Merge tag 'qcom-arm64-fixes-for-5.14' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / cpu.c
CommitLineData
1da177e4
LT
1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
bf2c59fc 6#include <linux/sched/mm.h>
1da177e4
LT
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
3f07c014 11#include <linux/sched/signal.h>
ef8bd77f 12#include <linux/sched/hotplug.h>
9ca12ac0 13#include <linux/sched/isolation.h>
29930025 14#include <linux/sched/task.h>
a74cfffb 15#include <linux/sched/smt.h>
1da177e4
LT
16#include <linux/unistd.h>
17#include <linux/cpu.h>
cb79295e
AV
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
9984de1a 20#include <linux/export.h>
e4cc2f87 21#include <linux/bug.h>
1da177e4
LT
22#include <linux/kthread.h>
23#include <linux/stop_machine.h>
81615b62 24#include <linux/mutex.h>
5a0e3ad6 25#include <linux/gfp.h>
79cfbdfa 26#include <linux/suspend.h>
a19423b9 27#include <linux/lockdep.h>
345527b1 28#include <linux/tick.h>
a8994181 29#include <linux/irq.h>
941154bd 30#include <linux/nmi.h>
4cb28ced 31#include <linux/smpboot.h>
e6d4989a 32#include <linux/relay.h>
6731d4f1 33#include <linux/slab.h>
fc8dffd3 34#include <linux/percpu-rwsem.h>
b22afcdf 35#include <linux/cpuset.h>
cff7d378 36
bb3632c6 37#include <trace/events/power.h>
cff7d378
TG
38#define CREATE_TRACE_POINTS
39#include <trace/events/cpuhp.h>
1da177e4 40
38498a67
TG
41#include "smpboot.h"
42
cff7d378
TG
43/**
44 * cpuhp_cpu_state - Per cpu hotplug state storage
45 * @state: The current cpu state
46 * @target: The target state
4cb28ced
TG
47 * @thread: Pointer to the hotplug thread
48 * @should_run: Thread should execute
3b9d6da6 49 * @rollback: Perform a rollback
a724632c
TG
50 * @single: Single callback invocation
51 * @bringup: Single callback bringup or teardown selector
52 * @cb_state: The state for a single callback (install/uninstall)
4cb28ced 53 * @result: Result of the operation
5ebe7742
PZ
54 * @done_up: Signal completion to the issuer of the task for cpu-up
55 * @done_down: Signal completion to the issuer of the task for cpu-down
cff7d378
TG
56 */
57struct cpuhp_cpu_state {
58 enum cpuhp_state state;
59 enum cpuhp_state target;
1db49484 60 enum cpuhp_state fail;
4cb28ced
TG
61#ifdef CONFIG_SMP
62 struct task_struct *thread;
63 bool should_run;
3b9d6da6 64 bool rollback;
a724632c
TG
65 bool single;
66 bool bringup;
2ea46c6f 67 int cpu;
cf392d10 68 struct hlist_node *node;
4dddfb5f 69 struct hlist_node *last;
4cb28ced 70 enum cpuhp_state cb_state;
4cb28ced 71 int result;
5ebe7742
PZ
72 struct completion done_up;
73 struct completion done_down;
4cb28ced 74#endif
cff7d378
TG
75};
76
1db49484
PZ
77static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
78 .fail = CPUHP_INVALID,
79};
cff7d378 80
e797bda3
TG
81#ifdef CONFIG_SMP
82cpumask_t cpus_booted_once_mask;
83#endif
84
49dfe2a6 85#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
5f4b55e1
PZ
86static struct lockdep_map cpuhp_state_up_map =
87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
88static struct lockdep_map cpuhp_state_down_map =
89 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
90
91
76dc6c09 92static inline void cpuhp_lock_acquire(bool bringup)
5f4b55e1
PZ
93{
94 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
95}
96
76dc6c09 97static inline void cpuhp_lock_release(bool bringup)
5f4b55e1
PZ
98{
99 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
100}
101#else
102
76dc6c09
MM
103static inline void cpuhp_lock_acquire(bool bringup) { }
104static inline void cpuhp_lock_release(bool bringup) { }
5f4b55e1 105
49dfe2a6
TG
106#endif
107
cff7d378
TG
108/**
109 * cpuhp_step - Hotplug state machine step
110 * @name: Name of the step
111 * @startup: Startup function of the step
112 * @teardown: Teardown function of the step
757c989b 113 * @cant_stop: Bringup/teardown can't be stopped at this step
cff7d378
TG
114 */
115struct cpuhp_step {
cf392d10
TG
116 const char *name;
117 union {
3c1627e9
TG
118 int (*single)(unsigned int cpu);
119 int (*multi)(unsigned int cpu,
120 struct hlist_node *node);
121 } startup;
cf392d10 122 union {
3c1627e9
TG
123 int (*single)(unsigned int cpu);
124 int (*multi)(unsigned int cpu,
125 struct hlist_node *node);
126 } teardown;
cf392d10 127 struct hlist_head list;
cf392d10
TG
128 bool cant_stop;
129 bool multi_instance;
cff7d378
TG
130};
131
98f8cdce 132static DEFINE_MUTEX(cpuhp_state_mutex);
17a2f1ce 133static struct cpuhp_step cpuhp_hp_states[];
cff7d378 134
a724632c
TG
135static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
136{
17a2f1ce 137 return cpuhp_hp_states + state;
a724632c
TG
138}
139
453e4108
VD
140static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
141{
142 return bringup ? !step->startup.single : !step->teardown.single;
143}
144
cff7d378
TG
145/**
146 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
147 * @cpu: The cpu for which the callback should be invoked
96abb968 148 * @state: The state to do callbacks for
a724632c 149 * @bringup: True if the bringup callback should be invoked
96abb968
PZ
150 * @node: For multi-instance, do a single entry callback for install/remove
151 * @lastp: For multi-instance rollback, remember how far we got
cff7d378 152 *
cf392d10 153 * Called from cpu hotplug and from the state register machinery.
cff7d378 154 */
a724632c 155static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
96abb968
PZ
156 bool bringup, struct hlist_node *node,
157 struct hlist_node **lastp)
cff7d378
TG
158{
159 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
a724632c 160 struct cpuhp_step *step = cpuhp_get_step(state);
cf392d10
TG
161 int (*cbm)(unsigned int cpu, struct hlist_node *node);
162 int (*cb)(unsigned int cpu);
163 int ret, cnt;
164
1db49484
PZ
165 if (st->fail == state) {
166 st->fail = CPUHP_INVALID;
1db49484
PZ
167 return -EAGAIN;
168 }
169
453e4108
VD
170 if (cpuhp_step_empty(bringup, step)) {
171 WARN_ON_ONCE(1);
172 return 0;
173 }
174
cf392d10 175 if (!step->multi_instance) {
96abb968 176 WARN_ON_ONCE(lastp && *lastp);
3c1627e9 177 cb = bringup ? step->startup.single : step->teardown.single;
453e4108 178
a724632c 179 trace_cpuhp_enter(cpu, st->target, state, cb);
cff7d378 180 ret = cb(cpu);
a724632c 181 trace_cpuhp_exit(cpu, st->state, state, ret);
cf392d10
TG
182 return ret;
183 }
3c1627e9 184 cbm = bringup ? step->startup.multi : step->teardown.multi;
cf392d10
TG
185
186 /* Single invocation for instance add/remove */
187 if (node) {
96abb968 188 WARN_ON_ONCE(lastp && *lastp);
cf392d10
TG
189 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
190 ret = cbm(cpu, node);
191 trace_cpuhp_exit(cpu, st->state, state, ret);
192 return ret;
193 }
194
195 /* State transition. Invoke on all instances */
196 cnt = 0;
197 hlist_for_each(node, &step->list) {
96abb968
PZ
198 if (lastp && node == *lastp)
199 break;
200
cf392d10
TG
201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 ret = cbm(cpu, node);
203 trace_cpuhp_exit(cpu, st->state, state, ret);
96abb968
PZ
204 if (ret) {
205 if (!lastp)
206 goto err;
207
208 *lastp = node;
209 return ret;
210 }
cf392d10
TG
211 cnt++;
212 }
96abb968
PZ
213 if (lastp)
214 *lastp = NULL;
cf392d10
TG
215 return 0;
216err:
217 /* Rollback the instances if one failed */
3c1627e9 218 cbm = !bringup ? step->startup.multi : step->teardown.multi;
cf392d10
TG
219 if (!cbm)
220 return ret;
221
222 hlist_for_each(node, &step->list) {
223 if (!cnt--)
224 break;
724a8688
PZ
225
226 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
227 ret = cbm(cpu, node);
228 trace_cpuhp_exit(cpu, st->state, state, ret);
229 /*
230 * Rollback must not fail,
231 */
232 WARN_ON_ONCE(ret);
cff7d378
TG
233 }
234 return ret;
235}
236
98a79d6a 237#ifdef CONFIG_SMP
fcb3029a
AB
238static bool cpuhp_is_ap_state(enum cpuhp_state state)
239{
240 /*
241 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
242 * purposes as that state is handled explicitly in cpu_down.
243 */
244 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
245}
246
5ebe7742
PZ
247static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248{
249 struct completion *done = bringup ? &st->done_up : &st->done_down;
250 wait_for_completion(done);
251}
252
253static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
254{
255 struct completion *done = bringup ? &st->done_up : &st->done_down;
256 complete(done);
257}
258
259/*
260 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
261 */
262static bool cpuhp_is_atomic_state(enum cpuhp_state state)
263{
264 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
265}
266
b3199c02 267/* Serializes the updates to cpu_online_mask, cpu_present_mask */
aa953877 268static DEFINE_MUTEX(cpu_add_remove_lock);
090e77c3
TG
269bool cpuhp_tasks_frozen;
270EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
1da177e4 271
79a6cdeb 272/*
93ae4f97
SB
273 * The following two APIs (cpu_maps_update_begin/done) must be used when
274 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
79a6cdeb
LJ
275 */
276void cpu_maps_update_begin(void)
277{
278 mutex_lock(&cpu_add_remove_lock);
279}
280
281void cpu_maps_update_done(void)
282{
283 mutex_unlock(&cpu_add_remove_lock);
284}
1da177e4 285
fc8dffd3
TG
286/*
287 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
e3920fb4
RW
288 * Should always be manipulated under cpu_add_remove_lock
289 */
290static int cpu_hotplug_disabled;
291
79a6cdeb
LJ
292#ifdef CONFIG_HOTPLUG_CPU
293
fc8dffd3 294DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
a19423b9 295
8f553c49 296void cpus_read_lock(void)
a9d9baa1 297{
fc8dffd3 298 percpu_down_read(&cpu_hotplug_lock);
a9d9baa1 299}
8f553c49 300EXPORT_SYMBOL_GPL(cpus_read_lock);
90d45d17 301
6f4ceee9
WL
302int cpus_read_trylock(void)
303{
304 return percpu_down_read_trylock(&cpu_hotplug_lock);
305}
306EXPORT_SYMBOL_GPL(cpus_read_trylock);
307
8f553c49 308void cpus_read_unlock(void)
a9d9baa1 309{
fc8dffd3 310 percpu_up_read(&cpu_hotplug_lock);
a9d9baa1 311}
8f553c49 312EXPORT_SYMBOL_GPL(cpus_read_unlock);
a9d9baa1 313
8f553c49 314void cpus_write_lock(void)
d221938c 315{
fc8dffd3 316 percpu_down_write(&cpu_hotplug_lock);
d221938c 317}
87af9e7f 318
8f553c49 319void cpus_write_unlock(void)
d221938c 320{
fc8dffd3 321 percpu_up_write(&cpu_hotplug_lock);
d221938c
GS
322}
323
fc8dffd3 324void lockdep_assert_cpus_held(void)
d221938c 325{
ce48c457
VS
326 /*
327 * We can't have hotplug operations before userspace starts running,
328 * and some init codepaths will knowingly not take the hotplug lock.
329 * This is all valid, so mute lockdep until it makes sense to report
330 * unheld locks.
331 */
332 if (system_state < SYSTEM_RUNNING)
333 return;
334
fc8dffd3 335 percpu_rwsem_assert_held(&cpu_hotplug_lock);
d221938c 336}
79a6cdeb 337
43759fe5
FW
338#ifdef CONFIG_LOCKDEP
339int lockdep_is_cpus_held(void)
340{
341 return percpu_rwsem_is_held(&cpu_hotplug_lock);
342}
343#endif
344
cb92173d
PZ
345static void lockdep_acquire_cpus_lock(void)
346{
1751060e 347 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
cb92173d
PZ
348}
349
350static void lockdep_release_cpus_lock(void)
351{
1751060e 352 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
cb92173d
PZ
353}
354
16e53dbf
SB
355/*
356 * Wait for currently running CPU hotplug operations to complete (if any) and
357 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
358 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
359 * hotplug path before performing hotplug operations. So acquiring that lock
360 * guarantees mutual exclusion from any currently running hotplug operations.
361 */
362void cpu_hotplug_disable(void)
363{
364 cpu_maps_update_begin();
89af7ba5 365 cpu_hotplug_disabled++;
16e53dbf
SB
366 cpu_maps_update_done();
367}
32145c46 368EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
16e53dbf 369
01b41159
LW
370static void __cpu_hotplug_enable(void)
371{
372 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
373 return;
374 cpu_hotplug_disabled--;
375}
376
16e53dbf
SB
377void cpu_hotplug_enable(void)
378{
379 cpu_maps_update_begin();
01b41159 380 __cpu_hotplug_enable();
16e53dbf
SB
381 cpu_maps_update_done();
382}
32145c46 383EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
cb92173d
PZ
384
385#else
386
387static void lockdep_acquire_cpus_lock(void)
388{
389}
390
391static void lockdep_release_cpus_lock(void)
392{
393}
394
b9d10be7 395#endif /* CONFIG_HOTPLUG_CPU */
79a6cdeb 396
a74cfffb
TG
397/*
398 * Architectures that need SMT-specific errata handling during SMT hotplug
399 * should override this.
400 */
401void __weak arch_smt_update(void) { }
402
0cc3cd21
TG
403#ifdef CONFIG_HOTPLUG_SMT
404enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
bc2d8d26 405
8e1b706b 406void __init cpu_smt_disable(bool force)
0cc3cd21 407{
e1572f1d 408 if (!cpu_smt_possible())
8e1b706b
JK
409 return;
410
411 if (force) {
0cc3cd21
TG
412 pr_info("SMT: Force disabled\n");
413 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
8e1b706b 414 } else {
d0e7d144 415 pr_info("SMT: disabled\n");
8e1b706b 416 cpu_smt_control = CPU_SMT_DISABLED;
0cc3cd21 417 }
8e1b706b
JK
418}
419
fee0aede
TG
420/*
421 * The decision whether SMT is supported can only be done after the full
b284909a 422 * CPU identification. Called from architecture code.
bc2d8d26
TG
423 */
424void __init cpu_smt_check_topology(void)
425{
b284909a 426 if (!topology_smt_supported())
bc2d8d26
TG
427 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
428}
429
8e1b706b
JK
430static int __init smt_cmdline_disable(char *str)
431{
432 cpu_smt_disable(str && !strcmp(str, "force"));
0cc3cd21
TG
433 return 0;
434}
435early_param("nosmt", smt_cmdline_disable);
436
437static inline bool cpu_smt_allowed(unsigned int cpu)
438{
b284909a 439 if (cpu_smt_control == CPU_SMT_ENABLED)
0cc3cd21
TG
440 return true;
441
b284909a 442 if (topology_is_primary_thread(cpu))
0cc3cd21
TG
443 return true;
444
445 /*
446 * On x86 it's required to boot all logical CPUs at least once so
447 * that the init code can get a chance to set CR4.MCE on each
182e073f 448 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
0cc3cd21
TG
449 * core will shutdown the machine.
450 */
e797bda3 451 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
0cc3cd21 452}
e1572f1d
VK
453
454/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
455bool cpu_smt_possible(void)
456{
457 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
458 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
459}
460EXPORT_SYMBOL_GPL(cpu_smt_possible);
0cc3cd21
TG
461#else
462static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
463#endif
464
4dddfb5f
PZ
465static inline enum cpuhp_state
466cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
467{
468 enum cpuhp_state prev_state = st->state;
2ea46c6f 469 bool bringup = st->state < target;
4dddfb5f
PZ
470
471 st->rollback = false;
472 st->last = NULL;
473
474 st->target = target;
475 st->single = false;
2ea46c6f
PZ
476 st->bringup = bringup;
477 if (cpu_dying(st->cpu) != !bringup)
478 set_cpu_dying(st->cpu, !bringup);
4dddfb5f
PZ
479
480 return prev_state;
481}
482
483static inline void
484cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
485{
2ea46c6f
PZ
486 bool bringup = !st->bringup;
487
453e4108
VD
488 st->target = prev_state;
489
490 /*
491 * Already rolling back. No need invert the bringup value or to change
492 * the current state.
493 */
494 if (st->rollback)
495 return;
496
4dddfb5f
PZ
497 st->rollback = true;
498
499 /*
500 * If we have st->last we need to undo partial multi_instance of this
501 * state first. Otherwise start undo at the previous state.
502 */
503 if (!st->last) {
504 if (st->bringup)
505 st->state--;
506 else
507 st->state++;
508 }
509
2ea46c6f
PZ
510 st->bringup = bringup;
511 if (cpu_dying(st->cpu) != !bringup)
512 set_cpu_dying(st->cpu, !bringup);
4dddfb5f
PZ
513}
514
515/* Regular hotplug invocation of the AP hotplug thread */
516static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
517{
518 if (!st->single && st->state == st->target)
519 return;
520
521 st->result = 0;
522 /*
523 * Make sure the above stores are visible before should_run becomes
524 * true. Paired with the mb() above in cpuhp_thread_fun()
525 */
526 smp_mb();
527 st->should_run = true;
528 wake_up_process(st->thread);
5ebe7742 529 wait_for_ap_thread(st, st->bringup);
4dddfb5f
PZ
530}
531
532static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
533{
534 enum cpuhp_state prev_state;
535 int ret;
536
537 prev_state = cpuhp_set_state(st, target);
538 __cpuhp_kick_ap(st);
539 if ((ret = st->result)) {
540 cpuhp_reset_state(st, prev_state);
541 __cpuhp_kick_ap(st);
542 }
543
544 return ret;
545}
9cd4f1a4 546
8df3e07e
TG
547static int bringup_wait_for_ap(unsigned int cpu)
548{
549 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
550
9cd4f1a4 551 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
5ebe7742 552 wait_for_ap_thread(st, true);
dea1d0f5
TG
553 if (WARN_ON_ONCE((!cpu_online(cpu))))
554 return -ECANCELED;
9cd4f1a4 555
45178ac0 556 /* Unpark the hotplug thread of the target cpu */
9cd4f1a4
TG
557 kthread_unpark(st->thread);
558
0cc3cd21
TG
559 /*
560 * SMT soft disabling on X86 requires to bring the CPU out of the
561 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
f5602011 562 * CPU marked itself as booted_once in notify_cpu_starting() so the
0cc3cd21
TG
563 * cpu_smt_allowed() check will now return false if this is not the
564 * primary sibling.
565 */
566 if (!cpu_smt_allowed(cpu))
567 return -ECANCELED;
568
4dddfb5f
PZ
569 if (st->target <= CPUHP_AP_ONLINE_IDLE)
570 return 0;
571
572 return cpuhp_kick_ap(st, st->target);
8df3e07e
TG
573}
574
ba997462
TG
575static int bringup_cpu(unsigned int cpu)
576{
577 struct task_struct *idle = idle_thread_get(cpu);
578 int ret;
579
aa877175
BO
580 /*
581 * Some architectures have to walk the irq descriptors to
582 * setup the vector space for the cpu which comes online.
583 * Prevent irq alloc/free across the bringup.
584 */
585 irq_lock_sparse();
586
ba997462
TG
587 /* Arch-specific enabling code. */
588 ret = __cpu_up(cpu, idle);
aa877175 589 irq_unlock_sparse();
530e9b76 590 if (ret)
ba997462 591 return ret;
9cd4f1a4 592 return bringup_wait_for_ap(cpu);
ba997462
TG
593}
594
bf2c59fc
PZ
595static int finish_cpu(unsigned int cpu)
596{
597 struct task_struct *idle = idle_thread_get(cpu);
598 struct mm_struct *mm = idle->active_mm;
599
600 /*
601 * idle_task_exit() will have switched to &init_mm, now
602 * clean up any remaining active_mm state.
603 */
604 if (mm != &init_mm)
605 idle->active_mm = &init_mm;
606 mmdrop(mm);
607 return 0;
608}
609
2e1a3483
TG
610/*
611 * Hotplug state machine related functions
612 */
2e1a3483 613
453e4108
VD
614/*
615 * Get the next state to run. Empty ones will be skipped. Returns true if a
616 * state must be run.
617 *
618 * st->state will be modified ahead of time, to match state_to_run, as if it
619 * has already ran.
620 */
621static bool cpuhp_next_state(bool bringup,
622 enum cpuhp_state *state_to_run,
623 struct cpuhp_cpu_state *st,
624 enum cpuhp_state target)
2e1a3483 625{
453e4108
VD
626 do {
627 if (bringup) {
628 if (st->state >= target)
629 return false;
630
631 *state_to_run = ++st->state;
632 } else {
633 if (st->state <= target)
634 return false;
635
636 *state_to_run = st->state--;
637 }
638
639 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
640 break;
641 } while (true);
642
643 return true;
644}
645
646static int cpuhp_invoke_callback_range(bool bringup,
647 unsigned int cpu,
648 struct cpuhp_cpu_state *st,
649 enum cpuhp_state target)
650{
651 enum cpuhp_state state;
652 int err = 0;
653
654 while (cpuhp_next_state(bringup, &state, st, target)) {
655 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
656 if (err)
657 break;
658 }
659
660 return err;
2e1a3483
TG
661}
662
206b9235
TG
663static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
664{
665 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
666 return true;
667 /*
668 * When CPU hotplug is disabled, then taking the CPU down is not
669 * possible because takedown_cpu() and the architecture and
670 * subsystem specific mechanisms are not available. So the CPU
671 * which would be completely unplugged again needs to stay around
672 * in the current state.
673 */
674 return st->state <= CPUHP_BRINGUP_CPU;
675}
676
2e1a3483 677static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
a724632c 678 enum cpuhp_state target)
2e1a3483
TG
679{
680 enum cpuhp_state prev_state = st->state;
681 int ret = 0;
682
453e4108
VD
683 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
684 if (ret) {
685 cpuhp_reset_state(st, prev_state);
686 if (can_rollback_cpu(st))
687 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
688 prev_state));
2e1a3483
TG
689 }
690 return ret;
691}
692
4cb28ced
TG
693/*
694 * The cpu hotplug threads manage the bringup and teardown of the cpus
695 */
696static void cpuhp_create(unsigned int cpu)
697{
698 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
699
5ebe7742
PZ
700 init_completion(&st->done_up);
701 init_completion(&st->done_down);
2ea46c6f 702 st->cpu = cpu;
4cb28ced
TG
703}
704
705static int cpuhp_should_run(unsigned int cpu)
706{
707 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
708
709 return st->should_run;
710}
711
4cb28ced
TG
712/*
713 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
714 * callbacks when a state gets [un]installed at runtime.
4dddfb5f
PZ
715 *
716 * Each invocation of this function by the smpboot thread does a single AP
717 * state callback.
718 *
719 * It has 3 modes of operation:
720 * - single: runs st->cb_state
721 * - up: runs ++st->state, while st->state < st->target
722 * - down: runs st->state--, while st->state > st->target
723 *
724 * When complete or on error, should_run is cleared and the completion is fired.
4cb28ced
TG
725 */
726static void cpuhp_thread_fun(unsigned int cpu)
727{
728 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
4dddfb5f
PZ
729 bool bringup = st->bringup;
730 enum cpuhp_state state;
4cb28ced 731
f8b7530a
NU
732 if (WARN_ON_ONCE(!st->should_run))
733 return;
734
4cb28ced 735 /*
4dddfb5f
PZ
736 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
737 * that if we see ->should_run we also see the rest of the state.
4cb28ced
TG
738 */
739 smp_mb();
4cb28ced 740
cb92173d
PZ
741 /*
742 * The BP holds the hotplug lock, but we're now running on the AP,
743 * ensure that anybody asserting the lock is held, will actually find
744 * it so.
745 */
746 lockdep_acquire_cpus_lock();
5f4b55e1 747 cpuhp_lock_acquire(bringup);
4dddfb5f 748
a724632c 749 if (st->single) {
4dddfb5f
PZ
750 state = st->cb_state;
751 st->should_run = false;
752 } else {
453e4108
VD
753 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
754 if (!st->should_run)
755 goto end;
4dddfb5f
PZ
756 }
757
758 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
759
4dddfb5f
PZ
760 if (cpuhp_is_atomic_state(state)) {
761 local_irq_disable();
762 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
763 local_irq_enable();
3b9d6da6 764
4dddfb5f
PZ
765 /*
766 * STARTING/DYING must not fail!
767 */
768 WARN_ON_ONCE(st->result);
4cb28ced 769 } else {
4dddfb5f
PZ
770 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
771 }
772
773 if (st->result) {
774 /*
775 * If we fail on a rollback, we're up a creek without no
776 * paddle, no way forward, no way back. We loose, thanks for
777 * playing.
778 */
779 WARN_ON_ONCE(st->rollback);
780 st->should_run = false;
4cb28ced 781 }
4dddfb5f 782
453e4108 783end:
5f4b55e1 784 cpuhp_lock_release(bringup);
cb92173d 785 lockdep_release_cpus_lock();
4dddfb5f
PZ
786
787 if (!st->should_run)
5ebe7742 788 complete_ap_thread(st, bringup);
4cb28ced
TG
789}
790
791/* Invoke a single callback on a remote cpu */
a724632c 792static int
cf392d10
TG
793cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
794 struct hlist_node *node)
4cb28ced
TG
795{
796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
4dddfb5f 797 int ret;
4cb28ced
TG
798
799 if (!cpu_online(cpu))
800 return 0;
801
5f4b55e1
PZ
802 cpuhp_lock_acquire(false);
803 cpuhp_lock_release(false);
804
805 cpuhp_lock_acquire(true);
806 cpuhp_lock_release(true);
49dfe2a6 807
6a4e2451
TG
808 /*
809 * If we are up and running, use the hotplug thread. For early calls
810 * we invoke the thread function directly.
811 */
812 if (!st->thread)
96abb968 813 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
6a4e2451 814
4dddfb5f
PZ
815 st->rollback = false;
816 st->last = NULL;
817
818 st->node = node;
819 st->bringup = bringup;
4cb28ced 820 st->cb_state = state;
a724632c 821 st->single = true;
a724632c 822
4dddfb5f 823 __cpuhp_kick_ap(st);
4cb28ced 824
4cb28ced 825 /*
4dddfb5f 826 * If we failed and did a partial, do a rollback.
4cb28ced 827 */
4dddfb5f
PZ
828 if ((ret = st->result) && st->last) {
829 st->rollback = true;
830 st->bringup = !bringup;
831
832 __cpuhp_kick_ap(st);
833 }
834
1f7c70d6
TG
835 /*
836 * Clean up the leftovers so the next hotplug operation wont use stale
837 * data.
838 */
839 st->node = st->last = NULL;
4dddfb5f 840 return ret;
1cf4f629
TG
841}
842
843static int cpuhp_kick_ap_work(unsigned int cpu)
844{
845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
4dddfb5f
PZ
846 enum cpuhp_state prev_state = st->state;
847 int ret;
1cf4f629 848
5f4b55e1
PZ
849 cpuhp_lock_acquire(false);
850 cpuhp_lock_release(false);
851
852 cpuhp_lock_acquire(true);
853 cpuhp_lock_release(true);
4dddfb5f
PZ
854
855 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
856 ret = cpuhp_kick_ap(st, st->target);
857 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
858
859 return ret;
4cb28ced
TG
860}
861
862static struct smp_hotplug_thread cpuhp_threads = {
863 .store = &cpuhp_state.thread,
864 .create = &cpuhp_create,
865 .thread_should_run = cpuhp_should_run,
866 .thread_fn = cpuhp_thread_fun,
867 .thread_comm = "cpuhp/%u",
868 .selfparking = true,
869};
870
871void __init cpuhp_threads_init(void)
872{
873 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
874 kthread_unpark(this_cpu_read(cpuhp_state.thread));
875}
876
b22afcdf
TG
877/*
878 *
879 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
880 * protected region.
881 *
882 * The operation is still serialized against concurrent CPU hotplug via
883 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
884 * serialized against other hotplug related activity like adding or
885 * removing of state callbacks and state instances, which invoke either the
886 * startup or the teardown callback of the affected state.
887 *
888 * This is required for subsystems which are unfixable vs. CPU hotplug and
889 * evade lock inversion problems by scheduling work which has to be
890 * completed _before_ cpu_up()/_cpu_down() returns.
891 *
892 * Don't even think about adding anything to this for any new code or even
893 * drivers. It's only purpose is to keep existing lock order trainwrecks
894 * working.
895 *
896 * For cpu_down() there might be valid reasons to finish cleanups which are
897 * not required to be done under cpu_hotplug_lock, but that's a different
898 * story and would be not invoked via this.
899 */
900static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
901{
902 /*
903 * cpusets delegate hotplug operations to a worker to "solve" the
904 * lock order problems. Wait for the worker, but only if tasks are
905 * _not_ frozen (suspend, hibernate) as that would wait forever.
906 *
907 * The wait is required because otherwise the hotplug operation
908 * returns with inconsistent state, which could even be observed in
909 * user space when a new CPU is brought up. The CPU plug uevent
910 * would be delivered and user space reacting on it would fail to
911 * move tasks to the newly plugged CPU up to the point where the
912 * work has finished because up to that point the newly plugged CPU
913 * is not assignable in cpusets/cgroups. On unplug that's not
914 * necessarily a visible issue, but it is still inconsistent state,
915 * which is the real problem which needs to be "fixed". This can't
916 * prevent the transient state between scheduling the work and
917 * returning from waiting for it.
918 */
919 if (!tasks_frozen)
920 cpuset_wait_for_hotplug();
921}
922
777c6e0d 923#ifdef CONFIG_HOTPLUG_CPU
8ff00399
NP
924#ifndef arch_clear_mm_cpumask_cpu
925#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
926#endif
927
e4cc2f87
AV
928/**
929 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
930 * @cpu: a CPU id
931 *
932 * This function walks all processes, finds a valid mm struct for each one and
933 * then clears a corresponding bit in mm's cpumask. While this all sounds
934 * trivial, there are various non-obvious corner cases, which this function
935 * tries to solve in a safe manner.
936 *
937 * Also note that the function uses a somewhat relaxed locking scheme, so it may
938 * be called only for an already offlined CPU.
939 */
cb79295e
AV
940void clear_tasks_mm_cpumask(int cpu)
941{
942 struct task_struct *p;
943
944 /*
945 * This function is called after the cpu is taken down and marked
946 * offline, so its not like new tasks will ever get this cpu set in
947 * their mm mask. -- Peter Zijlstra
948 * Thus, we may use rcu_read_lock() here, instead of grabbing
949 * full-fledged tasklist_lock.
950 */
e4cc2f87 951 WARN_ON(cpu_online(cpu));
cb79295e
AV
952 rcu_read_lock();
953 for_each_process(p) {
954 struct task_struct *t;
955
e4cc2f87
AV
956 /*
957 * Main thread might exit, but other threads may still have
958 * a valid mm. Find one.
959 */
cb79295e
AV
960 t = find_lock_task_mm(p);
961 if (!t)
962 continue;
8ff00399 963 arch_clear_mm_cpumask_cpu(cpu, t->mm);
cb79295e
AV
964 task_unlock(t);
965 }
966 rcu_read_unlock();
967}
968
1da177e4 969/* Take this CPU down. */
71cf5aee 970static int take_cpu_down(void *_param)
1da177e4 971{
4baa0afc
TG
972 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
973 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
090e77c3 974 int err, cpu = smp_processor_id();
724a8688 975 int ret;
1da177e4 976
1da177e4
LT
977 /* Ensure this CPU doesn't handle any more interrupts. */
978 err = __cpu_disable();
979 if (err < 0)
f3705136 980 return err;
1da177e4 981
a724632c 982 /*
453e4108
VD
983 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
984 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
a724632c 985 */
453e4108
VD
986 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
987
4baa0afc 988 /* Invoke the former CPU_DYING callbacks */
453e4108
VD
989 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
990
991 /*
992 * DYING must not fail!
993 */
994 WARN_ON_ONCE(ret);
4baa0afc 995
52c063d1
TG
996 /* Give up timekeeping duties */
997 tick_handover_do_timer();
1b72d432
TG
998 /* Remove CPU from timer broadcasting */
999 tick_offline_cpu(cpu);
14e568e7 1000 /* Park the stopper thread */
090e77c3 1001 stop_machine_park(cpu);
f3705136 1002 return 0;
1da177e4
LT
1003}
1004
98458172 1005static int takedown_cpu(unsigned int cpu)
1da177e4 1006{
e69aab13 1007 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
98458172 1008 int err;
1da177e4 1009
2a58c527 1010 /* Park the smpboot threads */
13070833 1011 kthread_park(st->thread);
1cf4f629 1012
6acce3ef 1013 /*
a8994181
TG
1014 * Prevent irq alloc/free while the dying cpu reorganizes the
1015 * interrupt affinities.
6acce3ef 1016 */
a8994181 1017 irq_lock_sparse();
6acce3ef 1018
a8994181
TG
1019 /*
1020 * So now all preempt/rcu users must observe !cpu_active().
1021 */
210e2133 1022 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
04321587 1023 if (err) {
3b9d6da6 1024 /* CPU refused to die */
a8994181 1025 irq_unlock_sparse();
3b9d6da6 1026 /* Unpark the hotplug thread so we can rollback there */
13070833 1027 kthread_unpark(st->thread);
98458172 1028 return err;
8fa1d7d3 1029 }
04321587 1030 BUG_ON(cpu_online(cpu));
1da177e4 1031
48c5ccae 1032 /*
5b1ead68
BJ
1033 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1034 * all runnable tasks from the CPU, there's only the idle task left now
48c5ccae 1035 * that the migration thread is done doing the stop_machine thing.
51a96c77
PZ
1036 *
1037 * Wait for the stop thread to go away.
48c5ccae 1038 */
5ebe7742 1039 wait_for_ap_thread(st, false);
e69aab13 1040 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1da177e4 1041
a8994181
TG
1042 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1043 irq_unlock_sparse();
1044
345527b1 1045 hotplug_cpu__broadcast_tick_pull(cpu);
1da177e4
LT
1046 /* This actually kills the CPU. */
1047 __cpu_die(cpu);
1048
a49b116d 1049 tick_cleanup_dead_cpu(cpu);
a58163d8 1050 rcutree_migrate_callbacks(cpu);
98458172
TG
1051 return 0;
1052}
1da177e4 1053
71f87b2f
TG
1054static void cpuhp_complete_idle_dead(void *arg)
1055{
1056 struct cpuhp_cpu_state *st = arg;
1057
5ebe7742 1058 complete_ap_thread(st, false);
71f87b2f
TG
1059}
1060
e69aab13
TG
1061void cpuhp_report_idle_dead(void)
1062{
1063 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1064
1065 BUG_ON(st->state != CPUHP_AP_OFFLINE);
27d50c7e 1066 rcu_report_dead(smp_processor_id());
71f87b2f
TG
1067 st->state = CPUHP_AP_IDLE_DEAD;
1068 /*
1069 * We cannot call complete after rcu_report_dead() so we delegate it
1070 * to an online cpu.
1071 */
1072 smp_call_function_single(cpumask_first(cpu_online_mask),
1073 cpuhp_complete_idle_dead, st, 0);
e69aab13
TG
1074}
1075
4dddfb5f
PZ
1076static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1077 enum cpuhp_state target)
1078{
1079 enum cpuhp_state prev_state = st->state;
1080 int ret = 0;
1081
453e4108
VD
1082 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1083 if (ret) {
1084
1085 cpuhp_reset_state(st, prev_state);
1086
1087 if (st->state < prev_state)
1088 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1089 prev_state));
4dddfb5f 1090 }
453e4108 1091
4dddfb5f
PZ
1092 return ret;
1093}
cff7d378 1094
98458172 1095/* Requires cpu_add_remove_lock to be held */
af1f4045
TG
1096static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1097 enum cpuhp_state target)
98458172 1098{
cff7d378
TG
1099 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1100 int prev_state, ret = 0;
98458172
TG
1101
1102 if (num_online_cpus() == 1)
1103 return -EBUSY;
1104
757c989b 1105 if (!cpu_present(cpu))
98458172
TG
1106 return -EINVAL;
1107
8f553c49 1108 cpus_write_lock();
98458172
TG
1109
1110 cpuhp_tasks_frozen = tasks_frozen;
1111
4dddfb5f 1112 prev_state = cpuhp_set_state(st, target);
1cf4f629
TG
1113 /*
1114 * If the current CPU state is in the range of the AP hotplug thread,
1115 * then we need to kick the thread.
1116 */
8df3e07e 1117 if (st->state > CPUHP_TEARDOWN_CPU) {
4dddfb5f 1118 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1cf4f629
TG
1119 ret = cpuhp_kick_ap_work(cpu);
1120 /*
1121 * The AP side has done the error rollback already. Just
1122 * return the error code..
1123 */
1124 if (ret)
1125 goto out;
1126
1127 /*
1128 * We might have stopped still in the range of the AP hotplug
1129 * thread. Nothing to do anymore.
1130 */
8df3e07e 1131 if (st->state > CPUHP_TEARDOWN_CPU)
1cf4f629 1132 goto out;
4dddfb5f
PZ
1133
1134 st->target = target;
1cf4f629
TG
1135 }
1136 /*
8df3e07e 1137 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1cf4f629
TG
1138 * to do the further cleanups.
1139 */
a724632c 1140 ret = cpuhp_down_callbacks(cpu, st, target);
62f25069
VD
1141 if (ret && st->state < prev_state) {
1142 if (st->state == CPUHP_TEARDOWN_CPU) {
1143 cpuhp_reset_state(st, prev_state);
1144 __cpuhp_kick_ap(st);
1145 } else {
1146 WARN(1, "DEAD callback error for CPU%d", cpu);
1147 }
3b9d6da6 1148 }
98458172 1149
1cf4f629 1150out:
8f553c49 1151 cpus_write_unlock();
941154bd
TG
1152 /*
1153 * Do post unplug cleanup. This is still protected against
1154 * concurrent CPU hotplug via cpu_add_remove_lock.
1155 */
1156 lockup_detector_cleanup();
a74cfffb 1157 arch_smt_update();
b22afcdf 1158 cpu_up_down_serialize_trainwrecks(tasks_frozen);
cff7d378 1159 return ret;
e3920fb4
RW
1160}
1161
cc1fe215
TG
1162static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1163{
1164 if (cpu_hotplug_disabled)
1165 return -EBUSY;
1166 return _cpu_down(cpu, 0, target);
1167}
1168
33c3736e 1169static int cpu_down(unsigned int cpu, enum cpuhp_state target)
e3920fb4 1170{
9ea09af3 1171 int err;
e3920fb4 1172
d221938c 1173 cpu_maps_update_begin();
cc1fe215 1174 err = cpu_down_maps_locked(cpu, target);
d221938c 1175 cpu_maps_update_done();
1da177e4
LT
1176 return err;
1177}
4dddfb5f 1178
33c3736e
QY
1179/**
1180 * cpu_device_down - Bring down a cpu device
1181 * @dev: Pointer to the cpu device to offline
1182 *
1183 * This function is meant to be used by device core cpu subsystem only.
1184 *
1185 * Other subsystems should use remove_cpu() instead.
1186 */
1187int cpu_device_down(struct device *dev)
af1f4045 1188{
33c3736e 1189 return cpu_down(dev->id, CPUHP_OFFLINE);
af1f4045 1190}
4dddfb5f 1191
93ef1429
QY
1192int remove_cpu(unsigned int cpu)
1193{
1194 int ret;
1195
1196 lock_device_hotplug();
1197 ret = device_offline(get_cpu_device(cpu));
1198 unlock_device_hotplug();
1199
1200 return ret;
1201}
1202EXPORT_SYMBOL_GPL(remove_cpu);
1203
0441a559
QY
1204void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1205{
1206 unsigned int cpu;
1207 int error;
1208
1209 cpu_maps_update_begin();
1210
1211 /*
1212 * Make certain the cpu I'm about to reboot on is online.
1213 *
1214 * This is inline to what migrate_to_reboot_cpu() already do.
1215 */
1216 if (!cpu_online(primary_cpu))
1217 primary_cpu = cpumask_first(cpu_online_mask);
1218
1219 for_each_online_cpu(cpu) {
1220 if (cpu == primary_cpu)
1221 continue;
1222
1223 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1224 if (error) {
1225 pr_err("Failed to offline CPU%d - error=%d",
1226 cpu, error);
1227 break;
1228 }
1229 }
1230
1231 /*
1232 * Ensure all but the reboot CPU are offline.
1233 */
1234 BUG_ON(num_online_cpus() > 1);
1235
1236 /*
1237 * Make sure the CPUs won't be enabled by someone else after this
1238 * point. Kexec will reboot to a new kernel shortly resetting
1239 * everything along the way.
1240 */
1241 cpu_hotplug_disabled++;
1242
1243 cpu_maps_update_done();
af1f4045 1244}
4dddfb5f
PZ
1245
1246#else
1247#define takedown_cpu NULL
1da177e4
LT
1248#endif /*CONFIG_HOTPLUG_CPU*/
1249
4baa0afc 1250/**
ee1e714b 1251 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
4baa0afc
TG
1252 * @cpu: cpu that just started
1253 *
4baa0afc
TG
1254 * It must be called by the arch code on the new cpu, before the new cpu
1255 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1256 */
1257void notify_cpu_starting(unsigned int cpu)
1258{
1259 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1260 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
724a8688 1261 int ret;
4baa0afc 1262
0c6d4576 1263 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
e797bda3 1264 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
453e4108
VD
1265 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1266
1267 /*
1268 * STARTING must not fail!
1269 */
1270 WARN_ON_ONCE(ret);
4baa0afc
TG
1271}
1272
949338e3 1273/*
9cd4f1a4 1274 * Called from the idle task. Wake up the controlling task which brings the
45178ac0
PZ
1275 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1276 * online bringup to the hotplug thread.
949338e3 1277 */
8df3e07e 1278void cpuhp_online_idle(enum cpuhp_state state)
949338e3 1279{
8df3e07e 1280 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
8df3e07e
TG
1281
1282 /* Happens for the boot cpu */
1283 if (state != CPUHP_AP_ONLINE_IDLE)
1284 return;
1285
45178ac0
PZ
1286 /*
1287 * Unpart the stopper thread before we start the idle loop (and start
1288 * scheduling); this ensures the stopper task is always available.
1289 */
1290 stop_machine_unpark(smp_processor_id());
1291
8df3e07e 1292 st->state = CPUHP_AP_ONLINE_IDLE;
5ebe7742 1293 complete_ap_thread(st, true);
949338e3
TG
1294}
1295
e3920fb4 1296/* Requires cpu_add_remove_lock to be held */
af1f4045 1297static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1da177e4 1298{
cff7d378 1299 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
3bb5d2ee 1300 struct task_struct *idle;
2e1a3483 1301 int ret = 0;
1da177e4 1302
8f553c49 1303 cpus_write_lock();
38498a67 1304
757c989b 1305 if (!cpu_present(cpu)) {
5e5041f3
YI
1306 ret = -EINVAL;
1307 goto out;
1308 }
1309
757c989b 1310 /*
33c3736e
QY
1311 * The caller of cpu_up() might have raced with another
1312 * caller. Nothing to do.
757c989b
TG
1313 */
1314 if (st->state >= target)
38498a67 1315 goto out;
757c989b
TG
1316
1317 if (st->state == CPUHP_OFFLINE) {
1318 /* Let it fail before we try to bring the cpu up */
1319 idle = idle_thread_get(cpu);
1320 if (IS_ERR(idle)) {
1321 ret = PTR_ERR(idle);
1322 goto out;
1323 }
3bb5d2ee 1324 }
38498a67 1325
ba997462
TG
1326 cpuhp_tasks_frozen = tasks_frozen;
1327
4dddfb5f 1328 cpuhp_set_state(st, target);
1cf4f629
TG
1329 /*
1330 * If the current CPU state is in the range of the AP hotplug thread,
1331 * then we need to kick the thread once more.
1332 */
8df3e07e 1333 if (st->state > CPUHP_BRINGUP_CPU) {
1cf4f629
TG
1334 ret = cpuhp_kick_ap_work(cpu);
1335 /*
1336 * The AP side has done the error rollback already. Just
1337 * return the error code..
1338 */
1339 if (ret)
1340 goto out;
1341 }
1342
1343 /*
1344 * Try to reach the target state. We max out on the BP at
8df3e07e 1345 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1cf4f629
TG
1346 * responsible for bringing it up to the target state.
1347 */
8df3e07e 1348 target = min((int)target, CPUHP_BRINGUP_CPU);
a724632c 1349 ret = cpuhp_up_callbacks(cpu, st, target);
38498a67 1350out:
8f553c49 1351 cpus_write_unlock();
a74cfffb 1352 arch_smt_update();
b22afcdf 1353 cpu_up_down_serialize_trainwrecks(tasks_frozen);
e3920fb4
RW
1354 return ret;
1355}
1356
33c3736e 1357static int cpu_up(unsigned int cpu, enum cpuhp_state target)
e3920fb4
RW
1358{
1359 int err = 0;
cf23422b 1360
e0b582ec 1361 if (!cpu_possible(cpu)) {
84117da5
FF
1362 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1363 cpu);
87d5e023 1364#if defined(CONFIG_IA64)
84117da5 1365 pr_err("please check additional_cpus= boot parameter\n");
73e753a5
KH
1366#endif
1367 return -EINVAL;
1368 }
e3920fb4 1369
01b0f197
TK
1370 err = try_online_node(cpu_to_node(cpu));
1371 if (err)
1372 return err;
cf23422b 1373
d221938c 1374 cpu_maps_update_begin();
e761b772
MK
1375
1376 if (cpu_hotplug_disabled) {
e3920fb4 1377 err = -EBUSY;
e761b772
MK
1378 goto out;
1379 }
05736e4a
TG
1380 if (!cpu_smt_allowed(cpu)) {
1381 err = -EPERM;
1382 goto out;
1383 }
e761b772 1384
af1f4045 1385 err = _cpu_up(cpu, 0, target);
e761b772 1386out:
d221938c 1387 cpu_maps_update_done();
e3920fb4
RW
1388 return err;
1389}
af1f4045 1390
33c3736e
QY
1391/**
1392 * cpu_device_up - Bring up a cpu device
1393 * @dev: Pointer to the cpu device to online
1394 *
1395 * This function is meant to be used by device core cpu subsystem only.
1396 *
1397 * Other subsystems should use add_cpu() instead.
1398 */
1399int cpu_device_up(struct device *dev)
af1f4045 1400{
33c3736e 1401 return cpu_up(dev->id, CPUHP_ONLINE);
af1f4045 1402}
e3920fb4 1403
93ef1429
QY
1404int add_cpu(unsigned int cpu)
1405{
1406 int ret;
1407
1408 lock_device_hotplug();
1409 ret = device_online(get_cpu_device(cpu));
1410 unlock_device_hotplug();
1411
1412 return ret;
1413}
1414EXPORT_SYMBOL_GPL(add_cpu);
1415
d720f986
QY
1416/**
1417 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1418 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1419 *
1420 * On some architectures like arm64, we can hibernate on any CPU, but on
1421 * wake up the CPU we hibernated on might be offline as a side effect of
1422 * using maxcpus= for example.
1423 */
1424int bringup_hibernate_cpu(unsigned int sleep_cpu)
af1f4045 1425{
d720f986
QY
1426 int ret;
1427
1428 if (!cpu_online(sleep_cpu)) {
1429 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
33c3736e 1430 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
d720f986
QY
1431 if (ret) {
1432 pr_err("Failed to bring hibernate-CPU up!\n");
1433 return ret;
1434 }
1435 }
1436 return 0;
1437}
1438
b99a2659
QY
1439void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1440{
1441 unsigned int cpu;
1442
1443 for_each_present_cpu(cpu) {
1444 if (num_online_cpus() >= setup_max_cpus)
1445 break;
1446 if (!cpu_online(cpu))
33c3736e 1447 cpu_up(cpu, CPUHP_ONLINE);
b99a2659 1448 }
af1f4045 1449}
e3920fb4 1450
f3de4be9 1451#ifdef CONFIG_PM_SLEEP_SMP
e0b582ec 1452static cpumask_var_t frozen_cpus;
e3920fb4 1453
fb7fb84a 1454int freeze_secondary_cpus(int primary)
e3920fb4 1455{
d391e552 1456 int cpu, error = 0;
e3920fb4 1457
d221938c 1458 cpu_maps_update_begin();
9ca12ac0 1459 if (primary == -1) {
d391e552 1460 primary = cpumask_first(cpu_online_mask);
9ca12ac0
NP
1461 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1462 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1463 } else {
1464 if (!cpu_online(primary))
1465 primary = cpumask_first(cpu_online_mask);
1466 }
1467
9ee349ad
XF
1468 /*
1469 * We take down all of the non-boot CPUs in one shot to avoid races
e3920fb4
RW
1470 * with the userspace trying to use the CPU hotplug at the same time
1471 */
e0b582ec 1472 cpumask_clear(frozen_cpus);
6ad4c188 1473
84117da5 1474 pr_info("Disabling non-boot CPUs ...\n");
e3920fb4 1475 for_each_online_cpu(cpu) {
d391e552 1476 if (cpu == primary)
e3920fb4 1477 continue;
a66d955e 1478
fb7fb84a 1479 if (pm_wakeup_pending()) {
a66d955e
PK
1480 pr_info("Wakeup pending. Abort CPU freeze\n");
1481 error = -EBUSY;
1482 break;
1483 }
1484
bb3632c6 1485 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
af1f4045 1486 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
bb3632c6 1487 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
feae3203 1488 if (!error)
e0b582ec 1489 cpumask_set_cpu(cpu, frozen_cpus);
feae3203 1490 else {
84117da5 1491 pr_err("Error taking CPU%d down: %d\n", cpu, error);
e3920fb4
RW
1492 break;
1493 }
1494 }
86886e55 1495
89af7ba5 1496 if (!error)
e3920fb4 1497 BUG_ON(num_online_cpus() > 1);
89af7ba5 1498 else
84117da5 1499 pr_err("Non-boot CPUs are not disabled\n");
89af7ba5
VK
1500
1501 /*
1502 * Make sure the CPUs won't be enabled by someone else. We need to do
56555855
QY
1503 * this even in case of failure as all freeze_secondary_cpus() users are
1504 * supposed to do thaw_secondary_cpus() on the failure path.
89af7ba5
VK
1505 */
1506 cpu_hotplug_disabled++;
1507
d221938c 1508 cpu_maps_update_done();
e3920fb4
RW
1509 return error;
1510}
1511
56555855 1512void __weak arch_thaw_secondary_cpus_begin(void)
d0af9eed
SS
1513{
1514}
1515
56555855 1516void __weak arch_thaw_secondary_cpus_end(void)
d0af9eed
SS
1517{
1518}
1519
56555855 1520void thaw_secondary_cpus(void)
e3920fb4
RW
1521{
1522 int cpu, error;
1523
1524 /* Allow everyone to use the CPU hotplug again */
d221938c 1525 cpu_maps_update_begin();
01b41159 1526 __cpu_hotplug_enable();
e0b582ec 1527 if (cpumask_empty(frozen_cpus))
1d64b9cb 1528 goto out;
e3920fb4 1529
84117da5 1530 pr_info("Enabling non-boot CPUs ...\n");
d0af9eed 1531
56555855 1532 arch_thaw_secondary_cpus_begin();
d0af9eed 1533
e0b582ec 1534 for_each_cpu(cpu, frozen_cpus) {
bb3632c6 1535 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
af1f4045 1536 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
bb3632c6 1537 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
e3920fb4 1538 if (!error) {
84117da5 1539 pr_info("CPU%d is up\n", cpu);
e3920fb4
RW
1540 continue;
1541 }
84117da5 1542 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
e3920fb4 1543 }
d0af9eed 1544
56555855 1545 arch_thaw_secondary_cpus_end();
d0af9eed 1546
e0b582ec 1547 cpumask_clear(frozen_cpus);
1d64b9cb 1548out:
d221938c 1549 cpu_maps_update_done();
1da177e4 1550}
e0b582ec 1551
d7268a31 1552static int __init alloc_frozen_cpus(void)
e0b582ec
RR
1553{
1554 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1555 return -ENOMEM;
1556 return 0;
1557}
1558core_initcall(alloc_frozen_cpus);
79cfbdfa 1559
79cfbdfa
SB
1560/*
1561 * When callbacks for CPU hotplug notifications are being executed, we must
1562 * ensure that the state of the system with respect to the tasks being frozen
1563 * or not, as reported by the notification, remains unchanged *throughout the
1564 * duration* of the execution of the callbacks.
1565 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1566 *
1567 * This synchronization is implemented by mutually excluding regular CPU
1568 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1569 * Hibernate notifications.
1570 */
1571static int
1572cpu_hotplug_pm_callback(struct notifier_block *nb,
1573 unsigned long action, void *ptr)
1574{
1575 switch (action) {
1576
1577 case PM_SUSPEND_PREPARE:
1578 case PM_HIBERNATION_PREPARE:
16e53dbf 1579 cpu_hotplug_disable();
79cfbdfa
SB
1580 break;
1581
1582 case PM_POST_SUSPEND:
1583 case PM_POST_HIBERNATION:
16e53dbf 1584 cpu_hotplug_enable();
79cfbdfa
SB
1585 break;
1586
1587 default:
1588 return NOTIFY_DONE;
1589 }
1590
1591 return NOTIFY_OK;
1592}
1593
1594
d7268a31 1595static int __init cpu_hotplug_pm_sync_init(void)
79cfbdfa 1596{
6e32d479
FY
1597 /*
1598 * cpu_hotplug_pm_callback has higher priority than x86
1599 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1600 * to disable cpu hotplug to avoid cpu hotplug race.
1601 */
79cfbdfa
SB
1602 pm_notifier(cpu_hotplug_pm_callback, 0);
1603 return 0;
1604}
1605core_initcall(cpu_hotplug_pm_sync_init);
1606
f3de4be9 1607#endif /* CONFIG_PM_SLEEP_SMP */
68f4f1ec 1608
8ce371f9
PZ
1609int __boot_cpu_id;
1610
68f4f1ec 1611#endif /* CONFIG_SMP */
b8d317d1 1612
cff7d378 1613/* Boot processor state steps */
17a2f1ce 1614static struct cpuhp_step cpuhp_hp_states[] = {
cff7d378
TG
1615 [CPUHP_OFFLINE] = {
1616 .name = "offline",
3c1627e9
TG
1617 .startup.single = NULL,
1618 .teardown.single = NULL,
cff7d378
TG
1619 },
1620#ifdef CONFIG_SMP
1621 [CPUHP_CREATE_THREADS]= {
677f6646 1622 .name = "threads:prepare",
3c1627e9
TG
1623 .startup.single = smpboot_create_threads,
1624 .teardown.single = NULL,
757c989b 1625 .cant_stop = true,
cff7d378 1626 },
00e16c3d 1627 [CPUHP_PERF_PREPARE] = {
3c1627e9
TG
1628 .name = "perf:prepare",
1629 .startup.single = perf_event_init_cpu,
1630 .teardown.single = perf_event_exit_cpu,
00e16c3d 1631 },
7ee681b2 1632 [CPUHP_WORKQUEUE_PREP] = {
3c1627e9
TG
1633 .name = "workqueue:prepare",
1634 .startup.single = workqueue_prepare_cpu,
1635 .teardown.single = NULL,
7ee681b2 1636 },
27590dc1 1637 [CPUHP_HRTIMERS_PREPARE] = {
3c1627e9
TG
1638 .name = "hrtimers:prepare",
1639 .startup.single = hrtimers_prepare_cpu,
1640 .teardown.single = hrtimers_dead_cpu,
27590dc1 1641 },
31487f83 1642 [CPUHP_SMPCFD_PREPARE] = {
677f6646 1643 .name = "smpcfd:prepare",
3c1627e9
TG
1644 .startup.single = smpcfd_prepare_cpu,
1645 .teardown.single = smpcfd_dead_cpu,
31487f83 1646 },
e6d4989a
RW
1647 [CPUHP_RELAY_PREPARE] = {
1648 .name = "relay:prepare",
1649 .startup.single = relay_prepare_cpu,
1650 .teardown.single = NULL,
1651 },
6731d4f1
SAS
1652 [CPUHP_SLAB_PREPARE] = {
1653 .name = "slab:prepare",
1654 .startup.single = slab_prepare_cpu,
1655 .teardown.single = slab_dead_cpu,
31487f83 1656 },
4df83742 1657 [CPUHP_RCUTREE_PREP] = {
677f6646 1658 .name = "RCU/tree:prepare",
3c1627e9
TG
1659 .startup.single = rcutree_prepare_cpu,
1660 .teardown.single = rcutree_dead_cpu,
4df83742 1661 },
4fae16df
RC
1662 /*
1663 * On the tear-down path, timers_dead_cpu() must be invoked
1664 * before blk_mq_queue_reinit_notify() from notify_dead(),
1665 * otherwise a RCU stall occurs.
1666 */
26456f87 1667 [CPUHP_TIMERS_PREPARE] = {
d018031f 1668 .name = "timers:prepare",
26456f87 1669 .startup.single = timers_prepare_cpu,
3c1627e9 1670 .teardown.single = timers_dead_cpu,
4fae16df 1671 },
d10ef6f9 1672 /* Kicks the plugged cpu into life */
cff7d378
TG
1673 [CPUHP_BRINGUP_CPU] = {
1674 .name = "cpu:bringup",
3c1627e9 1675 .startup.single = bringup_cpu,
bf2c59fc 1676 .teardown.single = finish_cpu,
757c989b 1677 .cant_stop = true,
4baa0afc 1678 },
d10ef6f9
TG
1679 /* Final state before CPU kills itself */
1680 [CPUHP_AP_IDLE_DEAD] = {
1681 .name = "idle:dead",
1682 },
1683 /*
1684 * Last state before CPU enters the idle loop to die. Transient state
1685 * for synchronization.
1686 */
1687 [CPUHP_AP_OFFLINE] = {
1688 .name = "ap:offline",
1689 .cant_stop = true,
1690 },
9cf7243d
TG
1691 /* First state is scheduler control. Interrupts are disabled */
1692 [CPUHP_AP_SCHED_STARTING] = {
1693 .name = "sched:starting",
3c1627e9
TG
1694 .startup.single = sched_cpu_starting,
1695 .teardown.single = sched_cpu_dying,
9cf7243d 1696 },
4df83742 1697 [CPUHP_AP_RCUTREE_DYING] = {
677f6646 1698 .name = "RCU/tree:dying",
3c1627e9
TG
1699 .startup.single = NULL,
1700 .teardown.single = rcutree_dying_cpu,
4baa0afc 1701 },
46febd37
LJ
1702 [CPUHP_AP_SMPCFD_DYING] = {
1703 .name = "smpcfd:dying",
1704 .startup.single = NULL,
1705 .teardown.single = smpcfd_dying_cpu,
1706 },
d10ef6f9
TG
1707 /* Entry state on starting. Interrupts enabled from here on. Transient
1708 * state for synchronsization */
1709 [CPUHP_AP_ONLINE] = {
1710 .name = "ap:online",
1711 },
17a2f1ce 1712 /*
1cf12e08 1713 * Handled on control processor until the plugged processor manages
17a2f1ce
LJ
1714 * this itself.
1715 */
1716 [CPUHP_TEARDOWN_CPU] = {
1717 .name = "cpu:teardown",
1718 .startup.single = NULL,
1719 .teardown.single = takedown_cpu,
1720 .cant_stop = true,
1721 },
1cf12e08
TG
1722
1723 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1724 .name = "sched:waitempty",
1725 .startup.single = NULL,
1726 .teardown.single = sched_cpu_wait_empty,
1727 },
1728
d10ef6f9 1729 /* Handle smpboot threads park/unpark */
1cf4f629 1730 [CPUHP_AP_SMPBOOT_THREADS] = {
677f6646 1731 .name = "smpboot/threads:online",
3c1627e9 1732 .startup.single = smpboot_unpark_threads,
c4de6569 1733 .teardown.single = smpboot_park_threads,
1cf4f629 1734 },
c5cb83bb
TG
1735 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1736 .name = "irq/affinity:online",
1737 .startup.single = irq_affinity_online_cpu,
1738 .teardown.single = NULL,
1739 },
00e16c3d 1740 [CPUHP_AP_PERF_ONLINE] = {
3c1627e9
TG
1741 .name = "perf:online",
1742 .startup.single = perf_event_init_cpu,
1743 .teardown.single = perf_event_exit_cpu,
00e16c3d 1744 },
9cf57731
PZ
1745 [CPUHP_AP_WATCHDOG_ONLINE] = {
1746 .name = "lockup_detector:online",
1747 .startup.single = lockup_detector_online_cpu,
1748 .teardown.single = lockup_detector_offline_cpu,
1749 },
7ee681b2 1750 [CPUHP_AP_WORKQUEUE_ONLINE] = {
3c1627e9
TG
1751 .name = "workqueue:online",
1752 .startup.single = workqueue_online_cpu,
1753 .teardown.single = workqueue_offline_cpu,
7ee681b2 1754 },
4df83742 1755 [CPUHP_AP_RCUTREE_ONLINE] = {
677f6646 1756 .name = "RCU/tree:online",
3c1627e9
TG
1757 .startup.single = rcutree_online_cpu,
1758 .teardown.single = rcutree_offline_cpu,
4df83742 1759 },
4baa0afc 1760#endif
d10ef6f9
TG
1761 /*
1762 * The dynamically registered state space is here
1763 */
1764
aaddd7d1
TG
1765#ifdef CONFIG_SMP
1766 /* Last state is scheduler control setting the cpu active */
1767 [CPUHP_AP_ACTIVE] = {
1768 .name = "sched:active",
3c1627e9
TG
1769 .startup.single = sched_cpu_activate,
1770 .teardown.single = sched_cpu_deactivate,
aaddd7d1
TG
1771 },
1772#endif
1773
d10ef6f9 1774 /* CPU is fully up and running. */
4baa0afc
TG
1775 [CPUHP_ONLINE] = {
1776 .name = "online",
3c1627e9
TG
1777 .startup.single = NULL,
1778 .teardown.single = NULL,
4baa0afc
TG
1779 },
1780};
1781
5b7aa87e
TG
1782/* Sanity check for callbacks */
1783static int cpuhp_cb_check(enum cpuhp_state state)
1784{
1785 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1786 return -EINVAL;
1787 return 0;
1788}
1789
dc280d93
TG
1790/*
1791 * Returns a free for dynamic slot assignment of the Online state. The states
1792 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1793 * by having no name assigned.
1794 */
1795static int cpuhp_reserve_state(enum cpuhp_state state)
1796{
4205e478
TG
1797 enum cpuhp_state i, end;
1798 struct cpuhp_step *step;
dc280d93 1799
4205e478
TG
1800 switch (state) {
1801 case CPUHP_AP_ONLINE_DYN:
17a2f1ce 1802 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
4205e478
TG
1803 end = CPUHP_AP_ONLINE_DYN_END;
1804 break;
1805 case CPUHP_BP_PREPARE_DYN:
17a2f1ce 1806 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
4205e478
TG
1807 end = CPUHP_BP_PREPARE_DYN_END;
1808 break;
1809 default:
1810 return -EINVAL;
1811 }
1812
1813 for (i = state; i <= end; i++, step++) {
1814 if (!step->name)
dc280d93
TG
1815 return i;
1816 }
1817 WARN(1, "No more dynamic states available for CPU hotplug\n");
1818 return -ENOSPC;
1819}
1820
1821static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1822 int (*startup)(unsigned int cpu),
1823 int (*teardown)(unsigned int cpu),
1824 bool multi_instance)
5b7aa87e
TG
1825{
1826 /* (Un)Install the callbacks for further cpu hotplug operations */
1827 struct cpuhp_step *sp;
dc280d93 1828 int ret = 0;
5b7aa87e 1829
0c96b273
EB
1830 /*
1831 * If name is NULL, then the state gets removed.
1832 *
1833 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1834 * the first allocation from these dynamic ranges, so the removal
1835 * would trigger a new allocation and clear the wrong (already
1836 * empty) state, leaving the callbacks of the to be cleared state
1837 * dangling, which causes wreckage on the next hotplug operation.
1838 */
1839 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1840 state == CPUHP_BP_PREPARE_DYN)) {
dc280d93
TG
1841 ret = cpuhp_reserve_state(state);
1842 if (ret < 0)
dc434e05 1843 return ret;
dc280d93
TG
1844 state = ret;
1845 }
5b7aa87e 1846 sp = cpuhp_get_step(state);
dc434e05
SAS
1847 if (name && sp->name)
1848 return -EBUSY;
1849
3c1627e9
TG
1850 sp->startup.single = startup;
1851 sp->teardown.single = teardown;
5b7aa87e 1852 sp->name = name;
cf392d10
TG
1853 sp->multi_instance = multi_instance;
1854 INIT_HLIST_HEAD(&sp->list);
dc280d93 1855 return ret;
5b7aa87e
TG
1856}
1857
1858static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1859{
3c1627e9 1860 return cpuhp_get_step(state)->teardown.single;
5b7aa87e
TG
1861}
1862
5b7aa87e
TG
1863/*
1864 * Call the startup/teardown function for a step either on the AP or
1865 * on the current CPU.
1866 */
cf392d10
TG
1867static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1868 struct hlist_node *node)
5b7aa87e 1869{
a724632c 1870 struct cpuhp_step *sp = cpuhp_get_step(state);
5b7aa87e
TG
1871 int ret;
1872
4dddfb5f
PZ
1873 /*
1874 * If there's nothing to do, we done.
1875 * Relies on the union for multi_instance.
1876 */
453e4108 1877 if (cpuhp_step_empty(bringup, sp))
5b7aa87e 1878 return 0;
5b7aa87e
TG
1879 /*
1880 * The non AP bound callbacks can fail on bringup. On teardown
1881 * e.g. module removal we crash for now.
1882 */
1cf4f629
TG
1883#ifdef CONFIG_SMP
1884 if (cpuhp_is_ap_state(state))
cf392d10 1885 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1cf4f629 1886 else
96abb968 1887 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1cf4f629 1888#else
96abb968 1889 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1cf4f629 1890#endif
5b7aa87e
TG
1891 BUG_ON(ret && !bringup);
1892 return ret;
1893}
1894
1895/*
1896 * Called from __cpuhp_setup_state on a recoverable failure.
1897 *
1898 * Note: The teardown callbacks for rollback are not allowed to fail!
1899 */
1900static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
cf392d10 1901 struct hlist_node *node)
5b7aa87e
TG
1902{
1903 int cpu;
1904
5b7aa87e
TG
1905 /* Roll back the already executed steps on the other cpus */
1906 for_each_present_cpu(cpu) {
1907 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1908 int cpustate = st->state;
1909
1910 if (cpu >= failedcpu)
1911 break;
1912
1913 /* Did we invoke the startup call on that cpu ? */
1914 if (cpustate >= state)
cf392d10 1915 cpuhp_issue_call(cpu, state, false, node);
5b7aa87e
TG
1916 }
1917}
1918
9805c673
TG
1919int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1920 struct hlist_node *node,
1921 bool invoke)
cf392d10
TG
1922{
1923 struct cpuhp_step *sp;
1924 int cpu;
1925 int ret;
1926
9805c673
TG
1927 lockdep_assert_cpus_held();
1928
cf392d10
TG
1929 sp = cpuhp_get_step(state);
1930 if (sp->multi_instance == false)
1931 return -EINVAL;
1932
dc434e05 1933 mutex_lock(&cpuhp_state_mutex);
cf392d10 1934
3c1627e9 1935 if (!invoke || !sp->startup.multi)
cf392d10
TG
1936 goto add_node;
1937
1938 /*
1939 * Try to call the startup callback for each present cpu
1940 * depending on the hotplug state of the cpu.
1941 */
1942 for_each_present_cpu(cpu) {
1943 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1944 int cpustate = st->state;
1945
1946 if (cpustate < state)
1947 continue;
1948
1949 ret = cpuhp_issue_call(cpu, state, true, node);
1950 if (ret) {
3c1627e9 1951 if (sp->teardown.multi)
cf392d10 1952 cpuhp_rollback_install(cpu, state, node);
dc434e05 1953 goto unlock;
cf392d10
TG
1954 }
1955 }
1956add_node:
1957 ret = 0;
cf392d10 1958 hlist_add_head(node, &sp->list);
dc434e05 1959unlock:
cf392d10 1960 mutex_unlock(&cpuhp_state_mutex);
9805c673
TG
1961 return ret;
1962}
1963
1964int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1965 bool invoke)
1966{
1967 int ret;
1968
1969 cpus_read_lock();
1970 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
8f553c49 1971 cpus_read_unlock();
cf392d10
TG
1972 return ret;
1973}
1974EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1975
5b7aa87e 1976/**
71def423 1977 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
dc280d93
TG
1978 * @state: The state to setup
1979 * @invoke: If true, the startup function is invoked for cpus where
1980 * cpu state >= @state
1981 * @startup: startup callback function
1982 * @teardown: teardown callback function
1983 * @multi_instance: State is set up for multiple instances which get
1984 * added afterwards.
5b7aa87e 1985 *
71def423 1986 * The caller needs to hold cpus read locked while calling this function.
512f0980
BO
1987 * Returns:
1988 * On success:
1989 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1990 * 0 for all other states
1991 * On failure: proper (negative) error code
5b7aa87e 1992 */
71def423
SAS
1993int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1994 const char *name, bool invoke,
1995 int (*startup)(unsigned int cpu),
1996 int (*teardown)(unsigned int cpu),
1997 bool multi_instance)
5b7aa87e
TG
1998{
1999 int cpu, ret = 0;
b9d9d691 2000 bool dynstate;
5b7aa87e 2001
71def423
SAS
2002 lockdep_assert_cpus_held();
2003
5b7aa87e
TG
2004 if (cpuhp_cb_check(state) || !name)
2005 return -EINVAL;
2006
dc434e05 2007 mutex_lock(&cpuhp_state_mutex);
5b7aa87e 2008
dc280d93
TG
2009 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2010 multi_instance);
5b7aa87e 2011
b9d9d691
TG
2012 dynstate = state == CPUHP_AP_ONLINE_DYN;
2013 if (ret > 0 && dynstate) {
2014 state = ret;
2015 ret = 0;
2016 }
2017
dc280d93 2018 if (ret || !invoke || !startup)
5b7aa87e
TG
2019 goto out;
2020
2021 /*
2022 * Try to call the startup callback for each present cpu
2023 * depending on the hotplug state of the cpu.
2024 */
2025 for_each_present_cpu(cpu) {
2026 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2027 int cpustate = st->state;
2028
2029 if (cpustate < state)
2030 continue;
2031
cf392d10 2032 ret = cpuhp_issue_call(cpu, state, true, NULL);
5b7aa87e 2033 if (ret) {
a724632c 2034 if (teardown)
cf392d10
TG
2035 cpuhp_rollback_install(cpu, state, NULL);
2036 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
5b7aa87e
TG
2037 goto out;
2038 }
2039 }
2040out:
dc434e05 2041 mutex_unlock(&cpuhp_state_mutex);
dc280d93
TG
2042 /*
2043 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2044 * dynamically allocated state in case of success.
2045 */
b9d9d691 2046 if (!ret && dynstate)
5b7aa87e
TG
2047 return state;
2048 return ret;
2049}
71def423
SAS
2050EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2051
2052int __cpuhp_setup_state(enum cpuhp_state state,
2053 const char *name, bool invoke,
2054 int (*startup)(unsigned int cpu),
2055 int (*teardown)(unsigned int cpu),
2056 bool multi_instance)
2057{
2058 int ret;
2059
2060 cpus_read_lock();
2061 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2062 teardown, multi_instance);
2063 cpus_read_unlock();
2064 return ret;
2065}
5b7aa87e
TG
2066EXPORT_SYMBOL(__cpuhp_setup_state);
2067
cf392d10
TG
2068int __cpuhp_state_remove_instance(enum cpuhp_state state,
2069 struct hlist_node *node, bool invoke)
2070{
2071 struct cpuhp_step *sp = cpuhp_get_step(state);
2072 int cpu;
2073
2074 BUG_ON(cpuhp_cb_check(state));
2075
2076 if (!sp->multi_instance)
2077 return -EINVAL;
2078
8f553c49 2079 cpus_read_lock();
dc434e05
SAS
2080 mutex_lock(&cpuhp_state_mutex);
2081
cf392d10
TG
2082 if (!invoke || !cpuhp_get_teardown_cb(state))
2083 goto remove;
2084 /*
2085 * Call the teardown callback for each present cpu depending
2086 * on the hotplug state of the cpu. This function is not
2087 * allowed to fail currently!
2088 */
2089 for_each_present_cpu(cpu) {
2090 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2091 int cpustate = st->state;
2092
2093 if (cpustate >= state)
2094 cpuhp_issue_call(cpu, state, false, node);
2095 }
2096
2097remove:
cf392d10
TG
2098 hlist_del(node);
2099 mutex_unlock(&cpuhp_state_mutex);
8f553c49 2100 cpus_read_unlock();
cf392d10
TG
2101
2102 return 0;
2103}
2104EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
dc434e05 2105
5b7aa87e 2106/**
71def423 2107 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
5b7aa87e
TG
2108 * @state: The state to remove
2109 * @invoke: If true, the teardown function is invoked for cpus where
2110 * cpu state >= @state
2111 *
71def423 2112 * The caller needs to hold cpus read locked while calling this function.
5b7aa87e
TG
2113 * The teardown callback is currently not allowed to fail. Think
2114 * about module removal!
2115 */
71def423 2116void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
5b7aa87e 2117{
cf392d10 2118 struct cpuhp_step *sp = cpuhp_get_step(state);
5b7aa87e
TG
2119 int cpu;
2120
2121 BUG_ON(cpuhp_cb_check(state));
2122
71def423 2123 lockdep_assert_cpus_held();
5b7aa87e 2124
dc434e05 2125 mutex_lock(&cpuhp_state_mutex);
cf392d10
TG
2126 if (sp->multi_instance) {
2127 WARN(!hlist_empty(&sp->list),
2128 "Error: Removing state %d which has instances left.\n",
2129 state);
2130 goto remove;
2131 }
2132
a724632c 2133 if (!invoke || !cpuhp_get_teardown_cb(state))
5b7aa87e
TG
2134 goto remove;
2135
2136 /*
2137 * Call the teardown callback for each present cpu depending
2138 * on the hotplug state of the cpu. This function is not
2139 * allowed to fail currently!
2140 */
2141 for_each_present_cpu(cpu) {
2142 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2143 int cpustate = st->state;
2144
2145 if (cpustate >= state)
cf392d10 2146 cpuhp_issue_call(cpu, state, false, NULL);
5b7aa87e
TG
2147 }
2148remove:
cf392d10 2149 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
dc434e05 2150 mutex_unlock(&cpuhp_state_mutex);
71def423
SAS
2151}
2152EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2153
2154void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2155{
2156 cpus_read_lock();
2157 __cpuhp_remove_state_cpuslocked(state, invoke);
8f553c49 2158 cpus_read_unlock();
5b7aa87e
TG
2159}
2160EXPORT_SYMBOL(__cpuhp_remove_state);
2161
dc8d37ed
AB
2162#ifdef CONFIG_HOTPLUG_SMT
2163static void cpuhp_offline_cpu_device(unsigned int cpu)
2164{
2165 struct device *dev = get_cpu_device(cpu);
2166
2167 dev->offline = true;
2168 /* Tell user space about the state change */
2169 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2170}
2171
2172static void cpuhp_online_cpu_device(unsigned int cpu)
2173{
2174 struct device *dev = get_cpu_device(cpu);
2175
2176 dev->offline = false;
2177 /* Tell user space about the state change */
2178 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2179}
2180
2181int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2182{
2183 int cpu, ret = 0;
2184
2185 cpu_maps_update_begin();
2186 for_each_online_cpu(cpu) {
2187 if (topology_is_primary_thread(cpu))
2188 continue;
2189 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2190 if (ret)
2191 break;
2192 /*
2193 * As this needs to hold the cpu maps lock it's impossible
2194 * to call device_offline() because that ends up calling
2195 * cpu_down() which takes cpu maps lock. cpu maps lock
2196 * needs to be held as this might race against in kernel
2197 * abusers of the hotplug machinery (thermal management).
2198 *
2199 * So nothing would update device:offline state. That would
2200 * leave the sysfs entry stale and prevent onlining after
2201 * smt control has been changed to 'off' again. This is
2202 * called under the sysfs hotplug lock, so it is properly
2203 * serialized against the regular offline usage.
2204 */
2205 cpuhp_offline_cpu_device(cpu);
2206 }
2207 if (!ret)
2208 cpu_smt_control = ctrlval;
2209 cpu_maps_update_done();
2210 return ret;
2211}
2212
2213int cpuhp_smt_enable(void)
2214{
2215 int cpu, ret = 0;
2216
2217 cpu_maps_update_begin();
2218 cpu_smt_control = CPU_SMT_ENABLED;
2219 for_each_present_cpu(cpu) {
2220 /* Skip online CPUs and CPUs on offline nodes */
2221 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2222 continue;
2223 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2224 if (ret)
2225 break;
2226 /* See comment in cpuhp_smt_disable() */
2227 cpuhp_online_cpu_device(cpu);
2228 }
2229 cpu_maps_update_done();
2230 return ret;
2231}
2232#endif
2233
98f8cdce
TG
2234#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2235static ssize_t show_cpuhp_state(struct device *dev,
2236 struct device_attribute *attr, char *buf)
2237{
2238 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2239
2240 return sprintf(buf, "%d\n", st->state);
2241}
2242static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2243
757c989b
TG
2244static ssize_t write_cpuhp_target(struct device *dev,
2245 struct device_attribute *attr,
2246 const char *buf, size_t count)
2247{
2248 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2249 struct cpuhp_step *sp;
2250 int target, ret;
2251
2252 ret = kstrtoint(buf, 10, &target);
2253 if (ret)
2254 return ret;
2255
2256#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2257 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2258 return -EINVAL;
2259#else
2260 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2261 return -EINVAL;
2262#endif
2263
2264 ret = lock_device_hotplug_sysfs();
2265 if (ret)
2266 return ret;
2267
2268 mutex_lock(&cpuhp_state_mutex);
2269 sp = cpuhp_get_step(target);
2270 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2271 mutex_unlock(&cpuhp_state_mutex);
2272 if (ret)
40da1b11 2273 goto out;
757c989b
TG
2274
2275 if (st->state < target)
33c3736e 2276 ret = cpu_up(dev->id, target);
757c989b 2277 else
33c3736e 2278 ret = cpu_down(dev->id, target);
40da1b11 2279out:
757c989b
TG
2280 unlock_device_hotplug();
2281 return ret ? ret : count;
2282}
2283
98f8cdce
TG
2284static ssize_t show_cpuhp_target(struct device *dev,
2285 struct device_attribute *attr, char *buf)
2286{
2287 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2288
2289 return sprintf(buf, "%d\n", st->target);
2290}
757c989b 2291static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
98f8cdce 2292
1db49484
PZ
2293
2294static ssize_t write_cpuhp_fail(struct device *dev,
2295 struct device_attribute *attr,
2296 const char *buf, size_t count)
2297{
2298 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2299 struct cpuhp_step *sp;
2300 int fail, ret;
2301
2302 ret = kstrtoint(buf, 10, &fail);
2303 if (ret)
2304 return ret;
2305
3ae70c25
VD
2306 if (fail == CPUHP_INVALID) {
2307 st->fail = fail;
2308 return count;
2309 }
2310
33d4a5a7
ET
2311 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2312 return -EINVAL;
2313
1db49484
PZ
2314 /*
2315 * Cannot fail STARTING/DYING callbacks.
2316 */
2317 if (cpuhp_is_atomic_state(fail))
2318 return -EINVAL;
2319
62f25069
VD
2320 /*
2321 * DEAD callbacks cannot fail...
2322 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2323 * triggering STARTING callbacks, a failure in this state would
2324 * hinder rollback.
2325 */
2326 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2327 return -EINVAL;
2328
1db49484
PZ
2329 /*
2330 * Cannot fail anything that doesn't have callbacks.
2331 */
2332 mutex_lock(&cpuhp_state_mutex);
2333 sp = cpuhp_get_step(fail);
2334 if (!sp->startup.single && !sp->teardown.single)
2335 ret = -EINVAL;
2336 mutex_unlock(&cpuhp_state_mutex);
2337 if (ret)
2338 return ret;
2339
2340 st->fail = fail;
2341
2342 return count;
2343}
2344
2345static ssize_t show_cpuhp_fail(struct device *dev,
2346 struct device_attribute *attr, char *buf)
2347{
2348 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349
2350 return sprintf(buf, "%d\n", st->fail);
2351}
2352
2353static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2354
98f8cdce
TG
2355static struct attribute *cpuhp_cpu_attrs[] = {
2356 &dev_attr_state.attr,
2357 &dev_attr_target.attr,
1db49484 2358 &dev_attr_fail.attr,
98f8cdce
TG
2359 NULL
2360};
2361
993647a2 2362static const struct attribute_group cpuhp_cpu_attr_group = {
98f8cdce
TG
2363 .attrs = cpuhp_cpu_attrs,
2364 .name = "hotplug",
2365 NULL
2366};
2367
2368static ssize_t show_cpuhp_states(struct device *dev,
2369 struct device_attribute *attr, char *buf)
2370{
2371 ssize_t cur, res = 0;
2372 int i;
2373
2374 mutex_lock(&cpuhp_state_mutex);
757c989b 2375 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
98f8cdce
TG
2376 struct cpuhp_step *sp = cpuhp_get_step(i);
2377
2378 if (sp->name) {
2379 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2380 buf += cur;
2381 res += cur;
2382 }
2383 }
2384 mutex_unlock(&cpuhp_state_mutex);
2385 return res;
2386}
2387static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2388
2389static struct attribute *cpuhp_cpu_root_attrs[] = {
2390 &dev_attr_states.attr,
2391 NULL
2392};
2393
993647a2 2394static const struct attribute_group cpuhp_cpu_root_attr_group = {
98f8cdce
TG
2395 .attrs = cpuhp_cpu_root_attrs,
2396 .name = "hotplug",
2397 NULL
2398};
2399
05736e4a
TG
2400#ifdef CONFIG_HOTPLUG_SMT
2401
05736e4a 2402static ssize_t
de7b77e5
JP
2403__store_smt_control(struct device *dev, struct device_attribute *attr,
2404 const char *buf, size_t count)
05736e4a
TG
2405{
2406 int ctrlval, ret;
2407
2408 if (sysfs_streq(buf, "on"))
2409 ctrlval = CPU_SMT_ENABLED;
2410 else if (sysfs_streq(buf, "off"))
2411 ctrlval = CPU_SMT_DISABLED;
2412 else if (sysfs_streq(buf, "forceoff"))
2413 ctrlval = CPU_SMT_FORCE_DISABLED;
2414 else
2415 return -EINVAL;
2416
2417 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2418 return -EPERM;
2419
2420 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2421 return -ENODEV;
2422
2423 ret = lock_device_hotplug_sysfs();
2424 if (ret)
2425 return ret;
2426
2427 if (ctrlval != cpu_smt_control) {
2428 switch (ctrlval) {
2429 case CPU_SMT_ENABLED:
215af549 2430 ret = cpuhp_smt_enable();
05736e4a
TG
2431 break;
2432 case CPU_SMT_DISABLED:
2433 case CPU_SMT_FORCE_DISABLED:
2434 ret = cpuhp_smt_disable(ctrlval);
2435 break;
2436 }
2437 }
2438
2439 unlock_device_hotplug();
2440 return ret ? ret : count;
2441}
de7b77e5
JP
2442
2443#else /* !CONFIG_HOTPLUG_SMT */
2444static ssize_t
2445__store_smt_control(struct device *dev, struct device_attribute *attr,
2446 const char *buf, size_t count)
2447{
2448 return -ENODEV;
2449}
2450#endif /* CONFIG_HOTPLUG_SMT */
2451
2452static const char *smt_states[] = {
2453 [CPU_SMT_ENABLED] = "on",
2454 [CPU_SMT_DISABLED] = "off",
2455 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2456 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2457 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2458};
2459
2460static ssize_t
2461show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2462{
2463 const char *state = smt_states[cpu_smt_control];
2464
2465 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2466}
2467
2468static ssize_t
2469store_smt_control(struct device *dev, struct device_attribute *attr,
2470 const char *buf, size_t count)
2471{
2472 return __store_smt_control(dev, attr, buf, count);
2473}
05736e4a
TG
2474static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2475
2476static ssize_t
2477show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2478{
de7b77e5 2479 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
05736e4a
TG
2480}
2481static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2482
2483static struct attribute *cpuhp_smt_attrs[] = {
2484 &dev_attr_control.attr,
2485 &dev_attr_active.attr,
2486 NULL
2487};
2488
2489static const struct attribute_group cpuhp_smt_attr_group = {
2490 .attrs = cpuhp_smt_attrs,
2491 .name = "smt",
2492 NULL
2493};
2494
de7b77e5 2495static int __init cpu_smt_sysfs_init(void)
05736e4a 2496{
05736e4a
TG
2497 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2498 &cpuhp_smt_attr_group);
2499}
2500
98f8cdce
TG
2501static int __init cpuhp_sysfs_init(void)
2502{
2503 int cpu, ret;
2504
de7b77e5 2505 ret = cpu_smt_sysfs_init();
05736e4a
TG
2506 if (ret)
2507 return ret;
2508
98f8cdce
TG
2509 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2510 &cpuhp_cpu_root_attr_group);
2511 if (ret)
2512 return ret;
2513
2514 for_each_possible_cpu(cpu) {
2515 struct device *dev = get_cpu_device(cpu);
2516
2517 if (!dev)
2518 continue;
2519 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2520 if (ret)
2521 return ret;
2522 }
2523 return 0;
2524}
2525device_initcall(cpuhp_sysfs_init);
de7b77e5 2526#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
98f8cdce 2527
e56b3bc7
LT
2528/*
2529 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2530 * represents all NR_CPUS bits binary values of 1<<nr.
2531 *
e0b582ec 2532 * It is used by cpumask_of() to get a constant address to a CPU
e56b3bc7
LT
2533 * mask value that has a single bit set only.
2534 */
b8d317d1 2535
e56b3bc7 2536/* cpu_bit_bitmap[0] is empty - so we can back into it */
4d51985e 2537#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
e56b3bc7
LT
2538#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2539#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2540#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
b8d317d1 2541
e56b3bc7
LT
2542const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2543
2544 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2545 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2546#if BITS_PER_LONG > 32
2547 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2548 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
b8d317d1
MT
2549#endif
2550};
e56b3bc7 2551EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2d3854a3
RR
2552
2553const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2554EXPORT_SYMBOL(cpu_all_bits);
b3199c02
RR
2555
2556#ifdef CONFIG_INIT_ALL_POSSIBLE
4b804c85 2557struct cpumask __cpu_possible_mask __read_mostly
c4c54dd1 2558 = {CPU_BITS_ALL};
b3199c02 2559#else
4b804c85 2560struct cpumask __cpu_possible_mask __read_mostly;
b3199c02 2561#endif
4b804c85 2562EXPORT_SYMBOL(__cpu_possible_mask);
b3199c02 2563
4b804c85
RV
2564struct cpumask __cpu_online_mask __read_mostly;
2565EXPORT_SYMBOL(__cpu_online_mask);
b3199c02 2566
4b804c85
RV
2567struct cpumask __cpu_present_mask __read_mostly;
2568EXPORT_SYMBOL(__cpu_present_mask);
b3199c02 2569
4b804c85
RV
2570struct cpumask __cpu_active_mask __read_mostly;
2571EXPORT_SYMBOL(__cpu_active_mask);
3fa41520 2572
e40f74c5
PZ
2573struct cpumask __cpu_dying_mask __read_mostly;
2574EXPORT_SYMBOL(__cpu_dying_mask);
2575
0c09ab96
TG
2576atomic_t __num_online_cpus __read_mostly;
2577EXPORT_SYMBOL(__num_online_cpus);
2578
3fa41520
RR
2579void init_cpu_present(const struct cpumask *src)
2580{
c4c54dd1 2581 cpumask_copy(&__cpu_present_mask, src);
3fa41520
RR
2582}
2583
2584void init_cpu_possible(const struct cpumask *src)
2585{
c4c54dd1 2586 cpumask_copy(&__cpu_possible_mask, src);
3fa41520
RR
2587}
2588
2589void init_cpu_online(const struct cpumask *src)
2590{
c4c54dd1 2591 cpumask_copy(&__cpu_online_mask, src);
3fa41520 2592}
cff7d378 2593
0c09ab96
TG
2594void set_cpu_online(unsigned int cpu, bool online)
2595{
2596 /*
2597 * atomic_inc/dec() is required to handle the horrid abuse of this
2598 * function by the reboot and kexec code which invoke it from
2599 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2600 * regular CPU hotplug is properly serialized.
2601 *
2602 * Note, that the fact that __num_online_cpus is of type atomic_t
2603 * does not protect readers which are not serialized against
2604 * concurrent hotplug operations.
2605 */
2606 if (online) {
2607 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2608 atomic_inc(&__num_online_cpus);
2609 } else {
2610 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2611 atomic_dec(&__num_online_cpus);
2612 }
2613}
2614
cff7d378
TG
2615/*
2616 * Activate the first processor.
2617 */
2618void __init boot_cpu_init(void)
2619{
2620 int cpu = smp_processor_id();
2621
2622 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2623 set_cpu_online(cpu, true);
2624 set_cpu_active(cpu, true);
2625 set_cpu_present(cpu, true);
2626 set_cpu_possible(cpu, true);
8ce371f9
PZ
2627
2628#ifdef CONFIG_SMP
2629 __boot_cpu_id = cpu;
2630#endif
cff7d378
TG
2631}
2632
2633/*
2634 * Must be called _AFTER_ setting up the per_cpu areas
2635 */
b5b1404d 2636void __init boot_cpu_hotplug_init(void)
cff7d378 2637{
269777aa 2638#ifdef CONFIG_SMP
e797bda3 2639 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
269777aa 2640#endif
0cc3cd21 2641 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
cff7d378 2642}
98af8452 2643
731dc9df
TH
2644/*
2645 * These are used for a global "mitigations=" cmdline option for toggling
2646 * optional CPU mitigations.
2647 */
2648enum cpu_mitigations {
2649 CPU_MITIGATIONS_OFF,
2650 CPU_MITIGATIONS_AUTO,
2651 CPU_MITIGATIONS_AUTO_NOSMT,
2652};
2653
2654static enum cpu_mitigations cpu_mitigations __ro_after_init =
2655 CPU_MITIGATIONS_AUTO;
98af8452
JP
2656
2657static int __init mitigations_parse_cmdline(char *arg)
2658{
2659 if (!strcmp(arg, "off"))
2660 cpu_mitigations = CPU_MITIGATIONS_OFF;
2661 else if (!strcmp(arg, "auto"))
2662 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2663 else if (!strcmp(arg, "auto,nosmt"))
2664 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
1bf72720
GU
2665 else
2666 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2667 arg);
98af8452
JP
2668
2669 return 0;
2670}
2671early_param("mitigations", mitigations_parse_cmdline);
731dc9df
TH
2672
2673/* mitigations=off */
2674bool cpu_mitigations_off(void)
2675{
2676 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2677}
2678EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2679
2680/* mitigations=auto,nosmt */
2681bool cpu_mitigations_auto_nosmt(void)
2682{
2683 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2684}
2685EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);