cgroup: update cgroup->subsys_mask to ->child_subsys_mask and restore cgroup_root...
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
0e1d768f
TH
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
e25e2cbb 86 *
0e1d768f
TH
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
780cd8b3 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9 138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
3dd06ffa 141 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
a2dd4247 145struct cgroup_root cgrp_dfl_root;
9871bf95 146
a2dd4247
TH
147/*
148 * The default hierarchy always exists but is hidden until mounted for the
149 * first time. This is for backward compatibility.
150 */
151static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
152
153/* The list of hierarchy roots */
154
9871bf95
TH
155static LIST_HEAD(cgroup_roots);
156static int cgroup_root_count;
ddbcc7e8 157
3417ae1f 158/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 159static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 160
794611a1
LZ
161/*
162 * Assign a monotonically increasing serial number to cgroups. It
163 * guarantees cgroups with bigger numbers are newer than those with smaller
164 * numbers. Also, as cgroups are always appended to the parent's
165 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
166 * the ascending serial number order on the list. Protected by
167 * cgroup_mutex.
794611a1 168 */
00356bd5 169static u64 cgroup_serial_nr_next = 1;
794611a1 170
ddbcc7e8 171/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
172 * check for fork/exit handlers to call. This avoids us having to do
173 * extra work in the fork/exit path if none of the subsystems need to
174 * be called.
ddbcc7e8 175 */
8947f9d5 176static int need_forkexit_callback __read_mostly;
ddbcc7e8 177
628f7cd4
TH
178static struct cftype cgroup_base_files[];
179
59f5296b 180static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 181static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 182 unsigned long ss_mask);
f20104de 183static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 184static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
185static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
186 bool is_add);
b1a21367 187static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 188
95109b62
TH
189/**
190 * cgroup_css - obtain a cgroup's css for the specified subsystem
191 * @cgrp: the cgroup of interest
ca8bdcaf 192 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 193 *
ca8bdcaf
TH
194 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
195 * function must be called either under cgroup_mutex or rcu_read_lock() and
196 * the caller is responsible for pinning the returned css if it wants to
197 * keep accessing it outside the said locks. This function may return
198 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
199 */
200static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 201 struct cgroup_subsys *ss)
95109b62 202{
ca8bdcaf 203 if (ss)
aec25020 204 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
205 lockdep_is_held(&cgroup_tree_mutex) ||
206 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
207 else
208 return &cgrp->dummy_css;
95109b62 209}
42809dd4 210
ddbcc7e8 211/* convenient tests for these bits */
54766d4a 212static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 213{
54766d4a 214 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
215}
216
59f5296b
TH
217struct cgroup_subsys_state *seq_css(struct seq_file *seq)
218{
2bd59d48
TH
219 struct kernfs_open_file *of = seq->private;
220 struct cgroup *cgrp = of->kn->parent->priv;
221 struct cftype *cft = seq_cft(seq);
222
223 /*
224 * This is open and unprotected implementation of cgroup_css().
225 * seq_css() is only called from a kernfs file operation which has
226 * an active reference on the file. Because all the subsystem
227 * files are drained before a css is disassociated with a cgroup,
228 * the matching css from the cgroup's subsys table is guaranteed to
229 * be and stay valid until the enclosing operation is complete.
230 */
231 if (cft->ss)
232 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
233 else
234 return &cgrp->dummy_css;
59f5296b
TH
235}
236EXPORT_SYMBOL_GPL(seq_css);
237
78574cf9
LZ
238/**
239 * cgroup_is_descendant - test ancestry
240 * @cgrp: the cgroup to be tested
241 * @ancestor: possible ancestor of @cgrp
242 *
243 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
244 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
245 * and @ancestor are accessible.
246 */
247bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
248{
249 while (cgrp) {
250 if (cgrp == ancestor)
251 return true;
252 cgrp = cgrp->parent;
253 }
254 return false;
255}
ddbcc7e8 256
e9685a03 257static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
258{
259 const int bits =
bd89aabc
PM
260 (1 << CGRP_RELEASABLE) |
261 (1 << CGRP_NOTIFY_ON_RELEASE);
262 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
263}
264
e9685a03 265static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 266{
bd89aabc 267 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
268}
269
1c6727af
TH
270/**
271 * for_each_css - iterate all css's of a cgroup
272 * @css: the iteration cursor
273 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
274 * @cgrp: the target cgroup to iterate css's of
275 *
276 * Should be called under cgroup_mutex.
277 */
278#define for_each_css(css, ssid, cgrp) \
279 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
280 if (!((css) = rcu_dereference_check( \
281 (cgrp)->subsys[(ssid)], \
ace2bee8 282 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
283 lockdep_is_held(&cgroup_mutex)))) { } \
284 else
285
30159ec7 286/**
3ed80a62 287 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 288 * @ss: the iteration cursor
780cd8b3 289 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 290 */
780cd8b3 291#define for_each_subsys(ss, ssid) \
3ed80a62
TH
292 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
293 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 294
985ed670
TH
295/* iterate across the hierarchies */
296#define for_each_root(root) \
5549c497 297 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 298
7ae1bad9
TH
299/**
300 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
301 * @cgrp: the cgroup to be checked for liveness
302 *
47cfcd09
TH
303 * On success, returns true; the mutex should be later unlocked. On
304 * failure returns false with no lock held.
7ae1bad9 305 */
b9777cf8 306static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
307{
308 mutex_lock(&cgroup_mutex);
54766d4a 309 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
310 mutex_unlock(&cgroup_mutex);
311 return false;
312 }
313 return true;
314}
7ae1bad9 315
81a6a5cd
PM
316/* the list of cgroups eligible for automatic release. Protected by
317 * release_list_lock */
318static LIST_HEAD(release_list);
cdcc136f 319static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
320static void cgroup_release_agent(struct work_struct *work);
321static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 322static void check_for_release(struct cgroup *cgrp);
81a6a5cd 323
69d0206c
TH
324/*
325 * A cgroup can be associated with multiple css_sets as different tasks may
326 * belong to different cgroups on different hierarchies. In the other
327 * direction, a css_set is naturally associated with multiple cgroups.
328 * This M:N relationship is represented by the following link structure
329 * which exists for each association and allows traversing the associations
330 * from both sides.
331 */
332struct cgrp_cset_link {
333 /* the cgroup and css_set this link associates */
334 struct cgroup *cgrp;
335 struct css_set *cset;
336
337 /* list of cgrp_cset_links anchored at cgrp->cset_links */
338 struct list_head cset_link;
339
340 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
341 struct list_head cgrp_link;
817929ec
PM
342};
343
172a2c06
TH
344/*
345 * The default css_set - used by init and its children prior to any
817929ec
PM
346 * hierarchies being mounted. It contains a pointer to the root state
347 * for each subsystem. Also used to anchor the list of css_sets. Not
348 * reference-counted, to improve performance when child cgroups
349 * haven't been created.
350 */
172a2c06
TH
351static struct css_set init_css_set = {
352 .refcount = ATOMIC_INIT(1),
353 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
354 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
355 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
356 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
357 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
358};
817929ec 359
172a2c06 360static int css_set_count = 1; /* 1 for init_css_set */
817929ec 361
7717f7ba
PM
362/*
363 * hash table for cgroup groups. This improves the performance to find
364 * an existing css_set. This hash doesn't (currently) take into
365 * account cgroups in empty hierarchies.
366 */
472b1053 367#define CSS_SET_HASH_BITS 7
0ac801fe 368static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 369
0ac801fe 370static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 371{
0ac801fe 372 unsigned long key = 0UL;
30159ec7
TH
373 struct cgroup_subsys *ss;
374 int i;
472b1053 375
30159ec7 376 for_each_subsys(ss, i)
0ac801fe
LZ
377 key += (unsigned long)css[i];
378 key = (key >> 16) ^ key;
472b1053 379
0ac801fe 380 return key;
472b1053
LZ
381}
382
89c5509b 383static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 384{
69d0206c 385 struct cgrp_cset_link *link, *tmp_link;
5abb8855 386
89c5509b
TH
387 lockdep_assert_held(&css_set_rwsem);
388
389 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 390 return;
81a6a5cd 391
2c6ab6d2 392 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 393 hash_del(&cset->hlist);
2c6ab6d2
PM
394 css_set_count--;
395
69d0206c 396 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 397 struct cgroup *cgrp = link->cgrp;
5abb8855 398
69d0206c
TH
399 list_del(&link->cset_link);
400 list_del(&link->cgrp_link);
71b5707e 401
96d365e0 402 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 403 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 404 if (taskexit)
bd89aabc
PM
405 set_bit(CGRP_RELEASABLE, &cgrp->flags);
406 check_for_release(cgrp);
81a6a5cd 407 }
2c6ab6d2
PM
408
409 kfree(link);
81a6a5cd 410 }
2c6ab6d2 411
5abb8855 412 kfree_rcu(cset, rcu_head);
b4f48b63
PM
413}
414
89c5509b
TH
415static void put_css_set(struct css_set *cset, bool taskexit)
416{
417 /*
418 * Ensure that the refcount doesn't hit zero while any readers
419 * can see it. Similar to atomic_dec_and_lock(), but for an
420 * rwlock
421 */
422 if (atomic_add_unless(&cset->refcount, -1, 1))
423 return;
424
425 down_write(&css_set_rwsem);
426 put_css_set_locked(cset, taskexit);
427 up_write(&css_set_rwsem);
428}
429
817929ec
PM
430/*
431 * refcounted get/put for css_set objects
432 */
5abb8855 433static inline void get_css_set(struct css_set *cset)
817929ec 434{
5abb8855 435 atomic_inc(&cset->refcount);
817929ec
PM
436}
437
b326f9d0 438/**
7717f7ba 439 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
440 * @cset: candidate css_set being tested
441 * @old_cset: existing css_set for a task
7717f7ba
PM
442 * @new_cgrp: cgroup that's being entered by the task
443 * @template: desired set of css pointers in css_set (pre-calculated)
444 *
6f4b7e63 445 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
446 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
447 */
5abb8855
TH
448static bool compare_css_sets(struct css_set *cset,
449 struct css_set *old_cset,
7717f7ba
PM
450 struct cgroup *new_cgrp,
451 struct cgroup_subsys_state *template[])
452{
453 struct list_head *l1, *l2;
454
5abb8855 455 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
456 /* Not all subsystems matched */
457 return false;
458 }
459
460 /*
461 * Compare cgroup pointers in order to distinguish between
462 * different cgroups in heirarchies with no subsystems. We
463 * could get by with just this check alone (and skip the
464 * memcmp above) but on most setups the memcmp check will
465 * avoid the need for this more expensive check on almost all
466 * candidates.
467 */
468
69d0206c
TH
469 l1 = &cset->cgrp_links;
470 l2 = &old_cset->cgrp_links;
7717f7ba 471 while (1) {
69d0206c 472 struct cgrp_cset_link *link1, *link2;
5abb8855 473 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
474
475 l1 = l1->next;
476 l2 = l2->next;
477 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
478 if (l1 == &cset->cgrp_links) {
479 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
480 break;
481 } else {
69d0206c 482 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
483 }
484 /* Locate the cgroups associated with these links. */
69d0206c
TH
485 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
486 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
487 cgrp1 = link1->cgrp;
488 cgrp2 = link2->cgrp;
7717f7ba 489 /* Hierarchies should be linked in the same order. */
5abb8855 490 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
491
492 /*
493 * If this hierarchy is the hierarchy of the cgroup
494 * that's changing, then we need to check that this
495 * css_set points to the new cgroup; if it's any other
496 * hierarchy, then this css_set should point to the
497 * same cgroup as the old css_set.
498 */
5abb8855
TH
499 if (cgrp1->root == new_cgrp->root) {
500 if (cgrp1 != new_cgrp)
7717f7ba
PM
501 return false;
502 } else {
5abb8855 503 if (cgrp1 != cgrp2)
7717f7ba
PM
504 return false;
505 }
506 }
507 return true;
508}
509
b326f9d0
TH
510/**
511 * find_existing_css_set - init css array and find the matching css_set
512 * @old_cset: the css_set that we're using before the cgroup transition
513 * @cgrp: the cgroup that we're moving into
514 * @template: out param for the new set of csses, should be clear on entry
817929ec 515 */
5abb8855
TH
516static struct css_set *find_existing_css_set(struct css_set *old_cset,
517 struct cgroup *cgrp,
518 struct cgroup_subsys_state *template[])
b4f48b63 519{
3dd06ffa 520 struct cgroup_root *root = cgrp->root;
30159ec7 521 struct cgroup_subsys *ss;
5abb8855 522 struct css_set *cset;
0ac801fe 523 unsigned long key;
b326f9d0 524 int i;
817929ec 525
aae8aab4
BB
526 /*
527 * Build the set of subsystem state objects that we want to see in the
528 * new css_set. while subsystems can change globally, the entries here
529 * won't change, so no need for locking.
530 */
30159ec7 531 for_each_subsys(ss, i) {
f392e51c 532 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
533 /* Subsystem is in this hierarchy. So we want
534 * the subsystem state from the new
535 * cgroup */
ca8bdcaf 536 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
537 } else {
538 /* Subsystem is not in this hierarchy, so we
539 * don't want to change the subsystem state */
5abb8855 540 template[i] = old_cset->subsys[i];
817929ec
PM
541 }
542 }
543
0ac801fe 544 key = css_set_hash(template);
5abb8855
TH
545 hash_for_each_possible(css_set_table, cset, hlist, key) {
546 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
547 continue;
548
549 /* This css_set matches what we need */
5abb8855 550 return cset;
472b1053 551 }
817929ec
PM
552
553 /* No existing cgroup group matched */
554 return NULL;
555}
556
69d0206c 557static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 558{
69d0206c 559 struct cgrp_cset_link *link, *tmp_link;
36553434 560
69d0206c
TH
561 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
562 list_del(&link->cset_link);
36553434
LZ
563 kfree(link);
564 }
565}
566
69d0206c
TH
567/**
568 * allocate_cgrp_cset_links - allocate cgrp_cset_links
569 * @count: the number of links to allocate
570 * @tmp_links: list_head the allocated links are put on
571 *
572 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
573 * through ->cset_link. Returns 0 on success or -errno.
817929ec 574 */
69d0206c 575static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 576{
69d0206c 577 struct cgrp_cset_link *link;
817929ec 578 int i;
69d0206c
TH
579
580 INIT_LIST_HEAD(tmp_links);
581
817929ec 582 for (i = 0; i < count; i++) {
f4f4be2b 583 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 584 if (!link) {
69d0206c 585 free_cgrp_cset_links(tmp_links);
817929ec
PM
586 return -ENOMEM;
587 }
69d0206c 588 list_add(&link->cset_link, tmp_links);
817929ec
PM
589 }
590 return 0;
591}
592
c12f65d4
LZ
593/**
594 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 595 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 596 * @cset: the css_set to be linked
c12f65d4
LZ
597 * @cgrp: the destination cgroup
598 */
69d0206c
TH
599static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
600 struct cgroup *cgrp)
c12f65d4 601{
69d0206c 602 struct cgrp_cset_link *link;
c12f65d4 603
69d0206c
TH
604 BUG_ON(list_empty(tmp_links));
605 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
606 link->cset = cset;
7717f7ba 607 link->cgrp = cgrp;
69d0206c 608 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
609 /*
610 * Always add links to the tail of the list so that the list
611 * is sorted by order of hierarchy creation
612 */
69d0206c 613 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
614}
615
b326f9d0
TH
616/**
617 * find_css_set - return a new css_set with one cgroup updated
618 * @old_cset: the baseline css_set
619 * @cgrp: the cgroup to be updated
620 *
621 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
622 * substituted into the appropriate hierarchy.
817929ec 623 */
5abb8855
TH
624static struct css_set *find_css_set(struct css_set *old_cset,
625 struct cgroup *cgrp)
817929ec 626{
b326f9d0 627 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 628 struct css_set *cset;
69d0206c
TH
629 struct list_head tmp_links;
630 struct cgrp_cset_link *link;
0ac801fe 631 unsigned long key;
472b1053 632
b326f9d0
TH
633 lockdep_assert_held(&cgroup_mutex);
634
817929ec
PM
635 /* First see if we already have a cgroup group that matches
636 * the desired set */
96d365e0 637 down_read(&css_set_rwsem);
5abb8855
TH
638 cset = find_existing_css_set(old_cset, cgrp, template);
639 if (cset)
640 get_css_set(cset);
96d365e0 641 up_read(&css_set_rwsem);
817929ec 642
5abb8855
TH
643 if (cset)
644 return cset;
817929ec 645
f4f4be2b 646 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 647 if (!cset)
817929ec
PM
648 return NULL;
649
69d0206c 650 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 651 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 652 kfree(cset);
817929ec
PM
653 return NULL;
654 }
655
5abb8855 656 atomic_set(&cset->refcount, 1);
69d0206c 657 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 658 INIT_LIST_HEAD(&cset->tasks);
c7561128 659 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 660 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 661 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 662 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
663
664 /* Copy the set of subsystem state objects generated in
665 * find_existing_css_set() */
5abb8855 666 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 667
96d365e0 668 down_write(&css_set_rwsem);
817929ec 669 /* Add reference counts and links from the new css_set. */
69d0206c 670 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 671 struct cgroup *c = link->cgrp;
69d0206c 672
7717f7ba
PM
673 if (c->root == cgrp->root)
674 c = cgrp;
69d0206c 675 link_css_set(&tmp_links, cset, c);
7717f7ba 676 }
817929ec 677
69d0206c 678 BUG_ON(!list_empty(&tmp_links));
817929ec 679
817929ec 680 css_set_count++;
472b1053
LZ
681
682 /* Add this cgroup group to the hash table */
5abb8855
TH
683 key = css_set_hash(cset->subsys);
684 hash_add(css_set_table, &cset->hlist, key);
472b1053 685
96d365e0 686 up_write(&css_set_rwsem);
817929ec 687
5abb8855 688 return cset;
b4f48b63
PM
689}
690
3dd06ffa 691static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 692{
3dd06ffa 693 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 694
3dd06ffa 695 return root_cgrp->root;
2bd59d48
TH
696}
697
3dd06ffa 698static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
699{
700 int id;
701
702 lockdep_assert_held(&cgroup_mutex);
703
985ed670 704 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
705 if (id < 0)
706 return id;
707
708 root->hierarchy_id = id;
709 return 0;
710}
711
3dd06ffa 712static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
713{
714 lockdep_assert_held(&cgroup_mutex);
715
716 if (root->hierarchy_id) {
717 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
718 root->hierarchy_id = 0;
719 }
720}
721
3dd06ffa 722static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
723{
724 if (root) {
725 /* hierarhcy ID shoulid already have been released */
726 WARN_ON_ONCE(root->hierarchy_id);
727
728 idr_destroy(&root->cgroup_idr);
729 kfree(root);
730 }
731}
732
3dd06ffa 733static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 734{
3dd06ffa 735 struct cgroup *cgrp = &root->cgrp;
f2e85d57 736 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 737
2bd59d48 738 mutex_lock(&cgroup_tree_mutex);
2bd59d48 739 mutex_lock(&cgroup_mutex);
f2e85d57 740
776f02fa 741 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
742 BUG_ON(!list_empty(&cgrp->children));
743
f2e85d57 744 /* Rebind all subsystems back to the default hierarchy */
f392e51c 745 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 746
7717f7ba 747 /*
f2e85d57
TH
748 * Release all the links from cset_links to this hierarchy's
749 * root cgroup
7717f7ba 750 */
96d365e0 751 down_write(&css_set_rwsem);
f2e85d57
TH
752
753 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
754 list_del(&link->cset_link);
755 list_del(&link->cgrp_link);
756 kfree(link);
757 }
96d365e0 758 up_write(&css_set_rwsem);
f2e85d57
TH
759
760 if (!list_empty(&root->root_list)) {
761 list_del(&root->root_list);
762 cgroup_root_count--;
763 }
764
765 cgroup_exit_root_id(root);
766
767 mutex_unlock(&cgroup_mutex);
768 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 769
2bd59d48 770 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
771 cgroup_free_root(root);
772}
773
ceb6a081
TH
774/* look up cgroup associated with given css_set on the specified hierarchy */
775static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 776 struct cgroup_root *root)
7717f7ba 777{
7717f7ba
PM
778 struct cgroup *res = NULL;
779
96d365e0
TH
780 lockdep_assert_held(&cgroup_mutex);
781 lockdep_assert_held(&css_set_rwsem);
782
5abb8855 783 if (cset == &init_css_set) {
3dd06ffa 784 res = &root->cgrp;
7717f7ba 785 } else {
69d0206c
TH
786 struct cgrp_cset_link *link;
787
788 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 789 struct cgroup *c = link->cgrp;
69d0206c 790
7717f7ba
PM
791 if (c->root == root) {
792 res = c;
793 break;
794 }
795 }
796 }
96d365e0 797
7717f7ba
PM
798 BUG_ON(!res);
799 return res;
800}
801
ddbcc7e8 802/*
ceb6a081
TH
803 * Return the cgroup for "task" from the given hierarchy. Must be
804 * called with cgroup_mutex and css_set_rwsem held.
805 */
806static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 807 struct cgroup_root *root)
ceb6a081
TH
808{
809 /*
810 * No need to lock the task - since we hold cgroup_mutex the
811 * task can't change groups, so the only thing that can happen
812 * is that it exits and its css is set back to init_css_set.
813 */
814 return cset_cgroup_from_root(task_css_set(task), root);
815}
816
ddbcc7e8 817/*
ddbcc7e8
PM
818 * A task must hold cgroup_mutex to modify cgroups.
819 *
820 * Any task can increment and decrement the count field without lock.
821 * So in general, code holding cgroup_mutex can't rely on the count
822 * field not changing. However, if the count goes to zero, then only
956db3ca 823 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
824 * means that no tasks are currently attached, therefore there is no
825 * way a task attached to that cgroup can fork (the other way to
826 * increment the count). So code holding cgroup_mutex can safely
827 * assume that if the count is zero, it will stay zero. Similarly, if
828 * a task holds cgroup_mutex on a cgroup with zero count, it
829 * knows that the cgroup won't be removed, as cgroup_rmdir()
830 * needs that mutex.
831 *
ddbcc7e8
PM
832 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
833 * (usually) take cgroup_mutex. These are the two most performance
834 * critical pieces of code here. The exception occurs on cgroup_exit(),
835 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
836 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
837 * to the release agent with the name of the cgroup (path relative to
838 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
839 *
840 * A cgroup can only be deleted if both its 'count' of using tasks
841 * is zero, and its list of 'children' cgroups is empty. Since all
842 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 843 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 844 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 845 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
846 *
847 * P.S. One more locking exception. RCU is used to guard the
956db3ca 848 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
849 */
850
628f7cd4 851static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 852static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 853static const struct file_operations proc_cgroupstats_operations;
a424316c 854
8d7e6fb0
TH
855static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
856 char *buf)
ddbcc7e8 857{
8d7e6fb0
TH
858 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
859 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
860 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
861 cft->ss->name, cft->name);
862 else
863 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
864 return buf;
ddbcc7e8
PM
865}
866
f2e85d57
TH
867/**
868 * cgroup_file_mode - deduce file mode of a control file
869 * @cft: the control file in question
870 *
871 * returns cft->mode if ->mode is not 0
872 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
873 * returns S_IRUGO if it has only a read handler
874 * returns S_IWUSR if it has only a write hander
875 */
876static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 877{
f2e85d57 878 umode_t mode = 0;
65dff759 879
f2e85d57
TH
880 if (cft->mode)
881 return cft->mode;
882
883 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
884 mode |= S_IRUGO;
885
886 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
887 cft->trigger)
888 mode |= S_IWUSR;
889
890 return mode;
65dff759
LZ
891}
892
be445626
LZ
893static void cgroup_free_fn(struct work_struct *work)
894{
ea15f8cc 895 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 896
3c9c825b 897 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 898 cgroup_pidlist_destroy_all(cgrp);
be445626 899
776f02fa
TH
900 if (cgrp->parent) {
901 /*
902 * We get a ref to the parent, and put the ref when this
903 * cgroup is being freed, so it's guaranteed that the
904 * parent won't be destroyed before its children.
905 */
906 cgroup_put(cgrp->parent);
907 kernfs_put(cgrp->kn);
908 kfree(cgrp);
909 } else {
910 /*
3dd06ffa 911 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
912 * indicates that the root should be released.
913 */
914 cgroup_destroy_root(cgrp->root);
915 }
be445626
LZ
916}
917
918static void cgroup_free_rcu(struct rcu_head *head)
919{
920 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
921
ea15f8cc 922 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 923 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
924}
925
59f5296b 926static void cgroup_get(struct cgroup *cgrp)
ddbcc7e8 927{
2bd59d48
TH
928 WARN_ON_ONCE(cgroup_is_dead(cgrp));
929 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
930 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
931}
932
59f5296b 933static void cgroup_put(struct cgroup *cgrp)
05ef1d7c 934{
2bd59d48
TH
935 if (!atomic_dec_and_test(&cgrp->refcnt))
936 return;
776f02fa 937 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 938 return;
05ef1d7c 939
2739d3cc 940 /*
2bd59d48
TH
941 * XXX: cgrp->id is only used to look up css's. As cgroup and
942 * css's lifetimes will be decoupled, it should be made
943 * per-subsystem and moved to css->id so that lookups are
944 * successful until the target css is released.
2739d3cc 945 */
2bd59d48
TH
946 mutex_lock(&cgroup_mutex);
947 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
948 mutex_unlock(&cgroup_mutex);
949 cgrp->id = -1;
05ef1d7c 950
2bd59d48 951 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8 952}
05ef1d7c 953
2739d3cc 954static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 955{
2bd59d48 956 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 957
ace2bee8 958 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 959 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
960}
961
13af07df 962/**
628f7cd4 963 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 964 * @cgrp: target cgroup
13af07df
AR
965 * @subsys_mask: mask of the subsystem ids whose files should be removed
966 */
628f7cd4 967static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 968{
13af07df 969 struct cgroup_subsys *ss;
b420ba7d 970 int i;
05ef1d7c 971
b420ba7d 972 for_each_subsys(ss, i) {
0adb0704 973 struct cftype *cfts;
b420ba7d
TH
974
975 if (!test_bit(i, &subsys_mask))
13af07df 976 continue;
0adb0704
TH
977 list_for_each_entry(cfts, &ss->cfts, node)
978 cgroup_addrm_files(cgrp, cfts, false);
13af07df 979 }
ddbcc7e8
PM
980}
981
3dd06ffa 982static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 983 unsigned long ss_mask)
ddbcc7e8 984{
30159ec7 985 struct cgroup_subsys *ss;
5df36032 986 int ssid, ret;
ddbcc7e8 987
ace2bee8
TH
988 lockdep_assert_held(&cgroup_tree_mutex);
989 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 990
5df36032
TH
991 for_each_subsys(ss, ssid) {
992 if (!(ss_mask & (1 << ssid)))
993 continue;
aae8aab4 994
5df36032 995 /* if @ss is on the dummy_root, we can always move it */
3dd06ffa 996 if (ss->root == &cgrp_dfl_root)
ddbcc7e8 997 continue;
30159ec7 998
5df36032 999 /* if @ss has non-root cgroups attached to it, can't move */
3dd06ffa 1000 if (!list_empty(&ss->root->cgrp.children))
3ed80a62 1001 return -EBUSY;
1d5be6b2 1002
5df36032 1003 /* can't move between two non-dummy roots either */
3dd06ffa 1004 if (dst_root != &cgrp_dfl_root)
5df36032 1005 return -EBUSY;
ddbcc7e8
PM
1006 }
1007
a2dd4247
TH
1008 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1009 if (ret) {
1010 if (dst_root != &cgrp_dfl_root)
5df36032 1011 return ret;
ddbcc7e8 1012
a2dd4247
TH
1013 /*
1014 * Rebinding back to the default root is not allowed to
1015 * fail. Using both default and non-default roots should
1016 * be rare. Moving subsystems back and forth even more so.
1017 * Just warn about it and continue.
1018 */
1019 if (cgrp_dfl_root_visible) {
1020 pr_warning("cgroup: failed to create files (%d) while rebinding 0x%lx to default root\n",
1021 ret, ss_mask);
1022 pr_warning("cgroup: you may retry by moving them to a different hierarchy and unbinding\n");
1023 }
5df36032 1024 }
3126121f
TH
1025
1026 /*
1027 * Nothing can fail from this point on. Remove files for the
1028 * removed subsystems and rebind each subsystem.
1029 */
4ac06017 1030 mutex_unlock(&cgroup_mutex);
5df36032 1031 for_each_subsys(ss, ssid)
a2dd4247 1032 if (ss_mask & (1 << ssid))
3dd06ffa 1033 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1034 mutex_lock(&cgroup_mutex);
a8a648c4 1035
5df36032 1036 for_each_subsys(ss, ssid) {
3dd06ffa 1037 struct cgroup_root *src_root;
5df36032 1038 struct cgroup_subsys_state *css;
a8a648c4 1039
5df36032
TH
1040 if (!(ss_mask & (1 << ssid)))
1041 continue;
a8a648c4 1042
5df36032 1043 src_root = ss->root;
3dd06ffa 1044 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1045
3dd06ffa 1046 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1047
3dd06ffa
TH
1048 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1049 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1050 ss->root = dst_root;
3dd06ffa 1051 css->cgroup = &dst_root->cgrp;
73e80ed8 1052
f392e51c
TH
1053 src_root->subsys_mask &= ~(1 << ssid);
1054 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1055
1056 dst_root->subsys_mask |= 1 << ssid;
1057 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1058
5df36032
TH
1059 if (ss->bind)
1060 ss->bind(css);
ddbcc7e8 1061 }
ddbcc7e8 1062
a2dd4247 1063 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1064 return 0;
1065}
1066
2bd59d48
TH
1067static int cgroup_show_options(struct seq_file *seq,
1068 struct kernfs_root *kf_root)
ddbcc7e8 1069{
3dd06ffa 1070 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1071 struct cgroup_subsys *ss;
b85d2040 1072 int ssid;
ddbcc7e8 1073
b85d2040 1074 for_each_subsys(ss, ssid)
f392e51c 1075 if (root->subsys_mask & (1 << ssid))
b85d2040 1076 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1077 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1078 seq_puts(seq, ",sane_behavior");
93438629 1079 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1080 seq_puts(seq, ",noprefix");
93438629 1081 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1082 seq_puts(seq, ",xattr");
69e943b7
TH
1083
1084 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1085 if (strlen(root->release_agent_path))
1086 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1087 spin_unlock(&release_agent_path_lock);
1088
3dd06ffa 1089 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1090 seq_puts(seq, ",clone_children");
c6d57f33
PM
1091 if (strlen(root->name))
1092 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1093 return 0;
1094}
1095
1096struct cgroup_sb_opts {
a1a71b45 1097 unsigned long subsys_mask;
ddbcc7e8 1098 unsigned long flags;
81a6a5cd 1099 char *release_agent;
2260e7fc 1100 bool cpuset_clone_children;
c6d57f33 1101 char *name;
2c6ab6d2
PM
1102 /* User explicitly requested empty subsystem */
1103 bool none;
ddbcc7e8
PM
1104};
1105
aae8aab4 1106/*
9871bf95
TH
1107 * Convert a hierarchy specifier into a bitmask of subsystems and
1108 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1109 * array. This function takes refcounts on subsystems to be used, unless it
1110 * returns error, in which case no refcounts are taken.
aae8aab4 1111 */
cf5d5941 1112static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1113{
32a8cf23
DL
1114 char *token, *o = data;
1115 bool all_ss = false, one_ss = false;
f9ab5b5b 1116 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1117 struct cgroup_subsys *ss;
1118 int i;
f9ab5b5b 1119
aae8aab4
BB
1120 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1121
f9ab5b5b 1122#ifdef CONFIG_CPUSETS
073219e9 1123 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1124#endif
ddbcc7e8 1125
c6d57f33 1126 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1127
1128 while ((token = strsep(&o, ",")) != NULL) {
1129 if (!*token)
1130 return -EINVAL;
32a8cf23 1131 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1132 /* Explicitly have no subsystems */
1133 opts->none = true;
32a8cf23
DL
1134 continue;
1135 }
1136 if (!strcmp(token, "all")) {
1137 /* Mutually exclusive option 'all' + subsystem name */
1138 if (one_ss)
1139 return -EINVAL;
1140 all_ss = true;
1141 continue;
1142 }
873fe09e
TH
1143 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1144 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1145 continue;
1146 }
32a8cf23 1147 if (!strcmp(token, "noprefix")) {
93438629 1148 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1149 continue;
1150 }
1151 if (!strcmp(token, "clone_children")) {
2260e7fc 1152 opts->cpuset_clone_children = true;
32a8cf23
DL
1153 continue;
1154 }
03b1cde6 1155 if (!strcmp(token, "xattr")) {
93438629 1156 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1157 continue;
1158 }
32a8cf23 1159 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1160 /* Specifying two release agents is forbidden */
1161 if (opts->release_agent)
1162 return -EINVAL;
c6d57f33 1163 opts->release_agent =
e400c285 1164 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1165 if (!opts->release_agent)
1166 return -ENOMEM;
32a8cf23
DL
1167 continue;
1168 }
1169 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1170 const char *name = token + 5;
1171 /* Can't specify an empty name */
1172 if (!strlen(name))
1173 return -EINVAL;
1174 /* Must match [\w.-]+ */
1175 for (i = 0; i < strlen(name); i++) {
1176 char c = name[i];
1177 if (isalnum(c))
1178 continue;
1179 if ((c == '.') || (c == '-') || (c == '_'))
1180 continue;
1181 return -EINVAL;
1182 }
1183 /* Specifying two names is forbidden */
1184 if (opts->name)
1185 return -EINVAL;
1186 opts->name = kstrndup(name,
e400c285 1187 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1188 GFP_KERNEL);
1189 if (!opts->name)
1190 return -ENOMEM;
32a8cf23
DL
1191
1192 continue;
1193 }
1194
30159ec7 1195 for_each_subsys(ss, i) {
32a8cf23
DL
1196 if (strcmp(token, ss->name))
1197 continue;
1198 if (ss->disabled)
1199 continue;
1200
1201 /* Mutually exclusive option 'all' + subsystem name */
1202 if (all_ss)
1203 return -EINVAL;
a1a71b45 1204 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1205 one_ss = true;
1206
1207 break;
1208 }
1209 if (i == CGROUP_SUBSYS_COUNT)
1210 return -ENOENT;
1211 }
1212
2c6ab6d2
PM
1213 /* Consistency checks */
1214
873fe09e
TH
1215 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1216 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1217
d3ba07c3
TH
1218 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1219 opts->cpuset_clone_children || opts->release_agent ||
1220 opts->name) {
1221 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1222 return -EINVAL;
1223 }
a2dd4247
TH
1224 } else {
1225 /*
1226 * If the 'all' option was specified select all the
1227 * subsystems, otherwise if 'none', 'name=' and a subsystem
1228 * name options were not specified, let's default to 'all'
1229 */
1230 if (all_ss || (!one_ss && !opts->none && !opts->name))
1231 for_each_subsys(ss, i)
1232 if (!ss->disabled)
1233 set_bit(i, &opts->subsys_mask);
873fe09e 1234
a2dd4247
TH
1235 /*
1236 * We either have to specify by name or by subsystems. (So
1237 * all empty hierarchies must have a name).
1238 */
1239 if (!opts->subsys_mask && !opts->name)
873fe09e 1240 return -EINVAL;
873fe09e
TH
1241 }
1242
f9ab5b5b
LZ
1243 /*
1244 * Option noprefix was introduced just for backward compatibility
1245 * with the old cpuset, so we allow noprefix only if mounting just
1246 * the cpuset subsystem.
1247 */
93438629 1248 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1249 return -EINVAL;
1250
2c6ab6d2
PM
1251
1252 /* Can't specify "none" and some subsystems */
a1a71b45 1253 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1254 return -EINVAL;
1255
ddbcc7e8
PM
1256 return 0;
1257}
1258
2bd59d48 1259static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1260{
1261 int ret = 0;
3dd06ffa 1262 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1263 struct cgroup_sb_opts opts;
a1a71b45 1264 unsigned long added_mask, removed_mask;
ddbcc7e8 1265
873fe09e
TH
1266 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1267 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1268 return -EINVAL;
1269 }
1270
ace2bee8 1271 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1272 mutex_lock(&cgroup_mutex);
1273
1274 /* See what subsystems are wanted */
1275 ret = parse_cgroupfs_options(data, &opts);
1276 if (ret)
1277 goto out_unlock;
1278
f392e51c 1279 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1280 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1281 task_tgid_nr(current), current->comm);
1282
f392e51c
TH
1283 added_mask = opts.subsys_mask & ~root->subsys_mask;
1284 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1285
cf5d5941 1286 /* Don't allow flags or name to change at remount */
0ce6cba3 1287 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1288 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1289 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1290 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1291 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1292 ret = -EINVAL;
1293 goto out_unlock;
1294 }
1295
f172e67c 1296 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1297 if (!list_empty(&root->cgrp.children)) {
f172e67c 1298 ret = -EBUSY;
0670e08b 1299 goto out_unlock;
cf5d5941 1300 }
ddbcc7e8 1301
5df36032 1302 ret = rebind_subsystems(root, added_mask);
3126121f 1303 if (ret)
0670e08b 1304 goto out_unlock;
ddbcc7e8 1305
3dd06ffa 1306 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1307
69e943b7
TH
1308 if (opts.release_agent) {
1309 spin_lock(&release_agent_path_lock);
81a6a5cd 1310 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1311 spin_unlock(&release_agent_path_lock);
1312 }
ddbcc7e8 1313 out_unlock:
66bdc9cf 1314 kfree(opts.release_agent);
c6d57f33 1315 kfree(opts.name);
ddbcc7e8 1316 mutex_unlock(&cgroup_mutex);
ace2bee8 1317 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1318 return ret;
1319}
1320
afeb0f9f
TH
1321/*
1322 * To reduce the fork() overhead for systems that are not actually using
1323 * their cgroups capability, we don't maintain the lists running through
1324 * each css_set to its tasks until we see the list actually used - in other
1325 * words after the first mount.
1326 */
1327static bool use_task_css_set_links __read_mostly;
1328
1329static void cgroup_enable_task_cg_lists(void)
1330{
1331 struct task_struct *p, *g;
1332
96d365e0 1333 down_write(&css_set_rwsem);
afeb0f9f
TH
1334
1335 if (use_task_css_set_links)
1336 goto out_unlock;
1337
1338 use_task_css_set_links = true;
1339
1340 /*
1341 * We need tasklist_lock because RCU is not safe against
1342 * while_each_thread(). Besides, a forking task that has passed
1343 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1344 * is not guaranteed to have its child immediately visible in the
1345 * tasklist if we walk through it with RCU.
1346 */
1347 read_lock(&tasklist_lock);
1348 do_each_thread(g, p) {
afeb0f9f
TH
1349 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1350 task_css_set(p) != &init_css_set);
1351
1352 /*
1353 * We should check if the process is exiting, otherwise
1354 * it will race with cgroup_exit() in that the list
1355 * entry won't be deleted though the process has exited.
f153ad11
TH
1356 * Do it while holding siglock so that we don't end up
1357 * racing against cgroup_exit().
afeb0f9f 1358 */
f153ad11 1359 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1360 if (!(p->flags & PF_EXITING)) {
1361 struct css_set *cset = task_css_set(p);
1362
1363 list_add(&p->cg_list, &cset->tasks);
1364 get_css_set(cset);
1365 }
f153ad11 1366 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1367 } while_each_thread(g, p);
1368 read_unlock(&tasklist_lock);
1369out_unlock:
96d365e0 1370 up_write(&css_set_rwsem);
afeb0f9f 1371}
ddbcc7e8 1372
cc31edce
PM
1373static void init_cgroup_housekeeping(struct cgroup *cgrp)
1374{
2bd59d48 1375 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1376 INIT_LIST_HEAD(&cgrp->sibling);
1377 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1378 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1379 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1380 INIT_LIST_HEAD(&cgrp->pidlists);
1381 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1382 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1383}
c6d57f33 1384
3dd06ffa 1385static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1386 struct cgroup_sb_opts *opts)
ddbcc7e8 1387{
3dd06ffa 1388 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1389
ddbcc7e8 1390 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1391 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1392 cgrp->root = root;
cc31edce 1393 init_cgroup_housekeeping(cgrp);
4e96ee8e 1394 idr_init(&root->cgroup_idr);
c6d57f33 1395
c6d57f33
PM
1396 root->flags = opts->flags;
1397 if (opts->release_agent)
1398 strcpy(root->release_agent_path, opts->release_agent);
1399 if (opts->name)
1400 strcpy(root->name, opts->name);
2260e7fc 1401 if (opts->cpuset_clone_children)
3dd06ffa 1402 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1403}
1404
3dd06ffa 1405static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1406{
d427dfeb 1407 LIST_HEAD(tmp_links);
3dd06ffa 1408 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1409 struct css_set *cset;
d427dfeb 1410 int i, ret;
2c6ab6d2 1411
d427dfeb
TH
1412 lockdep_assert_held(&cgroup_tree_mutex);
1413 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1414
d427dfeb
TH
1415 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1416 if (ret < 0)
2bd59d48 1417 goto out;
d427dfeb 1418 root_cgrp->id = ret;
c6d57f33 1419
d427dfeb 1420 /*
96d365e0 1421 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1422 * but that's OK - it can only be increased by someone holding
1423 * cgroup_lock, and that's us. The worst that can happen is that we
1424 * have some link structures left over
1425 */
1426 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1427 if (ret)
2bd59d48 1428 goto out;
ddbcc7e8 1429
985ed670 1430 ret = cgroup_init_root_id(root);
ddbcc7e8 1431 if (ret)
2bd59d48 1432 goto out;
ddbcc7e8 1433
2bd59d48
TH
1434 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1435 KERNFS_ROOT_CREATE_DEACTIVATED,
1436 root_cgrp);
1437 if (IS_ERR(root->kf_root)) {
1438 ret = PTR_ERR(root->kf_root);
1439 goto exit_root_id;
1440 }
1441 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1442
d427dfeb
TH
1443 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1444 if (ret)
2bd59d48 1445 goto destroy_root;
ddbcc7e8 1446
5df36032 1447 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1448 if (ret)
2bd59d48 1449 goto destroy_root;
ddbcc7e8 1450
d427dfeb
TH
1451 /*
1452 * There must be no failure case after here, since rebinding takes
1453 * care of subsystems' refcounts, which are explicitly dropped in
1454 * the failure exit path.
1455 */
1456 list_add(&root->root_list, &cgroup_roots);
1457 cgroup_root_count++;
0df6a63f 1458
d427dfeb 1459 /*
3dd06ffa 1460 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1461 * objects.
1462 */
96d365e0 1463 down_write(&css_set_rwsem);
d427dfeb
TH
1464 hash_for_each(css_set_table, i, cset, hlist)
1465 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1466 up_write(&css_set_rwsem);
ddbcc7e8 1467
d427dfeb 1468 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1469 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1470
2bd59d48 1471 kernfs_activate(root_cgrp->kn);
d427dfeb 1472 ret = 0;
2bd59d48 1473 goto out;
d427dfeb 1474
2bd59d48
TH
1475destroy_root:
1476 kernfs_destroy_root(root->kf_root);
1477 root->kf_root = NULL;
1478exit_root_id:
d427dfeb 1479 cgroup_exit_root_id(root);
2bd59d48 1480out:
d427dfeb
TH
1481 free_cgrp_cset_links(&tmp_links);
1482 return ret;
ddbcc7e8
PM
1483}
1484
f7e83571 1485static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1486 int flags, const char *unused_dev_name,
f7e83571 1487 void *data)
ddbcc7e8 1488{
3dd06ffa 1489 struct cgroup_root *root;
ddbcc7e8 1490 struct cgroup_sb_opts opts;
2bd59d48 1491 struct dentry *dentry;
8e30e2b8 1492 int ret;
c6b3d5bc 1493 bool new_sb;
ddbcc7e8 1494
56fde9e0
TH
1495 /*
1496 * The first time anyone tries to mount a cgroup, enable the list
1497 * linking each css_set to its tasks and fix up all existing tasks.
1498 */
1499 if (!use_task_css_set_links)
1500 cgroup_enable_task_cg_lists();
e37a06f1 1501
8e30e2b8 1502 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1503 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1504
1505 /* First find the desired set of subsystems */
ddbcc7e8 1506 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1507 if (ret)
8e30e2b8 1508 goto out_unlock;
e37a06f1 1509retry:
2bd59d48 1510 /* look for a matching existing root */
a2dd4247
TH
1511 if (!opts.subsys_mask && !opts.none && !opts.name) {
1512 cgrp_dfl_root_visible = true;
1513 root = &cgrp_dfl_root;
1514 cgroup_get(&root->cgrp);
1515 ret = 0;
1516 goto out_unlock;
ddbcc7e8
PM
1517 }
1518
985ed670 1519 for_each_root(root) {
2bd59d48 1520 bool name_match = false;
3126121f 1521
3dd06ffa 1522 if (root == &cgrp_dfl_root)
985ed670 1523 continue;
3126121f 1524
cf5d5941 1525 /*
2bd59d48
TH
1526 * If we asked for a name then it must match. Also, if
1527 * name matches but sybsys_mask doesn't, we should fail.
1528 * Remember whether name matched.
cf5d5941 1529 */
2bd59d48
TH
1530 if (opts.name) {
1531 if (strcmp(opts.name, root->name))
1532 continue;
1533 name_match = true;
1534 }
ddbcc7e8 1535
c6d57f33 1536 /*
2bd59d48
TH
1537 * If we asked for subsystems (or explicitly for no
1538 * subsystems) then they must match.
c6d57f33 1539 */
2bd59d48 1540 if ((opts.subsys_mask || opts.none) &&
f392e51c 1541 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1542 if (!name_match)
1543 continue;
1544 ret = -EBUSY;
1545 goto out_unlock;
1546 }
873fe09e 1547
c7ba8287 1548 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1549 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1550 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1551 ret = -EINVAL;
8e30e2b8 1552 goto out_unlock;
2a0ff3fb
JL
1553 } else {
1554 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1555 }
873fe09e 1556 }
ddbcc7e8 1557
776f02fa 1558 /*
3dd06ffa 1559 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1560 * ref indicate that the root is being destroyed. Wait for
1561 * destruction to complete so that the subsystems are free.
1562 * We can use wait_queue for the wait but this path is
1563 * super cold. Let's just sleep for a bit and retry.
1564 */
3dd06ffa 1565 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1566 mutex_unlock(&cgroup_mutex);
1567 mutex_unlock(&cgroup_tree_mutex);
1568 msleep(10);
e37a06f1
LZ
1569 mutex_lock(&cgroup_tree_mutex);
1570 mutex_lock(&cgroup_mutex);
776f02fa
TH
1571 goto retry;
1572 }
ddbcc7e8 1573
776f02fa 1574 ret = 0;
2bd59d48 1575 goto out_unlock;
ddbcc7e8 1576 }
ddbcc7e8 1577
817929ec 1578 /*
172a2c06
TH
1579 * No such thing, create a new one. name= matching without subsys
1580 * specification is allowed for already existing hierarchies but we
1581 * can't create new one without subsys specification.
817929ec 1582 */
172a2c06
TH
1583 if (!opts.subsys_mask && !opts.none) {
1584 ret = -EINVAL;
1585 goto out_unlock;
817929ec 1586 }
817929ec 1587
172a2c06
TH
1588 root = kzalloc(sizeof(*root), GFP_KERNEL);
1589 if (!root) {
1590 ret = -ENOMEM;
2bd59d48 1591 goto out_unlock;
839ec545 1592 }
e5f6a860 1593
172a2c06
TH
1594 init_cgroup_root(root, &opts);
1595
35585573 1596 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1597 if (ret)
1598 cgroup_free_root(root);
fa3ca07e 1599
8e30e2b8 1600out_unlock:
ddbcc7e8 1601 mutex_unlock(&cgroup_mutex);
ace2bee8 1602 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8 1603
c6d57f33
PM
1604 kfree(opts.release_agent);
1605 kfree(opts.name);
03b1cde6 1606
2bd59d48 1607 if (ret)
8e30e2b8 1608 return ERR_PTR(ret);
2bd59d48 1609
c6b3d5bc
LZ
1610 dentry = kernfs_mount(fs_type, flags, root->kf_root, &new_sb);
1611 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1612 cgroup_put(&root->cgrp);
2bd59d48
TH
1613 return dentry;
1614}
1615
1616static void cgroup_kill_sb(struct super_block *sb)
1617{
1618 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1619 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1620
3dd06ffa 1621 cgroup_put(&root->cgrp);
2bd59d48 1622 kernfs_kill_sb(sb);
ddbcc7e8
PM
1623}
1624
1625static struct file_system_type cgroup_fs_type = {
1626 .name = "cgroup",
f7e83571 1627 .mount = cgroup_mount,
ddbcc7e8
PM
1628 .kill_sb = cgroup_kill_sb,
1629};
1630
676db4af
GK
1631static struct kobject *cgroup_kobj;
1632
857a2beb 1633/**
913ffdb5 1634 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1635 * @task: target task
857a2beb
TH
1636 * @buf: the buffer to write the path into
1637 * @buflen: the length of the buffer
1638 *
913ffdb5
TH
1639 * Determine @task's cgroup on the first (the one with the lowest non-zero
1640 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1641 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1642 * cgroup controller callbacks.
1643 *
e61734c5 1644 * Return value is the same as kernfs_path().
857a2beb 1645 */
e61734c5 1646char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1647{
3dd06ffa 1648 struct cgroup_root *root;
913ffdb5 1649 struct cgroup *cgrp;
e61734c5
TH
1650 int hierarchy_id = 1;
1651 char *path = NULL;
857a2beb
TH
1652
1653 mutex_lock(&cgroup_mutex);
96d365e0 1654 down_read(&css_set_rwsem);
857a2beb 1655
913ffdb5
TH
1656 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1657
857a2beb
TH
1658 if (root) {
1659 cgrp = task_cgroup_from_root(task, root);
e61734c5 1660 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1661 } else {
1662 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1663 if (strlcpy(buf, "/", buflen) < buflen)
1664 path = buf;
857a2beb
TH
1665 }
1666
96d365e0 1667 up_read(&css_set_rwsem);
857a2beb 1668 mutex_unlock(&cgroup_mutex);
e61734c5 1669 return path;
857a2beb 1670}
913ffdb5 1671EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1672
b3dc094e 1673/* used to track tasks and other necessary states during migration */
2f7ee569 1674struct cgroup_taskset {
b3dc094e
TH
1675 /* the src and dst cset list running through cset->mg_node */
1676 struct list_head src_csets;
1677 struct list_head dst_csets;
1678
1679 /*
1680 * Fields for cgroup_taskset_*() iteration.
1681 *
1682 * Before migration is committed, the target migration tasks are on
1683 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1684 * the csets on ->dst_csets. ->csets point to either ->src_csets
1685 * or ->dst_csets depending on whether migration is committed.
1686 *
1687 * ->cur_csets and ->cur_task point to the current task position
1688 * during iteration.
1689 */
1690 struct list_head *csets;
1691 struct css_set *cur_cset;
1692 struct task_struct *cur_task;
2f7ee569
TH
1693};
1694
1695/**
1696 * cgroup_taskset_first - reset taskset and return the first task
1697 * @tset: taskset of interest
1698 *
1699 * @tset iteration is initialized and the first task is returned.
1700 */
1701struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1702{
b3dc094e
TH
1703 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1704 tset->cur_task = NULL;
1705
1706 return cgroup_taskset_next(tset);
2f7ee569 1707}
2f7ee569
TH
1708
1709/**
1710 * cgroup_taskset_next - iterate to the next task in taskset
1711 * @tset: taskset of interest
1712 *
1713 * Return the next task in @tset. Iteration must have been initialized
1714 * with cgroup_taskset_first().
1715 */
1716struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1717{
b3dc094e
TH
1718 struct css_set *cset = tset->cur_cset;
1719 struct task_struct *task = tset->cur_task;
2f7ee569 1720
b3dc094e
TH
1721 while (&cset->mg_node != tset->csets) {
1722 if (!task)
1723 task = list_first_entry(&cset->mg_tasks,
1724 struct task_struct, cg_list);
1725 else
1726 task = list_next_entry(task, cg_list);
2f7ee569 1727
b3dc094e
TH
1728 if (&task->cg_list != &cset->mg_tasks) {
1729 tset->cur_cset = cset;
1730 tset->cur_task = task;
1731 return task;
1732 }
2f7ee569 1733
b3dc094e
TH
1734 cset = list_next_entry(cset, mg_node);
1735 task = NULL;
1736 }
2f7ee569 1737
b3dc094e 1738 return NULL;
2f7ee569 1739}
2f7ee569 1740
cb0f1fe9 1741/**
74a1166d 1742 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1743 * @old_cgrp; the cgroup @tsk is being migrated from
1744 * @tsk: the task being migrated
1745 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1746 *
cb0f1fe9 1747 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1748 */
5abb8855
TH
1749static void cgroup_task_migrate(struct cgroup *old_cgrp,
1750 struct task_struct *tsk,
1751 struct css_set *new_cset)
74a1166d 1752{
5abb8855 1753 struct css_set *old_cset;
74a1166d 1754
cb0f1fe9
TH
1755 lockdep_assert_held(&cgroup_mutex);
1756 lockdep_assert_held(&css_set_rwsem);
1757
74a1166d 1758 /*
026085ef
MSB
1759 * We are synchronized through threadgroup_lock() against PF_EXITING
1760 * setting such that we can't race against cgroup_exit() changing the
1761 * css_set to init_css_set and dropping the old one.
74a1166d 1762 */
c84cdf75 1763 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1764 old_cset = task_css_set(tsk);
74a1166d 1765
b3dc094e 1766 get_css_set(new_cset);
5abb8855 1767 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1768
1b9aba49
TH
1769 /*
1770 * Use move_tail so that cgroup_taskset_first() still returns the
1771 * leader after migration. This works because cgroup_migrate()
1772 * ensures that the dst_cset of the leader is the first on the
1773 * tset's dst_csets list.
1774 */
1775 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1776
1777 /*
5abb8855
TH
1778 * We just gained a reference on old_cset by taking it from the
1779 * task. As trading it for new_cset is protected by cgroup_mutex,
1780 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1781 */
5abb8855 1782 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1783 put_css_set_locked(old_cset, false);
74a1166d
BB
1784}
1785
a043e3b2 1786/**
1958d2d5
TH
1787 * cgroup_migrate_finish - cleanup after attach
1788 * @preloaded_csets: list of preloaded css_sets
74a1166d 1789 *
1958d2d5
TH
1790 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1791 * those functions for details.
74a1166d 1792 */
1958d2d5 1793static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1794{
1958d2d5 1795 struct css_set *cset, *tmp_cset;
74a1166d 1796
1958d2d5
TH
1797 lockdep_assert_held(&cgroup_mutex);
1798
1799 down_write(&css_set_rwsem);
1800 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1801 cset->mg_src_cgrp = NULL;
1802 cset->mg_dst_cset = NULL;
1803 list_del_init(&cset->mg_preload_node);
1804 put_css_set_locked(cset, false);
1805 }
1806 up_write(&css_set_rwsem);
1807}
1808
1809/**
1810 * cgroup_migrate_add_src - add a migration source css_set
1811 * @src_cset: the source css_set to add
1812 * @dst_cgrp: the destination cgroup
1813 * @preloaded_csets: list of preloaded css_sets
1814 *
1815 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1816 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1817 * up by cgroup_migrate_finish().
1818 *
1819 * This function may be called without holding threadgroup_lock even if the
1820 * target is a process. Threads may be created and destroyed but as long
1821 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1822 * the preloaded css_sets are guaranteed to cover all migrations.
1823 */
1824static void cgroup_migrate_add_src(struct css_set *src_cset,
1825 struct cgroup *dst_cgrp,
1826 struct list_head *preloaded_csets)
1827{
1828 struct cgroup *src_cgrp;
1829
1830 lockdep_assert_held(&cgroup_mutex);
1831 lockdep_assert_held(&css_set_rwsem);
1832
1833 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1834
1835 /* nothing to do if this cset already belongs to the cgroup */
1836 if (src_cgrp == dst_cgrp)
1837 return;
1838
1839 if (!list_empty(&src_cset->mg_preload_node))
1840 return;
1841
1842 WARN_ON(src_cset->mg_src_cgrp);
1843 WARN_ON(!list_empty(&src_cset->mg_tasks));
1844 WARN_ON(!list_empty(&src_cset->mg_node));
1845
1846 src_cset->mg_src_cgrp = src_cgrp;
1847 get_css_set(src_cset);
1848 list_add(&src_cset->mg_preload_node, preloaded_csets);
1849}
1850
1851/**
1852 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1853 * @dst_cgrp: the destination cgroup
1854 * @preloaded_csets: list of preloaded source css_sets
1855 *
1856 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1857 * have been preloaded to @preloaded_csets. This function looks up and
1858 * pins all destination css_sets, links each to its source, and put them on
1859 * @preloaded_csets.
1860 *
1861 * This function must be called after cgroup_migrate_add_src() has been
1862 * called on each migration source css_set. After migration is performed
1863 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1864 * @preloaded_csets.
1865 */
1866static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1867 struct list_head *preloaded_csets)
1868{
1869 LIST_HEAD(csets);
1870 struct css_set *src_cset;
1871
1872 lockdep_assert_held(&cgroup_mutex);
1873
1874 /* look up the dst cset for each src cset and link it to src */
1875 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1876 struct css_set *dst_cset;
1877
1878 dst_cset = find_css_set(src_cset, dst_cgrp);
1879 if (!dst_cset)
1880 goto err;
1881
1882 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1883 src_cset->mg_dst_cset = dst_cset;
1884
1885 if (list_empty(&dst_cset->mg_preload_node))
1886 list_add(&dst_cset->mg_preload_node, &csets);
1887 else
1888 put_css_set(dst_cset, false);
1889 }
1890
1891 list_splice(&csets, preloaded_csets);
1892 return 0;
1893err:
1894 cgroup_migrate_finish(&csets);
1895 return -ENOMEM;
1896}
1897
1898/**
1899 * cgroup_migrate - migrate a process or task to a cgroup
1900 * @cgrp: the destination cgroup
1901 * @leader: the leader of the process or the task to migrate
1902 * @threadgroup: whether @leader points to the whole process or a single task
1903 *
1904 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1905 * process, the caller must be holding threadgroup_lock of @leader. The
1906 * caller is also responsible for invoking cgroup_migrate_add_src() and
1907 * cgroup_migrate_prepare_dst() on the targets before invoking this
1908 * function and following up with cgroup_migrate_finish().
1909 *
1910 * As long as a controller's ->can_attach() doesn't fail, this function is
1911 * guaranteed to succeed. This means that, excluding ->can_attach()
1912 * failure, when migrating multiple targets, the success or failure can be
1913 * decided for all targets by invoking group_migrate_prepare_dst() before
1914 * actually starting migrating.
1915 */
1916static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1917 bool threadgroup)
74a1166d 1918{
b3dc094e
TH
1919 struct cgroup_taskset tset = {
1920 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1921 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1922 .csets = &tset.src_csets,
1923 };
1c6727af 1924 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1925 struct css_set *cset, *tmp_cset;
1926 struct task_struct *task, *tmp_task;
1927 int i, ret;
74a1166d 1928
fb5d2b4c
MSB
1929 /*
1930 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1931 * already PF_EXITING could be freed from underneath us unless we
1932 * take an rcu_read_lock.
1933 */
b3dc094e 1934 down_write(&css_set_rwsem);
fb5d2b4c 1935 rcu_read_lock();
9db8de37 1936 task = leader;
74a1166d 1937 do {
9db8de37
TH
1938 /* @task either already exited or can't exit until the end */
1939 if (task->flags & PF_EXITING)
ea84753c 1940 goto next;
134d3373 1941
eaf797ab
TH
1942 /* leave @task alone if post_fork() hasn't linked it yet */
1943 if (list_empty(&task->cg_list))
ea84753c 1944 goto next;
cd3d0952 1945
b3dc094e 1946 cset = task_css_set(task);
1958d2d5 1947 if (!cset->mg_src_cgrp)
ea84753c 1948 goto next;
b3dc094e 1949
61d1d219 1950 /*
1b9aba49
TH
1951 * cgroup_taskset_first() must always return the leader.
1952 * Take care to avoid disturbing the ordering.
61d1d219 1953 */
1b9aba49
TH
1954 list_move_tail(&task->cg_list, &cset->mg_tasks);
1955 if (list_empty(&cset->mg_node))
1956 list_add_tail(&cset->mg_node, &tset.src_csets);
1957 if (list_empty(&cset->mg_dst_cset->mg_node))
1958 list_move_tail(&cset->mg_dst_cset->mg_node,
1959 &tset.dst_csets);
ea84753c 1960 next:
081aa458
LZ
1961 if (!threadgroup)
1962 break;
9db8de37 1963 } while_each_thread(leader, task);
fb5d2b4c 1964 rcu_read_unlock();
b3dc094e 1965 up_write(&css_set_rwsem);
74a1166d 1966
134d3373 1967 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
1968 if (list_empty(&tset.src_csets))
1969 return 0;
134d3373 1970
1958d2d5 1971 /* check that we can legitimately attach to the cgroup */
1c6727af
TH
1972 for_each_css(css, i, cgrp) {
1973 if (css->ss->can_attach) {
9db8de37
TH
1974 ret = css->ss->can_attach(css, &tset);
1975 if (ret) {
1c6727af 1976 failed_css = css;
74a1166d
BB
1977 goto out_cancel_attach;
1978 }
1979 }
74a1166d
BB
1980 }
1981
1982 /*
1958d2d5
TH
1983 * Now that we're guaranteed success, proceed to move all tasks to
1984 * the new cgroup. There are no failure cases after here, so this
1985 * is the commit point.
74a1166d 1986 */
cb0f1fe9 1987 down_write(&css_set_rwsem);
b3dc094e
TH
1988 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1989 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1990 cgroup_task_migrate(cset->mg_src_cgrp, task,
1991 cset->mg_dst_cset);
74a1166d 1992 }
cb0f1fe9 1993 up_write(&css_set_rwsem);
74a1166d
BB
1994
1995 /*
1958d2d5
TH
1996 * Migration is committed, all target tasks are now on dst_csets.
1997 * Nothing is sensitive to fork() after this point. Notify
1998 * controllers that migration is complete.
74a1166d 1999 */
1958d2d5 2000 tset.csets = &tset.dst_csets;
74a1166d 2001
1c6727af
TH
2002 for_each_css(css, i, cgrp)
2003 if (css->ss->attach)
2004 css->ss->attach(css, &tset);
74a1166d 2005
9db8de37 2006 ret = 0;
b3dc094e
TH
2007 goto out_release_tset;
2008
74a1166d 2009out_cancel_attach:
b3dc094e
TH
2010 for_each_css(css, i, cgrp) {
2011 if (css == failed_css)
2012 break;
2013 if (css->ss->cancel_attach)
2014 css->ss->cancel_attach(css, &tset);
74a1166d 2015 }
b3dc094e
TH
2016out_release_tset:
2017 down_write(&css_set_rwsem);
2018 list_splice_init(&tset.dst_csets, &tset.src_csets);
2019 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2020 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2021 list_del_init(&cset->mg_node);
b3dc094e
TH
2022 }
2023 up_write(&css_set_rwsem);
9db8de37 2024 return ret;
74a1166d
BB
2025}
2026
1958d2d5
TH
2027/**
2028 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2029 * @dst_cgrp: the cgroup to attach to
2030 * @leader: the task or the leader of the threadgroup to be attached
2031 * @threadgroup: attach the whole threadgroup?
2032 *
0e1d768f 2033 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2034 */
2035static int cgroup_attach_task(struct cgroup *dst_cgrp,
2036 struct task_struct *leader, bool threadgroup)
2037{
2038 LIST_HEAD(preloaded_csets);
2039 struct task_struct *task;
2040 int ret;
2041
2042 /* look up all src csets */
2043 down_read(&css_set_rwsem);
2044 rcu_read_lock();
2045 task = leader;
2046 do {
2047 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2048 &preloaded_csets);
2049 if (!threadgroup)
2050 break;
2051 } while_each_thread(leader, task);
2052 rcu_read_unlock();
2053 up_read(&css_set_rwsem);
2054
2055 /* prepare dst csets and commit */
2056 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2057 if (!ret)
2058 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2059
2060 cgroup_migrate_finish(&preloaded_csets);
2061 return ret;
74a1166d
BB
2062}
2063
2064/*
2065 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2066 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2067 * cgroup_mutex and threadgroup.
bbcb81d0 2068 */
74a1166d 2069static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2070{
bbcb81d0 2071 struct task_struct *tsk;
c69e8d9c 2072 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2073 int ret;
2074
74a1166d
BB
2075 if (!cgroup_lock_live_group(cgrp))
2076 return -ENODEV;
2077
b78949eb
MSB
2078retry_find_task:
2079 rcu_read_lock();
bbcb81d0 2080 if (pid) {
73507f33 2081 tsk = find_task_by_vpid(pid);
74a1166d
BB
2082 if (!tsk) {
2083 rcu_read_unlock();
dd4b0a46 2084 ret = -ESRCH;
b78949eb 2085 goto out_unlock_cgroup;
bbcb81d0 2086 }
74a1166d
BB
2087 /*
2088 * even if we're attaching all tasks in the thread group, we
2089 * only need to check permissions on one of them.
2090 */
c69e8d9c 2091 tcred = __task_cred(tsk);
14a590c3
EB
2092 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2093 !uid_eq(cred->euid, tcred->uid) &&
2094 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2095 rcu_read_unlock();
b78949eb
MSB
2096 ret = -EACCES;
2097 goto out_unlock_cgroup;
bbcb81d0 2098 }
b78949eb
MSB
2099 } else
2100 tsk = current;
cd3d0952
TH
2101
2102 if (threadgroup)
b78949eb 2103 tsk = tsk->group_leader;
c4c27fbd
MG
2104
2105 /*
14a40ffc 2106 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2107 * trapped in a cpuset, or RT worker may be born in a cgroup
2108 * with no rt_runtime allocated. Just say no.
2109 */
14a40ffc 2110 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2111 ret = -EINVAL;
2112 rcu_read_unlock();
2113 goto out_unlock_cgroup;
2114 }
2115
b78949eb
MSB
2116 get_task_struct(tsk);
2117 rcu_read_unlock();
2118
2119 threadgroup_lock(tsk);
2120 if (threadgroup) {
2121 if (!thread_group_leader(tsk)) {
2122 /*
2123 * a race with de_thread from another thread's exec()
2124 * may strip us of our leadership, if this happens,
2125 * there is no choice but to throw this task away and
2126 * try again; this is
2127 * "double-double-toil-and-trouble-check locking".
2128 */
2129 threadgroup_unlock(tsk);
2130 put_task_struct(tsk);
2131 goto retry_find_task;
2132 }
081aa458
LZ
2133 }
2134
2135 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2136
cd3d0952
TH
2137 threadgroup_unlock(tsk);
2138
bbcb81d0 2139 put_task_struct(tsk);
b78949eb 2140out_unlock_cgroup:
47cfcd09 2141 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2142 return ret;
2143}
2144
7ae1bad9
TH
2145/**
2146 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2147 * @from: attach to all cgroups of a given task
2148 * @tsk: the task to be attached
2149 */
2150int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2151{
3dd06ffa 2152 struct cgroup_root *root;
7ae1bad9
TH
2153 int retval = 0;
2154
47cfcd09 2155 mutex_lock(&cgroup_mutex);
985ed670 2156 for_each_root(root) {
96d365e0
TH
2157 struct cgroup *from_cgrp;
2158
3dd06ffa 2159 if (root == &cgrp_dfl_root)
985ed670
TH
2160 continue;
2161
96d365e0
TH
2162 down_read(&css_set_rwsem);
2163 from_cgrp = task_cgroup_from_root(from, root);
2164 up_read(&css_set_rwsem);
7ae1bad9 2165
6f4b7e63 2166 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2167 if (retval)
2168 break;
2169 }
47cfcd09 2170 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2171
2172 return retval;
2173}
2174EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2175
182446d0
TH
2176static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2177 struct cftype *cft, u64 pid)
74a1166d 2178{
182446d0 2179 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2180}
2181
182446d0
TH
2182static int cgroup_procs_write(struct cgroup_subsys_state *css,
2183 struct cftype *cft, u64 tgid)
af351026 2184{
182446d0 2185 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2186}
2187
182446d0 2188static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2189 struct cftype *cft, char *buffer)
e788e066 2190{
3dd06ffa 2191 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2192
2193 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2194 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2195 return -ENODEV;
69e943b7 2196 spin_lock(&release_agent_path_lock);
5f469907
TH
2197 strlcpy(root->release_agent_path, buffer,
2198 sizeof(root->release_agent_path));
69e943b7 2199 spin_unlock(&release_agent_path_lock);
47cfcd09 2200 mutex_unlock(&cgroup_mutex);
e788e066
PM
2201 return 0;
2202}
2203
2da8ca82 2204static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2205{
2da8ca82 2206 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2207
e788e066
PM
2208 if (!cgroup_lock_live_group(cgrp))
2209 return -ENODEV;
2210 seq_puts(seq, cgrp->root->release_agent_path);
2211 seq_putc(seq, '\n');
47cfcd09 2212 mutex_unlock(&cgroup_mutex);
e788e066
PM
2213 return 0;
2214}
2215
2da8ca82 2216static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2217{
2da8ca82
TH
2218 struct cgroup *cgrp = seq_css(seq)->cgroup;
2219
2220 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2221 return 0;
2222}
2223
2bd59d48
TH
2224static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2225 size_t nbytes, loff_t off)
355e0c48 2226{
2bd59d48
TH
2227 struct cgroup *cgrp = of->kn->parent->priv;
2228 struct cftype *cft = of->kn->priv;
2229 struct cgroup_subsys_state *css;
a742c59d 2230 int ret;
355e0c48 2231
2bd59d48
TH
2232 /*
2233 * kernfs guarantees that a file isn't deleted with operations in
2234 * flight, which means that the matching css is and stays alive and
2235 * doesn't need to be pinned. The RCU locking is not necessary
2236 * either. It's just for the convenience of using cgroup_css().
2237 */
2238 rcu_read_lock();
2239 css = cgroup_css(cgrp, cft->ss);
2240 rcu_read_unlock();
a742c59d
TH
2241
2242 if (cft->write_string) {
2243 ret = cft->write_string(css, cft, strstrip(buf));
2244 } else if (cft->write_u64) {
2245 unsigned long long v;
2246 ret = kstrtoull(buf, 0, &v);
2247 if (!ret)
2248 ret = cft->write_u64(css, cft, v);
2249 } else if (cft->write_s64) {
2250 long long v;
2251 ret = kstrtoll(buf, 0, &v);
2252 if (!ret)
2253 ret = cft->write_s64(css, cft, v);
2254 } else if (cft->trigger) {
2255 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2256 } else {
a742c59d 2257 ret = -EINVAL;
e73d2c61 2258 }
2bd59d48 2259
a742c59d 2260 return ret ?: nbytes;
355e0c48
PM
2261}
2262
6612f05b 2263static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2264{
2bd59d48 2265 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2266}
2267
6612f05b 2268static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2269{
2bd59d48 2270 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2271}
2272
6612f05b 2273static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2274{
2bd59d48 2275 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2276}
2277
91796569 2278static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2279{
7da11279
TH
2280 struct cftype *cft = seq_cft(m);
2281 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2282
2da8ca82
TH
2283 if (cft->seq_show)
2284 return cft->seq_show(m, arg);
e73d2c61 2285
f4c753b7 2286 if (cft->read_u64)
896f5199
TH
2287 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2288 else if (cft->read_s64)
2289 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2290 else
2291 return -EINVAL;
2292 return 0;
91796569
PM
2293}
2294
2bd59d48
TH
2295static struct kernfs_ops cgroup_kf_single_ops = {
2296 .atomic_write_len = PAGE_SIZE,
2297 .write = cgroup_file_write,
2298 .seq_show = cgroup_seqfile_show,
91796569
PM
2299};
2300
2bd59d48
TH
2301static struct kernfs_ops cgroup_kf_ops = {
2302 .atomic_write_len = PAGE_SIZE,
2303 .write = cgroup_file_write,
2304 .seq_start = cgroup_seqfile_start,
2305 .seq_next = cgroup_seqfile_next,
2306 .seq_stop = cgroup_seqfile_stop,
2307 .seq_show = cgroup_seqfile_show,
2308};
ddbcc7e8
PM
2309
2310/*
2311 * cgroup_rename - Only allow simple rename of directories in place.
2312 */
2bd59d48
TH
2313static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2314 const char *new_name_str)
ddbcc7e8 2315{
2bd59d48 2316 struct cgroup *cgrp = kn->priv;
65dff759 2317 int ret;
65dff759 2318
2bd59d48 2319 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2320 return -ENOTDIR;
2bd59d48 2321 if (kn->parent != new_parent)
ddbcc7e8 2322 return -EIO;
65dff759 2323
6db8e85c
TH
2324 /*
2325 * This isn't a proper migration and its usefulness is very
2326 * limited. Disallow if sane_behavior.
2327 */
2328 if (cgroup_sane_behavior(cgrp))
2329 return -EPERM;
099fca32 2330
e1b2dc17
TH
2331 /*
2332 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2333 * active_ref. kernfs_rename() doesn't require active_ref
2334 * protection. Break them before grabbing cgroup_tree_mutex.
2335 */
2336 kernfs_break_active_protection(new_parent);
2337 kernfs_break_active_protection(kn);
099fca32 2338
2bd59d48
TH
2339 mutex_lock(&cgroup_tree_mutex);
2340 mutex_lock(&cgroup_mutex);
099fca32 2341
2bd59d48 2342 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2343
2bd59d48
TH
2344 mutex_unlock(&cgroup_mutex);
2345 mutex_unlock(&cgroup_tree_mutex);
e1b2dc17
TH
2346
2347 kernfs_unbreak_active_protection(kn);
2348 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2349 return ret;
099fca32
LZ
2350}
2351
49957f8e
TH
2352/* set uid and gid of cgroup dirs and files to that of the creator */
2353static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2354{
2355 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2356 .ia_uid = current_fsuid(),
2357 .ia_gid = current_fsgid(), };
2358
2359 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2360 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2361 return 0;
2362
2363 return kernfs_setattr(kn, &iattr);
2364}
2365
2bb566cb 2366static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2367{
8d7e6fb0 2368 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2369 struct kernfs_node *kn;
2370 struct lock_class_key *key = NULL;
49957f8e 2371 int ret;
05ef1d7c 2372
2bd59d48
TH
2373#ifdef CONFIG_DEBUG_LOCK_ALLOC
2374 key = &cft->lockdep_key;
2375#endif
2376 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2377 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2378 NULL, false, key);
49957f8e
TH
2379 if (IS_ERR(kn))
2380 return PTR_ERR(kn);
2381
2382 ret = cgroup_kn_set_ugid(kn);
2383 if (ret)
2384 kernfs_remove(kn);
2385 return ret;
ddbcc7e8
PM
2386}
2387
b1f28d31
TH
2388/**
2389 * cgroup_addrm_files - add or remove files to a cgroup directory
2390 * @cgrp: the target cgroup
b1f28d31
TH
2391 * @cfts: array of cftypes to be added
2392 * @is_add: whether to add or remove
2393 *
2394 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2395 * For removals, this function never fails. If addition fails, this
2396 * function doesn't remove files already added. The caller is responsible
2397 * for cleaning up.
b1f28d31 2398 */
2bb566cb
TH
2399static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2400 bool is_add)
ddbcc7e8 2401{
03b1cde6 2402 struct cftype *cft;
b1f28d31
TH
2403 int ret;
2404
ace2bee8 2405 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2406
2407 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2408 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2409 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2410 continue;
873fe09e
TH
2411 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2412 continue;
f33fddc2
G
2413 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2414 continue;
2415 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2416 continue;
2417
2739d3cc 2418 if (is_add) {
2bb566cb 2419 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2420 if (ret) {
2739d3cc 2421 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2422 cft->name, ret);
2423 return ret;
2424 }
2739d3cc
LZ
2425 } else {
2426 cgroup_rm_file(cgrp, cft);
db0416b6 2427 }
ddbcc7e8 2428 }
b1f28d31 2429 return 0;
ddbcc7e8
PM
2430}
2431
21a2d343 2432static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2433{
2434 LIST_HEAD(pending);
2bb566cb 2435 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2436 struct cgroup *root = &ss->root->cgrp;
492eb21b 2437 struct cgroup_subsys_state *css;
9ccece80 2438 int ret = 0;
8e3f6541 2439
21a2d343 2440 lockdep_assert_held(&cgroup_tree_mutex);
8e3f6541 2441
e8c82d20 2442 /* add/rm files for all cgroups created before */
ca8bdcaf 2443 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2444 struct cgroup *cgrp = css->cgroup;
2445
e8c82d20
LZ
2446 if (cgroup_is_dead(cgrp))
2447 continue;
2448
21a2d343 2449 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2450 if (ret)
2451 break;
8e3f6541 2452 }
21a2d343
TH
2453
2454 if (is_add && !ret)
2455 kernfs_activate(root->kn);
9ccece80 2456 return ret;
8e3f6541
TH
2457}
2458
2da440a2 2459static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2460{
2bb566cb 2461 struct cftype *cft;
8e3f6541 2462
2bd59d48
TH
2463 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2464 /* free copy for custom atomic_write_len, see init_cftypes() */
2465 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2466 kfree(cft->kf_ops);
2467 cft->kf_ops = NULL;
2da440a2 2468 cft->ss = NULL;
2bd59d48 2469 }
2da440a2
TH
2470}
2471
2bd59d48 2472static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2473{
2474 struct cftype *cft;
2475
2bd59d48
TH
2476 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2477 struct kernfs_ops *kf_ops;
2478
0adb0704
TH
2479 WARN_ON(cft->ss || cft->kf_ops);
2480
2bd59d48
TH
2481 if (cft->seq_start)
2482 kf_ops = &cgroup_kf_ops;
2483 else
2484 kf_ops = &cgroup_kf_single_ops;
2485
2486 /*
2487 * Ugh... if @cft wants a custom max_write_len, we need to
2488 * make a copy of kf_ops to set its atomic_write_len.
2489 */
2490 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2491 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2492 if (!kf_ops) {
2493 cgroup_exit_cftypes(cfts);
2494 return -ENOMEM;
2495 }
2496 kf_ops->atomic_write_len = cft->max_write_len;
2497 }
8e3f6541 2498
2bd59d48 2499 cft->kf_ops = kf_ops;
2bb566cb 2500 cft->ss = ss;
2bd59d48 2501 }
2bb566cb 2502
2bd59d48 2503 return 0;
2da440a2
TH
2504}
2505
21a2d343
TH
2506static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2507{
2508 lockdep_assert_held(&cgroup_tree_mutex);
2509
2510 if (!cfts || !cfts[0].ss)
2511 return -ENOENT;
2512
2513 list_del(&cfts->node);
2514 cgroup_apply_cftypes(cfts, false);
2515 cgroup_exit_cftypes(cfts);
2516 return 0;
8e3f6541 2517}
8e3f6541 2518
79578621
TH
2519/**
2520 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2521 * @cfts: zero-length name terminated array of cftypes
2522 *
2bb566cb
TH
2523 * Unregister @cfts. Files described by @cfts are removed from all
2524 * existing cgroups and all future cgroups won't have them either. This
2525 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2526 *
2527 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2528 * registered.
79578621 2529 */
2bb566cb 2530int cgroup_rm_cftypes(struct cftype *cfts)
79578621 2531{
21a2d343 2532 int ret;
79578621 2533
21a2d343
TH
2534 mutex_lock(&cgroup_tree_mutex);
2535 ret = cgroup_rm_cftypes_locked(cfts);
2536 mutex_unlock(&cgroup_tree_mutex);
2537 return ret;
80b13586
TH
2538}
2539
8e3f6541
TH
2540/**
2541 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2542 * @ss: target cgroup subsystem
2543 * @cfts: zero-length name terminated array of cftypes
2544 *
2545 * Register @cfts to @ss. Files described by @cfts are created for all
2546 * existing cgroups to which @ss is attached and all future cgroups will
2547 * have them too. This function can be called anytime whether @ss is
2548 * attached or not.
2549 *
2550 * Returns 0 on successful registration, -errno on failure. Note that this
2551 * function currently returns 0 as long as @cfts registration is successful
2552 * even if some file creation attempts on existing cgroups fail.
2553 */
03b1cde6 2554int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2555{
9ccece80 2556 int ret;
8e3f6541 2557
dc5736ed
LZ
2558 if (!cfts || cfts[0].name[0] == '\0')
2559 return 0;
2bb566cb 2560
2bd59d48
TH
2561 ret = cgroup_init_cftypes(ss, cfts);
2562 if (ret)
2563 return ret;
79578621 2564
21a2d343
TH
2565 mutex_lock(&cgroup_tree_mutex);
2566
0adb0704 2567 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2568 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2569 if (ret)
21a2d343 2570 cgroup_rm_cftypes_locked(cfts);
79578621 2571
21a2d343 2572 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2573 return ret;
79578621
TH
2574}
2575
a043e3b2
LZ
2576/**
2577 * cgroup_task_count - count the number of tasks in a cgroup.
2578 * @cgrp: the cgroup in question
2579 *
2580 * Return the number of tasks in the cgroup.
2581 */
07bc356e 2582static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2583{
2584 int count = 0;
69d0206c 2585 struct cgrp_cset_link *link;
817929ec 2586
96d365e0 2587 down_read(&css_set_rwsem);
69d0206c
TH
2588 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2589 count += atomic_read(&link->cset->refcount);
96d365e0 2590 up_read(&css_set_rwsem);
bbcb81d0
PM
2591 return count;
2592}
2593
53fa5261 2594/**
492eb21b
TH
2595 * css_next_child - find the next child of a given css
2596 * @pos_css: the current position (%NULL to initiate traversal)
2597 * @parent_css: css whose children to walk
53fa5261 2598 *
492eb21b 2599 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2600 * under either cgroup_mutex or RCU read lock. The only requirement is
2601 * that @parent_css and @pos_css are accessible. The next sibling is
2602 * guaranteed to be returned regardless of their states.
53fa5261 2603 */
492eb21b
TH
2604struct cgroup_subsys_state *
2605css_next_child(struct cgroup_subsys_state *pos_css,
2606 struct cgroup_subsys_state *parent_css)
53fa5261 2607{
492eb21b
TH
2608 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2609 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2610 struct cgroup *next;
2611
ace2bee8 2612 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2613
2614 /*
2615 * @pos could already have been removed. Once a cgroup is removed,
2616 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2617 * changes. As CGRP_DEAD assertion is serialized and happens
2618 * before the cgroup is taken off the ->sibling list, if we see it
2619 * unasserted, it's guaranteed that the next sibling hasn't
2620 * finished its grace period even if it's already removed, and thus
2621 * safe to dereference from this RCU critical section. If
2622 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2623 * to be visible as %true here.
3b287a50
TH
2624 *
2625 * If @pos is dead, its next pointer can't be dereferenced;
2626 * however, as each cgroup is given a monotonically increasing
2627 * unique serial number and always appended to the sibling list,
2628 * the next one can be found by walking the parent's children until
2629 * we see a cgroup with higher serial number than @pos's. While
2630 * this path can be slower, it's taken only when either the current
2631 * cgroup is removed or iteration and removal race.
53fa5261 2632 */
3b287a50
TH
2633 if (!pos) {
2634 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2635 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2636 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2637 } else {
2638 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2639 if (next->serial_nr > pos->serial_nr)
2640 break;
53fa5261
TH
2641 }
2642
492eb21b
TH
2643 if (&next->sibling == &cgrp->children)
2644 return NULL;
2645
ca8bdcaf 2646 return cgroup_css(next, parent_css->ss);
53fa5261 2647}
53fa5261 2648
574bd9f7 2649/**
492eb21b 2650 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2651 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2652 * @root: css whose descendants to walk
574bd9f7 2653 *
492eb21b 2654 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2655 * to visit for pre-order traversal of @root's descendants. @root is
2656 * included in the iteration and the first node to be visited.
75501a6d 2657 *
87fb54f1
TH
2658 * While this function requires cgroup_mutex or RCU read locking, it
2659 * doesn't require the whole traversal to be contained in a single critical
2660 * section. This function will return the correct next descendant as long
2661 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2662 */
492eb21b
TH
2663struct cgroup_subsys_state *
2664css_next_descendant_pre(struct cgroup_subsys_state *pos,
2665 struct cgroup_subsys_state *root)
574bd9f7 2666{
492eb21b 2667 struct cgroup_subsys_state *next;
574bd9f7 2668
ace2bee8 2669 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2670
bd8815a6 2671 /* if first iteration, visit @root */
7805d000 2672 if (!pos)
bd8815a6 2673 return root;
574bd9f7
TH
2674
2675 /* visit the first child if exists */
492eb21b 2676 next = css_next_child(NULL, pos);
574bd9f7
TH
2677 if (next)
2678 return next;
2679
2680 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2681 while (pos != root) {
2682 next = css_next_child(pos, css_parent(pos));
75501a6d 2683 if (next)
574bd9f7 2684 return next;
492eb21b 2685 pos = css_parent(pos);
7805d000 2686 }
574bd9f7
TH
2687
2688 return NULL;
2689}
574bd9f7 2690
12a9d2fe 2691/**
492eb21b
TH
2692 * css_rightmost_descendant - return the rightmost descendant of a css
2693 * @pos: css of interest
12a9d2fe 2694 *
492eb21b
TH
2695 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2696 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2697 * subtree of @pos.
75501a6d 2698 *
87fb54f1
TH
2699 * While this function requires cgroup_mutex or RCU read locking, it
2700 * doesn't require the whole traversal to be contained in a single critical
2701 * section. This function will return the correct rightmost descendant as
2702 * long as @pos is accessible.
12a9d2fe 2703 */
492eb21b
TH
2704struct cgroup_subsys_state *
2705css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2706{
492eb21b 2707 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2708
ace2bee8 2709 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2710
2711 do {
2712 last = pos;
2713 /* ->prev isn't RCU safe, walk ->next till the end */
2714 pos = NULL;
492eb21b 2715 css_for_each_child(tmp, last)
12a9d2fe
TH
2716 pos = tmp;
2717 } while (pos);
2718
2719 return last;
2720}
12a9d2fe 2721
492eb21b
TH
2722static struct cgroup_subsys_state *
2723css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2724{
492eb21b 2725 struct cgroup_subsys_state *last;
574bd9f7
TH
2726
2727 do {
2728 last = pos;
492eb21b 2729 pos = css_next_child(NULL, pos);
574bd9f7
TH
2730 } while (pos);
2731
2732 return last;
2733}
2734
2735/**
492eb21b 2736 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2737 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2738 * @root: css whose descendants to walk
574bd9f7 2739 *
492eb21b 2740 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2741 * to visit for post-order traversal of @root's descendants. @root is
2742 * included in the iteration and the last node to be visited.
75501a6d 2743 *
87fb54f1
TH
2744 * While this function requires cgroup_mutex or RCU read locking, it
2745 * doesn't require the whole traversal to be contained in a single critical
2746 * section. This function will return the correct next descendant as long
2747 * as both @pos and @cgroup are accessible and @pos is a descendant of
2748 * @cgroup.
574bd9f7 2749 */
492eb21b
TH
2750struct cgroup_subsys_state *
2751css_next_descendant_post(struct cgroup_subsys_state *pos,
2752 struct cgroup_subsys_state *root)
574bd9f7 2753{
492eb21b 2754 struct cgroup_subsys_state *next;
574bd9f7 2755
ace2bee8 2756 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2757
58b79a91
TH
2758 /* if first iteration, visit leftmost descendant which may be @root */
2759 if (!pos)
2760 return css_leftmost_descendant(root);
574bd9f7 2761
bd8815a6
TH
2762 /* if we visited @root, we're done */
2763 if (pos == root)
2764 return NULL;
2765
574bd9f7 2766 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2767 next = css_next_child(pos, css_parent(pos));
75501a6d 2768 if (next)
492eb21b 2769 return css_leftmost_descendant(next);
574bd9f7
TH
2770
2771 /* no sibling left, visit parent */
bd8815a6 2772 return css_parent(pos);
574bd9f7 2773}
574bd9f7 2774
0942eeee 2775/**
72ec7029 2776 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2777 * @it: the iterator to advance
2778 *
2779 * Advance @it to the next css_set to walk.
d515876e 2780 */
72ec7029 2781static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2782{
2783 struct list_head *l = it->cset_link;
2784 struct cgrp_cset_link *link;
2785 struct css_set *cset;
2786
2787 /* Advance to the next non-empty css_set */
2788 do {
2789 l = l->next;
72ec7029 2790 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2791 it->cset_link = NULL;
2792 return;
2793 }
2794 link = list_entry(l, struct cgrp_cset_link, cset_link);
2795 cset = link->cset;
c7561128
TH
2796 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2797
d515876e 2798 it->cset_link = l;
c7561128
TH
2799
2800 if (!list_empty(&cset->tasks))
2801 it->task = cset->tasks.next;
2802 else
2803 it->task = cset->mg_tasks.next;
d515876e
TH
2804}
2805
0942eeee 2806/**
72ec7029
TH
2807 * css_task_iter_start - initiate task iteration
2808 * @css: the css to walk tasks of
0942eeee
TH
2809 * @it: the task iterator to use
2810 *
72ec7029
TH
2811 * Initiate iteration through the tasks of @css. The caller can call
2812 * css_task_iter_next() to walk through the tasks until the function
2813 * returns NULL. On completion of iteration, css_task_iter_end() must be
2814 * called.
0942eeee
TH
2815 *
2816 * Note that this function acquires a lock which is released when the
2817 * iteration finishes. The caller can't sleep while iteration is in
2818 * progress.
2819 */
72ec7029
TH
2820void css_task_iter_start(struct cgroup_subsys_state *css,
2821 struct css_task_iter *it)
96d365e0 2822 __acquires(css_set_rwsem)
817929ec 2823{
56fde9e0
TH
2824 /* no one should try to iterate before mounting cgroups */
2825 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2826
96d365e0 2827 down_read(&css_set_rwsem);
c59cd3d8 2828
72ec7029
TH
2829 it->origin_css = css;
2830 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2831
72ec7029 2832 css_advance_task_iter(it);
817929ec
PM
2833}
2834
0942eeee 2835/**
72ec7029 2836 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2837 * @it: the task iterator being iterated
2838 *
2839 * The "next" function for task iteration. @it should have been
72ec7029
TH
2840 * initialized via css_task_iter_start(). Returns NULL when the iteration
2841 * reaches the end.
0942eeee 2842 */
72ec7029 2843struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2844{
2845 struct task_struct *res;
2846 struct list_head *l = it->task;
c7561128
TH
2847 struct cgrp_cset_link *link = list_entry(it->cset_link,
2848 struct cgrp_cset_link, cset_link);
817929ec
PM
2849
2850 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2851 if (!it->cset_link)
817929ec
PM
2852 return NULL;
2853 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2854
2855 /*
2856 * Advance iterator to find next entry. cset->tasks is consumed
2857 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2858 * next cset.
2859 */
817929ec 2860 l = l->next;
c7561128
TH
2861
2862 if (l == &link->cset->tasks)
2863 l = link->cset->mg_tasks.next;
2864
2865 if (l == &link->cset->mg_tasks)
72ec7029 2866 css_advance_task_iter(it);
c7561128 2867 else
817929ec 2868 it->task = l;
c7561128 2869
817929ec
PM
2870 return res;
2871}
2872
0942eeee 2873/**
72ec7029 2874 * css_task_iter_end - finish task iteration
0942eeee
TH
2875 * @it: the task iterator to finish
2876 *
72ec7029 2877 * Finish task iteration started by css_task_iter_start().
0942eeee 2878 */
72ec7029 2879void css_task_iter_end(struct css_task_iter *it)
96d365e0 2880 __releases(css_set_rwsem)
31a7df01 2881{
96d365e0 2882 up_read(&css_set_rwsem);
31a7df01
CW
2883}
2884
2885/**
8cc99345
TH
2886 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2887 * @to: cgroup to which the tasks will be moved
2888 * @from: cgroup in which the tasks currently reside
31a7df01 2889 *
eaf797ab
TH
2890 * Locking rules between cgroup_post_fork() and the migration path
2891 * guarantee that, if a task is forking while being migrated, the new child
2892 * is guaranteed to be either visible in the source cgroup after the
2893 * parent's migration is complete or put into the target cgroup. No task
2894 * can slip out of migration through forking.
31a7df01 2895 */
8cc99345 2896int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 2897{
952aaa12
TH
2898 LIST_HEAD(preloaded_csets);
2899 struct cgrp_cset_link *link;
72ec7029 2900 struct css_task_iter it;
e406d1cf 2901 struct task_struct *task;
952aaa12 2902 int ret;
31a7df01 2903
952aaa12 2904 mutex_lock(&cgroup_mutex);
31a7df01 2905
952aaa12
TH
2906 /* all tasks in @from are being moved, all csets are source */
2907 down_read(&css_set_rwsem);
2908 list_for_each_entry(link, &from->cset_links, cset_link)
2909 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2910 up_read(&css_set_rwsem);
31a7df01 2911
952aaa12
TH
2912 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2913 if (ret)
2914 goto out_err;
8cc99345 2915
952aaa12
TH
2916 /*
2917 * Migrate tasks one-by-one until @form is empty. This fails iff
2918 * ->can_attach() fails.
2919 */
e406d1cf
TH
2920 do {
2921 css_task_iter_start(&from->dummy_css, &it);
2922 task = css_task_iter_next(&it);
2923 if (task)
2924 get_task_struct(task);
2925 css_task_iter_end(&it);
2926
2927 if (task) {
952aaa12 2928 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
2929 put_task_struct(task);
2930 }
2931 } while (task && !ret);
952aaa12
TH
2932out_err:
2933 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 2934 mutex_unlock(&cgroup_mutex);
e406d1cf 2935 return ret;
8cc99345
TH
2936}
2937
bbcb81d0 2938/*
102a775e 2939 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2940 *
2941 * Reading this file can return large amounts of data if a cgroup has
2942 * *lots* of attached tasks. So it may need several calls to read(),
2943 * but we cannot guarantee that the information we produce is correct
2944 * unless we produce it entirely atomically.
2945 *
bbcb81d0 2946 */
bbcb81d0 2947
24528255
LZ
2948/* which pidlist file are we talking about? */
2949enum cgroup_filetype {
2950 CGROUP_FILE_PROCS,
2951 CGROUP_FILE_TASKS,
2952};
2953
2954/*
2955 * A pidlist is a list of pids that virtually represents the contents of one
2956 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2957 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2958 * to the cgroup.
2959 */
2960struct cgroup_pidlist {
2961 /*
2962 * used to find which pidlist is wanted. doesn't change as long as
2963 * this particular list stays in the list.
2964 */
2965 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2966 /* array of xids */
2967 pid_t *list;
2968 /* how many elements the above list has */
2969 int length;
24528255
LZ
2970 /* each of these stored in a list by its cgroup */
2971 struct list_head links;
2972 /* pointer to the cgroup we belong to, for list removal purposes */
2973 struct cgroup *owner;
b1a21367
TH
2974 /* for delayed destruction */
2975 struct delayed_work destroy_dwork;
24528255
LZ
2976};
2977
d1d9fd33
BB
2978/*
2979 * The following two functions "fix" the issue where there are more pids
2980 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2981 * TODO: replace with a kernel-wide solution to this problem
2982 */
2983#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2984static void *pidlist_allocate(int count)
2985{
2986 if (PIDLIST_TOO_LARGE(count))
2987 return vmalloc(count * sizeof(pid_t));
2988 else
2989 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2990}
b1a21367 2991
d1d9fd33
BB
2992static void pidlist_free(void *p)
2993{
2994 if (is_vmalloc_addr(p))
2995 vfree(p);
2996 else
2997 kfree(p);
2998}
d1d9fd33 2999
b1a21367
TH
3000/*
3001 * Used to destroy all pidlists lingering waiting for destroy timer. None
3002 * should be left afterwards.
3003 */
3004static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3005{
3006 struct cgroup_pidlist *l, *tmp_l;
3007
3008 mutex_lock(&cgrp->pidlist_mutex);
3009 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3010 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3011 mutex_unlock(&cgrp->pidlist_mutex);
3012
3013 flush_workqueue(cgroup_pidlist_destroy_wq);
3014 BUG_ON(!list_empty(&cgrp->pidlists));
3015}
3016
3017static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3018{
3019 struct delayed_work *dwork = to_delayed_work(work);
3020 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3021 destroy_dwork);
3022 struct cgroup_pidlist *tofree = NULL;
3023
3024 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3025
3026 /*
04502365
TH
3027 * Destroy iff we didn't get queued again. The state won't change
3028 * as destroy_dwork can only be queued while locked.
b1a21367 3029 */
04502365 3030 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3031 list_del(&l->links);
3032 pidlist_free(l->list);
3033 put_pid_ns(l->key.ns);
3034 tofree = l;
3035 }
3036
b1a21367
TH
3037 mutex_unlock(&l->owner->pidlist_mutex);
3038 kfree(tofree);
3039}
3040
bbcb81d0 3041/*
102a775e 3042 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3043 * Returns the number of unique elements.
bbcb81d0 3044 */
6ee211ad 3045static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3046{
102a775e 3047 int src, dest = 1;
102a775e
BB
3048
3049 /*
3050 * we presume the 0th element is unique, so i starts at 1. trivial
3051 * edge cases first; no work needs to be done for either
3052 */
3053 if (length == 0 || length == 1)
3054 return length;
3055 /* src and dest walk down the list; dest counts unique elements */
3056 for (src = 1; src < length; src++) {
3057 /* find next unique element */
3058 while (list[src] == list[src-1]) {
3059 src++;
3060 if (src == length)
3061 goto after;
3062 }
3063 /* dest always points to where the next unique element goes */
3064 list[dest] = list[src];
3065 dest++;
3066 }
3067after:
102a775e
BB
3068 return dest;
3069}
3070
afb2bc14
TH
3071/*
3072 * The two pid files - task and cgroup.procs - guaranteed that the result
3073 * is sorted, which forced this whole pidlist fiasco. As pid order is
3074 * different per namespace, each namespace needs differently sorted list,
3075 * making it impossible to use, for example, single rbtree of member tasks
3076 * sorted by task pointer. As pidlists can be fairly large, allocating one
3077 * per open file is dangerous, so cgroup had to implement shared pool of
3078 * pidlists keyed by cgroup and namespace.
3079 *
3080 * All this extra complexity was caused by the original implementation
3081 * committing to an entirely unnecessary property. In the long term, we
3082 * want to do away with it. Explicitly scramble sort order if
3083 * sane_behavior so that no such expectation exists in the new interface.
3084 *
3085 * Scrambling is done by swapping every two consecutive bits, which is
3086 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3087 */
3088static pid_t pid_fry(pid_t pid)
3089{
3090 unsigned a = pid & 0x55555555;
3091 unsigned b = pid & 0xAAAAAAAA;
3092
3093 return (a << 1) | (b >> 1);
3094}
3095
3096static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3097{
3098 if (cgroup_sane_behavior(cgrp))
3099 return pid_fry(pid);
3100 else
3101 return pid;
3102}
3103
102a775e
BB
3104static int cmppid(const void *a, const void *b)
3105{
3106 return *(pid_t *)a - *(pid_t *)b;
3107}
3108
afb2bc14
TH
3109static int fried_cmppid(const void *a, const void *b)
3110{
3111 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3112}
3113
e6b81710
TH
3114static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3115 enum cgroup_filetype type)
3116{
3117 struct cgroup_pidlist *l;
3118 /* don't need task_nsproxy() if we're looking at ourself */
3119 struct pid_namespace *ns = task_active_pid_ns(current);
3120
3121 lockdep_assert_held(&cgrp->pidlist_mutex);
3122
3123 list_for_each_entry(l, &cgrp->pidlists, links)
3124 if (l->key.type == type && l->key.ns == ns)
3125 return l;
3126 return NULL;
3127}
3128
72a8cb30
BB
3129/*
3130 * find the appropriate pidlist for our purpose (given procs vs tasks)
3131 * returns with the lock on that pidlist already held, and takes care
3132 * of the use count, or returns NULL with no locks held if we're out of
3133 * memory.
3134 */
e6b81710
TH
3135static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3136 enum cgroup_filetype type)
72a8cb30
BB
3137{
3138 struct cgroup_pidlist *l;
b70cc5fd 3139
e6b81710
TH
3140 lockdep_assert_held(&cgrp->pidlist_mutex);
3141
3142 l = cgroup_pidlist_find(cgrp, type);
3143 if (l)
3144 return l;
3145
72a8cb30 3146 /* entry not found; create a new one */
f4f4be2b 3147 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3148 if (!l)
72a8cb30 3149 return l;
e6b81710 3150
b1a21367 3151 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3152 l->key.type = type;
e6b81710
TH
3153 /* don't need task_nsproxy() if we're looking at ourself */
3154 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3155 l->owner = cgrp;
3156 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3157 return l;
3158}
3159
102a775e
BB
3160/*
3161 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3162 */
72a8cb30
BB
3163static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3164 struct cgroup_pidlist **lp)
102a775e
BB
3165{
3166 pid_t *array;
3167 int length;
3168 int pid, n = 0; /* used for populating the array */
72ec7029 3169 struct css_task_iter it;
817929ec 3170 struct task_struct *tsk;
102a775e
BB
3171 struct cgroup_pidlist *l;
3172
4bac00d1
TH
3173 lockdep_assert_held(&cgrp->pidlist_mutex);
3174
102a775e
BB
3175 /*
3176 * If cgroup gets more users after we read count, we won't have
3177 * enough space - tough. This race is indistinguishable to the
3178 * caller from the case that the additional cgroup users didn't
3179 * show up until sometime later on.
3180 */
3181 length = cgroup_task_count(cgrp);
d1d9fd33 3182 array = pidlist_allocate(length);
102a775e
BB
3183 if (!array)
3184 return -ENOMEM;
3185 /* now, populate the array */
72ec7029
TH
3186 css_task_iter_start(&cgrp->dummy_css, &it);
3187 while ((tsk = css_task_iter_next(&it))) {
102a775e 3188 if (unlikely(n == length))
817929ec 3189 break;
102a775e 3190 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3191 if (type == CGROUP_FILE_PROCS)
3192 pid = task_tgid_vnr(tsk);
3193 else
3194 pid = task_pid_vnr(tsk);
102a775e
BB
3195 if (pid > 0) /* make sure to only use valid results */
3196 array[n++] = pid;
817929ec 3197 }
72ec7029 3198 css_task_iter_end(&it);
102a775e
BB
3199 length = n;
3200 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3201 if (cgroup_sane_behavior(cgrp))
3202 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3203 else
3204 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3205 if (type == CGROUP_FILE_PROCS)
6ee211ad 3206 length = pidlist_uniq(array, length);
e6b81710 3207
e6b81710 3208 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3209 if (!l) {
e6b81710 3210 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3211 pidlist_free(array);
72a8cb30 3212 return -ENOMEM;
102a775e 3213 }
e6b81710
TH
3214
3215 /* store array, freeing old if necessary */
d1d9fd33 3216 pidlist_free(l->list);
102a775e
BB
3217 l->list = array;
3218 l->length = length;
72a8cb30 3219 *lp = l;
102a775e 3220 return 0;
bbcb81d0
PM
3221}
3222
846c7bb0 3223/**
a043e3b2 3224 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3225 * @stats: cgroupstats to fill information into
3226 * @dentry: A dentry entry belonging to the cgroup for which stats have
3227 * been requested.
a043e3b2
LZ
3228 *
3229 * Build and fill cgroupstats so that taskstats can export it to user
3230 * space.
846c7bb0
BS
3231 */
3232int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3233{
2bd59d48 3234 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3235 struct cgroup *cgrp;
72ec7029 3236 struct css_task_iter it;
846c7bb0 3237 struct task_struct *tsk;
33d283be 3238
2bd59d48
TH
3239 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3240 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3241 kernfs_type(kn) != KERNFS_DIR)
3242 return -EINVAL;
3243
bad34660
LZ
3244 mutex_lock(&cgroup_mutex);
3245
846c7bb0 3246 /*
2bd59d48
TH
3247 * We aren't being called from kernfs and there's no guarantee on
3248 * @kn->priv's validity. For this and css_tryget_from_dir(),
3249 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3250 */
2bd59d48
TH
3251 rcu_read_lock();
3252 cgrp = rcu_dereference(kn->priv);
bad34660 3253 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3254 rcu_read_unlock();
bad34660 3255 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3256 return -ENOENT;
3257 }
bad34660 3258 rcu_read_unlock();
846c7bb0 3259
72ec7029
TH
3260 css_task_iter_start(&cgrp->dummy_css, &it);
3261 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3262 switch (tsk->state) {
3263 case TASK_RUNNING:
3264 stats->nr_running++;
3265 break;
3266 case TASK_INTERRUPTIBLE:
3267 stats->nr_sleeping++;
3268 break;
3269 case TASK_UNINTERRUPTIBLE:
3270 stats->nr_uninterruptible++;
3271 break;
3272 case TASK_STOPPED:
3273 stats->nr_stopped++;
3274 break;
3275 default:
3276 if (delayacct_is_task_waiting_on_io(tsk))
3277 stats->nr_io_wait++;
3278 break;
3279 }
3280 }
72ec7029 3281 css_task_iter_end(&it);
846c7bb0 3282
bad34660 3283 mutex_unlock(&cgroup_mutex);
2bd59d48 3284 return 0;
846c7bb0
BS
3285}
3286
8f3ff208 3287
bbcb81d0 3288/*
102a775e 3289 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3290 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3291 * in the cgroup->l->list array.
bbcb81d0 3292 */
cc31edce 3293
102a775e 3294static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3295{
cc31edce
PM
3296 /*
3297 * Initially we receive a position value that corresponds to
3298 * one more than the last pid shown (or 0 on the first call or
3299 * after a seek to the start). Use a binary-search to find the
3300 * next pid to display, if any
3301 */
2bd59d48 3302 struct kernfs_open_file *of = s->private;
7da11279 3303 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3304 struct cgroup_pidlist *l;
7da11279 3305 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3306 int index = 0, pid = *pos;
4bac00d1
TH
3307 int *iter, ret;
3308
3309 mutex_lock(&cgrp->pidlist_mutex);
3310
3311 /*
5d22444f 3312 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3313 * after open. If the matching pidlist is around, we can use that.
5d22444f 3314 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3315 * could already have been destroyed.
3316 */
5d22444f
TH
3317 if (of->priv)
3318 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3319
3320 /*
3321 * Either this is the first start() after open or the matching
3322 * pidlist has been destroyed inbetween. Create a new one.
3323 */
5d22444f
TH
3324 if (!of->priv) {
3325 ret = pidlist_array_load(cgrp, type,
3326 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3327 if (ret)
3328 return ERR_PTR(ret);
3329 }
5d22444f 3330 l = of->priv;
cc31edce 3331
cc31edce 3332 if (pid) {
102a775e 3333 int end = l->length;
20777766 3334
cc31edce
PM
3335 while (index < end) {
3336 int mid = (index + end) / 2;
afb2bc14 3337 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3338 index = mid;
3339 break;
afb2bc14 3340 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3341 index = mid + 1;
3342 else
3343 end = mid;
3344 }
3345 }
3346 /* If we're off the end of the array, we're done */
102a775e 3347 if (index >= l->length)
cc31edce
PM
3348 return NULL;
3349 /* Update the abstract position to be the actual pid that we found */
102a775e 3350 iter = l->list + index;
afb2bc14 3351 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3352 return iter;
3353}
3354
102a775e 3355static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3356{
2bd59d48 3357 struct kernfs_open_file *of = s->private;
5d22444f 3358 struct cgroup_pidlist *l = of->priv;
62236858 3359
5d22444f
TH
3360 if (l)
3361 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3362 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3363 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3364}
3365
102a775e 3366static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3367{
2bd59d48 3368 struct kernfs_open_file *of = s->private;
5d22444f 3369 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3370 pid_t *p = v;
3371 pid_t *end = l->list + l->length;
cc31edce
PM
3372 /*
3373 * Advance to the next pid in the array. If this goes off the
3374 * end, we're done
3375 */
3376 p++;
3377 if (p >= end) {
3378 return NULL;
3379 } else {
7da11279 3380 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3381 return p;
3382 }
3383}
3384
102a775e 3385static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3386{
3387 return seq_printf(s, "%d\n", *(int *)v);
3388}
bbcb81d0 3389
102a775e
BB
3390/*
3391 * seq_operations functions for iterating on pidlists through seq_file -
3392 * independent of whether it's tasks or procs
3393 */
3394static const struct seq_operations cgroup_pidlist_seq_operations = {
3395 .start = cgroup_pidlist_start,
3396 .stop = cgroup_pidlist_stop,
3397 .next = cgroup_pidlist_next,
3398 .show = cgroup_pidlist_show,
cc31edce
PM
3399};
3400
182446d0
TH
3401static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3402 struct cftype *cft)
81a6a5cd 3403{
182446d0 3404 return notify_on_release(css->cgroup);
81a6a5cd
PM
3405}
3406
182446d0
TH
3407static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3408 struct cftype *cft, u64 val)
6379c106 3409{
182446d0 3410 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3411 if (val)
182446d0 3412 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3413 else
182446d0 3414 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3415 return 0;
3416}
3417
182446d0
TH
3418static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3419 struct cftype *cft)
97978e6d 3420{
182446d0 3421 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3422}
3423
182446d0
TH
3424static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3425 struct cftype *cft, u64 val)
97978e6d
DL
3426{
3427 if (val)
182446d0 3428 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3429 else
182446d0 3430 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3431 return 0;
3432}
3433
d5c56ced 3434static struct cftype cgroup_base_files[] = {
81a6a5cd 3435 {
d5c56ced 3436 .name = "cgroup.procs",
6612f05b
TH
3437 .seq_start = cgroup_pidlist_start,
3438 .seq_next = cgroup_pidlist_next,
3439 .seq_stop = cgroup_pidlist_stop,
3440 .seq_show = cgroup_pidlist_show,
5d22444f 3441 .private = CGROUP_FILE_PROCS,
74a1166d 3442 .write_u64 = cgroup_procs_write,
74a1166d 3443 .mode = S_IRUGO | S_IWUSR,
102a775e 3444 },
97978e6d
DL
3445 {
3446 .name = "cgroup.clone_children",
873fe09e 3447 .flags = CFTYPE_INSANE,
97978e6d
DL
3448 .read_u64 = cgroup_clone_children_read,
3449 .write_u64 = cgroup_clone_children_write,
3450 },
873fe09e
TH
3451 {
3452 .name = "cgroup.sane_behavior",
3453 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3454 .seq_show = cgroup_sane_behavior_show,
873fe09e 3455 },
d5c56ced
TH
3456
3457 /*
3458 * Historical crazy stuff. These don't have "cgroup." prefix and
3459 * don't exist if sane_behavior. If you're depending on these, be
3460 * prepared to be burned.
3461 */
3462 {
3463 .name = "tasks",
3464 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3465 .seq_start = cgroup_pidlist_start,
3466 .seq_next = cgroup_pidlist_next,
3467 .seq_stop = cgroup_pidlist_stop,
3468 .seq_show = cgroup_pidlist_show,
5d22444f 3469 .private = CGROUP_FILE_TASKS,
d5c56ced 3470 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3471 .mode = S_IRUGO | S_IWUSR,
3472 },
3473 {
3474 .name = "notify_on_release",
3475 .flags = CFTYPE_INSANE,
3476 .read_u64 = cgroup_read_notify_on_release,
3477 .write_u64 = cgroup_write_notify_on_release,
3478 },
6e6ff25b
TH
3479 {
3480 .name = "release_agent",
cc5943a7 3481 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3482 .seq_show = cgroup_release_agent_show,
6e6ff25b 3483 .write_string = cgroup_release_agent_write,
5f469907 3484 .max_write_len = PATH_MAX - 1,
6e6ff25b 3485 },
db0416b6 3486 { } /* terminate */
bbcb81d0
PM
3487};
3488
13af07df 3489/**
628f7cd4 3490 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3491 * @cgrp: target cgroup
13af07df 3492 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3493 *
3494 * On failure, no file is added.
13af07df 3495 */
628f7cd4 3496static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3497{
ddbcc7e8 3498 struct cgroup_subsys *ss;
b420ba7d 3499 int i, ret = 0;
bbcb81d0 3500
8e3f6541 3501 /* process cftsets of each subsystem */
b420ba7d 3502 for_each_subsys(ss, i) {
0adb0704 3503 struct cftype *cfts;
b420ba7d
TH
3504
3505 if (!test_bit(i, &subsys_mask))
13af07df 3506 continue;
8e3f6541 3507
0adb0704
TH
3508 list_for_each_entry(cfts, &ss->cfts, node) {
3509 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3510 if (ret < 0)
3511 goto err;
3512 }
ddbcc7e8 3513 }
ddbcc7e8 3514 return 0;
bee55099
TH
3515err:
3516 cgroup_clear_dir(cgrp, subsys_mask);
3517 return ret;
ddbcc7e8
PM
3518}
3519
0c21ead1
TH
3520/*
3521 * css destruction is four-stage process.
3522 *
3523 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3524 * Implemented in kill_css().
3525 *
3526 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3527 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3528 * by invoking offline_css(). After offlining, the base ref is put.
3529 * Implemented in css_killed_work_fn().
3530 *
3531 * 3. When the percpu_ref reaches zero, the only possible remaining
3532 * accessors are inside RCU read sections. css_release() schedules the
3533 * RCU callback.
3534 *
3535 * 4. After the grace period, the css can be freed. Implemented in
3536 * css_free_work_fn().
3537 *
3538 * It is actually hairier because both step 2 and 4 require process context
3539 * and thus involve punting to css->destroy_work adding two additional
3540 * steps to the already complex sequence.
3541 */
35ef10da 3542static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3543{
3544 struct cgroup_subsys_state *css =
35ef10da 3545 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3546 struct cgroup *cgrp = css->cgroup;
48ddbe19 3547
0ae78e0b
TH
3548 if (css->parent)
3549 css_put(css->parent);
3550
0c21ead1 3551 css->ss->css_free(css);
2bd59d48 3552 cgroup_put(cgrp);
48ddbe19
TH
3553}
3554
0c21ead1 3555static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3556{
3557 struct cgroup_subsys_state *css =
0c21ead1 3558 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3559
35ef10da 3560 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3561 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3562}
3563
d3daf28d
TH
3564static void css_release(struct percpu_ref *ref)
3565{
3566 struct cgroup_subsys_state *css =
3567 container_of(ref, struct cgroup_subsys_state, refcnt);
3568
01a97140 3569 RCU_INIT_POINTER(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3570 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3571}
3572
623f926b
TH
3573static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3574 struct cgroup *cgrp)
ddbcc7e8 3575{
bd89aabc 3576 css->cgroup = cgrp;
72c97e54 3577 css->ss = ss;
ddbcc7e8 3578 css->flags = 0;
0ae78e0b
TH
3579
3580 if (cgrp->parent)
ca8bdcaf 3581 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3582 else
38b53aba 3583 css->flags |= CSS_ROOT;
48ddbe19 3584
ca8bdcaf 3585 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3586}
3587
2a4ac633 3588/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3589static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3590{
623f926b 3591 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3592 int ret = 0;
3593
ace2bee8 3594 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3595 lockdep_assert_held(&cgroup_mutex);
3596
92fb9748 3597 if (ss->css_online)
eb95419b 3598 ret = ss->css_online(css);
ae7f164a 3599 if (!ret) {
eb95419b 3600 css->flags |= CSS_ONLINE;
f20104de 3601 css->cgroup->nr_css++;
aec25020 3602 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3603 }
b1929db4 3604 return ret;
a31f2d3f
TH
3605}
3606
2a4ac633 3607/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3608static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3609{
623f926b 3610 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3611
ace2bee8 3612 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3613 lockdep_assert_held(&cgroup_mutex);
3614
3615 if (!(css->flags & CSS_ONLINE))
3616 return;
3617
d7eeac19 3618 if (ss->css_offline)
eb95419b 3619 ss->css_offline(css);
a31f2d3f 3620
eb95419b 3621 css->flags &= ~CSS_ONLINE;
09a503ea 3622 css->cgroup->nr_css--;
aec25020 3623 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3624}
3625
c81c925a
TH
3626/**
3627 * create_css - create a cgroup_subsys_state
3628 * @cgrp: the cgroup new css will be associated with
3629 * @ss: the subsys of new css
3630 *
3631 * Create a new css associated with @cgrp - @ss pair. On success, the new
3632 * css is online and installed in @cgrp with all interface files created.
3633 * Returns 0 on success, -errno on failure.
3634 */
3635static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3636{
3637 struct cgroup *parent = cgrp->parent;
3638 struct cgroup_subsys_state *css;
3639 int err;
3640
c81c925a
TH
3641 lockdep_assert_held(&cgroup_mutex);
3642
3643 css = ss->css_alloc(cgroup_css(parent, ss));
3644 if (IS_ERR(css))
3645 return PTR_ERR(css);
3646
3647 err = percpu_ref_init(&css->refcnt, css_release);
3648 if (err)
3eb59ec6 3649 goto err_free_css;
c81c925a
TH
3650
3651 init_css(css, ss, cgrp);
3652
aec25020 3653 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 3654 if (err)
3eb59ec6 3655 goto err_free_percpu_ref;
c81c925a
TH
3656
3657 err = online_css(css);
3658 if (err)
3eb59ec6 3659 goto err_clear_dir;
c81c925a 3660
59f5296b 3661 cgroup_get(cgrp);
c81c925a
TH
3662 css_get(css->parent);
3663
3664 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3665 parent->parent) {
3666 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3667 current->comm, current->pid, ss->name);
3668 if (!strcmp(ss->name, "memory"))
3669 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3670 ss->warned_broken_hierarchy = true;
3671 }
3672
3673 return 0;
3674
3eb59ec6 3675err_clear_dir:
32d01dc7 3676 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3eb59ec6 3677err_free_percpu_ref:
c81c925a 3678 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 3679err_free_css:
c81c925a
TH
3680 ss->css_free(css);
3681 return err;
3682}
3683
2bd59d48 3684/**
a043e3b2
LZ
3685 * cgroup_create - create a cgroup
3686 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3687 * @name: name of the new cgroup
2bd59d48 3688 * @mode: mode to set on new cgroup
ddbcc7e8 3689 */
e61734c5 3690static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3691 umode_t mode)
ddbcc7e8 3692{
bd89aabc 3693 struct cgroup *cgrp;
3dd06ffa 3694 struct cgroup_root *root = parent->root;
b58c8998 3695 int ssid, err;
ddbcc7e8 3696 struct cgroup_subsys *ss;
2bd59d48 3697 struct kernfs_node *kn;
ddbcc7e8 3698
a2dd4247
TH
3699 /*
3700 * XXX: The default hierarchy isn't fully implemented yet. Block
3701 * !root cgroup creation on it for now.
3702 */
3703 if (root == &cgrp_dfl_root)
3704 return -EINVAL;
ddbcc7e8 3705
0a950f65 3706 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3707 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3708 if (!cgrp)
ddbcc7e8
PM
3709 return -ENOMEM;
3710
ace2bee8 3711 mutex_lock(&cgroup_tree_mutex);
65dff759 3712
976c06bc
TH
3713 /*
3714 * Only live parents can have children. Note that the liveliness
3715 * check isn't strictly necessary because cgroup_mkdir() and
3716 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3717 * anyway so that locking is contained inside cgroup proper and we
3718 * don't get nasty surprises if we ever grow another caller.
3719 */
3720 if (!cgroup_lock_live_group(parent)) {
3721 err = -ENODEV;
ace2bee8 3722 goto err_unlock_tree;
0ab02ca8
LZ
3723 }
3724
3725 /*
3726 * Temporarily set the pointer to NULL, so idr_find() won't return
3727 * a half-baked cgroup.
3728 */
3729 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3730 if (cgrp->id < 0) {
3731 err = -ENOMEM;
3732 goto err_unlock;
976c06bc
TH
3733 }
3734
cc31edce 3735 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3736
bd89aabc 3737 cgrp->parent = parent;
0ae78e0b 3738 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3739 cgrp->root = parent->root;
ddbcc7e8 3740
b6abdb0e
LZ
3741 if (notify_on_release(parent))
3742 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3743
2260e7fc
TH
3744 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3745 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3746
2bd59d48 3747 /* create the directory */
e61734c5 3748 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3749 if (IS_ERR(kn)) {
3750 err = PTR_ERR(kn);
0ab02ca8 3751 goto err_free_id;
2bd59d48
TH
3752 }
3753 cgrp->kn = kn;
ddbcc7e8 3754
4e139afc 3755 /*
6f30558f
TH
3756 * This extra ref will be put in cgroup_free_fn() and guarantees
3757 * that @cgrp->kn is always accessible.
4e139afc 3758 */
6f30558f 3759 kernfs_get(kn);
ddbcc7e8 3760
00356bd5 3761 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3762
4e139afc 3763 /* allocation complete, commit to creation */
4e139afc 3764 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3765 atomic_inc(&root->nr_cgrps);
59f5296b 3766 cgroup_get(parent);
415cf07a 3767
0d80255e
TH
3768 /*
3769 * @cgrp is now fully operational. If something fails after this
3770 * point, it'll be released via the normal destruction path.
3771 */
4e96ee8e
LZ
3772 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3773
49957f8e
TH
3774 err = cgroup_kn_set_ugid(kn);
3775 if (err)
3776 goto err_destroy;
3777
2bb566cb 3778 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3779 if (err)
3780 goto err_destroy;
3781
9d403e99 3782 /* let's create and online css's */
b85d2040 3783 for_each_subsys(ss, ssid) {
f392e51c 3784 if (parent->child_subsys_mask & (1 << ssid)) {
b85d2040
TH
3785 err = create_css(cgrp, ss);
3786 if (err)
3787 goto err_destroy;
3788 }
a8638030 3789 }
ddbcc7e8 3790
f392e51c
TH
3791 cgrp->child_subsys_mask = parent->child_subsys_mask;
3792
2bd59d48
TH
3793 kernfs_activate(kn);
3794
ddbcc7e8 3795 mutex_unlock(&cgroup_mutex);
ace2bee8 3796 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3797
3798 return 0;
3799
0a950f65 3800err_free_id:
4e96ee8e 3801 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3802err_unlock:
3803 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3804err_unlock_tree:
3805 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3806 kfree(cgrp);
ddbcc7e8 3807 return err;
4b8b47eb
TH
3808
3809err_destroy:
3810 cgroup_destroy_locked(cgrp);
3811 mutex_unlock(&cgroup_mutex);
ace2bee8 3812 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3813 return err;
ddbcc7e8
PM
3814}
3815
2bd59d48
TH
3816static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3817 umode_t mode)
ddbcc7e8 3818{
2bd59d48 3819 struct cgroup *parent = parent_kn->priv;
e1b2dc17 3820 int ret;
ddbcc7e8 3821
e1b2dc17
TH
3822 /*
3823 * cgroup_create() grabs cgroup_tree_mutex which nests outside
3824 * kernfs active_ref and cgroup_create() already synchronizes
3825 * properly against removal through cgroup_lock_live_group().
3826 * Break it before calling cgroup_create().
3827 */
3828 cgroup_get(parent);
3829 kernfs_break_active_protection(parent_kn);
ddbcc7e8 3830
e1b2dc17
TH
3831 ret = cgroup_create(parent, name, mode);
3832
3833 kernfs_unbreak_active_protection(parent_kn);
3834 cgroup_put(parent);
3835 return ret;
ddbcc7e8
PM
3836}
3837
223dbc38
TH
3838/*
3839 * This is called when the refcnt of a css is confirmed to be killed.
3840 * css_tryget() is now guaranteed to fail.
3841 */
3842static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3843{
223dbc38
TH
3844 struct cgroup_subsys_state *css =
3845 container_of(work, struct cgroup_subsys_state, destroy_work);
3846 struct cgroup *cgrp = css->cgroup;
d3daf28d 3847
ace2bee8 3848 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3849 mutex_lock(&cgroup_mutex);
3850
09a503ea
TH
3851 /*
3852 * css_tryget() is guaranteed to fail now. Tell subsystems to
3853 * initate destruction.
3854 */
3855 offline_css(css);
3856
f20104de
TH
3857 /*
3858 * If @cgrp is marked dead, it's waiting for refs of all css's to
3859 * be disabled before proceeding to the second phase of cgroup
3860 * destruction. If we are the last one, kick it off.
3861 */
09a503ea 3862 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3863 cgroup_destroy_css_killed(cgrp);
3864
3865 mutex_unlock(&cgroup_mutex);
ace2bee8 3866 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3867
3868 /*
3869 * Put the css refs from kill_css(). Each css holds an extra
3870 * reference to the cgroup's dentry and cgroup removal proceeds
3871 * regardless of css refs. On the last put of each css, whenever
3872 * that may be, the extra dentry ref is put so that dentry
3873 * destruction happens only after all css's are released.
3874 */
3875 css_put(css);
d3daf28d
TH
3876}
3877
223dbc38
TH
3878/* css kill confirmation processing requires process context, bounce */
3879static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3880{
3881 struct cgroup_subsys_state *css =
3882 container_of(ref, struct cgroup_subsys_state, refcnt);
3883
223dbc38 3884 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3885 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3886}
3887
f392e51c
TH
3888/**
3889 * kill_css - destroy a css
3890 * @css: css to destroy
3891 *
3892 * This function initiates destruction of @css by removing cgroup interface
3893 * files and putting its base reference. ->css_offline() will be invoked
3894 * asynchronously once css_tryget() is guaranteed to fail and when the
3895 * reference count reaches zero, @css will be released.
3896 */
3897static void kill_css(struct cgroup_subsys_state *css)
edae0c33 3898{
94419627
TH
3899 lockdep_assert_held(&cgroup_tree_mutex);
3900
2bd59d48
TH
3901 /*
3902 * This must happen before css is disassociated with its cgroup.
3903 * See seq_css() for details.
3904 */
aec25020 3905 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3906
edae0c33
TH
3907 /*
3908 * Killing would put the base ref, but we need to keep it alive
3909 * until after ->css_offline().
3910 */
3911 css_get(css);
3912
3913 /*
3914 * cgroup core guarantees that, by the time ->css_offline() is
3915 * invoked, no new css reference will be given out via
3916 * css_tryget(). We can't simply call percpu_ref_kill() and
3917 * proceed to offlining css's because percpu_ref_kill() doesn't
3918 * guarantee that the ref is seen as killed on all CPUs on return.
3919 *
3920 * Use percpu_ref_kill_and_confirm() to get notifications as each
3921 * css is confirmed to be seen as killed on all CPUs.
3922 */
3923 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3924}
3925
3926/**
3927 * cgroup_destroy_locked - the first stage of cgroup destruction
3928 * @cgrp: cgroup to be destroyed
3929 *
3930 * css's make use of percpu refcnts whose killing latency shouldn't be
3931 * exposed to userland and are RCU protected. Also, cgroup core needs to
3932 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3933 * invoked. To satisfy all the requirements, destruction is implemented in
3934 * the following two steps.
3935 *
3936 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3937 * userland visible parts and start killing the percpu refcnts of
3938 * css's. Set up so that the next stage will be kicked off once all
3939 * the percpu refcnts are confirmed to be killed.
3940 *
3941 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3942 * rest of destruction. Once all cgroup references are gone, the
3943 * cgroup is RCU-freed.
3944 *
3945 * This function implements s1. After this step, @cgrp is gone as far as
3946 * the userland is concerned and a new cgroup with the same name may be
3947 * created. As cgroup doesn't care about the names internally, this
3948 * doesn't cause any problem.
3949 */
42809dd4
TH
3950static int cgroup_destroy_locked(struct cgroup *cgrp)
3951 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3952{
bb78a92f 3953 struct cgroup *child;
2bd59d48 3954 struct cgroup_subsys_state *css;
ddd69148 3955 bool empty;
1c6727af 3956 int ssid;
ddbcc7e8 3957
ace2bee8 3958 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3959 lockdep_assert_held(&cgroup_mutex);
3960
ddd69148 3961 /*
96d365e0 3962 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3963 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3964 */
96d365e0 3965 down_read(&css_set_rwsem);
bb78a92f 3966 empty = list_empty(&cgrp->cset_links);
96d365e0 3967 up_read(&css_set_rwsem);
ddd69148 3968 if (!empty)
ddbcc7e8 3969 return -EBUSY;
a043e3b2 3970
bb78a92f
HD
3971 /*
3972 * Make sure there's no live children. We can't test ->children
3973 * emptiness as dead children linger on it while being destroyed;
3974 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3975 */
3976 empty = true;
3977 rcu_read_lock();
3978 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3979 empty = cgroup_is_dead(child);
3980 if (!empty)
3981 break;
3982 }
3983 rcu_read_unlock();
3984 if (!empty)
3985 return -EBUSY;
3986
455050d2
TH
3987 /*
3988 * Mark @cgrp dead. This prevents further task migration and child
3989 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3990 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3991 * resume iteration after dropping RCU read lock. See
492eb21b 3992 * css_next_child() for details.
455050d2 3993 */
54766d4a 3994 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3995
88703267 3996 /*
edae0c33
TH
3997 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3998 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3999 * percpu refs of all css's are confirmed to be killed. This
4000 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4001 */
4ac06017 4002 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4003 for_each_css(css, ssid, cgrp)
4004 kill_css(css);
4ac06017 4005 mutex_lock(&cgroup_mutex);
455050d2 4006
455050d2
TH
4007 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4008 raw_spin_lock(&release_list_lock);
4009 if (!list_empty(&cgrp->release_list))
4010 list_del_init(&cgrp->release_list);
4011 raw_spin_unlock(&release_list_lock);
4012
4013 /*
f20104de
TH
4014 * If @cgrp has css's attached, the second stage of cgroup
4015 * destruction is kicked off from css_killed_work_fn() after the
4016 * refs of all attached css's are killed. If @cgrp doesn't have
4017 * any css, we kick it off here.
4018 */
4019 if (!cgrp->nr_css)
4020 cgroup_destroy_css_killed(cgrp);
4021
2bd59d48
TH
4022 /* remove @cgrp directory along with the base files */
4023 mutex_unlock(&cgroup_mutex);
4024
455050d2 4025 /*
2bd59d48
TH
4026 * There are two control paths which try to determine cgroup from
4027 * dentry without going through kernfs - cgroupstats_build() and
4028 * css_tryget_from_dir(). Those are supported by RCU protecting
4029 * clearing of cgrp->kn->priv backpointer, which should happen
4030 * after all files under it have been removed.
455050d2 4031 */
6f30558f 4032 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 4033 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 4034
4ac06017 4035 mutex_lock(&cgroup_mutex);
455050d2 4036
ea15f8cc
TH
4037 return 0;
4038};
4039
d3daf28d 4040/**
f20104de 4041 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4042 * @work: cgroup->destroy_free_work
4043 *
4044 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4045 * destroyed after all css's are offlined and performs the rest of
4046 * destruction. This is the second step of destruction described in the
4047 * comment above cgroup_destroy_locked().
d3daf28d 4048 */
f20104de 4049static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4050{
ea15f8cc 4051 struct cgroup *parent = cgrp->parent;
ea15f8cc 4052
ace2bee8 4053 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4054 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4055
999cd8a4 4056 /* delete this cgroup from parent->children */
eb6fd504 4057 list_del_rcu(&cgrp->sibling);
ed957793 4058
59f5296b 4059 cgroup_put(cgrp);
ddbcc7e8 4060
bd89aabc 4061 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4062 check_for_release(parent);
ddbcc7e8
PM
4063}
4064
2bd59d48 4065static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4066{
2bd59d48
TH
4067 struct cgroup *cgrp = kn->priv;
4068 int ret = 0;
42809dd4 4069
2bd59d48
TH
4070 /*
4071 * This is self-destruction but @kn can't be removed while this
4072 * callback is in progress. Let's break active protection. Once
4073 * the protection is broken, @cgrp can be destroyed at any point.
4074 * Pin it so that it stays accessible.
4075 */
4076 cgroup_get(cgrp);
4077 kernfs_break_active_protection(kn);
42809dd4 4078
ace2bee8 4079 mutex_lock(&cgroup_tree_mutex);
42809dd4 4080 mutex_lock(&cgroup_mutex);
8e3f6541
TH
4081
4082 /*
2bd59d48
TH
4083 * @cgrp might already have been destroyed while we're trying to
4084 * grab the mutexes.
8e3f6541 4085 */
2bd59d48
TH
4086 if (!cgroup_is_dead(cgrp))
4087 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4088
42809dd4 4089 mutex_unlock(&cgroup_mutex);
ace2bee8 4090 mutex_unlock(&cgroup_tree_mutex);
2bb566cb 4091
2bd59d48
TH
4092 kernfs_unbreak_active_protection(kn);
4093 cgroup_put(cgrp);
42809dd4 4094 return ret;
8e3f6541
TH
4095}
4096
2bd59d48
TH
4097static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4098 .remount_fs = cgroup_remount,
4099 .show_options = cgroup_show_options,
4100 .mkdir = cgroup_mkdir,
4101 .rmdir = cgroup_rmdir,
4102 .rename = cgroup_rename,
4103};
4104
06a11920 4105static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4106{
ddbcc7e8 4107 struct cgroup_subsys_state *css;
cfe36bde
DC
4108
4109 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4110
ace2bee8 4111 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4112 mutex_lock(&cgroup_mutex);
4113
0adb0704 4114 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4115
3dd06ffa
TH
4116 /* Create the root cgroup state for this subsystem */
4117 ss->root = &cgrp_dfl_root;
4118 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4119 /* We don't handle early failures gracefully */
4120 BUG_ON(IS_ERR(css));
3dd06ffa 4121 init_css(css, ss, &cgrp_dfl_root.cgrp);
ddbcc7e8 4122
e8d55fde 4123 /* Update the init_css_set to contain a subsys
817929ec 4124 * pointer to this state - since the subsystem is
e8d55fde 4125 * newly registered, all tasks and hence the
3dd06ffa 4126 * init_css_set is in the subsystem's root cgroup. */
aec25020 4127 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4128
4129 need_forkexit_callback |= ss->fork || ss->exit;
4130
e8d55fde
LZ
4131 /* At system boot, before all subsystems have been
4132 * registered, no tasks have been forked, so we don't
4133 * need to invoke fork callbacks here. */
4134 BUG_ON(!list_empty(&init_task.tasks));
4135
ae7f164a 4136 BUG_ON(online_css(css));
a8638030 4137
f392e51c 4138 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
cf5d5941
BB
4139
4140 mutex_unlock(&cgroup_mutex);
ace2bee8 4141 mutex_unlock(&cgroup_tree_mutex);
cf5d5941 4142}
cf5d5941 4143
ddbcc7e8 4144/**
a043e3b2
LZ
4145 * cgroup_init_early - cgroup initialization at system boot
4146 *
4147 * Initialize cgroups at system boot, and initialize any
4148 * subsystems that request early init.
ddbcc7e8
PM
4149 */
4150int __init cgroup_init_early(void)
4151{
a2dd4247
TH
4152 static struct cgroup_sb_opts __initdata opts =
4153 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4154 struct cgroup_subsys *ss;
ddbcc7e8 4155 int i;
30159ec7 4156
3dd06ffa 4157 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4158 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4159
3ed80a62 4160 for_each_subsys(ss, i) {
aec25020 4161 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4162 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4163 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4164 ss->id, ss->name);
073219e9
TH
4165 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4166 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4167
aec25020 4168 ss->id = i;
073219e9 4169 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4170
4171 if (ss->early_init)
4172 cgroup_init_subsys(ss);
4173 }
4174 return 0;
4175}
4176
4177/**
a043e3b2
LZ
4178 * cgroup_init - cgroup initialization
4179 *
4180 * Register cgroup filesystem and /proc file, and initialize
4181 * any subsystems that didn't request early init.
ddbcc7e8
PM
4182 */
4183int __init cgroup_init(void)
4184{
30159ec7 4185 struct cgroup_subsys *ss;
0ac801fe 4186 unsigned long key;
172a2c06 4187 int ssid, err;
ddbcc7e8 4188
2bd59d48 4189 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4190
985ed670 4191 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4192 mutex_lock(&cgroup_mutex);
54e7b4eb 4193
82fe9b0d
TH
4194 /* Add init_css_set to the hash table */
4195 key = css_set_hash(init_css_set.subsys);
4196 hash_add(css_set_table, &init_css_set.hlist, key);
4197
3dd06ffa 4198 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4199
54e7b4eb 4200 mutex_unlock(&cgroup_mutex);
985ed670 4201 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4202
172a2c06
TH
4203 for_each_subsys(ss, ssid) {
4204 if (!ss->early_init)
4205 cgroup_init_subsys(ss);
4206
4207 /*
4208 * cftype registration needs kmalloc and can't be done
4209 * during early_init. Register base cftypes separately.
4210 */
4211 if (ss->base_cftypes)
4212 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
676db4af
GK
4213 }
4214
676db4af 4215 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4216 if (!cgroup_kobj)
4217 return -ENOMEM;
676db4af 4218
ddbcc7e8 4219 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4220 if (err < 0) {
4221 kobject_put(cgroup_kobj);
2bd59d48 4222 return err;
676db4af 4223 }
ddbcc7e8 4224
46ae220b 4225 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4226 return 0;
ddbcc7e8 4227}
b4f48b63 4228
e5fca243
TH
4229static int __init cgroup_wq_init(void)
4230{
4231 /*
4232 * There isn't much point in executing destruction path in
4233 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4234 * Use 1 for @max_active.
e5fca243
TH
4235 *
4236 * We would prefer to do this in cgroup_init() above, but that
4237 * is called before init_workqueues(): so leave this until after.
4238 */
1a11533f 4239 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4240 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4241
4242 /*
4243 * Used to destroy pidlists and separate to serve as flush domain.
4244 * Cap @max_active to 1 too.
4245 */
4246 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4247 0, 1);
4248 BUG_ON(!cgroup_pidlist_destroy_wq);
4249
e5fca243
TH
4250 return 0;
4251}
4252core_initcall(cgroup_wq_init);
4253
a424316c
PM
4254/*
4255 * proc_cgroup_show()
4256 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4257 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4258 */
4259
4260/* TODO: Use a proper seq_file iterator */
8d8b97ba 4261int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4262{
4263 struct pid *pid;
4264 struct task_struct *tsk;
e61734c5 4265 char *buf, *path;
a424316c 4266 int retval;
3dd06ffa 4267 struct cgroup_root *root;
a424316c
PM
4268
4269 retval = -ENOMEM;
e61734c5 4270 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4271 if (!buf)
4272 goto out;
4273
4274 retval = -ESRCH;
4275 pid = m->private;
4276 tsk = get_pid_task(pid, PIDTYPE_PID);
4277 if (!tsk)
4278 goto out_free;
4279
4280 retval = 0;
4281
4282 mutex_lock(&cgroup_mutex);
96d365e0 4283 down_read(&css_set_rwsem);
a424316c 4284
985ed670 4285 for_each_root(root) {
a424316c 4286 struct cgroup_subsys *ss;
bd89aabc 4287 struct cgroup *cgrp;
b85d2040 4288 int ssid, count = 0;
a424316c 4289
a2dd4247 4290 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4291 continue;
4292
2c6ab6d2 4293 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4294 for_each_subsys(ss, ssid)
f392e51c 4295 if (root->subsys_mask & (1 << ssid))
b85d2040 4296 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4297 if (strlen(root->name))
4298 seq_printf(m, "%sname=%s", count ? "," : "",
4299 root->name);
a424316c 4300 seq_putc(m, ':');
7717f7ba 4301 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4302 path = cgroup_path(cgrp, buf, PATH_MAX);
4303 if (!path) {
4304 retval = -ENAMETOOLONG;
a424316c 4305 goto out_unlock;
e61734c5
TH
4306 }
4307 seq_puts(m, path);
a424316c
PM
4308 seq_putc(m, '\n');
4309 }
4310
4311out_unlock:
96d365e0 4312 up_read(&css_set_rwsem);
a424316c
PM
4313 mutex_unlock(&cgroup_mutex);
4314 put_task_struct(tsk);
4315out_free:
4316 kfree(buf);
4317out:
4318 return retval;
4319}
4320
a424316c
PM
4321/* Display information about each subsystem and each hierarchy */
4322static int proc_cgroupstats_show(struct seq_file *m, void *v)
4323{
30159ec7 4324 struct cgroup_subsys *ss;
a424316c 4325 int i;
a424316c 4326
8bab8dde 4327 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4328 /*
4329 * ideally we don't want subsystems moving around while we do this.
4330 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4331 * subsys/hierarchy state.
4332 */
a424316c 4333 mutex_lock(&cgroup_mutex);
30159ec7
TH
4334
4335 for_each_subsys(ss, i)
2c6ab6d2
PM
4336 seq_printf(m, "%s\t%d\t%d\t%d\n",
4337 ss->name, ss->root->hierarchy_id,
3c9c825b 4338 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4339
a424316c
PM
4340 mutex_unlock(&cgroup_mutex);
4341 return 0;
4342}
4343
4344static int cgroupstats_open(struct inode *inode, struct file *file)
4345{
9dce07f1 4346 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4347}
4348
828c0950 4349static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4350 .open = cgroupstats_open,
4351 .read = seq_read,
4352 .llseek = seq_lseek,
4353 .release = single_release,
4354};
4355
b4f48b63 4356/**
eaf797ab 4357 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4358 * @child: pointer to task_struct of forking parent process.
b4f48b63 4359 *
eaf797ab
TH
4360 * A task is associated with the init_css_set until cgroup_post_fork()
4361 * attaches it to the parent's css_set. Empty cg_list indicates that
4362 * @child isn't holding reference to its css_set.
b4f48b63
PM
4363 */
4364void cgroup_fork(struct task_struct *child)
4365{
eaf797ab 4366 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4367 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4368}
4369
817929ec 4370/**
a043e3b2
LZ
4371 * cgroup_post_fork - called on a new task after adding it to the task list
4372 * @child: the task in question
4373 *
5edee61e
TH
4374 * Adds the task to the list running through its css_set if necessary and
4375 * call the subsystem fork() callbacks. Has to be after the task is
4376 * visible on the task list in case we race with the first call to
0942eeee 4377 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4378 * list.
a043e3b2 4379 */
817929ec
PM
4380void cgroup_post_fork(struct task_struct *child)
4381{
30159ec7 4382 struct cgroup_subsys *ss;
5edee61e
TH
4383 int i;
4384
3ce3230a 4385 /*
eaf797ab
TH
4386 * This may race against cgroup_enable_task_cg_links(). As that
4387 * function sets use_task_css_set_links before grabbing
4388 * tasklist_lock and we just went through tasklist_lock to add
4389 * @child, it's guaranteed that either we see the set
4390 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4391 * @child during its iteration.
4392 *
4393 * If we won the race, @child is associated with %current's
4394 * css_set. Grabbing css_set_rwsem guarantees both that the
4395 * association is stable, and, on completion of the parent's
4396 * migration, @child is visible in the source of migration or
4397 * already in the destination cgroup. This guarantee is necessary
4398 * when implementing operations which need to migrate all tasks of
4399 * a cgroup to another.
4400 *
4401 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4402 * will remain in init_css_set. This is safe because all tasks are
4403 * in the init_css_set before cg_links is enabled and there's no
4404 * operation which transfers all tasks out of init_css_set.
3ce3230a 4405 */
817929ec 4406 if (use_task_css_set_links) {
eaf797ab
TH
4407 struct css_set *cset;
4408
96d365e0 4409 down_write(&css_set_rwsem);
0e1d768f 4410 cset = task_css_set(current);
eaf797ab
TH
4411 if (list_empty(&child->cg_list)) {
4412 rcu_assign_pointer(child->cgroups, cset);
4413 list_add(&child->cg_list, &cset->tasks);
4414 get_css_set(cset);
4415 }
96d365e0 4416 up_write(&css_set_rwsem);
817929ec 4417 }
5edee61e
TH
4418
4419 /*
4420 * Call ss->fork(). This must happen after @child is linked on
4421 * css_set; otherwise, @child might change state between ->fork()
4422 * and addition to css_set.
4423 */
4424 if (need_forkexit_callback) {
3ed80a62 4425 for_each_subsys(ss, i)
5edee61e
TH
4426 if (ss->fork)
4427 ss->fork(child);
5edee61e 4428 }
817929ec 4429}
5edee61e 4430
b4f48b63
PM
4431/**
4432 * cgroup_exit - detach cgroup from exiting task
4433 * @tsk: pointer to task_struct of exiting process
4434 *
4435 * Description: Detach cgroup from @tsk and release it.
4436 *
4437 * Note that cgroups marked notify_on_release force every task in
4438 * them to take the global cgroup_mutex mutex when exiting.
4439 * This could impact scaling on very large systems. Be reluctant to
4440 * use notify_on_release cgroups where very high task exit scaling
4441 * is required on large systems.
4442 *
0e1d768f
TH
4443 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4444 * call cgroup_exit() while the task is still competent to handle
4445 * notify_on_release(), then leave the task attached to the root cgroup in
4446 * each hierarchy for the remainder of its exit. No need to bother with
4447 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 4448 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 4449 */
1ec41830 4450void cgroup_exit(struct task_struct *tsk)
b4f48b63 4451{
30159ec7 4452 struct cgroup_subsys *ss;
5abb8855 4453 struct css_set *cset;
eaf797ab 4454 bool put_cset = false;
d41d5a01 4455 int i;
817929ec
PM
4456
4457 /*
0e1d768f
TH
4458 * Unlink from @tsk from its css_set. As migration path can't race
4459 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4460 */
4461 if (!list_empty(&tsk->cg_list)) {
96d365e0 4462 down_write(&css_set_rwsem);
0e1d768f 4463 list_del_init(&tsk->cg_list);
96d365e0 4464 up_write(&css_set_rwsem);
0e1d768f 4465 put_cset = true;
817929ec
PM
4466 }
4467
b4f48b63 4468 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4469 cset = task_css_set(tsk);
4470 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 4471
1ec41830 4472 if (need_forkexit_callback) {
3ed80a62
TH
4473 /* see cgroup_post_fork() for details */
4474 for_each_subsys(ss, i) {
d41d5a01 4475 if (ss->exit) {
eb95419b
TH
4476 struct cgroup_subsys_state *old_css = cset->subsys[i];
4477 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4478
eb95419b 4479 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4480 }
4481 }
4482 }
d41d5a01 4483
eaf797ab
TH
4484 if (put_cset)
4485 put_css_set(cset, true);
b4f48b63 4486}
697f4161 4487
bd89aabc 4488static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4489{
f50daa70 4490 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4491 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4492 /*
4493 * Control Group is currently removeable. If it's not
81a6a5cd 4494 * already queued for a userspace notification, queue
f50daa70
LZ
4495 * it now
4496 */
81a6a5cd 4497 int need_schedule_work = 0;
f50daa70 4498
cdcc136f 4499 raw_spin_lock(&release_list_lock);
54766d4a 4500 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4501 list_empty(&cgrp->release_list)) {
4502 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4503 need_schedule_work = 1;
4504 }
cdcc136f 4505 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4506 if (need_schedule_work)
4507 schedule_work(&release_agent_work);
4508 }
4509}
4510
81a6a5cd
PM
4511/*
4512 * Notify userspace when a cgroup is released, by running the
4513 * configured release agent with the name of the cgroup (path
4514 * relative to the root of cgroup file system) as the argument.
4515 *
4516 * Most likely, this user command will try to rmdir this cgroup.
4517 *
4518 * This races with the possibility that some other task will be
4519 * attached to this cgroup before it is removed, or that some other
4520 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4521 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4522 * unused, and this cgroup will be reprieved from its death sentence,
4523 * to continue to serve a useful existence. Next time it's released,
4524 * we will get notified again, if it still has 'notify_on_release' set.
4525 *
4526 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4527 * means only wait until the task is successfully execve()'d. The
4528 * separate release agent task is forked by call_usermodehelper(),
4529 * then control in this thread returns here, without waiting for the
4530 * release agent task. We don't bother to wait because the caller of
4531 * this routine has no use for the exit status of the release agent
4532 * task, so no sense holding our caller up for that.
81a6a5cd 4533 */
81a6a5cd
PM
4534static void cgroup_release_agent(struct work_struct *work)
4535{
4536 BUG_ON(work != &release_agent_work);
4537 mutex_lock(&cgroup_mutex);
cdcc136f 4538 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4539 while (!list_empty(&release_list)) {
4540 char *argv[3], *envp[3];
4541 int i;
e61734c5 4542 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4543 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4544 struct cgroup,
4545 release_list);
bd89aabc 4546 list_del_init(&cgrp->release_list);
cdcc136f 4547 raw_spin_unlock(&release_list_lock);
e61734c5 4548 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4549 if (!pathbuf)
4550 goto continue_free;
e61734c5
TH
4551 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4552 if (!path)
e788e066
PM
4553 goto continue_free;
4554 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4555 if (!agentbuf)
4556 goto continue_free;
81a6a5cd
PM
4557
4558 i = 0;
e788e066 4559 argv[i++] = agentbuf;
e61734c5 4560 argv[i++] = path;
81a6a5cd
PM
4561 argv[i] = NULL;
4562
4563 i = 0;
4564 /* minimal command environment */
4565 envp[i++] = "HOME=/";
4566 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4567 envp[i] = NULL;
4568
4569 /* Drop the lock while we invoke the usermode helper,
4570 * since the exec could involve hitting disk and hence
4571 * be a slow process */
4572 mutex_unlock(&cgroup_mutex);
4573 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4574 mutex_lock(&cgroup_mutex);
e788e066
PM
4575 continue_free:
4576 kfree(pathbuf);
4577 kfree(agentbuf);
cdcc136f 4578 raw_spin_lock(&release_list_lock);
81a6a5cd 4579 }
cdcc136f 4580 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4581 mutex_unlock(&cgroup_mutex);
4582}
8bab8dde
PM
4583
4584static int __init cgroup_disable(char *str)
4585{
30159ec7 4586 struct cgroup_subsys *ss;
8bab8dde 4587 char *token;
30159ec7 4588 int i;
8bab8dde
PM
4589
4590 while ((token = strsep(&str, ",")) != NULL) {
4591 if (!*token)
4592 continue;
be45c900 4593
3ed80a62 4594 for_each_subsys(ss, i) {
8bab8dde
PM
4595 if (!strcmp(token, ss->name)) {
4596 ss->disabled = 1;
4597 printk(KERN_INFO "Disabling %s control group"
4598 " subsystem\n", ss->name);
4599 break;
4600 }
4601 }
4602 }
4603 return 1;
4604}
4605__setup("cgroup_disable=", cgroup_disable);
38460b48 4606
b77d7b60 4607/**
5a17f543 4608 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4609 * @dentry: directory dentry of interest
4610 * @ss: subsystem of interest
b77d7b60 4611 *
5a17f543
TH
4612 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4613 * to get the corresponding css and return it. If such css doesn't exist
4614 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4615 */
5a17f543
TH
4616struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4617 struct cgroup_subsys *ss)
e5d1367f 4618{
2bd59d48
TH
4619 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4620 struct cgroup_subsys_state *css = NULL;
e5d1367f 4621 struct cgroup *cgrp;
e5d1367f 4622
35cf0836 4623 /* is @dentry a cgroup dir? */
2bd59d48
TH
4624 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4625 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4626 return ERR_PTR(-EBADF);
4627
5a17f543
TH
4628 rcu_read_lock();
4629
2bd59d48
TH
4630 /*
4631 * This path doesn't originate from kernfs and @kn could already
4632 * have been or be removed at any point. @kn->priv is RCU
4633 * protected for this access. See destroy_locked() for details.
4634 */
4635 cgrp = rcu_dereference(kn->priv);
4636 if (cgrp)
4637 css = cgroup_css(cgrp, ss);
5a17f543
TH
4638
4639 if (!css || !css_tryget(css))
4640 css = ERR_PTR(-ENOENT);
4641
4642 rcu_read_unlock();
4643 return css;
e5d1367f 4644}
e5d1367f 4645
1cb650b9
LZ
4646/**
4647 * css_from_id - lookup css by id
4648 * @id: the cgroup id
4649 * @ss: cgroup subsys to be looked into
4650 *
4651 * Returns the css if there's valid one with @id, otherwise returns NULL.
4652 * Should be called under rcu_read_lock().
4653 */
4654struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4655{
4656 struct cgroup *cgrp;
4657
ace2bee8 4658 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4659
4660 cgrp = idr_find(&ss->root->cgroup_idr, id);
4661 if (cgrp)
d1625964 4662 return cgroup_css(cgrp, ss);
1cb650b9 4663 return NULL;
e5d1367f
SE
4664}
4665
fe693435 4666#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4667static struct cgroup_subsys_state *
4668debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4669{
4670 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4671
4672 if (!css)
4673 return ERR_PTR(-ENOMEM);
4674
4675 return css;
4676}
4677
eb95419b 4678static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4679{
eb95419b 4680 kfree(css);
fe693435
PM
4681}
4682
182446d0
TH
4683static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4684 struct cftype *cft)
fe693435 4685{
182446d0 4686 return cgroup_task_count(css->cgroup);
fe693435
PM
4687}
4688
182446d0
TH
4689static u64 current_css_set_read(struct cgroup_subsys_state *css,
4690 struct cftype *cft)
fe693435
PM
4691{
4692 return (u64)(unsigned long)current->cgroups;
4693}
4694
182446d0 4695static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4696 struct cftype *cft)
fe693435
PM
4697{
4698 u64 count;
4699
4700 rcu_read_lock();
a8ad805c 4701 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4702 rcu_read_unlock();
4703 return count;
4704}
4705
2da8ca82 4706static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4707{
69d0206c 4708 struct cgrp_cset_link *link;
5abb8855 4709 struct css_set *cset;
e61734c5
TH
4710 char *name_buf;
4711
4712 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4713 if (!name_buf)
4714 return -ENOMEM;
7717f7ba 4715
96d365e0 4716 down_read(&css_set_rwsem);
7717f7ba 4717 rcu_read_lock();
5abb8855 4718 cset = rcu_dereference(current->cgroups);
69d0206c 4719 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4720 struct cgroup *c = link->cgrp;
7717f7ba 4721
a2dd4247 4722 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 4723 seq_printf(seq, "Root %d group %s\n",
a2dd4247 4724 c->root->hierarchy_id, name_buf);
7717f7ba
PM
4725 }
4726 rcu_read_unlock();
96d365e0 4727 up_read(&css_set_rwsem);
e61734c5 4728 kfree(name_buf);
7717f7ba
PM
4729 return 0;
4730}
4731
4732#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4733static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4734{
2da8ca82 4735 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4736 struct cgrp_cset_link *link;
7717f7ba 4737
96d365e0 4738 down_read(&css_set_rwsem);
182446d0 4739 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4740 struct css_set *cset = link->cset;
7717f7ba
PM
4741 struct task_struct *task;
4742 int count = 0;
c7561128 4743
5abb8855 4744 seq_printf(seq, "css_set %p\n", cset);
c7561128 4745
5abb8855 4746 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4747 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4748 goto overflow;
4749 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4750 }
4751
4752 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4753 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4754 goto overflow;
4755 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4756 }
c7561128
TH
4757 continue;
4758 overflow:
4759 seq_puts(seq, " ...\n");
7717f7ba 4760 }
96d365e0 4761 up_read(&css_set_rwsem);
7717f7ba
PM
4762 return 0;
4763}
4764
182446d0 4765static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4766{
182446d0 4767 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4768}
4769
4770static struct cftype debug_files[] = {
fe693435
PM
4771 {
4772 .name = "taskcount",
4773 .read_u64 = debug_taskcount_read,
4774 },
4775
4776 {
4777 .name = "current_css_set",
4778 .read_u64 = current_css_set_read,
4779 },
4780
4781 {
4782 .name = "current_css_set_refcount",
4783 .read_u64 = current_css_set_refcount_read,
4784 },
4785
7717f7ba
PM
4786 {
4787 .name = "current_css_set_cg_links",
2da8ca82 4788 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4789 },
4790
4791 {
4792 .name = "cgroup_css_links",
2da8ca82 4793 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4794 },
4795
fe693435
PM
4796 {
4797 .name = "releasable",
4798 .read_u64 = releasable_read,
4799 },
fe693435 4800
4baf6e33
TH
4801 { } /* terminate */
4802};
fe693435 4803
073219e9 4804struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4805 .css_alloc = debug_css_alloc,
4806 .css_free = debug_css_free,
4baf6e33 4807 .base_cftypes = debug_files,
fe693435
PM
4808};
4809#endif /* CONFIG_CGROUP_DEBUG */