[PATCH] cpuset: migrate all tasks in cpuset at once
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22#include <linux/config.h>
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/sched.h>
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/smp_lock.h>
46#include <linux/spinlock.h>
47#include <linux/stat.h>
48#include <linux/string.h>
49#include <linux/time.h>
50#include <linux/backing-dev.h>
51#include <linux/sort.h>
52
53#include <asm/uaccess.h>
54#include <asm/atomic.h>
55#include <asm/semaphore.h>
56
c5b2aff8 57#define CPUSET_SUPER_MAGIC 0x27e0eb
1da177e4 58
202f72d5
PJ
59/*
60 * Tracks how many cpusets are currently defined in system.
61 * When there is only one cpuset (the root cpuset) we can
62 * short circuit some hooks.
63 */
64int number_of_cpusets;
65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4
LT
75struct cpuset {
76 unsigned long flags; /* "unsigned long" so bitops work */
77 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
78 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
79
053199ed
PJ
80 /*
81 * Count is atomic so can incr (fork) or decr (exit) without a lock.
82 */
1da177e4
LT
83 atomic_t count; /* count tasks using this cpuset */
84
85 /*
86 * We link our 'sibling' struct into our parents 'children'.
87 * Our children link their 'sibling' into our 'children'.
88 */
89 struct list_head sibling; /* my parents children */
90 struct list_head children; /* my children */
91
92 struct cpuset *parent; /* my parent */
93 struct dentry *dentry; /* cpuset fs entry */
94
95 /*
96 * Copy of global cpuset_mems_generation as of the most
97 * recent time this cpuset changed its mems_allowed.
98 */
3e0d98b9
PJ
99 int mems_generation;
100
101 struct fmeter fmeter; /* memory_pressure filter */
1da177e4
LT
102};
103
104/* bits in struct cpuset flags field */
105typedef enum {
106 CS_CPU_EXCLUSIVE,
107 CS_MEM_EXCLUSIVE,
45b07ef3 108 CS_MEMORY_MIGRATE,
1da177e4
LT
109 CS_REMOVED,
110 CS_NOTIFY_ON_RELEASE
111} cpuset_flagbits_t;
112
113/* convenient tests for these bits */
114static inline int is_cpu_exclusive(const struct cpuset *cs)
115{
116 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
117}
118
119static inline int is_mem_exclusive(const struct cpuset *cs)
120{
121 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
122}
123
124static inline int is_removed(const struct cpuset *cs)
125{
126 return !!test_bit(CS_REMOVED, &cs->flags);
127}
128
129static inline int notify_on_release(const struct cpuset *cs)
130{
131 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
132}
133
45b07ef3
PJ
134static inline int is_memory_migrate(const struct cpuset *cs)
135{
136 return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags);
137}
138
1da177e4
LT
139/*
140 * Increment this atomic integer everytime any cpuset changes its
141 * mems_allowed value. Users of cpusets can track this generation
142 * number, and avoid having to lock and reload mems_allowed unless
143 * the cpuset they're using changes generation.
144 *
145 * A single, global generation is needed because attach_task() could
146 * reattach a task to a different cpuset, which must not have its
147 * generation numbers aliased with those of that tasks previous cpuset.
148 *
149 * Generations are needed for mems_allowed because one task cannot
150 * modify anothers memory placement. So we must enable every task,
151 * on every visit to __alloc_pages(), to efficiently check whether
152 * its current->cpuset->mems_allowed has changed, requiring an update
153 * of its current->mems_allowed.
154 */
155static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
156
157static struct cpuset top_cpuset = {
158 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
159 .cpus_allowed = CPU_MASK_ALL,
160 .mems_allowed = NODE_MASK_ALL,
161 .count = ATOMIC_INIT(0),
162 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
163 .children = LIST_HEAD_INIT(top_cpuset.children),
1da177e4
LT
164};
165
166static struct vfsmount *cpuset_mount;
3e0d98b9 167static struct super_block *cpuset_sb;
1da177e4
LT
168
169/*
053199ed
PJ
170 * We have two global cpuset semaphores below. They can nest.
171 * It is ok to first take manage_sem, then nest callback_sem. We also
172 * require taking task_lock() when dereferencing a tasks cpuset pointer.
173 * See "The task_lock() exception", at the end of this comment.
174 *
175 * A task must hold both semaphores to modify cpusets. If a task
176 * holds manage_sem, then it blocks others wanting that semaphore,
177 * ensuring that it is the only task able to also acquire callback_sem
178 * and be able to modify cpusets. It can perform various checks on
179 * the cpuset structure first, knowing nothing will change. It can
180 * also allocate memory while just holding manage_sem. While it is
181 * performing these checks, various callback routines can briefly
182 * acquire callback_sem to query cpusets. Once it is ready to make
183 * the changes, it takes callback_sem, blocking everyone else.
184 *
185 * Calls to the kernel memory allocator can not be made while holding
186 * callback_sem, as that would risk double tripping on callback_sem
187 * from one of the callbacks into the cpuset code from within
188 * __alloc_pages().
189 *
190 * If a task is only holding callback_sem, then it has read-only
191 * access to cpusets.
192 *
193 * The task_struct fields mems_allowed and mems_generation may only
194 * be accessed in the context of that task, so require no locks.
195 *
196 * Any task can increment and decrement the count field without lock.
197 * So in general, code holding manage_sem or callback_sem can't rely
198 * on the count field not changing. However, if the count goes to
199 * zero, then only attach_task(), which holds both semaphores, can
200 * increment it again. Because a count of zero means that no tasks
201 * are currently attached, therefore there is no way a task attached
202 * to that cpuset can fork (the other way to increment the count).
203 * So code holding manage_sem or callback_sem can safely assume that
204 * if the count is zero, it will stay zero. Similarly, if a task
205 * holds manage_sem or callback_sem on a cpuset with zero count, it
206 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
207 * both of those semaphores.
208 *
209 * A possible optimization to improve parallelism would be to make
210 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
211 * to proceed in parallel, with read access, until the holder of
212 * manage_sem needed to take this rwsem for exclusive write access
213 * and modify some cpusets.
214 *
215 * The cpuset_common_file_write handler for operations that modify
216 * the cpuset hierarchy holds manage_sem across the entire operation,
217 * single threading all such cpuset modifications across the system.
218 *
219 * The cpuset_common_file_read() handlers only hold callback_sem across
220 * small pieces of code, such as when reading out possibly multi-word
221 * cpumasks and nodemasks.
222 *
223 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
224 * (usually) take either semaphore. These are the two most performance
225 * critical pieces of code here. The exception occurs on cpuset_exit(),
226 * when a task in a notify_on_release cpuset exits. Then manage_sem
2efe86b8 227 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
228 * to /sbin/cpuset_release_agent with the name of the cpuset (path
229 * relative to the root of cpuset file system) as the argument.
230 *
053199ed
PJ
231 * A cpuset can only be deleted if both its 'count' of using tasks
232 * is zero, and its list of 'children' cpusets is empty. Since all
233 * tasks in the system use _some_ cpuset, and since there is always at
234 * least one task in the system (init, pid == 1), therefore, top_cpuset
235 * always has either children cpusets and/or using tasks. So we don't
236 * need a special hack to ensure that top_cpuset cannot be deleted.
237 *
238 * The above "Tale of Two Semaphores" would be complete, but for:
239 *
240 * The task_lock() exception
241 *
242 * The need for this exception arises from the action of attach_task(),
243 * which overwrites one tasks cpuset pointer with another. It does
244 * so using both semaphores, however there are several performance
245 * critical places that need to reference task->cpuset without the
246 * expense of grabbing a system global semaphore. Therefore except as
247 * noted below, when dereferencing or, as in attach_task(), modifying
248 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
249 * (task->alloc_lock) already in the task_struct routinely used for
250 * such matters.
1da177e4
LT
251 */
252
053199ed
PJ
253static DECLARE_MUTEX(manage_sem);
254static DECLARE_MUTEX(callback_sem);
4247bdc6 255
1da177e4
LT
256/*
257 * A couple of forward declarations required, due to cyclic reference loop:
258 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
259 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
260 */
261
262static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
263static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
264
265static struct backing_dev_info cpuset_backing_dev_info = {
266 .ra_pages = 0, /* No readahead */
267 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
268};
269
270static struct inode *cpuset_new_inode(mode_t mode)
271{
272 struct inode *inode = new_inode(cpuset_sb);
273
274 if (inode) {
275 inode->i_mode = mode;
276 inode->i_uid = current->fsuid;
277 inode->i_gid = current->fsgid;
278 inode->i_blksize = PAGE_CACHE_SIZE;
279 inode->i_blocks = 0;
280 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
281 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
282 }
283 return inode;
284}
285
286static void cpuset_diput(struct dentry *dentry, struct inode *inode)
287{
288 /* is dentry a directory ? if so, kfree() associated cpuset */
289 if (S_ISDIR(inode->i_mode)) {
290 struct cpuset *cs = dentry->d_fsdata;
291 BUG_ON(!(is_removed(cs)));
292 kfree(cs);
293 }
294 iput(inode);
295}
296
297static struct dentry_operations cpuset_dops = {
298 .d_iput = cpuset_diput,
299};
300
301static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
302{
5f45f1a7 303 struct dentry *d = lookup_one_len(name, parent, strlen(name));
1da177e4
LT
304 if (!IS_ERR(d))
305 d->d_op = &cpuset_dops;
306 return d;
307}
308
309static void remove_dir(struct dentry *d)
310{
311 struct dentry *parent = dget(d->d_parent);
312
313 d_delete(d);
314 simple_rmdir(parent->d_inode, d);
315 dput(parent);
316}
317
318/*
319 * NOTE : the dentry must have been dget()'ed
320 */
321static void cpuset_d_remove_dir(struct dentry *dentry)
322{
323 struct list_head *node;
324
325 spin_lock(&dcache_lock);
326 node = dentry->d_subdirs.next;
327 while (node != &dentry->d_subdirs) {
328 struct dentry *d = list_entry(node, struct dentry, d_child);
329 list_del_init(node);
330 if (d->d_inode) {
331 d = dget_locked(d);
332 spin_unlock(&dcache_lock);
333 d_delete(d);
334 simple_unlink(dentry->d_inode, d);
335 dput(d);
336 spin_lock(&dcache_lock);
337 }
338 node = dentry->d_subdirs.next;
339 }
340 list_del_init(&dentry->d_child);
341 spin_unlock(&dcache_lock);
342 remove_dir(dentry);
343}
344
345static struct super_operations cpuset_ops = {
346 .statfs = simple_statfs,
347 .drop_inode = generic_delete_inode,
348};
349
350static int cpuset_fill_super(struct super_block *sb, void *unused_data,
351 int unused_silent)
352{
353 struct inode *inode;
354 struct dentry *root;
355
356 sb->s_blocksize = PAGE_CACHE_SIZE;
357 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
358 sb->s_magic = CPUSET_SUPER_MAGIC;
359 sb->s_op = &cpuset_ops;
360 cpuset_sb = sb;
361
362 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
363 if (inode) {
364 inode->i_op = &simple_dir_inode_operations;
365 inode->i_fop = &simple_dir_operations;
366 /* directories start off with i_nlink == 2 (for "." entry) */
367 inode->i_nlink++;
368 } else {
369 return -ENOMEM;
370 }
371
372 root = d_alloc_root(inode);
373 if (!root) {
374 iput(inode);
375 return -ENOMEM;
376 }
377 sb->s_root = root;
378 return 0;
379}
380
381static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
382 int flags, const char *unused_dev_name,
383 void *data)
384{
385 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
386}
387
388static struct file_system_type cpuset_fs_type = {
389 .name = "cpuset",
390 .get_sb = cpuset_get_sb,
391 .kill_sb = kill_litter_super,
392};
393
394/* struct cftype:
395 *
396 * The files in the cpuset filesystem mostly have a very simple read/write
397 * handling, some common function will take care of it. Nevertheless some cases
398 * (read tasks) are special and therefore I define this structure for every
399 * kind of file.
400 *
401 *
402 * When reading/writing to a file:
403 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
404 * - the 'cftype' of the file is file->f_dentry->d_fsdata
405 */
406
407struct cftype {
408 char *name;
409 int private;
410 int (*open) (struct inode *inode, struct file *file);
411 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
412 loff_t *ppos);
413 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
414 loff_t *ppos);
415 int (*release) (struct inode *inode, struct file *file);
416};
417
418static inline struct cpuset *__d_cs(struct dentry *dentry)
419{
420 return dentry->d_fsdata;
421}
422
423static inline struct cftype *__d_cft(struct dentry *dentry)
424{
425 return dentry->d_fsdata;
426}
427
428/*
053199ed 429 * Call with manage_sem held. Writes path of cpuset into buf.
1da177e4
LT
430 * Returns 0 on success, -errno on error.
431 */
432
433static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
434{
435 char *start;
436
437 start = buf + buflen;
438
439 *--start = '\0';
440 for (;;) {
441 int len = cs->dentry->d_name.len;
442 if ((start -= len) < buf)
443 return -ENAMETOOLONG;
444 memcpy(start, cs->dentry->d_name.name, len);
445 cs = cs->parent;
446 if (!cs)
447 break;
448 if (!cs->parent)
449 continue;
450 if (--start < buf)
451 return -ENAMETOOLONG;
452 *start = '/';
453 }
454 memmove(buf, start, buf + buflen - start);
455 return 0;
456}
457
458/*
459 * Notify userspace when a cpuset is released, by running
460 * /sbin/cpuset_release_agent with the name of the cpuset (path
461 * relative to the root of cpuset file system) as the argument.
462 *
463 * Most likely, this user command will try to rmdir this cpuset.
464 *
465 * This races with the possibility that some other task will be
466 * attached to this cpuset before it is removed, or that some other
467 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
468 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
469 * unused, and this cpuset will be reprieved from its death sentence,
470 * to continue to serve a useful existence. Next time it's released,
471 * we will get notified again, if it still has 'notify_on_release' set.
472 *
3077a260
PJ
473 * The final arg to call_usermodehelper() is 0, which means don't
474 * wait. The separate /sbin/cpuset_release_agent task is forked by
475 * call_usermodehelper(), then control in this thread returns here,
476 * without waiting for the release agent task. We don't bother to
477 * wait because the caller of this routine has no use for the exit
478 * status of the /sbin/cpuset_release_agent task, so no sense holding
479 * our caller up for that.
480 *
053199ed
PJ
481 * When we had only one cpuset semaphore, we had to call this
482 * without holding it, to avoid deadlock when call_usermodehelper()
483 * allocated memory. With two locks, we could now call this while
484 * holding manage_sem, but we still don't, so as to minimize
485 * the time manage_sem is held.
1da177e4
LT
486 */
487
3077a260 488static void cpuset_release_agent(const char *pathbuf)
1da177e4
LT
489{
490 char *argv[3], *envp[3];
491 int i;
492
3077a260
PJ
493 if (!pathbuf)
494 return;
495
1da177e4
LT
496 i = 0;
497 argv[i++] = "/sbin/cpuset_release_agent";
3077a260 498 argv[i++] = (char *)pathbuf;
1da177e4
LT
499 argv[i] = NULL;
500
501 i = 0;
502 /* minimal command environment */
503 envp[i++] = "HOME=/";
504 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
505 envp[i] = NULL;
506
3077a260
PJ
507 call_usermodehelper(argv[0], argv, envp, 0);
508 kfree(pathbuf);
1da177e4
LT
509}
510
511/*
512 * Either cs->count of using tasks transitioned to zero, or the
513 * cs->children list of child cpusets just became empty. If this
514 * cs is notify_on_release() and now both the user count is zero and
3077a260
PJ
515 * the list of children is empty, prepare cpuset path in a kmalloc'd
516 * buffer, to be returned via ppathbuf, so that the caller can invoke
053199ed
PJ
517 * cpuset_release_agent() with it later on, once manage_sem is dropped.
518 * Call here with manage_sem held.
3077a260
PJ
519 *
520 * This check_for_release() routine is responsible for kmalloc'ing
521 * pathbuf. The above cpuset_release_agent() is responsible for
522 * kfree'ing pathbuf. The caller of these routines is responsible
523 * for providing a pathbuf pointer, initialized to NULL, then
053199ed
PJ
524 * calling check_for_release() with manage_sem held and the address
525 * of the pathbuf pointer, then dropping manage_sem, then calling
3077a260 526 * cpuset_release_agent() with pathbuf, as set by check_for_release().
1da177e4
LT
527 */
528
3077a260 529static void check_for_release(struct cpuset *cs, char **ppathbuf)
1da177e4
LT
530{
531 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
532 list_empty(&cs->children)) {
533 char *buf;
534
535 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
536 if (!buf)
537 return;
538 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
3077a260
PJ
539 kfree(buf);
540 else
541 *ppathbuf = buf;
1da177e4
LT
542 }
543}
544
545/*
546 * Return in *pmask the portion of a cpusets's cpus_allowed that
547 * are online. If none are online, walk up the cpuset hierarchy
548 * until we find one that does have some online cpus. If we get
549 * all the way to the top and still haven't found any online cpus,
550 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
551 * task, return cpu_online_map.
552 *
553 * One way or another, we guarantee to return some non-empty subset
554 * of cpu_online_map.
555 *
053199ed 556 * Call with callback_sem held.
1da177e4
LT
557 */
558
559static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
560{
561 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
562 cs = cs->parent;
563 if (cs)
564 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
565 else
566 *pmask = cpu_online_map;
567 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
568}
569
570/*
571 * Return in *pmask the portion of a cpusets's mems_allowed that
572 * are online. If none are online, walk up the cpuset hierarchy
573 * until we find one that does have some online mems. If we get
574 * all the way to the top and still haven't found any online mems,
575 * return node_online_map.
576 *
577 * One way or another, we guarantee to return some non-empty subset
578 * of node_online_map.
579 *
053199ed 580 * Call with callback_sem held.
1da177e4
LT
581 */
582
583static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
584{
585 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
586 cs = cs->parent;
587 if (cs)
588 nodes_and(*pmask, cs->mems_allowed, node_online_map);
589 else
590 *pmask = node_online_map;
591 BUG_ON(!nodes_intersects(*pmask, node_online_map));
592}
593
cf2a473c
PJ
594/**
595 * cpuset_update_task_memory_state - update task memory placement
596 *
597 * If the current tasks cpusets mems_allowed changed behind our
598 * backs, update current->mems_allowed, mems_generation and task NUMA
599 * mempolicy to the new value.
053199ed 600 *
cf2a473c
PJ
601 * Task mempolicy is updated by rebinding it relative to the
602 * current->cpuset if a task has its memory placement changed.
603 * Do not call this routine if in_interrupt().
604 *
605 * Call without callback_sem or task_lock() held. May be called
606 * with or without manage_sem held. Except in early boot or
607 * an exiting task, when tsk->cpuset is NULL, this routine will
608 * acquire task_lock(). We don't need to use task_lock to guard
609 * against another task changing a non-NULL cpuset pointer to NULL,
610 * as that is only done by a task on itself, and if the current task
611 * is here, it is not simultaneously in the exit code NULL'ing its
612 * cpuset pointer. This routine also might acquire callback_sem and
613 * current->mm->mmap_sem during call.
053199ed
PJ
614 *
615 * The task_lock() is required to dereference current->cpuset safely.
616 * Without it, we could pick up the pointer value of current->cpuset
617 * in one instruction, and then attach_task could give us a different
618 * cpuset, and then the cpuset we had could be removed and freed,
619 * and then on our next instruction, we could dereference a no longer
620 * valid cpuset pointer to get its mems_generation field.
621 *
622 * This routine is needed to update the per-task mems_allowed data,
623 * within the tasks context, when it is trying to allocate memory
624 * (in various mm/mempolicy.c routines) and notices that some other
625 * task has been modifying its cpuset.
1da177e4
LT
626 */
627
cf2a473c 628void cpuset_update_task_memory_state()
1da177e4 629{
053199ed 630 int my_cpusets_mem_gen;
cf2a473c
PJ
631 struct task_struct *tsk = current;
632 struct cpuset *cs = tsk->cpuset;
053199ed 633
cf2a473c
PJ
634 if (unlikely(!cs))
635 return;
636
637 task_lock(tsk);
638 my_cpusets_mem_gen = cs->mems_generation;
639 task_unlock(tsk);
1da177e4 640
cf2a473c 641 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
053199ed 642 down(&callback_sem);
cf2a473c
PJ
643 task_lock(tsk);
644 cs = tsk->cpuset; /* Maybe changed when task not locked */
cf2a473c
PJ
645 guarantee_online_mems(cs, &tsk->mems_allowed);
646 tsk->cpuset_mems_generation = cs->mems_generation;
647 task_unlock(tsk);
053199ed 648 up(&callback_sem);
74cb2155 649 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
650 }
651}
652
653/*
654 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
655 *
656 * One cpuset is a subset of another if all its allowed CPUs and
657 * Memory Nodes are a subset of the other, and its exclusive flags
053199ed 658 * are only set if the other's are set. Call holding manage_sem.
1da177e4
LT
659 */
660
661static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
662{
663 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
664 nodes_subset(p->mems_allowed, q->mems_allowed) &&
665 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
666 is_mem_exclusive(p) <= is_mem_exclusive(q);
667}
668
669/*
670 * validate_change() - Used to validate that any proposed cpuset change
671 * follows the structural rules for cpusets.
672 *
673 * If we replaced the flag and mask values of the current cpuset
674 * (cur) with those values in the trial cpuset (trial), would
675 * our various subset and exclusive rules still be valid? Presumes
053199ed 676 * manage_sem held.
1da177e4
LT
677 *
678 * 'cur' is the address of an actual, in-use cpuset. Operations
679 * such as list traversal that depend on the actual address of the
680 * cpuset in the list must use cur below, not trial.
681 *
682 * 'trial' is the address of bulk structure copy of cur, with
683 * perhaps one or more of the fields cpus_allowed, mems_allowed,
684 * or flags changed to new, trial values.
685 *
686 * Return 0 if valid, -errno if not.
687 */
688
689static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
690{
691 struct cpuset *c, *par;
692
693 /* Each of our child cpusets must be a subset of us */
694 list_for_each_entry(c, &cur->children, sibling) {
695 if (!is_cpuset_subset(c, trial))
696 return -EBUSY;
697 }
698
699 /* Remaining checks don't apply to root cpuset */
700 if ((par = cur->parent) == NULL)
701 return 0;
702
703 /* We must be a subset of our parent cpuset */
704 if (!is_cpuset_subset(trial, par))
705 return -EACCES;
706
707 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
708 list_for_each_entry(c, &par->children, sibling) {
709 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
710 c != cur &&
711 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
712 return -EINVAL;
713 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
714 c != cur &&
715 nodes_intersects(trial->mems_allowed, c->mems_allowed))
716 return -EINVAL;
717 }
718
719 return 0;
720}
721
85d7b949
DG
722/*
723 * For a given cpuset cur, partition the system as follows
724 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
725 * exclusive child cpusets
726 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
727 * exclusive child cpusets
728 * Build these two partitions by calling partition_sched_domains
729 *
053199ed 730 * Call with manage_sem held. May nest a call to the
85d7b949
DG
731 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
732 */
212d6d22 733
85d7b949
DG
734static void update_cpu_domains(struct cpuset *cur)
735{
736 struct cpuset *c, *par = cur->parent;
737 cpumask_t pspan, cspan;
738
739 if (par == NULL || cpus_empty(cur->cpus_allowed))
740 return;
741
742 /*
743 * Get all cpus from parent's cpus_allowed not part of exclusive
744 * children
745 */
746 pspan = par->cpus_allowed;
747 list_for_each_entry(c, &par->children, sibling) {
748 if (is_cpu_exclusive(c))
749 cpus_andnot(pspan, pspan, c->cpus_allowed);
750 }
751 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
752 cpus_or(pspan, pspan, cur->cpus_allowed);
753 if (cpus_equal(pspan, cur->cpus_allowed))
754 return;
755 cspan = CPU_MASK_NONE;
756 } else {
757 if (cpus_empty(pspan))
758 return;
759 cspan = cur->cpus_allowed;
760 /*
761 * Get all cpus from current cpuset's cpus_allowed not part
762 * of exclusive children
763 */
764 list_for_each_entry(c, &cur->children, sibling) {
765 if (is_cpu_exclusive(c))
766 cpus_andnot(cspan, cspan, c->cpus_allowed);
767 }
768 }
769
770 lock_cpu_hotplug();
771 partition_sched_domains(&pspan, &cspan);
772 unlock_cpu_hotplug();
773}
774
053199ed
PJ
775/*
776 * Call with manage_sem held. May take callback_sem during call.
777 */
778
1da177e4
LT
779static int update_cpumask(struct cpuset *cs, char *buf)
780{
781 struct cpuset trialcs;
85d7b949 782 int retval, cpus_unchanged;
1da177e4
LT
783
784 trialcs = *cs;
785 retval = cpulist_parse(buf, trialcs.cpus_allowed);
786 if (retval < 0)
787 return retval;
788 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
789 if (cpus_empty(trialcs.cpus_allowed))
790 return -ENOSPC;
791 retval = validate_change(cs, &trialcs);
85d7b949
DG
792 if (retval < 0)
793 return retval;
794 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
053199ed 795 down(&callback_sem);
85d7b949 796 cs->cpus_allowed = trialcs.cpus_allowed;
053199ed 797 up(&callback_sem);
85d7b949
DG
798 if (is_cpu_exclusive(cs) && !cpus_unchanged)
799 update_cpu_domains(cs);
800 return 0;
1da177e4
LT
801}
802
053199ed 803/*
4225399a
PJ
804 * Handle user request to change the 'mems' memory placement
805 * of a cpuset. Needs to validate the request, update the
806 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
807 * task in the cpuset, rebind any vma mempolicies and if
808 * the cpuset is marked 'memory_migrate', migrate the tasks
809 * pages to the new memory.
4225399a 810 *
053199ed 811 * Call with manage_sem held. May take callback_sem during call.
4225399a
PJ
812 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
813 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
814 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
815 */
816
1da177e4
LT
817static int update_nodemask(struct cpuset *cs, char *buf)
818{
819 struct cpuset trialcs;
04c19fa6 820 nodemask_t oldmem;
4225399a
PJ
821 struct task_struct *g, *p;
822 struct mm_struct **mmarray;
823 int i, n, ntasks;
04c19fa6 824 int migrate;
4225399a 825 int fudge;
1da177e4
LT
826 int retval;
827
828 trialcs = *cs;
829 retval = nodelist_parse(buf, trialcs.mems_allowed);
830 if (retval < 0)
59dac16f 831 goto done;
1da177e4 832 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
04c19fa6
PJ
833 oldmem = cs->mems_allowed;
834 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
835 retval = 0; /* Too easy - nothing to do */
836 goto done;
837 }
59dac16f
PJ
838 if (nodes_empty(trialcs.mems_allowed)) {
839 retval = -ENOSPC;
840 goto done;
1da177e4 841 }
59dac16f
PJ
842 retval = validate_change(cs, &trialcs);
843 if (retval < 0)
844 goto done;
845
846 down(&callback_sem);
847 cs->mems_allowed = trialcs.mems_allowed;
848 atomic_inc(&cpuset_mems_generation);
849 cs->mems_generation = atomic_read(&cpuset_mems_generation);
850 up(&callback_sem);
851
4225399a
PJ
852 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
853
854 fudge = 10; /* spare mmarray[] slots */
855 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
856 retval = -ENOMEM;
857
858 /*
859 * Allocate mmarray[] to hold mm reference for each task
860 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
861 * tasklist_lock. We could use GFP_ATOMIC, but with a
862 * few more lines of code, we can retry until we get a big
863 * enough mmarray[] w/o using GFP_ATOMIC.
864 */
865 while (1) {
866 ntasks = atomic_read(&cs->count); /* guess */
867 ntasks += fudge;
868 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
869 if (!mmarray)
870 goto done;
871 write_lock_irq(&tasklist_lock); /* block fork */
872 if (atomic_read(&cs->count) <= ntasks)
873 break; /* got enough */
874 write_unlock_irq(&tasklist_lock); /* try again */
875 kfree(mmarray);
876 }
877
878 n = 0;
879
880 /* Load up mmarray[] with mm reference for each task in cpuset. */
881 do_each_thread(g, p) {
882 struct mm_struct *mm;
883
884 if (n >= ntasks) {
885 printk(KERN_WARNING
886 "Cpuset mempolicy rebind incomplete.\n");
887 continue;
888 }
889 if (p->cpuset != cs)
890 continue;
891 mm = get_task_mm(p);
892 if (!mm)
893 continue;
894 mmarray[n++] = mm;
895 } while_each_thread(g, p);
896 write_unlock_irq(&tasklist_lock);
897
898 /*
899 * Now that we've dropped the tasklist spinlock, we can
900 * rebind the vma mempolicies of each mm in mmarray[] to their
901 * new cpuset, and release that mm. The mpol_rebind_mm()
902 * call takes mmap_sem, which we couldn't take while holding
903 * tasklist_lock. Forks can happen again now - the mpol_copy()
904 * cpuset_being_rebound check will catch such forks, and rebind
905 * their vma mempolicies too. Because we still hold the global
906 * cpuset manage_sem, we know that no other rebind effort will
907 * be contending for the global variable cpuset_being_rebound.
908 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 909 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 910 */
04c19fa6 911 migrate = is_memory_migrate(cs);
4225399a
PJ
912 for (i = 0; i < n; i++) {
913 struct mm_struct *mm = mmarray[i];
914
915 mpol_rebind_mm(mm, &cs->mems_allowed);
04c19fa6
PJ
916 if (migrate) {
917 do_migrate_pages(mm, &oldmem, &cs->mems_allowed,
918 MPOL_MF_MOVE_ALL);
919 }
4225399a
PJ
920 mmput(mm);
921 }
922
923 /* We're done rebinding vma's to this cpusets new mems_allowed. */
924 kfree(mmarray);
925 set_cpuset_being_rebound(NULL);
926 retval = 0;
59dac16f 927done:
1da177e4
LT
928 return retval;
929}
930
3e0d98b9
PJ
931/*
932 * Call with manage_sem held.
933 */
934
935static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
936{
937 if (simple_strtoul(buf, NULL, 10) != 0)
938 cpuset_memory_pressure_enabled = 1;
939 else
940 cpuset_memory_pressure_enabled = 0;
941 return 0;
942}
943
1da177e4
LT
944/*
945 * update_flag - read a 0 or a 1 in a file and update associated flag
946 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
45b07ef3 947 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
1da177e4
LT
948 * cs: the cpuset to update
949 * buf: the buffer where we read the 0 or 1
053199ed
PJ
950 *
951 * Call with manage_sem held.
1da177e4
LT
952 */
953
954static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
955{
956 int turning_on;
957 struct cpuset trialcs;
85d7b949 958 int err, cpu_exclusive_changed;
1da177e4
LT
959
960 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
961
962 trialcs = *cs;
963 if (turning_on)
964 set_bit(bit, &trialcs.flags);
965 else
966 clear_bit(bit, &trialcs.flags);
967
968 err = validate_change(cs, &trialcs);
85d7b949
DG
969 if (err < 0)
970 return err;
971 cpu_exclusive_changed =
972 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
053199ed 973 down(&callback_sem);
85d7b949
DG
974 if (turning_on)
975 set_bit(bit, &cs->flags);
976 else
977 clear_bit(bit, &cs->flags);
053199ed 978 up(&callback_sem);
85d7b949
DG
979
980 if (cpu_exclusive_changed)
981 update_cpu_domains(cs);
982 return 0;
1da177e4
LT
983}
984
3e0d98b9
PJ
985/*
986 * Frequency meter - How fast is some event occuring?
987 *
988 * These routines manage a digitally filtered, constant time based,
989 * event frequency meter. There are four routines:
990 * fmeter_init() - initialize a frequency meter.
991 * fmeter_markevent() - called each time the event happens.
992 * fmeter_getrate() - returns the recent rate of such events.
993 * fmeter_update() - internal routine used to update fmeter.
994 *
995 * A common data structure is passed to each of these routines,
996 * which is used to keep track of the state required to manage the
997 * frequency meter and its digital filter.
998 *
999 * The filter works on the number of events marked per unit time.
1000 * The filter is single-pole low-pass recursive (IIR). The time unit
1001 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1002 * simulate 3 decimal digits of precision (multiplied by 1000).
1003 *
1004 * With an FM_COEF of 933, and a time base of 1 second, the filter
1005 * has a half-life of 10 seconds, meaning that if the events quit
1006 * happening, then the rate returned from the fmeter_getrate()
1007 * will be cut in half each 10 seconds, until it converges to zero.
1008 *
1009 * It is not worth doing a real infinitely recursive filter. If more
1010 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1011 * just compute FM_MAXTICKS ticks worth, by which point the level
1012 * will be stable.
1013 *
1014 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1015 * arithmetic overflow in the fmeter_update() routine.
1016 *
1017 * Given the simple 32 bit integer arithmetic used, this meter works
1018 * best for reporting rates between one per millisecond (msec) and
1019 * one per 32 (approx) seconds. At constant rates faster than one
1020 * per msec it maxes out at values just under 1,000,000. At constant
1021 * rates between one per msec, and one per second it will stabilize
1022 * to a value N*1000, where N is the rate of events per second.
1023 * At constant rates between one per second and one per 32 seconds,
1024 * it will be choppy, moving up on the seconds that have an event,
1025 * and then decaying until the next event. At rates slower than
1026 * about one in 32 seconds, it decays all the way back to zero between
1027 * each event.
1028 */
1029
1030#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1031#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1032#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1033#define FM_SCALE 1000 /* faux fixed point scale */
1034
1035/* Initialize a frequency meter */
1036static void fmeter_init(struct fmeter *fmp)
1037{
1038 fmp->cnt = 0;
1039 fmp->val = 0;
1040 fmp->time = 0;
1041 spin_lock_init(&fmp->lock);
1042}
1043
1044/* Internal meter update - process cnt events and update value */
1045static void fmeter_update(struct fmeter *fmp)
1046{
1047 time_t now = get_seconds();
1048 time_t ticks = now - fmp->time;
1049
1050 if (ticks == 0)
1051 return;
1052
1053 ticks = min(FM_MAXTICKS, ticks);
1054 while (ticks-- > 0)
1055 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1056 fmp->time = now;
1057
1058 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1059 fmp->cnt = 0;
1060}
1061
1062/* Process any previous ticks, then bump cnt by one (times scale). */
1063static void fmeter_markevent(struct fmeter *fmp)
1064{
1065 spin_lock(&fmp->lock);
1066 fmeter_update(fmp);
1067 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1068 spin_unlock(&fmp->lock);
1069}
1070
1071/* Process any previous ticks, then return current value. */
1072static int fmeter_getrate(struct fmeter *fmp)
1073{
1074 int val;
1075
1076 spin_lock(&fmp->lock);
1077 fmeter_update(fmp);
1078 val = fmp->val;
1079 spin_unlock(&fmp->lock);
1080 return val;
1081}
1082
053199ed
PJ
1083/*
1084 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
1085 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1086 * notified on release.
1087 *
1088 * Call holding manage_sem. May take callback_sem and task_lock of
1089 * the task 'pid' during call.
1090 */
1091
3077a260 1092static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1da177e4
LT
1093{
1094 pid_t pid;
1095 struct task_struct *tsk;
1096 struct cpuset *oldcs;
1097 cpumask_t cpus;
45b07ef3 1098 nodemask_t from, to;
4225399a 1099 struct mm_struct *mm;
1da177e4 1100
3077a260 1101 if (sscanf(pidbuf, "%d", &pid) != 1)
1da177e4
LT
1102 return -EIO;
1103 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1104 return -ENOSPC;
1105
1106 if (pid) {
1107 read_lock(&tasklist_lock);
1108
1109 tsk = find_task_by_pid(pid);
053199ed 1110 if (!tsk || tsk->flags & PF_EXITING) {
1da177e4
LT
1111 read_unlock(&tasklist_lock);
1112 return -ESRCH;
1113 }
1114
1115 get_task_struct(tsk);
1116 read_unlock(&tasklist_lock);
1117
1118 if ((current->euid) && (current->euid != tsk->uid)
1119 && (current->euid != tsk->suid)) {
1120 put_task_struct(tsk);
1121 return -EACCES;
1122 }
1123 } else {
1124 tsk = current;
1125 get_task_struct(tsk);
1126 }
1127
053199ed
PJ
1128 down(&callback_sem);
1129
1da177e4
LT
1130 task_lock(tsk);
1131 oldcs = tsk->cpuset;
1132 if (!oldcs) {
1133 task_unlock(tsk);
053199ed 1134 up(&callback_sem);
1da177e4
LT
1135 put_task_struct(tsk);
1136 return -ESRCH;
1137 }
1138 atomic_inc(&cs->count);
1139 tsk->cpuset = cs;
1140 task_unlock(tsk);
1141
1142 guarantee_online_cpus(cs, &cpus);
1143 set_cpus_allowed(tsk, cpus);
1144
45b07ef3
PJ
1145 from = oldcs->mems_allowed;
1146 to = cs->mems_allowed;
1147
053199ed 1148 up(&callback_sem);
4225399a
PJ
1149
1150 mm = get_task_mm(tsk);
1151 if (mm) {
1152 mpol_rebind_mm(mm, &to);
1153 mmput(mm);
1154 }
1155
45b07ef3
PJ
1156 if (is_memory_migrate(cs))
1157 do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
1da177e4
LT
1158 put_task_struct(tsk);
1159 if (atomic_dec_and_test(&oldcs->count))
3077a260 1160 check_for_release(oldcs, ppathbuf);
1da177e4
LT
1161 return 0;
1162}
1163
1164/* The various types of files and directories in a cpuset file system */
1165
1166typedef enum {
1167 FILE_ROOT,
1168 FILE_DIR,
45b07ef3 1169 FILE_MEMORY_MIGRATE,
1da177e4
LT
1170 FILE_CPULIST,
1171 FILE_MEMLIST,
1172 FILE_CPU_EXCLUSIVE,
1173 FILE_MEM_EXCLUSIVE,
1174 FILE_NOTIFY_ON_RELEASE,
3e0d98b9
PJ
1175 FILE_MEMORY_PRESSURE_ENABLED,
1176 FILE_MEMORY_PRESSURE,
1da177e4
LT
1177 FILE_TASKLIST,
1178} cpuset_filetype_t;
1179
1180static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
1181 size_t nbytes, loff_t *unused_ppos)
1182{
1183 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1184 struct cftype *cft = __d_cft(file->f_dentry);
1185 cpuset_filetype_t type = cft->private;
1186 char *buffer;
3077a260 1187 char *pathbuf = NULL;
1da177e4
LT
1188 int retval = 0;
1189
1190 /* Crude upper limit on largest legitimate cpulist user might write. */
1191 if (nbytes > 100 + 6 * NR_CPUS)
1192 return -E2BIG;
1193
1194 /* +1 for nul-terminator */
1195 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1196 return -ENOMEM;
1197
1198 if (copy_from_user(buffer, userbuf, nbytes)) {
1199 retval = -EFAULT;
1200 goto out1;
1201 }
1202 buffer[nbytes] = 0; /* nul-terminate */
1203
053199ed 1204 down(&manage_sem);
1da177e4
LT
1205
1206 if (is_removed(cs)) {
1207 retval = -ENODEV;
1208 goto out2;
1209 }
1210
1211 switch (type) {
1212 case FILE_CPULIST:
1213 retval = update_cpumask(cs, buffer);
1214 break;
1215 case FILE_MEMLIST:
1216 retval = update_nodemask(cs, buffer);
1217 break;
1218 case FILE_CPU_EXCLUSIVE:
1219 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1220 break;
1221 case FILE_MEM_EXCLUSIVE:
1222 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1223 break;
1224 case FILE_NOTIFY_ON_RELEASE:
1225 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1226 break;
45b07ef3
PJ
1227 case FILE_MEMORY_MIGRATE:
1228 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1229 break;
3e0d98b9
PJ
1230 case FILE_MEMORY_PRESSURE_ENABLED:
1231 retval = update_memory_pressure_enabled(cs, buffer);
1232 break;
1233 case FILE_MEMORY_PRESSURE:
1234 retval = -EACCES;
1235 break;
1da177e4 1236 case FILE_TASKLIST:
3077a260 1237 retval = attach_task(cs, buffer, &pathbuf);
1da177e4
LT
1238 break;
1239 default:
1240 retval = -EINVAL;
1241 goto out2;
1242 }
1243
1244 if (retval == 0)
1245 retval = nbytes;
1246out2:
053199ed 1247 up(&manage_sem);
3077a260 1248 cpuset_release_agent(pathbuf);
1da177e4
LT
1249out1:
1250 kfree(buffer);
1251 return retval;
1252}
1253
1254static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1255 size_t nbytes, loff_t *ppos)
1256{
1257 ssize_t retval = 0;
1258 struct cftype *cft = __d_cft(file->f_dentry);
1259 if (!cft)
1260 return -ENODEV;
1261
1262 /* special function ? */
1263 if (cft->write)
1264 retval = cft->write(file, buf, nbytes, ppos);
1265 else
1266 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1267
1268 return retval;
1269}
1270
1271/*
1272 * These ascii lists should be read in a single call, by using a user
1273 * buffer large enough to hold the entire map. If read in smaller
1274 * chunks, there is no guarantee of atomicity. Since the display format
1275 * used, list of ranges of sequential numbers, is variable length,
1276 * and since these maps can change value dynamically, one could read
1277 * gibberish by doing partial reads while a list was changing.
1278 * A single large read to a buffer that crosses a page boundary is
1279 * ok, because the result being copied to user land is not recomputed
1280 * across a page fault.
1281 */
1282
1283static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1284{
1285 cpumask_t mask;
1286
053199ed 1287 down(&callback_sem);
1da177e4 1288 mask = cs->cpus_allowed;
053199ed 1289 up(&callback_sem);
1da177e4
LT
1290
1291 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1292}
1293
1294static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1295{
1296 nodemask_t mask;
1297
053199ed 1298 down(&callback_sem);
1da177e4 1299 mask = cs->mems_allowed;
053199ed 1300 up(&callback_sem);
1da177e4
LT
1301
1302 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1303}
1304
1305static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1306 size_t nbytes, loff_t *ppos)
1307{
1308 struct cftype *cft = __d_cft(file->f_dentry);
1309 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1310 cpuset_filetype_t type = cft->private;
1311 char *page;
1312 ssize_t retval = 0;
1313 char *s;
1da177e4
LT
1314
1315 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1316 return -ENOMEM;
1317
1318 s = page;
1319
1320 switch (type) {
1321 case FILE_CPULIST:
1322 s += cpuset_sprintf_cpulist(s, cs);
1323 break;
1324 case FILE_MEMLIST:
1325 s += cpuset_sprintf_memlist(s, cs);
1326 break;
1327 case FILE_CPU_EXCLUSIVE:
1328 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1329 break;
1330 case FILE_MEM_EXCLUSIVE:
1331 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1332 break;
1333 case FILE_NOTIFY_ON_RELEASE:
1334 *s++ = notify_on_release(cs) ? '1' : '0';
1335 break;
45b07ef3
PJ
1336 case FILE_MEMORY_MIGRATE:
1337 *s++ = is_memory_migrate(cs) ? '1' : '0';
1338 break;
3e0d98b9
PJ
1339 case FILE_MEMORY_PRESSURE_ENABLED:
1340 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1341 break;
1342 case FILE_MEMORY_PRESSURE:
1343 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1344 break;
1da177e4
LT
1345 default:
1346 retval = -EINVAL;
1347 goto out;
1348 }
1349 *s++ = '\n';
1da177e4 1350
eacaa1f5 1351 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1352out:
1353 free_page((unsigned long)page);
1354 return retval;
1355}
1356
1357static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1358 loff_t *ppos)
1359{
1360 ssize_t retval = 0;
1361 struct cftype *cft = __d_cft(file->f_dentry);
1362 if (!cft)
1363 return -ENODEV;
1364
1365 /* special function ? */
1366 if (cft->read)
1367 retval = cft->read(file, buf, nbytes, ppos);
1368 else
1369 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1370
1371 return retval;
1372}
1373
1374static int cpuset_file_open(struct inode *inode, struct file *file)
1375{
1376 int err;
1377 struct cftype *cft;
1378
1379 err = generic_file_open(inode, file);
1380 if (err)
1381 return err;
1382
1383 cft = __d_cft(file->f_dentry);
1384 if (!cft)
1385 return -ENODEV;
1386 if (cft->open)
1387 err = cft->open(inode, file);
1388 else
1389 err = 0;
1390
1391 return err;
1392}
1393
1394static int cpuset_file_release(struct inode *inode, struct file *file)
1395{
1396 struct cftype *cft = __d_cft(file->f_dentry);
1397 if (cft->release)
1398 return cft->release(inode, file);
1399 return 0;
1400}
1401
18a19cb3
PJ
1402/*
1403 * cpuset_rename - Only allow simple rename of directories in place.
1404 */
1405static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1406 struct inode *new_dir, struct dentry *new_dentry)
1407{
1408 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1409 return -ENOTDIR;
1410 if (new_dentry->d_inode)
1411 return -EEXIST;
1412 if (old_dir != new_dir)
1413 return -EIO;
1414 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1415}
1416
1da177e4
LT
1417static struct file_operations cpuset_file_operations = {
1418 .read = cpuset_file_read,
1419 .write = cpuset_file_write,
1420 .llseek = generic_file_llseek,
1421 .open = cpuset_file_open,
1422 .release = cpuset_file_release,
1423};
1424
1425static struct inode_operations cpuset_dir_inode_operations = {
1426 .lookup = simple_lookup,
1427 .mkdir = cpuset_mkdir,
1428 .rmdir = cpuset_rmdir,
18a19cb3 1429 .rename = cpuset_rename,
1da177e4
LT
1430};
1431
1432static int cpuset_create_file(struct dentry *dentry, int mode)
1433{
1434 struct inode *inode;
1435
1436 if (!dentry)
1437 return -ENOENT;
1438 if (dentry->d_inode)
1439 return -EEXIST;
1440
1441 inode = cpuset_new_inode(mode);
1442 if (!inode)
1443 return -ENOMEM;
1444
1445 if (S_ISDIR(mode)) {
1446 inode->i_op = &cpuset_dir_inode_operations;
1447 inode->i_fop = &simple_dir_operations;
1448
1449 /* start off with i_nlink == 2 (for "." entry) */
1450 inode->i_nlink++;
1451 } else if (S_ISREG(mode)) {
1452 inode->i_size = 0;
1453 inode->i_fop = &cpuset_file_operations;
1454 }
1455
1456 d_instantiate(dentry, inode);
1457 dget(dentry); /* Extra count - pin the dentry in core */
1458 return 0;
1459}
1460
1461/*
1462 * cpuset_create_dir - create a directory for an object.
c5b2aff8 1463 * cs: the cpuset we create the directory for.
1da177e4
LT
1464 * It must have a valid ->parent field
1465 * And we are going to fill its ->dentry field.
1466 * name: The name to give to the cpuset directory. Will be copied.
1467 * mode: mode to set on new directory.
1468 */
1469
1470static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1471{
1472 struct dentry *dentry = NULL;
1473 struct dentry *parent;
1474 int error = 0;
1475
1476 parent = cs->parent->dentry;
1477 dentry = cpuset_get_dentry(parent, name);
1478 if (IS_ERR(dentry))
1479 return PTR_ERR(dentry);
1480 error = cpuset_create_file(dentry, S_IFDIR | mode);
1481 if (!error) {
1482 dentry->d_fsdata = cs;
1483 parent->d_inode->i_nlink++;
1484 cs->dentry = dentry;
1485 }
1486 dput(dentry);
1487
1488 return error;
1489}
1490
1491static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1492{
1493 struct dentry *dentry;
1494 int error;
1495
1496 down(&dir->d_inode->i_sem);
1497 dentry = cpuset_get_dentry(dir, cft->name);
1498 if (!IS_ERR(dentry)) {
1499 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1500 if (!error)
1501 dentry->d_fsdata = (void *)cft;
1502 dput(dentry);
1503 } else
1504 error = PTR_ERR(dentry);
1505 up(&dir->d_inode->i_sem);
1506 return error;
1507}
1508
1509/*
1510 * Stuff for reading the 'tasks' file.
1511 *
1512 * Reading this file can return large amounts of data if a cpuset has
1513 * *lots* of attached tasks. So it may need several calls to read(),
1514 * but we cannot guarantee that the information we produce is correct
1515 * unless we produce it entirely atomically.
1516 *
1517 * Upon tasks file open(), a struct ctr_struct is allocated, that
1518 * will have a pointer to an array (also allocated here). The struct
1519 * ctr_struct * is stored in file->private_data. Its resources will
1520 * be freed by release() when the file is closed. The array is used
1521 * to sprintf the PIDs and then used by read().
1522 */
1523
1524/* cpusets_tasks_read array */
1525
1526struct ctr_struct {
1527 char *buf;
1528 int bufsz;
1529};
1530
1531/*
1532 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
053199ed
PJ
1533 * Return actual number of pids loaded. No need to task_lock(p)
1534 * when reading out p->cpuset, as we don't really care if it changes
1535 * on the next cycle, and we are not going to try to dereference it.
1da177e4
LT
1536 */
1537static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1538{
1539 int n = 0;
1540 struct task_struct *g, *p;
1541
1542 read_lock(&tasklist_lock);
1543
1544 do_each_thread(g, p) {
1545 if (p->cpuset == cs) {
1546 pidarray[n++] = p->pid;
1547 if (unlikely(n == npids))
1548 goto array_full;
1549 }
1550 } while_each_thread(g, p);
1551
1552array_full:
1553 read_unlock(&tasklist_lock);
1554 return n;
1555}
1556
1557static int cmppid(const void *a, const void *b)
1558{
1559 return *(pid_t *)a - *(pid_t *)b;
1560}
1561
1562/*
1563 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1564 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1565 * count 'cnt' of how many chars would be written if buf were large enough.
1566 */
1567static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1568{
1569 int cnt = 0;
1570 int i;
1571
1572 for (i = 0; i < npids; i++)
1573 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1574 return cnt;
1575}
1576
053199ed
PJ
1577/*
1578 * Handle an open on 'tasks' file. Prepare a buffer listing the
1579 * process id's of tasks currently attached to the cpuset being opened.
1580 *
1581 * Does not require any specific cpuset semaphores, and does not take any.
1582 */
1da177e4
LT
1583static int cpuset_tasks_open(struct inode *unused, struct file *file)
1584{
1585 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1586 struct ctr_struct *ctr;
1587 pid_t *pidarray;
1588 int npids;
1589 char c;
1590
1591 if (!(file->f_mode & FMODE_READ))
1592 return 0;
1593
1594 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1595 if (!ctr)
1596 goto err0;
1597
1598 /*
1599 * If cpuset gets more users after we read count, we won't have
1600 * enough space - tough. This race is indistinguishable to the
1601 * caller from the case that the additional cpuset users didn't
1602 * show up until sometime later on.
1603 */
1604 npids = atomic_read(&cs->count);
1605 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1606 if (!pidarray)
1607 goto err1;
1608
1609 npids = pid_array_load(pidarray, npids, cs);
1610 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1611
1612 /* Call pid_array_to_buf() twice, first just to get bufsz */
1613 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1614 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1615 if (!ctr->buf)
1616 goto err2;
1617 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1618
1619 kfree(pidarray);
1620 file->private_data = ctr;
1621 return 0;
1622
1623err2:
1624 kfree(pidarray);
1625err1:
1626 kfree(ctr);
1627err0:
1628 return -ENOMEM;
1629}
1630
1631static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1632 size_t nbytes, loff_t *ppos)
1633{
1634 struct ctr_struct *ctr = file->private_data;
1635
1636 if (*ppos + nbytes > ctr->bufsz)
1637 nbytes = ctr->bufsz - *ppos;
1638 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1639 return -EFAULT;
1640 *ppos += nbytes;
1641 return nbytes;
1642}
1643
1644static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1645{
1646 struct ctr_struct *ctr;
1647
1648 if (file->f_mode & FMODE_READ) {
1649 ctr = file->private_data;
1650 kfree(ctr->buf);
1651 kfree(ctr);
1652 }
1653 return 0;
1654}
1655
1656/*
1657 * for the common functions, 'private' gives the type of file
1658 */
1659
1660static struct cftype cft_tasks = {
1661 .name = "tasks",
1662 .open = cpuset_tasks_open,
1663 .read = cpuset_tasks_read,
1664 .release = cpuset_tasks_release,
1665 .private = FILE_TASKLIST,
1666};
1667
1668static struct cftype cft_cpus = {
1669 .name = "cpus",
1670 .private = FILE_CPULIST,
1671};
1672
1673static struct cftype cft_mems = {
1674 .name = "mems",
1675 .private = FILE_MEMLIST,
1676};
1677
1678static struct cftype cft_cpu_exclusive = {
1679 .name = "cpu_exclusive",
1680 .private = FILE_CPU_EXCLUSIVE,
1681};
1682
1683static struct cftype cft_mem_exclusive = {
1684 .name = "mem_exclusive",
1685 .private = FILE_MEM_EXCLUSIVE,
1686};
1687
1688static struct cftype cft_notify_on_release = {
1689 .name = "notify_on_release",
1690 .private = FILE_NOTIFY_ON_RELEASE,
1691};
1692
45b07ef3
PJ
1693static struct cftype cft_memory_migrate = {
1694 .name = "memory_migrate",
1695 .private = FILE_MEMORY_MIGRATE,
1696};
1697
3e0d98b9
PJ
1698static struct cftype cft_memory_pressure_enabled = {
1699 .name = "memory_pressure_enabled",
1700 .private = FILE_MEMORY_PRESSURE_ENABLED,
1701};
1702
1703static struct cftype cft_memory_pressure = {
1704 .name = "memory_pressure",
1705 .private = FILE_MEMORY_PRESSURE,
1706};
1707
1da177e4
LT
1708static int cpuset_populate_dir(struct dentry *cs_dentry)
1709{
1710 int err;
1711
1712 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1713 return err;
1714 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1715 return err;
1716 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1717 return err;
1718 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1719 return err;
1720 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1721 return err;
45b07ef3
PJ
1722 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1723 return err;
3e0d98b9
PJ
1724 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1725 return err;
1da177e4
LT
1726 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1727 return err;
1728 return 0;
1729}
1730
1731/*
1732 * cpuset_create - create a cpuset
1733 * parent: cpuset that will be parent of the new cpuset.
1734 * name: name of the new cpuset. Will be strcpy'ed.
1735 * mode: mode to set on new inode
1736 *
1737 * Must be called with the semaphore on the parent inode held
1738 */
1739
1740static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1741{
1742 struct cpuset *cs;
1743 int err;
1744
1745 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1746 if (!cs)
1747 return -ENOMEM;
1748
053199ed 1749 down(&manage_sem);
cf2a473c 1750 cpuset_update_task_memory_state();
1da177e4
LT
1751 cs->flags = 0;
1752 if (notify_on_release(parent))
1753 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1754 cs->cpus_allowed = CPU_MASK_NONE;
1755 cs->mems_allowed = NODE_MASK_NONE;
1756 atomic_set(&cs->count, 0);
1757 INIT_LIST_HEAD(&cs->sibling);
1758 INIT_LIST_HEAD(&cs->children);
1759 atomic_inc(&cpuset_mems_generation);
1760 cs->mems_generation = atomic_read(&cpuset_mems_generation);
3e0d98b9 1761 fmeter_init(&cs->fmeter);
1da177e4
LT
1762
1763 cs->parent = parent;
1764
053199ed 1765 down(&callback_sem);
1da177e4 1766 list_add(&cs->sibling, &cs->parent->children);
202f72d5 1767 number_of_cpusets++;
053199ed 1768 up(&callback_sem);
1da177e4
LT
1769
1770 err = cpuset_create_dir(cs, name, mode);
1771 if (err < 0)
1772 goto err;
1773
1774 /*
053199ed 1775 * Release manage_sem before cpuset_populate_dir() because it
1da177e4
LT
1776 * will down() this new directory's i_sem and if we race with
1777 * another mkdir, we might deadlock.
1778 */
053199ed 1779 up(&manage_sem);
1da177e4
LT
1780
1781 err = cpuset_populate_dir(cs->dentry);
1782 /* If err < 0, we have a half-filled directory - oh well ;) */
1783 return 0;
1784err:
1785 list_del(&cs->sibling);
053199ed 1786 up(&manage_sem);
1da177e4
LT
1787 kfree(cs);
1788 return err;
1789}
1790
1791static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1792{
1793 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1794
1795 /* the vfs holds inode->i_sem already */
1796 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1797}
1798
1799static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1800{
1801 struct cpuset *cs = dentry->d_fsdata;
1802 struct dentry *d;
1803 struct cpuset *parent;
3077a260 1804 char *pathbuf = NULL;
1da177e4
LT
1805
1806 /* the vfs holds both inode->i_sem already */
1807
053199ed 1808 down(&manage_sem);
cf2a473c 1809 cpuset_update_task_memory_state();
1da177e4 1810 if (atomic_read(&cs->count) > 0) {
053199ed 1811 up(&manage_sem);
1da177e4
LT
1812 return -EBUSY;
1813 }
1814 if (!list_empty(&cs->children)) {
053199ed 1815 up(&manage_sem);
1da177e4
LT
1816 return -EBUSY;
1817 }
1da177e4 1818 parent = cs->parent;
053199ed 1819 down(&callback_sem);
1da177e4 1820 set_bit(CS_REMOVED, &cs->flags);
85d7b949
DG
1821 if (is_cpu_exclusive(cs))
1822 update_cpu_domains(cs);
1da177e4 1823 list_del(&cs->sibling); /* delete my sibling from parent->children */
85d7b949 1824 spin_lock(&cs->dentry->d_lock);
1da177e4
LT
1825 d = dget(cs->dentry);
1826 cs->dentry = NULL;
1827 spin_unlock(&d->d_lock);
1828 cpuset_d_remove_dir(d);
1829 dput(d);
202f72d5 1830 number_of_cpusets--;
053199ed
PJ
1831 up(&callback_sem);
1832 if (list_empty(&parent->children))
1833 check_for_release(parent, &pathbuf);
1834 up(&manage_sem);
3077a260 1835 cpuset_release_agent(pathbuf);
1da177e4
LT
1836 return 0;
1837}
1838
1839/**
1840 * cpuset_init - initialize cpusets at system boot
1841 *
1842 * Description: Initialize top_cpuset and the cpuset internal file system,
1843 **/
1844
1845int __init cpuset_init(void)
1846{
1847 struct dentry *root;
1848 int err;
1849
1850 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1851 top_cpuset.mems_allowed = NODE_MASK_ALL;
1852
3e0d98b9 1853 fmeter_init(&top_cpuset.fmeter);
1da177e4
LT
1854 atomic_inc(&cpuset_mems_generation);
1855 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1856
1857 init_task.cpuset = &top_cpuset;
1858
1859 err = register_filesystem(&cpuset_fs_type);
1860 if (err < 0)
1861 goto out;
1862 cpuset_mount = kern_mount(&cpuset_fs_type);
1863 if (IS_ERR(cpuset_mount)) {
1864 printk(KERN_ERR "cpuset: could not mount!\n");
1865 err = PTR_ERR(cpuset_mount);
1866 cpuset_mount = NULL;
1867 goto out;
1868 }
1869 root = cpuset_mount->mnt_sb->s_root;
1870 root->d_fsdata = &top_cpuset;
1871 root->d_inode->i_nlink++;
1872 top_cpuset.dentry = root;
1873 root->d_inode->i_op = &cpuset_dir_inode_operations;
202f72d5 1874 number_of_cpusets = 1;
1da177e4 1875 err = cpuset_populate_dir(root);
3e0d98b9
PJ
1876 /* memory_pressure_enabled is in root cpuset only */
1877 if (err == 0)
1878 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1da177e4
LT
1879out:
1880 return err;
1881}
1882
1883/**
1884 * cpuset_init_smp - initialize cpus_allowed
1885 *
1886 * Description: Finish top cpuset after cpu, node maps are initialized
1887 **/
1888
1889void __init cpuset_init_smp(void)
1890{
1891 top_cpuset.cpus_allowed = cpu_online_map;
1892 top_cpuset.mems_allowed = node_online_map;
1893}
1894
1895/**
1896 * cpuset_fork - attach newly forked task to its parents cpuset.
d9fd8a6d 1897 * @tsk: pointer to task_struct of forking parent process.
1da177e4 1898 *
053199ed
PJ
1899 * Description: A task inherits its parent's cpuset at fork().
1900 *
1901 * A pointer to the shared cpuset was automatically copied in fork.c
1902 * by dup_task_struct(). However, we ignore that copy, since it was
1903 * not made under the protection of task_lock(), so might no longer be
1904 * a valid cpuset pointer. attach_task() might have already changed
1905 * current->cpuset, allowing the previously referenced cpuset to
1906 * be removed and freed. Instead, we task_lock(current) and copy
1907 * its present value of current->cpuset for our freshly forked child.
1908 *
1909 * At the point that cpuset_fork() is called, 'current' is the parent
1910 * task, and the passed argument 'child' points to the child task.
1da177e4
LT
1911 **/
1912
053199ed 1913void cpuset_fork(struct task_struct *child)
1da177e4 1914{
053199ed
PJ
1915 task_lock(current);
1916 child->cpuset = current->cpuset;
1917 atomic_inc(&child->cpuset->count);
1918 task_unlock(current);
1da177e4
LT
1919}
1920
1921/**
1922 * cpuset_exit - detach cpuset from exiting task
1923 * @tsk: pointer to task_struct of exiting process
1924 *
1925 * Description: Detach cpuset from @tsk and release it.
1926 *
053199ed
PJ
1927 * Note that cpusets marked notify_on_release force every task in
1928 * them to take the global manage_sem semaphore when exiting.
1929 * This could impact scaling on very large systems. Be reluctant to
1930 * use notify_on_release cpusets where very high task exit scaling
1931 * is required on large systems.
1932 *
1933 * Don't even think about derefencing 'cs' after the cpuset use count
1934 * goes to zero, except inside a critical section guarded by manage_sem
1935 * or callback_sem. Otherwise a zero cpuset use count is a license to
1936 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1937 *
1938 * This routine has to take manage_sem, not callback_sem, because
1939 * it is holding that semaphore while calling check_for_release(),
1940 * which calls kmalloc(), so can't be called holding callback__sem().
1941 *
1942 * We don't need to task_lock() this reference to tsk->cpuset,
1943 * because tsk is already marked PF_EXITING, so attach_task() won't
b4b26418 1944 * mess with it, or task is a failed fork, never visible to attach_task.
1da177e4
LT
1945 **/
1946
1947void cpuset_exit(struct task_struct *tsk)
1948{
1949 struct cpuset *cs;
1950
1da177e4
LT
1951 cs = tsk->cpuset;
1952 tsk->cpuset = NULL;
1da177e4 1953
2efe86b8 1954 if (notify_on_release(cs)) {
3077a260
PJ
1955 char *pathbuf = NULL;
1956
053199ed 1957 down(&manage_sem);
2efe86b8 1958 if (atomic_dec_and_test(&cs->count))
3077a260 1959 check_for_release(cs, &pathbuf);
053199ed 1960 up(&manage_sem);
3077a260 1961 cpuset_release_agent(pathbuf);
2efe86b8
PJ
1962 } else {
1963 atomic_dec(&cs->count);
1da177e4
LT
1964 }
1965}
1966
1967/**
1968 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1969 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1970 *
1971 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1972 * attached to the specified @tsk. Guaranteed to return some non-empty
1973 * subset of cpu_online_map, even if this means going outside the
1974 * tasks cpuset.
1975 **/
1976
909d75a3 1977cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
1da177e4
LT
1978{
1979 cpumask_t mask;
1980
053199ed 1981 down(&callback_sem);
909d75a3 1982 task_lock(tsk);
1da177e4 1983 guarantee_online_cpus(tsk->cpuset, &mask);
909d75a3 1984 task_unlock(tsk);
053199ed 1985 up(&callback_sem);
1da177e4
LT
1986
1987 return mask;
1988}
1989
1990void cpuset_init_current_mems_allowed(void)
1991{
1992 current->mems_allowed = NODE_MASK_ALL;
1993}
1994
909d75a3
PJ
1995/**
1996 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1997 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1998 *
1999 * Description: Returns the nodemask_t mems_allowed of the cpuset
2000 * attached to the specified @tsk. Guaranteed to return some non-empty
2001 * subset of node_online_map, even if this means going outside the
2002 * tasks cpuset.
2003 **/
2004
2005nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2006{
2007 nodemask_t mask;
2008
2009 down(&callback_sem);
2010 task_lock(tsk);
2011 guarantee_online_mems(tsk->cpuset, &mask);
2012 task_unlock(tsk);
2013 up(&callback_sem);
2014
2015 return mask;
2016}
2017
d9fd8a6d
RD
2018/**
2019 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
2020 * @zl: the zonelist to be checked
2021 *
1da177e4
LT
2022 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
2023 */
2024int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
2025{
2026 int i;
2027
2028 for (i = 0; zl->zones[i]; i++) {
2029 int nid = zl->zones[i]->zone_pgdat->node_id;
2030
2031 if (node_isset(nid, current->mems_allowed))
2032 return 1;
2033 }
2034 return 0;
2035}
2036
9bf2229f
PJ
2037/*
2038 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
053199ed 2039 * ancestor to the specified cpuset. Call holding callback_sem.
9bf2229f
PJ
2040 * If no ancestor is mem_exclusive (an unusual configuration), then
2041 * returns the root cpuset.
2042 */
2043static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
2044{
2045 while (!is_mem_exclusive(cs) && cs->parent)
2046 cs = cs->parent;
2047 return cs;
2048}
2049
d9fd8a6d 2050/**
9bf2229f
PJ
2051 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
2052 * @z: is this zone on an allowed node?
2053 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
d9fd8a6d 2054 *
9bf2229f
PJ
2055 * If we're in interrupt, yes, we can always allocate. If zone
2056 * z's node is in our tasks mems_allowed, yes. If it's not a
2057 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2058 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2059 * Otherwise, no.
2060 *
2061 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2062 * and do not allow allocations outside the current tasks cpuset.
2063 * GFP_KERNEL allocations are not so marked, so can escape to the
2064 * nearest mem_exclusive ancestor cpuset.
2065 *
053199ed 2066 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
9bf2229f
PJ
2067 * routine only calls here with __GFP_HARDWALL bit _not_ set if
2068 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
2069 * mems_allowed came up empty on the first pass over the zonelist.
2070 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
053199ed 2071 * short of memory, might require taking the callback_sem semaphore.
9bf2229f
PJ
2072 *
2073 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
2074 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
2075 * hardwall cpusets - no allocation on a node outside the cpuset is
2076 * allowed (unless in interrupt, of course).
2077 *
2078 * The second loop doesn't even call here for GFP_ATOMIC requests
2079 * (if the __alloc_pages() local variable 'wait' is set). That check
2080 * and the checks below have the combined affect in the second loop of
2081 * the __alloc_pages() routine that:
2082 * in_interrupt - any node ok (current task context irrelevant)
2083 * GFP_ATOMIC - any node ok
2084 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2085 * GFP_USER - only nodes in current tasks mems allowed ok.
2086 **/
2087
202f72d5 2088int __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1da177e4 2089{
9bf2229f
PJ
2090 int node; /* node that zone z is on */
2091 const struct cpuset *cs; /* current cpuset ancestors */
2092 int allowed = 1; /* is allocation in zone z allowed? */
2093
2094 if (in_interrupt())
2095 return 1;
2096 node = z->zone_pgdat->node_id;
2097 if (node_isset(node, current->mems_allowed))
2098 return 1;
2099 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2100 return 0;
2101
5563e770
BP
2102 if (current->flags & PF_EXITING) /* Let dying task have memory */
2103 return 1;
2104
9bf2229f 2105 /* Not hardwall and node outside mems_allowed: scan up cpusets */
053199ed
PJ
2106 down(&callback_sem);
2107
053199ed
PJ
2108 task_lock(current);
2109 cs = nearest_exclusive_ancestor(current->cpuset);
2110 task_unlock(current);
2111
9bf2229f 2112 allowed = node_isset(node, cs->mems_allowed);
053199ed 2113 up(&callback_sem);
9bf2229f 2114 return allowed;
1da177e4
LT
2115}
2116
ef08e3b4
PJ
2117/**
2118 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2119 * @p: pointer to task_struct of some other task.
2120 *
2121 * Description: Return true if the nearest mem_exclusive ancestor
2122 * cpusets of tasks @p and current overlap. Used by oom killer to
2123 * determine if task @p's memory usage might impact the memory
2124 * available to the current task.
2125 *
053199ed 2126 * Acquires callback_sem - not suitable for calling from a fast path.
ef08e3b4
PJ
2127 **/
2128
2129int cpuset_excl_nodes_overlap(const struct task_struct *p)
2130{
2131 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2132 int overlap = 0; /* do cpusets overlap? */
2133
053199ed
PJ
2134 down(&callback_sem);
2135
2136 task_lock(current);
2137 if (current->flags & PF_EXITING) {
2138 task_unlock(current);
2139 goto done;
2140 }
2141 cs1 = nearest_exclusive_ancestor(current->cpuset);
2142 task_unlock(current);
2143
2144 task_lock((struct task_struct *)p);
2145 if (p->flags & PF_EXITING) {
2146 task_unlock((struct task_struct *)p);
2147 goto done;
2148 }
2149 cs2 = nearest_exclusive_ancestor(p->cpuset);
2150 task_unlock((struct task_struct *)p);
2151
ef08e3b4
PJ
2152 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2153done:
053199ed 2154 up(&callback_sem);
ef08e3b4
PJ
2155
2156 return overlap;
2157}
2158
3e0d98b9
PJ
2159/*
2160 * Collection of memory_pressure is suppressed unless
2161 * this flag is enabled by writing "1" to the special
2162 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2163 */
2164
c5b2aff8 2165int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2166
2167/**
2168 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2169 *
2170 * Keep a running average of the rate of synchronous (direct)
2171 * page reclaim efforts initiated by tasks in each cpuset.
2172 *
2173 * This represents the rate at which some task in the cpuset
2174 * ran low on memory on all nodes it was allowed to use, and
2175 * had to enter the kernels page reclaim code in an effort to
2176 * create more free memory by tossing clean pages or swapping
2177 * or writing dirty pages.
2178 *
2179 * Display to user space in the per-cpuset read-only file
2180 * "memory_pressure". Value displayed is an integer
2181 * representing the recent rate of entry into the synchronous
2182 * (direct) page reclaim by any task attached to the cpuset.
2183 **/
2184
2185void __cpuset_memory_pressure_bump(void)
2186{
2187 struct cpuset *cs;
2188
2189 task_lock(current);
2190 cs = current->cpuset;
2191 fmeter_markevent(&cs->fmeter);
2192 task_unlock(current);
2193}
2194
1da177e4
LT
2195/*
2196 * proc_cpuset_show()
2197 * - Print tasks cpuset path into seq_file.
2198 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2199 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2200 * doesn't really matter if tsk->cpuset changes after we read it,
2201 * and we take manage_sem, keeping attach_task() from changing it
2202 * anyway.
1da177e4
LT
2203 */
2204
2205static int proc_cpuset_show(struct seq_file *m, void *v)
2206{
2207 struct cpuset *cs;
2208 struct task_struct *tsk;
2209 char *buf;
2210 int retval = 0;
2211
2212 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2213 if (!buf)
2214 return -ENOMEM;
2215
2216 tsk = m->private;
053199ed 2217 down(&manage_sem);
1da177e4 2218 cs = tsk->cpuset;
1da177e4
LT
2219 if (!cs) {
2220 retval = -EINVAL;
2221 goto out;
2222 }
2223
2224 retval = cpuset_path(cs, buf, PAGE_SIZE);
2225 if (retval < 0)
2226 goto out;
2227 seq_puts(m, buf);
2228 seq_putc(m, '\n');
2229out:
053199ed 2230 up(&manage_sem);
1da177e4
LT
2231 kfree(buf);
2232 return retval;
2233}
2234
2235static int cpuset_open(struct inode *inode, struct file *file)
2236{
2237 struct task_struct *tsk = PROC_I(inode)->task;
2238 return single_open(file, proc_cpuset_show, tsk);
2239}
2240
2241struct file_operations proc_cpuset_operations = {
2242 .open = cpuset_open,
2243 .read = seq_read,
2244 .llseek = seq_lseek,
2245 .release = single_release,
2246};
2247
2248/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2249char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2250{
2251 buffer += sprintf(buffer, "Cpus_allowed:\t");
2252 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2253 buffer += sprintf(buffer, "\n");
2254 buffer += sprintf(buffer, "Mems_allowed:\t");
2255 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2256 buffer += sprintf(buffer, "\n");
2257 return buffer;
2258}