cgroup: fix idr_preload usage
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
d59cfc09 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
d59cfc09
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
110 rcu_lockdep_assert(rcu_read_lock_held() || \
111 lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
ddbcc7e8 142/*
3dd06ffa 143 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
ddbcc7e8 146 */
a2dd4247 147struct cgroup_root cgrp_dfl_root;
9871bf95 148
a2dd4247
TH
149/*
150 * The default hierarchy always exists but is hidden until mounted for the
151 * first time. This is for backward compatibility.
152 */
153static bool cgrp_dfl_root_visible;
ddbcc7e8 154
a8ddc821
TH
155/*
156 * Set by the boot param of the same name and makes subsystems with NULL
157 * ->dfl_files to use ->legacy_files on the default hierarchy.
158 */
159static bool cgroup_legacy_files_on_dfl;
160
5533e011 161/* some controllers are not supported in the default hierarchy */
8ab456ac 162static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 163
ddbcc7e8
PM
164/* The list of hierarchy roots */
165
9871bf95
TH
166static LIST_HEAD(cgroup_roots);
167static int cgroup_root_count;
ddbcc7e8 168
3417ae1f 169/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 170static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 171
794611a1 172/*
0cb51d71
TH
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
794611a1 178 */
0cb51d71 179static u64 css_serial_nr_next = 1;
794611a1 180
cb4a3167
AS
181/*
182 * These bitmask flags indicate whether tasks in the fork and exit paths have
183 * fork/exit handlers to call. This avoids us having to do extra work in the
184 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 185 */
cb4a3167
AS
186static unsigned long have_fork_callback __read_mostly;
187static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 188
7e47682e
AS
189/* Ditto for the can_fork callback. */
190static unsigned long have_canfork_callback __read_mostly;
191
a14c6874
TH
192static struct cftype cgroup_dfl_base_files[];
193static struct cftype cgroup_legacy_base_files[];
628f7cd4 194
3dd06ffa 195static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 196 unsigned long ss_mask);
42809dd4 197static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
198static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
199 bool visible);
9d755d33 200static void css_release(struct percpu_ref *ref);
f8f22e53 201static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
202static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
203 bool is_add);
42809dd4 204
6fa4918d
TH
205/* IDR wrappers which synchronize using cgroup_idr_lock */
206static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
207 gfp_t gfp_mask)
208{
209 int ret;
210
211 idr_preload(gfp_mask);
54504e97 212 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 213 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 214 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
215 idr_preload_end();
216 return ret;
217}
218
219static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
220{
221 void *ret;
222
54504e97 223 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 224 ret = idr_replace(idr, ptr, id);
54504e97 225 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
226 return ret;
227}
228
229static void cgroup_idr_remove(struct idr *idr, int id)
230{
54504e97 231 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 232 idr_remove(idr, id);
54504e97 233 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
234}
235
d51f39b0
TH
236static struct cgroup *cgroup_parent(struct cgroup *cgrp)
237{
238 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
239
240 if (parent_css)
241 return container_of(parent_css, struct cgroup, self);
242 return NULL;
243}
244
95109b62
TH
245/**
246 * cgroup_css - obtain a cgroup's css for the specified subsystem
247 * @cgrp: the cgroup of interest
9d800df1 248 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 249 *
ca8bdcaf
TH
250 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
251 * function must be called either under cgroup_mutex or rcu_read_lock() and
252 * the caller is responsible for pinning the returned css if it wants to
253 * keep accessing it outside the said locks. This function may return
254 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
255 */
256static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 257 struct cgroup_subsys *ss)
95109b62 258{
ca8bdcaf 259 if (ss)
aec25020 260 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 261 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 262 else
9d800df1 263 return &cgrp->self;
95109b62 264}
42809dd4 265
aec3dfcb
TH
266/**
267 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
268 * @cgrp: the cgroup of interest
9d800df1 269 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 270 *
d0f702e6 271 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
272 * as the matching css of the nearest ancestor including self which has @ss
273 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
274 * function is guaranteed to return non-NULL css.
275 */
276static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
277 struct cgroup_subsys *ss)
278{
279 lockdep_assert_held(&cgroup_mutex);
280
281 if (!ss)
9d800df1 282 return &cgrp->self;
aec3dfcb
TH
283
284 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
285 return NULL;
286
eeecbd19
TH
287 /*
288 * This function is used while updating css associations and thus
289 * can't test the csses directly. Use ->child_subsys_mask.
290 */
d51f39b0
TH
291 while (cgroup_parent(cgrp) &&
292 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
293 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
294
295 return cgroup_css(cgrp, ss);
95109b62 296}
42809dd4 297
eeecbd19
TH
298/**
299 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
300 * @cgrp: the cgroup of interest
301 * @ss: the subsystem of interest
302 *
303 * Find and get the effective css of @cgrp for @ss. The effective css is
304 * defined as the matching css of the nearest ancestor including self which
305 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
306 * the root css is returned, so this function always returns a valid css.
307 * The returned css must be put using css_put().
308 */
309struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
310 struct cgroup_subsys *ss)
311{
312 struct cgroup_subsys_state *css;
313
314 rcu_read_lock();
315
316 do {
317 css = cgroup_css(cgrp, ss);
318
319 if (css && css_tryget_online(css))
320 goto out_unlock;
321 cgrp = cgroup_parent(cgrp);
322 } while (cgrp);
323
324 css = init_css_set.subsys[ss->id];
325 css_get(css);
326out_unlock:
327 rcu_read_unlock();
328 return css;
329}
330
ddbcc7e8 331/* convenient tests for these bits */
54766d4a 332static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 333{
184faf32 334 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
335}
336
b4168640 337struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 338{
2bd59d48 339 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 340 struct cftype *cft = of_cft(of);
2bd59d48
TH
341
342 /*
343 * This is open and unprotected implementation of cgroup_css().
344 * seq_css() is only called from a kernfs file operation which has
345 * an active reference on the file. Because all the subsystem
346 * files are drained before a css is disassociated with a cgroup,
347 * the matching css from the cgroup's subsys table is guaranteed to
348 * be and stay valid until the enclosing operation is complete.
349 */
350 if (cft->ss)
351 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
352 else
9d800df1 353 return &cgrp->self;
59f5296b 354}
b4168640 355EXPORT_SYMBOL_GPL(of_css);
59f5296b 356
78574cf9
LZ
357/**
358 * cgroup_is_descendant - test ancestry
359 * @cgrp: the cgroup to be tested
360 * @ancestor: possible ancestor of @cgrp
361 *
362 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
363 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
364 * and @ancestor are accessible.
365 */
366bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
367{
368 while (cgrp) {
369 if (cgrp == ancestor)
370 return true;
d51f39b0 371 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
372 }
373 return false;
374}
ddbcc7e8 375
e9685a03 376static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 377{
bd89aabc 378 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
379}
380
1c6727af
TH
381/**
382 * for_each_css - iterate all css's of a cgroup
383 * @css: the iteration cursor
384 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
385 * @cgrp: the target cgroup to iterate css's of
386 *
aec3dfcb 387 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
388 */
389#define for_each_css(css, ssid, cgrp) \
390 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
391 if (!((css) = rcu_dereference_check( \
392 (cgrp)->subsys[(ssid)], \
393 lockdep_is_held(&cgroup_mutex)))) { } \
394 else
395
aec3dfcb
TH
396/**
397 * for_each_e_css - iterate all effective css's of a cgroup
398 * @css: the iteration cursor
399 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
400 * @cgrp: the target cgroup to iterate css's of
401 *
402 * Should be called under cgroup_[tree_]mutex.
403 */
404#define for_each_e_css(css, ssid, cgrp) \
405 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
406 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
407 ; \
408 else
409
30159ec7 410/**
3ed80a62 411 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 412 * @ss: the iteration cursor
780cd8b3 413 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 414 */
780cd8b3 415#define for_each_subsys(ss, ssid) \
3ed80a62
TH
416 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
417 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 418
cb4a3167
AS
419/**
420 * for_each_subsys_which - filter for_each_subsys with a bitmask
421 * @ss: the iteration cursor
422 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
423 * @ss_maskp: a pointer to the bitmask
424 *
425 * The block will only run for cases where the ssid-th bit (1 << ssid) of
426 * mask is set to 1.
427 */
428#define for_each_subsys_which(ss, ssid, ss_maskp) \
429 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 430 (ssid) = 0; \
cb4a3167
AS
431 else \
432 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
433 if (((ss) = cgroup_subsys[ssid]) && false) \
434 break; \
435 else
436
985ed670
TH
437/* iterate across the hierarchies */
438#define for_each_root(root) \
5549c497 439 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 440
f8f22e53
TH
441/* iterate over child cgrps, lock should be held throughout iteration */
442#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 443 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 444 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
445 cgroup_is_dead(child); })) \
446 ; \
447 else
7ae1bad9 448
81a6a5cd 449static void cgroup_release_agent(struct work_struct *work);
bd89aabc 450static void check_for_release(struct cgroup *cgrp);
81a6a5cd 451
69d0206c
TH
452/*
453 * A cgroup can be associated with multiple css_sets as different tasks may
454 * belong to different cgroups on different hierarchies. In the other
455 * direction, a css_set is naturally associated with multiple cgroups.
456 * This M:N relationship is represented by the following link structure
457 * which exists for each association and allows traversing the associations
458 * from both sides.
459 */
460struct cgrp_cset_link {
461 /* the cgroup and css_set this link associates */
462 struct cgroup *cgrp;
463 struct css_set *cset;
464
465 /* list of cgrp_cset_links anchored at cgrp->cset_links */
466 struct list_head cset_link;
467
468 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
469 struct list_head cgrp_link;
817929ec
PM
470};
471
172a2c06
TH
472/*
473 * The default css_set - used by init and its children prior to any
817929ec
PM
474 * hierarchies being mounted. It contains a pointer to the root state
475 * for each subsystem. Also used to anchor the list of css_sets. Not
476 * reference-counted, to improve performance when child cgroups
477 * haven't been created.
478 */
5024ae29 479struct css_set init_css_set = {
172a2c06
TH
480 .refcount = ATOMIC_INIT(1),
481 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
482 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
483 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
484 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
485 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
486};
817929ec 487
172a2c06 488static int css_set_count = 1; /* 1 for init_css_set */
817929ec 489
842b597e
TH
490/**
491 * cgroup_update_populated - updated populated count of a cgroup
492 * @cgrp: the target cgroup
493 * @populated: inc or dec populated count
494 *
495 * @cgrp is either getting the first task (css_set) or losing the last.
496 * Update @cgrp->populated_cnt accordingly. The count is propagated
497 * towards root so that a given cgroup's populated_cnt is zero iff the
498 * cgroup and all its descendants are empty.
499 *
500 * @cgrp's interface file "cgroup.populated" is zero if
501 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
502 * changes from or to zero, userland is notified that the content of the
503 * interface file has changed. This can be used to detect when @cgrp and
504 * its descendants become populated or empty.
505 */
506static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
507{
508 lockdep_assert_held(&css_set_rwsem);
509
510 do {
511 bool trigger;
512
513 if (populated)
514 trigger = !cgrp->populated_cnt++;
515 else
516 trigger = !--cgrp->populated_cnt;
517
518 if (!trigger)
519 break;
520
521 if (cgrp->populated_kn)
522 kernfs_notify(cgrp->populated_kn);
d51f39b0 523 cgrp = cgroup_parent(cgrp);
842b597e
TH
524 } while (cgrp);
525}
526
7717f7ba
PM
527/*
528 * hash table for cgroup groups. This improves the performance to find
529 * an existing css_set. This hash doesn't (currently) take into
530 * account cgroups in empty hierarchies.
531 */
472b1053 532#define CSS_SET_HASH_BITS 7
0ac801fe 533static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 534
0ac801fe 535static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 536{
0ac801fe 537 unsigned long key = 0UL;
30159ec7
TH
538 struct cgroup_subsys *ss;
539 int i;
472b1053 540
30159ec7 541 for_each_subsys(ss, i)
0ac801fe
LZ
542 key += (unsigned long)css[i];
543 key = (key >> 16) ^ key;
472b1053 544
0ac801fe 545 return key;
472b1053
LZ
546}
547
a25eb52e 548static void put_css_set_locked(struct css_set *cset)
b4f48b63 549{
69d0206c 550 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
551 struct cgroup_subsys *ss;
552 int ssid;
5abb8855 553
89c5509b
TH
554 lockdep_assert_held(&css_set_rwsem);
555
556 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 557 return;
81a6a5cd 558
2c6ab6d2 559 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
560 for_each_subsys(ss, ssid)
561 list_del(&cset->e_cset_node[ssid]);
5abb8855 562 hash_del(&cset->hlist);
2c6ab6d2
PM
563 css_set_count--;
564
69d0206c 565 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 566 struct cgroup *cgrp = link->cgrp;
5abb8855 567
69d0206c
TH
568 list_del(&link->cset_link);
569 list_del(&link->cgrp_link);
71b5707e 570
96d365e0 571 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
572 if (list_empty(&cgrp->cset_links)) {
573 cgroup_update_populated(cgrp, false);
a25eb52e 574 check_for_release(cgrp);
81a6a5cd 575 }
2c6ab6d2
PM
576
577 kfree(link);
81a6a5cd 578 }
2c6ab6d2 579
5abb8855 580 kfree_rcu(cset, rcu_head);
b4f48b63
PM
581}
582
a25eb52e 583static void put_css_set(struct css_set *cset)
89c5509b
TH
584{
585 /*
586 * Ensure that the refcount doesn't hit zero while any readers
587 * can see it. Similar to atomic_dec_and_lock(), but for an
588 * rwlock
589 */
590 if (atomic_add_unless(&cset->refcount, -1, 1))
591 return;
592
593 down_write(&css_set_rwsem);
a25eb52e 594 put_css_set_locked(cset);
89c5509b
TH
595 up_write(&css_set_rwsem);
596}
597
817929ec
PM
598/*
599 * refcounted get/put for css_set objects
600 */
5abb8855 601static inline void get_css_set(struct css_set *cset)
817929ec 602{
5abb8855 603 atomic_inc(&cset->refcount);
817929ec
PM
604}
605
b326f9d0 606/**
7717f7ba 607 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
608 * @cset: candidate css_set being tested
609 * @old_cset: existing css_set for a task
7717f7ba
PM
610 * @new_cgrp: cgroup that's being entered by the task
611 * @template: desired set of css pointers in css_set (pre-calculated)
612 *
6f4b7e63 613 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
614 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
615 */
5abb8855
TH
616static bool compare_css_sets(struct css_set *cset,
617 struct css_set *old_cset,
7717f7ba
PM
618 struct cgroup *new_cgrp,
619 struct cgroup_subsys_state *template[])
620{
621 struct list_head *l1, *l2;
622
aec3dfcb
TH
623 /*
624 * On the default hierarchy, there can be csets which are
625 * associated with the same set of cgroups but different csses.
626 * Let's first ensure that csses match.
627 */
628 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 629 return false;
7717f7ba
PM
630
631 /*
632 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
633 * different cgroups in hierarchies. As different cgroups may
634 * share the same effective css, this comparison is always
635 * necessary.
7717f7ba 636 */
69d0206c
TH
637 l1 = &cset->cgrp_links;
638 l2 = &old_cset->cgrp_links;
7717f7ba 639 while (1) {
69d0206c 640 struct cgrp_cset_link *link1, *link2;
5abb8855 641 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
642
643 l1 = l1->next;
644 l2 = l2->next;
645 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
646 if (l1 == &cset->cgrp_links) {
647 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
648 break;
649 } else {
69d0206c 650 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
651 }
652 /* Locate the cgroups associated with these links. */
69d0206c
TH
653 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
654 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
655 cgrp1 = link1->cgrp;
656 cgrp2 = link2->cgrp;
7717f7ba 657 /* Hierarchies should be linked in the same order. */
5abb8855 658 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
659
660 /*
661 * If this hierarchy is the hierarchy of the cgroup
662 * that's changing, then we need to check that this
663 * css_set points to the new cgroup; if it's any other
664 * hierarchy, then this css_set should point to the
665 * same cgroup as the old css_set.
666 */
5abb8855
TH
667 if (cgrp1->root == new_cgrp->root) {
668 if (cgrp1 != new_cgrp)
7717f7ba
PM
669 return false;
670 } else {
5abb8855 671 if (cgrp1 != cgrp2)
7717f7ba
PM
672 return false;
673 }
674 }
675 return true;
676}
677
b326f9d0
TH
678/**
679 * find_existing_css_set - init css array and find the matching css_set
680 * @old_cset: the css_set that we're using before the cgroup transition
681 * @cgrp: the cgroup that we're moving into
682 * @template: out param for the new set of csses, should be clear on entry
817929ec 683 */
5abb8855
TH
684static struct css_set *find_existing_css_set(struct css_set *old_cset,
685 struct cgroup *cgrp,
686 struct cgroup_subsys_state *template[])
b4f48b63 687{
3dd06ffa 688 struct cgroup_root *root = cgrp->root;
30159ec7 689 struct cgroup_subsys *ss;
5abb8855 690 struct css_set *cset;
0ac801fe 691 unsigned long key;
b326f9d0 692 int i;
817929ec 693
aae8aab4
BB
694 /*
695 * Build the set of subsystem state objects that we want to see in the
696 * new css_set. while subsystems can change globally, the entries here
697 * won't change, so no need for locking.
698 */
30159ec7 699 for_each_subsys(ss, i) {
f392e51c 700 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
701 /*
702 * @ss is in this hierarchy, so we want the
703 * effective css from @cgrp.
704 */
705 template[i] = cgroup_e_css(cgrp, ss);
817929ec 706 } else {
aec3dfcb
TH
707 /*
708 * @ss is not in this hierarchy, so we don't want
709 * to change the css.
710 */
5abb8855 711 template[i] = old_cset->subsys[i];
817929ec
PM
712 }
713 }
714
0ac801fe 715 key = css_set_hash(template);
5abb8855
TH
716 hash_for_each_possible(css_set_table, cset, hlist, key) {
717 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
718 continue;
719
720 /* This css_set matches what we need */
5abb8855 721 return cset;
472b1053 722 }
817929ec
PM
723
724 /* No existing cgroup group matched */
725 return NULL;
726}
727
69d0206c 728static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 729{
69d0206c 730 struct cgrp_cset_link *link, *tmp_link;
36553434 731
69d0206c
TH
732 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
733 list_del(&link->cset_link);
36553434
LZ
734 kfree(link);
735 }
736}
737
69d0206c
TH
738/**
739 * allocate_cgrp_cset_links - allocate cgrp_cset_links
740 * @count: the number of links to allocate
741 * @tmp_links: list_head the allocated links are put on
742 *
743 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
744 * through ->cset_link. Returns 0 on success or -errno.
817929ec 745 */
69d0206c 746static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 747{
69d0206c 748 struct cgrp_cset_link *link;
817929ec 749 int i;
69d0206c
TH
750
751 INIT_LIST_HEAD(tmp_links);
752
817929ec 753 for (i = 0; i < count; i++) {
f4f4be2b 754 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 755 if (!link) {
69d0206c 756 free_cgrp_cset_links(tmp_links);
817929ec
PM
757 return -ENOMEM;
758 }
69d0206c 759 list_add(&link->cset_link, tmp_links);
817929ec
PM
760 }
761 return 0;
762}
763
c12f65d4
LZ
764/**
765 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 766 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 767 * @cset: the css_set to be linked
c12f65d4
LZ
768 * @cgrp: the destination cgroup
769 */
69d0206c
TH
770static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
771 struct cgroup *cgrp)
c12f65d4 772{
69d0206c 773 struct cgrp_cset_link *link;
c12f65d4 774
69d0206c 775 BUG_ON(list_empty(tmp_links));
6803c006
TH
776
777 if (cgroup_on_dfl(cgrp))
778 cset->dfl_cgrp = cgrp;
779
69d0206c
TH
780 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
781 link->cset = cset;
7717f7ba 782 link->cgrp = cgrp;
842b597e
TH
783
784 if (list_empty(&cgrp->cset_links))
785 cgroup_update_populated(cgrp, true);
69d0206c 786 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 787
7717f7ba
PM
788 /*
789 * Always add links to the tail of the list so that the list
790 * is sorted by order of hierarchy creation
791 */
69d0206c 792 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
793}
794
b326f9d0
TH
795/**
796 * find_css_set - return a new css_set with one cgroup updated
797 * @old_cset: the baseline css_set
798 * @cgrp: the cgroup to be updated
799 *
800 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
801 * substituted into the appropriate hierarchy.
817929ec 802 */
5abb8855
TH
803static struct css_set *find_css_set(struct css_set *old_cset,
804 struct cgroup *cgrp)
817929ec 805{
b326f9d0 806 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 807 struct css_set *cset;
69d0206c
TH
808 struct list_head tmp_links;
809 struct cgrp_cset_link *link;
2d8f243a 810 struct cgroup_subsys *ss;
0ac801fe 811 unsigned long key;
2d8f243a 812 int ssid;
472b1053 813
b326f9d0
TH
814 lockdep_assert_held(&cgroup_mutex);
815
817929ec
PM
816 /* First see if we already have a cgroup group that matches
817 * the desired set */
96d365e0 818 down_read(&css_set_rwsem);
5abb8855
TH
819 cset = find_existing_css_set(old_cset, cgrp, template);
820 if (cset)
821 get_css_set(cset);
96d365e0 822 up_read(&css_set_rwsem);
817929ec 823
5abb8855
TH
824 if (cset)
825 return cset;
817929ec 826
f4f4be2b 827 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 828 if (!cset)
817929ec
PM
829 return NULL;
830
69d0206c 831 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 832 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 833 kfree(cset);
817929ec
PM
834 return NULL;
835 }
836
5abb8855 837 atomic_set(&cset->refcount, 1);
69d0206c 838 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 839 INIT_LIST_HEAD(&cset->tasks);
c7561128 840 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 841 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 842 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 843 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
844
845 /* Copy the set of subsystem state objects generated in
846 * find_existing_css_set() */
5abb8855 847 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 848
96d365e0 849 down_write(&css_set_rwsem);
817929ec 850 /* Add reference counts and links from the new css_set. */
69d0206c 851 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 852 struct cgroup *c = link->cgrp;
69d0206c 853
7717f7ba
PM
854 if (c->root == cgrp->root)
855 c = cgrp;
69d0206c 856 link_css_set(&tmp_links, cset, c);
7717f7ba 857 }
817929ec 858
69d0206c 859 BUG_ON(!list_empty(&tmp_links));
817929ec 860
817929ec 861 css_set_count++;
472b1053 862
2d8f243a 863 /* Add @cset to the hash table */
5abb8855
TH
864 key = css_set_hash(cset->subsys);
865 hash_add(css_set_table, &cset->hlist, key);
472b1053 866
2d8f243a
TH
867 for_each_subsys(ss, ssid)
868 list_add_tail(&cset->e_cset_node[ssid],
869 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
870
96d365e0 871 up_write(&css_set_rwsem);
817929ec 872
5abb8855 873 return cset;
b4f48b63
PM
874}
875
3dd06ffa 876static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 877{
3dd06ffa 878 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 879
3dd06ffa 880 return root_cgrp->root;
2bd59d48
TH
881}
882
3dd06ffa 883static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
884{
885 int id;
886
887 lockdep_assert_held(&cgroup_mutex);
888
985ed670 889 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
890 if (id < 0)
891 return id;
892
893 root->hierarchy_id = id;
894 return 0;
895}
896
3dd06ffa 897static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
898{
899 lockdep_assert_held(&cgroup_mutex);
900
901 if (root->hierarchy_id) {
902 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
903 root->hierarchy_id = 0;
904 }
905}
906
3dd06ffa 907static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
908{
909 if (root) {
d0f702e6 910 /* hierarchy ID should already have been released */
f2e85d57
TH
911 WARN_ON_ONCE(root->hierarchy_id);
912
913 idr_destroy(&root->cgroup_idr);
914 kfree(root);
915 }
916}
917
3dd06ffa 918static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 919{
3dd06ffa 920 struct cgroup *cgrp = &root->cgrp;
f2e85d57 921 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 922
2bd59d48 923 mutex_lock(&cgroup_mutex);
f2e85d57 924
776f02fa 925 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 926 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 927
f2e85d57 928 /* Rebind all subsystems back to the default hierarchy */
f392e51c 929 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 930
7717f7ba 931 /*
f2e85d57
TH
932 * Release all the links from cset_links to this hierarchy's
933 * root cgroup
7717f7ba 934 */
96d365e0 935 down_write(&css_set_rwsem);
f2e85d57
TH
936
937 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
938 list_del(&link->cset_link);
939 list_del(&link->cgrp_link);
940 kfree(link);
941 }
96d365e0 942 up_write(&css_set_rwsem);
f2e85d57
TH
943
944 if (!list_empty(&root->root_list)) {
945 list_del(&root->root_list);
946 cgroup_root_count--;
947 }
948
949 cgroup_exit_root_id(root);
950
951 mutex_unlock(&cgroup_mutex);
f2e85d57 952
2bd59d48 953 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
954 cgroup_free_root(root);
955}
956
ceb6a081
TH
957/* look up cgroup associated with given css_set on the specified hierarchy */
958static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 959 struct cgroup_root *root)
7717f7ba 960{
7717f7ba
PM
961 struct cgroup *res = NULL;
962
96d365e0
TH
963 lockdep_assert_held(&cgroup_mutex);
964 lockdep_assert_held(&css_set_rwsem);
965
5abb8855 966 if (cset == &init_css_set) {
3dd06ffa 967 res = &root->cgrp;
7717f7ba 968 } else {
69d0206c
TH
969 struct cgrp_cset_link *link;
970
971 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 972 struct cgroup *c = link->cgrp;
69d0206c 973
7717f7ba
PM
974 if (c->root == root) {
975 res = c;
976 break;
977 }
978 }
979 }
96d365e0 980
7717f7ba
PM
981 BUG_ON(!res);
982 return res;
983}
984
ddbcc7e8 985/*
ceb6a081
TH
986 * Return the cgroup for "task" from the given hierarchy. Must be
987 * called with cgroup_mutex and css_set_rwsem held.
988 */
989static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 990 struct cgroup_root *root)
ceb6a081
TH
991{
992 /*
993 * No need to lock the task - since we hold cgroup_mutex the
994 * task can't change groups, so the only thing that can happen
995 * is that it exits and its css is set back to init_css_set.
996 */
997 return cset_cgroup_from_root(task_css_set(task), root);
998}
999
ddbcc7e8 1000/*
ddbcc7e8
PM
1001 * A task must hold cgroup_mutex to modify cgroups.
1002 *
1003 * Any task can increment and decrement the count field without lock.
1004 * So in general, code holding cgroup_mutex can't rely on the count
1005 * field not changing. However, if the count goes to zero, then only
956db3ca 1006 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1007 * means that no tasks are currently attached, therefore there is no
1008 * way a task attached to that cgroup can fork (the other way to
1009 * increment the count). So code holding cgroup_mutex can safely
1010 * assume that if the count is zero, it will stay zero. Similarly, if
1011 * a task holds cgroup_mutex on a cgroup with zero count, it
1012 * knows that the cgroup won't be removed, as cgroup_rmdir()
1013 * needs that mutex.
1014 *
ddbcc7e8
PM
1015 * A cgroup can only be deleted if both its 'count' of using tasks
1016 * is zero, and its list of 'children' cgroups is empty. Since all
1017 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1018 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1019 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1020 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1021 *
1022 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1023 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1024 */
1025
8ab456ac 1026static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 1027static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1028static const struct file_operations proc_cgroupstats_operations;
a424316c 1029
8d7e6fb0
TH
1030static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1031 char *buf)
ddbcc7e8 1032{
8d7e6fb0
TH
1033 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1034 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1035 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1036 cft->ss->name, cft->name);
1037 else
1038 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1039 return buf;
ddbcc7e8
PM
1040}
1041
f2e85d57
TH
1042/**
1043 * cgroup_file_mode - deduce file mode of a control file
1044 * @cft: the control file in question
1045 *
1046 * returns cft->mode if ->mode is not 0
1047 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1048 * returns S_IRUGO if it has only a read handler
1049 * returns S_IWUSR if it has only a write hander
1050 */
1051static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1052{
f2e85d57 1053 umode_t mode = 0;
65dff759 1054
f2e85d57
TH
1055 if (cft->mode)
1056 return cft->mode;
1057
1058 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1059 mode |= S_IRUGO;
1060
6770c64e 1061 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1062 mode |= S_IWUSR;
1063
1064 return mode;
65dff759
LZ
1065}
1066
59f5296b 1067static void cgroup_get(struct cgroup *cgrp)
be445626 1068{
2bd59d48 1069 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1070 css_get(&cgrp->self);
be445626
LZ
1071}
1072
aa32362f
LZ
1073static bool cgroup_tryget(struct cgroup *cgrp)
1074{
1075 return css_tryget(&cgrp->self);
1076}
1077
59f5296b 1078static void cgroup_put(struct cgroup *cgrp)
be445626 1079{
9d755d33 1080 css_put(&cgrp->self);
be445626
LZ
1081}
1082
af0ba678 1083/**
0f060deb 1084 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1085 * @cgrp: the target cgroup
0f060deb 1086 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1087 *
1088 * On the default hierarchy, a subsystem may request other subsystems to be
1089 * enabled together through its ->depends_on mask. In such cases, more
1090 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1091 *
0f060deb
TH
1092 * This function calculates which subsystems need to be enabled if
1093 * @subtree_control is to be applied to @cgrp. The returned mask is always
1094 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1095 */
8ab456ac
AS
1096static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1097 unsigned long subtree_control)
667c2491 1098{
af0ba678 1099 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1100 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1101 struct cgroup_subsys *ss;
1102 int ssid;
1103
1104 lockdep_assert_held(&cgroup_mutex);
1105
0f060deb
TH
1106 if (!cgroup_on_dfl(cgrp))
1107 return cur_ss_mask;
af0ba678
TH
1108
1109 while (true) {
8ab456ac 1110 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1111
a966a4ed
AS
1112 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1113 new_ss_mask |= ss->depends_on;
af0ba678
TH
1114
1115 /*
1116 * Mask out subsystems which aren't available. This can
1117 * happen only if some depended-upon subsystems were bound
1118 * to non-default hierarchies.
1119 */
1120 if (parent)
1121 new_ss_mask &= parent->child_subsys_mask;
1122 else
1123 new_ss_mask &= cgrp->root->subsys_mask;
1124
1125 if (new_ss_mask == cur_ss_mask)
1126 break;
1127 cur_ss_mask = new_ss_mask;
1128 }
1129
0f060deb
TH
1130 return cur_ss_mask;
1131}
1132
1133/**
1134 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1135 * @cgrp: the target cgroup
1136 *
1137 * Update @cgrp->child_subsys_mask according to the current
1138 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1139 */
1140static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1141{
1142 cgrp->child_subsys_mask =
1143 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1144}
1145
a9746d8d
TH
1146/**
1147 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1148 * @kn: the kernfs_node being serviced
1149 *
1150 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1151 * the method finishes if locking succeeded. Note that once this function
1152 * returns the cgroup returned by cgroup_kn_lock_live() may become
1153 * inaccessible any time. If the caller intends to continue to access the
1154 * cgroup, it should pin it before invoking this function.
1155 */
1156static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1157{
a9746d8d
TH
1158 struct cgroup *cgrp;
1159
1160 if (kernfs_type(kn) == KERNFS_DIR)
1161 cgrp = kn->priv;
1162 else
1163 cgrp = kn->parent->priv;
1164
1165 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1166
1167 kernfs_unbreak_active_protection(kn);
1168 cgroup_put(cgrp);
ddbcc7e8
PM
1169}
1170
a9746d8d
TH
1171/**
1172 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1173 * @kn: the kernfs_node being serviced
1174 *
1175 * This helper is to be used by a cgroup kernfs method currently servicing
1176 * @kn. It breaks the active protection, performs cgroup locking and
1177 * verifies that the associated cgroup is alive. Returns the cgroup if
1178 * alive; otherwise, %NULL. A successful return should be undone by a
1179 * matching cgroup_kn_unlock() invocation.
1180 *
1181 * Any cgroup kernfs method implementation which requires locking the
1182 * associated cgroup should use this helper. It avoids nesting cgroup
1183 * locking under kernfs active protection and allows all kernfs operations
1184 * including self-removal.
1185 */
1186static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1187{
a9746d8d
TH
1188 struct cgroup *cgrp;
1189
1190 if (kernfs_type(kn) == KERNFS_DIR)
1191 cgrp = kn->priv;
1192 else
1193 cgrp = kn->parent->priv;
05ef1d7c 1194
2739d3cc 1195 /*
01f6474c 1196 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1197 * active_ref. cgroup liveliness check alone provides enough
1198 * protection against removal. Ensure @cgrp stays accessible and
1199 * break the active_ref protection.
2739d3cc 1200 */
aa32362f
LZ
1201 if (!cgroup_tryget(cgrp))
1202 return NULL;
a9746d8d
TH
1203 kernfs_break_active_protection(kn);
1204
2bd59d48 1205 mutex_lock(&cgroup_mutex);
05ef1d7c 1206
a9746d8d
TH
1207 if (!cgroup_is_dead(cgrp))
1208 return cgrp;
1209
1210 cgroup_kn_unlock(kn);
1211 return NULL;
ddbcc7e8 1212}
05ef1d7c 1213
2739d3cc 1214static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1215{
2bd59d48 1216 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1217
01f6474c 1218 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1219 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1220}
1221
13af07df 1222/**
628f7cd4 1223 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1224 * @cgrp: target cgroup
13af07df
AR
1225 * @subsys_mask: mask of the subsystem ids whose files should be removed
1226 */
8ab456ac 1227static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1228{
13af07df 1229 struct cgroup_subsys *ss;
b420ba7d 1230 int i;
05ef1d7c 1231
b420ba7d 1232 for_each_subsys(ss, i) {
0adb0704 1233 struct cftype *cfts;
b420ba7d 1234
69dfa00c 1235 if (!(subsys_mask & (1 << i)))
13af07df 1236 continue;
0adb0704
TH
1237 list_for_each_entry(cfts, &ss->cfts, node)
1238 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1239 }
ddbcc7e8
PM
1240}
1241
8ab456ac
AS
1242static int rebind_subsystems(struct cgroup_root *dst_root,
1243 unsigned long ss_mask)
ddbcc7e8 1244{
30159ec7 1245 struct cgroup_subsys *ss;
8ab456ac 1246 unsigned long tmp_ss_mask;
2d8f243a 1247 int ssid, i, ret;
ddbcc7e8 1248
ace2bee8 1249 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1250
a966a4ed 1251 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1252 /* if @ss has non-root csses attached to it, can't move */
1253 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1254 return -EBUSY;
1d5be6b2 1255
5df36032 1256 /* can't move between two non-dummy roots either */
7fd8c565 1257 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1258 return -EBUSY;
ddbcc7e8
PM
1259 }
1260
5533e011
TH
1261 /* skip creating root files on dfl_root for inhibited subsystems */
1262 tmp_ss_mask = ss_mask;
1263 if (dst_root == &cgrp_dfl_root)
1264 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1265
1266 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1267 if (ret) {
1268 if (dst_root != &cgrp_dfl_root)
5df36032 1269 return ret;
ddbcc7e8 1270
a2dd4247
TH
1271 /*
1272 * Rebinding back to the default root is not allowed to
1273 * fail. Using both default and non-default roots should
1274 * be rare. Moving subsystems back and forth even more so.
1275 * Just warn about it and continue.
1276 */
1277 if (cgrp_dfl_root_visible) {
8ab456ac 1278 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
a2a1f9ea 1279 ret, ss_mask);
ed3d261b 1280 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1281 }
5df36032 1282 }
3126121f
TH
1283
1284 /*
1285 * Nothing can fail from this point on. Remove files for the
1286 * removed subsystems and rebind each subsystem.
1287 */
a966a4ed
AS
1288 for_each_subsys_which(ss, ssid, &ss_mask)
1289 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1290
a966a4ed 1291 for_each_subsys_which(ss, ssid, &ss_mask) {
3dd06ffa 1292 struct cgroup_root *src_root;
5df36032 1293 struct cgroup_subsys_state *css;
2d8f243a 1294 struct css_set *cset;
a8a648c4 1295
5df36032 1296 src_root = ss->root;
3dd06ffa 1297 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1298
3dd06ffa 1299 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1300
3dd06ffa
TH
1301 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1302 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1303 ss->root = dst_root;
3dd06ffa 1304 css->cgroup = &dst_root->cgrp;
73e80ed8 1305
2d8f243a
TH
1306 down_write(&css_set_rwsem);
1307 hash_for_each(css_set_table, i, cset, hlist)
1308 list_move_tail(&cset->e_cset_node[ss->id],
1309 &dst_root->cgrp.e_csets[ss->id]);
1310 up_write(&css_set_rwsem);
1311
f392e51c 1312 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1313 src_root->cgrp.subtree_control &= ~(1 << ssid);
1314 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1315
bd53d617 1316 /* default hierarchy doesn't enable controllers by default */
f392e51c 1317 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1318 if (dst_root != &cgrp_dfl_root) {
1319 dst_root->cgrp.subtree_control |= 1 << ssid;
1320 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1321 }
a8a648c4 1322
5df36032
TH
1323 if (ss->bind)
1324 ss->bind(css);
ddbcc7e8 1325 }
ddbcc7e8 1326
a2dd4247 1327 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1328 return 0;
1329}
1330
2bd59d48
TH
1331static int cgroup_show_options(struct seq_file *seq,
1332 struct kernfs_root *kf_root)
ddbcc7e8 1333{
3dd06ffa 1334 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1335 struct cgroup_subsys *ss;
b85d2040 1336 int ssid;
ddbcc7e8 1337
b85d2040 1338 for_each_subsys(ss, ssid)
f392e51c 1339 if (root->subsys_mask & (1 << ssid))
b85d2040 1340 seq_printf(seq, ",%s", ss->name);
93438629 1341 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1342 seq_puts(seq, ",noprefix");
93438629 1343 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1344 seq_puts(seq, ",xattr");
69e943b7
TH
1345
1346 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1347 if (strlen(root->release_agent_path))
1348 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1349 spin_unlock(&release_agent_path_lock);
1350
3dd06ffa 1351 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1352 seq_puts(seq, ",clone_children");
c6d57f33
PM
1353 if (strlen(root->name))
1354 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1355 return 0;
1356}
1357
1358struct cgroup_sb_opts {
8ab456ac 1359 unsigned long subsys_mask;
69dfa00c 1360 unsigned int flags;
81a6a5cd 1361 char *release_agent;
2260e7fc 1362 bool cpuset_clone_children;
c6d57f33 1363 char *name;
2c6ab6d2
PM
1364 /* User explicitly requested empty subsystem */
1365 bool none;
ddbcc7e8
PM
1366};
1367
cf5d5941 1368static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1369{
32a8cf23
DL
1370 char *token, *o = data;
1371 bool all_ss = false, one_ss = false;
8ab456ac 1372 unsigned long mask = -1UL;
30159ec7 1373 struct cgroup_subsys *ss;
7b9a6ba5 1374 int nr_opts = 0;
30159ec7 1375 int i;
f9ab5b5b
LZ
1376
1377#ifdef CONFIG_CPUSETS
69dfa00c 1378 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1379#endif
ddbcc7e8 1380
c6d57f33 1381 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1382
1383 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1384 nr_opts++;
1385
ddbcc7e8
PM
1386 if (!*token)
1387 return -EINVAL;
32a8cf23 1388 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1389 /* Explicitly have no subsystems */
1390 opts->none = true;
32a8cf23
DL
1391 continue;
1392 }
1393 if (!strcmp(token, "all")) {
1394 /* Mutually exclusive option 'all' + subsystem name */
1395 if (one_ss)
1396 return -EINVAL;
1397 all_ss = true;
1398 continue;
1399 }
873fe09e
TH
1400 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1401 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1402 continue;
1403 }
32a8cf23 1404 if (!strcmp(token, "noprefix")) {
93438629 1405 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1406 continue;
1407 }
1408 if (!strcmp(token, "clone_children")) {
2260e7fc 1409 opts->cpuset_clone_children = true;
32a8cf23
DL
1410 continue;
1411 }
03b1cde6 1412 if (!strcmp(token, "xattr")) {
93438629 1413 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1414 continue;
1415 }
32a8cf23 1416 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1417 /* Specifying two release agents is forbidden */
1418 if (opts->release_agent)
1419 return -EINVAL;
c6d57f33 1420 opts->release_agent =
e400c285 1421 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1422 if (!opts->release_agent)
1423 return -ENOMEM;
32a8cf23
DL
1424 continue;
1425 }
1426 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1427 const char *name = token + 5;
1428 /* Can't specify an empty name */
1429 if (!strlen(name))
1430 return -EINVAL;
1431 /* Must match [\w.-]+ */
1432 for (i = 0; i < strlen(name); i++) {
1433 char c = name[i];
1434 if (isalnum(c))
1435 continue;
1436 if ((c == '.') || (c == '-') || (c == '_'))
1437 continue;
1438 return -EINVAL;
1439 }
1440 /* Specifying two names is forbidden */
1441 if (opts->name)
1442 return -EINVAL;
1443 opts->name = kstrndup(name,
e400c285 1444 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1445 GFP_KERNEL);
1446 if (!opts->name)
1447 return -ENOMEM;
32a8cf23
DL
1448
1449 continue;
1450 }
1451
30159ec7 1452 for_each_subsys(ss, i) {
32a8cf23
DL
1453 if (strcmp(token, ss->name))
1454 continue;
1455 if (ss->disabled)
1456 continue;
1457
1458 /* Mutually exclusive option 'all' + subsystem name */
1459 if (all_ss)
1460 return -EINVAL;
69dfa00c 1461 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1462 one_ss = true;
1463
1464 break;
1465 }
1466 if (i == CGROUP_SUBSYS_COUNT)
1467 return -ENOENT;
1468 }
1469
873fe09e 1470 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1471 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1472 if (nr_opts != 1) {
1473 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1474 return -EINVAL;
1475 }
7b9a6ba5 1476 return 0;
873fe09e
TH
1477 }
1478
7b9a6ba5
TH
1479 /*
1480 * If the 'all' option was specified select all the subsystems,
1481 * otherwise if 'none', 'name=' and a subsystem name options were
1482 * not specified, let's default to 'all'
1483 */
1484 if (all_ss || (!one_ss && !opts->none && !opts->name))
1485 for_each_subsys(ss, i)
1486 if (!ss->disabled)
1487 opts->subsys_mask |= (1 << i);
1488
1489 /*
1490 * We either have to specify by name or by subsystems. (So all
1491 * empty hierarchies must have a name).
1492 */
1493 if (!opts->subsys_mask && !opts->name)
1494 return -EINVAL;
1495
f9ab5b5b
LZ
1496 /*
1497 * Option noprefix was introduced just for backward compatibility
1498 * with the old cpuset, so we allow noprefix only if mounting just
1499 * the cpuset subsystem.
1500 */
93438629 1501 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1502 return -EINVAL;
1503
2c6ab6d2 1504 /* Can't specify "none" and some subsystems */
a1a71b45 1505 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1506 return -EINVAL;
1507
ddbcc7e8
PM
1508 return 0;
1509}
1510
2bd59d48 1511static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1512{
1513 int ret = 0;
3dd06ffa 1514 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1515 struct cgroup_sb_opts opts;
8ab456ac 1516 unsigned long added_mask, removed_mask;
ddbcc7e8 1517
aa6ec29b
TH
1518 if (root == &cgrp_dfl_root) {
1519 pr_err("remount is not allowed\n");
873fe09e
TH
1520 return -EINVAL;
1521 }
1522
ddbcc7e8
PM
1523 mutex_lock(&cgroup_mutex);
1524
1525 /* See what subsystems are wanted */
1526 ret = parse_cgroupfs_options(data, &opts);
1527 if (ret)
1528 goto out_unlock;
1529
f392e51c 1530 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1531 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1532 task_tgid_nr(current), current->comm);
8b5a5a9d 1533
f392e51c
TH
1534 added_mask = opts.subsys_mask & ~root->subsys_mask;
1535 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1536
cf5d5941 1537 /* Don't allow flags or name to change at remount */
7450e90b 1538 if ((opts.flags ^ root->flags) ||
cf5d5941 1539 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1540 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1541 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1542 ret = -EINVAL;
1543 goto out_unlock;
1544 }
1545
f172e67c 1546 /* remounting is not allowed for populated hierarchies */
d5c419b6 1547 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1548 ret = -EBUSY;
0670e08b 1549 goto out_unlock;
cf5d5941 1550 }
ddbcc7e8 1551
5df36032 1552 ret = rebind_subsystems(root, added_mask);
3126121f 1553 if (ret)
0670e08b 1554 goto out_unlock;
ddbcc7e8 1555
3dd06ffa 1556 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1557
69e943b7
TH
1558 if (opts.release_agent) {
1559 spin_lock(&release_agent_path_lock);
81a6a5cd 1560 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1561 spin_unlock(&release_agent_path_lock);
1562 }
ddbcc7e8 1563 out_unlock:
66bdc9cf 1564 kfree(opts.release_agent);
c6d57f33 1565 kfree(opts.name);
ddbcc7e8 1566 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1567 return ret;
1568}
1569
afeb0f9f
TH
1570/*
1571 * To reduce the fork() overhead for systems that are not actually using
1572 * their cgroups capability, we don't maintain the lists running through
1573 * each css_set to its tasks until we see the list actually used - in other
1574 * words after the first mount.
1575 */
1576static bool use_task_css_set_links __read_mostly;
1577
1578static void cgroup_enable_task_cg_lists(void)
1579{
1580 struct task_struct *p, *g;
1581
96d365e0 1582 down_write(&css_set_rwsem);
afeb0f9f
TH
1583
1584 if (use_task_css_set_links)
1585 goto out_unlock;
1586
1587 use_task_css_set_links = true;
1588
1589 /*
1590 * We need tasklist_lock because RCU is not safe against
1591 * while_each_thread(). Besides, a forking task that has passed
1592 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1593 * is not guaranteed to have its child immediately visible in the
1594 * tasklist if we walk through it with RCU.
1595 */
1596 read_lock(&tasklist_lock);
1597 do_each_thread(g, p) {
afeb0f9f
TH
1598 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1599 task_css_set(p) != &init_css_set);
1600
1601 /*
1602 * We should check if the process is exiting, otherwise
1603 * it will race with cgroup_exit() in that the list
1604 * entry won't be deleted though the process has exited.
f153ad11
TH
1605 * Do it while holding siglock so that we don't end up
1606 * racing against cgroup_exit().
afeb0f9f 1607 */
f153ad11 1608 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1609 if (!(p->flags & PF_EXITING)) {
1610 struct css_set *cset = task_css_set(p);
1611
1612 list_add(&p->cg_list, &cset->tasks);
1613 get_css_set(cset);
1614 }
f153ad11 1615 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1616 } while_each_thread(g, p);
1617 read_unlock(&tasklist_lock);
1618out_unlock:
96d365e0 1619 up_write(&css_set_rwsem);
afeb0f9f 1620}
ddbcc7e8 1621
cc31edce
PM
1622static void init_cgroup_housekeeping(struct cgroup *cgrp)
1623{
2d8f243a
TH
1624 struct cgroup_subsys *ss;
1625 int ssid;
1626
d5c419b6
TH
1627 INIT_LIST_HEAD(&cgrp->self.sibling);
1628 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1629 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1630 INIT_LIST_HEAD(&cgrp->pidlists);
1631 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1632 cgrp->self.cgroup = cgrp;
184faf32 1633 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1634
1635 for_each_subsys(ss, ssid)
1636 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1637
1638 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1639 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1640}
c6d57f33 1641
3dd06ffa 1642static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1643 struct cgroup_sb_opts *opts)
ddbcc7e8 1644{
3dd06ffa 1645 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1646
ddbcc7e8 1647 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1648 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1649 cgrp->root = root;
cc31edce 1650 init_cgroup_housekeeping(cgrp);
4e96ee8e 1651 idr_init(&root->cgroup_idr);
c6d57f33 1652
c6d57f33
PM
1653 root->flags = opts->flags;
1654 if (opts->release_agent)
1655 strcpy(root->release_agent_path, opts->release_agent);
1656 if (opts->name)
1657 strcpy(root->name, opts->name);
2260e7fc 1658 if (opts->cpuset_clone_children)
3dd06ffa 1659 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1660}
1661
8ab456ac 1662static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1663{
d427dfeb 1664 LIST_HEAD(tmp_links);
3dd06ffa 1665 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1666 struct cftype *base_files;
d427dfeb 1667 struct css_set *cset;
d427dfeb 1668 int i, ret;
2c6ab6d2 1669
d427dfeb 1670 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1671
cf780b7d 1672 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1673 if (ret < 0)
2bd59d48 1674 goto out;
d427dfeb 1675 root_cgrp->id = ret;
c6d57f33 1676
2aad2a86
TH
1677 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1678 GFP_KERNEL);
9d755d33
TH
1679 if (ret)
1680 goto out;
1681
d427dfeb 1682 /*
96d365e0 1683 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1684 * but that's OK - it can only be increased by someone holding
1685 * cgroup_lock, and that's us. The worst that can happen is that we
1686 * have some link structures left over
1687 */
1688 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1689 if (ret)
9d755d33 1690 goto cancel_ref;
ddbcc7e8 1691
985ed670 1692 ret = cgroup_init_root_id(root);
ddbcc7e8 1693 if (ret)
9d755d33 1694 goto cancel_ref;
ddbcc7e8 1695
2bd59d48
TH
1696 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1697 KERNFS_ROOT_CREATE_DEACTIVATED,
1698 root_cgrp);
1699 if (IS_ERR(root->kf_root)) {
1700 ret = PTR_ERR(root->kf_root);
1701 goto exit_root_id;
1702 }
1703 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1704
a14c6874
TH
1705 if (root == &cgrp_dfl_root)
1706 base_files = cgroup_dfl_base_files;
1707 else
1708 base_files = cgroup_legacy_base_files;
1709
1710 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1711 if (ret)
2bd59d48 1712 goto destroy_root;
ddbcc7e8 1713
5df36032 1714 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1715 if (ret)
2bd59d48 1716 goto destroy_root;
ddbcc7e8 1717
d427dfeb
TH
1718 /*
1719 * There must be no failure case after here, since rebinding takes
1720 * care of subsystems' refcounts, which are explicitly dropped in
1721 * the failure exit path.
1722 */
1723 list_add(&root->root_list, &cgroup_roots);
1724 cgroup_root_count++;
0df6a63f 1725
d427dfeb 1726 /*
3dd06ffa 1727 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1728 * objects.
1729 */
96d365e0 1730 down_write(&css_set_rwsem);
d427dfeb
TH
1731 hash_for_each(css_set_table, i, cset, hlist)
1732 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1733 up_write(&css_set_rwsem);
ddbcc7e8 1734
d5c419b6 1735 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1736 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1737
2bd59d48 1738 kernfs_activate(root_cgrp->kn);
d427dfeb 1739 ret = 0;
2bd59d48 1740 goto out;
d427dfeb 1741
2bd59d48
TH
1742destroy_root:
1743 kernfs_destroy_root(root->kf_root);
1744 root->kf_root = NULL;
1745exit_root_id:
d427dfeb 1746 cgroup_exit_root_id(root);
9d755d33 1747cancel_ref:
9a1049da 1748 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1749out:
d427dfeb
TH
1750 free_cgrp_cset_links(&tmp_links);
1751 return ret;
ddbcc7e8
PM
1752}
1753
f7e83571 1754static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1755 int flags, const char *unused_dev_name,
f7e83571 1756 void *data)
ddbcc7e8 1757{
3a32bd72 1758 struct super_block *pinned_sb = NULL;
970317aa 1759 struct cgroup_subsys *ss;
3dd06ffa 1760 struct cgroup_root *root;
ddbcc7e8 1761 struct cgroup_sb_opts opts;
2bd59d48 1762 struct dentry *dentry;
8e30e2b8 1763 int ret;
970317aa 1764 int i;
c6b3d5bc 1765 bool new_sb;
ddbcc7e8 1766
56fde9e0
TH
1767 /*
1768 * The first time anyone tries to mount a cgroup, enable the list
1769 * linking each css_set to its tasks and fix up all existing tasks.
1770 */
1771 if (!use_task_css_set_links)
1772 cgroup_enable_task_cg_lists();
e37a06f1 1773
aae8aab4 1774 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1775
1776 /* First find the desired set of subsystems */
ddbcc7e8 1777 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1778 if (ret)
8e30e2b8 1779 goto out_unlock;
a015edd2 1780
2bd59d48 1781 /* look for a matching existing root */
7b9a6ba5 1782 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1783 cgrp_dfl_root_visible = true;
1784 root = &cgrp_dfl_root;
1785 cgroup_get(&root->cgrp);
1786 ret = 0;
1787 goto out_unlock;
ddbcc7e8
PM
1788 }
1789
970317aa
LZ
1790 /*
1791 * Destruction of cgroup root is asynchronous, so subsystems may
1792 * still be dying after the previous unmount. Let's drain the
1793 * dying subsystems. We just need to ensure that the ones
1794 * unmounted previously finish dying and don't care about new ones
1795 * starting. Testing ref liveliness is good enough.
1796 */
1797 for_each_subsys(ss, i) {
1798 if (!(opts.subsys_mask & (1 << i)) ||
1799 ss->root == &cgrp_dfl_root)
1800 continue;
1801
1802 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1803 mutex_unlock(&cgroup_mutex);
1804 msleep(10);
1805 ret = restart_syscall();
1806 goto out_free;
1807 }
1808 cgroup_put(&ss->root->cgrp);
1809 }
1810
985ed670 1811 for_each_root(root) {
2bd59d48 1812 bool name_match = false;
3126121f 1813
3dd06ffa 1814 if (root == &cgrp_dfl_root)
985ed670 1815 continue;
3126121f 1816
cf5d5941 1817 /*
2bd59d48
TH
1818 * If we asked for a name then it must match. Also, if
1819 * name matches but sybsys_mask doesn't, we should fail.
1820 * Remember whether name matched.
cf5d5941 1821 */
2bd59d48
TH
1822 if (opts.name) {
1823 if (strcmp(opts.name, root->name))
1824 continue;
1825 name_match = true;
1826 }
ddbcc7e8 1827
c6d57f33 1828 /*
2bd59d48
TH
1829 * If we asked for subsystems (or explicitly for no
1830 * subsystems) then they must match.
c6d57f33 1831 */
2bd59d48 1832 if ((opts.subsys_mask || opts.none) &&
f392e51c 1833 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1834 if (!name_match)
1835 continue;
1836 ret = -EBUSY;
1837 goto out_unlock;
1838 }
873fe09e 1839
7b9a6ba5
TH
1840 if (root->flags ^ opts.flags)
1841 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1842
776f02fa 1843 /*
3a32bd72
LZ
1844 * We want to reuse @root whose lifetime is governed by its
1845 * ->cgrp. Let's check whether @root is alive and keep it
1846 * that way. As cgroup_kill_sb() can happen anytime, we
1847 * want to block it by pinning the sb so that @root doesn't
1848 * get killed before mount is complete.
1849 *
1850 * With the sb pinned, tryget_live can reliably indicate
1851 * whether @root can be reused. If it's being killed,
1852 * drain it. We can use wait_queue for the wait but this
1853 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1854 */
3a32bd72
LZ
1855 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1856 if (IS_ERR(pinned_sb) ||
1857 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1858 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1859 if (!IS_ERR_OR_NULL(pinned_sb))
1860 deactivate_super(pinned_sb);
776f02fa 1861 msleep(10);
a015edd2
TH
1862 ret = restart_syscall();
1863 goto out_free;
776f02fa 1864 }
ddbcc7e8 1865
776f02fa 1866 ret = 0;
2bd59d48 1867 goto out_unlock;
ddbcc7e8 1868 }
ddbcc7e8 1869
817929ec 1870 /*
172a2c06
TH
1871 * No such thing, create a new one. name= matching without subsys
1872 * specification is allowed for already existing hierarchies but we
1873 * can't create new one without subsys specification.
817929ec 1874 */
172a2c06
TH
1875 if (!opts.subsys_mask && !opts.none) {
1876 ret = -EINVAL;
1877 goto out_unlock;
817929ec 1878 }
817929ec 1879
172a2c06
TH
1880 root = kzalloc(sizeof(*root), GFP_KERNEL);
1881 if (!root) {
1882 ret = -ENOMEM;
2bd59d48 1883 goto out_unlock;
839ec545 1884 }
e5f6a860 1885
172a2c06
TH
1886 init_cgroup_root(root, &opts);
1887
35585573 1888 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1889 if (ret)
1890 cgroup_free_root(root);
fa3ca07e 1891
8e30e2b8 1892out_unlock:
ddbcc7e8 1893 mutex_unlock(&cgroup_mutex);
a015edd2 1894out_free:
c6d57f33
PM
1895 kfree(opts.release_agent);
1896 kfree(opts.name);
03b1cde6 1897
2bd59d48 1898 if (ret)
8e30e2b8 1899 return ERR_PTR(ret);
2bd59d48 1900
c9482a5b
JZ
1901 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1902 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1903 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1904 cgroup_put(&root->cgrp);
3a32bd72
LZ
1905
1906 /*
1907 * If @pinned_sb, we're reusing an existing root and holding an
1908 * extra ref on its sb. Mount is complete. Put the extra ref.
1909 */
1910 if (pinned_sb) {
1911 WARN_ON(new_sb);
1912 deactivate_super(pinned_sb);
1913 }
1914
2bd59d48
TH
1915 return dentry;
1916}
1917
1918static void cgroup_kill_sb(struct super_block *sb)
1919{
1920 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1921 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1922
9d755d33
TH
1923 /*
1924 * If @root doesn't have any mounts or children, start killing it.
1925 * This prevents new mounts by disabling percpu_ref_tryget_live().
1926 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1927 *
1928 * And don't kill the default root.
9d755d33 1929 */
3c606d35 1930 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 1931 root == &cgrp_dfl_root)
9d755d33
TH
1932 cgroup_put(&root->cgrp);
1933 else
1934 percpu_ref_kill(&root->cgrp.self.refcnt);
1935
2bd59d48 1936 kernfs_kill_sb(sb);
ddbcc7e8
PM
1937}
1938
1939static struct file_system_type cgroup_fs_type = {
1940 .name = "cgroup",
f7e83571 1941 .mount = cgroup_mount,
ddbcc7e8
PM
1942 .kill_sb = cgroup_kill_sb,
1943};
1944
857a2beb 1945/**
913ffdb5 1946 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1947 * @task: target task
857a2beb
TH
1948 * @buf: the buffer to write the path into
1949 * @buflen: the length of the buffer
1950 *
913ffdb5
TH
1951 * Determine @task's cgroup on the first (the one with the lowest non-zero
1952 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1953 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1954 * cgroup controller callbacks.
1955 *
e61734c5 1956 * Return value is the same as kernfs_path().
857a2beb 1957 */
e61734c5 1958char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1959{
3dd06ffa 1960 struct cgroup_root *root;
913ffdb5 1961 struct cgroup *cgrp;
e61734c5
TH
1962 int hierarchy_id = 1;
1963 char *path = NULL;
857a2beb
TH
1964
1965 mutex_lock(&cgroup_mutex);
96d365e0 1966 down_read(&css_set_rwsem);
857a2beb 1967
913ffdb5
TH
1968 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1969
857a2beb
TH
1970 if (root) {
1971 cgrp = task_cgroup_from_root(task, root);
e61734c5 1972 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1973 } else {
1974 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1975 if (strlcpy(buf, "/", buflen) < buflen)
1976 path = buf;
857a2beb
TH
1977 }
1978
96d365e0 1979 up_read(&css_set_rwsem);
857a2beb 1980 mutex_unlock(&cgroup_mutex);
e61734c5 1981 return path;
857a2beb 1982}
913ffdb5 1983EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1984
b3dc094e 1985/* used to track tasks and other necessary states during migration */
2f7ee569 1986struct cgroup_taskset {
b3dc094e
TH
1987 /* the src and dst cset list running through cset->mg_node */
1988 struct list_head src_csets;
1989 struct list_head dst_csets;
1990
1991 /*
1992 * Fields for cgroup_taskset_*() iteration.
1993 *
1994 * Before migration is committed, the target migration tasks are on
1995 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1996 * the csets on ->dst_csets. ->csets point to either ->src_csets
1997 * or ->dst_csets depending on whether migration is committed.
1998 *
1999 * ->cur_csets and ->cur_task point to the current task position
2000 * during iteration.
2001 */
2002 struct list_head *csets;
2003 struct css_set *cur_cset;
2004 struct task_struct *cur_task;
2f7ee569
TH
2005};
2006
2007/**
2008 * cgroup_taskset_first - reset taskset and return the first task
2009 * @tset: taskset of interest
2010 *
2011 * @tset iteration is initialized and the first task is returned.
2012 */
2013struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2014{
b3dc094e
TH
2015 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2016 tset->cur_task = NULL;
2017
2018 return cgroup_taskset_next(tset);
2f7ee569 2019}
2f7ee569
TH
2020
2021/**
2022 * cgroup_taskset_next - iterate to the next task in taskset
2023 * @tset: taskset of interest
2024 *
2025 * Return the next task in @tset. Iteration must have been initialized
2026 * with cgroup_taskset_first().
2027 */
2028struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2029{
b3dc094e
TH
2030 struct css_set *cset = tset->cur_cset;
2031 struct task_struct *task = tset->cur_task;
2f7ee569 2032
b3dc094e
TH
2033 while (&cset->mg_node != tset->csets) {
2034 if (!task)
2035 task = list_first_entry(&cset->mg_tasks,
2036 struct task_struct, cg_list);
2037 else
2038 task = list_next_entry(task, cg_list);
2f7ee569 2039
b3dc094e
TH
2040 if (&task->cg_list != &cset->mg_tasks) {
2041 tset->cur_cset = cset;
2042 tset->cur_task = task;
2043 return task;
2044 }
2f7ee569 2045
b3dc094e
TH
2046 cset = list_next_entry(cset, mg_node);
2047 task = NULL;
2048 }
2f7ee569 2049
b3dc094e 2050 return NULL;
2f7ee569 2051}
2f7ee569 2052
cb0f1fe9 2053/**
74a1166d 2054 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2055 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2056 * @tsk: the task being migrated
2057 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2058 *
cb0f1fe9 2059 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2060 */
5abb8855
TH
2061static void cgroup_task_migrate(struct cgroup *old_cgrp,
2062 struct task_struct *tsk,
2063 struct css_set *new_cset)
74a1166d 2064{
5abb8855 2065 struct css_set *old_cset;
74a1166d 2066
cb0f1fe9
TH
2067 lockdep_assert_held(&cgroup_mutex);
2068 lockdep_assert_held(&css_set_rwsem);
2069
74a1166d 2070 /*
d59cfc09
TH
2071 * We are synchronized through cgroup_threadgroup_rwsem against
2072 * PF_EXITING setting such that we can't race against cgroup_exit()
2073 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2074 */
c84cdf75 2075 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2076 old_cset = task_css_set(tsk);
74a1166d 2077
b3dc094e 2078 get_css_set(new_cset);
5abb8855 2079 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2080
1b9aba49
TH
2081 /*
2082 * Use move_tail so that cgroup_taskset_first() still returns the
2083 * leader after migration. This works because cgroup_migrate()
2084 * ensures that the dst_cset of the leader is the first on the
2085 * tset's dst_csets list.
2086 */
2087 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2088
2089 /*
5abb8855
TH
2090 * We just gained a reference on old_cset by taking it from the
2091 * task. As trading it for new_cset is protected by cgroup_mutex,
2092 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2093 */
a25eb52e 2094 put_css_set_locked(old_cset);
74a1166d
BB
2095}
2096
a043e3b2 2097/**
1958d2d5
TH
2098 * cgroup_migrate_finish - cleanup after attach
2099 * @preloaded_csets: list of preloaded css_sets
74a1166d 2100 *
1958d2d5
TH
2101 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2102 * those functions for details.
74a1166d 2103 */
1958d2d5 2104static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2105{
1958d2d5 2106 struct css_set *cset, *tmp_cset;
74a1166d 2107
1958d2d5
TH
2108 lockdep_assert_held(&cgroup_mutex);
2109
2110 down_write(&css_set_rwsem);
2111 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2112 cset->mg_src_cgrp = NULL;
2113 cset->mg_dst_cset = NULL;
2114 list_del_init(&cset->mg_preload_node);
a25eb52e 2115 put_css_set_locked(cset);
1958d2d5
TH
2116 }
2117 up_write(&css_set_rwsem);
2118}
2119
2120/**
2121 * cgroup_migrate_add_src - add a migration source css_set
2122 * @src_cset: the source css_set to add
2123 * @dst_cgrp: the destination cgroup
2124 * @preloaded_csets: list of preloaded css_sets
2125 *
2126 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2127 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2128 * up by cgroup_migrate_finish().
2129 *
d59cfc09
TH
2130 * This function may be called without holding cgroup_threadgroup_rwsem
2131 * even if the target is a process. Threads may be created and destroyed
2132 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2133 * into play and the preloaded css_sets are guaranteed to cover all
2134 * migrations.
1958d2d5
TH
2135 */
2136static void cgroup_migrate_add_src(struct css_set *src_cset,
2137 struct cgroup *dst_cgrp,
2138 struct list_head *preloaded_csets)
2139{
2140 struct cgroup *src_cgrp;
2141
2142 lockdep_assert_held(&cgroup_mutex);
2143 lockdep_assert_held(&css_set_rwsem);
2144
2145 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2146
1958d2d5
TH
2147 if (!list_empty(&src_cset->mg_preload_node))
2148 return;
2149
2150 WARN_ON(src_cset->mg_src_cgrp);
2151 WARN_ON(!list_empty(&src_cset->mg_tasks));
2152 WARN_ON(!list_empty(&src_cset->mg_node));
2153
2154 src_cset->mg_src_cgrp = src_cgrp;
2155 get_css_set(src_cset);
2156 list_add(&src_cset->mg_preload_node, preloaded_csets);
2157}
2158
2159/**
2160 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2161 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2162 * @preloaded_csets: list of preloaded source css_sets
2163 *
2164 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2165 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2166 * pins all destination css_sets, links each to its source, and append them
2167 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2168 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2169 *
2170 * This function must be called after cgroup_migrate_add_src() has been
2171 * called on each migration source css_set. After migration is performed
2172 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2173 * @preloaded_csets.
2174 */
2175static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2176 struct list_head *preloaded_csets)
2177{
2178 LIST_HEAD(csets);
f817de98 2179 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2180
2181 lockdep_assert_held(&cgroup_mutex);
2182
f8f22e53
TH
2183 /*
2184 * Except for the root, child_subsys_mask must be zero for a cgroup
2185 * with tasks so that child cgroups don't compete against tasks.
2186 */
d51f39b0 2187 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2188 dst_cgrp->child_subsys_mask)
2189 return -EBUSY;
2190
1958d2d5 2191 /* look up the dst cset for each src cset and link it to src */
f817de98 2192 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2193 struct css_set *dst_cset;
2194
f817de98
TH
2195 dst_cset = find_css_set(src_cset,
2196 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2197 if (!dst_cset)
2198 goto err;
2199
2200 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2201
2202 /*
2203 * If src cset equals dst, it's noop. Drop the src.
2204 * cgroup_migrate() will skip the cset too. Note that we
2205 * can't handle src == dst as some nodes are used by both.
2206 */
2207 if (src_cset == dst_cset) {
2208 src_cset->mg_src_cgrp = NULL;
2209 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2210 put_css_set(src_cset);
2211 put_css_set(dst_cset);
f817de98
TH
2212 continue;
2213 }
2214
1958d2d5
TH
2215 src_cset->mg_dst_cset = dst_cset;
2216
2217 if (list_empty(&dst_cset->mg_preload_node))
2218 list_add(&dst_cset->mg_preload_node, &csets);
2219 else
a25eb52e 2220 put_css_set(dst_cset);
1958d2d5
TH
2221 }
2222
f817de98 2223 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2224 return 0;
2225err:
2226 cgroup_migrate_finish(&csets);
2227 return -ENOMEM;
2228}
2229
2230/**
2231 * cgroup_migrate - migrate a process or task to a cgroup
2232 * @cgrp: the destination cgroup
2233 * @leader: the leader of the process or the task to migrate
2234 * @threadgroup: whether @leader points to the whole process or a single task
2235 *
2236 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
d59cfc09 2237 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2238 * caller is also responsible for invoking cgroup_migrate_add_src() and
2239 * cgroup_migrate_prepare_dst() on the targets before invoking this
2240 * function and following up with cgroup_migrate_finish().
2241 *
2242 * As long as a controller's ->can_attach() doesn't fail, this function is
2243 * guaranteed to succeed. This means that, excluding ->can_attach()
2244 * failure, when migrating multiple targets, the success or failure can be
2245 * decided for all targets by invoking group_migrate_prepare_dst() before
2246 * actually starting migrating.
2247 */
2248static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2249 bool threadgroup)
74a1166d 2250{
b3dc094e
TH
2251 struct cgroup_taskset tset = {
2252 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2253 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2254 .csets = &tset.src_csets,
2255 };
1c6727af 2256 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2257 struct css_set *cset, *tmp_cset;
2258 struct task_struct *task, *tmp_task;
2259 int i, ret;
74a1166d 2260
fb5d2b4c
MSB
2261 /*
2262 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2263 * already PF_EXITING could be freed from underneath us unless we
2264 * take an rcu_read_lock.
2265 */
b3dc094e 2266 down_write(&css_set_rwsem);
fb5d2b4c 2267 rcu_read_lock();
9db8de37 2268 task = leader;
74a1166d 2269 do {
9db8de37
TH
2270 /* @task either already exited or can't exit until the end */
2271 if (task->flags & PF_EXITING)
ea84753c 2272 goto next;
134d3373 2273
eaf797ab
TH
2274 /* leave @task alone if post_fork() hasn't linked it yet */
2275 if (list_empty(&task->cg_list))
ea84753c 2276 goto next;
cd3d0952 2277
b3dc094e 2278 cset = task_css_set(task);
1958d2d5 2279 if (!cset->mg_src_cgrp)
ea84753c 2280 goto next;
b3dc094e 2281
61d1d219 2282 /*
1b9aba49
TH
2283 * cgroup_taskset_first() must always return the leader.
2284 * Take care to avoid disturbing the ordering.
61d1d219 2285 */
1b9aba49
TH
2286 list_move_tail(&task->cg_list, &cset->mg_tasks);
2287 if (list_empty(&cset->mg_node))
2288 list_add_tail(&cset->mg_node, &tset.src_csets);
2289 if (list_empty(&cset->mg_dst_cset->mg_node))
2290 list_move_tail(&cset->mg_dst_cset->mg_node,
2291 &tset.dst_csets);
ea84753c 2292 next:
081aa458
LZ
2293 if (!threadgroup)
2294 break;
9db8de37 2295 } while_each_thread(leader, task);
fb5d2b4c 2296 rcu_read_unlock();
b3dc094e 2297 up_write(&css_set_rwsem);
74a1166d 2298
134d3373 2299 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2300 if (list_empty(&tset.src_csets))
2301 return 0;
134d3373 2302
1958d2d5 2303 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2304 for_each_e_css(css, i, cgrp) {
1c6727af 2305 if (css->ss->can_attach) {
9db8de37
TH
2306 ret = css->ss->can_attach(css, &tset);
2307 if (ret) {
1c6727af 2308 failed_css = css;
74a1166d
BB
2309 goto out_cancel_attach;
2310 }
2311 }
74a1166d
BB
2312 }
2313
2314 /*
1958d2d5
TH
2315 * Now that we're guaranteed success, proceed to move all tasks to
2316 * the new cgroup. There are no failure cases after here, so this
2317 * is the commit point.
74a1166d 2318 */
cb0f1fe9 2319 down_write(&css_set_rwsem);
b3dc094e
TH
2320 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2321 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2322 cgroup_task_migrate(cset->mg_src_cgrp, task,
2323 cset->mg_dst_cset);
74a1166d 2324 }
cb0f1fe9 2325 up_write(&css_set_rwsem);
74a1166d
BB
2326
2327 /*
1958d2d5
TH
2328 * Migration is committed, all target tasks are now on dst_csets.
2329 * Nothing is sensitive to fork() after this point. Notify
2330 * controllers that migration is complete.
74a1166d 2331 */
1958d2d5 2332 tset.csets = &tset.dst_csets;
74a1166d 2333
aec3dfcb 2334 for_each_e_css(css, i, cgrp)
1c6727af
TH
2335 if (css->ss->attach)
2336 css->ss->attach(css, &tset);
74a1166d 2337
9db8de37 2338 ret = 0;
b3dc094e
TH
2339 goto out_release_tset;
2340
74a1166d 2341out_cancel_attach:
aec3dfcb 2342 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2343 if (css == failed_css)
2344 break;
2345 if (css->ss->cancel_attach)
2346 css->ss->cancel_attach(css, &tset);
74a1166d 2347 }
b3dc094e
TH
2348out_release_tset:
2349 down_write(&css_set_rwsem);
2350 list_splice_init(&tset.dst_csets, &tset.src_csets);
2351 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2352 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2353 list_del_init(&cset->mg_node);
b3dc094e
TH
2354 }
2355 up_write(&css_set_rwsem);
9db8de37 2356 return ret;
74a1166d
BB
2357}
2358
1958d2d5
TH
2359/**
2360 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2361 * @dst_cgrp: the cgroup to attach to
2362 * @leader: the task or the leader of the threadgroup to be attached
2363 * @threadgroup: attach the whole threadgroup?
2364 *
d59cfc09 2365 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2366 */
2367static int cgroup_attach_task(struct cgroup *dst_cgrp,
2368 struct task_struct *leader, bool threadgroup)
2369{
2370 LIST_HEAD(preloaded_csets);
2371 struct task_struct *task;
2372 int ret;
2373
2374 /* look up all src csets */
2375 down_read(&css_set_rwsem);
2376 rcu_read_lock();
2377 task = leader;
2378 do {
2379 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2380 &preloaded_csets);
2381 if (!threadgroup)
2382 break;
2383 } while_each_thread(leader, task);
2384 rcu_read_unlock();
2385 up_read(&css_set_rwsem);
2386
2387 /* prepare dst csets and commit */
2388 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2389 if (!ret)
2390 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2391
2392 cgroup_migrate_finish(&preloaded_csets);
2393 return ret;
74a1166d
BB
2394}
2395
187fe840
TH
2396static int cgroup_procs_write_permission(struct task_struct *task,
2397 struct cgroup *dst_cgrp,
2398 struct kernfs_open_file *of)
dedf22e9
TH
2399{
2400 const struct cred *cred = current_cred();
2401 const struct cred *tcred = get_task_cred(task);
2402 int ret = 0;
2403
2404 /*
2405 * even if we're attaching all tasks in the thread group, we only
2406 * need to check permissions on one of them.
2407 */
2408 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2409 !uid_eq(cred->euid, tcred->uid) &&
2410 !uid_eq(cred->euid, tcred->suid))
2411 ret = -EACCES;
2412
187fe840
TH
2413 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2414 struct super_block *sb = of->file->f_path.dentry->d_sb;
2415 struct cgroup *cgrp;
2416 struct inode *inode;
2417
2418 down_read(&css_set_rwsem);
2419 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2420 up_read(&css_set_rwsem);
2421
2422 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2423 cgrp = cgroup_parent(cgrp);
2424
2425 ret = -ENOMEM;
2426 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2427 if (inode) {
2428 ret = inode_permission(inode, MAY_WRITE);
2429 iput(inode);
2430 }
2431 }
2432
dedf22e9
TH
2433 put_cred(tcred);
2434 return ret;
2435}
2436
74a1166d
BB
2437/*
2438 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2439 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2440 * cgroup_mutex and threadgroup.
bbcb81d0 2441 */
acbef755
TH
2442static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2443 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2444{
bbcb81d0 2445 struct task_struct *tsk;
e76ecaee 2446 struct cgroup *cgrp;
acbef755 2447 pid_t pid;
bbcb81d0
PM
2448 int ret;
2449
acbef755
TH
2450 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2451 return -EINVAL;
2452
e76ecaee
TH
2453 cgrp = cgroup_kn_lock_live(of->kn);
2454 if (!cgrp)
74a1166d
BB
2455 return -ENODEV;
2456
b5ba75b5 2457 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2458 rcu_read_lock();
bbcb81d0 2459 if (pid) {
73507f33 2460 tsk = find_task_by_vpid(pid);
74a1166d 2461 if (!tsk) {
dd4b0a46 2462 ret = -ESRCH;
b5ba75b5 2463 goto out_unlock_rcu;
bbcb81d0 2464 }
dedf22e9 2465 } else {
b78949eb 2466 tsk = current;
dedf22e9 2467 }
cd3d0952
TH
2468
2469 if (threadgroup)
b78949eb 2470 tsk = tsk->group_leader;
c4c27fbd
MG
2471
2472 /*
14a40ffc 2473 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2474 * trapped in a cpuset, or RT worker may be born in a cgroup
2475 * with no rt_runtime allocated. Just say no.
2476 */
14a40ffc 2477 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2478 ret = -EINVAL;
b5ba75b5 2479 goto out_unlock_rcu;
c4c27fbd
MG
2480 }
2481
b78949eb
MSB
2482 get_task_struct(tsk);
2483 rcu_read_unlock();
2484
187fe840 2485 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2486 if (!ret)
2487 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2488
bbcb81d0 2489 put_task_struct(tsk);
b5ba75b5
TH
2490 goto out_unlock_threadgroup;
2491
2492out_unlock_rcu:
2493 rcu_read_unlock();
2494out_unlock_threadgroup:
2495 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2496 cgroup_kn_unlock(of->kn);
acbef755 2497 return ret ?: nbytes;
bbcb81d0
PM
2498}
2499
7ae1bad9
TH
2500/**
2501 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2502 * @from: attach to all cgroups of a given task
2503 * @tsk: the task to be attached
2504 */
2505int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2506{
3dd06ffa 2507 struct cgroup_root *root;
7ae1bad9
TH
2508 int retval = 0;
2509
47cfcd09 2510 mutex_lock(&cgroup_mutex);
985ed670 2511 for_each_root(root) {
96d365e0
TH
2512 struct cgroup *from_cgrp;
2513
3dd06ffa 2514 if (root == &cgrp_dfl_root)
985ed670
TH
2515 continue;
2516
96d365e0
TH
2517 down_read(&css_set_rwsem);
2518 from_cgrp = task_cgroup_from_root(from, root);
2519 up_read(&css_set_rwsem);
7ae1bad9 2520
6f4b7e63 2521 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2522 if (retval)
2523 break;
2524 }
47cfcd09 2525 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2526
2527 return retval;
2528}
2529EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2530
acbef755
TH
2531static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2532 char *buf, size_t nbytes, loff_t off)
74a1166d 2533{
acbef755 2534 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2535}
2536
acbef755
TH
2537static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2538 char *buf, size_t nbytes, loff_t off)
af351026 2539{
acbef755 2540 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2541}
2542
451af504
TH
2543static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2544 char *buf, size_t nbytes, loff_t off)
e788e066 2545{
e76ecaee 2546 struct cgroup *cgrp;
5f469907 2547
e76ecaee 2548 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2549
e76ecaee
TH
2550 cgrp = cgroup_kn_lock_live(of->kn);
2551 if (!cgrp)
e788e066 2552 return -ENODEV;
69e943b7 2553 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2554 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2555 sizeof(cgrp->root->release_agent_path));
69e943b7 2556 spin_unlock(&release_agent_path_lock);
e76ecaee 2557 cgroup_kn_unlock(of->kn);
451af504 2558 return nbytes;
e788e066
PM
2559}
2560
2da8ca82 2561static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2562{
2da8ca82 2563 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2564
46cfeb04 2565 spin_lock(&release_agent_path_lock);
e788e066 2566 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2567 spin_unlock(&release_agent_path_lock);
e788e066 2568 seq_putc(seq, '\n');
e788e066
PM
2569 return 0;
2570}
2571
2da8ca82 2572static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2573{
c1d5d42e 2574 seq_puts(seq, "0\n");
e788e066
PM
2575 return 0;
2576}
2577
8ab456ac 2578static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2579{
f8f22e53
TH
2580 struct cgroup_subsys *ss;
2581 bool printed = false;
2582 int ssid;
a742c59d 2583
a966a4ed
AS
2584 for_each_subsys_which(ss, ssid, &ss_mask) {
2585 if (printed)
2586 seq_putc(seq, ' ');
2587 seq_printf(seq, "%s", ss->name);
2588 printed = true;
e73d2c61 2589 }
f8f22e53
TH
2590 if (printed)
2591 seq_putc(seq, '\n');
355e0c48
PM
2592}
2593
f8f22e53
TH
2594/* show controllers which are currently attached to the default hierarchy */
2595static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2596{
f8f22e53
TH
2597 struct cgroup *cgrp = seq_css(seq)->cgroup;
2598
5533e011
TH
2599 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2600 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2601 return 0;
db3b1497
PM
2602}
2603
f8f22e53
TH
2604/* show controllers which are enabled from the parent */
2605static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2606{
f8f22e53
TH
2607 struct cgroup *cgrp = seq_css(seq)->cgroup;
2608
667c2491 2609 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2610 return 0;
ddbcc7e8
PM
2611}
2612
f8f22e53
TH
2613/* show controllers which are enabled for a given cgroup's children */
2614static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2615{
f8f22e53
TH
2616 struct cgroup *cgrp = seq_css(seq)->cgroup;
2617
667c2491 2618 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2619 return 0;
2620}
2621
2622/**
2623 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2624 * @cgrp: root of the subtree to update csses for
2625 *
2626 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2627 * css associations need to be updated accordingly. This function looks up
2628 * all css_sets which are attached to the subtree, creates the matching
2629 * updated css_sets and migrates the tasks to the new ones.
2630 */
2631static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2632{
2633 LIST_HEAD(preloaded_csets);
2634 struct cgroup_subsys_state *css;
2635 struct css_set *src_cset;
2636 int ret;
2637
f8f22e53
TH
2638 lockdep_assert_held(&cgroup_mutex);
2639
b5ba75b5
TH
2640 percpu_down_write(&cgroup_threadgroup_rwsem);
2641
f8f22e53
TH
2642 /* look up all csses currently attached to @cgrp's subtree */
2643 down_read(&css_set_rwsem);
2644 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2645 struct cgrp_cset_link *link;
2646
2647 /* self is not affected by child_subsys_mask change */
2648 if (css->cgroup == cgrp)
2649 continue;
2650
2651 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2652 cgroup_migrate_add_src(link->cset, cgrp,
2653 &preloaded_csets);
2654 }
2655 up_read(&css_set_rwsem);
2656
2657 /* NULL dst indicates self on default hierarchy */
2658 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2659 if (ret)
2660 goto out_finish;
2661
2662 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2663 struct task_struct *last_task = NULL, *task;
2664
2665 /* src_csets precede dst_csets, break on the first dst_cset */
2666 if (!src_cset->mg_src_cgrp)
2667 break;
2668
2669 /*
2670 * All tasks in src_cset need to be migrated to the
2671 * matching dst_cset. Empty it process by process. We
2672 * walk tasks but migrate processes. The leader might even
2673 * belong to a different cset but such src_cset would also
2674 * be among the target src_csets because the default
2675 * hierarchy enforces per-process membership.
2676 */
2677 while (true) {
2678 down_read(&css_set_rwsem);
2679 task = list_first_entry_or_null(&src_cset->tasks,
2680 struct task_struct, cg_list);
2681 if (task) {
2682 task = task->group_leader;
2683 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2684 get_task_struct(task);
2685 }
2686 up_read(&css_set_rwsem);
2687
2688 if (!task)
2689 break;
2690
2691 /* guard against possible infinite loop */
2692 if (WARN(last_task == task,
2693 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2694 goto out_finish;
2695 last_task = task;
2696
f8f22e53
TH
2697 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2698
f8f22e53
TH
2699 put_task_struct(task);
2700
2701 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2702 goto out_finish;
2703 }
2704 }
2705
2706out_finish:
2707 cgroup_migrate_finish(&preloaded_csets);
b5ba75b5 2708 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2709 return ret;
2710}
2711
2712/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2713static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2714 char *buf, size_t nbytes,
2715 loff_t off)
f8f22e53 2716{
8ab456ac
AS
2717 unsigned long enable = 0, disable = 0;
2718 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2719 struct cgroup *cgrp, *child;
f8f22e53 2720 struct cgroup_subsys *ss;
451af504 2721 char *tok;
f8f22e53
TH
2722 int ssid, ret;
2723
2724 /*
d37167ab
TH
2725 * Parse input - space separated list of subsystem names prefixed
2726 * with either + or -.
f8f22e53 2727 */
451af504
TH
2728 buf = strstrip(buf);
2729 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2730 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2731
d37167ab
TH
2732 if (tok[0] == '\0')
2733 continue;
a966a4ed
AS
2734 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2735 if (ss->disabled || strcmp(tok + 1, ss->name))
f8f22e53
TH
2736 continue;
2737
2738 if (*tok == '+') {
7d331fa9
TH
2739 enable |= 1 << ssid;
2740 disable &= ~(1 << ssid);
f8f22e53 2741 } else if (*tok == '-') {
7d331fa9
TH
2742 disable |= 1 << ssid;
2743 enable &= ~(1 << ssid);
f8f22e53
TH
2744 } else {
2745 return -EINVAL;
2746 }
2747 break;
2748 }
2749 if (ssid == CGROUP_SUBSYS_COUNT)
2750 return -EINVAL;
2751 }
2752
a9746d8d
TH
2753 cgrp = cgroup_kn_lock_live(of->kn);
2754 if (!cgrp)
2755 return -ENODEV;
f8f22e53
TH
2756
2757 for_each_subsys(ss, ssid) {
2758 if (enable & (1 << ssid)) {
667c2491 2759 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2760 enable &= ~(1 << ssid);
2761 continue;
2762 }
2763
c29adf24
TH
2764 /* unavailable or not enabled on the parent? */
2765 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2766 (cgroup_parent(cgrp) &&
667c2491 2767 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2768 ret = -ENOENT;
2769 goto out_unlock;
2770 }
f8f22e53 2771 } else if (disable & (1 << ssid)) {
667c2491 2772 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2773 disable &= ~(1 << ssid);
2774 continue;
2775 }
2776
2777 /* a child has it enabled? */
2778 cgroup_for_each_live_child(child, cgrp) {
667c2491 2779 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2780 ret = -EBUSY;
ddab2b6e 2781 goto out_unlock;
f8f22e53
TH
2782 }
2783 }
2784 }
2785 }
2786
2787 if (!enable && !disable) {
2788 ret = 0;
ddab2b6e 2789 goto out_unlock;
f8f22e53
TH
2790 }
2791
2792 /*
667c2491 2793 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2794 * with tasks so that child cgroups don't compete against tasks.
2795 */
d51f39b0 2796 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2797 ret = -EBUSY;
2798 goto out_unlock;
2799 }
2800
2801 /*
f63070d3
TH
2802 * Update subsys masks and calculate what needs to be done. More
2803 * subsystems than specified may need to be enabled or disabled
2804 * depending on subsystem dependencies.
2805 */
755bf5ee
TH
2806 old_sc = cgrp->subtree_control;
2807 old_ss = cgrp->child_subsys_mask;
2808 new_sc = (old_sc | enable) & ~disable;
2809 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2810
755bf5ee
TH
2811 css_enable = ~old_ss & new_ss;
2812 css_disable = old_ss & ~new_ss;
f63070d3
TH
2813 enable |= css_enable;
2814 disable |= css_disable;
c29adf24 2815
db6e3053
TH
2816 /*
2817 * Because css offlining is asynchronous, userland might try to
2818 * re-enable the same controller while the previous instance is
2819 * still around. In such cases, wait till it's gone using
2820 * offline_waitq.
2821 */
a966a4ed 2822 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2823 cgroup_for_each_live_child(child, cgrp) {
2824 DEFINE_WAIT(wait);
2825
2826 if (!cgroup_css(child, ss))
2827 continue;
2828
2829 cgroup_get(child);
2830 prepare_to_wait(&child->offline_waitq, &wait,
2831 TASK_UNINTERRUPTIBLE);
2832 cgroup_kn_unlock(of->kn);
2833 schedule();
2834 finish_wait(&child->offline_waitq, &wait);
2835 cgroup_put(child);
2836
2837 return restart_syscall();
2838 }
2839 }
2840
755bf5ee
TH
2841 cgrp->subtree_control = new_sc;
2842 cgrp->child_subsys_mask = new_ss;
2843
f63070d3
TH
2844 /*
2845 * Create new csses or make the existing ones visible. A css is
2846 * created invisible if it's being implicitly enabled through
2847 * dependency. An invisible css is made visible when the userland
2848 * explicitly enables it.
f8f22e53
TH
2849 */
2850 for_each_subsys(ss, ssid) {
2851 if (!(enable & (1 << ssid)))
2852 continue;
2853
2854 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2855 if (css_enable & (1 << ssid))
2856 ret = create_css(child, ss,
2857 cgrp->subtree_control & (1 << ssid));
2858 else
2859 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2860 if (ret)
2861 goto err_undo_css;
2862 }
2863 }
2864
c29adf24
TH
2865 /*
2866 * At this point, cgroup_e_css() results reflect the new csses
2867 * making the following cgroup_update_dfl_csses() properly update
2868 * css associations of all tasks in the subtree.
2869 */
f8f22e53
TH
2870 ret = cgroup_update_dfl_csses(cgrp);
2871 if (ret)
2872 goto err_undo_css;
2873
f63070d3
TH
2874 /*
2875 * All tasks are migrated out of disabled csses. Kill or hide
2876 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2877 * disabled while other subsystems are still depending on it. The
2878 * css must not actively control resources and be in the vanilla
2879 * state if it's made visible again later. Controllers which may
2880 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2881 */
f8f22e53
TH
2882 for_each_subsys(ss, ssid) {
2883 if (!(disable & (1 << ssid)))
2884 continue;
2885
f63070d3 2886 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2887 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2888
2889 if (css_disable & (1 << ssid)) {
2890 kill_css(css);
2891 } else {
f63070d3 2892 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2893 if (ss->css_reset)
2894 ss->css_reset(css);
2895 }
f63070d3 2896 }
f8f22e53
TH
2897 }
2898
56c807ba
TH
2899 /*
2900 * The effective csses of all the descendants (excluding @cgrp) may
2901 * have changed. Subsystems can optionally subscribe to this event
2902 * by implementing ->css_e_css_changed() which is invoked if any of
2903 * the effective csses seen from the css's cgroup may have changed.
2904 */
2905 for_each_subsys(ss, ssid) {
2906 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2907 struct cgroup_subsys_state *css;
2908
2909 if (!ss->css_e_css_changed || !this_css)
2910 continue;
2911
2912 css_for_each_descendant_pre(css, this_css)
2913 if (css != this_css)
2914 ss->css_e_css_changed(css);
2915 }
2916
f8f22e53
TH
2917 kernfs_activate(cgrp->kn);
2918 ret = 0;
2919out_unlock:
a9746d8d 2920 cgroup_kn_unlock(of->kn);
451af504 2921 return ret ?: nbytes;
f8f22e53
TH
2922
2923err_undo_css:
755bf5ee
TH
2924 cgrp->subtree_control = old_sc;
2925 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
2926
2927 for_each_subsys(ss, ssid) {
2928 if (!(enable & (1 << ssid)))
2929 continue;
2930
2931 cgroup_for_each_live_child(child, cgrp) {
2932 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2933
2934 if (!css)
2935 continue;
2936
2937 if (css_enable & (1 << ssid))
f8f22e53 2938 kill_css(css);
f63070d3
TH
2939 else
2940 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2941 }
2942 }
2943 goto out_unlock;
2944}
2945
842b597e
TH
2946static int cgroup_populated_show(struct seq_file *seq, void *v)
2947{
2948 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2949 return 0;
2950}
2951
2bd59d48
TH
2952static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2953 size_t nbytes, loff_t off)
355e0c48 2954{
2bd59d48
TH
2955 struct cgroup *cgrp = of->kn->parent->priv;
2956 struct cftype *cft = of->kn->priv;
2957 struct cgroup_subsys_state *css;
a742c59d 2958 int ret;
355e0c48 2959
b4168640
TH
2960 if (cft->write)
2961 return cft->write(of, buf, nbytes, off);
2962
2bd59d48
TH
2963 /*
2964 * kernfs guarantees that a file isn't deleted with operations in
2965 * flight, which means that the matching css is and stays alive and
2966 * doesn't need to be pinned. The RCU locking is not necessary
2967 * either. It's just for the convenience of using cgroup_css().
2968 */
2969 rcu_read_lock();
2970 css = cgroup_css(cgrp, cft->ss);
2971 rcu_read_unlock();
a742c59d 2972
451af504 2973 if (cft->write_u64) {
a742c59d
TH
2974 unsigned long long v;
2975 ret = kstrtoull(buf, 0, &v);
2976 if (!ret)
2977 ret = cft->write_u64(css, cft, v);
2978 } else if (cft->write_s64) {
2979 long long v;
2980 ret = kstrtoll(buf, 0, &v);
2981 if (!ret)
2982 ret = cft->write_s64(css, cft, v);
e73d2c61 2983 } else {
a742c59d 2984 ret = -EINVAL;
e73d2c61 2985 }
2bd59d48 2986
a742c59d 2987 return ret ?: nbytes;
355e0c48
PM
2988}
2989
6612f05b 2990static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2991{
2bd59d48 2992 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2993}
2994
6612f05b 2995static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2996{
2bd59d48 2997 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2998}
2999
6612f05b 3000static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3001{
2bd59d48 3002 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3003}
3004
91796569 3005static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3006{
7da11279
TH
3007 struct cftype *cft = seq_cft(m);
3008 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3009
2da8ca82
TH
3010 if (cft->seq_show)
3011 return cft->seq_show(m, arg);
e73d2c61 3012
f4c753b7 3013 if (cft->read_u64)
896f5199
TH
3014 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3015 else if (cft->read_s64)
3016 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3017 else
3018 return -EINVAL;
3019 return 0;
91796569
PM
3020}
3021
2bd59d48
TH
3022static struct kernfs_ops cgroup_kf_single_ops = {
3023 .atomic_write_len = PAGE_SIZE,
3024 .write = cgroup_file_write,
3025 .seq_show = cgroup_seqfile_show,
91796569
PM
3026};
3027
2bd59d48
TH
3028static struct kernfs_ops cgroup_kf_ops = {
3029 .atomic_write_len = PAGE_SIZE,
3030 .write = cgroup_file_write,
3031 .seq_start = cgroup_seqfile_start,
3032 .seq_next = cgroup_seqfile_next,
3033 .seq_stop = cgroup_seqfile_stop,
3034 .seq_show = cgroup_seqfile_show,
3035};
ddbcc7e8
PM
3036
3037/*
3038 * cgroup_rename - Only allow simple rename of directories in place.
3039 */
2bd59d48
TH
3040static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3041 const char *new_name_str)
ddbcc7e8 3042{
2bd59d48 3043 struct cgroup *cgrp = kn->priv;
65dff759 3044 int ret;
65dff759 3045
2bd59d48 3046 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3047 return -ENOTDIR;
2bd59d48 3048 if (kn->parent != new_parent)
ddbcc7e8 3049 return -EIO;
65dff759 3050
6db8e85c
TH
3051 /*
3052 * This isn't a proper migration and its usefulness is very
aa6ec29b 3053 * limited. Disallow on the default hierarchy.
6db8e85c 3054 */
aa6ec29b 3055 if (cgroup_on_dfl(cgrp))
6db8e85c 3056 return -EPERM;
099fca32 3057
e1b2dc17 3058 /*
8353da1f 3059 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3060 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3061 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3062 */
3063 kernfs_break_active_protection(new_parent);
3064 kernfs_break_active_protection(kn);
099fca32 3065
2bd59d48 3066 mutex_lock(&cgroup_mutex);
099fca32 3067
2bd59d48 3068 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3069
2bd59d48 3070 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3071
3072 kernfs_unbreak_active_protection(kn);
3073 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3074 return ret;
099fca32
LZ
3075}
3076
49957f8e
TH
3077/* set uid and gid of cgroup dirs and files to that of the creator */
3078static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3079{
3080 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3081 .ia_uid = current_fsuid(),
3082 .ia_gid = current_fsgid(), };
3083
3084 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3085 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3086 return 0;
3087
3088 return kernfs_setattr(kn, &iattr);
3089}
3090
2bb566cb 3091static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3092{
8d7e6fb0 3093 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3094 struct kernfs_node *kn;
3095 struct lock_class_key *key = NULL;
49957f8e 3096 int ret;
05ef1d7c 3097
2bd59d48
TH
3098#ifdef CONFIG_DEBUG_LOCK_ALLOC
3099 key = &cft->lockdep_key;
3100#endif
3101 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3102 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3103 NULL, key);
49957f8e
TH
3104 if (IS_ERR(kn))
3105 return PTR_ERR(kn);
3106
3107 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3108 if (ret) {
49957f8e 3109 kernfs_remove(kn);
f8f22e53
TH
3110 return ret;
3111 }
3112
187fe840
TH
3113 if (cft->write == cgroup_procs_write)
3114 cgrp->procs_kn = kn;
3115 else if (cft->seq_show == cgroup_populated_show)
842b597e 3116 cgrp->populated_kn = kn;
f8f22e53 3117 return 0;
ddbcc7e8
PM
3118}
3119
b1f28d31
TH
3120/**
3121 * cgroup_addrm_files - add or remove files to a cgroup directory
3122 * @cgrp: the target cgroup
b1f28d31
TH
3123 * @cfts: array of cftypes to be added
3124 * @is_add: whether to add or remove
3125 *
3126 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3127 * For removals, this function never fails. If addition fails, this
3128 * function doesn't remove files already added. The caller is responsible
3129 * for cleaning up.
b1f28d31 3130 */
2bb566cb
TH
3131static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3132 bool is_add)
ddbcc7e8 3133{
03b1cde6 3134 struct cftype *cft;
b1f28d31
TH
3135 int ret;
3136
01f6474c 3137 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3138
3139 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3140 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3141 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3142 continue;
05ebb6e6 3143 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3144 continue;
d51f39b0 3145 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3146 continue;
d51f39b0 3147 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3148 continue;
3149
2739d3cc 3150 if (is_add) {
2bb566cb 3151 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3152 if (ret) {
ed3d261b
JP
3153 pr_warn("%s: failed to add %s, err=%d\n",
3154 __func__, cft->name, ret);
b1f28d31
TH
3155 return ret;
3156 }
2739d3cc
LZ
3157 } else {
3158 cgroup_rm_file(cgrp, cft);
db0416b6 3159 }
ddbcc7e8 3160 }
b1f28d31 3161 return 0;
ddbcc7e8
PM
3162}
3163
21a2d343 3164static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3165{
3166 LIST_HEAD(pending);
2bb566cb 3167 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3168 struct cgroup *root = &ss->root->cgrp;
492eb21b 3169 struct cgroup_subsys_state *css;
9ccece80 3170 int ret = 0;
8e3f6541 3171
01f6474c 3172 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3173
e8c82d20 3174 /* add/rm files for all cgroups created before */
ca8bdcaf 3175 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3176 struct cgroup *cgrp = css->cgroup;
3177
e8c82d20
LZ
3178 if (cgroup_is_dead(cgrp))
3179 continue;
3180
21a2d343 3181 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3182 if (ret)
3183 break;
8e3f6541 3184 }
21a2d343
TH
3185
3186 if (is_add && !ret)
3187 kernfs_activate(root->kn);
9ccece80 3188 return ret;
8e3f6541
TH
3189}
3190
2da440a2 3191static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3192{
2bb566cb 3193 struct cftype *cft;
8e3f6541 3194
2bd59d48
TH
3195 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3196 /* free copy for custom atomic_write_len, see init_cftypes() */
3197 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3198 kfree(cft->kf_ops);
3199 cft->kf_ops = NULL;
2da440a2 3200 cft->ss = NULL;
a8ddc821
TH
3201
3202 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3203 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3204 }
2da440a2
TH
3205}
3206
2bd59d48 3207static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3208{
3209 struct cftype *cft;
3210
2bd59d48
TH
3211 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3212 struct kernfs_ops *kf_ops;
3213
0adb0704
TH
3214 WARN_ON(cft->ss || cft->kf_ops);
3215
2bd59d48
TH
3216 if (cft->seq_start)
3217 kf_ops = &cgroup_kf_ops;
3218 else
3219 kf_ops = &cgroup_kf_single_ops;
3220
3221 /*
3222 * Ugh... if @cft wants a custom max_write_len, we need to
3223 * make a copy of kf_ops to set its atomic_write_len.
3224 */
3225 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3226 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3227 if (!kf_ops) {
3228 cgroup_exit_cftypes(cfts);
3229 return -ENOMEM;
3230 }
3231 kf_ops->atomic_write_len = cft->max_write_len;
3232 }
8e3f6541 3233
2bd59d48 3234 cft->kf_ops = kf_ops;
2bb566cb 3235 cft->ss = ss;
2bd59d48 3236 }
2bb566cb 3237
2bd59d48 3238 return 0;
2da440a2
TH
3239}
3240
21a2d343
TH
3241static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3242{
01f6474c 3243 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3244
3245 if (!cfts || !cfts[0].ss)
3246 return -ENOENT;
3247
3248 list_del(&cfts->node);
3249 cgroup_apply_cftypes(cfts, false);
3250 cgroup_exit_cftypes(cfts);
3251 return 0;
8e3f6541 3252}
8e3f6541 3253
79578621
TH
3254/**
3255 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3256 * @cfts: zero-length name terminated array of cftypes
3257 *
2bb566cb
TH
3258 * Unregister @cfts. Files described by @cfts are removed from all
3259 * existing cgroups and all future cgroups won't have them either. This
3260 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3261 *
3262 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3263 * registered.
79578621 3264 */
2bb566cb 3265int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3266{
21a2d343 3267 int ret;
79578621 3268
01f6474c 3269 mutex_lock(&cgroup_mutex);
21a2d343 3270 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3271 mutex_unlock(&cgroup_mutex);
21a2d343 3272 return ret;
80b13586
TH
3273}
3274
8e3f6541
TH
3275/**
3276 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3277 * @ss: target cgroup subsystem
3278 * @cfts: zero-length name terminated array of cftypes
3279 *
3280 * Register @cfts to @ss. Files described by @cfts are created for all
3281 * existing cgroups to which @ss is attached and all future cgroups will
3282 * have them too. This function can be called anytime whether @ss is
3283 * attached or not.
3284 *
3285 * Returns 0 on successful registration, -errno on failure. Note that this
3286 * function currently returns 0 as long as @cfts registration is successful
3287 * even if some file creation attempts on existing cgroups fail.
3288 */
2cf669a5 3289static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3290{
9ccece80 3291 int ret;
8e3f6541 3292
c731ae1d
LZ
3293 if (ss->disabled)
3294 return 0;
3295
dc5736ed
LZ
3296 if (!cfts || cfts[0].name[0] == '\0')
3297 return 0;
2bb566cb 3298
2bd59d48
TH
3299 ret = cgroup_init_cftypes(ss, cfts);
3300 if (ret)
3301 return ret;
79578621 3302
01f6474c 3303 mutex_lock(&cgroup_mutex);
21a2d343 3304
0adb0704 3305 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3306 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3307 if (ret)
21a2d343 3308 cgroup_rm_cftypes_locked(cfts);
79578621 3309
01f6474c 3310 mutex_unlock(&cgroup_mutex);
9ccece80 3311 return ret;
79578621
TH
3312}
3313
a8ddc821
TH
3314/**
3315 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3316 * @ss: target cgroup subsystem
3317 * @cfts: zero-length name terminated array of cftypes
3318 *
3319 * Similar to cgroup_add_cftypes() but the added files are only used for
3320 * the default hierarchy.
3321 */
3322int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3323{
3324 struct cftype *cft;
3325
3326 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3327 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3328 return cgroup_add_cftypes(ss, cfts);
3329}
3330
3331/**
3332 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3333 * @ss: target cgroup subsystem
3334 * @cfts: zero-length name terminated array of cftypes
3335 *
3336 * Similar to cgroup_add_cftypes() but the added files are only used for
3337 * the legacy hierarchies.
3338 */
2cf669a5
TH
3339int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3340{
a8ddc821
TH
3341 struct cftype *cft;
3342
fa8137be
VG
3343 /*
3344 * If legacy_flies_on_dfl, we want to show the legacy files on the
3345 * dfl hierarchy but iff the target subsystem hasn't been updated
3346 * for the dfl hierarchy yet.
3347 */
3348 if (!cgroup_legacy_files_on_dfl ||
3349 ss->dfl_cftypes != ss->legacy_cftypes) {
3350 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3351 cft->flags |= __CFTYPE_NOT_ON_DFL;
3352 }
3353
2cf669a5
TH
3354 return cgroup_add_cftypes(ss, cfts);
3355}
3356
a043e3b2
LZ
3357/**
3358 * cgroup_task_count - count the number of tasks in a cgroup.
3359 * @cgrp: the cgroup in question
3360 *
3361 * Return the number of tasks in the cgroup.
3362 */
07bc356e 3363static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3364{
3365 int count = 0;
69d0206c 3366 struct cgrp_cset_link *link;
817929ec 3367
96d365e0 3368 down_read(&css_set_rwsem);
69d0206c
TH
3369 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3370 count += atomic_read(&link->cset->refcount);
96d365e0 3371 up_read(&css_set_rwsem);
bbcb81d0
PM
3372 return count;
3373}
3374
53fa5261 3375/**
492eb21b 3376 * css_next_child - find the next child of a given css
c2931b70
TH
3377 * @pos: the current position (%NULL to initiate traversal)
3378 * @parent: css whose children to walk
53fa5261 3379 *
c2931b70 3380 * This function returns the next child of @parent and should be called
87fb54f1 3381 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3382 * that @parent and @pos are accessible. The next sibling is guaranteed to
3383 * be returned regardless of their states.
3384 *
3385 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3386 * css which finished ->css_online() is guaranteed to be visible in the
3387 * future iterations and will stay visible until the last reference is put.
3388 * A css which hasn't finished ->css_online() or already finished
3389 * ->css_offline() may show up during traversal. It's each subsystem's
3390 * responsibility to synchronize against on/offlining.
53fa5261 3391 */
c2931b70
TH
3392struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3393 struct cgroup_subsys_state *parent)
53fa5261 3394{
c2931b70 3395 struct cgroup_subsys_state *next;
53fa5261 3396
8353da1f 3397 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3398
3399 /*
de3f0341
TH
3400 * @pos could already have been unlinked from the sibling list.
3401 * Once a cgroup is removed, its ->sibling.next is no longer
3402 * updated when its next sibling changes. CSS_RELEASED is set when
3403 * @pos is taken off list, at which time its next pointer is valid,
3404 * and, as releases are serialized, the one pointed to by the next
3405 * pointer is guaranteed to not have started release yet. This
3406 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3407 * critical section, the one pointed to by its next pointer is
3408 * guaranteed to not have finished its RCU grace period even if we
3409 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3410 *
de3f0341
TH
3411 * If @pos has CSS_RELEASED set, its next pointer can't be
3412 * dereferenced; however, as each css is given a monotonically
3413 * increasing unique serial number and always appended to the
3414 * sibling list, the next one can be found by walking the parent's
3415 * children until the first css with higher serial number than
3416 * @pos's. While this path can be slower, it happens iff iteration
3417 * races against release and the race window is very small.
53fa5261 3418 */
3b287a50 3419 if (!pos) {
c2931b70
TH
3420 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3421 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3422 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3423 } else {
c2931b70 3424 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3425 if (next->serial_nr > pos->serial_nr)
3426 break;
53fa5261
TH
3427 }
3428
3b281afb
TH
3429 /*
3430 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3431 * the next sibling.
3b281afb 3432 */
c2931b70
TH
3433 if (&next->sibling != &parent->children)
3434 return next;
3b281afb 3435 return NULL;
53fa5261 3436}
53fa5261 3437
574bd9f7 3438/**
492eb21b 3439 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3440 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3441 * @root: css whose descendants to walk
574bd9f7 3442 *
492eb21b 3443 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3444 * to visit for pre-order traversal of @root's descendants. @root is
3445 * included in the iteration and the first node to be visited.
75501a6d 3446 *
87fb54f1
TH
3447 * While this function requires cgroup_mutex or RCU read locking, it
3448 * doesn't require the whole traversal to be contained in a single critical
3449 * section. This function will return the correct next descendant as long
3450 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3451 *
3452 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3453 * css which finished ->css_online() is guaranteed to be visible in the
3454 * future iterations and will stay visible until the last reference is put.
3455 * A css which hasn't finished ->css_online() or already finished
3456 * ->css_offline() may show up during traversal. It's each subsystem's
3457 * responsibility to synchronize against on/offlining.
574bd9f7 3458 */
492eb21b
TH
3459struct cgroup_subsys_state *
3460css_next_descendant_pre(struct cgroup_subsys_state *pos,
3461 struct cgroup_subsys_state *root)
574bd9f7 3462{
492eb21b 3463 struct cgroup_subsys_state *next;
574bd9f7 3464
8353da1f 3465 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3466
bd8815a6 3467 /* if first iteration, visit @root */
7805d000 3468 if (!pos)
bd8815a6 3469 return root;
574bd9f7
TH
3470
3471 /* visit the first child if exists */
492eb21b 3472 next = css_next_child(NULL, pos);
574bd9f7
TH
3473 if (next)
3474 return next;
3475
3476 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3477 while (pos != root) {
5c9d535b 3478 next = css_next_child(pos, pos->parent);
75501a6d 3479 if (next)
574bd9f7 3480 return next;
5c9d535b 3481 pos = pos->parent;
7805d000 3482 }
574bd9f7
TH
3483
3484 return NULL;
3485}
574bd9f7 3486
12a9d2fe 3487/**
492eb21b
TH
3488 * css_rightmost_descendant - return the rightmost descendant of a css
3489 * @pos: css of interest
12a9d2fe 3490 *
492eb21b
TH
3491 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3492 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3493 * subtree of @pos.
75501a6d 3494 *
87fb54f1
TH
3495 * While this function requires cgroup_mutex or RCU read locking, it
3496 * doesn't require the whole traversal to be contained in a single critical
3497 * section. This function will return the correct rightmost descendant as
3498 * long as @pos is accessible.
12a9d2fe 3499 */
492eb21b
TH
3500struct cgroup_subsys_state *
3501css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3502{
492eb21b 3503 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3504
8353da1f 3505 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3506
3507 do {
3508 last = pos;
3509 /* ->prev isn't RCU safe, walk ->next till the end */
3510 pos = NULL;
492eb21b 3511 css_for_each_child(tmp, last)
12a9d2fe
TH
3512 pos = tmp;
3513 } while (pos);
3514
3515 return last;
3516}
12a9d2fe 3517
492eb21b
TH
3518static struct cgroup_subsys_state *
3519css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3520{
492eb21b 3521 struct cgroup_subsys_state *last;
574bd9f7
TH
3522
3523 do {
3524 last = pos;
492eb21b 3525 pos = css_next_child(NULL, pos);
574bd9f7
TH
3526 } while (pos);
3527
3528 return last;
3529}
3530
3531/**
492eb21b 3532 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3533 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3534 * @root: css whose descendants to walk
574bd9f7 3535 *
492eb21b 3536 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3537 * to visit for post-order traversal of @root's descendants. @root is
3538 * included in the iteration and the last node to be visited.
75501a6d 3539 *
87fb54f1
TH
3540 * While this function requires cgroup_mutex or RCU read locking, it
3541 * doesn't require the whole traversal to be contained in a single critical
3542 * section. This function will return the correct next descendant as long
3543 * as both @pos and @cgroup are accessible and @pos is a descendant of
3544 * @cgroup.
c2931b70
TH
3545 *
3546 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3547 * css which finished ->css_online() is guaranteed to be visible in the
3548 * future iterations and will stay visible until the last reference is put.
3549 * A css which hasn't finished ->css_online() or already finished
3550 * ->css_offline() may show up during traversal. It's each subsystem's
3551 * responsibility to synchronize against on/offlining.
574bd9f7 3552 */
492eb21b
TH
3553struct cgroup_subsys_state *
3554css_next_descendant_post(struct cgroup_subsys_state *pos,
3555 struct cgroup_subsys_state *root)
574bd9f7 3556{
492eb21b 3557 struct cgroup_subsys_state *next;
574bd9f7 3558
8353da1f 3559 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3560
58b79a91
TH
3561 /* if first iteration, visit leftmost descendant which may be @root */
3562 if (!pos)
3563 return css_leftmost_descendant(root);
574bd9f7 3564
bd8815a6
TH
3565 /* if we visited @root, we're done */
3566 if (pos == root)
3567 return NULL;
3568
574bd9f7 3569 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3570 next = css_next_child(pos, pos->parent);
75501a6d 3571 if (next)
492eb21b 3572 return css_leftmost_descendant(next);
574bd9f7
TH
3573
3574 /* no sibling left, visit parent */
5c9d535b 3575 return pos->parent;
574bd9f7 3576}
574bd9f7 3577
f3d46500
TH
3578/**
3579 * css_has_online_children - does a css have online children
3580 * @css: the target css
3581 *
3582 * Returns %true if @css has any online children; otherwise, %false. This
3583 * function can be called from any context but the caller is responsible
3584 * for synchronizing against on/offlining as necessary.
3585 */
3586bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3587{
f3d46500
TH
3588 struct cgroup_subsys_state *child;
3589 bool ret = false;
cbc125ef
TH
3590
3591 rcu_read_lock();
f3d46500 3592 css_for_each_child(child, css) {
99bae5f9 3593 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3594 ret = true;
3595 break;
cbc125ef
TH
3596 }
3597 }
3598 rcu_read_unlock();
f3d46500 3599 return ret;
574bd9f7 3600}
574bd9f7 3601
0942eeee 3602/**
72ec7029 3603 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3604 * @it: the iterator to advance
3605 *
3606 * Advance @it to the next css_set to walk.
d515876e 3607 */
72ec7029 3608static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3609{
0f0a2b4f 3610 struct list_head *l = it->cset_pos;
d515876e
TH
3611 struct cgrp_cset_link *link;
3612 struct css_set *cset;
3613
3614 /* Advance to the next non-empty css_set */
3615 do {
3616 l = l->next;
0f0a2b4f
TH
3617 if (l == it->cset_head) {
3618 it->cset_pos = NULL;
d515876e
TH
3619 return;
3620 }
3ebb2b6e
TH
3621
3622 if (it->ss) {
3623 cset = container_of(l, struct css_set,
3624 e_cset_node[it->ss->id]);
3625 } else {
3626 link = list_entry(l, struct cgrp_cset_link, cset_link);
3627 cset = link->cset;
3628 }
c7561128
TH
3629 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3630
0f0a2b4f 3631 it->cset_pos = l;
c7561128
TH
3632
3633 if (!list_empty(&cset->tasks))
0f0a2b4f 3634 it->task_pos = cset->tasks.next;
c7561128 3635 else
0f0a2b4f
TH
3636 it->task_pos = cset->mg_tasks.next;
3637
3638 it->tasks_head = &cset->tasks;
3639 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3640}
3641
0942eeee 3642/**
72ec7029
TH
3643 * css_task_iter_start - initiate task iteration
3644 * @css: the css to walk tasks of
0942eeee
TH
3645 * @it: the task iterator to use
3646 *
72ec7029
TH
3647 * Initiate iteration through the tasks of @css. The caller can call
3648 * css_task_iter_next() to walk through the tasks until the function
3649 * returns NULL. On completion of iteration, css_task_iter_end() must be
3650 * called.
0942eeee
TH
3651 *
3652 * Note that this function acquires a lock which is released when the
3653 * iteration finishes. The caller can't sleep while iteration is in
3654 * progress.
3655 */
72ec7029
TH
3656void css_task_iter_start(struct cgroup_subsys_state *css,
3657 struct css_task_iter *it)
96d365e0 3658 __acquires(css_set_rwsem)
817929ec 3659{
56fde9e0
TH
3660 /* no one should try to iterate before mounting cgroups */
3661 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3662
96d365e0 3663 down_read(&css_set_rwsem);
c59cd3d8 3664
3ebb2b6e
TH
3665 it->ss = css->ss;
3666
3667 if (it->ss)
3668 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3669 else
3670 it->cset_pos = &css->cgroup->cset_links;
3671
0f0a2b4f 3672 it->cset_head = it->cset_pos;
c59cd3d8 3673
72ec7029 3674 css_advance_task_iter(it);
817929ec
PM
3675}
3676
0942eeee 3677/**
72ec7029 3678 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3679 * @it: the task iterator being iterated
3680 *
3681 * The "next" function for task iteration. @it should have been
72ec7029
TH
3682 * initialized via css_task_iter_start(). Returns NULL when the iteration
3683 * reaches the end.
0942eeee 3684 */
72ec7029 3685struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3686{
3687 struct task_struct *res;
0f0a2b4f 3688 struct list_head *l = it->task_pos;
817929ec
PM
3689
3690 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3691 if (!it->cset_pos)
817929ec
PM
3692 return NULL;
3693 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3694
3695 /*
3696 * Advance iterator to find next entry. cset->tasks is consumed
3697 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3698 * next cset.
3699 */
817929ec 3700 l = l->next;
c7561128 3701
0f0a2b4f
TH
3702 if (l == it->tasks_head)
3703 l = it->mg_tasks_head->next;
c7561128 3704
0f0a2b4f 3705 if (l == it->mg_tasks_head)
72ec7029 3706 css_advance_task_iter(it);
c7561128 3707 else
0f0a2b4f 3708 it->task_pos = l;
c7561128 3709
817929ec
PM
3710 return res;
3711}
3712
0942eeee 3713/**
72ec7029 3714 * css_task_iter_end - finish task iteration
0942eeee
TH
3715 * @it: the task iterator to finish
3716 *
72ec7029 3717 * Finish task iteration started by css_task_iter_start().
0942eeee 3718 */
72ec7029 3719void css_task_iter_end(struct css_task_iter *it)
96d365e0 3720 __releases(css_set_rwsem)
31a7df01 3721{
96d365e0 3722 up_read(&css_set_rwsem);
31a7df01
CW
3723}
3724
3725/**
8cc99345
TH
3726 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3727 * @to: cgroup to which the tasks will be moved
3728 * @from: cgroup in which the tasks currently reside
31a7df01 3729 *
eaf797ab
TH
3730 * Locking rules between cgroup_post_fork() and the migration path
3731 * guarantee that, if a task is forking while being migrated, the new child
3732 * is guaranteed to be either visible in the source cgroup after the
3733 * parent's migration is complete or put into the target cgroup. No task
3734 * can slip out of migration through forking.
31a7df01 3735 */
8cc99345 3736int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3737{
952aaa12
TH
3738 LIST_HEAD(preloaded_csets);
3739 struct cgrp_cset_link *link;
72ec7029 3740 struct css_task_iter it;
e406d1cf 3741 struct task_struct *task;
952aaa12 3742 int ret;
31a7df01 3743
952aaa12 3744 mutex_lock(&cgroup_mutex);
31a7df01 3745
952aaa12
TH
3746 /* all tasks in @from are being moved, all csets are source */
3747 down_read(&css_set_rwsem);
3748 list_for_each_entry(link, &from->cset_links, cset_link)
3749 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3750 up_read(&css_set_rwsem);
31a7df01 3751
952aaa12
TH
3752 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3753 if (ret)
3754 goto out_err;
8cc99345 3755
952aaa12
TH
3756 /*
3757 * Migrate tasks one-by-one until @form is empty. This fails iff
3758 * ->can_attach() fails.
3759 */
e406d1cf 3760 do {
9d800df1 3761 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3762 task = css_task_iter_next(&it);
3763 if (task)
3764 get_task_struct(task);
3765 css_task_iter_end(&it);
3766
3767 if (task) {
952aaa12 3768 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3769 put_task_struct(task);
3770 }
3771 } while (task && !ret);
952aaa12
TH
3772out_err:
3773 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3774 mutex_unlock(&cgroup_mutex);
e406d1cf 3775 return ret;
8cc99345
TH
3776}
3777
bbcb81d0 3778/*
102a775e 3779 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3780 *
3781 * Reading this file can return large amounts of data if a cgroup has
3782 * *lots* of attached tasks. So it may need several calls to read(),
3783 * but we cannot guarantee that the information we produce is correct
3784 * unless we produce it entirely atomically.
3785 *
bbcb81d0 3786 */
bbcb81d0 3787
24528255
LZ
3788/* which pidlist file are we talking about? */
3789enum cgroup_filetype {
3790 CGROUP_FILE_PROCS,
3791 CGROUP_FILE_TASKS,
3792};
3793
3794/*
3795 * A pidlist is a list of pids that virtually represents the contents of one
3796 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3797 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3798 * to the cgroup.
3799 */
3800struct cgroup_pidlist {
3801 /*
3802 * used to find which pidlist is wanted. doesn't change as long as
3803 * this particular list stays in the list.
3804 */
3805 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3806 /* array of xids */
3807 pid_t *list;
3808 /* how many elements the above list has */
3809 int length;
24528255
LZ
3810 /* each of these stored in a list by its cgroup */
3811 struct list_head links;
3812 /* pointer to the cgroup we belong to, for list removal purposes */
3813 struct cgroup *owner;
b1a21367
TH
3814 /* for delayed destruction */
3815 struct delayed_work destroy_dwork;
24528255
LZ
3816};
3817
d1d9fd33
BB
3818/*
3819 * The following two functions "fix" the issue where there are more pids
3820 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3821 * TODO: replace with a kernel-wide solution to this problem
3822 */
3823#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3824static void *pidlist_allocate(int count)
3825{
3826 if (PIDLIST_TOO_LARGE(count))
3827 return vmalloc(count * sizeof(pid_t));
3828 else
3829 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3830}
b1a21367 3831
d1d9fd33
BB
3832static void pidlist_free(void *p)
3833{
58794514 3834 kvfree(p);
d1d9fd33 3835}
d1d9fd33 3836
b1a21367
TH
3837/*
3838 * Used to destroy all pidlists lingering waiting for destroy timer. None
3839 * should be left afterwards.
3840 */
3841static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3842{
3843 struct cgroup_pidlist *l, *tmp_l;
3844
3845 mutex_lock(&cgrp->pidlist_mutex);
3846 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3847 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3848 mutex_unlock(&cgrp->pidlist_mutex);
3849
3850 flush_workqueue(cgroup_pidlist_destroy_wq);
3851 BUG_ON(!list_empty(&cgrp->pidlists));
3852}
3853
3854static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3855{
3856 struct delayed_work *dwork = to_delayed_work(work);
3857 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3858 destroy_dwork);
3859 struct cgroup_pidlist *tofree = NULL;
3860
3861 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3862
3863 /*
04502365
TH
3864 * Destroy iff we didn't get queued again. The state won't change
3865 * as destroy_dwork can only be queued while locked.
b1a21367 3866 */
04502365 3867 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3868 list_del(&l->links);
3869 pidlist_free(l->list);
3870 put_pid_ns(l->key.ns);
3871 tofree = l;
3872 }
3873
b1a21367
TH
3874 mutex_unlock(&l->owner->pidlist_mutex);
3875 kfree(tofree);
3876}
3877
bbcb81d0 3878/*
102a775e 3879 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3880 * Returns the number of unique elements.
bbcb81d0 3881 */
6ee211ad 3882static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3883{
102a775e 3884 int src, dest = 1;
102a775e
BB
3885
3886 /*
3887 * we presume the 0th element is unique, so i starts at 1. trivial
3888 * edge cases first; no work needs to be done for either
3889 */
3890 if (length == 0 || length == 1)
3891 return length;
3892 /* src and dest walk down the list; dest counts unique elements */
3893 for (src = 1; src < length; src++) {
3894 /* find next unique element */
3895 while (list[src] == list[src-1]) {
3896 src++;
3897 if (src == length)
3898 goto after;
3899 }
3900 /* dest always points to where the next unique element goes */
3901 list[dest] = list[src];
3902 dest++;
3903 }
3904after:
102a775e
BB
3905 return dest;
3906}
3907
afb2bc14
TH
3908/*
3909 * The two pid files - task and cgroup.procs - guaranteed that the result
3910 * is sorted, which forced this whole pidlist fiasco. As pid order is
3911 * different per namespace, each namespace needs differently sorted list,
3912 * making it impossible to use, for example, single rbtree of member tasks
3913 * sorted by task pointer. As pidlists can be fairly large, allocating one
3914 * per open file is dangerous, so cgroup had to implement shared pool of
3915 * pidlists keyed by cgroup and namespace.
3916 *
3917 * All this extra complexity was caused by the original implementation
3918 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3919 * want to do away with it. Explicitly scramble sort order if on the
3920 * default hierarchy so that no such expectation exists in the new
3921 * interface.
afb2bc14
TH
3922 *
3923 * Scrambling is done by swapping every two consecutive bits, which is
3924 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3925 */
3926static pid_t pid_fry(pid_t pid)
3927{
3928 unsigned a = pid & 0x55555555;
3929 unsigned b = pid & 0xAAAAAAAA;
3930
3931 return (a << 1) | (b >> 1);
3932}
3933
3934static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3935{
aa6ec29b 3936 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3937 return pid_fry(pid);
3938 else
3939 return pid;
3940}
3941
102a775e
BB
3942static int cmppid(const void *a, const void *b)
3943{
3944 return *(pid_t *)a - *(pid_t *)b;
3945}
3946
afb2bc14
TH
3947static int fried_cmppid(const void *a, const void *b)
3948{
3949 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3950}
3951
e6b81710
TH
3952static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3953 enum cgroup_filetype type)
3954{
3955 struct cgroup_pidlist *l;
3956 /* don't need task_nsproxy() if we're looking at ourself */
3957 struct pid_namespace *ns = task_active_pid_ns(current);
3958
3959 lockdep_assert_held(&cgrp->pidlist_mutex);
3960
3961 list_for_each_entry(l, &cgrp->pidlists, links)
3962 if (l->key.type == type && l->key.ns == ns)
3963 return l;
3964 return NULL;
3965}
3966
72a8cb30
BB
3967/*
3968 * find the appropriate pidlist for our purpose (given procs vs tasks)
3969 * returns with the lock on that pidlist already held, and takes care
3970 * of the use count, or returns NULL with no locks held if we're out of
3971 * memory.
3972 */
e6b81710
TH
3973static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3974 enum cgroup_filetype type)
72a8cb30
BB
3975{
3976 struct cgroup_pidlist *l;
b70cc5fd 3977
e6b81710
TH
3978 lockdep_assert_held(&cgrp->pidlist_mutex);
3979
3980 l = cgroup_pidlist_find(cgrp, type);
3981 if (l)
3982 return l;
3983
72a8cb30 3984 /* entry not found; create a new one */
f4f4be2b 3985 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3986 if (!l)
72a8cb30 3987 return l;
e6b81710 3988
b1a21367 3989 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3990 l->key.type = type;
e6b81710
TH
3991 /* don't need task_nsproxy() if we're looking at ourself */
3992 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3993 l->owner = cgrp;
3994 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3995 return l;
3996}
3997
102a775e
BB
3998/*
3999 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4000 */
72a8cb30
BB
4001static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4002 struct cgroup_pidlist **lp)
102a775e
BB
4003{
4004 pid_t *array;
4005 int length;
4006 int pid, n = 0; /* used for populating the array */
72ec7029 4007 struct css_task_iter it;
817929ec 4008 struct task_struct *tsk;
102a775e
BB
4009 struct cgroup_pidlist *l;
4010
4bac00d1
TH
4011 lockdep_assert_held(&cgrp->pidlist_mutex);
4012
102a775e
BB
4013 /*
4014 * If cgroup gets more users after we read count, we won't have
4015 * enough space - tough. This race is indistinguishable to the
4016 * caller from the case that the additional cgroup users didn't
4017 * show up until sometime later on.
4018 */
4019 length = cgroup_task_count(cgrp);
d1d9fd33 4020 array = pidlist_allocate(length);
102a775e
BB
4021 if (!array)
4022 return -ENOMEM;
4023 /* now, populate the array */
9d800df1 4024 css_task_iter_start(&cgrp->self, &it);
72ec7029 4025 while ((tsk = css_task_iter_next(&it))) {
102a775e 4026 if (unlikely(n == length))
817929ec 4027 break;
102a775e 4028 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4029 if (type == CGROUP_FILE_PROCS)
4030 pid = task_tgid_vnr(tsk);
4031 else
4032 pid = task_pid_vnr(tsk);
102a775e
BB
4033 if (pid > 0) /* make sure to only use valid results */
4034 array[n++] = pid;
817929ec 4035 }
72ec7029 4036 css_task_iter_end(&it);
102a775e
BB
4037 length = n;
4038 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4039 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4040 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4041 else
4042 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4043 if (type == CGROUP_FILE_PROCS)
6ee211ad 4044 length = pidlist_uniq(array, length);
e6b81710 4045
e6b81710 4046 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4047 if (!l) {
d1d9fd33 4048 pidlist_free(array);
72a8cb30 4049 return -ENOMEM;
102a775e 4050 }
e6b81710
TH
4051
4052 /* store array, freeing old if necessary */
d1d9fd33 4053 pidlist_free(l->list);
102a775e
BB
4054 l->list = array;
4055 l->length = length;
72a8cb30 4056 *lp = l;
102a775e 4057 return 0;
bbcb81d0
PM
4058}
4059
846c7bb0 4060/**
a043e3b2 4061 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4062 * @stats: cgroupstats to fill information into
4063 * @dentry: A dentry entry belonging to the cgroup for which stats have
4064 * been requested.
a043e3b2
LZ
4065 *
4066 * Build and fill cgroupstats so that taskstats can export it to user
4067 * space.
846c7bb0
BS
4068 */
4069int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4070{
2bd59d48 4071 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4072 struct cgroup *cgrp;
72ec7029 4073 struct css_task_iter it;
846c7bb0 4074 struct task_struct *tsk;
33d283be 4075
2bd59d48
TH
4076 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4077 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4078 kernfs_type(kn) != KERNFS_DIR)
4079 return -EINVAL;
4080
bad34660
LZ
4081 mutex_lock(&cgroup_mutex);
4082
846c7bb0 4083 /*
2bd59d48 4084 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4085 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4086 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4087 */
2bd59d48
TH
4088 rcu_read_lock();
4089 cgrp = rcu_dereference(kn->priv);
bad34660 4090 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4091 rcu_read_unlock();
bad34660 4092 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4093 return -ENOENT;
4094 }
bad34660 4095 rcu_read_unlock();
846c7bb0 4096
9d800df1 4097 css_task_iter_start(&cgrp->self, &it);
72ec7029 4098 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4099 switch (tsk->state) {
4100 case TASK_RUNNING:
4101 stats->nr_running++;
4102 break;
4103 case TASK_INTERRUPTIBLE:
4104 stats->nr_sleeping++;
4105 break;
4106 case TASK_UNINTERRUPTIBLE:
4107 stats->nr_uninterruptible++;
4108 break;
4109 case TASK_STOPPED:
4110 stats->nr_stopped++;
4111 break;
4112 default:
4113 if (delayacct_is_task_waiting_on_io(tsk))
4114 stats->nr_io_wait++;
4115 break;
4116 }
4117 }
72ec7029 4118 css_task_iter_end(&it);
846c7bb0 4119
bad34660 4120 mutex_unlock(&cgroup_mutex);
2bd59d48 4121 return 0;
846c7bb0
BS
4122}
4123
8f3ff208 4124
bbcb81d0 4125/*
102a775e 4126 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4127 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4128 * in the cgroup->l->list array.
bbcb81d0 4129 */
cc31edce 4130
102a775e 4131static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4132{
cc31edce
PM
4133 /*
4134 * Initially we receive a position value that corresponds to
4135 * one more than the last pid shown (or 0 on the first call or
4136 * after a seek to the start). Use a binary-search to find the
4137 * next pid to display, if any
4138 */
2bd59d48 4139 struct kernfs_open_file *of = s->private;
7da11279 4140 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4141 struct cgroup_pidlist *l;
7da11279 4142 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4143 int index = 0, pid = *pos;
4bac00d1
TH
4144 int *iter, ret;
4145
4146 mutex_lock(&cgrp->pidlist_mutex);
4147
4148 /*
5d22444f 4149 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4150 * after open. If the matching pidlist is around, we can use that.
5d22444f 4151 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4152 * could already have been destroyed.
4153 */
5d22444f
TH
4154 if (of->priv)
4155 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4156
4157 /*
4158 * Either this is the first start() after open or the matching
4159 * pidlist has been destroyed inbetween. Create a new one.
4160 */
5d22444f
TH
4161 if (!of->priv) {
4162 ret = pidlist_array_load(cgrp, type,
4163 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4164 if (ret)
4165 return ERR_PTR(ret);
4166 }
5d22444f 4167 l = of->priv;
cc31edce 4168
cc31edce 4169 if (pid) {
102a775e 4170 int end = l->length;
20777766 4171
cc31edce
PM
4172 while (index < end) {
4173 int mid = (index + end) / 2;
afb2bc14 4174 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4175 index = mid;
4176 break;
afb2bc14 4177 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4178 index = mid + 1;
4179 else
4180 end = mid;
4181 }
4182 }
4183 /* If we're off the end of the array, we're done */
102a775e 4184 if (index >= l->length)
cc31edce
PM
4185 return NULL;
4186 /* Update the abstract position to be the actual pid that we found */
102a775e 4187 iter = l->list + index;
afb2bc14 4188 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4189 return iter;
4190}
4191
102a775e 4192static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4193{
2bd59d48 4194 struct kernfs_open_file *of = s->private;
5d22444f 4195 struct cgroup_pidlist *l = of->priv;
62236858 4196
5d22444f
TH
4197 if (l)
4198 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4199 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4200 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4201}
4202
102a775e 4203static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4204{
2bd59d48 4205 struct kernfs_open_file *of = s->private;
5d22444f 4206 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4207 pid_t *p = v;
4208 pid_t *end = l->list + l->length;
cc31edce
PM
4209 /*
4210 * Advance to the next pid in the array. If this goes off the
4211 * end, we're done
4212 */
4213 p++;
4214 if (p >= end) {
4215 return NULL;
4216 } else {
7da11279 4217 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4218 return p;
4219 }
4220}
4221
102a775e 4222static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4223{
94ff212d
JP
4224 seq_printf(s, "%d\n", *(int *)v);
4225
4226 return 0;
cc31edce 4227}
bbcb81d0 4228
182446d0
TH
4229static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4230 struct cftype *cft)
81a6a5cd 4231{
182446d0 4232 return notify_on_release(css->cgroup);
81a6a5cd
PM
4233}
4234
182446d0
TH
4235static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4236 struct cftype *cft, u64 val)
6379c106 4237{
6379c106 4238 if (val)
182446d0 4239 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4240 else
182446d0 4241 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4242 return 0;
4243}
4244
182446d0
TH
4245static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4246 struct cftype *cft)
97978e6d 4247{
182446d0 4248 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4249}
4250
182446d0
TH
4251static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4252 struct cftype *cft, u64 val)
97978e6d
DL
4253{
4254 if (val)
182446d0 4255 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4256 else
182446d0 4257 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4258 return 0;
4259}
4260
a14c6874
TH
4261/* cgroup core interface files for the default hierarchy */
4262static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4263 {
d5c56ced 4264 .name = "cgroup.procs",
6612f05b
TH
4265 .seq_start = cgroup_pidlist_start,
4266 .seq_next = cgroup_pidlist_next,
4267 .seq_stop = cgroup_pidlist_stop,
4268 .seq_show = cgroup_pidlist_show,
5d22444f 4269 .private = CGROUP_FILE_PROCS,
acbef755 4270 .write = cgroup_procs_write,
74a1166d 4271 .mode = S_IRUGO | S_IWUSR,
102a775e 4272 },
f8f22e53
TH
4273 {
4274 .name = "cgroup.controllers",
a14c6874 4275 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4276 .seq_show = cgroup_root_controllers_show,
4277 },
4278 {
4279 .name = "cgroup.controllers",
a14c6874 4280 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4281 .seq_show = cgroup_controllers_show,
4282 },
4283 {
4284 .name = "cgroup.subtree_control",
f8f22e53 4285 .seq_show = cgroup_subtree_control_show,
451af504 4286 .write = cgroup_subtree_control_write,
f8f22e53 4287 },
842b597e
TH
4288 {
4289 .name = "cgroup.populated",
a14c6874 4290 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4291 .seq_show = cgroup_populated_show,
4292 },
a14c6874
TH
4293 { } /* terminate */
4294};
d5c56ced 4295
a14c6874
TH
4296/* cgroup core interface files for the legacy hierarchies */
4297static struct cftype cgroup_legacy_base_files[] = {
4298 {
4299 .name = "cgroup.procs",
4300 .seq_start = cgroup_pidlist_start,
4301 .seq_next = cgroup_pidlist_next,
4302 .seq_stop = cgroup_pidlist_stop,
4303 .seq_show = cgroup_pidlist_show,
4304 .private = CGROUP_FILE_PROCS,
4305 .write = cgroup_procs_write,
4306 .mode = S_IRUGO | S_IWUSR,
4307 },
4308 {
4309 .name = "cgroup.clone_children",
4310 .read_u64 = cgroup_clone_children_read,
4311 .write_u64 = cgroup_clone_children_write,
4312 },
4313 {
4314 .name = "cgroup.sane_behavior",
4315 .flags = CFTYPE_ONLY_ON_ROOT,
4316 .seq_show = cgroup_sane_behavior_show,
4317 },
d5c56ced
TH
4318 {
4319 .name = "tasks",
6612f05b
TH
4320 .seq_start = cgroup_pidlist_start,
4321 .seq_next = cgroup_pidlist_next,
4322 .seq_stop = cgroup_pidlist_stop,
4323 .seq_show = cgroup_pidlist_show,
5d22444f 4324 .private = CGROUP_FILE_TASKS,
acbef755 4325 .write = cgroup_tasks_write,
d5c56ced
TH
4326 .mode = S_IRUGO | S_IWUSR,
4327 },
4328 {
4329 .name = "notify_on_release",
d5c56ced
TH
4330 .read_u64 = cgroup_read_notify_on_release,
4331 .write_u64 = cgroup_write_notify_on_release,
4332 },
6e6ff25b
TH
4333 {
4334 .name = "release_agent",
a14c6874 4335 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4336 .seq_show = cgroup_release_agent_show,
451af504 4337 .write = cgroup_release_agent_write,
5f469907 4338 .max_write_len = PATH_MAX - 1,
6e6ff25b 4339 },
db0416b6 4340 { } /* terminate */
bbcb81d0
PM
4341};
4342
13af07df 4343/**
628f7cd4 4344 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4345 * @cgrp: target cgroup
13af07df 4346 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4347 *
4348 * On failure, no file is added.
13af07df 4349 */
8ab456ac 4350static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4351{
ddbcc7e8 4352 struct cgroup_subsys *ss;
b420ba7d 4353 int i, ret = 0;
bbcb81d0 4354
8e3f6541 4355 /* process cftsets of each subsystem */
b420ba7d 4356 for_each_subsys(ss, i) {
0adb0704 4357 struct cftype *cfts;
b420ba7d 4358
69dfa00c 4359 if (!(subsys_mask & (1 << i)))
13af07df 4360 continue;
8e3f6541 4361
0adb0704
TH
4362 list_for_each_entry(cfts, &ss->cfts, node) {
4363 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4364 if (ret < 0)
4365 goto err;
4366 }
ddbcc7e8 4367 }
ddbcc7e8 4368 return 0;
bee55099
TH
4369err:
4370 cgroup_clear_dir(cgrp, subsys_mask);
4371 return ret;
ddbcc7e8
PM
4372}
4373
0c21ead1
TH
4374/*
4375 * css destruction is four-stage process.
4376 *
4377 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4378 * Implemented in kill_css().
4379 *
4380 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4381 * and thus css_tryget_online() is guaranteed to fail, the css can be
4382 * offlined by invoking offline_css(). After offlining, the base ref is
4383 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4384 *
4385 * 3. When the percpu_ref reaches zero, the only possible remaining
4386 * accessors are inside RCU read sections. css_release() schedules the
4387 * RCU callback.
4388 *
4389 * 4. After the grace period, the css can be freed. Implemented in
4390 * css_free_work_fn().
4391 *
4392 * It is actually hairier because both step 2 and 4 require process context
4393 * and thus involve punting to css->destroy_work adding two additional
4394 * steps to the already complex sequence.
4395 */
35ef10da 4396static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4397{
4398 struct cgroup_subsys_state *css =
35ef10da 4399 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4400 struct cgroup_subsys *ss = css->ss;
0c21ead1 4401 struct cgroup *cgrp = css->cgroup;
48ddbe19 4402
9a1049da
TH
4403 percpu_ref_exit(&css->refcnt);
4404
01e58659 4405 if (ss) {
9d755d33 4406 /* css free path */
01e58659
VD
4407 int id = css->id;
4408
9d755d33
TH
4409 if (css->parent)
4410 css_put(css->parent);
0ae78e0b 4411
01e58659
VD
4412 ss->css_free(css);
4413 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4414 cgroup_put(cgrp);
4415 } else {
4416 /* cgroup free path */
4417 atomic_dec(&cgrp->root->nr_cgrps);
4418 cgroup_pidlist_destroy_all(cgrp);
971ff493 4419 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4420
d51f39b0 4421 if (cgroup_parent(cgrp)) {
9d755d33
TH
4422 /*
4423 * We get a ref to the parent, and put the ref when
4424 * this cgroup is being freed, so it's guaranteed
4425 * that the parent won't be destroyed before its
4426 * children.
4427 */
d51f39b0 4428 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4429 kernfs_put(cgrp->kn);
4430 kfree(cgrp);
4431 } else {
4432 /*
4433 * This is root cgroup's refcnt reaching zero,
4434 * which indicates that the root should be
4435 * released.
4436 */
4437 cgroup_destroy_root(cgrp->root);
4438 }
4439 }
48ddbe19
TH
4440}
4441
0c21ead1 4442static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4443{
4444 struct cgroup_subsys_state *css =
0c21ead1 4445 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4446
35ef10da 4447 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4448 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4449}
4450
25e15d83 4451static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4452{
4453 struct cgroup_subsys_state *css =
25e15d83 4454 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4455 struct cgroup_subsys *ss = css->ss;
9d755d33 4456 struct cgroup *cgrp = css->cgroup;
15a4c835 4457
1fed1b2e
TH
4458 mutex_lock(&cgroup_mutex);
4459
de3f0341 4460 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4461 list_del_rcu(&css->sibling);
4462
9d755d33
TH
4463 if (ss) {
4464 /* css release path */
01e58659 4465 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4466 if (ss->css_released)
4467 ss->css_released(css);
9d755d33
TH
4468 } else {
4469 /* cgroup release path */
9d755d33
TH
4470 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4471 cgrp->id = -1;
a4189487
LZ
4472
4473 /*
4474 * There are two control paths which try to determine
4475 * cgroup from dentry without going through kernfs -
4476 * cgroupstats_build() and css_tryget_online_from_dir().
4477 * Those are supported by RCU protecting clearing of
4478 * cgrp->kn->priv backpointer.
4479 */
4480 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4481 }
d3daf28d 4482
1fed1b2e
TH
4483 mutex_unlock(&cgroup_mutex);
4484
0c21ead1 4485 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4486}
4487
d3daf28d
TH
4488static void css_release(struct percpu_ref *ref)
4489{
4490 struct cgroup_subsys_state *css =
4491 container_of(ref, struct cgroup_subsys_state, refcnt);
4492
25e15d83
TH
4493 INIT_WORK(&css->destroy_work, css_release_work_fn);
4494 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4495}
4496
ddfcadab
TH
4497static void init_and_link_css(struct cgroup_subsys_state *css,
4498 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4499{
0cb51d71
TH
4500 lockdep_assert_held(&cgroup_mutex);
4501
ddfcadab
TH
4502 cgroup_get(cgrp);
4503
d5c419b6 4504 memset(css, 0, sizeof(*css));
bd89aabc 4505 css->cgroup = cgrp;
72c97e54 4506 css->ss = ss;
d5c419b6
TH
4507 INIT_LIST_HEAD(&css->sibling);
4508 INIT_LIST_HEAD(&css->children);
0cb51d71 4509 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4510
d51f39b0
TH
4511 if (cgroup_parent(cgrp)) {
4512 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4513 css_get(css->parent);
ddfcadab 4514 }
48ddbe19 4515
ca8bdcaf 4516 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4517}
4518
2a4ac633 4519/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4520static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4521{
623f926b 4522 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4523 int ret = 0;
4524
a31f2d3f
TH
4525 lockdep_assert_held(&cgroup_mutex);
4526
92fb9748 4527 if (ss->css_online)
eb95419b 4528 ret = ss->css_online(css);
ae7f164a 4529 if (!ret) {
eb95419b 4530 css->flags |= CSS_ONLINE;
aec25020 4531 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4532 }
b1929db4 4533 return ret;
a31f2d3f
TH
4534}
4535
2a4ac633 4536/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4537static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4538{
623f926b 4539 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4540
4541 lockdep_assert_held(&cgroup_mutex);
4542
4543 if (!(css->flags & CSS_ONLINE))
4544 return;
4545
d7eeac19 4546 if (ss->css_offline)
eb95419b 4547 ss->css_offline(css);
a31f2d3f 4548
eb95419b 4549 css->flags &= ~CSS_ONLINE;
e3297803 4550 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4551
4552 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4553}
4554
c81c925a
TH
4555/**
4556 * create_css - create a cgroup_subsys_state
4557 * @cgrp: the cgroup new css will be associated with
4558 * @ss: the subsys of new css
f63070d3 4559 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4560 *
4561 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4562 * css is online and installed in @cgrp with all interface files created if
4563 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4564 */
f63070d3
TH
4565static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4566 bool visible)
c81c925a 4567{
d51f39b0 4568 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4569 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4570 struct cgroup_subsys_state *css;
4571 int err;
4572
c81c925a
TH
4573 lockdep_assert_held(&cgroup_mutex);
4574
1fed1b2e 4575 css = ss->css_alloc(parent_css);
c81c925a
TH
4576 if (IS_ERR(css))
4577 return PTR_ERR(css);
4578
ddfcadab 4579 init_and_link_css(css, ss, cgrp);
a2bed820 4580
2aad2a86 4581 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4582 if (err)
3eb59ec6 4583 goto err_free_css;
c81c925a 4584
cf780b7d 4585 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4586 if (err < 0)
4587 goto err_free_percpu_ref;
4588 css->id = err;
c81c925a 4589
f63070d3
TH
4590 if (visible) {
4591 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4592 if (err)
4593 goto err_free_id;
4594 }
15a4c835
TH
4595
4596 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4597 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4598 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4599
4600 err = online_css(css);
4601 if (err)
1fed1b2e 4602 goto err_list_del;
94419627 4603
c81c925a 4604 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4605 cgroup_parent(parent)) {
ed3d261b 4606 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4607 current->comm, current->pid, ss->name);
c81c925a 4608 if (!strcmp(ss->name, "memory"))
ed3d261b 4609 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4610 ss->warned_broken_hierarchy = true;
4611 }
4612
4613 return 0;
4614
1fed1b2e
TH
4615err_list_del:
4616 list_del_rcu(&css->sibling);
32d01dc7 4617 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4618err_free_id:
4619 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4620err_free_percpu_ref:
9a1049da 4621 percpu_ref_exit(&css->refcnt);
3eb59ec6 4622err_free_css:
a2bed820 4623 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4624 return err;
4625}
4626
b3bfd983
TH
4627static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4628 umode_t mode)
ddbcc7e8 4629{
a9746d8d
TH
4630 struct cgroup *parent, *cgrp;
4631 struct cgroup_root *root;
ddbcc7e8 4632 struct cgroup_subsys *ss;
2bd59d48 4633 struct kernfs_node *kn;
a14c6874 4634 struct cftype *base_files;
b3bfd983 4635 int ssid, ret;
ddbcc7e8 4636
71b1fb5c
AC
4637 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4638 */
4639 if (strchr(name, '\n'))
4640 return -EINVAL;
4641
a9746d8d
TH
4642 parent = cgroup_kn_lock_live(parent_kn);
4643 if (!parent)
4644 return -ENODEV;
4645 root = parent->root;
ddbcc7e8 4646
0a950f65 4647 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4648 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4649 if (!cgrp) {
4650 ret = -ENOMEM;
4651 goto out_unlock;
0ab02ca8
LZ
4652 }
4653
2aad2a86 4654 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4655 if (ret)
4656 goto out_free_cgrp;
4657
0ab02ca8
LZ
4658 /*
4659 * Temporarily set the pointer to NULL, so idr_find() won't return
4660 * a half-baked cgroup.
4661 */
cf780b7d 4662 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4663 if (cgrp->id < 0) {
ba0f4d76 4664 ret = -ENOMEM;
9d755d33 4665 goto out_cancel_ref;
976c06bc
TH
4666 }
4667
cc31edce 4668 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4669
9d800df1 4670 cgrp->self.parent = &parent->self;
ba0f4d76 4671 cgrp->root = root;
ddbcc7e8 4672
b6abdb0e
LZ
4673 if (notify_on_release(parent))
4674 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4675
2260e7fc
TH
4676 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4677 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4678
2bd59d48 4679 /* create the directory */
e61734c5 4680 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4681 if (IS_ERR(kn)) {
ba0f4d76
TH
4682 ret = PTR_ERR(kn);
4683 goto out_free_id;
2bd59d48
TH
4684 }
4685 cgrp->kn = kn;
ddbcc7e8 4686
4e139afc 4687 /*
6f30558f
TH
4688 * This extra ref will be put in cgroup_free_fn() and guarantees
4689 * that @cgrp->kn is always accessible.
4e139afc 4690 */
6f30558f 4691 kernfs_get(kn);
ddbcc7e8 4692
0cb51d71 4693 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4694
4e139afc 4695 /* allocation complete, commit to creation */
d5c419b6 4696 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4697 atomic_inc(&root->nr_cgrps);
59f5296b 4698 cgroup_get(parent);
415cf07a 4699
0d80255e
TH
4700 /*
4701 * @cgrp is now fully operational. If something fails after this
4702 * point, it'll be released via the normal destruction path.
4703 */
6fa4918d 4704 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4705
ba0f4d76
TH
4706 ret = cgroup_kn_set_ugid(kn);
4707 if (ret)
4708 goto out_destroy;
49957f8e 4709
a14c6874
TH
4710 if (cgroup_on_dfl(cgrp))
4711 base_files = cgroup_dfl_base_files;
4712 else
4713 base_files = cgroup_legacy_base_files;
4714
4715 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4716 if (ret)
4717 goto out_destroy;
628f7cd4 4718
9d403e99 4719 /* let's create and online css's */
b85d2040 4720 for_each_subsys(ss, ssid) {
f392e51c 4721 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4722 ret = create_css(cgrp, ss,
4723 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4724 if (ret)
4725 goto out_destroy;
b85d2040 4726 }
a8638030 4727 }
ddbcc7e8 4728
bd53d617
TH
4729 /*
4730 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4731 * subtree_control from the parent. Each is configured manually.
bd53d617 4732 */
667c2491
TH
4733 if (!cgroup_on_dfl(cgrp)) {
4734 cgrp->subtree_control = parent->subtree_control;
4735 cgroup_refresh_child_subsys_mask(cgrp);
4736 }
2bd59d48 4737
2bd59d48 4738 kernfs_activate(kn);
ddbcc7e8 4739
ba0f4d76
TH
4740 ret = 0;
4741 goto out_unlock;
ddbcc7e8 4742
ba0f4d76 4743out_free_id:
6fa4918d 4744 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4745out_cancel_ref:
9a1049da 4746 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4747out_free_cgrp:
bd89aabc 4748 kfree(cgrp);
ba0f4d76 4749out_unlock:
a9746d8d 4750 cgroup_kn_unlock(parent_kn);
ba0f4d76 4751 return ret;
4b8b47eb 4752
ba0f4d76 4753out_destroy:
4b8b47eb 4754 cgroup_destroy_locked(cgrp);
ba0f4d76 4755 goto out_unlock;
ddbcc7e8
PM
4756}
4757
223dbc38
TH
4758/*
4759 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4760 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4761 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4762 */
4763static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4764{
223dbc38
TH
4765 struct cgroup_subsys_state *css =
4766 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4767
f20104de 4768 mutex_lock(&cgroup_mutex);
09a503ea 4769 offline_css(css);
f20104de 4770 mutex_unlock(&cgroup_mutex);
09a503ea 4771
09a503ea 4772 css_put(css);
d3daf28d
TH
4773}
4774
223dbc38
TH
4775/* css kill confirmation processing requires process context, bounce */
4776static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4777{
4778 struct cgroup_subsys_state *css =
4779 container_of(ref, struct cgroup_subsys_state, refcnt);
4780
223dbc38 4781 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4782 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4783}
4784
f392e51c
TH
4785/**
4786 * kill_css - destroy a css
4787 * @css: css to destroy
4788 *
4789 * This function initiates destruction of @css by removing cgroup interface
4790 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4791 * asynchronously once css_tryget_online() is guaranteed to fail and when
4792 * the reference count reaches zero, @css will be released.
f392e51c
TH
4793 */
4794static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4795{
01f6474c 4796 lockdep_assert_held(&cgroup_mutex);
94419627 4797
2bd59d48
TH
4798 /*
4799 * This must happen before css is disassociated with its cgroup.
4800 * See seq_css() for details.
4801 */
aec25020 4802 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4803
edae0c33
TH
4804 /*
4805 * Killing would put the base ref, but we need to keep it alive
4806 * until after ->css_offline().
4807 */
4808 css_get(css);
4809
4810 /*
4811 * cgroup core guarantees that, by the time ->css_offline() is
4812 * invoked, no new css reference will be given out via
ec903c0c 4813 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4814 * proceed to offlining css's because percpu_ref_kill() doesn't
4815 * guarantee that the ref is seen as killed on all CPUs on return.
4816 *
4817 * Use percpu_ref_kill_and_confirm() to get notifications as each
4818 * css is confirmed to be seen as killed on all CPUs.
4819 */
4820 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4821}
4822
4823/**
4824 * cgroup_destroy_locked - the first stage of cgroup destruction
4825 * @cgrp: cgroup to be destroyed
4826 *
4827 * css's make use of percpu refcnts whose killing latency shouldn't be
4828 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4829 * guarantee that css_tryget_online() won't succeed by the time
4830 * ->css_offline() is invoked. To satisfy all the requirements,
4831 * destruction is implemented in the following two steps.
d3daf28d
TH
4832 *
4833 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4834 * userland visible parts and start killing the percpu refcnts of
4835 * css's. Set up so that the next stage will be kicked off once all
4836 * the percpu refcnts are confirmed to be killed.
4837 *
4838 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4839 * rest of destruction. Once all cgroup references are gone, the
4840 * cgroup is RCU-freed.
4841 *
4842 * This function implements s1. After this step, @cgrp is gone as far as
4843 * the userland is concerned and a new cgroup with the same name may be
4844 * created. As cgroup doesn't care about the names internally, this
4845 * doesn't cause any problem.
4846 */
42809dd4
TH
4847static int cgroup_destroy_locked(struct cgroup *cgrp)
4848 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4849{
2bd59d48 4850 struct cgroup_subsys_state *css;
ddd69148 4851 bool empty;
1c6727af 4852 int ssid;
ddbcc7e8 4853
42809dd4
TH
4854 lockdep_assert_held(&cgroup_mutex);
4855
ddd69148 4856 /*
96d365e0 4857 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4858 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4859 */
96d365e0 4860 down_read(&css_set_rwsem);
bb78a92f 4861 empty = list_empty(&cgrp->cset_links);
96d365e0 4862 up_read(&css_set_rwsem);
ddd69148 4863 if (!empty)
ddbcc7e8 4864 return -EBUSY;
a043e3b2 4865
bb78a92f 4866 /*
d5c419b6
TH
4867 * Make sure there's no live children. We can't test emptiness of
4868 * ->self.children as dead children linger on it while being
4869 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4870 */
f3d46500 4871 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4872 return -EBUSY;
4873
455050d2
TH
4874 /*
4875 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4876 * creation by disabling cgroup_lock_live_group().
455050d2 4877 */
184faf32 4878 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4879
249f3468 4880 /* initiate massacre of all css's */
1c6727af
TH
4881 for_each_css(css, ssid, cgrp)
4882 kill_css(css);
455050d2 4883
455050d2 4884 /*
01f6474c
TH
4885 * Remove @cgrp directory along with the base files. @cgrp has an
4886 * extra ref on its kn.
f20104de 4887 */
01f6474c 4888 kernfs_remove(cgrp->kn);
f20104de 4889
d51f39b0 4890 check_for_release(cgroup_parent(cgrp));
2bd59d48 4891
249f3468 4892 /* put the base reference */
9d755d33 4893 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4894
ea15f8cc
TH
4895 return 0;
4896};
4897
2bd59d48 4898static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4899{
a9746d8d 4900 struct cgroup *cgrp;
2bd59d48 4901 int ret = 0;
42809dd4 4902
a9746d8d
TH
4903 cgrp = cgroup_kn_lock_live(kn);
4904 if (!cgrp)
4905 return 0;
42809dd4 4906
a9746d8d 4907 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4908
a9746d8d 4909 cgroup_kn_unlock(kn);
42809dd4 4910 return ret;
8e3f6541
TH
4911}
4912
2bd59d48
TH
4913static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4914 .remount_fs = cgroup_remount,
4915 .show_options = cgroup_show_options,
4916 .mkdir = cgroup_mkdir,
4917 .rmdir = cgroup_rmdir,
4918 .rename = cgroup_rename,
4919};
4920
15a4c835 4921static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4922{
ddbcc7e8 4923 struct cgroup_subsys_state *css;
cfe36bde
DC
4924
4925 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4926
648bb56d
TH
4927 mutex_lock(&cgroup_mutex);
4928
15a4c835 4929 idr_init(&ss->css_idr);
0adb0704 4930 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4931
3dd06ffa
TH
4932 /* Create the root cgroup state for this subsystem */
4933 ss->root = &cgrp_dfl_root;
4934 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4935 /* We don't handle early failures gracefully */
4936 BUG_ON(IS_ERR(css));
ddfcadab 4937 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4938
4939 /*
4940 * Root csses are never destroyed and we can't initialize
4941 * percpu_ref during early init. Disable refcnting.
4942 */
4943 css->flags |= CSS_NO_REF;
4944
15a4c835 4945 if (early) {
9395a450 4946 /* allocation can't be done safely during early init */
15a4c835
TH
4947 css->id = 1;
4948 } else {
4949 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4950 BUG_ON(css->id < 0);
4951 }
ddbcc7e8 4952
e8d55fde 4953 /* Update the init_css_set to contain a subsys
817929ec 4954 * pointer to this state - since the subsystem is
e8d55fde 4955 * newly registered, all tasks and hence the
3dd06ffa 4956 * init_css_set is in the subsystem's root cgroup. */
aec25020 4957 init_css_set.subsys[ss->id] = css;
ddbcc7e8 4958
cb4a3167
AS
4959 have_fork_callback |= (bool)ss->fork << ss->id;
4960 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 4961 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 4962
e8d55fde
LZ
4963 /* At system boot, before all subsystems have been
4964 * registered, no tasks have been forked, so we don't
4965 * need to invoke fork callbacks here. */
4966 BUG_ON(!list_empty(&init_task.tasks));
4967
ae7f164a 4968 BUG_ON(online_css(css));
a8638030 4969
cf5d5941
BB
4970 mutex_unlock(&cgroup_mutex);
4971}
cf5d5941 4972
ddbcc7e8 4973/**
a043e3b2
LZ
4974 * cgroup_init_early - cgroup initialization at system boot
4975 *
4976 * Initialize cgroups at system boot, and initialize any
4977 * subsystems that request early init.
ddbcc7e8
PM
4978 */
4979int __init cgroup_init_early(void)
4980{
7b9a6ba5 4981 static struct cgroup_sb_opts __initdata opts;
30159ec7 4982 struct cgroup_subsys *ss;
ddbcc7e8 4983 int i;
30159ec7 4984
3dd06ffa 4985 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4986 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4987
a4ea1cc9 4988 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4989
3ed80a62 4990 for_each_subsys(ss, i) {
aec25020 4991 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4992 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4993 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4994 ss->id, ss->name);
073219e9
TH
4995 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4996 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4997
aec25020 4998 ss->id = i;
073219e9 4999 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
5000
5001 if (ss->early_init)
15a4c835 5002 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5003 }
5004 return 0;
5005}
5006
5007/**
a043e3b2
LZ
5008 * cgroup_init - cgroup initialization
5009 *
5010 * Register cgroup filesystem and /proc file, and initialize
5011 * any subsystems that didn't request early init.
ddbcc7e8
PM
5012 */
5013int __init cgroup_init(void)
5014{
30159ec7 5015 struct cgroup_subsys *ss;
0ac801fe 5016 unsigned long key;
172a2c06 5017 int ssid, err;
ddbcc7e8 5018
d59cfc09 5019 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5020 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5021 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5022
54e7b4eb 5023 mutex_lock(&cgroup_mutex);
54e7b4eb 5024
82fe9b0d
TH
5025 /* Add init_css_set to the hash table */
5026 key = css_set_hash(init_css_set.subsys);
5027 hash_add(css_set_table, &init_css_set.hlist, key);
5028
3dd06ffa 5029 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5030
54e7b4eb
TH
5031 mutex_unlock(&cgroup_mutex);
5032
172a2c06 5033 for_each_subsys(ss, ssid) {
15a4c835
TH
5034 if (ss->early_init) {
5035 struct cgroup_subsys_state *css =
5036 init_css_set.subsys[ss->id];
5037
5038 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5039 GFP_KERNEL);
5040 BUG_ON(css->id < 0);
5041 } else {
5042 cgroup_init_subsys(ss, false);
5043 }
172a2c06 5044
2d8f243a
TH
5045 list_add_tail(&init_css_set.e_cset_node[ssid],
5046 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5047
5048 /*
c731ae1d
LZ
5049 * Setting dfl_root subsys_mask needs to consider the
5050 * disabled flag and cftype registration needs kmalloc,
5051 * both of which aren't available during early_init.
172a2c06 5052 */
a8ddc821
TH
5053 if (ss->disabled)
5054 continue;
5055
5056 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5057
5058 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5059 ss->dfl_cftypes = ss->legacy_cftypes;
5060
5de4fa13
TH
5061 if (!ss->dfl_cftypes)
5062 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5063
a8ddc821
TH
5064 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5065 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5066 } else {
5067 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5068 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5069 }
295458e6
VD
5070
5071 if (ss->bind)
5072 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5073 }
5074
f9bb4882
EB
5075 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5076 if (err)
5077 return err;
676db4af 5078
ddbcc7e8 5079 err = register_filesystem(&cgroup_fs_type);
676db4af 5080 if (err < 0) {
f9bb4882 5081 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5082 return err;
676db4af 5083 }
ddbcc7e8 5084
46ae220b 5085 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5086 return 0;
ddbcc7e8 5087}
b4f48b63 5088
e5fca243
TH
5089static int __init cgroup_wq_init(void)
5090{
5091 /*
5092 * There isn't much point in executing destruction path in
5093 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5094 * Use 1 for @max_active.
e5fca243
TH
5095 *
5096 * We would prefer to do this in cgroup_init() above, but that
5097 * is called before init_workqueues(): so leave this until after.
5098 */
1a11533f 5099 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5100 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5101
5102 /*
5103 * Used to destroy pidlists and separate to serve as flush domain.
5104 * Cap @max_active to 1 too.
5105 */
5106 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5107 0, 1);
5108 BUG_ON(!cgroup_pidlist_destroy_wq);
5109
e5fca243
TH
5110 return 0;
5111}
5112core_initcall(cgroup_wq_init);
5113
a424316c
PM
5114/*
5115 * proc_cgroup_show()
5116 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5117 * - Used for /proc/<pid>/cgroup.
a424316c 5118 */
006f4ac4
ZL
5119int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5120 struct pid *pid, struct task_struct *tsk)
a424316c 5121{
e61734c5 5122 char *buf, *path;
a424316c 5123 int retval;
3dd06ffa 5124 struct cgroup_root *root;
a424316c
PM
5125
5126 retval = -ENOMEM;
e61734c5 5127 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5128 if (!buf)
5129 goto out;
5130
a424316c 5131 mutex_lock(&cgroup_mutex);
96d365e0 5132 down_read(&css_set_rwsem);
a424316c 5133
985ed670 5134 for_each_root(root) {
a424316c 5135 struct cgroup_subsys *ss;
bd89aabc 5136 struct cgroup *cgrp;
b85d2040 5137 int ssid, count = 0;
a424316c 5138
a2dd4247 5139 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5140 continue;
5141
2c6ab6d2 5142 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5143 for_each_subsys(ss, ssid)
f392e51c 5144 if (root->subsys_mask & (1 << ssid))
b85d2040 5145 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5146 if (strlen(root->name))
5147 seq_printf(m, "%sname=%s", count ? "," : "",
5148 root->name);
a424316c 5149 seq_putc(m, ':');
7717f7ba 5150 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5151 path = cgroup_path(cgrp, buf, PATH_MAX);
5152 if (!path) {
5153 retval = -ENAMETOOLONG;
a424316c 5154 goto out_unlock;
e61734c5
TH
5155 }
5156 seq_puts(m, path);
a424316c
PM
5157 seq_putc(m, '\n');
5158 }
5159
006f4ac4 5160 retval = 0;
a424316c 5161out_unlock:
96d365e0 5162 up_read(&css_set_rwsem);
a424316c 5163 mutex_unlock(&cgroup_mutex);
a424316c
PM
5164 kfree(buf);
5165out:
5166 return retval;
5167}
5168
a424316c
PM
5169/* Display information about each subsystem and each hierarchy */
5170static int proc_cgroupstats_show(struct seq_file *m, void *v)
5171{
30159ec7 5172 struct cgroup_subsys *ss;
a424316c 5173 int i;
a424316c 5174
8bab8dde 5175 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5176 /*
5177 * ideally we don't want subsystems moving around while we do this.
5178 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5179 * subsys/hierarchy state.
5180 */
a424316c 5181 mutex_lock(&cgroup_mutex);
30159ec7
TH
5182
5183 for_each_subsys(ss, i)
2c6ab6d2
PM
5184 seq_printf(m, "%s\t%d\t%d\t%d\n",
5185 ss->name, ss->root->hierarchy_id,
3c9c825b 5186 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5187
a424316c
PM
5188 mutex_unlock(&cgroup_mutex);
5189 return 0;
5190}
5191
5192static int cgroupstats_open(struct inode *inode, struct file *file)
5193{
9dce07f1 5194 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5195}
5196
828c0950 5197static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5198 .open = cgroupstats_open,
5199 .read = seq_read,
5200 .llseek = seq_lseek,
5201 .release = single_release,
5202};
5203
7e47682e
AS
5204static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5205{
5206 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5207 return &ss_priv[i - CGROUP_CANFORK_START];
5208 return NULL;
5209}
5210
5211static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5212{
5213 void **private = subsys_canfork_priv_p(ss_priv, i);
5214 return private ? *private : NULL;
5215}
5216
b4f48b63 5217/**
eaf797ab 5218 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5219 * @child: pointer to task_struct of forking parent process.
b4f48b63 5220 *
eaf797ab
TH
5221 * A task is associated with the init_css_set until cgroup_post_fork()
5222 * attaches it to the parent's css_set. Empty cg_list indicates that
5223 * @child isn't holding reference to its css_set.
b4f48b63
PM
5224 */
5225void cgroup_fork(struct task_struct *child)
5226{
eaf797ab 5227 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5228 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5229}
5230
7e47682e
AS
5231/**
5232 * cgroup_can_fork - called on a new task before the process is exposed
5233 * @child: the task in question.
5234 *
5235 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5236 * returns an error, the fork aborts with that error code. This allows for
5237 * a cgroup subsystem to conditionally allow or deny new forks.
5238 */
5239int cgroup_can_fork(struct task_struct *child,
5240 void *ss_priv[CGROUP_CANFORK_COUNT])
5241{
5242 struct cgroup_subsys *ss;
5243 int i, j, ret;
5244
5245 for_each_subsys_which(ss, i, &have_canfork_callback) {
5246 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5247 if (ret)
5248 goto out_revert;
5249 }
5250
5251 return 0;
5252
5253out_revert:
5254 for_each_subsys(ss, j) {
5255 if (j >= i)
5256 break;
5257 if (ss->cancel_fork)
5258 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5259 }
5260
5261 return ret;
5262}
5263
5264/**
5265 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5266 * @child: the task in question
5267 *
5268 * This calls the cancel_fork() callbacks if a fork failed *after*
5269 * cgroup_can_fork() succeded.
5270 */
5271void cgroup_cancel_fork(struct task_struct *child,
5272 void *ss_priv[CGROUP_CANFORK_COUNT])
5273{
5274 struct cgroup_subsys *ss;
5275 int i;
5276
5277 for_each_subsys(ss, i)
5278 if (ss->cancel_fork)
5279 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5280}
5281
817929ec 5282/**
a043e3b2
LZ
5283 * cgroup_post_fork - called on a new task after adding it to the task list
5284 * @child: the task in question
5285 *
5edee61e
TH
5286 * Adds the task to the list running through its css_set if necessary and
5287 * call the subsystem fork() callbacks. Has to be after the task is
5288 * visible on the task list in case we race with the first call to
0942eeee 5289 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5290 * list.
a043e3b2 5291 */
7e47682e
AS
5292void cgroup_post_fork(struct task_struct *child,
5293 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5294{
30159ec7 5295 struct cgroup_subsys *ss;
5edee61e
TH
5296 int i;
5297
3ce3230a 5298 /*
251f8c03 5299 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5300 * function sets use_task_css_set_links before grabbing
5301 * tasklist_lock and we just went through tasklist_lock to add
5302 * @child, it's guaranteed that either we see the set
5303 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5304 * @child during its iteration.
5305 *
5306 * If we won the race, @child is associated with %current's
5307 * css_set. Grabbing css_set_rwsem guarantees both that the
5308 * association is stable, and, on completion of the parent's
5309 * migration, @child is visible in the source of migration or
5310 * already in the destination cgroup. This guarantee is necessary
5311 * when implementing operations which need to migrate all tasks of
5312 * a cgroup to another.
5313 *
251f8c03 5314 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5315 * will remain in init_css_set. This is safe because all tasks are
5316 * in the init_css_set before cg_links is enabled and there's no
5317 * operation which transfers all tasks out of init_css_set.
3ce3230a 5318 */
817929ec 5319 if (use_task_css_set_links) {
eaf797ab
TH
5320 struct css_set *cset;
5321
96d365e0 5322 down_write(&css_set_rwsem);
0e1d768f 5323 cset = task_css_set(current);
eaf797ab
TH
5324 if (list_empty(&child->cg_list)) {
5325 rcu_assign_pointer(child->cgroups, cset);
5326 list_add(&child->cg_list, &cset->tasks);
5327 get_css_set(cset);
5328 }
96d365e0 5329 up_write(&css_set_rwsem);
817929ec 5330 }
5edee61e
TH
5331
5332 /*
5333 * Call ss->fork(). This must happen after @child is linked on
5334 * css_set; otherwise, @child might change state between ->fork()
5335 * and addition to css_set.
5336 */
cb4a3167 5337 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5338 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5339}
5edee61e 5340
b4f48b63
PM
5341/**
5342 * cgroup_exit - detach cgroup from exiting task
5343 * @tsk: pointer to task_struct of exiting process
5344 *
5345 * Description: Detach cgroup from @tsk and release it.
5346 *
5347 * Note that cgroups marked notify_on_release force every task in
5348 * them to take the global cgroup_mutex mutex when exiting.
5349 * This could impact scaling on very large systems. Be reluctant to
5350 * use notify_on_release cgroups where very high task exit scaling
5351 * is required on large systems.
5352 *
0e1d768f
TH
5353 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5354 * call cgroup_exit() while the task is still competent to handle
5355 * notify_on_release(), then leave the task attached to the root cgroup in
5356 * each hierarchy for the remainder of its exit. No need to bother with
5357 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5358 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5359 */
1ec41830 5360void cgroup_exit(struct task_struct *tsk)
b4f48b63 5361{
30159ec7 5362 struct cgroup_subsys *ss;
5abb8855 5363 struct css_set *cset;
eaf797ab 5364 bool put_cset = false;
d41d5a01 5365 int i;
817929ec
PM
5366
5367 /*
0e1d768f
TH
5368 * Unlink from @tsk from its css_set. As migration path can't race
5369 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5370 */
5371 if (!list_empty(&tsk->cg_list)) {
96d365e0 5372 down_write(&css_set_rwsem);
0e1d768f 5373 list_del_init(&tsk->cg_list);
96d365e0 5374 up_write(&css_set_rwsem);
0e1d768f 5375 put_cset = true;
817929ec
PM
5376 }
5377
b4f48b63 5378 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5379 cset = task_css_set(tsk);
5380 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5381
cb4a3167
AS
5382 /* see cgroup_post_fork() for details */
5383 for_each_subsys_which(ss, i, &have_exit_callback) {
5384 struct cgroup_subsys_state *old_css = cset->subsys[i];
5385 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5386
cb4a3167 5387 ss->exit(css, old_css, tsk);
d41d5a01 5388 }
d41d5a01 5389
eaf797ab 5390 if (put_cset)
a25eb52e 5391 put_css_set(cset);
b4f48b63 5392}
697f4161 5393
bd89aabc 5394static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5395{
a25eb52e 5396 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5397 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5398 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5399}
5400
81a6a5cd
PM
5401/*
5402 * Notify userspace when a cgroup is released, by running the
5403 * configured release agent with the name of the cgroup (path
5404 * relative to the root of cgroup file system) as the argument.
5405 *
5406 * Most likely, this user command will try to rmdir this cgroup.
5407 *
5408 * This races with the possibility that some other task will be
5409 * attached to this cgroup before it is removed, or that some other
5410 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5411 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5412 * unused, and this cgroup will be reprieved from its death sentence,
5413 * to continue to serve a useful existence. Next time it's released,
5414 * we will get notified again, if it still has 'notify_on_release' set.
5415 *
5416 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5417 * means only wait until the task is successfully execve()'d. The
5418 * separate release agent task is forked by call_usermodehelper(),
5419 * then control in this thread returns here, without waiting for the
5420 * release agent task. We don't bother to wait because the caller of
5421 * this routine has no use for the exit status of the release agent
5422 * task, so no sense holding our caller up for that.
81a6a5cd 5423 */
81a6a5cd
PM
5424static void cgroup_release_agent(struct work_struct *work)
5425{
971ff493
ZL
5426 struct cgroup *cgrp =
5427 container_of(work, struct cgroup, release_agent_work);
5428 char *pathbuf = NULL, *agentbuf = NULL, *path;
5429 char *argv[3], *envp[3];
5430
81a6a5cd 5431 mutex_lock(&cgroup_mutex);
971ff493
ZL
5432
5433 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5434 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5435 if (!pathbuf || !agentbuf)
5436 goto out;
5437
5438 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5439 if (!path)
5440 goto out;
5441
5442 argv[0] = agentbuf;
5443 argv[1] = path;
5444 argv[2] = NULL;
5445
5446 /* minimal command environment */
5447 envp[0] = "HOME=/";
5448 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5449 envp[2] = NULL;
5450
81a6a5cd 5451 mutex_unlock(&cgroup_mutex);
971ff493 5452 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5453 goto out_free;
971ff493 5454out:
81a6a5cd 5455 mutex_unlock(&cgroup_mutex);
3e2cd91a 5456out_free:
971ff493
ZL
5457 kfree(agentbuf);
5458 kfree(pathbuf);
81a6a5cd 5459}
8bab8dde
PM
5460
5461static int __init cgroup_disable(char *str)
5462{
30159ec7 5463 struct cgroup_subsys *ss;
8bab8dde 5464 char *token;
30159ec7 5465 int i;
8bab8dde
PM
5466
5467 while ((token = strsep(&str, ",")) != NULL) {
5468 if (!*token)
5469 continue;
be45c900 5470
3ed80a62 5471 for_each_subsys(ss, i) {
8bab8dde
PM
5472 if (!strcmp(token, ss->name)) {
5473 ss->disabled = 1;
5474 printk(KERN_INFO "Disabling %s control group"
5475 " subsystem\n", ss->name);
5476 break;
5477 }
5478 }
5479 }
5480 return 1;
5481}
5482__setup("cgroup_disable=", cgroup_disable);
38460b48 5483
a8ddc821
TH
5484static int __init cgroup_set_legacy_files_on_dfl(char *str)
5485{
5486 printk("cgroup: using legacy files on the default hierarchy\n");
5487 cgroup_legacy_files_on_dfl = true;
5488 return 0;
5489}
5490__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5491
b77d7b60 5492/**
ec903c0c 5493 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5494 * @dentry: directory dentry of interest
5495 * @ss: subsystem of interest
b77d7b60 5496 *
5a17f543
TH
5497 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5498 * to get the corresponding css and return it. If such css doesn't exist
5499 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5500 */
ec903c0c
TH
5501struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5502 struct cgroup_subsys *ss)
e5d1367f 5503{
2bd59d48
TH
5504 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5505 struct cgroup_subsys_state *css = NULL;
e5d1367f 5506 struct cgroup *cgrp;
e5d1367f 5507
35cf0836 5508 /* is @dentry a cgroup dir? */
2bd59d48
TH
5509 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5510 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5511 return ERR_PTR(-EBADF);
5512
5a17f543
TH
5513 rcu_read_lock();
5514
2bd59d48
TH
5515 /*
5516 * This path doesn't originate from kernfs and @kn could already
5517 * have been or be removed at any point. @kn->priv is RCU
a4189487 5518 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5519 */
5520 cgrp = rcu_dereference(kn->priv);
5521 if (cgrp)
5522 css = cgroup_css(cgrp, ss);
5a17f543 5523
ec903c0c 5524 if (!css || !css_tryget_online(css))
5a17f543
TH
5525 css = ERR_PTR(-ENOENT);
5526
5527 rcu_read_unlock();
5528 return css;
e5d1367f 5529}
e5d1367f 5530
1cb650b9
LZ
5531/**
5532 * css_from_id - lookup css by id
5533 * @id: the cgroup id
5534 * @ss: cgroup subsys to be looked into
5535 *
5536 * Returns the css if there's valid one with @id, otherwise returns NULL.
5537 * Should be called under rcu_read_lock().
5538 */
5539struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5540{
6fa4918d 5541 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5542 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5543}
5544
fe693435 5545#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5546static struct cgroup_subsys_state *
5547debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5548{
5549 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5550
5551 if (!css)
5552 return ERR_PTR(-ENOMEM);
5553
5554 return css;
5555}
5556
eb95419b 5557static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5558{
eb95419b 5559 kfree(css);
fe693435
PM
5560}
5561
182446d0
TH
5562static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5563 struct cftype *cft)
fe693435 5564{
182446d0 5565 return cgroup_task_count(css->cgroup);
fe693435
PM
5566}
5567
182446d0
TH
5568static u64 current_css_set_read(struct cgroup_subsys_state *css,
5569 struct cftype *cft)
fe693435
PM
5570{
5571 return (u64)(unsigned long)current->cgroups;
5572}
5573
182446d0 5574static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5575 struct cftype *cft)
fe693435
PM
5576{
5577 u64 count;
5578
5579 rcu_read_lock();
a8ad805c 5580 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5581 rcu_read_unlock();
5582 return count;
5583}
5584
2da8ca82 5585static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5586{
69d0206c 5587 struct cgrp_cset_link *link;
5abb8855 5588 struct css_set *cset;
e61734c5
TH
5589 char *name_buf;
5590
5591 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5592 if (!name_buf)
5593 return -ENOMEM;
7717f7ba 5594
96d365e0 5595 down_read(&css_set_rwsem);
7717f7ba 5596 rcu_read_lock();
5abb8855 5597 cset = rcu_dereference(current->cgroups);
69d0206c 5598 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5599 struct cgroup *c = link->cgrp;
7717f7ba 5600
a2dd4247 5601 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5602 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5603 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5604 }
5605 rcu_read_unlock();
96d365e0 5606 up_read(&css_set_rwsem);
e61734c5 5607 kfree(name_buf);
7717f7ba
PM
5608 return 0;
5609}
5610
5611#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5612static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5613{
2da8ca82 5614 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5615 struct cgrp_cset_link *link;
7717f7ba 5616
96d365e0 5617 down_read(&css_set_rwsem);
182446d0 5618 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5619 struct css_set *cset = link->cset;
7717f7ba
PM
5620 struct task_struct *task;
5621 int count = 0;
c7561128 5622
5abb8855 5623 seq_printf(seq, "css_set %p\n", cset);
c7561128 5624
5abb8855 5625 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5626 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5627 goto overflow;
5628 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5629 }
5630
5631 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5632 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5633 goto overflow;
5634 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5635 }
c7561128
TH
5636 continue;
5637 overflow:
5638 seq_puts(seq, " ...\n");
7717f7ba 5639 }
96d365e0 5640 up_read(&css_set_rwsem);
7717f7ba
PM
5641 return 0;
5642}
5643
182446d0 5644static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5645{
a25eb52e
ZL
5646 return (!cgroup_has_tasks(css->cgroup) &&
5647 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5648}
5649
5650static struct cftype debug_files[] = {
fe693435
PM
5651 {
5652 .name = "taskcount",
5653 .read_u64 = debug_taskcount_read,
5654 },
5655
5656 {
5657 .name = "current_css_set",
5658 .read_u64 = current_css_set_read,
5659 },
5660
5661 {
5662 .name = "current_css_set_refcount",
5663 .read_u64 = current_css_set_refcount_read,
5664 },
5665
7717f7ba
PM
5666 {
5667 .name = "current_css_set_cg_links",
2da8ca82 5668 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5669 },
5670
5671 {
5672 .name = "cgroup_css_links",
2da8ca82 5673 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5674 },
5675
fe693435
PM
5676 {
5677 .name = "releasable",
5678 .read_u64 = releasable_read,
5679 },
fe693435 5680
4baf6e33
TH
5681 { } /* terminate */
5682};
fe693435 5683
073219e9 5684struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5685 .css_alloc = debug_css_alloc,
5686 .css_free = debug_css_free,
5577964e 5687 .legacy_cftypes = debug_files,
fe693435
PM
5688};
5689#endif /* CONFIG_CGROUP_DEBUG */