cpuset: update cs->effective_{cpus, mems} when config changes
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7
LZ
79
80 /* user-configured CPUs and Memory Nodes allow to tasks */
81 cpumask_var_t cpus_allowed;
82 nodemask_t mems_allowed;
83
84 /* effective CPUs and Memory Nodes allow to tasks */
85 cpumask_var_t effective_cpus;
86 nodemask_t effective_mems;
1da177e4 87
33ad801d
LZ
88 /*
89 * This is old Memory Nodes tasks took on.
90 *
91 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
92 * - A new cpuset's old_mems_allowed is initialized when some
93 * task is moved into it.
94 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
95 * cpuset.mems_allowed and have tasks' nodemask updated, and
96 * then old_mems_allowed is updated to mems_allowed.
97 */
98 nodemask_t old_mems_allowed;
99
3e0d98b9 100 struct fmeter fmeter; /* memory_pressure filter */
029190c5 101
452477fa
TH
102 /*
103 * Tasks are being attached to this cpuset. Used to prevent
104 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
105 */
106 int attach_in_progress;
107
029190c5
PJ
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
1da177e4
LT
113};
114
a7c6d554 115static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 116{
a7c6d554 117 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
118}
119
120/* Retrieve the cpuset for a task */
121static inline struct cpuset *task_cs(struct task_struct *task)
122{
073219e9 123 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 124}
8793d854 125
c9710d80 126static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 127{
5c9d535b 128 return css_cs(cs->css.parent);
c431069f
TH
129}
130
b246272e
DR
131#ifdef CONFIG_NUMA
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return task->mempolicy;
135}
136#else
137static inline bool task_has_mempolicy(struct task_struct *task)
138{
139 return false;
140}
141#endif
142
143
1da177e4
LT
144/* bits in struct cpuset flags field */
145typedef enum {
efeb77b2 146 CS_ONLINE,
1da177e4
LT
147 CS_CPU_EXCLUSIVE,
148 CS_MEM_EXCLUSIVE,
78608366 149 CS_MEM_HARDWALL,
45b07ef3 150 CS_MEMORY_MIGRATE,
029190c5 151 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
152 CS_SPREAD_PAGE,
153 CS_SPREAD_SLAB,
1da177e4
LT
154} cpuset_flagbits_t;
155
156/* convenient tests for these bits */
efeb77b2
TH
157static inline bool is_cpuset_online(const struct cpuset *cs)
158{
159 return test_bit(CS_ONLINE, &cs->flags);
160}
161
1da177e4
LT
162static inline int is_cpu_exclusive(const struct cpuset *cs)
163{
7b5b9ef0 164 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
165}
166
167static inline int is_mem_exclusive(const struct cpuset *cs)
168{
7b5b9ef0 169 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
170}
171
78608366
PM
172static inline int is_mem_hardwall(const struct cpuset *cs)
173{
174 return test_bit(CS_MEM_HARDWALL, &cs->flags);
175}
176
029190c5
PJ
177static inline int is_sched_load_balance(const struct cpuset *cs)
178{
179 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
180}
181
45b07ef3
PJ
182static inline int is_memory_migrate(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
185}
186
825a46af
PJ
187static inline int is_spread_page(const struct cpuset *cs)
188{
189 return test_bit(CS_SPREAD_PAGE, &cs->flags);
190}
191
192static inline int is_spread_slab(const struct cpuset *cs)
193{
194 return test_bit(CS_SPREAD_SLAB, &cs->flags);
195}
196
1da177e4 197static struct cpuset top_cpuset = {
efeb77b2
TH
198 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
199 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
200};
201
ae8086ce
TH
202/**
203 * cpuset_for_each_child - traverse online children of a cpuset
204 * @child_cs: loop cursor pointing to the current child
492eb21b 205 * @pos_css: used for iteration
ae8086ce
TH
206 * @parent_cs: target cpuset to walk children of
207 *
208 * Walk @child_cs through the online children of @parent_cs. Must be used
209 * with RCU read locked.
210 */
492eb21b
TH
211#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
212 css_for_each_child((pos_css), &(parent_cs)->css) \
213 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 214
fc560a26
TH
215/**
216 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
217 * @des_cs: loop cursor pointing to the current descendant
492eb21b 218 * @pos_css: used for iteration
fc560a26
TH
219 * @root_cs: target cpuset to walk ancestor of
220 *
221 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 222 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
223 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
224 * iteration and the first node to be visited.
fc560a26 225 */
492eb21b
TH
226#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
227 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
228 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 229
1da177e4 230/*
5d21cc2d
TH
231 * There are two global mutexes guarding cpuset structures - cpuset_mutex
232 * and callback_mutex. The latter may nest inside the former. We also
233 * require taking task_lock() when dereferencing a task's cpuset pointer.
234 * See "The task_lock() exception", at the end of this comment.
235 *
236 * A task must hold both mutexes to modify cpusets. If a task holds
237 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
238 * is the only task able to also acquire callback_mutex and be able to
239 * modify cpusets. It can perform various checks on the cpuset structure
240 * first, knowing nothing will change. It can also allocate memory while
241 * just holding cpuset_mutex. While it is performing these checks, various
242 * callback routines can briefly acquire callback_mutex to query cpusets.
243 * Once it is ready to make the changes, it takes callback_mutex, blocking
244 * everyone else.
053199ed
PJ
245 *
246 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 247 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
248 * from one of the callbacks into the cpuset code from within
249 * __alloc_pages().
250 *
3d3f26a7 251 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
252 * access to cpusets.
253 *
58568d2a
MX
254 * Now, the task_struct fields mems_allowed and mempolicy may be changed
255 * by other task, we use alloc_lock in the task_struct fields to protect
256 * them.
053199ed 257 *
3d3f26a7 258 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
259 * small pieces of code, such as when reading out possibly multi-word
260 * cpumasks and nodemasks.
261 *
2df167a3
PM
262 * Accessing a task's cpuset should be done in accordance with the
263 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
264 */
265
5d21cc2d 266static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 267static DEFINE_MUTEX(callback_mutex);
4247bdc6 268
3a5a6d0c
TH
269/*
270 * CPU / memory hotplug is handled asynchronously.
271 */
272static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
273static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
274
e44193d3
LZ
275static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
276
cf417141
MK
277/*
278 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 279 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
280 * silently switch it to mount "cgroup" instead
281 */
f7e83571
AV
282static struct dentry *cpuset_mount(struct file_system_type *fs_type,
283 int flags, const char *unused_dev_name, void *data)
1da177e4 284{
8793d854 285 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 286 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
287 if (cgroup_fs) {
288 char mountopts[] =
289 "cpuset,noprefix,"
290 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
291 ret = cgroup_fs->mount(cgroup_fs, flags,
292 unused_dev_name, mountopts);
8793d854
PM
293 put_filesystem(cgroup_fs);
294 }
295 return ret;
1da177e4
LT
296}
297
298static struct file_system_type cpuset_fs_type = {
299 .name = "cpuset",
f7e83571 300 .mount = cpuset_mount,
1da177e4
LT
301};
302
1da177e4 303/*
300ed6cb 304 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 305 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
306 * until we find one that does have some online cpus. The top
307 * cpuset always has some cpus online.
1da177e4
LT
308 *
309 * One way or another, we guarantee to return some non-empty subset
5f054e31 310 * of cpu_online_mask.
1da177e4 311 *
3d3f26a7 312 * Call with callback_mutex held.
1da177e4 313 */
c9710d80 314static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 315{
40df2deb 316 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 317 cs = parent_cs(cs);
40df2deb 318 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
319}
320
321/*
322 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
323 * are online, with memory. If none are online with memory, walk
324 * up the cpuset hierarchy until we find one that does have some
40df2deb 325 * online mems. The top cpuset always has some mems online.
1da177e4
LT
326 *
327 * One way or another, we guarantee to return some non-empty subset
38d7bee9 328 * of node_states[N_MEMORY].
1da177e4 329 *
3d3f26a7 330 * Call with callback_mutex held.
1da177e4 331 */
c9710d80 332static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 333{
40df2deb 334 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 335 cs = parent_cs(cs);
40df2deb 336 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
337}
338
f3b39d47
MX
339/*
340 * update task's spread flag if cpuset's page/slab spread flag is set
341 *
5d21cc2d 342 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
343 */
344static void cpuset_update_task_spread_flag(struct cpuset *cs,
345 struct task_struct *tsk)
346{
347 if (is_spread_page(cs))
348 tsk->flags |= PF_SPREAD_PAGE;
349 else
350 tsk->flags &= ~PF_SPREAD_PAGE;
351 if (is_spread_slab(cs))
352 tsk->flags |= PF_SPREAD_SLAB;
353 else
354 tsk->flags &= ~PF_SPREAD_SLAB;
355}
356
1da177e4
LT
357/*
358 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
359 *
360 * One cpuset is a subset of another if all its allowed CPUs and
361 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 362 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
363 */
364
365static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
366{
300ed6cb 367 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
368 nodes_subset(p->mems_allowed, q->mems_allowed) &&
369 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
370 is_mem_exclusive(p) <= is_mem_exclusive(q);
371}
372
645fcc9d
LZ
373/**
374 * alloc_trial_cpuset - allocate a trial cpuset
375 * @cs: the cpuset that the trial cpuset duplicates
376 */
c9710d80 377static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 378{
300ed6cb
LZ
379 struct cpuset *trial;
380
381 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
382 if (!trial)
383 return NULL;
384
e2b9a3d7
LZ
385 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
386 goto free_cs;
387 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
388 goto free_cpus;
300ed6cb 389
e2b9a3d7
LZ
390 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
391 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 392 return trial;
e2b9a3d7
LZ
393
394free_cpus:
395 free_cpumask_var(trial->cpus_allowed);
396free_cs:
397 kfree(trial);
398 return NULL;
645fcc9d
LZ
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
e2b9a3d7 407 free_cpumask_var(trial->effective_cpus);
300ed6cb 408 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
409 kfree(trial);
410}
411
1da177e4
LT
412/*
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
415 *
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 419 * cpuset_mutex held.
1da177e4
LT
420 *
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
424 *
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
428 *
429 * Return 0 if valid, -errno if not.
430 */
431
c9710d80 432static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 433{
492eb21b 434 struct cgroup_subsys_state *css;
1da177e4 435 struct cpuset *c, *par;
ae8086ce
TH
436 int ret;
437
438 rcu_read_lock();
1da177e4
LT
439
440 /* Each of our child cpusets must be a subset of us */
ae8086ce 441 ret = -EBUSY;
492eb21b 442 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
443 if (!is_cpuset_subset(c, trial))
444 goto out;
1da177e4
LT
445
446 /* Remaining checks don't apply to root cpuset */
ae8086ce 447 ret = 0;
69604067 448 if (cur == &top_cpuset)
ae8086ce 449 goto out;
1da177e4 450
c431069f 451 par = parent_cs(cur);
69604067 452
1da177e4 453 /* We must be a subset of our parent cpuset */
ae8086ce 454 ret = -EACCES;
1da177e4 455 if (!is_cpuset_subset(trial, par))
ae8086ce 456 goto out;
1da177e4 457
2df167a3
PM
458 /*
459 * If either I or some sibling (!= me) is exclusive, we can't
460 * overlap
461 */
ae8086ce 462 ret = -EINVAL;
492eb21b 463 cpuset_for_each_child(c, css, par) {
1da177e4
LT
464 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
465 c != cur &&
300ed6cb 466 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 467 goto out;
1da177e4
LT
468 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
469 c != cur &&
470 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 471 goto out;
1da177e4
LT
472 }
473
452477fa
TH
474 /*
475 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 476 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 477 */
ae8086ce 478 ret = -ENOSPC;
07bc356e 479 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
480 if (!cpumask_empty(cur->cpus_allowed) &&
481 cpumask_empty(trial->cpus_allowed))
482 goto out;
483 if (!nodes_empty(cur->mems_allowed) &&
484 nodes_empty(trial->mems_allowed))
485 goto out;
486 }
020958b6 487
ae8086ce
TH
488 ret = 0;
489out:
490 rcu_read_unlock();
491 return ret;
1da177e4
LT
492}
493
db7f47cf 494#ifdef CONFIG_SMP
029190c5 495/*
cf417141 496 * Helper routine for generate_sched_domains().
029190c5
PJ
497 * Do cpusets a, b have overlapping cpus_allowed masks?
498 */
029190c5
PJ
499static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
500{
300ed6cb 501 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
502}
503
1d3504fc
HS
504static void
505update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
506{
1d3504fc
HS
507 if (dattr->relax_domain_level < c->relax_domain_level)
508 dattr->relax_domain_level = c->relax_domain_level;
509 return;
510}
511
fc560a26
TH
512static void update_domain_attr_tree(struct sched_domain_attr *dattr,
513 struct cpuset *root_cs)
f5393693 514{
fc560a26 515 struct cpuset *cp;
492eb21b 516 struct cgroup_subsys_state *pos_css;
f5393693 517
fc560a26 518 rcu_read_lock();
492eb21b 519 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
520 if (cp == root_cs)
521 continue;
522
fc560a26
TH
523 /* skip the whole subtree if @cp doesn't have any CPU */
524 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 525 pos_css = css_rightmost_descendant(pos_css);
f5393693 526 continue;
fc560a26 527 }
f5393693
LJ
528
529 if (is_sched_load_balance(cp))
530 update_domain_attr(dattr, cp);
f5393693 531 }
fc560a26 532 rcu_read_unlock();
f5393693
LJ
533}
534
029190c5 535/*
cf417141
MK
536 * generate_sched_domains()
537 *
538 * This function builds a partial partition of the systems CPUs
539 * A 'partial partition' is a set of non-overlapping subsets whose
540 * union is a subset of that set.
0a0fca9d 541 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
542 * partition_sched_domains() routine, which will rebuild the scheduler's
543 * load balancing domains (sched domains) as specified by that partial
544 * partition.
029190c5 545 *
45ce80fb 546 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
547 * for a background explanation of this.
548 *
549 * Does not return errors, on the theory that the callers of this
550 * routine would rather not worry about failures to rebuild sched
551 * domains when operating in the severe memory shortage situations
552 * that could cause allocation failures below.
553 *
5d21cc2d 554 * Must be called with cpuset_mutex held.
029190c5
PJ
555 *
556 * The three key local variables below are:
aeed6824 557 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
558 * top-down scan of all cpusets. This scan loads a pointer
559 * to each cpuset marked is_sched_load_balance into the
560 * array 'csa'. For our purposes, rebuilding the schedulers
561 * sched domains, we can ignore !is_sched_load_balance cpusets.
562 * csa - (for CpuSet Array) Array of pointers to all the cpusets
563 * that need to be load balanced, for convenient iterative
564 * access by the subsequent code that finds the best partition,
565 * i.e the set of domains (subsets) of CPUs such that the
566 * cpus_allowed of every cpuset marked is_sched_load_balance
567 * is a subset of one of these domains, while there are as
568 * many such domains as possible, each as small as possible.
569 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 570 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
571 * convenient format, that can be easily compared to the prior
572 * value to determine what partition elements (sched domains)
573 * were changed (added or removed.)
574 *
575 * Finding the best partition (set of domains):
576 * The triple nested loops below over i, j, k scan over the
577 * load balanced cpusets (using the array of cpuset pointers in
578 * csa[]) looking for pairs of cpusets that have overlapping
579 * cpus_allowed, but which don't have the same 'pn' partition
580 * number and gives them in the same partition number. It keeps
581 * looping on the 'restart' label until it can no longer find
582 * any such pairs.
583 *
584 * The union of the cpus_allowed masks from the set of
585 * all cpusets having the same 'pn' value then form the one
586 * element of the partition (one sched domain) to be passed to
587 * partition_sched_domains().
588 */
acc3f5d7 589static int generate_sched_domains(cpumask_var_t **domains,
cf417141 590 struct sched_domain_attr **attributes)
029190c5 591{
029190c5
PJ
592 struct cpuset *cp; /* scans q */
593 struct cpuset **csa; /* array of all cpuset ptrs */
594 int csn; /* how many cpuset ptrs in csa so far */
595 int i, j, k; /* indices for partition finding loops */
acc3f5d7 596 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 597 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 598 int ndoms = 0; /* number of sched domains in result */
6af866af 599 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 600 struct cgroup_subsys_state *pos_css;
029190c5 601
029190c5 602 doms = NULL;
1d3504fc 603 dattr = NULL;
cf417141 604 csa = NULL;
029190c5
PJ
605
606 /* Special case for the 99% of systems with one, full, sched domain */
607 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
608 ndoms = 1;
609 doms = alloc_sched_domains(ndoms);
029190c5 610 if (!doms)
cf417141
MK
611 goto done;
612
1d3504fc
HS
613 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
614 if (dattr) {
615 *dattr = SD_ATTR_INIT;
93a65575 616 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 617 }
acc3f5d7 618 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 619
cf417141 620 goto done;
029190c5
PJ
621 }
622
664eedde 623 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
624 if (!csa)
625 goto done;
626 csn = 0;
627
fc560a26 628 rcu_read_lock();
492eb21b 629 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
630 if (cp == &top_cpuset)
631 continue;
f5393693 632 /*
fc560a26
TH
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
f5393693 639 */
fc560a26
TH
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
f5393693 642 continue;
489a5393 643
fc560a26
TH
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
492eb21b 648 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
649 }
650 rcu_read_unlock();
029190c5
PJ
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
cf417141
MK
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
acc3f5d7 683 doms = alloc_sched_domains(ndoms);
700018e0 684 if (!doms)
cf417141 685 goto done;
cf417141
MK
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
1d3504fc 691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
6af866af 695 struct cpumask *dp;
029190c5
PJ
696 int apn = a->pn;
697
cf417141
MK
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
acc3f5d7 703 dp = doms[nslot];
cf417141
MK
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
12d3089c
FF
708 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
709 nslot, ndoms, csn, i, apn);
cf417141 710 warnings--;
029190c5 711 }
cf417141
MK
712 continue;
713 }
029190c5 714
6af866af 715 cpumask_clear(dp);
cf417141
MK
716 if (dattr)
717 *(dattr + nslot) = SD_ATTR_INIT;
718 for (j = i; j < csn; j++) {
719 struct cpuset *b = csa[j];
720
721 if (apn == b->pn) {
300ed6cb 722 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
723 if (dattr)
724 update_domain_attr_tree(dattr + nslot, b);
725
726 /* Done with this partition */
727 b->pn = -1;
029190c5 728 }
029190c5 729 }
cf417141 730 nslot++;
029190c5
PJ
731 }
732 BUG_ON(nslot != ndoms);
733
cf417141
MK
734done:
735 kfree(csa);
736
700018e0
LZ
737 /*
738 * Fallback to the default domain if kmalloc() failed.
739 * See comments in partition_sched_domains().
740 */
741 if (doms == NULL)
742 ndoms = 1;
743
cf417141
MK
744 *domains = doms;
745 *attributes = dattr;
746 return ndoms;
747}
748
749/*
750 * Rebuild scheduler domains.
751 *
699140ba
TH
752 * If the flag 'sched_load_balance' of any cpuset with non-empty
753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754 * which has that flag enabled, or if any cpuset with a non-empty
755 * 'cpus' is removed, then call this routine to rebuild the
756 * scheduler's dynamic sched domains.
cf417141 757 *
5d21cc2d 758 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 759 */
699140ba 760static void rebuild_sched_domains_locked(void)
cf417141
MK
761{
762 struct sched_domain_attr *attr;
acc3f5d7 763 cpumask_var_t *doms;
cf417141
MK
764 int ndoms;
765
5d21cc2d 766 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 767 get_online_cpus();
cf417141 768
5b16c2a4
LZ
769 /*
770 * We have raced with CPU hotplug. Don't do anything to avoid
771 * passing doms with offlined cpu to partition_sched_domains().
772 * Anyways, hotplug work item will rebuild sched domains.
773 */
774 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
775 goto out;
776
cf417141 777 /* Generate domain masks and attrs */
cf417141 778 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
779
780 /* Have scheduler rebuild the domains */
781 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 782out:
86ef5c9a 783 put_online_cpus();
cf417141 784}
db7f47cf 785#else /* !CONFIG_SMP */
699140ba 786static void rebuild_sched_domains_locked(void)
db7f47cf
PM
787{
788}
db7f47cf 789#endif /* CONFIG_SMP */
029190c5 790
cf417141
MK
791void rebuild_sched_domains(void)
792{
5d21cc2d 793 mutex_lock(&cpuset_mutex);
699140ba 794 rebuild_sched_domains_locked();
5d21cc2d 795 mutex_unlock(&cpuset_mutex);
029190c5
PJ
796}
797
070b57fc
LZ
798/*
799 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
800 * @cs: the cpuset in interest
58f4790b 801 *
070b57fc
LZ
802 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
803 * with non-empty cpus. We use effective cpumask whenever:
804 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
805 * if the cpuset they reside in has no cpus)
806 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
807 *
808 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
809 * exception. See comments there.
810 */
811static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
812{
813 while (cpumask_empty(cs->cpus_allowed))
814 cs = parent_cs(cs);
815 return cs;
816}
817
818/*
819 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
820 * @cs: the cpuset in interest
821 *
822 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
823 * with non-empty memss. We use effective nodemask whenever:
824 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
825 * if the cpuset they reside in has no mems)
826 * - we want to retrieve task_cs(tsk)'s mems_allowed.
827 *
828 * Called with cpuset_mutex held.
053199ed 829 */
070b57fc 830static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 831{
070b57fc
LZ
832 while (nodes_empty(cs->mems_allowed))
833 cs = parent_cs(cs);
834 return cs;
58f4790b 835}
053199ed 836
0b2f630a
MX
837/**
838 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
839 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 840 *
d66393e5
TH
841 * Iterate through each task of @cs updating its cpus_allowed to the
842 * effective cpuset's. As this function is called with cpuset_mutex held,
843 * cpuset membership stays stable.
0b2f630a 844 */
d66393e5 845static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 846{
d66393e5
TH
847 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
848 struct css_task_iter it;
849 struct task_struct *task;
850
851 css_task_iter_start(&cs->css, &it);
852 while ((task = css_task_iter_next(&it)))
853 set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
854 css_task_iter_end(&it);
0b2f630a
MX
855}
856
5c5cc623 857/*
734d4513
LZ
858 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
859 * @cs: the cpuset to consider
860 * @new_cpus: temp variable for calculating new effective_cpus
861 *
862 * When congifured cpumask is changed, the effective cpumasks of this cpuset
863 * and all its descendants need to be updated.
5c5cc623 864 *
734d4513 865 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
866 *
867 * Called with cpuset_mutex held
868 */
734d4513 869static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
870{
871 struct cpuset *cp;
492eb21b 872 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
873
874 rcu_read_lock();
734d4513
LZ
875 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
876 struct cpuset *parent = parent_cs(cp);
877
878 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
879
880 /* Skip the whole subtree if the cpumask remains the same. */
881 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
882 pos_css = css_rightmost_descendant(pos_css);
883 continue;
5c5cc623 884 }
734d4513 885
ec903c0c 886 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
887 continue;
888 rcu_read_unlock();
889
734d4513
LZ
890 mutex_lock(&callback_mutex);
891 cpumask_copy(cp->effective_cpus, new_cpus);
892 mutex_unlock(&callback_mutex);
893
894 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
895 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
896
d66393e5 897 update_tasks_cpumask(cp);
5c5cc623
LZ
898
899 rcu_read_lock();
900 css_put(&cp->css);
901 }
902 rcu_read_unlock();
903}
904
58f4790b
CW
905/**
906 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
907 * @cs: the cpuset to consider
fc34ac1d 908 * @trialcs: trial cpuset
58f4790b
CW
909 * @buf: buffer of cpu numbers written to this cpuset
910 */
645fcc9d
LZ
911static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
912 const char *buf)
1da177e4 913{
58f4790b
CW
914 int retval;
915 int is_load_balanced;
1da177e4 916
5f054e31 917 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
918 if (cs == &top_cpuset)
919 return -EACCES;
920
6f7f02e7 921 /*
c8d9c90c 922 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
923 * Since cpulist_parse() fails on an empty mask, we special case
924 * that parsing. The validate_change() call ensures that cpusets
925 * with tasks have cpus.
6f7f02e7 926 */
020958b6 927 if (!*buf) {
300ed6cb 928 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 929 } else {
300ed6cb 930 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
931 if (retval < 0)
932 return retval;
37340746 933
6ad4c188 934 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 935 return -EINVAL;
6f7f02e7 936 }
029190c5 937
8707d8b8 938 /* Nothing to do if the cpus didn't change */
300ed6cb 939 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 940 return 0;
58f4790b 941
a73456f3
LZ
942 retval = validate_change(cs, trialcs);
943 if (retval < 0)
944 return retval;
945
645fcc9d 946 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 947
3d3f26a7 948 mutex_lock(&callback_mutex);
300ed6cb 949 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 950 mutex_unlock(&callback_mutex);
029190c5 951
734d4513
LZ
952 /* use trialcs->cpus_allowed as a temp variable */
953 update_cpumasks_hier(cs, trialcs->cpus_allowed);
58f4790b 954
8707d8b8 955 if (is_load_balanced)
699140ba 956 rebuild_sched_domains_locked();
85d7b949 957 return 0;
1da177e4
LT
958}
959
e4e364e8
PJ
960/*
961 * cpuset_migrate_mm
962 *
963 * Migrate memory region from one set of nodes to another.
964 *
965 * Temporarilly set tasks mems_allowed to target nodes of migration,
966 * so that the migration code can allocate pages on these nodes.
967 *
e4e364e8
PJ
968 * While the mm_struct we are migrating is typically from some
969 * other task, the task_struct mems_allowed that we are hacking
970 * is for our current task, which must allocate new pages for that
971 * migrating memory region.
e4e364e8
PJ
972 */
973
974static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
975 const nodemask_t *to)
976{
977 struct task_struct *tsk = current;
070b57fc 978 struct cpuset *mems_cs;
e4e364e8 979
e4e364e8 980 tsk->mems_allowed = *to;
e4e364e8
PJ
981
982 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
983
47295830 984 rcu_read_lock();
070b57fc
LZ
985 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
986 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
47295830 987 rcu_read_unlock();
e4e364e8
PJ
988}
989
3b6766fe 990/*
58568d2a
MX
991 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
992 * @tsk: the task to change
993 * @newmems: new nodes that the task will be set
994 *
995 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
996 * we structure updates as setting all new allowed nodes, then clearing newly
997 * disallowed ones.
58568d2a
MX
998 */
999static void cpuset_change_task_nodemask(struct task_struct *tsk,
1000 nodemask_t *newmems)
1001{
b246272e 1002 bool need_loop;
89e8a244 1003
c0ff7453
MX
1004 /*
1005 * Allow tasks that have access to memory reserves because they have
1006 * been OOM killed to get memory anywhere.
1007 */
1008 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1009 return;
1010 if (current->flags & PF_EXITING) /* Let dying task have memory */
1011 return;
1012
1013 task_lock(tsk);
b246272e
DR
1014 /*
1015 * Determine if a loop is necessary if another thread is doing
d26914d1 1016 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1017 * tsk does not have a mempolicy, then an empty nodemask will not be
1018 * possible when mems_allowed is larger than a word.
1019 */
1020 need_loop = task_has_mempolicy(tsk) ||
1021 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1022
0fc0287c
PZ
1023 if (need_loop) {
1024 local_irq_disable();
cc9a6c87 1025 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1026 }
c0ff7453 1027
cc9a6c87
MG
1028 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1029 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1030
1031 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1032 tsk->mems_allowed = *newmems;
cc9a6c87 1033
0fc0287c 1034 if (need_loop) {
cc9a6c87 1035 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1036 local_irq_enable();
1037 }
cc9a6c87 1038
c0ff7453 1039 task_unlock(tsk);
58568d2a
MX
1040}
1041
8793d854
PM
1042static void *cpuset_being_rebound;
1043
0b2f630a
MX
1044/**
1045 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1046 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1047 *
d66393e5
TH
1048 * Iterate through each task of @cs updating its mems_allowed to the
1049 * effective cpuset's. As this function is called with cpuset_mutex held,
1050 * cpuset membership stays stable.
0b2f630a 1051 */
d66393e5 1052static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1053{
33ad801d 1054 static nodemask_t newmems; /* protected by cpuset_mutex */
070b57fc 1055 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
d66393e5
TH
1056 struct css_task_iter it;
1057 struct task_struct *task;
59dac16f 1058
846a16bf 1059 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1060
070b57fc 1061 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1062
4225399a 1063 /*
3b6766fe
LZ
1064 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1065 * take while holding tasklist_lock. Forks can happen - the
1066 * mpol_dup() cpuset_being_rebound check will catch such forks,
1067 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1068 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1069 * will be contending for the global variable cpuset_being_rebound.
4225399a 1070 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1071 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1072 */
d66393e5
TH
1073 css_task_iter_start(&cs->css, &it);
1074 while ((task = css_task_iter_next(&it))) {
1075 struct mm_struct *mm;
1076 bool migrate;
1077
1078 cpuset_change_task_nodemask(task, &newmems);
1079
1080 mm = get_task_mm(task);
1081 if (!mm)
1082 continue;
1083
1084 migrate = is_memory_migrate(cs);
1085
1086 mpol_rebind_mm(mm, &cs->mems_allowed);
1087 if (migrate)
1088 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1089 mmput(mm);
1090 }
1091 css_task_iter_end(&it);
4225399a 1092
33ad801d
LZ
1093 /*
1094 * All the tasks' nodemasks have been updated, update
1095 * cs->old_mems_allowed.
1096 */
1097 cs->old_mems_allowed = newmems;
1098
2df167a3 1099 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1100 cpuset_being_rebound = NULL;
1da177e4
LT
1101}
1102
5c5cc623 1103/*
734d4513
LZ
1104 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1105 * @cs: the cpuset to consider
1106 * @new_mems: a temp variable for calculating new effective_mems
1107 *
1108 * When configured nodemask is changed, the effective nodemasks of this cpuset
1109 * and all its descendants need to be updated.
5c5cc623 1110 *
734d4513 1111 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1112 *
1113 * Called with cpuset_mutex held
1114 */
734d4513 1115static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1116{
1117 struct cpuset *cp;
492eb21b 1118 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1119
1120 rcu_read_lock();
734d4513
LZ
1121 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1122 struct cpuset *parent = parent_cs(cp);
1123
1124 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1125
1126 /* Skip the whole subtree if the nodemask remains the same. */
1127 if (nodes_equal(*new_mems, cp->effective_mems)) {
1128 pos_css = css_rightmost_descendant(pos_css);
1129 continue;
5c5cc623 1130 }
734d4513 1131
ec903c0c 1132 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1133 continue;
1134 rcu_read_unlock();
1135
734d4513
LZ
1136 mutex_lock(&callback_mutex);
1137 cp->effective_mems = *new_mems;
1138 mutex_unlock(&callback_mutex);
1139
1140 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1141 nodes_equal(cp->mems_allowed, cp->effective_mems));
1142
d66393e5 1143 update_tasks_nodemask(cp);
5c5cc623
LZ
1144
1145 rcu_read_lock();
1146 css_put(&cp->css);
1147 }
1148 rcu_read_unlock();
1149}
1150
0b2f630a
MX
1151/*
1152 * Handle user request to change the 'mems' memory placement
1153 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1154 * cpusets mems_allowed, and for each task in the cpuset,
1155 * update mems_allowed and rebind task's mempolicy and any vma
1156 * mempolicies and if the cpuset is marked 'memory_migrate',
1157 * migrate the tasks pages to the new memory.
0b2f630a 1158 *
5d21cc2d 1159 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1160 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1161 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1162 * their mempolicies to the cpusets new mems_allowed.
1163 */
645fcc9d
LZ
1164static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1165 const char *buf)
0b2f630a 1166{
0b2f630a
MX
1167 int retval;
1168
1169 /*
38d7bee9 1170 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1171 * it's read-only
1172 */
53feb297
MX
1173 if (cs == &top_cpuset) {
1174 retval = -EACCES;
1175 goto done;
1176 }
0b2f630a 1177
0b2f630a
MX
1178 /*
1179 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1180 * Since nodelist_parse() fails on an empty mask, we special case
1181 * that parsing. The validate_change() call ensures that cpusets
1182 * with tasks have memory.
1183 */
1184 if (!*buf) {
645fcc9d 1185 nodes_clear(trialcs->mems_allowed);
0b2f630a 1186 } else {
645fcc9d 1187 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1188 if (retval < 0)
1189 goto done;
1190
645fcc9d 1191 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1192 node_states[N_MEMORY])) {
53feb297
MX
1193 retval = -EINVAL;
1194 goto done;
1195 }
0b2f630a 1196 }
33ad801d
LZ
1197
1198 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1199 retval = 0; /* Too easy - nothing to do */
1200 goto done;
1201 }
645fcc9d 1202 retval = validate_change(cs, trialcs);
0b2f630a
MX
1203 if (retval < 0)
1204 goto done;
1205
1206 mutex_lock(&callback_mutex);
645fcc9d 1207 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1208 mutex_unlock(&callback_mutex);
1209
734d4513
LZ
1210 /* use trialcs->mems_allowed as a temp variable */
1211 update_nodemasks_hier(cs, &cs->mems_allowed);
0b2f630a
MX
1212done:
1213 return retval;
1214}
1215
8793d854
PM
1216int current_cpuset_is_being_rebound(void)
1217{
1218 return task_cs(current) == cpuset_being_rebound;
1219}
1220
5be7a479 1221static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1222{
db7f47cf 1223#ifdef CONFIG_SMP
60495e77 1224 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1225 return -EINVAL;
db7f47cf 1226#endif
1d3504fc
HS
1227
1228 if (val != cs->relax_domain_level) {
1229 cs->relax_domain_level = val;
300ed6cb
LZ
1230 if (!cpumask_empty(cs->cpus_allowed) &&
1231 is_sched_load_balance(cs))
699140ba 1232 rebuild_sched_domains_locked();
1d3504fc
HS
1233 }
1234
1235 return 0;
1236}
1237
72ec7029 1238/**
950592f7
MX
1239 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1240 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1241 *
d66393e5
TH
1242 * Iterate through each task of @cs updating its spread flags. As this
1243 * function is called with cpuset_mutex held, cpuset membership stays
1244 * stable.
950592f7 1245 */
d66393e5 1246static void update_tasks_flags(struct cpuset *cs)
950592f7 1247{
d66393e5
TH
1248 struct css_task_iter it;
1249 struct task_struct *task;
1250
1251 css_task_iter_start(&cs->css, &it);
1252 while ((task = css_task_iter_next(&it)))
1253 cpuset_update_task_spread_flag(cs, task);
1254 css_task_iter_end(&it);
950592f7
MX
1255}
1256
1da177e4
LT
1257/*
1258 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1259 * bit: the bit to update (see cpuset_flagbits_t)
1260 * cs: the cpuset to update
1261 * turning_on: whether the flag is being set or cleared
053199ed 1262 *
5d21cc2d 1263 * Call with cpuset_mutex held.
1da177e4
LT
1264 */
1265
700fe1ab
PM
1266static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1267 int turning_on)
1da177e4 1268{
645fcc9d 1269 struct cpuset *trialcs;
40b6a762 1270 int balance_flag_changed;
950592f7 1271 int spread_flag_changed;
950592f7 1272 int err;
1da177e4 1273
645fcc9d
LZ
1274 trialcs = alloc_trial_cpuset(cs);
1275 if (!trialcs)
1276 return -ENOMEM;
1277
1da177e4 1278 if (turning_on)
645fcc9d 1279 set_bit(bit, &trialcs->flags);
1da177e4 1280 else
645fcc9d 1281 clear_bit(bit, &trialcs->flags);
1da177e4 1282
645fcc9d 1283 err = validate_change(cs, trialcs);
85d7b949 1284 if (err < 0)
645fcc9d 1285 goto out;
029190c5 1286
029190c5 1287 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1288 is_sched_load_balance(trialcs));
029190c5 1289
950592f7
MX
1290 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1291 || (is_spread_page(cs) != is_spread_page(trialcs)));
1292
3d3f26a7 1293 mutex_lock(&callback_mutex);
645fcc9d 1294 cs->flags = trialcs->flags;
3d3f26a7 1295 mutex_unlock(&callback_mutex);
85d7b949 1296
300ed6cb 1297 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1298 rebuild_sched_domains_locked();
029190c5 1299
950592f7 1300 if (spread_flag_changed)
d66393e5 1301 update_tasks_flags(cs);
645fcc9d
LZ
1302out:
1303 free_trial_cpuset(trialcs);
1304 return err;
1da177e4
LT
1305}
1306
3e0d98b9 1307/*
80f7228b 1308 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1309 *
1310 * These routines manage a digitally filtered, constant time based,
1311 * event frequency meter. There are four routines:
1312 * fmeter_init() - initialize a frequency meter.
1313 * fmeter_markevent() - called each time the event happens.
1314 * fmeter_getrate() - returns the recent rate of such events.
1315 * fmeter_update() - internal routine used to update fmeter.
1316 *
1317 * A common data structure is passed to each of these routines,
1318 * which is used to keep track of the state required to manage the
1319 * frequency meter and its digital filter.
1320 *
1321 * The filter works on the number of events marked per unit time.
1322 * The filter is single-pole low-pass recursive (IIR). The time unit
1323 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1324 * simulate 3 decimal digits of precision (multiplied by 1000).
1325 *
1326 * With an FM_COEF of 933, and a time base of 1 second, the filter
1327 * has a half-life of 10 seconds, meaning that if the events quit
1328 * happening, then the rate returned from the fmeter_getrate()
1329 * will be cut in half each 10 seconds, until it converges to zero.
1330 *
1331 * It is not worth doing a real infinitely recursive filter. If more
1332 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1333 * just compute FM_MAXTICKS ticks worth, by which point the level
1334 * will be stable.
1335 *
1336 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1337 * arithmetic overflow in the fmeter_update() routine.
1338 *
1339 * Given the simple 32 bit integer arithmetic used, this meter works
1340 * best for reporting rates between one per millisecond (msec) and
1341 * one per 32 (approx) seconds. At constant rates faster than one
1342 * per msec it maxes out at values just under 1,000,000. At constant
1343 * rates between one per msec, and one per second it will stabilize
1344 * to a value N*1000, where N is the rate of events per second.
1345 * At constant rates between one per second and one per 32 seconds,
1346 * it will be choppy, moving up on the seconds that have an event,
1347 * and then decaying until the next event. At rates slower than
1348 * about one in 32 seconds, it decays all the way back to zero between
1349 * each event.
1350 */
1351
1352#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1353#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1354#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1355#define FM_SCALE 1000 /* faux fixed point scale */
1356
1357/* Initialize a frequency meter */
1358static void fmeter_init(struct fmeter *fmp)
1359{
1360 fmp->cnt = 0;
1361 fmp->val = 0;
1362 fmp->time = 0;
1363 spin_lock_init(&fmp->lock);
1364}
1365
1366/* Internal meter update - process cnt events and update value */
1367static void fmeter_update(struct fmeter *fmp)
1368{
1369 time_t now = get_seconds();
1370 time_t ticks = now - fmp->time;
1371
1372 if (ticks == 0)
1373 return;
1374
1375 ticks = min(FM_MAXTICKS, ticks);
1376 while (ticks-- > 0)
1377 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1378 fmp->time = now;
1379
1380 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1381 fmp->cnt = 0;
1382}
1383
1384/* Process any previous ticks, then bump cnt by one (times scale). */
1385static void fmeter_markevent(struct fmeter *fmp)
1386{
1387 spin_lock(&fmp->lock);
1388 fmeter_update(fmp);
1389 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1390 spin_unlock(&fmp->lock);
1391}
1392
1393/* Process any previous ticks, then return current value. */
1394static int fmeter_getrate(struct fmeter *fmp)
1395{
1396 int val;
1397
1398 spin_lock(&fmp->lock);
1399 fmeter_update(fmp);
1400 val = fmp->val;
1401 spin_unlock(&fmp->lock);
1402 return val;
1403}
1404
57fce0a6
TH
1405static struct cpuset *cpuset_attach_old_cs;
1406
5d21cc2d 1407/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1408static int cpuset_can_attach(struct cgroup_subsys_state *css,
1409 struct cgroup_taskset *tset)
f780bdb7 1410{
eb95419b 1411 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1412 struct task_struct *task;
1413 int ret;
1da177e4 1414
57fce0a6
TH
1415 /* used later by cpuset_attach() */
1416 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1417
5d21cc2d
TH
1418 mutex_lock(&cpuset_mutex);
1419
aa6ec29b 1420 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1421 ret = -ENOSPC;
aa6ec29b 1422 if (!cgroup_on_dfl(css->cgroup) &&
88fa523b 1423 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1424 goto out_unlock;
9985b0ba 1425
924f0d9a 1426 cgroup_taskset_for_each(task, tset) {
bb9d97b6 1427 /*
14a40ffc
TH
1428 * Kthreads which disallow setaffinity shouldn't be moved
1429 * to a new cpuset; we don't want to change their cpu
1430 * affinity and isolating such threads by their set of
1431 * allowed nodes is unnecessary. Thus, cpusets are not
1432 * applicable for such threads. This prevents checking for
1433 * success of set_cpus_allowed_ptr() on all attached tasks
1434 * before cpus_allowed may be changed.
bb9d97b6 1435 */
5d21cc2d 1436 ret = -EINVAL;
14a40ffc 1437 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1438 goto out_unlock;
1439 ret = security_task_setscheduler(task);
1440 if (ret)
1441 goto out_unlock;
bb9d97b6 1442 }
f780bdb7 1443
452477fa
TH
1444 /*
1445 * Mark attach is in progress. This makes validate_change() fail
1446 * changes which zero cpus/mems_allowed.
1447 */
1448 cs->attach_in_progress++;
5d21cc2d
TH
1449 ret = 0;
1450out_unlock:
1451 mutex_unlock(&cpuset_mutex);
1452 return ret;
8793d854 1453}
f780bdb7 1454
eb95419b 1455static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1456 struct cgroup_taskset *tset)
1457{
5d21cc2d 1458 mutex_lock(&cpuset_mutex);
eb95419b 1459 css_cs(css)->attach_in_progress--;
5d21cc2d 1460 mutex_unlock(&cpuset_mutex);
8793d854 1461}
1da177e4 1462
4e4c9a14 1463/*
5d21cc2d 1464 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1465 * but we can't allocate it dynamically there. Define it global and
1466 * allocate from cpuset_init().
1467 */
1468static cpumask_var_t cpus_attach;
1469
eb95419b
TH
1470static void cpuset_attach(struct cgroup_subsys_state *css,
1471 struct cgroup_taskset *tset)
8793d854 1472{
67bd2c59 1473 /* static buf protected by cpuset_mutex */
4e4c9a14 1474 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1475 struct mm_struct *mm;
bb9d97b6
TH
1476 struct task_struct *task;
1477 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1478 struct cpuset *cs = css_cs(css);
57fce0a6 1479 struct cpuset *oldcs = cpuset_attach_old_cs;
070b57fc
LZ
1480 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1481 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1482
5d21cc2d
TH
1483 mutex_lock(&cpuset_mutex);
1484
4e4c9a14
TH
1485 /* prepare for attach */
1486 if (cs == &top_cpuset)
1487 cpumask_copy(cpus_attach, cpu_possible_mask);
1488 else
070b57fc 1489 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1490
070b57fc 1491 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1492
924f0d9a 1493 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1494 /*
1495 * can_attach beforehand should guarantee that this doesn't
1496 * fail. TODO: have a better way to handle failure here
1497 */
1498 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1499
1500 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1501 cpuset_update_task_spread_flag(cs, task);
1502 }
22fb52dd 1503
f780bdb7
BB
1504 /*
1505 * Change mm, possibly for multiple threads in a threadgroup. This is
1506 * expensive and may sleep.
1507 */
f780bdb7 1508 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1509 mm = get_task_mm(leader);
4225399a 1510 if (mm) {
070b57fc
LZ
1511 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1512
f780bdb7 1513 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1514
1515 /*
1516 * old_mems_allowed is the same with mems_allowed here, except
1517 * if this task is being moved automatically due to hotplug.
1518 * In that case @mems_allowed has been updated and is empty,
1519 * so @old_mems_allowed is the right nodesets that we migrate
1520 * mm from.
1521 */
1522 if (is_memory_migrate(cs)) {
1523 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1524 &cpuset_attach_nodemask_to);
f047cecf 1525 }
4225399a
PJ
1526 mmput(mm);
1527 }
452477fa 1528
33ad801d 1529 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1530
452477fa 1531 cs->attach_in_progress--;
e44193d3
LZ
1532 if (!cs->attach_in_progress)
1533 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1534
1535 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1536}
1537
1538/* The various types of files and directories in a cpuset file system */
1539
1540typedef enum {
45b07ef3 1541 FILE_MEMORY_MIGRATE,
1da177e4
LT
1542 FILE_CPULIST,
1543 FILE_MEMLIST,
1544 FILE_CPU_EXCLUSIVE,
1545 FILE_MEM_EXCLUSIVE,
78608366 1546 FILE_MEM_HARDWALL,
029190c5 1547 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1548 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1549 FILE_MEMORY_PRESSURE_ENABLED,
1550 FILE_MEMORY_PRESSURE,
825a46af
PJ
1551 FILE_SPREAD_PAGE,
1552 FILE_SPREAD_SLAB,
1da177e4
LT
1553} cpuset_filetype_t;
1554
182446d0
TH
1555static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1556 u64 val)
700fe1ab 1557{
182446d0 1558 struct cpuset *cs = css_cs(css);
700fe1ab 1559 cpuset_filetype_t type = cft->private;
a903f086 1560 int retval = 0;
700fe1ab 1561
5d21cc2d 1562 mutex_lock(&cpuset_mutex);
a903f086
LZ
1563 if (!is_cpuset_online(cs)) {
1564 retval = -ENODEV;
5d21cc2d 1565 goto out_unlock;
a903f086 1566 }
700fe1ab
PM
1567
1568 switch (type) {
1da177e4 1569 case FILE_CPU_EXCLUSIVE:
700fe1ab 1570 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1571 break;
1572 case FILE_MEM_EXCLUSIVE:
700fe1ab 1573 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1574 break;
78608366
PM
1575 case FILE_MEM_HARDWALL:
1576 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1577 break;
029190c5 1578 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1579 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1580 break;
45b07ef3 1581 case FILE_MEMORY_MIGRATE:
700fe1ab 1582 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1583 break;
3e0d98b9 1584 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1585 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1586 break;
1587 case FILE_MEMORY_PRESSURE:
1588 retval = -EACCES;
1589 break;
825a46af 1590 case FILE_SPREAD_PAGE:
700fe1ab 1591 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1592 break;
1593 case FILE_SPREAD_SLAB:
700fe1ab 1594 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1595 break;
1da177e4
LT
1596 default:
1597 retval = -EINVAL;
700fe1ab 1598 break;
1da177e4 1599 }
5d21cc2d
TH
1600out_unlock:
1601 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1602 return retval;
1603}
1604
182446d0
TH
1605static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1606 s64 val)
5be7a479 1607{
182446d0 1608 struct cpuset *cs = css_cs(css);
5be7a479 1609 cpuset_filetype_t type = cft->private;
5d21cc2d 1610 int retval = -ENODEV;
5be7a479 1611
5d21cc2d
TH
1612 mutex_lock(&cpuset_mutex);
1613 if (!is_cpuset_online(cs))
1614 goto out_unlock;
e3712395 1615
5be7a479
PM
1616 switch (type) {
1617 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1618 retval = update_relax_domain_level(cs, val);
1619 break;
1620 default:
1621 retval = -EINVAL;
1622 break;
1623 }
5d21cc2d
TH
1624out_unlock:
1625 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1626 return retval;
1627}
1628
e3712395
PM
1629/*
1630 * Common handling for a write to a "cpus" or "mems" file.
1631 */
451af504
TH
1632static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1633 char *buf, size_t nbytes, loff_t off)
e3712395 1634{
451af504 1635 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1636 struct cpuset *trialcs;
5d21cc2d 1637 int retval = -ENODEV;
e3712395 1638
451af504
TH
1639 buf = strstrip(buf);
1640
3a5a6d0c
TH
1641 /*
1642 * CPU or memory hotunplug may leave @cs w/o any execution
1643 * resources, in which case the hotplug code asynchronously updates
1644 * configuration and transfers all tasks to the nearest ancestor
1645 * which can execute.
1646 *
1647 * As writes to "cpus" or "mems" may restore @cs's execution
1648 * resources, wait for the previously scheduled operations before
1649 * proceeding, so that we don't end up keep removing tasks added
1650 * after execution capability is restored.
1651 */
1652 flush_work(&cpuset_hotplug_work);
1653
5d21cc2d
TH
1654 mutex_lock(&cpuset_mutex);
1655 if (!is_cpuset_online(cs))
1656 goto out_unlock;
e3712395 1657
645fcc9d 1658 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1659 if (!trialcs) {
1660 retval = -ENOMEM;
5d21cc2d 1661 goto out_unlock;
b75f38d6 1662 }
645fcc9d 1663
451af504 1664 switch (of_cft(of)->private) {
e3712395 1665 case FILE_CPULIST:
645fcc9d 1666 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1667 break;
1668 case FILE_MEMLIST:
645fcc9d 1669 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1670 break;
1671 default:
1672 retval = -EINVAL;
1673 break;
1674 }
645fcc9d
LZ
1675
1676 free_trial_cpuset(trialcs);
5d21cc2d
TH
1677out_unlock:
1678 mutex_unlock(&cpuset_mutex);
451af504 1679 return retval ?: nbytes;
e3712395
PM
1680}
1681
1da177e4
LT
1682/*
1683 * These ascii lists should be read in a single call, by using a user
1684 * buffer large enough to hold the entire map. If read in smaller
1685 * chunks, there is no guarantee of atomicity. Since the display format
1686 * used, list of ranges of sequential numbers, is variable length,
1687 * and since these maps can change value dynamically, one could read
1688 * gibberish by doing partial reads while a list was changing.
1da177e4 1689 */
2da8ca82 1690static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1691{
2da8ca82
TH
1692 struct cpuset *cs = css_cs(seq_css(sf));
1693 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1694 ssize_t count;
1695 char *buf, *s;
1696 int ret = 0;
1da177e4 1697
51ffe411
TH
1698 count = seq_get_buf(sf, &buf);
1699 s = buf;
1da177e4 1700
51ffe411 1701 mutex_lock(&callback_mutex);
1da177e4
LT
1702
1703 switch (type) {
1704 case FILE_CPULIST:
51ffe411 1705 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1706 break;
1707 case FILE_MEMLIST:
51ffe411 1708 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1709 break;
1da177e4 1710 default:
51ffe411
TH
1711 ret = -EINVAL;
1712 goto out_unlock;
1da177e4 1713 }
1da177e4 1714
51ffe411
TH
1715 if (s < buf + count - 1) {
1716 *s++ = '\n';
1717 seq_commit(sf, s - buf);
1718 } else {
1719 seq_commit(sf, -1);
1720 }
1721out_unlock:
1722 mutex_unlock(&callback_mutex);
1723 return ret;
1da177e4
LT
1724}
1725
182446d0 1726static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1727{
182446d0 1728 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1729 cpuset_filetype_t type = cft->private;
1730 switch (type) {
1731 case FILE_CPU_EXCLUSIVE:
1732 return is_cpu_exclusive(cs);
1733 case FILE_MEM_EXCLUSIVE:
1734 return is_mem_exclusive(cs);
78608366
PM
1735 case FILE_MEM_HARDWALL:
1736 return is_mem_hardwall(cs);
700fe1ab
PM
1737 case FILE_SCHED_LOAD_BALANCE:
1738 return is_sched_load_balance(cs);
1739 case FILE_MEMORY_MIGRATE:
1740 return is_memory_migrate(cs);
1741 case FILE_MEMORY_PRESSURE_ENABLED:
1742 return cpuset_memory_pressure_enabled;
1743 case FILE_MEMORY_PRESSURE:
1744 return fmeter_getrate(&cs->fmeter);
1745 case FILE_SPREAD_PAGE:
1746 return is_spread_page(cs);
1747 case FILE_SPREAD_SLAB:
1748 return is_spread_slab(cs);
1749 default:
1750 BUG();
1751 }
cf417141
MK
1752
1753 /* Unreachable but makes gcc happy */
1754 return 0;
700fe1ab 1755}
1da177e4 1756
182446d0 1757static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1758{
182446d0 1759 struct cpuset *cs = css_cs(css);
5be7a479
PM
1760 cpuset_filetype_t type = cft->private;
1761 switch (type) {
1762 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1763 return cs->relax_domain_level;
1764 default:
1765 BUG();
1766 }
cf417141
MK
1767
1768 /* Unrechable but makes gcc happy */
1769 return 0;
5be7a479
PM
1770}
1771
1da177e4
LT
1772
1773/*
1774 * for the common functions, 'private' gives the type of file
1775 */
1776
addf2c73
PM
1777static struct cftype files[] = {
1778 {
1779 .name = "cpus",
2da8ca82 1780 .seq_show = cpuset_common_seq_show,
451af504 1781 .write = cpuset_write_resmask,
e3712395 1782 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1783 .private = FILE_CPULIST,
1784 },
1785
1786 {
1787 .name = "mems",
2da8ca82 1788 .seq_show = cpuset_common_seq_show,
451af504 1789 .write = cpuset_write_resmask,
e3712395 1790 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1791 .private = FILE_MEMLIST,
1792 },
1793
1794 {
1795 .name = "cpu_exclusive",
1796 .read_u64 = cpuset_read_u64,
1797 .write_u64 = cpuset_write_u64,
1798 .private = FILE_CPU_EXCLUSIVE,
1799 },
1800
1801 {
1802 .name = "mem_exclusive",
1803 .read_u64 = cpuset_read_u64,
1804 .write_u64 = cpuset_write_u64,
1805 .private = FILE_MEM_EXCLUSIVE,
1806 },
1807
78608366
PM
1808 {
1809 .name = "mem_hardwall",
1810 .read_u64 = cpuset_read_u64,
1811 .write_u64 = cpuset_write_u64,
1812 .private = FILE_MEM_HARDWALL,
1813 },
1814
addf2c73
PM
1815 {
1816 .name = "sched_load_balance",
1817 .read_u64 = cpuset_read_u64,
1818 .write_u64 = cpuset_write_u64,
1819 .private = FILE_SCHED_LOAD_BALANCE,
1820 },
1821
1822 {
1823 .name = "sched_relax_domain_level",
5be7a479
PM
1824 .read_s64 = cpuset_read_s64,
1825 .write_s64 = cpuset_write_s64,
addf2c73
PM
1826 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1827 },
1828
1829 {
1830 .name = "memory_migrate",
1831 .read_u64 = cpuset_read_u64,
1832 .write_u64 = cpuset_write_u64,
1833 .private = FILE_MEMORY_MIGRATE,
1834 },
1835
1836 {
1837 .name = "memory_pressure",
1838 .read_u64 = cpuset_read_u64,
1839 .write_u64 = cpuset_write_u64,
1840 .private = FILE_MEMORY_PRESSURE,
099fca32 1841 .mode = S_IRUGO,
addf2c73
PM
1842 },
1843
1844 {
1845 .name = "memory_spread_page",
1846 .read_u64 = cpuset_read_u64,
1847 .write_u64 = cpuset_write_u64,
1848 .private = FILE_SPREAD_PAGE,
1849 },
1850
1851 {
1852 .name = "memory_spread_slab",
1853 .read_u64 = cpuset_read_u64,
1854 .write_u64 = cpuset_write_u64,
1855 .private = FILE_SPREAD_SLAB,
1856 },
3e0d98b9 1857
4baf6e33
TH
1858 {
1859 .name = "memory_pressure_enabled",
1860 .flags = CFTYPE_ONLY_ON_ROOT,
1861 .read_u64 = cpuset_read_u64,
1862 .write_u64 = cpuset_write_u64,
1863 .private = FILE_MEMORY_PRESSURE_ENABLED,
1864 },
1da177e4 1865
4baf6e33
TH
1866 { } /* terminate */
1867};
1da177e4
LT
1868
1869/*
92fb9748 1870 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1871 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1872 */
1873
eb95419b
TH
1874static struct cgroup_subsys_state *
1875cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1876{
c8f699bb 1877 struct cpuset *cs;
1da177e4 1878
eb95419b 1879 if (!parent_css)
8793d854 1880 return &top_cpuset.css;
033fa1c5 1881
c8f699bb 1882 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1883 if (!cs)
8793d854 1884 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1885 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1886 goto free_cs;
1887 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1888 goto free_cpus;
1da177e4 1889
029190c5 1890 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1891 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1892 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1893 cpumask_clear(cs->effective_cpus);
1894 nodes_clear(cs->effective_mems);
3e0d98b9 1895 fmeter_init(&cs->fmeter);
1d3504fc 1896 cs->relax_domain_level = -1;
1da177e4 1897
c8f699bb 1898 return &cs->css;
e2b9a3d7
LZ
1899
1900free_cpus:
1901 free_cpumask_var(cs->cpus_allowed);
1902free_cs:
1903 kfree(cs);
1904 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1905}
1906
eb95419b 1907static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1908{
eb95419b 1909 struct cpuset *cs = css_cs(css);
c431069f 1910 struct cpuset *parent = parent_cs(cs);
ae8086ce 1911 struct cpuset *tmp_cs;
492eb21b 1912 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1913
1914 if (!parent)
1915 return 0;
1916
5d21cc2d
TH
1917 mutex_lock(&cpuset_mutex);
1918
efeb77b2 1919 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1920 if (is_spread_page(parent))
1921 set_bit(CS_SPREAD_PAGE, &cs->flags);
1922 if (is_spread_slab(parent))
1923 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1924
664eedde 1925 cpuset_inc();
033fa1c5 1926
e2b9a3d7
LZ
1927 mutex_lock(&callback_mutex);
1928 if (cgroup_on_dfl(cs->css.cgroup)) {
1929 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1930 cs->effective_mems = parent->effective_mems;
1931 }
1932 mutex_unlock(&callback_mutex);
1933
eb95419b 1934 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1935 goto out_unlock;
033fa1c5
TH
1936
1937 /*
1938 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1939 * set. This flag handling is implemented in cgroup core for
1940 * histrical reasons - the flag may be specified during mount.
1941 *
1942 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1943 * refuse to clone the configuration - thereby refusing the task to
1944 * be entered, and as a result refusing the sys_unshare() or
1945 * clone() which initiated it. If this becomes a problem for some
1946 * users who wish to allow that scenario, then this could be
1947 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1948 * (and likewise for mems) to the new cgroup.
1949 */
ae8086ce 1950 rcu_read_lock();
492eb21b 1951 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1952 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1953 rcu_read_unlock();
5d21cc2d 1954 goto out_unlock;
ae8086ce 1955 }
033fa1c5 1956 }
ae8086ce 1957 rcu_read_unlock();
033fa1c5
TH
1958
1959 mutex_lock(&callback_mutex);
1960 cs->mems_allowed = parent->mems_allowed;
1961 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1962 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1963out_unlock:
1964 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1965 return 0;
1966}
1967
0b9e6965
ZH
1968/*
1969 * If the cpuset being removed has its flag 'sched_load_balance'
1970 * enabled, then simulate turning sched_load_balance off, which
1971 * will call rebuild_sched_domains_locked().
1972 */
1973
eb95419b 1974static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 1975{
eb95419b 1976 struct cpuset *cs = css_cs(css);
c8f699bb 1977
5d21cc2d 1978 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1979
1980 if (is_sched_load_balance(cs))
1981 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1982
664eedde 1983 cpuset_dec();
efeb77b2 1984 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1985
5d21cc2d 1986 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1987}
1988
eb95419b 1989static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 1990{
eb95419b 1991 struct cpuset *cs = css_cs(css);
1da177e4 1992
e2b9a3d7 1993 free_cpumask_var(cs->effective_cpus);
300ed6cb 1994 free_cpumask_var(cs->cpus_allowed);
8793d854 1995 kfree(cs);
1da177e4
LT
1996}
1997
073219e9 1998struct cgroup_subsys cpuset_cgrp_subsys = {
92fb9748 1999 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2000 .css_online = cpuset_css_online,
2001 .css_offline = cpuset_css_offline,
92fb9748 2002 .css_free = cpuset_css_free,
8793d854 2003 .can_attach = cpuset_can_attach,
452477fa 2004 .cancel_attach = cpuset_cancel_attach,
8793d854 2005 .attach = cpuset_attach,
4baf6e33 2006 .base_cftypes = files,
8793d854
PM
2007 .early_init = 1,
2008};
2009
1da177e4
LT
2010/**
2011 * cpuset_init - initialize cpusets at system boot
2012 *
2013 * Description: Initialize top_cpuset and the cpuset internal file system,
2014 **/
2015
2016int __init cpuset_init(void)
2017{
8793d854 2018 int err = 0;
1da177e4 2019
58568d2a
MX
2020 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2021 BUG();
e2b9a3d7
LZ
2022 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2023 BUG();
58568d2a 2024
300ed6cb 2025 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2026 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2027 cpumask_setall(top_cpuset.effective_cpus);
2028 nodes_setall(top_cpuset.effective_mems);
1da177e4 2029
3e0d98b9 2030 fmeter_init(&top_cpuset.fmeter);
029190c5 2031 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2032 top_cpuset.relax_domain_level = -1;
1da177e4 2033
1da177e4
LT
2034 err = register_filesystem(&cpuset_fs_type);
2035 if (err < 0)
8793d854
PM
2036 return err;
2037
2341d1b6
LZ
2038 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2039 BUG();
2040
8793d854 2041 return 0;
1da177e4
LT
2042}
2043
b1aac8bb 2044/*
cf417141 2045 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2046 * or memory nodes, we need to walk over the cpuset hierarchy,
2047 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2048 * last CPU or node from a cpuset, then move the tasks in the empty
2049 * cpuset to its next-highest non-empty parent.
b1aac8bb 2050 */
956db3ca
CW
2051static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2052{
2053 struct cpuset *parent;
2054
956db3ca
CW
2055 /*
2056 * Find its next-highest non-empty parent, (top cpuset
2057 * has online cpus, so can't be empty).
2058 */
c431069f 2059 parent = parent_cs(cs);
300ed6cb 2060 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2061 nodes_empty(parent->mems_allowed))
c431069f 2062 parent = parent_cs(parent);
956db3ca 2063
8cc99345 2064 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2065 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2066 pr_cont_cgroup_name(cs->css.cgroup);
2067 pr_cont("\n");
8cc99345 2068 }
956db3ca
CW
2069}
2070
deb7aa30 2071/**
388afd85 2072 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2073 * @cs: cpuset in interest
956db3ca 2074 *
deb7aa30
TH
2075 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2076 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2077 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2078 */
388afd85 2079static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2080{
deb7aa30 2081 static cpumask_t off_cpus;
33ad801d 2082 static nodemask_t off_mems;
5d21cc2d 2083 bool is_empty;
aa6ec29b 2084 bool on_dfl = cgroup_on_dfl(cs->css.cgroup);
80d1fa64 2085
e44193d3
LZ
2086retry:
2087 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2088
5d21cc2d 2089 mutex_lock(&cpuset_mutex);
7ddf96b0 2090
e44193d3
LZ
2091 /*
2092 * We have raced with task attaching. We wait until attaching
2093 * is finished, so we won't attach a task to an empty cpuset.
2094 */
2095 if (cs->attach_in_progress) {
2096 mutex_unlock(&cpuset_mutex);
2097 goto retry;
2098 }
2099
deb7aa30
TH
2100 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2101 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2102
5c5cc623
LZ
2103 mutex_lock(&callback_mutex);
2104 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
1344ab9c 2105 cpumask_andnot(cs->effective_cpus, cs->effective_cpus, &off_cpus);
5c5cc623
LZ
2106 mutex_unlock(&callback_mutex);
2107
2108 /*
aa6ec29b
TH
2109 * If on_dfl, we need to update tasks' cpumask for empty cpuset to
2110 * take on ancestor's cpumask. Otherwise, don't call
2111 * update_tasks_cpumask() if the cpuset becomes empty, as the tasks
2112 * in it will be migrated to an ancestor.
5c5cc623 2113 */
aa6ec29b 2114 if ((on_dfl && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2115 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
d66393e5 2116 update_tasks_cpumask(cs);
80d1fa64 2117
5c5cc623
LZ
2118 mutex_lock(&callback_mutex);
2119 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
1344ab9c 2120 nodes_andnot(cs->effective_mems, cs->effective_mems, off_mems);
5c5cc623
LZ
2121 mutex_unlock(&callback_mutex);
2122
2123 /*
aa6ec29b
TH
2124 * If on_dfl, we need to update tasks' nodemask for empty cpuset to
2125 * take on ancestor's nodemask. Otherwise, don't call
2126 * update_tasks_nodemask() if the cpuset becomes empty, as the
2127 * tasks in it will be migratd to an ancestor.
5c5cc623 2128 */
aa6ec29b 2129 if ((on_dfl && nodes_empty(cs->mems_allowed)) ||
f047cecf 2130 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
d66393e5 2131 update_tasks_nodemask(cs);
deb7aa30 2132
5d21cc2d
TH
2133 is_empty = cpumask_empty(cs->cpus_allowed) ||
2134 nodes_empty(cs->mems_allowed);
8d033948 2135
5d21cc2d
TH
2136 mutex_unlock(&cpuset_mutex);
2137
2138 /*
aa6ec29b 2139 * If on_dfl, we'll keep tasks in empty cpusets.
5c5cc623
LZ
2140 *
2141 * Otherwise move tasks to the nearest ancestor with execution
2142 * resources. This is full cgroup operation which will
5d21cc2d
TH
2143 * also call back into cpuset. Should be done outside any lock.
2144 */
aa6ec29b 2145 if (!on_dfl && is_empty)
5d21cc2d 2146 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2147}
2148
deb7aa30 2149/**
3a5a6d0c 2150 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2151 *
deb7aa30
TH
2152 * This function is called after either CPU or memory configuration has
2153 * changed and updates cpuset accordingly. The top_cpuset is always
2154 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2155 * order to make cpusets transparent (of no affect) on systems that are
2156 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2157 *
deb7aa30 2158 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2159 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2160 * all descendants.
956db3ca 2161 *
deb7aa30
TH
2162 * Note that CPU offlining during suspend is ignored. We don't modify
2163 * cpusets across suspend/resume cycles at all.
956db3ca 2164 */
3a5a6d0c 2165static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2166{
5c5cc623
LZ
2167 static cpumask_t new_cpus;
2168 static nodemask_t new_mems;
deb7aa30 2169 bool cpus_updated, mems_updated;
b1aac8bb 2170
5d21cc2d 2171 mutex_lock(&cpuset_mutex);
956db3ca 2172
deb7aa30
TH
2173 /* fetch the available cpus/mems and find out which changed how */
2174 cpumask_copy(&new_cpus, cpu_active_mask);
2175 new_mems = node_states[N_MEMORY];
7ddf96b0 2176
deb7aa30 2177 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2178 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2179
deb7aa30
TH
2180 /* synchronize cpus_allowed to cpu_active_mask */
2181 if (cpus_updated) {
2182 mutex_lock(&callback_mutex);
2183 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2184 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
deb7aa30
TH
2185 mutex_unlock(&callback_mutex);
2186 /* we don't mess with cpumasks of tasks in top_cpuset */
2187 }
b4501295 2188
deb7aa30
TH
2189 /* synchronize mems_allowed to N_MEMORY */
2190 if (mems_updated) {
deb7aa30
TH
2191 mutex_lock(&callback_mutex);
2192 top_cpuset.mems_allowed = new_mems;
1344ab9c 2193 top_cpuset.effective_mems = new_mems;
deb7aa30 2194 mutex_unlock(&callback_mutex);
d66393e5 2195 update_tasks_nodemask(&top_cpuset);
deb7aa30 2196 }
b4501295 2197
388afd85
LZ
2198 mutex_unlock(&cpuset_mutex);
2199
5c5cc623
LZ
2200 /* if cpus or mems changed, we need to propagate to descendants */
2201 if (cpus_updated || mems_updated) {
deb7aa30 2202 struct cpuset *cs;
492eb21b 2203 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2204
fc560a26 2205 rcu_read_lock();
492eb21b 2206 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2207 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2208 continue;
2209 rcu_read_unlock();
7ddf96b0 2210
388afd85 2211 cpuset_hotplug_update_tasks(cs);
b4501295 2212
388afd85
LZ
2213 rcu_read_lock();
2214 css_put(&cs->css);
2215 }
2216 rcu_read_unlock();
2217 }
8d033948 2218
deb7aa30 2219 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2220 if (cpus_updated)
2221 rebuild_sched_domains();
b1aac8bb
PJ
2222}
2223
7ddf96b0 2224void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2225{
3a5a6d0c
TH
2226 /*
2227 * We're inside cpu hotplug critical region which usually nests
2228 * inside cgroup synchronization. Bounce actual hotplug processing
2229 * to a work item to avoid reverse locking order.
2230 *
2231 * We still need to do partition_sched_domains() synchronously;
2232 * otherwise, the scheduler will get confused and put tasks to the
2233 * dead CPU. Fall back to the default single domain.
2234 * cpuset_hotplug_workfn() will rebuild it as necessary.
2235 */
2236 partition_sched_domains(1, NULL, NULL);
2237 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2238}
4c4d50f7 2239
38837fc7 2240/*
38d7bee9
LJ
2241 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2242 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2243 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2244 */
f481891f
MX
2245static int cpuset_track_online_nodes(struct notifier_block *self,
2246 unsigned long action, void *arg)
38837fc7 2247{
3a5a6d0c 2248 schedule_work(&cpuset_hotplug_work);
f481891f 2249 return NOTIFY_OK;
38837fc7 2250}
d8f10cb3
AM
2251
2252static struct notifier_block cpuset_track_online_nodes_nb = {
2253 .notifier_call = cpuset_track_online_nodes,
2254 .priority = 10, /* ??! */
2255};
38837fc7 2256
1da177e4
LT
2257/**
2258 * cpuset_init_smp - initialize cpus_allowed
2259 *
2260 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2261 */
1da177e4
LT
2262void __init cpuset_init_smp(void)
2263{
6ad4c188 2264 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2265 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2266 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2267
e2b9a3d7
LZ
2268 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2269 top_cpuset.effective_mems = node_states[N_MEMORY];
2270
d8f10cb3 2271 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2272}
2273
2274/**
1da177e4
LT
2275 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2276 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2277 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2278 *
300ed6cb 2279 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2280 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2281 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2282 * tasks cpuset.
2283 **/
2284
6af866af 2285void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2286{
070b57fc
LZ
2287 struct cpuset *cpus_cs;
2288
3d3f26a7 2289 mutex_lock(&callback_mutex);
b8dadcb5 2290 rcu_read_lock();
070b57fc
LZ
2291 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2292 guarantee_online_cpus(cpus_cs, pmask);
b8dadcb5 2293 rcu_read_unlock();
897f0b3c 2294 mutex_unlock(&callback_mutex);
1da177e4
LT
2295}
2296
2baab4e9 2297void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2298{
c9710d80 2299 struct cpuset *cpus_cs;
9084bb82
ON
2300
2301 rcu_read_lock();
070b57fc
LZ
2302 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2303 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2304 rcu_read_unlock();
2305
2306 /*
2307 * We own tsk->cpus_allowed, nobody can change it under us.
2308 *
2309 * But we used cs && cs->cpus_allowed lockless and thus can
2310 * race with cgroup_attach_task() or update_cpumask() and get
2311 * the wrong tsk->cpus_allowed. However, both cases imply the
2312 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2313 * which takes task_rq_lock().
2314 *
2315 * If we are called after it dropped the lock we must see all
2316 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2317 * set any mask even if it is not right from task_cs() pov,
2318 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2319 *
2320 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2321 * if required.
9084bb82 2322 */
9084bb82
ON
2323}
2324
1da177e4
LT
2325void cpuset_init_current_mems_allowed(void)
2326{
f9a86fcb 2327 nodes_setall(current->mems_allowed);
1da177e4
LT
2328}
2329
909d75a3
PJ
2330/**
2331 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2332 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2333 *
2334 * Description: Returns the nodemask_t mems_allowed of the cpuset
2335 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2336 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2337 * tasks cpuset.
2338 **/
2339
2340nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2341{
070b57fc 2342 struct cpuset *mems_cs;
909d75a3
PJ
2343 nodemask_t mask;
2344
3d3f26a7 2345 mutex_lock(&callback_mutex);
b8dadcb5 2346 rcu_read_lock();
070b57fc
LZ
2347 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2348 guarantee_online_mems(mems_cs, &mask);
b8dadcb5 2349 rcu_read_unlock();
3d3f26a7 2350 mutex_unlock(&callback_mutex);
909d75a3
PJ
2351
2352 return mask;
2353}
2354
d9fd8a6d 2355/**
19770b32
MG
2356 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2357 * @nodemask: the nodemask to be checked
d9fd8a6d 2358 *
19770b32 2359 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2360 */
19770b32 2361int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2362{
19770b32 2363 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2364}
2365
9bf2229f 2366/*
78608366
PM
2367 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2368 * mem_hardwall ancestor to the specified cpuset. Call holding
2369 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2370 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2371 */
c9710d80 2372static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2373{
c431069f
TH
2374 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2375 cs = parent_cs(cs);
9bf2229f
PJ
2376 return cs;
2377}
2378
d9fd8a6d 2379/**
a1bc5a4e
DR
2380 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2381 * @node: is this an allowed node?
02a0e53d 2382 * @gfp_mask: memory allocation flags
d9fd8a6d 2383 *
a1bc5a4e
DR
2384 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2385 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2386 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2387 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2388 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2389 * flag, yes.
9bf2229f
PJ
2390 * Otherwise, no.
2391 *
a1bc5a4e
DR
2392 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2393 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2394 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2395 *
a1bc5a4e
DR
2396 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2397 * cpusets, and never sleeps.
02a0e53d
PJ
2398 *
2399 * The __GFP_THISNODE placement logic is really handled elsewhere,
2400 * by forcibly using a zonelist starting at a specified node, and by
2401 * (in get_page_from_freelist()) refusing to consider the zones for
2402 * any node on the zonelist except the first. By the time any such
2403 * calls get to this routine, we should just shut up and say 'yes'.
2404 *
9bf2229f 2405 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2406 * and do not allow allocations outside the current tasks cpuset
2407 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2408 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2409 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2410 *
02a0e53d
PJ
2411 * Scanning up parent cpusets requires callback_mutex. The
2412 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2413 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2414 * current tasks mems_allowed came up empty on the first pass over
2415 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2416 * cpuset are short of memory, might require taking the callback_mutex
2417 * mutex.
9bf2229f 2418 *
36be57ff 2419 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2420 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2421 * so no allocation on a node outside the cpuset is allowed (unless
2422 * in interrupt, of course).
36be57ff
PJ
2423 *
2424 * The second pass through get_page_from_freelist() doesn't even call
2425 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2426 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2427 * in alloc_flags. That logic and the checks below have the combined
2428 * affect that:
9bf2229f
PJ
2429 * in_interrupt - any node ok (current task context irrelevant)
2430 * GFP_ATOMIC - any node ok
c596d9f3 2431 * TIF_MEMDIE - any node ok
78608366 2432 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2433 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2434 *
2435 * Rule:
a1bc5a4e 2436 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2437 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2438 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2439 */
a1bc5a4e 2440int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2441{
c9710d80 2442 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2443 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2444
9b819d20 2445 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2446 return 1;
92d1dbd2 2447 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2448 if (node_isset(node, current->mems_allowed))
2449 return 1;
c596d9f3
DR
2450 /*
2451 * Allow tasks that have access to memory reserves because they have
2452 * been OOM killed to get memory anywhere.
2453 */
2454 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2455 return 1;
9bf2229f
PJ
2456 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2457 return 0;
2458
5563e770
BP
2459 if (current->flags & PF_EXITING) /* Let dying task have memory */
2460 return 1;
2461
9bf2229f 2462 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2463 mutex_lock(&callback_mutex);
053199ed 2464
b8dadcb5 2465 rcu_read_lock();
78608366 2466 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2467 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2468 rcu_read_unlock();
053199ed 2469
3d3f26a7 2470 mutex_unlock(&callback_mutex);
9bf2229f 2471 return allowed;
1da177e4
LT
2472}
2473
02a0e53d 2474/*
a1bc5a4e
DR
2475 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2476 * @node: is this an allowed node?
02a0e53d
PJ
2477 * @gfp_mask: memory allocation flags
2478 *
a1bc5a4e
DR
2479 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2480 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2481 * yes. If the task has been OOM killed and has access to memory reserves as
2482 * specified by the TIF_MEMDIE flag, yes.
2483 * Otherwise, no.
02a0e53d
PJ
2484 *
2485 * The __GFP_THISNODE placement logic is really handled elsewhere,
2486 * by forcibly using a zonelist starting at a specified node, and by
2487 * (in get_page_from_freelist()) refusing to consider the zones for
2488 * any node on the zonelist except the first. By the time any such
2489 * calls get to this routine, we should just shut up and say 'yes'.
2490 *
a1bc5a4e
DR
2491 * Unlike the cpuset_node_allowed_softwall() variant, above,
2492 * this variant requires that the node be in the current task's
02a0e53d
PJ
2493 * mems_allowed or that we're in interrupt. It does not scan up the
2494 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2495 * It never sleeps.
2496 */
a1bc5a4e 2497int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2498{
02a0e53d
PJ
2499 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2500 return 1;
02a0e53d
PJ
2501 if (node_isset(node, current->mems_allowed))
2502 return 1;
dedf8b79
DW
2503 /*
2504 * Allow tasks that have access to memory reserves because they have
2505 * been OOM killed to get memory anywhere.
2506 */
2507 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2508 return 1;
02a0e53d
PJ
2509 return 0;
2510}
2511
825a46af 2512/**
6adef3eb
JS
2513 * cpuset_mem_spread_node() - On which node to begin search for a file page
2514 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2515 *
2516 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2517 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2518 * and if the memory allocation used cpuset_mem_spread_node()
2519 * to determine on which node to start looking, as it will for
2520 * certain page cache or slab cache pages such as used for file
2521 * system buffers and inode caches, then instead of starting on the
2522 * local node to look for a free page, rather spread the starting
2523 * node around the tasks mems_allowed nodes.
2524 *
2525 * We don't have to worry about the returned node being offline
2526 * because "it can't happen", and even if it did, it would be ok.
2527 *
2528 * The routines calling guarantee_online_mems() are careful to
2529 * only set nodes in task->mems_allowed that are online. So it
2530 * should not be possible for the following code to return an
2531 * offline node. But if it did, that would be ok, as this routine
2532 * is not returning the node where the allocation must be, only
2533 * the node where the search should start. The zonelist passed to
2534 * __alloc_pages() will include all nodes. If the slab allocator
2535 * is passed an offline node, it will fall back to the local node.
2536 * See kmem_cache_alloc_node().
2537 */
2538
6adef3eb 2539static int cpuset_spread_node(int *rotor)
825a46af
PJ
2540{
2541 int node;
2542
6adef3eb 2543 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2544 if (node == MAX_NUMNODES)
2545 node = first_node(current->mems_allowed);
6adef3eb 2546 *rotor = node;
825a46af
PJ
2547 return node;
2548}
6adef3eb
JS
2549
2550int cpuset_mem_spread_node(void)
2551{
778d3b0f
MH
2552 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2553 current->cpuset_mem_spread_rotor =
2554 node_random(&current->mems_allowed);
2555
6adef3eb
JS
2556 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2557}
2558
2559int cpuset_slab_spread_node(void)
2560{
778d3b0f
MH
2561 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2562 current->cpuset_slab_spread_rotor =
2563 node_random(&current->mems_allowed);
2564
6adef3eb
JS
2565 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2566}
2567
825a46af
PJ
2568EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2569
ef08e3b4 2570/**
bbe373f2
DR
2571 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2572 * @tsk1: pointer to task_struct of some task.
2573 * @tsk2: pointer to task_struct of some other task.
2574 *
2575 * Description: Return true if @tsk1's mems_allowed intersects the
2576 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2577 * one of the task's memory usage might impact the memory available
2578 * to the other.
ef08e3b4
PJ
2579 **/
2580
bbe373f2
DR
2581int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2582 const struct task_struct *tsk2)
ef08e3b4 2583{
bbe373f2 2584 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2585}
2586
f440d98f
LZ
2587#define CPUSET_NODELIST_LEN (256)
2588
75aa1994
DR
2589/**
2590 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2591 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2592 *
2593 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2594 * mems_allowed to the kernel log.
75aa1994
DR
2595 */
2596void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2597{
f440d98f
LZ
2598 /* Statically allocated to prevent using excess stack. */
2599 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2600 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2601 struct cgroup *cgrp;
75aa1994 2602
f440d98f 2603 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2604 rcu_read_lock();
63f43f55 2605
b8dadcb5 2606 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2607 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2608 tsk->mems_allowed);
12d3089c 2609 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2610 pr_cont_cgroup_name(cgrp);
2611 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2612
cfb5966b 2613 rcu_read_unlock();
75aa1994
DR
2614 spin_unlock(&cpuset_buffer_lock);
2615}
2616
3e0d98b9
PJ
2617/*
2618 * Collection of memory_pressure is suppressed unless
2619 * this flag is enabled by writing "1" to the special
2620 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2621 */
2622
c5b2aff8 2623int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2624
2625/**
2626 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2627 *
2628 * Keep a running average of the rate of synchronous (direct)
2629 * page reclaim efforts initiated by tasks in each cpuset.
2630 *
2631 * This represents the rate at which some task in the cpuset
2632 * ran low on memory on all nodes it was allowed to use, and
2633 * had to enter the kernels page reclaim code in an effort to
2634 * create more free memory by tossing clean pages or swapping
2635 * or writing dirty pages.
2636 *
2637 * Display to user space in the per-cpuset read-only file
2638 * "memory_pressure". Value displayed is an integer
2639 * representing the recent rate of entry into the synchronous
2640 * (direct) page reclaim by any task attached to the cpuset.
2641 **/
2642
2643void __cpuset_memory_pressure_bump(void)
2644{
b8dadcb5 2645 rcu_read_lock();
8793d854 2646 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2647 rcu_read_unlock();
3e0d98b9
PJ
2648}
2649
8793d854 2650#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2651/*
2652 * proc_cpuset_show()
2653 * - Print tasks cpuset path into seq_file.
2654 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2655 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2656 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2657 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2658 * anyway.
1da177e4 2659 */
8d8b97ba 2660int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2661{
13b41b09 2662 struct pid *pid;
1da177e4 2663 struct task_struct *tsk;
e61734c5 2664 char *buf, *p;
8793d854 2665 struct cgroup_subsys_state *css;
99f89551 2666 int retval;
1da177e4 2667
99f89551 2668 retval = -ENOMEM;
e61734c5 2669 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2670 if (!buf)
99f89551
EB
2671 goto out;
2672
2673 retval = -ESRCH;
13b41b09
EB
2674 pid = m->private;
2675 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2676 if (!tsk)
2677 goto out_free;
1da177e4 2678
e61734c5 2679 retval = -ENAMETOOLONG;
27e89ae5 2680 rcu_read_lock();
073219e9 2681 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2682 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2683 rcu_read_unlock();
e61734c5 2684 if (!p)
27e89ae5 2685 goto out_put_task;
e61734c5 2686 seq_puts(m, p);
1da177e4 2687 seq_putc(m, '\n');
e61734c5 2688 retval = 0;
27e89ae5 2689out_put_task:
99f89551
EB
2690 put_task_struct(tsk);
2691out_free:
1da177e4 2692 kfree(buf);
99f89551 2693out:
1da177e4
LT
2694 return retval;
2695}
8793d854 2696#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2697
d01d4827 2698/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2699void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2700{
fc34ac1d 2701 seq_puts(m, "Mems_allowed:\t");
30e8e136 2702 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2703 seq_puts(m, "\n");
2704 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2705 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2706 seq_puts(m, "\n");
1da177e4 2707}