cgroup: add subsystem pointer to cgroup_subsys_state
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854 72struct cgroup_subsys cpuset_subsys;
8793d854 73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
33ad801d
LZ
90 /*
91 * This is old Memory Nodes tasks took on.
92 *
93 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
94 * - A new cpuset's old_mems_allowed is initialized when some
95 * task is moved into it.
96 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
97 * cpuset.mems_allowed and have tasks' nodemask updated, and
98 * then old_mems_allowed is updated to mems_allowed.
99 */
100 nodemask_t old_mems_allowed;
101
3e0d98b9 102 struct fmeter fmeter; /* memory_pressure filter */
029190c5 103
452477fa
TH
104 /*
105 * Tasks are being attached to this cpuset. Used to prevent
106 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
107 */
108 int attach_in_progress;
109
029190c5
PJ
110 /* partition number for rebuild_sched_domains() */
111 int pn;
956db3ca 112
1d3504fc
HS
113 /* for custom sched domain */
114 int relax_domain_level;
1da177e4
LT
115};
116
8793d854 117/* Retrieve the cpuset for a cgroup */
c9e5fe66 118static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
8793d854 119{
8af01f56 120 return container_of(cgroup_css(cgrp, cpuset_subsys_id),
8793d854
PM
121 struct cpuset, css);
122}
123
124/* Retrieve the cpuset for a task */
125static inline struct cpuset *task_cs(struct task_struct *task)
126{
8af01f56 127 return container_of(task_css(task, cpuset_subsys_id),
8793d854
PM
128 struct cpuset, css);
129}
8793d854 130
c9710d80 131static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f
TH
132{
133 struct cgroup *pcgrp = cs->css.cgroup->parent;
134
135 if (pcgrp)
136 return cgroup_cs(pcgrp);
137 return NULL;
138}
139
b246272e
DR
140#ifdef CONFIG_NUMA
141static inline bool task_has_mempolicy(struct task_struct *task)
142{
143 return task->mempolicy;
144}
145#else
146static inline bool task_has_mempolicy(struct task_struct *task)
147{
148 return false;
149}
150#endif
151
152
1da177e4
LT
153/* bits in struct cpuset flags field */
154typedef enum {
efeb77b2 155 CS_ONLINE,
1da177e4
LT
156 CS_CPU_EXCLUSIVE,
157 CS_MEM_EXCLUSIVE,
78608366 158 CS_MEM_HARDWALL,
45b07ef3 159 CS_MEMORY_MIGRATE,
029190c5 160 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
161 CS_SPREAD_PAGE,
162 CS_SPREAD_SLAB,
1da177e4
LT
163} cpuset_flagbits_t;
164
165/* convenient tests for these bits */
efeb77b2
TH
166static inline bool is_cpuset_online(const struct cpuset *cs)
167{
168 return test_bit(CS_ONLINE, &cs->flags);
169}
170
1da177e4
LT
171static inline int is_cpu_exclusive(const struct cpuset *cs)
172{
7b5b9ef0 173 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
174}
175
176static inline int is_mem_exclusive(const struct cpuset *cs)
177{
7b5b9ef0 178 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
179}
180
78608366
PM
181static inline int is_mem_hardwall(const struct cpuset *cs)
182{
183 return test_bit(CS_MEM_HARDWALL, &cs->flags);
184}
185
029190c5
PJ
186static inline int is_sched_load_balance(const struct cpuset *cs)
187{
188 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
189}
190
45b07ef3
PJ
191static inline int is_memory_migrate(const struct cpuset *cs)
192{
7b5b9ef0 193 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
194}
195
825a46af
PJ
196static inline int is_spread_page(const struct cpuset *cs)
197{
198 return test_bit(CS_SPREAD_PAGE, &cs->flags);
199}
200
201static inline int is_spread_slab(const struct cpuset *cs)
202{
203 return test_bit(CS_SPREAD_SLAB, &cs->flags);
204}
205
1da177e4 206static struct cpuset top_cpuset = {
efeb77b2
TH
207 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
208 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
209};
210
ae8086ce
TH
211/**
212 * cpuset_for_each_child - traverse online children of a cpuset
213 * @child_cs: loop cursor pointing to the current child
214 * @pos_cgrp: used for iteration
215 * @parent_cs: target cpuset to walk children of
216 *
217 * Walk @child_cs through the online children of @parent_cs. Must be used
218 * with RCU read locked.
219 */
220#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
221 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
222 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
223
fc560a26
TH
224/**
225 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
226 * @des_cs: loop cursor pointing to the current descendant
227 * @pos_cgrp: used for iteration
228 * @root_cs: target cpuset to walk ancestor of
229 *
230 * Walk @des_cs through the online descendants of @root_cs. Must be used
231 * with RCU read locked. The caller may modify @pos_cgrp by calling
232 * cgroup_rightmost_descendant() to skip subtree.
233 */
234#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
235 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
236 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
237
1da177e4 238/*
5d21cc2d
TH
239 * There are two global mutexes guarding cpuset structures - cpuset_mutex
240 * and callback_mutex. The latter may nest inside the former. We also
241 * require taking task_lock() when dereferencing a task's cpuset pointer.
242 * See "The task_lock() exception", at the end of this comment.
243 *
244 * A task must hold both mutexes to modify cpusets. If a task holds
245 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
246 * is the only task able to also acquire callback_mutex and be able to
247 * modify cpusets. It can perform various checks on the cpuset structure
248 * first, knowing nothing will change. It can also allocate memory while
249 * just holding cpuset_mutex. While it is performing these checks, various
250 * callback routines can briefly acquire callback_mutex to query cpusets.
251 * Once it is ready to make the changes, it takes callback_mutex, blocking
252 * everyone else.
053199ed
PJ
253 *
254 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 255 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
256 * from one of the callbacks into the cpuset code from within
257 * __alloc_pages().
258 *
3d3f26a7 259 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
260 * access to cpusets.
261 *
58568d2a
MX
262 * Now, the task_struct fields mems_allowed and mempolicy may be changed
263 * by other task, we use alloc_lock in the task_struct fields to protect
264 * them.
053199ed 265 *
3d3f26a7 266 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
267 * small pieces of code, such as when reading out possibly multi-word
268 * cpumasks and nodemasks.
269 *
2df167a3
PM
270 * Accessing a task's cpuset should be done in accordance with the
271 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
272 */
273
5d21cc2d 274static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 275static DEFINE_MUTEX(callback_mutex);
4247bdc6 276
3a5a6d0c
TH
277/*
278 * CPU / memory hotplug is handled asynchronously.
279 */
280static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
281static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
282
e44193d3
LZ
283static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
284
cf417141
MK
285/*
286 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 287 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
288 * silently switch it to mount "cgroup" instead
289 */
f7e83571
AV
290static struct dentry *cpuset_mount(struct file_system_type *fs_type,
291 int flags, const char *unused_dev_name, void *data)
1da177e4 292{
8793d854 293 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 294 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
295 if (cgroup_fs) {
296 char mountopts[] =
297 "cpuset,noprefix,"
298 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
299 ret = cgroup_fs->mount(cgroup_fs, flags,
300 unused_dev_name, mountopts);
8793d854
PM
301 put_filesystem(cgroup_fs);
302 }
303 return ret;
1da177e4
LT
304}
305
306static struct file_system_type cpuset_fs_type = {
307 .name = "cpuset",
f7e83571 308 .mount = cpuset_mount,
1da177e4
LT
309};
310
1da177e4 311/*
300ed6cb 312 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 313 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
314 * until we find one that does have some online cpus. The top
315 * cpuset always has some cpus online.
1da177e4
LT
316 *
317 * One way or another, we guarantee to return some non-empty subset
5f054e31 318 * of cpu_online_mask.
1da177e4 319 *
3d3f26a7 320 * Call with callback_mutex held.
1da177e4 321 */
c9710d80 322static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 323{
40df2deb 324 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 325 cs = parent_cs(cs);
40df2deb 326 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
327}
328
329/*
330 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
331 * are online, with memory. If none are online with memory, walk
332 * up the cpuset hierarchy until we find one that does have some
40df2deb 333 * online mems. The top cpuset always has some mems online.
1da177e4
LT
334 *
335 * One way or another, we guarantee to return some non-empty subset
38d7bee9 336 * of node_states[N_MEMORY].
1da177e4 337 *
3d3f26a7 338 * Call with callback_mutex held.
1da177e4 339 */
c9710d80 340static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 341{
40df2deb 342 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 343 cs = parent_cs(cs);
40df2deb 344 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
345}
346
f3b39d47
MX
347/*
348 * update task's spread flag if cpuset's page/slab spread flag is set
349 *
5d21cc2d 350 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
351 */
352static void cpuset_update_task_spread_flag(struct cpuset *cs,
353 struct task_struct *tsk)
354{
355 if (is_spread_page(cs))
356 tsk->flags |= PF_SPREAD_PAGE;
357 else
358 tsk->flags &= ~PF_SPREAD_PAGE;
359 if (is_spread_slab(cs))
360 tsk->flags |= PF_SPREAD_SLAB;
361 else
362 tsk->flags &= ~PF_SPREAD_SLAB;
363}
364
1da177e4
LT
365/*
366 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
367 *
368 * One cpuset is a subset of another if all its allowed CPUs and
369 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 370 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
371 */
372
373static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
374{
300ed6cb 375 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
376 nodes_subset(p->mems_allowed, q->mems_allowed) &&
377 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
378 is_mem_exclusive(p) <= is_mem_exclusive(q);
379}
380
645fcc9d
LZ
381/**
382 * alloc_trial_cpuset - allocate a trial cpuset
383 * @cs: the cpuset that the trial cpuset duplicates
384 */
c9710d80 385static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 386{
300ed6cb
LZ
387 struct cpuset *trial;
388
389 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
390 if (!trial)
391 return NULL;
392
393 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
394 kfree(trial);
395 return NULL;
396 }
397 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
398
399 return trial;
645fcc9d
LZ
400}
401
402/**
403 * free_trial_cpuset - free the trial cpuset
404 * @trial: the trial cpuset to be freed
405 */
406static void free_trial_cpuset(struct cpuset *trial)
407{
300ed6cb 408 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
409 kfree(trial);
410}
411
1da177e4
LT
412/*
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
415 *
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 419 * cpuset_mutex held.
1da177e4
LT
420 *
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
424 *
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
428 *
429 * Return 0 if valid, -errno if not.
430 */
431
c9710d80 432static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 433{
c9e5fe66 434 struct cgroup *cgrp;
1da177e4 435 struct cpuset *c, *par;
ae8086ce
TH
436 int ret;
437
438 rcu_read_lock();
1da177e4
LT
439
440 /* Each of our child cpusets must be a subset of us */
ae8086ce 441 ret = -EBUSY;
c9e5fe66 442 cpuset_for_each_child(c, cgrp, cur)
ae8086ce
TH
443 if (!is_cpuset_subset(c, trial))
444 goto out;
1da177e4
LT
445
446 /* Remaining checks don't apply to root cpuset */
ae8086ce 447 ret = 0;
69604067 448 if (cur == &top_cpuset)
ae8086ce 449 goto out;
1da177e4 450
c431069f 451 par = parent_cs(cur);
69604067 452
1da177e4 453 /* We must be a subset of our parent cpuset */
ae8086ce 454 ret = -EACCES;
1da177e4 455 if (!is_cpuset_subset(trial, par))
ae8086ce 456 goto out;
1da177e4 457
2df167a3
PM
458 /*
459 * If either I or some sibling (!= me) is exclusive, we can't
460 * overlap
461 */
ae8086ce 462 ret = -EINVAL;
c9e5fe66 463 cpuset_for_each_child(c, cgrp, par) {
1da177e4
LT
464 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
465 c != cur &&
300ed6cb 466 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 467 goto out;
1da177e4
LT
468 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
469 c != cur &&
470 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 471 goto out;
1da177e4
LT
472 }
473
452477fa
TH
474 /*
475 * Cpusets with tasks - existing or newly being attached - can't
476 * have empty cpus_allowed or mems_allowed.
477 */
ae8086ce 478 ret = -ENOSPC;
452477fa 479 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
88fa523b 480 (cpumask_empty(trial->cpus_allowed) &&
ae8086ce
TH
481 nodes_empty(trial->mems_allowed)))
482 goto out;
020958b6 483
ae8086ce
TH
484 ret = 0;
485out:
486 rcu_read_unlock();
487 return ret;
1da177e4
LT
488}
489
db7f47cf 490#ifdef CONFIG_SMP
029190c5 491/*
cf417141 492 * Helper routine for generate_sched_domains().
029190c5
PJ
493 * Do cpusets a, b have overlapping cpus_allowed masks?
494 */
029190c5
PJ
495static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
496{
300ed6cb 497 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
498}
499
1d3504fc
HS
500static void
501update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
502{
1d3504fc
HS
503 if (dattr->relax_domain_level < c->relax_domain_level)
504 dattr->relax_domain_level = c->relax_domain_level;
505 return;
506}
507
fc560a26
TH
508static void update_domain_attr_tree(struct sched_domain_attr *dattr,
509 struct cpuset *root_cs)
f5393693 510{
fc560a26
TH
511 struct cpuset *cp;
512 struct cgroup *pos_cgrp;
f5393693 513
fc560a26
TH
514 rcu_read_lock();
515 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
516 /* skip the whole subtree if @cp doesn't have any CPU */
517 if (cpumask_empty(cp->cpus_allowed)) {
518 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 519 continue;
fc560a26 520 }
f5393693
LJ
521
522 if (is_sched_load_balance(cp))
523 update_domain_attr(dattr, cp);
f5393693 524 }
fc560a26 525 rcu_read_unlock();
f5393693
LJ
526}
527
029190c5 528/*
cf417141
MK
529 * generate_sched_domains()
530 *
531 * This function builds a partial partition of the systems CPUs
532 * A 'partial partition' is a set of non-overlapping subsets whose
533 * union is a subset of that set.
0a0fca9d 534 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
535 * partition_sched_domains() routine, which will rebuild the scheduler's
536 * load balancing domains (sched domains) as specified by that partial
537 * partition.
029190c5 538 *
45ce80fb 539 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
540 * for a background explanation of this.
541 *
542 * Does not return errors, on the theory that the callers of this
543 * routine would rather not worry about failures to rebuild sched
544 * domains when operating in the severe memory shortage situations
545 * that could cause allocation failures below.
546 *
5d21cc2d 547 * Must be called with cpuset_mutex held.
029190c5
PJ
548 *
549 * The three key local variables below are:
aeed6824 550 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
551 * top-down scan of all cpusets. This scan loads a pointer
552 * to each cpuset marked is_sched_load_balance into the
553 * array 'csa'. For our purposes, rebuilding the schedulers
554 * sched domains, we can ignore !is_sched_load_balance cpusets.
555 * csa - (for CpuSet Array) Array of pointers to all the cpusets
556 * that need to be load balanced, for convenient iterative
557 * access by the subsequent code that finds the best partition,
558 * i.e the set of domains (subsets) of CPUs such that the
559 * cpus_allowed of every cpuset marked is_sched_load_balance
560 * is a subset of one of these domains, while there are as
561 * many such domains as possible, each as small as possible.
562 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 563 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
564 * convenient format, that can be easily compared to the prior
565 * value to determine what partition elements (sched domains)
566 * were changed (added or removed.)
567 *
568 * Finding the best partition (set of domains):
569 * The triple nested loops below over i, j, k scan over the
570 * load balanced cpusets (using the array of cpuset pointers in
571 * csa[]) looking for pairs of cpusets that have overlapping
572 * cpus_allowed, but which don't have the same 'pn' partition
573 * number and gives them in the same partition number. It keeps
574 * looping on the 'restart' label until it can no longer find
575 * any such pairs.
576 *
577 * The union of the cpus_allowed masks from the set of
578 * all cpusets having the same 'pn' value then form the one
579 * element of the partition (one sched domain) to be passed to
580 * partition_sched_domains().
581 */
acc3f5d7 582static int generate_sched_domains(cpumask_var_t **domains,
cf417141 583 struct sched_domain_attr **attributes)
029190c5 584{
029190c5
PJ
585 struct cpuset *cp; /* scans q */
586 struct cpuset **csa; /* array of all cpuset ptrs */
587 int csn; /* how many cpuset ptrs in csa so far */
588 int i, j, k; /* indices for partition finding loops */
acc3f5d7 589 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 590 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 591 int ndoms = 0; /* number of sched domains in result */
6af866af 592 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 593 struct cgroup *pos_cgrp;
029190c5 594
029190c5 595 doms = NULL;
1d3504fc 596 dattr = NULL;
cf417141 597 csa = NULL;
029190c5
PJ
598
599 /* Special case for the 99% of systems with one, full, sched domain */
600 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
601 ndoms = 1;
602 doms = alloc_sched_domains(ndoms);
029190c5 603 if (!doms)
cf417141
MK
604 goto done;
605
1d3504fc
HS
606 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
607 if (dattr) {
608 *dattr = SD_ATTR_INIT;
93a65575 609 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 610 }
acc3f5d7 611 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 612
cf417141 613 goto done;
029190c5
PJ
614 }
615
029190c5
PJ
616 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
617 if (!csa)
618 goto done;
619 csn = 0;
620
fc560a26
TH
621 rcu_read_lock();
622 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 623 /*
fc560a26
TH
624 * Continue traversing beyond @cp iff @cp has some CPUs and
625 * isn't load balancing. The former is obvious. The
626 * latter: All child cpusets contain a subset of the
627 * parent's cpus, so just skip them, and then we call
628 * update_domain_attr_tree() to calc relax_domain_level of
629 * the corresponding sched domain.
f5393693 630 */
fc560a26
TH
631 if (!cpumask_empty(cp->cpus_allowed) &&
632 !is_sched_load_balance(cp))
f5393693 633 continue;
489a5393 634
fc560a26
TH
635 if (is_sched_load_balance(cp))
636 csa[csn++] = cp;
637
638 /* skip @cp's subtree */
639 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
640 }
641 rcu_read_unlock();
029190c5
PJ
642
643 for (i = 0; i < csn; i++)
644 csa[i]->pn = i;
645 ndoms = csn;
646
647restart:
648 /* Find the best partition (set of sched domains) */
649 for (i = 0; i < csn; i++) {
650 struct cpuset *a = csa[i];
651 int apn = a->pn;
652
653 for (j = 0; j < csn; j++) {
654 struct cpuset *b = csa[j];
655 int bpn = b->pn;
656
657 if (apn != bpn && cpusets_overlap(a, b)) {
658 for (k = 0; k < csn; k++) {
659 struct cpuset *c = csa[k];
660
661 if (c->pn == bpn)
662 c->pn = apn;
663 }
664 ndoms--; /* one less element */
665 goto restart;
666 }
667 }
668 }
669
cf417141
MK
670 /*
671 * Now we know how many domains to create.
672 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
673 */
acc3f5d7 674 doms = alloc_sched_domains(ndoms);
700018e0 675 if (!doms)
cf417141 676 goto done;
cf417141
MK
677
678 /*
679 * The rest of the code, including the scheduler, can deal with
680 * dattr==NULL case. No need to abort if alloc fails.
681 */
1d3504fc 682 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
683
684 for (nslot = 0, i = 0; i < csn; i++) {
685 struct cpuset *a = csa[i];
6af866af 686 struct cpumask *dp;
029190c5
PJ
687 int apn = a->pn;
688
cf417141
MK
689 if (apn < 0) {
690 /* Skip completed partitions */
691 continue;
692 }
693
acc3f5d7 694 dp = doms[nslot];
cf417141
MK
695
696 if (nslot == ndoms) {
697 static int warnings = 10;
698 if (warnings) {
699 printk(KERN_WARNING
700 "rebuild_sched_domains confused:"
701 " nslot %d, ndoms %d, csn %d, i %d,"
702 " apn %d\n",
703 nslot, ndoms, csn, i, apn);
704 warnings--;
029190c5 705 }
cf417141
MK
706 continue;
707 }
029190c5 708
6af866af 709 cpumask_clear(dp);
cf417141
MK
710 if (dattr)
711 *(dattr + nslot) = SD_ATTR_INIT;
712 for (j = i; j < csn; j++) {
713 struct cpuset *b = csa[j];
714
715 if (apn == b->pn) {
300ed6cb 716 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
717 if (dattr)
718 update_domain_attr_tree(dattr + nslot, b);
719
720 /* Done with this partition */
721 b->pn = -1;
029190c5 722 }
029190c5 723 }
cf417141 724 nslot++;
029190c5
PJ
725 }
726 BUG_ON(nslot != ndoms);
727
cf417141
MK
728done:
729 kfree(csa);
730
700018e0
LZ
731 /*
732 * Fallback to the default domain if kmalloc() failed.
733 * See comments in partition_sched_domains().
734 */
735 if (doms == NULL)
736 ndoms = 1;
737
cf417141
MK
738 *domains = doms;
739 *attributes = dattr;
740 return ndoms;
741}
742
743/*
744 * Rebuild scheduler domains.
745 *
699140ba
TH
746 * If the flag 'sched_load_balance' of any cpuset with non-empty
747 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
748 * which has that flag enabled, or if any cpuset with a non-empty
749 * 'cpus' is removed, then call this routine to rebuild the
750 * scheduler's dynamic sched domains.
cf417141 751 *
5d21cc2d 752 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 753 */
699140ba 754static void rebuild_sched_domains_locked(void)
cf417141
MK
755{
756 struct sched_domain_attr *attr;
acc3f5d7 757 cpumask_var_t *doms;
cf417141
MK
758 int ndoms;
759
5d21cc2d 760 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 761 get_online_cpus();
cf417141 762
5b16c2a4
LZ
763 /*
764 * We have raced with CPU hotplug. Don't do anything to avoid
765 * passing doms with offlined cpu to partition_sched_domains().
766 * Anyways, hotplug work item will rebuild sched domains.
767 */
768 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
769 goto out;
770
cf417141 771 /* Generate domain masks and attrs */
cf417141 772 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
773
774 /* Have scheduler rebuild the domains */
775 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 776out:
86ef5c9a 777 put_online_cpus();
cf417141 778}
db7f47cf 779#else /* !CONFIG_SMP */
699140ba 780static void rebuild_sched_domains_locked(void)
db7f47cf
PM
781{
782}
db7f47cf 783#endif /* CONFIG_SMP */
029190c5 784
cf417141
MK
785void rebuild_sched_domains(void)
786{
5d21cc2d 787 mutex_lock(&cpuset_mutex);
699140ba 788 rebuild_sched_domains_locked();
5d21cc2d 789 mutex_unlock(&cpuset_mutex);
029190c5
PJ
790}
791
070b57fc
LZ
792/*
793 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
794 * @cs: the cpuset in interest
58f4790b 795 *
070b57fc
LZ
796 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
797 * with non-empty cpus. We use effective cpumask whenever:
798 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
799 * if the cpuset they reside in has no cpus)
800 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
801 *
802 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
803 * exception. See comments there.
804 */
805static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
806{
807 while (cpumask_empty(cs->cpus_allowed))
808 cs = parent_cs(cs);
809 return cs;
810}
811
812/*
813 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
814 * @cs: the cpuset in interest
815 *
816 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
817 * with non-empty memss. We use effective nodemask whenever:
818 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
819 * if the cpuset they reside in has no mems)
820 * - we want to retrieve task_cs(tsk)'s mems_allowed.
821 *
822 * Called with cpuset_mutex held.
053199ed 823 */
070b57fc 824static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 825{
070b57fc
LZ
826 while (nodes_empty(cs->mems_allowed))
827 cs = parent_cs(cs);
828 return cs;
58f4790b 829}
053199ed 830
58f4790b
CW
831/**
832 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
833 * @tsk: task to test
834 * @scan: struct cgroup_scanner containing the cgroup of the task
835 *
836 * Called by cgroup_scan_tasks() for each task in a cgroup whose
837 * cpus_allowed mask needs to be changed.
838 *
839 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 840 * holding cpuset_mutex at this point.
58f4790b 841 */
9e0c914c
AB
842static void cpuset_change_cpumask(struct task_struct *tsk,
843 struct cgroup_scanner *scan)
58f4790b 844{
070b57fc
LZ
845 struct cpuset *cpus_cs;
846
6f4b7e63 847 cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cgrp));
070b57fc 848 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
849}
850
0b2f630a
MX
851/**
852 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
853 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 854 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 855 *
5d21cc2d 856 * Called with cpuset_mutex held
0b2f630a
MX
857 *
858 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
859 * calling callback functions for each.
860 *
4e74339a
LZ
861 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
862 * if @heap != NULL.
0b2f630a 863 */
4e74339a 864static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
865{
866 struct cgroup_scanner scan;
0b2f630a 867
6f4b7e63 868 scan.cgrp = cs->css.cgroup;
249cc86d 869 scan.test_task = NULL;
0b2f630a 870 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
871 scan.heap = heap;
872 cgroup_scan_tasks(&scan);
0b2f630a
MX
873}
874
5c5cc623
LZ
875/*
876 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
877 * @root_cs: the root cpuset of the hierarchy
878 * @update_root: update root cpuset or not?
879 * @heap: the heap used by cgroup_scan_tasks()
880 *
881 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
882 * which take on cpumask of @root_cs.
883 *
884 * Called with cpuset_mutex held
885 */
886static void update_tasks_cpumask_hier(struct cpuset *root_cs,
887 bool update_root, struct ptr_heap *heap)
888{
889 struct cpuset *cp;
890 struct cgroup *pos_cgrp;
891
892 if (update_root)
893 update_tasks_cpumask(root_cs, heap);
894
895 rcu_read_lock();
896 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
897 /* skip the whole subtree if @cp have some CPU */
898 if (!cpumask_empty(cp->cpus_allowed)) {
899 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
900 continue;
901 }
902 if (!css_tryget(&cp->css))
903 continue;
904 rcu_read_unlock();
905
906 update_tasks_cpumask(cp, heap);
907
908 rcu_read_lock();
909 css_put(&cp->css);
910 }
911 rcu_read_unlock();
912}
913
58f4790b
CW
914/**
915 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
916 * @cs: the cpuset to consider
917 * @buf: buffer of cpu numbers written to this cpuset
918 */
645fcc9d
LZ
919static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
920 const char *buf)
1da177e4 921{
4e74339a 922 struct ptr_heap heap;
58f4790b
CW
923 int retval;
924 int is_load_balanced;
1da177e4 925
5f054e31 926 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
927 if (cs == &top_cpuset)
928 return -EACCES;
929
6f7f02e7 930 /*
c8d9c90c 931 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
932 * Since cpulist_parse() fails on an empty mask, we special case
933 * that parsing. The validate_change() call ensures that cpusets
934 * with tasks have cpus.
6f7f02e7 935 */
020958b6 936 if (!*buf) {
300ed6cb 937 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 938 } else {
300ed6cb 939 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
940 if (retval < 0)
941 return retval;
37340746 942
6ad4c188 943 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 944 return -EINVAL;
6f7f02e7 945 }
029190c5 946
8707d8b8 947 /* Nothing to do if the cpus didn't change */
300ed6cb 948 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 949 return 0;
58f4790b 950
a73456f3
LZ
951 retval = validate_change(cs, trialcs);
952 if (retval < 0)
953 return retval;
954
4e74339a
LZ
955 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
956 if (retval)
957 return retval;
958
645fcc9d 959 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 960
3d3f26a7 961 mutex_lock(&callback_mutex);
300ed6cb 962 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 963 mutex_unlock(&callback_mutex);
029190c5 964
5c5cc623 965 update_tasks_cpumask_hier(cs, true, &heap);
4e74339a
LZ
966
967 heap_free(&heap);
58f4790b 968
8707d8b8 969 if (is_load_balanced)
699140ba 970 rebuild_sched_domains_locked();
85d7b949 971 return 0;
1da177e4
LT
972}
973
e4e364e8
PJ
974/*
975 * cpuset_migrate_mm
976 *
977 * Migrate memory region from one set of nodes to another.
978 *
979 * Temporarilly set tasks mems_allowed to target nodes of migration,
980 * so that the migration code can allocate pages on these nodes.
981 *
5d21cc2d 982 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 983 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
984 * calls. Therefore we don't need to take task_lock around the
985 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 986 * our task's cpuset.
e4e364e8 987 *
e4e364e8
PJ
988 * While the mm_struct we are migrating is typically from some
989 * other task, the task_struct mems_allowed that we are hacking
990 * is for our current task, which must allocate new pages for that
991 * migrating memory region.
e4e364e8
PJ
992 */
993
994static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
995 const nodemask_t *to)
996{
997 struct task_struct *tsk = current;
070b57fc 998 struct cpuset *mems_cs;
e4e364e8 999
e4e364e8 1000 tsk->mems_allowed = *to;
e4e364e8
PJ
1001
1002 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1003
070b57fc
LZ
1004 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
1005 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
1006}
1007
3b6766fe 1008/*
58568d2a
MX
1009 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1010 * @tsk: the task to change
1011 * @newmems: new nodes that the task will be set
1012 *
1013 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1014 * we structure updates as setting all new allowed nodes, then clearing newly
1015 * disallowed ones.
58568d2a
MX
1016 */
1017static void cpuset_change_task_nodemask(struct task_struct *tsk,
1018 nodemask_t *newmems)
1019{
b246272e 1020 bool need_loop;
89e8a244 1021
c0ff7453
MX
1022 /*
1023 * Allow tasks that have access to memory reserves because they have
1024 * been OOM killed to get memory anywhere.
1025 */
1026 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1027 return;
1028 if (current->flags & PF_EXITING) /* Let dying task have memory */
1029 return;
1030
1031 task_lock(tsk);
b246272e
DR
1032 /*
1033 * Determine if a loop is necessary if another thread is doing
1034 * get_mems_allowed(). If at least one node remains unchanged and
1035 * tsk does not have a mempolicy, then an empty nodemask will not be
1036 * possible when mems_allowed is larger than a word.
1037 */
1038 need_loop = task_has_mempolicy(tsk) ||
1039 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1040
cc9a6c87
MG
1041 if (need_loop)
1042 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1043
cc9a6c87
MG
1044 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1045 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1046
1047 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1048 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1049
1050 if (need_loop)
1051 write_seqcount_end(&tsk->mems_allowed_seq);
1052
c0ff7453 1053 task_unlock(tsk);
58568d2a
MX
1054}
1055
1056/*
1057 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1058 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1059 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1060 */
1061static void cpuset_change_nodemask(struct task_struct *p,
1062 struct cgroup_scanner *scan)
1063{
6f4b7e63 1064 struct cpuset *cs = cgroup_cs(scan->cgrp);
3b6766fe 1065 struct mm_struct *mm;
3b6766fe 1066 int migrate;
33ad801d 1067 nodemask_t *newmems = scan->data;
58568d2a 1068
33ad801d 1069 cpuset_change_task_nodemask(p, newmems);
53feb297 1070
3b6766fe
LZ
1071 mm = get_task_mm(p);
1072 if (!mm)
1073 return;
1074
3b6766fe
LZ
1075 migrate = is_memory_migrate(cs);
1076
1077 mpol_rebind_mm(mm, &cs->mems_allowed);
1078 if (migrate)
33ad801d 1079 cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
3b6766fe
LZ
1080 mmput(mm);
1081}
1082
8793d854
PM
1083static void *cpuset_being_rebound;
1084
0b2f630a
MX
1085/**
1086 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1087 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
010cfac4 1088 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1089 *
5d21cc2d 1090 * Called with cpuset_mutex held
010cfac4
LZ
1091 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1092 * if @heap != NULL.
0b2f630a 1093 */
33ad801d 1094static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1095{
33ad801d 1096 static nodemask_t newmems; /* protected by cpuset_mutex */
3b6766fe 1097 struct cgroup_scanner scan;
070b57fc 1098 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
59dac16f 1099
846a16bf 1100 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1101
070b57fc 1102 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1103
6f4b7e63 1104 scan.cgrp = cs->css.cgroup;
3b6766fe
LZ
1105 scan.test_task = NULL;
1106 scan.process_task = cpuset_change_nodemask;
010cfac4 1107 scan.heap = heap;
33ad801d 1108 scan.data = &newmems;
4225399a
PJ
1109
1110 /*
3b6766fe
LZ
1111 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1112 * take while holding tasklist_lock. Forks can happen - the
1113 * mpol_dup() cpuset_being_rebound check will catch such forks,
1114 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1115 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1116 * will be contending for the global variable cpuset_being_rebound.
4225399a 1117 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1118 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1119 */
010cfac4 1120 cgroup_scan_tasks(&scan);
4225399a 1121
33ad801d
LZ
1122 /*
1123 * All the tasks' nodemasks have been updated, update
1124 * cs->old_mems_allowed.
1125 */
1126 cs->old_mems_allowed = newmems;
1127
2df167a3 1128 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1129 cpuset_being_rebound = NULL;
1da177e4
LT
1130}
1131
5c5cc623
LZ
1132/*
1133 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1134 * @cs: the root cpuset of the hierarchy
1135 * @update_root: update the root cpuset or not?
1136 * @heap: the heap used by cgroup_scan_tasks()
1137 *
1138 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1139 * which take on nodemask of @root_cs.
1140 *
1141 * Called with cpuset_mutex held
1142 */
1143static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1144 bool update_root, struct ptr_heap *heap)
1145{
1146 struct cpuset *cp;
1147 struct cgroup *pos_cgrp;
1148
1149 if (update_root)
1150 update_tasks_nodemask(root_cs, heap);
1151
1152 rcu_read_lock();
1153 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
1154 /* skip the whole subtree if @cp have some CPU */
1155 if (!nodes_empty(cp->mems_allowed)) {
1156 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
1157 continue;
1158 }
1159 if (!css_tryget(&cp->css))
1160 continue;
1161 rcu_read_unlock();
1162
1163 update_tasks_nodemask(cp, heap);
1164
1165 rcu_read_lock();
1166 css_put(&cp->css);
1167 }
1168 rcu_read_unlock();
1169}
1170
0b2f630a
MX
1171/*
1172 * Handle user request to change the 'mems' memory placement
1173 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1174 * cpusets mems_allowed, and for each task in the cpuset,
1175 * update mems_allowed and rebind task's mempolicy and any vma
1176 * mempolicies and if the cpuset is marked 'memory_migrate',
1177 * migrate the tasks pages to the new memory.
0b2f630a 1178 *
5d21cc2d 1179 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1180 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1181 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1182 * their mempolicies to the cpusets new mems_allowed.
1183 */
645fcc9d
LZ
1184static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1185 const char *buf)
0b2f630a 1186{
0b2f630a 1187 int retval;
010cfac4 1188 struct ptr_heap heap;
0b2f630a
MX
1189
1190 /*
38d7bee9 1191 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1192 * it's read-only
1193 */
53feb297
MX
1194 if (cs == &top_cpuset) {
1195 retval = -EACCES;
1196 goto done;
1197 }
0b2f630a 1198
0b2f630a
MX
1199 /*
1200 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1201 * Since nodelist_parse() fails on an empty mask, we special case
1202 * that parsing. The validate_change() call ensures that cpusets
1203 * with tasks have memory.
1204 */
1205 if (!*buf) {
645fcc9d 1206 nodes_clear(trialcs->mems_allowed);
0b2f630a 1207 } else {
645fcc9d 1208 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1209 if (retval < 0)
1210 goto done;
1211
645fcc9d 1212 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1213 node_states[N_MEMORY])) {
53feb297
MX
1214 retval = -EINVAL;
1215 goto done;
1216 }
0b2f630a 1217 }
33ad801d
LZ
1218
1219 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1220 retval = 0; /* Too easy - nothing to do */
1221 goto done;
1222 }
645fcc9d 1223 retval = validate_change(cs, trialcs);
0b2f630a
MX
1224 if (retval < 0)
1225 goto done;
1226
010cfac4
LZ
1227 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1228 if (retval < 0)
1229 goto done;
1230
0b2f630a 1231 mutex_lock(&callback_mutex);
645fcc9d 1232 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1233 mutex_unlock(&callback_mutex);
1234
5c5cc623 1235 update_tasks_nodemask_hier(cs, true, &heap);
010cfac4
LZ
1236
1237 heap_free(&heap);
0b2f630a
MX
1238done:
1239 return retval;
1240}
1241
8793d854
PM
1242int current_cpuset_is_being_rebound(void)
1243{
1244 return task_cs(current) == cpuset_being_rebound;
1245}
1246
5be7a479 1247static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1248{
db7f47cf 1249#ifdef CONFIG_SMP
60495e77 1250 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1251 return -EINVAL;
db7f47cf 1252#endif
1d3504fc
HS
1253
1254 if (val != cs->relax_domain_level) {
1255 cs->relax_domain_level = val;
300ed6cb
LZ
1256 if (!cpumask_empty(cs->cpus_allowed) &&
1257 is_sched_load_balance(cs))
699140ba 1258 rebuild_sched_domains_locked();
1d3504fc
HS
1259 }
1260
1261 return 0;
1262}
1263
950592f7
MX
1264/*
1265 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1266 * @tsk: task to be updated
1267 * @scan: struct cgroup_scanner containing the cgroup of the task
1268 *
1269 * Called by cgroup_scan_tasks() for each task in a cgroup.
1270 *
1271 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1272 * holding cpuset_mutex at this point.
950592f7
MX
1273 */
1274static void cpuset_change_flag(struct task_struct *tsk,
1275 struct cgroup_scanner *scan)
1276{
6f4b7e63 1277 cpuset_update_task_spread_flag(cgroup_cs(scan->cgrp), tsk);
950592f7
MX
1278}
1279
1280/*
1281 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1282 * @cs: the cpuset in which each task's spread flags needs to be changed
1283 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1284 *
5d21cc2d 1285 * Called with cpuset_mutex held
950592f7
MX
1286 *
1287 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1288 * calling callback functions for each.
1289 *
1290 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1291 * if @heap != NULL.
1292 */
1293static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1294{
1295 struct cgroup_scanner scan;
1296
6f4b7e63 1297 scan.cgrp = cs->css.cgroup;
950592f7
MX
1298 scan.test_task = NULL;
1299 scan.process_task = cpuset_change_flag;
1300 scan.heap = heap;
1301 cgroup_scan_tasks(&scan);
1302}
1303
1da177e4
LT
1304/*
1305 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1306 * bit: the bit to update (see cpuset_flagbits_t)
1307 * cs: the cpuset to update
1308 * turning_on: whether the flag is being set or cleared
053199ed 1309 *
5d21cc2d 1310 * Call with cpuset_mutex held.
1da177e4
LT
1311 */
1312
700fe1ab
PM
1313static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1314 int turning_on)
1da177e4 1315{
645fcc9d 1316 struct cpuset *trialcs;
40b6a762 1317 int balance_flag_changed;
950592f7
MX
1318 int spread_flag_changed;
1319 struct ptr_heap heap;
1320 int err;
1da177e4 1321
645fcc9d
LZ
1322 trialcs = alloc_trial_cpuset(cs);
1323 if (!trialcs)
1324 return -ENOMEM;
1325
1da177e4 1326 if (turning_on)
645fcc9d 1327 set_bit(bit, &trialcs->flags);
1da177e4 1328 else
645fcc9d 1329 clear_bit(bit, &trialcs->flags);
1da177e4 1330
645fcc9d 1331 err = validate_change(cs, trialcs);
85d7b949 1332 if (err < 0)
645fcc9d 1333 goto out;
029190c5 1334
950592f7
MX
1335 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1336 if (err < 0)
1337 goto out;
1338
029190c5 1339 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1340 is_sched_load_balance(trialcs));
029190c5 1341
950592f7
MX
1342 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1343 || (is_spread_page(cs) != is_spread_page(trialcs)));
1344
3d3f26a7 1345 mutex_lock(&callback_mutex);
645fcc9d 1346 cs->flags = trialcs->flags;
3d3f26a7 1347 mutex_unlock(&callback_mutex);
85d7b949 1348
300ed6cb 1349 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1350 rebuild_sched_domains_locked();
029190c5 1351
950592f7
MX
1352 if (spread_flag_changed)
1353 update_tasks_flags(cs, &heap);
1354 heap_free(&heap);
645fcc9d
LZ
1355out:
1356 free_trial_cpuset(trialcs);
1357 return err;
1da177e4
LT
1358}
1359
3e0d98b9 1360/*
80f7228b 1361 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1362 *
1363 * These routines manage a digitally filtered, constant time based,
1364 * event frequency meter. There are four routines:
1365 * fmeter_init() - initialize a frequency meter.
1366 * fmeter_markevent() - called each time the event happens.
1367 * fmeter_getrate() - returns the recent rate of such events.
1368 * fmeter_update() - internal routine used to update fmeter.
1369 *
1370 * A common data structure is passed to each of these routines,
1371 * which is used to keep track of the state required to manage the
1372 * frequency meter and its digital filter.
1373 *
1374 * The filter works on the number of events marked per unit time.
1375 * The filter is single-pole low-pass recursive (IIR). The time unit
1376 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1377 * simulate 3 decimal digits of precision (multiplied by 1000).
1378 *
1379 * With an FM_COEF of 933, and a time base of 1 second, the filter
1380 * has a half-life of 10 seconds, meaning that if the events quit
1381 * happening, then the rate returned from the fmeter_getrate()
1382 * will be cut in half each 10 seconds, until it converges to zero.
1383 *
1384 * It is not worth doing a real infinitely recursive filter. If more
1385 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1386 * just compute FM_MAXTICKS ticks worth, by which point the level
1387 * will be stable.
1388 *
1389 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1390 * arithmetic overflow in the fmeter_update() routine.
1391 *
1392 * Given the simple 32 bit integer arithmetic used, this meter works
1393 * best for reporting rates between one per millisecond (msec) and
1394 * one per 32 (approx) seconds. At constant rates faster than one
1395 * per msec it maxes out at values just under 1,000,000. At constant
1396 * rates between one per msec, and one per second it will stabilize
1397 * to a value N*1000, where N is the rate of events per second.
1398 * At constant rates between one per second and one per 32 seconds,
1399 * it will be choppy, moving up on the seconds that have an event,
1400 * and then decaying until the next event. At rates slower than
1401 * about one in 32 seconds, it decays all the way back to zero between
1402 * each event.
1403 */
1404
1405#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1406#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1407#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1408#define FM_SCALE 1000 /* faux fixed point scale */
1409
1410/* Initialize a frequency meter */
1411static void fmeter_init(struct fmeter *fmp)
1412{
1413 fmp->cnt = 0;
1414 fmp->val = 0;
1415 fmp->time = 0;
1416 spin_lock_init(&fmp->lock);
1417}
1418
1419/* Internal meter update - process cnt events and update value */
1420static void fmeter_update(struct fmeter *fmp)
1421{
1422 time_t now = get_seconds();
1423 time_t ticks = now - fmp->time;
1424
1425 if (ticks == 0)
1426 return;
1427
1428 ticks = min(FM_MAXTICKS, ticks);
1429 while (ticks-- > 0)
1430 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1431 fmp->time = now;
1432
1433 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1434 fmp->cnt = 0;
1435}
1436
1437/* Process any previous ticks, then bump cnt by one (times scale). */
1438static void fmeter_markevent(struct fmeter *fmp)
1439{
1440 spin_lock(&fmp->lock);
1441 fmeter_update(fmp);
1442 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1443 spin_unlock(&fmp->lock);
1444}
1445
1446/* Process any previous ticks, then return current value. */
1447static int fmeter_getrate(struct fmeter *fmp)
1448{
1449 int val;
1450
1451 spin_lock(&fmp->lock);
1452 fmeter_update(fmp);
1453 val = fmp->val;
1454 spin_unlock(&fmp->lock);
1455 return val;
1456}
1457
5d21cc2d 1458/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1459static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1460{
2f7ee569 1461 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1462 struct task_struct *task;
1463 int ret;
1da177e4 1464
5d21cc2d
TH
1465 mutex_lock(&cpuset_mutex);
1466
88fa523b
LZ
1467 /*
1468 * We allow to move tasks into an empty cpuset if sane_behavior
1469 * flag is set.
1470 */
5d21cc2d 1471 ret = -ENOSPC;
88fa523b
LZ
1472 if (!cgroup_sane_behavior(cgrp) &&
1473 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1474 goto out_unlock;
9985b0ba 1475
bb9d97b6
TH
1476 cgroup_taskset_for_each(task, cgrp, tset) {
1477 /*
14a40ffc
TH
1478 * Kthreads which disallow setaffinity shouldn't be moved
1479 * to a new cpuset; we don't want to change their cpu
1480 * affinity and isolating such threads by their set of
1481 * allowed nodes is unnecessary. Thus, cpusets are not
1482 * applicable for such threads. This prevents checking for
1483 * success of set_cpus_allowed_ptr() on all attached tasks
1484 * before cpus_allowed may be changed.
bb9d97b6 1485 */
5d21cc2d 1486 ret = -EINVAL;
14a40ffc 1487 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1488 goto out_unlock;
1489 ret = security_task_setscheduler(task);
1490 if (ret)
1491 goto out_unlock;
bb9d97b6 1492 }
f780bdb7 1493
452477fa
TH
1494 /*
1495 * Mark attach is in progress. This makes validate_change() fail
1496 * changes which zero cpus/mems_allowed.
1497 */
1498 cs->attach_in_progress++;
5d21cc2d
TH
1499 ret = 0;
1500out_unlock:
1501 mutex_unlock(&cpuset_mutex);
1502 return ret;
8793d854 1503}
f780bdb7 1504
452477fa
TH
1505static void cpuset_cancel_attach(struct cgroup *cgrp,
1506 struct cgroup_taskset *tset)
1507{
5d21cc2d 1508 mutex_lock(&cpuset_mutex);
452477fa 1509 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1510 mutex_unlock(&cpuset_mutex);
8793d854 1511}
1da177e4 1512
4e4c9a14 1513/*
5d21cc2d 1514 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1515 * but we can't allocate it dynamically there. Define it global and
1516 * allocate from cpuset_init().
1517 */
1518static cpumask_var_t cpus_attach;
1519
761b3ef5 1520static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1521{
67bd2c59 1522 /* static buf protected by cpuset_mutex */
4e4c9a14 1523 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1524 struct mm_struct *mm;
bb9d97b6
TH
1525 struct task_struct *task;
1526 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1527 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1528 struct cpuset *cs = cgroup_cs(cgrp);
1529 struct cpuset *oldcs = cgroup_cs(oldcgrp);
070b57fc
LZ
1530 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1531 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1532
5d21cc2d
TH
1533 mutex_lock(&cpuset_mutex);
1534
4e4c9a14
TH
1535 /* prepare for attach */
1536 if (cs == &top_cpuset)
1537 cpumask_copy(cpus_attach, cpu_possible_mask);
1538 else
070b57fc 1539 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1540
070b57fc 1541 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1542
bb9d97b6
TH
1543 cgroup_taskset_for_each(task, cgrp, tset) {
1544 /*
1545 * can_attach beforehand should guarantee that this doesn't
1546 * fail. TODO: have a better way to handle failure here
1547 */
1548 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1549
1550 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1551 cpuset_update_task_spread_flag(cs, task);
1552 }
22fb52dd 1553
f780bdb7
BB
1554 /*
1555 * Change mm, possibly for multiple threads in a threadgroup. This is
1556 * expensive and may sleep.
1557 */
f780bdb7 1558 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1559 mm = get_task_mm(leader);
4225399a 1560 if (mm) {
070b57fc
LZ
1561 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1562
f780bdb7 1563 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1564
1565 /*
1566 * old_mems_allowed is the same with mems_allowed here, except
1567 * if this task is being moved automatically due to hotplug.
1568 * In that case @mems_allowed has been updated and is empty,
1569 * so @old_mems_allowed is the right nodesets that we migrate
1570 * mm from.
1571 */
1572 if (is_memory_migrate(cs)) {
1573 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1574 &cpuset_attach_nodemask_to);
f047cecf 1575 }
4225399a
PJ
1576 mmput(mm);
1577 }
452477fa 1578
33ad801d 1579 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1580
452477fa 1581 cs->attach_in_progress--;
e44193d3
LZ
1582 if (!cs->attach_in_progress)
1583 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1584
1585 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1586}
1587
1588/* The various types of files and directories in a cpuset file system */
1589
1590typedef enum {
45b07ef3 1591 FILE_MEMORY_MIGRATE,
1da177e4
LT
1592 FILE_CPULIST,
1593 FILE_MEMLIST,
1594 FILE_CPU_EXCLUSIVE,
1595 FILE_MEM_EXCLUSIVE,
78608366 1596 FILE_MEM_HARDWALL,
029190c5 1597 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1598 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1599 FILE_MEMORY_PRESSURE_ENABLED,
1600 FILE_MEMORY_PRESSURE,
825a46af
PJ
1601 FILE_SPREAD_PAGE,
1602 FILE_SPREAD_SLAB,
1da177e4
LT
1603} cpuset_filetype_t;
1604
700fe1ab
PM
1605static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1606{
700fe1ab
PM
1607 struct cpuset *cs = cgroup_cs(cgrp);
1608 cpuset_filetype_t type = cft->private;
5d21cc2d 1609 int retval = -ENODEV;
700fe1ab 1610
5d21cc2d
TH
1611 mutex_lock(&cpuset_mutex);
1612 if (!is_cpuset_online(cs))
1613 goto out_unlock;
700fe1ab
PM
1614
1615 switch (type) {
1da177e4 1616 case FILE_CPU_EXCLUSIVE:
700fe1ab 1617 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1618 break;
1619 case FILE_MEM_EXCLUSIVE:
700fe1ab 1620 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1621 break;
78608366
PM
1622 case FILE_MEM_HARDWALL:
1623 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1624 break;
029190c5 1625 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1626 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1627 break;
45b07ef3 1628 case FILE_MEMORY_MIGRATE:
700fe1ab 1629 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1630 break;
3e0d98b9 1631 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1632 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1633 break;
1634 case FILE_MEMORY_PRESSURE:
1635 retval = -EACCES;
1636 break;
825a46af 1637 case FILE_SPREAD_PAGE:
700fe1ab 1638 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1639 break;
1640 case FILE_SPREAD_SLAB:
700fe1ab 1641 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1642 break;
1da177e4
LT
1643 default:
1644 retval = -EINVAL;
700fe1ab 1645 break;
1da177e4 1646 }
5d21cc2d
TH
1647out_unlock:
1648 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1649 return retval;
1650}
1651
5be7a479
PM
1652static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1653{
5be7a479
PM
1654 struct cpuset *cs = cgroup_cs(cgrp);
1655 cpuset_filetype_t type = cft->private;
5d21cc2d 1656 int retval = -ENODEV;
5be7a479 1657
5d21cc2d
TH
1658 mutex_lock(&cpuset_mutex);
1659 if (!is_cpuset_online(cs))
1660 goto out_unlock;
e3712395 1661
5be7a479
PM
1662 switch (type) {
1663 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1664 retval = update_relax_domain_level(cs, val);
1665 break;
1666 default:
1667 retval = -EINVAL;
1668 break;
1669 }
5d21cc2d
TH
1670out_unlock:
1671 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1672 return retval;
1673}
1674
e3712395
PM
1675/*
1676 * Common handling for a write to a "cpus" or "mems" file.
1677 */
1678static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1679 const char *buf)
1680{
645fcc9d
LZ
1681 struct cpuset *cs = cgroup_cs(cgrp);
1682 struct cpuset *trialcs;
5d21cc2d 1683 int retval = -ENODEV;
e3712395 1684
3a5a6d0c
TH
1685 /*
1686 * CPU or memory hotunplug may leave @cs w/o any execution
1687 * resources, in which case the hotplug code asynchronously updates
1688 * configuration and transfers all tasks to the nearest ancestor
1689 * which can execute.
1690 *
1691 * As writes to "cpus" or "mems" may restore @cs's execution
1692 * resources, wait for the previously scheduled operations before
1693 * proceeding, so that we don't end up keep removing tasks added
1694 * after execution capability is restored.
1695 */
1696 flush_work(&cpuset_hotplug_work);
1697
5d21cc2d
TH
1698 mutex_lock(&cpuset_mutex);
1699 if (!is_cpuset_online(cs))
1700 goto out_unlock;
e3712395 1701
645fcc9d 1702 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1703 if (!trialcs) {
1704 retval = -ENOMEM;
5d21cc2d 1705 goto out_unlock;
b75f38d6 1706 }
645fcc9d 1707
e3712395
PM
1708 switch (cft->private) {
1709 case FILE_CPULIST:
645fcc9d 1710 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1711 break;
1712 case FILE_MEMLIST:
645fcc9d 1713 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1714 break;
1715 default:
1716 retval = -EINVAL;
1717 break;
1718 }
645fcc9d
LZ
1719
1720 free_trial_cpuset(trialcs);
5d21cc2d
TH
1721out_unlock:
1722 mutex_unlock(&cpuset_mutex);
e3712395
PM
1723 return retval;
1724}
1725
1da177e4
LT
1726/*
1727 * These ascii lists should be read in a single call, by using a user
1728 * buffer large enough to hold the entire map. If read in smaller
1729 * chunks, there is no guarantee of atomicity. Since the display format
1730 * used, list of ranges of sequential numbers, is variable length,
1731 * and since these maps can change value dynamically, one could read
1732 * gibberish by doing partial reads while a list was changing.
1733 * A single large read to a buffer that crosses a page boundary is
1734 * ok, because the result being copied to user land is not recomputed
1735 * across a page fault.
1736 */
1737
9303e0c4 1738static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1739{
9303e0c4 1740 size_t count;
1da177e4 1741
3d3f26a7 1742 mutex_lock(&callback_mutex);
9303e0c4 1743 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1744 mutex_unlock(&callback_mutex);
1da177e4 1745
9303e0c4 1746 return count;
1da177e4
LT
1747}
1748
9303e0c4 1749static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1750{
9303e0c4 1751 size_t count;
1da177e4 1752
3d3f26a7 1753 mutex_lock(&callback_mutex);
9303e0c4 1754 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1755 mutex_unlock(&callback_mutex);
1da177e4 1756
9303e0c4 1757 return count;
1da177e4
LT
1758}
1759
c9e5fe66 1760static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
8793d854
PM
1761 struct cftype *cft,
1762 struct file *file,
1763 char __user *buf,
1764 size_t nbytes, loff_t *ppos)
1da177e4 1765{
c9e5fe66 1766 struct cpuset *cs = cgroup_cs(cgrp);
1da177e4
LT
1767 cpuset_filetype_t type = cft->private;
1768 char *page;
1769 ssize_t retval = 0;
1770 char *s;
1da177e4 1771
e12ba74d 1772 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1773 return -ENOMEM;
1774
1775 s = page;
1776
1777 switch (type) {
1778 case FILE_CPULIST:
1779 s += cpuset_sprintf_cpulist(s, cs);
1780 break;
1781 case FILE_MEMLIST:
1782 s += cpuset_sprintf_memlist(s, cs);
1783 break;
1da177e4
LT
1784 default:
1785 retval = -EINVAL;
1786 goto out;
1787 }
1788 *s++ = '\n';
1da177e4 1789
eacaa1f5 1790 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1791out:
1792 free_page((unsigned long)page);
1793 return retval;
1794}
1795
c9e5fe66 1796static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
700fe1ab 1797{
c9e5fe66 1798 struct cpuset *cs = cgroup_cs(cgrp);
700fe1ab
PM
1799 cpuset_filetype_t type = cft->private;
1800 switch (type) {
1801 case FILE_CPU_EXCLUSIVE:
1802 return is_cpu_exclusive(cs);
1803 case FILE_MEM_EXCLUSIVE:
1804 return is_mem_exclusive(cs);
78608366
PM
1805 case FILE_MEM_HARDWALL:
1806 return is_mem_hardwall(cs);
700fe1ab
PM
1807 case FILE_SCHED_LOAD_BALANCE:
1808 return is_sched_load_balance(cs);
1809 case FILE_MEMORY_MIGRATE:
1810 return is_memory_migrate(cs);
1811 case FILE_MEMORY_PRESSURE_ENABLED:
1812 return cpuset_memory_pressure_enabled;
1813 case FILE_MEMORY_PRESSURE:
1814 return fmeter_getrate(&cs->fmeter);
1815 case FILE_SPREAD_PAGE:
1816 return is_spread_page(cs);
1817 case FILE_SPREAD_SLAB:
1818 return is_spread_slab(cs);
1819 default:
1820 BUG();
1821 }
cf417141
MK
1822
1823 /* Unreachable but makes gcc happy */
1824 return 0;
700fe1ab 1825}
1da177e4 1826
c9e5fe66 1827static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
5be7a479 1828{
c9e5fe66 1829 struct cpuset *cs = cgroup_cs(cgrp);
5be7a479
PM
1830 cpuset_filetype_t type = cft->private;
1831 switch (type) {
1832 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1833 return cs->relax_domain_level;
1834 default:
1835 BUG();
1836 }
cf417141
MK
1837
1838 /* Unrechable but makes gcc happy */
1839 return 0;
5be7a479
PM
1840}
1841
1da177e4
LT
1842
1843/*
1844 * for the common functions, 'private' gives the type of file
1845 */
1846
addf2c73
PM
1847static struct cftype files[] = {
1848 {
1849 .name = "cpus",
1850 .read = cpuset_common_file_read,
e3712395
PM
1851 .write_string = cpuset_write_resmask,
1852 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1853 .private = FILE_CPULIST,
1854 },
1855
1856 {
1857 .name = "mems",
1858 .read = cpuset_common_file_read,
e3712395
PM
1859 .write_string = cpuset_write_resmask,
1860 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1861 .private = FILE_MEMLIST,
1862 },
1863
1864 {
1865 .name = "cpu_exclusive",
1866 .read_u64 = cpuset_read_u64,
1867 .write_u64 = cpuset_write_u64,
1868 .private = FILE_CPU_EXCLUSIVE,
1869 },
1870
1871 {
1872 .name = "mem_exclusive",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_MEM_EXCLUSIVE,
1876 },
1877
78608366
PM
1878 {
1879 .name = "mem_hardwall",
1880 .read_u64 = cpuset_read_u64,
1881 .write_u64 = cpuset_write_u64,
1882 .private = FILE_MEM_HARDWALL,
1883 },
1884
addf2c73
PM
1885 {
1886 .name = "sched_load_balance",
1887 .read_u64 = cpuset_read_u64,
1888 .write_u64 = cpuset_write_u64,
1889 .private = FILE_SCHED_LOAD_BALANCE,
1890 },
1891
1892 {
1893 .name = "sched_relax_domain_level",
5be7a479
PM
1894 .read_s64 = cpuset_read_s64,
1895 .write_s64 = cpuset_write_s64,
addf2c73
PM
1896 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1897 },
1898
1899 {
1900 .name = "memory_migrate",
1901 .read_u64 = cpuset_read_u64,
1902 .write_u64 = cpuset_write_u64,
1903 .private = FILE_MEMORY_MIGRATE,
1904 },
1905
1906 {
1907 .name = "memory_pressure",
1908 .read_u64 = cpuset_read_u64,
1909 .write_u64 = cpuset_write_u64,
1910 .private = FILE_MEMORY_PRESSURE,
099fca32 1911 .mode = S_IRUGO,
addf2c73
PM
1912 },
1913
1914 {
1915 .name = "memory_spread_page",
1916 .read_u64 = cpuset_read_u64,
1917 .write_u64 = cpuset_write_u64,
1918 .private = FILE_SPREAD_PAGE,
1919 },
1920
1921 {
1922 .name = "memory_spread_slab",
1923 .read_u64 = cpuset_read_u64,
1924 .write_u64 = cpuset_write_u64,
1925 .private = FILE_SPREAD_SLAB,
1926 },
3e0d98b9 1927
4baf6e33
TH
1928 {
1929 .name = "memory_pressure_enabled",
1930 .flags = CFTYPE_ONLY_ON_ROOT,
1931 .read_u64 = cpuset_read_u64,
1932 .write_u64 = cpuset_write_u64,
1933 .private = FILE_MEMORY_PRESSURE_ENABLED,
1934 },
1da177e4 1935
4baf6e33
TH
1936 { } /* terminate */
1937};
1da177e4
LT
1938
1939/*
92fb9748 1940 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1941 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1942 */
1943
c9e5fe66 1944static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
1da177e4 1945{
c8f699bb 1946 struct cpuset *cs;
1da177e4 1947
c9e5fe66 1948 if (!cgrp->parent)
8793d854 1949 return &top_cpuset.css;
033fa1c5 1950
c8f699bb 1951 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1952 if (!cs)
8793d854 1953 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1954 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1955 kfree(cs);
1956 return ERR_PTR(-ENOMEM);
1957 }
1da177e4 1958
029190c5 1959 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1960 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1961 nodes_clear(cs->mems_allowed);
3e0d98b9 1962 fmeter_init(&cs->fmeter);
1d3504fc 1963 cs->relax_domain_level = -1;
1da177e4 1964
c8f699bb
TH
1965 return &cs->css;
1966}
1967
1968static int cpuset_css_online(struct cgroup *cgrp)
1969{
1970 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1971 struct cpuset *parent = parent_cs(cs);
ae8086ce 1972 struct cpuset *tmp_cs;
6f4b7e63 1973 struct cgroup *pos_cgrp;
c8f699bb
TH
1974
1975 if (!parent)
1976 return 0;
1977
5d21cc2d
TH
1978 mutex_lock(&cpuset_mutex);
1979
efeb77b2 1980 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1981 if (is_spread_page(parent))
1982 set_bit(CS_SPREAD_PAGE, &cs->flags);
1983 if (is_spread_slab(parent))
1984 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1985
202f72d5 1986 number_of_cpusets++;
033fa1c5 1987
c8f699bb 1988 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1989 goto out_unlock;
033fa1c5
TH
1990
1991 /*
1992 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1993 * set. This flag handling is implemented in cgroup core for
1994 * histrical reasons - the flag may be specified during mount.
1995 *
1996 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1997 * refuse to clone the configuration - thereby refusing the task to
1998 * be entered, and as a result refusing the sys_unshare() or
1999 * clone() which initiated it. If this becomes a problem for some
2000 * users who wish to allow that scenario, then this could be
2001 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2002 * (and likewise for mems) to the new cgroup.
2003 */
ae8086ce 2004 rcu_read_lock();
6f4b7e63 2005 cpuset_for_each_child(tmp_cs, pos_cgrp, parent) {
ae8086ce
TH
2006 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2007 rcu_read_unlock();
5d21cc2d 2008 goto out_unlock;
ae8086ce 2009 }
033fa1c5 2010 }
ae8086ce 2011 rcu_read_unlock();
033fa1c5
TH
2012
2013 mutex_lock(&callback_mutex);
2014 cs->mems_allowed = parent->mems_allowed;
2015 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2016 mutex_unlock(&callback_mutex);
5d21cc2d
TH
2017out_unlock:
2018 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2019 return 0;
2020}
2021
0b9e6965
ZH
2022/*
2023 * If the cpuset being removed has its flag 'sched_load_balance'
2024 * enabled, then simulate turning sched_load_balance off, which
2025 * will call rebuild_sched_domains_locked().
2026 */
2027
c8f699bb
TH
2028static void cpuset_css_offline(struct cgroup *cgrp)
2029{
2030 struct cpuset *cs = cgroup_cs(cgrp);
2031
5d21cc2d 2032 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2033
2034 if (is_sched_load_balance(cs))
2035 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2036
2037 number_of_cpusets--;
efeb77b2 2038 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2039
5d21cc2d 2040 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2041}
2042
c9e5fe66 2043static void cpuset_css_free(struct cgroup *cgrp)
1da177e4 2044{
c9e5fe66 2045 struct cpuset *cs = cgroup_cs(cgrp);
1da177e4 2046
300ed6cb 2047 free_cpumask_var(cs->cpus_allowed);
8793d854 2048 kfree(cs);
1da177e4
LT
2049}
2050
8793d854
PM
2051struct cgroup_subsys cpuset_subsys = {
2052 .name = "cpuset",
92fb9748 2053 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2054 .css_online = cpuset_css_online,
2055 .css_offline = cpuset_css_offline,
92fb9748 2056 .css_free = cpuset_css_free,
8793d854 2057 .can_attach = cpuset_can_attach,
452477fa 2058 .cancel_attach = cpuset_cancel_attach,
8793d854 2059 .attach = cpuset_attach,
8793d854 2060 .subsys_id = cpuset_subsys_id,
4baf6e33 2061 .base_cftypes = files,
8793d854
PM
2062 .early_init = 1,
2063};
2064
1da177e4
LT
2065/**
2066 * cpuset_init - initialize cpusets at system boot
2067 *
2068 * Description: Initialize top_cpuset and the cpuset internal file system,
2069 **/
2070
2071int __init cpuset_init(void)
2072{
8793d854 2073 int err = 0;
1da177e4 2074
58568d2a
MX
2075 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2076 BUG();
2077
300ed6cb 2078 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2079 nodes_setall(top_cpuset.mems_allowed);
1da177e4 2080
3e0d98b9 2081 fmeter_init(&top_cpuset.fmeter);
029190c5 2082 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2083 top_cpuset.relax_domain_level = -1;
1da177e4 2084
1da177e4
LT
2085 err = register_filesystem(&cpuset_fs_type);
2086 if (err < 0)
8793d854
PM
2087 return err;
2088
2341d1b6
LZ
2089 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2090 BUG();
2091
202f72d5 2092 number_of_cpusets = 1;
8793d854 2093 return 0;
1da177e4
LT
2094}
2095
b1aac8bb 2096/*
cf417141 2097 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2098 * or memory nodes, we need to walk over the cpuset hierarchy,
2099 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2100 * last CPU or node from a cpuset, then move the tasks in the empty
2101 * cpuset to its next-highest non-empty parent.
b1aac8bb 2102 */
956db3ca
CW
2103static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2104{
2105 struct cpuset *parent;
2106
956db3ca
CW
2107 /*
2108 * Find its next-highest non-empty parent, (top cpuset
2109 * has online cpus, so can't be empty).
2110 */
c431069f 2111 parent = parent_cs(cs);
300ed6cb 2112 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2113 nodes_empty(parent->mems_allowed))
c431069f 2114 parent = parent_cs(parent);
956db3ca 2115
8cc99345
TH
2116 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2117 rcu_read_lock();
2118 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2119 cgroup_name(cs->css.cgroup));
2120 rcu_read_unlock();
2121 }
956db3ca
CW
2122}
2123
deb7aa30 2124/**
388afd85 2125 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2126 * @cs: cpuset in interest
956db3ca 2127 *
deb7aa30
TH
2128 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2129 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2130 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2131 */
388afd85 2132static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2133{
deb7aa30 2134 static cpumask_t off_cpus;
33ad801d 2135 static nodemask_t off_mems;
5d21cc2d 2136 bool is_empty;
5c5cc623 2137 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2138
e44193d3
LZ
2139retry:
2140 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2141
5d21cc2d 2142 mutex_lock(&cpuset_mutex);
7ddf96b0 2143
e44193d3
LZ
2144 /*
2145 * We have raced with task attaching. We wait until attaching
2146 * is finished, so we won't attach a task to an empty cpuset.
2147 */
2148 if (cs->attach_in_progress) {
2149 mutex_unlock(&cpuset_mutex);
2150 goto retry;
2151 }
2152
deb7aa30
TH
2153 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2154 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2155
5c5cc623
LZ
2156 mutex_lock(&callback_mutex);
2157 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2158 mutex_unlock(&callback_mutex);
2159
2160 /*
2161 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2162 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2163 * call update_tasks_cpumask() if the cpuset becomes empty, as
2164 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2165 */
2166 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2167 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
deb7aa30 2168 update_tasks_cpumask(cs, NULL);
80d1fa64 2169
5c5cc623
LZ
2170 mutex_lock(&callback_mutex);
2171 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2172 mutex_unlock(&callback_mutex);
2173
2174 /*
2175 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2176 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2177 * call update_tasks_nodemask() if the cpuset becomes empty, as
2178 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2179 */
2180 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2181 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
33ad801d 2182 update_tasks_nodemask(cs, NULL);
deb7aa30 2183
5d21cc2d
TH
2184 is_empty = cpumask_empty(cs->cpus_allowed) ||
2185 nodes_empty(cs->mems_allowed);
8d033948 2186
5d21cc2d
TH
2187 mutex_unlock(&cpuset_mutex);
2188
2189 /*
5c5cc623
LZ
2190 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2191 *
2192 * Otherwise move tasks to the nearest ancestor with execution
2193 * resources. This is full cgroup operation which will
5d21cc2d
TH
2194 * also call back into cpuset. Should be done outside any lock.
2195 */
5c5cc623 2196 if (!sane && is_empty)
5d21cc2d 2197 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2198}
2199
deb7aa30 2200/**
3a5a6d0c 2201 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2202 *
deb7aa30
TH
2203 * This function is called after either CPU or memory configuration has
2204 * changed and updates cpuset accordingly. The top_cpuset is always
2205 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2206 * order to make cpusets transparent (of no affect) on systems that are
2207 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2208 *
deb7aa30 2209 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2210 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2211 * all descendants.
956db3ca 2212 *
deb7aa30
TH
2213 * Note that CPU offlining during suspend is ignored. We don't modify
2214 * cpusets across suspend/resume cycles at all.
956db3ca 2215 */
3a5a6d0c 2216static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2217{
5c5cc623
LZ
2218 static cpumask_t new_cpus;
2219 static nodemask_t new_mems;
deb7aa30 2220 bool cpus_updated, mems_updated;
b1aac8bb 2221
5d21cc2d 2222 mutex_lock(&cpuset_mutex);
956db3ca 2223
deb7aa30
TH
2224 /* fetch the available cpus/mems and find out which changed how */
2225 cpumask_copy(&new_cpus, cpu_active_mask);
2226 new_mems = node_states[N_MEMORY];
7ddf96b0 2227
deb7aa30 2228 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2229 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2230
deb7aa30
TH
2231 /* synchronize cpus_allowed to cpu_active_mask */
2232 if (cpus_updated) {
2233 mutex_lock(&callback_mutex);
2234 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2235 mutex_unlock(&callback_mutex);
2236 /* we don't mess with cpumasks of tasks in top_cpuset */
2237 }
b4501295 2238
deb7aa30
TH
2239 /* synchronize mems_allowed to N_MEMORY */
2240 if (mems_updated) {
deb7aa30
TH
2241 mutex_lock(&callback_mutex);
2242 top_cpuset.mems_allowed = new_mems;
2243 mutex_unlock(&callback_mutex);
33ad801d 2244 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2245 }
b4501295 2246
388afd85
LZ
2247 mutex_unlock(&cpuset_mutex);
2248
5c5cc623
LZ
2249 /* if cpus or mems changed, we need to propagate to descendants */
2250 if (cpus_updated || mems_updated) {
deb7aa30 2251 struct cpuset *cs;
fc560a26 2252 struct cgroup *pos_cgrp;
f9b4fb8d 2253
fc560a26 2254 rcu_read_lock();
388afd85
LZ
2255 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2256 if (!css_tryget(&cs->css))
2257 continue;
2258 rcu_read_unlock();
7ddf96b0 2259
388afd85 2260 cpuset_hotplug_update_tasks(cs);
b4501295 2261
388afd85
LZ
2262 rcu_read_lock();
2263 css_put(&cs->css);
2264 }
2265 rcu_read_unlock();
2266 }
8d033948 2267
deb7aa30 2268 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2269 if (cpus_updated)
2270 rebuild_sched_domains();
b1aac8bb
PJ
2271}
2272
7ddf96b0 2273void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2274{
3a5a6d0c
TH
2275 /*
2276 * We're inside cpu hotplug critical region which usually nests
2277 * inside cgroup synchronization. Bounce actual hotplug processing
2278 * to a work item to avoid reverse locking order.
2279 *
2280 * We still need to do partition_sched_domains() synchronously;
2281 * otherwise, the scheduler will get confused and put tasks to the
2282 * dead CPU. Fall back to the default single domain.
2283 * cpuset_hotplug_workfn() will rebuild it as necessary.
2284 */
2285 partition_sched_domains(1, NULL, NULL);
2286 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2287}
4c4d50f7 2288
38837fc7 2289/*
38d7bee9
LJ
2290 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2291 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2292 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2293 */
f481891f
MX
2294static int cpuset_track_online_nodes(struct notifier_block *self,
2295 unsigned long action, void *arg)
38837fc7 2296{
3a5a6d0c 2297 schedule_work(&cpuset_hotplug_work);
f481891f 2298 return NOTIFY_OK;
38837fc7 2299}
d8f10cb3
AM
2300
2301static struct notifier_block cpuset_track_online_nodes_nb = {
2302 .notifier_call = cpuset_track_online_nodes,
2303 .priority = 10, /* ??! */
2304};
38837fc7 2305
1da177e4
LT
2306/**
2307 * cpuset_init_smp - initialize cpus_allowed
2308 *
2309 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2310 */
1da177e4
LT
2311void __init cpuset_init_smp(void)
2312{
6ad4c188 2313 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2314 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2315 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2316
d8f10cb3 2317 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2318}
2319
2320/**
1da177e4
LT
2321 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2322 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2323 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2324 *
300ed6cb 2325 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2326 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2327 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2328 * tasks cpuset.
2329 **/
2330
6af866af 2331void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2332{
070b57fc
LZ
2333 struct cpuset *cpus_cs;
2334
3d3f26a7 2335 mutex_lock(&callback_mutex);
909d75a3 2336 task_lock(tsk);
070b57fc
LZ
2337 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2338 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2339 task_unlock(tsk);
897f0b3c 2340 mutex_unlock(&callback_mutex);
1da177e4
LT
2341}
2342
2baab4e9 2343void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2344{
c9710d80 2345 struct cpuset *cpus_cs;
9084bb82
ON
2346
2347 rcu_read_lock();
070b57fc
LZ
2348 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2349 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2350 rcu_read_unlock();
2351
2352 /*
2353 * We own tsk->cpus_allowed, nobody can change it under us.
2354 *
2355 * But we used cs && cs->cpus_allowed lockless and thus can
2356 * race with cgroup_attach_task() or update_cpumask() and get
2357 * the wrong tsk->cpus_allowed. However, both cases imply the
2358 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2359 * which takes task_rq_lock().
2360 *
2361 * If we are called after it dropped the lock we must see all
2362 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2363 * set any mask even if it is not right from task_cs() pov,
2364 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2365 *
2366 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2367 * if required.
9084bb82 2368 */
9084bb82
ON
2369}
2370
1da177e4
LT
2371void cpuset_init_current_mems_allowed(void)
2372{
f9a86fcb 2373 nodes_setall(current->mems_allowed);
1da177e4
LT
2374}
2375
909d75a3
PJ
2376/**
2377 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2378 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2379 *
2380 * Description: Returns the nodemask_t mems_allowed of the cpuset
2381 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2382 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2383 * tasks cpuset.
2384 **/
2385
2386nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2387{
070b57fc 2388 struct cpuset *mems_cs;
909d75a3
PJ
2389 nodemask_t mask;
2390
3d3f26a7 2391 mutex_lock(&callback_mutex);
909d75a3 2392 task_lock(tsk);
070b57fc
LZ
2393 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2394 guarantee_online_mems(mems_cs, &mask);
909d75a3 2395 task_unlock(tsk);
3d3f26a7 2396 mutex_unlock(&callback_mutex);
909d75a3
PJ
2397
2398 return mask;
2399}
2400
d9fd8a6d 2401/**
19770b32
MG
2402 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2403 * @nodemask: the nodemask to be checked
d9fd8a6d 2404 *
19770b32 2405 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2406 */
19770b32 2407int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2408{
19770b32 2409 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2410}
2411
9bf2229f 2412/*
78608366
PM
2413 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2414 * mem_hardwall ancestor to the specified cpuset. Call holding
2415 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2416 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2417 */
c9710d80 2418static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2419{
c431069f
TH
2420 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2421 cs = parent_cs(cs);
9bf2229f
PJ
2422 return cs;
2423}
2424
d9fd8a6d 2425/**
a1bc5a4e
DR
2426 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2427 * @node: is this an allowed node?
02a0e53d 2428 * @gfp_mask: memory allocation flags
d9fd8a6d 2429 *
a1bc5a4e
DR
2430 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2431 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2432 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2433 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2434 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2435 * flag, yes.
9bf2229f
PJ
2436 * Otherwise, no.
2437 *
a1bc5a4e
DR
2438 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2439 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2440 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2441 *
a1bc5a4e
DR
2442 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2443 * cpusets, and never sleeps.
02a0e53d
PJ
2444 *
2445 * The __GFP_THISNODE placement logic is really handled elsewhere,
2446 * by forcibly using a zonelist starting at a specified node, and by
2447 * (in get_page_from_freelist()) refusing to consider the zones for
2448 * any node on the zonelist except the first. By the time any such
2449 * calls get to this routine, we should just shut up and say 'yes'.
2450 *
9bf2229f 2451 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2452 * and do not allow allocations outside the current tasks cpuset
2453 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2454 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2455 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2456 *
02a0e53d
PJ
2457 * Scanning up parent cpusets requires callback_mutex. The
2458 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2459 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2460 * current tasks mems_allowed came up empty on the first pass over
2461 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2462 * cpuset are short of memory, might require taking the callback_mutex
2463 * mutex.
9bf2229f 2464 *
36be57ff 2465 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2466 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2467 * so no allocation on a node outside the cpuset is allowed (unless
2468 * in interrupt, of course).
36be57ff
PJ
2469 *
2470 * The second pass through get_page_from_freelist() doesn't even call
2471 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2472 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2473 * in alloc_flags. That logic and the checks below have the combined
2474 * affect that:
9bf2229f
PJ
2475 * in_interrupt - any node ok (current task context irrelevant)
2476 * GFP_ATOMIC - any node ok
c596d9f3 2477 * TIF_MEMDIE - any node ok
78608366 2478 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2479 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2480 *
2481 * Rule:
a1bc5a4e 2482 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2483 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2484 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2485 */
a1bc5a4e 2486int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2487{
c9710d80 2488 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2489 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2490
9b819d20 2491 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2492 return 1;
92d1dbd2 2493 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2494 if (node_isset(node, current->mems_allowed))
2495 return 1;
c596d9f3
DR
2496 /*
2497 * Allow tasks that have access to memory reserves because they have
2498 * been OOM killed to get memory anywhere.
2499 */
2500 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2501 return 1;
9bf2229f
PJ
2502 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2503 return 0;
2504
5563e770
BP
2505 if (current->flags & PF_EXITING) /* Let dying task have memory */
2506 return 1;
2507
9bf2229f 2508 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2509 mutex_lock(&callback_mutex);
053199ed 2510
053199ed 2511 task_lock(current);
78608366 2512 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2513 task_unlock(current);
2514
9bf2229f 2515 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2516 mutex_unlock(&callback_mutex);
9bf2229f 2517 return allowed;
1da177e4
LT
2518}
2519
02a0e53d 2520/*
a1bc5a4e
DR
2521 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2522 * @node: is this an allowed node?
02a0e53d
PJ
2523 * @gfp_mask: memory allocation flags
2524 *
a1bc5a4e
DR
2525 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2526 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2527 * yes. If the task has been OOM killed and has access to memory reserves as
2528 * specified by the TIF_MEMDIE flag, yes.
2529 * Otherwise, no.
02a0e53d
PJ
2530 *
2531 * The __GFP_THISNODE placement logic is really handled elsewhere,
2532 * by forcibly using a zonelist starting at a specified node, and by
2533 * (in get_page_from_freelist()) refusing to consider the zones for
2534 * any node on the zonelist except the first. By the time any such
2535 * calls get to this routine, we should just shut up and say 'yes'.
2536 *
a1bc5a4e
DR
2537 * Unlike the cpuset_node_allowed_softwall() variant, above,
2538 * this variant requires that the node be in the current task's
02a0e53d
PJ
2539 * mems_allowed or that we're in interrupt. It does not scan up the
2540 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2541 * It never sleeps.
2542 */
a1bc5a4e 2543int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2544{
02a0e53d
PJ
2545 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2546 return 1;
02a0e53d
PJ
2547 if (node_isset(node, current->mems_allowed))
2548 return 1;
dedf8b79
DW
2549 /*
2550 * Allow tasks that have access to memory reserves because they have
2551 * been OOM killed to get memory anywhere.
2552 */
2553 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2554 return 1;
02a0e53d
PJ
2555 return 0;
2556}
2557
825a46af 2558/**
6adef3eb
JS
2559 * cpuset_mem_spread_node() - On which node to begin search for a file page
2560 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2561 *
2562 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2563 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2564 * and if the memory allocation used cpuset_mem_spread_node()
2565 * to determine on which node to start looking, as it will for
2566 * certain page cache or slab cache pages such as used for file
2567 * system buffers and inode caches, then instead of starting on the
2568 * local node to look for a free page, rather spread the starting
2569 * node around the tasks mems_allowed nodes.
2570 *
2571 * We don't have to worry about the returned node being offline
2572 * because "it can't happen", and even if it did, it would be ok.
2573 *
2574 * The routines calling guarantee_online_mems() are careful to
2575 * only set nodes in task->mems_allowed that are online. So it
2576 * should not be possible for the following code to return an
2577 * offline node. But if it did, that would be ok, as this routine
2578 * is not returning the node where the allocation must be, only
2579 * the node where the search should start. The zonelist passed to
2580 * __alloc_pages() will include all nodes. If the slab allocator
2581 * is passed an offline node, it will fall back to the local node.
2582 * See kmem_cache_alloc_node().
2583 */
2584
6adef3eb 2585static int cpuset_spread_node(int *rotor)
825a46af
PJ
2586{
2587 int node;
2588
6adef3eb 2589 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2590 if (node == MAX_NUMNODES)
2591 node = first_node(current->mems_allowed);
6adef3eb 2592 *rotor = node;
825a46af
PJ
2593 return node;
2594}
6adef3eb
JS
2595
2596int cpuset_mem_spread_node(void)
2597{
778d3b0f
MH
2598 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2599 current->cpuset_mem_spread_rotor =
2600 node_random(&current->mems_allowed);
2601
6adef3eb
JS
2602 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2603}
2604
2605int cpuset_slab_spread_node(void)
2606{
778d3b0f
MH
2607 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2608 current->cpuset_slab_spread_rotor =
2609 node_random(&current->mems_allowed);
2610
6adef3eb
JS
2611 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2612}
2613
825a46af
PJ
2614EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2615
ef08e3b4 2616/**
bbe373f2
DR
2617 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2618 * @tsk1: pointer to task_struct of some task.
2619 * @tsk2: pointer to task_struct of some other task.
2620 *
2621 * Description: Return true if @tsk1's mems_allowed intersects the
2622 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2623 * one of the task's memory usage might impact the memory available
2624 * to the other.
ef08e3b4
PJ
2625 **/
2626
bbe373f2
DR
2627int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2628 const struct task_struct *tsk2)
ef08e3b4 2629{
bbe373f2 2630 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2631}
2632
f440d98f
LZ
2633#define CPUSET_NODELIST_LEN (256)
2634
75aa1994
DR
2635/**
2636 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2637 * @task: pointer to task_struct of some task.
2638 *
2639 * Description: Prints @task's name, cpuset name, and cached copy of its
2640 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2641 * dereferencing task_cs(task).
2642 */
2643void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2644{
f440d98f
LZ
2645 /* Statically allocated to prevent using excess stack. */
2646 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2647 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2648
f440d98f 2649 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2650
cfb5966b 2651 rcu_read_lock();
f440d98f 2652 spin_lock(&cpuset_buffer_lock);
63f43f55 2653
75aa1994
DR
2654 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2655 tsk->mems_allowed);
2656 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2657 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2658
75aa1994 2659 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2660 rcu_read_unlock();
75aa1994
DR
2661}
2662
3e0d98b9
PJ
2663/*
2664 * Collection of memory_pressure is suppressed unless
2665 * this flag is enabled by writing "1" to the special
2666 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2667 */
2668
c5b2aff8 2669int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2670
2671/**
2672 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2673 *
2674 * Keep a running average of the rate of synchronous (direct)
2675 * page reclaim efforts initiated by tasks in each cpuset.
2676 *
2677 * This represents the rate at which some task in the cpuset
2678 * ran low on memory on all nodes it was allowed to use, and
2679 * had to enter the kernels page reclaim code in an effort to
2680 * create more free memory by tossing clean pages or swapping
2681 * or writing dirty pages.
2682 *
2683 * Display to user space in the per-cpuset read-only file
2684 * "memory_pressure". Value displayed is an integer
2685 * representing the recent rate of entry into the synchronous
2686 * (direct) page reclaim by any task attached to the cpuset.
2687 **/
2688
2689void __cpuset_memory_pressure_bump(void)
2690{
3e0d98b9 2691 task_lock(current);
8793d854 2692 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2693 task_unlock(current);
2694}
2695
8793d854 2696#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2697/*
2698 * proc_cpuset_show()
2699 * - Print tasks cpuset path into seq_file.
2700 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2701 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2702 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2703 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2704 * anyway.
1da177e4 2705 */
8d8b97ba 2706int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2707{
13b41b09 2708 struct pid *pid;
1da177e4
LT
2709 struct task_struct *tsk;
2710 char *buf;
8793d854 2711 struct cgroup_subsys_state *css;
99f89551 2712 int retval;
1da177e4 2713
99f89551 2714 retval = -ENOMEM;
1da177e4
LT
2715 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2716 if (!buf)
99f89551
EB
2717 goto out;
2718
2719 retval = -ESRCH;
13b41b09
EB
2720 pid = m->private;
2721 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2722 if (!tsk)
2723 goto out_free;
1da177e4 2724
27e89ae5 2725 rcu_read_lock();
8af01f56 2726 css = task_css(tsk, cpuset_subsys_id);
8793d854 2727 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2728 rcu_read_unlock();
1da177e4 2729 if (retval < 0)
27e89ae5 2730 goto out_put_task;
1da177e4
LT
2731 seq_puts(m, buf);
2732 seq_putc(m, '\n');
27e89ae5 2733out_put_task:
99f89551
EB
2734 put_task_struct(tsk);
2735out_free:
1da177e4 2736 kfree(buf);
99f89551 2737out:
1da177e4
LT
2738 return retval;
2739}
8793d854 2740#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2741
d01d4827 2742/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2743void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2744{
df5f8314 2745 seq_printf(m, "Mems_allowed:\t");
30e8e136 2746 seq_nodemask(m, &task->mems_allowed);
df5f8314 2747 seq_printf(m, "\n");
39106dcf 2748 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2749 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2750 seq_printf(m, "\n");
1da177e4 2751}