kdb: Corrects comment for kdballocenv
[linux-2.6-block.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
420c2b1b 15#include <linux/types.h>
5d5314d6
JW
16#include <linux/string.h>
17#include <linux/kernel.h>
bc792e61 18#include <linux/kmsg_dump.h>
5d5314d6
JW
19#include <linux/reboot.h>
20#include <linux/sched.h>
4f17722c 21#include <linux/sched/loadavg.h>
03441a34 22#include <linux/sched/stat.h>
b17b0153 23#include <linux/sched/debug.h>
5d5314d6
JW
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
ad394f66 28#include <linux/atomic.h>
420c2b1b 29#include <linux/moduleparam.h>
5d5314d6
JW
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
eadb2f47 47#include <linux/security.h>
5d5314d6
JW
48#include "kdb_private.h"
49
420c2b1b
AV
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
b8017177 53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
420c2b1b
AV
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
fb6daa75 56char kdb_grep_string[KDB_GREP_STRLEN];
5d5314d6
JW
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
c893de12 65unsigned int kdb_flags;
5d5314d6
JW
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
5d5314d6
JW
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
e4f291b3
SG
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
5d5314d6
JW
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
420c2b1b 125 KDBMSG(NOPERM, "Permission denied"),
5d5314d6
JW
126};
127#undef KDBMSG
128
5f784f79 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
5d5314d6
JW
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
83fa2d13 142static char *__env[31] = {
5d5314d6 143#if defined(CONFIG_SMP)
83fa2d13 144 "PROMPT=[%d]kdb> ",
5d5314d6 145#else
83fa2d13 146 "PROMPT=kdb> ",
5d5314d6 147#endif
83fa2d13
SG
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
5d5314d6
JW
154};
155
5f784f79 156static const int __nenv = ARRAY_SIZE(__env);
5d5314d6
JW
157
158struct task_struct *kdb_curr_task(int cpu)
159{
160 struct task_struct *p = curr_task(cpu);
161#ifdef _TIF_MCA_INIT
162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
163 p = krp->p;
164#endif
165 return p;
166}
167
9452e977 168/*
eadb2f47
DT
169 * Update the permissions flags (kdb_cmd_enabled) to match the
170 * current lockdown state.
171 *
172 * Within this function the calls to security_locked_down() are "lazy". We
173 * avoid calling them if the current value of kdb_cmd_enabled already excludes
174 * flags that might be subject to lockdown. Additionally we deliberately check
175 * the lockdown flags independently (even though read lockdown implies write
176 * lockdown) since that results in both simpler code and clearer messages to
177 * the user on first-time debugger entry.
178 *
179 * The permission masks during a read+write lockdown permits the following
180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
181 *
182 * The INSPECT commands are not blocked during lockdown because they are
183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
184 * forcing them to have no arguments) and lsmod. These commands do expose
185 * some kernel state but do not allow the developer seated at the console to
186 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
187 * given these are allowed for root during lockdown already.
188 */
189static void kdb_check_for_lockdown(void)
190{
191 const int write_flags = KDB_ENABLE_MEM_WRITE |
192 KDB_ENABLE_REG_WRITE |
193 KDB_ENABLE_FLOW_CTRL;
194 const int read_flags = KDB_ENABLE_MEM_READ |
195 KDB_ENABLE_REG_READ;
196
197 bool need_to_lockdown_write = false;
198 bool need_to_lockdown_read = false;
199
200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
201 need_to_lockdown_write =
202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
203
204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
205 need_to_lockdown_read =
206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
207
208 /* De-compose KDB_ENABLE_ALL if required */
209 if (need_to_lockdown_write || need_to_lockdown_read)
210 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
212
213 if (need_to_lockdown_write)
214 kdb_cmd_enabled &= ~write_flags;
215
216 if (need_to_lockdown_read)
217 kdb_cmd_enabled &= ~read_flags;
218}
219
220/*
221 * Check whether the flags of the current command, the permissions of the kdb
222 * console and the lockdown state allow a command to be run.
9452e977 223 */
eadb2f47 224static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
9452e977
DT
225 bool no_args)
226{
227 /* permissions comes from userspace so needs massaging slightly */
228 permissions &= KDB_ENABLE_MASK;
229 permissions |= KDB_ENABLE_ALWAYS_SAFE;
230
231 /* some commands change group when launched with no arguments */
232 if (no_args)
233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
234
235 flags |= KDB_ENABLE_ALL;
236
237 return permissions & flags;
238}
239
5d5314d6
JW
240/*
241 * kdbgetenv - This function will return the character string value of
242 * an environment variable.
243 * Parameters:
244 * match A character string representing an environment variable.
245 * Returns:
246 * NULL No environment variable matches 'match'
247 * char* Pointer to string value of environment variable.
248 */
249char *kdbgetenv(const char *match)
250{
251 char **ep = __env;
252 int matchlen = strlen(match);
253 int i;
254
255 for (i = 0; i < __nenv; i++) {
256 char *e = *ep++;
257
258 if (!e)
259 continue;
260
261 if ((strncmp(match, e, matchlen) == 0)
262 && ((e[matchlen] == '\0')
263 || (e[matchlen] == '='))) {
264 char *cp = strchr(e, '=');
265 return cp ? ++cp : "";
266 }
267 }
268 return NULL;
269}
270
271/*
272 * kdballocenv - This function is used to allocate bytes for
273 * environment entries.
274 * Parameters:
23816724 275 * bytes The number of bytes to allocate in the static buffer.
5d5314d6 276 * Returns:
23816724
YP
277 * A pointer to the allocated space in the buffer on success.
278 * NULL if bytes > size available in the envbuffer.
5d5314d6
JW
279 * Remarks:
280 * We use a static environment buffer (envbuffer) to hold the values
281 * of dynamically generated environment variables (see kdb_set). Buffer
282 * space once allocated is never free'd, so over time, the amount of space
283 * (currently 512 bytes) will be exhausted if env variables are changed
284 * frequently.
285 */
286static char *kdballocenv(size_t bytes)
287{
288#define KDB_ENVBUFSIZE 512
289 static char envbuffer[KDB_ENVBUFSIZE];
290 static int envbufsize;
291 char *ep = NULL;
292
293 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
294 ep = &envbuffer[envbufsize];
295 envbufsize += bytes;
296 }
297 return ep;
298}
299
300/*
301 * kdbgetulenv - This function will return the value of an unsigned
302 * long-valued environment variable.
303 * Parameters:
304 * match A character string representing a numeric value
305 * Outputs:
220a31b0 306 * *value the unsigned long representation of the env variable 'match'
5d5314d6
JW
307 * Returns:
308 * Zero on success, a kdb diagnostic on failure.
309 */
310static int kdbgetulenv(const char *match, unsigned long *value)
311{
312 char *ep;
313
314 ep = kdbgetenv(match);
315 if (!ep)
316 return KDB_NOTENV;
317 if (strlen(ep) == 0)
318 return KDB_NOENVVALUE;
319
320 *value = simple_strtoul(ep, NULL, 0);
321
322 return 0;
323}
324
325/*
326 * kdbgetintenv - This function will return the value of an
327 * integer-valued environment variable.
328 * Parameters:
329 * match A character string representing an integer-valued env variable
330 * Outputs:
331 * *value the integer representation of the environment variable 'match'
332 * Returns:
333 * Zero on success, a kdb diagnostic on failure.
334 */
335int kdbgetintenv(const char *match, int *value)
336{
337 unsigned long val;
338 int diag;
339
340 diag = kdbgetulenv(match, &val);
341 if (!diag)
342 *value = (int) val;
343 return diag;
344}
345
83fa2d13
SG
346/*
347 * kdb_setenv() - Alter an existing environment variable or create a new one.
348 * @var: Name of the variable
349 * @val: Value of the variable
350 *
351 * Return: Zero on success, a kdb diagnostic on failure.
352 */
353static int kdb_setenv(const char *var, const char *val)
354{
355 int i;
356 char *ep;
357 size_t varlen, vallen;
358
359 varlen = strlen(var);
360 vallen = strlen(val);
361 ep = kdballocenv(varlen + vallen + 2);
362 if (ep == (char *)0)
363 return KDB_ENVBUFFULL;
364
365 sprintf(ep, "%s=%s", var, val);
366
367 for (i = 0; i < __nenv; i++) {
368 if (__env[i]
369 && ((strncmp(__env[i], var, varlen) == 0)
370 && ((__env[i][varlen] == '\0')
371 || (__env[i][varlen] == '=')))) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 /*
378 * Wasn't existing variable. Fit into slot.
379 */
380 for (i = 0; i < __nenv-1; i++) {
381 if (__env[i] == (char *)0) {
382 __env[i] = ep;
383 return 0;
384 }
385 }
386
387 return KDB_ENVFULL;
388}
389
390/*
391 * kdb_printenv() - Display the current environment variables.
392 */
393static void kdb_printenv(void)
394{
395 int i;
396
397 for (i = 0; i < __nenv; i++) {
398 if (__env[i])
399 kdb_printf("%s\n", __env[i]);
400 }
401}
402
5d5314d6
JW
403/*
404 * kdbgetularg - This function will convert a numeric string into an
405 * unsigned long value.
406 * Parameters:
407 * arg A character string representing a numeric value
408 * Outputs:
220a31b0 409 * *value the unsigned long representation of arg.
5d5314d6
JW
410 * Returns:
411 * Zero on success, a kdb diagnostic on failure.
412 */
413int kdbgetularg(const char *arg, unsigned long *value)
414{
415 char *endp;
416 unsigned long val;
417
418 val = simple_strtoul(arg, &endp, 0);
419
420 if (endp == arg) {
421 /*
534af108 422 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
423 * leading 0x...
424 */
425 val = simple_strtoul(arg, &endp, 16);
426 if (endp == arg)
427 return KDB_BADINT;
428 }
429
430 *value = val;
431
432 return 0;
433}
434
534af108
JW
435int kdbgetu64arg(const char *arg, u64 *value)
436{
437 char *endp;
438 u64 val;
439
440 val = simple_strtoull(arg, &endp, 0);
441
442 if (endp == arg) {
443
444 val = simple_strtoull(arg, &endp, 16);
445 if (endp == arg)
446 return KDB_BADINT;
447 }
448
449 *value = val;
450
451 return 0;
452}
453
5d5314d6
JW
454/*
455 * kdb_set - This function implements the 'set' command. Alter an
456 * existing environment variable or create a new one.
457 */
458int kdb_set(int argc, const char **argv)
459{
5d5314d6
JW
460 /*
461 * we can be invoked two ways:
462 * set var=value argv[1]="var", argv[2]="value"
463 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
464 * - if the latter, shift 'em down.
465 */
466 if (argc == 3) {
467 argv[2] = argv[3];
468 argc--;
469 }
470
471 if (argc != 2)
472 return KDB_ARGCOUNT;
473
ad99b510
DT
474 /*
475 * Censor sensitive variables
476 */
477 if (strcmp(argv[1], "PROMPT") == 0 &&
478 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
479 return KDB_NOPERM;
480
5d5314d6
JW
481 /*
482 * Check for internal variables
483 */
484 if (strcmp(argv[1], "KDBDEBUG") == 0) {
485 unsigned int debugflags;
486 char *cp;
487
488 debugflags = simple_strtoul(argv[2], &cp, 0);
489 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
490 kdb_printf("kdb: illegal debug flags '%s'\n",
491 argv[2]);
492 return 0;
493 }
c893de12 494 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
5d5314d6
JW
495 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
496
497 return 0;
498 }
499
500 /*
501 * Tokenizer squashed the '=' sign. argv[1] is variable
502 * name, argv[2] = value.
503 */
83fa2d13 504 return kdb_setenv(argv[1], argv[2]);
5d5314d6
JW
505}
506
507static int kdb_check_regs(void)
508{
509 if (!kdb_current_regs) {
510 kdb_printf("No current kdb registers."
511 " You may need to select another task\n");
512 return KDB_BADREG;
513 }
514 return 0;
515}
516
517/*
518 * kdbgetaddrarg - This function is responsible for parsing an
519 * address-expression and returning the value of the expression,
520 * symbol name, and offset to the caller.
521 *
522 * The argument may consist of a numeric value (decimal or
220a31b0 523 * hexadecimal), a symbol name, a register name (preceded by the
5d5314d6 524 * percent sign), an environment variable with a numeric value
25985edc 525 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
526 * consisting of a symbol name, +/-, and a numeric constant value
527 * (offset).
528 * Parameters:
529 * argc - count of arguments in argv
530 * argv - argument vector
531 * *nextarg - index to next unparsed argument in argv[]
532 * regs - Register state at time of KDB entry
533 * Outputs:
534 * *value - receives the value of the address-expression
535 * *offset - receives the offset specified, if any
536 * *name - receives the symbol name, if any
537 * *nextarg - index to next unparsed argument in argv[]
538 * Returns:
539 * zero is returned on success, a kdb diagnostic code is
540 * returned on error.
541 */
542int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
543 unsigned long *value, long *offset,
544 char **name)
545{
546 unsigned long addr;
547 unsigned long off = 0;
548 int positive;
549 int diag;
550 int found = 0;
551 char *symname;
552 char symbol = '\0';
553 char *cp;
554 kdb_symtab_t symtab;
555
420c2b1b
AV
556 /*
557 * If the enable flags prohibit both arbitrary memory access
558 * and flow control then there are no reasonable grounds to
559 * provide symbol lookup.
560 */
561 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
562 kdb_cmd_enabled, false))
563 return KDB_NOPERM;
564
5d5314d6
JW
565 /*
566 * Process arguments which follow the following syntax:
567 *
568 * symbol | numeric-address [+/- numeric-offset]
569 * %register
570 * $environment-variable
571 */
572
573 if (*nextarg > argc)
574 return KDB_ARGCOUNT;
575
576 symname = (char *)argv[*nextarg];
577
578 /*
579 * If there is no whitespace between the symbol
580 * or address and the '+' or '-' symbols, we
581 * remember the character and replace it with a
582 * null so the symbol/value can be properly parsed
583 */
584 cp = strpbrk(symname, "+-");
585 if (cp != NULL) {
586 symbol = *cp;
587 *cp++ = '\0';
588 }
589
590 if (symname[0] == '$') {
591 diag = kdbgetulenv(&symname[1], &addr);
592 if (diag)
593 return diag;
594 } else if (symname[0] == '%') {
fcf2736c
DT
595 diag = kdb_check_regs();
596 if (diag)
597 return diag;
5d5314d6
JW
598 /* Implement register values with % at a later time as it is
599 * arch optional.
600 */
601 return KDB_NOTIMP;
602 } else {
603 found = kdbgetsymval(symname, &symtab);
604 if (found) {
605 addr = symtab.sym_start;
606 } else {
607 diag = kdbgetularg(argv[*nextarg], &addr);
608 if (diag)
609 return diag;
610 }
611 }
612
613 if (!found)
614 found = kdbnearsym(addr, &symtab);
615
616 (*nextarg)++;
617
618 if (name)
619 *name = symname;
620 if (value)
621 *value = addr;
622 if (offset && name && *name)
623 *offset = addr - symtab.sym_start;
624
625 if ((*nextarg > argc)
626 && (symbol == '\0'))
627 return 0;
628
629 /*
630 * check for +/- and offset
631 */
632
633 if (symbol == '\0') {
634 if ((argv[*nextarg][0] != '+')
635 && (argv[*nextarg][0] != '-')) {
636 /*
637 * Not our argument. Return.
638 */
639 return 0;
640 } else {
641 positive = (argv[*nextarg][0] == '+');
642 (*nextarg)++;
643 }
644 } else
645 positive = (symbol == '+');
646
647 /*
648 * Now there must be an offset!
649 */
650 if ((*nextarg > argc)
651 && (symbol == '\0')) {
652 return KDB_INVADDRFMT;
653 }
654
655 if (!symbol) {
656 cp = (char *)argv[*nextarg];
657 (*nextarg)++;
658 }
659
660 diag = kdbgetularg(cp, &off);
661 if (diag)
662 return diag;
663
664 if (!positive)
665 off = -off;
666
667 if (offset)
668 *offset += off;
669
670 if (value)
671 *value += off;
672
673 return 0;
674}
675
676static void kdb_cmderror(int diag)
677{
678 int i;
679
680 if (diag >= 0) {
681 kdb_printf("no error detected (diagnostic is %d)\n", diag);
682 return;
683 }
684
685 for (i = 0; i < __nkdb_err; i++) {
686 if (kdbmsgs[i].km_diag == diag) {
687 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
688 return;
689 }
690 }
691
692 kdb_printf("Unknown diag %d\n", -diag);
693}
694
695/*
696 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
697 * command which defines one command as a set of other commands,
698 * terminated by endefcmd. kdb_defcmd processes the initial
699 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
700 * the following commands until 'endefcmd'.
701 * Inputs:
702 * argc argument count
703 * argv argument vector
704 * Returns:
705 * zero for success, a kdb diagnostic if error
706 */
b39cded8 707struct kdb_macro {
9a5db530
SG
708 kdbtab_t cmd; /* Macro command */
709 struct list_head statements; /* Associated statement list */
5d5314d6 710};
9a5db530
SG
711
712struct kdb_macro_statement {
713 char *statement; /* Statement text */
714 struct list_head list_node; /* Statement list node */
715};
716
b39cded8 717static struct kdb_macro *kdb_macro;
7faedcd4 718static bool defcmd_in_progress;
5d5314d6
JW
719
720/* Forward references */
721static int kdb_exec_defcmd(int argc, const char **argv);
722
723static int kdb_defcmd2(const char *cmdstr, const char *argv0)
724{
9a5db530
SG
725 struct kdb_macro_statement *kms;
726
727 if (!kdb_macro)
728 return KDB_NOTIMP;
729
5d5314d6 730 if (strcmp(argv0, "endefcmd") == 0) {
7faedcd4 731 defcmd_in_progress = false;
9a5db530
SG
732 if (!list_empty(&kdb_macro->statements))
733 kdb_register(&kdb_macro->cmd);
5d5314d6
JW
734 return 0;
735 }
9a5db530
SG
736
737 kms = kmalloc(sizeof(*kms), GFP_KDB);
738 if (!kms) {
739 kdb_printf("Could not allocate new kdb macro command: %s\n",
5d5314d6 740 cmdstr);
5d5314d6
JW
741 return KDB_NOTIMP;
742 }
9a5db530
SG
743
744 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
745 list_add_tail(&kms->list_node, &kdb_macro->statements);
746
5d5314d6
JW
747 return 0;
748}
749
750static int kdb_defcmd(int argc, const char **argv)
751{
c25abcd6
SG
752 kdbtab_t *mp;
753
5d5314d6
JW
754 if (defcmd_in_progress) {
755 kdb_printf("kdb: nested defcmd detected, assuming missing "
756 "endefcmd\n");
757 kdb_defcmd2("endefcmd", "endefcmd");
758 }
759 if (argc == 0) {
9a5db530
SG
760 kdbtab_t *kp;
761 struct kdb_macro *kmp;
762 struct kdb_macro_statement *kms;
763
764 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
e868f0a3 765 if (kp->func == kdb_exec_defcmd) {
9a5db530 766 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
e868f0a3 767 kp->name, kp->usage, kp->help);
9a5db530
SG
768 kmp = container_of(kp, struct kdb_macro, cmd);
769 list_for_each_entry(kms, &kmp->statements,
770 list_node)
771 kdb_printf("%s", kms->statement);
772 kdb_printf("endefcmd\n");
773 }
5d5314d6
JW
774 }
775 return 0;
776 }
777 if (argc != 3)
778 return KDB_ARGCOUNT;
a37372f6
JW
779 if (in_dbg_master()) {
780 kdb_printf("Command only available during kdb_init()\n");
781 return KDB_NOTIMP;
782 }
9a5db530 783 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
b39cded8 784 if (!kdb_macro)
4eb7a66d 785 goto fail_defcmd;
c25abcd6 786
9a5db530 787 mp = &kdb_macro->cmd;
e868f0a3
SG
788 mp->func = kdb_exec_defcmd;
789 mp->minlen = 0;
790 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
791 mp->name = kdb_strdup(argv[1], GFP_KDB);
792 if (!mp->name)
4eb7a66d 793 goto fail_name;
e868f0a3
SG
794 mp->usage = kdb_strdup(argv[2], GFP_KDB);
795 if (!mp->usage)
4eb7a66d 796 goto fail_usage;
e868f0a3
SG
797 mp->help = kdb_strdup(argv[3], GFP_KDB);
798 if (!mp->help)
4eb7a66d 799 goto fail_help;
e868f0a3
SG
800 if (mp->usage[0] == '"') {
801 strcpy(mp->usage, argv[2]+1);
802 mp->usage[strlen(mp->usage)-1] = '\0';
5d5314d6 803 }
e868f0a3
SG
804 if (mp->help[0] == '"') {
805 strcpy(mp->help, argv[3]+1);
806 mp->help[strlen(mp->help)-1] = '\0';
5d5314d6 807 }
9a5db530
SG
808
809 INIT_LIST_HEAD(&kdb_macro->statements);
7faedcd4 810 defcmd_in_progress = true;
5d5314d6 811 return 0;
4eb7a66d 812fail_help:
e868f0a3 813 kfree(mp->usage);
4eb7a66d 814fail_usage:
e868f0a3 815 kfree(mp->name);
4eb7a66d 816fail_name:
b39cded8 817 kfree(kdb_macro);
4eb7a66d 818fail_defcmd:
b39cded8 819 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
4eb7a66d 820 return KDB_NOTIMP;
5d5314d6
JW
821}
822
823/*
824 * kdb_exec_defcmd - Execute the set of commands associated with this
825 * defcmd name.
826 * Inputs:
827 * argc argument count
828 * argv argument vector
829 * Returns:
830 * zero for success, a kdb diagnostic if error
831 */
832static int kdb_exec_defcmd(int argc, const char **argv)
833{
9a5db530
SG
834 int ret;
835 kdbtab_t *kp;
836 struct kdb_macro *kmp;
837 struct kdb_macro_statement *kms;
838
5d5314d6
JW
839 if (argc != 0)
840 return KDB_ARGCOUNT;
9a5db530
SG
841
842 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
e868f0a3 843 if (strcmp(kp->name, argv[0]) == 0)
5d5314d6
JW
844 break;
845 }
9a5db530 846 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
5d5314d6
JW
847 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
848 argv[0]);
849 return KDB_NOTIMP;
850 }
9a5db530
SG
851 kmp = container_of(kp, struct kdb_macro, cmd);
852 list_for_each_entry(kms, &kmp->statements, list_node) {
853 /*
854 * Recursive use of kdb_parse, do not use argv after this point.
855 */
5d5314d6 856 argv = NULL;
e868f0a3 857 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
9a5db530 858 ret = kdb_parse(kms->statement);
5d5314d6
JW
859 if (ret)
860 return ret;
861 }
862 return 0;
863}
864
865/* Command history */
866#define KDB_CMD_HISTORY_COUNT 32
867#define CMD_BUFLEN 200 /* kdb_printf: max printline
868 * size == 256 */
869static unsigned int cmd_head, cmd_tail;
870static unsigned int cmdptr;
871static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
872static char cmd_cur[CMD_BUFLEN];
873
874/*
875 * The "str" argument may point to something like | grep xyz
876 */
877static void parse_grep(const char *str)
878{
879 int len;
880 char *cp = (char *)str, *cp2;
881
882 /* sanity check: we should have been called with the \ first */
883 if (*cp != '|')
884 return;
885 cp++;
886 while (isspace(*cp))
887 cp++;
63571431 888 if (!str_has_prefix(cp, "grep ")) {
5d5314d6
JW
889 kdb_printf("invalid 'pipe', see grephelp\n");
890 return;
891 }
892 cp += 5;
893 while (isspace(*cp))
894 cp++;
895 cp2 = strchr(cp, '\n');
896 if (cp2)
897 *cp2 = '\0'; /* remove the trailing newline */
898 len = strlen(cp);
899 if (len == 0) {
900 kdb_printf("invalid 'pipe', see grephelp\n");
901 return;
902 }
903 /* now cp points to a nonzero length search string */
904 if (*cp == '"') {
905 /* allow it be "x y z" by removing the "'s - there must
906 be two of them */
907 cp++;
908 cp2 = strchr(cp, '"');
909 if (!cp2) {
910 kdb_printf("invalid quoted string, see grephelp\n");
911 return;
912 }
913 *cp2 = '\0'; /* end the string where the 2nd " was */
914 }
915 kdb_grep_leading = 0;
916 if (*cp == '^') {
917 kdb_grep_leading = 1;
918 cp++;
919 }
920 len = strlen(cp);
921 kdb_grep_trailing = 0;
922 if (*(cp+len-1) == '$') {
923 kdb_grep_trailing = 1;
924 *(cp+len-1) = '\0';
925 }
926 len = strlen(cp);
927 if (!len)
928 return;
fb6daa75 929 if (len >= KDB_GREP_STRLEN) {
5d5314d6
JW
930 kdb_printf("search string too long\n");
931 return;
932 }
933 strcpy(kdb_grep_string, cp);
934 kdb_grepping_flag++;
935 return;
936}
937
938/*
939 * kdb_parse - Parse the command line, search the command table for a
940 * matching command and invoke the command function. This
941 * function may be called recursively, if it is, the second call
942 * will overwrite argv and cbuf. It is the caller's
943 * responsibility to save their argv if they recursively call
944 * kdb_parse().
945 * Parameters:
946 * cmdstr The input command line to be parsed.
947 * regs The registers at the time kdb was entered.
948 * Returns:
949 * Zero for success, a kdb diagnostic if failure.
950 * Remarks:
951 * Limited to 20 tokens.
952 *
953 * Real rudimentary tokenization. Basically only whitespace
220a31b0 954 * is considered a token delimiter (but special consideration
5d5314d6
JW
955 * is taken of the '=' sign as used by the 'set' command).
956 *
957 * The algorithm used to tokenize the input string relies on
958 * there being at least one whitespace (or otherwise useless)
959 * character between tokens as the character immediately following
960 * the token is altered in-place to a null-byte to terminate the
961 * token string.
962 */
963
964#define MAXARGC 20
965
966int kdb_parse(const char *cmdstr)
967{
968 static char *argv[MAXARGC];
969 static int argc;
970 static char cbuf[CMD_BUFLEN+2];
971 char *cp;
972 char *cpp, quoted;
973 kdbtab_t *tp;
e4f291b3 974 int escaped, ignore_errors = 0, check_grep = 0;
5d5314d6
JW
975
976 /*
977 * First tokenize the command string.
978 */
979 cp = (char *)cmdstr;
5d5314d6
JW
980
981 if (KDB_FLAG(CMD_INTERRUPT)) {
982 /* Previous command was interrupted, newline must not
983 * repeat the command */
984 KDB_FLAG_CLEAR(CMD_INTERRUPT);
985 KDB_STATE_SET(PAGER);
986 argc = 0; /* no repeat */
987 }
988
989 if (*cp != '\n' && *cp != '\0') {
990 argc = 0;
991 cpp = cbuf;
992 while (*cp) {
993 /* skip whitespace */
994 while (isspace(*cp))
995 cp++;
996 if ((*cp == '\0') || (*cp == '\n') ||
997 (*cp == '#' && !defcmd_in_progress))
998 break;
999 /* special case: check for | grep pattern */
1000 if (*cp == '|') {
1001 check_grep++;
1002 break;
1003 }
1004 if (cpp >= cbuf + CMD_BUFLEN) {
1005 kdb_printf("kdb_parse: command buffer "
1006 "overflow, command ignored\n%s\n",
1007 cmdstr);
1008 return KDB_NOTFOUND;
1009 }
1010 if (argc >= MAXARGC - 1) {
1011 kdb_printf("kdb_parse: too many arguments, "
1012 "command ignored\n%s\n", cmdstr);
1013 return KDB_NOTFOUND;
1014 }
1015 argv[argc++] = cpp;
1016 escaped = 0;
1017 quoted = '\0';
1018 /* Copy to next unquoted and unescaped
1019 * whitespace or '=' */
1020 while (*cp && *cp != '\n' &&
1021 (escaped || quoted || !isspace(*cp))) {
1022 if (cpp >= cbuf + CMD_BUFLEN)
1023 break;
1024 if (escaped) {
1025 escaped = 0;
1026 *cpp++ = *cp++;
1027 continue;
1028 }
1029 if (*cp == '\\') {
1030 escaped = 1;
1031 ++cp;
1032 continue;
1033 }
1034 if (*cp == quoted)
1035 quoted = '\0';
1036 else if (*cp == '\'' || *cp == '"')
1037 quoted = *cp;
1038 *cpp = *cp++;
1039 if (*cpp == '=' && !quoted)
1040 break;
1041 ++cpp;
1042 }
1043 *cpp++ = '\0'; /* Squash a ws or '=' character */
1044 }
1045 }
1046 if (!argc)
1047 return 0;
1048 if (check_grep)
1049 parse_grep(cp);
1050 if (defcmd_in_progress) {
1051 int result = kdb_defcmd2(cmdstr, argv[0]);
1052 if (!defcmd_in_progress) {
1053 argc = 0; /* avoid repeat on endefcmd */
1054 *(argv[0]) = '\0';
1055 }
1056 return result;
1057 }
1058 if (argv[0][0] == '-' && argv[0][1] &&
1059 (argv[0][1] < '0' || argv[0][1] > '9')) {
1060 ignore_errors = 1;
1061 ++argv[0];
1062 }
1063
e4f291b3
SG
1064 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1065 /*
1066 * If this command is allowed to be abbreviated,
1067 * check to see if this is it.
1068 */
e868f0a3
SG
1069 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1070 (strncmp(argv[0], tp->name, tp->minlen) == 0))
e4f291b3 1071 break;
5d5314d6 1072
e868f0a3 1073 if (strcmp(argv[0], tp->name) == 0)
e4f291b3 1074 break;
5d5314d6
JW
1075 }
1076
1077 /*
1078 * If we don't find a command by this name, see if the first
1079 * few characters of this match any of the known commands.
1080 * e.g., md1c20 should match md.
1081 */
e4f291b3
SG
1082 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1083 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
e868f0a3 1084 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
e4f291b3 1085 break;
5d5314d6
JW
1086 }
1087 }
1088
e4f291b3 1089 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
5d5314d6 1090 int result;
420c2b1b 1091
e868f0a3 1092 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
420c2b1b
AV
1093 return KDB_NOPERM;
1094
5d5314d6 1095 KDB_STATE_SET(CMD);
e868f0a3 1096 result = (*tp->func)(argc-1, (const char **)argv);
5d5314d6
JW
1097 if (result && ignore_errors && result > KDB_CMD_GO)
1098 result = 0;
1099 KDB_STATE_CLEAR(CMD);
04bb171e 1100
e868f0a3 1101 if (tp->flags & KDB_REPEAT_WITH_ARGS)
04bb171e
AV
1102 return result;
1103
e868f0a3 1104 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
04bb171e
AV
1105 if (argv[argc])
1106 *(argv[argc]) = '\0';
5d5314d6
JW
1107 return result;
1108 }
1109
1110 /*
1111 * If the input with which we were presented does not
1112 * map to an existing command, attempt to parse it as an
1113 * address argument and display the result. Useful for
1114 * obtaining the address of a variable, or the nearest symbol
1115 * to an address contained in a register.
1116 */
1117 {
1118 unsigned long value;
1119 char *name = NULL;
1120 long offset;
1121 int nextarg = 0;
1122
1123 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1124 &value, &offset, &name)) {
1125 return KDB_NOTFOUND;
1126 }
1127
1128 kdb_printf("%s = ", argv[0]);
1129 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1130 kdb_printf("\n");
1131 return 0;
1132 }
1133}
1134
1135
1136static int handle_ctrl_cmd(char *cmd)
1137{
1138#define CTRL_P 16
1139#define CTRL_N 14
1140
1141 /* initial situation */
1142 if (cmd_head == cmd_tail)
1143 return 0;
1144 switch (*cmd) {
1145 case CTRL_P:
1146 if (cmdptr != cmd_tail)
1b310030
DA
1147 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1148 KDB_CMD_HISTORY_COUNT;
d228bee8 1149 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
5d5314d6
JW
1150 return 1;
1151 case CTRL_N:
1152 if (cmdptr != cmd_head)
1153 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
d228bee8 1154 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
5d5314d6
JW
1155 return 1;
1156 }
1157 return 0;
1158}
1159
1160/*
1161 * kdb_reboot - This function implements the 'reboot' command. Reboot
1162 * the system immediately, or loop for ever on failure.
1163 */
1164static int kdb_reboot(int argc, const char **argv)
1165{
1166 emergency_restart();
1167 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1168 while (1)
1169 cpu_relax();
1170 /* NOTREACHED */
1171 return 0;
1172}
1173
1174static void kdb_dumpregs(struct pt_regs *regs)
1175{
1176 int old_lvl = console_loglevel;
a8fe19eb 1177 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
d37d39ae 1178 kdb_trap_printk++;
5d5314d6 1179 show_regs(regs);
d37d39ae 1180 kdb_trap_printk--;
5d5314d6
JW
1181 kdb_printf("\n");
1182 console_loglevel = old_lvl;
1183}
1184
9441d5f6 1185static void kdb_set_current_task(struct task_struct *p)
5d5314d6
JW
1186{
1187 kdb_current_task = p;
1188
1189 if (kdb_task_has_cpu(p)) {
1190 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1191 return;
1192 }
1193 kdb_current_regs = NULL;
1194}
1195
b0f73bc7
RD
1196static void drop_newline(char *buf)
1197{
1198 size_t len = strlen(buf);
1199
1200 if (len == 0)
1201 return;
1202 if (*(buf + len - 1) == '\n')
1203 *(buf + len - 1) = '\0';
1204}
1205
5d5314d6
JW
1206/*
1207 * kdb_local - The main code for kdb. This routine is invoked on a
1208 * specific processor, it is not global. The main kdb() routine
1209 * ensures that only one processor at a time is in this routine.
1210 * This code is called with the real reason code on the first
1211 * entry to a kdb session, thereafter it is called with reason
1212 * SWITCH, even if the user goes back to the original cpu.
1213 * Inputs:
1214 * reason The reason KDB was invoked
1215 * error The hardware-defined error code
1216 * regs The exception frame at time of fault/breakpoint.
1217 * db_result Result code from the break or debug point.
1218 * Returns:
1219 * 0 KDB was invoked for an event which it wasn't responsible
1220 * 1 KDB handled the event for which it was invoked.
1221 * KDB_CMD_GO User typed 'go'.
1222 * KDB_CMD_CPU User switched to another cpu.
1223 * KDB_CMD_SS Single step.
5d5314d6
JW
1224 */
1225static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1226 kdb_dbtrap_t db_result)
1227{
1228 char *cmdbuf;
1229 int diag;
1230 struct task_struct *kdb_current =
1231 kdb_curr_task(raw_smp_processor_id());
1232
1233 KDB_DEBUG_STATE("kdb_local 1", reason);
eadb2f47
DT
1234
1235 kdb_check_for_lockdown();
1236
5d5314d6
JW
1237 kdb_go_count = 0;
1238 if (reason == KDB_REASON_DEBUG) {
1239 /* special case below */
1240 } else {
568fb6f4 1241 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
578bd4df 1242 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1243#if defined(CONFIG_SMP)
1244 kdb_printf("on processor %d ", raw_smp_processor_id());
1245#endif
1246 }
1247
1248 switch (reason) {
1249 case KDB_REASON_DEBUG:
1250 {
1251 /*
1252 * If re-entering kdb after a single step
1253 * command, don't print the message.
1254 */
1255 switch (db_result) {
1256 case KDB_DB_BPT:
568fb6f4 1257 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
5d5314d6
JW
1258 kdb_current, kdb_current->pid);
1259#if defined(CONFIG_SMP)
1260 kdb_printf("on processor %d ", raw_smp_processor_id());
1261#endif
1262 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1263 instruction_pointer(regs));
1264 break;
5d5314d6
JW
1265 case KDB_DB_SS:
1266 break;
1267 case KDB_DB_SSBPT:
1268 KDB_DEBUG_STATE("kdb_local 4", reason);
1269 return 1; /* kdba_db_trap did the work */
1270 default:
1271 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1272 db_result);
1273 break;
1274 }
1275
1276 }
1277 break;
1278 case KDB_REASON_ENTER:
1279 if (KDB_STATE(KEYBOARD))
1280 kdb_printf("due to Keyboard Entry\n");
1281 else
1282 kdb_printf("due to KDB_ENTER()\n");
1283 break;
1284 case KDB_REASON_KEYBOARD:
1285 KDB_STATE_SET(KEYBOARD);
1286 kdb_printf("due to Keyboard Entry\n");
1287 break;
1288 case KDB_REASON_ENTER_SLAVE:
1289 /* drop through, slaves only get released via cpu switch */
1290 case KDB_REASON_SWITCH:
1291 kdb_printf("due to cpu switch\n");
1292 break;
1293 case KDB_REASON_OOPS:
1294 kdb_printf("Oops: %s\n", kdb_diemsg);
1295 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1296 instruction_pointer(regs));
1297 kdb_dumpregs(regs);
1298 break;
8daaa5f8
MT
1299 case KDB_REASON_SYSTEM_NMI:
1300 kdb_printf("due to System NonMaskable Interrupt\n");
1301 break;
5d5314d6
JW
1302 case KDB_REASON_NMI:
1303 kdb_printf("due to NonMaskable Interrupt @ "
1304 kdb_machreg_fmt "\n",
1305 instruction_pointer(regs));
5d5314d6
JW
1306 break;
1307 case KDB_REASON_SSTEP:
1308 case KDB_REASON_BREAK:
1309 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1310 reason == KDB_REASON_BREAK ?
1311 "Breakpoint" : "SS trap", instruction_pointer(regs));
1312 /*
1313 * Determine if this breakpoint is one that we
1314 * are interested in.
1315 */
1316 if (db_result != KDB_DB_BPT) {
1317 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1318 db_result);
1319 KDB_DEBUG_STATE("kdb_local 6", reason);
1320 return 0; /* Not for us, dismiss it */
1321 }
1322 break;
1323 case KDB_REASON_RECURSE:
1324 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1325 instruction_pointer(regs));
1326 break;
1327 default:
1328 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1329 KDB_DEBUG_STATE("kdb_local 8", reason);
1330 return 0; /* Not for us, dismiss it */
1331 }
1332
1333 while (1) {
1334 /*
1335 * Initialize pager context.
1336 */
1337 kdb_nextline = 1;
1338 KDB_STATE_CLEAR(SUPPRESS);
ab08e464 1339 kdb_grepping_flag = 0;
fb6daa75
DT
1340 /* ensure the old search does not leak into '/' commands */
1341 kdb_grep_string[0] = '\0';
5d5314d6
JW
1342
1343 cmdbuf = cmd_cur;
1344 *cmdbuf = '\0';
1345 *(cmd_hist[cmd_head]) = '\0';
1346
5d5314d6 1347do_full_getstr:
ad99b510 1348 /* PROMPT can only be set if we have MEM_READ permission. */
5d5314d6
JW
1349 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1350 raw_smp_processor_id());
5d5314d6
JW
1351 if (defcmd_in_progress)
1352 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1353
1354 /*
1355 * Fetch command from keyboard
1356 */
1357 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1358 if (*cmdbuf != '\n') {
1359 if (*cmdbuf < 32) {
1360 if (cmdptr == cmd_head) {
d228bee8 1361 strscpy(cmd_hist[cmd_head], cmd_cur,
5d5314d6
JW
1362 CMD_BUFLEN);
1363 *(cmd_hist[cmd_head] +
1364 strlen(cmd_hist[cmd_head])-1) = '\0';
1365 }
1366 if (!handle_ctrl_cmd(cmdbuf))
1367 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1368 cmdbuf = cmd_cur;
1369 goto do_full_getstr;
1370 } else {
d228bee8 1371 strscpy(cmd_hist[cmd_head], cmd_cur,
5d5314d6
JW
1372 CMD_BUFLEN);
1373 }
1374
1375 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1376 if (cmd_head == cmd_tail)
1377 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1378 }
1379
1380 cmdptr = cmd_head;
1381 diag = kdb_parse(cmdbuf);
1382 if (diag == KDB_NOTFOUND) {
b0f73bc7 1383 drop_newline(cmdbuf);
5d5314d6
JW
1384 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1385 diag = 0;
1386 }
1387 if (diag == KDB_CMD_GO
1388 || diag == KDB_CMD_CPU
1389 || diag == KDB_CMD_SS
5d5314d6
JW
1390 || diag == KDB_CMD_KGDB)
1391 break;
1392
1393 if (diag)
1394 kdb_cmderror(diag);
1395 }
1396 KDB_DEBUG_STATE("kdb_local 9", diag);
1397 return diag;
1398}
1399
1400
1401/*
1402 * kdb_print_state - Print the state data for the current processor
1403 * for debugging.
1404 * Inputs:
1405 * text Identifies the debug point
1406 * value Any integer value to be printed, e.g. reason code.
1407 */
1408void kdb_print_state(const char *text, int value)
1409{
1410 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1411 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1412 kdb_state);
1413}
1414
1415/*
1416 * kdb_main_loop - After initial setup and assignment of the
1417 * controlling cpu, all cpus are in this loop. One cpu is in
1418 * control and will issue the kdb prompt, the others will spin
1419 * until 'go' or cpu switch.
1420 *
1421 * To get a consistent view of the kernel stacks for all
1422 * processes, this routine is invoked from the main kdb code via
1423 * an architecture specific routine. kdba_main_loop is
1424 * responsible for making the kernel stacks consistent for all
1425 * processes, there should be no difference between a blocked
1426 * process and a running process as far as kdb is concerned.
1427 * Inputs:
1428 * reason The reason KDB was invoked
1429 * error The hardware-defined error code
1430 * reason2 kdb's current reason code.
1431 * Initially error but can change
25985edc 1432 * according to kdb state.
5d5314d6
JW
1433 * db_result Result code from break or debug point.
1434 * regs The exception frame at time of fault/breakpoint.
1435 * should always be valid.
1436 * Returns:
1437 * 0 KDB was invoked for an event which it wasn't responsible
1438 * 1 KDB handled the event for which it was invoked.
1439 */
1440int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1441 kdb_dbtrap_t db_result, struct pt_regs *regs)
1442{
1443 int result = 1;
1444 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1445 while (1) {
1446 /*
1447 * All processors except the one that is in control
1448 * will spin here.
1449 */
1450 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1451 while (KDB_STATE(HOLD_CPU)) {
1452 /* state KDB is turned off by kdb_cpu to see if the
1453 * other cpus are still live, each cpu in this loop
1454 * turns it back on.
1455 */
1456 if (!KDB_STATE(KDB))
1457 KDB_STATE_SET(KDB);
1458 }
1459
1460 KDB_STATE_CLEAR(SUPPRESS);
1461 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1462 if (KDB_STATE(LEAVING))
1463 break; /* Another cpu said 'go' */
1464 /* Still using kdb, this processor is in control */
1465 result = kdb_local(reason2, error, regs, db_result);
1466 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1467
1468 if (result == KDB_CMD_CPU)
1469 break;
1470
1471 if (result == KDB_CMD_SS) {
1472 KDB_STATE_SET(DOING_SS);
1473 break;
1474 }
1475
5d5314d6 1476 if (result == KDB_CMD_KGDB) {
d613d828 1477 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1478 kdb_printf("Entering please attach debugger "
1479 "or use $D#44+ or $3#33\n");
1480 break;
1481 }
1482 if (result && result != 1 && result != KDB_CMD_GO)
1483 kdb_printf("\nUnexpected kdb_local return code %d\n",
1484 result);
1485 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1486 break;
1487 }
1488 if (KDB_STATE(DOING_SS))
1489 KDB_STATE_CLEAR(SSBPT);
1490
8f30d411
AW
1491 /* Clean up any keyboard devices before leaving */
1492 kdb_kbd_cleanup_state();
1493
5d5314d6
JW
1494 return result;
1495}
1496
1497/*
1498 * kdb_mdr - This function implements the guts of the 'mdr', memory
1499 * read command.
1500 * mdr <addr arg>,<byte count>
1501 * Inputs:
1502 * addr Start address
1503 * count Number of bytes
1504 * Returns:
1505 * Always 0. Any errors are detected and printed by kdb_getarea.
1506 */
1507static int kdb_mdr(unsigned long addr, unsigned int count)
1508{
1509 unsigned char c;
1510 while (count--) {
1511 if (kdb_getarea(c, addr))
1512 return 0;
1513 kdb_printf("%02x", c);
1514 addr++;
1515 }
1516 kdb_printf("\n");
1517 return 0;
1518}
1519
1520/*
1521 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1522 * 'md8' 'mdr' and 'mds' commands.
1523 *
1524 * md|mds [<addr arg> [<line count> [<radix>]]]
1525 * mdWcN [<addr arg> [<line count> [<radix>]]]
1526 * where W = is the width (1, 2, 4 or 8) and N is the count.
1527 * for eg., md1c20 reads 20 bytes, 1 at a time.
1528 * mdr <addr arg>,<byte count>
1529 */
1530static void kdb_md_line(const char *fmtstr, unsigned long addr,
1531 int symbolic, int nosect, int bytesperword,
1532 int num, int repeat, int phys)
1533{
1534 /* print just one line of data */
1535 kdb_symtab_t symtab;
1536 char cbuf[32];
1537 char *c = cbuf;
1538 int i;
9eb62f0e 1539 int j;
5d5314d6
JW
1540 unsigned long word;
1541
1542 memset(cbuf, '\0', sizeof(cbuf));
1543 if (phys)
1544 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1545 else
1546 kdb_printf(kdb_machreg_fmt0 " ", addr);
1547
1548 for (i = 0; i < num && repeat--; i++) {
1549 if (phys) {
1550 if (kdb_getphysword(&word, addr, bytesperword))
1551 break;
1552 } else if (kdb_getword(&word, addr, bytesperword))
1553 break;
1554 kdb_printf(fmtstr, word);
1555 if (symbolic)
1556 kdbnearsym(word, &symtab);
1557 else
1558 memset(&symtab, 0, sizeof(symtab));
1559 if (symtab.sym_name) {
1560 kdb_symbol_print(word, &symtab, 0);
1561 if (!nosect) {
1562 kdb_printf("\n");
1563 kdb_printf(" %s %s "
1564 kdb_machreg_fmt " "
1565 kdb_machreg_fmt " "
1566 kdb_machreg_fmt, symtab.mod_name,
1567 symtab.sec_name, symtab.sec_start,
1568 symtab.sym_start, symtab.sym_end);
1569 }
1570 addr += bytesperword;
1571 } else {
1572 union {
1573 u64 word;
1574 unsigned char c[8];
1575 } wc;
1576 unsigned char *cp;
1577#ifdef __BIG_ENDIAN
1578 cp = wc.c + 8 - bytesperword;
1579#else
1580 cp = wc.c;
1581#endif
1582 wc.word = word;
1583#define printable_char(c) \
1584 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
9eb62f0e 1585 for (j = 0; j < bytesperword; j++)
5d5314d6 1586 *c++ = printable_char(*cp++);
9eb62f0e 1587 addr += bytesperword;
5d5314d6
JW
1588#undef printable_char
1589 }
1590 }
1591 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1592 " ", cbuf);
1593}
1594
1595static int kdb_md(int argc, const char **argv)
1596{
1597 static unsigned long last_addr;
1598 static int last_radix, last_bytesperword, last_repeat;
1599 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1600 int nosect = 0;
1601 char fmtchar, fmtstr[64];
1602 unsigned long addr;
1603 unsigned long word;
1604 long offset = 0;
1605 int symbolic = 0;
1606 int valid = 0;
1607 int phys = 0;
1e0ce03b 1608 int raw = 0;
5d5314d6
JW
1609
1610 kdbgetintenv("MDCOUNT", &mdcount);
1611 kdbgetintenv("RADIX", &radix);
1612 kdbgetintenv("BYTESPERWORD", &bytesperword);
1613
1614 /* Assume 'md <addr>' and start with environment values */
1615 repeat = mdcount * 16 / bytesperword;
1616
1617 if (strcmp(argv[0], "mdr") == 0) {
1e0ce03b
RD
1618 if (argc == 2 || (argc == 0 && last_addr != 0))
1619 valid = raw = 1;
1620 else
5d5314d6 1621 return KDB_ARGCOUNT;
5d5314d6
JW
1622 } else if (isdigit(argv[0][2])) {
1623 bytesperword = (int)(argv[0][2] - '0');
1624 if (bytesperword == 0) {
1625 bytesperword = last_bytesperword;
1626 if (bytesperword == 0)
1627 bytesperword = 4;
1628 }
1629 last_bytesperword = bytesperword;
1630 repeat = mdcount * 16 / bytesperword;
1631 if (!argv[0][3])
1632 valid = 1;
1633 else if (argv[0][3] == 'c' && argv[0][4]) {
1634 char *p;
1635 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1636 mdcount = ((repeat * bytesperword) + 15) / 16;
1637 valid = !*p;
1638 }
1639 last_repeat = repeat;
1640 } else if (strcmp(argv[0], "md") == 0)
1641 valid = 1;
1642 else if (strcmp(argv[0], "mds") == 0)
1643 valid = 1;
1644 else if (strcmp(argv[0], "mdp") == 0) {
1645 phys = valid = 1;
1646 }
1647 if (!valid)
1648 return KDB_NOTFOUND;
1649
1650 if (argc == 0) {
1651 if (last_addr == 0)
1652 return KDB_ARGCOUNT;
1653 addr = last_addr;
1654 radix = last_radix;
1655 bytesperword = last_bytesperword;
1656 repeat = last_repeat;
1e0ce03b
RD
1657 if (raw)
1658 mdcount = repeat;
1659 else
1660 mdcount = ((repeat * bytesperword) + 15) / 16;
5d5314d6
JW
1661 }
1662
1663 if (argc) {
1664 unsigned long val;
1665 int diag, nextarg = 1;
1666 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1667 &offset, NULL);
1668 if (diag)
1669 return diag;
1670 if (argc > nextarg+2)
1671 return KDB_ARGCOUNT;
1672
1673 if (argc >= nextarg) {
1674 diag = kdbgetularg(argv[nextarg], &val);
1675 if (!diag) {
1676 mdcount = (int) val;
1e0ce03b
RD
1677 if (raw)
1678 repeat = mdcount;
1679 else
1680 repeat = mdcount * 16 / bytesperword;
5d5314d6
JW
1681 }
1682 }
1683 if (argc >= nextarg+1) {
1684 diag = kdbgetularg(argv[nextarg+1], &val);
1685 if (!diag)
1686 radix = (int) val;
1687 }
1688 }
1689
1e0ce03b
RD
1690 if (strcmp(argv[0], "mdr") == 0) {
1691 int ret;
1692 last_addr = addr;
1693 ret = kdb_mdr(addr, mdcount);
1694 last_addr += mdcount;
1695 last_repeat = mdcount;
1696 last_bytesperword = bytesperword; // to make REPEAT happy
1697 return ret;
1698 }
5d5314d6
JW
1699
1700 switch (radix) {
1701 case 10:
1702 fmtchar = 'd';
1703 break;
1704 case 16:
1705 fmtchar = 'x';
1706 break;
1707 case 8:
1708 fmtchar = 'o';
1709 break;
1710 default:
1711 return KDB_BADRADIX;
1712 }
1713
1714 last_radix = radix;
1715
1716 if (bytesperword > KDB_WORD_SIZE)
1717 return KDB_BADWIDTH;
1718
1719 switch (bytesperword) {
1720 case 8:
1721 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1722 break;
1723 case 4:
1724 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1725 break;
1726 case 2:
1727 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1728 break;
1729 case 1:
1730 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1731 break;
1732 default:
1733 return KDB_BADWIDTH;
1734 }
1735
1736 last_repeat = repeat;
1737 last_bytesperword = bytesperword;
1738
1739 if (strcmp(argv[0], "mds") == 0) {
1740 symbolic = 1;
1741 /* Do not save these changes as last_*, they are temporary mds
1742 * overrides.
1743 */
1744 bytesperword = KDB_WORD_SIZE;
1745 repeat = mdcount;
1746 kdbgetintenv("NOSECT", &nosect);
1747 }
1748
1749 /* Round address down modulo BYTESPERWORD */
1750
1751 addr &= ~(bytesperword-1);
1752
1753 while (repeat > 0) {
1754 unsigned long a;
1755 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1756
1757 if (KDB_FLAG(CMD_INTERRUPT))
1758 return 0;
1759 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1760 if (phys) {
1761 if (kdb_getphysword(&word, a, bytesperword)
1762 || word)
1763 break;
1764 } else if (kdb_getword(&word, a, bytesperword) || word)
1765 break;
1766 }
1767 n = min(num, repeat);
1768 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1769 num, repeat, phys);
1770 addr += bytesperword * n;
1771 repeat -= n;
1772 z = (z + num - 1) / num;
1773 if (z > 2) {
1774 int s = num * (z-2);
1775 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1776 " zero suppressed\n",
1777 addr, addr + bytesperword * s - 1);
1778 addr += bytesperword * s;
1779 repeat -= s;
1780 }
1781 }
1782 last_addr = addr;
1783
1784 return 0;
1785}
1786
1787/*
1788 * kdb_mm - This function implements the 'mm' command.
1789 * mm address-expression new-value
1790 * Remarks:
1791 * mm works on machine words, mmW works on bytes.
1792 */
1793static int kdb_mm(int argc, const char **argv)
1794{
1795 int diag;
1796 unsigned long addr;
1797 long offset = 0;
1798 unsigned long contents;
1799 int nextarg;
1800 int width;
1801
1802 if (argv[0][2] && !isdigit(argv[0][2]))
1803 return KDB_NOTFOUND;
1804
1805 if (argc < 2)
1806 return KDB_ARGCOUNT;
1807
1808 nextarg = 1;
1809 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1810 if (diag)
1811 return diag;
1812
1813 if (nextarg > argc)
1814 return KDB_ARGCOUNT;
1815 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1816 if (diag)
1817 return diag;
1818
1819 if (nextarg != argc + 1)
1820 return KDB_ARGCOUNT;
1821
1822 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1823 diag = kdb_putword(addr, contents, width);
1824 if (diag)
1825 return diag;
1826
1827 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1828
1829 return 0;
1830}
1831
1832/*
1833 * kdb_go - This function implements the 'go' command.
1834 * go [address-expression]
1835 */
1836static int kdb_go(int argc, const char **argv)
1837{
1838 unsigned long addr;
1839 int diag;
1840 int nextarg;
1841 long offset;
1842
495363d3
JW
1843 if (raw_smp_processor_id() != kdb_initial_cpu) {
1844 kdb_printf("go must execute on the entry cpu, "
1845 "please use \"cpu %d\" and then execute go\n",
1846 kdb_initial_cpu);
1847 return KDB_BADCPUNUM;
1848 }
5d5314d6 1849 if (argc == 1) {
5d5314d6
JW
1850 nextarg = 1;
1851 diag = kdbgetaddrarg(argc, argv, &nextarg,
1852 &addr, &offset, NULL);
1853 if (diag)
1854 return diag;
1855 } else if (argc) {
1856 return KDB_ARGCOUNT;
1857 }
1858
1859 diag = KDB_CMD_GO;
1860 if (KDB_FLAG(CATASTROPHIC)) {
1861 kdb_printf("Catastrophic error detected\n");
1862 kdb_printf("kdb_continue_catastrophic=%d, ",
1863 kdb_continue_catastrophic);
1864 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1865 kdb_printf("type go a second time if you really want "
1866 "to continue\n");
1867 return 0;
1868 }
1869 if (kdb_continue_catastrophic == 2) {
1870 kdb_printf("forcing reboot\n");
1871 kdb_reboot(0, NULL);
1872 }
1873 kdb_printf("attempting to continue\n");
1874 }
1875 return diag;
1876}
1877
1878/*
1879 * kdb_rd - This function implements the 'rd' command.
1880 */
1881static int kdb_rd(int argc, const char **argv)
1882{
fcf2736c
DT
1883 int len = kdb_check_regs();
1884#if DBG_MAX_REG_NUM > 0
534af108
JW
1885 int i;
1886 char *rname;
1887 int rsize;
1888 u64 reg64;
1889 u32 reg32;
1890 u16 reg16;
1891 u8 reg8;
1892
fcf2736c
DT
1893 if (len)
1894 return len;
534af108
JW
1895
1896 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1897 rsize = dbg_reg_def[i].size * 2;
1898 if (rsize > 16)
1899 rsize = 2;
1900 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1901 len = 0;
1902 kdb_printf("\n");
1903 }
1904 if (len)
1905 len += kdb_printf(" ");
1906 switch(dbg_reg_def[i].size * 8) {
1907 case 8:
1908 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1909 if (!rname)
1910 break;
1911 len += kdb_printf("%s: %02x", rname, reg8);
1912 break;
1913 case 16:
1914 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1915 if (!rname)
1916 break;
1917 len += kdb_printf("%s: %04x", rname, reg16);
1918 break;
1919 case 32:
1920 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1921 if (!rname)
1922 break;
1923 len += kdb_printf("%s: %08x", rname, reg32);
1924 break;
1925 case 64:
1926 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1927 if (!rname)
1928 break;
1929 len += kdb_printf("%s: %016llx", rname, reg64);
1930 break;
1931 default:
1932 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1933 }
1934 }
1935 kdb_printf("\n");
fcf2736c
DT
1936#else
1937 if (len)
1938 return len;
5d5314d6 1939
fcf2736c
DT
1940 kdb_dumpregs(kdb_current_regs);
1941#endif
5d5314d6
JW
1942 return 0;
1943}
1944
1945/*
1946 * kdb_rm - This function implements the 'rm' (register modify) command.
1947 * rm register-name new-contents
1948 * Remarks:
534af108 1949 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1950 */
1951static int kdb_rm(int argc, const char **argv)
1952{
534af108 1953#if DBG_MAX_REG_NUM > 0
5d5314d6 1954 int diag;
534af108
JW
1955 const char *rname;
1956 int i;
1957 u64 reg64;
1958 u32 reg32;
1959 u16 reg16;
1960 u8 reg8;
5d5314d6
JW
1961
1962 if (argc != 2)
1963 return KDB_ARGCOUNT;
1964 /*
1965 * Allow presence or absence of leading '%' symbol.
1966 */
534af108
JW
1967 rname = argv[1];
1968 if (*rname == '%')
1969 rname++;
5d5314d6 1970
534af108 1971 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1972 if (diag)
1973 return diag;
1974
fcf2736c
DT
1975 diag = kdb_check_regs();
1976 if (diag)
1977 return diag;
534af108
JW
1978
1979 diag = KDB_BADREG;
1980 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1981 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1982 diag = 0;
1983 break;
1984 }
1985 }
1986 if (!diag) {
1987 switch(dbg_reg_def[i].size * 8) {
1988 case 8:
1989 reg8 = reg64;
1990 dbg_set_reg(i, &reg8, kdb_current_regs);
1991 break;
1992 case 16:
1993 reg16 = reg64;
1994 dbg_set_reg(i, &reg16, kdb_current_regs);
1995 break;
1996 case 32:
1997 reg32 = reg64;
1998 dbg_set_reg(i, &reg32, kdb_current_regs);
1999 break;
2000 case 64:
2001 dbg_set_reg(i, &reg64, kdb_current_regs);
2002 break;
2003 }
2004 }
2005 return diag;
2006#else
5d5314d6 2007 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
2008 return 0;
2009#endif
5d5314d6
JW
2010}
2011
2012#if defined(CONFIG_MAGIC_SYSRQ)
2013/*
2014 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2015 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2016 * sr <magic-sysrq-code>
2017 */
2018static int kdb_sr(int argc, const char **argv)
2019{
420c2b1b
AV
2020 bool check_mask =
2021 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2022
5d5314d6
JW
2023 if (argc != 1)
2024 return KDB_ARGCOUNT;
420c2b1b 2025
d37d39ae 2026 kdb_trap_printk++;
420c2b1b 2027 __handle_sysrq(*argv[1], check_mask);
d37d39ae 2028 kdb_trap_printk--;
5d5314d6
JW
2029
2030 return 0;
2031}
2032#endif /* CONFIG_MAGIC_SYSRQ */
2033
2034/*
2035 * kdb_ef - This function implements the 'regs' (display exception
2036 * frame) command. This command takes an address and expects to
2037 * find an exception frame at that address, formats and prints
2038 * it.
2039 * regs address-expression
2040 * Remarks:
2041 * Not done yet.
2042 */
2043static int kdb_ef(int argc, const char **argv)
2044{
2045 int diag;
2046 unsigned long addr;
2047 long offset;
2048 int nextarg;
2049
2050 if (argc != 1)
2051 return KDB_ARGCOUNT;
2052
2053 nextarg = 1;
2054 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2055 if (diag)
2056 return diag;
2057 show_regs((struct pt_regs *)addr);
2058 return 0;
2059}
2060
5d5314d6
JW
2061/*
2062 * kdb_env - This function implements the 'env' command. Display the
2063 * current environment variables.
2064 */
2065
2066static int kdb_env(int argc, const char **argv)
2067{
83fa2d13 2068 kdb_printenv();
5d5314d6
JW
2069
2070 if (KDB_DEBUG(MASK))
c893de12
WL
2071 kdb_printf("KDBDEBUG=0x%x\n",
2072 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
5d5314d6
JW
2073
2074 return 0;
2075}
2076
2077#ifdef CONFIG_PRINTK
2078/*
2079 * kdb_dmesg - This function implements the 'dmesg' command to display
2080 * the contents of the syslog buffer.
2081 * dmesg [lines] [adjust]
2082 */
2083static int kdb_dmesg(int argc, const char **argv)
2084{
bc792e61
AV
2085 int diag;
2086 int logging;
2087 int lines = 0;
2088 int adjust = 0;
2089 int n = 0;
2090 int skip = 0;
f9f3f02d 2091 struct kmsg_dump_iter iter;
bc792e61
AV
2092 size_t len;
2093 char buf[201];
5d5314d6
JW
2094
2095 if (argc > 2)
2096 return KDB_ARGCOUNT;
2097 if (argc) {
2098 char *cp;
2099 lines = simple_strtol(argv[1], &cp, 0);
2100 if (*cp)
2101 lines = 0;
2102 if (argc > 1) {
2103 adjust = simple_strtoul(argv[2], &cp, 0);
2104 if (*cp || adjust < 0)
2105 adjust = 0;
2106 }
2107 }
2108
2109 /* disable LOGGING if set */
2110 diag = kdbgetintenv("LOGGING", &logging);
2111 if (!diag && logging) {
2112 const char *setargs[] = { "set", "LOGGING", "0" };
2113 kdb_set(2, setargs);
2114 }
2115
a4f98765
JO
2116 kmsg_dump_rewind(&iter);
2117 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
bc792e61
AV
2118 n++;
2119
5d5314d6
JW
2120 if (lines < 0) {
2121 if (adjust >= n)
2122 kdb_printf("buffer only contains %d lines, nothing "
2123 "printed\n", n);
2124 else if (adjust - lines >= n)
2125 kdb_printf("buffer only contains %d lines, last %d "
2126 "lines printed\n", n, n - adjust);
bc792e61
AV
2127 skip = adjust;
2128 lines = abs(lines);
5d5314d6 2129 } else if (lines > 0) {
bc792e61
AV
2130 skip = n - lines - adjust;
2131 lines = abs(lines);
5d5314d6
JW
2132 if (adjust >= n) {
2133 kdb_printf("buffer only contains %d lines, "
2134 "nothing printed\n", n);
2135 skip = n;
2136 } else if (skip < 0) {
2137 lines += skip;
2138 skip = 0;
2139 kdb_printf("buffer only contains %d lines, first "
2140 "%d lines printed\n", n, lines);
2141 }
bc792e61
AV
2142 } else {
2143 lines = n;
5d5314d6 2144 }
bc792e61
AV
2145
2146 if (skip >= n || skip < 0)
2147 return 0;
2148
a4f98765
JO
2149 kmsg_dump_rewind(&iter);
2150 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2151 if (skip) {
2152 skip--;
2153 continue;
5d5314d6 2154 }
bc792e61
AV
2155 if (!lines--)
2156 break;
d1871b38
JW
2157 if (KDB_FLAG(CMD_INTERRUPT))
2158 return 0;
bc792e61
AV
2159
2160 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2161 }
5d5314d6
JW
2162
2163 return 0;
2164}
2165#endif /* CONFIG_PRINTK */
ad394f66
AV
2166
2167/* Make sure we balance enable/disable calls, must disable first. */
2168static atomic_t kdb_nmi_disabled;
2169
2170static int kdb_disable_nmi(int argc, const char *argv[])
2171{
2172 if (atomic_read(&kdb_nmi_disabled))
2173 return 0;
2174 atomic_set(&kdb_nmi_disabled, 1);
2175 arch_kgdb_ops.enable_nmi(0);
2176 return 0;
2177}
2178
2179static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2180{
2181 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2182 return -EINVAL;
2183 arch_kgdb_ops.enable_nmi(1);
2184 return 0;
2185}
2186
2187static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2188 .set = kdb_param_enable_nmi,
2189};
2190module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2191
5d5314d6
JW
2192/*
2193 * kdb_cpu - This function implements the 'cpu' command.
2194 * cpu [<cpunum>]
2195 * Returns:
2196 * KDB_CMD_CPU for success, a kdb diagnostic if error
2197 */
2198static void kdb_cpu_status(void)
2199{
2200 int i, start_cpu, first_print = 1;
2201 char state, prev_state = '?';
2202
2203 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2204 kdb_printf("Available cpus: ");
2205 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2206 if (!cpu_online(i)) {
2207 state = 'F'; /* cpu is offline */
a1465d2f
DT
2208 } else if (!kgdb_info[i].enter_kgdb) {
2209 state = 'D'; /* cpu is online but unresponsive */
5d5314d6
JW
2210 } else {
2211 state = ' '; /* cpu is responding to kdb */
b77dbc86
DT
2212 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2213 state = '-'; /* idle task */
5d5314d6
JW
2214 }
2215 if (state != prev_state) {
2216 if (prev_state != '?') {
2217 if (!first_print)
2218 kdb_printf(", ");
2219 first_print = 0;
2220 kdb_printf("%d", start_cpu);
2221 if (start_cpu < i-1)
2222 kdb_printf("-%d", i-1);
2223 if (prev_state != ' ')
2224 kdb_printf("(%c)", prev_state);
2225 }
2226 prev_state = state;
2227 start_cpu = i;
2228 }
2229 }
2230 /* print the trailing cpus, ignoring them if they are all offline */
2231 if (prev_state != 'F') {
2232 if (!first_print)
2233 kdb_printf(", ");
2234 kdb_printf("%d", start_cpu);
2235 if (start_cpu < i-1)
2236 kdb_printf("-%d", i-1);
2237 if (prev_state != ' ')
2238 kdb_printf("(%c)", prev_state);
2239 }
2240 kdb_printf("\n");
2241}
2242
2243static int kdb_cpu(int argc, const char **argv)
2244{
2245 unsigned long cpunum;
2246 int diag;
2247
2248 if (argc == 0) {
2249 kdb_cpu_status();
2250 return 0;
2251 }
2252
2253 if (argc != 1)
2254 return KDB_ARGCOUNT;
2255
2256 diag = kdbgetularg(argv[1], &cpunum);
2257 if (diag)
2258 return diag;
2259
2260 /*
2261 * Validate cpunum
2262 */
df0036d1 2263 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
5d5314d6
JW
2264 return KDB_BADCPUNUM;
2265
2266 dbg_switch_cpu = cpunum;
2267
2268 /*
2269 * Switch to other cpu
2270 */
2271 return KDB_CMD_CPU;
2272}
2273
2274/* The user may not realize that ps/bta with no parameters does not print idle
2275 * or sleeping system daemon processes, so tell them how many were suppressed.
2276 */
2277void kdb_ps_suppressed(void)
2278{
2279 int idle = 0, daemon = 0;
5d5314d6
JW
2280 unsigned long cpu;
2281 const struct task_struct *p, *g;
2282 for_each_online_cpu(cpu) {
2283 p = kdb_curr_task(cpu);
b77dbc86 2284 if (kdb_task_state(p, "-"))
5d5314d6
JW
2285 ++idle;
2286 }
ece4ceaf 2287 for_each_process_thread(g, p) {
b77dbc86 2288 if (kdb_task_state(p, "ims"))
5d5314d6 2289 ++daemon;
ece4ceaf 2290 }
5d5314d6
JW
2291 if (idle || daemon) {
2292 if (idle)
b77dbc86 2293 kdb_printf("%d idle process%s (state -)%s\n",
5d5314d6
JW
2294 idle, idle == 1 ? "" : "es",
2295 daemon ? " and " : "");
2296 if (daemon)
b77dbc86 2297 kdb_printf("%d sleeping system daemon (state [ims]) "
5d5314d6
JW
2298 "process%s", daemon,
2299 daemon == 1 ? "" : "es");
2300 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2301 }
2302}
2303
5d5314d6
JW
2304void kdb_ps1(const struct task_struct *p)
2305{
2306 int cpu;
2307 unsigned long tmp;
2308
fe557319
CH
2309 if (!p ||
2310 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
5d5314d6
JW
2311 return;
2312
2313 cpu = kdb_process_cpu(p);
568fb6f4 2314 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
5d5314d6
JW
2315 (void *)p, p->pid, p->parent->pid,
2316 kdb_task_has_cpu(p), kdb_process_cpu(p),
2317 kdb_task_state_char(p),
2318 (void *)(&p->thread),
2319 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2320 p->comm);
2321 if (kdb_task_has_cpu(p)) {
2322 if (!KDB_TSK(cpu)) {
2323 kdb_printf(" Error: no saved data for this cpu\n");
2324 } else {
2325 if (KDB_TSK(cpu) != p)
2326 kdb_printf(" Error: does not match running "
568fb6f4 2327 "process table (0x%px)\n", KDB_TSK(cpu));
5d5314d6
JW
2328 }
2329 }
2330}
2331
b77dbc86
DT
2332/*
2333 * kdb_ps - This function implements the 'ps' command which shows a
2334 * list of the active processes.
2335 *
2336 * ps [<state_chars>] Show processes, optionally selecting only those whose
2337 * state character is found in <state_chars>.
2338 */
5d5314d6
JW
2339static int kdb_ps(int argc, const char **argv)
2340{
2341 struct task_struct *g, *p;
b77dbc86
DT
2342 const char *mask;
2343 unsigned long cpu;
5d5314d6
JW
2344
2345 if (argc == 0)
2346 kdb_ps_suppressed();
2347 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2348 (int)(2*sizeof(void *))+2, "Task Addr",
2349 (int)(2*sizeof(void *))+2, "Thread");
b77dbc86 2350 mask = argc ? argv[1] : kdbgetenv("PS");
5d5314d6
JW
2351 /* Run the active tasks first */
2352 for_each_online_cpu(cpu) {
2353 if (KDB_FLAG(CMD_INTERRUPT))
2354 return 0;
2355 p = kdb_curr_task(cpu);
2356 if (kdb_task_state(p, mask))
2357 kdb_ps1(p);
2358 }
2359 kdb_printf("\n");
2360 /* Now the real tasks */
ece4ceaf 2361 for_each_process_thread(g, p) {
5d5314d6
JW
2362 if (KDB_FLAG(CMD_INTERRUPT))
2363 return 0;
2364 if (kdb_task_state(p, mask))
2365 kdb_ps1(p);
ece4ceaf 2366 }
5d5314d6
JW
2367
2368 return 0;
2369}
2370
2371/*
2372 * kdb_pid - This function implements the 'pid' command which switches
2373 * the currently active process.
2374 * pid [<pid> | R]
2375 */
2376static int kdb_pid(int argc, const char **argv)
2377{
2378 struct task_struct *p;
2379 unsigned long val;
2380 int diag;
2381
2382 if (argc > 1)
2383 return KDB_ARGCOUNT;
2384
2385 if (argc) {
2386 if (strcmp(argv[1], "R") == 0) {
2387 p = KDB_TSK(kdb_initial_cpu);
2388 } else {
2389 diag = kdbgetularg(argv[1], &val);
2390 if (diag)
2391 return KDB_BADINT;
2392
2393 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2394 if (!p) {
2395 kdb_printf("No task with pid=%d\n", (pid_t)val);
2396 return 0;
2397 }
2398 }
2399 kdb_set_current_task(p);
2400 }
2401 kdb_printf("KDB current process is %s(pid=%d)\n",
2402 kdb_current_task->comm,
2403 kdb_current_task->pid);
2404
2405 return 0;
2406}
2407
5d5314d6
JW
2408static int kdb_kgdb(int argc, const char **argv)
2409{
2410 return KDB_CMD_KGDB;
2411}
2412
2413/*
2414 * kdb_help - This function implements the 'help' and '?' commands.
2415 */
2416static int kdb_help(int argc, const char **argv)
2417{
2418 kdbtab_t *kt;
5d5314d6
JW
2419
2420 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2421 kdb_printf("-----------------------------"
2422 "-----------------------------\n");
e4f291b3 2423 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
074604af 2424 char *space = "";
5d5314d6
JW
2425 if (KDB_FLAG(CMD_INTERRUPT))
2426 return 0;
e868f0a3 2427 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
420c2b1b 2428 continue;
e868f0a3 2429 if (strlen(kt->usage) > 20)
074604af 2430 space = "\n ";
e868f0a3
SG
2431 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2432 kt->usage, space, kt->help);
5d5314d6
JW
2433 }
2434 return 0;
2435}
2436
2437/*
2438 * kdb_kill - This function implements the 'kill' commands.
2439 */
2440static int kdb_kill(int argc, const char **argv)
2441{
2442 long sig, pid;
2443 char *endp;
2444 struct task_struct *p;
5d5314d6
JW
2445
2446 if (argc != 2)
2447 return KDB_ARGCOUNT;
2448
2449 sig = simple_strtol(argv[1], &endp, 0);
2450 if (*endp)
2451 return KDB_BADINT;
0b44bf9a 2452 if ((sig >= 0) || !valid_signal(-sig)) {
5d5314d6
JW
2453 kdb_printf("Invalid signal parameter.<-signal>\n");
2454 return 0;
2455 }
2456 sig = -sig;
2457
2458 pid = simple_strtol(argv[2], &endp, 0);
2459 if (*endp)
2460 return KDB_BADINT;
2461 if (pid <= 0) {
2462 kdb_printf("Process ID must be large than 0.\n");
2463 return 0;
2464 }
2465
2466 /* Find the process. */
2467 p = find_task_by_pid_ns(pid, &init_pid_ns);
2468 if (!p) {
2469 kdb_printf("The specified process isn't found.\n");
2470 return 0;
2471 }
2472 p = p->group_leader;
0b44bf9a 2473 kdb_send_sig(p, sig);
5d5314d6
JW
2474 return 0;
2475}
2476
5d5314d6
JW
2477/*
2478 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2479 * I cannot call that code directly from kdb, it has an unconditional
2480 * cli()/sti() and calls routines that take locks which can stop the debugger.
2481 */
2482static void kdb_sysinfo(struct sysinfo *val)
2483{
40b90efe
BW
2484 u64 uptime = ktime_get_mono_fast_ns();
2485
5d5314d6 2486 memset(val, 0, sizeof(*val));
40b90efe 2487 val->uptime = div_u64(uptime, NSEC_PER_SEC);
5d5314d6
JW
2488 val->loads[0] = avenrun[0];
2489 val->loads[1] = avenrun[1];
2490 val->loads[2] = avenrun[2];
2491 val->procs = nr_threads-1;
2492 si_meminfo(val);
2493
2494 return;
2495}
2496
2497/*
2498 * kdb_summary - This function implements the 'summary' command.
2499 */
2500static int kdb_summary(int argc, const char **argv)
2501{
6909e29f 2502 time64_t now;
5d5314d6
JW
2503 struct sysinfo val;
2504
2505 if (argc)
2506 return KDB_ARGCOUNT;
2507
2508 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2509 kdb_printf("release %s\n", init_uts_ns.name.release);
2510 kdb_printf("version %s\n", init_uts_ns.name.version);
2511 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2512 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2513 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
5d5314d6 2514
6909e29f 2515 now = __ktime_get_real_seconds();
126ac4d6 2516 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
5d5314d6
JW
2517 kdb_sysinfo(&val);
2518 kdb_printf("uptime ");
2519 if (val.uptime > (24*60*60)) {
2520 int days = val.uptime / (24*60*60);
2521 val.uptime %= (24*60*60);
2522 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2523 }
2524 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2525
5d5314d6
JW
2526 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2527 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2528 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2529 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
8508cf3f 2530
5d5314d6
JW
2531 /* Display in kilobytes */
2532#define K(x) ((x) << (PAGE_SHIFT - 10))
2533 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2534 "Buffers: %8lu kB\n",
14675592 2535 K(val.totalram), K(val.freeram), K(val.bufferram));
5d5314d6
JW
2536 return 0;
2537}
2538
2539/*
2540 * kdb_per_cpu - This function implements the 'per_cpu' command.
2541 */
2542static int kdb_per_cpu(int argc, const char **argv)
2543{
931ea248
JW
2544 char fmtstr[64];
2545 int cpu, diag, nextarg = 1;
2546 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2547
2548 if (argc < 1 || argc > 3)
2549 return KDB_ARGCOUNT;
2550
931ea248
JW
2551 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2552 if (diag)
2553 return diag;
2554
5d5314d6
JW
2555 if (argc >= 2) {
2556 diag = kdbgetularg(argv[2], &bytesperword);
2557 if (diag)
2558 return diag;
2559 }
2560 if (!bytesperword)
2561 bytesperword = KDB_WORD_SIZE;
2562 else if (bytesperword > KDB_WORD_SIZE)
2563 return KDB_BADWIDTH;
2564 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2565 if (argc >= 3) {
2566 diag = kdbgetularg(argv[3], &whichcpu);
2567 if (diag)
2568 return diag;
b586627e 2569 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
5d5314d6
JW
2570 kdb_printf("cpu %ld is not online\n", whichcpu);
2571 return KDB_BADCPUNUM;
2572 }
2573 }
2574
2575 /* Most architectures use __per_cpu_offset[cpu], some use
2576 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2577 */
2578#ifdef __per_cpu_offset
2579#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2580#else
2581#ifdef CONFIG_SMP
2582#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2583#else
2584#define KDB_PCU(cpu) 0
2585#endif
2586#endif
5d5314d6 2587 for_each_online_cpu(cpu) {
931ea248
JW
2588 if (KDB_FLAG(CMD_INTERRUPT))
2589 return 0;
2590
5d5314d6
JW
2591 if (whichcpu != ~0UL && whichcpu != cpu)
2592 continue;
931ea248 2593 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2594 diag = kdb_getword(&val, addr, bytesperword);
2595 if (diag) {
2596 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2597 "read, diag=%d\n", cpu, addr, diag);
2598 continue;
2599 }
5d5314d6
JW
2600 kdb_printf("%5d ", cpu);
2601 kdb_md_line(fmtstr, addr,
2602 bytesperword == KDB_WORD_SIZE,
2603 1, bytesperword, 1, 1, 0);
2604 }
5d5314d6 2605#undef KDB_PCU
5d5314d6
JW
2606 return 0;
2607}
2608
2609/*
2610 * display help for the use of cmd | grep pattern
2611 */
2612static int kdb_grep_help(int argc, const char **argv)
2613{
2614 kdb_printf("Usage of cmd args | grep pattern:\n");
2615 kdb_printf(" Any command's output may be filtered through an ");
2616 kdb_printf("emulated 'pipe'.\n");
2617 kdb_printf(" 'grep' is just a key word.\n");
2618 kdb_printf(" The pattern may include a very limited set of "
2619 "metacharacters:\n");
2620 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2621 kdb_printf(" And if there are spaces in the pattern, you may "
2622 "quote it:\n");
2623 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2624 " or \"^pat tern$\"\n");
2625 return 0;
2626}
2627
c25abcd6
SG
2628/**
2629 * kdb_register() - This function is used to register a kernel debugger
2630 * command.
2631 * @cmd: pointer to kdb command
2632 *
2633 * Note that it's the job of the caller to keep the memory for the cmd
2634 * allocated until unregister is called.
5d5314d6 2635 */
c25abcd6 2636int kdb_register(kdbtab_t *cmd)
5d5314d6 2637{
5d5314d6
JW
2638 kdbtab_t *kp;
2639
e4f291b3 2640 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
e868f0a3 2641 if (strcmp(kp->name, cmd->name) == 0) {
c25abcd6 2642 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
e868f0a3 2643 cmd->name, cmd->func, cmd->help);
5d5314d6
JW
2644 return 1;
2645 }
2646 }
2647
c25abcd6 2648 list_add_tail(&cmd->list_node, &kdb_cmds_head);
5d5314d6
JW
2649 return 0;
2650}
c25abcd6 2651EXPORT_SYMBOL_GPL(kdb_register);
f7030bbc 2652
c25abcd6 2653/**
e4f291b3
SG
2654 * kdb_register_table() - This function is used to register a kdb command
2655 * table.
2656 * @kp: pointer to kdb command table
2657 * @len: length of kdb command table
2658 */
2659void kdb_register_table(kdbtab_t *kp, size_t len)
2660{
2661 while (len--) {
2662 list_add_tail(&kp->list_node, &kdb_cmds_head);
2663 kp++;
2664 }
2665}
5d5314d6 2666
c25abcd6
SG
2667/**
2668 * kdb_unregister() - This function is used to unregister a kernel debugger
2669 * command. It is generally called when a module which
2670 * implements kdb command is unloaded.
2671 * @cmd: pointer to kdb command
5d5314d6 2672 */
c25abcd6 2673void kdb_unregister(kdbtab_t *cmd)
5d5314d6 2674{
c25abcd6 2675 list_del(&cmd->list_node);
5d5314d6 2676}
f7030bbc 2677EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6 2678
e4f291b3 2679static kdbtab_t maintab[] = {
e868f0a3
SG
2680 { .name = "md",
2681 .func = kdb_md,
2682 .usage = "<vaddr>",
2683 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2684 .minlen = 1,
2685 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2686 },
e868f0a3
SG
2687 { .name = "mdr",
2688 .func = kdb_md,
2689 .usage = "<vaddr> <bytes>",
2690 .help = "Display Raw Memory",
2691 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2692 },
e868f0a3
SG
2693 { .name = "mdp",
2694 .func = kdb_md,
2695 .usage = "<paddr> <bytes>",
2696 .help = "Display Physical Memory",
2697 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2698 },
e868f0a3
SG
2699 { .name = "mds",
2700 .func = kdb_md,
2701 .usage = "<vaddr>",
2702 .help = "Display Memory Symbolically",
2703 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
e4f291b3 2704 },
e868f0a3
SG
2705 { .name = "mm",
2706 .func = kdb_mm,
2707 .usage = "<vaddr> <contents>",
2708 .help = "Modify Memory Contents",
2709 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
e4f291b3 2710 },
e868f0a3
SG
2711 { .name = "go",
2712 .func = kdb_go,
2713 .usage = "[<vaddr>]",
2714 .help = "Continue Execution",
2715 .minlen = 1,
2716 .flags = KDB_ENABLE_REG_WRITE |
e4f291b3
SG
2717 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2718 },
e868f0a3
SG
2719 { .name = "rd",
2720 .func = kdb_rd,
2721 .usage = "",
2722 .help = "Display Registers",
2723 .flags = KDB_ENABLE_REG_READ,
e4f291b3 2724 },
e868f0a3
SG
2725 { .name = "rm",
2726 .func = kdb_rm,
2727 .usage = "<reg> <contents>",
2728 .help = "Modify Registers",
2729 .flags = KDB_ENABLE_REG_WRITE,
e4f291b3 2730 },
e868f0a3
SG
2731 { .name = "ef",
2732 .func = kdb_ef,
2733 .usage = "<vaddr>",
2734 .help = "Display exception frame",
2735 .flags = KDB_ENABLE_MEM_READ,
e4f291b3 2736 },
e868f0a3
SG
2737 { .name = "bt",
2738 .func = kdb_bt,
2739 .usage = "[<vaddr>]",
2740 .help = "Stack traceback",
2741 .minlen = 1,
2742 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
e4f291b3 2743 },
e868f0a3
SG
2744 { .name = "btp",
2745 .func = kdb_bt,
2746 .usage = "<pid>",
2747 .help = "Display stack for process <pid>",
2748 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2749 },
e868f0a3
SG
2750 { .name = "bta",
2751 .func = kdb_bt,
b77dbc86
DT
2752 .usage = "[<state_chars>|A]",
2753 .help = "Backtrace all processes whose state matches",
e868f0a3 2754 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2755 },
e868f0a3
SG
2756 { .name = "btc",
2757 .func = kdb_bt,
2758 .usage = "",
2759 .help = "Backtrace current process on each cpu",
2760 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2761 },
e868f0a3
SG
2762 { .name = "btt",
2763 .func = kdb_bt,
2764 .usage = "<vaddr>",
2765 .help = "Backtrace process given its struct task address",
2766 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
e4f291b3 2767 },
e868f0a3
SG
2768 { .name = "env",
2769 .func = kdb_env,
2770 .usage = "",
2771 .help = "Show environment variables",
2772 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2773 },
e868f0a3
SG
2774 { .name = "set",
2775 .func = kdb_set,
2776 .usage = "",
2777 .help = "Set environment variables",
2778 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2779 },
e868f0a3
SG
2780 { .name = "help",
2781 .func = kdb_help,
2782 .usage = "",
2783 .help = "Display Help Message",
2784 .minlen = 1,
2785 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2786 },
e868f0a3
SG
2787 { .name = "?",
2788 .func = kdb_help,
2789 .usage = "",
2790 .help = "Display Help Message",
2791 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2792 },
e868f0a3
SG
2793 { .name = "cpu",
2794 .func = kdb_cpu,
2795 .usage = "<cpunum>",
2796 .help = "Switch to new cpu",
2797 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
e4f291b3 2798 },
e868f0a3
SG
2799 { .name = "kgdb",
2800 .func = kdb_kgdb,
2801 .usage = "",
2802 .help = "Enter kgdb mode",
2803 .flags = 0,
e4f291b3 2804 },
e868f0a3
SG
2805 { .name = "ps",
2806 .func = kdb_ps,
b77dbc86 2807 .usage = "[<state_chars>|A]",
e868f0a3
SG
2808 .help = "Display active task list",
2809 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2810 },
e868f0a3
SG
2811 { .name = "pid",
2812 .func = kdb_pid,
2813 .usage = "<pidnum>",
2814 .help = "Switch to another task",
2815 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2816 },
e868f0a3
SG
2817 { .name = "reboot",
2818 .func = kdb_reboot,
2819 .usage = "",
2820 .help = "Reboot the machine immediately",
2821 .flags = KDB_ENABLE_REBOOT,
e4f291b3 2822 },
5d5314d6 2823#if defined(CONFIG_MODULES)
e868f0a3
SG
2824 { .name = "lsmod",
2825 .func = kdb_lsmod,
2826 .usage = "",
2827 .help = "List loaded kernel modules",
2828 .flags = KDB_ENABLE_INSPECT,
e4f291b3 2829 },
5d5314d6
JW
2830#endif
2831#if defined(CONFIG_MAGIC_SYSRQ)
e868f0a3
SG
2832 { .name = "sr",
2833 .func = kdb_sr,
2834 .usage = "<key>",
2835 .help = "Magic SysRq key",
2836 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2837 },
5d5314d6
JW
2838#endif
2839#if defined(CONFIG_PRINTK)
e868f0a3
SG
2840 { .name = "dmesg",
2841 .func = kdb_dmesg,
2842 .usage = "[lines]",
2843 .help = "Display syslog buffer",
2844 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2845 },
5d5314d6 2846#endif
e868f0a3
SG
2847 { .name = "defcmd",
2848 .func = kdb_defcmd,
2849 .usage = "name \"usage\" \"help\"",
2850 .help = "Define a set of commands, down to endefcmd",
c25abcd6
SG
2851 /*
2852 * Macros are always safe because when executed each
2853 * internal command re-enters kdb_parse() and is safety
2854 * checked individually.
2855 */
e868f0a3 2856 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2857 },
e868f0a3
SG
2858 { .name = "kill",
2859 .func = kdb_kill,
2860 .usage = "<-signal> <pid>",
2861 .help = "Send a signal to a process",
2862 .flags = KDB_ENABLE_SIGNAL,
e4f291b3 2863 },
e868f0a3
SG
2864 { .name = "summary",
2865 .func = kdb_summary,
2866 .usage = "",
2867 .help = "Summarize the system",
2868 .minlen = 4,
2869 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3 2870 },
e868f0a3
SG
2871 { .name = "per_cpu",
2872 .func = kdb_per_cpu,
2873 .usage = "<sym> [<bytes>] [<cpu>]",
2874 .help = "Display per_cpu variables",
2875 .minlen = 3,
2876 .flags = KDB_ENABLE_MEM_READ,
e4f291b3 2877 },
e868f0a3
SG
2878 { .name = "grephelp",
2879 .func = kdb_grep_help,
2880 .usage = "",
2881 .help = "Display help on | grep",
2882 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3
SG
2883 },
2884};
2885
2886static kdbtab_t nmicmd = {
e868f0a3
SG
2887 .name = "disable_nmi",
2888 .func = kdb_disable_nmi,
2889 .usage = "",
2890 .help = "Disable NMI entry to KDB",
2891 .flags = KDB_ENABLE_ALWAYS_SAFE,
e4f291b3
SG
2892};
2893
2894/* Initialize the kdb command table. */
2895static void __init kdb_inittab(void)
2896{
2897 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2898 if (arch_kgdb_ops.enable_nmi)
2899 kdb_register_table(&nmicmd, 1);
5d5314d6
JW
2900}
2901
2902/* Execute any commands defined in kdb_cmds. */
2903static void __init kdb_cmd_init(void)
2904{
2905 int i, diag;
2906 for (i = 0; kdb_cmds[i]; ++i) {
2907 diag = kdb_parse(kdb_cmds[i]);
2908 if (diag)
2909 kdb_printf("kdb command %s failed, kdb diag %d\n",
2910 kdb_cmds[i], diag);
2911 }
2912 if (defcmd_in_progress) {
2913 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2914 kdb_parse("endefcmd");
2915 }
2916}
2917
b595076a 2918/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2919void __init kdb_init(int lvl)
2920{
2921 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2922 int i;
2923
2924 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2925 return;
2926 for (i = kdb_init_lvl; i < lvl; i++) {
2927 switch (i) {
2928 case KDB_NOT_INITIALIZED:
2929 kdb_inittab(); /* Initialize Command Table */
2930 kdb_initbptab(); /* Initialize Breakpoints */
2931 break;
2932 case KDB_INIT_EARLY:
2933 kdb_cmd_init(); /* Build kdb_cmds tables */
2934 break;
2935 }
2936 }
2937 kdb_init_lvl = lvl;
2938}