm;
2542 struct sysinfo val;
2543
2544 if (argc)
2545 return KDB_ARGCOUNT;
2546
2547 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2548 kdb_printf("release %s\n", init_uts_ns.name.release);
2549 kdb_printf("version %s\n", init_uts_ns.name.version);
2550 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2551 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2552 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2554
157b1a23
TG
2555 now = __current_kernel_time();
2556 kdb_gmtime(&now, &tm);
5d5314d6
JW
2557 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2558 "tz_minuteswest %d\n",
2559 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560 tm.tm_hour, tm.tm_min, tm.tm_sec,
2561 sys_tz.tz_minuteswest);
2562
2563 kdb_sysinfo(&val);
2564 kdb_printf("uptime ");
2565 if (val.uptime > (24*60*60)) {
2566 int days = val.uptime / (24*60*60);
2567 val.uptime %= (24*60*60);
2568 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569 }
2570 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571
2572 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573
2574#define LOAD_INT(x) ((x) >> FSHIFT)
2575#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580#undef LOAD_INT
2581#undef LOAD_FRAC
2582 /* Display in kilobytes */
2583#define K(x) ((x) << (PAGE_SHIFT - 10))
2584 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2585 "Buffers: %8lu kB\n",
2586 val.totalram, val.freeram, val.bufferram);
2587 return 0;
2588}
2589
2590/*
2591 * kdb_per_cpu - This function implements the 'per_cpu' command.
2592 */
2593static int kdb_per_cpu(int argc, const char **argv)
2594{
931ea248
JW
2595 char fmtstr[64];
2596 int cpu, diag, nextarg = 1;
2597 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2598
2599 if (argc < 1 || argc > 3)
2600 return KDB_ARGCOUNT;
2601
931ea248
JW
2602 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603 if (diag)
2604 return diag;
2605
5d5314d6
JW
2606 if (argc >= 2) {
2607 diag = kdbgetularg(argv[2], &bytesperword);
2608 if (diag)
2609 return diag;
2610 }
2611 if (!bytesperword)
2612 bytesperword = KDB_WORD_SIZE;
2613 else if (bytesperword > KDB_WORD_SIZE)
2614 return KDB_BADWIDTH;
2615 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616 if (argc >= 3) {
2617 diag = kdbgetularg(argv[3], &whichcpu);
2618 if (diag)
2619 return diag;
2620 if (!cpu_online(whichcpu)) {
2621 kdb_printf("cpu %ld is not online\n", whichcpu);
2622 return KDB_BADCPUNUM;
2623 }
2624 }
2625
2626 /* Most architectures use __per_cpu_offset[cpu], some use
2627 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628 */
2629#ifdef __per_cpu_offset
2630#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631#else
2632#ifdef CONFIG_SMP
2633#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634#else
2635#define KDB_PCU(cpu) 0
2636#endif
2637#endif
5d5314d6 2638 for_each_online_cpu(cpu) {
931ea248
JW
2639 if (KDB_FLAG(CMD_INTERRUPT))
2640 return 0;
2641
5d5314d6
JW
2642 if (whichcpu != ~0UL && whichcpu != cpu)
2643 continue;
931ea248 2644 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2645 diag = kdb_getword(&val, addr, bytesperword);
2646 if (diag) {
2647 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648 "read, diag=%d\n", cpu, addr, diag);
2649 continue;
2650 }
5d5314d6
JW
2651 kdb_printf("%5d ", cpu);
2652 kdb_md_line(fmtstr, addr,
2653 bytesperword == KDB_WORD_SIZE,
2654 1, bytesperword, 1, 1, 0);
2655 }
5d5314d6 2656#undef KDB_PCU
5d5314d6
JW
2657 return 0;
2658}
2659
2660/*
2661 * display help for the use of cmd | grep pattern
2662 */
2663static int kdb_grep_help(int argc, const char **argv)
2664{
2665 kdb_printf("Usage of cmd args | grep pattern:\n");
2666 kdb_printf(" Any command's output may be filtered through an ");
2667 kdb_printf("emulated 'pipe'.\n");
2668 kdb_printf(" 'grep' is just a key word.\n");
2669 kdb_printf(" The pattern may include a very limited set of "
2670 "metacharacters:\n");
2671 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2672 kdb_printf(" And if there are spaces in the pattern, you may "
2673 "quote it:\n");
2674 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675 " or \"^pat tern$\"\n");
2676 return 0;
2677}
2678
2679/*
42c884c1 2680 * kdb_register_flags - This function is used to register a kernel
5d5314d6
JW
2681 * debugger command.
2682 * Inputs:
2683 * cmd Command name
2684 * func Function to execute the command
2685 * usage A simple usage string showing arguments
2686 * help A simple help string describing command
2687 * repeat Does the command auto repeat on enter?
2688 * Returns:
2689 * zero for success, one if a duplicate command.
2690 */
2691#define kdb_command_extend 50 /* arbitrary */
42c884c1
AV
2692int kdb_register_flags(char *cmd,
2693 kdb_func_t func,
2694 char *usage,
2695 char *help,
2696 short minlen,
2697 kdb_cmdflags_t flags)
5d5314d6
JW
2698{
2699 int i;
2700 kdbtab_t *kp;
2701
2702 /*
2703 * Brute force method to determine duplicates
2704 */
2705 for_each_kdbcmd(kp, i) {
2706 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707 kdb_printf("Duplicate kdb command registered: "
2708 "%s, func %p help %s\n", cmd, func, help);
2709 return 1;
2710 }
2711 }
2712
2713 /*
2714 * Insert command into first available location in table
2715 */
2716 for_each_kdbcmd(kp, i) {
2717 if (kp->cmd_name == NULL)
2718 break;
2719 }
2720
2721 if (i >= kdb_max_commands) {
2722 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723 kdb_command_extend) * sizeof(*new), GFP_KDB);
2724 if (!new) {
2725 kdb_printf("Could not allocate new kdb_command "
2726 "table\n");
2727 return 1;
2728 }
2729 if (kdb_commands) {
2730 memcpy(new, kdb_commands,
5450d904 2731 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
5d5314d6
JW
2732 kfree(kdb_commands);
2733 }
f7c82d5a 2734 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
5d5314d6
JW
2735 kdb_command_extend * sizeof(*new));
2736 kdb_commands = new;
5450d904 2737 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
5d5314d6
JW
2738 kdb_max_commands += kdb_command_extend;
2739 }
2740
2741 kp->cmd_name = cmd;
2742 kp->cmd_func = func;
2743 kp->cmd_usage = usage;
2744 kp->cmd_help = help;
5d5314d6 2745 kp->cmd_minlen = minlen;
15a42a9b 2746 kp->cmd_flags = flags;
5d5314d6
JW
2747
2748 return 0;
2749}
42c884c1 2750EXPORT_SYMBOL_GPL(kdb_register_flags);
f7030bbc 2751
5d5314d6
JW
2752
2753/*
2754 * kdb_register - Compatibility register function for commands that do
2755 * not need to specify a repeat state. Equivalent to
e8ab24d9 2756 * kdb_register_flags with flags set to 0.
5d5314d6
JW
2757 * Inputs:
2758 * cmd Command name
2759 * func Function to execute the command
2760 * usage A simple usage string showing arguments
2761 * help A simple help string describing command
2762 * Returns:
2763 * zero for success, one if a duplicate command.
2764 */
2765int kdb_register(char *cmd,
2766 kdb_func_t func,
2767 char *usage,
2768 char *help,
2769 short minlen)
2770{
e8ab24d9 2771 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
5d5314d6 2772}
f7030bbc 2773EXPORT_SYMBOL_GPL(kdb_register);
5d5314d6
JW
2774
2775/*
2776 * kdb_unregister - This function is used to unregister a kernel
2777 * debugger command. It is generally called when a module which
2778 * implements kdb commands is unloaded.
2779 * Inputs:
2780 * cmd Command name
2781 * Returns:
2782 * zero for success, one command not registered.
2783 */
2784int kdb_unregister(char *cmd)
2785{
2786 int i;
2787 kdbtab_t *kp;
2788
2789 /*
2790 * find the command.
2791 */
75d14ede 2792 for_each_kdbcmd(kp, i) {
5d5314d6
JW
2793 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794 kp->cmd_name = NULL;
2795 return 0;
2796 }
2797 }
2798
2799 /* Couldn't find it. */
2800 return 1;
2801}
f7030bbc 2802EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6
JW
2803
2804/* Initialize the kdb command table. */
2805static void __init kdb_inittab(void)
2806{
2807 int i;
2808 kdbtab_t *kp;
2809
2810 for_each_kdbcmd(kp, i)
2811 kp->cmd_name = NULL;
2812
42c884c1 2813 kdb_register_flags("md", kdb_md, "<vaddr>",
5d5314d6 2814 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
9452e977 2815 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2816 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
9452e977
DT
2817 "Display Raw Memory", 0,
2818 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2819 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
9452e977
DT
2820 "Display Physical Memory", 0,
2821 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2822 kdb_register_flags("mds", kdb_md, "<vaddr>",
9452e977
DT
2823 "Display Memory Symbolically", 0,
2824 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2825 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
9452e977
DT
2826 "Modify Memory Contents", 0,
2827 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
42c884c1 2828 kdb_register_flags("go", kdb_go, "[<vaddr>]",
9452e977
DT
2829 "Continue Execution", 1,
2830 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
42c884c1 2831 kdb_register_flags("rd", kdb_rd, "",
9452e977
DT
2832 "Display Registers", 0,
2833 KDB_ENABLE_REG_READ);
42c884c1 2834 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
9452e977
DT
2835 "Modify Registers", 0,
2836 KDB_ENABLE_REG_WRITE);
42c884c1 2837 kdb_register_flags("ef", kdb_ef, "<vaddr>",
9452e977
DT
2838 "Display exception frame", 0,
2839 KDB_ENABLE_MEM_READ);
42c884c1 2840 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
9452e977
DT
2841 "Stack traceback", 1,
2842 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
42c884c1 2843 kdb_register_flags("btp", kdb_bt, "<pid>",
9452e977
DT
2844 "Display stack for process <pid>", 0,
2845 KDB_ENABLE_INSPECT);
42c884c1 2846 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
9452e977
DT
2847 "Backtrace all processes matching state flag", 0,
2848 KDB_ENABLE_INSPECT);
42c884c1 2849 kdb_register_flags("btc", kdb_bt, "",
9452e977
DT
2850 "Backtrace current process on each cpu", 0,
2851 KDB_ENABLE_INSPECT);
42c884c1 2852 kdb_register_flags("btt", kdb_bt, "<vaddr>",
5d5314d6 2853 "Backtrace process given its struct task address", 0,
9452e977 2854 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
42c884c1 2855 kdb_register_flags("env", kdb_env, "",
9452e977
DT
2856 "Show environment variables", 0,
2857 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2858 kdb_register_flags("set", kdb_set, "",
9452e977
DT
2859 "Set environment variables", 0,
2860 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2861 kdb_register_flags("help", kdb_help, "",
9452e977
DT
2862 "Display Help Message", 1,
2863 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2864 kdb_register_flags("?", kdb_help, "",
9452e977
DT
2865 "Display Help Message", 0,
2866 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2867 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
9452e977
DT
2868 "Switch to new cpu", 0,
2869 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
42c884c1 2870 kdb_register_flags("kgdb", kdb_kgdb, "",
e8ab24d9 2871 "Enter kgdb mode", 0, 0);
42c884c1 2872 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
9452e977
DT
2873 "Display active task list", 0,
2874 KDB_ENABLE_INSPECT);
42c884c1 2875 kdb_register_flags("pid", kdb_pid, "<pidnum>",
9452e977
DT
2876 "Switch to another task", 0,
2877 KDB_ENABLE_INSPECT);
42c884c1 2878 kdb_register_flags("reboot", kdb_reboot, "",
9452e977
DT
2879 "Reboot the machine immediately", 0,
2880 KDB_ENABLE_REBOOT);
5d5314d6 2881#if defined(CONFIG_MODULES)
42c884c1 2882 kdb_register_flags("lsmod", kdb_lsmod, "",
9452e977
DT
2883 "List loaded kernel modules", 0,
2884 KDB_ENABLE_INSPECT);
5d5314d6
JW
2885#endif
2886#if defined(CONFIG_MAGIC_SYSRQ)
42c884c1 2887 kdb_register_flags("sr", kdb_sr, "<key>",
9452e977
DT
2888 "Magic SysRq key", 0,
2889 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
2890#endif
2891#if defined(CONFIG_PRINTK)
42c884c1 2892 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
9452e977
DT
2893 "Display syslog buffer", 0,
2894 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6 2895#endif
ad394f66 2896 if (arch_kgdb_ops.enable_nmi) {
42c884c1 2897 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
9452e977
DT
2898 "Disable NMI entry to KDB", 0,
2899 KDB_ENABLE_ALWAYS_SAFE);
ad394f66 2900 }
42c884c1 2901 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
9452e977
DT
2902 "Define a set of commands, down to endefcmd", 0,
2903 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2904 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
9452e977
DT
2905 "Send a signal to a process", 0,
2906 KDB_ENABLE_SIGNAL);
42c884c1 2907 kdb_register_flags("summary", kdb_summary, "",
9452e977
DT
2908 "Summarize the system", 4,
2909 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2910 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
9452e977
DT
2911 "Display per_cpu variables", 3,
2912 KDB_ENABLE_MEM_READ);
42c884c1 2913 kdb_register_flags("grephelp", kdb_grep_help, "",
9452e977
DT
2914 "Display help on | grep", 0,
2915 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
2916}
2917
2918/* Execute any commands defined in kdb_cmds. */
2919static void __init kdb_cmd_init(void)
2920{
2921 int i, diag;
2922 for (i = 0; kdb_cmds[i]; ++i) {
2923 diag = kdb_parse(kdb_cmds[i]);
2924 if (diag)
2925 kdb_printf("kdb command %s failed, kdb diag %d\n",
2926 kdb_cmds[i], diag);
2927 }
2928 if (defcmd_in_progress) {
2929 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930 kdb_parse("endefcmd");
2931 }
2932}
2933
b595076a 2934/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2935void __init kdb_init(int lvl)
2936{
2937 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938 int i;
2939
2940 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941 return;
2942 for (i = kdb_init_lvl; i < lvl; i++) {
2943 switch (i) {
2944 case KDB_NOT_INITIALIZED:
2945 kdb_inittab(); /* Initialize Command Table */
2946 kdb_initbptab(); /* Initialize Breakpoints */
2947 break;
2948 case KDB_INIT_EARLY:
2949 kdb_cmd_init(); /* Build kdb_cmds tables */
2950 break;
2951 }
2952 }
2953 kdb_init_lvl = lvl;
2954}