kdb: Fix a potential buffer overflow in kdb_local()
[linux-2.6-block.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
420c2b1b 15#include <linux/types.h>
5d5314d6
JW
16#include <linux/string.h>
17#include <linux/kernel.h>
bc792e61 18#include <linux/kmsg_dump.h>
5d5314d6
JW
19#include <linux/reboot.h>
20#include <linux/sched.h>
4f17722c 21#include <linux/sched/loadavg.h>
03441a34 22#include <linux/sched/stat.h>
b17b0153 23#include <linux/sched/debug.h>
5d5314d6
JW
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
ad394f66 28#include <linux/atomic.h>
420c2b1b 29#include <linux/moduleparam.h>
5d5314d6
JW
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
eadb2f47 47#include <linux/security.h>
5d5314d6
JW
48#include "kdb_private.h"
49
420c2b1b
AV
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
b8017177 53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
420c2b1b
AV
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
fb6daa75 56char kdb_grep_string[KDB_GREP_STRLEN];
5d5314d6
JW
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
c893de12 65unsigned int kdb_flags;
5d5314d6
JW
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
5d5314d6
JW
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
e4f291b3
SG
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
5d5314d6
JW
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
420c2b1b 125 KDBMSG(NOPERM, "Permission denied"),
5d5314d6
JW
126};
127#undef KDBMSG
128
5f784f79 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
5d5314d6
JW
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
83fa2d13 142static char *__env[31] = {
5d5314d6 143#if defined(CONFIG_SMP)
83fa2d13 144 "PROMPT=[%d]kdb> ",
5d5314d6 145#else
83fa2d13 146 "PROMPT=kdb> ",
5d5314d6 147#endif
83fa2d13
SG
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
5d5314d6
JW
154};
155
5f784f79 156static const int __nenv = ARRAY_SIZE(__env);
5d5314d6
JW
157
158struct task_struct *kdb_curr_task(int cpu)
159{
160 struct task_struct *p = curr_task(cpu);
161#ifdef _TIF_MCA_INIT
162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
163 p = krp->p;
164#endif
165 return p;
166}
167
9452e977 168/*
eadb2f47
DT
169 * Update the permissions flags (kdb_cmd_enabled) to match the
170 * current lockdown state.
171 *
172 * Within this function the calls to security_locked_down() are "lazy". We
173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
174 * flags that might be subject to lockdown. Additionally we deliberately check
175 * the lockdown flags independently (even though read lockdown implies write
176 * lockdown) since that results in both simpler code and clearer messages to
177 * the user on first-time debugger entry.
178 *
179 * The permission masks during a read+write lockdown permits the following
180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
181 *
182 * The INSPECT commands are not blocked during lockdown because they are
183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
184 * forcing them to have no arguments) and lsmod. These commands do expose
185 * some kernel state but do not allow the developer seated at the console to
186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
187 * given these are allowed for root during lockdown already.
188 */
189static void kdb_check_for_lockdown(void)
190{
191 const int write_flags = KDB_ENABLE_MEM_WRITE |
192 KDB_ENABLE_REG_WRITE |
193 KDB_ENABLE_FLOW_CTRL;
194 const int read_flags = KDB_ENABLE_MEM_READ |
195 KDB_ENABLE_REG_READ;
196
197 bool need_to_lockdown_write = false;
198 bool need_to_lockdown_read = false;
199
200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
201 need_to_lockdown_write =
202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
203
204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
205 need_to_lockdown_read =
206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
207
208 /* De-compose KDB_ENABLE_ALL if required */
209 if (need_to_lockdown_write || need_to_lockdown_read)
210 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
212
213 if (need_to_lockdown_write)
214 kdb_cmd_enabled &= ~write_flags;
215
216 if (need_to_lockdown_read)
217 kdb_cmd_enabled &= ~read_flags;
218}
219
220/*
221 * Check whether the flags of the current command, the permissions of the kdb
222 * console and the lockdown state allow a command to be run.
9452e977 223 */
eadb2f47 224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
9452e977
DT
225 bool no_args)
226{
227 /* permissions comes from userspace so needs massaging slightly */
228 permissions &= KDB_ENABLE_MASK;
229 permissions |= KDB_ENABLE_ALWAYS_SAFE;
230
231 /* some commands change group when launched with no arguments */
232 if (no_args)
233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
234
235 flags |= KDB_ENABLE_ALL;
236
237 return permissions & flags;
238}
239
5d5314d6
JW
240/*
241 * kdbgetenv - This function will return the character string value of
242 * an environment variable.
243 * Parameters:
244 * match A character string representing an environment variable.
245 * Returns:
246 * NULL No environment variable matches 'match'
247 * char* Pointer to string value of environment variable.
248 */
249char *kdbgetenv(const char *match)
250{
251 char **ep = __env;
252 int matchlen = strlen(match);
253 int i;
254
255 for (i = 0; i < __nenv; i++) {
256 char *e = *ep++;
257
258 if (!e)
259 continue;
260
261 if ((strncmp(match, e, matchlen) == 0)
262 && ((e[matchlen] == '\0')
263 || (e[matchlen] == '='))) {
264 char *cp = strchr(e, '=');
265 return cp ? ++cp : "";
266 }
267 }
268 return NULL;
269}
270
271/*
272 * kdballocenv - This function is used to allocate bytes for
273 * environment entries.
274 * Parameters:
23816724 275 * bytes The number of bytes to allocate in the static buffer.
5d5314d6 276 * Returns:
23816724
YP
277 * A pointer to the allocated space in the buffer on success.
278 * NULL if bytes > size available in the envbuffer.
5d5314d6
JW
279 * Remarks:
280 * We use a static environment buffer (envbuffer) to hold the values
281 * of dynamically generated environment variables (see kdb_set). Buffer
282 * space once allocated is never free'd, so over time, the amount of space
283 * (currently 512 bytes) will be exhausted if env variables are changed
284 * frequently.
285 */
286static char *kdballocenv(size_t bytes)
287{
288#define KDB_ENVBUFSIZE 512
289 static char envbuffer[KDB_ENVBUFSIZE];
290 static int envbufsize;
291 char *ep = NULL;
292
293 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
294 ep = &envbuffer[envbufsize];
295 envbufsize += bytes;
296 }
297 return ep;
298}
299
300/*
301 * kdbgetulenv - This function will return the value of an unsigned
302 * long-valued environment variable.
303 * Parameters:
304 * match A character string representing a numeric value
305 * Outputs:
220a31b0 306 * *value the unsigned long representation of the env variable 'match'
5d5314d6
JW
307 * Returns:
308 * Zero on success, a kdb diagnostic on failure.
309 */
310static int kdbgetulenv(const char *match, unsigned long *value)
311{
312 char *ep;
313
314 ep = kdbgetenv(match);
315 if (!ep)
316 return KDB_NOTENV;
317 if (strlen(ep) == 0)
318 return KDB_NOENVVALUE;
319
320 *value = simple_strtoul(ep, NULL, 0);
321
322 return 0;
323}
324
325/*
326 * kdbgetintenv - This function will return the value of an
327 * integer-valued environment variable.
328 * Parameters:
329 * match A character string representing an integer-valued env variable
330 * Outputs:
331 * *value the integer representation of the environment variable 'match'
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
335int kdbgetintenv(const char *match, int *value)
336{
337 unsigned long val;
338 int diag;
339
340 diag = kdbgetulenv(match, &val);
341 if (!diag)
342 *value = (int) val;
343 return diag;
344}
345
83fa2d13
SG
346/*
347 * kdb_setenv() - Alter an existing environment variable or create a new one.
348 * @var: Name of the variable
349 * @val: Value of the variable
350 *
351 * Return: Zero on success, a kdb diagnostic on failure.
352 */
353static int kdb_setenv(const char *var, const char *val)
354{
355 int i;
356 char *ep;
357 size_t varlen, vallen;
358
359 varlen = strlen(var);
360 vallen = strlen(val);
361 ep = kdballocenv(varlen + vallen + 2);
362 if (ep == (char *)0)
363 return KDB_ENVBUFFULL;
364
365 sprintf(ep, "%s=%s", var, val);
366
367 for (i = 0; i < __nenv; i++) {
368 if (__env[i]
369 && ((strncmp(__env[i], var, varlen) == 0)
370 && ((__env[i][varlen] == '\0')
371 || (__env[i][varlen] == '=')))) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 /*
378 * Wasn't existing variable. Fit into slot.
379 */
380 for (i = 0; i < __nenv-1; i++) {
381 if (__env[i] == (char *)0) {
382 __env[i] = ep;
383 return 0;
384 }
385 }
386
387 return KDB_ENVFULL;
388}
389
390/*
391 * kdb_printenv() - Display the current environment variables.
392 */
393static void kdb_printenv(void)
394{
395 int i;
396
397 for (i = 0; i < __nenv; i++) {
398 if (__env[i])
399 kdb_printf("%s\n", __env[i]);
400 }
401}
402
5d5314d6
JW
403/*
404 * kdbgetularg - This function will convert a numeric string into an
405 * unsigned long value.
406 * Parameters:
407 * arg A character string representing a numeric value
408 * Outputs:
220a31b0 409 * *value the unsigned long representation of arg.
5d5314d6
JW
410 * Returns:
411 * Zero on success, a kdb diagnostic on failure.
412 */
413int kdbgetularg(const char *arg, unsigned long *value)
414{
415 char *endp;
416 unsigned long val;
417
418 val = simple_strtoul(arg, &endp, 0);
419
420 if (endp == arg) {
421 /*
534af108 422 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
423 * leading 0x...
424 */
425 val = simple_strtoul(arg, &endp, 16);
426 if (endp == arg)
427 return KDB_BADINT;
428 }
429
430 *value = val;
431
432 return 0;
433}
434
534af108
JW
435int kdbgetu64arg(const char *arg, u64 *value)
436{
437 char *endp;
438 u64 val;
439
440 val = simple_strtoull(arg, &endp, 0);
441
442 if (endp == arg) {
443
444 val = simple_strtoull(arg, &endp, 16);
445 if (endp == arg)
446 return KDB_BADINT;
447 }
448
449 *value = val;
450
451 return 0;
452}
453
5d5314d6
JW
454/*
455 * kdb_set - This function implements the 'set' command. Alter an
456 * existing environment variable or create a new one.
457 */
458int kdb_set(int argc, const char **argv)
459{
5d5314d6
JW
460 /*
461 * we can be invoked two ways:
462 * set var=value argv[1]="var", argv[2]="value"
463 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
464 * - if the latter, shift 'em down.
465 */
466 if (argc == 3) {
467 argv[2] = argv[3];
468 argc--;
469 }
470
471 if (argc != 2)
472 return KDB_ARGCOUNT;
473
ad99b510
DT
474 /*
475 * Censor sensitive variables
476 */
477 if (strcmp(argv[1], "PROMPT") == 0 &&
478 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
479 return KDB_NOPERM;
480
5d5314d6
JW
481 /*
482 * Check for internal variables
483 */
484 if (strcmp(argv[1], "KDBDEBUG") == 0) {
485 unsigned int debugflags;
486 char *cp;
487
488 debugflags = simple_strtoul(argv[2], &cp, 0);
489 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
490 kdb_printf("kdb: illegal debug flags '%s'\n",
491 argv[2]);
492 return 0;
493 }
c893de12 494 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
5d5314d6
JW
495 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
496
497 return 0;
498 }
499
500 /*
501 * Tokenizer squashed the '=' sign. argv[1] is variable
502 * name, argv[2] = value.
503 */
83fa2d13 504 return kdb_setenv(argv[1], argv[2]);
5d5314d6
JW
505}
506
507static int kdb_check_regs(void)
508{
509 if (!kdb_current_regs) {
510 kdb_printf("No current kdb registers."
511 " You may need to select another task\n");
512 return KDB_BADREG;
513 }
514 return 0;
515}
516
517/*
518 * kdbgetaddrarg - This function is responsible for parsing an
519 * address-expression and returning the value of the expression,
520 * symbol name, and offset to the caller.
521 *
522 * The argument may consist of a numeric value (decimal or
220a31b0 523 * hexadecimal), a symbol name, a register name (preceded by the
5d5314d6 524 * percent sign), an environment variable with a numeric value
25985edc 525 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
526 * consisting of a symbol name, +/-, and a numeric constant value
527 * (offset).
528 * Parameters:
529 * argc - count of arguments in argv
530 * argv - argument vector
531 * *nextarg - index to next unparsed argument in argv[]
532 * regs - Register state at time of KDB entry
533 * Outputs:
534 * *value - receives the value of the address-expression
535 * *offset - receives the offset specified, if any
536 * *name - receives the symbol name, if any
537 * *nextarg - index to next unparsed argument in argv[]
538 * Returns:
539 * zero is returned on success, a kdb diagnostic code is
540 * returned on error.
541 */
542int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
543 unsigned long *value, long *offset,
544 char **name)
545{
546 unsigned long addr;
547 unsigned long off = 0;
548 int positive;
549 int diag;
550 int found = 0;
551 char *symname;
552 char symbol = '\0';
553 char *cp;
554 kdb_symtab_t symtab;
555
420c2b1b
AV
556 /*
557 * If the enable flags prohibit both arbitrary memory access
558 * and flow control then there are no reasonable grounds to
559 * provide symbol lookup.
560 */
561 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
562 kdb_cmd_enabled, false))
563 return KDB_NOPERM;
564
5d5314d6
JW
565 /*
566 * Process arguments which follow the following syntax:
567 *
568 * symbol | numeric-address [+/- numeric-offset]
569 * %register
570 * $environment-variable
571 */
572
573 if (*nextarg > argc)
574 return KDB_ARGCOUNT;
575
576 symname = (char *)argv[*nextarg];
577
578 /*
579 * If there is no whitespace between the symbol
580 * or address and the '+' or '-' symbols, we
581 * remember the character and replace it with a
582 * null so the symbol/value can be properly parsed
583 */
584 cp = strpbrk(symname, "+-");
585 if (cp != NULL) {
586 symbol = *cp;
587 *cp++ = '\0';
588 }
589
590 if (symname[0] == '$') {
591 diag = kdbgetulenv(&symname[1], &addr);
592 if (diag)
593 return diag;
594 } else if (symname[0] == '%') {
fcf2736c
DT
595 diag = kdb_check_regs();
596 if (diag)
597 return diag;
5d5314d6
JW
598 /* Implement register values with % at a later time as it is
599 * arch optional.
600 */
601 return KDB_NOTIMP;
602 } else {
603 found = kdbgetsymval(symname, &symtab);
604 if (found) {
605 addr = symtab.sym_start;
606 } else {
607 diag = kdbgetularg(argv[*nextarg], &addr);
608 if (diag)
609 return diag;
610 }
611 }
612
613 if (!found)
614 found = kdbnearsym(addr, &symtab);
615
616 (*nextarg)++;
617
618 if (name)
619 *name = symname;
620 if (value)
621 *value = addr;
622 if (offset && name && *name)
623 *offset = addr - symtab.sym_start;
624
625 if ((*nextarg > argc)
626 && (symbol == '\0'))
627 return 0;
628
629 /*
630 * check for +/- and offset
631 */
632
633 if (symbol == '\0') {
634 if ((argv[*nextarg][0] != '+')
635 && (argv[*nextarg][0] != '-')) {
636 /*
637 * Not our argument. Return.
638 */
639 return 0;
640 } else {
641 positive = (argv[*nextarg][0] == '+');
642 (*nextarg)++;
643 }
644 } else
645 positive = (symbol == '+');
646
647 /*
648 * Now there must be an offset!
649 */
650 if ((*nextarg > argc)
651 && (symbol == '\0')) {
652 return KDB_INVADDRFMT;
653 }
654
655 if (!symbol) {
656 cp = (char *)argv[*nextarg];
657 (*nextarg)++;
658 }
659
660 diag = kdbgetularg(cp, &off);
661 if (diag)
662 return diag;
663
664 if (!positive)
665 off = -off;
666
667 if (offset)
668 *offset += off;
669
670 if (value)
671 *value += off;
672
673 return 0;
674}
675
676static void kdb_cmderror(int diag)
677{
678 int i;
679
680 if (diag >= 0) {
681 kdb_printf("no error detected (diagnostic is %d)\n", diag);
682 return;
683 }
684
685 for (i = 0; i < __nkdb_err; i++) {
686 if (kdbmsgs[i].km_diag == diag) {
687 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
688 return;
689 }
690 }
691
692 kdb_printf("Unknown diag %d\n", -diag);
693}
694
695/*
696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
697 * command which defines one command as a set of other commands,
698 * terminated by endefcmd. kdb_defcmd processes the initial
699 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
700 * the following commands until 'endefcmd'.
701 * Inputs:
702 * argc argument count
703 * argv argument vector
704 * Returns:
705 * zero for success, a kdb diagnostic if error
706 */
b39cded8 707struct kdb_macro {
9a5db530
SG
708 kdbtab_t cmd; /* Macro command */
709 struct list_head statements; /* Associated statement list */
5d5314d6 710};
9a5db530
SG
711
712struct kdb_macro_statement {
713 char *statement; /* Statement text */
714 struct list_head list_node; /* Statement list node */
715};
716
b39cded8 717static struct kdb_macro *kdb_macro;
7faedcd4 718static bool defcmd_in_progress;
5d5314d6
JW
719
720/* Forward references */
721static int kdb_exec_defcmd(int argc, const char **argv);
722
723static int kdb_defcmd2(const char *cmdstr, const char *argv0)
724{
9a5db530
SG
725 struct kdb_macro_statement *kms;
726
727 if (!kdb_macro)
728 return KDB_NOTIMP;
729
5d5314d6 730 if (strcmp(argv0, "endefcmd") == 0) {
7faedcd4 731 defcmd_in_progress = false;
9a5db530
SG
732 if (!list_empty(&kdb_macro->statements))
733 kdb_register(&kdb_macro->cmd);
5d5314d6
JW
734 return 0;
735 }
9a5db530
SG
736
737 kms = kmalloc(sizeof(*kms), GFP_KDB);
738 if (!kms) {
739 kdb_printf("Could not allocate new kdb macro command: %s\n",
5d5314d6 740 cmdstr);
5d5314d6
JW
741 return KDB_NOTIMP;
742 }
9a5db530
SG
743
744 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
745 list_add_tail(&kms->list_node, &kdb_macro->statements);
746
5d5314d6
JW
747 return 0;
748}
749
750static int kdb_defcmd(int argc, const char **argv)
751{
c25abcd6
SG
752 kdbtab_t *mp;
753
5d5314d6
JW
754 if (defcmd_in_progress) {
755 kdb_printf("kdb: nested defcmd detected, assuming missing "
756 "endefcmd\n");
757 kdb_defcmd2("endefcmd", "endefcmd");
758 }
759 if (argc == 0) {
9a5db530
SG
760 kdbtab_t *kp;
761 struct kdb_macro *kmp;
762 struct kdb_macro_statement *kms;
763
764 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
e868f0a3 765 if (kp->func == kdb_exec_defcmd) {
9a5db530 766 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
e868f0a3 767 kp->name, kp->usage, kp->help);
9a5db530
SG
768 kmp = container_of(kp, struct kdb_macro, cmd);
769 list_for_each_entry(kms, &kmp->statements,
770 list_node)
771 kdb_printf("%s", kms->statement);
772 kdb_printf("endefcmd\n");
773 }
5d5314d6
JW
774 }
775 return 0;
776 }
777 if (argc != 3)
778 return KDB_ARGCOUNT;
a37372f6
JW
779 if (in_dbg_master()) {
780 kdb_printf("Command only available during kdb_init()\n");
781 return KDB_NOTIMP;
782 }
9a5db530 783 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
b39cded8 784 if (!kdb_macro)
4eb7a66d 785 goto fail_defcmd;
c25abcd6 786
9a5db530 787 mp = &kdb_macro->cmd;
e868f0a3
SG
788 mp->func = kdb_exec_defcmd;
789 mp->minlen = 0;
790 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
791 mp->name = kdb_strdup(argv[1], GFP_KDB);
792 if (!mp->name)
4eb7a66d 793 goto fail_name;
e868f0a3
SG
794 mp->usage = kdb_strdup(argv[2], GFP_KDB);
795 if (!mp->usage)
4eb7a66d 796 goto fail_usage;
e868f0a3
SG
797 mp->help = kdb_strdup(argv[3], GFP_KDB);
798 if (!mp->help)
4eb7a66d 799 goto fail_help;
e868f0a3
SG
800 if (mp->usage[0] == '"') {
801 strcpy(mp->usage, argv[2]+1);
802 mp->usage[strlen(mp->usage)-1] = '\0';
5d5314d6 803 }
e868f0a3
SG
804 if (mp->help[0] == '"') {
805 strcpy(mp->help, argv[3]+1);
806 mp->help[strlen(mp->help)-1] = '\0';
5d5314d6 807 }
9a5db530
SG
808
809 INIT_LIST_HEAD(&kdb_macro->statements);
7faedcd4 810 defcmd_in_progress = true;
5d5314d6 811 return 0;
4eb7a66d 812fail_help:
e868f0a3 813 kfree(mp->usage);
4eb7a66d 814fail_usage:
e868f0a3 815 kfree(mp->name);
4eb7a66d 816fail_name:
b39cded8 817 kfree(kdb_macro);
4eb7a66d 818fail_defcmd:
b39cded8 819 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
4eb7a66d 820 return KDB_NOTIMP;
5d5314d6
JW
821}
822
823/*
824 * kdb_exec_defcmd - Execute the set of commands associated with this
825 * defcmd name.
826 * Inputs:
827 * argc argument count
828 * argv argument vector
829 * Returns:
830 * zero for success, a kdb diagnostic if error
831 */
832static int kdb_exec_defcmd(int argc, const char **argv)
833{
9a5db530
SG
834 int ret;
835 kdbtab_t *kp;
836 struct kdb_macro *kmp;
837 struct kdb_macro_statement *kms;
838
5d5314d6
JW
839 if (argc != 0)
840 return KDB_ARGCOUNT;
9a5db530
SG
841
842 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
e868f0a3 843 if (strcmp(kp->name, argv[0]) == 0)
5d5314d6
JW
844 break;
845 }
9a5db530 846 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
5d5314d6
JW
847 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
848 argv[0]);
849 return KDB_NOTIMP;
850 }
9a5db530
SG
851 kmp = container_of(kp, struct kdb_macro, cmd);
852 list_for_each_entry(kms, &kmp->statements, list_node) {
853 /*
854 * Recursive use of kdb_parse, do not use argv after this point.
855 */
5d5314d6 856 argv = NULL;
e868f0a3 857 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
9a5db530 858 ret = kdb_parse(kms->statement);
5d5314d6
JW
859 if (ret)
860 return ret;
861 }
862 return 0;
863}
864
865/* Command history */
866#define KDB_CMD_HISTORY_COUNT 32
867#define CMD_BUFLEN 200 /* kdb_printf: max printline
868 * size == 256 */
869static unsigned int cmd_head, cmd_tail;
870static unsigned int cmdptr;
871static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
872static char cmd_cur[CMD_BUFLEN];
873
874/*
875 * The "str" argument may point to something like | grep xyz
876 */
877static void parse_grep(const char *str)
878{
879 int len;
880 char *cp = (char *)str, *cp2;
881
882 /* sanity check: we should have been called with the \ first */
883 if (*cp != '|')
884 return;
885 cp++;
886 while (isspace(*cp))
887 cp++;
63571431 888 if (!str_has_prefix(cp, "grep ")) {
5d5314d6
JW
889 kdb_printf("invalid 'pipe', see grephelp\n");
890 return;
891 }
892 cp += 5;
893 while (isspace(*cp))
894 cp++;
895 cp2 = strchr(cp, '\n');
896 if (cp2)
897 *cp2 = '\0'; /* remove the trailing newline */
898 len = strlen(cp);
899 if (len == 0) {
900 kdb_printf("invalid 'pipe', see grephelp\n");
901 return;
902 }
903 /* now cp points to a nonzero length search string */
904 if (*cp == '"') {
905 /* allow it be "x y z" by removing the "'s - there must
906 be two of them */
907 cp++;
908 cp2 = strchr(cp, '"');
909 if (!cp2) {
910 kdb_printf("invalid quoted string, see grephelp\n");
911 return;
912 }
913 *cp2 = '\0'; /* end the string where the 2nd " was */
914 }
915 kdb_grep_leading = 0;
916 if (*cp == '^') {
917 kdb_grep_leading = 1;
918 cp++;
919 }
920 len = strlen(cp);
921 kdb_grep_trailing = 0;
922 if (*(cp+len-1) == '$') {
923 kdb_grep_trailing = 1;
924 *(cp+len-1) = '\0';
925 }
926 len = strlen(cp);
927 if (!len)
928 return;
fb6daa75 929 if (len >= KDB_GREP_STRLEN) {
5d5314d6
JW
930 kdb_printf("search string too long\n");
931 return;
932 }
933 strcpy(kdb_grep_string, cp);
934 kdb_grepping_flag++;
935 return;
936}
937
938/*
939 * kdb_parse - Parse the command line, search the command table for a
940 * matching command and invoke the command function. This
941 * function may be called recursively, if it is, the second call
942 * will overwrite argv and cbuf. It is the caller's
943 * responsibility to save their argv if they recursively call
944 * kdb_parse().
945 * Parameters:
946 * cmdstr The input command line to be parsed.
947 * regs The registers at the time kdb was entered.
948 * Returns:
949 * Zero for success, a kdb diagnostic if failure.
950 * Remarks:
951 * Limited to 20 tokens.
952 *
953 * Real rudimentary tokenization. Basically only whitespace
220a31b0 954 * is considered a token delimiter (but special consideration
5d5314d6
JW
955 * is taken of the '=' sign as used by the 'set' command).
956 *
957 * The algorithm used to tokenize the input string relies on
958 * there being at least one whitespace (or otherwise useless)
959 * character between tokens as the character immediately following
960 * the token is altered in-place to a null-byte to terminate the
961 * token string.
962 */
963
964#define MAXARGC 20
965
966int kdb_parse(const char *cmdstr)
967{
968 static char *argv[MAXARGC];
969 static int argc;
970 static char cbuf[CMD_BUFLEN+2];
971 char *cp;
972 char *cpp, quoted;
973 kdbtab_t *tp;
e4f291b3 974 int escaped, ignore_errors = 0, check_grep = 0;
5d5314d6
JW
975
976 /*
977 * First tokenize the command string.
978 */
979 cp = (char *)cmdstr;
5d5314d6
JW
980
981 if (KDB_FLAG(CMD_INTERRUPT)) {
982 /* Previous command was interrupted, newline must not
983 * repeat the command */
984 KDB_FLAG_CLEAR(CMD_INTERRUPT);
985 KDB_STATE_SET(PAGER);
986 argc = 0; /* no repeat */
987 }
988
989 if (*cp != '\n' && *cp != '\0') {
990 argc = 0;
991 cpp = cbuf;
992 while (*cp) {
993 /* skip whitespace */
994 while (isspace(*cp))
995 cp++;
996 if ((*cp == '\0') || (*cp == '\n') ||
997 (*cp == '#' && !defcmd_in_progress))
998 break;
999 /* special case: check for | grep pattern */
1000 if (*cp == '|') {
1001 check_grep++;
1002 break;
1003 }
1004 if (cpp >= cbuf + CMD_BUFLEN) {
1005 kdb_printf("kdb_parse: command buffer "
1006 "overflow, command ignored\n%s\n",
1007 cmdstr);
1008 return KDB_NOTFOUND;
1009 }
1010 if (argc >= MAXARGC - 1) {
1011 kdb_printf("kdb_parse: too many arguments, "
1012 "command ignored\n%s\n", cmdstr);
1013 return KDB_NOTFOUND;
1014 }
1015 argv[argc++] = cpp;
1016 escaped = 0;
1017 quoted = '\0';
1018 /* Copy to next unquoted and unescaped
1019 * whitespace or '=' */
1020 while (*cp && *cp != '\n' &&
1021 (escaped || quoted || !isspace(*cp))) {
1022 if (cpp >= cbuf + CMD_BUFLEN)
1023 break;
1024 if (escaped) {
1025 escaped = 0;
1026 *cpp++ = *cp++;
1027 continue;
1028 }
1029 if (*cp == '\\') {
1030 escaped = 1;
1031 ++cp;
1032 continue;
1033 }
1034 if (*cp == quoted)
1035 quoted = '\0';
1036 else if (*cp == '\'' || *cp == '"')
1037 quoted = *cp;
1038 *cpp = *cp++;
1039 if (*cpp == '=' && !quoted)
1040 break;
1041 ++cpp;
1042 }
1043 *cpp++ = '\0'; /* Squash a ws or '=' character */
1044 }
1045 }
1046 if (!argc)
1047 return 0;
1048 if (check_grep)
1049 parse_grep(cp);
1050 if (defcmd_in_progress) {
1051 int result = kdb_defcmd2(cmdstr, argv[0]);
1052 if (!defcmd_in_progress) {
1053 argc = 0; /* avoid repeat on endefcmd */
1054 *(argv[0]) = '\0';
1055 }
1056 return result;
1057 }
1058 if (argv[0][0] == '-' && argv[0][1] &&
1059 (argv[0][1] < '0' || argv[0][1] > '9')) {
1060 ignore_errors = 1;
1061 ++argv[0];
1062 }
1063
e4f291b3
SG
1064 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1065 /*
1066 * If this command is allowed to be abbreviated,
1067 * check to see if this is it.
1068 */
e868f0a3
SG
1069 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1070 (strncmp(argv[0], tp->name, tp->minlen) == 0))
e4f291b3 1071 break;
5d5314d6 1072
e868f0a3 1073 if (strcmp(argv[0], tp->name) == 0)
e4f291b3 1074 break;
5d5314d6
JW
1075 }
1076
1077 /*
1078 * If we don't find a command by this name, see if the first
1079 * few characters of this match any of the known commands.
1080 * e.g., md1c20 should match md.
1081 */
e4f291b3
SG
1082 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1083 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
e868f0a3 1084 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
e4f291b3 1085 break;
5d5314d6
JW
1086 }
1087 }
1088
e4f291b3 1089 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
5d5314d6 1090 int result;
420c2b1b 1091
e868f0a3 1092 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
420c2b1b
AV
1093 return KDB_NOPERM;
1094
5d5314d6 1095 KDB_STATE_SET(CMD);
e868f0a3 1096 result = (*tp->func)(argc-1, (const char **)argv);
5d5314d6
JW
1097 if (result && ignore_errors && result > KDB_CMD_GO)
1098 result = 0;
1099 KDB_STATE_CLEAR(CMD);
04bb171e 1100
e868f0a3 1101 if (tp->flags & KDB_REPEAT_WITH_ARGS)
04bb171e
AV
1102 return result;
1103
e868f0a3 1104 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
04bb171e
AV
1105 if (argv[argc])
1106 *(argv[argc]) = '\0';
5d5314d6
JW
1107 return result;
1108 }
1109
1110 /*
1111 * If the input with which we were presented does not
1112 * map to an existing command, attempt to parse it as an
1113 * address argument and display the result. Useful for
1114 * obtaining the address of a variable, or the nearest symbol
1115 * to an address contained in a register.
1116 */
1117 {
1118 unsigned long value;
1119 char *name = NULL;
1120 long offset;
1121 int nextarg = 0;
1122
1123 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1124 &value, &offset, &name)) {
1125 return KDB_NOTFOUND;
1126 }
1127
1128 kdb_printf("%s = ", argv[0]);
1129 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1130 kdb_printf("\n");
1131 return 0;
1132 }
1133}
1134
1135
1136static int handle_ctrl_cmd(char *cmd)
1137{
1138#define CTRL_P 16
1139#define CTRL_N 14
1140
1141 /* initial situation */
1142 if (cmd_head == cmd_tail)
1143 return 0;
1144 switch (*cmd) {
1145 case CTRL_P:
1146 if (cmdptr != cmd_tail)
1b310030
DA
1147 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1148 KDB_CMD_HISTORY_COUNT;
d228bee8 1149 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
5d5314d6
JW
1150 return 1;
1151 case CTRL_N:
1152 if (cmdptr != cmd_head)
1153 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
d228bee8 1154 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
5d5314d6
JW
1155 return 1;
1156 }
1157 return 0;
1158}
1159
1160/*
1161 * kdb_reboot - This function implements the 'reboot' command. Reboot
1162 * the system immediately, or loop for ever on failure.
1163 */
1164static int kdb_reboot(int argc, const char **argv)
1165{
1166 emergency_restart();
1167 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1168 while (1)
1169 cpu_relax();
1170 /* NOTREACHED */
1171 return 0;
1172}
1173
1174static void kdb_dumpregs(struct pt_regs *regs)
1175{
1176 int old_lvl = console_loglevel;
a8fe19eb 1177 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
d37d39ae 1178 kdb_trap_printk++;
5d5314d6 1179 show_regs(regs);
d37d39ae 1180 kdb_trap_printk--;
5d5314d6
JW
1181 kdb_printf("\n");
1182 console_loglevel = old_lvl;
1183}
1184
9441d5f6 1185static void kdb_set_current_task(struct task_struct *p)
5d5314d6
JW
1186{
1187 kdb_current_task = p;
1188
1189 if (kdb_task_has_cpu(p)) {
1190 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1191 return;
1192 }
1193 kdb_current_regs = NULL;
1194}
1195
b0f73bc7
RD
1196static void drop_newline(char *buf)
1197{
1198 size_t len = strlen(buf);
1199
1200 if (len == 0)
1201 return;
1202 if (*(buf + len - 1) == '\n')
1203 *(buf + len - 1) = '\0';
1204}
1205
5d5314d6
JW
1206/*
1207 * kdb_local - The main code for kdb. This routine is invoked on a
1208 * specific processor, it is not global. The main kdb() routine
1209 * ensures that only one processor at a time is in this routine.
1210 * This code is called with the real reason code on the first
1211 * entry to a kdb session, thereafter it is called with reason
1212 * SWITCH, even if the user goes back to the original cpu.
1213 * Inputs:
1214 * reason The reason KDB was invoked
1215 * error The hardware-defined error code
1216 * regs The exception frame at time of fault/breakpoint.
1217 * db_result Result code from the break or debug point.
1218 * Returns:
1219 * 0 KDB was invoked for an event which it wasn't responsible
1220 * 1 KDB handled the event for which it was invoked.
1221 * KDB_CMD_GO User typed 'go'.
1222 * KDB_CMD_CPU User switched to another cpu.
1223 * KDB_CMD_SS Single step.
5d5314d6
JW
1224 */
1225static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1226 kdb_dbtrap_t db_result)
1227{
1228 char *cmdbuf;
1229 int diag;
1230 struct task_struct *kdb_current =
1231 kdb_curr_task(raw_smp_processor_id());
1232
1233 KDB_DEBUG_STATE("kdb_local 1", reason);
eadb2f47
DT
1234
1235 kdb_check_for_lockdown();
1236
5d5314d6
JW
1237 kdb_go_count = 0;
1238 if (reason == KDB_REASON_DEBUG) {
1239 /* special case below */
1240 } else {
568fb6f4 1241 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
578bd4df 1242 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1243#if defined(CONFIG_SMP)
1244 kdb_printf("on processor %d ", raw_smp_processor_id());
1245#endif
1246 }
1247
1248 switch (reason) {
1249 case KDB_REASON_DEBUG:
1250 {
1251 /*
1252 * If re-entering kdb after a single step
1253 * command, don't print the message.
1254 */
1255 switch (db_result) {
1256 case KDB_DB_BPT:
568fb6f4 1257 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
5d5314d6
JW
1258 kdb_current, kdb_current->pid);
1259#if defined(CONFIG_SMP)
1260 kdb_printf("on processor %d ", raw_smp_processor_id());
1261#endif
1262 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1263 instruction_pointer(regs));
1264 break;
5d5314d6
JW
1265 case KDB_DB_SS:
1266 break;
1267 case KDB_DB_SSBPT:
1268 KDB_DEBUG_STATE("kdb_local 4", reason);
1269 return 1; /* kdba_db_trap did the work */
1270 default:
1271 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1272 db_result);
1273 break;
1274 }
1275
1276 }
1277 break;
1278 case KDB_REASON_ENTER:
1279 if (KDB_STATE(KEYBOARD))
1280 kdb_printf("due to Keyboard Entry\n");
1281 else
1282 kdb_printf("due to KDB_ENTER()\n");
1283 break;
1284 case KDB_REASON_KEYBOARD:
1285 KDB_STATE_SET(KEYBOARD);
1286 kdb_printf("due to Keyboard Entry\n");
1287 break;
1288 case KDB_REASON_ENTER_SLAVE:
1289 /* drop through, slaves only get released via cpu switch */
1290 case KDB_REASON_SWITCH:
1291 kdb_printf("due to cpu switch\n");
1292 break;
1293 case KDB_REASON_OOPS:
1294 kdb_printf("Oops: %s\n", kdb_diemsg);
1295 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1296 instruction_pointer(regs));
1297 kdb_dumpregs(regs);
1298 break;
8daaa5f8
MT
1299 case KDB_REASON_SYSTEM_NMI:
1300 kdb_printf("due to System NonMaskable Interrupt\n");
1301 break;
5d5314d6
JW
1302 case KDB_REASON_NMI:
1303 kdb_printf("due to NonMaskable Interrupt @ "
1304 kdb_machreg_fmt "\n",
1305 instruction_pointer(regs));
5d5314d6
JW
1306 break;
1307 case KDB_REASON_SSTEP:
1308 case KDB_REASON_BREAK:
1309 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1310 reason == KDB_REASON_BREAK ?
1311 "Breakpoint" : "SS trap", instruction_pointer(regs));
1312 /*
1313 * Determine if this breakpoint is one that we
1314 * are interested in.
1315 */
1316 if (db_result != KDB_DB_BPT) {
1317 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1318 db_result);
1319 KDB_DEBUG_STATE("kdb_local 6", reason);
1320 return 0; /* Not for us, dismiss it */
1321 }
1322 break;
1323 case KDB_REASON_RECURSE:
1324 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1325 instruction_pointer(regs));
1326 break;
1327 default:
1328 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1329 KDB_DEBUG_STATE("kdb_local 8", reason);
1330 return 0; /* Not for us, dismiss it */
1331 }
1332
1333 while (1) {
1334 /*
1335 * Initialize pager context.
1336 */
1337 kdb_nextline = 1;
1338 KDB_STATE_CLEAR(SUPPRESS);
ab08e464 1339 kdb_grepping_flag = 0;
fb6daa75
DT
1340 /* ensure the old search does not leak into '/' commands */
1341 kdb_grep_string[0] = '\0';
5d5314d6
JW
1342
1343 cmdbuf = cmd_cur;
1344 *cmdbuf = '\0';
1345 *(cmd_hist[cmd_head]) = '\0';
1346
5d5314d6 1347do_full_getstr:
ad99b510 1348 /* PROMPT can only be set if we have MEM_READ permission. */
5d5314d6
JW
1349 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1350 raw_smp_processor_id());
5d5314d6
JW
1351
1352 /*
1353 * Fetch command from keyboard
1354 */
1355 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1356 if (*cmdbuf != '\n') {
1357 if (*cmdbuf < 32) {
1358 if (cmdptr == cmd_head) {
d228bee8 1359 strscpy(cmd_hist[cmd_head], cmd_cur,
5d5314d6
JW
1360 CMD_BUFLEN);
1361 *(cmd_hist[cmd_head] +
1362 strlen(cmd_hist[cmd_head])-1) = '\0';
1363 }
1364 if (!handle_ctrl_cmd(cmdbuf))
1365 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1366 cmdbuf = cmd_cur;
1367 goto do_full_getstr;
1368 } else {
d228bee8 1369 strscpy(cmd_hist[cmd_head], cmd_cur,
5d5314d6
JW
1370 CMD_BUFLEN);
1371 }
1372
1373 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1374 if (cmd_head == cmd_tail)
1375 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1376 }
1377
1378 cmdptr = cmd_head;
1379 diag = kdb_parse(cmdbuf);
1380 if (diag == KDB_NOTFOUND) {
b0f73bc7 1381 drop_newline(cmdbuf);
5d5314d6
JW
1382 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1383 diag = 0;
1384 }
1385 if (diag == KDB_CMD_GO
1386 || diag == KDB_CMD_CPU
1387 || diag == KDB_CMD_SS
5d5314d6
JW
1388 || diag == KDB_CMD_KGDB)
1389 break;
1390
1391 if (diag)
1392 kdb_cmderror(diag);
1393 }
1394 KDB_DEBUG_STATE("kdb_local 9", diag);
1395 return diag;
1396}
1397
1398
1399/*
1400 * kdb_print_state - Print the state data for the current processor
1401 * for debugging.
1402 * Inputs:
1403 * text Identifies the debug point
1404 * value Any integer value to be printed, e.g. reason code.
1405 */
1406void kdb_print_state(const char *text, int value)
1407{
1408 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1409 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1410 kdb_state);
1411}
1412
1413/*
1414 * kdb_main_loop - After initial setup and assignment of the
1415 * controlling cpu, all cpus are in this loop. One cpu is in
1416 * control and will issue the kdb prompt, the others will spin
1417 * until 'go' or cpu switch.
1418 *
1419 * To get a consistent view of the kernel stacks for all
1420 * processes, this routine is invoked from the main kdb code via
1421 * an architecture specific routine. kdba_main_loop is
1422 * responsible for making the kernel stacks consistent for all
1423 * processes, there should be no difference between a blocked
1424 * process and a running process as far as kdb is concerned.
1425 * Inputs:
1426 * reason The reason KDB was invoked
1427 * error The hardware-defined error code
1428 * reason2 kdb's current reason code.
1429 * Initially error but can change
25985edc 1430 * according to kdb state.
5d5314d6
JW
1431 * db_result Result code from break or debug point.
1432 * regs The exception frame at time of fault/breakpoint.
1433 * should always be valid.
1434 * Returns:
1435 * 0 KDB was invoked for an event which it wasn't responsible
1436 * 1 KDB handled the event for which it was invoked.
1437 */
1438int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1439 kdb_dbtrap_t db_result, struct pt_regs *regs)
1440{
1441 int result = 1;
1442 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1443 while (1) {
1444 /*
1445 * All processors except the one that is in control
1446 * will spin here.
1447 */
1448 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1449 while (KDB_STATE(HOLD_CPU)) {
1450 /* state KDB is turned off by kdb_cpu to see if the
1451 * other cpus are still live, each cpu in this loop
1452 * turns it back on.
1453 */
1454 if (!KDB_STATE(KDB))
1455 KDB_STATE_SET(KDB);
1456 }
1457
1458 KDB_STATE_CLEAR(SUPPRESS);
1459 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1460 if (KDB_STATE(LEAVING))
1461 break; /* Another cpu said 'go' */
1462 /* Still using kdb, this processor is in control */
1463 result = kdb_local(reason2, error, regs, db_result);
1464 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1465
1466 if (result == KDB_CMD_CPU)
1467 break;
1468
1469 if (result == KDB_CMD_SS) {
1470 KDB_STATE_SET(DOING_SS);
1471 break;
1472 }
1473
5d5314d6 1474 if (result == KDB_CMD_KGDB) {
d613d828 1475 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1476 kdb_printf("Entering please attach debugger "
1477 "or use $D#44+ or $3#33\n");
1478 break;
1479 }
1480 if (result && result != 1 && result != KDB_CMD_GO)
1481 kdb_printf("\nUnexpected kdb_local return code %d\n",
1482 result);
1483 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1484 break;
1485 }
1486 if (KDB_STATE(DOING_SS))
1487 KDB_STATE_CLEAR(SSBPT);
1488
8f30d411
AW
1489 /* Clean up any keyboard devices before leaving */
1490 kdb_kbd_cleanup_state();
1491
5d5314d6
JW
1492 return result;
1493}
1494
1495/*
1496 * kdb_mdr - This function implements the guts of the 'mdr', memory
1497 * read command.
1498 * mdr <addr arg>,<byte count>
1499 * Inputs:
1500 * addr Start address
1501 * count Number of bytes
1502 * Returns:
1503 * Always 0. Any errors are detected and printed by kdb_getarea.
1504 */
1505static int kdb_mdr(unsigned long addr, unsigned int count)
1506{
1507 unsigned char c;
1508 while (count--) {
1509 if (kdb_getarea(c, addr))
1510 return 0;
1511 kdb_printf("%02x", c);
1512 addr++;
1513 }
1514 kdb_printf("\n");
1515 return 0;
1516}
1517
1518/*
1519 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1520 * 'md8' 'mdr' and 'mds' commands.
1521 *
1522 * md|mds [<addr arg> [<line count> [<radix>]]]
1523 * mdWcN [<addr arg> [<line count> [<radix>]]]
1524 * where W = is the width (1, 2, 4 or 8) and N is the count.
1525 * for eg., md1c20 reads 20 bytes, 1 at a time.
1526 * mdr <addr arg>,<byte count>
1527 */
1528static void kdb_md_line(const char *fmtstr, unsigned long addr,
1529 int symbolic, int nosect, int bytesperword,
1530 int num, int repeat, int phys)
1531{
1532 /* print just one line of data */
1533 kdb_symtab_t symtab;
1534 char cbuf[32];
1535 char *c = cbuf;
1536 int i;
9eb62f0e 1537 int j;
5d5314d6
JW
1538 unsigned long word;
1539
1540 memset(cbuf, '\0', sizeof(cbuf));
1541 if (phys)
1542 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1543 else
1544 kdb_printf(kdb_machreg_fmt0 " ", addr);
1545
1546 for (i = 0; i < num && repeat--; i++) {
1547 if (phys) {
1548 if (kdb_getphysword(&word, addr, bytesperword))
1549 break;
1550 } else if (kdb_getword(&word, addr, bytesperword))
1551 break;
1552 kdb_printf(fmtstr, word);
1553 if (symbolic)
1554 kdbnearsym(word, &symtab);
1555 else
1556 memset(&symtab, 0, sizeof(symtab));
1557 if (symtab.sym_name) {
1558 kdb_symbol_print(word, &symtab, 0);
1559 if (!nosect) {
1560 kdb_printf("\n");
1561 kdb_printf(" %s %s "
1562 kdb_machreg_fmt " "
1563 kdb_machreg_fmt " "
1564 kdb_machreg_fmt, symtab.mod_name,
1565 symtab.sec_name, symtab.sec_start,
1566 symtab.sym_start, symtab.sym_end);
1567 }
1568 addr += bytesperword;
1569 } else {
1570 union {
1571 u64 word;
1572 unsigned char c[8];
1573 } wc;
1574 unsigned char *cp;
1575#ifdef __BIG_ENDIAN
1576 cp = wc.c + 8 - bytesperword;
1577#else
1578 cp = wc.c;
1579#endif
1580 wc.word = word;
1581#define printable_char(c) \
1582 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
9eb62f0e 1583 for (j = 0; j < bytesperword; j++)
5d5314d6 1584 *c++ = printable_char(*cp++);
9eb62f0e 1585 addr += bytesperword;
5d5314d6
JW
1586#undef printable_char
1587 }
1588 }
1589 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1590 " ", cbuf);
1591}
1592
1593static int kdb_md(int argc, const char **argv)
1594{
1595 static unsigned long last_addr;
1596 static int last_radix, last_bytesperword, last_repeat;
1597 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1598 int nosect = 0;
1599 char fmtchar, fmtstr[64];
1600 unsigned long addr;
1601 unsigned long word;
1602 long offset = 0;
1603 int symbolic = 0;
1604 int valid = 0;
1605 int phys = 0;
1e0ce03b 1606 int raw = 0;
5d5314d6
JW
1607
1608 kdbgetintenv("MDCOUNT", &mdcount);
1609 kdbgetintenv("RADIX", &radix);
1610 kdbgetintenv("BYTESPERWORD", &bytesperword);
1611
1612 /* Assume 'md <addr>' and start with environment values */
1613 repeat = mdcount * 16 / bytesperword;
1614
1615 if (strcmp(argv[0], "mdr") == 0) {
1e0ce03b
RD
1616 if (argc == 2 || (argc == 0 && last_addr != 0))
1617 valid = raw = 1;
1618 else
5d5314d6 1619 return KDB_ARGCOUNT;
5d5314d6
JW
1620 } else if (isdigit(argv[0][2])) {
1621 bytesperword = (int)(argv[0][2] - '0');
1622 if (bytesperword == 0) {
1623 bytesperword = last_bytesperword;
1624 if (bytesperword == 0)
1625 bytesperword = 4;
1626 }
1627 last_bytesperword = bytesperword;
1628 repeat = mdcount * 16 / bytesperword;
1629 if (!argv[0][3])
1630 valid = 1;
1631 else if (argv[0][3] == 'c' && argv[0][4]) {
1632 char *p;
1633 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1634 mdcount = ((repeat * bytesperword) + 15) / 16;
1635 valid = !*p;
1636 }
1637 last_repeat = repeat;
1638 } else if (strcmp(argv[0], "md") == 0)
1639 valid = 1;
1640 else if (strcmp(argv[0], "mds") == 0)
1641 valid = 1;
1642 else if (strcmp(argv[0], "mdp") == 0) {
1643 phys = valid = 1;
1644 }
1645 if (!valid)
1646 return KDB_NOTFOUND;
1647
1648 if (argc == 0) {
1649 if (last_addr == 0)
1650 return KDB_ARGCOUNT;
1651 addr = last_addr;
1652 radix = last_radix;
1653 bytesperword = last_bytesperword;
1654 repeat = last_repeat;
1e0ce03b
RD
1655 if (raw)
1656 mdcount = repeat;
1657 else
1658 mdcount = ((repeat * bytesperword) + 15) / 16;
5d5314d6
JW
1659 }
1660
1661 if (argc) {
1662 unsigned long val;
1663 int diag, nextarg = 1;
1664 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1665 &offset, NULL);
1666 if (diag)
1667 return diag;
1668 if (argc > nextarg+2)
1669 return KDB_ARGCOUNT;
1670
1671 if (argc >= nextarg) {
1672 diag = kdbgetularg(argv[nextarg], &val);
1673 if (!diag) {
1674 mdcount = (int) val;
1e0ce03b
RD
1675 if (raw)
1676 repeat = mdcount;
1677 else
1678 repeat = mdcount * 16 / bytesperword;
5d5314d6
JW
1679 }
1680 }
1681 if (argc >= nextarg+1) {
1682 diag = kdbgetularg(argv[nextarg+1], &val);
1683 if (!diag)
1684 radix = (int) val;
1685 }
1686 }
1687
1e0ce03b
RD
1688 if (strcmp(argv[0], "mdr") == 0) {
1689 int ret;
1690 last_addr = addr;
1691 ret = kdb_mdr(addr, mdcount);
1692 last_addr += mdcount;
1693 last_repeat = mdcount;
1694 last_bytesperword = bytesperword; // to make REPEAT happy
1695 return ret;
1696 }
5d5314d6
JW
1697
1698 switch (radix) {
1699 case 10:
1700 fmtchar = 'd';
1701 break;
1702 case 16:
1703 fmtchar = 'x';
1704 break;
1705 case 8:
1706 fmtchar = 'o';
1707 break;
1708 default:
1709 return KDB_BADRADIX;
1710 }
1711
1712 last_radix = radix;
1713
1714 if (bytesperword > KDB_WORD_SIZE)
1715 return KDB_BADWIDTH;
1716
1717 switch (bytesperword) {
1718 case 8:
1719 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1720 break;
1721 case 4:
1722 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1723 break;
1724 case 2:
1725 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1726 break;
1727 case 1:
1728 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1729 break;
1730 default:
1731 return KDB_BADWIDTH;
1732 }
1733
1734 last_repeat = repeat;
1735 last_bytesperword = bytesperword;
1736
1737 if (strcmp(argv[0], "mds") == 0) {
1738 symbolic = 1;
1739 /* Do not save these changes as last_*, they are temporary mds
1740 * overrides.
1741 */
1742 bytesperword = KDB_WORD_SIZE;
1743 repeat = mdcount;
1744 kdbgetintenv("NOSECT", &nosect);
1745 }
1746
1747 /* Round address down modulo BYTESPERWORD */
1748
1749 addr &= ~(bytesperword-1);
1750
1751 while (repeat > 0) {
1752 unsigned long a;
1753 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1754
1755 if (KDB_FLAG(CMD_INTERRUPT))
1756 return 0;
1757 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1758 if (phys) {
1759 if (kdb_getphysword(&word, a, bytesperword)
1760 || word)
1761 break;
1762 } else if (kdb_getword(&word, a, bytesperword) || word)
1763 break;
1764 }
1765 n = min(num, repeat);
1766 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1767 num, repeat, phys);
1768 addr += bytesperword * n;
1769 repeat -= n;
1770 z = (z + num - 1) / num;
1771 if (z > 2) {
1772 int s = num * (z-2);
1773 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1774 " zero suppressed\n",
1775 addr, addr + bytesperword * s - 1);
1776 addr += bytesperword * s;
1777 repeat -= s;
1778 }
1779 }
1780 last_addr = addr;
1781
1782 return 0;
1783}
1784
1785/*
1786 * kdb_mm - This function implements the 'mm' command.
1787 * mm address-expression new-value
1788 * Remarks:
1789 * mm works on machine words, mmW works on bytes.
1790 */
1791static int kdb_mm(int argc, const char **argv)
1792{
1793 int diag;
1794 unsigned long addr;
1795 long offset = 0;
1796 unsigned long contents;
1797 int nextarg;
1798 int width;
1799
1800 if (argv[0][2] && !isdigit(argv[0][2]))
1801 return KDB_NOTFOUND;
1802
1803 if (argc < 2)
1804 return KDB_ARGCOUNT;
1805
1806 nextarg = 1;
1807 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1808 if (diag)
1809 return diag;
1810
1811 if (nextarg > argc)
1812 return KDB_ARGCOUNT;
1813 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1814 if (diag)
1815 return diag;
1816
1817 if (nextarg != argc + 1)
1818 return KDB_ARGCOUNT;
1819
1820 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1821 diag = kdb_putword(addr, contents, width);
1822 if (diag)
1823 return diag;
1824
1825 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1826
1827 return 0;
1828}
1829
1830/*
1831 * kdb_go - This function implements the 'go' command.
1832 * go [address-expression]
1833 */
1834static int kdb_go(int argc, const char **argv)
1835{
1836 unsigned long addr;
1837 int diag;
1838 int nextarg;
1839 long offset;
1840
495363d3
JW
1841 if (raw_smp_processor_id() != kdb_initial_cpu) {
1842 kdb_printf("go must execute on the entry cpu, "
1843 "please use \"cpu %d\" and then execute go\n",
1844 kdb_initial_cpu);
1845 return KDB_BADCPUNUM;
1846 }
5d5314d6 1847 if (argc == 1) {
5d5314d6
JW
1848 nextarg = 1;
1849 diag = kdbgetaddrarg(argc, argv, &nextarg,
1850 &addr, &offset, NULL);
1851 if (diag)
1852 return diag;
1853 } else if (argc) {
1854 return KDB_ARGCOUNT;
1855 }
1856
1857 diag = KDB_CMD_GO;
1858 if (KDB_FLAG(CATASTROPHIC)) {
1859 kdb_printf("Catastrophic error detected\n");
1860 kdb_printf("kdb_continue_catastrophic=%d, ",
1861 kdb_continue_catastrophic);
1862 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1863 kdb_printf("type go a second time if you really want "
1864 "to continue\n");
1865 return 0;
1866 }
1867 if (kdb_continue_catastrophic == 2) {
1868 kdb_printf("forcing reboot\n");
1869 kdb_reboot(0, NULL);
1870 }
1871 kdb_printf("attempting to continue\n");
1872 }
1873 return diag;
1874}
1875
1876/*
1877 * kdb_rd - This function implements the 'rd' command.
1878 */
1879static int kdb_rd(int argc, const char **argv)
1880{
fcf2736c
DT
1881 int len = kdb_check_regs();
1882#if DBG_MAX_REG_NUM > 0
534af108
JW
1883 int i;
1884 char *rname;
1885 int rsize;
1886 u64 reg64;
1887 u32 reg32;
1888 u16 reg16;
1889 u8 reg8;
1890
fcf2736c
DT
1891 if (len)
1892 return len;
534af108
JW
1893
1894 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1895 rsize = dbg_reg_def[i].size * 2;
1896 if (rsize > 16)
1897 rsize = 2;
1898 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1899 len = 0;
1900 kdb_printf("\n");
1901 }
1902 if (len)
1903 len += kdb_printf(" ");
1904 switch(dbg_reg_def[i].size * 8) {
1905 case 8:
1906 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1907 if (!rname)
1908 break;
1909 len += kdb_printf("%s: %02x", rname, reg8);
1910 break;
1911 case 16:
1912 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1913 if (!rname)
1914 break;
1915 len += kdb_printf("%s: %04x", rname, reg16);
1916 break;
1917 case 32:
1918 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1919 if (!rname)
1920 break;
1921 len += kdb_printf("%s: %08x", rname, reg32);
1922 break;
1923 case 64:
1924 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1925 if (!rname)
1926 break;
1927 len += kdb_printf("%s: %016llx", rname, reg64);
1928 break;
1929 default:
1930 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1931 }
1932 }
1933 kdb_printf("\n");
fcf2736c
DT
1934#else
1935 if (len)
1936 return len;
5d5314d6 1937
fcf2736c
DT
1938 kdb_dumpregs(kdb_current_regs);
1939#endif
5d5314d6
JW
1940 return 0;
1941}
1942
1943/*
1944 * kdb_rm - This function implements the 'rm' (register modify) command.
1945 * rm register-name new-contents
1946 * Remarks:
534af108 1947 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1948 */
1949static int kdb_rm(int argc, const char **argv)
1950{
534af108 1951#if DBG_MAX_REG_NUM > 0
5d5314d6 1952 int diag;
534af108
JW
1953 const char *rname;
1954 int i;
1955 u64 reg64;
1956 u32 reg32;
1957 u16 reg16;
1958 u8 reg8;
5d5314d6
JW
1959
1960 if (argc != 2)
1961 return KDB_ARGCOUNT;
1962 /*
1963 * Allow presence or absence of leading '%' symbol.
1964 */
534af108
JW
1965 rname = argv[1];
1966 if (*rname == '%')
1967 rname++;
5d5314d6 1968
534af108 1969 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1970 if (diag)
1971 return diag;
1972
fcf2736c
DT
1973 diag = kdb_check_regs();
1974 if (diag)
1975 return diag;
534af108
JW
1976
1977 diag = KDB_BADREG;
1978 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1979 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1980 diag = 0;
1981 break;
1982 }
1983 }
1984 if (!diag) {
1985 switch(dbg_reg_def[i].size * 8) {
1986 case 8:
1987 reg8 = reg64;
1988 dbg_set_reg(i, &reg8, kdb_current_regs);
1989 break;
1990 case 16:
1991 reg16 = reg64;
1992 dbg_set_reg(i, &reg16, kdb_current_regs);
1993 break;
1994 case 32:
1995 reg32 = reg64;
1996 dbg_set_reg(i, &reg32, kdb_current_regs);
1997 break;
1998 case 64:
1999 dbg_set_reg(i, &reg64, kdb_current_regs);
2000 break;
2001 }
2002 }
2003 return diag;
2004#else
5d5314d6 2005 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
2006 return 0;
2007#endif
5d5314d6
JW
2008}
2009
2010#if defined(CONFIG_MAGIC_SYSRQ)
2011/*
2012 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2013 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2014 * sr <magic-sysrq-code>
2015 */
2016static int kdb_sr(int argc, const char **argv)
2017{
420c2b1b
AV
2018 bool check_mask =
2019 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2020
5d5314d6
JW
2021 if (argc != 1)
2022 return KDB_ARGCOUNT;
420c2b1b 2023
d37d39ae 2024 kdb_trap_printk++;
420c2b1b 2025 __handle_sysrq(*argv[1], check_mask);
d37d39ae 2026 kdb_trap_printk--;
5d5314d6
JW
2027
2028 return 0;
2029}
2030#endif /* CONFIG_MAGIC_SYSRQ */
2031
2032/*
2033 * kdb_ef - This function implements the 'regs' (display exception
2034 * frame) command. This command takes an address and expects to
2035 * find an exception frame at that address, formats and prints
2036 * it.
2037 * regs address-expression
2038 * Remarks:
2039 * Not done yet.
2040 */
2041static int kdb_ef(int argc, const char **argv)
2042{
2043 int diag;
2044 unsigned long addr;
2045 long offset;
2046 int nextarg;
2047
2048 if (argc != 1)
2049 return KDB_ARGCOUNT;
2050
2051 nextarg = 1;
2052 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2053 if (diag)
2054 return diag;
2055 show_regs((struct pt_regs *)addr);
2056 return 0;
2057}
2058
5d5314d6
JW
2059/*
2060 * kdb_env - This function implements the 'env' command. Display the
2061 * current environment variables.
2062 */
2063
2064static int kdb_env(int argc, const char **argv)
2065{
83fa2d13 2066 kdb_printenv();
5d5314d6
JW
2067
2068 if (KDB_DEBUG(MASK))
c893de12
WL
2069 kdb_printf("KDBDEBUG=0x%x\n",
2070 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
5d5314d6
JW
2071
2072 return 0;
2073}
2074
2075#ifdef CONFIG_PRINTK
2076/*
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 * the contents of the syslog buffer.
2079 * dmesg [lines] [adjust]
2080 */
2081static int kdb_dmesg(int argc, const char **argv)
2082{
bc792e61
AV
2083 int diag;
2084 int logging;
2085 int lines = 0;
2086 int adjust = 0;
2087 int n = 0;
2088 int skip = 0;
f9f3f02d 2089 struct kmsg_dump_iter iter;
bc792e61
AV
2090 size_t len;
2091 char buf[201];
5d5314d6
JW
2092
2093 if (argc > 2)
2094 return KDB_ARGCOUNT;
2095 if (argc) {
2096 char *cp;
2097 lines = simple_strtol(argv[1], &cp, 0);
2098 if (*cp)
2099 lines = 0;
2100 if (argc > 1) {
2101 adjust = simple_strtoul(argv[2], &cp, 0);
2102 if (*cp || adjust < 0)
2103 adjust = 0;
2104 }
2105 }
2106
2107 /* disable LOGGING if set */
2108 diag = kdbgetintenv("LOGGING", &logging);
2109 if (!diag && logging) {
2110 const char *setargs[] = { "set", "LOGGING", "0" };
2111 kdb_set(2, setargs);
2112 }
2113
a4f98765
JO
2114 kmsg_dump_rewind(&iter);
2115 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
bc792e61
AV
2116 n++;
2117
5d5314d6
JW
2118 if (lines < 0) {
2119 if (adjust >= n)
2120 kdb_printf("buffer only contains %d lines, nothing "
2121 "printed\n", n);
2122 else if (adjust - lines >= n)
2123 kdb_printf("buffer only contains %d lines, last %d "
2124 "lines printed\n", n, n - adjust);
bc792e61
AV
2125 skip = adjust;
2126 lines = abs(lines);
5d5314d6 2127 } else if (lines > 0) {
bc792e61
AV
2128 skip = n - lines - adjust;
2129 lines = abs(lines);
5d5314d6
JW
2130 if (adjust >= n) {
2131 kdb_printf("buffer only contains %d lines, "
2132 "nothing printed\n", n);
2133 skip = n;
2134 } else if (skip < 0) {
2135 lines += skip;
2136 skip = 0;
2137 kdb_printf("buffer only contains %d lines, first "
2138 "%d lines printed\n", n, lines);
2139 }
bc792e61
AV
2140 } else {
2141 lines = n;
5d5314d6 2142 }
bc792e61
AV
2143
2144 if (skip >= n || skip < 0)
2145 return 0;
2146
a4f98765
JO
2147 kmsg_dump_rewind(&iter);
2148 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2149 if (skip) {
2150 skip--;
2151 continue;
5d5314d6 2152 }
bc792e61
AV
2153 if (!lines--)
2154 break;
d1871b38
JW
2155 if (KDB_FLAG(CMD_INTERRUPT))
2156 return 0;
bc792e61
AV
2157
2158 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2159 }
5d5314d6
JW
2160
2161 return 0;
2162}
2163#endif /* CONFIG_PRINTK */
ad394f66
AV
2164
2165/* Make sure we balance enable/disable calls, must disable first. */
2166static atomic_t kdb_nmi_disabled;
2167
2168static int kdb_disable_nmi(int argc, const char *argv[])
2169{
2170 if (atomic_read(&kdb_nmi_disabled))
2171 return 0;
2172 atomic_set(&kdb_nmi_disabled, 1);
2173 arch_kgdb_ops.enable_nmi(0);
2174 return 0;
2175}
2176
2177static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2178{
2179 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2180 return -EINVAL;
2181 arch_kgdb_ops.enable_nmi(1);
2182 return 0;
2183}
2184
2185static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186 .set = kdb_param_enable_nmi,
2187};
2188module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2189
5d5314d6
JW
2190/*
2191 * kdb_cpu - This function implements the 'cpu' command.
2192 * cpu [<cpunum>]
2193 * Returns:
2194 * KDB_CMD_CPU for success, a kdb diagnostic if error
2195 */
2196static void kdb_cpu_status(void)
2197{
2198 int i, start_cpu, first_print = 1;
2199 char state, prev_state = '?';
2200
2201 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202 kdb_printf("Available cpus: ");
2203 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204 if (!cpu_online(i)) {
2205 state = 'F'; /* cpu is offline */
a1465d2f
DT
2206 } else if (!kgdb_info[i].enter_kgdb) {
2207 state = 'D'; /* cpu is online but unresponsive */
5d5314d6
JW
2208 } else {
2209 state = ' '; /* cpu is responding to kdb */
b77dbc86
DT
2210 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2211 state = '-'; /* idle task */
5d5314d6
JW
2212 }
2213 if (state != prev_state) {
2214 if (prev_state != '?') {
2215 if (!first_print)
2216 kdb_printf(", ");
2217 first_print = 0;
2218 kdb_printf("%d", start_cpu);
2219 if (start_cpu < i-1)
2220 kdb_printf("-%d", i-1);
2221 if (prev_state != ' ')
2222 kdb_printf("(%c)", prev_state);
2223 }
2224 prev_state = state;
2225 start_cpu = i;
2226 }
2227 }
2228 /* print the trailing cpus, ignoring them if they are all offline */
2229 if (prev_state != 'F') {
2230 if (!first_print)
2231 kdb_printf(", ");
2232 kdb_printf("%d", start_cpu);
2233 if (start_cpu < i-1)
2234 kdb_printf("-%d", i-1);
2235 if (prev_state != ' ')
2236 kdb_printf("(%c)", prev_state);
2237 }
2238 kdb_printf("\n");
2239}
2240
2241static int kdb_cpu(int argc, const char **argv)
2242{
2243 unsigned long cpunum;
2244 int diag;
2245
2246 if (argc == 0) {
2247 kdb_cpu_status();
2248 return 0;
2249 }
2250
2251 if (argc != 1)
2252 return KDB_ARGCOUNT;
2253
2254 diag = kdbgetularg(argv[1], &cpunum);
2255 if (diag)
2256 return diag;
2257
2258 /*
2259 * Validate cpunum
2260 */
df0036d1 2261 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
5d5314d6
JW
2262 return KDB_BADCPUNUM;
2263
2264 dbg_switch_cpu = cpunum;
2265
2266 /*
2267 * Switch to other cpu
2268 */
2269 return KDB_CMD_CPU;
2270}
2271
2272/* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2274 */
2275void kdb_ps_suppressed(void)
2276{
2277 int idle = 0, daemon = 0;
5d5314d6
JW
2278 unsigned long cpu;
2279 const struct task_struct *p, *g;
2280 for_each_online_cpu(cpu) {
2281 p = kdb_curr_task(cpu);
b77dbc86 2282 if (kdb_task_state(p, "-"))
5d5314d6
JW
2283 ++idle;
2284 }
ece4ceaf 2285 for_each_process_thread(g, p) {
b77dbc86 2286 if (kdb_task_state(p, "ims"))
5d5314d6 2287 ++daemon;
ece4ceaf 2288 }
5d5314d6
JW
2289 if (idle || daemon) {
2290 if (idle)
b77dbc86 2291 kdb_printf("%d idle process%s (state -)%s\n",
5d5314d6
JW
2292 idle, idle == 1 ? "" : "es",
2293 daemon ? " and " : "");
2294 if (daemon)
b77dbc86 2295 kdb_printf("%d sleeping system daemon (state [ims]) "
5d5314d6
JW
2296 "process%s", daemon,
2297 daemon == 1 ? "" : "es");
2298 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 }
2300}
2301
5d5314d6
JW
2302void kdb_ps1(const struct task_struct *p)
2303{
2304 int cpu;
2305 unsigned long tmp;
2306
fe557319
CH
2307 if (!p ||
2308 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
5d5314d6
JW
2309 return;
2310
2311 cpu = kdb_process_cpu(p);
568fb6f4 2312 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
5d5314d6
JW
2313 (void *)p, p->pid, p->parent->pid,
2314 kdb_task_has_cpu(p), kdb_process_cpu(p),
2315 kdb_task_state_char(p),
2316 (void *)(&p->thread),
2317 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2318 p->comm);
2319 if (kdb_task_has_cpu(p)) {
2320 if (!KDB_TSK(cpu)) {
2321 kdb_printf(" Error: no saved data for this cpu\n");
2322 } else {
2323 if (KDB_TSK(cpu) != p)
2324 kdb_printf(" Error: does not match running "
568fb6f4 2325 "process table (0x%px)\n", KDB_TSK(cpu));
5d5314d6
JW
2326 }
2327 }
2328}
2329
b77dbc86
DT
2330/*
2331 * kdb_ps - This function implements the 'ps' command which shows a
2332 * list of the active processes.
2333 *
2334 * ps [<state_chars>] Show processes, optionally selecting only those whose
2335 * state character is found in <state_chars>.
2336 */
5d5314d6
JW
2337static int kdb_ps(int argc, const char **argv)
2338{
2339 struct task_struct *g, *p;
b77dbc86
DT
2340 const char *mask;
2341 unsigned long cpu;
5d5314d6
JW
2342
2343 if (argc == 0)
2344 kdb_ps_suppressed();
2345 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2346 (int)(2*sizeof(void *))+2, "Task Addr",
2347 (int)(2*sizeof(void *))+2, "Thread");
b77dbc86 2348 mask = argc ? argv[1] : kdbgetenv("PS");
5d5314d6
JW
2349 /* Run the active tasks first */
2350 for_each_online_cpu(cpu) {
2351 if (KDB_FLAG(CMD_INTERRUPT))
2352 return 0;
2353 p = kdb_curr_task(cpu);
2354 if (kdb_task_state(p, mask))
2355 kdb_ps1(p);
2356 }
2357 kdb_printf("\n");
2358 /* Now the real tasks */
ece4ceaf 2359 for_each_process_thread(g, p) {
5d5314d6
JW
2360 if (KDB_FLAG(CMD_INTERRUPT))
2361 return 0;
2362 if (kdb_task_state(p, mask))
2363 kdb_ps1(p);
ece4ceaf 2364 }
5d5314d6
JW
2365
2366 return 0;
2367}
2368
2369/*
2370 * kdb_pid - This function implements the 'pid' command which switches
2371 * the currently active process.
2372 * pid [<pid> | R]
2373 */
2374static int kdb_pid(int argc, const char **argv)
2375{
2376 struct task_struct *p;
2377 unsigned long val;
2378 int diag;
2379
2380 if (argc > 1)
2381 return KDB_ARGCOUNT;
2382
2383 if (argc) {
2384 if (strcmp(argv[1], "R") == 0) {
2385 p = KDB_TSK(kdb_initial_cpu);
2386 } else {
2387 diag = kdbgetularg(argv[1], &val);
2388 if (diag)
2389 return KDB_BADINT;
2390
2391 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2392 if (!p) {
2393 kdb_printf("No task with pid=%d\n", (pid_t)val);
2394 return 0;
2395 }
2396 }
2397 kdb_set_current_task(p);
2398 }
2399 kdb_printf("KDB current process is %s(pid=%d)\n",
2400 kdb_current_task->comm,
2401 kdb_current_task->pid);
2402
2403 return 0;
2404}
2405
5d5314d6
JW
2406static int kdb_kgdb(int argc, const char **argv)
2407{
2408 return KDB_CMD_KGDB;
2409}
2410
2411/*
2412 * kdb_help - This function implements the 'help' and '?' commands.
2413 */
2414static int kdb_help(int argc, const char **argv)
2415{
2416 kdbtab_t *kt;
5d5314d6
JW
2417
2418 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2419 kdb_printf("-----------------------------"
2420 "-----------------------------\n");
e4f291b3 2421 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
074604af 2422 char *space = "";
5d5314d6
JW
2423 if (KDB_FLAG(CMD_INTERRUPT))
2424 return 0;
e868f0a3 2425 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
420c2b1b 2426 continue;
e868f0a3 2427 if (strlen(kt->usage) > 20)
074604af 2428 space = "\n ";
e868f0a3
SG
2429 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2430 kt->usage, space, kt->help);
5d5314d6
JW
2431 }
2432 return 0;
2433}
2434
2435/*
2436 * kdb_kill - This function implements the 'kill' commands.
2437 */
2438static int kdb_kill(int argc, const char **argv)
2439{
2440 long sig, pid;
2441 char *endp;
2442 struct task_struct *p;
5d5314d6
JW
2443
2444 if (argc != 2)
2445 return KDB_ARGCOUNT;
2446
2447 sig = simple_strtol(argv[1], &endp, 0);
2448 if (*endp)
2449 return KDB_BADINT;
0b44bf9a 2450 if ((sig >= 0) || !valid_signal(-sig)) {
5d5314d6
JW
2451 kdb_printf("Invalid signal parameter.<-signal>\n");
2452 return 0;
2453 }
2454 sig = -sig;
2455
2456 pid = simple_strtol(argv[2], &endp, 0);
2457 if (*endp)
2458 return KDB_BADINT;
2459 if (pid <= 0) {
2460 kdb_printf("Process ID must be large than 0.\n");
2461 return 0;
2462 }
2463
2464 /* Find the process. */
2465 p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 if (!p) {
2467 kdb_printf("The specified process isn't found.\n");
2468 return 0;
2469 }
2470 p = p->group_leader;
0b44bf9a 2471 kdb_send_sig(p, sig);
5d5314d6
JW
2472 return 0;
2473}
2474
5d5314d6
JW
2475/*
2476 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2477 * I cannot call that code directly from kdb, it has an unconditional
2478 * cli()/sti() and calls routines that take locks which can stop the debugger.
2479 */
2480static void kdb_sysinfo(struct sysinfo *val)
2481{
40b90efe
BW
2482 u64 uptime = ktime_get_mono_fast_ns();
2483
5d5314d6 2484 memset(val, 0, sizeof(*val));
40b90efe 2485 val->uptime = div_u64(uptime, NSEC_PER_SEC);
5d5314d6
JW
2486 val->loads[0] = avenrun[0];
2487 val->loads[1] = avenrun[1];
2488 val->loads[2] = avenrun[2];
2489 val->procs = nr_threads-1;
2490 si_meminfo(val);
2491
2492 return;
2493}
2494
2495/*
2496 * kdb_summary - This function implements the 'summary' command.
2497 */
2498static int kdb_summary(int argc, const char **argv)
2499{
6909e29f 2500 time64_t now;
5d5314d6
JW
2501 struct sysinfo val;
2502
2503 if (argc)
2504 return KDB_ARGCOUNT;
2505
2506 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2507 kdb_printf("release %s\n", init_uts_ns.name.release);
2508 kdb_printf("version %s\n", init_uts_ns.name.version);
2509 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2510 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2511 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
5d5314d6 2512
6909e29f 2513 now = __ktime_get_real_seconds();
126ac4d6 2514 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
5d5314d6
JW
2515 kdb_sysinfo(&val);
2516 kdb_printf("uptime ");
2517 if (val.uptime > (24*60*60)) {
2518 int days = val.uptime / (24*60*60);
2519 val.uptime %= (24*60*60);
2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521 }
2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
5d5314d6
JW
2524 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2525 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2526 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2527 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
8508cf3f 2528
5d5314d6
JW
2529 /* Display in kilobytes */
2530#define K(x) ((x) << (PAGE_SHIFT - 10))
2531 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2532 "Buffers: %8lu kB\n",
14675592 2533 K(val.totalram), K(val.freeram), K(val.bufferram));
5d5314d6
JW
2534 return 0;
2535}
2536
2537/*
2538 * kdb_per_cpu - This function implements the 'per_cpu' command.
2539 */
2540static int kdb_per_cpu(int argc, const char **argv)
2541{
931ea248
JW
2542 char fmtstr[64];
2543 int cpu, diag, nextarg = 1;
2544 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2545
2546 if (argc < 1 || argc > 3)
2547 return KDB_ARGCOUNT;
2548
931ea248
JW
2549 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2550 if (diag)
2551 return diag;
2552
5d5314d6
JW
2553 if (argc >= 2) {
2554 diag = kdbgetularg(argv[2], &bytesperword);
2555 if (diag)
2556 return diag;
2557 }
2558 if (!bytesperword)
2559 bytesperword = KDB_WORD_SIZE;
2560 else if (bytesperword > KDB_WORD_SIZE)
2561 return KDB_BADWIDTH;
2562 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2563 if (argc >= 3) {
2564 diag = kdbgetularg(argv[3], &whichcpu);
2565 if (diag)
2566 return diag;
b586627e 2567 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
5d5314d6
JW
2568 kdb_printf("cpu %ld is not online\n", whichcpu);
2569 return KDB_BADCPUNUM;
2570 }
2571 }
2572
2573 /* Most architectures use __per_cpu_offset[cpu], some use
2574 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2575 */
2576#ifdef __per_cpu_offset
2577#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2578#else
2579#ifdef CONFIG_SMP
2580#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2581#else
2582#define KDB_PCU(cpu) 0
2583#endif
2584#endif
5d5314d6 2585 for_each_online_cpu(cpu) {
931ea248
JW
2586 if (KDB_FLAG(CMD_INTERRUPT))
2587 return 0;
2588
5d5314d6
JW
2589 if (whichcpu != ~0UL && whichcpu != cpu)
2590 continue;
931ea248 2591 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2592 diag = kdb_getword(&val, addr, bytesperword);
2593 if (diag) {
2594 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2595 "read, diag=%d\n", cpu, addr, diag);
2596 continue;
2597 }
5d5314d6
JW
2598 kdb_printf("%5d ", cpu);
2599 kdb_md_line(fmtstr, addr,
2600 bytesperword == KDB_WORD_SIZE,
2601 1, bytesperword, 1, 1, 0);
2602 }
5d5314d6 2603#undef KDB_PCU
5d5314d6
JW
2604 return 0;
2605}
2606
2607/*
2608 * display help for the use of cmd | grep pattern
2609 */
2610static int kdb_grep_help(int argc, const char **argv)
2611{
2612 kdb_printf("Usage of cmd args | grep pattern:\n");
2613 kdb_printf(" Any command's output may be filtered through an ");
2614 kdb_printf("emulated 'pipe'.\n");
2615 kdb_printf(" 'grep' is just a key word.\n");
2616 kdb_printf(" The pattern may include a very limited set of "
2617 "metacharacters:\n");
2618 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2619 kdb_printf(" And if there are spaces in the pattern, you may "
2620 "quote it:\n");
2621 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2622 " or \"^pat tern$\"\n");
2623 return 0;
2624}
2625
c25abcd6
SG
2626/**
2627 * kdb_register() - This function is used to register a kernel debugger
2628 * command.
2629 * @cmd: pointer to kdb command
2630 *
2631 * Note that it's the job of the caller to keep the memory for the cmd
2632 * allocated until unregister is called.
5d5314d6 2633 */
c25abcd6 2634int kdb_register(kdbtab_t *cmd)
5d5314d6 2635{
5d5314d6
JW
2636 kdbtab_t *kp;
2637
e4f291b3 2638 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
e868f0a3 2639 if (strcmp(kp->name, cmd->name) == 0) {
c25abcd6 2640 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
e868f0a3 2641 cmd->name, cmd->func, cmd->help);
5d5314d6
JW
2642 return 1;
2643 }
2644 }
2645
c25abcd6 2646 list_add_tail(&cmd->list_node, &kdb_cmds_head);
5d5314d6
JW
2647 return 0;
2648}
c25abcd6 2649EXPORT_SYMBOL_GPL(kdb_register);
f7030bbc 2650
c25abcd6 2651/**
e4f291b3
SG
2652 * kdb_register_table() - This function is used to register a kdb command
2653 * table.
2654 * @kp: pointer to kdb command table
2655 * @len: length of kdb command table
2656 */
2657void kdb_register_table(kdbtab_t *kp, size_t len)
2658{
2659 while (len--) {
2660 list_add_tail(&kp->list_node, &kdb_cmds_head);
2661 kp++;
2662 }
2663}
5d5314d6 2664
c25abcd6
SG
2665/**
2666 * kdb_unregister() - This function is used to unregister a kernel debugger
2667 * command. It is generally called when a module which
2668 * implements kdb command is unloaded.
2669 * @cmd: pointer to kdb command
5d5314d6 2670 */
c25abcd6 2671void kdb_unregister(kdbtab_t *cmd)
5d5314d6 2672{
c25abcd6 2673 list_del(&cmd->list_node);
5d5314d6 2674}
f7030bbc 2675EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6 2676
e4f291b3 2677static kdbtab_t maintab[] = {
e868f0a3
SG
2678 { .name = "md",
2679 .func = kdb_md,
2680 .usage = "<vaddr>",
2681 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2682 .minlen = 1,
2683 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2684 },
e868f0a3
SG
2685 { .name = "mdr",
2686 .func = kdb_md,
2687 .usage = "<vaddr> <bytes>",
2688 .help = "Display Raw Memory",
2689 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2690 },
e868f0a3
SG
2691 { .name = "mdp",
2692 .func = kdb_md,
2693 .usage = "<paddr> <bytes>",
2694 .help = "Display Physical Memory",
2695 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2696 },
e868f0a3
SG
2697 { .name = "mds",
2698 .func = kdb_md,
2699 .usage = "<vaddr>",
2700 .help = "Display Memory Symbolically",
2701 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2702 },
e868f0a3
SG
2703 { .name = "mm",
2704 .func = kdb_mm,
2705 .usage = "<vaddr> <contents>",
2706 .help = "Modify Memory Contents",
2707 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
e4f291b3 2708 },
e868f0a3
SG
2709 { .name = "go",
2710 .func = kdb_go,
2711 .usage = "[<vaddr>]",
2712 .help = "Continue Execution",
2713 .minlen = 1,
2714 .flags = KDB_ENABLE_REG_WRITE |
e4f291b3
SG
2715 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2716 },
e868f0a3
SG
2717 { .name = "rd",
2718 .func = kdb_rd,
2719 .usage = "",
2720 .help = "Display Registers",
2721 .flags = KDB_ENABLE_REG_READ,
e4f291b3 2722 },
e868f0a3
SG
2723 { .name = "rm",
2724 .func = kdb_rm,
2725 .usage = "<reg> <contents>",
2726 .help = "Modify Registers",
2727 .flags = KDB_ENABLE_REG_WRITE,
e4f291b3 2728 },
e868f0a3
SG
2729 { .name = "ef",
2730 .func = kdb_ef,
2731 .usage = "<vaddr>",
2732 .help = "Display exception frame",
2733 .flags = KDB_ENABLE_MEM_READ,
e4f291b3 2734 },
e868f0a3
SG
2735 { .name = "bt",
2736 .func = kdb_bt,
2737 .usage = "[<vaddr>]",
2738 .help = "Stack traceback",
2739 .minlen = 1,
2740 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
e4f291b3 2741 },
e868f0a3
SG
2742 { .name = "btp",
2743 .func = kdb_bt,
2744 .usage = "<pid>",
2745 .help = "Display stack for process <pid>",
2746 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2747 },
e868f0a3
SG
2748 { .name = "bta",
2749 .func = kdb_bt,
b77dbc86
DT
2750 .usage = "[<state_chars>|A]",
2751 .help = "Backtrace all processes whose state matches",
e868f0a3 2752 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2753 },
e868f0a3
SG
2754 { .name = "btc",
2755 .func = kdb_bt,
2756 .usage = "",
2757 .help = "Backtrace current process on each cpu",
2758 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2759 },
e868f0a3
SG
2760 { .name = "btt",
2761 .func = kdb_bt,
2762 .usage = "<vaddr>",
2763 .help = "Backtrace process given its struct task address",
2764 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
e4f291b3 2765 },
e868f0a3
SG
2766 { .name = "env",
2767 .func = kdb_env,
2768 .usage = "",
2769 .help = "Show environment variables",
2770 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2771 },
e868f0a3
SG
2772 { .name = "set",
2773 .func = kdb_set,
2774 .usage = "",
2775 .help = "Set environment variables",
2776 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2777 },
e868f0a3
SG
2778 { .name = "help",
2779 .func = kdb_help,
2780 .usage = "",
2781 .help = "Display Help Message",
2782 .minlen = 1,
2783 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2784 },
e868f0a3
SG
2785 { .name = "?",
2786 .func = kdb_help,
2787 .usage = "",
2788 .help = "Display Help Message",
2789 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2790 },
e868f0a3
SG
2791 { .name = "cpu",
2792 .func = kdb_cpu,
2793 .usage = "<cpunum>",
2794 .help = "Switch to new cpu",
2795 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
e4f291b3 2796 },
e868f0a3
SG
2797 { .name = "kgdb",
2798 .func = kdb_kgdb,
2799 .usage = "",
2800 .help = "Enter kgdb mode",
2801 .flags = 0,
e4f291b3 2802 },
e868f0a3
SG
2803 { .name = "ps",
2804 .func = kdb_ps,
b77dbc86 2805 .usage = "[<state_chars>|A]",
e868f0a3
SG
2806 .help = "Display active task list",
2807 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2808 },
e868f0a3
SG
2809 { .name = "pid",
2810 .func = kdb_pid,
2811 .usage = "<pidnum>",
2812 .help = "Switch to another task",
2813 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2814 },
e868f0a3
SG
2815 { .name = "reboot",
2816 .func = kdb_reboot,
2817 .usage = "",
2818 .help = "Reboot the machine immediately",
2819 .flags = KDB_ENABLE_REBOOT,
e4f291b3 2820 },
5d5314d6 2821#if defined(CONFIG_MODULES)
e868f0a3
SG
2822 { .name = "lsmod",
2823 .func = kdb_lsmod,
2824 .usage = "",
2825 .help = "List loaded kernel modules",
2826 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2827 },
5d5314d6
JW
2828#endif
2829#if defined(CONFIG_MAGIC_SYSRQ)
e868f0a3
SG
2830 { .name = "sr",
2831 .func = kdb_sr,
2832 .usage = "<key>",
2833 .help = "Magic SysRq key",
2834 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2835 },
5d5314d6
JW
2836#endif
2837#if defined(CONFIG_PRINTK)
e868f0a3
SG
2838 { .name = "dmesg",
2839 .func = kdb_dmesg,
2840 .usage = "[lines]",
2841 .help = "Display syslog buffer",
2842 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2843 },
5d5314d6 2844#endif
e868f0a3
SG
2845 { .name = "defcmd",
2846 .func = kdb_defcmd,
2847 .usage = "name \"usage\" \"help\"",
2848 .help = "Define a set of commands, down to endefcmd",
c25abcd6
SG
2849 /*
2850 * Macros are always safe because when executed each
2851 * internal command re-enters kdb_parse() and is safety
2852 * checked individually.
2853 */
e868f0a3 2854 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2855 },
e868f0a3
SG
2856 { .name = "kill",
2857 .func = kdb_kill,
2858 .usage = "<-signal> <pid>",
2859 .help = "Send a signal to a process",
2860 .flags = KDB_ENABLE_SIGNAL,
e4f291b3 2861 },
e868f0a3
SG
2862 { .name = "summary",
2863 .func = kdb_summary,
2864 .usage = "",
2865 .help = "Summarize the system",
2866 .minlen = 4,
2867 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2868 },
e868f0a3
SG
2869 { .name = "per_cpu",
2870 .func = kdb_per_cpu,
2871 .usage = "<sym> [<bytes>] [<cpu>]",
2872 .help = "Display per_cpu variables",
2873 .minlen = 3,
2874 .flags = KDB_ENABLE_MEM_READ,
e4f291b3 2875 },
e868f0a3
SG
2876 { .name = "grephelp",
2877 .func = kdb_grep_help,
2878 .usage = "",
2879 .help = "Display help on | grep",
2880 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3
SG
2881 },
2882};
2883
2884static kdbtab_t nmicmd = {
e868f0a3
SG
2885 .name = "disable_nmi",
2886 .func = kdb_disable_nmi,
2887 .usage = "",
2888 .help = "Disable NMI entry to KDB",
2889 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3
SG
2890};
2891
2892/* Initialize the kdb command table. */
2893static void __init kdb_inittab(void)
2894{
2895 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2896 if (arch_kgdb_ops.enable_nmi)
2897 kdb_register_table(&nmicmd, 1);
5d5314d6
JW
2898}
2899
2900/* Execute any commands defined in kdb_cmds. */
2901static void __init kdb_cmd_init(void)
2902{
2903 int i, diag;
2904 for (i = 0; kdb_cmds[i]; ++i) {
2905 diag = kdb_parse(kdb_cmds[i]);
2906 if (diag)
2907 kdb_printf("kdb command %s failed, kdb diag %d\n",
2908 kdb_cmds[i], diag);
2909 }
2910 if (defcmd_in_progress) {
2911 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2912 kdb_parse("endefcmd");
2913 }
2914}
2915
b595076a 2916/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2917void __init kdb_init(int lvl)
2918{
2919 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2920 int i;
2921
2922 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2923 return;
2924 for (i = kdb_init_lvl; i < lvl; i++) {
2925 switch (i) {
2926 case KDB_NOT_INITIALIZED:
2927 kdb_inittab(); /* Initialize Command Table */
2928 kdb_initbptab(); /* Initialize Breakpoints */
2929 break;
2930 case KDB_INIT_EARLY:
2931 kdb_cmd_init(); /* Build kdb_cmds tables */
2932 break;
2933 }
2934 }
2935 kdb_init_lvl = lvl;
2936}