kdb: Use KDB_REPEAT_* values as flags
[linux-2.6-block.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
bc792e61 17#include <linux/kmsg_dump.h>
5d5314d6
JW
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
ad394f66 24#include <linux/atomic.h>
5d5314d6
JW
25#include <linux/module.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/kallsyms.h>
29#include <linux/kgdb.h>
30#include <linux/kdb.h>
31#include <linux/notifier.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/nmi.h>
35#include <linux/time.h>
36#include <linux/ptrace.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/kdebug.h>
40#include <linux/proc_fs.h>
41#include <linux/uaccess.h>
42#include <linux/slab.h>
43#include "kdb_private.h"
44
45#define GREP_LEN 256
46char kdb_grep_string[GREP_LEN];
47int kdb_grepping_flag;
48EXPORT_SYMBOL(kdb_grepping_flag);
49int kdb_grep_leading;
50int kdb_grep_trailing;
51
52/*
53 * Kernel debugger state flags
54 */
55int kdb_flags;
56atomic_t kdb_event;
57
58/*
59 * kdb_lock protects updates to kdb_initial_cpu. Used to
60 * single thread processors through the kernel debugger.
61 */
62int kdb_initial_cpu = -1; /* cpu number that owns kdb */
63int kdb_nextline = 1;
64int kdb_state; /* General KDB state */
65
66struct task_struct *kdb_current_task;
67EXPORT_SYMBOL(kdb_current_task);
68struct pt_regs *kdb_current_regs;
69
70const char *kdb_diemsg;
71static int kdb_go_count;
72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
73static unsigned int kdb_continue_catastrophic =
74 CONFIG_KDB_CONTINUE_CATASTROPHIC;
75#else
76static unsigned int kdb_continue_catastrophic;
77#endif
78
79/* kdb_commands describes the available commands. */
80static kdbtab_t *kdb_commands;
81#define KDB_BASE_CMD_MAX 50
82static int kdb_max_commands = KDB_BASE_CMD_MAX;
27029c33 83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
5d5314d6
JW
84#define for_each_kdbcmd(cmd, num) \
85 for ((cmd) = kdb_base_commands, (num) = 0; \
86 num < kdb_max_commands; \
5450d904 87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
5d5314d6
JW
88
89typedef struct _kdbmsg {
90 int km_diag; /* kdb diagnostic */
91 char *km_msg; /* Corresponding message text */
92} kdbmsg_t;
93
94#define KDBMSG(msgnum, text) \
95 { KDB_##msgnum, text }
96
97static kdbmsg_t kdbmsgs[] = {
98 KDBMSG(NOTFOUND, "Command Not Found"),
99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
101 "8 is only allowed on 64 bit systems"),
102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
103 KDBMSG(NOTENV, "Cannot find environment variable"),
104 KDBMSG(NOENVVALUE, "Environment variable should have value"),
105 KDBMSG(NOTIMP, "Command not implemented"),
106 KDBMSG(ENVFULL, "Environment full"),
107 KDBMSG(ENVBUFFULL, "Environment buffer full"),
108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
109#ifdef CONFIG_CPU_XSCALE
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
111#else
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
113#endif
114 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
116 KDBMSG(BADMODE, "Invalid IDMODE"),
117 KDBMSG(BADINT, "Illegal numeric value"),
118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
119 KDBMSG(BADREG, "Invalid register name"),
120 KDBMSG(BADCPUNUM, "Invalid cpu number"),
121 KDBMSG(BADLENGTH, "Invalid length field"),
122 KDBMSG(NOBP, "No Breakpoint exists"),
123 KDBMSG(BADADDR, "Invalid address"),
124};
125#undef KDBMSG
126
5f784f79 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
5d5314d6
JW
128
129
130/*
131 * Initial environment. This is all kept static and local to
132 * this file. We don't want to rely on the memory allocation
133 * mechanisms in the kernel, so we use a very limited allocate-only
134 * heap for new and altered environment variables. The entire
135 * environment is limited to a fixed number of entries (add more
136 * to __env[] if required) and a fixed amount of heap (add more to
137 * KDB_ENVBUFSIZE if required).
138 */
139
140static char *__env[] = {
141#if defined(CONFIG_SMP)
142 "PROMPT=[%d]kdb> ",
5d5314d6
JW
143#else
144 "PROMPT=kdb> ",
5d5314d6 145#endif
0f26d0e0 146 "MOREPROMPT=more> ",
5d5314d6
JW
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
5d5314d6
JW
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
3bdb65ec 166 (char *)0,
5d5314d6
JW
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
5f784f79 178static const int __nenv = ARRAY_SIZE(__env);
5d5314d6
JW
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
534af108 316 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
534af108
JW
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
5d5314d6
JW
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
25985edc 445 * hexidecimal), a symbol name, a register name (preceded by the
5d5314d6 446 * percent sign), an environment variable with a numeric value
25985edc 447 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
5450d904 650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
5d5314d6
JW
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
a37372f6
JW
684 if (in_dbg_master()) {
685 kdb_printf("Command only available during kdb_init()\n");
686 return KDB_NOTIMP;
687 }
5d5314d6
JW
688 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
689 GFP_KDB);
4eb7a66d
JW
690 if (!defcmd_set)
691 goto fail_defcmd;
5d5314d6
JW
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
5d5314d6
JW
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
4eb7a66d
JW
698 if (!s->name)
699 goto fail_name;
5d5314d6 700 s->usage = kdb_strdup(argv[2], GFP_KDB);
4eb7a66d
JW
701 if (!s->usage)
702 goto fail_usage;
5d5314d6 703 s->help = kdb_strdup(argv[3], GFP_KDB);
4eb7a66d
JW
704 if (!s->help)
705 goto fail_help;
5d5314d6 706 if (s->usage[0] == '"') {
4eb7a66d 707 strcpy(s->usage, argv[2]+1);
5d5314d6
JW
708 s->usage[strlen(s->usage)-1] = '\0';
709 }
710 if (s->help[0] == '"') {
4eb7a66d 711 strcpy(s->help, argv[3]+1);
5d5314d6
JW
712 s->help[strlen(s->help)-1] = '\0';
713 }
714 ++defcmd_set_count;
715 defcmd_in_progress = 1;
4eb7a66d 716 kfree(save_defcmd_set);
5d5314d6 717 return 0;
4eb7a66d
JW
718fail_help:
719 kfree(s->usage);
720fail_usage:
721 kfree(s->name);
722fail_name:
723 kfree(defcmd_set);
724fail_defcmd:
725 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
726 defcmd_set = save_defcmd_set;
727 return KDB_NOTIMP;
5d5314d6
JW
728}
729
730/*
731 * kdb_exec_defcmd - Execute the set of commands associated with this
732 * defcmd name.
733 * Inputs:
734 * argc argument count
735 * argv argument vector
736 * Returns:
737 * zero for success, a kdb diagnostic if error
738 */
739static int kdb_exec_defcmd(int argc, const char **argv)
740{
741 int i, ret;
742 struct defcmd_set *s;
743 if (argc != 0)
744 return KDB_ARGCOUNT;
745 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
746 if (strcmp(s->name, argv[0]) == 0)
747 break;
748 }
749 if (i == defcmd_set_count) {
750 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
751 argv[0]);
752 return KDB_NOTIMP;
753 }
754 for (i = 0; i < s->count; ++i) {
755 /* Recursive use of kdb_parse, do not use argv after
756 * this point */
757 argv = NULL;
758 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
759 ret = kdb_parse(s->command[i]);
760 if (ret)
761 return ret;
762 }
763 return 0;
764}
765
766/* Command history */
767#define KDB_CMD_HISTORY_COUNT 32
768#define CMD_BUFLEN 200 /* kdb_printf: max printline
769 * size == 256 */
770static unsigned int cmd_head, cmd_tail;
771static unsigned int cmdptr;
772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
773static char cmd_cur[CMD_BUFLEN];
774
775/*
776 * The "str" argument may point to something like | grep xyz
777 */
778static void parse_grep(const char *str)
779{
780 int len;
781 char *cp = (char *)str, *cp2;
782
783 /* sanity check: we should have been called with the \ first */
784 if (*cp != '|')
785 return;
786 cp++;
787 while (isspace(*cp))
788 cp++;
789 if (strncmp(cp, "grep ", 5)) {
790 kdb_printf("invalid 'pipe', see grephelp\n");
791 return;
792 }
793 cp += 5;
794 while (isspace(*cp))
795 cp++;
796 cp2 = strchr(cp, '\n');
797 if (cp2)
798 *cp2 = '\0'; /* remove the trailing newline */
799 len = strlen(cp);
800 if (len == 0) {
801 kdb_printf("invalid 'pipe', see grephelp\n");
802 return;
803 }
804 /* now cp points to a nonzero length search string */
805 if (*cp == '"') {
806 /* allow it be "x y z" by removing the "'s - there must
807 be two of them */
808 cp++;
809 cp2 = strchr(cp, '"');
810 if (!cp2) {
811 kdb_printf("invalid quoted string, see grephelp\n");
812 return;
813 }
814 *cp2 = '\0'; /* end the string where the 2nd " was */
815 }
816 kdb_grep_leading = 0;
817 if (*cp == '^') {
818 kdb_grep_leading = 1;
819 cp++;
820 }
821 len = strlen(cp);
822 kdb_grep_trailing = 0;
823 if (*(cp+len-1) == '$') {
824 kdb_grep_trailing = 1;
825 *(cp+len-1) = '\0';
826 }
827 len = strlen(cp);
828 if (!len)
829 return;
830 if (len >= GREP_LEN) {
831 kdb_printf("search string too long\n");
832 return;
833 }
834 strcpy(kdb_grep_string, cp);
835 kdb_grepping_flag++;
836 return;
837}
838
839/*
840 * kdb_parse - Parse the command line, search the command table for a
841 * matching command and invoke the command function. This
842 * function may be called recursively, if it is, the second call
843 * will overwrite argv and cbuf. It is the caller's
844 * responsibility to save their argv if they recursively call
845 * kdb_parse().
846 * Parameters:
847 * cmdstr The input command line to be parsed.
848 * regs The registers at the time kdb was entered.
849 * Returns:
850 * Zero for success, a kdb diagnostic if failure.
851 * Remarks:
852 * Limited to 20 tokens.
853 *
854 * Real rudimentary tokenization. Basically only whitespace
855 * is considered a token delimeter (but special consideration
856 * is taken of the '=' sign as used by the 'set' command).
857 *
858 * The algorithm used to tokenize the input string relies on
859 * there being at least one whitespace (or otherwise useless)
860 * character between tokens as the character immediately following
861 * the token is altered in-place to a null-byte to terminate the
862 * token string.
863 */
864
865#define MAXARGC 20
866
867int kdb_parse(const char *cmdstr)
868{
869 static char *argv[MAXARGC];
870 static int argc;
871 static char cbuf[CMD_BUFLEN+2];
872 char *cp;
873 char *cpp, quoted;
874 kdbtab_t *tp;
875 int i, escaped, ignore_errors = 0, check_grep;
876
877 /*
878 * First tokenize the command string.
879 */
880 cp = (char *)cmdstr;
881 kdb_grepping_flag = check_grep = 0;
882
883 if (KDB_FLAG(CMD_INTERRUPT)) {
884 /* Previous command was interrupted, newline must not
885 * repeat the command */
886 KDB_FLAG_CLEAR(CMD_INTERRUPT);
887 KDB_STATE_SET(PAGER);
888 argc = 0; /* no repeat */
889 }
890
891 if (*cp != '\n' && *cp != '\0') {
892 argc = 0;
893 cpp = cbuf;
894 while (*cp) {
895 /* skip whitespace */
896 while (isspace(*cp))
897 cp++;
898 if ((*cp == '\0') || (*cp == '\n') ||
899 (*cp == '#' && !defcmd_in_progress))
900 break;
901 /* special case: check for | grep pattern */
902 if (*cp == '|') {
903 check_grep++;
904 break;
905 }
906 if (cpp >= cbuf + CMD_BUFLEN) {
907 kdb_printf("kdb_parse: command buffer "
908 "overflow, command ignored\n%s\n",
909 cmdstr);
910 return KDB_NOTFOUND;
911 }
912 if (argc >= MAXARGC - 1) {
913 kdb_printf("kdb_parse: too many arguments, "
914 "command ignored\n%s\n", cmdstr);
915 return KDB_NOTFOUND;
916 }
917 argv[argc++] = cpp;
918 escaped = 0;
919 quoted = '\0';
920 /* Copy to next unquoted and unescaped
921 * whitespace or '=' */
922 while (*cp && *cp != '\n' &&
923 (escaped || quoted || !isspace(*cp))) {
924 if (cpp >= cbuf + CMD_BUFLEN)
925 break;
926 if (escaped) {
927 escaped = 0;
928 *cpp++ = *cp++;
929 continue;
930 }
931 if (*cp == '\\') {
932 escaped = 1;
933 ++cp;
934 continue;
935 }
936 if (*cp == quoted)
937 quoted = '\0';
938 else if (*cp == '\'' || *cp == '"')
939 quoted = *cp;
940 *cpp = *cp++;
941 if (*cpp == '=' && !quoted)
942 break;
943 ++cpp;
944 }
945 *cpp++ = '\0'; /* Squash a ws or '=' character */
946 }
947 }
948 if (!argc)
949 return 0;
950 if (check_grep)
951 parse_grep(cp);
952 if (defcmd_in_progress) {
953 int result = kdb_defcmd2(cmdstr, argv[0]);
954 if (!defcmd_in_progress) {
955 argc = 0; /* avoid repeat on endefcmd */
956 *(argv[0]) = '\0';
957 }
958 return result;
959 }
960 if (argv[0][0] == '-' && argv[0][1] &&
961 (argv[0][1] < '0' || argv[0][1] > '9')) {
962 ignore_errors = 1;
963 ++argv[0];
964 }
965
966 for_each_kdbcmd(tp, i) {
967 if (tp->cmd_name) {
968 /*
969 * If this command is allowed to be abbreviated,
970 * check to see if this is it.
971 */
972
973 if (tp->cmd_minlen
974 && (strlen(argv[0]) <= tp->cmd_minlen)) {
975 if (strncmp(argv[0],
976 tp->cmd_name,
977 tp->cmd_minlen) == 0) {
978 break;
979 }
980 }
981
982 if (strcmp(argv[0], tp->cmd_name) == 0)
983 break;
984 }
985 }
986
987 /*
988 * If we don't find a command by this name, see if the first
989 * few characters of this match any of the known commands.
990 * e.g., md1c20 should match md.
991 */
992 if (i == kdb_max_commands) {
993 for_each_kdbcmd(tp, i) {
994 if (tp->cmd_name) {
995 if (strncmp(argv[0],
996 tp->cmd_name,
997 strlen(tp->cmd_name)) == 0) {
998 break;
999 }
1000 }
1001 }
1002 }
1003
1004 if (i < kdb_max_commands) {
1005 int result;
1006 KDB_STATE_SET(CMD);
1007 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008 if (result && ignore_errors && result > KDB_CMD_GO)
1009 result = 0;
1010 KDB_STATE_CLEAR(CMD);
04bb171e
AV
1011
1012 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1013 return result;
1014
1015 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1016 if (argv[argc])
1017 *(argv[argc]) = '\0';
5d5314d6
JW
1018 return result;
1019 }
1020
1021 /*
1022 * If the input with which we were presented does not
1023 * map to an existing command, attempt to parse it as an
1024 * address argument and display the result. Useful for
1025 * obtaining the address of a variable, or the nearest symbol
1026 * to an address contained in a register.
1027 */
1028 {
1029 unsigned long value;
1030 char *name = NULL;
1031 long offset;
1032 int nextarg = 0;
1033
1034 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1035 &value, &offset, &name)) {
1036 return KDB_NOTFOUND;
1037 }
1038
1039 kdb_printf("%s = ", argv[0]);
1040 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1041 kdb_printf("\n");
1042 return 0;
1043 }
1044}
1045
1046
1047static int handle_ctrl_cmd(char *cmd)
1048{
1049#define CTRL_P 16
1050#define CTRL_N 14
1051
1052 /* initial situation */
1053 if (cmd_head == cmd_tail)
1054 return 0;
1055 switch (*cmd) {
1056 case CTRL_P:
1057 if (cmdptr != cmd_tail)
1058 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1059 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1060 return 1;
1061 case CTRL_N:
1062 if (cmdptr != cmd_head)
1063 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1064 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1065 return 1;
1066 }
1067 return 0;
1068}
1069
1070/*
1071 * kdb_reboot - This function implements the 'reboot' command. Reboot
1072 * the system immediately, or loop for ever on failure.
1073 */
1074static int kdb_reboot(int argc, const char **argv)
1075{
1076 emergency_restart();
1077 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1078 while (1)
1079 cpu_relax();
1080 /* NOTREACHED */
1081 return 0;
1082}
1083
1084static void kdb_dumpregs(struct pt_regs *regs)
1085{
1086 int old_lvl = console_loglevel;
a8fe19eb 1087 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
d37d39ae 1088 kdb_trap_printk++;
5d5314d6 1089 show_regs(regs);
d37d39ae 1090 kdb_trap_printk--;
5d5314d6
JW
1091 kdb_printf("\n");
1092 console_loglevel = old_lvl;
1093}
1094
1095void kdb_set_current_task(struct task_struct *p)
1096{
1097 kdb_current_task = p;
1098
1099 if (kdb_task_has_cpu(p)) {
1100 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1101 return;
1102 }
1103 kdb_current_regs = NULL;
1104}
1105
1106/*
1107 * kdb_local - The main code for kdb. This routine is invoked on a
1108 * specific processor, it is not global. The main kdb() routine
1109 * ensures that only one processor at a time is in this routine.
1110 * This code is called with the real reason code on the first
1111 * entry to a kdb session, thereafter it is called with reason
1112 * SWITCH, even if the user goes back to the original cpu.
1113 * Inputs:
1114 * reason The reason KDB was invoked
1115 * error The hardware-defined error code
1116 * regs The exception frame at time of fault/breakpoint.
1117 * db_result Result code from the break or debug point.
1118 * Returns:
1119 * 0 KDB was invoked for an event which it wasn't responsible
1120 * 1 KDB handled the event for which it was invoked.
1121 * KDB_CMD_GO User typed 'go'.
1122 * KDB_CMD_CPU User switched to another cpu.
1123 * KDB_CMD_SS Single step.
5d5314d6
JW
1124 */
1125static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1126 kdb_dbtrap_t db_result)
1127{
1128 char *cmdbuf;
1129 int diag;
1130 struct task_struct *kdb_current =
1131 kdb_curr_task(raw_smp_processor_id());
1132
1133 KDB_DEBUG_STATE("kdb_local 1", reason);
1134 kdb_go_count = 0;
1135 if (reason == KDB_REASON_DEBUG) {
1136 /* special case below */
1137 } else {
1138 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
578bd4df 1139 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1140#if defined(CONFIG_SMP)
1141 kdb_printf("on processor %d ", raw_smp_processor_id());
1142#endif
1143 }
1144
1145 switch (reason) {
1146 case KDB_REASON_DEBUG:
1147 {
1148 /*
1149 * If re-entering kdb after a single step
1150 * command, don't print the message.
1151 */
1152 switch (db_result) {
1153 case KDB_DB_BPT:
1154 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1155 kdb_current, kdb_current->pid);
1156#if defined(CONFIG_SMP)
1157 kdb_printf("on processor %d ", raw_smp_processor_id());
1158#endif
1159 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1160 instruction_pointer(regs));
1161 break;
5d5314d6
JW
1162 case KDB_DB_SS:
1163 break;
1164 case KDB_DB_SSBPT:
1165 KDB_DEBUG_STATE("kdb_local 4", reason);
1166 return 1; /* kdba_db_trap did the work */
1167 default:
1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169 db_result);
1170 break;
1171 }
1172
1173 }
1174 break;
1175 case KDB_REASON_ENTER:
1176 if (KDB_STATE(KEYBOARD))
1177 kdb_printf("due to Keyboard Entry\n");
1178 else
1179 kdb_printf("due to KDB_ENTER()\n");
1180 break;
1181 case KDB_REASON_KEYBOARD:
1182 KDB_STATE_SET(KEYBOARD);
1183 kdb_printf("due to Keyboard Entry\n");
1184 break;
1185 case KDB_REASON_ENTER_SLAVE:
1186 /* drop through, slaves only get released via cpu switch */
1187 case KDB_REASON_SWITCH:
1188 kdb_printf("due to cpu switch\n");
1189 break;
1190 case KDB_REASON_OOPS:
1191 kdb_printf("Oops: %s\n", kdb_diemsg);
1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193 instruction_pointer(regs));
1194 kdb_dumpregs(regs);
1195 break;
8daaa5f8
MT
1196 case KDB_REASON_SYSTEM_NMI:
1197 kdb_printf("due to System NonMaskable Interrupt\n");
1198 break;
5d5314d6
JW
1199 case KDB_REASON_NMI:
1200 kdb_printf("due to NonMaskable Interrupt @ "
1201 kdb_machreg_fmt "\n",
1202 instruction_pointer(regs));
1203 kdb_dumpregs(regs);
1204 break;
1205 case KDB_REASON_SSTEP:
1206 case KDB_REASON_BREAK:
1207 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1208 reason == KDB_REASON_BREAK ?
1209 "Breakpoint" : "SS trap", instruction_pointer(regs));
1210 /*
1211 * Determine if this breakpoint is one that we
1212 * are interested in.
1213 */
1214 if (db_result != KDB_DB_BPT) {
1215 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1216 db_result);
1217 KDB_DEBUG_STATE("kdb_local 6", reason);
1218 return 0; /* Not for us, dismiss it */
1219 }
1220 break;
1221 case KDB_REASON_RECURSE:
1222 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1223 instruction_pointer(regs));
1224 break;
1225 default:
1226 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1227 KDB_DEBUG_STATE("kdb_local 8", reason);
1228 return 0; /* Not for us, dismiss it */
1229 }
1230
1231 while (1) {
1232 /*
1233 * Initialize pager context.
1234 */
1235 kdb_nextline = 1;
1236 KDB_STATE_CLEAR(SUPPRESS);
1237
1238 cmdbuf = cmd_cur;
1239 *cmdbuf = '\0';
1240 *(cmd_hist[cmd_head]) = '\0';
1241
5d5314d6
JW
1242do_full_getstr:
1243#if defined(CONFIG_SMP)
1244 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1245 raw_smp_processor_id());
1246#else
1247 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1248#endif
1249 if (defcmd_in_progress)
1250 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1251
1252 /*
1253 * Fetch command from keyboard
1254 */
1255 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1256 if (*cmdbuf != '\n') {
1257 if (*cmdbuf < 32) {
1258 if (cmdptr == cmd_head) {
1259 strncpy(cmd_hist[cmd_head], cmd_cur,
1260 CMD_BUFLEN);
1261 *(cmd_hist[cmd_head] +
1262 strlen(cmd_hist[cmd_head])-1) = '\0';
1263 }
1264 if (!handle_ctrl_cmd(cmdbuf))
1265 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1266 cmdbuf = cmd_cur;
1267 goto do_full_getstr;
1268 } else {
1269 strncpy(cmd_hist[cmd_head], cmd_cur,
1270 CMD_BUFLEN);
1271 }
1272
1273 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1274 if (cmd_head == cmd_tail)
1275 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1276 }
1277
1278 cmdptr = cmd_head;
1279 diag = kdb_parse(cmdbuf);
1280 if (diag == KDB_NOTFOUND) {
1281 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1282 diag = 0;
1283 }
1284 if (diag == KDB_CMD_GO
1285 || diag == KDB_CMD_CPU
1286 || diag == KDB_CMD_SS
5d5314d6
JW
1287 || diag == KDB_CMD_KGDB)
1288 break;
1289
1290 if (diag)
1291 kdb_cmderror(diag);
1292 }
1293 KDB_DEBUG_STATE("kdb_local 9", diag);
1294 return diag;
1295}
1296
1297
1298/*
1299 * kdb_print_state - Print the state data for the current processor
1300 * for debugging.
1301 * Inputs:
1302 * text Identifies the debug point
1303 * value Any integer value to be printed, e.g. reason code.
1304 */
1305void kdb_print_state(const char *text, int value)
1306{
1307 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1308 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1309 kdb_state);
1310}
1311
1312/*
1313 * kdb_main_loop - After initial setup and assignment of the
1314 * controlling cpu, all cpus are in this loop. One cpu is in
1315 * control and will issue the kdb prompt, the others will spin
1316 * until 'go' or cpu switch.
1317 *
1318 * To get a consistent view of the kernel stacks for all
1319 * processes, this routine is invoked from the main kdb code via
1320 * an architecture specific routine. kdba_main_loop is
1321 * responsible for making the kernel stacks consistent for all
1322 * processes, there should be no difference between a blocked
1323 * process and a running process as far as kdb is concerned.
1324 * Inputs:
1325 * reason The reason KDB was invoked
1326 * error The hardware-defined error code
1327 * reason2 kdb's current reason code.
1328 * Initially error but can change
25985edc 1329 * according to kdb state.
5d5314d6
JW
1330 * db_result Result code from break or debug point.
1331 * regs The exception frame at time of fault/breakpoint.
1332 * should always be valid.
1333 * Returns:
1334 * 0 KDB was invoked for an event which it wasn't responsible
1335 * 1 KDB handled the event for which it was invoked.
1336 */
1337int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1338 kdb_dbtrap_t db_result, struct pt_regs *regs)
1339{
1340 int result = 1;
1341 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1342 while (1) {
1343 /*
1344 * All processors except the one that is in control
1345 * will spin here.
1346 */
1347 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1348 while (KDB_STATE(HOLD_CPU)) {
1349 /* state KDB is turned off by kdb_cpu to see if the
1350 * other cpus are still live, each cpu in this loop
1351 * turns it back on.
1352 */
1353 if (!KDB_STATE(KDB))
1354 KDB_STATE_SET(KDB);
1355 }
1356
1357 KDB_STATE_CLEAR(SUPPRESS);
1358 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1359 if (KDB_STATE(LEAVING))
1360 break; /* Another cpu said 'go' */
1361 /* Still using kdb, this processor is in control */
1362 result = kdb_local(reason2, error, regs, db_result);
1363 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1364
1365 if (result == KDB_CMD_CPU)
1366 break;
1367
1368 if (result == KDB_CMD_SS) {
1369 KDB_STATE_SET(DOING_SS);
1370 break;
1371 }
1372
5d5314d6 1373 if (result == KDB_CMD_KGDB) {
d613d828 1374 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1375 kdb_printf("Entering please attach debugger "
1376 "or use $D#44+ or $3#33\n");
1377 break;
1378 }
1379 if (result && result != 1 && result != KDB_CMD_GO)
1380 kdb_printf("\nUnexpected kdb_local return code %d\n",
1381 result);
1382 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1383 break;
1384 }
1385 if (KDB_STATE(DOING_SS))
1386 KDB_STATE_CLEAR(SSBPT);
1387
8f30d411
AW
1388 /* Clean up any keyboard devices before leaving */
1389 kdb_kbd_cleanup_state();
1390
5d5314d6
JW
1391 return result;
1392}
1393
1394/*
1395 * kdb_mdr - This function implements the guts of the 'mdr', memory
1396 * read command.
1397 * mdr <addr arg>,<byte count>
1398 * Inputs:
1399 * addr Start address
1400 * count Number of bytes
1401 * Returns:
1402 * Always 0. Any errors are detected and printed by kdb_getarea.
1403 */
1404static int kdb_mdr(unsigned long addr, unsigned int count)
1405{
1406 unsigned char c;
1407 while (count--) {
1408 if (kdb_getarea(c, addr))
1409 return 0;
1410 kdb_printf("%02x", c);
1411 addr++;
1412 }
1413 kdb_printf("\n");
1414 return 0;
1415}
1416
1417/*
1418 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1419 * 'md8' 'mdr' and 'mds' commands.
1420 *
1421 * md|mds [<addr arg> [<line count> [<radix>]]]
1422 * mdWcN [<addr arg> [<line count> [<radix>]]]
1423 * where W = is the width (1, 2, 4 or 8) and N is the count.
1424 * for eg., md1c20 reads 20 bytes, 1 at a time.
1425 * mdr <addr arg>,<byte count>
1426 */
1427static void kdb_md_line(const char *fmtstr, unsigned long addr,
1428 int symbolic, int nosect, int bytesperword,
1429 int num, int repeat, int phys)
1430{
1431 /* print just one line of data */
1432 kdb_symtab_t symtab;
1433 char cbuf[32];
1434 char *c = cbuf;
1435 int i;
1436 unsigned long word;
1437
1438 memset(cbuf, '\0', sizeof(cbuf));
1439 if (phys)
1440 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1441 else
1442 kdb_printf(kdb_machreg_fmt0 " ", addr);
1443
1444 for (i = 0; i < num && repeat--; i++) {
1445 if (phys) {
1446 if (kdb_getphysword(&word, addr, bytesperword))
1447 break;
1448 } else if (kdb_getword(&word, addr, bytesperword))
1449 break;
1450 kdb_printf(fmtstr, word);
1451 if (symbolic)
1452 kdbnearsym(word, &symtab);
1453 else
1454 memset(&symtab, 0, sizeof(symtab));
1455 if (symtab.sym_name) {
1456 kdb_symbol_print(word, &symtab, 0);
1457 if (!nosect) {
1458 kdb_printf("\n");
1459 kdb_printf(" %s %s "
1460 kdb_machreg_fmt " "
1461 kdb_machreg_fmt " "
1462 kdb_machreg_fmt, symtab.mod_name,
1463 symtab.sec_name, symtab.sec_start,
1464 symtab.sym_start, symtab.sym_end);
1465 }
1466 addr += bytesperword;
1467 } else {
1468 union {
1469 u64 word;
1470 unsigned char c[8];
1471 } wc;
1472 unsigned char *cp;
1473#ifdef __BIG_ENDIAN
1474 cp = wc.c + 8 - bytesperword;
1475#else
1476 cp = wc.c;
1477#endif
1478 wc.word = word;
1479#define printable_char(c) \
1480 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1481 switch (bytesperword) {
1482 case 8:
1483 *c++ = printable_char(*cp++);
1484 *c++ = printable_char(*cp++);
1485 *c++ = printable_char(*cp++);
1486 *c++ = printable_char(*cp++);
1487 addr += 4;
1488 case 4:
1489 *c++ = printable_char(*cp++);
1490 *c++ = printable_char(*cp++);
1491 addr += 2;
1492 case 2:
1493 *c++ = printable_char(*cp++);
1494 addr++;
1495 case 1:
1496 *c++ = printable_char(*cp++);
1497 addr++;
1498 break;
1499 }
1500#undef printable_char
1501 }
1502 }
1503 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1504 " ", cbuf);
1505}
1506
1507static int kdb_md(int argc, const char **argv)
1508{
1509 static unsigned long last_addr;
1510 static int last_radix, last_bytesperword, last_repeat;
1511 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1512 int nosect = 0;
1513 char fmtchar, fmtstr[64];
1514 unsigned long addr;
1515 unsigned long word;
1516 long offset = 0;
1517 int symbolic = 0;
1518 int valid = 0;
1519 int phys = 0;
1520
1521 kdbgetintenv("MDCOUNT", &mdcount);
1522 kdbgetintenv("RADIX", &radix);
1523 kdbgetintenv("BYTESPERWORD", &bytesperword);
1524
1525 /* Assume 'md <addr>' and start with environment values */
1526 repeat = mdcount * 16 / bytesperword;
1527
1528 if (strcmp(argv[0], "mdr") == 0) {
1529 if (argc != 2)
1530 return KDB_ARGCOUNT;
1531 valid = 1;
1532 } else if (isdigit(argv[0][2])) {
1533 bytesperword = (int)(argv[0][2] - '0');
1534 if (bytesperword == 0) {
1535 bytesperword = last_bytesperword;
1536 if (bytesperword == 0)
1537 bytesperword = 4;
1538 }
1539 last_bytesperword = bytesperword;
1540 repeat = mdcount * 16 / bytesperword;
1541 if (!argv[0][3])
1542 valid = 1;
1543 else if (argv[0][3] == 'c' && argv[0][4]) {
1544 char *p;
1545 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1546 mdcount = ((repeat * bytesperword) + 15) / 16;
1547 valid = !*p;
1548 }
1549 last_repeat = repeat;
1550 } else if (strcmp(argv[0], "md") == 0)
1551 valid = 1;
1552 else if (strcmp(argv[0], "mds") == 0)
1553 valid = 1;
1554 else if (strcmp(argv[0], "mdp") == 0) {
1555 phys = valid = 1;
1556 }
1557 if (!valid)
1558 return KDB_NOTFOUND;
1559
1560 if (argc == 0) {
1561 if (last_addr == 0)
1562 return KDB_ARGCOUNT;
1563 addr = last_addr;
1564 radix = last_radix;
1565 bytesperword = last_bytesperword;
1566 repeat = last_repeat;
1567 mdcount = ((repeat * bytesperword) + 15) / 16;
1568 }
1569
1570 if (argc) {
1571 unsigned long val;
1572 int diag, nextarg = 1;
1573 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1574 &offset, NULL);
1575 if (diag)
1576 return diag;
1577 if (argc > nextarg+2)
1578 return KDB_ARGCOUNT;
1579
1580 if (argc >= nextarg) {
1581 diag = kdbgetularg(argv[nextarg], &val);
1582 if (!diag) {
1583 mdcount = (int) val;
1584 repeat = mdcount * 16 / bytesperword;
1585 }
1586 }
1587 if (argc >= nextarg+1) {
1588 diag = kdbgetularg(argv[nextarg+1], &val);
1589 if (!diag)
1590 radix = (int) val;
1591 }
1592 }
1593
1594 if (strcmp(argv[0], "mdr") == 0)
1595 return kdb_mdr(addr, mdcount);
1596
1597 switch (radix) {
1598 case 10:
1599 fmtchar = 'd';
1600 break;
1601 case 16:
1602 fmtchar = 'x';
1603 break;
1604 case 8:
1605 fmtchar = 'o';
1606 break;
1607 default:
1608 return KDB_BADRADIX;
1609 }
1610
1611 last_radix = radix;
1612
1613 if (bytesperword > KDB_WORD_SIZE)
1614 return KDB_BADWIDTH;
1615
1616 switch (bytesperword) {
1617 case 8:
1618 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1619 break;
1620 case 4:
1621 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1622 break;
1623 case 2:
1624 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1625 break;
1626 case 1:
1627 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1628 break;
1629 default:
1630 return KDB_BADWIDTH;
1631 }
1632
1633 last_repeat = repeat;
1634 last_bytesperword = bytesperword;
1635
1636 if (strcmp(argv[0], "mds") == 0) {
1637 symbolic = 1;
1638 /* Do not save these changes as last_*, they are temporary mds
1639 * overrides.
1640 */
1641 bytesperword = KDB_WORD_SIZE;
1642 repeat = mdcount;
1643 kdbgetintenv("NOSECT", &nosect);
1644 }
1645
1646 /* Round address down modulo BYTESPERWORD */
1647
1648 addr &= ~(bytesperword-1);
1649
1650 while (repeat > 0) {
1651 unsigned long a;
1652 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1653
1654 if (KDB_FLAG(CMD_INTERRUPT))
1655 return 0;
1656 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1657 if (phys) {
1658 if (kdb_getphysword(&word, a, bytesperword)
1659 || word)
1660 break;
1661 } else if (kdb_getword(&word, a, bytesperword) || word)
1662 break;
1663 }
1664 n = min(num, repeat);
1665 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1666 num, repeat, phys);
1667 addr += bytesperword * n;
1668 repeat -= n;
1669 z = (z + num - 1) / num;
1670 if (z > 2) {
1671 int s = num * (z-2);
1672 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1673 " zero suppressed\n",
1674 addr, addr + bytesperword * s - 1);
1675 addr += bytesperword * s;
1676 repeat -= s;
1677 }
1678 }
1679 last_addr = addr;
1680
1681 return 0;
1682}
1683
1684/*
1685 * kdb_mm - This function implements the 'mm' command.
1686 * mm address-expression new-value
1687 * Remarks:
1688 * mm works on machine words, mmW works on bytes.
1689 */
1690static int kdb_mm(int argc, const char **argv)
1691{
1692 int diag;
1693 unsigned long addr;
1694 long offset = 0;
1695 unsigned long contents;
1696 int nextarg;
1697 int width;
1698
1699 if (argv[0][2] && !isdigit(argv[0][2]))
1700 return KDB_NOTFOUND;
1701
1702 if (argc < 2)
1703 return KDB_ARGCOUNT;
1704
1705 nextarg = 1;
1706 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1707 if (diag)
1708 return diag;
1709
1710 if (nextarg > argc)
1711 return KDB_ARGCOUNT;
1712 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1713 if (diag)
1714 return diag;
1715
1716 if (nextarg != argc + 1)
1717 return KDB_ARGCOUNT;
1718
1719 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1720 diag = kdb_putword(addr, contents, width);
1721 if (diag)
1722 return diag;
1723
1724 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1725
1726 return 0;
1727}
1728
1729/*
1730 * kdb_go - This function implements the 'go' command.
1731 * go [address-expression]
1732 */
1733static int kdb_go(int argc, const char **argv)
1734{
1735 unsigned long addr;
1736 int diag;
1737 int nextarg;
1738 long offset;
1739
495363d3
JW
1740 if (raw_smp_processor_id() != kdb_initial_cpu) {
1741 kdb_printf("go must execute on the entry cpu, "
1742 "please use \"cpu %d\" and then execute go\n",
1743 kdb_initial_cpu);
1744 return KDB_BADCPUNUM;
1745 }
5d5314d6 1746 if (argc == 1) {
5d5314d6
JW
1747 nextarg = 1;
1748 diag = kdbgetaddrarg(argc, argv, &nextarg,
1749 &addr, &offset, NULL);
1750 if (diag)
1751 return diag;
1752 } else if (argc) {
1753 return KDB_ARGCOUNT;
1754 }
1755
1756 diag = KDB_CMD_GO;
1757 if (KDB_FLAG(CATASTROPHIC)) {
1758 kdb_printf("Catastrophic error detected\n");
1759 kdb_printf("kdb_continue_catastrophic=%d, ",
1760 kdb_continue_catastrophic);
1761 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1762 kdb_printf("type go a second time if you really want "
1763 "to continue\n");
1764 return 0;
1765 }
1766 if (kdb_continue_catastrophic == 2) {
1767 kdb_printf("forcing reboot\n");
1768 kdb_reboot(0, NULL);
1769 }
1770 kdb_printf("attempting to continue\n");
1771 }
1772 return diag;
1773}
1774
1775/*
1776 * kdb_rd - This function implements the 'rd' command.
1777 */
1778static int kdb_rd(int argc, const char **argv)
1779{
534af108
JW
1780 int len = kdb_check_regs();
1781#if DBG_MAX_REG_NUM > 0
1782 int i;
1783 char *rname;
1784 int rsize;
1785 u64 reg64;
1786 u32 reg32;
1787 u16 reg16;
1788 u8 reg8;
1789
1790 if (len)
1791 return len;
1792
1793 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1794 rsize = dbg_reg_def[i].size * 2;
1795 if (rsize > 16)
1796 rsize = 2;
1797 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1798 len = 0;
1799 kdb_printf("\n");
1800 }
1801 if (len)
1802 len += kdb_printf(" ");
1803 switch(dbg_reg_def[i].size * 8) {
1804 case 8:
1805 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1806 if (!rname)
1807 break;
1808 len += kdb_printf("%s: %02x", rname, reg8);
1809 break;
1810 case 16:
1811 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1812 if (!rname)
1813 break;
1814 len += kdb_printf("%s: %04x", rname, reg16);
1815 break;
1816 case 32:
1817 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1818 if (!rname)
1819 break;
1820 len += kdb_printf("%s: %08x", rname, reg32);
1821 break;
1822 case 64:
1823 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1824 if (!rname)
1825 break;
1826 len += kdb_printf("%s: %016llx", rname, reg64);
1827 break;
1828 default:
1829 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1830 }
1831 }
1832 kdb_printf("\n");
1833#else
1834 if (len)
1835 return len;
5d5314d6
JW
1836
1837 kdb_dumpregs(kdb_current_regs);
534af108 1838#endif
5d5314d6
JW
1839 return 0;
1840}
1841
1842/*
1843 * kdb_rm - This function implements the 'rm' (register modify) command.
1844 * rm register-name new-contents
1845 * Remarks:
534af108 1846 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1847 */
1848static int kdb_rm(int argc, const char **argv)
1849{
534af108 1850#if DBG_MAX_REG_NUM > 0
5d5314d6 1851 int diag;
534af108
JW
1852 const char *rname;
1853 int i;
1854 u64 reg64;
1855 u32 reg32;
1856 u16 reg16;
1857 u8 reg8;
5d5314d6
JW
1858
1859 if (argc != 2)
1860 return KDB_ARGCOUNT;
1861 /*
1862 * Allow presence or absence of leading '%' symbol.
1863 */
534af108
JW
1864 rname = argv[1];
1865 if (*rname == '%')
1866 rname++;
5d5314d6 1867
534af108 1868 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1869 if (diag)
1870 return diag;
1871
1872 diag = kdb_check_regs();
1873 if (diag)
1874 return diag;
534af108
JW
1875
1876 diag = KDB_BADREG;
1877 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1878 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1879 diag = 0;
1880 break;
1881 }
1882 }
1883 if (!diag) {
1884 switch(dbg_reg_def[i].size * 8) {
1885 case 8:
1886 reg8 = reg64;
1887 dbg_set_reg(i, &reg8, kdb_current_regs);
1888 break;
1889 case 16:
1890 reg16 = reg64;
1891 dbg_set_reg(i, &reg16, kdb_current_regs);
1892 break;
1893 case 32:
1894 reg32 = reg64;
1895 dbg_set_reg(i, &reg32, kdb_current_regs);
1896 break;
1897 case 64:
1898 dbg_set_reg(i, &reg64, kdb_current_regs);
1899 break;
1900 }
1901 }
1902 return diag;
1903#else
5d5314d6 1904 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
1905 return 0;
1906#endif
5d5314d6
JW
1907}
1908
1909#if defined(CONFIG_MAGIC_SYSRQ)
1910/*
1911 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1912 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1913 * sr <magic-sysrq-code>
1914 */
1915static int kdb_sr(int argc, const char **argv)
1916{
1917 if (argc != 1)
1918 return KDB_ARGCOUNT;
d37d39ae 1919 kdb_trap_printk++;
f335397d 1920 __handle_sysrq(*argv[1], false);
d37d39ae 1921 kdb_trap_printk--;
5d5314d6
JW
1922
1923 return 0;
1924}
1925#endif /* CONFIG_MAGIC_SYSRQ */
1926
1927/*
1928 * kdb_ef - This function implements the 'regs' (display exception
1929 * frame) command. This command takes an address and expects to
1930 * find an exception frame at that address, formats and prints
1931 * it.
1932 * regs address-expression
1933 * Remarks:
1934 * Not done yet.
1935 */
1936static int kdb_ef(int argc, const char **argv)
1937{
1938 int diag;
1939 unsigned long addr;
1940 long offset;
1941 int nextarg;
1942
1943 if (argc != 1)
1944 return KDB_ARGCOUNT;
1945
1946 nextarg = 1;
1947 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1948 if (diag)
1949 return diag;
1950 show_regs((struct pt_regs *)addr);
1951 return 0;
1952}
1953
1954#if defined(CONFIG_MODULES)
5d5314d6
JW
1955/*
1956 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1957 * currently loaded kernel modules.
1958 * Mostly taken from userland lsmod.
1959 */
1960static int kdb_lsmod(int argc, const char **argv)
1961{
1962 struct module *mod;
1963
1964 if (argc != 0)
1965 return KDB_ARGCOUNT;
1966
1967 kdb_printf("Module Size modstruct Used by\n");
1968 list_for_each_entry(mod, kdb_modules, list) {
0d21b0e3
RR
1969 if (mod->state == MODULE_STATE_UNFORMED)
1970 continue;
5d5314d6
JW
1971
1972 kdb_printf("%-20s%8u 0x%p ", mod->name,
1973 mod->core_size, (void *)mod);
1974#ifdef CONFIG_MODULE_UNLOAD
bd77c047 1975 kdb_printf("%4ld ", module_refcount(mod));
5d5314d6
JW
1976#endif
1977 if (mod->state == MODULE_STATE_GOING)
1978 kdb_printf(" (Unloading)");
1979 else if (mod->state == MODULE_STATE_COMING)
1980 kdb_printf(" (Loading)");
1981 else
1982 kdb_printf(" (Live)");
9e8b624f 1983 kdb_printf(" 0x%p", mod->module_core);
5d5314d6
JW
1984
1985#ifdef CONFIG_MODULE_UNLOAD
1986 {
1987 struct module_use *use;
1988 kdb_printf(" [ ");
c8e21ced
RR
1989 list_for_each_entry(use, &mod->source_list,
1990 source_list)
1991 kdb_printf("%s ", use->target->name);
5d5314d6
JW
1992 kdb_printf("]\n");
1993 }
1994#endif
1995 }
1996
1997 return 0;
1998}
1999
2000#endif /* CONFIG_MODULES */
2001
2002/*
2003 * kdb_env - This function implements the 'env' command. Display the
2004 * current environment variables.
2005 */
2006
2007static int kdb_env(int argc, const char **argv)
2008{
2009 int i;
2010
2011 for (i = 0; i < __nenv; i++) {
2012 if (__env[i])
2013 kdb_printf("%s\n", __env[i]);
2014 }
2015
2016 if (KDB_DEBUG(MASK))
2017 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2018
2019 return 0;
2020}
2021
2022#ifdef CONFIG_PRINTK
2023/*
2024 * kdb_dmesg - This function implements the 'dmesg' command to display
2025 * the contents of the syslog buffer.
2026 * dmesg [lines] [adjust]
2027 */
2028static int kdb_dmesg(int argc, const char **argv)
2029{
bc792e61
AV
2030 int diag;
2031 int logging;
2032 int lines = 0;
2033 int adjust = 0;
2034 int n = 0;
2035 int skip = 0;
2036 struct kmsg_dumper dumper = { .active = 1 };
2037 size_t len;
2038 char buf[201];
5d5314d6
JW
2039
2040 if (argc > 2)
2041 return KDB_ARGCOUNT;
2042 if (argc) {
2043 char *cp;
2044 lines = simple_strtol(argv[1], &cp, 0);
2045 if (*cp)
2046 lines = 0;
2047 if (argc > 1) {
2048 adjust = simple_strtoul(argv[2], &cp, 0);
2049 if (*cp || adjust < 0)
2050 adjust = 0;
2051 }
2052 }
2053
2054 /* disable LOGGING if set */
2055 diag = kdbgetintenv("LOGGING", &logging);
2056 if (!diag && logging) {
2057 const char *setargs[] = { "set", "LOGGING", "0" };
2058 kdb_set(2, setargs);
2059 }
2060
c064da47
AV
2061 kmsg_dump_rewind_nolock(&dumper);
2062 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
bc792e61
AV
2063 n++;
2064
5d5314d6
JW
2065 if (lines < 0) {
2066 if (adjust >= n)
2067 kdb_printf("buffer only contains %d lines, nothing "
2068 "printed\n", n);
2069 else if (adjust - lines >= n)
2070 kdb_printf("buffer only contains %d lines, last %d "
2071 "lines printed\n", n, n - adjust);
bc792e61
AV
2072 skip = adjust;
2073 lines = abs(lines);
5d5314d6 2074 } else if (lines > 0) {
bc792e61
AV
2075 skip = n - lines - adjust;
2076 lines = abs(lines);
5d5314d6
JW
2077 if (adjust >= n) {
2078 kdb_printf("buffer only contains %d lines, "
2079 "nothing printed\n", n);
2080 skip = n;
2081 } else if (skip < 0) {
2082 lines += skip;
2083 skip = 0;
2084 kdb_printf("buffer only contains %d lines, first "
2085 "%d lines printed\n", n, lines);
2086 }
bc792e61
AV
2087 } else {
2088 lines = n;
5d5314d6 2089 }
bc792e61
AV
2090
2091 if (skip >= n || skip < 0)
2092 return 0;
2093
c064da47
AV
2094 kmsg_dump_rewind_nolock(&dumper);
2095 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2096 if (skip) {
2097 skip--;
2098 continue;
5d5314d6 2099 }
bc792e61
AV
2100 if (!lines--)
2101 break;
d1871b38
JW
2102 if (KDB_FLAG(CMD_INTERRUPT))
2103 return 0;
bc792e61
AV
2104
2105 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2106 }
5d5314d6
JW
2107
2108 return 0;
2109}
2110#endif /* CONFIG_PRINTK */
ad394f66
AV
2111
2112/* Make sure we balance enable/disable calls, must disable first. */
2113static atomic_t kdb_nmi_disabled;
2114
2115static int kdb_disable_nmi(int argc, const char *argv[])
2116{
2117 if (atomic_read(&kdb_nmi_disabled))
2118 return 0;
2119 atomic_set(&kdb_nmi_disabled, 1);
2120 arch_kgdb_ops.enable_nmi(0);
2121 return 0;
2122}
2123
2124static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2125{
2126 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2127 return -EINVAL;
2128 arch_kgdb_ops.enable_nmi(1);
2129 return 0;
2130}
2131
2132static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2133 .set = kdb_param_enable_nmi,
2134};
2135module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2136
5d5314d6
JW
2137/*
2138 * kdb_cpu - This function implements the 'cpu' command.
2139 * cpu [<cpunum>]
2140 * Returns:
2141 * KDB_CMD_CPU for success, a kdb diagnostic if error
2142 */
2143static void kdb_cpu_status(void)
2144{
2145 int i, start_cpu, first_print = 1;
2146 char state, prev_state = '?';
2147
2148 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2149 kdb_printf("Available cpus: ");
2150 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2151 if (!cpu_online(i)) {
2152 state = 'F'; /* cpu is offline */
2153 } else {
2154 state = ' '; /* cpu is responding to kdb */
2155 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2156 state = 'I'; /* idle task */
2157 }
2158 if (state != prev_state) {
2159 if (prev_state != '?') {
2160 if (!first_print)
2161 kdb_printf(", ");
2162 first_print = 0;
2163 kdb_printf("%d", start_cpu);
2164 if (start_cpu < i-1)
2165 kdb_printf("-%d", i-1);
2166 if (prev_state != ' ')
2167 kdb_printf("(%c)", prev_state);
2168 }
2169 prev_state = state;
2170 start_cpu = i;
2171 }
2172 }
2173 /* print the trailing cpus, ignoring them if they are all offline */
2174 if (prev_state != 'F') {
2175 if (!first_print)
2176 kdb_printf(", ");
2177 kdb_printf("%d", start_cpu);
2178 if (start_cpu < i-1)
2179 kdb_printf("-%d", i-1);
2180 if (prev_state != ' ')
2181 kdb_printf("(%c)", prev_state);
2182 }
2183 kdb_printf("\n");
2184}
2185
2186static int kdb_cpu(int argc, const char **argv)
2187{
2188 unsigned long cpunum;
2189 int diag;
2190
2191 if (argc == 0) {
2192 kdb_cpu_status();
2193 return 0;
2194 }
2195
2196 if (argc != 1)
2197 return KDB_ARGCOUNT;
2198
2199 diag = kdbgetularg(argv[1], &cpunum);
2200 if (diag)
2201 return diag;
2202
2203 /*
2204 * Validate cpunum
2205 */
2206 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2207 return KDB_BADCPUNUM;
2208
2209 dbg_switch_cpu = cpunum;
2210
2211 /*
2212 * Switch to other cpu
2213 */
2214 return KDB_CMD_CPU;
2215}
2216
2217/* The user may not realize that ps/bta with no parameters does not print idle
2218 * or sleeping system daemon processes, so tell them how many were suppressed.
2219 */
2220void kdb_ps_suppressed(void)
2221{
2222 int idle = 0, daemon = 0;
2223 unsigned long mask_I = kdb_task_state_string("I"),
2224 mask_M = kdb_task_state_string("M");
2225 unsigned long cpu;
2226 const struct task_struct *p, *g;
2227 for_each_online_cpu(cpu) {
2228 p = kdb_curr_task(cpu);
2229 if (kdb_task_state(p, mask_I))
2230 ++idle;
2231 }
2232 kdb_do_each_thread(g, p) {
2233 if (kdb_task_state(p, mask_M))
2234 ++daemon;
2235 } kdb_while_each_thread(g, p);
2236 if (idle || daemon) {
2237 if (idle)
2238 kdb_printf("%d idle process%s (state I)%s\n",
2239 idle, idle == 1 ? "" : "es",
2240 daemon ? " and " : "");
2241 if (daemon)
2242 kdb_printf("%d sleeping system daemon (state M) "
2243 "process%s", daemon,
2244 daemon == 1 ? "" : "es");
2245 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2246 }
2247}
2248
2249/*
2250 * kdb_ps - This function implements the 'ps' command which shows a
2251 * list of the active processes.
2252 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2253 */
2254void kdb_ps1(const struct task_struct *p)
2255{
2256 int cpu;
2257 unsigned long tmp;
2258
2259 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2260 return;
2261
2262 cpu = kdb_process_cpu(p);
2263 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2264 (void *)p, p->pid, p->parent->pid,
2265 kdb_task_has_cpu(p), kdb_process_cpu(p),
2266 kdb_task_state_char(p),
2267 (void *)(&p->thread),
2268 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2269 p->comm);
2270 if (kdb_task_has_cpu(p)) {
2271 if (!KDB_TSK(cpu)) {
2272 kdb_printf(" Error: no saved data for this cpu\n");
2273 } else {
2274 if (KDB_TSK(cpu) != p)
2275 kdb_printf(" Error: does not match running "
2276 "process table (0x%p)\n", KDB_TSK(cpu));
2277 }
2278 }
2279}
2280
2281static int kdb_ps(int argc, const char **argv)
2282{
2283 struct task_struct *g, *p;
2284 unsigned long mask, cpu;
2285
2286 if (argc == 0)
2287 kdb_ps_suppressed();
2288 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2289 (int)(2*sizeof(void *))+2, "Task Addr",
2290 (int)(2*sizeof(void *))+2, "Thread");
2291 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2292 /* Run the active tasks first */
2293 for_each_online_cpu(cpu) {
2294 if (KDB_FLAG(CMD_INTERRUPT))
2295 return 0;
2296 p = kdb_curr_task(cpu);
2297 if (kdb_task_state(p, mask))
2298 kdb_ps1(p);
2299 }
2300 kdb_printf("\n");
2301 /* Now the real tasks */
2302 kdb_do_each_thread(g, p) {
2303 if (KDB_FLAG(CMD_INTERRUPT))
2304 return 0;
2305 if (kdb_task_state(p, mask))
2306 kdb_ps1(p);
2307 } kdb_while_each_thread(g, p);
2308
2309 return 0;
2310}
2311
2312/*
2313 * kdb_pid - This function implements the 'pid' command which switches
2314 * the currently active process.
2315 * pid [<pid> | R]
2316 */
2317static int kdb_pid(int argc, const char **argv)
2318{
2319 struct task_struct *p;
2320 unsigned long val;
2321 int diag;
2322
2323 if (argc > 1)
2324 return KDB_ARGCOUNT;
2325
2326 if (argc) {
2327 if (strcmp(argv[1], "R") == 0) {
2328 p = KDB_TSK(kdb_initial_cpu);
2329 } else {
2330 diag = kdbgetularg(argv[1], &val);
2331 if (diag)
2332 return KDB_BADINT;
2333
2334 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2335 if (!p) {
2336 kdb_printf("No task with pid=%d\n", (pid_t)val);
2337 return 0;
2338 }
2339 }
2340 kdb_set_current_task(p);
2341 }
2342 kdb_printf("KDB current process is %s(pid=%d)\n",
2343 kdb_current_task->comm,
2344 kdb_current_task->pid);
2345
2346 return 0;
2347}
2348
5d5314d6
JW
2349static int kdb_kgdb(int argc, const char **argv)
2350{
2351 return KDB_CMD_KGDB;
2352}
2353
2354/*
2355 * kdb_help - This function implements the 'help' and '?' commands.
2356 */
2357static int kdb_help(int argc, const char **argv)
2358{
2359 kdbtab_t *kt;
2360 int i;
2361
2362 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2363 kdb_printf("-----------------------------"
2364 "-----------------------------\n");
2365 for_each_kdbcmd(kt, i) {
074604af 2366 char *space = "";
5d5314d6
JW
2367 if (KDB_FLAG(CMD_INTERRUPT))
2368 return 0;
074604af
JW
2369 if (!kt->cmd_name)
2370 continue;
2371 if (strlen(kt->cmd_usage) > 20)
2372 space = "\n ";
2373 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2374 kt->cmd_usage, space, kt->cmd_help);
5d5314d6
JW
2375 }
2376 return 0;
2377}
2378
2379/*
2380 * kdb_kill - This function implements the 'kill' commands.
2381 */
2382static int kdb_kill(int argc, const char **argv)
2383{
2384 long sig, pid;
2385 char *endp;
2386 struct task_struct *p;
2387 struct siginfo info;
2388
2389 if (argc != 2)
2390 return KDB_ARGCOUNT;
2391
2392 sig = simple_strtol(argv[1], &endp, 0);
2393 if (*endp)
2394 return KDB_BADINT;
2395 if (sig >= 0) {
2396 kdb_printf("Invalid signal parameter.<-signal>\n");
2397 return 0;
2398 }
2399 sig = -sig;
2400
2401 pid = simple_strtol(argv[2], &endp, 0);
2402 if (*endp)
2403 return KDB_BADINT;
2404 if (pid <= 0) {
2405 kdb_printf("Process ID must be large than 0.\n");
2406 return 0;
2407 }
2408
2409 /* Find the process. */
2410 p = find_task_by_pid_ns(pid, &init_pid_ns);
2411 if (!p) {
2412 kdb_printf("The specified process isn't found.\n");
2413 return 0;
2414 }
2415 p = p->group_leader;
2416 info.si_signo = sig;
2417 info.si_errno = 0;
2418 info.si_code = SI_USER;
2419 info.si_pid = pid; /* same capabilities as process being signalled */
2420 info.si_uid = 0; /* kdb has root authority */
2421 kdb_send_sig_info(p, &info);
2422 return 0;
2423}
2424
2425struct kdb_tm {
2426 int tm_sec; /* seconds */
2427 int tm_min; /* minutes */
2428 int tm_hour; /* hours */
2429 int tm_mday; /* day of the month */
2430 int tm_mon; /* month */
2431 int tm_year; /* year */
2432};
2433
2434static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2435{
2436 /* This will work from 1970-2099, 2100 is not a leap year */
2437 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2438 31, 30, 31, 30, 31 };
2439 memset(tm, 0, sizeof(*tm));
2440 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2441 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2442 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2443 tm->tm_min = tm->tm_sec / 60 % 60;
2444 tm->tm_hour = tm->tm_sec / 60 / 60;
2445 tm->tm_sec = tm->tm_sec % 60;
2446 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2447 tm->tm_mday %= (4*365+1);
2448 mon_day[1] = 29;
2449 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2450 tm->tm_mday -= mon_day[tm->tm_mon];
2451 if (++tm->tm_mon == 12) {
2452 tm->tm_mon = 0;
2453 ++tm->tm_year;
2454 mon_day[1] = 28;
2455 }
2456 }
2457 ++tm->tm_mday;
2458}
2459
2460/*
2461 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2462 * I cannot call that code directly from kdb, it has an unconditional
2463 * cli()/sti() and calls routines that take locks which can stop the debugger.
2464 */
2465static void kdb_sysinfo(struct sysinfo *val)
2466{
2467 struct timespec uptime;
a9821c74 2468 ktime_get_ts(&uptime);
5d5314d6
JW
2469 memset(val, 0, sizeof(*val));
2470 val->uptime = uptime.tv_sec;
2471 val->loads[0] = avenrun[0];
2472 val->loads[1] = avenrun[1];
2473 val->loads[2] = avenrun[2];
2474 val->procs = nr_threads-1;
2475 si_meminfo(val);
2476
2477 return;
2478}
2479
2480/*
2481 * kdb_summary - This function implements the 'summary' command.
2482 */
2483static int kdb_summary(int argc, const char **argv)
2484{
157b1a23 2485 struct timespec now;
5d5314d6
JW
2486 struct kdb_tm tm;
2487 struct sysinfo val;
2488
2489 if (argc)
2490 return KDB_ARGCOUNT;
2491
2492 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2493 kdb_printf("release %s\n", init_uts_ns.name.release);
2494 kdb_printf("version %s\n", init_uts_ns.name.version);
2495 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2496 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2497 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2498 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2499
157b1a23
TG
2500 now = __current_kernel_time();
2501 kdb_gmtime(&now, &tm);
5d5314d6
JW
2502 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2503 "tz_minuteswest %d\n",
2504 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2505 tm.tm_hour, tm.tm_min, tm.tm_sec,
2506 sys_tz.tz_minuteswest);
2507
2508 kdb_sysinfo(&val);
2509 kdb_printf("uptime ");
2510 if (val.uptime > (24*60*60)) {
2511 int days = val.uptime / (24*60*60);
2512 val.uptime %= (24*60*60);
2513 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2514 }
2515 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2516
2517 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2518
2519#define LOAD_INT(x) ((x) >> FSHIFT)
2520#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2521 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2522 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2523 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2524 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2525#undef LOAD_INT
2526#undef LOAD_FRAC
2527 /* Display in kilobytes */
2528#define K(x) ((x) << (PAGE_SHIFT - 10))
2529 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2530 "Buffers: %8lu kB\n",
2531 val.totalram, val.freeram, val.bufferram);
2532 return 0;
2533}
2534
2535/*
2536 * kdb_per_cpu - This function implements the 'per_cpu' command.
2537 */
2538static int kdb_per_cpu(int argc, const char **argv)
2539{
931ea248
JW
2540 char fmtstr[64];
2541 int cpu, diag, nextarg = 1;
2542 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2543
2544 if (argc < 1 || argc > 3)
2545 return KDB_ARGCOUNT;
2546
931ea248
JW
2547 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2548 if (diag)
2549 return diag;
2550
5d5314d6
JW
2551 if (argc >= 2) {
2552 diag = kdbgetularg(argv[2], &bytesperword);
2553 if (diag)
2554 return diag;
2555 }
2556 if (!bytesperword)
2557 bytesperword = KDB_WORD_SIZE;
2558 else if (bytesperword > KDB_WORD_SIZE)
2559 return KDB_BADWIDTH;
2560 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2561 if (argc >= 3) {
2562 diag = kdbgetularg(argv[3], &whichcpu);
2563 if (diag)
2564 return diag;
2565 if (!cpu_online(whichcpu)) {
2566 kdb_printf("cpu %ld is not online\n", whichcpu);
2567 return KDB_BADCPUNUM;
2568 }
2569 }
2570
2571 /* Most architectures use __per_cpu_offset[cpu], some use
2572 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2573 */
2574#ifdef __per_cpu_offset
2575#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2576#else
2577#ifdef CONFIG_SMP
2578#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2579#else
2580#define KDB_PCU(cpu) 0
2581#endif
2582#endif
5d5314d6 2583 for_each_online_cpu(cpu) {
931ea248
JW
2584 if (KDB_FLAG(CMD_INTERRUPT))
2585 return 0;
2586
5d5314d6
JW
2587 if (whichcpu != ~0UL && whichcpu != cpu)
2588 continue;
931ea248 2589 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2590 diag = kdb_getword(&val, addr, bytesperword);
2591 if (diag) {
2592 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2593 "read, diag=%d\n", cpu, addr, diag);
2594 continue;
2595 }
5d5314d6
JW
2596 kdb_printf("%5d ", cpu);
2597 kdb_md_line(fmtstr, addr,
2598 bytesperword == KDB_WORD_SIZE,
2599 1, bytesperword, 1, 1, 0);
2600 }
5d5314d6 2601#undef KDB_PCU
5d5314d6
JW
2602 return 0;
2603}
2604
2605/*
2606 * display help for the use of cmd | grep pattern
2607 */
2608static int kdb_grep_help(int argc, const char **argv)
2609{
2610 kdb_printf("Usage of cmd args | grep pattern:\n");
2611 kdb_printf(" Any command's output may be filtered through an ");
2612 kdb_printf("emulated 'pipe'.\n");
2613 kdb_printf(" 'grep' is just a key word.\n");
2614 kdb_printf(" The pattern may include a very limited set of "
2615 "metacharacters:\n");
2616 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2617 kdb_printf(" And if there are spaces in the pattern, you may "
2618 "quote it:\n");
2619 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2620 " or \"^pat tern$\"\n");
2621 return 0;
2622}
2623
2624/*
42c884c1 2625 * kdb_register_flags - This function is used to register a kernel
5d5314d6
JW
2626 * debugger command.
2627 * Inputs:
2628 * cmd Command name
2629 * func Function to execute the command
2630 * usage A simple usage string showing arguments
2631 * help A simple help string describing command
2632 * repeat Does the command auto repeat on enter?
2633 * Returns:
2634 * zero for success, one if a duplicate command.
2635 */
2636#define kdb_command_extend 50 /* arbitrary */
42c884c1
AV
2637int kdb_register_flags(char *cmd,
2638 kdb_func_t func,
2639 char *usage,
2640 char *help,
2641 short minlen,
2642 kdb_cmdflags_t flags)
5d5314d6
JW
2643{
2644 int i;
2645 kdbtab_t *kp;
2646
2647 /*
2648 * Brute force method to determine duplicates
2649 */
2650 for_each_kdbcmd(kp, i) {
2651 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2652 kdb_printf("Duplicate kdb command registered: "
2653 "%s, func %p help %s\n", cmd, func, help);
2654 return 1;
2655 }
2656 }
2657
2658 /*
2659 * Insert command into first available location in table
2660 */
2661 for_each_kdbcmd(kp, i) {
2662 if (kp->cmd_name == NULL)
2663 break;
2664 }
2665
2666 if (i >= kdb_max_commands) {
2667 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2668 kdb_command_extend) * sizeof(*new), GFP_KDB);
2669 if (!new) {
2670 kdb_printf("Could not allocate new kdb_command "
2671 "table\n");
2672 return 1;
2673 }
2674 if (kdb_commands) {
2675 memcpy(new, kdb_commands,
5450d904 2676 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
5d5314d6
JW
2677 kfree(kdb_commands);
2678 }
f7c82d5a 2679 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
5d5314d6
JW
2680 kdb_command_extend * sizeof(*new));
2681 kdb_commands = new;
5450d904 2682 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
5d5314d6
JW
2683 kdb_max_commands += kdb_command_extend;
2684 }
2685
2686 kp->cmd_name = cmd;
2687 kp->cmd_func = func;
2688 kp->cmd_usage = usage;
2689 kp->cmd_help = help;
5d5314d6 2690 kp->cmd_minlen = minlen;
15a42a9b 2691 kp->cmd_flags = flags;
5d5314d6
JW
2692
2693 return 0;
2694}
42c884c1 2695EXPORT_SYMBOL_GPL(kdb_register_flags);
f7030bbc 2696
5d5314d6
JW
2697
2698/*
2699 * kdb_register - Compatibility register function for commands that do
2700 * not need to specify a repeat state. Equivalent to
42c884c1 2701 * kdb_register_flags with KDB_REPEAT_NONE.
5d5314d6
JW
2702 * Inputs:
2703 * cmd Command name
2704 * func Function to execute the command
2705 * usage A simple usage string showing arguments
2706 * help A simple help string describing command
2707 * Returns:
2708 * zero for success, one if a duplicate command.
2709 */
2710int kdb_register(char *cmd,
2711 kdb_func_t func,
2712 char *usage,
2713 char *help,
2714 short minlen)
2715{
42c884c1
AV
2716 return kdb_register_flags(cmd, func, usage, help, minlen,
2717 KDB_REPEAT_NONE);
5d5314d6 2718}
f7030bbc 2719EXPORT_SYMBOL_GPL(kdb_register);
5d5314d6
JW
2720
2721/*
2722 * kdb_unregister - This function is used to unregister a kernel
2723 * debugger command. It is generally called when a module which
2724 * implements kdb commands is unloaded.
2725 * Inputs:
2726 * cmd Command name
2727 * Returns:
2728 * zero for success, one command not registered.
2729 */
2730int kdb_unregister(char *cmd)
2731{
2732 int i;
2733 kdbtab_t *kp;
2734
2735 /*
2736 * find the command.
2737 */
75d14ede 2738 for_each_kdbcmd(kp, i) {
5d5314d6
JW
2739 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2740 kp->cmd_name = NULL;
2741 return 0;
2742 }
2743 }
2744
2745 /* Couldn't find it. */
2746 return 1;
2747}
f7030bbc 2748EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6
JW
2749
2750/* Initialize the kdb command table. */
2751static void __init kdb_inittab(void)
2752{
2753 int i;
2754 kdbtab_t *kp;
2755
2756 for_each_kdbcmd(kp, i)
2757 kp->cmd_name = NULL;
2758
42c884c1 2759 kdb_register_flags("md", kdb_md, "<vaddr>",
5d5314d6
JW
2760 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2761 KDB_REPEAT_NO_ARGS);
42c884c1 2762 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
5d5314d6 2763 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
42c884c1 2764 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
5d5314d6 2765 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
42c884c1 2766 kdb_register_flags("mds", kdb_md, "<vaddr>",
5d5314d6 2767 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
42c884c1 2768 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
5d5314d6 2769 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
42c884c1 2770 kdb_register_flags("go", kdb_go, "[<vaddr>]",
5d5314d6 2771 "Continue Execution", 1, KDB_REPEAT_NONE);
42c884c1 2772 kdb_register_flags("rd", kdb_rd, "",
5d5314d6 2773 "Display Registers", 0, KDB_REPEAT_NONE);
42c884c1 2774 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
5d5314d6 2775 "Modify Registers", 0, KDB_REPEAT_NONE);
42c884c1 2776 kdb_register_flags("ef", kdb_ef, "<vaddr>",
5d5314d6 2777 "Display exception frame", 0, KDB_REPEAT_NONE);
42c884c1 2778 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
5d5314d6 2779 "Stack traceback", 1, KDB_REPEAT_NONE);
42c884c1 2780 kdb_register_flags("btp", kdb_bt, "<pid>",
5d5314d6 2781 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
42c884c1 2782 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
a37372f6 2783 "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
42c884c1 2784 kdb_register_flags("btc", kdb_bt, "",
5d5314d6 2785 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
42c884c1 2786 kdb_register_flags("btt", kdb_bt, "<vaddr>",
5d5314d6
JW
2787 "Backtrace process given its struct task address", 0,
2788 KDB_REPEAT_NONE);
42c884c1 2789 kdb_register_flags("env", kdb_env, "",
5d5314d6 2790 "Show environment variables", 0, KDB_REPEAT_NONE);
42c884c1 2791 kdb_register_flags("set", kdb_set, "",
5d5314d6 2792 "Set environment variables", 0, KDB_REPEAT_NONE);
42c884c1 2793 kdb_register_flags("help", kdb_help, "",
5d5314d6 2794 "Display Help Message", 1, KDB_REPEAT_NONE);
42c884c1 2795 kdb_register_flags("?", kdb_help, "",
5d5314d6 2796 "Display Help Message", 0, KDB_REPEAT_NONE);
42c884c1 2797 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
5d5314d6 2798 "Switch to new cpu", 0, KDB_REPEAT_NONE);
42c884c1 2799 kdb_register_flags("kgdb", kdb_kgdb, "",
5d5314d6 2800 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
42c884c1 2801 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
5d5314d6 2802 "Display active task list", 0, KDB_REPEAT_NONE);
42c884c1 2803 kdb_register_flags("pid", kdb_pid, "<pidnum>",
5d5314d6 2804 "Switch to another task", 0, KDB_REPEAT_NONE);
42c884c1 2805 kdb_register_flags("reboot", kdb_reboot, "",
5d5314d6
JW
2806 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2807#if defined(CONFIG_MODULES)
42c884c1 2808 kdb_register_flags("lsmod", kdb_lsmod, "",
5d5314d6
JW
2809 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2810#endif
2811#if defined(CONFIG_MAGIC_SYSRQ)
42c884c1 2812 kdb_register_flags("sr", kdb_sr, "<key>",
5d5314d6
JW
2813 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2814#endif
2815#if defined(CONFIG_PRINTK)
42c884c1 2816 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
5d5314d6
JW
2817 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2818#endif
ad394f66 2819 if (arch_kgdb_ops.enable_nmi) {
42c884c1 2820 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
ad394f66
AV
2821 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2822 }
42c884c1 2823 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
5d5314d6 2824 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
42c884c1 2825 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
5d5314d6 2826 "Send a signal to a process", 0, KDB_REPEAT_NONE);
42c884c1 2827 kdb_register_flags("summary", kdb_summary, "",
5d5314d6 2828 "Summarize the system", 4, KDB_REPEAT_NONE);
42c884c1 2829 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
5d5314d6 2830 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
42c884c1 2831 kdb_register_flags("grephelp", kdb_grep_help, "",
5d5314d6
JW
2832 "Display help on | grep", 0, KDB_REPEAT_NONE);
2833}
2834
2835/* Execute any commands defined in kdb_cmds. */
2836static void __init kdb_cmd_init(void)
2837{
2838 int i, diag;
2839 for (i = 0; kdb_cmds[i]; ++i) {
2840 diag = kdb_parse(kdb_cmds[i]);
2841 if (diag)
2842 kdb_printf("kdb command %s failed, kdb diag %d\n",
2843 kdb_cmds[i], diag);
2844 }
2845 if (defcmd_in_progress) {
2846 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2847 kdb_parse("endefcmd");
2848 }
2849}
2850
b595076a 2851/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2852void __init kdb_init(int lvl)
2853{
2854 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2855 int i;
2856
2857 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2858 return;
2859 for (i = kdb_init_lvl; i < lvl; i++) {
2860 switch (i) {
2861 case KDB_NOT_INITIALIZED:
2862 kdb_inittab(); /* Initialize Command Table */
2863 kdb_initbptab(); /* Initialize Breakpoints */
2864 break;
2865 case KDB_INIT_EARLY:
2866 kdb_cmd_init(); /* Build kdb_cmds tables */
2867 break;
2868 }
2869 }
2870 kdb_init_lvl = lvl;
2871}