cpuset: record old_mems_allowed in struct cpuset
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854
PM
72struct cgroup_subsys cpuset_subsys;
73struct cpuset;
74
3e0d98b9
PJ
75/* See "Frequency meter" comments, below. */
76
77struct fmeter {
78 int cnt; /* unprocessed events count */
79 int val; /* most recent output value */
80 time_t time; /* clock (secs) when val computed */
81 spinlock_t lock; /* guards read or write of above */
82};
83
1da177e4 84struct cpuset {
8793d854
PM
85 struct cgroup_subsys_state css;
86
1da177e4 87 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 88 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
89 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
90
33ad801d
LZ
91 /*
92 * This is old Memory Nodes tasks took on.
93 *
94 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
95 * - A new cpuset's old_mems_allowed is initialized when some
96 * task is moved into it.
97 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
98 * cpuset.mems_allowed and have tasks' nodemask updated, and
99 * then old_mems_allowed is updated to mems_allowed.
100 */
101 nodemask_t old_mems_allowed;
102
3e0d98b9 103 struct fmeter fmeter; /* memory_pressure filter */
029190c5 104
452477fa
TH
105 /*
106 * Tasks are being attached to this cpuset. Used to prevent
107 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
108 */
109 int attach_in_progress;
110
029190c5
PJ
111 /* partition number for rebuild_sched_domains() */
112 int pn;
956db3ca 113
1d3504fc
HS
114 /* for custom sched domain */
115 int relax_domain_level;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
8793d854 131
c431069f
TH
132static inline struct cpuset *parent_cs(const struct cpuset *cs)
133{
134 struct cgroup *pcgrp = cs->css.cgroup->parent;
135
136 if (pcgrp)
137 return cgroup_cs(pcgrp);
138 return NULL;
139}
140
b246272e
DR
141#ifdef CONFIG_NUMA
142static inline bool task_has_mempolicy(struct task_struct *task)
143{
144 return task->mempolicy;
145}
146#else
147static inline bool task_has_mempolicy(struct task_struct *task)
148{
149 return false;
150}
151#endif
152
153
1da177e4
LT
154/* bits in struct cpuset flags field */
155typedef enum {
efeb77b2 156 CS_ONLINE,
1da177e4
LT
157 CS_CPU_EXCLUSIVE,
158 CS_MEM_EXCLUSIVE,
78608366 159 CS_MEM_HARDWALL,
45b07ef3 160 CS_MEMORY_MIGRATE,
029190c5 161 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
162 CS_SPREAD_PAGE,
163 CS_SPREAD_SLAB,
1da177e4
LT
164} cpuset_flagbits_t;
165
166/* convenient tests for these bits */
efeb77b2
TH
167static inline bool is_cpuset_online(const struct cpuset *cs)
168{
169 return test_bit(CS_ONLINE, &cs->flags);
170}
171
1da177e4
LT
172static inline int is_cpu_exclusive(const struct cpuset *cs)
173{
7b5b9ef0 174 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
175}
176
177static inline int is_mem_exclusive(const struct cpuset *cs)
178{
7b5b9ef0 179 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
180}
181
78608366
PM
182static inline int is_mem_hardwall(const struct cpuset *cs)
183{
184 return test_bit(CS_MEM_HARDWALL, &cs->flags);
185}
186
029190c5
PJ
187static inline int is_sched_load_balance(const struct cpuset *cs)
188{
189 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
190}
191
45b07ef3
PJ
192static inline int is_memory_migrate(const struct cpuset *cs)
193{
7b5b9ef0 194 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
195}
196
825a46af
PJ
197static inline int is_spread_page(const struct cpuset *cs)
198{
199 return test_bit(CS_SPREAD_PAGE, &cs->flags);
200}
201
202static inline int is_spread_slab(const struct cpuset *cs)
203{
204 return test_bit(CS_SPREAD_SLAB, &cs->flags);
205}
206
1da177e4 207static struct cpuset top_cpuset = {
efeb77b2
TH
208 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
209 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
210};
211
ae8086ce
TH
212/**
213 * cpuset_for_each_child - traverse online children of a cpuset
214 * @child_cs: loop cursor pointing to the current child
215 * @pos_cgrp: used for iteration
216 * @parent_cs: target cpuset to walk children of
217 *
218 * Walk @child_cs through the online children of @parent_cs. Must be used
219 * with RCU read locked.
220 */
221#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
222 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
223 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
224
fc560a26
TH
225/**
226 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
227 * @des_cs: loop cursor pointing to the current descendant
228 * @pos_cgrp: used for iteration
229 * @root_cs: target cpuset to walk ancestor of
230 *
231 * Walk @des_cs through the online descendants of @root_cs. Must be used
232 * with RCU read locked. The caller may modify @pos_cgrp by calling
233 * cgroup_rightmost_descendant() to skip subtree.
234 */
235#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
236 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
237 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
238
1da177e4 239/*
5d21cc2d
TH
240 * There are two global mutexes guarding cpuset structures - cpuset_mutex
241 * and callback_mutex. The latter may nest inside the former. We also
242 * require taking task_lock() when dereferencing a task's cpuset pointer.
243 * See "The task_lock() exception", at the end of this comment.
244 *
245 * A task must hold both mutexes to modify cpusets. If a task holds
246 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
247 * is the only task able to also acquire callback_mutex and be able to
248 * modify cpusets. It can perform various checks on the cpuset structure
249 * first, knowing nothing will change. It can also allocate memory while
250 * just holding cpuset_mutex. While it is performing these checks, various
251 * callback routines can briefly acquire callback_mutex to query cpusets.
252 * Once it is ready to make the changes, it takes callback_mutex, blocking
253 * everyone else.
053199ed
PJ
254 *
255 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 256 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
257 * from one of the callbacks into the cpuset code from within
258 * __alloc_pages().
259 *
3d3f26a7 260 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
261 * access to cpusets.
262 *
58568d2a
MX
263 * Now, the task_struct fields mems_allowed and mempolicy may be changed
264 * by other task, we use alloc_lock in the task_struct fields to protect
265 * them.
053199ed 266 *
3d3f26a7 267 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
268 * small pieces of code, such as when reading out possibly multi-word
269 * cpumasks and nodemasks.
270 *
2df167a3
PM
271 * Accessing a task's cpuset should be done in accordance with the
272 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
273 */
274
5d21cc2d 275static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 276static DEFINE_MUTEX(callback_mutex);
4247bdc6 277
3a5a6d0c
TH
278/*
279 * CPU / memory hotplug is handled asynchronously.
280 */
281static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
282static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
283
e44193d3
LZ
284static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
285
cf417141
MK
286/*
287 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 288 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
289 * silently switch it to mount "cgroup" instead
290 */
f7e83571
AV
291static struct dentry *cpuset_mount(struct file_system_type *fs_type,
292 int flags, const char *unused_dev_name, void *data)
1da177e4 293{
8793d854 294 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 295 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
296 if (cgroup_fs) {
297 char mountopts[] =
298 "cpuset,noprefix,"
299 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
300 ret = cgroup_fs->mount(cgroup_fs, flags,
301 unused_dev_name, mountopts);
8793d854
PM
302 put_filesystem(cgroup_fs);
303 }
304 return ret;
1da177e4
LT
305}
306
307static struct file_system_type cpuset_fs_type = {
308 .name = "cpuset",
f7e83571 309 .mount = cpuset_mount,
1da177e4
LT
310};
311
1da177e4 312/*
300ed6cb 313 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 314 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
315 * until we find one that does have some online cpus. The top
316 * cpuset always has some cpus online.
1da177e4
LT
317 *
318 * One way or another, we guarantee to return some non-empty subset
5f054e31 319 * of cpu_online_mask.
1da177e4 320 *
3d3f26a7 321 * Call with callback_mutex held.
1da177e4 322 */
6af866af
LZ
323static void guarantee_online_cpus(const struct cpuset *cs,
324 struct cpumask *pmask)
1da177e4 325{
40df2deb 326 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 327 cs = parent_cs(cs);
40df2deb 328 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
329}
330
331/*
332 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
333 * are online, with memory. If none are online with memory, walk
334 * up the cpuset hierarchy until we find one that does have some
40df2deb 335 * online mems. The top cpuset always has some mems online.
1da177e4
LT
336 *
337 * One way or another, we guarantee to return some non-empty subset
38d7bee9 338 * of node_states[N_MEMORY].
1da177e4 339 *
3d3f26a7 340 * Call with callback_mutex held.
1da177e4 341 */
1da177e4
LT
342static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
343{
40df2deb 344 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 345 cs = parent_cs(cs);
40df2deb 346 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
347}
348
f3b39d47
MX
349/*
350 * update task's spread flag if cpuset's page/slab spread flag is set
351 *
5d21cc2d 352 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
353 */
354static void cpuset_update_task_spread_flag(struct cpuset *cs,
355 struct task_struct *tsk)
356{
357 if (is_spread_page(cs))
358 tsk->flags |= PF_SPREAD_PAGE;
359 else
360 tsk->flags &= ~PF_SPREAD_PAGE;
361 if (is_spread_slab(cs))
362 tsk->flags |= PF_SPREAD_SLAB;
363 else
364 tsk->flags &= ~PF_SPREAD_SLAB;
365}
366
1da177e4
LT
367/*
368 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
369 *
370 * One cpuset is a subset of another if all its allowed CPUs and
371 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 372 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
373 */
374
375static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
376{
300ed6cb 377 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
378 nodes_subset(p->mems_allowed, q->mems_allowed) &&
379 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
380 is_mem_exclusive(p) <= is_mem_exclusive(q);
381}
382
645fcc9d
LZ
383/**
384 * alloc_trial_cpuset - allocate a trial cpuset
385 * @cs: the cpuset that the trial cpuset duplicates
386 */
387static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
388{
300ed6cb
LZ
389 struct cpuset *trial;
390
391 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
392 if (!trial)
393 return NULL;
394
395 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
396 kfree(trial);
397 return NULL;
398 }
399 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
400
401 return trial;
645fcc9d
LZ
402}
403
404/**
405 * free_trial_cpuset - free the trial cpuset
406 * @trial: the trial cpuset to be freed
407 */
408static void free_trial_cpuset(struct cpuset *trial)
409{
300ed6cb 410 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
411 kfree(trial);
412}
413
1da177e4
LT
414/*
415 * validate_change() - Used to validate that any proposed cpuset change
416 * follows the structural rules for cpusets.
417 *
418 * If we replaced the flag and mask values of the current cpuset
419 * (cur) with those values in the trial cpuset (trial), would
420 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 421 * cpuset_mutex held.
1da177e4
LT
422 *
423 * 'cur' is the address of an actual, in-use cpuset. Operations
424 * such as list traversal that depend on the actual address of the
425 * cpuset in the list must use cur below, not trial.
426 *
427 * 'trial' is the address of bulk structure copy of cur, with
428 * perhaps one or more of the fields cpus_allowed, mems_allowed,
429 * or flags changed to new, trial values.
430 *
431 * Return 0 if valid, -errno if not.
432 */
433
434static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
435{
8793d854 436 struct cgroup *cont;
1da177e4 437 struct cpuset *c, *par;
ae8086ce
TH
438 int ret;
439
440 rcu_read_lock();
1da177e4
LT
441
442 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
443 ret = -EBUSY;
444 cpuset_for_each_child(c, cont, cur)
445 if (!is_cpuset_subset(c, trial))
446 goto out;
1da177e4
LT
447
448 /* Remaining checks don't apply to root cpuset */
ae8086ce 449 ret = 0;
69604067 450 if (cur == &top_cpuset)
ae8086ce 451 goto out;
1da177e4 452
c431069f 453 par = parent_cs(cur);
69604067 454
1da177e4 455 /* We must be a subset of our parent cpuset */
ae8086ce 456 ret = -EACCES;
1da177e4 457 if (!is_cpuset_subset(trial, par))
ae8086ce 458 goto out;
1da177e4 459
2df167a3
PM
460 /*
461 * If either I or some sibling (!= me) is exclusive, we can't
462 * overlap
463 */
ae8086ce
TH
464 ret = -EINVAL;
465 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
466 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
467 c != cur &&
300ed6cb 468 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 469 goto out;
1da177e4
LT
470 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
471 c != cur &&
472 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 473 goto out;
1da177e4
LT
474 }
475
452477fa
TH
476 /*
477 * Cpusets with tasks - existing or newly being attached - can't
478 * have empty cpus_allowed or mems_allowed.
479 */
ae8086ce 480 ret = -ENOSPC;
452477fa 481 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
482 (cpumask_empty(trial->cpus_allowed) ||
483 nodes_empty(trial->mems_allowed)))
484 goto out;
020958b6 485
ae8086ce
TH
486 ret = 0;
487out:
488 rcu_read_unlock();
489 return ret;
1da177e4
LT
490}
491
db7f47cf 492#ifdef CONFIG_SMP
029190c5 493/*
cf417141 494 * Helper routine for generate_sched_domains().
029190c5
PJ
495 * Do cpusets a, b have overlapping cpus_allowed masks?
496 */
029190c5
PJ
497static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
498{
300ed6cb 499 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
500}
501
1d3504fc
HS
502static void
503update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
504{
1d3504fc
HS
505 if (dattr->relax_domain_level < c->relax_domain_level)
506 dattr->relax_domain_level = c->relax_domain_level;
507 return;
508}
509
fc560a26
TH
510static void update_domain_attr_tree(struct sched_domain_attr *dattr,
511 struct cpuset *root_cs)
f5393693 512{
fc560a26
TH
513 struct cpuset *cp;
514 struct cgroup *pos_cgrp;
f5393693 515
fc560a26
TH
516 rcu_read_lock();
517 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
518 /* skip the whole subtree if @cp doesn't have any CPU */
519 if (cpumask_empty(cp->cpus_allowed)) {
520 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 521 continue;
fc560a26 522 }
f5393693
LJ
523
524 if (is_sched_load_balance(cp))
525 update_domain_attr(dattr, cp);
f5393693 526 }
fc560a26 527 rcu_read_unlock();
f5393693
LJ
528}
529
029190c5 530/*
cf417141
MK
531 * generate_sched_domains()
532 *
533 * This function builds a partial partition of the systems CPUs
534 * A 'partial partition' is a set of non-overlapping subsets whose
535 * union is a subset of that set.
536 * The output of this function needs to be passed to kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the scheduler's
538 * load balancing domains (sched domains) as specified by that partial
539 * partition.
029190c5 540 *
45ce80fb 541 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
542 * for a background explanation of this.
543 *
544 * Does not return errors, on the theory that the callers of this
545 * routine would rather not worry about failures to rebuild sched
546 * domains when operating in the severe memory shortage situations
547 * that could cause allocation failures below.
548 *
5d21cc2d 549 * Must be called with cpuset_mutex held.
029190c5
PJ
550 *
551 * The three key local variables below are:
aeed6824 552 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
553 * top-down scan of all cpusets. This scan loads a pointer
554 * to each cpuset marked is_sched_load_balance into the
555 * array 'csa'. For our purposes, rebuilding the schedulers
556 * sched domains, we can ignore !is_sched_load_balance cpusets.
557 * csa - (for CpuSet Array) Array of pointers to all the cpusets
558 * that need to be load balanced, for convenient iterative
559 * access by the subsequent code that finds the best partition,
560 * i.e the set of domains (subsets) of CPUs such that the
561 * cpus_allowed of every cpuset marked is_sched_load_balance
562 * is a subset of one of these domains, while there are as
563 * many such domains as possible, each as small as possible.
564 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
565 * the kernel/sched.c routine partition_sched_domains() in a
566 * convenient format, that can be easily compared to the prior
567 * value to determine what partition elements (sched domains)
568 * were changed (added or removed.)
569 *
570 * Finding the best partition (set of domains):
571 * The triple nested loops below over i, j, k scan over the
572 * load balanced cpusets (using the array of cpuset pointers in
573 * csa[]) looking for pairs of cpusets that have overlapping
574 * cpus_allowed, but which don't have the same 'pn' partition
575 * number and gives them in the same partition number. It keeps
576 * looping on the 'restart' label until it can no longer find
577 * any such pairs.
578 *
579 * The union of the cpus_allowed masks from the set of
580 * all cpusets having the same 'pn' value then form the one
581 * element of the partition (one sched domain) to be passed to
582 * partition_sched_domains().
583 */
acc3f5d7 584static int generate_sched_domains(cpumask_var_t **domains,
cf417141 585 struct sched_domain_attr **attributes)
029190c5 586{
029190c5
PJ
587 struct cpuset *cp; /* scans q */
588 struct cpuset **csa; /* array of all cpuset ptrs */
589 int csn; /* how many cpuset ptrs in csa so far */
590 int i, j, k; /* indices for partition finding loops */
acc3f5d7 591 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 592 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 593 int ndoms = 0; /* number of sched domains in result */
6af866af 594 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 595 struct cgroup *pos_cgrp;
029190c5 596
029190c5 597 doms = NULL;
1d3504fc 598 dattr = NULL;
cf417141 599 csa = NULL;
029190c5
PJ
600
601 /* Special case for the 99% of systems with one, full, sched domain */
602 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
603 ndoms = 1;
604 doms = alloc_sched_domains(ndoms);
029190c5 605 if (!doms)
cf417141
MK
606 goto done;
607
1d3504fc
HS
608 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
609 if (dattr) {
610 *dattr = SD_ATTR_INIT;
93a65575 611 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 612 }
acc3f5d7 613 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 614
cf417141 615 goto done;
029190c5
PJ
616 }
617
029190c5
PJ
618 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
619 if (!csa)
620 goto done;
621 csn = 0;
622
fc560a26
TH
623 rcu_read_lock();
624 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 625 /*
fc560a26
TH
626 * Continue traversing beyond @cp iff @cp has some CPUs and
627 * isn't load balancing. The former is obvious. The
628 * latter: All child cpusets contain a subset of the
629 * parent's cpus, so just skip them, and then we call
630 * update_domain_attr_tree() to calc relax_domain_level of
631 * the corresponding sched domain.
f5393693 632 */
fc560a26
TH
633 if (!cpumask_empty(cp->cpus_allowed) &&
634 !is_sched_load_balance(cp))
f5393693 635 continue;
489a5393 636
fc560a26
TH
637 if (is_sched_load_balance(cp))
638 csa[csn++] = cp;
639
640 /* skip @cp's subtree */
641 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
642 }
643 rcu_read_unlock();
029190c5
PJ
644
645 for (i = 0; i < csn; i++)
646 csa[i]->pn = i;
647 ndoms = csn;
648
649restart:
650 /* Find the best partition (set of sched domains) */
651 for (i = 0; i < csn; i++) {
652 struct cpuset *a = csa[i];
653 int apn = a->pn;
654
655 for (j = 0; j < csn; j++) {
656 struct cpuset *b = csa[j];
657 int bpn = b->pn;
658
659 if (apn != bpn && cpusets_overlap(a, b)) {
660 for (k = 0; k < csn; k++) {
661 struct cpuset *c = csa[k];
662
663 if (c->pn == bpn)
664 c->pn = apn;
665 }
666 ndoms--; /* one less element */
667 goto restart;
668 }
669 }
670 }
671
cf417141
MK
672 /*
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
675 */
acc3f5d7 676 doms = alloc_sched_domains(ndoms);
700018e0 677 if (!doms)
cf417141 678 goto done;
cf417141
MK
679
680 /*
681 * The rest of the code, including the scheduler, can deal with
682 * dattr==NULL case. No need to abort if alloc fails.
683 */
1d3504fc 684 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
685
686 for (nslot = 0, i = 0; i < csn; i++) {
687 struct cpuset *a = csa[i];
6af866af 688 struct cpumask *dp;
029190c5
PJ
689 int apn = a->pn;
690
cf417141
MK
691 if (apn < 0) {
692 /* Skip completed partitions */
693 continue;
694 }
695
acc3f5d7 696 dp = doms[nslot];
cf417141
MK
697
698 if (nslot == ndoms) {
699 static int warnings = 10;
700 if (warnings) {
701 printk(KERN_WARNING
702 "rebuild_sched_domains confused:"
703 " nslot %d, ndoms %d, csn %d, i %d,"
704 " apn %d\n",
705 nslot, ndoms, csn, i, apn);
706 warnings--;
029190c5 707 }
cf417141
MK
708 continue;
709 }
029190c5 710
6af866af 711 cpumask_clear(dp);
cf417141
MK
712 if (dattr)
713 *(dattr + nslot) = SD_ATTR_INIT;
714 for (j = i; j < csn; j++) {
715 struct cpuset *b = csa[j];
716
717 if (apn == b->pn) {
300ed6cb 718 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
719 if (dattr)
720 update_domain_attr_tree(dattr + nslot, b);
721
722 /* Done with this partition */
723 b->pn = -1;
029190c5 724 }
029190c5 725 }
cf417141 726 nslot++;
029190c5
PJ
727 }
728 BUG_ON(nslot != ndoms);
729
cf417141
MK
730done:
731 kfree(csa);
732
700018e0
LZ
733 /*
734 * Fallback to the default domain if kmalloc() failed.
735 * See comments in partition_sched_domains().
736 */
737 if (doms == NULL)
738 ndoms = 1;
739
cf417141
MK
740 *domains = doms;
741 *attributes = dattr;
742 return ndoms;
743}
744
745/*
746 * Rebuild scheduler domains.
747 *
699140ba
TH
748 * If the flag 'sched_load_balance' of any cpuset with non-empty
749 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
750 * which has that flag enabled, or if any cpuset with a non-empty
751 * 'cpus' is removed, then call this routine to rebuild the
752 * scheduler's dynamic sched domains.
cf417141 753 *
5d21cc2d 754 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 755 */
699140ba 756static void rebuild_sched_domains_locked(void)
cf417141
MK
757{
758 struct sched_domain_attr *attr;
acc3f5d7 759 cpumask_var_t *doms;
cf417141
MK
760 int ndoms;
761
5d21cc2d 762 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 763 get_online_cpus();
cf417141 764
5b16c2a4
LZ
765 /*
766 * We have raced with CPU hotplug. Don't do anything to avoid
767 * passing doms with offlined cpu to partition_sched_domains().
768 * Anyways, hotplug work item will rebuild sched domains.
769 */
770 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
771 goto out;
772
cf417141 773 /* Generate domain masks and attrs */
cf417141 774 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
775
776 /* Have scheduler rebuild the domains */
777 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 778out:
86ef5c9a 779 put_online_cpus();
cf417141 780}
db7f47cf 781#else /* !CONFIG_SMP */
699140ba 782static void rebuild_sched_domains_locked(void)
db7f47cf
PM
783{
784}
db7f47cf 785#endif /* CONFIG_SMP */
029190c5 786
cf417141
MK
787void rebuild_sched_domains(void)
788{
5d21cc2d 789 mutex_lock(&cpuset_mutex);
699140ba 790 rebuild_sched_domains_locked();
5d21cc2d 791 mutex_unlock(&cpuset_mutex);
029190c5
PJ
792}
793
58f4790b
CW
794/**
795 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
796 * @tsk: task to test
797 * @scan: struct cgroup_scanner containing the cgroup of the task
798 *
799 * Called by cgroup_scan_tasks() for each task in a cgroup whose
800 * cpus_allowed mask needs to be changed.
801 *
802 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 803 * holding cpuset_mutex at this point.
58f4790b 804 */
9e0c914c
AB
805static void cpuset_change_cpumask(struct task_struct *tsk,
806 struct cgroup_scanner *scan)
58f4790b 807{
300ed6cb 808 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
809}
810
0b2f630a
MX
811/**
812 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
813 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 814 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 815 *
5d21cc2d 816 * Called with cpuset_mutex held
0b2f630a
MX
817 *
818 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
819 * calling callback functions for each.
820 *
4e74339a
LZ
821 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
822 * if @heap != NULL.
0b2f630a 823 */
4e74339a 824static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
825{
826 struct cgroup_scanner scan;
0b2f630a
MX
827
828 scan.cg = cs->css.cgroup;
249cc86d 829 scan.test_task = NULL;
0b2f630a 830 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
831 scan.heap = heap;
832 cgroup_scan_tasks(&scan);
0b2f630a
MX
833}
834
58f4790b
CW
835/**
836 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
837 * @cs: the cpuset to consider
838 * @buf: buffer of cpu numbers written to this cpuset
839 */
645fcc9d
LZ
840static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
841 const char *buf)
1da177e4 842{
4e74339a 843 struct ptr_heap heap;
58f4790b
CW
844 int retval;
845 int is_load_balanced;
1da177e4 846
5f054e31 847 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
848 if (cs == &top_cpuset)
849 return -EACCES;
850
6f7f02e7 851 /*
c8d9c90c 852 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
853 * Since cpulist_parse() fails on an empty mask, we special case
854 * that parsing. The validate_change() call ensures that cpusets
855 * with tasks have cpus.
6f7f02e7 856 */
020958b6 857 if (!*buf) {
300ed6cb 858 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 859 } else {
300ed6cb 860 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
861 if (retval < 0)
862 return retval;
37340746 863
6ad4c188 864 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 865 return -EINVAL;
6f7f02e7 866 }
029190c5 867
8707d8b8 868 /* Nothing to do if the cpus didn't change */
300ed6cb 869 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 870 return 0;
58f4790b 871
a73456f3
LZ
872 retval = validate_change(cs, trialcs);
873 if (retval < 0)
874 return retval;
875
4e74339a
LZ
876 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
877 if (retval)
878 return retval;
879
645fcc9d 880 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 881
3d3f26a7 882 mutex_lock(&callback_mutex);
300ed6cb 883 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 884 mutex_unlock(&callback_mutex);
029190c5 885
8707d8b8
PM
886 /*
887 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 888 * that need an update.
8707d8b8 889 */
4e74339a
LZ
890 update_tasks_cpumask(cs, &heap);
891
892 heap_free(&heap);
58f4790b 893
8707d8b8 894 if (is_load_balanced)
699140ba 895 rebuild_sched_domains_locked();
85d7b949 896 return 0;
1da177e4
LT
897}
898
e4e364e8
PJ
899/*
900 * cpuset_migrate_mm
901 *
902 * Migrate memory region from one set of nodes to another.
903 *
904 * Temporarilly set tasks mems_allowed to target nodes of migration,
905 * so that the migration code can allocate pages on these nodes.
906 *
5d21cc2d 907 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 908 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
909 * calls. Therefore we don't need to take task_lock around the
910 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 911 * our task's cpuset.
e4e364e8 912 *
e4e364e8
PJ
913 * While the mm_struct we are migrating is typically from some
914 * other task, the task_struct mems_allowed that we are hacking
915 * is for our current task, which must allocate new pages for that
916 * migrating memory region.
e4e364e8
PJ
917 */
918
919static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
920 const nodemask_t *to)
921{
922 struct task_struct *tsk = current;
923
e4e364e8 924 tsk->mems_allowed = *to;
e4e364e8
PJ
925
926 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
927
8793d854 928 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
929}
930
3b6766fe 931/*
58568d2a
MX
932 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
933 * @tsk: the task to change
934 * @newmems: new nodes that the task will be set
935 *
936 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
937 * we structure updates as setting all new allowed nodes, then clearing newly
938 * disallowed ones.
58568d2a
MX
939 */
940static void cpuset_change_task_nodemask(struct task_struct *tsk,
941 nodemask_t *newmems)
942{
b246272e 943 bool need_loop;
89e8a244 944
c0ff7453
MX
945 /*
946 * Allow tasks that have access to memory reserves because they have
947 * been OOM killed to get memory anywhere.
948 */
949 if (unlikely(test_thread_flag(TIF_MEMDIE)))
950 return;
951 if (current->flags & PF_EXITING) /* Let dying task have memory */
952 return;
953
954 task_lock(tsk);
b246272e
DR
955 /*
956 * Determine if a loop is necessary if another thread is doing
957 * get_mems_allowed(). If at least one node remains unchanged and
958 * tsk does not have a mempolicy, then an empty nodemask will not be
959 * possible when mems_allowed is larger than a word.
960 */
961 need_loop = task_has_mempolicy(tsk) ||
962 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 963
cc9a6c87
MG
964 if (need_loop)
965 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 966
cc9a6c87
MG
967 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
968 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
969
970 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 971 tsk->mems_allowed = *newmems;
cc9a6c87
MG
972
973 if (need_loop)
974 write_seqcount_end(&tsk->mems_allowed_seq);
975
c0ff7453 976 task_unlock(tsk);
58568d2a
MX
977}
978
979/*
980 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
981 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 982 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
983 */
984static void cpuset_change_nodemask(struct task_struct *p,
985 struct cgroup_scanner *scan)
986{
33ad801d 987 struct cpuset *cs = cgroup_cs(scan->cg);
3b6766fe 988 struct mm_struct *mm;
3b6766fe 989 int migrate;
33ad801d 990 nodemask_t *newmems = scan->data;
58568d2a 991
33ad801d 992 cpuset_change_task_nodemask(p, newmems);
53feb297 993
3b6766fe
LZ
994 mm = get_task_mm(p);
995 if (!mm)
996 return;
997
3b6766fe
LZ
998 migrate = is_memory_migrate(cs);
999
1000 mpol_rebind_mm(mm, &cs->mems_allowed);
1001 if (migrate)
33ad801d 1002 cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
3b6766fe
LZ
1003 mmput(mm);
1004}
1005
8793d854
PM
1006static void *cpuset_being_rebound;
1007
0b2f630a
MX
1008/**
1009 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1010 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
010cfac4 1011 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1012 *
5d21cc2d 1013 * Called with cpuset_mutex held
010cfac4
LZ
1014 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1015 * if @heap != NULL.
0b2f630a 1016 */
33ad801d 1017static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1018{
33ad801d 1019 static nodemask_t newmems; /* protected by cpuset_mutex */
3b6766fe 1020 struct cgroup_scanner scan;
59dac16f 1021
846a16bf 1022 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1023
33ad801d
LZ
1024 guarantee_online_mems(cs, &newmems);
1025
3b6766fe
LZ
1026 scan.cg = cs->css.cgroup;
1027 scan.test_task = NULL;
1028 scan.process_task = cpuset_change_nodemask;
010cfac4 1029 scan.heap = heap;
33ad801d 1030 scan.data = &newmems;
4225399a
PJ
1031
1032 /*
3b6766fe
LZ
1033 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1034 * take while holding tasklist_lock. Forks can happen - the
1035 * mpol_dup() cpuset_being_rebound check will catch such forks,
1036 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1037 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1038 * will be contending for the global variable cpuset_being_rebound.
4225399a 1039 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1040 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1041 */
010cfac4 1042 cgroup_scan_tasks(&scan);
4225399a 1043
33ad801d
LZ
1044 /*
1045 * All the tasks' nodemasks have been updated, update
1046 * cs->old_mems_allowed.
1047 */
1048 cs->old_mems_allowed = newmems;
1049
2df167a3 1050 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1051 cpuset_being_rebound = NULL;
1da177e4
LT
1052}
1053
0b2f630a
MX
1054/*
1055 * Handle user request to change the 'mems' memory placement
1056 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1057 * cpusets mems_allowed, and for each task in the cpuset,
1058 * update mems_allowed and rebind task's mempolicy and any vma
1059 * mempolicies and if the cpuset is marked 'memory_migrate',
1060 * migrate the tasks pages to the new memory.
0b2f630a 1061 *
5d21cc2d 1062 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1063 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1064 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1065 * their mempolicies to the cpusets new mems_allowed.
1066 */
645fcc9d
LZ
1067static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1068 const char *buf)
0b2f630a 1069{
0b2f630a 1070 int retval;
010cfac4 1071 struct ptr_heap heap;
0b2f630a
MX
1072
1073 /*
38d7bee9 1074 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1075 * it's read-only
1076 */
53feb297
MX
1077 if (cs == &top_cpuset) {
1078 retval = -EACCES;
1079 goto done;
1080 }
0b2f630a 1081
0b2f630a
MX
1082 /*
1083 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1084 * Since nodelist_parse() fails on an empty mask, we special case
1085 * that parsing. The validate_change() call ensures that cpusets
1086 * with tasks have memory.
1087 */
1088 if (!*buf) {
645fcc9d 1089 nodes_clear(trialcs->mems_allowed);
0b2f630a 1090 } else {
645fcc9d 1091 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1092 if (retval < 0)
1093 goto done;
1094
645fcc9d 1095 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1096 node_states[N_MEMORY])) {
53feb297
MX
1097 retval = -EINVAL;
1098 goto done;
1099 }
0b2f630a 1100 }
33ad801d
LZ
1101
1102 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1103 retval = 0; /* Too easy - nothing to do */
1104 goto done;
1105 }
645fcc9d 1106 retval = validate_change(cs, trialcs);
0b2f630a
MX
1107 if (retval < 0)
1108 goto done;
1109
010cfac4
LZ
1110 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1111 if (retval < 0)
1112 goto done;
1113
0b2f630a 1114 mutex_lock(&callback_mutex);
645fcc9d 1115 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1116 mutex_unlock(&callback_mutex);
1117
33ad801d 1118 update_tasks_nodemask(cs, &heap);
010cfac4
LZ
1119
1120 heap_free(&heap);
0b2f630a
MX
1121done:
1122 return retval;
1123}
1124
8793d854
PM
1125int current_cpuset_is_being_rebound(void)
1126{
1127 return task_cs(current) == cpuset_being_rebound;
1128}
1129
5be7a479 1130static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1131{
db7f47cf 1132#ifdef CONFIG_SMP
60495e77 1133 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1134 return -EINVAL;
db7f47cf 1135#endif
1d3504fc
HS
1136
1137 if (val != cs->relax_domain_level) {
1138 cs->relax_domain_level = val;
300ed6cb
LZ
1139 if (!cpumask_empty(cs->cpus_allowed) &&
1140 is_sched_load_balance(cs))
699140ba 1141 rebuild_sched_domains_locked();
1d3504fc
HS
1142 }
1143
1144 return 0;
1145}
1146
950592f7
MX
1147/*
1148 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1149 * @tsk: task to be updated
1150 * @scan: struct cgroup_scanner containing the cgroup of the task
1151 *
1152 * Called by cgroup_scan_tasks() for each task in a cgroup.
1153 *
1154 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1155 * holding cpuset_mutex at this point.
950592f7
MX
1156 */
1157static void cpuset_change_flag(struct task_struct *tsk,
1158 struct cgroup_scanner *scan)
1159{
1160 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1161}
1162
1163/*
1164 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1165 * @cs: the cpuset in which each task's spread flags needs to be changed
1166 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1167 *
5d21cc2d 1168 * Called with cpuset_mutex held
950592f7
MX
1169 *
1170 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1171 * calling callback functions for each.
1172 *
1173 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1174 * if @heap != NULL.
1175 */
1176static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1177{
1178 struct cgroup_scanner scan;
1179
1180 scan.cg = cs->css.cgroup;
1181 scan.test_task = NULL;
1182 scan.process_task = cpuset_change_flag;
1183 scan.heap = heap;
1184 cgroup_scan_tasks(&scan);
1185}
1186
1da177e4
LT
1187/*
1188 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1189 * bit: the bit to update (see cpuset_flagbits_t)
1190 * cs: the cpuset to update
1191 * turning_on: whether the flag is being set or cleared
053199ed 1192 *
5d21cc2d 1193 * Call with cpuset_mutex held.
1da177e4
LT
1194 */
1195
700fe1ab
PM
1196static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1197 int turning_on)
1da177e4 1198{
645fcc9d 1199 struct cpuset *trialcs;
40b6a762 1200 int balance_flag_changed;
950592f7
MX
1201 int spread_flag_changed;
1202 struct ptr_heap heap;
1203 int err;
1da177e4 1204
645fcc9d
LZ
1205 trialcs = alloc_trial_cpuset(cs);
1206 if (!trialcs)
1207 return -ENOMEM;
1208
1da177e4 1209 if (turning_on)
645fcc9d 1210 set_bit(bit, &trialcs->flags);
1da177e4 1211 else
645fcc9d 1212 clear_bit(bit, &trialcs->flags);
1da177e4 1213
645fcc9d 1214 err = validate_change(cs, trialcs);
85d7b949 1215 if (err < 0)
645fcc9d 1216 goto out;
029190c5 1217
950592f7
MX
1218 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1219 if (err < 0)
1220 goto out;
1221
029190c5 1222 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1223 is_sched_load_balance(trialcs));
029190c5 1224
950592f7
MX
1225 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1226 || (is_spread_page(cs) != is_spread_page(trialcs)));
1227
3d3f26a7 1228 mutex_lock(&callback_mutex);
645fcc9d 1229 cs->flags = trialcs->flags;
3d3f26a7 1230 mutex_unlock(&callback_mutex);
85d7b949 1231
300ed6cb 1232 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1233 rebuild_sched_domains_locked();
029190c5 1234
950592f7
MX
1235 if (spread_flag_changed)
1236 update_tasks_flags(cs, &heap);
1237 heap_free(&heap);
645fcc9d
LZ
1238out:
1239 free_trial_cpuset(trialcs);
1240 return err;
1da177e4
LT
1241}
1242
3e0d98b9 1243/*
80f7228b 1244 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1245 *
1246 * These routines manage a digitally filtered, constant time based,
1247 * event frequency meter. There are four routines:
1248 * fmeter_init() - initialize a frequency meter.
1249 * fmeter_markevent() - called each time the event happens.
1250 * fmeter_getrate() - returns the recent rate of such events.
1251 * fmeter_update() - internal routine used to update fmeter.
1252 *
1253 * A common data structure is passed to each of these routines,
1254 * which is used to keep track of the state required to manage the
1255 * frequency meter and its digital filter.
1256 *
1257 * The filter works on the number of events marked per unit time.
1258 * The filter is single-pole low-pass recursive (IIR). The time unit
1259 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1260 * simulate 3 decimal digits of precision (multiplied by 1000).
1261 *
1262 * With an FM_COEF of 933, and a time base of 1 second, the filter
1263 * has a half-life of 10 seconds, meaning that if the events quit
1264 * happening, then the rate returned from the fmeter_getrate()
1265 * will be cut in half each 10 seconds, until it converges to zero.
1266 *
1267 * It is not worth doing a real infinitely recursive filter. If more
1268 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1269 * just compute FM_MAXTICKS ticks worth, by which point the level
1270 * will be stable.
1271 *
1272 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1273 * arithmetic overflow in the fmeter_update() routine.
1274 *
1275 * Given the simple 32 bit integer arithmetic used, this meter works
1276 * best for reporting rates between one per millisecond (msec) and
1277 * one per 32 (approx) seconds. At constant rates faster than one
1278 * per msec it maxes out at values just under 1,000,000. At constant
1279 * rates between one per msec, and one per second it will stabilize
1280 * to a value N*1000, where N is the rate of events per second.
1281 * At constant rates between one per second and one per 32 seconds,
1282 * it will be choppy, moving up on the seconds that have an event,
1283 * and then decaying until the next event. At rates slower than
1284 * about one in 32 seconds, it decays all the way back to zero between
1285 * each event.
1286 */
1287
1288#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1289#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1290#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1291#define FM_SCALE 1000 /* faux fixed point scale */
1292
1293/* Initialize a frequency meter */
1294static void fmeter_init(struct fmeter *fmp)
1295{
1296 fmp->cnt = 0;
1297 fmp->val = 0;
1298 fmp->time = 0;
1299 spin_lock_init(&fmp->lock);
1300}
1301
1302/* Internal meter update - process cnt events and update value */
1303static void fmeter_update(struct fmeter *fmp)
1304{
1305 time_t now = get_seconds();
1306 time_t ticks = now - fmp->time;
1307
1308 if (ticks == 0)
1309 return;
1310
1311 ticks = min(FM_MAXTICKS, ticks);
1312 while (ticks-- > 0)
1313 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1314 fmp->time = now;
1315
1316 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1317 fmp->cnt = 0;
1318}
1319
1320/* Process any previous ticks, then bump cnt by one (times scale). */
1321static void fmeter_markevent(struct fmeter *fmp)
1322{
1323 spin_lock(&fmp->lock);
1324 fmeter_update(fmp);
1325 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1326 spin_unlock(&fmp->lock);
1327}
1328
1329/* Process any previous ticks, then return current value. */
1330static int fmeter_getrate(struct fmeter *fmp)
1331{
1332 int val;
1333
1334 spin_lock(&fmp->lock);
1335 fmeter_update(fmp);
1336 val = fmp->val;
1337 spin_unlock(&fmp->lock);
1338 return val;
1339}
1340
5d21cc2d 1341/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1342static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1343{
2f7ee569 1344 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1345 struct task_struct *task;
1346 int ret;
1da177e4 1347
5d21cc2d
TH
1348 mutex_lock(&cpuset_mutex);
1349
1350 ret = -ENOSPC;
300ed6cb 1351 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
5d21cc2d 1352 goto out_unlock;
9985b0ba 1353
bb9d97b6
TH
1354 cgroup_taskset_for_each(task, cgrp, tset) {
1355 /*
14a40ffc
TH
1356 * Kthreads which disallow setaffinity shouldn't be moved
1357 * to a new cpuset; we don't want to change their cpu
1358 * affinity and isolating such threads by their set of
1359 * allowed nodes is unnecessary. Thus, cpusets are not
1360 * applicable for such threads. This prevents checking for
1361 * success of set_cpus_allowed_ptr() on all attached tasks
1362 * before cpus_allowed may be changed.
bb9d97b6 1363 */
5d21cc2d 1364 ret = -EINVAL;
14a40ffc 1365 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1366 goto out_unlock;
1367 ret = security_task_setscheduler(task);
1368 if (ret)
1369 goto out_unlock;
bb9d97b6 1370 }
f780bdb7 1371
452477fa
TH
1372 /*
1373 * Mark attach is in progress. This makes validate_change() fail
1374 * changes which zero cpus/mems_allowed.
1375 */
1376 cs->attach_in_progress++;
5d21cc2d
TH
1377 ret = 0;
1378out_unlock:
1379 mutex_unlock(&cpuset_mutex);
1380 return ret;
8793d854 1381}
f780bdb7 1382
452477fa
TH
1383static void cpuset_cancel_attach(struct cgroup *cgrp,
1384 struct cgroup_taskset *tset)
1385{
5d21cc2d 1386 mutex_lock(&cpuset_mutex);
452477fa 1387 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1388 mutex_unlock(&cpuset_mutex);
8793d854 1389}
1da177e4 1390
4e4c9a14 1391/*
5d21cc2d 1392 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1393 * but we can't allocate it dynamically there. Define it global and
1394 * allocate from cpuset_init().
1395 */
1396static cpumask_var_t cpus_attach;
1397
761b3ef5 1398static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1399{
67bd2c59 1400 /* static buf protected by cpuset_mutex */
4e4c9a14 1401 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1402 struct mm_struct *mm;
bb9d97b6
TH
1403 struct task_struct *task;
1404 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1405 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1406 struct cpuset *cs = cgroup_cs(cgrp);
1407 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1408
5d21cc2d
TH
1409 mutex_lock(&cpuset_mutex);
1410
4e4c9a14
TH
1411 /* prepare for attach */
1412 if (cs == &top_cpuset)
1413 cpumask_copy(cpus_attach, cpu_possible_mask);
1414 else
1415 guarantee_online_cpus(cs, cpus_attach);
1416
1417 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1418
bb9d97b6
TH
1419 cgroup_taskset_for_each(task, cgrp, tset) {
1420 /*
1421 * can_attach beforehand should guarantee that this doesn't
1422 * fail. TODO: have a better way to handle failure here
1423 */
1424 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1425
1426 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1427 cpuset_update_task_spread_flag(cs, task);
1428 }
22fb52dd 1429
f780bdb7
BB
1430 /*
1431 * Change mm, possibly for multiple threads in a threadgroup. This is
1432 * expensive and may sleep.
1433 */
f780bdb7 1434 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1435 mm = get_task_mm(leader);
4225399a 1436 if (mm) {
f780bdb7 1437 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1438 if (is_memory_migrate(cs))
67bd2c59 1439 cpuset_migrate_mm(mm, &oldcs->mems_allowed,
f780bdb7 1440 &cpuset_attach_nodemask_to);
4225399a
PJ
1441 mmput(mm);
1442 }
452477fa 1443
33ad801d
LZ
1444 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1445
452477fa 1446 cs->attach_in_progress--;
e44193d3
LZ
1447 if (!cs->attach_in_progress)
1448 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1449
1450 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1451}
1452
1453/* The various types of files and directories in a cpuset file system */
1454
1455typedef enum {
45b07ef3 1456 FILE_MEMORY_MIGRATE,
1da177e4
LT
1457 FILE_CPULIST,
1458 FILE_MEMLIST,
1459 FILE_CPU_EXCLUSIVE,
1460 FILE_MEM_EXCLUSIVE,
78608366 1461 FILE_MEM_HARDWALL,
029190c5 1462 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1463 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1464 FILE_MEMORY_PRESSURE_ENABLED,
1465 FILE_MEMORY_PRESSURE,
825a46af
PJ
1466 FILE_SPREAD_PAGE,
1467 FILE_SPREAD_SLAB,
1da177e4
LT
1468} cpuset_filetype_t;
1469
700fe1ab
PM
1470static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1471{
700fe1ab
PM
1472 struct cpuset *cs = cgroup_cs(cgrp);
1473 cpuset_filetype_t type = cft->private;
5d21cc2d 1474 int retval = -ENODEV;
700fe1ab 1475
5d21cc2d
TH
1476 mutex_lock(&cpuset_mutex);
1477 if (!is_cpuset_online(cs))
1478 goto out_unlock;
700fe1ab
PM
1479
1480 switch (type) {
1da177e4 1481 case FILE_CPU_EXCLUSIVE:
700fe1ab 1482 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1483 break;
1484 case FILE_MEM_EXCLUSIVE:
700fe1ab 1485 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1486 break;
78608366
PM
1487 case FILE_MEM_HARDWALL:
1488 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1489 break;
029190c5 1490 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1491 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1492 break;
45b07ef3 1493 case FILE_MEMORY_MIGRATE:
700fe1ab 1494 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1495 break;
3e0d98b9 1496 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1497 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1498 break;
1499 case FILE_MEMORY_PRESSURE:
1500 retval = -EACCES;
1501 break;
825a46af 1502 case FILE_SPREAD_PAGE:
700fe1ab 1503 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1504 break;
1505 case FILE_SPREAD_SLAB:
700fe1ab 1506 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1507 break;
1da177e4
LT
1508 default:
1509 retval = -EINVAL;
700fe1ab 1510 break;
1da177e4 1511 }
5d21cc2d
TH
1512out_unlock:
1513 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1514 return retval;
1515}
1516
5be7a479
PM
1517static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1518{
5be7a479
PM
1519 struct cpuset *cs = cgroup_cs(cgrp);
1520 cpuset_filetype_t type = cft->private;
5d21cc2d 1521 int retval = -ENODEV;
5be7a479 1522
5d21cc2d
TH
1523 mutex_lock(&cpuset_mutex);
1524 if (!is_cpuset_online(cs))
1525 goto out_unlock;
e3712395 1526
5be7a479
PM
1527 switch (type) {
1528 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1529 retval = update_relax_domain_level(cs, val);
1530 break;
1531 default:
1532 retval = -EINVAL;
1533 break;
1534 }
5d21cc2d
TH
1535out_unlock:
1536 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1537 return retval;
1538}
1539
e3712395
PM
1540/*
1541 * Common handling for a write to a "cpus" or "mems" file.
1542 */
1543static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1544 const char *buf)
1545{
645fcc9d
LZ
1546 struct cpuset *cs = cgroup_cs(cgrp);
1547 struct cpuset *trialcs;
5d21cc2d 1548 int retval = -ENODEV;
e3712395 1549
3a5a6d0c
TH
1550 /*
1551 * CPU or memory hotunplug may leave @cs w/o any execution
1552 * resources, in which case the hotplug code asynchronously updates
1553 * configuration and transfers all tasks to the nearest ancestor
1554 * which can execute.
1555 *
1556 * As writes to "cpus" or "mems" may restore @cs's execution
1557 * resources, wait for the previously scheduled operations before
1558 * proceeding, so that we don't end up keep removing tasks added
1559 * after execution capability is restored.
1560 */
1561 flush_work(&cpuset_hotplug_work);
1562
5d21cc2d
TH
1563 mutex_lock(&cpuset_mutex);
1564 if (!is_cpuset_online(cs))
1565 goto out_unlock;
e3712395 1566
645fcc9d 1567 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1568 if (!trialcs) {
1569 retval = -ENOMEM;
5d21cc2d 1570 goto out_unlock;
b75f38d6 1571 }
645fcc9d 1572
e3712395
PM
1573 switch (cft->private) {
1574 case FILE_CPULIST:
645fcc9d 1575 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1576 break;
1577 case FILE_MEMLIST:
645fcc9d 1578 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1579 break;
1580 default:
1581 retval = -EINVAL;
1582 break;
1583 }
645fcc9d
LZ
1584
1585 free_trial_cpuset(trialcs);
5d21cc2d
TH
1586out_unlock:
1587 mutex_unlock(&cpuset_mutex);
e3712395
PM
1588 return retval;
1589}
1590
1da177e4
LT
1591/*
1592 * These ascii lists should be read in a single call, by using a user
1593 * buffer large enough to hold the entire map. If read in smaller
1594 * chunks, there is no guarantee of atomicity. Since the display format
1595 * used, list of ranges of sequential numbers, is variable length,
1596 * and since these maps can change value dynamically, one could read
1597 * gibberish by doing partial reads while a list was changing.
1598 * A single large read to a buffer that crosses a page boundary is
1599 * ok, because the result being copied to user land is not recomputed
1600 * across a page fault.
1601 */
1602
9303e0c4 1603static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1604{
9303e0c4 1605 size_t count;
1da177e4 1606
3d3f26a7 1607 mutex_lock(&callback_mutex);
9303e0c4 1608 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1609 mutex_unlock(&callback_mutex);
1da177e4 1610
9303e0c4 1611 return count;
1da177e4
LT
1612}
1613
9303e0c4 1614static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1615{
9303e0c4 1616 size_t count;
1da177e4 1617
3d3f26a7 1618 mutex_lock(&callback_mutex);
9303e0c4 1619 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1620 mutex_unlock(&callback_mutex);
1da177e4 1621
9303e0c4 1622 return count;
1da177e4
LT
1623}
1624
8793d854
PM
1625static ssize_t cpuset_common_file_read(struct cgroup *cont,
1626 struct cftype *cft,
1627 struct file *file,
1628 char __user *buf,
1629 size_t nbytes, loff_t *ppos)
1da177e4 1630{
8793d854 1631 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1632 cpuset_filetype_t type = cft->private;
1633 char *page;
1634 ssize_t retval = 0;
1635 char *s;
1da177e4 1636
e12ba74d 1637 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1638 return -ENOMEM;
1639
1640 s = page;
1641
1642 switch (type) {
1643 case FILE_CPULIST:
1644 s += cpuset_sprintf_cpulist(s, cs);
1645 break;
1646 case FILE_MEMLIST:
1647 s += cpuset_sprintf_memlist(s, cs);
1648 break;
1da177e4
LT
1649 default:
1650 retval = -EINVAL;
1651 goto out;
1652 }
1653 *s++ = '\n';
1da177e4 1654
eacaa1f5 1655 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1656out:
1657 free_page((unsigned long)page);
1658 return retval;
1659}
1660
700fe1ab
PM
1661static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1662{
1663 struct cpuset *cs = cgroup_cs(cont);
1664 cpuset_filetype_t type = cft->private;
1665 switch (type) {
1666 case FILE_CPU_EXCLUSIVE:
1667 return is_cpu_exclusive(cs);
1668 case FILE_MEM_EXCLUSIVE:
1669 return is_mem_exclusive(cs);
78608366
PM
1670 case FILE_MEM_HARDWALL:
1671 return is_mem_hardwall(cs);
700fe1ab
PM
1672 case FILE_SCHED_LOAD_BALANCE:
1673 return is_sched_load_balance(cs);
1674 case FILE_MEMORY_MIGRATE:
1675 return is_memory_migrate(cs);
1676 case FILE_MEMORY_PRESSURE_ENABLED:
1677 return cpuset_memory_pressure_enabled;
1678 case FILE_MEMORY_PRESSURE:
1679 return fmeter_getrate(&cs->fmeter);
1680 case FILE_SPREAD_PAGE:
1681 return is_spread_page(cs);
1682 case FILE_SPREAD_SLAB:
1683 return is_spread_slab(cs);
1684 default:
1685 BUG();
1686 }
cf417141
MK
1687
1688 /* Unreachable but makes gcc happy */
1689 return 0;
700fe1ab 1690}
1da177e4 1691
5be7a479
PM
1692static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1693{
1694 struct cpuset *cs = cgroup_cs(cont);
1695 cpuset_filetype_t type = cft->private;
1696 switch (type) {
1697 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1698 return cs->relax_domain_level;
1699 default:
1700 BUG();
1701 }
cf417141
MK
1702
1703 /* Unrechable but makes gcc happy */
1704 return 0;
5be7a479
PM
1705}
1706
1da177e4
LT
1707
1708/*
1709 * for the common functions, 'private' gives the type of file
1710 */
1711
addf2c73
PM
1712static struct cftype files[] = {
1713 {
1714 .name = "cpus",
1715 .read = cpuset_common_file_read,
e3712395
PM
1716 .write_string = cpuset_write_resmask,
1717 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1718 .private = FILE_CPULIST,
1719 },
1720
1721 {
1722 .name = "mems",
1723 .read = cpuset_common_file_read,
e3712395
PM
1724 .write_string = cpuset_write_resmask,
1725 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1726 .private = FILE_MEMLIST,
1727 },
1728
1729 {
1730 .name = "cpu_exclusive",
1731 .read_u64 = cpuset_read_u64,
1732 .write_u64 = cpuset_write_u64,
1733 .private = FILE_CPU_EXCLUSIVE,
1734 },
1735
1736 {
1737 .name = "mem_exclusive",
1738 .read_u64 = cpuset_read_u64,
1739 .write_u64 = cpuset_write_u64,
1740 .private = FILE_MEM_EXCLUSIVE,
1741 },
1742
78608366
PM
1743 {
1744 .name = "mem_hardwall",
1745 .read_u64 = cpuset_read_u64,
1746 .write_u64 = cpuset_write_u64,
1747 .private = FILE_MEM_HARDWALL,
1748 },
1749
addf2c73
PM
1750 {
1751 .name = "sched_load_balance",
1752 .read_u64 = cpuset_read_u64,
1753 .write_u64 = cpuset_write_u64,
1754 .private = FILE_SCHED_LOAD_BALANCE,
1755 },
1756
1757 {
1758 .name = "sched_relax_domain_level",
5be7a479
PM
1759 .read_s64 = cpuset_read_s64,
1760 .write_s64 = cpuset_write_s64,
addf2c73
PM
1761 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1762 },
1763
1764 {
1765 .name = "memory_migrate",
1766 .read_u64 = cpuset_read_u64,
1767 .write_u64 = cpuset_write_u64,
1768 .private = FILE_MEMORY_MIGRATE,
1769 },
1770
1771 {
1772 .name = "memory_pressure",
1773 .read_u64 = cpuset_read_u64,
1774 .write_u64 = cpuset_write_u64,
1775 .private = FILE_MEMORY_PRESSURE,
099fca32 1776 .mode = S_IRUGO,
addf2c73
PM
1777 },
1778
1779 {
1780 .name = "memory_spread_page",
1781 .read_u64 = cpuset_read_u64,
1782 .write_u64 = cpuset_write_u64,
1783 .private = FILE_SPREAD_PAGE,
1784 },
1785
1786 {
1787 .name = "memory_spread_slab",
1788 .read_u64 = cpuset_read_u64,
1789 .write_u64 = cpuset_write_u64,
1790 .private = FILE_SPREAD_SLAB,
1791 },
3e0d98b9 1792
4baf6e33
TH
1793 {
1794 .name = "memory_pressure_enabled",
1795 .flags = CFTYPE_ONLY_ON_ROOT,
1796 .read_u64 = cpuset_read_u64,
1797 .write_u64 = cpuset_write_u64,
1798 .private = FILE_MEMORY_PRESSURE_ENABLED,
1799 },
1da177e4 1800
4baf6e33
TH
1801 { } /* terminate */
1802};
1da177e4
LT
1803
1804/*
92fb9748 1805 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1806 * cont: control group that the new cpuset will be part of
1da177e4
LT
1807 */
1808
92fb9748 1809static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1810{
c8f699bb 1811 struct cpuset *cs;
1da177e4 1812
c8f699bb 1813 if (!cont->parent)
8793d854 1814 return &top_cpuset.css;
033fa1c5 1815
c8f699bb 1816 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1817 if (!cs)
8793d854 1818 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1819 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1820 kfree(cs);
1821 return ERR_PTR(-ENOMEM);
1822 }
1da177e4 1823
029190c5 1824 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1825 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1826 nodes_clear(cs->mems_allowed);
3e0d98b9 1827 fmeter_init(&cs->fmeter);
1d3504fc 1828 cs->relax_domain_level = -1;
1da177e4 1829
c8f699bb
TH
1830 return &cs->css;
1831}
1832
1833static int cpuset_css_online(struct cgroup *cgrp)
1834{
1835 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1836 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1837 struct cpuset *tmp_cs;
1838 struct cgroup *pos_cg;
c8f699bb
TH
1839
1840 if (!parent)
1841 return 0;
1842
5d21cc2d
TH
1843 mutex_lock(&cpuset_mutex);
1844
efeb77b2 1845 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1846 if (is_spread_page(parent))
1847 set_bit(CS_SPREAD_PAGE, &cs->flags);
1848 if (is_spread_slab(parent))
1849 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1850
202f72d5 1851 number_of_cpusets++;
033fa1c5 1852
c8f699bb 1853 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1854 goto out_unlock;
033fa1c5
TH
1855
1856 /*
1857 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1858 * set. This flag handling is implemented in cgroup core for
1859 * histrical reasons - the flag may be specified during mount.
1860 *
1861 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1862 * refuse to clone the configuration - thereby refusing the task to
1863 * be entered, and as a result refusing the sys_unshare() or
1864 * clone() which initiated it. If this becomes a problem for some
1865 * users who wish to allow that scenario, then this could be
1866 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1867 * (and likewise for mems) to the new cgroup.
1868 */
ae8086ce
TH
1869 rcu_read_lock();
1870 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1871 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1872 rcu_read_unlock();
5d21cc2d 1873 goto out_unlock;
ae8086ce 1874 }
033fa1c5 1875 }
ae8086ce 1876 rcu_read_unlock();
033fa1c5
TH
1877
1878 mutex_lock(&callback_mutex);
1879 cs->mems_allowed = parent->mems_allowed;
1880 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1881 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1882out_unlock:
1883 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1884 return 0;
1885}
1886
1887static void cpuset_css_offline(struct cgroup *cgrp)
1888{
1889 struct cpuset *cs = cgroup_cs(cgrp);
1890
5d21cc2d 1891 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1892
1893 if (is_sched_load_balance(cs))
1894 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1895
1896 number_of_cpusets--;
efeb77b2 1897 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1898
5d21cc2d 1899 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1900}
1901
029190c5 1902/*
029190c5
PJ
1903 * If the cpuset being removed has its flag 'sched_load_balance'
1904 * enabled, then simulate turning sched_load_balance off, which
699140ba 1905 * will call rebuild_sched_domains_locked().
029190c5
PJ
1906 */
1907
92fb9748 1908static void cpuset_css_free(struct cgroup *cont)
1da177e4 1909{
8793d854 1910 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1911
300ed6cb 1912 free_cpumask_var(cs->cpus_allowed);
8793d854 1913 kfree(cs);
1da177e4
LT
1914}
1915
8793d854
PM
1916struct cgroup_subsys cpuset_subsys = {
1917 .name = "cpuset",
92fb9748 1918 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1919 .css_online = cpuset_css_online,
1920 .css_offline = cpuset_css_offline,
92fb9748 1921 .css_free = cpuset_css_free,
8793d854 1922 .can_attach = cpuset_can_attach,
452477fa 1923 .cancel_attach = cpuset_cancel_attach,
8793d854 1924 .attach = cpuset_attach,
8793d854 1925 .subsys_id = cpuset_subsys_id,
4baf6e33 1926 .base_cftypes = files,
8793d854
PM
1927 .early_init = 1,
1928};
1929
1da177e4
LT
1930/**
1931 * cpuset_init - initialize cpusets at system boot
1932 *
1933 * Description: Initialize top_cpuset and the cpuset internal file system,
1934 **/
1935
1936int __init cpuset_init(void)
1937{
8793d854 1938 int err = 0;
1da177e4 1939
58568d2a
MX
1940 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1941 BUG();
1942
300ed6cb 1943 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1944 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1945
3e0d98b9 1946 fmeter_init(&top_cpuset.fmeter);
029190c5 1947 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1948 top_cpuset.relax_domain_level = -1;
1da177e4 1949
1da177e4
LT
1950 err = register_filesystem(&cpuset_fs_type);
1951 if (err < 0)
8793d854
PM
1952 return err;
1953
2341d1b6
LZ
1954 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1955 BUG();
1956
202f72d5 1957 number_of_cpusets = 1;
8793d854 1958 return 0;
1da177e4
LT
1959}
1960
b1aac8bb 1961/*
cf417141 1962 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1963 * or memory nodes, we need to walk over the cpuset hierarchy,
1964 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1965 * last CPU or node from a cpuset, then move the tasks in the empty
1966 * cpuset to its next-highest non-empty parent.
b1aac8bb 1967 */
956db3ca
CW
1968static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1969{
1970 struct cpuset *parent;
1971
956db3ca
CW
1972 /*
1973 * Find its next-highest non-empty parent, (top cpuset
1974 * has online cpus, so can't be empty).
1975 */
c431069f 1976 parent = parent_cs(cs);
300ed6cb 1977 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1978 nodes_empty(parent->mems_allowed))
c431069f 1979 parent = parent_cs(parent);
956db3ca 1980
8cc99345
TH
1981 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
1982 rcu_read_lock();
1983 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
1984 cgroup_name(cs->css.cgroup));
1985 rcu_read_unlock();
1986 }
956db3ca
CW
1987}
1988
deb7aa30 1989/**
388afd85 1990 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 1991 * @cs: cpuset in interest
956db3ca 1992 *
deb7aa30
TH
1993 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
1994 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
1995 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 1996 */
388afd85 1997static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 1998{
deb7aa30 1999 static cpumask_t off_cpus;
33ad801d 2000 static nodemask_t off_mems;
5d21cc2d 2001 bool is_empty;
80d1fa64 2002
e44193d3
LZ
2003retry:
2004 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2005
5d21cc2d 2006 mutex_lock(&cpuset_mutex);
7ddf96b0 2007
e44193d3
LZ
2008 /*
2009 * We have raced with task attaching. We wait until attaching
2010 * is finished, so we won't attach a task to an empty cpuset.
2011 */
2012 if (cs->attach_in_progress) {
2013 mutex_unlock(&cpuset_mutex);
2014 goto retry;
2015 }
2016
deb7aa30
TH
2017 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2018 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2019
deb7aa30
TH
2020 /* remove offline cpus from @cs */
2021 if (!cpumask_empty(&off_cpus)) {
2022 mutex_lock(&callback_mutex);
2023 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2024 mutex_unlock(&callback_mutex);
2025 update_tasks_cpumask(cs, NULL);
80d1fa64
SB
2026 }
2027
deb7aa30
TH
2028 /* remove offline mems from @cs */
2029 if (!nodes_empty(off_mems)) {
deb7aa30
TH
2030 mutex_lock(&callback_mutex);
2031 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2032 mutex_unlock(&callback_mutex);
33ad801d 2033 update_tasks_nodemask(cs, NULL);
b1aac8bb 2034 }
deb7aa30 2035
5d21cc2d
TH
2036 is_empty = cpumask_empty(cs->cpus_allowed) ||
2037 nodes_empty(cs->mems_allowed);
8d033948 2038
5d21cc2d
TH
2039 mutex_unlock(&cpuset_mutex);
2040
2041 /*
2042 * If @cs became empty, move tasks to the nearest ancestor with
2043 * execution resources. This is full cgroup operation which will
2044 * also call back into cpuset. Should be done outside any lock.
2045 */
2046 if (is_empty)
2047 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2048}
2049
deb7aa30 2050/**
3a5a6d0c 2051 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2052 *
deb7aa30
TH
2053 * This function is called after either CPU or memory configuration has
2054 * changed and updates cpuset accordingly. The top_cpuset is always
2055 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2056 * order to make cpusets transparent (of no affect) on systems that are
2057 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2058 *
deb7aa30 2059 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2060 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2061 * all descendants.
956db3ca 2062 *
deb7aa30
TH
2063 * Note that CPU offlining during suspend is ignored. We don't modify
2064 * cpusets across suspend/resume cycles at all.
956db3ca 2065 */
3a5a6d0c 2066static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2067{
deb7aa30
TH
2068 static cpumask_t new_cpus, tmp_cpus;
2069 static nodemask_t new_mems, tmp_mems;
2070 bool cpus_updated, mems_updated;
2071 bool cpus_offlined, mems_offlined;
b1aac8bb 2072
5d21cc2d 2073 mutex_lock(&cpuset_mutex);
956db3ca 2074
deb7aa30
TH
2075 /* fetch the available cpus/mems and find out which changed how */
2076 cpumask_copy(&new_cpus, cpu_active_mask);
2077 new_mems = node_states[N_MEMORY];
7ddf96b0 2078
deb7aa30
TH
2079 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2080 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2081 &new_cpus);
7ddf96b0 2082
deb7aa30
TH
2083 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2084 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2085 mems_offlined = !nodes_empty(tmp_mems);
7ddf96b0 2086
deb7aa30
TH
2087 /* synchronize cpus_allowed to cpu_active_mask */
2088 if (cpus_updated) {
2089 mutex_lock(&callback_mutex);
2090 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2091 mutex_unlock(&callback_mutex);
2092 /* we don't mess with cpumasks of tasks in top_cpuset */
2093 }
b4501295 2094
deb7aa30
TH
2095 /* synchronize mems_allowed to N_MEMORY */
2096 if (mems_updated) {
deb7aa30
TH
2097 mutex_lock(&callback_mutex);
2098 top_cpuset.mems_allowed = new_mems;
2099 mutex_unlock(&callback_mutex);
33ad801d 2100 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2101 }
b4501295 2102
388afd85
LZ
2103 mutex_unlock(&cpuset_mutex);
2104
deb7aa30
TH
2105 /* if cpus or mems went down, we need to propagate to descendants */
2106 if (cpus_offlined || mems_offlined) {
2107 struct cpuset *cs;
fc560a26 2108 struct cgroup *pos_cgrp;
f9b4fb8d 2109
fc560a26 2110 rcu_read_lock();
388afd85
LZ
2111 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2112 if (!css_tryget(&cs->css))
2113 continue;
2114 rcu_read_unlock();
7ddf96b0 2115
388afd85 2116 cpuset_hotplug_update_tasks(cs);
b4501295 2117
388afd85
LZ
2118 rcu_read_lock();
2119 css_put(&cs->css);
2120 }
2121 rcu_read_unlock();
2122 }
8d033948 2123
deb7aa30 2124 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2125 if (cpus_updated)
2126 rebuild_sched_domains();
b1aac8bb
PJ
2127}
2128
7ddf96b0 2129void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2130{
3a5a6d0c
TH
2131 /*
2132 * We're inside cpu hotplug critical region which usually nests
2133 * inside cgroup synchronization. Bounce actual hotplug processing
2134 * to a work item to avoid reverse locking order.
2135 *
2136 * We still need to do partition_sched_domains() synchronously;
2137 * otherwise, the scheduler will get confused and put tasks to the
2138 * dead CPU. Fall back to the default single domain.
2139 * cpuset_hotplug_workfn() will rebuild it as necessary.
2140 */
2141 partition_sched_domains(1, NULL, NULL);
2142 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2143}
4c4d50f7 2144
38837fc7 2145/*
38d7bee9
LJ
2146 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2147 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2148 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2149 */
f481891f
MX
2150static int cpuset_track_online_nodes(struct notifier_block *self,
2151 unsigned long action, void *arg)
38837fc7 2152{
3a5a6d0c 2153 schedule_work(&cpuset_hotplug_work);
f481891f 2154 return NOTIFY_OK;
38837fc7 2155}
d8f10cb3
AM
2156
2157static struct notifier_block cpuset_track_online_nodes_nb = {
2158 .notifier_call = cpuset_track_online_nodes,
2159 .priority = 10, /* ??! */
2160};
38837fc7 2161
1da177e4
LT
2162/**
2163 * cpuset_init_smp - initialize cpus_allowed
2164 *
2165 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2166 */
1da177e4
LT
2167void __init cpuset_init_smp(void)
2168{
6ad4c188 2169 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2170 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2171 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2172
d8f10cb3 2173 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2174}
2175
2176/**
1da177e4
LT
2177 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2178 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2179 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2180 *
300ed6cb 2181 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2182 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2183 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2184 * tasks cpuset.
2185 **/
2186
6af866af 2187void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2188{
3d3f26a7 2189 mutex_lock(&callback_mutex);
909d75a3 2190 task_lock(tsk);
f9a86fcb 2191 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2192 task_unlock(tsk);
897f0b3c 2193 mutex_unlock(&callback_mutex);
1da177e4
LT
2194}
2195
2baab4e9 2196void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2197{
2198 const struct cpuset *cs;
9084bb82
ON
2199
2200 rcu_read_lock();
2201 cs = task_cs(tsk);
06d6b3cb 2202 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2203 rcu_read_unlock();
2204
2205 /*
2206 * We own tsk->cpus_allowed, nobody can change it under us.
2207 *
2208 * But we used cs && cs->cpus_allowed lockless and thus can
2209 * race with cgroup_attach_task() or update_cpumask() and get
2210 * the wrong tsk->cpus_allowed. However, both cases imply the
2211 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2212 * which takes task_rq_lock().
2213 *
2214 * If we are called after it dropped the lock we must see all
2215 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2216 * set any mask even if it is not right from task_cs() pov,
2217 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2218 *
2219 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2220 * if required.
9084bb82 2221 */
9084bb82
ON
2222}
2223
1da177e4
LT
2224void cpuset_init_current_mems_allowed(void)
2225{
f9a86fcb 2226 nodes_setall(current->mems_allowed);
1da177e4
LT
2227}
2228
909d75a3
PJ
2229/**
2230 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2231 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2232 *
2233 * Description: Returns the nodemask_t mems_allowed of the cpuset
2234 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2235 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2236 * tasks cpuset.
2237 **/
2238
2239nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2240{
2241 nodemask_t mask;
2242
3d3f26a7 2243 mutex_lock(&callback_mutex);
909d75a3 2244 task_lock(tsk);
8793d854 2245 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2246 task_unlock(tsk);
3d3f26a7 2247 mutex_unlock(&callback_mutex);
909d75a3
PJ
2248
2249 return mask;
2250}
2251
d9fd8a6d 2252/**
19770b32
MG
2253 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2254 * @nodemask: the nodemask to be checked
d9fd8a6d 2255 *
19770b32 2256 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2257 */
19770b32 2258int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2259{
19770b32 2260 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2261}
2262
9bf2229f 2263/*
78608366
PM
2264 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2265 * mem_hardwall ancestor to the specified cpuset. Call holding
2266 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2267 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2268 */
78608366 2269static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2270{
c431069f
TH
2271 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2272 cs = parent_cs(cs);
9bf2229f
PJ
2273 return cs;
2274}
2275
d9fd8a6d 2276/**
a1bc5a4e
DR
2277 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2278 * @node: is this an allowed node?
02a0e53d 2279 * @gfp_mask: memory allocation flags
d9fd8a6d 2280 *
a1bc5a4e
DR
2281 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2282 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2283 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2284 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2285 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2286 * flag, yes.
9bf2229f
PJ
2287 * Otherwise, no.
2288 *
a1bc5a4e
DR
2289 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2290 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2291 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2292 *
a1bc5a4e
DR
2293 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2294 * cpusets, and never sleeps.
02a0e53d
PJ
2295 *
2296 * The __GFP_THISNODE placement logic is really handled elsewhere,
2297 * by forcibly using a zonelist starting at a specified node, and by
2298 * (in get_page_from_freelist()) refusing to consider the zones for
2299 * any node on the zonelist except the first. By the time any such
2300 * calls get to this routine, we should just shut up and say 'yes'.
2301 *
9bf2229f 2302 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2303 * and do not allow allocations outside the current tasks cpuset
2304 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2305 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2306 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2307 *
02a0e53d
PJ
2308 * Scanning up parent cpusets requires callback_mutex. The
2309 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2310 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2311 * current tasks mems_allowed came up empty on the first pass over
2312 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2313 * cpuset are short of memory, might require taking the callback_mutex
2314 * mutex.
9bf2229f 2315 *
36be57ff 2316 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2317 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2318 * so no allocation on a node outside the cpuset is allowed (unless
2319 * in interrupt, of course).
36be57ff
PJ
2320 *
2321 * The second pass through get_page_from_freelist() doesn't even call
2322 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2323 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2324 * in alloc_flags. That logic and the checks below have the combined
2325 * affect that:
9bf2229f
PJ
2326 * in_interrupt - any node ok (current task context irrelevant)
2327 * GFP_ATOMIC - any node ok
c596d9f3 2328 * TIF_MEMDIE - any node ok
78608366 2329 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2330 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2331 *
2332 * Rule:
a1bc5a4e 2333 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2334 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2335 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2336 */
a1bc5a4e 2337int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2338{
9bf2229f 2339 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2340 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2341
9b819d20 2342 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2343 return 1;
92d1dbd2 2344 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2345 if (node_isset(node, current->mems_allowed))
2346 return 1;
c596d9f3
DR
2347 /*
2348 * Allow tasks that have access to memory reserves because they have
2349 * been OOM killed to get memory anywhere.
2350 */
2351 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2352 return 1;
9bf2229f
PJ
2353 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2354 return 0;
2355
5563e770
BP
2356 if (current->flags & PF_EXITING) /* Let dying task have memory */
2357 return 1;
2358
9bf2229f 2359 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2360 mutex_lock(&callback_mutex);
053199ed 2361
053199ed 2362 task_lock(current);
78608366 2363 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2364 task_unlock(current);
2365
9bf2229f 2366 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2367 mutex_unlock(&callback_mutex);
9bf2229f 2368 return allowed;
1da177e4
LT
2369}
2370
02a0e53d 2371/*
a1bc5a4e
DR
2372 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2373 * @node: is this an allowed node?
02a0e53d
PJ
2374 * @gfp_mask: memory allocation flags
2375 *
a1bc5a4e
DR
2376 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2377 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2378 * yes. If the task has been OOM killed and has access to memory reserves as
2379 * specified by the TIF_MEMDIE flag, yes.
2380 * Otherwise, no.
02a0e53d
PJ
2381 *
2382 * The __GFP_THISNODE placement logic is really handled elsewhere,
2383 * by forcibly using a zonelist starting at a specified node, and by
2384 * (in get_page_from_freelist()) refusing to consider the zones for
2385 * any node on the zonelist except the first. By the time any such
2386 * calls get to this routine, we should just shut up and say 'yes'.
2387 *
a1bc5a4e
DR
2388 * Unlike the cpuset_node_allowed_softwall() variant, above,
2389 * this variant requires that the node be in the current task's
02a0e53d
PJ
2390 * mems_allowed or that we're in interrupt. It does not scan up the
2391 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2392 * It never sleeps.
2393 */
a1bc5a4e 2394int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2395{
02a0e53d
PJ
2396 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2397 return 1;
02a0e53d
PJ
2398 if (node_isset(node, current->mems_allowed))
2399 return 1;
dedf8b79
DW
2400 /*
2401 * Allow tasks that have access to memory reserves because they have
2402 * been OOM killed to get memory anywhere.
2403 */
2404 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2405 return 1;
02a0e53d
PJ
2406 return 0;
2407}
2408
825a46af 2409/**
6adef3eb
JS
2410 * cpuset_mem_spread_node() - On which node to begin search for a file page
2411 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2412 *
2413 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2414 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2415 * and if the memory allocation used cpuset_mem_spread_node()
2416 * to determine on which node to start looking, as it will for
2417 * certain page cache or slab cache pages such as used for file
2418 * system buffers and inode caches, then instead of starting on the
2419 * local node to look for a free page, rather spread the starting
2420 * node around the tasks mems_allowed nodes.
2421 *
2422 * We don't have to worry about the returned node being offline
2423 * because "it can't happen", and even if it did, it would be ok.
2424 *
2425 * The routines calling guarantee_online_mems() are careful to
2426 * only set nodes in task->mems_allowed that are online. So it
2427 * should not be possible for the following code to return an
2428 * offline node. But if it did, that would be ok, as this routine
2429 * is not returning the node where the allocation must be, only
2430 * the node where the search should start. The zonelist passed to
2431 * __alloc_pages() will include all nodes. If the slab allocator
2432 * is passed an offline node, it will fall back to the local node.
2433 * See kmem_cache_alloc_node().
2434 */
2435
6adef3eb 2436static int cpuset_spread_node(int *rotor)
825a46af
PJ
2437{
2438 int node;
2439
6adef3eb 2440 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2441 if (node == MAX_NUMNODES)
2442 node = first_node(current->mems_allowed);
6adef3eb 2443 *rotor = node;
825a46af
PJ
2444 return node;
2445}
6adef3eb
JS
2446
2447int cpuset_mem_spread_node(void)
2448{
778d3b0f
MH
2449 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2450 current->cpuset_mem_spread_rotor =
2451 node_random(&current->mems_allowed);
2452
6adef3eb
JS
2453 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2454}
2455
2456int cpuset_slab_spread_node(void)
2457{
778d3b0f
MH
2458 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2459 current->cpuset_slab_spread_rotor =
2460 node_random(&current->mems_allowed);
2461
6adef3eb
JS
2462 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2463}
2464
825a46af
PJ
2465EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2466
ef08e3b4 2467/**
bbe373f2
DR
2468 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2469 * @tsk1: pointer to task_struct of some task.
2470 * @tsk2: pointer to task_struct of some other task.
2471 *
2472 * Description: Return true if @tsk1's mems_allowed intersects the
2473 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2474 * one of the task's memory usage might impact the memory available
2475 * to the other.
ef08e3b4
PJ
2476 **/
2477
bbe373f2
DR
2478int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2479 const struct task_struct *tsk2)
ef08e3b4 2480{
bbe373f2 2481 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2482}
2483
f440d98f
LZ
2484#define CPUSET_NODELIST_LEN (256)
2485
75aa1994
DR
2486/**
2487 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2488 * @task: pointer to task_struct of some task.
2489 *
2490 * Description: Prints @task's name, cpuset name, and cached copy of its
2491 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2492 * dereferencing task_cs(task).
2493 */
2494void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2495{
f440d98f
LZ
2496 /* Statically allocated to prevent using excess stack. */
2497 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2498 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2499
f440d98f 2500 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2501
cfb5966b 2502 rcu_read_lock();
f440d98f 2503 spin_lock(&cpuset_buffer_lock);
63f43f55 2504
75aa1994
DR
2505 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2506 tsk->mems_allowed);
2507 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2508 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2509
75aa1994 2510 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2511 rcu_read_unlock();
75aa1994
DR
2512}
2513
3e0d98b9
PJ
2514/*
2515 * Collection of memory_pressure is suppressed unless
2516 * this flag is enabled by writing "1" to the special
2517 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2518 */
2519
c5b2aff8 2520int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2521
2522/**
2523 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2524 *
2525 * Keep a running average of the rate of synchronous (direct)
2526 * page reclaim efforts initiated by tasks in each cpuset.
2527 *
2528 * This represents the rate at which some task in the cpuset
2529 * ran low on memory on all nodes it was allowed to use, and
2530 * had to enter the kernels page reclaim code in an effort to
2531 * create more free memory by tossing clean pages or swapping
2532 * or writing dirty pages.
2533 *
2534 * Display to user space in the per-cpuset read-only file
2535 * "memory_pressure". Value displayed is an integer
2536 * representing the recent rate of entry into the synchronous
2537 * (direct) page reclaim by any task attached to the cpuset.
2538 **/
2539
2540void __cpuset_memory_pressure_bump(void)
2541{
3e0d98b9 2542 task_lock(current);
8793d854 2543 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2544 task_unlock(current);
2545}
2546
8793d854 2547#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2548/*
2549 * proc_cpuset_show()
2550 * - Print tasks cpuset path into seq_file.
2551 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2552 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2553 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2554 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2555 * anyway.
1da177e4 2556 */
8d8b97ba 2557int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2558{
13b41b09 2559 struct pid *pid;
1da177e4
LT
2560 struct task_struct *tsk;
2561 char *buf;
8793d854 2562 struct cgroup_subsys_state *css;
99f89551 2563 int retval;
1da177e4 2564
99f89551 2565 retval = -ENOMEM;
1da177e4
LT
2566 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2567 if (!buf)
99f89551
EB
2568 goto out;
2569
2570 retval = -ESRCH;
13b41b09
EB
2571 pid = m->private;
2572 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2573 if (!tsk)
2574 goto out_free;
1da177e4 2575
27e89ae5 2576 rcu_read_lock();
8793d854
PM
2577 css = task_subsys_state(tsk, cpuset_subsys_id);
2578 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2579 rcu_read_unlock();
1da177e4 2580 if (retval < 0)
27e89ae5 2581 goto out_put_task;
1da177e4
LT
2582 seq_puts(m, buf);
2583 seq_putc(m, '\n');
27e89ae5 2584out_put_task:
99f89551
EB
2585 put_task_struct(tsk);
2586out_free:
1da177e4 2587 kfree(buf);
99f89551 2588out:
1da177e4
LT
2589 return retval;
2590}
8793d854 2591#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2592
d01d4827 2593/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2594void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2595{
df5f8314 2596 seq_printf(m, "Mems_allowed:\t");
30e8e136 2597 seq_nodemask(m, &task->mems_allowed);
df5f8314 2598 seq_printf(m, "\n");
39106dcf 2599 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2600 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2601 seq_printf(m, "\n");
1da177e4 2602}