cpu/hotplug: Delete an extraneous kernel-doc description
[linux-block.git] / kernel / cpu.c
CommitLineData
1da177e4
LT
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
bf2c59fc 6#include <linux/sched/mm.h>
1da177e4
LT
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
3f07c014 11#include <linux/sched/signal.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
9ca12ac0 13#include <linux/sched/isolation.h>
29930025 14#include <linux/sched/task.h>
a74cfffb 15#include <linux/sched/smt.h>
1da177e4
LT
16#include <linux/unistd.h>
17#include <linux/cpu.h>
cb79295e
AV
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
6f062123 20#include <linux/delay.h>
9984de1a 21#include <linux/export.h>
e4cc2f87 22#include <linux/bug.h>
1da177e4
LT
23#include <linux/kthread.h>
24#include <linux/stop_machine.h>
81615b62 25#include <linux/mutex.h>
5a0e3ad6 26#include <linux/gfp.h>
79cfbdfa 27#include <linux/suspend.h>
a19423b9 28#include <linux/lockdep.h>
345527b1 29#include <linux/tick.h>
a8994181 30#include <linux/irq.h>
941154bd 31#include <linux/nmi.h>
4cb28ced 32#include <linux/smpboot.h>
e6d4989a 33#include <linux/relay.h>
6731d4f1 34#include <linux/slab.h>
dce1ca05 35#include <linux/scs.h>
fc8dffd3 36#include <linux/percpu-rwsem.h>
b22afcdf 37#include <linux/cpuset.h>
3191dd5a 38#include <linux/random.h>
bae1a962 39#include <linux/cc_platform.h>
cff7d378 40
bb3632c6 41#include <trace/events/power.h>
cff7d378
TG
42#define CREATE_TRACE_POINTS
43#include <trace/events/cpuhp.h>
1da177e4 44
38498a67
TG
45#include "smpboot.h"
46
cff7d378 47/**
11bc021d 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
cff7d378
TG
49 * @state: The current cpu state
50 * @target: The target state
11bc021d 51 * @fail: Current CPU hotplug callback state
4cb28ced
TG
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
3b9d6da6 54 * @rollback: Perform a rollback
a724632c
TG
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
11bc021d
RD
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
a724632c 60 * @cb_state: The state for a single callback (install/uninstall)
4cb28ced 61 * @result: Result of the operation
6f062123 62 * @ap_sync_state: State for AP synchronization
5ebe7742
PZ
63 * @done_up: Signal completion to the issuer of the task for cpu-up
64 * @done_down: Signal completion to the issuer of the task for cpu-down
cff7d378
TG
65 */
66struct cpuhp_cpu_state {
67 enum cpuhp_state state;
68 enum cpuhp_state target;
1db49484 69 enum cpuhp_state fail;
4cb28ced
TG
70#ifdef CONFIG_SMP
71 struct task_struct *thread;
72 bool should_run;
3b9d6da6 73 bool rollback;
a724632c
TG
74 bool single;
75 bool bringup;
cf392d10 76 struct hlist_node *node;
4dddfb5f 77 struct hlist_node *last;
4cb28ced 78 enum cpuhp_state cb_state;
4cb28ced 79 int result;
6f062123 80 atomic_t ap_sync_state;
5ebe7742
PZ
81 struct completion done_up;
82 struct completion done_down;
4cb28ced 83#endif
cff7d378
TG
84};
85
1db49484
PZ
86static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 .fail = CPUHP_INVALID,
88};
cff7d378 89
e797bda3
TG
90#ifdef CONFIG_SMP
91cpumask_t cpus_booted_once_mask;
92#endif
93
49dfe2a6 94#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
5f4b55e1
PZ
95static struct lockdep_map cpuhp_state_up_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97static struct lockdep_map cpuhp_state_down_map =
98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99
100
76dc6c09 101static inline void cpuhp_lock_acquire(bool bringup)
5f4b55e1
PZ
102{
103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104}
105
76dc6c09 106static inline void cpuhp_lock_release(bool bringup)
5f4b55e1
PZ
107{
108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109}
110#else
111
76dc6c09
MM
112static inline void cpuhp_lock_acquire(bool bringup) { }
113static inline void cpuhp_lock_release(bool bringup) { }
5f4b55e1 114
49dfe2a6
TG
115#endif
116
cff7d378 117/**
11bc021d 118 * struct cpuhp_step - Hotplug state machine step
cff7d378
TG
119 * @name: Name of the step
120 * @startup: Startup function of the step
121 * @teardown: Teardown function of the step
757c989b 122 * @cant_stop: Bringup/teardown can't be stopped at this step
11bc021d 123 * @multi_instance: State has multiple instances which get added afterwards
cff7d378
TG
124 */
125struct cpuhp_step {
cf392d10
TG
126 const char *name;
127 union {
3c1627e9
TG
128 int (*single)(unsigned int cpu);
129 int (*multi)(unsigned int cpu,
130 struct hlist_node *node);
131 } startup;
cf392d10 132 union {
3c1627e9
TG
133 int (*single)(unsigned int cpu);
134 int (*multi)(unsigned int cpu,
135 struct hlist_node *node);
136 } teardown;
11bc021d 137 /* private: */
cf392d10 138 struct hlist_head list;
11bc021d 139 /* public: */
cf392d10
TG
140 bool cant_stop;
141 bool multi_instance;
cff7d378
TG
142};
143
98f8cdce 144static DEFINE_MUTEX(cpuhp_state_mutex);
17a2f1ce 145static struct cpuhp_step cpuhp_hp_states[];
cff7d378 146
a724632c
TG
147static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148{
17a2f1ce 149 return cpuhp_hp_states + state;
a724632c
TG
150}
151
453e4108
VD
152static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153{
154 return bringup ? !step->startup.single : !step->teardown.single;
155}
156
cff7d378 157/**
11bc021d 158 * cpuhp_invoke_callback - Invoke the callbacks for a given state
cff7d378 159 * @cpu: The cpu for which the callback should be invoked
96abb968 160 * @state: The state to do callbacks for
a724632c 161 * @bringup: True if the bringup callback should be invoked
96abb968
PZ
162 * @node: For multi-instance, do a single entry callback for install/remove
163 * @lastp: For multi-instance rollback, remember how far we got
cff7d378 164 *
cf392d10 165 * Called from cpu hotplug and from the state register machinery.
11bc021d
RD
166 *
167 * Return: %0 on success or a negative errno code
cff7d378 168 */
a724632c 169static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
96abb968
PZ
170 bool bringup, struct hlist_node *node,
171 struct hlist_node **lastp)
cff7d378
TG
172{
173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
a724632c 174 struct cpuhp_step *step = cpuhp_get_step(state);
cf392d10
TG
175 int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 int (*cb)(unsigned int cpu);
177 int ret, cnt;
178
1db49484
PZ
179 if (st->fail == state) {
180 st->fail = CPUHP_INVALID;
1db49484
PZ
181 return -EAGAIN;
182 }
183
453e4108
VD
184 if (cpuhp_step_empty(bringup, step)) {
185 WARN_ON_ONCE(1);
186 return 0;
187 }
188
cf392d10 189 if (!step->multi_instance) {
96abb968 190 WARN_ON_ONCE(lastp && *lastp);
3c1627e9 191 cb = bringup ? step->startup.single : step->teardown.single;
453e4108 192
a724632c 193 trace_cpuhp_enter(cpu, st->target, state, cb);
cff7d378 194 ret = cb(cpu);
a724632c 195 trace_cpuhp_exit(cpu, st->state, state, ret);
cf392d10
TG
196 return ret;
197 }
3c1627e9 198 cbm = bringup ? step->startup.multi : step->teardown.multi;
cf392d10
TG
199
200 /* Single invocation for instance add/remove */
201 if (node) {
96abb968 202 WARN_ON_ONCE(lastp && *lastp);
cf392d10
TG
203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 ret = cbm(cpu, node);
205 trace_cpuhp_exit(cpu, st->state, state, ret);
206 return ret;
207 }
208
209 /* State transition. Invoke on all instances */
210 cnt = 0;
211 hlist_for_each(node, &step->list) {
96abb968
PZ
212 if (lastp && node == *lastp)
213 break;
214
cf392d10
TG
215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 ret = cbm(cpu, node);
217 trace_cpuhp_exit(cpu, st->state, state, ret);
96abb968
PZ
218 if (ret) {
219 if (!lastp)
220 goto err;
221
222 *lastp = node;
223 return ret;
224 }
cf392d10
TG
225 cnt++;
226 }
96abb968
PZ
227 if (lastp)
228 *lastp = NULL;
cf392d10
TG
229 return 0;
230err:
231 /* Rollback the instances if one failed */
3c1627e9 232 cbm = !bringup ? step->startup.multi : step->teardown.multi;
cf392d10
TG
233 if (!cbm)
234 return ret;
235
236 hlist_for_each(node, &step->list) {
237 if (!cnt--)
238 break;
724a8688
PZ
239
240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 ret = cbm(cpu, node);
242 trace_cpuhp_exit(cpu, st->state, state, ret);
243 /*
244 * Rollback must not fail,
245 */
246 WARN_ON_ONCE(ret);
cff7d378
TG
247 }
248 return ret;
249}
250
98a79d6a 251#ifdef CONFIG_SMP
fcb3029a
AB
252static bool cpuhp_is_ap_state(enum cpuhp_state state)
253{
254 /*
255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 * purposes as that state is handled explicitly in cpu_down.
257 */
258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259}
260
5ebe7742
PZ
261static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262{
263 struct completion *done = bringup ? &st->done_up : &st->done_down;
264 wait_for_completion(done);
265}
266
267static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268{
269 struct completion *done = bringup ? &st->done_up : &st->done_down;
270 complete(done);
271}
272
273/*
274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275 */
276static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277{
278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279}
280
6f062123
TG
281/* Synchronization state management */
282enum cpuhp_sync_state {
283 SYNC_STATE_DEAD,
284 SYNC_STATE_KICKED,
285 SYNC_STATE_SHOULD_DIE,
286 SYNC_STATE_ALIVE,
287 SYNC_STATE_SHOULD_ONLINE,
288 SYNC_STATE_ONLINE,
289};
290
291#ifdef CONFIG_HOTPLUG_CORE_SYNC
292/**
293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294 * @state: The synchronization state to set
295 *
296 * No synchronization point. Just update of the synchronization state, but implies
297 * a full barrier so that the AP changes are visible before the control CPU proceeds.
298 */
299static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300{
301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302
303 (void)atomic_xchg(st, state);
304}
305
306void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307
308static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 enum cpuhp_sync_state next_state)
310{
311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 ktime_t now, end, start = ktime_get();
313 int sync;
314
315 end = start + 10ULL * NSEC_PER_SEC;
316
317 sync = atomic_read(st);
318 while (1) {
319 if (sync == state) {
320 if (!atomic_try_cmpxchg(st, &sync, next_state))
321 continue;
322 return true;
323 }
324
325 now = ktime_get();
326 if (now > end) {
327 /* Timeout. Leave the state unchanged */
328 return false;
329 } else if (now - start < NSEC_PER_MSEC) {
330 /* Poll for one millisecond */
331 arch_cpuhp_sync_state_poll();
332 } else {
333 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
334 }
335 sync = atomic_read(st);
336 }
337 return true;
338}
339#else /* CONFIG_HOTPLUG_CORE_SYNC */
340static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342
343#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344/**
345 * cpuhp_ap_report_dead - Update synchronization state to DEAD
346 *
347 * No synchronization point. Just update of the synchronization state.
348 */
349void cpuhp_ap_report_dead(void)
350{
351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352}
353
354void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355
356/*
357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358 * because the AP cannot issue complete() at this stage.
359 */
360static void cpuhp_bp_sync_dead(unsigned int cpu)
361{
362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 int sync = atomic_read(st);
364
365 do {
366 /* CPU can have reported dead already. Don't overwrite that! */
367 if (sync == SYNC_STATE_DEAD)
368 break;
369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370
371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 /* CPU reached dead state. Invoke the cleanup function */
373 arch_cpuhp_cleanup_dead_cpu(cpu);
374 return;
375 }
376
377 /* No further action possible. Emit message and give up. */
378 pr_err("CPU%u failed to report dead state\n", cpu);
379}
380#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383
384#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385/**
386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387 *
388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389 * for the BP to release it.
390 */
391void cpuhp_ap_sync_alive(void)
392{
393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394
395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396
397 /* Wait for the control CPU to release it. */
398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 cpu_relax();
400}
401
402static bool cpuhp_can_boot_ap(unsigned int cpu)
403{
404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 int sync = atomic_read(st);
406
407again:
408 switch (sync) {
409 case SYNC_STATE_DEAD:
410 /* CPU is properly dead */
411 break;
412 case SYNC_STATE_KICKED:
413 /* CPU did not come up in previous attempt */
414 break;
415 case SYNC_STATE_ALIVE:
416 /* CPU is stuck cpuhp_ap_sync_alive(). */
417 break;
418 default:
419 /* CPU failed to report online or dead and is in limbo state. */
420 return false;
421 }
422
423 /* Prepare for booting */
424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 goto again;
426
427 return true;
428}
429
430void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431
432/*
433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434 * because the AP cannot issue complete() so early in the bringup.
435 */
436static int cpuhp_bp_sync_alive(unsigned int cpu)
437{
438 int ret = 0;
439
440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 return 0;
442
443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 pr_err("CPU%u failed to report alive state\n", cpu);
445 ret = -EIO;
446 }
447
448 /* Let the architecture cleanup the kick alive mechanics. */
449 arch_cpuhp_cleanup_kick_cpu(cpu);
450 return ret;
451}
452#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456
b3199c02 457/* Serializes the updates to cpu_online_mask, cpu_present_mask */
aa953877 458static DEFINE_MUTEX(cpu_add_remove_lock);
090e77c3
TG
459bool cpuhp_tasks_frozen;
460EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
1da177e4 461
79a6cdeb 462/*
93ae4f97
SB
463 * The following two APIs (cpu_maps_update_begin/done) must be used when
464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
79a6cdeb
LJ
465 */
466void cpu_maps_update_begin(void)
467{
468 mutex_lock(&cpu_add_remove_lock);
469}
470
471void cpu_maps_update_done(void)
472{
473 mutex_unlock(&cpu_add_remove_lock);
474}
1da177e4 475
fc8dffd3
TG
476/*
477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
e3920fb4
RW
478 * Should always be manipulated under cpu_add_remove_lock
479 */
480static int cpu_hotplug_disabled;
481
79a6cdeb
LJ
482#ifdef CONFIG_HOTPLUG_CPU
483
fc8dffd3 484DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
a19423b9 485
8f553c49 486void cpus_read_lock(void)
a9d9baa1 487{
fc8dffd3 488 percpu_down_read(&cpu_hotplug_lock);
a9d9baa1 489}
8f553c49 490EXPORT_SYMBOL_GPL(cpus_read_lock);
90d45d17 491
6f4ceee9
WL
492int cpus_read_trylock(void)
493{
494 return percpu_down_read_trylock(&cpu_hotplug_lock);
495}
496EXPORT_SYMBOL_GPL(cpus_read_trylock);
497
8f553c49 498void cpus_read_unlock(void)
a9d9baa1 499{
fc8dffd3 500 percpu_up_read(&cpu_hotplug_lock);
a9d9baa1 501}
8f553c49 502EXPORT_SYMBOL_GPL(cpus_read_unlock);
a9d9baa1 503
8f553c49 504void cpus_write_lock(void)
d221938c 505{
fc8dffd3 506 percpu_down_write(&cpu_hotplug_lock);
d221938c 507}
87af9e7f 508
8f553c49 509void cpus_write_unlock(void)
d221938c 510{
fc8dffd3 511 percpu_up_write(&cpu_hotplug_lock);
d221938c
GS
512}
513
fc8dffd3 514void lockdep_assert_cpus_held(void)
d221938c 515{
ce48c457
VS
516 /*
517 * We can't have hotplug operations before userspace starts running,
518 * and some init codepaths will knowingly not take the hotplug lock.
519 * This is all valid, so mute lockdep until it makes sense to report
520 * unheld locks.
521 */
522 if (system_state < SYSTEM_RUNNING)
523 return;
524
fc8dffd3 525 percpu_rwsem_assert_held(&cpu_hotplug_lock);
d221938c 526}
79a6cdeb 527
43759fe5
FW
528#ifdef CONFIG_LOCKDEP
529int lockdep_is_cpus_held(void)
530{
531 return percpu_rwsem_is_held(&cpu_hotplug_lock);
532}
533#endif
534
cb92173d
PZ
535static void lockdep_acquire_cpus_lock(void)
536{
1751060e 537 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
cb92173d
PZ
538}
539
540static void lockdep_release_cpus_lock(void)
541{
1751060e 542 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
cb92173d
PZ
543}
544
16e53dbf
SB
545/*
546 * Wait for currently running CPU hotplug operations to complete (if any) and
547 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
548 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
549 * hotplug path before performing hotplug operations. So acquiring that lock
550 * guarantees mutual exclusion from any currently running hotplug operations.
551 */
552void cpu_hotplug_disable(void)
553{
554 cpu_maps_update_begin();
89af7ba5 555 cpu_hotplug_disabled++;
16e53dbf
SB
556 cpu_maps_update_done();
557}
32145c46 558EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
16e53dbf 559
01b41159
LW
560static void __cpu_hotplug_enable(void)
561{
562 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
563 return;
564 cpu_hotplug_disabled--;
565}
566
16e53dbf
SB
567void cpu_hotplug_enable(void)
568{
569 cpu_maps_update_begin();
01b41159 570 __cpu_hotplug_enable();
16e53dbf
SB
571 cpu_maps_update_done();
572}
32145c46 573EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
cb92173d
PZ
574
575#else
576
577static void lockdep_acquire_cpus_lock(void)
578{
579}
580
581static void lockdep_release_cpus_lock(void)
582{
583}
584
b9d10be7 585#endif /* CONFIG_HOTPLUG_CPU */
79a6cdeb 586
a74cfffb
TG
587/*
588 * Architectures that need SMT-specific errata handling during SMT hotplug
589 * should override this.
590 */
591void __weak arch_smt_update(void) { }
592
0cc3cd21 593#ifdef CONFIG_HOTPLUG_SMT
3f916919 594
0cc3cd21 595enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
447ae4ac
ME
596static unsigned int cpu_smt_max_threads __ro_after_init;
597unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
bc2d8d26 598
8e1b706b 599void __init cpu_smt_disable(bool force)
0cc3cd21 600{
e1572f1d 601 if (!cpu_smt_possible())
8e1b706b
JK
602 return;
603
604 if (force) {
0cc3cd21
TG
605 pr_info("SMT: Force disabled\n");
606 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
8e1b706b 607 } else {
d0e7d144 608 pr_info("SMT: disabled\n");
8e1b706b 609 cpu_smt_control = CPU_SMT_DISABLED;
0cc3cd21 610 }
447ae4ac 611 cpu_smt_num_threads = 1;
8e1b706b
JK
612}
613
fee0aede
TG
614/*
615 * The decision whether SMT is supported can only be done after the full
b284909a 616 * CPU identification. Called from architecture code.
bc2d8d26 617 */
447ae4ac
ME
618void __init cpu_smt_set_num_threads(unsigned int num_threads,
619 unsigned int max_threads)
bc2d8d26 620{
447ae4ac
ME
621 WARN_ON(!num_threads || (num_threads > max_threads));
622
91b4a7db 623 if (max_threads == 1)
bc2d8d26 624 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
447ae4ac
ME
625
626 cpu_smt_max_threads = max_threads;
627
628 /*
629 * If SMT has been disabled via the kernel command line or SMT is
630 * not supported, set cpu_smt_num_threads to 1 for consistency.
631 * If enabled, take the architecture requested number of threads
632 * to bring up into account.
633 */
634 if (cpu_smt_control != CPU_SMT_ENABLED)
635 cpu_smt_num_threads = 1;
636 else if (num_threads < cpu_smt_num_threads)
637 cpu_smt_num_threads = num_threads;
bc2d8d26
TG
638}
639
8e1b706b
JK
640static int __init smt_cmdline_disable(char *str)
641{
642 cpu_smt_disable(str && !strcmp(str, "force"));
0cc3cd21
TG
643 return 0;
644}
645early_param("nosmt", smt_cmdline_disable);
646
38253464
ME
647/*
648 * For Archicture supporting partial SMT states check if the thread is allowed.
649 * Otherwise this has already been checked through cpu_smt_max_threads when
650 * setting the SMT level.
651 */
652static inline bool cpu_smt_thread_allowed(unsigned int cpu)
653{
654#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
655 return topology_smt_thread_allowed(cpu);
656#else
657 return true;
658#endif
659}
660
d91bdd96 661static inline bool cpu_bootable(unsigned int cpu)
0cc3cd21 662{
38253464 663 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
0cc3cd21
TG
664 return true;
665
d91bdd96
TG
666 /* All CPUs are bootable if controls are not configured */
667 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
668 return true;
669
670 /* All CPUs are bootable if CPU is not SMT capable */
671 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
672 return true;
673
b284909a 674 if (topology_is_primary_thread(cpu))
0cc3cd21
TG
675 return true;
676
677 /*
678 * On x86 it's required to boot all logical CPUs at least once so
679 * that the init code can get a chance to set CR4.MCE on each
182e073f 680 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
0cc3cd21
TG
681 * core will shutdown the machine.
682 */
e797bda3 683 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
0cc3cd21 684}
e1572f1d 685
52b38b7a 686/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
e1572f1d
VK
687bool cpu_smt_possible(void)
688{
689 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
690 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
691}
692EXPORT_SYMBOL_GPL(cpu_smt_possible);
18415f33 693
0cc3cd21 694#else
d91bdd96 695static inline bool cpu_bootable(unsigned int cpu) { return true; }
0cc3cd21
TG
696#endif
697
4dddfb5f 698static inline enum cpuhp_state
b7ba6d8d 699cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
4dddfb5f
PZ
700{
701 enum cpuhp_state prev_state = st->state;
2ea46c6f 702 bool bringup = st->state < target;
4dddfb5f
PZ
703
704 st->rollback = false;
705 st->last = NULL;
706
707 st->target = target;
708 st->single = false;
2ea46c6f 709 st->bringup = bringup;
b7ba6d8d
SP
710 if (cpu_dying(cpu) != !bringup)
711 set_cpu_dying(cpu, !bringup);
4dddfb5f
PZ
712
713 return prev_state;
714}
715
716static inline void
b7ba6d8d
SP
717cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
718 enum cpuhp_state prev_state)
4dddfb5f 719{
2ea46c6f
PZ
720 bool bringup = !st->bringup;
721
453e4108
VD
722 st->target = prev_state;
723
724 /*
725 * Already rolling back. No need invert the bringup value or to change
726 * the current state.
727 */
728 if (st->rollback)
729 return;
730
4dddfb5f
PZ
731 st->rollback = true;
732
733 /*
734 * If we have st->last we need to undo partial multi_instance of this
735 * state first. Otherwise start undo at the previous state.
736 */
737 if (!st->last) {
738 if (st->bringup)
739 st->state--;
740 else
741 st->state++;
742 }
743
2ea46c6f 744 st->bringup = bringup;
b7ba6d8d
SP
745 if (cpu_dying(cpu) != !bringup)
746 set_cpu_dying(cpu, !bringup);
4dddfb5f
PZ
747}
748
749/* Regular hotplug invocation of the AP hotplug thread */
750static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
751{
752 if (!st->single && st->state == st->target)
753 return;
754
755 st->result = 0;
756 /*
757 * Make sure the above stores are visible before should_run becomes
758 * true. Paired with the mb() above in cpuhp_thread_fun()
759 */
760 smp_mb();
761 st->should_run = true;
762 wake_up_process(st->thread);
5ebe7742 763 wait_for_ap_thread(st, st->bringup);
4dddfb5f
PZ
764}
765
b7ba6d8d
SP
766static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
767 enum cpuhp_state target)
4dddfb5f
PZ
768{
769 enum cpuhp_state prev_state;
770 int ret;
771
b7ba6d8d 772 prev_state = cpuhp_set_state(cpu, st, target);
4dddfb5f
PZ
773 __cpuhp_kick_ap(st);
774 if ((ret = st->result)) {
b7ba6d8d 775 cpuhp_reset_state(cpu, st, prev_state);
4dddfb5f
PZ
776 __cpuhp_kick_ap(st);
777 }
778
779 return ret;
780}
9cd4f1a4 781
22b612e2 782static int bringup_wait_for_ap_online(unsigned int cpu)
8df3e07e
TG
783{
784 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
785
9cd4f1a4 786 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
5ebe7742 787 wait_for_ap_thread(st, true);
dea1d0f5
TG
788 if (WARN_ON_ONCE((!cpu_online(cpu))))
789 return -ECANCELED;
9cd4f1a4 790
45178ac0 791 /* Unpark the hotplug thread of the target cpu */
9cd4f1a4
TG
792 kthread_unpark(st->thread);
793
0cc3cd21
TG
794 /*
795 * SMT soft disabling on X86 requires to bring the CPU out of the
796 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
f5602011 797 * CPU marked itself as booted_once in notify_cpu_starting() so the
d91bdd96 798 * cpu_bootable() check will now return false if this is not the
0cc3cd21
TG
799 * primary sibling.
800 */
d91bdd96 801 if (!cpu_bootable(cpu))
0cc3cd21 802 return -ECANCELED;
22b612e2 803 return 0;
8df3e07e
TG
804}
805
a631be92
TG
806#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
807static int cpuhp_kick_ap_alive(unsigned int cpu)
808{
809 if (!cpuhp_can_boot_ap(cpu))
810 return -EAGAIN;
811
812 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
813}
814
815static int cpuhp_bringup_ap(unsigned int cpu)
816{
817 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
818 int ret;
819
820 /*
821 * Some architectures have to walk the irq descriptors to
822 * setup the vector space for the cpu which comes online.
823 * Prevent irq alloc/free across the bringup.
824 */
825 irq_lock_sparse();
826
827 ret = cpuhp_bp_sync_alive(cpu);
828 if (ret)
829 goto out_unlock;
830
831 ret = bringup_wait_for_ap_online(cpu);
832 if (ret)
833 goto out_unlock;
834
835 irq_unlock_sparse();
836
837 if (st->target <= CPUHP_AP_ONLINE_IDLE)
838 return 0;
839
840 return cpuhp_kick_ap(cpu, st, st->target);
841
842out_unlock:
843 irq_unlock_sparse();
844 return ret;
845}
846#else
ba997462
TG
847static int bringup_cpu(unsigned int cpu)
848{
22b612e2 849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
ba997462
TG
850 struct task_struct *idle = idle_thread_get(cpu);
851 int ret;
852
6f062123
TG
853 if (!cpuhp_can_boot_ap(cpu))
854 return -EAGAIN;
855
aa877175
BO
856 /*
857 * Some architectures have to walk the irq descriptors to
858 * setup the vector space for the cpu which comes online.
22b612e2
TG
859 *
860 * Prevent irq alloc/free across the bringup by acquiring the
861 * sparse irq lock. Hold it until the upcoming CPU completes the
862 * startup in cpuhp_online_idle() which allows to avoid
863 * intermediate synchronization points in the architecture code.
aa877175
BO
864 */
865 irq_lock_sparse();
866
ba997462 867 ret = __cpu_up(cpu, idle);
530e9b76 868 if (ret)
22b612e2
TG
869 goto out_unlock;
870
6f062123
TG
871 ret = cpuhp_bp_sync_alive(cpu);
872 if (ret)
873 goto out_unlock;
874
22b612e2
TG
875 ret = bringup_wait_for_ap_online(cpu);
876 if (ret)
877 goto out_unlock;
878
879 irq_unlock_sparse();
880
881 if (st->target <= CPUHP_AP_ONLINE_IDLE)
882 return 0;
883
884 return cpuhp_kick_ap(cpu, st, st->target);
885
886out_unlock:
887 irq_unlock_sparse();
888 return ret;
ba997462 889}
a631be92 890#endif
ba997462 891
bf2c59fc
PZ
892static int finish_cpu(unsigned int cpu)
893{
894 struct task_struct *idle = idle_thread_get(cpu);
895 struct mm_struct *mm = idle->active_mm;
896
897 /*
898 * idle_task_exit() will have switched to &init_mm, now
899 * clean up any remaining active_mm state.
900 */
901 if (mm != &init_mm)
902 idle->active_mm = &init_mm;
aa464ba9 903 mmdrop_lazy_tlb(mm);
bf2c59fc
PZ
904 return 0;
905}
906
2e1a3483
TG
907/*
908 * Hotplug state machine related functions
909 */
2e1a3483 910
453e4108
VD
911/*
912 * Get the next state to run. Empty ones will be skipped. Returns true if a
913 * state must be run.
914 *
915 * st->state will be modified ahead of time, to match state_to_run, as if it
916 * has already ran.
917 */
918static bool cpuhp_next_state(bool bringup,
919 enum cpuhp_state *state_to_run,
920 struct cpuhp_cpu_state *st,
921 enum cpuhp_state target)
2e1a3483 922{
453e4108
VD
923 do {
924 if (bringup) {
925 if (st->state >= target)
926 return false;
927
928 *state_to_run = ++st->state;
929 } else {
930 if (st->state <= target)
931 return false;
932
933 *state_to_run = st->state--;
934 }
935
936 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
937 break;
938 } while (true);
939
940 return true;
941}
942
6f855b39
VD
943static int __cpuhp_invoke_callback_range(bool bringup,
944 unsigned int cpu,
945 struct cpuhp_cpu_state *st,
946 enum cpuhp_state target,
947 bool nofail)
453e4108
VD
948{
949 enum cpuhp_state state;
6f855b39 950 int ret = 0;
453e4108
VD
951
952 while (cpuhp_next_state(bringup, &state, st, target)) {
6f855b39
VD
953 int err;
954
453e4108 955 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
6f855b39
VD
956 if (!err)
957 continue;
958
959 if (nofail) {
960 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
961 cpu, bringup ? "UP" : "DOWN",
962 cpuhp_get_step(st->state)->name,
963 st->state, err);
964 ret = -1;
965 } else {
966 ret = err;
453e4108 967 break;
6f855b39 968 }
453e4108
VD
969 }
970
6f855b39
VD
971 return ret;
972}
973
974static inline int cpuhp_invoke_callback_range(bool bringup,
975 unsigned int cpu,
976 struct cpuhp_cpu_state *st,
977 enum cpuhp_state target)
978{
979 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
980}
981
982static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
983 unsigned int cpu,
984 struct cpuhp_cpu_state *st,
985 enum cpuhp_state target)
986{
987 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
2e1a3483
TG
988}
989
206b9235
TG
990static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
991{
992 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
993 return true;
994 /*
995 * When CPU hotplug is disabled, then taking the CPU down is not
996 * possible because takedown_cpu() and the architecture and
997 * subsystem specific mechanisms are not available. So the CPU
998 * which would be completely unplugged again needs to stay around
999 * in the current state.
1000 */
1001 return st->state <= CPUHP_BRINGUP_CPU;
1002}
1003
2e1a3483 1004static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
a724632c 1005 enum cpuhp_state target)
2e1a3483
TG
1006{
1007 enum cpuhp_state prev_state = st->state;
1008 int ret = 0;
1009
453e4108
VD
1010 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1011 if (ret) {
ebca71a8
DZ
1012 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1013 ret, cpu, cpuhp_get_step(st->state)->name,
1014 st->state);
1015
b7ba6d8d 1016 cpuhp_reset_state(cpu, st, prev_state);
453e4108
VD
1017 if (can_rollback_cpu(st))
1018 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1019 prev_state));
2e1a3483
TG
1020 }
1021 return ret;
1022}
1023
4cb28ced
TG
1024/*
1025 * The cpu hotplug threads manage the bringup and teardown of the cpus
1026 */
4cb28ced
TG
1027static int cpuhp_should_run(unsigned int cpu)
1028{
1029 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1030
1031 return st->should_run;
1032}
1033
4cb28ced
TG
1034/*
1035 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1036 * callbacks when a state gets [un]installed at runtime.
4dddfb5f
PZ
1037 *
1038 * Each invocation of this function by the smpboot thread does a single AP
1039 * state callback.
1040 *
1041 * It has 3 modes of operation:
1042 * - single: runs st->cb_state
1043 * - up: runs ++st->state, while st->state < st->target
1044 * - down: runs st->state--, while st->state > st->target
1045 *
1046 * When complete or on error, should_run is cleared and the completion is fired.
4cb28ced
TG
1047 */
1048static void cpuhp_thread_fun(unsigned int cpu)
1049{
1050 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
4dddfb5f
PZ
1051 bool bringup = st->bringup;
1052 enum cpuhp_state state;
4cb28ced 1053
f8b7530a
NU
1054 if (WARN_ON_ONCE(!st->should_run))
1055 return;
1056
4cb28ced 1057 /*
4dddfb5f
PZ
1058 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1059 * that if we see ->should_run we also see the rest of the state.
4cb28ced
TG
1060 */
1061 smp_mb();
4cb28ced 1062
cb92173d
PZ
1063 /*
1064 * The BP holds the hotplug lock, but we're now running on the AP,
1065 * ensure that anybody asserting the lock is held, will actually find
1066 * it so.
1067 */
1068 lockdep_acquire_cpus_lock();
5f4b55e1 1069 cpuhp_lock_acquire(bringup);
4dddfb5f 1070
a724632c 1071 if (st->single) {
4dddfb5f
PZ
1072 state = st->cb_state;
1073 st->should_run = false;
1074 } else {
453e4108
VD
1075 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1076 if (!st->should_run)
1077 goto end;
4dddfb5f
PZ
1078 }
1079
1080 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1081
4dddfb5f
PZ
1082 if (cpuhp_is_atomic_state(state)) {
1083 local_irq_disable();
1084 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1085 local_irq_enable();
3b9d6da6 1086
4dddfb5f
PZ
1087 /*
1088 * STARTING/DYING must not fail!
1089 */
1090 WARN_ON_ONCE(st->result);
4cb28ced 1091 } else {
4dddfb5f
PZ
1092 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1093 }
1094
1095 if (st->result) {
1096 /*
1097 * If we fail on a rollback, we're up a creek without no
1098 * paddle, no way forward, no way back. We loose, thanks for
1099 * playing.
1100 */
1101 WARN_ON_ONCE(st->rollback);
1102 st->should_run = false;
4cb28ced 1103 }
4dddfb5f 1104
453e4108 1105end:
5f4b55e1 1106 cpuhp_lock_release(bringup);
cb92173d 1107 lockdep_release_cpus_lock();
4dddfb5f
PZ
1108
1109 if (!st->should_run)
5ebe7742 1110 complete_ap_thread(st, bringup);
4cb28ced
TG
1111}
1112
1113/* Invoke a single callback on a remote cpu */
a724632c 1114static int
cf392d10
TG
1115cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1116 struct hlist_node *node)
4cb28ced
TG
1117{
1118 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
4dddfb5f 1119 int ret;
4cb28ced
TG
1120
1121 if (!cpu_online(cpu))
1122 return 0;
1123
5f4b55e1
PZ
1124 cpuhp_lock_acquire(false);
1125 cpuhp_lock_release(false);
1126
1127 cpuhp_lock_acquire(true);
1128 cpuhp_lock_release(true);
49dfe2a6 1129
6a4e2451
TG
1130 /*
1131 * If we are up and running, use the hotplug thread. For early calls
1132 * we invoke the thread function directly.
1133 */
1134 if (!st->thread)
96abb968 1135 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
6a4e2451 1136
4dddfb5f
PZ
1137 st->rollback = false;
1138 st->last = NULL;
1139
1140 st->node = node;
1141 st->bringup = bringup;
4cb28ced 1142 st->cb_state = state;
a724632c 1143 st->single = true;
a724632c 1144
4dddfb5f 1145 __cpuhp_kick_ap(st);
4cb28ced 1146
4cb28ced 1147 /*
4dddfb5f 1148 * If we failed and did a partial, do a rollback.
4cb28ced 1149 */
4dddfb5f
PZ
1150 if ((ret = st->result) && st->last) {
1151 st->rollback = true;
1152 st->bringup = !bringup;
1153
1154 __cpuhp_kick_ap(st);
1155 }
1156
1f7c70d6
TG
1157 /*
1158 * Clean up the leftovers so the next hotplug operation wont use stale
1159 * data.
1160 */
1161 st->node = st->last = NULL;
4dddfb5f 1162 return ret;
1cf4f629
TG
1163}
1164
1165static int cpuhp_kick_ap_work(unsigned int cpu)
1166{
1167 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
4dddfb5f
PZ
1168 enum cpuhp_state prev_state = st->state;
1169 int ret;
1cf4f629 1170
5f4b55e1
PZ
1171 cpuhp_lock_acquire(false);
1172 cpuhp_lock_release(false);
1173
1174 cpuhp_lock_acquire(true);
1175 cpuhp_lock_release(true);
4dddfb5f
PZ
1176
1177 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
b7ba6d8d 1178 ret = cpuhp_kick_ap(cpu, st, st->target);
4dddfb5f
PZ
1179 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1180
1181 return ret;
4cb28ced
TG
1182}
1183
1184static struct smp_hotplug_thread cpuhp_threads = {
1185 .store = &cpuhp_state.thread,
4cb28ced
TG
1186 .thread_should_run = cpuhp_should_run,
1187 .thread_fn = cpuhp_thread_fun,
1188 .thread_comm = "cpuhp/%u",
1189 .selfparking = true,
1190};
1191
d308077e
SP
1192static __init void cpuhp_init_state(void)
1193{
1194 struct cpuhp_cpu_state *st;
1195 int cpu;
1196
1197 for_each_possible_cpu(cpu) {
1198 st = per_cpu_ptr(&cpuhp_state, cpu);
1199 init_completion(&st->done_up);
1200 init_completion(&st->done_down);
1201 }
1202}
1203
4cb28ced
TG
1204void __init cpuhp_threads_init(void)
1205{
d308077e 1206 cpuhp_init_state();
4cb28ced
TG
1207 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1208 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1209}
1210
b22afcdf
TG
1211/*
1212 *
1213 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1214 * protected region.
1215 *
1216 * The operation is still serialized against concurrent CPU hotplug via
1217 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
1218 * serialized against other hotplug related activity like adding or
1219 * removing of state callbacks and state instances, which invoke either the
1220 * startup or the teardown callback of the affected state.
1221 *
1222 * This is required for subsystems which are unfixable vs. CPU hotplug and
1223 * evade lock inversion problems by scheduling work which has to be
1224 * completed _before_ cpu_up()/_cpu_down() returns.
1225 *
1226 * Don't even think about adding anything to this for any new code or even
1227 * drivers. It's only purpose is to keep existing lock order trainwrecks
1228 * working.
1229 *
1230 * For cpu_down() there might be valid reasons to finish cleanups which are
1231 * not required to be done under cpu_hotplug_lock, but that's a different
1232 * story and would be not invoked via this.
1233 */
1234static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1235{
1236 /*
1237 * cpusets delegate hotplug operations to a worker to "solve" the
1238 * lock order problems. Wait for the worker, but only if tasks are
1239 * _not_ frozen (suspend, hibernate) as that would wait forever.
1240 *
1241 * The wait is required because otherwise the hotplug operation
1242 * returns with inconsistent state, which could even be observed in
1243 * user space when a new CPU is brought up. The CPU plug uevent
1244 * would be delivered and user space reacting on it would fail to
1245 * move tasks to the newly plugged CPU up to the point where the
1246 * work has finished because up to that point the newly plugged CPU
1247 * is not assignable in cpusets/cgroups. On unplug that's not
1248 * necessarily a visible issue, but it is still inconsistent state,
1249 * which is the real problem which needs to be "fixed". This can't
1250 * prevent the transient state between scheduling the work and
1251 * returning from waiting for it.
1252 */
1253 if (!tasks_frozen)
1254 cpuset_wait_for_hotplug();
1255}
1256
777c6e0d 1257#ifdef CONFIG_HOTPLUG_CPU
8ff00399
NP
1258#ifndef arch_clear_mm_cpumask_cpu
1259#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1260#endif
1261
e4cc2f87
AV
1262/**
1263 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1264 * @cpu: a CPU id
1265 *
1266 * This function walks all processes, finds a valid mm struct for each one and
1267 * then clears a corresponding bit in mm's cpumask. While this all sounds
1268 * trivial, there are various non-obvious corner cases, which this function
1269 * tries to solve in a safe manner.
1270 *
1271 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1272 * be called only for an already offlined CPU.
1273 */
cb79295e
AV
1274void clear_tasks_mm_cpumask(int cpu)
1275{
1276 struct task_struct *p;
1277
1278 /*
1279 * This function is called after the cpu is taken down and marked
1280 * offline, so its not like new tasks will ever get this cpu set in
1281 * their mm mask. -- Peter Zijlstra
1282 * Thus, we may use rcu_read_lock() here, instead of grabbing
1283 * full-fledged tasklist_lock.
1284 */
e4cc2f87 1285 WARN_ON(cpu_online(cpu));
cb79295e
AV
1286 rcu_read_lock();
1287 for_each_process(p) {
1288 struct task_struct *t;
1289
e4cc2f87
AV
1290 /*
1291 * Main thread might exit, but other threads may still have
1292 * a valid mm. Find one.
1293 */
cb79295e
AV
1294 t = find_lock_task_mm(p);
1295 if (!t)
1296 continue;
8ff00399 1297 arch_clear_mm_cpumask_cpu(cpu, t->mm);
cb79295e
AV
1298 task_unlock(t);
1299 }
1300 rcu_read_unlock();
1301}
1302
1da177e4 1303/* Take this CPU down. */
71cf5aee 1304static int take_cpu_down(void *_param)
1da177e4 1305{
4baa0afc
TG
1306 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1307 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
090e77c3 1308 int err, cpu = smp_processor_id();
1da177e4 1309
1da177e4
LT
1310 /* Ensure this CPU doesn't handle any more interrupts. */
1311 err = __cpu_disable();
1312 if (err < 0)
f3705136 1313 return err;
1da177e4 1314
a724632c 1315 /*
453e4108
VD
1316 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1317 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
a724632c 1318 */
453e4108
VD
1319 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1320
453e4108 1321 /*
6f855b39 1322 * Invoke the former CPU_DYING callbacks. DYING must not fail!
453e4108 1323 */
6f855b39 1324 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
4baa0afc 1325
52c063d1
TG
1326 /* Give up timekeeping duties */
1327 tick_handover_do_timer();
1b72d432
TG
1328 /* Remove CPU from timer broadcasting */
1329 tick_offline_cpu(cpu);
14e568e7 1330 /* Park the stopper thread */
090e77c3 1331 stop_machine_park(cpu);
f3705136 1332 return 0;
1da177e4
LT
1333}
1334
98458172 1335static int takedown_cpu(unsigned int cpu)
1da177e4 1336{
e69aab13 1337 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
98458172 1338 int err;
1da177e4 1339
2a58c527 1340 /* Park the smpboot threads */
13070833 1341 kthread_park(st->thread);
1cf4f629 1342
6acce3ef 1343 /*
a8994181
TG
1344 * Prevent irq alloc/free while the dying cpu reorganizes the
1345 * interrupt affinities.
6acce3ef 1346 */
a8994181 1347 irq_lock_sparse();
6acce3ef 1348
a8994181
TG
1349 /*
1350 * So now all preempt/rcu users must observe !cpu_active().
1351 */
210e2133 1352 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
04321587 1353 if (err) {
3b9d6da6 1354 /* CPU refused to die */
a8994181 1355 irq_unlock_sparse();
3b9d6da6 1356 /* Unpark the hotplug thread so we can rollback there */
13070833 1357 kthread_unpark(st->thread);
98458172 1358 return err;
8fa1d7d3 1359 }
04321587 1360 BUG_ON(cpu_online(cpu));
1da177e4 1361
48c5ccae 1362 /*
5b1ead68
BJ
1363 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1364 * all runnable tasks from the CPU, there's only the idle task left now
48c5ccae 1365 * that the migration thread is done doing the stop_machine thing.
51a96c77
PZ
1366 *
1367 * Wait for the stop thread to go away.
48c5ccae 1368 */
5ebe7742 1369 wait_for_ap_thread(st, false);
e69aab13 1370 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1da177e4 1371
a8994181
TG
1372 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1373 irq_unlock_sparse();
1374
345527b1 1375 hotplug_cpu__broadcast_tick_pull(cpu);
1da177e4
LT
1376 /* This actually kills the CPU. */
1377 __cpu_die(cpu);
1378
6f062123
TG
1379 cpuhp_bp_sync_dead(cpu);
1380
a49b116d 1381 tick_cleanup_dead_cpu(cpu);
a28ab03b
FW
1382
1383 /*
1384 * Callbacks must be re-integrated right away to the RCU state machine.
1385 * Otherwise an RCU callback could block a further teardown function
1386 * waiting for its completion.
1387 */
a58163d8 1388 rcutree_migrate_callbacks(cpu);
a28ab03b 1389
98458172
TG
1390 return 0;
1391}
1da177e4 1392
71f87b2f
TG
1393static void cpuhp_complete_idle_dead(void *arg)
1394{
1395 struct cpuhp_cpu_state *st = arg;
1396
5ebe7742 1397 complete_ap_thread(st, false);
71f87b2f
TG
1398}
1399
e69aab13
TG
1400void cpuhp_report_idle_dead(void)
1401{
1402 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1403
1404 BUG_ON(st->state != CPUHP_AP_OFFLINE);
448e9f34 1405 rcutree_report_cpu_dead();
71f87b2f
TG
1406 st->state = CPUHP_AP_IDLE_DEAD;
1407 /*
448e9f34 1408 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
71f87b2f
TG
1409 * to an online cpu.
1410 */
1411 smp_call_function_single(cpumask_first(cpu_online_mask),
1412 cpuhp_complete_idle_dead, st, 0);
e69aab13
TG
1413}
1414
4dddfb5f
PZ
1415static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1416 enum cpuhp_state target)
1417{
1418 enum cpuhp_state prev_state = st->state;
1419 int ret = 0;
1420
453e4108
VD
1421 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1422 if (ret) {
ebca71a8
DZ
1423 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1424 ret, cpu, cpuhp_get_step(st->state)->name,
1425 st->state);
453e4108 1426
b7ba6d8d 1427 cpuhp_reset_state(cpu, st, prev_state);
453e4108
VD
1428
1429 if (st->state < prev_state)
1430 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1431 prev_state));
4dddfb5f 1432 }
453e4108 1433
4dddfb5f
PZ
1434 return ret;
1435}
cff7d378 1436
98458172 1437/* Requires cpu_add_remove_lock to be held */
af1f4045
TG
1438static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1439 enum cpuhp_state target)
98458172 1440{
cff7d378
TG
1441 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1442 int prev_state, ret = 0;
98458172
TG
1443
1444 if (num_online_cpus() == 1)
1445 return -EBUSY;
1446
757c989b 1447 if (!cpu_present(cpu))
98458172
TG
1448 return -EINVAL;
1449
8f553c49 1450 cpus_write_lock();
98458172
TG
1451
1452 cpuhp_tasks_frozen = tasks_frozen;
1453
b7ba6d8d 1454 prev_state = cpuhp_set_state(cpu, st, target);
1cf4f629
TG
1455 /*
1456 * If the current CPU state is in the range of the AP hotplug thread,
1457 * then we need to kick the thread.
1458 */
8df3e07e 1459 if (st->state > CPUHP_TEARDOWN_CPU) {
4dddfb5f 1460 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1cf4f629
TG
1461 ret = cpuhp_kick_ap_work(cpu);
1462 /*
1463 * The AP side has done the error rollback already. Just
1464 * return the error code..
1465 */
1466 if (ret)
1467 goto out;
1468
1469 /*
1470 * We might have stopped still in the range of the AP hotplug
1471 * thread. Nothing to do anymore.
1472 */
8df3e07e 1473 if (st->state > CPUHP_TEARDOWN_CPU)
1cf4f629 1474 goto out;
4dddfb5f
PZ
1475
1476 st->target = target;
1cf4f629
TG
1477 }
1478 /*
8df3e07e 1479 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1cf4f629
TG
1480 * to do the further cleanups.
1481 */
a724632c 1482 ret = cpuhp_down_callbacks(cpu, st, target);
62f25069
VD
1483 if (ret && st->state < prev_state) {
1484 if (st->state == CPUHP_TEARDOWN_CPU) {
b7ba6d8d 1485 cpuhp_reset_state(cpu, st, prev_state);
62f25069
VD
1486 __cpuhp_kick_ap(st);
1487 } else {
1488 WARN(1, "DEAD callback error for CPU%d", cpu);
1489 }
3b9d6da6 1490 }
98458172 1491
1cf4f629 1492out:
8f553c49 1493 cpus_write_unlock();
941154bd
TG
1494 /*
1495 * Do post unplug cleanup. This is still protected against
1496 * concurrent CPU hotplug via cpu_add_remove_lock.
1497 */
1498 lockup_detector_cleanup();
a74cfffb 1499 arch_smt_update();
b22afcdf 1500 cpu_up_down_serialize_trainwrecks(tasks_frozen);
cff7d378 1501 return ret;
e3920fb4
RW
1502}
1503
2b8272ff
TG
1504struct cpu_down_work {
1505 unsigned int cpu;
1506 enum cpuhp_state target;
1507};
1508
1509static long __cpu_down_maps_locked(void *arg)
1510{
1511 struct cpu_down_work *work = arg;
1512
1513 return _cpu_down(work->cpu, 0, work->target);
1514}
1515
cc1fe215
TG
1516static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1517{
2b8272ff
TG
1518 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1519
bae1a962
KS
1520 /*
1521 * If the platform does not support hotplug, report it explicitly to
1522 * differentiate it from a transient offlining failure.
1523 */
1524 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1525 return -EOPNOTSUPP;
cc1fe215
TG
1526 if (cpu_hotplug_disabled)
1527 return -EBUSY;
2b8272ff
TG
1528
1529 /*
1530 * Ensure that the control task does not run on the to be offlined
1531 * CPU to prevent a deadlock against cfs_b->period_timer.
38685e2a
RX
1532 * Also keep at least one housekeeping cpu onlined to avoid generating
1533 * an empty sched_domain span.
2b8272ff 1534 */
38685e2a
RX
1535 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1536 if (cpu != work.cpu)
1537 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1538 }
1539 return -EBUSY;
cc1fe215
TG
1540}
1541
33c3736e 1542static int cpu_down(unsigned int cpu, enum cpuhp_state target)
e3920fb4 1543{
9ea09af3 1544 int err;
e3920fb4 1545
d221938c 1546 cpu_maps_update_begin();
cc1fe215 1547 err = cpu_down_maps_locked(cpu, target);
d221938c 1548 cpu_maps_update_done();
1da177e4
LT
1549 return err;
1550}
4dddfb5f 1551
33c3736e
QY
1552/**
1553 * cpu_device_down - Bring down a cpu device
1554 * @dev: Pointer to the cpu device to offline
1555 *
1556 * This function is meant to be used by device core cpu subsystem only.
1557 *
1558 * Other subsystems should use remove_cpu() instead.
11bc021d
RD
1559 *
1560 * Return: %0 on success or a negative errno code
33c3736e
QY
1561 */
1562int cpu_device_down(struct device *dev)
af1f4045 1563{
33c3736e 1564 return cpu_down(dev->id, CPUHP_OFFLINE);
af1f4045 1565}
4dddfb5f 1566
93ef1429
QY
1567int remove_cpu(unsigned int cpu)
1568{
1569 int ret;
1570
1571 lock_device_hotplug();
1572 ret = device_offline(get_cpu_device(cpu));
1573 unlock_device_hotplug();
1574
1575 return ret;
1576}
1577EXPORT_SYMBOL_GPL(remove_cpu);
1578
0441a559
QY
1579void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1580{
1581 unsigned int cpu;
1582 int error;
1583
1584 cpu_maps_update_begin();
1585
1586 /*
1587 * Make certain the cpu I'm about to reboot on is online.
1588 *
1589 * This is inline to what migrate_to_reboot_cpu() already do.
1590 */
1591 if (!cpu_online(primary_cpu))
1592 primary_cpu = cpumask_first(cpu_online_mask);
1593
1594 for_each_online_cpu(cpu) {
1595 if (cpu == primary_cpu)
1596 continue;
1597
1598 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1599 if (error) {
1600 pr_err("Failed to offline CPU%d - error=%d",
1601 cpu, error);
1602 break;
1603 }
1604 }
1605
1606 /*
1607 * Ensure all but the reboot CPU are offline.
1608 */
1609 BUG_ON(num_online_cpus() > 1);
1610
1611 /*
1612 * Make sure the CPUs won't be enabled by someone else after this
1613 * point. Kexec will reboot to a new kernel shortly resetting
1614 * everything along the way.
1615 */
1616 cpu_hotplug_disabled++;
1617
1618 cpu_maps_update_done();
af1f4045 1619}
4dddfb5f
PZ
1620
1621#else
1622#define takedown_cpu NULL
1da177e4
LT
1623#endif /*CONFIG_HOTPLUG_CPU*/
1624
4baa0afc 1625/**
ee1e714b 1626 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
4baa0afc
TG
1627 * @cpu: cpu that just started
1628 *
4baa0afc
TG
1629 * It must be called by the arch code on the new cpu, before the new cpu
1630 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1631 */
1632void notify_cpu_starting(unsigned int cpu)
1633{
1634 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1635 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1636
448e9f34 1637 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
e797bda3 1638 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
453e4108
VD
1639
1640 /*
1641 * STARTING must not fail!
1642 */
6f855b39 1643 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
4baa0afc
TG
1644}
1645
949338e3 1646/*
9cd4f1a4 1647 * Called from the idle task. Wake up the controlling task which brings the
45178ac0
PZ
1648 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1649 * online bringup to the hotplug thread.
949338e3 1650 */
8df3e07e 1651void cpuhp_online_idle(enum cpuhp_state state)
949338e3 1652{
8df3e07e 1653 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
8df3e07e
TG
1654
1655 /* Happens for the boot cpu */
1656 if (state != CPUHP_AP_ONLINE_IDLE)
1657 return;
1658
6f062123
TG
1659 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1660
45178ac0 1661 /*
6f062123 1662 * Unpark the stopper thread before we start the idle loop (and start
45178ac0
PZ
1663 * scheduling); this ensures the stopper task is always available.
1664 */
1665 stop_machine_unpark(smp_processor_id());
1666
8df3e07e 1667 st->state = CPUHP_AP_ONLINE_IDLE;
5ebe7742 1668 complete_ap_thread(st, true);
949338e3
TG
1669}
1670
e3920fb4 1671/* Requires cpu_add_remove_lock to be held */
af1f4045 1672static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1da177e4 1673{
cff7d378 1674 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
3bb5d2ee 1675 struct task_struct *idle;
2e1a3483 1676 int ret = 0;
1da177e4 1677
8f553c49 1678 cpus_write_lock();
38498a67 1679
757c989b 1680 if (!cpu_present(cpu)) {
5e5041f3
YI
1681 ret = -EINVAL;
1682 goto out;
1683 }
1684
757c989b 1685 /*
33c3736e
QY
1686 * The caller of cpu_up() might have raced with another
1687 * caller. Nothing to do.
757c989b
TG
1688 */
1689 if (st->state >= target)
38498a67 1690 goto out;
757c989b
TG
1691
1692 if (st->state == CPUHP_OFFLINE) {
1693 /* Let it fail before we try to bring the cpu up */
1694 idle = idle_thread_get(cpu);
1695 if (IS_ERR(idle)) {
1696 ret = PTR_ERR(idle);
1697 goto out;
1698 }
6d712b9b
DW
1699
1700 /*
1701 * Reset stale stack state from the last time this CPU was online.
1702 */
1703 scs_task_reset(idle);
1704 kasan_unpoison_task_stack(idle);
3bb5d2ee 1705 }
38498a67 1706
ba997462
TG
1707 cpuhp_tasks_frozen = tasks_frozen;
1708
b7ba6d8d 1709 cpuhp_set_state(cpu, st, target);
1cf4f629
TG
1710 /*
1711 * If the current CPU state is in the range of the AP hotplug thread,
1712 * then we need to kick the thread once more.
1713 */
8df3e07e 1714 if (st->state > CPUHP_BRINGUP_CPU) {
1cf4f629
TG
1715 ret = cpuhp_kick_ap_work(cpu);
1716 /*
1717 * The AP side has done the error rollback already. Just
1718 * return the error code..
1719 */
1720 if (ret)
1721 goto out;
1722 }
1723
1724 /*
1725 * Try to reach the target state. We max out on the BP at
8df3e07e 1726 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1cf4f629
TG
1727 * responsible for bringing it up to the target state.
1728 */
8df3e07e 1729 target = min((int)target, CPUHP_BRINGUP_CPU);
a724632c 1730 ret = cpuhp_up_callbacks(cpu, st, target);
38498a67 1731out:
8f553c49 1732 cpus_write_unlock();
a74cfffb 1733 arch_smt_update();
b22afcdf 1734 cpu_up_down_serialize_trainwrecks(tasks_frozen);
e3920fb4
RW
1735 return ret;
1736}
1737
33c3736e 1738static int cpu_up(unsigned int cpu, enum cpuhp_state target)
e3920fb4
RW
1739{
1740 int err = 0;
cf23422b 1741
e0b582ec 1742 if (!cpu_possible(cpu)) {
84117da5
FF
1743 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1744 cpu);
73e753a5
KH
1745 return -EINVAL;
1746 }
e3920fb4 1747
01b0f197
TK
1748 err = try_online_node(cpu_to_node(cpu));
1749 if (err)
1750 return err;
cf23422b 1751
d221938c 1752 cpu_maps_update_begin();
e761b772
MK
1753
1754 if (cpu_hotplug_disabled) {
e3920fb4 1755 err = -EBUSY;
e761b772
MK
1756 goto out;
1757 }
d91bdd96 1758 if (!cpu_bootable(cpu)) {
05736e4a
TG
1759 err = -EPERM;
1760 goto out;
1761 }
e761b772 1762
af1f4045 1763 err = _cpu_up(cpu, 0, target);
e761b772 1764out:
d221938c 1765 cpu_maps_update_done();
e3920fb4
RW
1766 return err;
1767}
af1f4045 1768
33c3736e
QY
1769/**
1770 * cpu_device_up - Bring up a cpu device
1771 * @dev: Pointer to the cpu device to online
1772 *
1773 * This function is meant to be used by device core cpu subsystem only.
1774 *
1775 * Other subsystems should use add_cpu() instead.
11bc021d
RD
1776 *
1777 * Return: %0 on success or a negative errno code
33c3736e
QY
1778 */
1779int cpu_device_up(struct device *dev)
af1f4045 1780{
33c3736e 1781 return cpu_up(dev->id, CPUHP_ONLINE);
af1f4045 1782}
e3920fb4 1783
93ef1429
QY
1784int add_cpu(unsigned int cpu)
1785{
1786 int ret;
1787
1788 lock_device_hotplug();
1789 ret = device_online(get_cpu_device(cpu));
1790 unlock_device_hotplug();
1791
1792 return ret;
1793}
1794EXPORT_SYMBOL_GPL(add_cpu);
1795
d720f986
QY
1796/**
1797 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1798 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1799 *
1800 * On some architectures like arm64, we can hibernate on any CPU, but on
1801 * wake up the CPU we hibernated on might be offline as a side effect of
1802 * using maxcpus= for example.
11bc021d
RD
1803 *
1804 * Return: %0 on success or a negative errno code
d720f986
QY
1805 */
1806int bringup_hibernate_cpu(unsigned int sleep_cpu)
af1f4045 1807{
d720f986
QY
1808 int ret;
1809
1810 if (!cpu_online(sleep_cpu)) {
1811 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
33c3736e 1812 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
d720f986
QY
1813 if (ret) {
1814 pr_err("Failed to bring hibernate-CPU up!\n");
1815 return ret;
1816 }
1817 }
1818 return 0;
1819}
1820
18415f33
TG
1821static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1822 enum cpuhp_state target)
b99a2659
QY
1823{
1824 unsigned int cpu;
1825
18415f33
TG
1826 for_each_cpu(cpu, mask) {
1827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1828
18415f33
TG
1829 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1830 /*
1831 * If this failed then cpu_up() might have only
1832 * rolled back to CPUHP_BP_KICK_AP for the final
1833 * online. Clean it up. NOOP if already rolled back.
1834 */
1835 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1836 }
06c6796e
TG
1837
1838 if (!--ncpus)
1839 break;
b99a2659 1840 }
af1f4045 1841}
e3920fb4 1842
18415f33
TG
1843#ifdef CONFIG_HOTPLUG_PARALLEL
1844static bool __cpuhp_parallel_bringup __ro_after_init = true;
1845
1846static int __init parallel_bringup_parse_param(char *arg)
1847{
1848 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1849}
1850early_param("cpuhp.parallel", parallel_bringup_parse_param);
1851
7a4dcb4a
LD
1852static inline bool cpuhp_smt_aware(void)
1853{
91b4a7db 1854 return cpu_smt_max_threads > 1;
7a4dcb4a
LD
1855}
1856
1857static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1858{
1859 return cpu_primary_thread_mask;
1860}
1861
18415f33
TG
1862/*
1863 * On architectures which have enabled parallel bringup this invokes all BP
1864 * prepare states for each of the to be onlined APs first. The last state
1865 * sends the startup IPI to the APs. The APs proceed through the low level
1866 * bringup code in parallel and then wait for the control CPU to release
1867 * them one by one for the final onlining procedure.
1868 *
1869 * This avoids waiting for each AP to respond to the startup IPI in
1870 * CPUHP_BRINGUP_CPU.
1871 */
1872static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1873{
1874 const struct cpumask *mask = cpu_present_mask;
1875
1876 if (__cpuhp_parallel_bringup)
1877 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1878 if (!__cpuhp_parallel_bringup)
1879 return false;
1880
1881 if (cpuhp_smt_aware()) {
1882 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1883 static struct cpumask tmp_mask __initdata;
1884
1885 /*
1886 * X86 requires to prevent that SMT siblings stopped while
1887 * the primary thread does a microcode update for various
1888 * reasons. Bring the primary threads up first.
1889 */
1890 cpumask_and(&tmp_mask, mask, pmask);
1891 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1892 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1893 /* Account for the online CPUs */
1894 ncpus -= num_online_cpus();
1895 if (!ncpus)
1896 return true;
1897 /* Create the mask for secondary CPUs */
1898 cpumask_andnot(&tmp_mask, mask, pmask);
1899 mask = &tmp_mask;
1900 }
1901
1902 /* Bring the not-yet started CPUs up */
1903 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1904 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1905 return true;
1906}
1907#else
1908static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1909#endif /* CONFIG_HOTPLUG_PARALLEL */
1910
1911void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1912{
1913 /* Try parallel bringup optimization if enabled */
1914 if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1915 return;
1916
1917 /* Full per CPU serialized bringup */
1918 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1919}
1920
f3de4be9 1921#ifdef CONFIG_PM_SLEEP_SMP
e0b582ec 1922static cpumask_var_t frozen_cpus;
e3920fb4 1923
fb7fb84a 1924int freeze_secondary_cpus(int primary)
e3920fb4 1925{
d391e552 1926 int cpu, error = 0;
e3920fb4 1927
d221938c 1928 cpu_maps_update_begin();
9ca12ac0 1929 if (primary == -1) {
d391e552 1930 primary = cpumask_first(cpu_online_mask);
04d4e665
FW
1931 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1932 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
9ca12ac0
NP
1933 } else {
1934 if (!cpu_online(primary))
1935 primary = cpumask_first(cpu_online_mask);
1936 }
1937
9ee349ad
XF
1938 /*
1939 * We take down all of the non-boot CPUs in one shot to avoid races
e3920fb4
RW
1940 * with the userspace trying to use the CPU hotplug at the same time
1941 */
e0b582ec 1942 cpumask_clear(frozen_cpus);
6ad4c188 1943
84117da5 1944 pr_info("Disabling non-boot CPUs ...\n");
e3920fb4 1945 for_each_online_cpu(cpu) {
d391e552 1946 if (cpu == primary)
e3920fb4 1947 continue;
a66d955e 1948
fb7fb84a 1949 if (pm_wakeup_pending()) {
a66d955e
PK
1950 pr_info("Wakeup pending. Abort CPU freeze\n");
1951 error = -EBUSY;
1952 break;
1953 }
1954
bb3632c6 1955 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
af1f4045 1956 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
bb3632c6 1957 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
feae3203 1958 if (!error)
e0b582ec 1959 cpumask_set_cpu(cpu, frozen_cpus);
feae3203 1960 else {
84117da5 1961 pr_err("Error taking CPU%d down: %d\n", cpu, error);
e3920fb4
RW
1962 break;
1963 }
1964 }
86886e55 1965
89af7ba5 1966 if (!error)
e3920fb4 1967 BUG_ON(num_online_cpus() > 1);
89af7ba5 1968 else
84117da5 1969 pr_err("Non-boot CPUs are not disabled\n");
89af7ba5
VK
1970
1971 /*
1972 * Make sure the CPUs won't be enabled by someone else. We need to do
56555855
QY
1973 * this even in case of failure as all freeze_secondary_cpus() users are
1974 * supposed to do thaw_secondary_cpus() on the failure path.
89af7ba5
VK
1975 */
1976 cpu_hotplug_disabled++;
1977
d221938c 1978 cpu_maps_update_done();
e3920fb4
RW
1979 return error;
1980}
1981
56555855 1982void __weak arch_thaw_secondary_cpus_begin(void)
d0af9eed
SS
1983{
1984}
1985
56555855 1986void __weak arch_thaw_secondary_cpus_end(void)
d0af9eed
SS
1987{
1988}
1989
56555855 1990void thaw_secondary_cpus(void)
e3920fb4
RW
1991{
1992 int cpu, error;
1993
1994 /* Allow everyone to use the CPU hotplug again */
d221938c 1995 cpu_maps_update_begin();
01b41159 1996 __cpu_hotplug_enable();
e0b582ec 1997 if (cpumask_empty(frozen_cpus))
1d64b9cb 1998 goto out;
e3920fb4 1999
84117da5 2000 pr_info("Enabling non-boot CPUs ...\n");
d0af9eed 2001
56555855 2002 arch_thaw_secondary_cpus_begin();
d0af9eed 2003
e0b582ec 2004 for_each_cpu(cpu, frozen_cpus) {
bb3632c6 2005 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
af1f4045 2006 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
bb3632c6 2007 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
e3920fb4 2008 if (!error) {
84117da5 2009 pr_info("CPU%d is up\n", cpu);
e3920fb4
RW
2010 continue;
2011 }
84117da5 2012 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
e3920fb4 2013 }
d0af9eed 2014
56555855 2015 arch_thaw_secondary_cpus_end();
d0af9eed 2016
e0b582ec 2017 cpumask_clear(frozen_cpus);
1d64b9cb 2018out:
d221938c 2019 cpu_maps_update_done();
1da177e4 2020}
e0b582ec 2021
d7268a31 2022static int __init alloc_frozen_cpus(void)
e0b582ec
RR
2023{
2024 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2025 return -ENOMEM;
2026 return 0;
2027}
2028core_initcall(alloc_frozen_cpus);
79cfbdfa 2029
79cfbdfa
SB
2030/*
2031 * When callbacks for CPU hotplug notifications are being executed, we must
2032 * ensure that the state of the system with respect to the tasks being frozen
2033 * or not, as reported by the notification, remains unchanged *throughout the
2034 * duration* of the execution of the callbacks.
2035 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2036 *
2037 * This synchronization is implemented by mutually excluding regular CPU
2038 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2039 * Hibernate notifications.
2040 */
2041static int
2042cpu_hotplug_pm_callback(struct notifier_block *nb,
2043 unsigned long action, void *ptr)
2044{
2045 switch (action) {
2046
2047 case PM_SUSPEND_PREPARE:
2048 case PM_HIBERNATION_PREPARE:
16e53dbf 2049 cpu_hotplug_disable();
79cfbdfa
SB
2050 break;
2051
2052 case PM_POST_SUSPEND:
2053 case PM_POST_HIBERNATION:
16e53dbf 2054 cpu_hotplug_enable();
79cfbdfa
SB
2055 break;
2056
2057 default:
2058 return NOTIFY_DONE;
2059 }
2060
2061 return NOTIFY_OK;
2062}
2063
2064
d7268a31 2065static int __init cpu_hotplug_pm_sync_init(void)
79cfbdfa 2066{
6e32d479
FY
2067 /*
2068 * cpu_hotplug_pm_callback has higher priority than x86
2069 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2070 * to disable cpu hotplug to avoid cpu hotplug race.
2071 */
79cfbdfa
SB
2072 pm_notifier(cpu_hotplug_pm_callback, 0);
2073 return 0;
2074}
2075core_initcall(cpu_hotplug_pm_sync_init);
2076
f3de4be9 2077#endif /* CONFIG_PM_SLEEP_SMP */
68f4f1ec 2078
8ce371f9
PZ
2079int __boot_cpu_id;
2080
68f4f1ec 2081#endif /* CONFIG_SMP */
b8d317d1 2082
cff7d378 2083/* Boot processor state steps */
17a2f1ce 2084static struct cpuhp_step cpuhp_hp_states[] = {
cff7d378
TG
2085 [CPUHP_OFFLINE] = {
2086 .name = "offline",
3c1627e9
TG
2087 .startup.single = NULL,
2088 .teardown.single = NULL,
cff7d378
TG
2089 },
2090#ifdef CONFIG_SMP
2091 [CPUHP_CREATE_THREADS]= {
677f6646 2092 .name = "threads:prepare",
3c1627e9
TG
2093 .startup.single = smpboot_create_threads,
2094 .teardown.single = NULL,
757c989b 2095 .cant_stop = true,
cff7d378 2096 },
00e16c3d 2097 [CPUHP_PERF_PREPARE] = {
3c1627e9
TG
2098 .name = "perf:prepare",
2099 .startup.single = perf_event_init_cpu,
2100 .teardown.single = perf_event_exit_cpu,
00e16c3d 2101 },
3191dd5a
JD
2102 [CPUHP_RANDOM_PREPARE] = {
2103 .name = "random:prepare",
2104 .startup.single = random_prepare_cpu,
2105 .teardown.single = NULL,
2106 },
7ee681b2 2107 [CPUHP_WORKQUEUE_PREP] = {
3c1627e9
TG
2108 .name = "workqueue:prepare",
2109 .startup.single = workqueue_prepare_cpu,
2110 .teardown.single = NULL,
7ee681b2 2111 },
27590dc1 2112 [CPUHP_HRTIMERS_PREPARE] = {
3c1627e9
TG
2113 .name = "hrtimers:prepare",
2114 .startup.single = hrtimers_prepare_cpu,
5c0930cc 2115 .teardown.single = NULL,
27590dc1 2116 },
31487f83 2117 [CPUHP_SMPCFD_PREPARE] = {
677f6646 2118 .name = "smpcfd:prepare",
3c1627e9
TG
2119 .startup.single = smpcfd_prepare_cpu,
2120 .teardown.single = smpcfd_dead_cpu,
31487f83 2121 },
e6d4989a
RW
2122 [CPUHP_RELAY_PREPARE] = {
2123 .name = "relay:prepare",
2124 .startup.single = relay_prepare_cpu,
2125 .teardown.single = NULL,
2126 },
4df83742 2127 [CPUHP_RCUTREE_PREP] = {
677f6646 2128 .name = "RCU/tree:prepare",
3c1627e9
TG
2129 .startup.single = rcutree_prepare_cpu,
2130 .teardown.single = rcutree_dead_cpu,
4df83742 2131 },
4fae16df
RC
2132 /*
2133 * On the tear-down path, timers_dead_cpu() must be invoked
2134 * before blk_mq_queue_reinit_notify() from notify_dead(),
2135 * otherwise a RCU stall occurs.
2136 */
26456f87 2137 [CPUHP_TIMERS_PREPARE] = {
d018031f 2138 .name = "timers:prepare",
26456f87 2139 .startup.single = timers_prepare_cpu,
3c1627e9 2140 .teardown.single = timers_dead_cpu,
4fae16df 2141 },
a631be92
TG
2142
2143#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2144 /*
2145 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2146 * the next step will release it.
2147 */
2148 [CPUHP_BP_KICK_AP] = {
2149 .name = "cpu:kick_ap",
2150 .startup.single = cpuhp_kick_ap_alive,
2151 },
2152
2153 /*
2154 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2155 * releases it for the complete bringup.
2156 */
2157 [CPUHP_BRINGUP_CPU] = {
2158 .name = "cpu:bringup",
2159 .startup.single = cpuhp_bringup_ap,
2160 .teardown.single = finish_cpu,
2161 .cant_stop = true,
2162 },
2163#else
2164 /*
2165 * All-in-one CPU bringup state which includes the kick alive.
2166 */
cff7d378
TG
2167 [CPUHP_BRINGUP_CPU] = {
2168 .name = "cpu:bringup",
3c1627e9 2169 .startup.single = bringup_cpu,
bf2c59fc 2170 .teardown.single = finish_cpu,
757c989b 2171 .cant_stop = true,
4baa0afc 2172 },
a631be92 2173#endif
d10ef6f9
TG
2174 /* Final state before CPU kills itself */
2175 [CPUHP_AP_IDLE_DEAD] = {
2176 .name = "idle:dead",
2177 },
2178 /*
2179 * Last state before CPU enters the idle loop to die. Transient state
2180 * for synchronization.
2181 */
2182 [CPUHP_AP_OFFLINE] = {
2183 .name = "ap:offline",
2184 .cant_stop = true,
2185 },
9cf7243d
TG
2186 /* First state is scheduler control. Interrupts are disabled */
2187 [CPUHP_AP_SCHED_STARTING] = {
2188 .name = "sched:starting",
3c1627e9
TG
2189 .startup.single = sched_cpu_starting,
2190 .teardown.single = sched_cpu_dying,
9cf7243d 2191 },
4df83742 2192 [CPUHP_AP_RCUTREE_DYING] = {
677f6646 2193 .name = "RCU/tree:dying",
3c1627e9
TG
2194 .startup.single = NULL,
2195 .teardown.single = rcutree_dying_cpu,
4baa0afc 2196 },
46febd37
LJ
2197 [CPUHP_AP_SMPCFD_DYING] = {
2198 .name = "smpcfd:dying",
2199 .startup.single = NULL,
2200 .teardown.single = smpcfd_dying_cpu,
2201 },
5c0930cc
TG
2202 [CPUHP_AP_HRTIMERS_DYING] = {
2203 .name = "hrtimers:dying",
2204 .startup.single = NULL,
2205 .teardown.single = hrtimers_cpu_dying,
2206 },
2207
d10ef6f9
TG
2208 /* Entry state on starting. Interrupts enabled from here on. Transient
2209 * state for synchronsization */
2210 [CPUHP_AP_ONLINE] = {
2211 .name = "ap:online",
2212 },
17a2f1ce 2213 /*
1cf12e08 2214 * Handled on control processor until the plugged processor manages
17a2f1ce
LJ
2215 * this itself.
2216 */
2217 [CPUHP_TEARDOWN_CPU] = {
2218 .name = "cpu:teardown",
2219 .startup.single = NULL,
2220 .teardown.single = takedown_cpu,
2221 .cant_stop = true,
2222 },
1cf12e08
TG
2223
2224 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2225 .name = "sched:waitempty",
2226 .startup.single = NULL,
2227 .teardown.single = sched_cpu_wait_empty,
2228 },
2229
d10ef6f9 2230 /* Handle smpboot threads park/unpark */
1cf4f629 2231 [CPUHP_AP_SMPBOOT_THREADS] = {
677f6646 2232 .name = "smpboot/threads:online",
3c1627e9 2233 .startup.single = smpboot_unpark_threads,
c4de6569 2234 .teardown.single = smpboot_park_threads,
1cf4f629 2235 },
c5cb83bb
TG
2236 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2237 .name = "irq/affinity:online",
2238 .startup.single = irq_affinity_online_cpu,
2239 .teardown.single = NULL,
2240 },
00e16c3d 2241 [CPUHP_AP_PERF_ONLINE] = {
3c1627e9
TG
2242 .name = "perf:online",
2243 .startup.single = perf_event_init_cpu,
2244 .teardown.single = perf_event_exit_cpu,
00e16c3d 2245 },
9cf57731
PZ
2246 [CPUHP_AP_WATCHDOG_ONLINE] = {
2247 .name = "lockup_detector:online",
2248 .startup.single = lockup_detector_online_cpu,
2249 .teardown.single = lockup_detector_offline_cpu,
2250 },
7ee681b2 2251 [CPUHP_AP_WORKQUEUE_ONLINE] = {
3c1627e9
TG
2252 .name = "workqueue:online",
2253 .startup.single = workqueue_online_cpu,
2254 .teardown.single = workqueue_offline_cpu,
7ee681b2 2255 },
3191dd5a
JD
2256 [CPUHP_AP_RANDOM_ONLINE] = {
2257 .name = "random:online",
2258 .startup.single = random_online_cpu,
2259 .teardown.single = NULL,
2260 },
4df83742 2261 [CPUHP_AP_RCUTREE_ONLINE] = {
677f6646 2262 .name = "RCU/tree:online",
3c1627e9
TG
2263 .startup.single = rcutree_online_cpu,
2264 .teardown.single = rcutree_offline_cpu,
4df83742 2265 },
4baa0afc 2266#endif
d10ef6f9
TG
2267 /*
2268 * The dynamically registered state space is here
2269 */
2270
aaddd7d1
TG
2271#ifdef CONFIG_SMP
2272 /* Last state is scheduler control setting the cpu active */
2273 [CPUHP_AP_ACTIVE] = {
2274 .name = "sched:active",
3c1627e9
TG
2275 .startup.single = sched_cpu_activate,
2276 .teardown.single = sched_cpu_deactivate,
aaddd7d1
TG
2277 },
2278#endif
2279
d10ef6f9 2280 /* CPU is fully up and running. */
4baa0afc
TG
2281 [CPUHP_ONLINE] = {
2282 .name = "online",
3c1627e9
TG
2283 .startup.single = NULL,
2284 .teardown.single = NULL,
4baa0afc
TG
2285 },
2286};
2287
5b7aa87e
TG
2288/* Sanity check for callbacks */
2289static int cpuhp_cb_check(enum cpuhp_state state)
2290{
2291 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2292 return -EINVAL;
2293 return 0;
2294}
2295
dc280d93
TG
2296/*
2297 * Returns a free for dynamic slot assignment of the Online state. The states
2298 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2299 * by having no name assigned.
2300 */
2301static int cpuhp_reserve_state(enum cpuhp_state state)
2302{
4205e478
TG
2303 enum cpuhp_state i, end;
2304 struct cpuhp_step *step;
dc280d93 2305
4205e478
TG
2306 switch (state) {
2307 case CPUHP_AP_ONLINE_DYN:
17a2f1ce 2308 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
4205e478
TG
2309 end = CPUHP_AP_ONLINE_DYN_END;
2310 break;
2311 case CPUHP_BP_PREPARE_DYN:
17a2f1ce 2312 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
4205e478
TG
2313 end = CPUHP_BP_PREPARE_DYN_END;
2314 break;
2315 default:
2316 return -EINVAL;
2317 }
2318
2319 for (i = state; i <= end; i++, step++) {
2320 if (!step->name)
dc280d93
TG
2321 return i;
2322 }
2323 WARN(1, "No more dynamic states available for CPU hotplug\n");
2324 return -ENOSPC;
2325}
2326
2327static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2328 int (*startup)(unsigned int cpu),
2329 int (*teardown)(unsigned int cpu),
2330 bool multi_instance)
5b7aa87e
TG
2331{
2332 /* (Un)Install the callbacks for further cpu hotplug operations */
2333 struct cpuhp_step *sp;
dc280d93 2334 int ret = 0;
5b7aa87e 2335
0c96b273
EB
2336 /*
2337 * If name is NULL, then the state gets removed.
2338 *
2339 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2340 * the first allocation from these dynamic ranges, so the removal
2341 * would trigger a new allocation and clear the wrong (already
2342 * empty) state, leaving the callbacks of the to be cleared state
2343 * dangling, which causes wreckage on the next hotplug operation.
2344 */
2345 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2346 state == CPUHP_BP_PREPARE_DYN)) {
dc280d93
TG
2347 ret = cpuhp_reserve_state(state);
2348 if (ret < 0)
dc434e05 2349 return ret;
dc280d93
TG
2350 state = ret;
2351 }
5b7aa87e 2352 sp = cpuhp_get_step(state);
dc434e05
SAS
2353 if (name && sp->name)
2354 return -EBUSY;
2355
3c1627e9
TG
2356 sp->startup.single = startup;
2357 sp->teardown.single = teardown;
5b7aa87e 2358 sp->name = name;
cf392d10
TG
2359 sp->multi_instance = multi_instance;
2360 INIT_HLIST_HEAD(&sp->list);
dc280d93 2361 return ret;
5b7aa87e
TG
2362}
2363
2364static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2365{
3c1627e9 2366 return cpuhp_get_step(state)->teardown.single;
5b7aa87e
TG
2367}
2368
5b7aa87e
TG
2369/*
2370 * Call the startup/teardown function for a step either on the AP or
2371 * on the current CPU.
2372 */
cf392d10
TG
2373static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2374 struct hlist_node *node)
5b7aa87e 2375{
a724632c 2376 struct cpuhp_step *sp = cpuhp_get_step(state);
5b7aa87e
TG
2377 int ret;
2378
4dddfb5f
PZ
2379 /*
2380 * If there's nothing to do, we done.
2381 * Relies on the union for multi_instance.
2382 */
453e4108 2383 if (cpuhp_step_empty(bringup, sp))
5b7aa87e 2384 return 0;
5b7aa87e
TG
2385 /*
2386 * The non AP bound callbacks can fail on bringup. On teardown
2387 * e.g. module removal we crash for now.
2388 */
1cf4f629
TG
2389#ifdef CONFIG_SMP
2390 if (cpuhp_is_ap_state(state))
cf392d10 2391 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1cf4f629 2392 else
96abb968 2393 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1cf4f629 2394#else
96abb968 2395 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1cf4f629 2396#endif
5b7aa87e
TG
2397 BUG_ON(ret && !bringup);
2398 return ret;
2399}
2400
2401/*
2402 * Called from __cpuhp_setup_state on a recoverable failure.
2403 *
2404 * Note: The teardown callbacks for rollback are not allowed to fail!
2405 */
2406static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
cf392d10 2407 struct hlist_node *node)
5b7aa87e
TG
2408{
2409 int cpu;
2410
5b7aa87e
TG
2411 /* Roll back the already executed steps on the other cpus */
2412 for_each_present_cpu(cpu) {
2413 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2414 int cpustate = st->state;
2415
2416 if (cpu >= failedcpu)
2417 break;
2418
2419 /* Did we invoke the startup call on that cpu ? */
2420 if (cpustate >= state)
cf392d10 2421 cpuhp_issue_call(cpu, state, false, node);
5b7aa87e
TG
2422 }
2423}
2424
9805c673
TG
2425int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2426 struct hlist_node *node,
2427 bool invoke)
cf392d10
TG
2428{
2429 struct cpuhp_step *sp;
2430 int cpu;
2431 int ret;
2432
9805c673
TG
2433 lockdep_assert_cpus_held();
2434
cf392d10
TG
2435 sp = cpuhp_get_step(state);
2436 if (sp->multi_instance == false)
2437 return -EINVAL;
2438
dc434e05 2439 mutex_lock(&cpuhp_state_mutex);
cf392d10 2440
3c1627e9 2441 if (!invoke || !sp->startup.multi)
cf392d10
TG
2442 goto add_node;
2443
2444 /*
2445 * Try to call the startup callback for each present cpu
2446 * depending on the hotplug state of the cpu.
2447 */
2448 for_each_present_cpu(cpu) {
2449 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2450 int cpustate = st->state;
2451
2452 if (cpustate < state)
2453 continue;
2454
2455 ret = cpuhp_issue_call(cpu, state, true, node);
2456 if (ret) {
3c1627e9 2457 if (sp->teardown.multi)
cf392d10 2458 cpuhp_rollback_install(cpu, state, node);
dc434e05 2459 goto unlock;
cf392d10
TG
2460 }
2461 }
2462add_node:
2463 ret = 0;
cf392d10 2464 hlist_add_head(node, &sp->list);
dc434e05 2465unlock:
cf392d10 2466 mutex_unlock(&cpuhp_state_mutex);
9805c673
TG
2467 return ret;
2468}
2469
2470int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2471 bool invoke)
2472{
2473 int ret;
2474
2475 cpus_read_lock();
2476 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
8f553c49 2477 cpus_read_unlock();
cf392d10
TG
2478 return ret;
2479}
2480EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2481
5b7aa87e 2482/**
71def423 2483 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
dc280d93 2484 * @state: The state to setup
ed3cd1da 2485 * @name: Name of the step
dc280d93
TG
2486 * @invoke: If true, the startup function is invoked for cpus where
2487 * cpu state >= @state
2488 * @startup: startup callback function
2489 * @teardown: teardown callback function
2490 * @multi_instance: State is set up for multiple instances which get
2491 * added afterwards.
5b7aa87e 2492 *
71def423 2493 * The caller needs to hold cpus read locked while calling this function.
11bc021d 2494 * Return:
512f0980 2495 * On success:
11bc021d 2496 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
512f0980
BO
2497 * 0 for all other states
2498 * On failure: proper (negative) error code
5b7aa87e 2499 */
71def423
SAS
2500int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2501 const char *name, bool invoke,
2502 int (*startup)(unsigned int cpu),
2503 int (*teardown)(unsigned int cpu),
2504 bool multi_instance)
5b7aa87e
TG
2505{
2506 int cpu, ret = 0;
b9d9d691 2507 bool dynstate;
5b7aa87e 2508
71def423
SAS
2509 lockdep_assert_cpus_held();
2510
5b7aa87e
TG
2511 if (cpuhp_cb_check(state) || !name)
2512 return -EINVAL;
2513
dc434e05 2514 mutex_lock(&cpuhp_state_mutex);
5b7aa87e 2515
dc280d93
TG
2516 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2517 multi_instance);
5b7aa87e 2518
b9d9d691
TG
2519 dynstate = state == CPUHP_AP_ONLINE_DYN;
2520 if (ret > 0 && dynstate) {
2521 state = ret;
2522 ret = 0;
2523 }
2524
dc280d93 2525 if (ret || !invoke || !startup)
5b7aa87e
TG
2526 goto out;
2527
2528 /*
2529 * Try to call the startup callback for each present cpu
2530 * depending on the hotplug state of the cpu.
2531 */
2532 for_each_present_cpu(cpu) {
2533 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2534 int cpustate = st->state;
2535
2536 if (cpustate < state)
2537 continue;
2538
cf392d10 2539 ret = cpuhp_issue_call(cpu, state, true, NULL);
5b7aa87e 2540 if (ret) {
a724632c 2541 if (teardown)
cf392d10
TG
2542 cpuhp_rollback_install(cpu, state, NULL);
2543 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
5b7aa87e
TG
2544 goto out;
2545 }
2546 }
2547out:
dc434e05 2548 mutex_unlock(&cpuhp_state_mutex);
dc280d93
TG
2549 /*
2550 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2551 * dynamically allocated state in case of success.
2552 */
b9d9d691 2553 if (!ret && dynstate)
5b7aa87e
TG
2554 return state;
2555 return ret;
2556}
71def423
SAS
2557EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2558
2559int __cpuhp_setup_state(enum cpuhp_state state,
2560 const char *name, bool invoke,
2561 int (*startup)(unsigned int cpu),
2562 int (*teardown)(unsigned int cpu),
2563 bool multi_instance)
2564{
2565 int ret;
2566
2567 cpus_read_lock();
2568 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2569 teardown, multi_instance);
2570 cpus_read_unlock();
2571 return ret;
2572}
5b7aa87e
TG
2573EXPORT_SYMBOL(__cpuhp_setup_state);
2574
cf392d10
TG
2575int __cpuhp_state_remove_instance(enum cpuhp_state state,
2576 struct hlist_node *node, bool invoke)
2577{
2578 struct cpuhp_step *sp = cpuhp_get_step(state);
2579 int cpu;
2580
2581 BUG_ON(cpuhp_cb_check(state));
2582
2583 if (!sp->multi_instance)
2584 return -EINVAL;
2585
8f553c49 2586 cpus_read_lock();
dc434e05
SAS
2587 mutex_lock(&cpuhp_state_mutex);
2588
cf392d10
TG
2589 if (!invoke || !cpuhp_get_teardown_cb(state))
2590 goto remove;
2591 /*
2592 * Call the teardown callback for each present cpu depending
2593 * on the hotplug state of the cpu. This function is not
2594 * allowed to fail currently!
2595 */
2596 for_each_present_cpu(cpu) {
2597 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2598 int cpustate = st->state;
2599
2600 if (cpustate >= state)
2601 cpuhp_issue_call(cpu, state, false, node);
2602 }
2603
2604remove:
cf392d10
TG
2605 hlist_del(node);
2606 mutex_unlock(&cpuhp_state_mutex);
8f553c49 2607 cpus_read_unlock();
cf392d10
TG
2608
2609 return 0;
2610}
2611EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
dc434e05 2612
5b7aa87e 2613/**
71def423 2614 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
5b7aa87e
TG
2615 * @state: The state to remove
2616 * @invoke: If true, the teardown function is invoked for cpus where
2617 * cpu state >= @state
2618 *
71def423 2619 * The caller needs to hold cpus read locked while calling this function.
5b7aa87e
TG
2620 * The teardown callback is currently not allowed to fail. Think
2621 * about module removal!
2622 */
71def423 2623void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
5b7aa87e 2624{
cf392d10 2625 struct cpuhp_step *sp = cpuhp_get_step(state);
5b7aa87e
TG
2626 int cpu;
2627
2628 BUG_ON(cpuhp_cb_check(state));
2629
71def423 2630 lockdep_assert_cpus_held();
5b7aa87e 2631
dc434e05 2632 mutex_lock(&cpuhp_state_mutex);
cf392d10
TG
2633 if (sp->multi_instance) {
2634 WARN(!hlist_empty(&sp->list),
2635 "Error: Removing state %d which has instances left.\n",
2636 state);
2637 goto remove;
2638 }
2639
a724632c 2640 if (!invoke || !cpuhp_get_teardown_cb(state))
5b7aa87e
TG
2641 goto remove;
2642
2643 /*
2644 * Call the teardown callback for each present cpu depending
2645 * on the hotplug state of the cpu. This function is not
2646 * allowed to fail currently!
2647 */
2648 for_each_present_cpu(cpu) {
2649 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2650 int cpustate = st->state;
2651
2652 if (cpustate >= state)
cf392d10 2653 cpuhp_issue_call(cpu, state, false, NULL);
5b7aa87e
TG
2654 }
2655remove:
cf392d10 2656 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
dc434e05 2657 mutex_unlock(&cpuhp_state_mutex);
71def423
SAS
2658}
2659EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2660
2661void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2662{
2663 cpus_read_lock();
2664 __cpuhp_remove_state_cpuslocked(state, invoke);
8f553c49 2665 cpus_read_unlock();
5b7aa87e
TG
2666}
2667EXPORT_SYMBOL(__cpuhp_remove_state);
2668
dc8d37ed
AB
2669#ifdef CONFIG_HOTPLUG_SMT
2670static void cpuhp_offline_cpu_device(unsigned int cpu)
2671{
2672 struct device *dev = get_cpu_device(cpu);
2673
2674 dev->offline = true;
2675 /* Tell user space about the state change */
2676 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2677}
2678
2679static void cpuhp_online_cpu_device(unsigned int cpu)
2680{
2681 struct device *dev = get_cpu_device(cpu);
2682
2683 dev->offline = false;
2684 /* Tell user space about the state change */
2685 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2686}
2687
2688int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2689{
2690 int cpu, ret = 0;
2691
2692 cpu_maps_update_begin();
2693 for_each_online_cpu(cpu) {
2694 if (topology_is_primary_thread(cpu))
2695 continue;
38253464
ME
2696 /*
2697 * Disable can be called with CPU_SMT_ENABLED when changing
2698 * from a higher to lower number of SMT threads per core.
2699 */
2700 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2701 continue;
dc8d37ed
AB
2702 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2703 if (ret)
2704 break;
2705 /*
2706 * As this needs to hold the cpu maps lock it's impossible
2707 * to call device_offline() because that ends up calling
2708 * cpu_down() which takes cpu maps lock. cpu maps lock
2709 * needs to be held as this might race against in kernel
2710 * abusers of the hotplug machinery (thermal management).
2711 *
2712 * So nothing would update device:offline state. That would
2713 * leave the sysfs entry stale and prevent onlining after
2714 * smt control has been changed to 'off' again. This is
2715 * called under the sysfs hotplug lock, so it is properly
2716 * serialized against the regular offline usage.
2717 */
2718 cpuhp_offline_cpu_device(cpu);
2719 }
2720 if (!ret)
2721 cpu_smt_control = ctrlval;
2722 cpu_maps_update_done();
2723 return ret;
2724}
2725
2726int cpuhp_smt_enable(void)
2727{
2728 int cpu, ret = 0;
2729
2730 cpu_maps_update_begin();
2731 cpu_smt_control = CPU_SMT_ENABLED;
2732 for_each_present_cpu(cpu) {
2733 /* Skip online CPUs and CPUs on offline nodes */
2734 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2735 continue;
38253464
ME
2736 if (!cpu_smt_thread_allowed(cpu))
2737 continue;
dc8d37ed
AB
2738 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2739 if (ret)
2740 break;
2741 /* See comment in cpuhp_smt_disable() */
2742 cpuhp_online_cpu_device(cpu);
2743 }
2744 cpu_maps_update_done();
2745 return ret;
2746}
2747#endif
2748
98f8cdce 2749#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1782dc87
Y
2750static ssize_t state_show(struct device *dev,
2751 struct device_attribute *attr, char *buf)
98f8cdce
TG
2752{
2753 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2754
2755 return sprintf(buf, "%d\n", st->state);
2756}
1782dc87 2757static DEVICE_ATTR_RO(state);
98f8cdce 2758
1782dc87
Y
2759static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2760 const char *buf, size_t count)
757c989b
TG
2761{
2762 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2763 struct cpuhp_step *sp;
2764 int target, ret;
2765
2766 ret = kstrtoint(buf, 10, &target);
2767 if (ret)
2768 return ret;
2769
2770#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2771 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2772 return -EINVAL;
2773#else
2774 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2775 return -EINVAL;
2776#endif
2777
2778 ret = lock_device_hotplug_sysfs();
2779 if (ret)
2780 return ret;
2781
2782 mutex_lock(&cpuhp_state_mutex);
2783 sp = cpuhp_get_step(target);
2784 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2785 mutex_unlock(&cpuhp_state_mutex);
2786 if (ret)
40da1b11 2787 goto out;
757c989b
TG
2788
2789 if (st->state < target)
33c3736e 2790 ret = cpu_up(dev->id, target);
64ea6e44 2791 else if (st->state > target)
33c3736e 2792 ret = cpu_down(dev->id, target);
64ea6e44
PA
2793 else if (WARN_ON(st->target != target))
2794 st->target = target;
40da1b11 2795out:
757c989b
TG
2796 unlock_device_hotplug();
2797 return ret ? ret : count;
2798}
2799
1782dc87
Y
2800static ssize_t target_show(struct device *dev,
2801 struct device_attribute *attr, char *buf)
98f8cdce
TG
2802{
2803 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2804
2805 return sprintf(buf, "%d\n", st->target);
2806}
1782dc87 2807static DEVICE_ATTR_RW(target);
1db49484 2808
1782dc87
Y
2809static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2810 const char *buf, size_t count)
1db49484
PZ
2811{
2812 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2813 struct cpuhp_step *sp;
2814 int fail, ret;
2815
2816 ret = kstrtoint(buf, 10, &fail);
2817 if (ret)
2818 return ret;
2819
3ae70c25
VD
2820 if (fail == CPUHP_INVALID) {
2821 st->fail = fail;
2822 return count;
2823 }
2824
33d4a5a7
ET
2825 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2826 return -EINVAL;
2827
1db49484
PZ
2828 /*
2829 * Cannot fail STARTING/DYING callbacks.
2830 */
2831 if (cpuhp_is_atomic_state(fail))
2832 return -EINVAL;
2833
62f25069
VD
2834 /*
2835 * DEAD callbacks cannot fail...
2836 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2837 * triggering STARTING callbacks, a failure in this state would
2838 * hinder rollback.
2839 */
2840 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2841 return -EINVAL;
2842
1db49484
PZ
2843 /*
2844 * Cannot fail anything that doesn't have callbacks.
2845 */
2846 mutex_lock(&cpuhp_state_mutex);
2847 sp = cpuhp_get_step(fail);
2848 if (!sp->startup.single && !sp->teardown.single)
2849 ret = -EINVAL;
2850 mutex_unlock(&cpuhp_state_mutex);
2851 if (ret)
2852 return ret;
2853
2854 st->fail = fail;
2855
2856 return count;
2857}
2858
1782dc87
Y
2859static ssize_t fail_show(struct device *dev,
2860 struct device_attribute *attr, char *buf)
1db49484
PZ
2861{
2862 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2863
2864 return sprintf(buf, "%d\n", st->fail);
2865}
2866
1782dc87 2867static DEVICE_ATTR_RW(fail);
1db49484 2868
98f8cdce
TG
2869static struct attribute *cpuhp_cpu_attrs[] = {
2870 &dev_attr_state.attr,
2871 &dev_attr_target.attr,
1db49484 2872 &dev_attr_fail.attr,
98f8cdce
TG
2873 NULL
2874};
2875
993647a2 2876static const struct attribute_group cpuhp_cpu_attr_group = {
98f8cdce
TG
2877 .attrs = cpuhp_cpu_attrs,
2878 .name = "hotplug",
2879 NULL
2880};
2881
1782dc87 2882static ssize_t states_show(struct device *dev,
98f8cdce
TG
2883 struct device_attribute *attr, char *buf)
2884{
2885 ssize_t cur, res = 0;
2886 int i;
2887
2888 mutex_lock(&cpuhp_state_mutex);
757c989b 2889 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
98f8cdce
TG
2890 struct cpuhp_step *sp = cpuhp_get_step(i);
2891
2892 if (sp->name) {
2893 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2894 buf += cur;
2895 res += cur;
2896 }
2897 }
2898 mutex_unlock(&cpuhp_state_mutex);
2899 return res;
2900}
1782dc87 2901static DEVICE_ATTR_RO(states);
98f8cdce
TG
2902
2903static struct attribute *cpuhp_cpu_root_attrs[] = {
2904 &dev_attr_states.attr,
2905 NULL
2906};
2907
993647a2 2908static const struct attribute_group cpuhp_cpu_root_attr_group = {
98f8cdce
TG
2909 .attrs = cpuhp_cpu_root_attrs,
2910 .name = "hotplug",
2911 NULL
2912};
2913
05736e4a
TG
2914#ifdef CONFIG_HOTPLUG_SMT
2915
7f48405c
ME
2916static bool cpu_smt_num_threads_valid(unsigned int threads)
2917{
2918 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2919 return threads >= 1 && threads <= cpu_smt_max_threads;
2920 return threads == 1 || threads == cpu_smt_max_threads;
2921}
2922
05736e4a 2923static ssize_t
de7b77e5
JP
2924__store_smt_control(struct device *dev, struct device_attribute *attr,
2925 const char *buf, size_t count)
05736e4a 2926{
7f48405c
ME
2927 int ctrlval, ret, num_threads, orig_threads;
2928 bool force_off;
05736e4a 2929
c53361ce
ME
2930 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2931 return -EPERM;
2932
2933 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2934 return -ENODEV;
2935
7f48405c 2936 if (sysfs_streq(buf, "on")) {
05736e4a 2937 ctrlval = CPU_SMT_ENABLED;
7f48405c
ME
2938 num_threads = cpu_smt_max_threads;
2939 } else if (sysfs_streq(buf, "off")) {
05736e4a 2940 ctrlval = CPU_SMT_DISABLED;
7f48405c
ME
2941 num_threads = 1;
2942 } else if (sysfs_streq(buf, "forceoff")) {
05736e4a 2943 ctrlval = CPU_SMT_FORCE_DISABLED;
7f48405c
ME
2944 num_threads = 1;
2945 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2946 if (num_threads == 1)
2947 ctrlval = CPU_SMT_DISABLED;
2948 else if (cpu_smt_num_threads_valid(num_threads))
2949 ctrlval = CPU_SMT_ENABLED;
2950 else
2951 return -EINVAL;
2952 } else {
05736e4a 2953 return -EINVAL;
7f48405c 2954 }
05736e4a 2955
05736e4a
TG
2956 ret = lock_device_hotplug_sysfs();
2957 if (ret)
2958 return ret;
2959
7f48405c
ME
2960 orig_threads = cpu_smt_num_threads;
2961 cpu_smt_num_threads = num_threads;
2962
2963 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2964
2965 if (num_threads > orig_threads)
2966 ret = cpuhp_smt_enable();
2967 else if (num_threads < orig_threads || force_off)
2968 ret = cpuhp_smt_disable(ctrlval);
05736e4a
TG
2969
2970 unlock_device_hotplug();
2971 return ret ? ret : count;
2972}
de7b77e5
JP
2973
2974#else /* !CONFIG_HOTPLUG_SMT */
2975static ssize_t
2976__store_smt_control(struct device *dev, struct device_attribute *attr,
2977 const char *buf, size_t count)
2978{
2979 return -ENODEV;
2980}
2981#endif /* CONFIG_HOTPLUG_SMT */
2982
2983static const char *smt_states[] = {
2984 [CPU_SMT_ENABLED] = "on",
2985 [CPU_SMT_DISABLED] = "off",
2986 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2987 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2988 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2989};
2990
1782dc87
Y
2991static ssize_t control_show(struct device *dev,
2992 struct device_attribute *attr, char *buf)
de7b77e5
JP
2993{
2994 const char *state = smt_states[cpu_smt_control];
2995
7f48405c
ME
2996#ifdef CONFIG_HOTPLUG_SMT
2997 /*
2998 * If SMT is enabled but not all threads are enabled then show the
2999 * number of threads. If all threads are enabled show "on". Otherwise
3000 * show the state name.
3001 */
3002 if (cpu_smt_control == CPU_SMT_ENABLED &&
3003 cpu_smt_num_threads != cpu_smt_max_threads)
3004 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
3005#endif
3006
de7b77e5
JP
3007 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
3008}
3009
1782dc87
Y
3010static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3011 const char *buf, size_t count)
de7b77e5
JP
3012{
3013 return __store_smt_control(dev, attr, buf, count);
3014}
1782dc87 3015static DEVICE_ATTR_RW(control);
05736e4a 3016
1782dc87
Y
3017static ssize_t active_show(struct device *dev,
3018 struct device_attribute *attr, char *buf)
05736e4a 3019{
de7b77e5 3020 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
05736e4a 3021}
1782dc87 3022static DEVICE_ATTR_RO(active);
05736e4a
TG
3023
3024static struct attribute *cpuhp_smt_attrs[] = {
3025 &dev_attr_control.attr,
3026 &dev_attr_active.attr,
3027 NULL
3028};
3029
3030static const struct attribute_group cpuhp_smt_attr_group = {
3031 .attrs = cpuhp_smt_attrs,
3032 .name = "smt",
3033 NULL
3034};
3035
de7b77e5 3036static int __init cpu_smt_sysfs_init(void)
05736e4a 3037{
db281d59
GKH
3038 struct device *dev_root;
3039 int ret = -ENODEV;
3040
3041 dev_root = bus_get_dev_root(&cpu_subsys);
3042 if (dev_root) {
3043 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3044 put_device(dev_root);
3045 }
3046 return ret;
05736e4a
TG
3047}
3048
98f8cdce
TG
3049static int __init cpuhp_sysfs_init(void)
3050{
db281d59 3051 struct device *dev_root;
98f8cdce
TG
3052 int cpu, ret;
3053
de7b77e5 3054 ret = cpu_smt_sysfs_init();
05736e4a
TG
3055 if (ret)
3056 return ret;
3057
db281d59
GKH
3058 dev_root = bus_get_dev_root(&cpu_subsys);
3059 if (dev_root) {
3060 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3061 put_device(dev_root);
3062 if (ret)
3063 return ret;
3064 }
98f8cdce
TG
3065
3066 for_each_possible_cpu(cpu) {
3067 struct device *dev = get_cpu_device(cpu);
3068
3069 if (!dev)
3070 continue;
3071 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3072 if (ret)
3073 return ret;
3074 }
3075 return 0;
3076}
3077device_initcall(cpuhp_sysfs_init);
de7b77e5 3078#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
98f8cdce 3079
e56b3bc7
LT
3080/*
3081 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3082 * represents all NR_CPUS bits binary values of 1<<nr.
3083 *
e0b582ec 3084 * It is used by cpumask_of() to get a constant address to a CPU
e56b3bc7
LT
3085 * mask value that has a single bit set only.
3086 */
b8d317d1 3087
e56b3bc7 3088/* cpu_bit_bitmap[0] is empty - so we can back into it */
4d51985e 3089#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
e56b3bc7
LT
3090#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3091#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3092#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
b8d317d1 3093
e56b3bc7
LT
3094const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3095
3096 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3097 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3098#if BITS_PER_LONG > 32
3099 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3100 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
b8d317d1
MT
3101#endif
3102};
e56b3bc7 3103EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2d3854a3
RR
3104
3105const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3106EXPORT_SYMBOL(cpu_all_bits);
b3199c02
RR
3107
3108#ifdef CONFIG_INIT_ALL_POSSIBLE
4b804c85 3109struct cpumask __cpu_possible_mask __read_mostly
c4c54dd1 3110 = {CPU_BITS_ALL};
b3199c02 3111#else
4b804c85 3112struct cpumask __cpu_possible_mask __read_mostly;
b3199c02 3113#endif
4b804c85 3114EXPORT_SYMBOL(__cpu_possible_mask);
b3199c02 3115
4b804c85
RV
3116struct cpumask __cpu_online_mask __read_mostly;
3117EXPORT_SYMBOL(__cpu_online_mask);
b3199c02 3118
4b804c85
RV
3119struct cpumask __cpu_present_mask __read_mostly;
3120EXPORT_SYMBOL(__cpu_present_mask);
b3199c02 3121
4b804c85
RV
3122struct cpumask __cpu_active_mask __read_mostly;
3123EXPORT_SYMBOL(__cpu_active_mask);
3fa41520 3124
e40f74c5
PZ
3125struct cpumask __cpu_dying_mask __read_mostly;
3126EXPORT_SYMBOL(__cpu_dying_mask);
3127
0c09ab96
TG
3128atomic_t __num_online_cpus __read_mostly;
3129EXPORT_SYMBOL(__num_online_cpus);
3130
3fa41520
RR
3131void init_cpu_present(const struct cpumask *src)
3132{
c4c54dd1 3133 cpumask_copy(&__cpu_present_mask, src);
3fa41520
RR
3134}
3135
3136void init_cpu_possible(const struct cpumask *src)
3137{
c4c54dd1 3138 cpumask_copy(&__cpu_possible_mask, src);
3fa41520
RR
3139}
3140
3141void init_cpu_online(const struct cpumask *src)
3142{
c4c54dd1 3143 cpumask_copy(&__cpu_online_mask, src);
3fa41520 3144}
cff7d378 3145
0c09ab96
TG
3146void set_cpu_online(unsigned int cpu, bool online)
3147{
3148 /*
3149 * atomic_inc/dec() is required to handle the horrid abuse of this
3150 * function by the reboot and kexec code which invoke it from
3151 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3152 * regular CPU hotplug is properly serialized.
3153 *
3154 * Note, that the fact that __num_online_cpus is of type atomic_t
3155 * does not protect readers which are not serialized against
3156 * concurrent hotplug operations.
3157 */
3158 if (online) {
3159 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3160 atomic_inc(&__num_online_cpus);
3161 } else {
3162 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3163 atomic_dec(&__num_online_cpus);
3164 }
3165}
3166
cff7d378
TG
3167/*
3168 * Activate the first processor.
3169 */
3170void __init boot_cpu_init(void)
3171{
3172 int cpu = smp_processor_id();
3173
3174 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3175 set_cpu_online(cpu, true);
3176 set_cpu_active(cpu, true);
3177 set_cpu_present(cpu, true);
3178 set_cpu_possible(cpu, true);
8ce371f9
PZ
3179
3180#ifdef CONFIG_SMP
3181 __boot_cpu_id = cpu;
3182#endif
cff7d378
TG
3183}
3184
3185/*
3186 * Must be called _AFTER_ setting up the per_cpu areas
3187 */
b5b1404d 3188void __init boot_cpu_hotplug_init(void)
cff7d378 3189{
269777aa 3190#ifdef CONFIG_SMP
e797bda3 3191 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
6f062123 3192 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
269777aa 3193#endif
0cc3cd21 3194 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
d385febc 3195 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
cff7d378 3196}
98af8452 3197
731dc9df
TH
3198/*
3199 * These are used for a global "mitigations=" cmdline option for toggling
3200 * optional CPU mitigations.
3201 */
3202enum cpu_mitigations {
3203 CPU_MITIGATIONS_OFF,
3204 CPU_MITIGATIONS_AUTO,
3205 CPU_MITIGATIONS_AUTO_NOSMT,
3206};
3207
3208static enum cpu_mitigations cpu_mitigations __ro_after_init =
3209 CPU_MITIGATIONS_AUTO;
98af8452
JP
3210
3211static int __init mitigations_parse_cmdline(char *arg)
3212{
3213 if (!strcmp(arg, "off"))
3214 cpu_mitigations = CPU_MITIGATIONS_OFF;
3215 else if (!strcmp(arg, "auto"))
3216 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3217 else if (!strcmp(arg, "auto,nosmt"))
3218 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
1bf72720
GU
3219 else
3220 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3221 arg);
98af8452
JP
3222
3223 return 0;
3224}
3225early_param("mitigations", mitigations_parse_cmdline);
731dc9df
TH
3226
3227/* mitigations=off */
3228bool cpu_mitigations_off(void)
3229{
3230 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3231}
3232EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3233
3234/* mitigations=auto,nosmt */
3235bool cpu_mitigations_auto_nosmt(void)
3236{
3237 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3238}
3239EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);