cpuset: don't allocate trial cpuset on stack
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4
LT
86 unsigned long flags; /* "unsigned long" so bitops work */
87 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
1da177e4 90 struct cpuset *parent; /* my parent */
1da177e4
LT
91
92 /*
93 * Copy of global cpuset_mems_generation as of the most
94 * recent time this cpuset changed its mems_allowed.
95 */
3e0d98b9
PJ
96 int mems_generation;
97
98 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
99
100 /* partition number for rebuild_sched_domains() */
101 int pn;
956db3ca 102
1d3504fc
HS
103 /* for custom sched domain */
104 int relax_domain_level;
105
956db3ca
CW
106 /* used for walking a cpuset heirarchy */
107 struct list_head stack_list;
1da177e4
LT
108};
109
8793d854
PM
110/* Retrieve the cpuset for a cgroup */
111static inline struct cpuset *cgroup_cs(struct cgroup *cont)
112{
113 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
114 struct cpuset, css);
115}
116
117/* Retrieve the cpuset for a task */
118static inline struct cpuset *task_cs(struct task_struct *task)
119{
120 return container_of(task_subsys_state(task, cpuset_subsys_id),
121 struct cpuset, css);
122}
956db3ca
CW
123struct cpuset_hotplug_scanner {
124 struct cgroup_scanner scan;
125 struct cgroup *to;
126};
8793d854 127
1da177e4
LT
128/* bits in struct cpuset flags field */
129typedef enum {
130 CS_CPU_EXCLUSIVE,
131 CS_MEM_EXCLUSIVE,
78608366 132 CS_MEM_HARDWALL,
45b07ef3 133 CS_MEMORY_MIGRATE,
029190c5 134 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
135 CS_SPREAD_PAGE,
136 CS_SPREAD_SLAB,
1da177e4
LT
137} cpuset_flagbits_t;
138
139/* convenient tests for these bits */
140static inline int is_cpu_exclusive(const struct cpuset *cs)
141{
7b5b9ef0 142 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
143}
144
145static inline int is_mem_exclusive(const struct cpuset *cs)
146{
7b5b9ef0 147 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
148}
149
78608366
PM
150static inline int is_mem_hardwall(const struct cpuset *cs)
151{
152 return test_bit(CS_MEM_HARDWALL, &cs->flags);
153}
154
029190c5
PJ
155static inline int is_sched_load_balance(const struct cpuset *cs)
156{
157 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
158}
159
45b07ef3
PJ
160static inline int is_memory_migrate(const struct cpuset *cs)
161{
7b5b9ef0 162 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
163}
164
825a46af
PJ
165static inline int is_spread_page(const struct cpuset *cs)
166{
167 return test_bit(CS_SPREAD_PAGE, &cs->flags);
168}
169
170static inline int is_spread_slab(const struct cpuset *cs)
171{
172 return test_bit(CS_SPREAD_SLAB, &cs->flags);
173}
174
1da177e4 175/*
151a4420 176 * Increment this integer everytime any cpuset changes its
1da177e4
LT
177 * mems_allowed value. Users of cpusets can track this generation
178 * number, and avoid having to lock and reload mems_allowed unless
179 * the cpuset they're using changes generation.
180 *
2df167a3 181 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
182 * reattach a task to a different cpuset, which must not have its
183 * generation numbers aliased with those of that tasks previous cpuset.
184 *
185 * Generations are needed for mems_allowed because one task cannot
2df167a3 186 * modify another's memory placement. So we must enable every task,
1da177e4
LT
187 * on every visit to __alloc_pages(), to efficiently check whether
188 * its current->cpuset->mems_allowed has changed, requiring an update
189 * of its current->mems_allowed.
151a4420 190 *
2df167a3 191 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 192 * there is no need to mark it atomic.
1da177e4 193 */
151a4420 194static int cpuset_mems_generation;
1da177e4
LT
195
196static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
198 .cpus_allowed = CPU_MASK_ALL,
199 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
200};
201
1da177e4 202/*
2df167a3
PM
203 * There are two global mutexes guarding cpuset structures. The first
204 * is the main control groups cgroup_mutex, accessed via
205 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
206 * callback_mutex, below. They can nest. It is ok to first take
207 * cgroup_mutex, then nest callback_mutex. We also require taking
208 * task_lock() when dereferencing a task's cpuset pointer. See "The
209 * task_lock() exception", at the end of this comment.
053199ed 210 *
3d3f26a7 211 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 212 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 213 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
214 * and be able to modify cpusets. It can perform various checks on
215 * the cpuset structure first, knowing nothing will change. It can
2df167a3 216 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 217 * performing these checks, various callback routines can briefly
3d3f26a7
IM
218 * acquire callback_mutex to query cpusets. Once it is ready to make
219 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
220 *
221 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 222 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
223 * from one of the callbacks into the cpuset code from within
224 * __alloc_pages().
225 *
3d3f26a7 226 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
227 * access to cpusets.
228 *
229 * The task_struct fields mems_allowed and mems_generation may only
230 * be accessed in the context of that task, so require no locks.
231 *
3d3f26a7 232 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
233 * small pieces of code, such as when reading out possibly multi-word
234 * cpumasks and nodemasks.
235 *
2df167a3
PM
236 * Accessing a task's cpuset should be done in accordance with the
237 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
238 */
239
3d3f26a7 240static DEFINE_MUTEX(callback_mutex);
4247bdc6 241
75aa1994
DR
242/*
243 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
244 * buffers. They are statically allocated to prevent using excess stack
245 * when calling cpuset_print_task_mems_allowed().
246 */
247#define CPUSET_NAME_LEN (128)
248#define CPUSET_NODELIST_LEN (256)
249static char cpuset_name[CPUSET_NAME_LEN];
250static char cpuset_nodelist[CPUSET_NODELIST_LEN];
251static DEFINE_SPINLOCK(cpuset_buffer_lock);
252
cf417141
MK
253/*
254 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 255 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
256 * silently switch it to mount "cgroup" instead
257 */
454e2398
DH
258static int cpuset_get_sb(struct file_system_type *fs_type,
259 int flags, const char *unused_dev_name,
260 void *data, struct vfsmount *mnt)
1da177e4 261{
8793d854
PM
262 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
263 int ret = -ENODEV;
264 if (cgroup_fs) {
265 char mountopts[] =
266 "cpuset,noprefix,"
267 "release_agent=/sbin/cpuset_release_agent";
268 ret = cgroup_fs->get_sb(cgroup_fs, flags,
269 unused_dev_name, mountopts, mnt);
270 put_filesystem(cgroup_fs);
271 }
272 return ret;
1da177e4
LT
273}
274
275static struct file_system_type cpuset_fs_type = {
276 .name = "cpuset",
277 .get_sb = cpuset_get_sb,
1da177e4
LT
278};
279
1da177e4
LT
280/*
281 * Return in *pmask the portion of a cpusets's cpus_allowed that
282 * are online. If none are online, walk up the cpuset hierarchy
283 * until we find one that does have some online cpus. If we get
284 * all the way to the top and still haven't found any online cpus,
285 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
286 * task, return cpu_online_map.
287 *
288 * One way or another, we guarantee to return some non-empty subset
289 * of cpu_online_map.
290 *
3d3f26a7 291 * Call with callback_mutex held.
1da177e4
LT
292 */
293
294static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
295{
296 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
297 cs = cs->parent;
298 if (cs)
299 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
300 else
301 *pmask = cpu_online_map;
302 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
303}
304
305/*
306 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
307 * are online, with memory. If none are online with memory, walk
308 * up the cpuset hierarchy until we find one that does have some
309 * online mems. If we get all the way to the top and still haven't
310 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
311 *
312 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 313 * of node_states[N_HIGH_MEMORY].
1da177e4 314 *
3d3f26a7 315 * Call with callback_mutex held.
1da177e4
LT
316 */
317
318static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
319{
0e1e7c7a
CL
320 while (cs && !nodes_intersects(cs->mems_allowed,
321 node_states[N_HIGH_MEMORY]))
1da177e4
LT
322 cs = cs->parent;
323 if (cs)
0e1e7c7a
CL
324 nodes_and(*pmask, cs->mems_allowed,
325 node_states[N_HIGH_MEMORY]);
1da177e4 326 else
0e1e7c7a
CL
327 *pmask = node_states[N_HIGH_MEMORY];
328 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
329}
330
cf2a473c
PJ
331/**
332 * cpuset_update_task_memory_state - update task memory placement
333 *
334 * If the current tasks cpusets mems_allowed changed behind our
335 * backs, update current->mems_allowed, mems_generation and task NUMA
336 * mempolicy to the new value.
053199ed 337 *
cf2a473c
PJ
338 * Task mempolicy is updated by rebinding it relative to the
339 * current->cpuset if a task has its memory placement changed.
340 * Do not call this routine if in_interrupt().
341 *
4a01c8d5 342 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
343 * called with or without cgroup_mutex held. Thanks in part to
344 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
345 * be NULL. This routine also might acquire callback_mutex during
346 * call.
053199ed 347 *
6b9c2603
PJ
348 * Reading current->cpuset->mems_generation doesn't need task_lock
349 * to guard the current->cpuset derefence, because it is guarded
2df167a3 350 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
351 *
352 * The rcu_dereference() is technically probably not needed,
353 * as I don't actually mind if I see a new cpuset pointer but
354 * an old value of mems_generation. However this really only
355 * matters on alpha systems using cpusets heavily. If I dropped
356 * that rcu_dereference(), it would save them a memory barrier.
357 * For all other arch's, rcu_dereference is a no-op anyway, and for
358 * alpha systems not using cpusets, another planned optimization,
359 * avoiding the rcu critical section for tasks in the root cpuset
360 * which is statically allocated, so can't vanish, will make this
361 * irrelevant. Better to use RCU as intended, than to engage in
362 * some cute trick to save a memory barrier that is impossible to
363 * test, for alpha systems using cpusets heavily, which might not
364 * even exist.
053199ed
PJ
365 *
366 * This routine is needed to update the per-task mems_allowed data,
367 * within the tasks context, when it is trying to allocate memory
368 * (in various mm/mempolicy.c routines) and notices that some other
369 * task has been modifying its cpuset.
1da177e4
LT
370 */
371
fe85a998 372void cpuset_update_task_memory_state(void)
1da177e4 373{
053199ed 374 int my_cpusets_mem_gen;
cf2a473c 375 struct task_struct *tsk = current;
6b9c2603 376 struct cpuset *cs;
053199ed 377
13337714
LJ
378 rcu_read_lock();
379 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
380 rcu_read_unlock();
1da177e4 381
cf2a473c 382 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 383 mutex_lock(&callback_mutex);
cf2a473c 384 task_lock(tsk);
8793d854 385 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
386 guarantee_online_mems(cs, &tsk->mems_allowed);
387 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
388 if (is_spread_page(cs))
389 tsk->flags |= PF_SPREAD_PAGE;
390 else
391 tsk->flags &= ~PF_SPREAD_PAGE;
392 if (is_spread_slab(cs))
393 tsk->flags |= PF_SPREAD_SLAB;
394 else
395 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 396 task_unlock(tsk);
3d3f26a7 397 mutex_unlock(&callback_mutex);
74cb2155 398 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
399 }
400}
401
402/*
403 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
404 *
405 * One cpuset is a subset of another if all its allowed CPUs and
406 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 407 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
408 */
409
410static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
411{
412 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
413 nodes_subset(p->mems_allowed, q->mems_allowed) &&
414 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
415 is_mem_exclusive(p) <= is_mem_exclusive(q);
416}
417
645fcc9d
LZ
418/**
419 * alloc_trial_cpuset - allocate a trial cpuset
420 * @cs: the cpuset that the trial cpuset duplicates
421 */
422static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
423{
424 return kmemdup(cs, sizeof(*cs), GFP_KERNEL);
425}
426
427/**
428 * free_trial_cpuset - free the trial cpuset
429 * @trial: the trial cpuset to be freed
430 */
431static void free_trial_cpuset(struct cpuset *trial)
432{
433 kfree(trial);
434}
435
1da177e4
LT
436/*
437 * validate_change() - Used to validate that any proposed cpuset change
438 * follows the structural rules for cpusets.
439 *
440 * If we replaced the flag and mask values of the current cpuset
441 * (cur) with those values in the trial cpuset (trial), would
442 * our various subset and exclusive rules still be valid? Presumes
2df167a3 443 * cgroup_mutex held.
1da177e4
LT
444 *
445 * 'cur' is the address of an actual, in-use cpuset. Operations
446 * such as list traversal that depend on the actual address of the
447 * cpuset in the list must use cur below, not trial.
448 *
449 * 'trial' is the address of bulk structure copy of cur, with
450 * perhaps one or more of the fields cpus_allowed, mems_allowed,
451 * or flags changed to new, trial values.
452 *
453 * Return 0 if valid, -errno if not.
454 */
455
456static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
457{
8793d854 458 struct cgroup *cont;
1da177e4
LT
459 struct cpuset *c, *par;
460
461 /* Each of our child cpusets must be a subset of us */
8793d854
PM
462 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
463 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
464 return -EBUSY;
465 }
466
467 /* Remaining checks don't apply to root cpuset */
69604067 468 if (cur == &top_cpuset)
1da177e4
LT
469 return 0;
470
69604067
PJ
471 par = cur->parent;
472
1da177e4
LT
473 /* We must be a subset of our parent cpuset */
474 if (!is_cpuset_subset(trial, par))
475 return -EACCES;
476
2df167a3
PM
477 /*
478 * If either I or some sibling (!= me) is exclusive, we can't
479 * overlap
480 */
8793d854
PM
481 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
482 c = cgroup_cs(cont);
1da177e4
LT
483 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
484 c != cur &&
485 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
486 return -EINVAL;
487 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
488 c != cur &&
489 nodes_intersects(trial->mems_allowed, c->mems_allowed))
490 return -EINVAL;
491 }
492
020958b6
PJ
493 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
494 if (cgroup_task_count(cur->css.cgroup)) {
495 if (cpus_empty(trial->cpus_allowed) ||
496 nodes_empty(trial->mems_allowed)) {
497 return -ENOSPC;
498 }
499 }
500
1da177e4
LT
501 return 0;
502}
503
029190c5 504/*
cf417141 505 * Helper routine for generate_sched_domains().
029190c5
PJ
506 * Do cpusets a, b have overlapping cpus_allowed masks?
507 */
029190c5
PJ
508static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
509{
510 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
511}
512
1d3504fc
HS
513static void
514update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
515{
1d3504fc
HS
516 if (dattr->relax_domain_level < c->relax_domain_level)
517 dattr->relax_domain_level = c->relax_domain_level;
518 return;
519}
520
f5393693
LJ
521static void
522update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
523{
524 LIST_HEAD(q);
525
526 list_add(&c->stack_list, &q);
527 while (!list_empty(&q)) {
528 struct cpuset *cp;
529 struct cgroup *cont;
530 struct cpuset *child;
531
532 cp = list_first_entry(&q, struct cpuset, stack_list);
533 list_del(q.next);
534
535 if (cpus_empty(cp->cpus_allowed))
536 continue;
537
538 if (is_sched_load_balance(cp))
539 update_domain_attr(dattr, cp);
540
541 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
542 child = cgroup_cs(cont);
543 list_add_tail(&child->stack_list, &q);
544 }
545 }
546}
547
029190c5 548/*
cf417141
MK
549 * generate_sched_domains()
550 *
551 * This function builds a partial partition of the systems CPUs
552 * A 'partial partition' is a set of non-overlapping subsets whose
553 * union is a subset of that set.
554 * The output of this function needs to be passed to kernel/sched.c
555 * partition_sched_domains() routine, which will rebuild the scheduler's
556 * load balancing domains (sched domains) as specified by that partial
557 * partition.
029190c5
PJ
558 *
559 * See "What is sched_load_balance" in Documentation/cpusets.txt
560 * for a background explanation of this.
561 *
562 * Does not return errors, on the theory that the callers of this
563 * routine would rather not worry about failures to rebuild sched
564 * domains when operating in the severe memory shortage situations
565 * that could cause allocation failures below.
566 *
cf417141 567 * Must be called with cgroup_lock held.
029190c5
PJ
568 *
569 * The three key local variables below are:
aeed6824 570 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
571 * top-down scan of all cpusets. This scan loads a pointer
572 * to each cpuset marked is_sched_load_balance into the
573 * array 'csa'. For our purposes, rebuilding the schedulers
574 * sched domains, we can ignore !is_sched_load_balance cpusets.
575 * csa - (for CpuSet Array) Array of pointers to all the cpusets
576 * that need to be load balanced, for convenient iterative
577 * access by the subsequent code that finds the best partition,
578 * i.e the set of domains (subsets) of CPUs such that the
579 * cpus_allowed of every cpuset marked is_sched_load_balance
580 * is a subset of one of these domains, while there are as
581 * many such domains as possible, each as small as possible.
582 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
583 * the kernel/sched.c routine partition_sched_domains() in a
584 * convenient format, that can be easily compared to the prior
585 * value to determine what partition elements (sched domains)
586 * were changed (added or removed.)
587 *
588 * Finding the best partition (set of domains):
589 * The triple nested loops below over i, j, k scan over the
590 * load balanced cpusets (using the array of cpuset pointers in
591 * csa[]) looking for pairs of cpusets that have overlapping
592 * cpus_allowed, but which don't have the same 'pn' partition
593 * number and gives them in the same partition number. It keeps
594 * looping on the 'restart' label until it can no longer find
595 * any such pairs.
596 *
597 * The union of the cpus_allowed masks from the set of
598 * all cpusets having the same 'pn' value then form the one
599 * element of the partition (one sched domain) to be passed to
600 * partition_sched_domains().
601 */
cf417141
MK
602static int generate_sched_domains(cpumask_t **domains,
603 struct sched_domain_attr **attributes)
029190c5 604{
cf417141 605 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
606 struct cpuset *cp; /* scans q */
607 struct cpuset **csa; /* array of all cpuset ptrs */
608 int csn; /* how many cpuset ptrs in csa so far */
609 int i, j, k; /* indices for partition finding loops */
610 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 611 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 612 int ndoms = 0; /* number of sched domains in result */
029190c5
PJ
613 int nslot; /* next empty doms[] cpumask_t slot */
614
029190c5 615 doms = NULL;
1d3504fc 616 dattr = NULL;
cf417141 617 csa = NULL;
029190c5
PJ
618
619 /* Special case for the 99% of systems with one, full, sched domain */
620 if (is_sched_load_balance(&top_cpuset)) {
029190c5
PJ
621 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
622 if (!doms)
cf417141
MK
623 goto done;
624
1d3504fc
HS
625 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
626 if (dattr) {
627 *dattr = SD_ATTR_INIT;
93a65575 628 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 629 }
029190c5 630 *doms = top_cpuset.cpus_allowed;
cf417141
MK
631
632 ndoms = 1;
633 goto done;
029190c5
PJ
634 }
635
029190c5
PJ
636 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
637 if (!csa)
638 goto done;
639 csn = 0;
640
aeed6824
LZ
641 list_add(&top_cpuset.stack_list, &q);
642 while (!list_empty(&q)) {
029190c5
PJ
643 struct cgroup *cont;
644 struct cpuset *child; /* scans child cpusets of cp */
489a5393 645
aeed6824
LZ
646 cp = list_first_entry(&q, struct cpuset, stack_list);
647 list_del(q.next);
648
489a5393
LJ
649 if (cpus_empty(cp->cpus_allowed))
650 continue;
651
f5393693
LJ
652 /*
653 * All child cpusets contain a subset of the parent's cpus, so
654 * just skip them, and then we call update_domain_attr_tree()
655 * to calc relax_domain_level of the corresponding sched
656 * domain.
657 */
658 if (is_sched_load_balance(cp)) {
029190c5 659 csa[csn++] = cp;
f5393693
LJ
660 continue;
661 }
489a5393 662
029190c5
PJ
663 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
664 child = cgroup_cs(cont);
aeed6824 665 list_add_tail(&child->stack_list, &q);
029190c5
PJ
666 }
667 }
668
669 for (i = 0; i < csn; i++)
670 csa[i]->pn = i;
671 ndoms = csn;
672
673restart:
674 /* Find the best partition (set of sched domains) */
675 for (i = 0; i < csn; i++) {
676 struct cpuset *a = csa[i];
677 int apn = a->pn;
678
679 for (j = 0; j < csn; j++) {
680 struct cpuset *b = csa[j];
681 int bpn = b->pn;
682
683 if (apn != bpn && cpusets_overlap(a, b)) {
684 for (k = 0; k < csn; k++) {
685 struct cpuset *c = csa[k];
686
687 if (c->pn == bpn)
688 c->pn = apn;
689 }
690 ndoms--; /* one less element */
691 goto restart;
692 }
693 }
694 }
695
cf417141
MK
696 /*
697 * Now we know how many domains to create.
698 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
699 */
029190c5 700 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
700018e0 701 if (!doms)
cf417141 702 goto done;
cf417141
MK
703
704 /*
705 * The rest of the code, including the scheduler, can deal with
706 * dattr==NULL case. No need to abort if alloc fails.
707 */
1d3504fc 708 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
709
710 for (nslot = 0, i = 0; i < csn; i++) {
711 struct cpuset *a = csa[i];
cf417141 712 cpumask_t *dp;
029190c5
PJ
713 int apn = a->pn;
714
cf417141
MK
715 if (apn < 0) {
716 /* Skip completed partitions */
717 continue;
718 }
719
720 dp = doms + nslot;
721
722 if (nslot == ndoms) {
723 static int warnings = 10;
724 if (warnings) {
725 printk(KERN_WARNING
726 "rebuild_sched_domains confused:"
727 " nslot %d, ndoms %d, csn %d, i %d,"
728 " apn %d\n",
729 nslot, ndoms, csn, i, apn);
730 warnings--;
029190c5 731 }
cf417141
MK
732 continue;
733 }
029190c5 734
cf417141
MK
735 cpus_clear(*dp);
736 if (dattr)
737 *(dattr + nslot) = SD_ATTR_INIT;
738 for (j = i; j < csn; j++) {
739 struct cpuset *b = csa[j];
740
741 if (apn == b->pn) {
742 cpus_or(*dp, *dp, b->cpus_allowed);
743 if (dattr)
744 update_domain_attr_tree(dattr + nslot, b);
745
746 /* Done with this partition */
747 b->pn = -1;
029190c5 748 }
029190c5 749 }
cf417141 750 nslot++;
029190c5
PJ
751 }
752 BUG_ON(nslot != ndoms);
753
cf417141
MK
754done:
755 kfree(csa);
756
700018e0
LZ
757 /*
758 * Fallback to the default domain if kmalloc() failed.
759 * See comments in partition_sched_domains().
760 */
761 if (doms == NULL)
762 ndoms = 1;
763
cf417141
MK
764 *domains = doms;
765 *attributes = dattr;
766 return ndoms;
767}
768
769/*
770 * Rebuild scheduler domains.
771 *
772 * Call with neither cgroup_mutex held nor within get_online_cpus().
773 * Takes both cgroup_mutex and get_online_cpus().
774 *
775 * Cannot be directly called from cpuset code handling changes
776 * to the cpuset pseudo-filesystem, because it cannot be called
777 * from code that already holds cgroup_mutex.
778 */
779static void do_rebuild_sched_domains(struct work_struct *unused)
780{
781 struct sched_domain_attr *attr;
782 cpumask_t *doms;
783 int ndoms;
784
86ef5c9a 785 get_online_cpus();
cf417141
MK
786
787 /* Generate domain masks and attrs */
788 cgroup_lock();
789 ndoms = generate_sched_domains(&doms, &attr);
790 cgroup_unlock();
791
792 /* Have scheduler rebuild the domains */
793 partition_sched_domains(ndoms, doms, attr);
794
86ef5c9a 795 put_online_cpus();
cf417141 796}
029190c5 797
cf417141
MK
798static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
799
800/*
801 * Rebuild scheduler domains, asynchronously via workqueue.
802 *
803 * If the flag 'sched_load_balance' of any cpuset with non-empty
804 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
805 * which has that flag enabled, or if any cpuset with a non-empty
806 * 'cpus' is removed, then call this routine to rebuild the
807 * scheduler's dynamic sched domains.
808 *
809 * The rebuild_sched_domains() and partition_sched_domains()
810 * routines must nest cgroup_lock() inside get_online_cpus(),
811 * but such cpuset changes as these must nest that locking the
812 * other way, holding cgroup_lock() for much of the code.
813 *
814 * So in order to avoid an ABBA deadlock, the cpuset code handling
815 * these user changes delegates the actual sched domain rebuilding
816 * to a separate workqueue thread, which ends up processing the
817 * above do_rebuild_sched_domains() function.
818 */
819static void async_rebuild_sched_domains(void)
820{
821 schedule_work(&rebuild_sched_domains_work);
822}
823
824/*
825 * Accomplishes the same scheduler domain rebuild as the above
826 * async_rebuild_sched_domains(), however it directly calls the
827 * rebuild routine synchronously rather than calling it via an
828 * asynchronous work thread.
829 *
830 * This can only be called from code that is not holding
831 * cgroup_mutex (not nested in a cgroup_lock() call.)
832 */
833void rebuild_sched_domains(void)
834{
835 do_rebuild_sched_domains(NULL);
029190c5
PJ
836}
837
58f4790b
CW
838/**
839 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
840 * @tsk: task to test
841 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
842 *
2df167a3 843 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
844 * Called for each task in a cgroup by cgroup_scan_tasks().
845 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
846 * words, if its mask is not equal to its cpuset's mask).
053199ed 847 */
9e0c914c
AB
848static int cpuset_test_cpumask(struct task_struct *tsk,
849 struct cgroup_scanner *scan)
58f4790b
CW
850{
851 return !cpus_equal(tsk->cpus_allowed,
852 (cgroup_cs(scan->cg))->cpus_allowed);
853}
053199ed 854
58f4790b
CW
855/**
856 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
857 * @tsk: task to test
858 * @scan: struct cgroup_scanner containing the cgroup of the task
859 *
860 * Called by cgroup_scan_tasks() for each task in a cgroup whose
861 * cpus_allowed mask needs to be changed.
862 *
863 * We don't need to re-check for the cgroup/cpuset membership, since we're
864 * holding cgroup_lock() at this point.
865 */
9e0c914c
AB
866static void cpuset_change_cpumask(struct task_struct *tsk,
867 struct cgroup_scanner *scan)
58f4790b 868{
f9a86fcb 869 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
870}
871
0b2f630a
MX
872/**
873 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
874 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 875 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
876 *
877 * Called with cgroup_mutex held
878 *
879 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
880 * calling callback functions for each.
881 *
4e74339a
LZ
882 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
883 * if @heap != NULL.
0b2f630a 884 */
4e74339a 885static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
886{
887 struct cgroup_scanner scan;
0b2f630a
MX
888
889 scan.cg = cs->css.cgroup;
890 scan.test_task = cpuset_test_cpumask;
891 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
892 scan.heap = heap;
893 cgroup_scan_tasks(&scan);
0b2f630a
MX
894}
895
58f4790b
CW
896/**
897 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
898 * @cs: the cpuset to consider
899 * @buf: buffer of cpu numbers written to this cpuset
900 */
645fcc9d
LZ
901static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
902 const char *buf)
1da177e4 903{
4e74339a 904 struct ptr_heap heap;
58f4790b
CW
905 int retval;
906 int is_load_balanced;
1da177e4 907
4c4d50f7
PJ
908 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
909 if (cs == &top_cpuset)
910 return -EACCES;
911
6f7f02e7 912 /*
c8d9c90c 913 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
914 * Since cpulist_parse() fails on an empty mask, we special case
915 * that parsing. The validate_change() call ensures that cpusets
916 * with tasks have cpus.
6f7f02e7 917 */
020958b6 918 if (!*buf) {
645fcc9d 919 cpus_clear(trialcs->cpus_allowed);
6f7f02e7 920 } else {
645fcc9d 921 retval = cpulist_parse(buf, &trialcs->cpus_allowed);
6f7f02e7
DR
922 if (retval < 0)
923 return retval;
37340746 924
645fcc9d 925 if (!cpus_subset(trialcs->cpus_allowed, cpu_online_map))
37340746 926 return -EINVAL;
6f7f02e7 927 }
645fcc9d 928 retval = validate_change(cs, trialcs);
85d7b949
DG
929 if (retval < 0)
930 return retval;
029190c5 931
8707d8b8 932 /* Nothing to do if the cpus didn't change */
645fcc9d 933 if (cpus_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 934 return 0;
58f4790b 935
4e74339a
LZ
936 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
937 if (retval)
938 return retval;
939
645fcc9d 940 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 941
3d3f26a7 942 mutex_lock(&callback_mutex);
645fcc9d 943 cs->cpus_allowed = trialcs->cpus_allowed;
3d3f26a7 944 mutex_unlock(&callback_mutex);
029190c5 945
8707d8b8
PM
946 /*
947 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 948 * that need an update.
8707d8b8 949 */
4e74339a
LZ
950 update_tasks_cpumask(cs, &heap);
951
952 heap_free(&heap);
58f4790b 953
8707d8b8 954 if (is_load_balanced)
cf417141 955 async_rebuild_sched_domains();
85d7b949 956 return 0;
1da177e4
LT
957}
958
e4e364e8
PJ
959/*
960 * cpuset_migrate_mm
961 *
962 * Migrate memory region from one set of nodes to another.
963 *
964 * Temporarilly set tasks mems_allowed to target nodes of migration,
965 * so that the migration code can allocate pages on these nodes.
966 *
2df167a3 967 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 968 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
969 * calls. Therefore we don't need to take task_lock around the
970 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 971 * our task's cpuset.
e4e364e8
PJ
972 *
973 * Hold callback_mutex around the two modifications of our tasks
974 * mems_allowed to synchronize with cpuset_mems_allowed().
975 *
976 * While the mm_struct we are migrating is typically from some
977 * other task, the task_struct mems_allowed that we are hacking
978 * is for our current task, which must allocate new pages for that
979 * migrating memory region.
980 *
981 * We call cpuset_update_task_memory_state() before hacking
982 * our tasks mems_allowed, so that we are assured of being in
983 * sync with our tasks cpuset, and in particular, callbacks to
984 * cpuset_update_task_memory_state() from nested page allocations
985 * won't see any mismatch of our cpuset and task mems_generation
986 * values, so won't overwrite our hacked tasks mems_allowed
987 * nodemask.
988 */
989
990static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
991 const nodemask_t *to)
992{
993 struct task_struct *tsk = current;
994
995 cpuset_update_task_memory_state();
996
997 mutex_lock(&callback_mutex);
998 tsk->mems_allowed = *to;
999 mutex_unlock(&callback_mutex);
1000
1001 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1002
1003 mutex_lock(&callback_mutex);
8793d854 1004 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
1005 mutex_unlock(&callback_mutex);
1006}
1007
8793d854
PM
1008static void *cpuset_being_rebound;
1009
0b2f630a
MX
1010/**
1011 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1012 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1013 * @oldmem: old mems_allowed of cpuset cs
1014 *
1015 * Called with cgroup_mutex held
1016 * Return 0 if successful, -errno if not.
1017 */
1018static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 1019{
8793d854 1020 struct task_struct *p;
4225399a
PJ
1021 struct mm_struct **mmarray;
1022 int i, n, ntasks;
04c19fa6 1023 int migrate;
4225399a 1024 int fudge;
8793d854 1025 struct cgroup_iter it;
0b2f630a 1026 int retval;
59dac16f 1027
846a16bf 1028 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
1029
1030 fudge = 10; /* spare mmarray[] slots */
1031 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
1032 retval = -ENOMEM;
1033
1034 /*
1035 * Allocate mmarray[] to hold mm reference for each task
1036 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1037 * tasklist_lock. We could use GFP_ATOMIC, but with a
1038 * few more lines of code, we can retry until we get a big
1039 * enough mmarray[] w/o using GFP_ATOMIC.
1040 */
1041 while (1) {
8793d854 1042 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
1043 ntasks += fudge;
1044 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1045 if (!mmarray)
1046 goto done;
c2aef333 1047 read_lock(&tasklist_lock); /* block fork */
8793d854 1048 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 1049 break; /* got enough */
c2aef333 1050 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
1051 kfree(mmarray);
1052 }
1053
1054 n = 0;
1055
1056 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
1057 cgroup_iter_start(cs->css.cgroup, &it);
1058 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
1059 struct mm_struct *mm;
1060
1061 if (n >= ntasks) {
1062 printk(KERN_WARNING
1063 "Cpuset mempolicy rebind incomplete.\n");
8793d854 1064 break;
4225399a 1065 }
4225399a
PJ
1066 mm = get_task_mm(p);
1067 if (!mm)
1068 continue;
1069 mmarray[n++] = mm;
8793d854
PM
1070 }
1071 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1072 read_unlock(&tasklist_lock);
4225399a
PJ
1073
1074 /*
1075 * Now that we've dropped the tasklist spinlock, we can
1076 * rebind the vma mempolicies of each mm in mmarray[] to their
1077 * new cpuset, and release that mm. The mpol_rebind_mm()
1078 * call takes mmap_sem, which we couldn't take while holding
846a16bf 1079 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
1080 * cpuset_being_rebound check will catch such forks, and rebind
1081 * their vma mempolicies too. Because we still hold the global
2df167a3 1082 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1083 * be contending for the global variable cpuset_being_rebound.
1084 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1085 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1086 */
04c19fa6 1087 migrate = is_memory_migrate(cs);
4225399a
PJ
1088 for (i = 0; i < n; i++) {
1089 struct mm_struct *mm = mmarray[i];
1090
1091 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 1092 if (migrate)
0b2f630a 1093 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
1094 mmput(mm);
1095 }
1096
2df167a3 1097 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1098 kfree(mmarray);
8793d854 1099 cpuset_being_rebound = NULL;
4225399a 1100 retval = 0;
59dac16f 1101done:
1da177e4
LT
1102 return retval;
1103}
1104
0b2f630a
MX
1105/*
1106 * Handle user request to change the 'mems' memory placement
1107 * of a cpuset. Needs to validate the request, update the
1108 * cpusets mems_allowed and mems_generation, and for each
1109 * task in the cpuset, rebind any vma mempolicies and if
1110 * the cpuset is marked 'memory_migrate', migrate the tasks
1111 * pages to the new memory.
1112 *
1113 * Call with cgroup_mutex held. May take callback_mutex during call.
1114 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1115 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1116 * their mempolicies to the cpusets new mems_allowed.
1117 */
645fcc9d
LZ
1118static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1119 const char *buf)
0b2f630a 1120{
0b2f630a
MX
1121 nodemask_t oldmem;
1122 int retval;
1123
1124 /*
1125 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1126 * it's read-only
1127 */
1128 if (cs == &top_cpuset)
1129 return -EACCES;
1130
0b2f630a
MX
1131 /*
1132 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1133 * Since nodelist_parse() fails on an empty mask, we special case
1134 * that parsing. The validate_change() call ensures that cpusets
1135 * with tasks have memory.
1136 */
1137 if (!*buf) {
645fcc9d 1138 nodes_clear(trialcs->mems_allowed);
0b2f630a 1139 } else {
645fcc9d 1140 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1141 if (retval < 0)
1142 goto done;
1143
645fcc9d 1144 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1145 node_states[N_HIGH_MEMORY]))
1146 return -EINVAL;
1147 }
1148 oldmem = cs->mems_allowed;
645fcc9d 1149 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1150 retval = 0; /* Too easy - nothing to do */
1151 goto done;
1152 }
645fcc9d 1153 retval = validate_change(cs, trialcs);
0b2f630a
MX
1154 if (retval < 0)
1155 goto done;
1156
1157 mutex_lock(&callback_mutex);
645fcc9d 1158 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1159 cs->mems_generation = cpuset_mems_generation++;
1160 mutex_unlock(&callback_mutex);
1161
1162 retval = update_tasks_nodemask(cs, &oldmem);
1163done:
1164 return retval;
1165}
1166
8793d854
PM
1167int current_cpuset_is_being_rebound(void)
1168{
1169 return task_cs(current) == cpuset_being_rebound;
1170}
1171
5be7a479 1172static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1173{
30e0e178
LZ
1174 if (val < -1 || val >= SD_LV_MAX)
1175 return -EINVAL;
1d3504fc
HS
1176
1177 if (val != cs->relax_domain_level) {
1178 cs->relax_domain_level = val;
c372e817 1179 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
cf417141 1180 async_rebuild_sched_domains();
1d3504fc
HS
1181 }
1182
1183 return 0;
1184}
1185
1da177e4
LT
1186/*
1187 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1188 * bit: the bit to update (see cpuset_flagbits_t)
1189 * cs: the cpuset to update
1190 * turning_on: whether the flag is being set or cleared
053199ed 1191 *
2df167a3 1192 * Call with cgroup_mutex held.
1da177e4
LT
1193 */
1194
700fe1ab
PM
1195static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1196 int turning_on)
1da177e4 1197{
645fcc9d 1198 struct cpuset *trialcs;
607717a6 1199 int err;
40b6a762 1200 int balance_flag_changed;
1da177e4 1201
645fcc9d
LZ
1202 trialcs = alloc_trial_cpuset(cs);
1203 if (!trialcs)
1204 return -ENOMEM;
1205
1da177e4 1206 if (turning_on)
645fcc9d 1207 set_bit(bit, &trialcs->flags);
1da177e4 1208 else
645fcc9d 1209 clear_bit(bit, &trialcs->flags);
1da177e4 1210
645fcc9d 1211 err = validate_change(cs, trialcs);
85d7b949 1212 if (err < 0)
645fcc9d 1213 goto out;
029190c5 1214
029190c5 1215 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1216 is_sched_load_balance(trialcs));
029190c5 1217
3d3f26a7 1218 mutex_lock(&callback_mutex);
645fcc9d 1219 cs->flags = trialcs->flags;
3d3f26a7 1220 mutex_unlock(&callback_mutex);
85d7b949 1221
645fcc9d 1222 if (!cpus_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1223 async_rebuild_sched_domains();
029190c5 1224
645fcc9d
LZ
1225out:
1226 free_trial_cpuset(trialcs);
1227 return err;
1da177e4
LT
1228}
1229
3e0d98b9 1230/*
80f7228b 1231 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1232 *
1233 * These routines manage a digitally filtered, constant time based,
1234 * event frequency meter. There are four routines:
1235 * fmeter_init() - initialize a frequency meter.
1236 * fmeter_markevent() - called each time the event happens.
1237 * fmeter_getrate() - returns the recent rate of such events.
1238 * fmeter_update() - internal routine used to update fmeter.
1239 *
1240 * A common data structure is passed to each of these routines,
1241 * which is used to keep track of the state required to manage the
1242 * frequency meter and its digital filter.
1243 *
1244 * The filter works on the number of events marked per unit time.
1245 * The filter is single-pole low-pass recursive (IIR). The time unit
1246 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1247 * simulate 3 decimal digits of precision (multiplied by 1000).
1248 *
1249 * With an FM_COEF of 933, and a time base of 1 second, the filter
1250 * has a half-life of 10 seconds, meaning that if the events quit
1251 * happening, then the rate returned from the fmeter_getrate()
1252 * will be cut in half each 10 seconds, until it converges to zero.
1253 *
1254 * It is not worth doing a real infinitely recursive filter. If more
1255 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1256 * just compute FM_MAXTICKS ticks worth, by which point the level
1257 * will be stable.
1258 *
1259 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1260 * arithmetic overflow in the fmeter_update() routine.
1261 *
1262 * Given the simple 32 bit integer arithmetic used, this meter works
1263 * best for reporting rates between one per millisecond (msec) and
1264 * one per 32 (approx) seconds. At constant rates faster than one
1265 * per msec it maxes out at values just under 1,000,000. At constant
1266 * rates between one per msec, and one per second it will stabilize
1267 * to a value N*1000, where N is the rate of events per second.
1268 * At constant rates between one per second and one per 32 seconds,
1269 * it will be choppy, moving up on the seconds that have an event,
1270 * and then decaying until the next event. At rates slower than
1271 * about one in 32 seconds, it decays all the way back to zero between
1272 * each event.
1273 */
1274
1275#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1276#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1277#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1278#define FM_SCALE 1000 /* faux fixed point scale */
1279
1280/* Initialize a frequency meter */
1281static void fmeter_init(struct fmeter *fmp)
1282{
1283 fmp->cnt = 0;
1284 fmp->val = 0;
1285 fmp->time = 0;
1286 spin_lock_init(&fmp->lock);
1287}
1288
1289/* Internal meter update - process cnt events and update value */
1290static void fmeter_update(struct fmeter *fmp)
1291{
1292 time_t now = get_seconds();
1293 time_t ticks = now - fmp->time;
1294
1295 if (ticks == 0)
1296 return;
1297
1298 ticks = min(FM_MAXTICKS, ticks);
1299 while (ticks-- > 0)
1300 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1301 fmp->time = now;
1302
1303 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1304 fmp->cnt = 0;
1305}
1306
1307/* Process any previous ticks, then bump cnt by one (times scale). */
1308static void fmeter_markevent(struct fmeter *fmp)
1309{
1310 spin_lock(&fmp->lock);
1311 fmeter_update(fmp);
1312 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1313 spin_unlock(&fmp->lock);
1314}
1315
1316/* Process any previous ticks, then return current value. */
1317static int fmeter_getrate(struct fmeter *fmp)
1318{
1319 int val;
1320
1321 spin_lock(&fmp->lock);
1322 fmeter_update(fmp);
1323 val = fmp->val;
1324 spin_unlock(&fmp->lock);
1325 return val;
1326}
1327
2341d1b6
LZ
1328/* Protected by cgroup_lock */
1329static cpumask_var_t cpus_attach;
1330
2df167a3 1331/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1332static int cpuset_can_attach(struct cgroup_subsys *ss,
1333 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1334{
8793d854 1335 struct cpuset *cs = cgroup_cs(cont);
5771f0a2 1336 int ret = 0;
1da177e4 1337
1da177e4
LT
1338 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1339 return -ENOSPC;
9985b0ba 1340
5771f0a2 1341 if (tsk->flags & PF_THREAD_BOUND) {
9985b0ba 1342 mutex_lock(&callback_mutex);
5771f0a2
LZ
1343 if (!cpus_equal(tsk->cpus_allowed, cs->cpus_allowed))
1344 ret = -EINVAL;
9985b0ba 1345 mutex_unlock(&callback_mutex);
9985b0ba 1346 }
1da177e4 1347
5771f0a2 1348 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
8793d854 1349}
1da177e4 1350
8793d854
PM
1351static void cpuset_attach(struct cgroup_subsys *ss,
1352 struct cgroup *cont, struct cgroup *oldcont,
1353 struct task_struct *tsk)
1354{
8793d854
PM
1355 nodemask_t from, to;
1356 struct mm_struct *mm;
1357 struct cpuset *cs = cgroup_cs(cont);
1358 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1359 int err;
22fb52dd 1360
f5813d94 1361 if (cs == &top_cpuset) {
2341d1b6 1362 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1363 } else {
1364 mutex_lock(&callback_mutex);
2341d1b6 1365 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1366 mutex_unlock(&callback_mutex);
1367 }
2341d1b6 1368 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1369 if (err)
1370 return;
1da177e4 1371
45b07ef3
PJ
1372 from = oldcs->mems_allowed;
1373 to = cs->mems_allowed;
4225399a
PJ
1374 mm = get_task_mm(tsk);
1375 if (mm) {
1376 mpol_rebind_mm(mm, &to);
2741a559 1377 if (is_memory_migrate(cs))
e4e364e8 1378 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1379 mmput(mm);
1380 }
1da177e4
LT
1381}
1382
1383/* The various types of files and directories in a cpuset file system */
1384
1385typedef enum {
45b07ef3 1386 FILE_MEMORY_MIGRATE,
1da177e4
LT
1387 FILE_CPULIST,
1388 FILE_MEMLIST,
1389 FILE_CPU_EXCLUSIVE,
1390 FILE_MEM_EXCLUSIVE,
78608366 1391 FILE_MEM_HARDWALL,
029190c5 1392 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1393 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1394 FILE_MEMORY_PRESSURE_ENABLED,
1395 FILE_MEMORY_PRESSURE,
825a46af
PJ
1396 FILE_SPREAD_PAGE,
1397 FILE_SPREAD_SLAB,
1da177e4
LT
1398} cpuset_filetype_t;
1399
700fe1ab
PM
1400static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1401{
1402 int retval = 0;
1403 struct cpuset *cs = cgroup_cs(cgrp);
1404 cpuset_filetype_t type = cft->private;
1405
e3712395 1406 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1407 return -ENODEV;
700fe1ab
PM
1408
1409 switch (type) {
1da177e4 1410 case FILE_CPU_EXCLUSIVE:
700fe1ab 1411 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1412 break;
1413 case FILE_MEM_EXCLUSIVE:
700fe1ab 1414 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1415 break;
78608366
PM
1416 case FILE_MEM_HARDWALL:
1417 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1418 break;
029190c5 1419 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1420 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1421 break;
45b07ef3 1422 case FILE_MEMORY_MIGRATE:
700fe1ab 1423 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1424 break;
3e0d98b9 1425 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1426 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1427 break;
1428 case FILE_MEMORY_PRESSURE:
1429 retval = -EACCES;
1430 break;
825a46af 1431 case FILE_SPREAD_PAGE:
700fe1ab 1432 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1433 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1434 break;
1435 case FILE_SPREAD_SLAB:
700fe1ab 1436 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1437 cs->mems_generation = cpuset_mems_generation++;
825a46af 1438 break;
1da177e4
LT
1439 default:
1440 retval = -EINVAL;
700fe1ab 1441 break;
1da177e4 1442 }
8793d854 1443 cgroup_unlock();
1da177e4
LT
1444 return retval;
1445}
1446
5be7a479
PM
1447static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1448{
1449 int retval = 0;
1450 struct cpuset *cs = cgroup_cs(cgrp);
1451 cpuset_filetype_t type = cft->private;
1452
e3712395 1453 if (!cgroup_lock_live_group(cgrp))
5be7a479 1454 return -ENODEV;
e3712395 1455
5be7a479
PM
1456 switch (type) {
1457 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1458 retval = update_relax_domain_level(cs, val);
1459 break;
1460 default:
1461 retval = -EINVAL;
1462 break;
1463 }
1464 cgroup_unlock();
1465 return retval;
1466}
1467
e3712395
PM
1468/*
1469 * Common handling for a write to a "cpus" or "mems" file.
1470 */
1471static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1472 const char *buf)
1473{
1474 int retval = 0;
645fcc9d
LZ
1475 struct cpuset *cs = cgroup_cs(cgrp);
1476 struct cpuset *trialcs;
e3712395
PM
1477
1478 if (!cgroup_lock_live_group(cgrp))
1479 return -ENODEV;
1480
645fcc9d
LZ
1481 trialcs = alloc_trial_cpuset(cs);
1482 if (!trialcs)
1483 return -ENOMEM;
1484
e3712395
PM
1485 switch (cft->private) {
1486 case FILE_CPULIST:
645fcc9d 1487 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1488 break;
1489 case FILE_MEMLIST:
645fcc9d 1490 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1491 break;
1492 default:
1493 retval = -EINVAL;
1494 break;
1495 }
645fcc9d
LZ
1496
1497 free_trial_cpuset(trialcs);
e3712395
PM
1498 cgroup_unlock();
1499 return retval;
1500}
1501
1da177e4
LT
1502/*
1503 * These ascii lists should be read in a single call, by using a user
1504 * buffer large enough to hold the entire map. If read in smaller
1505 * chunks, there is no guarantee of atomicity. Since the display format
1506 * used, list of ranges of sequential numbers, is variable length,
1507 * and since these maps can change value dynamically, one could read
1508 * gibberish by doing partial reads while a list was changing.
1509 * A single large read to a buffer that crosses a page boundary is
1510 * ok, because the result being copied to user land is not recomputed
1511 * across a page fault.
1512 */
1513
1514static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1515{
5a7625df 1516 int ret;
1da177e4 1517
3d3f26a7 1518 mutex_lock(&callback_mutex);
5a7625df 1519 ret = cpulist_scnprintf(page, PAGE_SIZE, &cs->cpus_allowed);
3d3f26a7 1520 mutex_unlock(&callback_mutex);
1da177e4 1521
5a7625df 1522 return ret;
1da177e4
LT
1523}
1524
1525static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1526{
1527 nodemask_t mask;
1528
3d3f26a7 1529 mutex_lock(&callback_mutex);
1da177e4 1530 mask = cs->mems_allowed;
3d3f26a7 1531 mutex_unlock(&callback_mutex);
1da177e4
LT
1532
1533 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1534}
1535
8793d854
PM
1536static ssize_t cpuset_common_file_read(struct cgroup *cont,
1537 struct cftype *cft,
1538 struct file *file,
1539 char __user *buf,
1540 size_t nbytes, loff_t *ppos)
1da177e4 1541{
8793d854 1542 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1543 cpuset_filetype_t type = cft->private;
1544 char *page;
1545 ssize_t retval = 0;
1546 char *s;
1da177e4 1547
e12ba74d 1548 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1549 return -ENOMEM;
1550
1551 s = page;
1552
1553 switch (type) {
1554 case FILE_CPULIST:
1555 s += cpuset_sprintf_cpulist(s, cs);
1556 break;
1557 case FILE_MEMLIST:
1558 s += cpuset_sprintf_memlist(s, cs);
1559 break;
1da177e4
LT
1560 default:
1561 retval = -EINVAL;
1562 goto out;
1563 }
1564 *s++ = '\n';
1da177e4 1565
eacaa1f5 1566 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1567out:
1568 free_page((unsigned long)page);
1569 return retval;
1570}
1571
700fe1ab
PM
1572static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1573{
1574 struct cpuset *cs = cgroup_cs(cont);
1575 cpuset_filetype_t type = cft->private;
1576 switch (type) {
1577 case FILE_CPU_EXCLUSIVE:
1578 return is_cpu_exclusive(cs);
1579 case FILE_MEM_EXCLUSIVE:
1580 return is_mem_exclusive(cs);
78608366
PM
1581 case FILE_MEM_HARDWALL:
1582 return is_mem_hardwall(cs);
700fe1ab
PM
1583 case FILE_SCHED_LOAD_BALANCE:
1584 return is_sched_load_balance(cs);
1585 case FILE_MEMORY_MIGRATE:
1586 return is_memory_migrate(cs);
1587 case FILE_MEMORY_PRESSURE_ENABLED:
1588 return cpuset_memory_pressure_enabled;
1589 case FILE_MEMORY_PRESSURE:
1590 return fmeter_getrate(&cs->fmeter);
1591 case FILE_SPREAD_PAGE:
1592 return is_spread_page(cs);
1593 case FILE_SPREAD_SLAB:
1594 return is_spread_slab(cs);
1595 default:
1596 BUG();
1597 }
cf417141
MK
1598
1599 /* Unreachable but makes gcc happy */
1600 return 0;
700fe1ab 1601}
1da177e4 1602
5be7a479
PM
1603static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1604{
1605 struct cpuset *cs = cgroup_cs(cont);
1606 cpuset_filetype_t type = cft->private;
1607 switch (type) {
1608 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1609 return cs->relax_domain_level;
1610 default:
1611 BUG();
1612 }
cf417141
MK
1613
1614 /* Unrechable but makes gcc happy */
1615 return 0;
5be7a479
PM
1616}
1617
1da177e4
LT
1618
1619/*
1620 * for the common functions, 'private' gives the type of file
1621 */
1622
addf2c73
PM
1623static struct cftype files[] = {
1624 {
1625 .name = "cpus",
1626 .read = cpuset_common_file_read,
e3712395
PM
1627 .write_string = cpuset_write_resmask,
1628 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1629 .private = FILE_CPULIST,
1630 },
1631
1632 {
1633 .name = "mems",
1634 .read = cpuset_common_file_read,
e3712395
PM
1635 .write_string = cpuset_write_resmask,
1636 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1637 .private = FILE_MEMLIST,
1638 },
1639
1640 {
1641 .name = "cpu_exclusive",
1642 .read_u64 = cpuset_read_u64,
1643 .write_u64 = cpuset_write_u64,
1644 .private = FILE_CPU_EXCLUSIVE,
1645 },
1646
1647 {
1648 .name = "mem_exclusive",
1649 .read_u64 = cpuset_read_u64,
1650 .write_u64 = cpuset_write_u64,
1651 .private = FILE_MEM_EXCLUSIVE,
1652 },
1653
78608366
PM
1654 {
1655 .name = "mem_hardwall",
1656 .read_u64 = cpuset_read_u64,
1657 .write_u64 = cpuset_write_u64,
1658 .private = FILE_MEM_HARDWALL,
1659 },
1660
addf2c73
PM
1661 {
1662 .name = "sched_load_balance",
1663 .read_u64 = cpuset_read_u64,
1664 .write_u64 = cpuset_write_u64,
1665 .private = FILE_SCHED_LOAD_BALANCE,
1666 },
1667
1668 {
1669 .name = "sched_relax_domain_level",
5be7a479
PM
1670 .read_s64 = cpuset_read_s64,
1671 .write_s64 = cpuset_write_s64,
addf2c73
PM
1672 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1673 },
1674
1675 {
1676 .name = "memory_migrate",
1677 .read_u64 = cpuset_read_u64,
1678 .write_u64 = cpuset_write_u64,
1679 .private = FILE_MEMORY_MIGRATE,
1680 },
1681
1682 {
1683 .name = "memory_pressure",
1684 .read_u64 = cpuset_read_u64,
1685 .write_u64 = cpuset_write_u64,
1686 .private = FILE_MEMORY_PRESSURE,
1687 },
1688
1689 {
1690 .name = "memory_spread_page",
1691 .read_u64 = cpuset_read_u64,
1692 .write_u64 = cpuset_write_u64,
1693 .private = FILE_SPREAD_PAGE,
1694 },
1695
1696 {
1697 .name = "memory_spread_slab",
1698 .read_u64 = cpuset_read_u64,
1699 .write_u64 = cpuset_write_u64,
1700 .private = FILE_SPREAD_SLAB,
1701 },
45b07ef3
PJ
1702};
1703
3e0d98b9
PJ
1704static struct cftype cft_memory_pressure_enabled = {
1705 .name = "memory_pressure_enabled",
700fe1ab
PM
1706 .read_u64 = cpuset_read_u64,
1707 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1708 .private = FILE_MEMORY_PRESSURE_ENABLED,
1709};
1710
8793d854 1711static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1712{
1713 int err;
1714
addf2c73
PM
1715 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1716 if (err)
1da177e4 1717 return err;
8793d854 1718 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1719 if (!cont->parent)
8793d854 1720 err = cgroup_add_file(cont, ss,
addf2c73
PM
1721 &cft_memory_pressure_enabled);
1722 return err;
1da177e4
LT
1723}
1724
8793d854
PM
1725/*
1726 * post_clone() is called at the end of cgroup_clone().
1727 * 'cgroup' was just created automatically as a result of
1728 * a cgroup_clone(), and the current task is about to
1729 * be moved into 'cgroup'.
1730 *
1731 * Currently we refuse to set up the cgroup - thereby
1732 * refusing the task to be entered, and as a result refusing
1733 * the sys_unshare() or clone() which initiated it - if any
1734 * sibling cpusets have exclusive cpus or mem.
1735 *
1736 * If this becomes a problem for some users who wish to
1737 * allow that scenario, then cpuset_post_clone() could be
1738 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1739 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1740 * held.
8793d854
PM
1741 */
1742static void cpuset_post_clone(struct cgroup_subsys *ss,
1743 struct cgroup *cgroup)
1744{
1745 struct cgroup *parent, *child;
1746 struct cpuset *cs, *parent_cs;
1747
1748 parent = cgroup->parent;
1749 list_for_each_entry(child, &parent->children, sibling) {
1750 cs = cgroup_cs(child);
1751 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1752 return;
1753 }
1754 cs = cgroup_cs(cgroup);
1755 parent_cs = cgroup_cs(parent);
1756
1757 cs->mems_allowed = parent_cs->mems_allowed;
1758 cs->cpus_allowed = parent_cs->cpus_allowed;
1759 return;
1760}
1761
1da177e4
LT
1762/*
1763 * cpuset_create - create a cpuset
2df167a3
PM
1764 * ss: cpuset cgroup subsystem
1765 * cont: control group that the new cpuset will be part of
1da177e4
LT
1766 */
1767
8793d854
PM
1768static struct cgroup_subsys_state *cpuset_create(
1769 struct cgroup_subsys *ss,
1770 struct cgroup *cont)
1da177e4
LT
1771{
1772 struct cpuset *cs;
8793d854 1773 struct cpuset *parent;
1da177e4 1774
8793d854
PM
1775 if (!cont->parent) {
1776 /* This is early initialization for the top cgroup */
1777 top_cpuset.mems_generation = cpuset_mems_generation++;
1778 return &top_cpuset.css;
1779 }
1780 parent = cgroup_cs(cont->parent);
1da177e4
LT
1781 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1782 if (!cs)
8793d854 1783 return ERR_PTR(-ENOMEM);
1da177e4 1784
cf2a473c 1785 cpuset_update_task_memory_state();
1da177e4 1786 cs->flags = 0;
825a46af
PJ
1787 if (is_spread_page(parent))
1788 set_bit(CS_SPREAD_PAGE, &cs->flags);
1789 if (is_spread_slab(parent))
1790 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1791 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1792 cpus_clear(cs->cpus_allowed);
1793 nodes_clear(cs->mems_allowed);
151a4420 1794 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1795 fmeter_init(&cs->fmeter);
1d3504fc 1796 cs->relax_domain_level = -1;
1da177e4
LT
1797
1798 cs->parent = parent;
202f72d5 1799 number_of_cpusets++;
8793d854 1800 return &cs->css ;
1da177e4
LT
1801}
1802
029190c5 1803/*
029190c5
PJ
1804 * If the cpuset being removed has its flag 'sched_load_balance'
1805 * enabled, then simulate turning sched_load_balance off, which
cf417141 1806 * will call async_rebuild_sched_domains().
029190c5
PJ
1807 */
1808
8793d854 1809static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1810{
8793d854 1811 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1812
cf2a473c 1813 cpuset_update_task_memory_state();
029190c5
PJ
1814
1815 if (is_sched_load_balance(cs))
700fe1ab 1816 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1817
202f72d5 1818 number_of_cpusets--;
8793d854 1819 kfree(cs);
1da177e4
LT
1820}
1821
8793d854
PM
1822struct cgroup_subsys cpuset_subsys = {
1823 .name = "cpuset",
1824 .create = cpuset_create,
cf417141 1825 .destroy = cpuset_destroy,
8793d854
PM
1826 .can_attach = cpuset_can_attach,
1827 .attach = cpuset_attach,
1828 .populate = cpuset_populate,
1829 .post_clone = cpuset_post_clone,
1830 .subsys_id = cpuset_subsys_id,
1831 .early_init = 1,
1832};
1833
c417f024
PJ
1834/*
1835 * cpuset_init_early - just enough so that the calls to
1836 * cpuset_update_task_memory_state() in early init code
1837 * are harmless.
1838 */
1839
1840int __init cpuset_init_early(void)
1841{
8793d854 1842 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1843 return 0;
1844}
1845
8793d854 1846
1da177e4
LT
1847/**
1848 * cpuset_init - initialize cpusets at system boot
1849 *
1850 * Description: Initialize top_cpuset and the cpuset internal file system,
1851 **/
1852
1853int __init cpuset_init(void)
1854{
8793d854 1855 int err = 0;
1da177e4 1856
f9a86fcb
MT
1857 cpus_setall(top_cpuset.cpus_allowed);
1858 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1859
3e0d98b9 1860 fmeter_init(&top_cpuset.fmeter);
151a4420 1861 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1862 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1863 top_cpuset.relax_domain_level = -1;
1da177e4 1864
1da177e4
LT
1865 err = register_filesystem(&cpuset_fs_type);
1866 if (err < 0)
8793d854
PM
1867 return err;
1868
2341d1b6
LZ
1869 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1870 BUG();
1871
202f72d5 1872 number_of_cpusets = 1;
8793d854 1873 return 0;
1da177e4
LT
1874}
1875
956db3ca
CW
1876/**
1877 * cpuset_do_move_task - move a given task to another cpuset
1878 * @tsk: pointer to task_struct the task to move
1879 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1880 *
1881 * Called by cgroup_scan_tasks() for each task in a cgroup.
1882 * Return nonzero to stop the walk through the tasks.
1883 */
9e0c914c
AB
1884static void cpuset_do_move_task(struct task_struct *tsk,
1885 struct cgroup_scanner *scan)
956db3ca
CW
1886{
1887 struct cpuset_hotplug_scanner *chsp;
1888
1889 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1890 cgroup_attach_task(chsp->to, tsk);
1891}
1892
1893/**
1894 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1895 * @from: cpuset in which the tasks currently reside
1896 * @to: cpuset to which the tasks will be moved
1897 *
c8d9c90c
PJ
1898 * Called with cgroup_mutex held
1899 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1900 *
1901 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1902 * calling callback functions for each.
1903 */
1904static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1905{
1906 struct cpuset_hotplug_scanner scan;
1907
1908 scan.scan.cg = from->css.cgroup;
1909 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1910 scan.scan.process_task = cpuset_do_move_task;
1911 scan.scan.heap = NULL;
1912 scan.to = to->css.cgroup;
1913
da5ef6bb 1914 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1915 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1916 "cgroup_scan_tasks failed\n");
1917}
1918
b1aac8bb 1919/*
cf417141 1920 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1921 * or memory nodes, we need to walk over the cpuset hierarchy,
1922 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1923 * last CPU or node from a cpuset, then move the tasks in the empty
1924 * cpuset to its next-highest non-empty parent.
b1aac8bb 1925 *
c8d9c90c
PJ
1926 * Called with cgroup_mutex held
1927 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1928 */
956db3ca
CW
1929static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1930{
1931 struct cpuset *parent;
1932
c8d9c90c
PJ
1933 /*
1934 * The cgroup's css_sets list is in use if there are tasks
1935 * in the cpuset; the list is empty if there are none;
1936 * the cs->css.refcnt seems always 0.
1937 */
956db3ca
CW
1938 if (list_empty(&cs->css.cgroup->css_sets))
1939 return;
b1aac8bb 1940
956db3ca
CW
1941 /*
1942 * Find its next-highest non-empty parent, (top cpuset
1943 * has online cpus, so can't be empty).
1944 */
1945 parent = cs->parent;
b4501295
PJ
1946 while (cpus_empty(parent->cpus_allowed) ||
1947 nodes_empty(parent->mems_allowed))
956db3ca 1948 parent = parent->parent;
956db3ca
CW
1949
1950 move_member_tasks_to_cpuset(cs, parent);
1951}
1952
1953/*
1954 * Walk the specified cpuset subtree and look for empty cpusets.
1955 * The tasks of such cpuset must be moved to a parent cpuset.
1956 *
2df167a3 1957 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1958 * cpus_allowed and mems_allowed.
1959 *
1960 * This walk processes the tree from top to bottom, completing one layer
1961 * before dropping down to the next. It always processes a node before
1962 * any of its children.
1963 *
1964 * For now, since we lack memory hot unplug, we'll never see a cpuset
1965 * that has tasks along with an empty 'mems'. But if we did see such
1966 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1967 */
d294eb83 1968static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1969{
8d1e6266 1970 LIST_HEAD(queue);
956db3ca
CW
1971 struct cpuset *cp; /* scans cpusets being updated */
1972 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1973 struct cgroup *cont;
f9b4fb8d 1974 nodemask_t oldmems;
b1aac8bb 1975
956db3ca
CW
1976 list_add_tail((struct list_head *)&root->stack_list, &queue);
1977
956db3ca 1978 while (!list_empty(&queue)) {
8d1e6266 1979 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1980 list_del(queue.next);
1981 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1982 child = cgroup_cs(cont);
1983 list_add_tail(&child->stack_list, &queue);
1984 }
b4501295
PJ
1985
1986 /* Continue past cpusets with all cpus, mems online */
1987 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1988 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1989 continue;
1990
f9b4fb8d
MX
1991 oldmems = cp->mems_allowed;
1992
956db3ca 1993 /* Remove offline cpus and mems from this cpuset. */
b4501295 1994 mutex_lock(&callback_mutex);
956db3ca
CW
1995 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1996 nodes_and(cp->mems_allowed, cp->mems_allowed,
1997 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1998 mutex_unlock(&callback_mutex);
1999
2000 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 2001 if (cpus_empty(cp->cpus_allowed) ||
b4501295 2002 nodes_empty(cp->mems_allowed))
956db3ca 2003 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2004 else {
4e74339a 2005 update_tasks_cpumask(cp, NULL);
f9b4fb8d
MX
2006 update_tasks_nodemask(cp, &oldmems);
2007 }
b1aac8bb
PJ
2008 }
2009}
2010
4c4d50f7
PJ
2011/*
2012 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2013 * period. This is necessary in order to make cpusets transparent
2014 * (of no affect) on systems that are actively using CPU hotplug
2015 * but making no active use of cpusets.
2016 *
38837fc7
PJ
2017 * This routine ensures that top_cpuset.cpus_allowed tracks
2018 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2019 *
2020 * Called within get_online_cpus(). Needs to call cgroup_lock()
2021 * before calling generate_sched_domains().
4c4d50f7 2022 */
cf417141 2023static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2024 unsigned long phase, void *unused_cpu)
4c4d50f7 2025{
cf417141
MK
2026 struct sched_domain_attr *attr;
2027 cpumask_t *doms;
2028 int ndoms;
2029
3e84050c 2030 switch (phase) {
3e84050c
DA
2031 case CPU_ONLINE:
2032 case CPU_ONLINE_FROZEN:
2033 case CPU_DEAD:
2034 case CPU_DEAD_FROZEN:
3e84050c 2035 break;
cf417141 2036
3e84050c 2037 default:
ac076758 2038 return NOTIFY_DONE;
3e84050c 2039 }
ac076758 2040
cf417141
MK
2041 cgroup_lock();
2042 top_cpuset.cpus_allowed = cpu_online_map;
2043 scan_for_empty_cpusets(&top_cpuset);
2044 ndoms = generate_sched_domains(&doms, &attr);
2045 cgroup_unlock();
2046
2047 /* Have scheduler rebuild the domains */
2048 partition_sched_domains(ndoms, doms, attr);
2049
3e84050c 2050 return NOTIFY_OK;
4c4d50f7 2051}
4c4d50f7 2052
b1aac8bb 2053#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2054/*
0e1e7c7a 2055 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2056 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2057 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2058 */
f481891f
MX
2059static int cpuset_track_online_nodes(struct notifier_block *self,
2060 unsigned long action, void *arg)
38837fc7 2061{
cf417141 2062 cgroup_lock();
f481891f
MX
2063 switch (action) {
2064 case MEM_ONLINE:
2065 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2066 break;
2067 case MEM_OFFLINE:
2068 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2069 scan_for_empty_cpusets(&top_cpuset);
2070 break;
2071 default:
2072 break;
2073 }
cf417141 2074 cgroup_unlock();
f481891f 2075 return NOTIFY_OK;
38837fc7
PJ
2076}
2077#endif
2078
1da177e4
LT
2079/**
2080 * cpuset_init_smp - initialize cpus_allowed
2081 *
2082 * Description: Finish top cpuset after cpu, node maps are initialized
2083 **/
2084
2085void __init cpuset_init_smp(void)
2086{
2087 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 2088 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2089
cf417141 2090 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2091 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
1da177e4
LT
2092}
2093
2094/**
1da177e4
LT
2095 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2096 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 2097 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
2098 *
2099 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2100 * attached to the specified @tsk. Guaranteed to return some non-empty
2101 * subset of cpu_online_map, even if this means going outside the
2102 * tasks cpuset.
2103 **/
2104
f9a86fcb 2105void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 2106{
3d3f26a7 2107 mutex_lock(&callback_mutex);
f9a86fcb 2108 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2109 mutex_unlock(&callback_mutex);
470fd646
CW
2110}
2111
2112/**
2113 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2114 * Must be called with callback_mutex held.
470fd646 2115 **/
f9a86fcb 2116void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 2117{
909d75a3 2118 task_lock(tsk);
f9a86fcb 2119 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2120 task_unlock(tsk);
1da177e4
LT
2121}
2122
2123void cpuset_init_current_mems_allowed(void)
2124{
f9a86fcb 2125 nodes_setall(current->mems_allowed);
1da177e4
LT
2126}
2127
909d75a3
PJ
2128/**
2129 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2130 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2131 *
2132 * Description: Returns the nodemask_t mems_allowed of the cpuset
2133 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2134 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2135 * tasks cpuset.
2136 **/
2137
2138nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2139{
2140 nodemask_t mask;
2141
3d3f26a7 2142 mutex_lock(&callback_mutex);
909d75a3 2143 task_lock(tsk);
8793d854 2144 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2145 task_unlock(tsk);
3d3f26a7 2146 mutex_unlock(&callback_mutex);
909d75a3
PJ
2147
2148 return mask;
2149}
2150
d9fd8a6d 2151/**
19770b32
MG
2152 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2153 * @nodemask: the nodemask to be checked
d9fd8a6d 2154 *
19770b32 2155 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2156 */
19770b32 2157int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2158{
19770b32 2159 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2160}
2161
9bf2229f 2162/*
78608366
PM
2163 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2164 * mem_hardwall ancestor to the specified cpuset. Call holding
2165 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2166 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2167 */
78608366 2168static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2169{
78608366 2170 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2171 cs = cs->parent;
2172 return cs;
2173}
2174
d9fd8a6d 2175/**
02a0e53d 2176 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2177 * @z: is this zone on an allowed node?
02a0e53d 2178 * @gfp_mask: memory allocation flags
d9fd8a6d 2179 *
02a0e53d
PJ
2180 * If we're in interrupt, yes, we can always allocate. If
2181 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2182 * z's node is in our tasks mems_allowed, yes. If it's not a
2183 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2184 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2185 * If the task has been OOM killed and has access to memory reserves
2186 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2187 * Otherwise, no.
2188 *
02a0e53d
PJ
2189 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2190 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2191 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2192 * from an enclosing cpuset.
2193 *
2194 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2195 * hardwall cpusets, and never sleeps.
2196 *
2197 * The __GFP_THISNODE placement logic is really handled elsewhere,
2198 * by forcibly using a zonelist starting at a specified node, and by
2199 * (in get_page_from_freelist()) refusing to consider the zones for
2200 * any node on the zonelist except the first. By the time any such
2201 * calls get to this routine, we should just shut up and say 'yes'.
2202 *
9bf2229f 2203 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2204 * and do not allow allocations outside the current tasks cpuset
2205 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2206 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2207 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2208 *
02a0e53d
PJ
2209 * Scanning up parent cpusets requires callback_mutex. The
2210 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2211 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2212 * current tasks mems_allowed came up empty on the first pass over
2213 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2214 * cpuset are short of memory, might require taking the callback_mutex
2215 * mutex.
9bf2229f 2216 *
36be57ff 2217 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2218 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2219 * so no allocation on a node outside the cpuset is allowed (unless
2220 * in interrupt, of course).
36be57ff
PJ
2221 *
2222 * The second pass through get_page_from_freelist() doesn't even call
2223 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2224 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2225 * in alloc_flags. That logic and the checks below have the combined
2226 * affect that:
9bf2229f
PJ
2227 * in_interrupt - any node ok (current task context irrelevant)
2228 * GFP_ATOMIC - any node ok
c596d9f3 2229 * TIF_MEMDIE - any node ok
78608366 2230 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2231 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2232 *
2233 * Rule:
02a0e53d 2234 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2235 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2236 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2237 */
9bf2229f 2238
02a0e53d 2239int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2240{
9bf2229f
PJ
2241 int node; /* node that zone z is on */
2242 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2243 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2244
9b819d20 2245 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2246 return 1;
89fa3024 2247 node = zone_to_nid(z);
92d1dbd2 2248 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2249 if (node_isset(node, current->mems_allowed))
2250 return 1;
c596d9f3
DR
2251 /*
2252 * Allow tasks that have access to memory reserves because they have
2253 * been OOM killed to get memory anywhere.
2254 */
2255 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2256 return 1;
9bf2229f
PJ
2257 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2258 return 0;
2259
5563e770
BP
2260 if (current->flags & PF_EXITING) /* Let dying task have memory */
2261 return 1;
2262
9bf2229f 2263 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2264 mutex_lock(&callback_mutex);
053199ed 2265
053199ed 2266 task_lock(current);
78608366 2267 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2268 task_unlock(current);
2269
9bf2229f 2270 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2271 mutex_unlock(&callback_mutex);
9bf2229f 2272 return allowed;
1da177e4
LT
2273}
2274
02a0e53d
PJ
2275/*
2276 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2277 * @z: is this zone on an allowed node?
2278 * @gfp_mask: memory allocation flags
2279 *
2280 * If we're in interrupt, yes, we can always allocate.
2281 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2282 * z's node is in our tasks mems_allowed, yes. If the task has been
2283 * OOM killed and has access to memory reserves as specified by the
2284 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2285 *
2286 * The __GFP_THISNODE placement logic is really handled elsewhere,
2287 * by forcibly using a zonelist starting at a specified node, and by
2288 * (in get_page_from_freelist()) refusing to consider the zones for
2289 * any node on the zonelist except the first. By the time any such
2290 * calls get to this routine, we should just shut up and say 'yes'.
2291 *
2292 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2293 * this variant requires that the zone be in the current tasks
2294 * mems_allowed or that we're in interrupt. It does not scan up the
2295 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2296 * It never sleeps.
2297 */
2298
2299int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2300{
2301 int node; /* node that zone z is on */
2302
2303 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2304 return 1;
2305 node = zone_to_nid(z);
2306 if (node_isset(node, current->mems_allowed))
2307 return 1;
dedf8b79
DW
2308 /*
2309 * Allow tasks that have access to memory reserves because they have
2310 * been OOM killed to get memory anywhere.
2311 */
2312 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2313 return 1;
02a0e53d
PJ
2314 return 0;
2315}
2316
505970b9
PJ
2317/**
2318 * cpuset_lock - lock out any changes to cpuset structures
2319 *
3d3f26a7 2320 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2321 * from being changed while it scans the tasklist looking for a
3d3f26a7 2322 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2323 * cpuset_lock() routine, so the oom code can lock it, before
2324 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2325 * must be taken inside callback_mutex.
505970b9
PJ
2326 */
2327
2328void cpuset_lock(void)
2329{
3d3f26a7 2330 mutex_lock(&callback_mutex);
505970b9
PJ
2331}
2332
2333/**
2334 * cpuset_unlock - release lock on cpuset changes
2335 *
2336 * Undo the lock taken in a previous cpuset_lock() call.
2337 */
2338
2339void cpuset_unlock(void)
2340{
3d3f26a7 2341 mutex_unlock(&callback_mutex);
505970b9
PJ
2342}
2343
825a46af
PJ
2344/**
2345 * cpuset_mem_spread_node() - On which node to begin search for a page
2346 *
2347 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2348 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2349 * and if the memory allocation used cpuset_mem_spread_node()
2350 * to determine on which node to start looking, as it will for
2351 * certain page cache or slab cache pages such as used for file
2352 * system buffers and inode caches, then instead of starting on the
2353 * local node to look for a free page, rather spread the starting
2354 * node around the tasks mems_allowed nodes.
2355 *
2356 * We don't have to worry about the returned node being offline
2357 * because "it can't happen", and even if it did, it would be ok.
2358 *
2359 * The routines calling guarantee_online_mems() are careful to
2360 * only set nodes in task->mems_allowed that are online. So it
2361 * should not be possible for the following code to return an
2362 * offline node. But if it did, that would be ok, as this routine
2363 * is not returning the node where the allocation must be, only
2364 * the node where the search should start. The zonelist passed to
2365 * __alloc_pages() will include all nodes. If the slab allocator
2366 * is passed an offline node, it will fall back to the local node.
2367 * See kmem_cache_alloc_node().
2368 */
2369
2370int cpuset_mem_spread_node(void)
2371{
2372 int node;
2373
2374 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2375 if (node == MAX_NUMNODES)
2376 node = first_node(current->mems_allowed);
2377 current->cpuset_mem_spread_rotor = node;
2378 return node;
2379}
2380EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2381
ef08e3b4 2382/**
bbe373f2
DR
2383 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2384 * @tsk1: pointer to task_struct of some task.
2385 * @tsk2: pointer to task_struct of some other task.
2386 *
2387 * Description: Return true if @tsk1's mems_allowed intersects the
2388 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2389 * one of the task's memory usage might impact the memory available
2390 * to the other.
ef08e3b4
PJ
2391 **/
2392
bbe373f2
DR
2393int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2394 const struct task_struct *tsk2)
ef08e3b4 2395{
bbe373f2 2396 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2397}
2398
75aa1994
DR
2399/**
2400 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2401 * @task: pointer to task_struct of some task.
2402 *
2403 * Description: Prints @task's name, cpuset name, and cached copy of its
2404 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2405 * dereferencing task_cs(task).
2406 */
2407void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2408{
2409 struct dentry *dentry;
2410
2411 dentry = task_cs(tsk)->css.cgroup->dentry;
2412 spin_lock(&cpuset_buffer_lock);
2413 snprintf(cpuset_name, CPUSET_NAME_LEN,
2414 dentry ? (const char *)dentry->d_name.name : "/");
2415 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2416 tsk->mems_allowed);
2417 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2418 tsk->comm, cpuset_name, cpuset_nodelist);
2419 spin_unlock(&cpuset_buffer_lock);
2420}
2421
3e0d98b9
PJ
2422/*
2423 * Collection of memory_pressure is suppressed unless
2424 * this flag is enabled by writing "1" to the special
2425 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2426 */
2427
c5b2aff8 2428int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2429
2430/**
2431 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2432 *
2433 * Keep a running average of the rate of synchronous (direct)
2434 * page reclaim efforts initiated by tasks in each cpuset.
2435 *
2436 * This represents the rate at which some task in the cpuset
2437 * ran low on memory on all nodes it was allowed to use, and
2438 * had to enter the kernels page reclaim code in an effort to
2439 * create more free memory by tossing clean pages or swapping
2440 * or writing dirty pages.
2441 *
2442 * Display to user space in the per-cpuset read-only file
2443 * "memory_pressure". Value displayed is an integer
2444 * representing the recent rate of entry into the synchronous
2445 * (direct) page reclaim by any task attached to the cpuset.
2446 **/
2447
2448void __cpuset_memory_pressure_bump(void)
2449{
3e0d98b9 2450 task_lock(current);
8793d854 2451 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2452 task_unlock(current);
2453}
2454
8793d854 2455#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2456/*
2457 * proc_cpuset_show()
2458 * - Print tasks cpuset path into seq_file.
2459 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2460 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2461 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2462 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2463 * anyway.
1da177e4 2464 */
029190c5 2465static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2466{
13b41b09 2467 struct pid *pid;
1da177e4
LT
2468 struct task_struct *tsk;
2469 char *buf;
8793d854 2470 struct cgroup_subsys_state *css;
99f89551 2471 int retval;
1da177e4 2472
99f89551 2473 retval = -ENOMEM;
1da177e4
LT
2474 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2475 if (!buf)
99f89551
EB
2476 goto out;
2477
2478 retval = -ESRCH;
13b41b09
EB
2479 pid = m->private;
2480 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2481 if (!tsk)
2482 goto out_free;
1da177e4 2483
99f89551 2484 retval = -EINVAL;
8793d854
PM
2485 cgroup_lock();
2486 css = task_subsys_state(tsk, cpuset_subsys_id);
2487 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2488 if (retval < 0)
99f89551 2489 goto out_unlock;
1da177e4
LT
2490 seq_puts(m, buf);
2491 seq_putc(m, '\n');
99f89551 2492out_unlock:
8793d854 2493 cgroup_unlock();
99f89551
EB
2494 put_task_struct(tsk);
2495out_free:
1da177e4 2496 kfree(buf);
99f89551 2497out:
1da177e4
LT
2498 return retval;
2499}
2500
2501static int cpuset_open(struct inode *inode, struct file *file)
2502{
13b41b09
EB
2503 struct pid *pid = PROC_I(inode)->pid;
2504 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2505}
2506
9a32144e 2507const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2508 .open = cpuset_open,
2509 .read = seq_read,
2510 .llseek = seq_lseek,
2511 .release = single_release,
2512};
8793d854 2513#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2514
2515/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2516void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2517{
2518 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2519 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2520 seq_printf(m, "\n");
39106dcf 2521 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2522 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2523 seq_printf(m, "\n");
df5f8314 2524 seq_printf(m, "Mems_allowed:\t");
30e8e136 2525 seq_nodemask(m, &task->mems_allowed);
df5f8314 2526 seq_printf(m, "\n");
39106dcf 2527 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2528 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2529 seq_printf(m, "\n");
1da177e4 2530}