Merge branch 'for-3.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
38#include <linux/mm.h>
39#include <linux/mutex.h>
40#include <linux/mount.h>
41#include <linux/pagemap.h>
a424316c 42#include <linux/proc_fs.h>
ddbcc7e8
PM
43#include <linux/rcupdate.h>
44#include <linux/sched.h>
ddbcc7e8 45#include <linux/slab.h>
ddbcc7e8 46#include <linux/spinlock.h>
96d365e0 47#include <linux/rwsem.h>
ddbcc7e8 48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
846c7bb0
BS
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
0ac801fe 53#include <linux/hashtable.h>
096b7fe0 54#include <linux/pid_namespace.h>
2c6ab6d2 55#include <linux/idr.h>
d1d9fd33 56#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 57#include <linux/kthread.h>
776f02fa 58#include <linux/delay.h>
846c7bb0 59
60063497 60#include <linux/atomic.h>
ddbcc7e8 61
b1a21367
TH
62/*
63 * pidlists linger the following amount before being destroyed. The goal
64 * is avoiding frequent destruction in the middle of consecutive read calls
65 * Expiring in the middle is a performance problem not a correctness one.
66 * 1 sec should be enough.
67 */
68#define CGROUP_PIDLIST_DESTROY_DELAY HZ
69
8d7e6fb0
TH
70#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
71 MAX_CFTYPE_NAME + 2)
72
ace2bee8
TH
73/*
74 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
75 * creation/removal and hierarchy changing operations including cgroup
76 * creation, removal, css association and controller rebinding. This outer
77 * lock is needed mainly to resolve the circular dependency between kernfs
78 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
79 */
80static DEFINE_MUTEX(cgroup_tree_mutex);
81
e25e2cbb
TH
82/*
83 * cgroup_mutex is the master lock. Any modification to cgroup or its
84 * hierarchy must be performed while holding it.
85 *
0e1d768f
TH
86 * css_set_rwsem protects task->cgroups pointer, the list of css_set
87 * objects, and the chain of tasks off each css_set.
e25e2cbb 88 *
0e1d768f
TH
89 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
90 * cgroup.h can use them for lockdep annotations.
e25e2cbb 91 */
2219449a
TH
92#ifdef CONFIG_PROVE_RCU
93DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
94DECLARE_RWSEM(css_set_rwsem);
95EXPORT_SYMBOL_GPL(cgroup_mutex);
96EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 97#else
81a6a5cd 98static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 99static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
100#endif
101
6fa4918d 102/*
15a4c835
TH
103 * Protects cgroup_idr and css_idr so that IDs can be released without
104 * grabbing cgroup_mutex.
6fa4918d
TH
105 */
106static DEFINE_SPINLOCK(cgroup_idr_lock);
107
69e943b7
TH
108/*
109 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
110 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
111 */
112static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 113
ace2bee8 114#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 115 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 116 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 117 lockdep_is_held(&cgroup_mutex), \
ace2bee8 118 "cgroup_[tree_]mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
ddbcc7e8 148/*
3dd06ffa 149 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
150 * unattached - it never has more than a single cgroup, and all tasks are
151 * part of that cgroup.
ddbcc7e8 152 */
a2dd4247 153struct cgroup_root cgrp_dfl_root;
9871bf95 154
a2dd4247
TH
155/*
156 * The default hierarchy always exists but is hidden until mounted for the
157 * first time. This is for backward compatibility.
158 */
159static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
160
161/* The list of hierarchy roots */
162
9871bf95
TH
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
ddbcc7e8 165
3417ae1f 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 167static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 168
794611a1
LZ
169/*
170 * Assign a monotonically increasing serial number to cgroups. It
171 * guarantees cgroups with bigger numbers are newer than those with smaller
172 * numbers. Also, as cgroups are always appended to the parent's
173 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
174 * the ascending serial number order on the list. Protected by
175 * cgroup_mutex.
794611a1 176 */
00356bd5 177static u64 cgroup_serial_nr_next = 1;
794611a1 178
ddbcc7e8 179/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
180 * check for fork/exit handlers to call. This avoids us having to do
181 * extra work in the fork/exit path if none of the subsystems need to
182 * be called.
ddbcc7e8 183 */
8947f9d5 184static int need_forkexit_callback __read_mostly;
ddbcc7e8 185
628f7cd4
TH
186static struct cftype cgroup_base_files[];
187
59f5296b 188static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 189static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 190 unsigned int ss_mask);
f20104de 191static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 192static int cgroup_destroy_locked(struct cgroup *cgrp);
f8f22e53
TH
193static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
194static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
195static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
b1a21367 197static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 198
6fa4918d
TH
199/* IDR wrappers which synchronize using cgroup_idr_lock */
200static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
201 gfp_t gfp_mask)
202{
203 int ret;
204
205 idr_preload(gfp_mask);
206 spin_lock(&cgroup_idr_lock);
207 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
208 spin_unlock(&cgroup_idr_lock);
209 idr_preload_end();
210 return ret;
211}
212
213static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
214{
215 void *ret;
216
217 spin_lock(&cgroup_idr_lock);
218 ret = idr_replace(idr, ptr, id);
219 spin_unlock(&cgroup_idr_lock);
220 return ret;
221}
222
223static void cgroup_idr_remove(struct idr *idr, int id)
224{
225 spin_lock(&cgroup_idr_lock);
226 idr_remove(idr, id);
227 spin_unlock(&cgroup_idr_lock);
228}
229
95109b62
TH
230/**
231 * cgroup_css - obtain a cgroup's css for the specified subsystem
232 * @cgrp: the cgroup of interest
ca8bdcaf 233 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 234 *
ca8bdcaf
TH
235 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
236 * function must be called either under cgroup_mutex or rcu_read_lock() and
237 * the caller is responsible for pinning the returned css if it wants to
238 * keep accessing it outside the said locks. This function may return
239 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
240 */
241static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 242 struct cgroup_subsys *ss)
95109b62 243{
ca8bdcaf 244 if (ss)
aec25020 245 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
246 lockdep_is_held(&cgroup_tree_mutex) ||
247 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
248 else
249 return &cgrp->dummy_css;
95109b62 250}
42809dd4 251
aec3dfcb
TH
252/**
253 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
254 * @cgrp: the cgroup of interest
255 * @ss: the subsystem of interest (%NULL returns the dummy_css)
256 *
257 * Similar to cgroup_css() but returns the effctive css, which is defined
258 * as the matching css of the nearest ancestor including self which has @ss
259 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
260 * function is guaranteed to return non-NULL css.
261 */
262static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
263 struct cgroup_subsys *ss)
264{
265 lockdep_assert_held(&cgroup_mutex);
266
267 if (!ss)
268 return &cgrp->dummy_css;
269
270 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
271 return NULL;
272
273 while (cgrp->parent &&
274 !(cgrp->parent->child_subsys_mask & (1 << ss->id)))
275 cgrp = cgrp->parent;
276
277 return cgroup_css(cgrp, ss);
278}
279
ddbcc7e8 280/* convenient tests for these bits */
54766d4a 281static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 282{
54766d4a 283 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
284}
285
59f5296b
TH
286struct cgroup_subsys_state *seq_css(struct seq_file *seq)
287{
2bd59d48
TH
288 struct kernfs_open_file *of = seq->private;
289 struct cgroup *cgrp = of->kn->parent->priv;
290 struct cftype *cft = seq_cft(seq);
291
292 /*
293 * This is open and unprotected implementation of cgroup_css().
294 * seq_css() is only called from a kernfs file operation which has
295 * an active reference on the file. Because all the subsystem
296 * files are drained before a css is disassociated with a cgroup,
297 * the matching css from the cgroup's subsys table is guaranteed to
298 * be and stay valid until the enclosing operation is complete.
299 */
300 if (cft->ss)
301 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
302 else
303 return &cgrp->dummy_css;
59f5296b
TH
304}
305EXPORT_SYMBOL_GPL(seq_css);
306
78574cf9
LZ
307/**
308 * cgroup_is_descendant - test ancestry
309 * @cgrp: the cgroup to be tested
310 * @ancestor: possible ancestor of @cgrp
311 *
312 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
313 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
314 * and @ancestor are accessible.
315 */
316bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
317{
318 while (cgrp) {
319 if (cgrp == ancestor)
320 return true;
321 cgrp = cgrp->parent;
322 }
323 return false;
324}
ddbcc7e8 325
e9685a03 326static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
327{
328 const int bits =
bd89aabc
PM
329 (1 << CGRP_RELEASABLE) |
330 (1 << CGRP_NOTIFY_ON_RELEASE);
331 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
332}
333
e9685a03 334static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 335{
bd89aabc 336 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
337}
338
1c6727af
TH
339/**
340 * for_each_css - iterate all css's of a cgroup
341 * @css: the iteration cursor
342 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
343 * @cgrp: the target cgroup to iterate css's of
344 *
aec3dfcb 345 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
346 */
347#define for_each_css(css, ssid, cgrp) \
348 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
349 if (!((css) = rcu_dereference_check( \
350 (cgrp)->subsys[(ssid)], \
ace2bee8 351 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
352 lockdep_is_held(&cgroup_mutex)))) { } \
353 else
354
aec3dfcb
TH
355/**
356 * for_each_e_css - iterate all effective css's of a cgroup
357 * @css: the iteration cursor
358 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
359 * @cgrp: the target cgroup to iterate css's of
360 *
361 * Should be called under cgroup_[tree_]mutex.
362 */
363#define for_each_e_css(css, ssid, cgrp) \
364 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
365 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
366 ; \
367 else
368
30159ec7 369/**
3ed80a62 370 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 371 * @ss: the iteration cursor
780cd8b3 372 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 373 */
780cd8b3 374#define for_each_subsys(ss, ssid) \
3ed80a62
TH
375 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
376 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 377
985ed670
TH
378/* iterate across the hierarchies */
379#define for_each_root(root) \
5549c497 380 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 381
f8f22e53
TH
382/* iterate over child cgrps, lock should be held throughout iteration */
383#define cgroup_for_each_live_child(child, cgrp) \
384 list_for_each_entry((child), &(cgrp)->children, sibling) \
385 if (({ lockdep_assert_held(&cgroup_tree_mutex); \
386 cgroup_is_dead(child); })) \
387 ; \
388 else
389
7ae1bad9
TH
390/**
391 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
392 * @cgrp: the cgroup to be checked for liveness
393 *
47cfcd09
TH
394 * On success, returns true; the mutex should be later unlocked. On
395 * failure returns false with no lock held.
7ae1bad9 396 */
b9777cf8 397static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
398{
399 mutex_lock(&cgroup_mutex);
54766d4a 400 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
401 mutex_unlock(&cgroup_mutex);
402 return false;
403 }
404 return true;
405}
7ae1bad9 406
81a6a5cd
PM
407/* the list of cgroups eligible for automatic release. Protected by
408 * release_list_lock */
409static LIST_HEAD(release_list);
cdcc136f 410static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
411static void cgroup_release_agent(struct work_struct *work);
412static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 413static void check_for_release(struct cgroup *cgrp);
81a6a5cd 414
69d0206c
TH
415/*
416 * A cgroup can be associated with multiple css_sets as different tasks may
417 * belong to different cgroups on different hierarchies. In the other
418 * direction, a css_set is naturally associated with multiple cgroups.
419 * This M:N relationship is represented by the following link structure
420 * which exists for each association and allows traversing the associations
421 * from both sides.
422 */
423struct cgrp_cset_link {
424 /* the cgroup and css_set this link associates */
425 struct cgroup *cgrp;
426 struct css_set *cset;
427
428 /* list of cgrp_cset_links anchored at cgrp->cset_links */
429 struct list_head cset_link;
430
431 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
432 struct list_head cgrp_link;
817929ec
PM
433};
434
172a2c06
TH
435/*
436 * The default css_set - used by init and its children prior to any
817929ec
PM
437 * hierarchies being mounted. It contains a pointer to the root state
438 * for each subsystem. Also used to anchor the list of css_sets. Not
439 * reference-counted, to improve performance when child cgroups
440 * haven't been created.
441 */
5024ae29 442struct css_set init_css_set = {
172a2c06
TH
443 .refcount = ATOMIC_INIT(1),
444 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
445 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
446 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
447 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
448 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
449};
817929ec 450
172a2c06 451static int css_set_count = 1; /* 1 for init_css_set */
817929ec 452
842b597e
TH
453/**
454 * cgroup_update_populated - updated populated count of a cgroup
455 * @cgrp: the target cgroup
456 * @populated: inc or dec populated count
457 *
458 * @cgrp is either getting the first task (css_set) or losing the last.
459 * Update @cgrp->populated_cnt accordingly. The count is propagated
460 * towards root so that a given cgroup's populated_cnt is zero iff the
461 * cgroup and all its descendants are empty.
462 *
463 * @cgrp's interface file "cgroup.populated" is zero if
464 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
465 * changes from or to zero, userland is notified that the content of the
466 * interface file has changed. This can be used to detect when @cgrp and
467 * its descendants become populated or empty.
468 */
469static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
470{
471 lockdep_assert_held(&css_set_rwsem);
472
473 do {
474 bool trigger;
475
476 if (populated)
477 trigger = !cgrp->populated_cnt++;
478 else
479 trigger = !--cgrp->populated_cnt;
480
481 if (!trigger)
482 break;
483
484 if (cgrp->populated_kn)
485 kernfs_notify(cgrp->populated_kn);
486 cgrp = cgrp->parent;
487 } while (cgrp);
488}
489
7717f7ba
PM
490/*
491 * hash table for cgroup groups. This improves the performance to find
492 * an existing css_set. This hash doesn't (currently) take into
493 * account cgroups in empty hierarchies.
494 */
472b1053 495#define CSS_SET_HASH_BITS 7
0ac801fe 496static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 497
0ac801fe 498static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 499{
0ac801fe 500 unsigned long key = 0UL;
30159ec7
TH
501 struct cgroup_subsys *ss;
502 int i;
472b1053 503
30159ec7 504 for_each_subsys(ss, i)
0ac801fe
LZ
505 key += (unsigned long)css[i];
506 key = (key >> 16) ^ key;
472b1053 507
0ac801fe 508 return key;
472b1053
LZ
509}
510
89c5509b 511static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 512{
69d0206c 513 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
514 struct cgroup_subsys *ss;
515 int ssid;
5abb8855 516
89c5509b
TH
517 lockdep_assert_held(&css_set_rwsem);
518
519 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 520 return;
81a6a5cd 521
2c6ab6d2 522 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
523 for_each_subsys(ss, ssid)
524 list_del(&cset->e_cset_node[ssid]);
5abb8855 525 hash_del(&cset->hlist);
2c6ab6d2
PM
526 css_set_count--;
527
69d0206c 528 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 529 struct cgroup *cgrp = link->cgrp;
5abb8855 530
69d0206c
TH
531 list_del(&link->cset_link);
532 list_del(&link->cgrp_link);
71b5707e 533
96d365e0 534 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
535 if (list_empty(&cgrp->cset_links)) {
536 cgroup_update_populated(cgrp, false);
537 if (notify_on_release(cgrp)) {
538 if (taskexit)
539 set_bit(CGRP_RELEASABLE, &cgrp->flags);
540 check_for_release(cgrp);
541 }
81a6a5cd 542 }
2c6ab6d2
PM
543
544 kfree(link);
81a6a5cd 545 }
2c6ab6d2 546
5abb8855 547 kfree_rcu(cset, rcu_head);
b4f48b63
PM
548}
549
89c5509b
TH
550static void put_css_set(struct css_set *cset, bool taskexit)
551{
552 /*
553 * Ensure that the refcount doesn't hit zero while any readers
554 * can see it. Similar to atomic_dec_and_lock(), but for an
555 * rwlock
556 */
557 if (atomic_add_unless(&cset->refcount, -1, 1))
558 return;
559
560 down_write(&css_set_rwsem);
561 put_css_set_locked(cset, taskexit);
562 up_write(&css_set_rwsem);
563}
564
817929ec
PM
565/*
566 * refcounted get/put for css_set objects
567 */
5abb8855 568static inline void get_css_set(struct css_set *cset)
817929ec 569{
5abb8855 570 atomic_inc(&cset->refcount);
817929ec
PM
571}
572
b326f9d0 573/**
7717f7ba 574 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
575 * @cset: candidate css_set being tested
576 * @old_cset: existing css_set for a task
7717f7ba
PM
577 * @new_cgrp: cgroup that's being entered by the task
578 * @template: desired set of css pointers in css_set (pre-calculated)
579 *
6f4b7e63 580 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
581 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
582 */
5abb8855
TH
583static bool compare_css_sets(struct css_set *cset,
584 struct css_set *old_cset,
7717f7ba
PM
585 struct cgroup *new_cgrp,
586 struct cgroup_subsys_state *template[])
587{
588 struct list_head *l1, *l2;
589
aec3dfcb
TH
590 /*
591 * On the default hierarchy, there can be csets which are
592 * associated with the same set of cgroups but different csses.
593 * Let's first ensure that csses match.
594 */
595 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 596 return false;
7717f7ba
PM
597
598 /*
599 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
600 * different cgroups in hierarchies. As different cgroups may
601 * share the same effective css, this comparison is always
602 * necessary.
7717f7ba 603 */
69d0206c
TH
604 l1 = &cset->cgrp_links;
605 l2 = &old_cset->cgrp_links;
7717f7ba 606 while (1) {
69d0206c 607 struct cgrp_cset_link *link1, *link2;
5abb8855 608 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
609
610 l1 = l1->next;
611 l2 = l2->next;
612 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
613 if (l1 == &cset->cgrp_links) {
614 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
615 break;
616 } else {
69d0206c 617 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
618 }
619 /* Locate the cgroups associated with these links. */
69d0206c
TH
620 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
621 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
622 cgrp1 = link1->cgrp;
623 cgrp2 = link2->cgrp;
7717f7ba 624 /* Hierarchies should be linked in the same order. */
5abb8855 625 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
626
627 /*
628 * If this hierarchy is the hierarchy of the cgroup
629 * that's changing, then we need to check that this
630 * css_set points to the new cgroup; if it's any other
631 * hierarchy, then this css_set should point to the
632 * same cgroup as the old css_set.
633 */
5abb8855
TH
634 if (cgrp1->root == new_cgrp->root) {
635 if (cgrp1 != new_cgrp)
7717f7ba
PM
636 return false;
637 } else {
5abb8855 638 if (cgrp1 != cgrp2)
7717f7ba
PM
639 return false;
640 }
641 }
642 return true;
643}
644
b326f9d0
TH
645/**
646 * find_existing_css_set - init css array and find the matching css_set
647 * @old_cset: the css_set that we're using before the cgroup transition
648 * @cgrp: the cgroup that we're moving into
649 * @template: out param for the new set of csses, should be clear on entry
817929ec 650 */
5abb8855
TH
651static struct css_set *find_existing_css_set(struct css_set *old_cset,
652 struct cgroup *cgrp,
653 struct cgroup_subsys_state *template[])
b4f48b63 654{
3dd06ffa 655 struct cgroup_root *root = cgrp->root;
30159ec7 656 struct cgroup_subsys *ss;
5abb8855 657 struct css_set *cset;
0ac801fe 658 unsigned long key;
b326f9d0 659 int i;
817929ec 660
aae8aab4
BB
661 /*
662 * Build the set of subsystem state objects that we want to see in the
663 * new css_set. while subsystems can change globally, the entries here
664 * won't change, so no need for locking.
665 */
30159ec7 666 for_each_subsys(ss, i) {
f392e51c 667 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
668 /*
669 * @ss is in this hierarchy, so we want the
670 * effective css from @cgrp.
671 */
672 template[i] = cgroup_e_css(cgrp, ss);
817929ec 673 } else {
aec3dfcb
TH
674 /*
675 * @ss is not in this hierarchy, so we don't want
676 * to change the css.
677 */
5abb8855 678 template[i] = old_cset->subsys[i];
817929ec
PM
679 }
680 }
681
0ac801fe 682 key = css_set_hash(template);
5abb8855
TH
683 hash_for_each_possible(css_set_table, cset, hlist, key) {
684 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
685 continue;
686
687 /* This css_set matches what we need */
5abb8855 688 return cset;
472b1053 689 }
817929ec
PM
690
691 /* No existing cgroup group matched */
692 return NULL;
693}
694
69d0206c 695static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 696{
69d0206c 697 struct cgrp_cset_link *link, *tmp_link;
36553434 698
69d0206c
TH
699 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
700 list_del(&link->cset_link);
36553434
LZ
701 kfree(link);
702 }
703}
704
69d0206c
TH
705/**
706 * allocate_cgrp_cset_links - allocate cgrp_cset_links
707 * @count: the number of links to allocate
708 * @tmp_links: list_head the allocated links are put on
709 *
710 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
711 * through ->cset_link. Returns 0 on success or -errno.
817929ec 712 */
69d0206c 713static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 714{
69d0206c 715 struct cgrp_cset_link *link;
817929ec 716 int i;
69d0206c
TH
717
718 INIT_LIST_HEAD(tmp_links);
719
817929ec 720 for (i = 0; i < count; i++) {
f4f4be2b 721 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 722 if (!link) {
69d0206c 723 free_cgrp_cset_links(tmp_links);
817929ec
PM
724 return -ENOMEM;
725 }
69d0206c 726 list_add(&link->cset_link, tmp_links);
817929ec
PM
727 }
728 return 0;
729}
730
c12f65d4
LZ
731/**
732 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 733 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 734 * @cset: the css_set to be linked
c12f65d4
LZ
735 * @cgrp: the destination cgroup
736 */
69d0206c
TH
737static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
738 struct cgroup *cgrp)
c12f65d4 739{
69d0206c 740 struct cgrp_cset_link *link;
c12f65d4 741
69d0206c 742 BUG_ON(list_empty(tmp_links));
6803c006
TH
743
744 if (cgroup_on_dfl(cgrp))
745 cset->dfl_cgrp = cgrp;
746
69d0206c
TH
747 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
748 link->cset = cset;
7717f7ba 749 link->cgrp = cgrp;
842b597e
TH
750
751 if (list_empty(&cgrp->cset_links))
752 cgroup_update_populated(cgrp, true);
69d0206c 753 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 754
7717f7ba
PM
755 /*
756 * Always add links to the tail of the list so that the list
757 * is sorted by order of hierarchy creation
758 */
69d0206c 759 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
760}
761
b326f9d0
TH
762/**
763 * find_css_set - return a new css_set with one cgroup updated
764 * @old_cset: the baseline css_set
765 * @cgrp: the cgroup to be updated
766 *
767 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
768 * substituted into the appropriate hierarchy.
817929ec 769 */
5abb8855
TH
770static struct css_set *find_css_set(struct css_set *old_cset,
771 struct cgroup *cgrp)
817929ec 772{
b326f9d0 773 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 774 struct css_set *cset;
69d0206c
TH
775 struct list_head tmp_links;
776 struct cgrp_cset_link *link;
2d8f243a 777 struct cgroup_subsys *ss;
0ac801fe 778 unsigned long key;
2d8f243a 779 int ssid;
472b1053 780
b326f9d0
TH
781 lockdep_assert_held(&cgroup_mutex);
782
817929ec
PM
783 /* First see if we already have a cgroup group that matches
784 * the desired set */
96d365e0 785 down_read(&css_set_rwsem);
5abb8855
TH
786 cset = find_existing_css_set(old_cset, cgrp, template);
787 if (cset)
788 get_css_set(cset);
96d365e0 789 up_read(&css_set_rwsem);
817929ec 790
5abb8855
TH
791 if (cset)
792 return cset;
817929ec 793
f4f4be2b 794 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 795 if (!cset)
817929ec
PM
796 return NULL;
797
69d0206c 798 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 799 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 800 kfree(cset);
817929ec
PM
801 return NULL;
802 }
803
5abb8855 804 atomic_set(&cset->refcount, 1);
69d0206c 805 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 806 INIT_LIST_HEAD(&cset->tasks);
c7561128 807 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 808 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 809 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 810 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
811
812 /* Copy the set of subsystem state objects generated in
813 * find_existing_css_set() */
5abb8855 814 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 815
96d365e0 816 down_write(&css_set_rwsem);
817929ec 817 /* Add reference counts and links from the new css_set. */
69d0206c 818 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 819 struct cgroup *c = link->cgrp;
69d0206c 820
7717f7ba
PM
821 if (c->root == cgrp->root)
822 c = cgrp;
69d0206c 823 link_css_set(&tmp_links, cset, c);
7717f7ba 824 }
817929ec 825
69d0206c 826 BUG_ON(!list_empty(&tmp_links));
817929ec 827
817929ec 828 css_set_count++;
472b1053 829
2d8f243a 830 /* Add @cset to the hash table */
5abb8855
TH
831 key = css_set_hash(cset->subsys);
832 hash_add(css_set_table, &cset->hlist, key);
472b1053 833
2d8f243a
TH
834 for_each_subsys(ss, ssid)
835 list_add_tail(&cset->e_cset_node[ssid],
836 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
837
96d365e0 838 up_write(&css_set_rwsem);
817929ec 839
5abb8855 840 return cset;
b4f48b63
PM
841}
842
3dd06ffa 843static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 844{
3dd06ffa 845 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 846
3dd06ffa 847 return root_cgrp->root;
2bd59d48
TH
848}
849
3dd06ffa 850static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
851{
852 int id;
853
854 lockdep_assert_held(&cgroup_mutex);
855
985ed670 856 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
857 if (id < 0)
858 return id;
859
860 root->hierarchy_id = id;
861 return 0;
862}
863
3dd06ffa 864static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
865{
866 lockdep_assert_held(&cgroup_mutex);
867
868 if (root->hierarchy_id) {
869 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
870 root->hierarchy_id = 0;
871 }
872}
873
3dd06ffa 874static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
875{
876 if (root) {
877 /* hierarhcy ID shoulid already have been released */
878 WARN_ON_ONCE(root->hierarchy_id);
879
880 idr_destroy(&root->cgroup_idr);
881 kfree(root);
882 }
883}
884
3dd06ffa 885static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 886{
3dd06ffa 887 struct cgroup *cgrp = &root->cgrp;
f2e85d57 888 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 889
2bd59d48 890 mutex_lock(&cgroup_tree_mutex);
2bd59d48 891 mutex_lock(&cgroup_mutex);
f2e85d57 892
776f02fa 893 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
894 BUG_ON(!list_empty(&cgrp->children));
895
f2e85d57 896 /* Rebind all subsystems back to the default hierarchy */
f392e51c 897 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 898
7717f7ba 899 /*
f2e85d57
TH
900 * Release all the links from cset_links to this hierarchy's
901 * root cgroup
7717f7ba 902 */
96d365e0 903 down_write(&css_set_rwsem);
f2e85d57
TH
904
905 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
906 list_del(&link->cset_link);
907 list_del(&link->cgrp_link);
908 kfree(link);
909 }
96d365e0 910 up_write(&css_set_rwsem);
f2e85d57
TH
911
912 if (!list_empty(&root->root_list)) {
913 list_del(&root->root_list);
914 cgroup_root_count--;
915 }
916
917 cgroup_exit_root_id(root);
918
919 mutex_unlock(&cgroup_mutex);
920 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 921
2bd59d48 922 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
923 cgroup_free_root(root);
924}
925
ceb6a081
TH
926/* look up cgroup associated with given css_set on the specified hierarchy */
927static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 928 struct cgroup_root *root)
7717f7ba 929{
7717f7ba
PM
930 struct cgroup *res = NULL;
931
96d365e0
TH
932 lockdep_assert_held(&cgroup_mutex);
933 lockdep_assert_held(&css_set_rwsem);
934
5abb8855 935 if (cset == &init_css_set) {
3dd06ffa 936 res = &root->cgrp;
7717f7ba 937 } else {
69d0206c
TH
938 struct cgrp_cset_link *link;
939
940 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 941 struct cgroup *c = link->cgrp;
69d0206c 942
7717f7ba
PM
943 if (c->root == root) {
944 res = c;
945 break;
946 }
947 }
948 }
96d365e0 949
7717f7ba
PM
950 BUG_ON(!res);
951 return res;
952}
953
ddbcc7e8 954/*
ceb6a081
TH
955 * Return the cgroup for "task" from the given hierarchy. Must be
956 * called with cgroup_mutex and css_set_rwsem held.
957 */
958static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 959 struct cgroup_root *root)
ceb6a081
TH
960{
961 /*
962 * No need to lock the task - since we hold cgroup_mutex the
963 * task can't change groups, so the only thing that can happen
964 * is that it exits and its css is set back to init_css_set.
965 */
966 return cset_cgroup_from_root(task_css_set(task), root);
967}
968
ddbcc7e8 969/*
ddbcc7e8
PM
970 * A task must hold cgroup_mutex to modify cgroups.
971 *
972 * Any task can increment and decrement the count field without lock.
973 * So in general, code holding cgroup_mutex can't rely on the count
974 * field not changing. However, if the count goes to zero, then only
956db3ca 975 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
976 * means that no tasks are currently attached, therefore there is no
977 * way a task attached to that cgroup can fork (the other way to
978 * increment the count). So code holding cgroup_mutex can safely
979 * assume that if the count is zero, it will stay zero. Similarly, if
980 * a task holds cgroup_mutex on a cgroup with zero count, it
981 * knows that the cgroup won't be removed, as cgroup_rmdir()
982 * needs that mutex.
983 *
ddbcc7e8
PM
984 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
985 * (usually) take cgroup_mutex. These are the two most performance
986 * critical pieces of code here. The exception occurs on cgroup_exit(),
987 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
988 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
989 * to the release agent with the name of the cgroup (path relative to
990 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
991 *
992 * A cgroup can only be deleted if both its 'count' of using tasks
993 * is zero, and its list of 'children' cgroups is empty. Since all
994 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 995 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 996 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 997 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
998 *
999 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1000 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1001 */
1002
69dfa00c 1003static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 1004static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1005static const struct file_operations proc_cgroupstats_operations;
a424316c 1006
8d7e6fb0
TH
1007static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1008 char *buf)
ddbcc7e8 1009{
8d7e6fb0
TH
1010 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1011 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1012 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1013 cft->ss->name, cft->name);
1014 else
1015 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1016 return buf;
ddbcc7e8
PM
1017}
1018
f2e85d57
TH
1019/**
1020 * cgroup_file_mode - deduce file mode of a control file
1021 * @cft: the control file in question
1022 *
1023 * returns cft->mode if ->mode is not 0
1024 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1025 * returns S_IRUGO if it has only a read handler
1026 * returns S_IWUSR if it has only a write hander
1027 */
1028static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1029{
f2e85d57 1030 umode_t mode = 0;
65dff759 1031
f2e85d57
TH
1032 if (cft->mode)
1033 return cft->mode;
1034
1035 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1036 mode |= S_IRUGO;
1037
1038 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
1039 cft->trigger)
1040 mode |= S_IWUSR;
1041
1042 return mode;
65dff759
LZ
1043}
1044
be445626
LZ
1045static void cgroup_free_fn(struct work_struct *work)
1046{
ea15f8cc 1047 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 1048
3c9c825b 1049 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 1050 cgroup_pidlist_destroy_all(cgrp);
be445626 1051
776f02fa
TH
1052 if (cgrp->parent) {
1053 /*
1054 * We get a ref to the parent, and put the ref when this
1055 * cgroup is being freed, so it's guaranteed that the
1056 * parent won't be destroyed before its children.
1057 */
1058 cgroup_put(cgrp->parent);
1059 kernfs_put(cgrp->kn);
1060 kfree(cgrp);
1061 } else {
1062 /*
3dd06ffa 1063 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
1064 * indicates that the root should be released.
1065 */
1066 cgroup_destroy_root(cgrp->root);
1067 }
be445626
LZ
1068}
1069
1070static void cgroup_free_rcu(struct rcu_head *head)
1071{
1072 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
1073
ea15f8cc 1074 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 1075 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
1076}
1077
59f5296b 1078static void cgroup_get(struct cgroup *cgrp)
ddbcc7e8 1079{
2bd59d48
TH
1080 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1081 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
1082 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
1083}
1084
59f5296b 1085static void cgroup_put(struct cgroup *cgrp)
05ef1d7c 1086{
2bd59d48
TH
1087 if (!atomic_dec_and_test(&cgrp->refcnt))
1088 return;
776f02fa 1089 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 1090 return;
05ef1d7c 1091
6fa4918d 1092 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
2bd59d48 1093 cgrp->id = -1;
05ef1d7c 1094
2bd59d48 1095 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8 1096}
05ef1d7c 1097
2739d3cc 1098static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1099{
2bd59d48 1100 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1101
ace2bee8 1102 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 1103 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1104}
1105
13af07df 1106/**
628f7cd4 1107 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1108 * @cgrp: target cgroup
13af07df
AR
1109 * @subsys_mask: mask of the subsystem ids whose files should be removed
1110 */
69dfa00c 1111static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1112{
13af07df 1113 struct cgroup_subsys *ss;
b420ba7d 1114 int i;
05ef1d7c 1115
b420ba7d 1116 for_each_subsys(ss, i) {
0adb0704 1117 struct cftype *cfts;
b420ba7d 1118
69dfa00c 1119 if (!(subsys_mask & (1 << i)))
13af07df 1120 continue;
0adb0704
TH
1121 list_for_each_entry(cfts, &ss->cfts, node)
1122 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1123 }
ddbcc7e8
PM
1124}
1125
69dfa00c 1126static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1127{
30159ec7 1128 struct cgroup_subsys *ss;
2d8f243a 1129 int ssid, i, ret;
ddbcc7e8 1130
ace2bee8
TH
1131 lockdep_assert_held(&cgroup_tree_mutex);
1132 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1133
5df36032
TH
1134 for_each_subsys(ss, ssid) {
1135 if (!(ss_mask & (1 << ssid)))
1136 continue;
aae8aab4 1137
7fd8c565
TH
1138 /* if @ss has non-root csses attached to it, can't move */
1139 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1140 return -EBUSY;
1d5be6b2 1141
5df36032 1142 /* can't move between two non-dummy roots either */
7fd8c565 1143 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1144 return -EBUSY;
ddbcc7e8
PM
1145 }
1146
a2dd4247
TH
1147 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1148 if (ret) {
1149 if (dst_root != &cgrp_dfl_root)
5df36032 1150 return ret;
ddbcc7e8 1151
a2dd4247
TH
1152 /*
1153 * Rebinding back to the default root is not allowed to
1154 * fail. Using both default and non-default roots should
1155 * be rare. Moving subsystems back and forth even more so.
1156 * Just warn about it and continue.
1157 */
1158 if (cgrp_dfl_root_visible) {
69dfa00c 1159 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1160 ret, ss_mask);
ed3d261b 1161 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1162 }
5df36032 1163 }
3126121f
TH
1164
1165 /*
1166 * Nothing can fail from this point on. Remove files for the
1167 * removed subsystems and rebind each subsystem.
1168 */
4ac06017 1169 mutex_unlock(&cgroup_mutex);
5df36032 1170 for_each_subsys(ss, ssid)
a2dd4247 1171 if (ss_mask & (1 << ssid))
3dd06ffa 1172 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1173 mutex_lock(&cgroup_mutex);
a8a648c4 1174
5df36032 1175 for_each_subsys(ss, ssid) {
3dd06ffa 1176 struct cgroup_root *src_root;
5df36032 1177 struct cgroup_subsys_state *css;
2d8f243a 1178 struct css_set *cset;
a8a648c4 1179
5df36032
TH
1180 if (!(ss_mask & (1 << ssid)))
1181 continue;
a8a648c4 1182
5df36032 1183 src_root = ss->root;
3dd06ffa 1184 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1185
3dd06ffa 1186 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1187
3dd06ffa
TH
1188 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1189 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1190 ss->root = dst_root;
3dd06ffa 1191 css->cgroup = &dst_root->cgrp;
73e80ed8 1192
2d8f243a
TH
1193 down_write(&css_set_rwsem);
1194 hash_for_each(css_set_table, i, cset, hlist)
1195 list_move_tail(&cset->e_cset_node[ss->id],
1196 &dst_root->cgrp.e_csets[ss->id]);
1197 up_write(&css_set_rwsem);
1198
f392e51c
TH
1199 src_root->subsys_mask &= ~(1 << ssid);
1200 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1201
bd53d617 1202 /* default hierarchy doesn't enable controllers by default */
f392e51c 1203 dst_root->subsys_mask |= 1 << ssid;
bd53d617
TH
1204 if (dst_root != &cgrp_dfl_root)
1205 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1206
5df36032
TH
1207 if (ss->bind)
1208 ss->bind(css);
ddbcc7e8 1209 }
ddbcc7e8 1210
a2dd4247 1211 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1212 return 0;
1213}
1214
2bd59d48
TH
1215static int cgroup_show_options(struct seq_file *seq,
1216 struct kernfs_root *kf_root)
ddbcc7e8 1217{
3dd06ffa 1218 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1219 struct cgroup_subsys *ss;
b85d2040 1220 int ssid;
ddbcc7e8 1221
b85d2040 1222 for_each_subsys(ss, ssid)
f392e51c 1223 if (root->subsys_mask & (1 << ssid))
b85d2040 1224 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1225 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1226 seq_puts(seq, ",sane_behavior");
93438629 1227 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1228 seq_puts(seq, ",noprefix");
93438629 1229 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1230 seq_puts(seq, ",xattr");
69e943b7
TH
1231
1232 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1233 if (strlen(root->release_agent_path))
1234 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1235 spin_unlock(&release_agent_path_lock);
1236
3dd06ffa 1237 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1238 seq_puts(seq, ",clone_children");
c6d57f33
PM
1239 if (strlen(root->name))
1240 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1241 return 0;
1242}
1243
1244struct cgroup_sb_opts {
69dfa00c
TH
1245 unsigned int subsys_mask;
1246 unsigned int flags;
81a6a5cd 1247 char *release_agent;
2260e7fc 1248 bool cpuset_clone_children;
c6d57f33 1249 char *name;
2c6ab6d2
PM
1250 /* User explicitly requested empty subsystem */
1251 bool none;
ddbcc7e8
PM
1252};
1253
cf5d5941 1254static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1255{
32a8cf23
DL
1256 char *token, *o = data;
1257 bool all_ss = false, one_ss = false;
69dfa00c 1258 unsigned int mask = -1U;
30159ec7
TH
1259 struct cgroup_subsys *ss;
1260 int i;
f9ab5b5b
LZ
1261
1262#ifdef CONFIG_CPUSETS
69dfa00c 1263 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1264#endif
ddbcc7e8 1265
c6d57f33 1266 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1267
1268 while ((token = strsep(&o, ",")) != NULL) {
1269 if (!*token)
1270 return -EINVAL;
32a8cf23 1271 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1272 /* Explicitly have no subsystems */
1273 opts->none = true;
32a8cf23
DL
1274 continue;
1275 }
1276 if (!strcmp(token, "all")) {
1277 /* Mutually exclusive option 'all' + subsystem name */
1278 if (one_ss)
1279 return -EINVAL;
1280 all_ss = true;
1281 continue;
1282 }
873fe09e
TH
1283 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1284 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1285 continue;
1286 }
32a8cf23 1287 if (!strcmp(token, "noprefix")) {
93438629 1288 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1289 continue;
1290 }
1291 if (!strcmp(token, "clone_children")) {
2260e7fc 1292 opts->cpuset_clone_children = true;
32a8cf23
DL
1293 continue;
1294 }
03b1cde6 1295 if (!strcmp(token, "xattr")) {
93438629 1296 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1297 continue;
1298 }
32a8cf23 1299 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1300 /* Specifying two release agents is forbidden */
1301 if (opts->release_agent)
1302 return -EINVAL;
c6d57f33 1303 opts->release_agent =
e400c285 1304 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1305 if (!opts->release_agent)
1306 return -ENOMEM;
32a8cf23
DL
1307 continue;
1308 }
1309 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1310 const char *name = token + 5;
1311 /* Can't specify an empty name */
1312 if (!strlen(name))
1313 return -EINVAL;
1314 /* Must match [\w.-]+ */
1315 for (i = 0; i < strlen(name); i++) {
1316 char c = name[i];
1317 if (isalnum(c))
1318 continue;
1319 if ((c == '.') || (c == '-') || (c == '_'))
1320 continue;
1321 return -EINVAL;
1322 }
1323 /* Specifying two names is forbidden */
1324 if (opts->name)
1325 return -EINVAL;
1326 opts->name = kstrndup(name,
e400c285 1327 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1328 GFP_KERNEL);
1329 if (!opts->name)
1330 return -ENOMEM;
32a8cf23
DL
1331
1332 continue;
1333 }
1334
30159ec7 1335 for_each_subsys(ss, i) {
32a8cf23
DL
1336 if (strcmp(token, ss->name))
1337 continue;
1338 if (ss->disabled)
1339 continue;
1340
1341 /* Mutually exclusive option 'all' + subsystem name */
1342 if (all_ss)
1343 return -EINVAL;
69dfa00c 1344 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1345 one_ss = true;
1346
1347 break;
1348 }
1349 if (i == CGROUP_SUBSYS_COUNT)
1350 return -ENOENT;
1351 }
1352
2c6ab6d2
PM
1353 /* Consistency checks */
1354
873fe09e 1355 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1356 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1357
d3ba07c3
TH
1358 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1359 opts->cpuset_clone_children || opts->release_agent ||
1360 opts->name) {
ed3d261b 1361 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1362 return -EINVAL;
1363 }
a2dd4247
TH
1364 } else {
1365 /*
1366 * If the 'all' option was specified select all the
1367 * subsystems, otherwise if 'none', 'name=' and a subsystem
1368 * name options were not specified, let's default to 'all'
1369 */
1370 if (all_ss || (!one_ss && !opts->none && !opts->name))
1371 for_each_subsys(ss, i)
1372 if (!ss->disabled)
69dfa00c 1373 opts->subsys_mask |= (1 << i);
873fe09e 1374
a2dd4247
TH
1375 /*
1376 * We either have to specify by name or by subsystems. (So
1377 * all empty hierarchies must have a name).
1378 */
1379 if (!opts->subsys_mask && !opts->name)
873fe09e 1380 return -EINVAL;
873fe09e
TH
1381 }
1382
f9ab5b5b
LZ
1383 /*
1384 * Option noprefix was introduced just for backward compatibility
1385 * with the old cpuset, so we allow noprefix only if mounting just
1386 * the cpuset subsystem.
1387 */
93438629 1388 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1389 return -EINVAL;
1390
2c6ab6d2
PM
1391
1392 /* Can't specify "none" and some subsystems */
a1a71b45 1393 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1394 return -EINVAL;
1395
ddbcc7e8
PM
1396 return 0;
1397}
1398
2bd59d48 1399static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1400{
1401 int ret = 0;
3dd06ffa 1402 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1403 struct cgroup_sb_opts opts;
69dfa00c 1404 unsigned int added_mask, removed_mask;
ddbcc7e8 1405
873fe09e 1406 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1407 pr_err("sane_behavior: remount is not allowed\n");
873fe09e
TH
1408 return -EINVAL;
1409 }
1410
ace2bee8 1411 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1412 mutex_lock(&cgroup_mutex);
1413
1414 /* See what subsystems are wanted */
1415 ret = parse_cgroupfs_options(data, &opts);
1416 if (ret)
1417 goto out_unlock;
1418
f392e51c 1419 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1420 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1421 task_tgid_nr(current), current->comm);
8b5a5a9d 1422
f392e51c
TH
1423 added_mask = opts.subsys_mask & ~root->subsys_mask;
1424 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1425
cf5d5941 1426 /* Don't allow flags or name to change at remount */
0ce6cba3 1427 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1428 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1429 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
0ce6cba3
TH
1430 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1431 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1432 ret = -EINVAL;
1433 goto out_unlock;
1434 }
1435
f172e67c 1436 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1437 if (!list_empty(&root->cgrp.children)) {
f172e67c 1438 ret = -EBUSY;
0670e08b 1439 goto out_unlock;
cf5d5941 1440 }
ddbcc7e8 1441
5df36032 1442 ret = rebind_subsystems(root, added_mask);
3126121f 1443 if (ret)
0670e08b 1444 goto out_unlock;
ddbcc7e8 1445
3dd06ffa 1446 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1447
69e943b7
TH
1448 if (opts.release_agent) {
1449 spin_lock(&release_agent_path_lock);
81a6a5cd 1450 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1451 spin_unlock(&release_agent_path_lock);
1452 }
ddbcc7e8 1453 out_unlock:
66bdc9cf 1454 kfree(opts.release_agent);
c6d57f33 1455 kfree(opts.name);
ddbcc7e8 1456 mutex_unlock(&cgroup_mutex);
ace2bee8 1457 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1458 return ret;
1459}
1460
afeb0f9f
TH
1461/*
1462 * To reduce the fork() overhead for systems that are not actually using
1463 * their cgroups capability, we don't maintain the lists running through
1464 * each css_set to its tasks until we see the list actually used - in other
1465 * words after the first mount.
1466 */
1467static bool use_task_css_set_links __read_mostly;
1468
1469static void cgroup_enable_task_cg_lists(void)
1470{
1471 struct task_struct *p, *g;
1472
96d365e0 1473 down_write(&css_set_rwsem);
afeb0f9f
TH
1474
1475 if (use_task_css_set_links)
1476 goto out_unlock;
1477
1478 use_task_css_set_links = true;
1479
1480 /*
1481 * We need tasklist_lock because RCU is not safe against
1482 * while_each_thread(). Besides, a forking task that has passed
1483 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1484 * is not guaranteed to have its child immediately visible in the
1485 * tasklist if we walk through it with RCU.
1486 */
1487 read_lock(&tasklist_lock);
1488 do_each_thread(g, p) {
afeb0f9f
TH
1489 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1490 task_css_set(p) != &init_css_set);
1491
1492 /*
1493 * We should check if the process is exiting, otherwise
1494 * it will race with cgroup_exit() in that the list
1495 * entry won't be deleted though the process has exited.
f153ad11
TH
1496 * Do it while holding siglock so that we don't end up
1497 * racing against cgroup_exit().
afeb0f9f 1498 */
f153ad11 1499 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1500 if (!(p->flags & PF_EXITING)) {
1501 struct css_set *cset = task_css_set(p);
1502
1503 list_add(&p->cg_list, &cset->tasks);
1504 get_css_set(cset);
1505 }
f153ad11 1506 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1507 } while_each_thread(g, p);
1508 read_unlock(&tasklist_lock);
1509out_unlock:
96d365e0 1510 up_write(&css_set_rwsem);
afeb0f9f 1511}
ddbcc7e8 1512
cc31edce
PM
1513static void init_cgroup_housekeeping(struct cgroup *cgrp)
1514{
2d8f243a
TH
1515 struct cgroup_subsys *ss;
1516 int ssid;
1517
2bd59d48 1518 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1519 INIT_LIST_HEAD(&cgrp->sibling);
1520 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1521 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1522 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1523 INIT_LIST_HEAD(&cgrp->pidlists);
1524 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1525 cgrp->dummy_css.cgroup = cgrp;
2d8f243a
TH
1526
1527 for_each_subsys(ss, ssid)
1528 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1529
1530 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1531}
c6d57f33 1532
3dd06ffa 1533static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1534 struct cgroup_sb_opts *opts)
ddbcc7e8 1535{
3dd06ffa 1536 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1537
ddbcc7e8 1538 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1539 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1540 cgrp->root = root;
cc31edce 1541 init_cgroup_housekeeping(cgrp);
4e96ee8e 1542 idr_init(&root->cgroup_idr);
c6d57f33 1543
c6d57f33
PM
1544 root->flags = opts->flags;
1545 if (opts->release_agent)
1546 strcpy(root->release_agent_path, opts->release_agent);
1547 if (opts->name)
1548 strcpy(root->name, opts->name);
2260e7fc 1549 if (opts->cpuset_clone_children)
3dd06ffa 1550 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1551}
1552
69dfa00c 1553static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1554{
d427dfeb 1555 LIST_HEAD(tmp_links);
3dd06ffa 1556 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1557 struct css_set *cset;
d427dfeb 1558 int i, ret;
2c6ab6d2 1559
d427dfeb
TH
1560 lockdep_assert_held(&cgroup_tree_mutex);
1561 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1562
6fa4918d 1563 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1564 if (ret < 0)
2bd59d48 1565 goto out;
d427dfeb 1566 root_cgrp->id = ret;
c6d57f33 1567
d427dfeb 1568 /*
96d365e0 1569 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1570 * but that's OK - it can only be increased by someone holding
1571 * cgroup_lock, and that's us. The worst that can happen is that we
1572 * have some link structures left over
1573 */
1574 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1575 if (ret)
2bd59d48 1576 goto out;
ddbcc7e8 1577
985ed670 1578 ret = cgroup_init_root_id(root);
ddbcc7e8 1579 if (ret)
2bd59d48 1580 goto out;
ddbcc7e8 1581
2bd59d48
TH
1582 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1583 KERNFS_ROOT_CREATE_DEACTIVATED,
1584 root_cgrp);
1585 if (IS_ERR(root->kf_root)) {
1586 ret = PTR_ERR(root->kf_root);
1587 goto exit_root_id;
1588 }
1589 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1590
d427dfeb
TH
1591 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1592 if (ret)
2bd59d48 1593 goto destroy_root;
ddbcc7e8 1594
5df36032 1595 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1596 if (ret)
2bd59d48 1597 goto destroy_root;
ddbcc7e8 1598
d427dfeb
TH
1599 /*
1600 * There must be no failure case after here, since rebinding takes
1601 * care of subsystems' refcounts, which are explicitly dropped in
1602 * the failure exit path.
1603 */
1604 list_add(&root->root_list, &cgroup_roots);
1605 cgroup_root_count++;
0df6a63f 1606
d427dfeb 1607 /*
3dd06ffa 1608 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1609 * objects.
1610 */
96d365e0 1611 down_write(&css_set_rwsem);
d427dfeb
TH
1612 hash_for_each(css_set_table, i, cset, hlist)
1613 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1614 up_write(&css_set_rwsem);
ddbcc7e8 1615
d427dfeb 1616 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1617 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1618
2bd59d48 1619 kernfs_activate(root_cgrp->kn);
d427dfeb 1620 ret = 0;
2bd59d48 1621 goto out;
d427dfeb 1622
2bd59d48
TH
1623destroy_root:
1624 kernfs_destroy_root(root->kf_root);
1625 root->kf_root = NULL;
1626exit_root_id:
d427dfeb 1627 cgroup_exit_root_id(root);
2bd59d48 1628out:
d427dfeb
TH
1629 free_cgrp_cset_links(&tmp_links);
1630 return ret;
ddbcc7e8
PM
1631}
1632
f7e83571 1633static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1634 int flags, const char *unused_dev_name,
f7e83571 1635 void *data)
ddbcc7e8 1636{
3dd06ffa 1637 struct cgroup_root *root;
ddbcc7e8 1638 struct cgroup_sb_opts opts;
2bd59d48 1639 struct dentry *dentry;
8e30e2b8 1640 int ret;
c6b3d5bc 1641 bool new_sb;
ddbcc7e8 1642
56fde9e0
TH
1643 /*
1644 * The first time anyone tries to mount a cgroup, enable the list
1645 * linking each css_set to its tasks and fix up all existing tasks.
1646 */
1647 if (!use_task_css_set_links)
1648 cgroup_enable_task_cg_lists();
e37a06f1 1649
8e30e2b8 1650 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1651 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1652
1653 /* First find the desired set of subsystems */
ddbcc7e8 1654 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1655 if (ret)
8e30e2b8 1656 goto out_unlock;
e37a06f1 1657retry:
2bd59d48 1658 /* look for a matching existing root */
a2dd4247
TH
1659 if (!opts.subsys_mask && !opts.none && !opts.name) {
1660 cgrp_dfl_root_visible = true;
1661 root = &cgrp_dfl_root;
1662 cgroup_get(&root->cgrp);
1663 ret = 0;
1664 goto out_unlock;
ddbcc7e8
PM
1665 }
1666
985ed670 1667 for_each_root(root) {
2bd59d48 1668 bool name_match = false;
3126121f 1669
3dd06ffa 1670 if (root == &cgrp_dfl_root)
985ed670 1671 continue;
3126121f 1672
cf5d5941 1673 /*
2bd59d48
TH
1674 * If we asked for a name then it must match. Also, if
1675 * name matches but sybsys_mask doesn't, we should fail.
1676 * Remember whether name matched.
cf5d5941 1677 */
2bd59d48
TH
1678 if (opts.name) {
1679 if (strcmp(opts.name, root->name))
1680 continue;
1681 name_match = true;
1682 }
ddbcc7e8 1683
c6d57f33 1684 /*
2bd59d48
TH
1685 * If we asked for subsystems (or explicitly for no
1686 * subsystems) then they must match.
c6d57f33 1687 */
2bd59d48 1688 if ((opts.subsys_mask || opts.none) &&
f392e51c 1689 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1690 if (!name_match)
1691 continue;
1692 ret = -EBUSY;
1693 goto out_unlock;
1694 }
873fe09e 1695
c7ba8287 1696 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb 1697 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1698 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1699 ret = -EINVAL;
8e30e2b8 1700 goto out_unlock;
2a0ff3fb 1701 } else {
ed3d261b 1702 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1703 }
873fe09e 1704 }
ddbcc7e8 1705
776f02fa 1706 /*
3dd06ffa 1707 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1708 * ref indicate that the root is being destroyed. Wait for
1709 * destruction to complete so that the subsystems are free.
1710 * We can use wait_queue for the wait but this path is
1711 * super cold. Let's just sleep for a bit and retry.
1712 */
3dd06ffa 1713 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1714 mutex_unlock(&cgroup_mutex);
1715 mutex_unlock(&cgroup_tree_mutex);
1716 msleep(10);
e37a06f1
LZ
1717 mutex_lock(&cgroup_tree_mutex);
1718 mutex_lock(&cgroup_mutex);
776f02fa
TH
1719 goto retry;
1720 }
ddbcc7e8 1721
776f02fa 1722 ret = 0;
2bd59d48 1723 goto out_unlock;
ddbcc7e8 1724 }
ddbcc7e8 1725
817929ec 1726 /*
172a2c06
TH
1727 * No such thing, create a new one. name= matching without subsys
1728 * specification is allowed for already existing hierarchies but we
1729 * can't create new one without subsys specification.
817929ec 1730 */
172a2c06
TH
1731 if (!opts.subsys_mask && !opts.none) {
1732 ret = -EINVAL;
1733 goto out_unlock;
817929ec 1734 }
817929ec 1735
172a2c06
TH
1736 root = kzalloc(sizeof(*root), GFP_KERNEL);
1737 if (!root) {
1738 ret = -ENOMEM;
2bd59d48 1739 goto out_unlock;
839ec545 1740 }
e5f6a860 1741
172a2c06
TH
1742 init_cgroup_root(root, &opts);
1743
35585573 1744 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1745 if (ret)
1746 cgroup_free_root(root);
fa3ca07e 1747
8e30e2b8 1748out_unlock:
ddbcc7e8 1749 mutex_unlock(&cgroup_mutex);
ace2bee8 1750 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8 1751
c6d57f33
PM
1752 kfree(opts.release_agent);
1753 kfree(opts.name);
03b1cde6 1754
2bd59d48 1755 if (ret)
8e30e2b8 1756 return ERR_PTR(ret);
2bd59d48 1757
c6b3d5bc
LZ
1758 dentry = kernfs_mount(fs_type, flags, root->kf_root, &new_sb);
1759 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1760 cgroup_put(&root->cgrp);
2bd59d48
TH
1761 return dentry;
1762}
1763
1764static void cgroup_kill_sb(struct super_block *sb)
1765{
1766 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1767 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1768
3dd06ffa 1769 cgroup_put(&root->cgrp);
2bd59d48 1770 kernfs_kill_sb(sb);
ddbcc7e8
PM
1771}
1772
1773static struct file_system_type cgroup_fs_type = {
1774 .name = "cgroup",
f7e83571 1775 .mount = cgroup_mount,
ddbcc7e8
PM
1776 .kill_sb = cgroup_kill_sb,
1777};
1778
676db4af
GK
1779static struct kobject *cgroup_kobj;
1780
857a2beb 1781/**
913ffdb5 1782 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1783 * @task: target task
857a2beb
TH
1784 * @buf: the buffer to write the path into
1785 * @buflen: the length of the buffer
1786 *
913ffdb5
TH
1787 * Determine @task's cgroup on the first (the one with the lowest non-zero
1788 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1789 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1790 * cgroup controller callbacks.
1791 *
e61734c5 1792 * Return value is the same as kernfs_path().
857a2beb 1793 */
e61734c5 1794char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1795{
3dd06ffa 1796 struct cgroup_root *root;
913ffdb5 1797 struct cgroup *cgrp;
e61734c5
TH
1798 int hierarchy_id = 1;
1799 char *path = NULL;
857a2beb
TH
1800
1801 mutex_lock(&cgroup_mutex);
96d365e0 1802 down_read(&css_set_rwsem);
857a2beb 1803
913ffdb5
TH
1804 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1805
857a2beb
TH
1806 if (root) {
1807 cgrp = task_cgroup_from_root(task, root);
e61734c5 1808 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1809 } else {
1810 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1811 if (strlcpy(buf, "/", buflen) < buflen)
1812 path = buf;
857a2beb
TH
1813 }
1814
96d365e0 1815 up_read(&css_set_rwsem);
857a2beb 1816 mutex_unlock(&cgroup_mutex);
e61734c5 1817 return path;
857a2beb 1818}
913ffdb5 1819EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1820
b3dc094e 1821/* used to track tasks and other necessary states during migration */
2f7ee569 1822struct cgroup_taskset {
b3dc094e
TH
1823 /* the src and dst cset list running through cset->mg_node */
1824 struct list_head src_csets;
1825 struct list_head dst_csets;
1826
1827 /*
1828 * Fields for cgroup_taskset_*() iteration.
1829 *
1830 * Before migration is committed, the target migration tasks are on
1831 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1832 * the csets on ->dst_csets. ->csets point to either ->src_csets
1833 * or ->dst_csets depending on whether migration is committed.
1834 *
1835 * ->cur_csets and ->cur_task point to the current task position
1836 * during iteration.
1837 */
1838 struct list_head *csets;
1839 struct css_set *cur_cset;
1840 struct task_struct *cur_task;
2f7ee569
TH
1841};
1842
1843/**
1844 * cgroup_taskset_first - reset taskset and return the first task
1845 * @tset: taskset of interest
1846 *
1847 * @tset iteration is initialized and the first task is returned.
1848 */
1849struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1850{
b3dc094e
TH
1851 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1852 tset->cur_task = NULL;
1853
1854 return cgroup_taskset_next(tset);
2f7ee569 1855}
2f7ee569
TH
1856
1857/**
1858 * cgroup_taskset_next - iterate to the next task in taskset
1859 * @tset: taskset of interest
1860 *
1861 * Return the next task in @tset. Iteration must have been initialized
1862 * with cgroup_taskset_first().
1863 */
1864struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1865{
b3dc094e
TH
1866 struct css_set *cset = tset->cur_cset;
1867 struct task_struct *task = tset->cur_task;
2f7ee569 1868
b3dc094e
TH
1869 while (&cset->mg_node != tset->csets) {
1870 if (!task)
1871 task = list_first_entry(&cset->mg_tasks,
1872 struct task_struct, cg_list);
1873 else
1874 task = list_next_entry(task, cg_list);
2f7ee569 1875
b3dc094e
TH
1876 if (&task->cg_list != &cset->mg_tasks) {
1877 tset->cur_cset = cset;
1878 tset->cur_task = task;
1879 return task;
1880 }
2f7ee569 1881
b3dc094e
TH
1882 cset = list_next_entry(cset, mg_node);
1883 task = NULL;
1884 }
2f7ee569 1885
b3dc094e 1886 return NULL;
2f7ee569 1887}
2f7ee569 1888
cb0f1fe9 1889/**
74a1166d 1890 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1891 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1892 * @tsk: the task being migrated
1893 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1894 *
cb0f1fe9 1895 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1896 */
5abb8855
TH
1897static void cgroup_task_migrate(struct cgroup *old_cgrp,
1898 struct task_struct *tsk,
1899 struct css_set *new_cset)
74a1166d 1900{
5abb8855 1901 struct css_set *old_cset;
74a1166d 1902
cb0f1fe9
TH
1903 lockdep_assert_held(&cgroup_mutex);
1904 lockdep_assert_held(&css_set_rwsem);
1905
74a1166d 1906 /*
026085ef
MSB
1907 * We are synchronized through threadgroup_lock() against PF_EXITING
1908 * setting such that we can't race against cgroup_exit() changing the
1909 * css_set to init_css_set and dropping the old one.
74a1166d 1910 */
c84cdf75 1911 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1912 old_cset = task_css_set(tsk);
74a1166d 1913
b3dc094e 1914 get_css_set(new_cset);
5abb8855 1915 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1916
1b9aba49
TH
1917 /*
1918 * Use move_tail so that cgroup_taskset_first() still returns the
1919 * leader after migration. This works because cgroup_migrate()
1920 * ensures that the dst_cset of the leader is the first on the
1921 * tset's dst_csets list.
1922 */
1923 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1924
1925 /*
5abb8855
TH
1926 * We just gained a reference on old_cset by taking it from the
1927 * task. As trading it for new_cset is protected by cgroup_mutex,
1928 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1929 */
5abb8855 1930 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1931 put_css_set_locked(old_cset, false);
74a1166d
BB
1932}
1933
a043e3b2 1934/**
1958d2d5
TH
1935 * cgroup_migrate_finish - cleanup after attach
1936 * @preloaded_csets: list of preloaded css_sets
74a1166d 1937 *
1958d2d5
TH
1938 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1939 * those functions for details.
74a1166d 1940 */
1958d2d5 1941static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1942{
1958d2d5 1943 struct css_set *cset, *tmp_cset;
74a1166d 1944
1958d2d5
TH
1945 lockdep_assert_held(&cgroup_mutex);
1946
1947 down_write(&css_set_rwsem);
1948 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1949 cset->mg_src_cgrp = NULL;
1950 cset->mg_dst_cset = NULL;
1951 list_del_init(&cset->mg_preload_node);
1952 put_css_set_locked(cset, false);
1953 }
1954 up_write(&css_set_rwsem);
1955}
1956
1957/**
1958 * cgroup_migrate_add_src - add a migration source css_set
1959 * @src_cset: the source css_set to add
1960 * @dst_cgrp: the destination cgroup
1961 * @preloaded_csets: list of preloaded css_sets
1962 *
1963 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1964 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1965 * up by cgroup_migrate_finish().
1966 *
1967 * This function may be called without holding threadgroup_lock even if the
1968 * target is a process. Threads may be created and destroyed but as long
1969 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1970 * the preloaded css_sets are guaranteed to cover all migrations.
1971 */
1972static void cgroup_migrate_add_src(struct css_set *src_cset,
1973 struct cgroup *dst_cgrp,
1974 struct list_head *preloaded_csets)
1975{
1976 struct cgroup *src_cgrp;
1977
1978 lockdep_assert_held(&cgroup_mutex);
1979 lockdep_assert_held(&css_set_rwsem);
1980
1981 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1982
1958d2d5
TH
1983 if (!list_empty(&src_cset->mg_preload_node))
1984 return;
1985
1986 WARN_ON(src_cset->mg_src_cgrp);
1987 WARN_ON(!list_empty(&src_cset->mg_tasks));
1988 WARN_ON(!list_empty(&src_cset->mg_node));
1989
1990 src_cset->mg_src_cgrp = src_cgrp;
1991 get_css_set(src_cset);
1992 list_add(&src_cset->mg_preload_node, preloaded_csets);
1993}
1994
1995/**
1996 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 1997 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
1998 * @preloaded_csets: list of preloaded source css_sets
1999 *
2000 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2001 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2002 * pins all destination css_sets, links each to its source, and append them
2003 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2004 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2005 *
2006 * This function must be called after cgroup_migrate_add_src() has been
2007 * called on each migration source css_set. After migration is performed
2008 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2009 * @preloaded_csets.
2010 */
2011static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2012 struct list_head *preloaded_csets)
2013{
2014 LIST_HEAD(csets);
f817de98 2015 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2016
2017 lockdep_assert_held(&cgroup_mutex);
2018
f8f22e53
TH
2019 /*
2020 * Except for the root, child_subsys_mask must be zero for a cgroup
2021 * with tasks so that child cgroups don't compete against tasks.
2022 */
2023 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && dst_cgrp->parent &&
2024 dst_cgrp->child_subsys_mask)
2025 return -EBUSY;
2026
1958d2d5 2027 /* look up the dst cset for each src cset and link it to src */
f817de98 2028 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2029 struct css_set *dst_cset;
2030
f817de98
TH
2031 dst_cset = find_css_set(src_cset,
2032 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2033 if (!dst_cset)
2034 goto err;
2035
2036 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2037
2038 /*
2039 * If src cset equals dst, it's noop. Drop the src.
2040 * cgroup_migrate() will skip the cset too. Note that we
2041 * can't handle src == dst as some nodes are used by both.
2042 */
2043 if (src_cset == dst_cset) {
2044 src_cset->mg_src_cgrp = NULL;
2045 list_del_init(&src_cset->mg_preload_node);
2046 put_css_set(src_cset, false);
2047 put_css_set(dst_cset, false);
2048 continue;
2049 }
2050
1958d2d5
TH
2051 src_cset->mg_dst_cset = dst_cset;
2052
2053 if (list_empty(&dst_cset->mg_preload_node))
2054 list_add(&dst_cset->mg_preload_node, &csets);
2055 else
2056 put_css_set(dst_cset, false);
2057 }
2058
f817de98 2059 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2060 return 0;
2061err:
2062 cgroup_migrate_finish(&csets);
2063 return -ENOMEM;
2064}
2065
2066/**
2067 * cgroup_migrate - migrate a process or task to a cgroup
2068 * @cgrp: the destination cgroup
2069 * @leader: the leader of the process or the task to migrate
2070 * @threadgroup: whether @leader points to the whole process or a single task
2071 *
2072 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2073 * process, the caller must be holding threadgroup_lock of @leader. The
2074 * caller is also responsible for invoking cgroup_migrate_add_src() and
2075 * cgroup_migrate_prepare_dst() on the targets before invoking this
2076 * function and following up with cgroup_migrate_finish().
2077 *
2078 * As long as a controller's ->can_attach() doesn't fail, this function is
2079 * guaranteed to succeed. This means that, excluding ->can_attach()
2080 * failure, when migrating multiple targets, the success or failure can be
2081 * decided for all targets by invoking group_migrate_prepare_dst() before
2082 * actually starting migrating.
2083 */
2084static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2085 bool threadgroup)
74a1166d 2086{
b3dc094e
TH
2087 struct cgroup_taskset tset = {
2088 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2089 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2090 .csets = &tset.src_csets,
2091 };
1c6727af 2092 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2093 struct css_set *cset, *tmp_cset;
2094 struct task_struct *task, *tmp_task;
2095 int i, ret;
74a1166d 2096
fb5d2b4c
MSB
2097 /*
2098 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2099 * already PF_EXITING could be freed from underneath us unless we
2100 * take an rcu_read_lock.
2101 */
b3dc094e 2102 down_write(&css_set_rwsem);
fb5d2b4c 2103 rcu_read_lock();
9db8de37 2104 task = leader;
74a1166d 2105 do {
9db8de37
TH
2106 /* @task either already exited or can't exit until the end */
2107 if (task->flags & PF_EXITING)
ea84753c 2108 goto next;
134d3373 2109
eaf797ab
TH
2110 /* leave @task alone if post_fork() hasn't linked it yet */
2111 if (list_empty(&task->cg_list))
ea84753c 2112 goto next;
cd3d0952 2113
b3dc094e 2114 cset = task_css_set(task);
1958d2d5 2115 if (!cset->mg_src_cgrp)
ea84753c 2116 goto next;
b3dc094e 2117
61d1d219 2118 /*
1b9aba49
TH
2119 * cgroup_taskset_first() must always return the leader.
2120 * Take care to avoid disturbing the ordering.
61d1d219 2121 */
1b9aba49
TH
2122 list_move_tail(&task->cg_list, &cset->mg_tasks);
2123 if (list_empty(&cset->mg_node))
2124 list_add_tail(&cset->mg_node, &tset.src_csets);
2125 if (list_empty(&cset->mg_dst_cset->mg_node))
2126 list_move_tail(&cset->mg_dst_cset->mg_node,
2127 &tset.dst_csets);
ea84753c 2128 next:
081aa458
LZ
2129 if (!threadgroup)
2130 break;
9db8de37 2131 } while_each_thread(leader, task);
fb5d2b4c 2132 rcu_read_unlock();
b3dc094e 2133 up_write(&css_set_rwsem);
74a1166d 2134
134d3373 2135 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2136 if (list_empty(&tset.src_csets))
2137 return 0;
134d3373 2138
1958d2d5 2139 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2140 for_each_e_css(css, i, cgrp) {
1c6727af 2141 if (css->ss->can_attach) {
9db8de37
TH
2142 ret = css->ss->can_attach(css, &tset);
2143 if (ret) {
1c6727af 2144 failed_css = css;
74a1166d
BB
2145 goto out_cancel_attach;
2146 }
2147 }
74a1166d
BB
2148 }
2149
2150 /*
1958d2d5
TH
2151 * Now that we're guaranteed success, proceed to move all tasks to
2152 * the new cgroup. There are no failure cases after here, so this
2153 * is the commit point.
74a1166d 2154 */
cb0f1fe9 2155 down_write(&css_set_rwsem);
b3dc094e
TH
2156 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2157 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2158 cgroup_task_migrate(cset->mg_src_cgrp, task,
2159 cset->mg_dst_cset);
74a1166d 2160 }
cb0f1fe9 2161 up_write(&css_set_rwsem);
74a1166d
BB
2162
2163 /*
1958d2d5
TH
2164 * Migration is committed, all target tasks are now on dst_csets.
2165 * Nothing is sensitive to fork() after this point. Notify
2166 * controllers that migration is complete.
74a1166d 2167 */
1958d2d5 2168 tset.csets = &tset.dst_csets;
74a1166d 2169
aec3dfcb 2170 for_each_e_css(css, i, cgrp)
1c6727af
TH
2171 if (css->ss->attach)
2172 css->ss->attach(css, &tset);
74a1166d 2173
9db8de37 2174 ret = 0;
b3dc094e
TH
2175 goto out_release_tset;
2176
74a1166d 2177out_cancel_attach:
aec3dfcb 2178 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2179 if (css == failed_css)
2180 break;
2181 if (css->ss->cancel_attach)
2182 css->ss->cancel_attach(css, &tset);
74a1166d 2183 }
b3dc094e
TH
2184out_release_tset:
2185 down_write(&css_set_rwsem);
2186 list_splice_init(&tset.dst_csets, &tset.src_csets);
2187 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2188 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2189 list_del_init(&cset->mg_node);
b3dc094e
TH
2190 }
2191 up_write(&css_set_rwsem);
9db8de37 2192 return ret;
74a1166d
BB
2193}
2194
1958d2d5
TH
2195/**
2196 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2197 * @dst_cgrp: the cgroup to attach to
2198 * @leader: the task or the leader of the threadgroup to be attached
2199 * @threadgroup: attach the whole threadgroup?
2200 *
0e1d768f 2201 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2202 */
2203static int cgroup_attach_task(struct cgroup *dst_cgrp,
2204 struct task_struct *leader, bool threadgroup)
2205{
2206 LIST_HEAD(preloaded_csets);
2207 struct task_struct *task;
2208 int ret;
2209
2210 /* look up all src csets */
2211 down_read(&css_set_rwsem);
2212 rcu_read_lock();
2213 task = leader;
2214 do {
2215 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2216 &preloaded_csets);
2217 if (!threadgroup)
2218 break;
2219 } while_each_thread(leader, task);
2220 rcu_read_unlock();
2221 up_read(&css_set_rwsem);
2222
2223 /* prepare dst csets and commit */
2224 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2225 if (!ret)
2226 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2227
2228 cgroup_migrate_finish(&preloaded_csets);
2229 return ret;
74a1166d
BB
2230}
2231
2232/*
2233 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2234 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2235 * cgroup_mutex and threadgroup.
bbcb81d0 2236 */
74a1166d 2237static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2238{
bbcb81d0 2239 struct task_struct *tsk;
c69e8d9c 2240 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2241 int ret;
2242
74a1166d
BB
2243 if (!cgroup_lock_live_group(cgrp))
2244 return -ENODEV;
2245
b78949eb
MSB
2246retry_find_task:
2247 rcu_read_lock();
bbcb81d0 2248 if (pid) {
73507f33 2249 tsk = find_task_by_vpid(pid);
74a1166d
BB
2250 if (!tsk) {
2251 rcu_read_unlock();
dd4b0a46 2252 ret = -ESRCH;
b78949eb 2253 goto out_unlock_cgroup;
bbcb81d0 2254 }
74a1166d
BB
2255 /*
2256 * even if we're attaching all tasks in the thread group, we
2257 * only need to check permissions on one of them.
2258 */
c69e8d9c 2259 tcred = __task_cred(tsk);
14a590c3
EB
2260 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2261 !uid_eq(cred->euid, tcred->uid) &&
2262 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2263 rcu_read_unlock();
b78949eb
MSB
2264 ret = -EACCES;
2265 goto out_unlock_cgroup;
bbcb81d0 2266 }
b78949eb
MSB
2267 } else
2268 tsk = current;
cd3d0952
TH
2269
2270 if (threadgroup)
b78949eb 2271 tsk = tsk->group_leader;
c4c27fbd
MG
2272
2273 /*
14a40ffc 2274 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2275 * trapped in a cpuset, or RT worker may be born in a cgroup
2276 * with no rt_runtime allocated. Just say no.
2277 */
14a40ffc 2278 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2279 ret = -EINVAL;
2280 rcu_read_unlock();
2281 goto out_unlock_cgroup;
2282 }
2283
b78949eb
MSB
2284 get_task_struct(tsk);
2285 rcu_read_unlock();
2286
2287 threadgroup_lock(tsk);
2288 if (threadgroup) {
2289 if (!thread_group_leader(tsk)) {
2290 /*
2291 * a race with de_thread from another thread's exec()
2292 * may strip us of our leadership, if this happens,
2293 * there is no choice but to throw this task away and
2294 * try again; this is
2295 * "double-double-toil-and-trouble-check locking".
2296 */
2297 threadgroup_unlock(tsk);
2298 put_task_struct(tsk);
2299 goto retry_find_task;
2300 }
081aa458
LZ
2301 }
2302
2303 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2304
cd3d0952
TH
2305 threadgroup_unlock(tsk);
2306
bbcb81d0 2307 put_task_struct(tsk);
b78949eb 2308out_unlock_cgroup:
47cfcd09 2309 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2310 return ret;
2311}
2312
7ae1bad9
TH
2313/**
2314 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2315 * @from: attach to all cgroups of a given task
2316 * @tsk: the task to be attached
2317 */
2318int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2319{
3dd06ffa 2320 struct cgroup_root *root;
7ae1bad9
TH
2321 int retval = 0;
2322
47cfcd09 2323 mutex_lock(&cgroup_mutex);
985ed670 2324 for_each_root(root) {
96d365e0
TH
2325 struct cgroup *from_cgrp;
2326
3dd06ffa 2327 if (root == &cgrp_dfl_root)
985ed670
TH
2328 continue;
2329
96d365e0
TH
2330 down_read(&css_set_rwsem);
2331 from_cgrp = task_cgroup_from_root(from, root);
2332 up_read(&css_set_rwsem);
7ae1bad9 2333
6f4b7e63 2334 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2335 if (retval)
2336 break;
2337 }
47cfcd09 2338 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2339
2340 return retval;
2341}
2342EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2343
182446d0
TH
2344static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2345 struct cftype *cft, u64 pid)
74a1166d 2346{
182446d0 2347 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2348}
2349
182446d0
TH
2350static int cgroup_procs_write(struct cgroup_subsys_state *css,
2351 struct cftype *cft, u64 tgid)
af351026 2352{
182446d0 2353 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2354}
2355
182446d0 2356static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2357 struct cftype *cft, char *buffer)
e788e066 2358{
3dd06ffa 2359 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2360
2361 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2362 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2363 return -ENODEV;
69e943b7 2364 spin_lock(&release_agent_path_lock);
5f469907
TH
2365 strlcpy(root->release_agent_path, buffer,
2366 sizeof(root->release_agent_path));
69e943b7 2367 spin_unlock(&release_agent_path_lock);
47cfcd09 2368 mutex_unlock(&cgroup_mutex);
e788e066
PM
2369 return 0;
2370}
2371
2da8ca82 2372static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2373{
2da8ca82 2374 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2375
e788e066
PM
2376 if (!cgroup_lock_live_group(cgrp))
2377 return -ENODEV;
2378 seq_puts(seq, cgrp->root->release_agent_path);
2379 seq_putc(seq, '\n');
47cfcd09 2380 mutex_unlock(&cgroup_mutex);
e788e066
PM
2381 return 0;
2382}
2383
2da8ca82 2384static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2385{
2da8ca82
TH
2386 struct cgroup *cgrp = seq_css(seq)->cgroup;
2387
2388 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2389 return 0;
2390}
2391
f8f22e53
TH
2392static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2393{
2394 struct cgroup_subsys *ss;
2395 bool printed = false;
2396 int ssid;
2397
2398 for_each_subsys(ss, ssid) {
2399 if (ss_mask & (1 << ssid)) {
2400 if (printed)
2401 seq_putc(seq, ' ');
2402 seq_printf(seq, "%s", ss->name);
2403 printed = true;
2404 }
2405 }
2406 if (printed)
2407 seq_putc(seq, '\n');
2408}
2409
2410/* show controllers which are currently attached to the default hierarchy */
2411static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2412{
2413 struct cgroup *cgrp = seq_css(seq)->cgroup;
2414
2415 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask);
2416 return 0;
2417}
2418
2419/* show controllers which are enabled from the parent */
2420static int cgroup_controllers_show(struct seq_file *seq, void *v)
2421{
2422 struct cgroup *cgrp = seq_css(seq)->cgroup;
2423
2424 cgroup_print_ss_mask(seq, cgrp->parent->child_subsys_mask);
2425 return 0;
2426}
2427
2428/* show controllers which are enabled for a given cgroup's children */
2429static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2430{
2431 struct cgroup *cgrp = seq_css(seq)->cgroup;
2432
2433 cgroup_print_ss_mask(seq, cgrp->child_subsys_mask);
2434 return 0;
2435}
2436
2437/**
2438 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2439 * @cgrp: root of the subtree to update csses for
2440 *
2441 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2442 * css associations need to be updated accordingly. This function looks up
2443 * all css_sets which are attached to the subtree, creates the matching
2444 * updated css_sets and migrates the tasks to the new ones.
2445 */
2446static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2447{
2448 LIST_HEAD(preloaded_csets);
2449 struct cgroup_subsys_state *css;
2450 struct css_set *src_cset;
2451 int ret;
2452
2453 lockdep_assert_held(&cgroup_tree_mutex);
2454 lockdep_assert_held(&cgroup_mutex);
2455
2456 /* look up all csses currently attached to @cgrp's subtree */
2457 down_read(&css_set_rwsem);
2458 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2459 struct cgrp_cset_link *link;
2460
2461 /* self is not affected by child_subsys_mask change */
2462 if (css->cgroup == cgrp)
2463 continue;
2464
2465 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2466 cgroup_migrate_add_src(link->cset, cgrp,
2467 &preloaded_csets);
2468 }
2469 up_read(&css_set_rwsem);
2470
2471 /* NULL dst indicates self on default hierarchy */
2472 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2473 if (ret)
2474 goto out_finish;
2475
2476 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2477 struct task_struct *last_task = NULL, *task;
2478
2479 /* src_csets precede dst_csets, break on the first dst_cset */
2480 if (!src_cset->mg_src_cgrp)
2481 break;
2482
2483 /*
2484 * All tasks in src_cset need to be migrated to the
2485 * matching dst_cset. Empty it process by process. We
2486 * walk tasks but migrate processes. The leader might even
2487 * belong to a different cset but such src_cset would also
2488 * be among the target src_csets because the default
2489 * hierarchy enforces per-process membership.
2490 */
2491 while (true) {
2492 down_read(&css_set_rwsem);
2493 task = list_first_entry_or_null(&src_cset->tasks,
2494 struct task_struct, cg_list);
2495 if (task) {
2496 task = task->group_leader;
2497 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2498 get_task_struct(task);
2499 }
2500 up_read(&css_set_rwsem);
2501
2502 if (!task)
2503 break;
2504
2505 /* guard against possible infinite loop */
2506 if (WARN(last_task == task,
2507 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2508 goto out_finish;
2509 last_task = task;
2510
2511 threadgroup_lock(task);
2512 /* raced against de_thread() from another thread? */
2513 if (!thread_group_leader(task)) {
2514 threadgroup_unlock(task);
2515 put_task_struct(task);
2516 continue;
2517 }
2518
2519 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2520
2521 threadgroup_unlock(task);
2522 put_task_struct(task);
2523
2524 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2525 goto out_finish;
2526 }
2527 }
2528
2529out_finish:
2530 cgroup_migrate_finish(&preloaded_csets);
2531 return ret;
2532}
2533
2534/* change the enabled child controllers for a cgroup in the default hierarchy */
2535static int cgroup_subtree_control_write(struct cgroup_subsys_state *dummy_css,
2536 struct cftype *cft, char *buffer)
2537{
69dfa00c 2538 unsigned int enable_req = 0, disable_req = 0, enable, disable;
f8f22e53
TH
2539 struct cgroup *cgrp = dummy_css->cgroup, *child;
2540 struct cgroup_subsys *ss;
2541 char *tok, *p;
2542 int ssid, ret;
2543
2544 /*
2545 * Parse input - white space separated list of subsystem names
2546 * prefixed with either + or -.
2547 */
2548 p = buffer;
2549 while ((tok = strsep(&p, " \t\n"))) {
2550 for_each_subsys(ss, ssid) {
2551 if (ss->disabled || strcmp(tok + 1, ss->name))
2552 continue;
2553
2554 if (*tok == '+') {
2555 enable_req |= 1 << ssid;
2556 disable_req &= ~(1 << ssid);
2557 } else if (*tok == '-') {
2558 disable_req |= 1 << ssid;
2559 enable_req &= ~(1 << ssid);
2560 } else {
2561 return -EINVAL;
2562 }
2563 break;
2564 }
2565 if (ssid == CGROUP_SUBSYS_COUNT)
2566 return -EINVAL;
2567 }
2568
2569 /*
2570 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2571 * active_ref. cgroup_lock_live_group() already provides enough
2572 * protection. Ensure @cgrp stays accessible and break the
2573 * active_ref protection.
2574 */
2575 cgroup_get(cgrp);
2576 kernfs_break_active_protection(cgrp->control_kn);
2577retry:
2578 enable = enable_req;
2579 disable = disable_req;
2580
2581 mutex_lock(&cgroup_tree_mutex);
2582
2583 for_each_subsys(ss, ssid) {
2584 if (enable & (1 << ssid)) {
2585 if (cgrp->child_subsys_mask & (1 << ssid)) {
2586 enable &= ~(1 << ssid);
2587 continue;
2588 }
2589
2590 /*
2591 * Because css offlining is asynchronous, userland
2592 * might try to re-enable the same controller while
2593 * the previous instance is still around. In such
2594 * cases, wait till it's gone using offline_waitq.
2595 */
2596 cgroup_for_each_live_child(child, cgrp) {
2597 wait_queue_t wait;
2598
2599 if (!cgroup_css(child, ss))
2600 continue;
2601
2602 prepare_to_wait(&child->offline_waitq, &wait,
2603 TASK_UNINTERRUPTIBLE);
2604 mutex_unlock(&cgroup_tree_mutex);
2605 schedule();
2606 finish_wait(&child->offline_waitq, &wait);
2607 goto retry;
2608 }
2609
2610 /* unavailable or not enabled on the parent? */
2611 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2612 (cgrp->parent &&
2613 !(cgrp->parent->child_subsys_mask & (1 << ssid)))) {
2614 ret = -ENOENT;
2615 goto out_unlock_tree;
2616 }
2617 } else if (disable & (1 << ssid)) {
2618 if (!(cgrp->child_subsys_mask & (1 << ssid))) {
2619 disable &= ~(1 << ssid);
2620 continue;
2621 }
2622
2623 /* a child has it enabled? */
2624 cgroup_for_each_live_child(child, cgrp) {
2625 if (child->child_subsys_mask & (1 << ssid)) {
2626 ret = -EBUSY;
2627 goto out_unlock_tree;
2628 }
2629 }
2630 }
2631 }
2632
2633 if (!enable && !disable) {
2634 ret = 0;
2635 goto out_unlock_tree;
2636 }
2637
2638 if (!cgroup_lock_live_group(cgrp)) {
2639 ret = -ENODEV;
2640 goto out_unlock_tree;
2641 }
2642
2643 /*
2644 * Except for the root, child_subsys_mask must be zero for a cgroup
2645 * with tasks so that child cgroups don't compete against tasks.
2646 */
2647 if (enable && cgrp->parent && !list_empty(&cgrp->cset_links)) {
2648 ret = -EBUSY;
2649 goto out_unlock;
2650 }
2651
2652 /*
2653 * Create csses for enables and update child_subsys_mask. This
2654 * changes cgroup_e_css() results which in turn makes the
2655 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2656 * subtree to the updated csses.
2657 */
2658 for_each_subsys(ss, ssid) {
2659 if (!(enable & (1 << ssid)))
2660 continue;
2661
2662 cgroup_for_each_live_child(child, cgrp) {
2663 ret = create_css(child, ss);
2664 if (ret)
2665 goto err_undo_css;
2666 }
2667 }
2668
2669 cgrp->child_subsys_mask |= enable;
2670 cgrp->child_subsys_mask &= ~disable;
2671
2672 ret = cgroup_update_dfl_csses(cgrp);
2673 if (ret)
2674 goto err_undo_css;
2675
2676 /* all tasks are now migrated away from the old csses, kill them */
2677 for_each_subsys(ss, ssid) {
2678 if (!(disable & (1 << ssid)))
2679 continue;
2680
2681 cgroup_for_each_live_child(child, cgrp)
2682 kill_css(cgroup_css(child, ss));
2683 }
2684
2685 kernfs_activate(cgrp->kn);
2686 ret = 0;
2687out_unlock:
2688 mutex_unlock(&cgroup_mutex);
2689out_unlock_tree:
2690 mutex_unlock(&cgroup_tree_mutex);
2691 kernfs_unbreak_active_protection(cgrp->control_kn);
2692 cgroup_put(cgrp);
2693 return ret;
2694
2695err_undo_css:
2696 cgrp->child_subsys_mask &= ~enable;
2697 cgrp->child_subsys_mask |= disable;
2698
2699 for_each_subsys(ss, ssid) {
2700 if (!(enable & (1 << ssid)))
2701 continue;
2702
2703 cgroup_for_each_live_child(child, cgrp) {
2704 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2705 if (css)
2706 kill_css(css);
2707 }
2708 }
2709 goto out_unlock;
2710}
2711
842b597e
TH
2712static int cgroup_populated_show(struct seq_file *seq, void *v)
2713{
2714 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2715 return 0;
2716}
2717
2bd59d48
TH
2718static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2719 size_t nbytes, loff_t off)
355e0c48 2720{
2bd59d48
TH
2721 struct cgroup *cgrp = of->kn->parent->priv;
2722 struct cftype *cft = of->kn->priv;
2723 struct cgroup_subsys_state *css;
a742c59d 2724 int ret;
355e0c48 2725
2bd59d48
TH
2726 /*
2727 * kernfs guarantees that a file isn't deleted with operations in
2728 * flight, which means that the matching css is and stays alive and
2729 * doesn't need to be pinned. The RCU locking is not necessary
2730 * either. It's just for the convenience of using cgroup_css().
2731 */
2732 rcu_read_lock();
2733 css = cgroup_css(cgrp, cft->ss);
2734 rcu_read_unlock();
a742c59d
TH
2735
2736 if (cft->write_string) {
2737 ret = cft->write_string(css, cft, strstrip(buf));
2738 } else if (cft->write_u64) {
2739 unsigned long long v;
2740 ret = kstrtoull(buf, 0, &v);
2741 if (!ret)
2742 ret = cft->write_u64(css, cft, v);
2743 } else if (cft->write_s64) {
2744 long long v;
2745 ret = kstrtoll(buf, 0, &v);
2746 if (!ret)
2747 ret = cft->write_s64(css, cft, v);
2748 } else if (cft->trigger) {
2749 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2750 } else {
a742c59d 2751 ret = -EINVAL;
e73d2c61 2752 }
2bd59d48 2753
a742c59d 2754 return ret ?: nbytes;
355e0c48
PM
2755}
2756
6612f05b 2757static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2758{
2bd59d48 2759 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2760}
2761
6612f05b 2762static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2763{
2bd59d48 2764 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2765}
2766
6612f05b 2767static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2768{
2bd59d48 2769 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2770}
2771
91796569 2772static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2773{
7da11279
TH
2774 struct cftype *cft = seq_cft(m);
2775 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2776
2da8ca82
TH
2777 if (cft->seq_show)
2778 return cft->seq_show(m, arg);
e73d2c61 2779
f4c753b7 2780 if (cft->read_u64)
896f5199
TH
2781 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2782 else if (cft->read_s64)
2783 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2784 else
2785 return -EINVAL;
2786 return 0;
91796569
PM
2787}
2788
2bd59d48
TH
2789static struct kernfs_ops cgroup_kf_single_ops = {
2790 .atomic_write_len = PAGE_SIZE,
2791 .write = cgroup_file_write,
2792 .seq_show = cgroup_seqfile_show,
91796569
PM
2793};
2794
2bd59d48
TH
2795static struct kernfs_ops cgroup_kf_ops = {
2796 .atomic_write_len = PAGE_SIZE,
2797 .write = cgroup_file_write,
2798 .seq_start = cgroup_seqfile_start,
2799 .seq_next = cgroup_seqfile_next,
2800 .seq_stop = cgroup_seqfile_stop,
2801 .seq_show = cgroup_seqfile_show,
2802};
ddbcc7e8
PM
2803
2804/*
2805 * cgroup_rename - Only allow simple rename of directories in place.
2806 */
2bd59d48
TH
2807static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2808 const char *new_name_str)
ddbcc7e8 2809{
2bd59d48 2810 struct cgroup *cgrp = kn->priv;
65dff759 2811 int ret;
65dff759 2812
2bd59d48 2813 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2814 return -ENOTDIR;
2bd59d48 2815 if (kn->parent != new_parent)
ddbcc7e8 2816 return -EIO;
65dff759 2817
6db8e85c
TH
2818 /*
2819 * This isn't a proper migration and its usefulness is very
2820 * limited. Disallow if sane_behavior.
2821 */
2822 if (cgroup_sane_behavior(cgrp))
2823 return -EPERM;
099fca32 2824
e1b2dc17
TH
2825 /*
2826 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2827 * active_ref. kernfs_rename() doesn't require active_ref
2828 * protection. Break them before grabbing cgroup_tree_mutex.
2829 */
2830 kernfs_break_active_protection(new_parent);
2831 kernfs_break_active_protection(kn);
099fca32 2832
2bd59d48
TH
2833 mutex_lock(&cgroup_tree_mutex);
2834 mutex_lock(&cgroup_mutex);
099fca32 2835
2bd59d48 2836 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2837
2bd59d48
TH
2838 mutex_unlock(&cgroup_mutex);
2839 mutex_unlock(&cgroup_tree_mutex);
e1b2dc17
TH
2840
2841 kernfs_unbreak_active_protection(kn);
2842 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2843 return ret;
099fca32
LZ
2844}
2845
49957f8e
TH
2846/* set uid and gid of cgroup dirs and files to that of the creator */
2847static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2848{
2849 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2850 .ia_uid = current_fsuid(),
2851 .ia_gid = current_fsgid(), };
2852
2853 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2854 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2855 return 0;
2856
2857 return kernfs_setattr(kn, &iattr);
2858}
2859
2bb566cb 2860static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2861{
8d7e6fb0 2862 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2863 struct kernfs_node *kn;
2864 struct lock_class_key *key = NULL;
49957f8e 2865 int ret;
05ef1d7c 2866
2bd59d48
TH
2867#ifdef CONFIG_DEBUG_LOCK_ALLOC
2868 key = &cft->lockdep_key;
2869#endif
2870 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2871 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2872 NULL, false, key);
49957f8e
TH
2873 if (IS_ERR(kn))
2874 return PTR_ERR(kn);
2875
2876 ret = cgroup_kn_set_ugid(kn);
f8f22e53 2877 if (ret) {
49957f8e 2878 kernfs_remove(kn);
f8f22e53
TH
2879 return ret;
2880 }
2881
2882 if (cft->seq_show == cgroup_subtree_control_show)
2883 cgrp->control_kn = kn;
842b597e
TH
2884 else if (cft->seq_show == cgroup_populated_show)
2885 cgrp->populated_kn = kn;
f8f22e53 2886 return 0;
ddbcc7e8
PM
2887}
2888
b1f28d31
TH
2889/**
2890 * cgroup_addrm_files - add or remove files to a cgroup directory
2891 * @cgrp: the target cgroup
b1f28d31
TH
2892 * @cfts: array of cftypes to be added
2893 * @is_add: whether to add or remove
2894 *
2895 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2896 * For removals, this function never fails. If addition fails, this
2897 * function doesn't remove files already added. The caller is responsible
2898 * for cleaning up.
b1f28d31 2899 */
2bb566cb
TH
2900static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2901 bool is_add)
ddbcc7e8 2902{
03b1cde6 2903 struct cftype *cft;
b1f28d31
TH
2904 int ret;
2905
ace2bee8 2906 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2907
2908 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2909 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2910 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2911 continue;
873fe09e
TH
2912 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2913 continue;
f33fddc2
G
2914 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2915 continue;
2916 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2917 continue;
2918
2739d3cc 2919 if (is_add) {
2bb566cb 2920 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2921 if (ret) {
ed3d261b
JP
2922 pr_warn("%s: failed to add %s, err=%d\n",
2923 __func__, cft->name, ret);
b1f28d31
TH
2924 return ret;
2925 }
2739d3cc
LZ
2926 } else {
2927 cgroup_rm_file(cgrp, cft);
db0416b6 2928 }
ddbcc7e8 2929 }
b1f28d31 2930 return 0;
ddbcc7e8
PM
2931}
2932
21a2d343 2933static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2934{
2935 LIST_HEAD(pending);
2bb566cb 2936 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2937 struct cgroup *root = &ss->root->cgrp;
492eb21b 2938 struct cgroup_subsys_state *css;
9ccece80 2939 int ret = 0;
8e3f6541 2940
21a2d343 2941 lockdep_assert_held(&cgroup_tree_mutex);
8e3f6541 2942
e8c82d20 2943 /* add/rm files for all cgroups created before */
ca8bdcaf 2944 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2945 struct cgroup *cgrp = css->cgroup;
2946
e8c82d20
LZ
2947 if (cgroup_is_dead(cgrp))
2948 continue;
2949
21a2d343 2950 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2951 if (ret)
2952 break;
8e3f6541 2953 }
21a2d343
TH
2954
2955 if (is_add && !ret)
2956 kernfs_activate(root->kn);
9ccece80 2957 return ret;
8e3f6541
TH
2958}
2959
2da440a2 2960static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2961{
2bb566cb 2962 struct cftype *cft;
8e3f6541 2963
2bd59d48
TH
2964 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2965 /* free copy for custom atomic_write_len, see init_cftypes() */
2966 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2967 kfree(cft->kf_ops);
2968 cft->kf_ops = NULL;
2da440a2 2969 cft->ss = NULL;
2bd59d48 2970 }
2da440a2
TH
2971}
2972
2bd59d48 2973static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2974{
2975 struct cftype *cft;
2976
2bd59d48
TH
2977 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2978 struct kernfs_ops *kf_ops;
2979
0adb0704
TH
2980 WARN_ON(cft->ss || cft->kf_ops);
2981
2bd59d48
TH
2982 if (cft->seq_start)
2983 kf_ops = &cgroup_kf_ops;
2984 else
2985 kf_ops = &cgroup_kf_single_ops;
2986
2987 /*
2988 * Ugh... if @cft wants a custom max_write_len, we need to
2989 * make a copy of kf_ops to set its atomic_write_len.
2990 */
2991 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2992 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2993 if (!kf_ops) {
2994 cgroup_exit_cftypes(cfts);
2995 return -ENOMEM;
2996 }
2997 kf_ops->atomic_write_len = cft->max_write_len;
2998 }
8e3f6541 2999
2bd59d48 3000 cft->kf_ops = kf_ops;
2bb566cb 3001 cft->ss = ss;
2bd59d48 3002 }
2bb566cb 3003
2bd59d48 3004 return 0;
2da440a2
TH
3005}
3006
21a2d343
TH
3007static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3008{
3009 lockdep_assert_held(&cgroup_tree_mutex);
3010
3011 if (!cfts || !cfts[0].ss)
3012 return -ENOENT;
3013
3014 list_del(&cfts->node);
3015 cgroup_apply_cftypes(cfts, false);
3016 cgroup_exit_cftypes(cfts);
3017 return 0;
8e3f6541 3018}
8e3f6541 3019
79578621
TH
3020/**
3021 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3022 * @cfts: zero-length name terminated array of cftypes
3023 *
2bb566cb
TH
3024 * Unregister @cfts. Files described by @cfts are removed from all
3025 * existing cgroups and all future cgroups won't have them either. This
3026 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3027 *
3028 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3029 * registered.
79578621 3030 */
2bb566cb 3031int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3032{
21a2d343 3033 int ret;
79578621 3034
21a2d343
TH
3035 mutex_lock(&cgroup_tree_mutex);
3036 ret = cgroup_rm_cftypes_locked(cfts);
3037 mutex_unlock(&cgroup_tree_mutex);
3038 return ret;
80b13586
TH
3039}
3040
8e3f6541
TH
3041/**
3042 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3043 * @ss: target cgroup subsystem
3044 * @cfts: zero-length name terminated array of cftypes
3045 *
3046 * Register @cfts to @ss. Files described by @cfts are created for all
3047 * existing cgroups to which @ss is attached and all future cgroups will
3048 * have them too. This function can be called anytime whether @ss is
3049 * attached or not.
3050 *
3051 * Returns 0 on successful registration, -errno on failure. Note that this
3052 * function currently returns 0 as long as @cfts registration is successful
3053 * even if some file creation attempts on existing cgroups fail.
3054 */
03b1cde6 3055int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3056{
9ccece80 3057 int ret;
8e3f6541 3058
dc5736ed
LZ
3059 if (!cfts || cfts[0].name[0] == '\0')
3060 return 0;
2bb566cb 3061
2bd59d48
TH
3062 ret = cgroup_init_cftypes(ss, cfts);
3063 if (ret)
3064 return ret;
79578621 3065
21a2d343
TH
3066 mutex_lock(&cgroup_tree_mutex);
3067
0adb0704 3068 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3069 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3070 if (ret)
21a2d343 3071 cgroup_rm_cftypes_locked(cfts);
79578621 3072
21a2d343 3073 mutex_unlock(&cgroup_tree_mutex);
9ccece80 3074 return ret;
79578621
TH
3075}
3076
a043e3b2
LZ
3077/**
3078 * cgroup_task_count - count the number of tasks in a cgroup.
3079 * @cgrp: the cgroup in question
3080 *
3081 * Return the number of tasks in the cgroup.
3082 */
07bc356e 3083static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3084{
3085 int count = 0;
69d0206c 3086 struct cgrp_cset_link *link;
817929ec 3087
96d365e0 3088 down_read(&css_set_rwsem);
69d0206c
TH
3089 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3090 count += atomic_read(&link->cset->refcount);
96d365e0 3091 up_read(&css_set_rwsem);
bbcb81d0
PM
3092 return count;
3093}
3094
53fa5261 3095/**
492eb21b
TH
3096 * css_next_child - find the next child of a given css
3097 * @pos_css: the current position (%NULL to initiate traversal)
3098 * @parent_css: css whose children to walk
53fa5261 3099 *
492eb21b 3100 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
3101 * under either cgroup_mutex or RCU read lock. The only requirement is
3102 * that @parent_css and @pos_css are accessible. The next sibling is
3103 * guaranteed to be returned regardless of their states.
53fa5261 3104 */
492eb21b
TH
3105struct cgroup_subsys_state *
3106css_next_child(struct cgroup_subsys_state *pos_css,
3107 struct cgroup_subsys_state *parent_css)
53fa5261 3108{
492eb21b
TH
3109 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3110 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3111 struct cgroup *next;
3112
ace2bee8 3113 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
3114
3115 /*
3116 * @pos could already have been removed. Once a cgroup is removed,
3117 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3118 * changes. As CGRP_DEAD assertion is serialized and happens
3119 * before the cgroup is taken off the ->sibling list, if we see it
3120 * unasserted, it's guaranteed that the next sibling hasn't
3121 * finished its grace period even if it's already removed, and thus
3122 * safe to dereference from this RCU critical section. If
3123 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3124 * to be visible as %true here.
3b287a50
TH
3125 *
3126 * If @pos is dead, its next pointer can't be dereferenced;
3127 * however, as each cgroup is given a monotonically increasing
3128 * unique serial number and always appended to the sibling list,
3129 * the next one can be found by walking the parent's children until
3130 * we see a cgroup with higher serial number than @pos's. While
3131 * this path can be slower, it's taken only when either the current
3132 * cgroup is removed or iteration and removal race.
53fa5261 3133 */
3b287a50
TH
3134 if (!pos) {
3135 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3136 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3137 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3138 } else {
3139 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3140 if (next->serial_nr > pos->serial_nr)
3141 break;
53fa5261
TH
3142 }
3143
3b281afb
TH
3144 /*
3145 * @next, if not pointing to the head, can be dereferenced and is
3146 * the next sibling; however, it might have @ss disabled. If so,
3147 * fast-forward to the next enabled one.
3148 */
3149 while (&next->sibling != &cgrp->children) {
3150 struct cgroup_subsys_state *next_css = cgroup_css(next, parent_css->ss);
492eb21b 3151
3b281afb
TH
3152 if (next_css)
3153 return next_css;
3154 next = list_entry_rcu(next->sibling.next, struct cgroup, sibling);
3155 }
3156 return NULL;
53fa5261 3157}
53fa5261 3158
574bd9f7 3159/**
492eb21b 3160 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3161 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3162 * @root: css whose descendants to walk
574bd9f7 3163 *
492eb21b 3164 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3165 * to visit for pre-order traversal of @root's descendants. @root is
3166 * included in the iteration and the first node to be visited.
75501a6d 3167 *
87fb54f1
TH
3168 * While this function requires cgroup_mutex or RCU read locking, it
3169 * doesn't require the whole traversal to be contained in a single critical
3170 * section. This function will return the correct next descendant as long
3171 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 3172 */
492eb21b
TH
3173struct cgroup_subsys_state *
3174css_next_descendant_pre(struct cgroup_subsys_state *pos,
3175 struct cgroup_subsys_state *root)
574bd9f7 3176{
492eb21b 3177 struct cgroup_subsys_state *next;
574bd9f7 3178
ace2bee8 3179 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 3180
bd8815a6 3181 /* if first iteration, visit @root */
7805d000 3182 if (!pos)
bd8815a6 3183 return root;
574bd9f7
TH
3184
3185 /* visit the first child if exists */
492eb21b 3186 next = css_next_child(NULL, pos);
574bd9f7
TH
3187 if (next)
3188 return next;
3189
3190 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3191 while (pos != root) {
3192 next = css_next_child(pos, css_parent(pos));
75501a6d 3193 if (next)
574bd9f7 3194 return next;
492eb21b 3195 pos = css_parent(pos);
7805d000 3196 }
574bd9f7
TH
3197
3198 return NULL;
3199}
574bd9f7 3200
12a9d2fe 3201/**
492eb21b
TH
3202 * css_rightmost_descendant - return the rightmost descendant of a css
3203 * @pos: css of interest
12a9d2fe 3204 *
492eb21b
TH
3205 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3206 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3207 * subtree of @pos.
75501a6d 3208 *
87fb54f1
TH
3209 * While this function requires cgroup_mutex or RCU read locking, it
3210 * doesn't require the whole traversal to be contained in a single critical
3211 * section. This function will return the correct rightmost descendant as
3212 * long as @pos is accessible.
12a9d2fe 3213 */
492eb21b
TH
3214struct cgroup_subsys_state *
3215css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3216{
492eb21b 3217 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3218
ace2bee8 3219 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
3220
3221 do {
3222 last = pos;
3223 /* ->prev isn't RCU safe, walk ->next till the end */
3224 pos = NULL;
492eb21b 3225 css_for_each_child(tmp, last)
12a9d2fe
TH
3226 pos = tmp;
3227 } while (pos);
3228
3229 return last;
3230}
12a9d2fe 3231
492eb21b
TH
3232static struct cgroup_subsys_state *
3233css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3234{
492eb21b 3235 struct cgroup_subsys_state *last;
574bd9f7
TH
3236
3237 do {
3238 last = pos;
492eb21b 3239 pos = css_next_child(NULL, pos);
574bd9f7
TH
3240 } while (pos);
3241
3242 return last;
3243}
3244
3245/**
492eb21b 3246 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3247 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3248 * @root: css whose descendants to walk
574bd9f7 3249 *
492eb21b 3250 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3251 * to visit for post-order traversal of @root's descendants. @root is
3252 * included in the iteration and the last node to be visited.
75501a6d 3253 *
87fb54f1
TH
3254 * While this function requires cgroup_mutex or RCU read locking, it
3255 * doesn't require the whole traversal to be contained in a single critical
3256 * section. This function will return the correct next descendant as long
3257 * as both @pos and @cgroup are accessible and @pos is a descendant of
3258 * @cgroup.
574bd9f7 3259 */
492eb21b
TH
3260struct cgroup_subsys_state *
3261css_next_descendant_post(struct cgroup_subsys_state *pos,
3262 struct cgroup_subsys_state *root)
574bd9f7 3263{
492eb21b 3264 struct cgroup_subsys_state *next;
574bd9f7 3265
ace2bee8 3266 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 3267
58b79a91
TH
3268 /* if first iteration, visit leftmost descendant which may be @root */
3269 if (!pos)
3270 return css_leftmost_descendant(root);
574bd9f7 3271
bd8815a6
TH
3272 /* if we visited @root, we're done */
3273 if (pos == root)
3274 return NULL;
3275
574bd9f7 3276 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3277 next = css_next_child(pos, css_parent(pos));
75501a6d 3278 if (next)
492eb21b 3279 return css_leftmost_descendant(next);
574bd9f7
TH
3280
3281 /* no sibling left, visit parent */
bd8815a6 3282 return css_parent(pos);
574bd9f7 3283}
574bd9f7 3284
0942eeee 3285/**
72ec7029 3286 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3287 * @it: the iterator to advance
3288 *
3289 * Advance @it to the next css_set to walk.
d515876e 3290 */
72ec7029 3291static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3292{
0f0a2b4f 3293 struct list_head *l = it->cset_pos;
d515876e
TH
3294 struct cgrp_cset_link *link;
3295 struct css_set *cset;
3296
3297 /* Advance to the next non-empty css_set */
3298 do {
3299 l = l->next;
0f0a2b4f
TH
3300 if (l == it->cset_head) {
3301 it->cset_pos = NULL;
d515876e
TH
3302 return;
3303 }
3ebb2b6e
TH
3304
3305 if (it->ss) {
3306 cset = container_of(l, struct css_set,
3307 e_cset_node[it->ss->id]);
3308 } else {
3309 link = list_entry(l, struct cgrp_cset_link, cset_link);
3310 cset = link->cset;
3311 }
c7561128
TH
3312 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3313
0f0a2b4f 3314 it->cset_pos = l;
c7561128
TH
3315
3316 if (!list_empty(&cset->tasks))
0f0a2b4f 3317 it->task_pos = cset->tasks.next;
c7561128 3318 else
0f0a2b4f
TH
3319 it->task_pos = cset->mg_tasks.next;
3320
3321 it->tasks_head = &cset->tasks;
3322 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3323}
3324
0942eeee 3325/**
72ec7029
TH
3326 * css_task_iter_start - initiate task iteration
3327 * @css: the css to walk tasks of
0942eeee
TH
3328 * @it: the task iterator to use
3329 *
72ec7029
TH
3330 * Initiate iteration through the tasks of @css. The caller can call
3331 * css_task_iter_next() to walk through the tasks until the function
3332 * returns NULL. On completion of iteration, css_task_iter_end() must be
3333 * called.
0942eeee
TH
3334 *
3335 * Note that this function acquires a lock which is released when the
3336 * iteration finishes. The caller can't sleep while iteration is in
3337 * progress.
3338 */
72ec7029
TH
3339void css_task_iter_start(struct cgroup_subsys_state *css,
3340 struct css_task_iter *it)
96d365e0 3341 __acquires(css_set_rwsem)
817929ec 3342{
56fde9e0
TH
3343 /* no one should try to iterate before mounting cgroups */
3344 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3345
96d365e0 3346 down_read(&css_set_rwsem);
c59cd3d8 3347
3ebb2b6e
TH
3348 it->ss = css->ss;
3349
3350 if (it->ss)
3351 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3352 else
3353 it->cset_pos = &css->cgroup->cset_links;
3354
0f0a2b4f 3355 it->cset_head = it->cset_pos;
c59cd3d8 3356
72ec7029 3357 css_advance_task_iter(it);
817929ec
PM
3358}
3359
0942eeee 3360/**
72ec7029 3361 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3362 * @it: the task iterator being iterated
3363 *
3364 * The "next" function for task iteration. @it should have been
72ec7029
TH
3365 * initialized via css_task_iter_start(). Returns NULL when the iteration
3366 * reaches the end.
0942eeee 3367 */
72ec7029 3368struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3369{
3370 struct task_struct *res;
0f0a2b4f 3371 struct list_head *l = it->task_pos;
817929ec
PM
3372
3373 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3374 if (!it->cset_pos)
817929ec
PM
3375 return NULL;
3376 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3377
3378 /*
3379 * Advance iterator to find next entry. cset->tasks is consumed
3380 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3381 * next cset.
3382 */
817929ec 3383 l = l->next;
c7561128 3384
0f0a2b4f
TH
3385 if (l == it->tasks_head)
3386 l = it->mg_tasks_head->next;
c7561128 3387
0f0a2b4f 3388 if (l == it->mg_tasks_head)
72ec7029 3389 css_advance_task_iter(it);
c7561128 3390 else
0f0a2b4f 3391 it->task_pos = l;
c7561128 3392
817929ec
PM
3393 return res;
3394}
3395
0942eeee 3396/**
72ec7029 3397 * css_task_iter_end - finish task iteration
0942eeee
TH
3398 * @it: the task iterator to finish
3399 *
72ec7029 3400 * Finish task iteration started by css_task_iter_start().
0942eeee 3401 */
72ec7029 3402void css_task_iter_end(struct css_task_iter *it)
96d365e0 3403 __releases(css_set_rwsem)
31a7df01 3404{
96d365e0 3405 up_read(&css_set_rwsem);
31a7df01
CW
3406}
3407
3408/**
8cc99345
TH
3409 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3410 * @to: cgroup to which the tasks will be moved
3411 * @from: cgroup in which the tasks currently reside
31a7df01 3412 *
eaf797ab
TH
3413 * Locking rules between cgroup_post_fork() and the migration path
3414 * guarantee that, if a task is forking while being migrated, the new child
3415 * is guaranteed to be either visible in the source cgroup after the
3416 * parent's migration is complete or put into the target cgroup. No task
3417 * can slip out of migration through forking.
31a7df01 3418 */
8cc99345 3419int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3420{
952aaa12
TH
3421 LIST_HEAD(preloaded_csets);
3422 struct cgrp_cset_link *link;
72ec7029 3423 struct css_task_iter it;
e406d1cf 3424 struct task_struct *task;
952aaa12 3425 int ret;
31a7df01 3426
952aaa12 3427 mutex_lock(&cgroup_mutex);
31a7df01 3428
952aaa12
TH
3429 /* all tasks in @from are being moved, all csets are source */
3430 down_read(&css_set_rwsem);
3431 list_for_each_entry(link, &from->cset_links, cset_link)
3432 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3433 up_read(&css_set_rwsem);
31a7df01 3434
952aaa12
TH
3435 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3436 if (ret)
3437 goto out_err;
8cc99345 3438
952aaa12
TH
3439 /*
3440 * Migrate tasks one-by-one until @form is empty. This fails iff
3441 * ->can_attach() fails.
3442 */
e406d1cf
TH
3443 do {
3444 css_task_iter_start(&from->dummy_css, &it);
3445 task = css_task_iter_next(&it);
3446 if (task)
3447 get_task_struct(task);
3448 css_task_iter_end(&it);
3449
3450 if (task) {
952aaa12 3451 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3452 put_task_struct(task);
3453 }
3454 } while (task && !ret);
952aaa12
TH
3455out_err:
3456 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3457 mutex_unlock(&cgroup_mutex);
e406d1cf 3458 return ret;
8cc99345
TH
3459}
3460
bbcb81d0 3461/*
102a775e 3462 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3463 *
3464 * Reading this file can return large amounts of data if a cgroup has
3465 * *lots* of attached tasks. So it may need several calls to read(),
3466 * but we cannot guarantee that the information we produce is correct
3467 * unless we produce it entirely atomically.
3468 *
bbcb81d0 3469 */
bbcb81d0 3470
24528255
LZ
3471/* which pidlist file are we talking about? */
3472enum cgroup_filetype {
3473 CGROUP_FILE_PROCS,
3474 CGROUP_FILE_TASKS,
3475};
3476
3477/*
3478 * A pidlist is a list of pids that virtually represents the contents of one
3479 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3480 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3481 * to the cgroup.
3482 */
3483struct cgroup_pidlist {
3484 /*
3485 * used to find which pidlist is wanted. doesn't change as long as
3486 * this particular list stays in the list.
3487 */
3488 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3489 /* array of xids */
3490 pid_t *list;
3491 /* how many elements the above list has */
3492 int length;
24528255
LZ
3493 /* each of these stored in a list by its cgroup */
3494 struct list_head links;
3495 /* pointer to the cgroup we belong to, for list removal purposes */
3496 struct cgroup *owner;
b1a21367
TH
3497 /* for delayed destruction */
3498 struct delayed_work destroy_dwork;
24528255
LZ
3499};
3500
d1d9fd33
BB
3501/*
3502 * The following two functions "fix" the issue where there are more pids
3503 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3504 * TODO: replace with a kernel-wide solution to this problem
3505 */
3506#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3507static void *pidlist_allocate(int count)
3508{
3509 if (PIDLIST_TOO_LARGE(count))
3510 return vmalloc(count * sizeof(pid_t));
3511 else
3512 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3513}
b1a21367 3514
d1d9fd33
BB
3515static void pidlist_free(void *p)
3516{
3517 if (is_vmalloc_addr(p))
3518 vfree(p);
3519 else
3520 kfree(p);
3521}
d1d9fd33 3522
b1a21367
TH
3523/*
3524 * Used to destroy all pidlists lingering waiting for destroy timer. None
3525 * should be left afterwards.
3526 */
3527static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3528{
3529 struct cgroup_pidlist *l, *tmp_l;
3530
3531 mutex_lock(&cgrp->pidlist_mutex);
3532 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3533 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3534 mutex_unlock(&cgrp->pidlist_mutex);
3535
3536 flush_workqueue(cgroup_pidlist_destroy_wq);
3537 BUG_ON(!list_empty(&cgrp->pidlists));
3538}
3539
3540static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3541{
3542 struct delayed_work *dwork = to_delayed_work(work);
3543 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3544 destroy_dwork);
3545 struct cgroup_pidlist *tofree = NULL;
3546
3547 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3548
3549 /*
04502365
TH
3550 * Destroy iff we didn't get queued again. The state won't change
3551 * as destroy_dwork can only be queued while locked.
b1a21367 3552 */
04502365 3553 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3554 list_del(&l->links);
3555 pidlist_free(l->list);
3556 put_pid_ns(l->key.ns);
3557 tofree = l;
3558 }
3559
b1a21367
TH
3560 mutex_unlock(&l->owner->pidlist_mutex);
3561 kfree(tofree);
3562}
3563
bbcb81d0 3564/*
102a775e 3565 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3566 * Returns the number of unique elements.
bbcb81d0 3567 */
6ee211ad 3568static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3569{
102a775e 3570 int src, dest = 1;
102a775e
BB
3571
3572 /*
3573 * we presume the 0th element is unique, so i starts at 1. trivial
3574 * edge cases first; no work needs to be done for either
3575 */
3576 if (length == 0 || length == 1)
3577 return length;
3578 /* src and dest walk down the list; dest counts unique elements */
3579 for (src = 1; src < length; src++) {
3580 /* find next unique element */
3581 while (list[src] == list[src-1]) {
3582 src++;
3583 if (src == length)
3584 goto after;
3585 }
3586 /* dest always points to where the next unique element goes */
3587 list[dest] = list[src];
3588 dest++;
3589 }
3590after:
102a775e
BB
3591 return dest;
3592}
3593
afb2bc14
TH
3594/*
3595 * The two pid files - task and cgroup.procs - guaranteed that the result
3596 * is sorted, which forced this whole pidlist fiasco. As pid order is
3597 * different per namespace, each namespace needs differently sorted list,
3598 * making it impossible to use, for example, single rbtree of member tasks
3599 * sorted by task pointer. As pidlists can be fairly large, allocating one
3600 * per open file is dangerous, so cgroup had to implement shared pool of
3601 * pidlists keyed by cgroup and namespace.
3602 *
3603 * All this extra complexity was caused by the original implementation
3604 * committing to an entirely unnecessary property. In the long term, we
3605 * want to do away with it. Explicitly scramble sort order if
3606 * sane_behavior so that no such expectation exists in the new interface.
3607 *
3608 * Scrambling is done by swapping every two consecutive bits, which is
3609 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3610 */
3611static pid_t pid_fry(pid_t pid)
3612{
3613 unsigned a = pid & 0x55555555;
3614 unsigned b = pid & 0xAAAAAAAA;
3615
3616 return (a << 1) | (b >> 1);
3617}
3618
3619static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3620{
3621 if (cgroup_sane_behavior(cgrp))
3622 return pid_fry(pid);
3623 else
3624 return pid;
3625}
3626
102a775e
BB
3627static int cmppid(const void *a, const void *b)
3628{
3629 return *(pid_t *)a - *(pid_t *)b;
3630}
3631
afb2bc14
TH
3632static int fried_cmppid(const void *a, const void *b)
3633{
3634 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3635}
3636
e6b81710
TH
3637static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3638 enum cgroup_filetype type)
3639{
3640 struct cgroup_pidlist *l;
3641 /* don't need task_nsproxy() if we're looking at ourself */
3642 struct pid_namespace *ns = task_active_pid_ns(current);
3643
3644 lockdep_assert_held(&cgrp->pidlist_mutex);
3645
3646 list_for_each_entry(l, &cgrp->pidlists, links)
3647 if (l->key.type == type && l->key.ns == ns)
3648 return l;
3649 return NULL;
3650}
3651
72a8cb30
BB
3652/*
3653 * find the appropriate pidlist for our purpose (given procs vs tasks)
3654 * returns with the lock on that pidlist already held, and takes care
3655 * of the use count, or returns NULL with no locks held if we're out of
3656 * memory.
3657 */
e6b81710
TH
3658static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3659 enum cgroup_filetype type)
72a8cb30
BB
3660{
3661 struct cgroup_pidlist *l;
b70cc5fd 3662
e6b81710
TH
3663 lockdep_assert_held(&cgrp->pidlist_mutex);
3664
3665 l = cgroup_pidlist_find(cgrp, type);
3666 if (l)
3667 return l;
3668
72a8cb30 3669 /* entry not found; create a new one */
f4f4be2b 3670 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3671 if (!l)
72a8cb30 3672 return l;
e6b81710 3673
b1a21367 3674 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3675 l->key.type = type;
e6b81710
TH
3676 /* don't need task_nsproxy() if we're looking at ourself */
3677 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3678 l->owner = cgrp;
3679 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3680 return l;
3681}
3682
102a775e
BB
3683/*
3684 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3685 */
72a8cb30
BB
3686static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3687 struct cgroup_pidlist **lp)
102a775e
BB
3688{
3689 pid_t *array;
3690 int length;
3691 int pid, n = 0; /* used for populating the array */
72ec7029 3692 struct css_task_iter it;
817929ec 3693 struct task_struct *tsk;
102a775e
BB
3694 struct cgroup_pidlist *l;
3695
4bac00d1
TH
3696 lockdep_assert_held(&cgrp->pidlist_mutex);
3697
102a775e
BB
3698 /*
3699 * If cgroup gets more users after we read count, we won't have
3700 * enough space - tough. This race is indistinguishable to the
3701 * caller from the case that the additional cgroup users didn't
3702 * show up until sometime later on.
3703 */
3704 length = cgroup_task_count(cgrp);
d1d9fd33 3705 array = pidlist_allocate(length);
102a775e
BB
3706 if (!array)
3707 return -ENOMEM;
3708 /* now, populate the array */
72ec7029
TH
3709 css_task_iter_start(&cgrp->dummy_css, &it);
3710 while ((tsk = css_task_iter_next(&it))) {
102a775e 3711 if (unlikely(n == length))
817929ec 3712 break;
102a775e 3713 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3714 if (type == CGROUP_FILE_PROCS)
3715 pid = task_tgid_vnr(tsk);
3716 else
3717 pid = task_pid_vnr(tsk);
102a775e
BB
3718 if (pid > 0) /* make sure to only use valid results */
3719 array[n++] = pid;
817929ec 3720 }
72ec7029 3721 css_task_iter_end(&it);
102a775e
BB
3722 length = n;
3723 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3724 if (cgroup_sane_behavior(cgrp))
3725 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3726 else
3727 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3728 if (type == CGROUP_FILE_PROCS)
6ee211ad 3729 length = pidlist_uniq(array, length);
e6b81710 3730
e6b81710 3731 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3732 if (!l) {
e6b81710 3733 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3734 pidlist_free(array);
72a8cb30 3735 return -ENOMEM;
102a775e 3736 }
e6b81710
TH
3737
3738 /* store array, freeing old if necessary */
d1d9fd33 3739 pidlist_free(l->list);
102a775e
BB
3740 l->list = array;
3741 l->length = length;
72a8cb30 3742 *lp = l;
102a775e 3743 return 0;
bbcb81d0
PM
3744}
3745
846c7bb0 3746/**
a043e3b2 3747 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3748 * @stats: cgroupstats to fill information into
3749 * @dentry: A dentry entry belonging to the cgroup for which stats have
3750 * been requested.
a043e3b2
LZ
3751 *
3752 * Build and fill cgroupstats so that taskstats can export it to user
3753 * space.
846c7bb0
BS
3754 */
3755int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3756{
2bd59d48 3757 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3758 struct cgroup *cgrp;
72ec7029 3759 struct css_task_iter it;
846c7bb0 3760 struct task_struct *tsk;
33d283be 3761
2bd59d48
TH
3762 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3763 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3764 kernfs_type(kn) != KERNFS_DIR)
3765 return -EINVAL;
3766
bad34660
LZ
3767 mutex_lock(&cgroup_mutex);
3768
846c7bb0 3769 /*
2bd59d48
TH
3770 * We aren't being called from kernfs and there's no guarantee on
3771 * @kn->priv's validity. For this and css_tryget_from_dir(),
3772 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3773 */
2bd59d48
TH
3774 rcu_read_lock();
3775 cgrp = rcu_dereference(kn->priv);
bad34660 3776 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3777 rcu_read_unlock();
bad34660 3778 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3779 return -ENOENT;
3780 }
bad34660 3781 rcu_read_unlock();
846c7bb0 3782
72ec7029
TH
3783 css_task_iter_start(&cgrp->dummy_css, &it);
3784 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3785 switch (tsk->state) {
3786 case TASK_RUNNING:
3787 stats->nr_running++;
3788 break;
3789 case TASK_INTERRUPTIBLE:
3790 stats->nr_sleeping++;
3791 break;
3792 case TASK_UNINTERRUPTIBLE:
3793 stats->nr_uninterruptible++;
3794 break;
3795 case TASK_STOPPED:
3796 stats->nr_stopped++;
3797 break;
3798 default:
3799 if (delayacct_is_task_waiting_on_io(tsk))
3800 stats->nr_io_wait++;
3801 break;
3802 }
3803 }
72ec7029 3804 css_task_iter_end(&it);
846c7bb0 3805
bad34660 3806 mutex_unlock(&cgroup_mutex);
2bd59d48 3807 return 0;
846c7bb0
BS
3808}
3809
8f3ff208 3810
bbcb81d0 3811/*
102a775e 3812 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3813 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3814 * in the cgroup->l->list array.
bbcb81d0 3815 */
cc31edce 3816
102a775e 3817static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3818{
cc31edce
PM
3819 /*
3820 * Initially we receive a position value that corresponds to
3821 * one more than the last pid shown (or 0 on the first call or
3822 * after a seek to the start). Use a binary-search to find the
3823 * next pid to display, if any
3824 */
2bd59d48 3825 struct kernfs_open_file *of = s->private;
7da11279 3826 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3827 struct cgroup_pidlist *l;
7da11279 3828 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3829 int index = 0, pid = *pos;
4bac00d1
TH
3830 int *iter, ret;
3831
3832 mutex_lock(&cgrp->pidlist_mutex);
3833
3834 /*
5d22444f 3835 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3836 * after open. If the matching pidlist is around, we can use that.
5d22444f 3837 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3838 * could already have been destroyed.
3839 */
5d22444f
TH
3840 if (of->priv)
3841 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3842
3843 /*
3844 * Either this is the first start() after open or the matching
3845 * pidlist has been destroyed inbetween. Create a new one.
3846 */
5d22444f
TH
3847 if (!of->priv) {
3848 ret = pidlist_array_load(cgrp, type,
3849 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3850 if (ret)
3851 return ERR_PTR(ret);
3852 }
5d22444f 3853 l = of->priv;
cc31edce 3854
cc31edce 3855 if (pid) {
102a775e 3856 int end = l->length;
20777766 3857
cc31edce
PM
3858 while (index < end) {
3859 int mid = (index + end) / 2;
afb2bc14 3860 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3861 index = mid;
3862 break;
afb2bc14 3863 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3864 index = mid + 1;
3865 else
3866 end = mid;
3867 }
3868 }
3869 /* If we're off the end of the array, we're done */
102a775e 3870 if (index >= l->length)
cc31edce
PM
3871 return NULL;
3872 /* Update the abstract position to be the actual pid that we found */
102a775e 3873 iter = l->list + index;
afb2bc14 3874 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3875 return iter;
3876}
3877
102a775e 3878static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3879{
2bd59d48 3880 struct kernfs_open_file *of = s->private;
5d22444f 3881 struct cgroup_pidlist *l = of->priv;
62236858 3882
5d22444f
TH
3883 if (l)
3884 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3885 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3886 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3887}
3888
102a775e 3889static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3890{
2bd59d48 3891 struct kernfs_open_file *of = s->private;
5d22444f 3892 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3893 pid_t *p = v;
3894 pid_t *end = l->list + l->length;
cc31edce
PM
3895 /*
3896 * Advance to the next pid in the array. If this goes off the
3897 * end, we're done
3898 */
3899 p++;
3900 if (p >= end) {
3901 return NULL;
3902 } else {
7da11279 3903 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3904 return p;
3905 }
3906}
3907
102a775e 3908static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3909{
3910 return seq_printf(s, "%d\n", *(int *)v);
3911}
bbcb81d0 3912
182446d0
TH
3913static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3914 struct cftype *cft)
81a6a5cd 3915{
182446d0 3916 return notify_on_release(css->cgroup);
81a6a5cd
PM
3917}
3918
182446d0
TH
3919static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3920 struct cftype *cft, u64 val)
6379c106 3921{
182446d0 3922 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3923 if (val)
182446d0 3924 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3925 else
182446d0 3926 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3927 return 0;
3928}
3929
182446d0
TH
3930static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3931 struct cftype *cft)
97978e6d 3932{
182446d0 3933 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3934}
3935
182446d0
TH
3936static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3937 struct cftype *cft, u64 val)
97978e6d
DL
3938{
3939 if (val)
182446d0 3940 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3941 else
182446d0 3942 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3943 return 0;
3944}
3945
d5c56ced 3946static struct cftype cgroup_base_files[] = {
81a6a5cd 3947 {
d5c56ced 3948 .name = "cgroup.procs",
6612f05b
TH
3949 .seq_start = cgroup_pidlist_start,
3950 .seq_next = cgroup_pidlist_next,
3951 .seq_stop = cgroup_pidlist_stop,
3952 .seq_show = cgroup_pidlist_show,
5d22444f 3953 .private = CGROUP_FILE_PROCS,
74a1166d 3954 .write_u64 = cgroup_procs_write,
74a1166d 3955 .mode = S_IRUGO | S_IWUSR,
102a775e 3956 },
97978e6d
DL
3957 {
3958 .name = "cgroup.clone_children",
873fe09e 3959 .flags = CFTYPE_INSANE,
97978e6d
DL
3960 .read_u64 = cgroup_clone_children_read,
3961 .write_u64 = cgroup_clone_children_write,
3962 },
873fe09e
TH
3963 {
3964 .name = "cgroup.sane_behavior",
3965 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3966 .seq_show = cgroup_sane_behavior_show,
873fe09e 3967 },
f8f22e53
TH
3968 {
3969 .name = "cgroup.controllers",
3970 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
3971 .seq_show = cgroup_root_controllers_show,
3972 },
3973 {
3974 .name = "cgroup.controllers",
3975 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
3976 .seq_show = cgroup_controllers_show,
3977 },
3978 {
3979 .name = "cgroup.subtree_control",
3980 .flags = CFTYPE_ONLY_ON_DFL,
3981 .seq_show = cgroup_subtree_control_show,
3982 .write_string = cgroup_subtree_control_write,
3983 },
842b597e
TH
3984 {
3985 .name = "cgroup.populated",
3986 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
3987 .seq_show = cgroup_populated_show,
3988 },
d5c56ced
TH
3989
3990 /*
3991 * Historical crazy stuff. These don't have "cgroup." prefix and
3992 * don't exist if sane_behavior. If you're depending on these, be
3993 * prepared to be burned.
3994 */
3995 {
3996 .name = "tasks",
3997 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3998 .seq_start = cgroup_pidlist_start,
3999 .seq_next = cgroup_pidlist_next,
4000 .seq_stop = cgroup_pidlist_stop,
4001 .seq_show = cgroup_pidlist_show,
5d22444f 4002 .private = CGROUP_FILE_TASKS,
d5c56ced 4003 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
4004 .mode = S_IRUGO | S_IWUSR,
4005 },
4006 {
4007 .name = "notify_on_release",
4008 .flags = CFTYPE_INSANE,
4009 .read_u64 = cgroup_read_notify_on_release,
4010 .write_u64 = cgroup_write_notify_on_release,
4011 },
6e6ff25b
TH
4012 {
4013 .name = "release_agent",
cc5943a7 4014 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4015 .seq_show = cgroup_release_agent_show,
6e6ff25b 4016 .write_string = cgroup_release_agent_write,
5f469907 4017 .max_write_len = PATH_MAX - 1,
6e6ff25b 4018 },
db0416b6 4019 { } /* terminate */
bbcb81d0
PM
4020};
4021
13af07df 4022/**
628f7cd4 4023 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4024 * @cgrp: target cgroup
13af07df 4025 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4026 *
4027 * On failure, no file is added.
13af07df 4028 */
69dfa00c 4029static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4030{
ddbcc7e8 4031 struct cgroup_subsys *ss;
b420ba7d 4032 int i, ret = 0;
bbcb81d0 4033
8e3f6541 4034 /* process cftsets of each subsystem */
b420ba7d 4035 for_each_subsys(ss, i) {
0adb0704 4036 struct cftype *cfts;
b420ba7d 4037
69dfa00c 4038 if (!(subsys_mask & (1 << i)))
13af07df 4039 continue;
8e3f6541 4040
0adb0704
TH
4041 list_for_each_entry(cfts, &ss->cfts, node) {
4042 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4043 if (ret < 0)
4044 goto err;
4045 }
ddbcc7e8 4046 }
ddbcc7e8 4047 return 0;
bee55099
TH
4048err:
4049 cgroup_clear_dir(cgrp, subsys_mask);
4050 return ret;
ddbcc7e8
PM
4051}
4052
0c21ead1
TH
4053/*
4054 * css destruction is four-stage process.
4055 *
4056 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4057 * Implemented in kill_css().
4058 *
4059 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4060 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4061 * by invoking offline_css(). After offlining, the base ref is put.
4062 * Implemented in css_killed_work_fn().
4063 *
4064 * 3. When the percpu_ref reaches zero, the only possible remaining
4065 * accessors are inside RCU read sections. css_release() schedules the
4066 * RCU callback.
4067 *
4068 * 4. After the grace period, the css can be freed. Implemented in
4069 * css_free_work_fn().
4070 *
4071 * It is actually hairier because both step 2 and 4 require process context
4072 * and thus involve punting to css->destroy_work adding two additional
4073 * steps to the already complex sequence.
4074 */
35ef10da 4075static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4076{
4077 struct cgroup_subsys_state *css =
35ef10da 4078 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4079 struct cgroup *cgrp = css->cgroup;
48ddbe19 4080
0ae78e0b
TH
4081 if (css->parent)
4082 css_put(css->parent);
4083
0c21ead1 4084 css->ss->css_free(css);
2bd59d48 4085 cgroup_put(cgrp);
48ddbe19
TH
4086}
4087
0c21ead1 4088static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4089{
4090 struct cgroup_subsys_state *css =
0c21ead1 4091 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4092
35ef10da 4093 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4094 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4095}
4096
d3daf28d
TH
4097static void css_release(struct percpu_ref *ref)
4098{
4099 struct cgroup_subsys_state *css =
4100 container_of(ref, struct cgroup_subsys_state, refcnt);
15a4c835
TH
4101 struct cgroup_subsys *ss = css->ss;
4102
4103 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4104 cgroup_idr_remove(&ss->css_idr, css->id);
d3daf28d 4105
0c21ead1 4106 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4107}
4108
ddfcadab
TH
4109static void init_and_link_css(struct cgroup_subsys_state *css,
4110 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4111{
ddfcadab
TH
4112 cgroup_get(cgrp);
4113
bd89aabc 4114 css->cgroup = cgrp;
72c97e54 4115 css->ss = ss;
ddbcc7e8 4116 css->flags = 0;
0ae78e0b 4117
ddfcadab 4118 if (cgrp->parent) {
ca8bdcaf 4119 css->parent = cgroup_css(cgrp->parent, ss);
ddfcadab
TH
4120 css_get(css->parent);
4121 } else {
38b53aba 4122 css->flags |= CSS_ROOT;
ddfcadab 4123 }
48ddbe19 4124
ca8bdcaf 4125 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4126}
4127
2a4ac633 4128/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4129static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4130{
623f926b 4131 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4132 int ret = 0;
4133
ace2bee8 4134 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
4135 lockdep_assert_held(&cgroup_mutex);
4136
92fb9748 4137 if (ss->css_online)
eb95419b 4138 ret = ss->css_online(css);
ae7f164a 4139 if (!ret) {
eb95419b 4140 css->flags |= CSS_ONLINE;
f20104de 4141 css->cgroup->nr_css++;
aec25020 4142 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4143 }
b1929db4 4144 return ret;
a31f2d3f
TH
4145}
4146
2a4ac633 4147/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4148static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4149{
623f926b 4150 struct cgroup_subsys *ss = css->ss;
a31f2d3f 4151
ace2bee8 4152 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
4153 lockdep_assert_held(&cgroup_mutex);
4154
4155 if (!(css->flags & CSS_ONLINE))
4156 return;
4157
d7eeac19 4158 if (ss->css_offline)
eb95419b 4159 ss->css_offline(css);
a31f2d3f 4160
eb95419b 4161 css->flags &= ~CSS_ONLINE;
09a503ea 4162 css->cgroup->nr_css--;
e3297803 4163 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4164
4165 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4166}
4167
c81c925a
TH
4168/**
4169 * create_css - create a cgroup_subsys_state
4170 * @cgrp: the cgroup new css will be associated with
4171 * @ss: the subsys of new css
4172 *
4173 * Create a new css associated with @cgrp - @ss pair. On success, the new
4174 * css is online and installed in @cgrp with all interface files created.
4175 * Returns 0 on success, -errno on failure.
4176 */
4177static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4178{
4179 struct cgroup *parent = cgrp->parent;
4180 struct cgroup_subsys_state *css;
4181 int err;
4182
c81c925a
TH
4183 lockdep_assert_held(&cgroup_mutex);
4184
4185 css = ss->css_alloc(cgroup_css(parent, ss));
4186 if (IS_ERR(css))
4187 return PTR_ERR(css);
4188
ddfcadab 4189 init_and_link_css(css, ss, cgrp);
a2bed820 4190
c81c925a
TH
4191 err = percpu_ref_init(&css->refcnt, css_release);
4192 if (err)
3eb59ec6 4193 goto err_free_css;
c81c925a 4194
15a4c835
TH
4195 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4196 if (err < 0)
4197 goto err_free_percpu_ref;
4198 css->id = err;
4199
aec25020 4200 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 4201 if (err)
15a4c835
TH
4202 goto err_free_id;
4203
4204 /* @css is ready to be brought online now, make it visible */
4205 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4206
4207 err = online_css(css);
4208 if (err)
3eb59ec6 4209 goto err_clear_dir;
c81c925a 4210
c81c925a
TH
4211 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4212 parent->parent) {
ed3d261b 4213 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4214 current->comm, current->pid, ss->name);
c81c925a 4215 if (!strcmp(ss->name, "memory"))
ed3d261b 4216 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4217 ss->warned_broken_hierarchy = true;
4218 }
4219
4220 return 0;
4221
3eb59ec6 4222err_clear_dir:
32d01dc7 4223 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4224err_free_id:
4225 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4226err_free_percpu_ref:
c81c925a 4227 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4228err_free_css:
a2bed820 4229 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4230 return err;
4231}
4232
2bd59d48 4233/**
a043e3b2
LZ
4234 * cgroup_create - create a cgroup
4235 * @parent: cgroup that will be parent of the new cgroup
e61734c5 4236 * @name: name of the new cgroup
2bd59d48 4237 * @mode: mode to set on new cgroup
ddbcc7e8 4238 */
e61734c5 4239static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 4240 umode_t mode)
ddbcc7e8 4241{
bd89aabc 4242 struct cgroup *cgrp;
3dd06ffa 4243 struct cgroup_root *root = parent->root;
b58c8998 4244 int ssid, err;
ddbcc7e8 4245 struct cgroup_subsys *ss;
2bd59d48 4246 struct kernfs_node *kn;
ddbcc7e8 4247
0a950f65 4248 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4249 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4250 if (!cgrp)
ddbcc7e8
PM
4251 return -ENOMEM;
4252
ace2bee8 4253 mutex_lock(&cgroup_tree_mutex);
65dff759 4254
976c06bc
TH
4255 /*
4256 * Only live parents can have children. Note that the liveliness
4257 * check isn't strictly necessary because cgroup_mkdir() and
4258 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4259 * anyway so that locking is contained inside cgroup proper and we
4260 * don't get nasty surprises if we ever grow another caller.
4261 */
4262 if (!cgroup_lock_live_group(parent)) {
4263 err = -ENODEV;
ace2bee8 4264 goto err_unlock_tree;
0ab02ca8
LZ
4265 }
4266
4267 /*
4268 * Temporarily set the pointer to NULL, so idr_find() won't return
4269 * a half-baked cgroup.
4270 */
6fa4918d 4271 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8
LZ
4272 if (cgrp->id < 0) {
4273 err = -ENOMEM;
4274 goto err_unlock;
976c06bc
TH
4275 }
4276
cc31edce 4277 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4278
bd89aabc 4279 cgrp->parent = parent;
0ae78e0b 4280 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4281 cgrp->root = parent->root;
ddbcc7e8 4282
b6abdb0e
LZ
4283 if (notify_on_release(parent))
4284 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4285
2260e7fc
TH
4286 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4287 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4288
2bd59d48 4289 /* create the directory */
e61734c5 4290 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
4291 if (IS_ERR(kn)) {
4292 err = PTR_ERR(kn);
0ab02ca8 4293 goto err_free_id;
2bd59d48
TH
4294 }
4295 cgrp->kn = kn;
ddbcc7e8 4296
4e139afc 4297 /*
6f30558f
TH
4298 * This extra ref will be put in cgroup_free_fn() and guarantees
4299 * that @cgrp->kn is always accessible.
4e139afc 4300 */
6f30558f 4301 kernfs_get(kn);
ddbcc7e8 4302
00356bd5 4303 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4304
4e139afc 4305 /* allocation complete, commit to creation */
4e139afc 4306 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 4307 atomic_inc(&root->nr_cgrps);
59f5296b 4308 cgroup_get(parent);
415cf07a 4309
0d80255e
TH
4310 /*
4311 * @cgrp is now fully operational. If something fails after this
4312 * point, it'll be released via the normal destruction path.
4313 */
6fa4918d 4314 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4315
49957f8e
TH
4316 err = cgroup_kn_set_ugid(kn);
4317 if (err)
4318 goto err_destroy;
4319
2bb566cb 4320 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4321 if (err)
4322 goto err_destroy;
4323
9d403e99 4324 /* let's create and online css's */
b85d2040 4325 for_each_subsys(ss, ssid) {
f392e51c 4326 if (parent->child_subsys_mask & (1 << ssid)) {
b85d2040
TH
4327 err = create_css(cgrp, ss);
4328 if (err)
4329 goto err_destroy;
4330 }
a8638030 4331 }
ddbcc7e8 4332
bd53d617
TH
4333 /*
4334 * On the default hierarchy, a child doesn't automatically inherit
4335 * child_subsys_mask from the parent. Each is configured manually.
4336 */
4337 if (!cgroup_on_dfl(cgrp))
4338 cgrp->child_subsys_mask = parent->child_subsys_mask;
f392e51c 4339
2bd59d48
TH
4340 kernfs_activate(kn);
4341
ddbcc7e8 4342 mutex_unlock(&cgroup_mutex);
ace2bee8 4343 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
4344
4345 return 0;
4346
0a950f65 4347err_free_id:
6fa4918d 4348 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
4349err_unlock:
4350 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
4351err_unlock_tree:
4352 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 4353 kfree(cgrp);
ddbcc7e8 4354 return err;
4b8b47eb
TH
4355
4356err_destroy:
4357 cgroup_destroy_locked(cgrp);
4358 mutex_unlock(&cgroup_mutex);
ace2bee8 4359 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 4360 return err;
ddbcc7e8
PM
4361}
4362
2bd59d48
TH
4363static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4364 umode_t mode)
ddbcc7e8 4365{
2bd59d48 4366 struct cgroup *parent = parent_kn->priv;
e1b2dc17 4367 int ret;
ddbcc7e8 4368
e1b2dc17
TH
4369 /*
4370 * cgroup_create() grabs cgroup_tree_mutex which nests outside
4371 * kernfs active_ref and cgroup_create() already synchronizes
4372 * properly against removal through cgroup_lock_live_group().
4373 * Break it before calling cgroup_create().
4374 */
4375 cgroup_get(parent);
4376 kernfs_break_active_protection(parent_kn);
ddbcc7e8 4377
e1b2dc17
TH
4378 ret = cgroup_create(parent, name, mode);
4379
4380 kernfs_unbreak_active_protection(parent_kn);
4381 cgroup_put(parent);
4382 return ret;
ddbcc7e8
PM
4383}
4384
223dbc38
TH
4385/*
4386 * This is called when the refcnt of a css is confirmed to be killed.
4387 * css_tryget() is now guaranteed to fail.
4388 */
4389static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4390{
223dbc38
TH
4391 struct cgroup_subsys_state *css =
4392 container_of(work, struct cgroup_subsys_state, destroy_work);
4393 struct cgroup *cgrp = css->cgroup;
d3daf28d 4394
ace2bee8 4395 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
4396 mutex_lock(&cgroup_mutex);
4397
09a503ea
TH
4398 /*
4399 * css_tryget() is guaranteed to fail now. Tell subsystems to
4400 * initate destruction.
4401 */
4402 offline_css(css);
4403
f20104de
TH
4404 /*
4405 * If @cgrp is marked dead, it's waiting for refs of all css's to
4406 * be disabled before proceeding to the second phase of cgroup
4407 * destruction. If we are the last one, kick it off.
4408 */
09a503ea 4409 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
4410 cgroup_destroy_css_killed(cgrp);
4411
4412 mutex_unlock(&cgroup_mutex);
ace2bee8 4413 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
4414
4415 /*
4416 * Put the css refs from kill_css(). Each css holds an extra
4417 * reference to the cgroup's dentry and cgroup removal proceeds
4418 * regardless of css refs. On the last put of each css, whenever
4419 * that may be, the extra dentry ref is put so that dentry
4420 * destruction happens only after all css's are released.
4421 */
4422 css_put(css);
d3daf28d
TH
4423}
4424
223dbc38
TH
4425/* css kill confirmation processing requires process context, bounce */
4426static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4427{
4428 struct cgroup_subsys_state *css =
4429 container_of(ref, struct cgroup_subsys_state, refcnt);
4430
223dbc38 4431 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4432 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4433}
4434
f392e51c
TH
4435/**
4436 * kill_css - destroy a css
4437 * @css: css to destroy
4438 *
4439 * This function initiates destruction of @css by removing cgroup interface
4440 * files and putting its base reference. ->css_offline() will be invoked
4441 * asynchronously once css_tryget() is guaranteed to fail and when the
4442 * reference count reaches zero, @css will be released.
4443 */
4444static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4445{
94419627
TH
4446 lockdep_assert_held(&cgroup_tree_mutex);
4447
2bd59d48
TH
4448 /*
4449 * This must happen before css is disassociated with its cgroup.
4450 * See seq_css() for details.
4451 */
aec25020 4452 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4453
edae0c33
TH
4454 /*
4455 * Killing would put the base ref, but we need to keep it alive
4456 * until after ->css_offline().
4457 */
4458 css_get(css);
4459
4460 /*
4461 * cgroup core guarantees that, by the time ->css_offline() is
4462 * invoked, no new css reference will be given out via
4463 * css_tryget(). We can't simply call percpu_ref_kill() and
4464 * proceed to offlining css's because percpu_ref_kill() doesn't
4465 * guarantee that the ref is seen as killed on all CPUs on return.
4466 *
4467 * Use percpu_ref_kill_and_confirm() to get notifications as each
4468 * css is confirmed to be seen as killed on all CPUs.
4469 */
4470 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4471}
4472
4473/**
4474 * cgroup_destroy_locked - the first stage of cgroup destruction
4475 * @cgrp: cgroup to be destroyed
4476 *
4477 * css's make use of percpu refcnts whose killing latency shouldn't be
4478 * exposed to userland and are RCU protected. Also, cgroup core needs to
4479 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4480 * invoked. To satisfy all the requirements, destruction is implemented in
4481 * the following two steps.
4482 *
4483 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4484 * userland visible parts and start killing the percpu refcnts of
4485 * css's. Set up so that the next stage will be kicked off once all
4486 * the percpu refcnts are confirmed to be killed.
4487 *
4488 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4489 * rest of destruction. Once all cgroup references are gone, the
4490 * cgroup is RCU-freed.
4491 *
4492 * This function implements s1. After this step, @cgrp is gone as far as
4493 * the userland is concerned and a new cgroup with the same name may be
4494 * created. As cgroup doesn't care about the names internally, this
4495 * doesn't cause any problem.
4496 */
42809dd4
TH
4497static int cgroup_destroy_locked(struct cgroup *cgrp)
4498 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4499{
bb78a92f 4500 struct cgroup *child;
2bd59d48 4501 struct cgroup_subsys_state *css;
ddd69148 4502 bool empty;
1c6727af 4503 int ssid;
ddbcc7e8 4504
ace2bee8 4505 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
4506 lockdep_assert_held(&cgroup_mutex);
4507
ddd69148 4508 /*
96d365e0 4509 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4510 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4511 */
96d365e0 4512 down_read(&css_set_rwsem);
bb78a92f 4513 empty = list_empty(&cgrp->cset_links);
96d365e0 4514 up_read(&css_set_rwsem);
ddd69148 4515 if (!empty)
ddbcc7e8 4516 return -EBUSY;
a043e3b2 4517
bb78a92f
HD
4518 /*
4519 * Make sure there's no live children. We can't test ->children
4520 * emptiness as dead children linger on it while being destroyed;
4521 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4522 */
4523 empty = true;
4524 rcu_read_lock();
4525 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4526 empty = cgroup_is_dead(child);
4527 if (!empty)
4528 break;
4529 }
4530 rcu_read_unlock();
4531 if (!empty)
4532 return -EBUSY;
4533
455050d2
TH
4534 /*
4535 * Mark @cgrp dead. This prevents further task migration and child
4536 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4537 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4538 * resume iteration after dropping RCU read lock. See
492eb21b 4539 * css_next_child() for details.
455050d2 4540 */
54766d4a 4541 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4542
88703267 4543 /*
edae0c33
TH
4544 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4545 * will be invoked to perform the rest of destruction once the
4ac06017
TH
4546 * percpu refs of all css's are confirmed to be killed. This
4547 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4548 */
4ac06017 4549 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4550 for_each_css(css, ssid, cgrp)
4551 kill_css(css);
4ac06017 4552 mutex_lock(&cgroup_mutex);
455050d2 4553
455050d2
TH
4554 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4555 raw_spin_lock(&release_list_lock);
4556 if (!list_empty(&cgrp->release_list))
4557 list_del_init(&cgrp->release_list);
4558 raw_spin_unlock(&release_list_lock);
4559
4560 /*
f20104de
TH
4561 * If @cgrp has css's attached, the second stage of cgroup
4562 * destruction is kicked off from css_killed_work_fn() after the
4563 * refs of all attached css's are killed. If @cgrp doesn't have
4564 * any css, we kick it off here.
4565 */
4566 if (!cgrp->nr_css)
4567 cgroup_destroy_css_killed(cgrp);
4568
2bd59d48
TH
4569 /* remove @cgrp directory along with the base files */
4570 mutex_unlock(&cgroup_mutex);
4571
455050d2 4572 /*
2bd59d48
TH
4573 * There are two control paths which try to determine cgroup from
4574 * dentry without going through kernfs - cgroupstats_build() and
4575 * css_tryget_from_dir(). Those are supported by RCU protecting
4576 * clearing of cgrp->kn->priv backpointer, which should happen
4577 * after all files under it have been removed.
455050d2 4578 */
6f30558f 4579 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 4580 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 4581
4ac06017 4582 mutex_lock(&cgroup_mutex);
455050d2 4583
ea15f8cc
TH
4584 return 0;
4585};
4586
d3daf28d 4587/**
f20104de 4588 * cgroup_destroy_css_killed - the second step of cgroup destruction
60106946 4589 * @cgrp: the cgroup whose csses have just finished offlining
d3daf28d
TH
4590 *
4591 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4592 * destroyed after all css's are offlined and performs the rest of
4593 * destruction. This is the second step of destruction described in the
4594 * comment above cgroup_destroy_locked().
d3daf28d 4595 */
f20104de 4596static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4597{
ea15f8cc 4598 struct cgroup *parent = cgrp->parent;
ea15f8cc 4599
ace2bee8 4600 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4601 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4602
999cd8a4 4603 /* delete this cgroup from parent->children */
eb6fd504 4604 list_del_rcu(&cgrp->sibling);
ed957793 4605
59f5296b 4606 cgroup_put(cgrp);
ddbcc7e8 4607
bd89aabc 4608 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4609 check_for_release(parent);
ddbcc7e8
PM
4610}
4611
2bd59d48 4612static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4613{
2bd59d48
TH
4614 struct cgroup *cgrp = kn->priv;
4615 int ret = 0;
42809dd4 4616
2bd59d48
TH
4617 /*
4618 * This is self-destruction but @kn can't be removed while this
4619 * callback is in progress. Let's break active protection. Once
4620 * the protection is broken, @cgrp can be destroyed at any point.
4621 * Pin it so that it stays accessible.
4622 */
4623 cgroup_get(cgrp);
4624 kernfs_break_active_protection(kn);
42809dd4 4625
ace2bee8 4626 mutex_lock(&cgroup_tree_mutex);
42809dd4 4627 mutex_lock(&cgroup_mutex);
8e3f6541
TH
4628
4629 /*
2bd59d48
TH
4630 * @cgrp might already have been destroyed while we're trying to
4631 * grab the mutexes.
8e3f6541 4632 */
2bd59d48
TH
4633 if (!cgroup_is_dead(cgrp))
4634 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4635
42809dd4 4636 mutex_unlock(&cgroup_mutex);
ace2bee8 4637 mutex_unlock(&cgroup_tree_mutex);
2bb566cb 4638
2bd59d48
TH
4639 kernfs_unbreak_active_protection(kn);
4640 cgroup_put(cgrp);
42809dd4 4641 return ret;
8e3f6541
TH
4642}
4643
2bd59d48
TH
4644static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4645 .remount_fs = cgroup_remount,
4646 .show_options = cgroup_show_options,
4647 .mkdir = cgroup_mkdir,
4648 .rmdir = cgroup_rmdir,
4649 .rename = cgroup_rename,
4650};
4651
15a4c835 4652static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4653{
ddbcc7e8 4654 struct cgroup_subsys_state *css;
cfe36bde
DC
4655
4656 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4657
ace2bee8 4658 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4659 mutex_lock(&cgroup_mutex);
4660
15a4c835 4661 idr_init(&ss->css_idr);
0adb0704 4662 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4663
3dd06ffa
TH
4664 /* Create the root cgroup state for this subsystem */
4665 ss->root = &cgrp_dfl_root;
4666 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4667 /* We don't handle early failures gracefully */
4668 BUG_ON(IS_ERR(css));
ddfcadab 4669 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
15a4c835
TH
4670 if (early) {
4671 /* idr_alloc() can't be called safely during early init */
4672 css->id = 1;
4673 } else {
4674 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4675 BUG_ON(css->id < 0);
4676 }
ddbcc7e8 4677
e8d55fde 4678 /* Update the init_css_set to contain a subsys
817929ec 4679 * pointer to this state - since the subsystem is
e8d55fde 4680 * newly registered, all tasks and hence the
3dd06ffa 4681 * init_css_set is in the subsystem's root cgroup. */
aec25020 4682 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4683
4684 need_forkexit_callback |= ss->fork || ss->exit;
4685
e8d55fde
LZ
4686 /* At system boot, before all subsystems have been
4687 * registered, no tasks have been forked, so we don't
4688 * need to invoke fork callbacks here. */
4689 BUG_ON(!list_empty(&init_task.tasks));
4690
ae7f164a 4691 BUG_ON(online_css(css));
a8638030 4692
f392e51c 4693 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
cf5d5941
BB
4694
4695 mutex_unlock(&cgroup_mutex);
ace2bee8 4696 mutex_unlock(&cgroup_tree_mutex);
cf5d5941 4697}
cf5d5941 4698
ddbcc7e8 4699/**
a043e3b2
LZ
4700 * cgroup_init_early - cgroup initialization at system boot
4701 *
4702 * Initialize cgroups at system boot, and initialize any
4703 * subsystems that request early init.
ddbcc7e8
PM
4704 */
4705int __init cgroup_init_early(void)
4706{
a2dd4247
TH
4707 static struct cgroup_sb_opts __initdata opts =
4708 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4709 struct cgroup_subsys *ss;
ddbcc7e8 4710 int i;
30159ec7 4711
3dd06ffa 4712 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4713 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4714
3ed80a62 4715 for_each_subsys(ss, i) {
aec25020 4716 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4717 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4718 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4719 ss->id, ss->name);
073219e9
TH
4720 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4721 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4722
aec25020 4723 ss->id = i;
073219e9 4724 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4725
4726 if (ss->early_init)
15a4c835 4727 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4728 }
4729 return 0;
4730}
4731
4732/**
a043e3b2
LZ
4733 * cgroup_init - cgroup initialization
4734 *
4735 * Register cgroup filesystem and /proc file, and initialize
4736 * any subsystems that didn't request early init.
ddbcc7e8
PM
4737 */
4738int __init cgroup_init(void)
4739{
30159ec7 4740 struct cgroup_subsys *ss;
0ac801fe 4741 unsigned long key;
172a2c06 4742 int ssid, err;
ddbcc7e8 4743
2bd59d48 4744 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4745
985ed670 4746 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4747 mutex_lock(&cgroup_mutex);
54e7b4eb 4748
82fe9b0d
TH
4749 /* Add init_css_set to the hash table */
4750 key = css_set_hash(init_css_set.subsys);
4751 hash_add(css_set_table, &init_css_set.hlist, key);
4752
3dd06ffa 4753 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4754
54e7b4eb 4755 mutex_unlock(&cgroup_mutex);
985ed670 4756 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4757
172a2c06 4758 for_each_subsys(ss, ssid) {
15a4c835
TH
4759 if (ss->early_init) {
4760 struct cgroup_subsys_state *css =
4761 init_css_set.subsys[ss->id];
4762
4763 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4764 GFP_KERNEL);
4765 BUG_ON(css->id < 0);
4766 } else {
4767 cgroup_init_subsys(ss, false);
4768 }
172a2c06 4769
2d8f243a
TH
4770 list_add_tail(&init_css_set.e_cset_node[ssid],
4771 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4772
172a2c06
TH
4773 /*
4774 * cftype registration needs kmalloc and can't be done
4775 * during early_init. Register base cftypes separately.
4776 */
4777 if (ss->base_cftypes)
4778 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
676db4af
GK
4779 }
4780
676db4af 4781 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4782 if (!cgroup_kobj)
4783 return -ENOMEM;
676db4af 4784
ddbcc7e8 4785 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4786 if (err < 0) {
4787 kobject_put(cgroup_kobj);
2bd59d48 4788 return err;
676db4af 4789 }
ddbcc7e8 4790
46ae220b 4791 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4792 return 0;
ddbcc7e8 4793}
b4f48b63 4794
e5fca243
TH
4795static int __init cgroup_wq_init(void)
4796{
4797 /*
4798 * There isn't much point in executing destruction path in
4799 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4800 * Use 1 for @max_active.
e5fca243
TH
4801 *
4802 * We would prefer to do this in cgroup_init() above, but that
4803 * is called before init_workqueues(): so leave this until after.
4804 */
1a11533f 4805 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4806 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4807
4808 /*
4809 * Used to destroy pidlists and separate to serve as flush domain.
4810 * Cap @max_active to 1 too.
4811 */
4812 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4813 0, 1);
4814 BUG_ON(!cgroup_pidlist_destroy_wq);
4815
e5fca243
TH
4816 return 0;
4817}
4818core_initcall(cgroup_wq_init);
4819
a424316c
PM
4820/*
4821 * proc_cgroup_show()
4822 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4823 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4824 */
4825
4826/* TODO: Use a proper seq_file iterator */
8d8b97ba 4827int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4828{
4829 struct pid *pid;
4830 struct task_struct *tsk;
e61734c5 4831 char *buf, *path;
a424316c 4832 int retval;
3dd06ffa 4833 struct cgroup_root *root;
a424316c
PM
4834
4835 retval = -ENOMEM;
e61734c5 4836 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4837 if (!buf)
4838 goto out;
4839
4840 retval = -ESRCH;
4841 pid = m->private;
4842 tsk = get_pid_task(pid, PIDTYPE_PID);
4843 if (!tsk)
4844 goto out_free;
4845
4846 retval = 0;
4847
4848 mutex_lock(&cgroup_mutex);
96d365e0 4849 down_read(&css_set_rwsem);
a424316c 4850
985ed670 4851 for_each_root(root) {
a424316c 4852 struct cgroup_subsys *ss;
bd89aabc 4853 struct cgroup *cgrp;
b85d2040 4854 int ssid, count = 0;
a424316c 4855
a2dd4247 4856 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4857 continue;
4858
2c6ab6d2 4859 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4860 for_each_subsys(ss, ssid)
f392e51c 4861 if (root->subsys_mask & (1 << ssid))
b85d2040 4862 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4863 if (strlen(root->name))
4864 seq_printf(m, "%sname=%s", count ? "," : "",
4865 root->name);
a424316c 4866 seq_putc(m, ':');
7717f7ba 4867 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4868 path = cgroup_path(cgrp, buf, PATH_MAX);
4869 if (!path) {
4870 retval = -ENAMETOOLONG;
a424316c 4871 goto out_unlock;
e61734c5
TH
4872 }
4873 seq_puts(m, path);
a424316c
PM
4874 seq_putc(m, '\n');
4875 }
4876
4877out_unlock:
96d365e0 4878 up_read(&css_set_rwsem);
a424316c
PM
4879 mutex_unlock(&cgroup_mutex);
4880 put_task_struct(tsk);
4881out_free:
4882 kfree(buf);
4883out:
4884 return retval;
4885}
4886
a424316c
PM
4887/* Display information about each subsystem and each hierarchy */
4888static int proc_cgroupstats_show(struct seq_file *m, void *v)
4889{
30159ec7 4890 struct cgroup_subsys *ss;
a424316c 4891 int i;
a424316c 4892
8bab8dde 4893 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4894 /*
4895 * ideally we don't want subsystems moving around while we do this.
4896 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4897 * subsys/hierarchy state.
4898 */
a424316c 4899 mutex_lock(&cgroup_mutex);
30159ec7
TH
4900
4901 for_each_subsys(ss, i)
2c6ab6d2
PM
4902 seq_printf(m, "%s\t%d\t%d\t%d\n",
4903 ss->name, ss->root->hierarchy_id,
3c9c825b 4904 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4905
a424316c
PM
4906 mutex_unlock(&cgroup_mutex);
4907 return 0;
4908}
4909
4910static int cgroupstats_open(struct inode *inode, struct file *file)
4911{
9dce07f1 4912 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4913}
4914
828c0950 4915static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4916 .open = cgroupstats_open,
4917 .read = seq_read,
4918 .llseek = seq_lseek,
4919 .release = single_release,
4920};
4921
b4f48b63 4922/**
eaf797ab 4923 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4924 * @child: pointer to task_struct of forking parent process.
b4f48b63 4925 *
eaf797ab
TH
4926 * A task is associated with the init_css_set until cgroup_post_fork()
4927 * attaches it to the parent's css_set. Empty cg_list indicates that
4928 * @child isn't holding reference to its css_set.
b4f48b63
PM
4929 */
4930void cgroup_fork(struct task_struct *child)
4931{
eaf797ab 4932 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4933 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4934}
4935
817929ec 4936/**
a043e3b2
LZ
4937 * cgroup_post_fork - called on a new task after adding it to the task list
4938 * @child: the task in question
4939 *
5edee61e
TH
4940 * Adds the task to the list running through its css_set if necessary and
4941 * call the subsystem fork() callbacks. Has to be after the task is
4942 * visible on the task list in case we race with the first call to
0942eeee 4943 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4944 * list.
a043e3b2 4945 */
817929ec
PM
4946void cgroup_post_fork(struct task_struct *child)
4947{
30159ec7 4948 struct cgroup_subsys *ss;
5edee61e
TH
4949 int i;
4950
3ce3230a 4951 /*
eaf797ab
TH
4952 * This may race against cgroup_enable_task_cg_links(). As that
4953 * function sets use_task_css_set_links before grabbing
4954 * tasklist_lock and we just went through tasklist_lock to add
4955 * @child, it's guaranteed that either we see the set
4956 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4957 * @child during its iteration.
4958 *
4959 * If we won the race, @child is associated with %current's
4960 * css_set. Grabbing css_set_rwsem guarantees both that the
4961 * association is stable, and, on completion of the parent's
4962 * migration, @child is visible in the source of migration or
4963 * already in the destination cgroup. This guarantee is necessary
4964 * when implementing operations which need to migrate all tasks of
4965 * a cgroup to another.
4966 *
4967 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4968 * will remain in init_css_set. This is safe because all tasks are
4969 * in the init_css_set before cg_links is enabled and there's no
4970 * operation which transfers all tasks out of init_css_set.
3ce3230a 4971 */
817929ec 4972 if (use_task_css_set_links) {
eaf797ab
TH
4973 struct css_set *cset;
4974
96d365e0 4975 down_write(&css_set_rwsem);
0e1d768f 4976 cset = task_css_set(current);
eaf797ab
TH
4977 if (list_empty(&child->cg_list)) {
4978 rcu_assign_pointer(child->cgroups, cset);
4979 list_add(&child->cg_list, &cset->tasks);
4980 get_css_set(cset);
4981 }
96d365e0 4982 up_write(&css_set_rwsem);
817929ec 4983 }
5edee61e
TH
4984
4985 /*
4986 * Call ss->fork(). This must happen after @child is linked on
4987 * css_set; otherwise, @child might change state between ->fork()
4988 * and addition to css_set.
4989 */
4990 if (need_forkexit_callback) {
3ed80a62 4991 for_each_subsys(ss, i)
5edee61e
TH
4992 if (ss->fork)
4993 ss->fork(child);
5edee61e 4994 }
817929ec 4995}
5edee61e 4996
b4f48b63
PM
4997/**
4998 * cgroup_exit - detach cgroup from exiting task
4999 * @tsk: pointer to task_struct of exiting process
5000 *
5001 * Description: Detach cgroup from @tsk and release it.
5002 *
5003 * Note that cgroups marked notify_on_release force every task in
5004 * them to take the global cgroup_mutex mutex when exiting.
5005 * This could impact scaling on very large systems. Be reluctant to
5006 * use notify_on_release cgroups where very high task exit scaling
5007 * is required on large systems.
5008 *
0e1d768f
TH
5009 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5010 * call cgroup_exit() while the task is still competent to handle
5011 * notify_on_release(), then leave the task attached to the root cgroup in
5012 * each hierarchy for the remainder of its exit. No need to bother with
5013 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5014 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5015 */
1ec41830 5016void cgroup_exit(struct task_struct *tsk)
b4f48b63 5017{
30159ec7 5018 struct cgroup_subsys *ss;
5abb8855 5019 struct css_set *cset;
eaf797ab 5020 bool put_cset = false;
d41d5a01 5021 int i;
817929ec
PM
5022
5023 /*
0e1d768f
TH
5024 * Unlink from @tsk from its css_set. As migration path can't race
5025 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5026 */
5027 if (!list_empty(&tsk->cg_list)) {
96d365e0 5028 down_write(&css_set_rwsem);
0e1d768f 5029 list_del_init(&tsk->cg_list);
96d365e0 5030 up_write(&css_set_rwsem);
0e1d768f 5031 put_cset = true;
817929ec
PM
5032 }
5033
b4f48b63 5034 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5035 cset = task_css_set(tsk);
5036 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5037
1ec41830 5038 if (need_forkexit_callback) {
3ed80a62
TH
5039 /* see cgroup_post_fork() for details */
5040 for_each_subsys(ss, i) {
d41d5a01 5041 if (ss->exit) {
eb95419b
TH
5042 struct cgroup_subsys_state *old_css = cset->subsys[i];
5043 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5044
eb95419b 5045 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5046 }
5047 }
5048 }
d41d5a01 5049
eaf797ab
TH
5050 if (put_cset)
5051 put_css_set(cset, true);
b4f48b63 5052}
697f4161 5053
bd89aabc 5054static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5055{
f50daa70 5056 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5057 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5058 /*
5059 * Control Group is currently removeable. If it's not
81a6a5cd 5060 * already queued for a userspace notification, queue
f50daa70
LZ
5061 * it now
5062 */
81a6a5cd 5063 int need_schedule_work = 0;
f50daa70 5064
cdcc136f 5065 raw_spin_lock(&release_list_lock);
54766d4a 5066 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5067 list_empty(&cgrp->release_list)) {
5068 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5069 need_schedule_work = 1;
5070 }
cdcc136f 5071 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5072 if (need_schedule_work)
5073 schedule_work(&release_agent_work);
5074 }
5075}
5076
81a6a5cd
PM
5077/*
5078 * Notify userspace when a cgroup is released, by running the
5079 * configured release agent with the name of the cgroup (path
5080 * relative to the root of cgroup file system) as the argument.
5081 *
5082 * Most likely, this user command will try to rmdir this cgroup.
5083 *
5084 * This races with the possibility that some other task will be
5085 * attached to this cgroup before it is removed, or that some other
5086 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5087 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5088 * unused, and this cgroup will be reprieved from its death sentence,
5089 * to continue to serve a useful existence. Next time it's released,
5090 * we will get notified again, if it still has 'notify_on_release' set.
5091 *
5092 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5093 * means only wait until the task is successfully execve()'d. The
5094 * separate release agent task is forked by call_usermodehelper(),
5095 * then control in this thread returns here, without waiting for the
5096 * release agent task. We don't bother to wait because the caller of
5097 * this routine has no use for the exit status of the release agent
5098 * task, so no sense holding our caller up for that.
81a6a5cd 5099 */
81a6a5cd
PM
5100static void cgroup_release_agent(struct work_struct *work)
5101{
5102 BUG_ON(work != &release_agent_work);
5103 mutex_lock(&cgroup_mutex);
cdcc136f 5104 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5105 while (!list_empty(&release_list)) {
5106 char *argv[3], *envp[3];
5107 int i;
e61734c5 5108 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5109 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5110 struct cgroup,
5111 release_list);
bd89aabc 5112 list_del_init(&cgrp->release_list);
cdcc136f 5113 raw_spin_unlock(&release_list_lock);
e61734c5 5114 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5115 if (!pathbuf)
5116 goto continue_free;
e61734c5
TH
5117 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5118 if (!path)
e788e066
PM
5119 goto continue_free;
5120 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5121 if (!agentbuf)
5122 goto continue_free;
81a6a5cd
PM
5123
5124 i = 0;
e788e066 5125 argv[i++] = agentbuf;
e61734c5 5126 argv[i++] = path;
81a6a5cd
PM
5127 argv[i] = NULL;
5128
5129 i = 0;
5130 /* minimal command environment */
5131 envp[i++] = "HOME=/";
5132 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5133 envp[i] = NULL;
5134
5135 /* Drop the lock while we invoke the usermode helper,
5136 * since the exec could involve hitting disk and hence
5137 * be a slow process */
5138 mutex_unlock(&cgroup_mutex);
5139 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5140 mutex_lock(&cgroup_mutex);
e788e066
PM
5141 continue_free:
5142 kfree(pathbuf);
5143 kfree(agentbuf);
cdcc136f 5144 raw_spin_lock(&release_list_lock);
81a6a5cd 5145 }
cdcc136f 5146 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5147 mutex_unlock(&cgroup_mutex);
5148}
8bab8dde
PM
5149
5150static int __init cgroup_disable(char *str)
5151{
30159ec7 5152 struct cgroup_subsys *ss;
8bab8dde 5153 char *token;
30159ec7 5154 int i;
8bab8dde
PM
5155
5156 while ((token = strsep(&str, ",")) != NULL) {
5157 if (!*token)
5158 continue;
be45c900 5159
3ed80a62 5160 for_each_subsys(ss, i) {
8bab8dde
PM
5161 if (!strcmp(token, ss->name)) {
5162 ss->disabled = 1;
5163 printk(KERN_INFO "Disabling %s control group"
5164 " subsystem\n", ss->name);
5165 break;
5166 }
5167 }
5168 }
5169 return 1;
5170}
5171__setup("cgroup_disable=", cgroup_disable);
38460b48 5172
b77d7b60 5173/**
5a17f543 5174 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
5175 * @dentry: directory dentry of interest
5176 * @ss: subsystem of interest
b77d7b60 5177 *
5a17f543
TH
5178 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5179 * to get the corresponding css and return it. If such css doesn't exist
5180 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5181 */
5a17f543
TH
5182struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
5183 struct cgroup_subsys *ss)
e5d1367f 5184{
2bd59d48
TH
5185 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5186 struct cgroup_subsys_state *css = NULL;
e5d1367f 5187 struct cgroup *cgrp;
e5d1367f 5188
35cf0836 5189 /* is @dentry a cgroup dir? */
2bd59d48
TH
5190 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5191 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5192 return ERR_PTR(-EBADF);
5193
5a17f543
TH
5194 rcu_read_lock();
5195
2bd59d48
TH
5196 /*
5197 * This path doesn't originate from kernfs and @kn could already
5198 * have been or be removed at any point. @kn->priv is RCU
5199 * protected for this access. See destroy_locked() for details.
5200 */
5201 cgrp = rcu_dereference(kn->priv);
5202 if (cgrp)
5203 css = cgroup_css(cgrp, ss);
5a17f543
TH
5204
5205 if (!css || !css_tryget(css))
5206 css = ERR_PTR(-ENOENT);
5207
5208 rcu_read_unlock();
5209 return css;
e5d1367f 5210}
e5d1367f 5211
1cb650b9
LZ
5212/**
5213 * css_from_id - lookup css by id
5214 * @id: the cgroup id
5215 * @ss: cgroup subsys to be looked into
5216 *
5217 * Returns the css if there's valid one with @id, otherwise returns NULL.
5218 * Should be called under rcu_read_lock().
5219 */
5220struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5221{
6fa4918d 5222 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5223 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5224}
5225
fe693435 5226#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5227static struct cgroup_subsys_state *
5228debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5229{
5230 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5231
5232 if (!css)
5233 return ERR_PTR(-ENOMEM);
5234
5235 return css;
5236}
5237
eb95419b 5238static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5239{
eb95419b 5240 kfree(css);
fe693435
PM
5241}
5242
182446d0
TH
5243static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5244 struct cftype *cft)
fe693435 5245{
182446d0 5246 return cgroup_task_count(css->cgroup);
fe693435
PM
5247}
5248
182446d0
TH
5249static u64 current_css_set_read(struct cgroup_subsys_state *css,
5250 struct cftype *cft)
fe693435
PM
5251{
5252 return (u64)(unsigned long)current->cgroups;
5253}
5254
182446d0 5255static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5256 struct cftype *cft)
fe693435
PM
5257{
5258 u64 count;
5259
5260 rcu_read_lock();
a8ad805c 5261 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5262 rcu_read_unlock();
5263 return count;
5264}
5265
2da8ca82 5266static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5267{
69d0206c 5268 struct cgrp_cset_link *link;
5abb8855 5269 struct css_set *cset;
e61734c5
TH
5270 char *name_buf;
5271
5272 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5273 if (!name_buf)
5274 return -ENOMEM;
7717f7ba 5275
96d365e0 5276 down_read(&css_set_rwsem);
7717f7ba 5277 rcu_read_lock();
5abb8855 5278 cset = rcu_dereference(current->cgroups);
69d0206c 5279 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5280 struct cgroup *c = link->cgrp;
7717f7ba 5281
a2dd4247 5282 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5283 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5284 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5285 }
5286 rcu_read_unlock();
96d365e0 5287 up_read(&css_set_rwsem);
e61734c5 5288 kfree(name_buf);
7717f7ba
PM
5289 return 0;
5290}
5291
5292#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5293static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5294{
2da8ca82 5295 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5296 struct cgrp_cset_link *link;
7717f7ba 5297
96d365e0 5298 down_read(&css_set_rwsem);
182446d0 5299 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5300 struct css_set *cset = link->cset;
7717f7ba
PM
5301 struct task_struct *task;
5302 int count = 0;
c7561128 5303
5abb8855 5304 seq_printf(seq, "css_set %p\n", cset);
c7561128 5305
5abb8855 5306 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5307 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5308 goto overflow;
5309 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5310 }
5311
5312 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5313 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5314 goto overflow;
5315 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5316 }
c7561128
TH
5317 continue;
5318 overflow:
5319 seq_puts(seq, " ...\n");
7717f7ba 5320 }
96d365e0 5321 up_read(&css_set_rwsem);
7717f7ba
PM
5322 return 0;
5323}
5324
182446d0 5325static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5326{
182446d0 5327 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5328}
5329
5330static struct cftype debug_files[] = {
fe693435
PM
5331 {
5332 .name = "taskcount",
5333 .read_u64 = debug_taskcount_read,
5334 },
5335
5336 {
5337 .name = "current_css_set",
5338 .read_u64 = current_css_set_read,
5339 },
5340
5341 {
5342 .name = "current_css_set_refcount",
5343 .read_u64 = current_css_set_refcount_read,
5344 },
5345
7717f7ba
PM
5346 {
5347 .name = "current_css_set_cg_links",
2da8ca82 5348 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5349 },
5350
5351 {
5352 .name = "cgroup_css_links",
2da8ca82 5353 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5354 },
5355
fe693435
PM
5356 {
5357 .name = "releasable",
5358 .read_u64 = releasable_read,
5359 },
fe693435 5360
4baf6e33
TH
5361 { } /* terminate */
5362};
fe693435 5363
073219e9 5364struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5365 .css_alloc = debug_css_alloc,
5366 .css_free = debug_css_free,
4baf6e33 5367 .base_cftypes = debug_files,
fe693435
PM
5368};
5369#endif /* CONFIG_CGROUP_DEBUG */