blkcg: don't create "io.stat" on the root cgroup
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
1ed13287
TH
106struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
107
8353da1f 108#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
8353da1f 111 "cgroup_mutex or RCU read lock required");
780cd8b3 112
e5fca243
TH
113/*
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
118 */
119static struct workqueue_struct *cgroup_destroy_wq;
120
b1a21367
TH
121/*
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
124 */
125static struct workqueue_struct *cgroup_pidlist_destroy_wq;
126
3ed80a62 127/* generate an array of cgroup subsystem pointers */
073219e9 128#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 129static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
130#include <linux/cgroup_subsys.h>
131};
073219e9
TH
132#undef SUBSYS
133
134/* array of cgroup subsystem names */
135#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9 139#undef SUBSYS
ddbcc7e8 140
49d1dc4b
TH
141/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142#define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147#include <linux/cgroup_subsys.h>
148#undef SUBSYS
149
150#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151static struct static_key_true *cgroup_subsys_enabled_key[] = {
152#include <linux/cgroup_subsys.h>
153};
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
ddbcc7e8 162/*
3dd06ffa 163 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
ddbcc7e8 166 */
a2dd4247 167struct cgroup_root cgrp_dfl_root;
d0ec4230 168EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 169
a2dd4247
TH
170/*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174static bool cgrp_dfl_root_visible;
ddbcc7e8 175
5533e011 176/* some controllers are not supported in the default hierarchy */
8ab456ac 177static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 178
ddbcc7e8
PM
179/* The list of hierarchy roots */
180
9871bf95
TH
181static LIST_HEAD(cgroup_roots);
182static int cgroup_root_count;
ddbcc7e8 183
3417ae1f 184/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 185static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 186
794611a1 187/*
0cb51d71
TH
188 * Assign a monotonically increasing serial number to csses. It guarantees
189 * cgroups with bigger numbers are newer than those with smaller numbers.
190 * Also, as csses are always appended to the parent's ->children list, it
191 * guarantees that sibling csses are always sorted in the ascending serial
192 * number order on the list. Protected by cgroup_mutex.
794611a1 193 */
0cb51d71 194static u64 css_serial_nr_next = 1;
794611a1 195
cb4a3167
AS
196/*
197 * These bitmask flags indicate whether tasks in the fork and exit paths have
198 * fork/exit handlers to call. This avoids us having to do extra work in the
199 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 200 */
cb4a3167
AS
201static unsigned long have_fork_callback __read_mostly;
202static unsigned long have_exit_callback __read_mostly;
afcf6c8b 203static unsigned long have_free_callback __read_mostly;
ddbcc7e8 204
7e47682e
AS
205/* Ditto for the can_fork callback. */
206static unsigned long have_canfork_callback __read_mostly;
207
a14c6874
TH
208static struct cftype cgroup_dfl_base_files[];
209static struct cftype cgroup_legacy_base_files[];
628f7cd4 210
3dd06ffa 211static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 212 unsigned long ss_mask);
ed27b9f7 213static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 214static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
215static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
216 bool visible);
9d755d33 217static void css_release(struct percpu_ref *ref);
f8f22e53 218static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
219static int cgroup_addrm_files(struct cgroup_subsys_state *css,
220 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 221 bool is_add);
42809dd4 222
fc5ed1e9
TH
223/**
224 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
225 * @ssid: subsys ID of interest
226 *
227 * cgroup_subsys_enabled() can only be used with literal subsys names which
228 * is fine for individual subsystems but unsuitable for cgroup core. This
229 * is slower static_key_enabled() based test indexed by @ssid.
230 */
231static bool cgroup_ssid_enabled(int ssid)
232{
233 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
234}
235
9e10a130
TH
236/**
237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
238 * @cgrp: the cgroup of interest
239 *
240 * The default hierarchy is the v2 interface of cgroup and this function
241 * can be used to test whether a cgroup is on the default hierarchy for
242 * cases where a subsystem should behave differnetly depending on the
243 * interface version.
244 *
245 * The set of behaviors which change on the default hierarchy are still
246 * being determined and the mount option is prefixed with __DEVEL__.
247 *
248 * List of changed behaviors:
249 *
250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
251 * and "name" are disallowed.
252 *
253 * - When mounting an existing superblock, mount options should match.
254 *
255 * - Remount is disallowed.
256 *
257 * - rename(2) is disallowed.
258 *
259 * - "tasks" is removed. Everything should be at process granularity. Use
260 * "cgroup.procs" instead.
261 *
262 * - "cgroup.procs" is not sorted. pids will be unique unless they got
263 * recycled inbetween reads.
264 *
265 * - "release_agent" and "notify_on_release" are removed. Replacement
266 * notification mechanism will be implemented.
267 *
268 * - "cgroup.clone_children" is removed.
269 *
270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
271 * and its descendants contain no task; otherwise, 1. The file also
272 * generates kernfs notification which can be monitored through poll and
273 * [di]notify when the value of the file changes.
274 *
275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
276 * take masks of ancestors with non-empty cpus/mems, instead of being
277 * moved to an ancestor.
278 *
279 * - cpuset: a task can be moved into an empty cpuset, and again it takes
280 * masks of ancestors.
281 *
282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
283 * is not created.
284 *
285 * - blkcg: blk-throttle becomes properly hierarchical.
286 *
287 * - debug: disallowed on the default hierarchy.
288 */
289static bool cgroup_on_dfl(const struct cgroup *cgrp)
290{
291 return cgrp->root == &cgrp_dfl_root;
292}
293
6fa4918d
TH
294/* IDR wrappers which synchronize using cgroup_idr_lock */
295static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
296 gfp_t gfp_mask)
297{
298 int ret;
299
300 idr_preload(gfp_mask);
54504e97 301 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 302 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 303 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
304 idr_preload_end();
305 return ret;
306}
307
308static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
309{
310 void *ret;
311
54504e97 312 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 313 ret = idr_replace(idr, ptr, id);
54504e97 314 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
315 return ret;
316}
317
318static void cgroup_idr_remove(struct idr *idr, int id)
319{
54504e97 320 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 321 idr_remove(idr, id);
54504e97 322 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
323}
324
d51f39b0
TH
325static struct cgroup *cgroup_parent(struct cgroup *cgrp)
326{
327 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
328
329 if (parent_css)
330 return container_of(parent_css, struct cgroup, self);
331 return NULL;
332}
333
95109b62
TH
334/**
335 * cgroup_css - obtain a cgroup's css for the specified subsystem
336 * @cgrp: the cgroup of interest
9d800df1 337 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 338 *
ca8bdcaf
TH
339 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
340 * function must be called either under cgroup_mutex or rcu_read_lock() and
341 * the caller is responsible for pinning the returned css if it wants to
342 * keep accessing it outside the said locks. This function may return
343 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
344 */
345static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 346 struct cgroup_subsys *ss)
95109b62 347{
ca8bdcaf 348 if (ss)
aec25020 349 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 350 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 351 else
9d800df1 352 return &cgrp->self;
95109b62 353}
42809dd4 354
aec3dfcb
TH
355/**
356 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
357 * @cgrp: the cgroup of interest
9d800df1 358 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 359 *
d0f702e6 360 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
361 * as the matching css of the nearest ancestor including self which has @ss
362 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
363 * function is guaranteed to return non-NULL css.
364 */
365static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
367{
368 lockdep_assert_held(&cgroup_mutex);
369
370 if (!ss)
9d800df1 371 return &cgrp->self;
aec3dfcb
TH
372
373 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
374 return NULL;
375
eeecbd19
TH
376 /*
377 * This function is used while updating css associations and thus
378 * can't test the csses directly. Use ->child_subsys_mask.
379 */
d51f39b0
TH
380 while (cgroup_parent(cgrp) &&
381 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
382 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
383
384 return cgroup_css(cgrp, ss);
95109b62 385}
42809dd4 386
eeecbd19
TH
387/**
388 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
389 * @cgrp: the cgroup of interest
390 * @ss: the subsystem of interest
391 *
392 * Find and get the effective css of @cgrp for @ss. The effective css is
393 * defined as the matching css of the nearest ancestor including self which
394 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
395 * the root css is returned, so this function always returns a valid css.
396 * The returned css must be put using css_put().
397 */
398struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
399 struct cgroup_subsys *ss)
400{
401 struct cgroup_subsys_state *css;
402
403 rcu_read_lock();
404
405 do {
406 css = cgroup_css(cgrp, ss);
407
408 if (css && css_tryget_online(css))
409 goto out_unlock;
410 cgrp = cgroup_parent(cgrp);
411 } while (cgrp);
412
413 css = init_css_set.subsys[ss->id];
414 css_get(css);
415out_unlock:
416 rcu_read_unlock();
417 return css;
418}
419
ddbcc7e8 420/* convenient tests for these bits */
54766d4a 421static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 422{
184faf32 423 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
424}
425
052c3f3a
TH
426static void cgroup_get(struct cgroup *cgrp)
427{
428 WARN_ON_ONCE(cgroup_is_dead(cgrp));
429 css_get(&cgrp->self);
430}
431
432static bool cgroup_tryget(struct cgroup *cgrp)
433{
434 return css_tryget(&cgrp->self);
435}
436
437static void cgroup_put(struct cgroup *cgrp)
438{
439 css_put(&cgrp->self);
440}
441
b4168640 442struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 443{
2bd59d48 444 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 445 struct cftype *cft = of_cft(of);
2bd59d48
TH
446
447 /*
448 * This is open and unprotected implementation of cgroup_css().
449 * seq_css() is only called from a kernfs file operation which has
450 * an active reference on the file. Because all the subsystem
451 * files are drained before a css is disassociated with a cgroup,
452 * the matching css from the cgroup's subsys table is guaranteed to
453 * be and stay valid until the enclosing operation is complete.
454 */
455 if (cft->ss)
456 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
457 else
9d800df1 458 return &cgrp->self;
59f5296b 459}
b4168640 460EXPORT_SYMBOL_GPL(of_css);
59f5296b 461
78574cf9
LZ
462/**
463 * cgroup_is_descendant - test ancestry
464 * @cgrp: the cgroup to be tested
465 * @ancestor: possible ancestor of @cgrp
466 *
467 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
468 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
469 * and @ancestor are accessible.
470 */
471bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
472{
473 while (cgrp) {
474 if (cgrp == ancestor)
475 return true;
d51f39b0 476 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
477 }
478 return false;
479}
ddbcc7e8 480
e9685a03 481static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 482{
bd89aabc 483 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
484}
485
1c6727af
TH
486/**
487 * for_each_css - iterate all css's of a cgroup
488 * @css: the iteration cursor
489 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
490 * @cgrp: the target cgroup to iterate css's of
491 *
aec3dfcb 492 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
493 */
494#define for_each_css(css, ssid, cgrp) \
495 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
496 if (!((css) = rcu_dereference_check( \
497 (cgrp)->subsys[(ssid)], \
498 lockdep_is_held(&cgroup_mutex)))) { } \
499 else
500
aec3dfcb
TH
501/**
502 * for_each_e_css - iterate all effective css's of a cgroup
503 * @css: the iteration cursor
504 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
505 * @cgrp: the target cgroup to iterate css's of
506 *
507 * Should be called under cgroup_[tree_]mutex.
508 */
509#define for_each_e_css(css, ssid, cgrp) \
510 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
511 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
512 ; \
513 else
514
30159ec7 515/**
3ed80a62 516 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 517 * @ss: the iteration cursor
780cd8b3 518 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 519 */
780cd8b3 520#define for_each_subsys(ss, ssid) \
3ed80a62
TH
521 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
522 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 523
cb4a3167
AS
524/**
525 * for_each_subsys_which - filter for_each_subsys with a bitmask
526 * @ss: the iteration cursor
527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
528 * @ss_maskp: a pointer to the bitmask
529 *
530 * The block will only run for cases where the ssid-th bit (1 << ssid) of
531 * mask is set to 1.
532 */
533#define for_each_subsys_which(ss, ssid, ss_maskp) \
534 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 535 (ssid) = 0; \
cb4a3167
AS
536 else \
537 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
538 if (((ss) = cgroup_subsys[ssid]) && false) \
539 break; \
540 else
541
985ed670
TH
542/* iterate across the hierarchies */
543#define for_each_root(root) \
5549c497 544 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 545
f8f22e53
TH
546/* iterate over child cgrps, lock should be held throughout iteration */
547#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 548 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 549 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
550 cgroup_is_dead(child); })) \
551 ; \
552 else
7ae1bad9 553
81a6a5cd 554static void cgroup_release_agent(struct work_struct *work);
bd89aabc 555static void check_for_release(struct cgroup *cgrp);
81a6a5cd 556
69d0206c
TH
557/*
558 * A cgroup can be associated with multiple css_sets as different tasks may
559 * belong to different cgroups on different hierarchies. In the other
560 * direction, a css_set is naturally associated with multiple cgroups.
561 * This M:N relationship is represented by the following link structure
562 * which exists for each association and allows traversing the associations
563 * from both sides.
564 */
565struct cgrp_cset_link {
566 /* the cgroup and css_set this link associates */
567 struct cgroup *cgrp;
568 struct css_set *cset;
569
570 /* list of cgrp_cset_links anchored at cgrp->cset_links */
571 struct list_head cset_link;
572
573 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
574 struct list_head cgrp_link;
817929ec
PM
575};
576
172a2c06
TH
577/*
578 * The default css_set - used by init and its children prior to any
817929ec
PM
579 * hierarchies being mounted. It contains a pointer to the root state
580 * for each subsystem. Also used to anchor the list of css_sets. Not
581 * reference-counted, to improve performance when child cgroups
582 * haven't been created.
583 */
5024ae29 584struct css_set init_css_set = {
172a2c06
TH
585 .refcount = ATOMIC_INIT(1),
586 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
587 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
588 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
589 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
590 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 591 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 592};
817929ec 593
172a2c06 594static int css_set_count = 1; /* 1 for init_css_set */
817929ec 595
0de0942d
TH
596/**
597 * css_set_populated - does a css_set contain any tasks?
598 * @cset: target css_set
599 */
600static bool css_set_populated(struct css_set *cset)
601{
f0d9a5f1 602 lockdep_assert_held(&css_set_lock);
0de0942d
TH
603
604 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
605}
606
842b597e
TH
607/**
608 * cgroup_update_populated - updated populated count of a cgroup
609 * @cgrp: the target cgroup
610 * @populated: inc or dec populated count
611 *
0de0942d
TH
612 * One of the css_sets associated with @cgrp is either getting its first
613 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
614 * count is propagated towards root so that a given cgroup's populated_cnt
615 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
616 *
617 * @cgrp's interface file "cgroup.populated" is zero if
618 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
619 * changes from or to zero, userland is notified that the content of the
620 * interface file has changed. This can be used to detect when @cgrp and
621 * its descendants become populated or empty.
622 */
623static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
624{
f0d9a5f1 625 lockdep_assert_held(&css_set_lock);
842b597e
TH
626
627 do {
628 bool trigger;
629
630 if (populated)
631 trigger = !cgrp->populated_cnt++;
632 else
633 trigger = !--cgrp->populated_cnt;
634
635 if (!trigger)
636 break;
637
ad2ed2b3 638 check_for_release(cgrp);
6f60eade
TH
639 cgroup_file_notify(&cgrp->events_file);
640
d51f39b0 641 cgrp = cgroup_parent(cgrp);
842b597e
TH
642 } while (cgrp);
643}
644
0de0942d
TH
645/**
646 * css_set_update_populated - update populated state of a css_set
647 * @cset: target css_set
648 * @populated: whether @cset is populated or depopulated
649 *
650 * @cset is either getting the first task or losing the last. Update the
651 * ->populated_cnt of all associated cgroups accordingly.
652 */
653static void css_set_update_populated(struct css_set *cset, bool populated)
654{
655 struct cgrp_cset_link *link;
656
f0d9a5f1 657 lockdep_assert_held(&css_set_lock);
0de0942d
TH
658
659 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
660 cgroup_update_populated(link->cgrp, populated);
661}
662
f6d7d049
TH
663/**
664 * css_set_move_task - move a task from one css_set to another
665 * @task: task being moved
666 * @from_cset: css_set @task currently belongs to (may be NULL)
667 * @to_cset: new css_set @task is being moved to (may be NULL)
668 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
669 *
670 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
671 * css_set, @from_cset can be NULL. If @task is being disassociated
672 * instead of moved, @to_cset can be NULL.
673 *
ed27b9f7
TH
674 * This function automatically handles populated_cnt updates and
675 * css_task_iter adjustments but the caller is responsible for managing
676 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
677 */
678static void css_set_move_task(struct task_struct *task,
679 struct css_set *from_cset, struct css_set *to_cset,
680 bool use_mg_tasks)
681{
f0d9a5f1 682 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
683
684 if (from_cset) {
ed27b9f7
TH
685 struct css_task_iter *it, *pos;
686
f6d7d049 687 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
688
689 /*
690 * @task is leaving, advance task iterators which are
691 * pointing to it so that they can resume at the next
692 * position. Advancing an iterator might remove it from
693 * the list, use safe walk. See css_task_iter_advance*()
694 * for details.
695 */
696 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
697 iters_node)
698 if (it->task_pos == &task->cg_list)
699 css_task_iter_advance(it);
700
f6d7d049
TH
701 list_del_init(&task->cg_list);
702 if (!css_set_populated(from_cset))
703 css_set_update_populated(from_cset, false);
704 } else {
705 WARN_ON_ONCE(!list_empty(&task->cg_list));
706 }
707
708 if (to_cset) {
709 /*
710 * We are synchronized through cgroup_threadgroup_rwsem
711 * against PF_EXITING setting such that we can't race
712 * against cgroup_exit() changing the css_set to
713 * init_css_set and dropping the old one.
714 */
715 WARN_ON_ONCE(task->flags & PF_EXITING);
716
717 if (!css_set_populated(to_cset))
718 css_set_update_populated(to_cset, true);
719 rcu_assign_pointer(task->cgroups, to_cset);
720 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
721 &to_cset->tasks);
722 }
723}
724
7717f7ba
PM
725/*
726 * hash table for cgroup groups. This improves the performance to find
727 * an existing css_set. This hash doesn't (currently) take into
728 * account cgroups in empty hierarchies.
729 */
472b1053 730#define CSS_SET_HASH_BITS 7
0ac801fe 731static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 732
0ac801fe 733static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 734{
0ac801fe 735 unsigned long key = 0UL;
30159ec7
TH
736 struct cgroup_subsys *ss;
737 int i;
472b1053 738
30159ec7 739 for_each_subsys(ss, i)
0ac801fe
LZ
740 key += (unsigned long)css[i];
741 key = (key >> 16) ^ key;
472b1053 742
0ac801fe 743 return key;
472b1053
LZ
744}
745
a25eb52e 746static void put_css_set_locked(struct css_set *cset)
b4f48b63 747{
69d0206c 748 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
749 struct cgroup_subsys *ss;
750 int ssid;
5abb8855 751
f0d9a5f1 752 lockdep_assert_held(&css_set_lock);
89c5509b
TH
753
754 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 755 return;
81a6a5cd 756
2c6ab6d2 757 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
758 for_each_subsys(ss, ssid)
759 list_del(&cset->e_cset_node[ssid]);
5abb8855 760 hash_del(&cset->hlist);
2c6ab6d2
PM
761 css_set_count--;
762
69d0206c 763 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
764 list_del(&link->cset_link);
765 list_del(&link->cgrp_link);
2ceb231b
TH
766 if (cgroup_parent(link->cgrp))
767 cgroup_put(link->cgrp);
2c6ab6d2 768 kfree(link);
81a6a5cd 769 }
2c6ab6d2 770
5abb8855 771 kfree_rcu(cset, rcu_head);
b4f48b63
PM
772}
773
a25eb52e 774static void put_css_set(struct css_set *cset)
89c5509b
TH
775{
776 /*
777 * Ensure that the refcount doesn't hit zero while any readers
778 * can see it. Similar to atomic_dec_and_lock(), but for an
779 * rwlock
780 */
781 if (atomic_add_unless(&cset->refcount, -1, 1))
782 return;
783
f0d9a5f1 784 spin_lock_bh(&css_set_lock);
a25eb52e 785 put_css_set_locked(cset);
f0d9a5f1 786 spin_unlock_bh(&css_set_lock);
89c5509b
TH
787}
788
817929ec
PM
789/*
790 * refcounted get/put for css_set objects
791 */
5abb8855 792static inline void get_css_set(struct css_set *cset)
817929ec 793{
5abb8855 794 atomic_inc(&cset->refcount);
817929ec
PM
795}
796
b326f9d0 797/**
7717f7ba 798 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
799 * @cset: candidate css_set being tested
800 * @old_cset: existing css_set for a task
7717f7ba
PM
801 * @new_cgrp: cgroup that's being entered by the task
802 * @template: desired set of css pointers in css_set (pre-calculated)
803 *
6f4b7e63 804 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
805 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
806 */
5abb8855
TH
807static bool compare_css_sets(struct css_set *cset,
808 struct css_set *old_cset,
7717f7ba
PM
809 struct cgroup *new_cgrp,
810 struct cgroup_subsys_state *template[])
811{
812 struct list_head *l1, *l2;
813
aec3dfcb
TH
814 /*
815 * On the default hierarchy, there can be csets which are
816 * associated with the same set of cgroups but different csses.
817 * Let's first ensure that csses match.
818 */
819 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 820 return false;
7717f7ba
PM
821
822 /*
823 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
824 * different cgroups in hierarchies. As different cgroups may
825 * share the same effective css, this comparison is always
826 * necessary.
7717f7ba 827 */
69d0206c
TH
828 l1 = &cset->cgrp_links;
829 l2 = &old_cset->cgrp_links;
7717f7ba 830 while (1) {
69d0206c 831 struct cgrp_cset_link *link1, *link2;
5abb8855 832 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
833
834 l1 = l1->next;
835 l2 = l2->next;
836 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
837 if (l1 == &cset->cgrp_links) {
838 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
839 break;
840 } else {
69d0206c 841 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
842 }
843 /* Locate the cgroups associated with these links. */
69d0206c
TH
844 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
845 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
846 cgrp1 = link1->cgrp;
847 cgrp2 = link2->cgrp;
7717f7ba 848 /* Hierarchies should be linked in the same order. */
5abb8855 849 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
850
851 /*
852 * If this hierarchy is the hierarchy of the cgroup
853 * that's changing, then we need to check that this
854 * css_set points to the new cgroup; if it's any other
855 * hierarchy, then this css_set should point to the
856 * same cgroup as the old css_set.
857 */
5abb8855
TH
858 if (cgrp1->root == new_cgrp->root) {
859 if (cgrp1 != new_cgrp)
7717f7ba
PM
860 return false;
861 } else {
5abb8855 862 if (cgrp1 != cgrp2)
7717f7ba
PM
863 return false;
864 }
865 }
866 return true;
867}
868
b326f9d0
TH
869/**
870 * find_existing_css_set - init css array and find the matching css_set
871 * @old_cset: the css_set that we're using before the cgroup transition
872 * @cgrp: the cgroup that we're moving into
873 * @template: out param for the new set of csses, should be clear on entry
817929ec 874 */
5abb8855
TH
875static struct css_set *find_existing_css_set(struct css_set *old_cset,
876 struct cgroup *cgrp,
877 struct cgroup_subsys_state *template[])
b4f48b63 878{
3dd06ffa 879 struct cgroup_root *root = cgrp->root;
30159ec7 880 struct cgroup_subsys *ss;
5abb8855 881 struct css_set *cset;
0ac801fe 882 unsigned long key;
b326f9d0 883 int i;
817929ec 884
aae8aab4
BB
885 /*
886 * Build the set of subsystem state objects that we want to see in the
887 * new css_set. while subsystems can change globally, the entries here
888 * won't change, so no need for locking.
889 */
30159ec7 890 for_each_subsys(ss, i) {
f392e51c 891 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
892 /*
893 * @ss is in this hierarchy, so we want the
894 * effective css from @cgrp.
895 */
896 template[i] = cgroup_e_css(cgrp, ss);
817929ec 897 } else {
aec3dfcb
TH
898 /*
899 * @ss is not in this hierarchy, so we don't want
900 * to change the css.
901 */
5abb8855 902 template[i] = old_cset->subsys[i];
817929ec
PM
903 }
904 }
905
0ac801fe 906 key = css_set_hash(template);
5abb8855
TH
907 hash_for_each_possible(css_set_table, cset, hlist, key) {
908 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
909 continue;
910
911 /* This css_set matches what we need */
5abb8855 912 return cset;
472b1053 913 }
817929ec
PM
914
915 /* No existing cgroup group matched */
916 return NULL;
917}
918
69d0206c 919static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 920{
69d0206c 921 struct cgrp_cset_link *link, *tmp_link;
36553434 922
69d0206c
TH
923 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
924 list_del(&link->cset_link);
36553434
LZ
925 kfree(link);
926 }
927}
928
69d0206c
TH
929/**
930 * allocate_cgrp_cset_links - allocate cgrp_cset_links
931 * @count: the number of links to allocate
932 * @tmp_links: list_head the allocated links are put on
933 *
934 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
935 * through ->cset_link. Returns 0 on success or -errno.
817929ec 936 */
69d0206c 937static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 938{
69d0206c 939 struct cgrp_cset_link *link;
817929ec 940 int i;
69d0206c
TH
941
942 INIT_LIST_HEAD(tmp_links);
943
817929ec 944 for (i = 0; i < count; i++) {
f4f4be2b 945 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 946 if (!link) {
69d0206c 947 free_cgrp_cset_links(tmp_links);
817929ec
PM
948 return -ENOMEM;
949 }
69d0206c 950 list_add(&link->cset_link, tmp_links);
817929ec
PM
951 }
952 return 0;
953}
954
c12f65d4
LZ
955/**
956 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 957 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 958 * @cset: the css_set to be linked
c12f65d4
LZ
959 * @cgrp: the destination cgroup
960 */
69d0206c
TH
961static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
962 struct cgroup *cgrp)
c12f65d4 963{
69d0206c 964 struct cgrp_cset_link *link;
c12f65d4 965
69d0206c 966 BUG_ON(list_empty(tmp_links));
6803c006
TH
967
968 if (cgroup_on_dfl(cgrp))
969 cset->dfl_cgrp = cgrp;
970
69d0206c
TH
971 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
972 link->cset = cset;
7717f7ba 973 link->cgrp = cgrp;
842b597e 974
7717f7ba 975 /*
389b9c1b
TH
976 * Always add links to the tail of the lists so that the lists are
977 * in choronological order.
7717f7ba 978 */
389b9c1b 979 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 980 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
981
982 if (cgroup_parent(cgrp))
983 cgroup_get(cgrp);
c12f65d4
LZ
984}
985
b326f9d0
TH
986/**
987 * find_css_set - return a new css_set with one cgroup updated
988 * @old_cset: the baseline css_set
989 * @cgrp: the cgroup to be updated
990 *
991 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
992 * substituted into the appropriate hierarchy.
817929ec 993 */
5abb8855
TH
994static struct css_set *find_css_set(struct css_set *old_cset,
995 struct cgroup *cgrp)
817929ec 996{
b326f9d0 997 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 998 struct css_set *cset;
69d0206c
TH
999 struct list_head tmp_links;
1000 struct cgrp_cset_link *link;
2d8f243a 1001 struct cgroup_subsys *ss;
0ac801fe 1002 unsigned long key;
2d8f243a 1003 int ssid;
472b1053 1004
b326f9d0
TH
1005 lockdep_assert_held(&cgroup_mutex);
1006
817929ec
PM
1007 /* First see if we already have a cgroup group that matches
1008 * the desired set */
f0d9a5f1 1009 spin_lock_bh(&css_set_lock);
5abb8855
TH
1010 cset = find_existing_css_set(old_cset, cgrp, template);
1011 if (cset)
1012 get_css_set(cset);
f0d9a5f1 1013 spin_unlock_bh(&css_set_lock);
817929ec 1014
5abb8855
TH
1015 if (cset)
1016 return cset;
817929ec 1017
f4f4be2b 1018 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1019 if (!cset)
817929ec
PM
1020 return NULL;
1021
69d0206c 1022 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1023 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1024 kfree(cset);
817929ec
PM
1025 return NULL;
1026 }
1027
5abb8855 1028 atomic_set(&cset->refcount, 1);
69d0206c 1029 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1030 INIT_LIST_HEAD(&cset->tasks);
c7561128 1031 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1032 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1033 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1034 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1035 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1036
1037 /* Copy the set of subsystem state objects generated in
1038 * find_existing_css_set() */
5abb8855 1039 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1040
f0d9a5f1 1041 spin_lock_bh(&css_set_lock);
817929ec 1042 /* Add reference counts and links from the new css_set. */
69d0206c 1043 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1044 struct cgroup *c = link->cgrp;
69d0206c 1045
7717f7ba
PM
1046 if (c->root == cgrp->root)
1047 c = cgrp;
69d0206c 1048 link_css_set(&tmp_links, cset, c);
7717f7ba 1049 }
817929ec 1050
69d0206c 1051 BUG_ON(!list_empty(&tmp_links));
817929ec 1052
817929ec 1053 css_set_count++;
472b1053 1054
2d8f243a 1055 /* Add @cset to the hash table */
5abb8855
TH
1056 key = css_set_hash(cset->subsys);
1057 hash_add(css_set_table, &cset->hlist, key);
472b1053 1058
2d8f243a
TH
1059 for_each_subsys(ss, ssid)
1060 list_add_tail(&cset->e_cset_node[ssid],
1061 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1062
f0d9a5f1 1063 spin_unlock_bh(&css_set_lock);
817929ec 1064
5abb8855 1065 return cset;
b4f48b63
PM
1066}
1067
3dd06ffa 1068static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1069{
3dd06ffa 1070 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1071
3dd06ffa 1072 return root_cgrp->root;
2bd59d48
TH
1073}
1074
3dd06ffa 1075static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1076{
1077 int id;
1078
1079 lockdep_assert_held(&cgroup_mutex);
1080
985ed670 1081 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1082 if (id < 0)
1083 return id;
1084
1085 root->hierarchy_id = id;
1086 return 0;
1087}
1088
3dd06ffa 1089static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1090{
1091 lockdep_assert_held(&cgroup_mutex);
1092
1093 if (root->hierarchy_id) {
1094 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1095 root->hierarchy_id = 0;
1096 }
1097}
1098
3dd06ffa 1099static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1100{
1101 if (root) {
d0f702e6 1102 /* hierarchy ID should already have been released */
f2e85d57
TH
1103 WARN_ON_ONCE(root->hierarchy_id);
1104
1105 idr_destroy(&root->cgroup_idr);
1106 kfree(root);
1107 }
1108}
1109
3dd06ffa 1110static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1111{
3dd06ffa 1112 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1113 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1114
2bd59d48 1115 mutex_lock(&cgroup_mutex);
f2e85d57 1116
776f02fa 1117 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1118 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1119
f2e85d57 1120 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1121 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1122
7717f7ba 1123 /*
f2e85d57
TH
1124 * Release all the links from cset_links to this hierarchy's
1125 * root cgroup
7717f7ba 1126 */
f0d9a5f1 1127 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1128
1129 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1130 list_del(&link->cset_link);
1131 list_del(&link->cgrp_link);
1132 kfree(link);
1133 }
f0d9a5f1
TH
1134
1135 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1136
1137 if (!list_empty(&root->root_list)) {
1138 list_del(&root->root_list);
1139 cgroup_root_count--;
1140 }
1141
1142 cgroup_exit_root_id(root);
1143
1144 mutex_unlock(&cgroup_mutex);
f2e85d57 1145
2bd59d48 1146 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1147 cgroup_free_root(root);
1148}
1149
ceb6a081
TH
1150/* look up cgroup associated with given css_set on the specified hierarchy */
1151static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1152 struct cgroup_root *root)
7717f7ba 1153{
7717f7ba
PM
1154 struct cgroup *res = NULL;
1155
96d365e0 1156 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1157 lockdep_assert_held(&css_set_lock);
96d365e0 1158
5abb8855 1159 if (cset == &init_css_set) {
3dd06ffa 1160 res = &root->cgrp;
7717f7ba 1161 } else {
69d0206c
TH
1162 struct cgrp_cset_link *link;
1163
1164 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1165 struct cgroup *c = link->cgrp;
69d0206c 1166
7717f7ba
PM
1167 if (c->root == root) {
1168 res = c;
1169 break;
1170 }
1171 }
1172 }
96d365e0 1173
7717f7ba
PM
1174 BUG_ON(!res);
1175 return res;
1176}
1177
ddbcc7e8 1178/*
ceb6a081 1179 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1180 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1181 */
1182static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1183 struct cgroup_root *root)
ceb6a081
TH
1184{
1185 /*
1186 * No need to lock the task - since we hold cgroup_mutex the
1187 * task can't change groups, so the only thing that can happen
1188 * is that it exits and its css is set back to init_css_set.
1189 */
1190 return cset_cgroup_from_root(task_css_set(task), root);
1191}
1192
ddbcc7e8 1193/*
ddbcc7e8
PM
1194 * A task must hold cgroup_mutex to modify cgroups.
1195 *
1196 * Any task can increment and decrement the count field without lock.
1197 * So in general, code holding cgroup_mutex can't rely on the count
1198 * field not changing. However, if the count goes to zero, then only
956db3ca 1199 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1200 * means that no tasks are currently attached, therefore there is no
1201 * way a task attached to that cgroup can fork (the other way to
1202 * increment the count). So code holding cgroup_mutex can safely
1203 * assume that if the count is zero, it will stay zero. Similarly, if
1204 * a task holds cgroup_mutex on a cgroup with zero count, it
1205 * knows that the cgroup won't be removed, as cgroup_rmdir()
1206 * needs that mutex.
1207 *
ddbcc7e8
PM
1208 * A cgroup can only be deleted if both its 'count' of using tasks
1209 * is zero, and its list of 'children' cgroups is empty. Since all
1210 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1211 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1212 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1213 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1214 *
1215 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1216 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1217 */
1218
2bd59d48 1219static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1220static const struct file_operations proc_cgroupstats_operations;
a424316c 1221
8d7e6fb0
TH
1222static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1223 char *buf)
ddbcc7e8 1224{
3e1d2eed
TH
1225 struct cgroup_subsys *ss = cft->ss;
1226
8d7e6fb0
TH
1227 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1228 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1229 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1230 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1231 cft->name);
8d7e6fb0
TH
1232 else
1233 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1234 return buf;
ddbcc7e8
PM
1235}
1236
f2e85d57
TH
1237/**
1238 * cgroup_file_mode - deduce file mode of a control file
1239 * @cft: the control file in question
1240 *
7dbdb199 1241 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1242 */
1243static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1244{
f2e85d57 1245 umode_t mode = 0;
65dff759 1246
f2e85d57
TH
1247 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1248 mode |= S_IRUGO;
1249
7dbdb199
TH
1250 if (cft->write_u64 || cft->write_s64 || cft->write) {
1251 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1252 mode |= S_IWUGO;
1253 else
1254 mode |= S_IWUSR;
1255 }
f2e85d57
TH
1256
1257 return mode;
65dff759
LZ
1258}
1259
af0ba678 1260/**
0f060deb 1261 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1262 * @cgrp: the target cgroup
0f060deb 1263 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1264 *
1265 * On the default hierarchy, a subsystem may request other subsystems to be
1266 * enabled together through its ->depends_on mask. In such cases, more
1267 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1268 *
0f060deb
TH
1269 * This function calculates which subsystems need to be enabled if
1270 * @subtree_control is to be applied to @cgrp. The returned mask is always
1271 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1272 */
8ab456ac
AS
1273static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1274 unsigned long subtree_control)
667c2491 1275{
af0ba678 1276 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1277 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1278 struct cgroup_subsys *ss;
1279 int ssid;
1280
1281 lockdep_assert_held(&cgroup_mutex);
1282
0f060deb
TH
1283 if (!cgroup_on_dfl(cgrp))
1284 return cur_ss_mask;
af0ba678
TH
1285
1286 while (true) {
8ab456ac 1287 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1288
a966a4ed
AS
1289 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1290 new_ss_mask |= ss->depends_on;
af0ba678
TH
1291
1292 /*
1293 * Mask out subsystems which aren't available. This can
1294 * happen only if some depended-upon subsystems were bound
1295 * to non-default hierarchies.
1296 */
1297 if (parent)
1298 new_ss_mask &= parent->child_subsys_mask;
1299 else
1300 new_ss_mask &= cgrp->root->subsys_mask;
1301
1302 if (new_ss_mask == cur_ss_mask)
1303 break;
1304 cur_ss_mask = new_ss_mask;
1305 }
1306
0f060deb
TH
1307 return cur_ss_mask;
1308}
1309
1310/**
1311 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1312 * @cgrp: the target cgroup
1313 *
1314 * Update @cgrp->child_subsys_mask according to the current
1315 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1316 */
1317static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1318{
1319 cgrp->child_subsys_mask =
1320 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1321}
1322
a9746d8d
TH
1323/**
1324 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1325 * @kn: the kernfs_node being serviced
1326 *
1327 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1328 * the method finishes if locking succeeded. Note that once this function
1329 * returns the cgroup returned by cgroup_kn_lock_live() may become
1330 * inaccessible any time. If the caller intends to continue to access the
1331 * cgroup, it should pin it before invoking this function.
1332 */
1333static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1334{
a9746d8d
TH
1335 struct cgroup *cgrp;
1336
1337 if (kernfs_type(kn) == KERNFS_DIR)
1338 cgrp = kn->priv;
1339 else
1340 cgrp = kn->parent->priv;
1341
1342 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1343
1344 kernfs_unbreak_active_protection(kn);
1345 cgroup_put(cgrp);
ddbcc7e8
PM
1346}
1347
a9746d8d
TH
1348/**
1349 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1350 * @kn: the kernfs_node being serviced
1351 *
1352 * This helper is to be used by a cgroup kernfs method currently servicing
1353 * @kn. It breaks the active protection, performs cgroup locking and
1354 * verifies that the associated cgroup is alive. Returns the cgroup if
1355 * alive; otherwise, %NULL. A successful return should be undone by a
1356 * matching cgroup_kn_unlock() invocation.
1357 *
1358 * Any cgroup kernfs method implementation which requires locking the
1359 * associated cgroup should use this helper. It avoids nesting cgroup
1360 * locking under kernfs active protection and allows all kernfs operations
1361 * including self-removal.
1362 */
1363static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1364{
a9746d8d
TH
1365 struct cgroup *cgrp;
1366
1367 if (kernfs_type(kn) == KERNFS_DIR)
1368 cgrp = kn->priv;
1369 else
1370 cgrp = kn->parent->priv;
05ef1d7c 1371
2739d3cc 1372 /*
01f6474c 1373 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1374 * active_ref. cgroup liveliness check alone provides enough
1375 * protection against removal. Ensure @cgrp stays accessible and
1376 * break the active_ref protection.
2739d3cc 1377 */
aa32362f
LZ
1378 if (!cgroup_tryget(cgrp))
1379 return NULL;
a9746d8d
TH
1380 kernfs_break_active_protection(kn);
1381
2bd59d48 1382 mutex_lock(&cgroup_mutex);
05ef1d7c 1383
a9746d8d
TH
1384 if (!cgroup_is_dead(cgrp))
1385 return cgrp;
1386
1387 cgroup_kn_unlock(kn);
1388 return NULL;
ddbcc7e8 1389}
05ef1d7c 1390
2739d3cc 1391static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1392{
2bd59d48 1393 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1394
01f6474c 1395 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1396 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1397}
1398
13af07df 1399/**
4df8dc90
TH
1400 * css_clear_dir - remove subsys files in a cgroup directory
1401 * @css: taget css
1402 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1403 */
4df8dc90
TH
1404static void css_clear_dir(struct cgroup_subsys_state *css,
1405 struct cgroup *cgrp_override)
05ef1d7c 1406{
4df8dc90
TH
1407 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1408 struct cftype *cfts;
05ef1d7c 1409
4df8dc90
TH
1410 list_for_each_entry(cfts, &css->ss->cfts, node)
1411 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1412}
1413
ccdca218 1414/**
4df8dc90
TH
1415 * css_populate_dir - create subsys files in a cgroup directory
1416 * @css: target css
1417 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1418 *
1419 * On failure, no file is added.
1420 */
4df8dc90
TH
1421static int css_populate_dir(struct cgroup_subsys_state *css,
1422 struct cgroup *cgrp_override)
ccdca218 1423{
4df8dc90
TH
1424 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1425 struct cftype *cfts, *failed_cfts;
1426 int ret;
ccdca218 1427
4df8dc90
TH
1428 if (!css->ss) {
1429 if (cgroup_on_dfl(cgrp))
1430 cfts = cgroup_dfl_base_files;
1431 else
1432 cfts = cgroup_legacy_base_files;
ccdca218 1433
4df8dc90
TH
1434 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1435 }
ccdca218 1436
4df8dc90
TH
1437 list_for_each_entry(cfts, &css->ss->cfts, node) {
1438 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1439 if (ret < 0) {
1440 failed_cfts = cfts;
1441 goto err;
ccdca218
TH
1442 }
1443 }
1444 return 0;
1445err:
4df8dc90
TH
1446 list_for_each_entry(cfts, &css->ss->cfts, node) {
1447 if (cfts == failed_cfts)
1448 break;
1449 cgroup_addrm_files(css, cgrp, cfts, false);
1450 }
ccdca218
TH
1451 return ret;
1452}
1453
8ab456ac
AS
1454static int rebind_subsystems(struct cgroup_root *dst_root,
1455 unsigned long ss_mask)
ddbcc7e8 1456{
1ada4838 1457 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1458 struct cgroup_subsys *ss;
8ab456ac 1459 unsigned long tmp_ss_mask;
2d8f243a 1460 int ssid, i, ret;
ddbcc7e8 1461
ace2bee8 1462 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1463
a966a4ed 1464 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1465 /* if @ss has non-root csses attached to it, can't move */
1466 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1467 return -EBUSY;
1d5be6b2 1468
5df36032 1469 /* can't move between two non-dummy roots either */
7fd8c565 1470 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1471 return -EBUSY;
ddbcc7e8
PM
1472 }
1473
5533e011
TH
1474 /* skip creating root files on dfl_root for inhibited subsystems */
1475 tmp_ss_mask = ss_mask;
1476 if (dst_root == &cgrp_dfl_root)
1477 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1478
4df8dc90
TH
1479 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1480 struct cgroup *scgrp = &ss->root->cgrp;
1481 int tssid;
1482
1483 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1484 if (!ret)
1485 continue;
ddbcc7e8 1486
a2dd4247
TH
1487 /*
1488 * Rebinding back to the default root is not allowed to
1489 * fail. Using both default and non-default roots should
1490 * be rare. Moving subsystems back and forth even more so.
1491 * Just warn about it and continue.
1492 */
4df8dc90
TH
1493 if (dst_root == &cgrp_dfl_root) {
1494 if (cgrp_dfl_root_visible) {
1495 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1496 ret, ss_mask);
1497 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1498 }
1499 continue;
a2dd4247 1500 }
4df8dc90
TH
1501
1502 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1503 if (tssid == ssid)
1504 break;
1505 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1506 }
1507 return ret;
5df36032 1508 }
3126121f
TH
1509
1510 /*
1511 * Nothing can fail from this point on. Remove files for the
1512 * removed subsystems and rebind each subsystem.
1513 */
a966a4ed 1514 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1515 struct cgroup_root *src_root = ss->root;
1516 struct cgroup *scgrp = &src_root->cgrp;
1517 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1518 struct css_set *cset;
a8a648c4 1519
1ada4838 1520 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1521
4df8dc90
TH
1522 css_clear_dir(css, NULL);
1523
1ada4838
TH
1524 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1525 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1526 ss->root = dst_root;
1ada4838 1527 css->cgroup = dcgrp;
73e80ed8 1528
f0d9a5f1 1529 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1530 hash_for_each(css_set_table, i, cset, hlist)
1531 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1532 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1533 spin_unlock_bh(&css_set_lock);
2d8f243a 1534
f392e51c 1535 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1536 scgrp->subtree_control &= ~(1 << ssid);
1537 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1538
bd53d617 1539 /* default hierarchy doesn't enable controllers by default */
f392e51c 1540 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1541 if (dst_root == &cgrp_dfl_root) {
1542 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1543 } else {
1ada4838
TH
1544 dcgrp->subtree_control |= 1 << ssid;
1545 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1546 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1547 }
a8a648c4 1548
5df36032
TH
1549 if (ss->bind)
1550 ss->bind(css);
ddbcc7e8 1551 }
ddbcc7e8 1552
1ada4838 1553 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1554 return 0;
1555}
1556
2bd59d48
TH
1557static int cgroup_show_options(struct seq_file *seq,
1558 struct kernfs_root *kf_root)
ddbcc7e8 1559{
3dd06ffa 1560 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1561 struct cgroup_subsys *ss;
b85d2040 1562 int ssid;
ddbcc7e8 1563
d98817d4
TH
1564 if (root != &cgrp_dfl_root)
1565 for_each_subsys(ss, ssid)
1566 if (root->subsys_mask & (1 << ssid))
61e57c0c 1567 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1568 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1569 seq_puts(seq, ",noprefix");
93438629 1570 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1571 seq_puts(seq, ",xattr");
69e943b7
TH
1572
1573 spin_lock(&release_agent_path_lock);
81a6a5cd 1574 if (strlen(root->release_agent_path))
a068acf2
KC
1575 seq_show_option(seq, "release_agent",
1576 root->release_agent_path);
69e943b7
TH
1577 spin_unlock(&release_agent_path_lock);
1578
3dd06ffa 1579 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1580 seq_puts(seq, ",clone_children");
c6d57f33 1581 if (strlen(root->name))
a068acf2 1582 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1583 return 0;
1584}
1585
1586struct cgroup_sb_opts {
8ab456ac 1587 unsigned long subsys_mask;
69dfa00c 1588 unsigned int flags;
81a6a5cd 1589 char *release_agent;
2260e7fc 1590 bool cpuset_clone_children;
c6d57f33 1591 char *name;
2c6ab6d2
PM
1592 /* User explicitly requested empty subsystem */
1593 bool none;
ddbcc7e8
PM
1594};
1595
cf5d5941 1596static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1597{
32a8cf23
DL
1598 char *token, *o = data;
1599 bool all_ss = false, one_ss = false;
8ab456ac 1600 unsigned long mask = -1UL;
30159ec7 1601 struct cgroup_subsys *ss;
7b9a6ba5 1602 int nr_opts = 0;
30159ec7 1603 int i;
f9ab5b5b
LZ
1604
1605#ifdef CONFIG_CPUSETS
69dfa00c 1606 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1607#endif
ddbcc7e8 1608
c6d57f33 1609 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1610
1611 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1612 nr_opts++;
1613
ddbcc7e8
PM
1614 if (!*token)
1615 return -EINVAL;
32a8cf23 1616 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1617 /* Explicitly have no subsystems */
1618 opts->none = true;
32a8cf23
DL
1619 continue;
1620 }
1621 if (!strcmp(token, "all")) {
1622 /* Mutually exclusive option 'all' + subsystem name */
1623 if (one_ss)
1624 return -EINVAL;
1625 all_ss = true;
1626 continue;
1627 }
873fe09e
TH
1628 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1629 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1630 continue;
1631 }
32a8cf23 1632 if (!strcmp(token, "noprefix")) {
93438629 1633 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1634 continue;
1635 }
1636 if (!strcmp(token, "clone_children")) {
2260e7fc 1637 opts->cpuset_clone_children = true;
32a8cf23
DL
1638 continue;
1639 }
03b1cde6 1640 if (!strcmp(token, "xattr")) {
93438629 1641 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1642 continue;
1643 }
32a8cf23 1644 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1645 /* Specifying two release agents is forbidden */
1646 if (opts->release_agent)
1647 return -EINVAL;
c6d57f33 1648 opts->release_agent =
e400c285 1649 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1650 if (!opts->release_agent)
1651 return -ENOMEM;
32a8cf23
DL
1652 continue;
1653 }
1654 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1655 const char *name = token + 5;
1656 /* Can't specify an empty name */
1657 if (!strlen(name))
1658 return -EINVAL;
1659 /* Must match [\w.-]+ */
1660 for (i = 0; i < strlen(name); i++) {
1661 char c = name[i];
1662 if (isalnum(c))
1663 continue;
1664 if ((c == '.') || (c == '-') || (c == '_'))
1665 continue;
1666 return -EINVAL;
1667 }
1668 /* Specifying two names is forbidden */
1669 if (opts->name)
1670 return -EINVAL;
1671 opts->name = kstrndup(name,
e400c285 1672 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1673 GFP_KERNEL);
1674 if (!opts->name)
1675 return -ENOMEM;
32a8cf23
DL
1676
1677 continue;
1678 }
1679
30159ec7 1680 for_each_subsys(ss, i) {
3e1d2eed 1681 if (strcmp(token, ss->legacy_name))
32a8cf23 1682 continue;
fc5ed1e9 1683 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1684 continue;
1685
1686 /* Mutually exclusive option 'all' + subsystem name */
1687 if (all_ss)
1688 return -EINVAL;
69dfa00c 1689 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1690 one_ss = true;
1691
1692 break;
1693 }
1694 if (i == CGROUP_SUBSYS_COUNT)
1695 return -ENOENT;
1696 }
1697
873fe09e 1698 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1699 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1700 if (nr_opts != 1) {
1701 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1702 return -EINVAL;
1703 }
7b9a6ba5 1704 return 0;
873fe09e
TH
1705 }
1706
7b9a6ba5
TH
1707 /*
1708 * If the 'all' option was specified select all the subsystems,
1709 * otherwise if 'none', 'name=' and a subsystem name options were
1710 * not specified, let's default to 'all'
1711 */
1712 if (all_ss || (!one_ss && !opts->none && !opts->name))
1713 for_each_subsys(ss, i)
fc5ed1e9 1714 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1715 opts->subsys_mask |= (1 << i);
1716
1717 /*
1718 * We either have to specify by name or by subsystems. (So all
1719 * empty hierarchies must have a name).
1720 */
1721 if (!opts->subsys_mask && !opts->name)
1722 return -EINVAL;
1723
f9ab5b5b
LZ
1724 /*
1725 * Option noprefix was introduced just for backward compatibility
1726 * with the old cpuset, so we allow noprefix only if mounting just
1727 * the cpuset subsystem.
1728 */
93438629 1729 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1730 return -EINVAL;
1731
2c6ab6d2 1732 /* Can't specify "none" and some subsystems */
a1a71b45 1733 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1734 return -EINVAL;
1735
ddbcc7e8
PM
1736 return 0;
1737}
1738
2bd59d48 1739static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1740{
1741 int ret = 0;
3dd06ffa 1742 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1743 struct cgroup_sb_opts opts;
8ab456ac 1744 unsigned long added_mask, removed_mask;
ddbcc7e8 1745
aa6ec29b
TH
1746 if (root == &cgrp_dfl_root) {
1747 pr_err("remount is not allowed\n");
873fe09e
TH
1748 return -EINVAL;
1749 }
1750
ddbcc7e8
PM
1751 mutex_lock(&cgroup_mutex);
1752
1753 /* See what subsystems are wanted */
1754 ret = parse_cgroupfs_options(data, &opts);
1755 if (ret)
1756 goto out_unlock;
1757
f392e51c 1758 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1759 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1760 task_tgid_nr(current), current->comm);
8b5a5a9d 1761
f392e51c
TH
1762 added_mask = opts.subsys_mask & ~root->subsys_mask;
1763 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1764
cf5d5941 1765 /* Don't allow flags or name to change at remount */
7450e90b 1766 if ((opts.flags ^ root->flags) ||
cf5d5941 1767 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1768 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1769 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1770 ret = -EINVAL;
1771 goto out_unlock;
1772 }
1773
f172e67c 1774 /* remounting is not allowed for populated hierarchies */
d5c419b6 1775 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1776 ret = -EBUSY;
0670e08b 1777 goto out_unlock;
cf5d5941 1778 }
ddbcc7e8 1779
5df36032 1780 ret = rebind_subsystems(root, added_mask);
3126121f 1781 if (ret)
0670e08b 1782 goto out_unlock;
ddbcc7e8 1783
3dd06ffa 1784 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1785
69e943b7
TH
1786 if (opts.release_agent) {
1787 spin_lock(&release_agent_path_lock);
81a6a5cd 1788 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1789 spin_unlock(&release_agent_path_lock);
1790 }
ddbcc7e8 1791 out_unlock:
66bdc9cf 1792 kfree(opts.release_agent);
c6d57f33 1793 kfree(opts.name);
ddbcc7e8 1794 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1795 return ret;
1796}
1797
afeb0f9f
TH
1798/*
1799 * To reduce the fork() overhead for systems that are not actually using
1800 * their cgroups capability, we don't maintain the lists running through
1801 * each css_set to its tasks until we see the list actually used - in other
1802 * words after the first mount.
1803 */
1804static bool use_task_css_set_links __read_mostly;
1805
1806static void cgroup_enable_task_cg_lists(void)
1807{
1808 struct task_struct *p, *g;
1809
f0d9a5f1 1810 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1811
1812 if (use_task_css_set_links)
1813 goto out_unlock;
1814
1815 use_task_css_set_links = true;
1816
1817 /*
1818 * We need tasklist_lock because RCU is not safe against
1819 * while_each_thread(). Besides, a forking task that has passed
1820 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1821 * is not guaranteed to have its child immediately visible in the
1822 * tasklist if we walk through it with RCU.
1823 */
1824 read_lock(&tasklist_lock);
1825 do_each_thread(g, p) {
afeb0f9f
TH
1826 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1827 task_css_set(p) != &init_css_set);
1828
1829 /*
1830 * We should check if the process is exiting, otherwise
1831 * it will race with cgroup_exit() in that the list
1832 * entry won't be deleted though the process has exited.
f153ad11
TH
1833 * Do it while holding siglock so that we don't end up
1834 * racing against cgroup_exit().
afeb0f9f 1835 */
f153ad11 1836 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1837 if (!(p->flags & PF_EXITING)) {
1838 struct css_set *cset = task_css_set(p);
1839
0de0942d
TH
1840 if (!css_set_populated(cset))
1841 css_set_update_populated(cset, true);
389b9c1b 1842 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1843 get_css_set(cset);
1844 }
f153ad11 1845 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1846 } while_each_thread(g, p);
1847 read_unlock(&tasklist_lock);
1848out_unlock:
f0d9a5f1 1849 spin_unlock_bh(&css_set_lock);
afeb0f9f 1850}
ddbcc7e8 1851
cc31edce
PM
1852static void init_cgroup_housekeeping(struct cgroup *cgrp)
1853{
2d8f243a
TH
1854 struct cgroup_subsys *ss;
1855 int ssid;
1856
d5c419b6
TH
1857 INIT_LIST_HEAD(&cgrp->self.sibling);
1858 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1859 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1860 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1861 INIT_LIST_HEAD(&cgrp->pidlists);
1862 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1863 cgrp->self.cgroup = cgrp;
184faf32 1864 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1865
1866 for_each_subsys(ss, ssid)
1867 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1868
1869 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1870 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1871}
c6d57f33 1872
3dd06ffa 1873static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1874 struct cgroup_sb_opts *opts)
ddbcc7e8 1875{
3dd06ffa 1876 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1877
ddbcc7e8 1878 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1879 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1880 cgrp->root = root;
cc31edce 1881 init_cgroup_housekeeping(cgrp);
4e96ee8e 1882 idr_init(&root->cgroup_idr);
c6d57f33 1883
c6d57f33
PM
1884 root->flags = opts->flags;
1885 if (opts->release_agent)
1886 strcpy(root->release_agent_path, opts->release_agent);
1887 if (opts->name)
1888 strcpy(root->name, opts->name);
2260e7fc 1889 if (opts->cpuset_clone_children)
3dd06ffa 1890 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1891}
1892
8ab456ac 1893static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1894{
d427dfeb 1895 LIST_HEAD(tmp_links);
3dd06ffa 1896 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1897 struct css_set *cset;
d427dfeb 1898 int i, ret;
2c6ab6d2 1899
d427dfeb 1900 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1901
cf780b7d 1902 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1903 if (ret < 0)
2bd59d48 1904 goto out;
d427dfeb 1905 root_cgrp->id = ret;
c6d57f33 1906
2aad2a86
TH
1907 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1908 GFP_KERNEL);
9d755d33
TH
1909 if (ret)
1910 goto out;
1911
d427dfeb 1912 /*
f0d9a5f1 1913 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1914 * but that's OK - it can only be increased by someone holding
1915 * cgroup_lock, and that's us. The worst that can happen is that we
1916 * have some link structures left over
1917 */
1918 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1919 if (ret)
9d755d33 1920 goto cancel_ref;
ddbcc7e8 1921
985ed670 1922 ret = cgroup_init_root_id(root);
ddbcc7e8 1923 if (ret)
9d755d33 1924 goto cancel_ref;
ddbcc7e8 1925
2bd59d48
TH
1926 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1927 KERNFS_ROOT_CREATE_DEACTIVATED,
1928 root_cgrp);
1929 if (IS_ERR(root->kf_root)) {
1930 ret = PTR_ERR(root->kf_root);
1931 goto exit_root_id;
1932 }
1933 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1934
4df8dc90 1935 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1936 if (ret)
2bd59d48 1937 goto destroy_root;
ddbcc7e8 1938
5df36032 1939 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1940 if (ret)
2bd59d48 1941 goto destroy_root;
ddbcc7e8 1942
d427dfeb
TH
1943 /*
1944 * There must be no failure case after here, since rebinding takes
1945 * care of subsystems' refcounts, which are explicitly dropped in
1946 * the failure exit path.
1947 */
1948 list_add(&root->root_list, &cgroup_roots);
1949 cgroup_root_count++;
0df6a63f 1950
d427dfeb 1951 /*
3dd06ffa 1952 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1953 * objects.
1954 */
f0d9a5f1 1955 spin_lock_bh(&css_set_lock);
0de0942d 1956 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1957 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1958 if (css_set_populated(cset))
1959 cgroup_update_populated(root_cgrp, true);
1960 }
f0d9a5f1 1961 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1962
d5c419b6 1963 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1964 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1965
2bd59d48 1966 kernfs_activate(root_cgrp->kn);
d427dfeb 1967 ret = 0;
2bd59d48 1968 goto out;
d427dfeb 1969
2bd59d48
TH
1970destroy_root:
1971 kernfs_destroy_root(root->kf_root);
1972 root->kf_root = NULL;
1973exit_root_id:
d427dfeb 1974 cgroup_exit_root_id(root);
9d755d33 1975cancel_ref:
9a1049da 1976 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1977out:
d427dfeb
TH
1978 free_cgrp_cset_links(&tmp_links);
1979 return ret;
ddbcc7e8
PM
1980}
1981
f7e83571 1982static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1983 int flags, const char *unused_dev_name,
f7e83571 1984 void *data)
ddbcc7e8 1985{
3a32bd72 1986 struct super_block *pinned_sb = NULL;
970317aa 1987 struct cgroup_subsys *ss;
3dd06ffa 1988 struct cgroup_root *root;
ddbcc7e8 1989 struct cgroup_sb_opts opts;
2bd59d48 1990 struct dentry *dentry;
8e30e2b8 1991 int ret;
970317aa 1992 int i;
c6b3d5bc 1993 bool new_sb;
ddbcc7e8 1994
56fde9e0
TH
1995 /*
1996 * The first time anyone tries to mount a cgroup, enable the list
1997 * linking each css_set to its tasks and fix up all existing tasks.
1998 */
1999 if (!use_task_css_set_links)
2000 cgroup_enable_task_cg_lists();
e37a06f1 2001
aae8aab4 2002 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2003
2004 /* First find the desired set of subsystems */
ddbcc7e8 2005 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2006 if (ret)
8e30e2b8 2007 goto out_unlock;
a015edd2 2008
2bd59d48 2009 /* look for a matching existing root */
7b9a6ba5 2010 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
2011 cgrp_dfl_root_visible = true;
2012 root = &cgrp_dfl_root;
2013 cgroup_get(&root->cgrp);
2014 ret = 0;
2015 goto out_unlock;
ddbcc7e8
PM
2016 }
2017
970317aa
LZ
2018 /*
2019 * Destruction of cgroup root is asynchronous, so subsystems may
2020 * still be dying after the previous unmount. Let's drain the
2021 * dying subsystems. We just need to ensure that the ones
2022 * unmounted previously finish dying and don't care about new ones
2023 * starting. Testing ref liveliness is good enough.
2024 */
2025 for_each_subsys(ss, i) {
2026 if (!(opts.subsys_mask & (1 << i)) ||
2027 ss->root == &cgrp_dfl_root)
2028 continue;
2029
2030 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2031 mutex_unlock(&cgroup_mutex);
2032 msleep(10);
2033 ret = restart_syscall();
2034 goto out_free;
2035 }
2036 cgroup_put(&ss->root->cgrp);
2037 }
2038
985ed670 2039 for_each_root(root) {
2bd59d48 2040 bool name_match = false;
3126121f 2041
3dd06ffa 2042 if (root == &cgrp_dfl_root)
985ed670 2043 continue;
3126121f 2044
cf5d5941 2045 /*
2bd59d48
TH
2046 * If we asked for a name then it must match. Also, if
2047 * name matches but sybsys_mask doesn't, we should fail.
2048 * Remember whether name matched.
cf5d5941 2049 */
2bd59d48
TH
2050 if (opts.name) {
2051 if (strcmp(opts.name, root->name))
2052 continue;
2053 name_match = true;
2054 }
ddbcc7e8 2055
c6d57f33 2056 /*
2bd59d48
TH
2057 * If we asked for subsystems (or explicitly for no
2058 * subsystems) then they must match.
c6d57f33 2059 */
2bd59d48 2060 if ((opts.subsys_mask || opts.none) &&
f392e51c 2061 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2062 if (!name_match)
2063 continue;
2064 ret = -EBUSY;
2065 goto out_unlock;
2066 }
873fe09e 2067
7b9a6ba5
TH
2068 if (root->flags ^ opts.flags)
2069 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2070
776f02fa 2071 /*
3a32bd72
LZ
2072 * We want to reuse @root whose lifetime is governed by its
2073 * ->cgrp. Let's check whether @root is alive and keep it
2074 * that way. As cgroup_kill_sb() can happen anytime, we
2075 * want to block it by pinning the sb so that @root doesn't
2076 * get killed before mount is complete.
2077 *
2078 * With the sb pinned, tryget_live can reliably indicate
2079 * whether @root can be reused. If it's being killed,
2080 * drain it. We can use wait_queue for the wait but this
2081 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2082 */
3a32bd72
LZ
2083 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2084 if (IS_ERR(pinned_sb) ||
2085 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2086 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2087 if (!IS_ERR_OR_NULL(pinned_sb))
2088 deactivate_super(pinned_sb);
776f02fa 2089 msleep(10);
a015edd2
TH
2090 ret = restart_syscall();
2091 goto out_free;
776f02fa 2092 }
ddbcc7e8 2093
776f02fa 2094 ret = 0;
2bd59d48 2095 goto out_unlock;
ddbcc7e8 2096 }
ddbcc7e8 2097
817929ec 2098 /*
172a2c06
TH
2099 * No such thing, create a new one. name= matching without subsys
2100 * specification is allowed for already existing hierarchies but we
2101 * can't create new one without subsys specification.
817929ec 2102 */
172a2c06
TH
2103 if (!opts.subsys_mask && !opts.none) {
2104 ret = -EINVAL;
2105 goto out_unlock;
817929ec 2106 }
817929ec 2107
172a2c06
TH
2108 root = kzalloc(sizeof(*root), GFP_KERNEL);
2109 if (!root) {
2110 ret = -ENOMEM;
2bd59d48 2111 goto out_unlock;
839ec545 2112 }
e5f6a860 2113
172a2c06
TH
2114 init_cgroup_root(root, &opts);
2115
35585573 2116 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2117 if (ret)
2118 cgroup_free_root(root);
fa3ca07e 2119
8e30e2b8 2120out_unlock:
ddbcc7e8 2121 mutex_unlock(&cgroup_mutex);
a015edd2 2122out_free:
c6d57f33
PM
2123 kfree(opts.release_agent);
2124 kfree(opts.name);
03b1cde6 2125
2bd59d48 2126 if (ret)
8e30e2b8 2127 return ERR_PTR(ret);
2bd59d48 2128
c9482a5b
JZ
2129 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2130 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2131 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2132 cgroup_put(&root->cgrp);
3a32bd72
LZ
2133
2134 /*
2135 * If @pinned_sb, we're reusing an existing root and holding an
2136 * extra ref on its sb. Mount is complete. Put the extra ref.
2137 */
2138 if (pinned_sb) {
2139 WARN_ON(new_sb);
2140 deactivate_super(pinned_sb);
2141 }
2142
2bd59d48
TH
2143 return dentry;
2144}
2145
2146static void cgroup_kill_sb(struct super_block *sb)
2147{
2148 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2149 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2150
9d755d33
TH
2151 /*
2152 * If @root doesn't have any mounts or children, start killing it.
2153 * This prevents new mounts by disabling percpu_ref_tryget_live().
2154 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2155 *
2156 * And don't kill the default root.
9d755d33 2157 */
3c606d35 2158 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2159 root == &cgrp_dfl_root)
9d755d33
TH
2160 cgroup_put(&root->cgrp);
2161 else
2162 percpu_ref_kill(&root->cgrp.self.refcnt);
2163
2bd59d48 2164 kernfs_kill_sb(sb);
ddbcc7e8
PM
2165}
2166
2167static struct file_system_type cgroup_fs_type = {
2168 .name = "cgroup",
f7e83571 2169 .mount = cgroup_mount,
ddbcc7e8
PM
2170 .kill_sb = cgroup_kill_sb,
2171};
2172
857a2beb 2173/**
913ffdb5 2174 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2175 * @task: target task
857a2beb
TH
2176 * @buf: the buffer to write the path into
2177 * @buflen: the length of the buffer
2178 *
913ffdb5
TH
2179 * Determine @task's cgroup on the first (the one with the lowest non-zero
2180 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2181 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2182 * cgroup controller callbacks.
2183 *
e61734c5 2184 * Return value is the same as kernfs_path().
857a2beb 2185 */
e61734c5 2186char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2187{
3dd06ffa 2188 struct cgroup_root *root;
913ffdb5 2189 struct cgroup *cgrp;
e61734c5
TH
2190 int hierarchy_id = 1;
2191 char *path = NULL;
857a2beb
TH
2192
2193 mutex_lock(&cgroup_mutex);
f0d9a5f1 2194 spin_lock_bh(&css_set_lock);
857a2beb 2195
913ffdb5
TH
2196 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2197
857a2beb
TH
2198 if (root) {
2199 cgrp = task_cgroup_from_root(task, root);
e61734c5 2200 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2201 } else {
2202 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2203 if (strlcpy(buf, "/", buflen) < buflen)
2204 path = buf;
857a2beb
TH
2205 }
2206
f0d9a5f1 2207 spin_unlock_bh(&css_set_lock);
857a2beb 2208 mutex_unlock(&cgroup_mutex);
e61734c5 2209 return path;
857a2beb 2210}
913ffdb5 2211EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2212
b3dc094e 2213/* used to track tasks and other necessary states during migration */
2f7ee569 2214struct cgroup_taskset {
b3dc094e
TH
2215 /* the src and dst cset list running through cset->mg_node */
2216 struct list_head src_csets;
2217 struct list_head dst_csets;
2218
2219 /*
2220 * Fields for cgroup_taskset_*() iteration.
2221 *
2222 * Before migration is committed, the target migration tasks are on
2223 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2224 * the csets on ->dst_csets. ->csets point to either ->src_csets
2225 * or ->dst_csets depending on whether migration is committed.
2226 *
2227 * ->cur_csets and ->cur_task point to the current task position
2228 * during iteration.
2229 */
2230 struct list_head *csets;
2231 struct css_set *cur_cset;
2232 struct task_struct *cur_task;
2f7ee569
TH
2233};
2234
adaae5dc
TH
2235#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2236 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2237 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2238 .csets = &tset.src_csets, \
2239}
2240
2241/**
2242 * cgroup_taskset_add - try to add a migration target task to a taskset
2243 * @task: target task
2244 * @tset: target taskset
2245 *
2246 * Add @task, which is a migration target, to @tset. This function becomes
2247 * noop if @task doesn't need to be migrated. @task's css_set should have
2248 * been added as a migration source and @task->cg_list will be moved from
2249 * the css_set's tasks list to mg_tasks one.
2250 */
2251static void cgroup_taskset_add(struct task_struct *task,
2252 struct cgroup_taskset *tset)
2253{
2254 struct css_set *cset;
2255
f0d9a5f1 2256 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2257
2258 /* @task either already exited or can't exit until the end */
2259 if (task->flags & PF_EXITING)
2260 return;
2261
2262 /* leave @task alone if post_fork() hasn't linked it yet */
2263 if (list_empty(&task->cg_list))
2264 return;
2265
2266 cset = task_css_set(task);
2267 if (!cset->mg_src_cgrp)
2268 return;
2269
2270 list_move_tail(&task->cg_list, &cset->mg_tasks);
2271 if (list_empty(&cset->mg_node))
2272 list_add_tail(&cset->mg_node, &tset->src_csets);
2273 if (list_empty(&cset->mg_dst_cset->mg_node))
2274 list_move_tail(&cset->mg_dst_cset->mg_node,
2275 &tset->dst_csets);
2276}
2277
2f7ee569
TH
2278/**
2279 * cgroup_taskset_first - reset taskset and return the first task
2280 * @tset: taskset of interest
2281 *
2282 * @tset iteration is initialized and the first task is returned.
2283 */
2284struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2285{
b3dc094e
TH
2286 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2287 tset->cur_task = NULL;
2288
2289 return cgroup_taskset_next(tset);
2f7ee569 2290}
2f7ee569
TH
2291
2292/**
2293 * cgroup_taskset_next - iterate to the next task in taskset
2294 * @tset: taskset of interest
2295 *
2296 * Return the next task in @tset. Iteration must have been initialized
2297 * with cgroup_taskset_first().
2298 */
2299struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2300{
b3dc094e
TH
2301 struct css_set *cset = tset->cur_cset;
2302 struct task_struct *task = tset->cur_task;
2f7ee569 2303
b3dc094e
TH
2304 while (&cset->mg_node != tset->csets) {
2305 if (!task)
2306 task = list_first_entry(&cset->mg_tasks,
2307 struct task_struct, cg_list);
2308 else
2309 task = list_next_entry(task, cg_list);
2f7ee569 2310
b3dc094e
TH
2311 if (&task->cg_list != &cset->mg_tasks) {
2312 tset->cur_cset = cset;
2313 tset->cur_task = task;
2314 return task;
2315 }
2f7ee569 2316
b3dc094e
TH
2317 cset = list_next_entry(cset, mg_node);
2318 task = NULL;
2319 }
2f7ee569 2320
b3dc094e 2321 return NULL;
2f7ee569 2322}
2f7ee569 2323
adaae5dc
TH
2324/**
2325 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2326 * @tset: taget taskset
2327 * @dst_cgrp: destination cgroup
2328 *
2329 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2330 * ->can_attach callbacks fails and guarantees that either all or none of
2331 * the tasks in @tset are migrated. @tset is consumed regardless of
2332 * success.
2333 */
2334static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2335 struct cgroup *dst_cgrp)
2336{
2337 struct cgroup_subsys_state *css, *failed_css = NULL;
2338 struct task_struct *task, *tmp_task;
2339 struct css_set *cset, *tmp_cset;
2340 int i, ret;
2341
2342 /* methods shouldn't be called if no task is actually migrating */
2343 if (list_empty(&tset->src_csets))
2344 return 0;
2345
2346 /* check that we can legitimately attach to the cgroup */
2347 for_each_e_css(css, i, dst_cgrp) {
2348 if (css->ss->can_attach) {
2349 ret = css->ss->can_attach(css, tset);
2350 if (ret) {
2351 failed_css = css;
2352 goto out_cancel_attach;
2353 }
2354 }
2355 }
2356
2357 /*
2358 * Now that we're guaranteed success, proceed to move all tasks to
2359 * the new cgroup. There are no failure cases after here, so this
2360 * is the commit point.
2361 */
f0d9a5f1 2362 spin_lock_bh(&css_set_lock);
adaae5dc 2363 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2364 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2365 struct css_set *from_cset = task_css_set(task);
2366 struct css_set *to_cset = cset->mg_dst_cset;
2367
2368 get_css_set(to_cset);
2369 css_set_move_task(task, from_cset, to_cset, true);
2370 put_css_set_locked(from_cset);
2371 }
adaae5dc 2372 }
f0d9a5f1 2373 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2374
2375 /*
2376 * Migration is committed, all target tasks are now on dst_csets.
2377 * Nothing is sensitive to fork() after this point. Notify
2378 * controllers that migration is complete.
2379 */
2380 tset->csets = &tset->dst_csets;
2381
2382 for_each_e_css(css, i, dst_cgrp)
2383 if (css->ss->attach)
2384 css->ss->attach(css, tset);
2385
2386 ret = 0;
2387 goto out_release_tset;
2388
2389out_cancel_attach:
2390 for_each_e_css(css, i, dst_cgrp) {
2391 if (css == failed_css)
2392 break;
2393 if (css->ss->cancel_attach)
2394 css->ss->cancel_attach(css, tset);
2395 }
2396out_release_tset:
f0d9a5f1 2397 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2398 list_splice_init(&tset->dst_csets, &tset->src_csets);
2399 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2400 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2401 list_del_init(&cset->mg_node);
2402 }
f0d9a5f1 2403 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2404 return ret;
2405}
2406
a043e3b2 2407/**
1958d2d5
TH
2408 * cgroup_migrate_finish - cleanup after attach
2409 * @preloaded_csets: list of preloaded css_sets
74a1166d 2410 *
1958d2d5
TH
2411 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2412 * those functions for details.
74a1166d 2413 */
1958d2d5 2414static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2415{
1958d2d5 2416 struct css_set *cset, *tmp_cset;
74a1166d 2417
1958d2d5
TH
2418 lockdep_assert_held(&cgroup_mutex);
2419
f0d9a5f1 2420 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2421 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2422 cset->mg_src_cgrp = NULL;
2423 cset->mg_dst_cset = NULL;
2424 list_del_init(&cset->mg_preload_node);
a25eb52e 2425 put_css_set_locked(cset);
1958d2d5 2426 }
f0d9a5f1 2427 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2428}
2429
2430/**
2431 * cgroup_migrate_add_src - add a migration source css_set
2432 * @src_cset: the source css_set to add
2433 * @dst_cgrp: the destination cgroup
2434 * @preloaded_csets: list of preloaded css_sets
2435 *
2436 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2437 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2438 * up by cgroup_migrate_finish().
2439 *
1ed13287
TH
2440 * This function may be called without holding cgroup_threadgroup_rwsem
2441 * even if the target is a process. Threads may be created and destroyed
2442 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2443 * into play and the preloaded css_sets are guaranteed to cover all
2444 * migrations.
1958d2d5
TH
2445 */
2446static void cgroup_migrate_add_src(struct css_set *src_cset,
2447 struct cgroup *dst_cgrp,
2448 struct list_head *preloaded_csets)
2449{
2450 struct cgroup *src_cgrp;
2451
2452 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2453 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2454
2455 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2456
1958d2d5
TH
2457 if (!list_empty(&src_cset->mg_preload_node))
2458 return;
2459
2460 WARN_ON(src_cset->mg_src_cgrp);
2461 WARN_ON(!list_empty(&src_cset->mg_tasks));
2462 WARN_ON(!list_empty(&src_cset->mg_node));
2463
2464 src_cset->mg_src_cgrp = src_cgrp;
2465 get_css_set(src_cset);
2466 list_add(&src_cset->mg_preload_node, preloaded_csets);
2467}
2468
2469/**
2470 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2471 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2472 * @preloaded_csets: list of preloaded source css_sets
2473 *
2474 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2475 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2476 * pins all destination css_sets, links each to its source, and append them
2477 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2478 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2479 *
2480 * This function must be called after cgroup_migrate_add_src() has been
2481 * called on each migration source css_set. After migration is performed
2482 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2483 * @preloaded_csets.
2484 */
2485static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2486 struct list_head *preloaded_csets)
2487{
2488 LIST_HEAD(csets);
f817de98 2489 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2490
2491 lockdep_assert_held(&cgroup_mutex);
2492
f8f22e53
TH
2493 /*
2494 * Except for the root, child_subsys_mask must be zero for a cgroup
2495 * with tasks so that child cgroups don't compete against tasks.
2496 */
d51f39b0 2497 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2498 dst_cgrp->child_subsys_mask)
2499 return -EBUSY;
2500
1958d2d5 2501 /* look up the dst cset for each src cset and link it to src */
f817de98 2502 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2503 struct css_set *dst_cset;
2504
f817de98
TH
2505 dst_cset = find_css_set(src_cset,
2506 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2507 if (!dst_cset)
2508 goto err;
2509
2510 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2511
2512 /*
2513 * If src cset equals dst, it's noop. Drop the src.
2514 * cgroup_migrate() will skip the cset too. Note that we
2515 * can't handle src == dst as some nodes are used by both.
2516 */
2517 if (src_cset == dst_cset) {
2518 src_cset->mg_src_cgrp = NULL;
2519 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2520 put_css_set(src_cset);
2521 put_css_set(dst_cset);
f817de98
TH
2522 continue;
2523 }
2524
1958d2d5
TH
2525 src_cset->mg_dst_cset = dst_cset;
2526
2527 if (list_empty(&dst_cset->mg_preload_node))
2528 list_add(&dst_cset->mg_preload_node, &csets);
2529 else
a25eb52e 2530 put_css_set(dst_cset);
1958d2d5
TH
2531 }
2532
f817de98 2533 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2534 return 0;
2535err:
2536 cgroup_migrate_finish(&csets);
2537 return -ENOMEM;
2538}
2539
2540/**
2541 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2542 * @leader: the leader of the process or the task to migrate
2543 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2544 * @cgrp: the destination cgroup
1958d2d5
TH
2545 *
2546 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2547 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2548 * caller is also responsible for invoking cgroup_migrate_add_src() and
2549 * cgroup_migrate_prepare_dst() on the targets before invoking this
2550 * function and following up with cgroup_migrate_finish().
2551 *
2552 * As long as a controller's ->can_attach() doesn't fail, this function is
2553 * guaranteed to succeed. This means that, excluding ->can_attach()
2554 * failure, when migrating multiple targets, the success or failure can be
2555 * decided for all targets by invoking group_migrate_prepare_dst() before
2556 * actually starting migrating.
2557 */
9af2ec45
TH
2558static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2559 struct cgroup *cgrp)
74a1166d 2560{
adaae5dc
TH
2561 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2562 struct task_struct *task;
74a1166d 2563
fb5d2b4c
MSB
2564 /*
2565 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2566 * already PF_EXITING could be freed from underneath us unless we
2567 * take an rcu_read_lock.
2568 */
f0d9a5f1 2569 spin_lock_bh(&css_set_lock);
fb5d2b4c 2570 rcu_read_lock();
9db8de37 2571 task = leader;
74a1166d 2572 do {
adaae5dc 2573 cgroup_taskset_add(task, &tset);
081aa458
LZ
2574 if (!threadgroup)
2575 break;
9db8de37 2576 } while_each_thread(leader, task);
fb5d2b4c 2577 rcu_read_unlock();
f0d9a5f1 2578 spin_unlock_bh(&css_set_lock);
74a1166d 2579
adaae5dc 2580 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2581}
2582
1958d2d5
TH
2583/**
2584 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2585 * @dst_cgrp: the cgroup to attach to
2586 * @leader: the task or the leader of the threadgroup to be attached
2587 * @threadgroup: attach the whole threadgroup?
2588 *
1ed13287 2589 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2590 */
2591static int cgroup_attach_task(struct cgroup *dst_cgrp,
2592 struct task_struct *leader, bool threadgroup)
2593{
2594 LIST_HEAD(preloaded_csets);
2595 struct task_struct *task;
2596 int ret;
2597
2598 /* look up all src csets */
f0d9a5f1 2599 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2600 rcu_read_lock();
2601 task = leader;
2602 do {
2603 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2604 &preloaded_csets);
2605 if (!threadgroup)
2606 break;
2607 } while_each_thread(leader, task);
2608 rcu_read_unlock();
f0d9a5f1 2609 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2610
2611 /* prepare dst csets and commit */
2612 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2613 if (!ret)
9af2ec45 2614 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2615
2616 cgroup_migrate_finish(&preloaded_csets);
2617 return ret;
74a1166d
BB
2618}
2619
187fe840
TH
2620static int cgroup_procs_write_permission(struct task_struct *task,
2621 struct cgroup *dst_cgrp,
2622 struct kernfs_open_file *of)
dedf22e9
TH
2623{
2624 const struct cred *cred = current_cred();
2625 const struct cred *tcred = get_task_cred(task);
2626 int ret = 0;
2627
2628 /*
2629 * even if we're attaching all tasks in the thread group, we only
2630 * need to check permissions on one of them.
2631 */
2632 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2633 !uid_eq(cred->euid, tcred->uid) &&
2634 !uid_eq(cred->euid, tcred->suid))
2635 ret = -EACCES;
2636
187fe840
TH
2637 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2638 struct super_block *sb = of->file->f_path.dentry->d_sb;
2639 struct cgroup *cgrp;
2640 struct inode *inode;
2641
f0d9a5f1 2642 spin_lock_bh(&css_set_lock);
187fe840 2643 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2644 spin_unlock_bh(&css_set_lock);
187fe840
TH
2645
2646 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2647 cgrp = cgroup_parent(cgrp);
2648
2649 ret = -ENOMEM;
6f60eade 2650 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2651 if (inode) {
2652 ret = inode_permission(inode, MAY_WRITE);
2653 iput(inode);
2654 }
2655 }
2656
dedf22e9
TH
2657 put_cred(tcred);
2658 return ret;
2659}
2660
74a1166d
BB
2661/*
2662 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2663 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2664 * cgroup_mutex and threadgroup.
bbcb81d0 2665 */
acbef755
TH
2666static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2667 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2668{
bbcb81d0 2669 struct task_struct *tsk;
e76ecaee 2670 struct cgroup *cgrp;
acbef755 2671 pid_t pid;
bbcb81d0
PM
2672 int ret;
2673
acbef755
TH
2674 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2675 return -EINVAL;
2676
e76ecaee
TH
2677 cgrp = cgroup_kn_lock_live(of->kn);
2678 if (!cgrp)
74a1166d
BB
2679 return -ENODEV;
2680
3014dde7 2681 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2682 rcu_read_lock();
bbcb81d0 2683 if (pid) {
73507f33 2684 tsk = find_task_by_vpid(pid);
74a1166d 2685 if (!tsk) {
dd4b0a46 2686 ret = -ESRCH;
3014dde7 2687 goto out_unlock_rcu;
bbcb81d0 2688 }
dedf22e9 2689 } else {
b78949eb 2690 tsk = current;
dedf22e9 2691 }
cd3d0952
TH
2692
2693 if (threadgroup)
b78949eb 2694 tsk = tsk->group_leader;
c4c27fbd
MG
2695
2696 /*
14a40ffc 2697 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2698 * trapped in a cpuset, or RT worker may be born in a cgroup
2699 * with no rt_runtime allocated. Just say no.
2700 */
14a40ffc 2701 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2702 ret = -EINVAL;
3014dde7 2703 goto out_unlock_rcu;
c4c27fbd
MG
2704 }
2705
b78949eb
MSB
2706 get_task_struct(tsk);
2707 rcu_read_unlock();
2708
187fe840 2709 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2710 if (!ret)
2711 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2712
f9f9e7b7 2713 put_task_struct(tsk);
3014dde7
TH
2714 goto out_unlock_threadgroup;
2715
2716out_unlock_rcu:
2717 rcu_read_unlock();
2718out_unlock_threadgroup:
2719 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2720 cgroup_kn_unlock(of->kn);
acbef755 2721 return ret ?: nbytes;
bbcb81d0
PM
2722}
2723
7ae1bad9
TH
2724/**
2725 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2726 * @from: attach to all cgroups of a given task
2727 * @tsk: the task to be attached
2728 */
2729int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2730{
3dd06ffa 2731 struct cgroup_root *root;
7ae1bad9
TH
2732 int retval = 0;
2733
47cfcd09 2734 mutex_lock(&cgroup_mutex);
985ed670 2735 for_each_root(root) {
96d365e0
TH
2736 struct cgroup *from_cgrp;
2737
3dd06ffa 2738 if (root == &cgrp_dfl_root)
985ed670
TH
2739 continue;
2740
f0d9a5f1 2741 spin_lock_bh(&css_set_lock);
96d365e0 2742 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2743 spin_unlock_bh(&css_set_lock);
7ae1bad9 2744
6f4b7e63 2745 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2746 if (retval)
2747 break;
2748 }
47cfcd09 2749 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2750
2751 return retval;
2752}
2753EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2754
acbef755
TH
2755static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2756 char *buf, size_t nbytes, loff_t off)
74a1166d 2757{
acbef755 2758 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2759}
2760
acbef755
TH
2761static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2762 char *buf, size_t nbytes, loff_t off)
af351026 2763{
acbef755 2764 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2765}
2766
451af504
TH
2767static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2768 char *buf, size_t nbytes, loff_t off)
e788e066 2769{
e76ecaee 2770 struct cgroup *cgrp;
5f469907 2771
e76ecaee 2772 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2773
e76ecaee
TH
2774 cgrp = cgroup_kn_lock_live(of->kn);
2775 if (!cgrp)
e788e066 2776 return -ENODEV;
69e943b7 2777 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2778 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2779 sizeof(cgrp->root->release_agent_path));
69e943b7 2780 spin_unlock(&release_agent_path_lock);
e76ecaee 2781 cgroup_kn_unlock(of->kn);
451af504 2782 return nbytes;
e788e066
PM
2783}
2784
2da8ca82 2785static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2786{
2da8ca82 2787 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2788
46cfeb04 2789 spin_lock(&release_agent_path_lock);
e788e066 2790 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2791 spin_unlock(&release_agent_path_lock);
e788e066 2792 seq_putc(seq, '\n');
e788e066
PM
2793 return 0;
2794}
2795
2da8ca82 2796static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2797{
c1d5d42e 2798 seq_puts(seq, "0\n");
e788e066
PM
2799 return 0;
2800}
2801
8ab456ac 2802static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2803{
f8f22e53
TH
2804 struct cgroup_subsys *ss;
2805 bool printed = false;
2806 int ssid;
a742c59d 2807
a966a4ed
AS
2808 for_each_subsys_which(ss, ssid, &ss_mask) {
2809 if (printed)
2810 seq_putc(seq, ' ');
2811 seq_printf(seq, "%s", ss->name);
2812 printed = true;
e73d2c61 2813 }
f8f22e53
TH
2814 if (printed)
2815 seq_putc(seq, '\n');
355e0c48
PM
2816}
2817
f8f22e53
TH
2818/* show controllers which are currently attached to the default hierarchy */
2819static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2820{
f8f22e53
TH
2821 struct cgroup *cgrp = seq_css(seq)->cgroup;
2822
5533e011
TH
2823 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2824 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2825 return 0;
db3b1497
PM
2826}
2827
f8f22e53
TH
2828/* show controllers which are enabled from the parent */
2829static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2830{
f8f22e53
TH
2831 struct cgroup *cgrp = seq_css(seq)->cgroup;
2832
667c2491 2833 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2834 return 0;
ddbcc7e8
PM
2835}
2836
f8f22e53
TH
2837/* show controllers which are enabled for a given cgroup's children */
2838static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2839{
f8f22e53
TH
2840 struct cgroup *cgrp = seq_css(seq)->cgroup;
2841
667c2491 2842 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2843 return 0;
2844}
2845
2846/**
2847 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2848 * @cgrp: root of the subtree to update csses for
2849 *
2850 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2851 * css associations need to be updated accordingly. This function looks up
2852 * all css_sets which are attached to the subtree, creates the matching
2853 * updated css_sets and migrates the tasks to the new ones.
2854 */
2855static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2856{
2857 LIST_HEAD(preloaded_csets);
10265075 2858 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2859 struct cgroup_subsys_state *css;
2860 struct css_set *src_cset;
2861 int ret;
2862
f8f22e53
TH
2863 lockdep_assert_held(&cgroup_mutex);
2864
3014dde7
TH
2865 percpu_down_write(&cgroup_threadgroup_rwsem);
2866
f8f22e53 2867 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2868 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2869 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2870 struct cgrp_cset_link *link;
2871
2872 /* self is not affected by child_subsys_mask change */
2873 if (css->cgroup == cgrp)
2874 continue;
2875
2876 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2877 cgroup_migrate_add_src(link->cset, cgrp,
2878 &preloaded_csets);
2879 }
f0d9a5f1 2880 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2881
2882 /* NULL dst indicates self on default hierarchy */
2883 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2884 if (ret)
2885 goto out_finish;
2886
f0d9a5f1 2887 spin_lock_bh(&css_set_lock);
f8f22e53 2888 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2889 struct task_struct *task, *ntask;
f8f22e53
TH
2890
2891 /* src_csets precede dst_csets, break on the first dst_cset */
2892 if (!src_cset->mg_src_cgrp)
2893 break;
2894
10265075
TH
2895 /* all tasks in src_csets need to be migrated */
2896 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2897 cgroup_taskset_add(task, &tset);
f8f22e53 2898 }
f0d9a5f1 2899 spin_unlock_bh(&css_set_lock);
f8f22e53 2900
10265075 2901 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2902out_finish:
2903 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2904 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2905 return ret;
2906}
2907
2908/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2909static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2910 char *buf, size_t nbytes,
2911 loff_t off)
f8f22e53 2912{
8ab456ac
AS
2913 unsigned long enable = 0, disable = 0;
2914 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2915 struct cgroup *cgrp, *child;
f8f22e53 2916 struct cgroup_subsys *ss;
451af504 2917 char *tok;
f8f22e53
TH
2918 int ssid, ret;
2919
2920 /*
d37167ab
TH
2921 * Parse input - space separated list of subsystem names prefixed
2922 * with either + or -.
f8f22e53 2923 */
451af504
TH
2924 buf = strstrip(buf);
2925 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2926 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2927
d37167ab
TH
2928 if (tok[0] == '\0')
2929 continue;
a966a4ed 2930 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2931 if (!cgroup_ssid_enabled(ssid) ||
2932 strcmp(tok + 1, ss->name))
f8f22e53
TH
2933 continue;
2934
2935 if (*tok == '+') {
7d331fa9
TH
2936 enable |= 1 << ssid;
2937 disable &= ~(1 << ssid);
f8f22e53 2938 } else if (*tok == '-') {
7d331fa9
TH
2939 disable |= 1 << ssid;
2940 enable &= ~(1 << ssid);
f8f22e53
TH
2941 } else {
2942 return -EINVAL;
2943 }
2944 break;
2945 }
2946 if (ssid == CGROUP_SUBSYS_COUNT)
2947 return -EINVAL;
2948 }
2949
a9746d8d
TH
2950 cgrp = cgroup_kn_lock_live(of->kn);
2951 if (!cgrp)
2952 return -ENODEV;
f8f22e53
TH
2953
2954 for_each_subsys(ss, ssid) {
2955 if (enable & (1 << ssid)) {
667c2491 2956 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2957 enable &= ~(1 << ssid);
2958 continue;
2959 }
2960
c29adf24
TH
2961 /* unavailable or not enabled on the parent? */
2962 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2963 (cgroup_parent(cgrp) &&
667c2491 2964 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2965 ret = -ENOENT;
2966 goto out_unlock;
2967 }
f8f22e53 2968 } else if (disable & (1 << ssid)) {
667c2491 2969 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2970 disable &= ~(1 << ssid);
2971 continue;
2972 }
2973
2974 /* a child has it enabled? */
2975 cgroup_for_each_live_child(child, cgrp) {
667c2491 2976 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2977 ret = -EBUSY;
ddab2b6e 2978 goto out_unlock;
f8f22e53
TH
2979 }
2980 }
2981 }
2982 }
2983
2984 if (!enable && !disable) {
2985 ret = 0;
ddab2b6e 2986 goto out_unlock;
f8f22e53
TH
2987 }
2988
2989 /*
667c2491 2990 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2991 * with tasks so that child cgroups don't compete against tasks.
2992 */
d51f39b0 2993 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2994 ret = -EBUSY;
2995 goto out_unlock;
2996 }
2997
2998 /*
f63070d3
TH
2999 * Update subsys masks and calculate what needs to be done. More
3000 * subsystems than specified may need to be enabled or disabled
3001 * depending on subsystem dependencies.
3002 */
755bf5ee
TH
3003 old_sc = cgrp->subtree_control;
3004 old_ss = cgrp->child_subsys_mask;
3005 new_sc = (old_sc | enable) & ~disable;
3006 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3007
755bf5ee
TH
3008 css_enable = ~old_ss & new_ss;
3009 css_disable = old_ss & ~new_ss;
f63070d3
TH
3010 enable |= css_enable;
3011 disable |= css_disable;
c29adf24 3012
db6e3053
TH
3013 /*
3014 * Because css offlining is asynchronous, userland might try to
3015 * re-enable the same controller while the previous instance is
3016 * still around. In such cases, wait till it's gone using
3017 * offline_waitq.
3018 */
a966a4ed 3019 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3020 cgroup_for_each_live_child(child, cgrp) {
3021 DEFINE_WAIT(wait);
3022
3023 if (!cgroup_css(child, ss))
3024 continue;
3025
3026 cgroup_get(child);
3027 prepare_to_wait(&child->offline_waitq, &wait,
3028 TASK_UNINTERRUPTIBLE);
3029 cgroup_kn_unlock(of->kn);
3030 schedule();
3031 finish_wait(&child->offline_waitq, &wait);
3032 cgroup_put(child);
3033
3034 return restart_syscall();
3035 }
3036 }
3037
755bf5ee
TH
3038 cgrp->subtree_control = new_sc;
3039 cgrp->child_subsys_mask = new_ss;
3040
f63070d3
TH
3041 /*
3042 * Create new csses or make the existing ones visible. A css is
3043 * created invisible if it's being implicitly enabled through
3044 * dependency. An invisible css is made visible when the userland
3045 * explicitly enables it.
f8f22e53
TH
3046 */
3047 for_each_subsys(ss, ssid) {
3048 if (!(enable & (1 << ssid)))
3049 continue;
3050
3051 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3052 if (css_enable & (1 << ssid))
3053 ret = create_css(child, ss,
3054 cgrp->subtree_control & (1 << ssid));
3055 else
4df8dc90
TH
3056 ret = css_populate_dir(cgroup_css(child, ss),
3057 NULL);
f8f22e53
TH
3058 if (ret)
3059 goto err_undo_css;
3060 }
3061 }
3062
c29adf24
TH
3063 /*
3064 * At this point, cgroup_e_css() results reflect the new csses
3065 * making the following cgroup_update_dfl_csses() properly update
3066 * css associations of all tasks in the subtree.
3067 */
f8f22e53
TH
3068 ret = cgroup_update_dfl_csses(cgrp);
3069 if (ret)
3070 goto err_undo_css;
3071
f63070d3
TH
3072 /*
3073 * All tasks are migrated out of disabled csses. Kill or hide
3074 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3075 * disabled while other subsystems are still depending on it. The
3076 * css must not actively control resources and be in the vanilla
3077 * state if it's made visible again later. Controllers which may
3078 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3079 */
f8f22e53
TH
3080 for_each_subsys(ss, ssid) {
3081 if (!(disable & (1 << ssid)))
3082 continue;
3083
f63070d3 3084 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3085 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3086
3087 if (css_disable & (1 << ssid)) {
3088 kill_css(css);
3089 } else {
4df8dc90 3090 css_clear_dir(css, NULL);
b4536f0c
TH
3091 if (ss->css_reset)
3092 ss->css_reset(css);
3093 }
f63070d3 3094 }
f8f22e53
TH
3095 }
3096
56c807ba
TH
3097 /*
3098 * The effective csses of all the descendants (excluding @cgrp) may
3099 * have changed. Subsystems can optionally subscribe to this event
3100 * by implementing ->css_e_css_changed() which is invoked if any of
3101 * the effective csses seen from the css's cgroup may have changed.
3102 */
3103 for_each_subsys(ss, ssid) {
3104 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3105 struct cgroup_subsys_state *css;
3106
3107 if (!ss->css_e_css_changed || !this_css)
3108 continue;
3109
3110 css_for_each_descendant_pre(css, this_css)
3111 if (css != this_css)
3112 ss->css_e_css_changed(css);
3113 }
3114
f8f22e53
TH
3115 kernfs_activate(cgrp->kn);
3116 ret = 0;
3117out_unlock:
a9746d8d 3118 cgroup_kn_unlock(of->kn);
451af504 3119 return ret ?: nbytes;
f8f22e53
TH
3120
3121err_undo_css:
755bf5ee
TH
3122 cgrp->subtree_control = old_sc;
3123 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3124
3125 for_each_subsys(ss, ssid) {
3126 if (!(enable & (1 << ssid)))
3127 continue;
3128
3129 cgroup_for_each_live_child(child, cgrp) {
3130 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3131
3132 if (!css)
3133 continue;
3134
3135 if (css_enable & (1 << ssid))
f8f22e53 3136 kill_css(css);
f63070d3 3137 else
4df8dc90 3138 css_clear_dir(css, NULL);
f8f22e53
TH
3139 }
3140 }
3141 goto out_unlock;
3142}
3143
4a07c222 3144static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3145{
4a07c222 3146 seq_printf(seq, "populated %d\n",
27bd4dbb 3147 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3148 return 0;
3149}
3150
2bd59d48
TH
3151static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3152 size_t nbytes, loff_t off)
355e0c48 3153{
2bd59d48
TH
3154 struct cgroup *cgrp = of->kn->parent->priv;
3155 struct cftype *cft = of->kn->priv;
3156 struct cgroup_subsys_state *css;
a742c59d 3157 int ret;
355e0c48 3158
b4168640
TH
3159 if (cft->write)
3160 return cft->write(of, buf, nbytes, off);
3161
2bd59d48
TH
3162 /*
3163 * kernfs guarantees that a file isn't deleted with operations in
3164 * flight, which means that the matching css is and stays alive and
3165 * doesn't need to be pinned. The RCU locking is not necessary
3166 * either. It's just for the convenience of using cgroup_css().
3167 */
3168 rcu_read_lock();
3169 css = cgroup_css(cgrp, cft->ss);
3170 rcu_read_unlock();
a742c59d 3171
451af504 3172 if (cft->write_u64) {
a742c59d
TH
3173 unsigned long long v;
3174 ret = kstrtoull(buf, 0, &v);
3175 if (!ret)
3176 ret = cft->write_u64(css, cft, v);
3177 } else if (cft->write_s64) {
3178 long long v;
3179 ret = kstrtoll(buf, 0, &v);
3180 if (!ret)
3181 ret = cft->write_s64(css, cft, v);
e73d2c61 3182 } else {
a742c59d 3183 ret = -EINVAL;
e73d2c61 3184 }
2bd59d48 3185
a742c59d 3186 return ret ?: nbytes;
355e0c48
PM
3187}
3188
6612f05b 3189static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3190{
2bd59d48 3191 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3192}
3193
6612f05b 3194static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3195{
2bd59d48 3196 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3197}
3198
6612f05b 3199static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3200{
2bd59d48 3201 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3202}
3203
91796569 3204static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3205{
7da11279
TH
3206 struct cftype *cft = seq_cft(m);
3207 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3208
2da8ca82
TH
3209 if (cft->seq_show)
3210 return cft->seq_show(m, arg);
e73d2c61 3211
f4c753b7 3212 if (cft->read_u64)
896f5199
TH
3213 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3214 else if (cft->read_s64)
3215 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3216 else
3217 return -EINVAL;
3218 return 0;
91796569
PM
3219}
3220
2bd59d48
TH
3221static struct kernfs_ops cgroup_kf_single_ops = {
3222 .atomic_write_len = PAGE_SIZE,
3223 .write = cgroup_file_write,
3224 .seq_show = cgroup_seqfile_show,
91796569
PM
3225};
3226
2bd59d48
TH
3227static struct kernfs_ops cgroup_kf_ops = {
3228 .atomic_write_len = PAGE_SIZE,
3229 .write = cgroup_file_write,
3230 .seq_start = cgroup_seqfile_start,
3231 .seq_next = cgroup_seqfile_next,
3232 .seq_stop = cgroup_seqfile_stop,
3233 .seq_show = cgroup_seqfile_show,
3234};
ddbcc7e8
PM
3235
3236/*
3237 * cgroup_rename - Only allow simple rename of directories in place.
3238 */
2bd59d48
TH
3239static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3240 const char *new_name_str)
ddbcc7e8 3241{
2bd59d48 3242 struct cgroup *cgrp = kn->priv;
65dff759 3243 int ret;
65dff759 3244
2bd59d48 3245 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3246 return -ENOTDIR;
2bd59d48 3247 if (kn->parent != new_parent)
ddbcc7e8 3248 return -EIO;
65dff759 3249
6db8e85c
TH
3250 /*
3251 * This isn't a proper migration and its usefulness is very
aa6ec29b 3252 * limited. Disallow on the default hierarchy.
6db8e85c 3253 */
aa6ec29b 3254 if (cgroup_on_dfl(cgrp))
6db8e85c 3255 return -EPERM;
099fca32 3256
e1b2dc17 3257 /*
8353da1f 3258 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3259 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3260 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3261 */
3262 kernfs_break_active_protection(new_parent);
3263 kernfs_break_active_protection(kn);
099fca32 3264
2bd59d48 3265 mutex_lock(&cgroup_mutex);
099fca32 3266
2bd59d48 3267 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3268
2bd59d48 3269 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3270
3271 kernfs_unbreak_active_protection(kn);
3272 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3273 return ret;
099fca32
LZ
3274}
3275
49957f8e
TH
3276/* set uid and gid of cgroup dirs and files to that of the creator */
3277static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3278{
3279 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3280 .ia_uid = current_fsuid(),
3281 .ia_gid = current_fsgid(), };
3282
3283 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3284 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3285 return 0;
3286
3287 return kernfs_setattr(kn, &iattr);
3288}
3289
4df8dc90
TH
3290static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3291 struct cftype *cft)
ddbcc7e8 3292{
8d7e6fb0 3293 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3294 struct kernfs_node *kn;
3295 struct lock_class_key *key = NULL;
49957f8e 3296 int ret;
05ef1d7c 3297
2bd59d48
TH
3298#ifdef CONFIG_DEBUG_LOCK_ALLOC
3299 key = &cft->lockdep_key;
3300#endif
3301 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3302 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3303 NULL, key);
49957f8e
TH
3304 if (IS_ERR(kn))
3305 return PTR_ERR(kn);
3306
3307 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3308 if (ret) {
49957f8e 3309 kernfs_remove(kn);
f8f22e53
TH
3310 return ret;
3311 }
3312
6f60eade
TH
3313 if (cft->file_offset) {
3314 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3315
3316 kernfs_get(kn);
3317 cfile->kn = kn;
3318 list_add(&cfile->node, &css->files);
3319 }
3320
f8f22e53 3321 return 0;
ddbcc7e8
PM
3322}
3323
b1f28d31
TH
3324/**
3325 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3326 * @css: the target css
3327 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3328 * @cfts: array of cftypes to be added
3329 * @is_add: whether to add or remove
3330 *
3331 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3332 * For removals, this function never fails.
b1f28d31 3333 */
4df8dc90
TH
3334static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3335 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3336 bool is_add)
ddbcc7e8 3337{
6732ed85 3338 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3339 int ret;
3340
01f6474c 3341 lockdep_assert_held(&cgroup_mutex);
db0416b6 3342
6732ed85
TH
3343restart:
3344 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3345 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3346 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3347 continue;
05ebb6e6 3348 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3349 continue;
d51f39b0 3350 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3351 continue;
d51f39b0 3352 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3353 continue;
3354
2739d3cc 3355 if (is_add) {
4df8dc90 3356 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3357 if (ret) {
ed3d261b
JP
3358 pr_warn("%s: failed to add %s, err=%d\n",
3359 __func__, cft->name, ret);
6732ed85
TH
3360 cft_end = cft;
3361 is_add = false;
3362 goto restart;
b1f28d31 3363 }
2739d3cc
LZ
3364 } else {
3365 cgroup_rm_file(cgrp, cft);
db0416b6 3366 }
ddbcc7e8 3367 }
b1f28d31 3368 return 0;
ddbcc7e8
PM
3369}
3370
21a2d343 3371static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3372{
3373 LIST_HEAD(pending);
2bb566cb 3374 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3375 struct cgroup *root = &ss->root->cgrp;
492eb21b 3376 struct cgroup_subsys_state *css;
9ccece80 3377 int ret = 0;
8e3f6541 3378
01f6474c 3379 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3380
e8c82d20 3381 /* add/rm files for all cgroups created before */
ca8bdcaf 3382 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3383 struct cgroup *cgrp = css->cgroup;
3384
e8c82d20
LZ
3385 if (cgroup_is_dead(cgrp))
3386 continue;
3387
4df8dc90 3388 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3389 if (ret)
3390 break;
8e3f6541 3391 }
21a2d343
TH
3392
3393 if (is_add && !ret)
3394 kernfs_activate(root->kn);
9ccece80 3395 return ret;
8e3f6541
TH
3396}
3397
2da440a2 3398static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3399{
2bb566cb 3400 struct cftype *cft;
8e3f6541 3401
2bd59d48
TH
3402 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3403 /* free copy for custom atomic_write_len, see init_cftypes() */
3404 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3405 kfree(cft->kf_ops);
3406 cft->kf_ops = NULL;
2da440a2 3407 cft->ss = NULL;
a8ddc821
TH
3408
3409 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3410 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3411 }
2da440a2
TH
3412}
3413
2bd59d48 3414static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3415{
3416 struct cftype *cft;
3417
2bd59d48
TH
3418 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3419 struct kernfs_ops *kf_ops;
3420
0adb0704
TH
3421 WARN_ON(cft->ss || cft->kf_ops);
3422
2bd59d48
TH
3423 if (cft->seq_start)
3424 kf_ops = &cgroup_kf_ops;
3425 else
3426 kf_ops = &cgroup_kf_single_ops;
3427
3428 /*
3429 * Ugh... if @cft wants a custom max_write_len, we need to
3430 * make a copy of kf_ops to set its atomic_write_len.
3431 */
3432 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3433 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3434 if (!kf_ops) {
3435 cgroup_exit_cftypes(cfts);
3436 return -ENOMEM;
3437 }
3438 kf_ops->atomic_write_len = cft->max_write_len;
3439 }
8e3f6541 3440
2bd59d48 3441 cft->kf_ops = kf_ops;
2bb566cb 3442 cft->ss = ss;
2bd59d48 3443 }
2bb566cb 3444
2bd59d48 3445 return 0;
2da440a2
TH
3446}
3447
21a2d343
TH
3448static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3449{
01f6474c 3450 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3451
3452 if (!cfts || !cfts[0].ss)
3453 return -ENOENT;
3454
3455 list_del(&cfts->node);
3456 cgroup_apply_cftypes(cfts, false);
3457 cgroup_exit_cftypes(cfts);
3458 return 0;
8e3f6541 3459}
8e3f6541 3460
79578621
TH
3461/**
3462 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3463 * @cfts: zero-length name terminated array of cftypes
3464 *
2bb566cb
TH
3465 * Unregister @cfts. Files described by @cfts are removed from all
3466 * existing cgroups and all future cgroups won't have them either. This
3467 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3468 *
3469 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3470 * registered.
79578621 3471 */
2bb566cb 3472int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3473{
21a2d343 3474 int ret;
79578621 3475
01f6474c 3476 mutex_lock(&cgroup_mutex);
21a2d343 3477 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3478 mutex_unlock(&cgroup_mutex);
21a2d343 3479 return ret;
80b13586
TH
3480}
3481
8e3f6541
TH
3482/**
3483 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3484 * @ss: target cgroup subsystem
3485 * @cfts: zero-length name terminated array of cftypes
3486 *
3487 * Register @cfts to @ss. Files described by @cfts are created for all
3488 * existing cgroups to which @ss is attached and all future cgroups will
3489 * have them too. This function can be called anytime whether @ss is
3490 * attached or not.
3491 *
3492 * Returns 0 on successful registration, -errno on failure. Note that this
3493 * function currently returns 0 as long as @cfts registration is successful
3494 * even if some file creation attempts on existing cgroups fail.
3495 */
2cf669a5 3496static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3497{
9ccece80 3498 int ret;
8e3f6541 3499
fc5ed1e9 3500 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3501 return 0;
3502
dc5736ed
LZ
3503 if (!cfts || cfts[0].name[0] == '\0')
3504 return 0;
2bb566cb 3505
2bd59d48
TH
3506 ret = cgroup_init_cftypes(ss, cfts);
3507 if (ret)
3508 return ret;
79578621 3509
01f6474c 3510 mutex_lock(&cgroup_mutex);
21a2d343 3511
0adb0704 3512 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3513 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3514 if (ret)
21a2d343 3515 cgroup_rm_cftypes_locked(cfts);
79578621 3516
01f6474c 3517 mutex_unlock(&cgroup_mutex);
9ccece80 3518 return ret;
79578621
TH
3519}
3520
a8ddc821
TH
3521/**
3522 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3523 * @ss: target cgroup subsystem
3524 * @cfts: zero-length name terminated array of cftypes
3525 *
3526 * Similar to cgroup_add_cftypes() but the added files are only used for
3527 * the default hierarchy.
3528 */
3529int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3530{
3531 struct cftype *cft;
3532
3533 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3534 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3535 return cgroup_add_cftypes(ss, cfts);
3536}
3537
3538/**
3539 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3540 * @ss: target cgroup subsystem
3541 * @cfts: zero-length name terminated array of cftypes
3542 *
3543 * Similar to cgroup_add_cftypes() but the added files are only used for
3544 * the legacy hierarchies.
3545 */
2cf669a5
TH
3546int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3547{
a8ddc821
TH
3548 struct cftype *cft;
3549
e4b7037c
TH
3550 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3551 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3552 return cgroup_add_cftypes(ss, cfts);
3553}
3554
a043e3b2
LZ
3555/**
3556 * cgroup_task_count - count the number of tasks in a cgroup.
3557 * @cgrp: the cgroup in question
3558 *
3559 * Return the number of tasks in the cgroup.
3560 */
07bc356e 3561static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3562{
3563 int count = 0;
69d0206c 3564 struct cgrp_cset_link *link;
817929ec 3565
f0d9a5f1 3566 spin_lock_bh(&css_set_lock);
69d0206c
TH
3567 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3568 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3569 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3570 return count;
3571}
3572
53fa5261 3573/**
492eb21b 3574 * css_next_child - find the next child of a given css
c2931b70
TH
3575 * @pos: the current position (%NULL to initiate traversal)
3576 * @parent: css whose children to walk
53fa5261 3577 *
c2931b70 3578 * This function returns the next child of @parent and should be called
87fb54f1 3579 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3580 * that @parent and @pos are accessible. The next sibling is guaranteed to
3581 * be returned regardless of their states.
3582 *
3583 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3584 * css which finished ->css_online() is guaranteed to be visible in the
3585 * future iterations and will stay visible until the last reference is put.
3586 * A css which hasn't finished ->css_online() or already finished
3587 * ->css_offline() may show up during traversal. It's each subsystem's
3588 * responsibility to synchronize against on/offlining.
53fa5261 3589 */
c2931b70
TH
3590struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3591 struct cgroup_subsys_state *parent)
53fa5261 3592{
c2931b70 3593 struct cgroup_subsys_state *next;
53fa5261 3594
8353da1f 3595 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3596
3597 /*
de3f0341
TH
3598 * @pos could already have been unlinked from the sibling list.
3599 * Once a cgroup is removed, its ->sibling.next is no longer
3600 * updated when its next sibling changes. CSS_RELEASED is set when
3601 * @pos is taken off list, at which time its next pointer is valid,
3602 * and, as releases are serialized, the one pointed to by the next
3603 * pointer is guaranteed to not have started release yet. This
3604 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3605 * critical section, the one pointed to by its next pointer is
3606 * guaranteed to not have finished its RCU grace period even if we
3607 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3608 *
de3f0341
TH
3609 * If @pos has CSS_RELEASED set, its next pointer can't be
3610 * dereferenced; however, as each css is given a monotonically
3611 * increasing unique serial number and always appended to the
3612 * sibling list, the next one can be found by walking the parent's
3613 * children until the first css with higher serial number than
3614 * @pos's. While this path can be slower, it happens iff iteration
3615 * races against release and the race window is very small.
53fa5261 3616 */
3b287a50 3617 if (!pos) {
c2931b70
TH
3618 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3619 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3620 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3621 } else {
c2931b70 3622 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3623 if (next->serial_nr > pos->serial_nr)
3624 break;
53fa5261
TH
3625 }
3626
3b281afb
TH
3627 /*
3628 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3629 * the next sibling.
3b281afb 3630 */
c2931b70
TH
3631 if (&next->sibling != &parent->children)
3632 return next;
3b281afb 3633 return NULL;
53fa5261 3634}
53fa5261 3635
574bd9f7 3636/**
492eb21b 3637 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3638 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3639 * @root: css whose descendants to walk
574bd9f7 3640 *
492eb21b 3641 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3642 * to visit for pre-order traversal of @root's descendants. @root is
3643 * included in the iteration and the first node to be visited.
75501a6d 3644 *
87fb54f1
TH
3645 * While this function requires cgroup_mutex or RCU read locking, it
3646 * doesn't require the whole traversal to be contained in a single critical
3647 * section. This function will return the correct next descendant as long
3648 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3649 *
3650 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3651 * css which finished ->css_online() is guaranteed to be visible in the
3652 * future iterations and will stay visible until the last reference is put.
3653 * A css which hasn't finished ->css_online() or already finished
3654 * ->css_offline() may show up during traversal. It's each subsystem's
3655 * responsibility to synchronize against on/offlining.
574bd9f7 3656 */
492eb21b
TH
3657struct cgroup_subsys_state *
3658css_next_descendant_pre(struct cgroup_subsys_state *pos,
3659 struct cgroup_subsys_state *root)
574bd9f7 3660{
492eb21b 3661 struct cgroup_subsys_state *next;
574bd9f7 3662
8353da1f 3663 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3664
bd8815a6 3665 /* if first iteration, visit @root */
7805d000 3666 if (!pos)
bd8815a6 3667 return root;
574bd9f7
TH
3668
3669 /* visit the first child if exists */
492eb21b 3670 next = css_next_child(NULL, pos);
574bd9f7
TH
3671 if (next)
3672 return next;
3673
3674 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3675 while (pos != root) {
5c9d535b 3676 next = css_next_child(pos, pos->parent);
75501a6d 3677 if (next)
574bd9f7 3678 return next;
5c9d535b 3679 pos = pos->parent;
7805d000 3680 }
574bd9f7
TH
3681
3682 return NULL;
3683}
574bd9f7 3684
12a9d2fe 3685/**
492eb21b
TH
3686 * css_rightmost_descendant - return the rightmost descendant of a css
3687 * @pos: css of interest
12a9d2fe 3688 *
492eb21b
TH
3689 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3690 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3691 * subtree of @pos.
75501a6d 3692 *
87fb54f1
TH
3693 * While this function requires cgroup_mutex or RCU read locking, it
3694 * doesn't require the whole traversal to be contained in a single critical
3695 * section. This function will return the correct rightmost descendant as
3696 * long as @pos is accessible.
12a9d2fe 3697 */
492eb21b
TH
3698struct cgroup_subsys_state *
3699css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3700{
492eb21b 3701 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3702
8353da1f 3703 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3704
3705 do {
3706 last = pos;
3707 /* ->prev isn't RCU safe, walk ->next till the end */
3708 pos = NULL;
492eb21b 3709 css_for_each_child(tmp, last)
12a9d2fe
TH
3710 pos = tmp;
3711 } while (pos);
3712
3713 return last;
3714}
12a9d2fe 3715
492eb21b
TH
3716static struct cgroup_subsys_state *
3717css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3718{
492eb21b 3719 struct cgroup_subsys_state *last;
574bd9f7
TH
3720
3721 do {
3722 last = pos;
492eb21b 3723 pos = css_next_child(NULL, pos);
574bd9f7
TH
3724 } while (pos);
3725
3726 return last;
3727}
3728
3729/**
492eb21b 3730 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3731 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3732 * @root: css whose descendants to walk
574bd9f7 3733 *
492eb21b 3734 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3735 * to visit for post-order traversal of @root's descendants. @root is
3736 * included in the iteration and the last node to be visited.
75501a6d 3737 *
87fb54f1
TH
3738 * While this function requires cgroup_mutex or RCU read locking, it
3739 * doesn't require the whole traversal to be contained in a single critical
3740 * section. This function will return the correct next descendant as long
3741 * as both @pos and @cgroup are accessible and @pos is a descendant of
3742 * @cgroup.
c2931b70
TH
3743 *
3744 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3745 * css which finished ->css_online() is guaranteed to be visible in the
3746 * future iterations and will stay visible until the last reference is put.
3747 * A css which hasn't finished ->css_online() or already finished
3748 * ->css_offline() may show up during traversal. It's each subsystem's
3749 * responsibility to synchronize against on/offlining.
574bd9f7 3750 */
492eb21b
TH
3751struct cgroup_subsys_state *
3752css_next_descendant_post(struct cgroup_subsys_state *pos,
3753 struct cgroup_subsys_state *root)
574bd9f7 3754{
492eb21b 3755 struct cgroup_subsys_state *next;
574bd9f7 3756
8353da1f 3757 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3758
58b79a91
TH
3759 /* if first iteration, visit leftmost descendant which may be @root */
3760 if (!pos)
3761 return css_leftmost_descendant(root);
574bd9f7 3762
bd8815a6
TH
3763 /* if we visited @root, we're done */
3764 if (pos == root)
3765 return NULL;
3766
574bd9f7 3767 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3768 next = css_next_child(pos, pos->parent);
75501a6d 3769 if (next)
492eb21b 3770 return css_leftmost_descendant(next);
574bd9f7
TH
3771
3772 /* no sibling left, visit parent */
5c9d535b 3773 return pos->parent;
574bd9f7 3774}
574bd9f7 3775
f3d46500
TH
3776/**
3777 * css_has_online_children - does a css have online children
3778 * @css: the target css
3779 *
3780 * Returns %true if @css has any online children; otherwise, %false. This
3781 * function can be called from any context but the caller is responsible
3782 * for synchronizing against on/offlining as necessary.
3783 */
3784bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3785{
f3d46500
TH
3786 struct cgroup_subsys_state *child;
3787 bool ret = false;
cbc125ef
TH
3788
3789 rcu_read_lock();
f3d46500 3790 css_for_each_child(child, css) {
99bae5f9 3791 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3792 ret = true;
3793 break;
cbc125ef
TH
3794 }
3795 }
3796 rcu_read_unlock();
f3d46500 3797 return ret;
574bd9f7 3798}
574bd9f7 3799
0942eeee 3800/**
ecb9d535 3801 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3802 * @it: the iterator to advance
3803 *
3804 * Advance @it to the next css_set to walk.
d515876e 3805 */
ecb9d535 3806static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3807{
0f0a2b4f 3808 struct list_head *l = it->cset_pos;
d515876e
TH
3809 struct cgrp_cset_link *link;
3810 struct css_set *cset;
3811
f0d9a5f1 3812 lockdep_assert_held(&css_set_lock);
ed27b9f7 3813
d515876e
TH
3814 /* Advance to the next non-empty css_set */
3815 do {
3816 l = l->next;
0f0a2b4f
TH
3817 if (l == it->cset_head) {
3818 it->cset_pos = NULL;
ecb9d535 3819 it->task_pos = NULL;
d515876e
TH
3820 return;
3821 }
3ebb2b6e
TH
3822
3823 if (it->ss) {
3824 cset = container_of(l, struct css_set,
3825 e_cset_node[it->ss->id]);
3826 } else {
3827 link = list_entry(l, struct cgrp_cset_link, cset_link);
3828 cset = link->cset;
3829 }
0de0942d 3830 } while (!css_set_populated(cset));
c7561128 3831
0f0a2b4f 3832 it->cset_pos = l;
c7561128
TH
3833
3834 if (!list_empty(&cset->tasks))
0f0a2b4f 3835 it->task_pos = cset->tasks.next;
c7561128 3836 else
0f0a2b4f
TH
3837 it->task_pos = cset->mg_tasks.next;
3838
3839 it->tasks_head = &cset->tasks;
3840 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3841
3842 /*
3843 * We don't keep css_sets locked across iteration steps and thus
3844 * need to take steps to ensure that iteration can be resumed after
3845 * the lock is re-acquired. Iteration is performed at two levels -
3846 * css_sets and tasks in them.
3847 *
3848 * Once created, a css_set never leaves its cgroup lists, so a
3849 * pinned css_set is guaranteed to stay put and we can resume
3850 * iteration afterwards.
3851 *
3852 * Tasks may leave @cset across iteration steps. This is resolved
3853 * by registering each iterator with the css_set currently being
3854 * walked and making css_set_move_task() advance iterators whose
3855 * next task is leaving.
3856 */
3857 if (it->cur_cset) {
3858 list_del(&it->iters_node);
3859 put_css_set_locked(it->cur_cset);
3860 }
3861 get_css_set(cset);
3862 it->cur_cset = cset;
3863 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3864}
3865
ecb9d535
TH
3866static void css_task_iter_advance(struct css_task_iter *it)
3867{
3868 struct list_head *l = it->task_pos;
3869
f0d9a5f1 3870 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3871 WARN_ON_ONCE(!l);
3872
3873 /*
3874 * Advance iterator to find next entry. cset->tasks is consumed
3875 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3876 * next cset.
3877 */
3878 l = l->next;
3879
3880 if (l == it->tasks_head)
3881 l = it->mg_tasks_head->next;
3882
3883 if (l == it->mg_tasks_head)
3884 css_task_iter_advance_css_set(it);
3885 else
3886 it->task_pos = l;
3887}
3888
0942eeee 3889/**
72ec7029
TH
3890 * css_task_iter_start - initiate task iteration
3891 * @css: the css to walk tasks of
0942eeee
TH
3892 * @it: the task iterator to use
3893 *
72ec7029
TH
3894 * Initiate iteration through the tasks of @css. The caller can call
3895 * css_task_iter_next() to walk through the tasks until the function
3896 * returns NULL. On completion of iteration, css_task_iter_end() must be
3897 * called.
0942eeee 3898 */
72ec7029
TH
3899void css_task_iter_start(struct cgroup_subsys_state *css,
3900 struct css_task_iter *it)
817929ec 3901{
56fde9e0
TH
3902 /* no one should try to iterate before mounting cgroups */
3903 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3904
ed27b9f7
TH
3905 memset(it, 0, sizeof(*it));
3906
f0d9a5f1 3907 spin_lock_bh(&css_set_lock);
c59cd3d8 3908
3ebb2b6e
TH
3909 it->ss = css->ss;
3910
3911 if (it->ss)
3912 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3913 else
3914 it->cset_pos = &css->cgroup->cset_links;
3915
0f0a2b4f 3916 it->cset_head = it->cset_pos;
c59cd3d8 3917
ecb9d535 3918 css_task_iter_advance_css_set(it);
ed27b9f7 3919
f0d9a5f1 3920 spin_unlock_bh(&css_set_lock);
817929ec
PM
3921}
3922
0942eeee 3923/**
72ec7029 3924 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3925 * @it: the task iterator being iterated
3926 *
3927 * The "next" function for task iteration. @it should have been
72ec7029
TH
3928 * initialized via css_task_iter_start(). Returns NULL when the iteration
3929 * reaches the end.
0942eeee 3930 */
72ec7029 3931struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3932{
0f0a2b4f 3933 if (!it->cset_pos)
817929ec 3934 return NULL;
c7561128 3935
ed27b9f7
TH
3936 if (it->cur_task)
3937 put_task_struct(it->cur_task);
3938
f0d9a5f1 3939 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3940
3941 it->cur_task = list_entry(it->task_pos, struct task_struct, cg_list);
3942 get_task_struct(it->cur_task);
3943
ecb9d535 3944 css_task_iter_advance(it);
ed27b9f7 3945
f0d9a5f1 3946 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3947
3948 return it->cur_task;
817929ec
PM
3949}
3950
0942eeee 3951/**
72ec7029 3952 * css_task_iter_end - finish task iteration
0942eeee
TH
3953 * @it: the task iterator to finish
3954 *
72ec7029 3955 * Finish task iteration started by css_task_iter_start().
0942eeee 3956 */
72ec7029 3957void css_task_iter_end(struct css_task_iter *it)
31a7df01 3958{
ed27b9f7 3959 if (it->cur_cset) {
f0d9a5f1 3960 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3961 list_del(&it->iters_node);
3962 put_css_set_locked(it->cur_cset);
f0d9a5f1 3963 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3964 }
3965
3966 if (it->cur_task)
3967 put_task_struct(it->cur_task);
31a7df01
CW
3968}
3969
3970/**
8cc99345
TH
3971 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3972 * @to: cgroup to which the tasks will be moved
3973 * @from: cgroup in which the tasks currently reside
31a7df01 3974 *
eaf797ab
TH
3975 * Locking rules between cgroup_post_fork() and the migration path
3976 * guarantee that, if a task is forking while being migrated, the new child
3977 * is guaranteed to be either visible in the source cgroup after the
3978 * parent's migration is complete or put into the target cgroup. No task
3979 * can slip out of migration through forking.
31a7df01 3980 */
8cc99345 3981int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3982{
952aaa12
TH
3983 LIST_HEAD(preloaded_csets);
3984 struct cgrp_cset_link *link;
72ec7029 3985 struct css_task_iter it;
e406d1cf 3986 struct task_struct *task;
952aaa12 3987 int ret;
31a7df01 3988
952aaa12 3989 mutex_lock(&cgroup_mutex);
31a7df01 3990
952aaa12 3991 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 3992 spin_lock_bh(&css_set_lock);
952aaa12
TH
3993 list_for_each_entry(link, &from->cset_links, cset_link)
3994 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 3995 spin_unlock_bh(&css_set_lock);
31a7df01 3996
952aaa12
TH
3997 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3998 if (ret)
3999 goto out_err;
8cc99345 4000
952aaa12
TH
4001 /*
4002 * Migrate tasks one-by-one until @form is empty. This fails iff
4003 * ->can_attach() fails.
4004 */
e406d1cf 4005 do {
9d800df1 4006 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4007 task = css_task_iter_next(&it);
4008 if (task)
4009 get_task_struct(task);
4010 css_task_iter_end(&it);
4011
4012 if (task) {
9af2ec45 4013 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4014 put_task_struct(task);
4015 }
4016 } while (task && !ret);
952aaa12
TH
4017out_err:
4018 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4019 mutex_unlock(&cgroup_mutex);
e406d1cf 4020 return ret;
8cc99345
TH
4021}
4022
bbcb81d0 4023/*
102a775e 4024 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4025 *
4026 * Reading this file can return large amounts of data if a cgroup has
4027 * *lots* of attached tasks. So it may need several calls to read(),
4028 * but we cannot guarantee that the information we produce is correct
4029 * unless we produce it entirely atomically.
4030 *
bbcb81d0 4031 */
bbcb81d0 4032
24528255
LZ
4033/* which pidlist file are we talking about? */
4034enum cgroup_filetype {
4035 CGROUP_FILE_PROCS,
4036 CGROUP_FILE_TASKS,
4037};
4038
4039/*
4040 * A pidlist is a list of pids that virtually represents the contents of one
4041 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4042 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4043 * to the cgroup.
4044 */
4045struct cgroup_pidlist {
4046 /*
4047 * used to find which pidlist is wanted. doesn't change as long as
4048 * this particular list stays in the list.
4049 */
4050 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4051 /* array of xids */
4052 pid_t *list;
4053 /* how many elements the above list has */
4054 int length;
24528255
LZ
4055 /* each of these stored in a list by its cgroup */
4056 struct list_head links;
4057 /* pointer to the cgroup we belong to, for list removal purposes */
4058 struct cgroup *owner;
b1a21367
TH
4059 /* for delayed destruction */
4060 struct delayed_work destroy_dwork;
24528255
LZ
4061};
4062
d1d9fd33
BB
4063/*
4064 * The following two functions "fix" the issue where there are more pids
4065 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4066 * TODO: replace with a kernel-wide solution to this problem
4067 */
4068#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4069static void *pidlist_allocate(int count)
4070{
4071 if (PIDLIST_TOO_LARGE(count))
4072 return vmalloc(count * sizeof(pid_t));
4073 else
4074 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4075}
b1a21367 4076
d1d9fd33
BB
4077static void pidlist_free(void *p)
4078{
58794514 4079 kvfree(p);
d1d9fd33 4080}
d1d9fd33 4081
b1a21367
TH
4082/*
4083 * Used to destroy all pidlists lingering waiting for destroy timer. None
4084 * should be left afterwards.
4085 */
4086static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4087{
4088 struct cgroup_pidlist *l, *tmp_l;
4089
4090 mutex_lock(&cgrp->pidlist_mutex);
4091 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4092 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4093 mutex_unlock(&cgrp->pidlist_mutex);
4094
4095 flush_workqueue(cgroup_pidlist_destroy_wq);
4096 BUG_ON(!list_empty(&cgrp->pidlists));
4097}
4098
4099static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4100{
4101 struct delayed_work *dwork = to_delayed_work(work);
4102 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4103 destroy_dwork);
4104 struct cgroup_pidlist *tofree = NULL;
4105
4106 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4107
4108 /*
04502365
TH
4109 * Destroy iff we didn't get queued again. The state won't change
4110 * as destroy_dwork can only be queued while locked.
b1a21367 4111 */
04502365 4112 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4113 list_del(&l->links);
4114 pidlist_free(l->list);
4115 put_pid_ns(l->key.ns);
4116 tofree = l;
4117 }
4118
b1a21367
TH
4119 mutex_unlock(&l->owner->pidlist_mutex);
4120 kfree(tofree);
4121}
4122
bbcb81d0 4123/*
102a775e 4124 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4125 * Returns the number of unique elements.
bbcb81d0 4126 */
6ee211ad 4127static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4128{
102a775e 4129 int src, dest = 1;
102a775e
BB
4130
4131 /*
4132 * we presume the 0th element is unique, so i starts at 1. trivial
4133 * edge cases first; no work needs to be done for either
4134 */
4135 if (length == 0 || length == 1)
4136 return length;
4137 /* src and dest walk down the list; dest counts unique elements */
4138 for (src = 1; src < length; src++) {
4139 /* find next unique element */
4140 while (list[src] == list[src-1]) {
4141 src++;
4142 if (src == length)
4143 goto after;
4144 }
4145 /* dest always points to where the next unique element goes */
4146 list[dest] = list[src];
4147 dest++;
4148 }
4149after:
102a775e
BB
4150 return dest;
4151}
4152
afb2bc14
TH
4153/*
4154 * The two pid files - task and cgroup.procs - guaranteed that the result
4155 * is sorted, which forced this whole pidlist fiasco. As pid order is
4156 * different per namespace, each namespace needs differently sorted list,
4157 * making it impossible to use, for example, single rbtree of member tasks
4158 * sorted by task pointer. As pidlists can be fairly large, allocating one
4159 * per open file is dangerous, so cgroup had to implement shared pool of
4160 * pidlists keyed by cgroup and namespace.
4161 *
4162 * All this extra complexity was caused by the original implementation
4163 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4164 * want to do away with it. Explicitly scramble sort order if on the
4165 * default hierarchy so that no such expectation exists in the new
4166 * interface.
afb2bc14
TH
4167 *
4168 * Scrambling is done by swapping every two consecutive bits, which is
4169 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4170 */
4171static pid_t pid_fry(pid_t pid)
4172{
4173 unsigned a = pid & 0x55555555;
4174 unsigned b = pid & 0xAAAAAAAA;
4175
4176 return (a << 1) | (b >> 1);
4177}
4178
4179static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4180{
aa6ec29b 4181 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4182 return pid_fry(pid);
4183 else
4184 return pid;
4185}
4186
102a775e
BB
4187static int cmppid(const void *a, const void *b)
4188{
4189 return *(pid_t *)a - *(pid_t *)b;
4190}
4191
afb2bc14
TH
4192static int fried_cmppid(const void *a, const void *b)
4193{
4194 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4195}
4196
e6b81710
TH
4197static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4198 enum cgroup_filetype type)
4199{
4200 struct cgroup_pidlist *l;
4201 /* don't need task_nsproxy() if we're looking at ourself */
4202 struct pid_namespace *ns = task_active_pid_ns(current);
4203
4204 lockdep_assert_held(&cgrp->pidlist_mutex);
4205
4206 list_for_each_entry(l, &cgrp->pidlists, links)
4207 if (l->key.type == type && l->key.ns == ns)
4208 return l;
4209 return NULL;
4210}
4211
72a8cb30
BB
4212/*
4213 * find the appropriate pidlist for our purpose (given procs vs tasks)
4214 * returns with the lock on that pidlist already held, and takes care
4215 * of the use count, or returns NULL with no locks held if we're out of
4216 * memory.
4217 */
e6b81710
TH
4218static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4219 enum cgroup_filetype type)
72a8cb30
BB
4220{
4221 struct cgroup_pidlist *l;
b70cc5fd 4222
e6b81710
TH
4223 lockdep_assert_held(&cgrp->pidlist_mutex);
4224
4225 l = cgroup_pidlist_find(cgrp, type);
4226 if (l)
4227 return l;
4228
72a8cb30 4229 /* entry not found; create a new one */
f4f4be2b 4230 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4231 if (!l)
72a8cb30 4232 return l;
e6b81710 4233
b1a21367 4234 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4235 l->key.type = type;
e6b81710
TH
4236 /* don't need task_nsproxy() if we're looking at ourself */
4237 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4238 l->owner = cgrp;
4239 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4240 return l;
4241}
4242
102a775e
BB
4243/*
4244 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4245 */
72a8cb30
BB
4246static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4247 struct cgroup_pidlist **lp)
102a775e
BB
4248{
4249 pid_t *array;
4250 int length;
4251 int pid, n = 0; /* used for populating the array */
72ec7029 4252 struct css_task_iter it;
817929ec 4253 struct task_struct *tsk;
102a775e
BB
4254 struct cgroup_pidlist *l;
4255
4bac00d1
TH
4256 lockdep_assert_held(&cgrp->pidlist_mutex);
4257
102a775e
BB
4258 /*
4259 * If cgroup gets more users after we read count, we won't have
4260 * enough space - tough. This race is indistinguishable to the
4261 * caller from the case that the additional cgroup users didn't
4262 * show up until sometime later on.
4263 */
4264 length = cgroup_task_count(cgrp);
d1d9fd33 4265 array = pidlist_allocate(length);
102a775e
BB
4266 if (!array)
4267 return -ENOMEM;
4268 /* now, populate the array */
9d800df1 4269 css_task_iter_start(&cgrp->self, &it);
72ec7029 4270 while ((tsk = css_task_iter_next(&it))) {
102a775e 4271 if (unlikely(n == length))
817929ec 4272 break;
102a775e 4273 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4274 if (type == CGROUP_FILE_PROCS)
4275 pid = task_tgid_vnr(tsk);
4276 else
4277 pid = task_pid_vnr(tsk);
102a775e
BB
4278 if (pid > 0) /* make sure to only use valid results */
4279 array[n++] = pid;
817929ec 4280 }
72ec7029 4281 css_task_iter_end(&it);
102a775e
BB
4282 length = n;
4283 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4284 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4285 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4286 else
4287 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4288 if (type == CGROUP_FILE_PROCS)
6ee211ad 4289 length = pidlist_uniq(array, length);
e6b81710 4290
e6b81710 4291 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4292 if (!l) {
d1d9fd33 4293 pidlist_free(array);
72a8cb30 4294 return -ENOMEM;
102a775e 4295 }
e6b81710
TH
4296
4297 /* store array, freeing old if necessary */
d1d9fd33 4298 pidlist_free(l->list);
102a775e
BB
4299 l->list = array;
4300 l->length = length;
72a8cb30 4301 *lp = l;
102a775e 4302 return 0;
bbcb81d0
PM
4303}
4304
846c7bb0 4305/**
a043e3b2 4306 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4307 * @stats: cgroupstats to fill information into
4308 * @dentry: A dentry entry belonging to the cgroup for which stats have
4309 * been requested.
a043e3b2
LZ
4310 *
4311 * Build and fill cgroupstats so that taskstats can export it to user
4312 * space.
846c7bb0
BS
4313 */
4314int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4315{
2bd59d48 4316 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4317 struct cgroup *cgrp;
72ec7029 4318 struct css_task_iter it;
846c7bb0 4319 struct task_struct *tsk;
33d283be 4320
2bd59d48
TH
4321 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4322 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4323 kernfs_type(kn) != KERNFS_DIR)
4324 return -EINVAL;
4325
bad34660
LZ
4326 mutex_lock(&cgroup_mutex);
4327
846c7bb0 4328 /*
2bd59d48 4329 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4330 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4331 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4332 */
2bd59d48
TH
4333 rcu_read_lock();
4334 cgrp = rcu_dereference(kn->priv);
bad34660 4335 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4336 rcu_read_unlock();
bad34660 4337 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4338 return -ENOENT;
4339 }
bad34660 4340 rcu_read_unlock();
846c7bb0 4341
9d800df1 4342 css_task_iter_start(&cgrp->self, &it);
72ec7029 4343 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4344 switch (tsk->state) {
4345 case TASK_RUNNING:
4346 stats->nr_running++;
4347 break;
4348 case TASK_INTERRUPTIBLE:
4349 stats->nr_sleeping++;
4350 break;
4351 case TASK_UNINTERRUPTIBLE:
4352 stats->nr_uninterruptible++;
4353 break;
4354 case TASK_STOPPED:
4355 stats->nr_stopped++;
4356 break;
4357 default:
4358 if (delayacct_is_task_waiting_on_io(tsk))
4359 stats->nr_io_wait++;
4360 break;
4361 }
4362 }
72ec7029 4363 css_task_iter_end(&it);
846c7bb0 4364
bad34660 4365 mutex_unlock(&cgroup_mutex);
2bd59d48 4366 return 0;
846c7bb0
BS
4367}
4368
8f3ff208 4369
bbcb81d0 4370/*
102a775e 4371 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4372 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4373 * in the cgroup->l->list array.
bbcb81d0 4374 */
cc31edce 4375
102a775e 4376static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4377{
cc31edce
PM
4378 /*
4379 * Initially we receive a position value that corresponds to
4380 * one more than the last pid shown (or 0 on the first call or
4381 * after a seek to the start). Use a binary-search to find the
4382 * next pid to display, if any
4383 */
2bd59d48 4384 struct kernfs_open_file *of = s->private;
7da11279 4385 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4386 struct cgroup_pidlist *l;
7da11279 4387 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4388 int index = 0, pid = *pos;
4bac00d1
TH
4389 int *iter, ret;
4390
4391 mutex_lock(&cgrp->pidlist_mutex);
4392
4393 /*
5d22444f 4394 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4395 * after open. If the matching pidlist is around, we can use that.
5d22444f 4396 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4397 * could already have been destroyed.
4398 */
5d22444f
TH
4399 if (of->priv)
4400 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4401
4402 /*
4403 * Either this is the first start() after open or the matching
4404 * pidlist has been destroyed inbetween. Create a new one.
4405 */
5d22444f
TH
4406 if (!of->priv) {
4407 ret = pidlist_array_load(cgrp, type,
4408 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4409 if (ret)
4410 return ERR_PTR(ret);
4411 }
5d22444f 4412 l = of->priv;
cc31edce 4413
cc31edce 4414 if (pid) {
102a775e 4415 int end = l->length;
20777766 4416
cc31edce
PM
4417 while (index < end) {
4418 int mid = (index + end) / 2;
afb2bc14 4419 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4420 index = mid;
4421 break;
afb2bc14 4422 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4423 index = mid + 1;
4424 else
4425 end = mid;
4426 }
4427 }
4428 /* If we're off the end of the array, we're done */
102a775e 4429 if (index >= l->length)
cc31edce
PM
4430 return NULL;
4431 /* Update the abstract position to be the actual pid that we found */
102a775e 4432 iter = l->list + index;
afb2bc14 4433 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4434 return iter;
4435}
4436
102a775e 4437static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4438{
2bd59d48 4439 struct kernfs_open_file *of = s->private;
5d22444f 4440 struct cgroup_pidlist *l = of->priv;
62236858 4441
5d22444f
TH
4442 if (l)
4443 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4444 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4445 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4446}
4447
102a775e 4448static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4449{
2bd59d48 4450 struct kernfs_open_file *of = s->private;
5d22444f 4451 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4452 pid_t *p = v;
4453 pid_t *end = l->list + l->length;
cc31edce
PM
4454 /*
4455 * Advance to the next pid in the array. If this goes off the
4456 * end, we're done
4457 */
4458 p++;
4459 if (p >= end) {
4460 return NULL;
4461 } else {
7da11279 4462 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4463 return p;
4464 }
4465}
4466
102a775e 4467static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4468{
94ff212d
JP
4469 seq_printf(s, "%d\n", *(int *)v);
4470
4471 return 0;
cc31edce 4472}
bbcb81d0 4473
182446d0
TH
4474static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4475 struct cftype *cft)
81a6a5cd 4476{
182446d0 4477 return notify_on_release(css->cgroup);
81a6a5cd
PM
4478}
4479
182446d0
TH
4480static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4481 struct cftype *cft, u64 val)
6379c106 4482{
6379c106 4483 if (val)
182446d0 4484 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4485 else
182446d0 4486 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4487 return 0;
4488}
4489
182446d0
TH
4490static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4491 struct cftype *cft)
97978e6d 4492{
182446d0 4493 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4494}
4495
182446d0
TH
4496static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4497 struct cftype *cft, u64 val)
97978e6d
DL
4498{
4499 if (val)
182446d0 4500 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4501 else
182446d0 4502 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4503 return 0;
4504}
4505
a14c6874
TH
4506/* cgroup core interface files for the default hierarchy */
4507static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4508 {
d5c56ced 4509 .name = "cgroup.procs",
6f60eade 4510 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4511 .seq_start = cgroup_pidlist_start,
4512 .seq_next = cgroup_pidlist_next,
4513 .seq_stop = cgroup_pidlist_stop,
4514 .seq_show = cgroup_pidlist_show,
5d22444f 4515 .private = CGROUP_FILE_PROCS,
acbef755 4516 .write = cgroup_procs_write,
102a775e 4517 },
f8f22e53
TH
4518 {
4519 .name = "cgroup.controllers",
a14c6874 4520 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4521 .seq_show = cgroup_root_controllers_show,
4522 },
4523 {
4524 .name = "cgroup.controllers",
a14c6874 4525 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4526 .seq_show = cgroup_controllers_show,
4527 },
4528 {
4529 .name = "cgroup.subtree_control",
f8f22e53 4530 .seq_show = cgroup_subtree_control_show,
451af504 4531 .write = cgroup_subtree_control_write,
f8f22e53 4532 },
842b597e 4533 {
4a07c222 4534 .name = "cgroup.events",
a14c6874 4535 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4536 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4537 .seq_show = cgroup_events_show,
842b597e 4538 },
a14c6874
TH
4539 { } /* terminate */
4540};
d5c56ced 4541
a14c6874
TH
4542/* cgroup core interface files for the legacy hierarchies */
4543static struct cftype cgroup_legacy_base_files[] = {
4544 {
4545 .name = "cgroup.procs",
4546 .seq_start = cgroup_pidlist_start,
4547 .seq_next = cgroup_pidlist_next,
4548 .seq_stop = cgroup_pidlist_stop,
4549 .seq_show = cgroup_pidlist_show,
4550 .private = CGROUP_FILE_PROCS,
4551 .write = cgroup_procs_write,
a14c6874
TH
4552 },
4553 {
4554 .name = "cgroup.clone_children",
4555 .read_u64 = cgroup_clone_children_read,
4556 .write_u64 = cgroup_clone_children_write,
4557 },
4558 {
4559 .name = "cgroup.sane_behavior",
4560 .flags = CFTYPE_ONLY_ON_ROOT,
4561 .seq_show = cgroup_sane_behavior_show,
4562 },
d5c56ced
TH
4563 {
4564 .name = "tasks",
6612f05b
TH
4565 .seq_start = cgroup_pidlist_start,
4566 .seq_next = cgroup_pidlist_next,
4567 .seq_stop = cgroup_pidlist_stop,
4568 .seq_show = cgroup_pidlist_show,
5d22444f 4569 .private = CGROUP_FILE_TASKS,
acbef755 4570 .write = cgroup_tasks_write,
d5c56ced
TH
4571 },
4572 {
4573 .name = "notify_on_release",
d5c56ced
TH
4574 .read_u64 = cgroup_read_notify_on_release,
4575 .write_u64 = cgroup_write_notify_on_release,
4576 },
6e6ff25b
TH
4577 {
4578 .name = "release_agent",
a14c6874 4579 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4580 .seq_show = cgroup_release_agent_show,
451af504 4581 .write = cgroup_release_agent_write,
5f469907 4582 .max_write_len = PATH_MAX - 1,
6e6ff25b 4583 },
db0416b6 4584 { } /* terminate */
bbcb81d0
PM
4585};
4586
0c21ead1
TH
4587/*
4588 * css destruction is four-stage process.
4589 *
4590 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4591 * Implemented in kill_css().
4592 *
4593 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4594 * and thus css_tryget_online() is guaranteed to fail, the css can be
4595 * offlined by invoking offline_css(). After offlining, the base ref is
4596 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4597 *
4598 * 3. When the percpu_ref reaches zero, the only possible remaining
4599 * accessors are inside RCU read sections. css_release() schedules the
4600 * RCU callback.
4601 *
4602 * 4. After the grace period, the css can be freed. Implemented in
4603 * css_free_work_fn().
4604 *
4605 * It is actually hairier because both step 2 and 4 require process context
4606 * and thus involve punting to css->destroy_work adding two additional
4607 * steps to the already complex sequence.
4608 */
35ef10da 4609static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4610{
4611 struct cgroup_subsys_state *css =
35ef10da 4612 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4613 struct cgroup_subsys *ss = css->ss;
0c21ead1 4614 struct cgroup *cgrp = css->cgroup;
6f60eade 4615 struct cgroup_file *cfile;
48ddbe19 4616
9a1049da
TH
4617 percpu_ref_exit(&css->refcnt);
4618
6f60eade
TH
4619 list_for_each_entry(cfile, &css->files, node)
4620 kernfs_put(cfile->kn);
4621
01e58659 4622 if (ss) {
9d755d33 4623 /* css free path */
01e58659
VD
4624 int id = css->id;
4625
9d755d33
TH
4626 if (css->parent)
4627 css_put(css->parent);
0ae78e0b 4628
01e58659
VD
4629 ss->css_free(css);
4630 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4631 cgroup_put(cgrp);
4632 } else {
4633 /* cgroup free path */
4634 atomic_dec(&cgrp->root->nr_cgrps);
4635 cgroup_pidlist_destroy_all(cgrp);
971ff493 4636 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4637
d51f39b0 4638 if (cgroup_parent(cgrp)) {
9d755d33
TH
4639 /*
4640 * We get a ref to the parent, and put the ref when
4641 * this cgroup is being freed, so it's guaranteed
4642 * that the parent won't be destroyed before its
4643 * children.
4644 */
d51f39b0 4645 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4646 kernfs_put(cgrp->kn);
4647 kfree(cgrp);
4648 } else {
4649 /*
4650 * This is root cgroup's refcnt reaching zero,
4651 * which indicates that the root should be
4652 * released.
4653 */
4654 cgroup_destroy_root(cgrp->root);
4655 }
4656 }
48ddbe19
TH
4657}
4658
0c21ead1 4659static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4660{
4661 struct cgroup_subsys_state *css =
0c21ead1 4662 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4663
35ef10da 4664 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4665 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4666}
4667
25e15d83 4668static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4669{
4670 struct cgroup_subsys_state *css =
25e15d83 4671 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4672 struct cgroup_subsys *ss = css->ss;
9d755d33 4673 struct cgroup *cgrp = css->cgroup;
15a4c835 4674
1fed1b2e
TH
4675 mutex_lock(&cgroup_mutex);
4676
de3f0341 4677 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4678 list_del_rcu(&css->sibling);
4679
9d755d33
TH
4680 if (ss) {
4681 /* css release path */
01e58659 4682 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4683 if (ss->css_released)
4684 ss->css_released(css);
9d755d33
TH
4685 } else {
4686 /* cgroup release path */
9d755d33
TH
4687 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4688 cgrp->id = -1;
a4189487
LZ
4689
4690 /*
4691 * There are two control paths which try to determine
4692 * cgroup from dentry without going through kernfs -
4693 * cgroupstats_build() and css_tryget_online_from_dir().
4694 * Those are supported by RCU protecting clearing of
4695 * cgrp->kn->priv backpointer.
4696 */
4697 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4698 }
d3daf28d 4699
1fed1b2e
TH
4700 mutex_unlock(&cgroup_mutex);
4701
0c21ead1 4702 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4703}
4704
d3daf28d
TH
4705static void css_release(struct percpu_ref *ref)
4706{
4707 struct cgroup_subsys_state *css =
4708 container_of(ref, struct cgroup_subsys_state, refcnt);
4709
25e15d83
TH
4710 INIT_WORK(&css->destroy_work, css_release_work_fn);
4711 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4712}
4713
ddfcadab
TH
4714static void init_and_link_css(struct cgroup_subsys_state *css,
4715 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4716{
0cb51d71
TH
4717 lockdep_assert_held(&cgroup_mutex);
4718
ddfcadab
TH
4719 cgroup_get(cgrp);
4720
d5c419b6 4721 memset(css, 0, sizeof(*css));
bd89aabc 4722 css->cgroup = cgrp;
72c97e54 4723 css->ss = ss;
d5c419b6
TH
4724 INIT_LIST_HEAD(&css->sibling);
4725 INIT_LIST_HEAD(&css->children);
6f60eade 4726 INIT_LIST_HEAD(&css->files);
0cb51d71 4727 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4728
d51f39b0
TH
4729 if (cgroup_parent(cgrp)) {
4730 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4731 css_get(css->parent);
ddfcadab 4732 }
48ddbe19 4733
ca8bdcaf 4734 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4735}
4736
2a4ac633 4737/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4738static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4739{
623f926b 4740 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4741 int ret = 0;
4742
a31f2d3f
TH
4743 lockdep_assert_held(&cgroup_mutex);
4744
92fb9748 4745 if (ss->css_online)
eb95419b 4746 ret = ss->css_online(css);
ae7f164a 4747 if (!ret) {
eb95419b 4748 css->flags |= CSS_ONLINE;
aec25020 4749 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4750 }
b1929db4 4751 return ret;
a31f2d3f
TH
4752}
4753
2a4ac633 4754/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4755static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4756{
623f926b 4757 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4758
4759 lockdep_assert_held(&cgroup_mutex);
4760
4761 if (!(css->flags & CSS_ONLINE))
4762 return;
4763
d7eeac19 4764 if (ss->css_offline)
eb95419b 4765 ss->css_offline(css);
a31f2d3f 4766
eb95419b 4767 css->flags &= ~CSS_ONLINE;
e3297803 4768 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4769
4770 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4771}
4772
c81c925a
TH
4773/**
4774 * create_css - create a cgroup_subsys_state
4775 * @cgrp: the cgroup new css will be associated with
4776 * @ss: the subsys of new css
f63070d3 4777 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4778 *
4779 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4780 * css is online and installed in @cgrp with all interface files created if
4781 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4782 */
f63070d3
TH
4783static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4784 bool visible)
c81c925a 4785{
d51f39b0 4786 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4787 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4788 struct cgroup_subsys_state *css;
4789 int err;
4790
c81c925a
TH
4791 lockdep_assert_held(&cgroup_mutex);
4792
1fed1b2e 4793 css = ss->css_alloc(parent_css);
c81c925a
TH
4794 if (IS_ERR(css))
4795 return PTR_ERR(css);
4796
ddfcadab 4797 init_and_link_css(css, ss, cgrp);
a2bed820 4798
2aad2a86 4799 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4800 if (err)
3eb59ec6 4801 goto err_free_css;
c81c925a 4802
cf780b7d 4803 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4804 if (err < 0)
4805 goto err_free_percpu_ref;
4806 css->id = err;
c81c925a 4807
f63070d3 4808 if (visible) {
4df8dc90 4809 err = css_populate_dir(css, NULL);
f63070d3
TH
4810 if (err)
4811 goto err_free_id;
4812 }
15a4c835
TH
4813
4814 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4815 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4816 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4817
4818 err = online_css(css);
4819 if (err)
1fed1b2e 4820 goto err_list_del;
94419627 4821
c81c925a 4822 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4823 cgroup_parent(parent)) {
ed3d261b 4824 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4825 current->comm, current->pid, ss->name);
c81c925a 4826 if (!strcmp(ss->name, "memory"))
ed3d261b 4827 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4828 ss->warned_broken_hierarchy = true;
4829 }
4830
4831 return 0;
4832
1fed1b2e
TH
4833err_list_del:
4834 list_del_rcu(&css->sibling);
4df8dc90 4835 css_clear_dir(css, NULL);
15a4c835
TH
4836err_free_id:
4837 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4838err_free_percpu_ref:
9a1049da 4839 percpu_ref_exit(&css->refcnt);
3eb59ec6 4840err_free_css:
a2bed820 4841 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4842 return err;
4843}
4844
b3bfd983
TH
4845static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4846 umode_t mode)
ddbcc7e8 4847{
a9746d8d
TH
4848 struct cgroup *parent, *cgrp;
4849 struct cgroup_root *root;
ddbcc7e8 4850 struct cgroup_subsys *ss;
2bd59d48 4851 struct kernfs_node *kn;
b3bfd983 4852 int ssid, ret;
ddbcc7e8 4853
71b1fb5c
AC
4854 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4855 */
4856 if (strchr(name, '\n'))
4857 return -EINVAL;
4858
a9746d8d
TH
4859 parent = cgroup_kn_lock_live(parent_kn);
4860 if (!parent)
4861 return -ENODEV;
4862 root = parent->root;
ddbcc7e8 4863
0a950f65 4864 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4865 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4866 if (!cgrp) {
4867 ret = -ENOMEM;
4868 goto out_unlock;
0ab02ca8
LZ
4869 }
4870
2aad2a86 4871 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4872 if (ret)
4873 goto out_free_cgrp;
4874
0ab02ca8
LZ
4875 /*
4876 * Temporarily set the pointer to NULL, so idr_find() won't return
4877 * a half-baked cgroup.
4878 */
cf780b7d 4879 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4880 if (cgrp->id < 0) {
ba0f4d76 4881 ret = -ENOMEM;
9d755d33 4882 goto out_cancel_ref;
976c06bc
TH
4883 }
4884
cc31edce 4885 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4886
9d800df1 4887 cgrp->self.parent = &parent->self;
ba0f4d76 4888 cgrp->root = root;
ddbcc7e8 4889
b6abdb0e
LZ
4890 if (notify_on_release(parent))
4891 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4892
2260e7fc
TH
4893 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4894 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4895
2bd59d48 4896 /* create the directory */
e61734c5 4897 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4898 if (IS_ERR(kn)) {
ba0f4d76
TH
4899 ret = PTR_ERR(kn);
4900 goto out_free_id;
2bd59d48
TH
4901 }
4902 cgrp->kn = kn;
ddbcc7e8 4903
4e139afc 4904 /*
6f30558f
TH
4905 * This extra ref will be put in cgroup_free_fn() and guarantees
4906 * that @cgrp->kn is always accessible.
4e139afc 4907 */
6f30558f 4908 kernfs_get(kn);
ddbcc7e8 4909
0cb51d71 4910 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4911
4e139afc 4912 /* allocation complete, commit to creation */
d5c419b6 4913 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4914 atomic_inc(&root->nr_cgrps);
59f5296b 4915 cgroup_get(parent);
415cf07a 4916
0d80255e
TH
4917 /*
4918 * @cgrp is now fully operational. If something fails after this
4919 * point, it'll be released via the normal destruction path.
4920 */
6fa4918d 4921 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4922
ba0f4d76
TH
4923 ret = cgroup_kn_set_ugid(kn);
4924 if (ret)
4925 goto out_destroy;
49957f8e 4926
4df8dc90 4927 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4928 if (ret)
4929 goto out_destroy;
628f7cd4 4930
9d403e99 4931 /* let's create and online css's */
b85d2040 4932 for_each_subsys(ss, ssid) {
f392e51c 4933 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4934 ret = create_css(cgrp, ss,
4935 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4936 if (ret)
4937 goto out_destroy;
b85d2040 4938 }
a8638030 4939 }
ddbcc7e8 4940
bd53d617
TH
4941 /*
4942 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4943 * subtree_control from the parent. Each is configured manually.
bd53d617 4944 */
667c2491
TH
4945 if (!cgroup_on_dfl(cgrp)) {
4946 cgrp->subtree_control = parent->subtree_control;
4947 cgroup_refresh_child_subsys_mask(cgrp);
4948 }
2bd59d48 4949
2bd59d48 4950 kernfs_activate(kn);
ddbcc7e8 4951
ba0f4d76
TH
4952 ret = 0;
4953 goto out_unlock;
ddbcc7e8 4954
ba0f4d76 4955out_free_id:
6fa4918d 4956 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4957out_cancel_ref:
9a1049da 4958 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4959out_free_cgrp:
bd89aabc 4960 kfree(cgrp);
ba0f4d76 4961out_unlock:
a9746d8d 4962 cgroup_kn_unlock(parent_kn);
ba0f4d76 4963 return ret;
4b8b47eb 4964
ba0f4d76 4965out_destroy:
4b8b47eb 4966 cgroup_destroy_locked(cgrp);
ba0f4d76 4967 goto out_unlock;
ddbcc7e8
PM
4968}
4969
223dbc38
TH
4970/*
4971 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4972 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4973 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4974 */
4975static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4976{
223dbc38
TH
4977 struct cgroup_subsys_state *css =
4978 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4979
f20104de 4980 mutex_lock(&cgroup_mutex);
09a503ea 4981 offline_css(css);
f20104de 4982 mutex_unlock(&cgroup_mutex);
09a503ea 4983
09a503ea 4984 css_put(css);
d3daf28d
TH
4985}
4986
223dbc38
TH
4987/* css kill confirmation processing requires process context, bounce */
4988static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4989{
4990 struct cgroup_subsys_state *css =
4991 container_of(ref, struct cgroup_subsys_state, refcnt);
4992
223dbc38 4993 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4994 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4995}
4996
f392e51c
TH
4997/**
4998 * kill_css - destroy a css
4999 * @css: css to destroy
5000 *
5001 * This function initiates destruction of @css by removing cgroup interface
5002 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5003 * asynchronously once css_tryget_online() is guaranteed to fail and when
5004 * the reference count reaches zero, @css will be released.
f392e51c
TH
5005 */
5006static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5007{
01f6474c 5008 lockdep_assert_held(&cgroup_mutex);
94419627 5009
2bd59d48
TH
5010 /*
5011 * This must happen before css is disassociated with its cgroup.
5012 * See seq_css() for details.
5013 */
4df8dc90 5014 css_clear_dir(css, NULL);
3c14f8b4 5015
edae0c33
TH
5016 /*
5017 * Killing would put the base ref, but we need to keep it alive
5018 * until after ->css_offline().
5019 */
5020 css_get(css);
5021
5022 /*
5023 * cgroup core guarantees that, by the time ->css_offline() is
5024 * invoked, no new css reference will be given out via
ec903c0c 5025 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5026 * proceed to offlining css's because percpu_ref_kill() doesn't
5027 * guarantee that the ref is seen as killed on all CPUs on return.
5028 *
5029 * Use percpu_ref_kill_and_confirm() to get notifications as each
5030 * css is confirmed to be seen as killed on all CPUs.
5031 */
5032 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5033}
5034
5035/**
5036 * cgroup_destroy_locked - the first stage of cgroup destruction
5037 * @cgrp: cgroup to be destroyed
5038 *
5039 * css's make use of percpu refcnts whose killing latency shouldn't be
5040 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5041 * guarantee that css_tryget_online() won't succeed by the time
5042 * ->css_offline() is invoked. To satisfy all the requirements,
5043 * destruction is implemented in the following two steps.
d3daf28d
TH
5044 *
5045 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5046 * userland visible parts and start killing the percpu refcnts of
5047 * css's. Set up so that the next stage will be kicked off once all
5048 * the percpu refcnts are confirmed to be killed.
5049 *
5050 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5051 * rest of destruction. Once all cgroup references are gone, the
5052 * cgroup is RCU-freed.
5053 *
5054 * This function implements s1. After this step, @cgrp is gone as far as
5055 * the userland is concerned and a new cgroup with the same name may be
5056 * created. As cgroup doesn't care about the names internally, this
5057 * doesn't cause any problem.
5058 */
42809dd4
TH
5059static int cgroup_destroy_locked(struct cgroup *cgrp)
5060 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5061{
2bd59d48 5062 struct cgroup_subsys_state *css;
1c6727af 5063 int ssid;
ddbcc7e8 5064
42809dd4
TH
5065 lockdep_assert_held(&cgroup_mutex);
5066
91486f61
TH
5067 /*
5068 * Only migration can raise populated from zero and we're already
5069 * holding cgroup_mutex.
5070 */
5071 if (cgroup_is_populated(cgrp))
ddbcc7e8 5072 return -EBUSY;
a043e3b2 5073
bb78a92f 5074 /*
d5c419b6
TH
5075 * Make sure there's no live children. We can't test emptiness of
5076 * ->self.children as dead children linger on it while being
5077 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5078 */
f3d46500 5079 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5080 return -EBUSY;
5081
455050d2
TH
5082 /*
5083 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5084 * creation by disabling cgroup_lock_live_group().
455050d2 5085 */
184faf32 5086 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5087
249f3468 5088 /* initiate massacre of all css's */
1c6727af
TH
5089 for_each_css(css, ssid, cgrp)
5090 kill_css(css);
455050d2 5091
455050d2 5092 /*
01f6474c
TH
5093 * Remove @cgrp directory along with the base files. @cgrp has an
5094 * extra ref on its kn.
f20104de 5095 */
01f6474c 5096 kernfs_remove(cgrp->kn);
f20104de 5097
d51f39b0 5098 check_for_release(cgroup_parent(cgrp));
2bd59d48 5099
249f3468 5100 /* put the base reference */
9d755d33 5101 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5102
ea15f8cc
TH
5103 return 0;
5104};
5105
2bd59d48 5106static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5107{
a9746d8d 5108 struct cgroup *cgrp;
2bd59d48 5109 int ret = 0;
42809dd4 5110
a9746d8d
TH
5111 cgrp = cgroup_kn_lock_live(kn);
5112 if (!cgrp)
5113 return 0;
42809dd4 5114
a9746d8d 5115 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5116
a9746d8d 5117 cgroup_kn_unlock(kn);
42809dd4 5118 return ret;
8e3f6541
TH
5119}
5120
2bd59d48
TH
5121static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5122 .remount_fs = cgroup_remount,
5123 .show_options = cgroup_show_options,
5124 .mkdir = cgroup_mkdir,
5125 .rmdir = cgroup_rmdir,
5126 .rename = cgroup_rename,
5127};
5128
15a4c835 5129static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5130{
ddbcc7e8 5131 struct cgroup_subsys_state *css;
cfe36bde
DC
5132
5133 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5134
648bb56d
TH
5135 mutex_lock(&cgroup_mutex);
5136
15a4c835 5137 idr_init(&ss->css_idr);
0adb0704 5138 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5139
3dd06ffa
TH
5140 /* Create the root cgroup state for this subsystem */
5141 ss->root = &cgrp_dfl_root;
5142 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5143 /* We don't handle early failures gracefully */
5144 BUG_ON(IS_ERR(css));
ddfcadab 5145 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5146
5147 /*
5148 * Root csses are never destroyed and we can't initialize
5149 * percpu_ref during early init. Disable refcnting.
5150 */
5151 css->flags |= CSS_NO_REF;
5152
15a4c835 5153 if (early) {
9395a450 5154 /* allocation can't be done safely during early init */
15a4c835
TH
5155 css->id = 1;
5156 } else {
5157 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5158 BUG_ON(css->id < 0);
5159 }
ddbcc7e8 5160
e8d55fde 5161 /* Update the init_css_set to contain a subsys
817929ec 5162 * pointer to this state - since the subsystem is
e8d55fde 5163 * newly registered, all tasks and hence the
3dd06ffa 5164 * init_css_set is in the subsystem's root cgroup. */
aec25020 5165 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5166
cb4a3167
AS
5167 have_fork_callback |= (bool)ss->fork << ss->id;
5168 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5169 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5170 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5171
e8d55fde
LZ
5172 /* At system boot, before all subsystems have been
5173 * registered, no tasks have been forked, so we don't
5174 * need to invoke fork callbacks here. */
5175 BUG_ON(!list_empty(&init_task.tasks));
5176
ae7f164a 5177 BUG_ON(online_css(css));
a8638030 5178
cf5d5941
BB
5179 mutex_unlock(&cgroup_mutex);
5180}
cf5d5941 5181
ddbcc7e8 5182/**
a043e3b2
LZ
5183 * cgroup_init_early - cgroup initialization at system boot
5184 *
5185 * Initialize cgroups at system boot, and initialize any
5186 * subsystems that request early init.
ddbcc7e8
PM
5187 */
5188int __init cgroup_init_early(void)
5189{
7b9a6ba5 5190 static struct cgroup_sb_opts __initdata opts;
30159ec7 5191 struct cgroup_subsys *ss;
ddbcc7e8 5192 int i;
30159ec7 5193
3dd06ffa 5194 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5195 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5196
a4ea1cc9 5197 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5198
3ed80a62 5199 for_each_subsys(ss, i) {
aec25020 5200 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5201 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5202 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5203 ss->id, ss->name);
073219e9
TH
5204 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5205 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5206
aec25020 5207 ss->id = i;
073219e9 5208 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5209 if (!ss->legacy_name)
5210 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5211
5212 if (ss->early_init)
15a4c835 5213 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5214 }
5215 return 0;
5216}
5217
a3e72739
TH
5218static unsigned long cgroup_disable_mask __initdata;
5219
ddbcc7e8 5220/**
a043e3b2
LZ
5221 * cgroup_init - cgroup initialization
5222 *
5223 * Register cgroup filesystem and /proc file, and initialize
5224 * any subsystems that didn't request early init.
ddbcc7e8
PM
5225 */
5226int __init cgroup_init(void)
5227{
30159ec7 5228 struct cgroup_subsys *ss;
0ac801fe 5229 unsigned long key;
035f4f51 5230 int ssid;
ddbcc7e8 5231
1ed13287 5232 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5233 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5234 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5235
54e7b4eb 5236 mutex_lock(&cgroup_mutex);
54e7b4eb 5237
82fe9b0d
TH
5238 /* Add init_css_set to the hash table */
5239 key = css_set_hash(init_css_set.subsys);
5240 hash_add(css_set_table, &init_css_set.hlist, key);
5241
3dd06ffa 5242 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5243
54e7b4eb
TH
5244 mutex_unlock(&cgroup_mutex);
5245
172a2c06 5246 for_each_subsys(ss, ssid) {
15a4c835
TH
5247 if (ss->early_init) {
5248 struct cgroup_subsys_state *css =
5249 init_css_set.subsys[ss->id];
5250
5251 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5252 GFP_KERNEL);
5253 BUG_ON(css->id < 0);
5254 } else {
5255 cgroup_init_subsys(ss, false);
5256 }
172a2c06 5257
2d8f243a
TH
5258 list_add_tail(&init_css_set.e_cset_node[ssid],
5259 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5260
5261 /*
c731ae1d
LZ
5262 * Setting dfl_root subsys_mask needs to consider the
5263 * disabled flag and cftype registration needs kmalloc,
5264 * both of which aren't available during early_init.
172a2c06 5265 */
a3e72739
TH
5266 if (cgroup_disable_mask & (1 << ssid)) {
5267 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5268 printk(KERN_INFO "Disabling %s control group subsystem\n",
5269 ss->name);
a8ddc821 5270 continue;
a3e72739 5271 }
a8ddc821
TH
5272
5273 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5274
5de4fa13
TH
5275 if (!ss->dfl_cftypes)
5276 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5277
a8ddc821
TH
5278 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5279 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5280 } else {
5281 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5282 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5283 }
295458e6
VD
5284
5285 if (ss->bind)
5286 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5287 }
5288
035f4f51
TH
5289 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5290 WARN_ON(register_filesystem(&cgroup_fs_type));
5291 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5292
2bd59d48 5293 return 0;
ddbcc7e8 5294}
b4f48b63 5295
e5fca243
TH
5296static int __init cgroup_wq_init(void)
5297{
5298 /*
5299 * There isn't much point in executing destruction path in
5300 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5301 * Use 1 for @max_active.
e5fca243
TH
5302 *
5303 * We would prefer to do this in cgroup_init() above, but that
5304 * is called before init_workqueues(): so leave this until after.
5305 */
1a11533f 5306 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5307 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5308
5309 /*
5310 * Used to destroy pidlists and separate to serve as flush domain.
5311 * Cap @max_active to 1 too.
5312 */
5313 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5314 0, 1);
5315 BUG_ON(!cgroup_pidlist_destroy_wq);
5316
e5fca243
TH
5317 return 0;
5318}
5319core_initcall(cgroup_wq_init);
5320
a424316c
PM
5321/*
5322 * proc_cgroup_show()
5323 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5324 * - Used for /proc/<pid>/cgroup.
a424316c 5325 */
006f4ac4
ZL
5326int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5327 struct pid *pid, struct task_struct *tsk)
a424316c 5328{
e61734c5 5329 char *buf, *path;
a424316c 5330 int retval;
3dd06ffa 5331 struct cgroup_root *root;
a424316c
PM
5332
5333 retval = -ENOMEM;
e61734c5 5334 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5335 if (!buf)
5336 goto out;
5337
a424316c 5338 mutex_lock(&cgroup_mutex);
f0d9a5f1 5339 spin_lock_bh(&css_set_lock);
a424316c 5340
985ed670 5341 for_each_root(root) {
a424316c 5342 struct cgroup_subsys *ss;
bd89aabc 5343 struct cgroup *cgrp;
b85d2040 5344 int ssid, count = 0;
a424316c 5345
a2dd4247 5346 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5347 continue;
5348
2c6ab6d2 5349 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5350 if (root != &cgrp_dfl_root)
5351 for_each_subsys(ss, ssid)
5352 if (root->subsys_mask & (1 << ssid))
5353 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5354 ss->legacy_name);
c6d57f33
PM
5355 if (strlen(root->name))
5356 seq_printf(m, "%sname=%s", count ? "," : "",
5357 root->name);
a424316c 5358 seq_putc(m, ':');
2e91fa7f 5359
7717f7ba 5360 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5361
5362 /*
5363 * On traditional hierarchies, all zombie tasks show up as
5364 * belonging to the root cgroup. On the default hierarchy,
5365 * while a zombie doesn't show up in "cgroup.procs" and
5366 * thus can't be migrated, its /proc/PID/cgroup keeps
5367 * reporting the cgroup it belonged to before exiting. If
5368 * the cgroup is removed before the zombie is reaped,
5369 * " (deleted)" is appended to the cgroup path.
5370 */
5371 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5372 path = cgroup_path(cgrp, buf, PATH_MAX);
5373 if (!path) {
5374 retval = -ENAMETOOLONG;
5375 goto out_unlock;
5376 }
5377 } else {
5378 path = "/";
e61734c5 5379 }
2e91fa7f 5380
e61734c5 5381 seq_puts(m, path);
2e91fa7f
TH
5382
5383 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5384 seq_puts(m, " (deleted)\n");
5385 else
5386 seq_putc(m, '\n');
a424316c
PM
5387 }
5388
006f4ac4 5389 retval = 0;
a424316c 5390out_unlock:
f0d9a5f1 5391 spin_unlock_bh(&css_set_lock);
a424316c 5392 mutex_unlock(&cgroup_mutex);
a424316c
PM
5393 kfree(buf);
5394out:
5395 return retval;
5396}
5397
a424316c
PM
5398/* Display information about each subsystem and each hierarchy */
5399static int proc_cgroupstats_show(struct seq_file *m, void *v)
5400{
30159ec7 5401 struct cgroup_subsys *ss;
a424316c 5402 int i;
a424316c 5403
8bab8dde 5404 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5405 /*
5406 * ideally we don't want subsystems moving around while we do this.
5407 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5408 * subsys/hierarchy state.
5409 */
a424316c 5410 mutex_lock(&cgroup_mutex);
30159ec7
TH
5411
5412 for_each_subsys(ss, i)
2c6ab6d2 5413 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5414 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5415 atomic_read(&ss->root->nr_cgrps),
5416 cgroup_ssid_enabled(i));
30159ec7 5417
a424316c
PM
5418 mutex_unlock(&cgroup_mutex);
5419 return 0;
5420}
5421
5422static int cgroupstats_open(struct inode *inode, struct file *file)
5423{
9dce07f1 5424 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5425}
5426
828c0950 5427static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5428 .open = cgroupstats_open,
5429 .read = seq_read,
5430 .llseek = seq_lseek,
5431 .release = single_release,
5432};
5433
7e47682e
AS
5434static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5435{
5436 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5437 return &ss_priv[i - CGROUP_CANFORK_START];
5438 return NULL;
5439}
5440
5441static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5442{
5443 void **private = subsys_canfork_priv_p(ss_priv, i);
5444 return private ? *private : NULL;
5445}
5446
b4f48b63 5447/**
eaf797ab 5448 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5449 * @child: pointer to task_struct of forking parent process.
b4f48b63 5450 *
eaf797ab
TH
5451 * A task is associated with the init_css_set until cgroup_post_fork()
5452 * attaches it to the parent's css_set. Empty cg_list indicates that
5453 * @child isn't holding reference to its css_set.
b4f48b63
PM
5454 */
5455void cgroup_fork(struct task_struct *child)
5456{
eaf797ab 5457 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5458 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5459}
5460
7e47682e
AS
5461/**
5462 * cgroup_can_fork - called on a new task before the process is exposed
5463 * @child: the task in question.
5464 *
5465 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5466 * returns an error, the fork aborts with that error code. This allows for
5467 * a cgroup subsystem to conditionally allow or deny new forks.
5468 */
5469int cgroup_can_fork(struct task_struct *child,
5470 void *ss_priv[CGROUP_CANFORK_COUNT])
5471{
5472 struct cgroup_subsys *ss;
5473 int i, j, ret;
5474
5475 for_each_subsys_which(ss, i, &have_canfork_callback) {
5476 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5477 if (ret)
5478 goto out_revert;
5479 }
5480
5481 return 0;
5482
5483out_revert:
5484 for_each_subsys(ss, j) {
5485 if (j >= i)
5486 break;
5487 if (ss->cancel_fork)
5488 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5489 }
5490
5491 return ret;
5492}
5493
5494/**
5495 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5496 * @child: the task in question
5497 *
5498 * This calls the cancel_fork() callbacks if a fork failed *after*
5499 * cgroup_can_fork() succeded.
5500 */
5501void cgroup_cancel_fork(struct task_struct *child,
5502 void *ss_priv[CGROUP_CANFORK_COUNT])
5503{
5504 struct cgroup_subsys *ss;
5505 int i;
5506
5507 for_each_subsys(ss, i)
5508 if (ss->cancel_fork)
5509 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5510}
5511
817929ec 5512/**
a043e3b2
LZ
5513 * cgroup_post_fork - called on a new task after adding it to the task list
5514 * @child: the task in question
5515 *
5edee61e
TH
5516 * Adds the task to the list running through its css_set if necessary and
5517 * call the subsystem fork() callbacks. Has to be after the task is
5518 * visible on the task list in case we race with the first call to
0942eeee 5519 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5520 * list.
a043e3b2 5521 */
7e47682e
AS
5522void cgroup_post_fork(struct task_struct *child,
5523 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5524{
30159ec7 5525 struct cgroup_subsys *ss;
5edee61e
TH
5526 int i;
5527
3ce3230a 5528 /*
251f8c03 5529 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5530 * function sets use_task_css_set_links before grabbing
5531 * tasklist_lock and we just went through tasklist_lock to add
5532 * @child, it's guaranteed that either we see the set
5533 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5534 * @child during its iteration.
5535 *
5536 * If we won the race, @child is associated with %current's
f0d9a5f1 5537 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5538 * association is stable, and, on completion of the parent's
5539 * migration, @child is visible in the source of migration or
5540 * already in the destination cgroup. This guarantee is necessary
5541 * when implementing operations which need to migrate all tasks of
5542 * a cgroup to another.
5543 *
251f8c03 5544 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5545 * will remain in init_css_set. This is safe because all tasks are
5546 * in the init_css_set before cg_links is enabled and there's no
5547 * operation which transfers all tasks out of init_css_set.
3ce3230a 5548 */
817929ec 5549 if (use_task_css_set_links) {
eaf797ab
TH
5550 struct css_set *cset;
5551
f0d9a5f1 5552 spin_lock_bh(&css_set_lock);
0e1d768f 5553 cset = task_css_set(current);
eaf797ab 5554 if (list_empty(&child->cg_list)) {
eaf797ab 5555 get_css_set(cset);
f6d7d049 5556 css_set_move_task(child, NULL, cset, false);
eaf797ab 5557 }
f0d9a5f1 5558 spin_unlock_bh(&css_set_lock);
817929ec 5559 }
5edee61e
TH
5560
5561 /*
5562 * Call ss->fork(). This must happen after @child is linked on
5563 * css_set; otherwise, @child might change state between ->fork()
5564 * and addition to css_set.
5565 */
cb4a3167 5566 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5567 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5568}
5edee61e 5569
b4f48b63
PM
5570/**
5571 * cgroup_exit - detach cgroup from exiting task
5572 * @tsk: pointer to task_struct of exiting process
5573 *
5574 * Description: Detach cgroup from @tsk and release it.
5575 *
5576 * Note that cgroups marked notify_on_release force every task in
5577 * them to take the global cgroup_mutex mutex when exiting.
5578 * This could impact scaling on very large systems. Be reluctant to
5579 * use notify_on_release cgroups where very high task exit scaling
5580 * is required on large systems.
5581 *
0e1d768f
TH
5582 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5583 * call cgroup_exit() while the task is still competent to handle
5584 * notify_on_release(), then leave the task attached to the root cgroup in
5585 * each hierarchy for the remainder of its exit. No need to bother with
5586 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5587 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5588 */
1ec41830 5589void cgroup_exit(struct task_struct *tsk)
b4f48b63 5590{
30159ec7 5591 struct cgroup_subsys *ss;
5abb8855 5592 struct css_set *cset;
d41d5a01 5593 int i;
817929ec
PM
5594
5595 /*
0e1d768f 5596 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5597 * with us, we can check css_set and cg_list without synchronization.
817929ec 5598 */
0de0942d
TH
5599 cset = task_css_set(tsk);
5600
817929ec 5601 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5602 spin_lock_bh(&css_set_lock);
f6d7d049 5603 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5604 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5605 } else {
5606 get_css_set(cset);
817929ec
PM
5607 }
5608
cb4a3167 5609 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5610 for_each_subsys_which(ss, i, &have_exit_callback)
5611 ss->exit(tsk);
5612}
30159ec7 5613
2e91fa7f
TH
5614void cgroup_free(struct task_struct *task)
5615{
5616 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5617 struct cgroup_subsys *ss;
5618 int ssid;
5619
5620 for_each_subsys_which(ss, ssid, &have_free_callback)
5621 ss->free(task);
d41d5a01 5622
2e91fa7f 5623 put_css_set(cset);
b4f48b63 5624}
697f4161 5625
bd89aabc 5626static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5627{
27bd4dbb 5628 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5629 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5630 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5631}
5632
81a6a5cd
PM
5633/*
5634 * Notify userspace when a cgroup is released, by running the
5635 * configured release agent with the name of the cgroup (path
5636 * relative to the root of cgroup file system) as the argument.
5637 *
5638 * Most likely, this user command will try to rmdir this cgroup.
5639 *
5640 * This races with the possibility that some other task will be
5641 * attached to this cgroup before it is removed, or that some other
5642 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5643 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5644 * unused, and this cgroup will be reprieved from its death sentence,
5645 * to continue to serve a useful existence. Next time it's released,
5646 * we will get notified again, if it still has 'notify_on_release' set.
5647 *
5648 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5649 * means only wait until the task is successfully execve()'d. The
5650 * separate release agent task is forked by call_usermodehelper(),
5651 * then control in this thread returns here, without waiting for the
5652 * release agent task. We don't bother to wait because the caller of
5653 * this routine has no use for the exit status of the release agent
5654 * task, so no sense holding our caller up for that.
81a6a5cd 5655 */
81a6a5cd
PM
5656static void cgroup_release_agent(struct work_struct *work)
5657{
971ff493
ZL
5658 struct cgroup *cgrp =
5659 container_of(work, struct cgroup, release_agent_work);
5660 char *pathbuf = NULL, *agentbuf = NULL, *path;
5661 char *argv[3], *envp[3];
5662
81a6a5cd 5663 mutex_lock(&cgroup_mutex);
971ff493
ZL
5664
5665 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5666 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5667 if (!pathbuf || !agentbuf)
5668 goto out;
5669
5670 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5671 if (!path)
5672 goto out;
5673
5674 argv[0] = agentbuf;
5675 argv[1] = path;
5676 argv[2] = NULL;
5677
5678 /* minimal command environment */
5679 envp[0] = "HOME=/";
5680 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5681 envp[2] = NULL;
5682
81a6a5cd 5683 mutex_unlock(&cgroup_mutex);
971ff493 5684 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5685 goto out_free;
971ff493 5686out:
81a6a5cd 5687 mutex_unlock(&cgroup_mutex);
3e2cd91a 5688out_free:
971ff493
ZL
5689 kfree(agentbuf);
5690 kfree(pathbuf);
81a6a5cd 5691}
8bab8dde
PM
5692
5693static int __init cgroup_disable(char *str)
5694{
30159ec7 5695 struct cgroup_subsys *ss;
8bab8dde 5696 char *token;
30159ec7 5697 int i;
8bab8dde
PM
5698
5699 while ((token = strsep(&str, ",")) != NULL) {
5700 if (!*token)
5701 continue;
be45c900 5702
3ed80a62 5703 for_each_subsys(ss, i) {
3e1d2eed
TH
5704 if (strcmp(token, ss->name) &&
5705 strcmp(token, ss->legacy_name))
5706 continue;
a3e72739 5707 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5708 }
5709 }
5710 return 1;
5711}
5712__setup("cgroup_disable=", cgroup_disable);
38460b48 5713
b77d7b60 5714/**
ec903c0c 5715 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5716 * @dentry: directory dentry of interest
5717 * @ss: subsystem of interest
b77d7b60 5718 *
5a17f543
TH
5719 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5720 * to get the corresponding css and return it. If such css doesn't exist
5721 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5722 */
ec903c0c
TH
5723struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5724 struct cgroup_subsys *ss)
e5d1367f 5725{
2bd59d48
TH
5726 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5727 struct cgroup_subsys_state *css = NULL;
e5d1367f 5728 struct cgroup *cgrp;
e5d1367f 5729
35cf0836 5730 /* is @dentry a cgroup dir? */
2bd59d48
TH
5731 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5732 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5733 return ERR_PTR(-EBADF);
5734
5a17f543
TH
5735 rcu_read_lock();
5736
2bd59d48
TH
5737 /*
5738 * This path doesn't originate from kernfs and @kn could already
5739 * have been or be removed at any point. @kn->priv is RCU
a4189487 5740 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5741 */
5742 cgrp = rcu_dereference(kn->priv);
5743 if (cgrp)
5744 css = cgroup_css(cgrp, ss);
5a17f543 5745
ec903c0c 5746 if (!css || !css_tryget_online(css))
5a17f543
TH
5747 css = ERR_PTR(-ENOENT);
5748
5749 rcu_read_unlock();
5750 return css;
e5d1367f 5751}
e5d1367f 5752
1cb650b9
LZ
5753/**
5754 * css_from_id - lookup css by id
5755 * @id: the cgroup id
5756 * @ss: cgroup subsys to be looked into
5757 *
5758 * Returns the css if there's valid one with @id, otherwise returns NULL.
5759 * Should be called under rcu_read_lock().
5760 */
5761struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5762{
6fa4918d 5763 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5764 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5765}
5766
fe693435 5767#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5768static struct cgroup_subsys_state *
5769debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5770{
5771 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5772
5773 if (!css)
5774 return ERR_PTR(-ENOMEM);
5775
5776 return css;
5777}
5778
eb95419b 5779static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5780{
eb95419b 5781 kfree(css);
fe693435
PM
5782}
5783
182446d0
TH
5784static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5785 struct cftype *cft)
fe693435 5786{
182446d0 5787 return cgroup_task_count(css->cgroup);
fe693435
PM
5788}
5789
182446d0
TH
5790static u64 current_css_set_read(struct cgroup_subsys_state *css,
5791 struct cftype *cft)
fe693435
PM
5792{
5793 return (u64)(unsigned long)current->cgroups;
5794}
5795
182446d0 5796static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5797 struct cftype *cft)
fe693435
PM
5798{
5799 u64 count;
5800
5801 rcu_read_lock();
a8ad805c 5802 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5803 rcu_read_unlock();
5804 return count;
5805}
5806
2da8ca82 5807static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5808{
69d0206c 5809 struct cgrp_cset_link *link;
5abb8855 5810 struct css_set *cset;
e61734c5
TH
5811 char *name_buf;
5812
5813 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5814 if (!name_buf)
5815 return -ENOMEM;
7717f7ba 5816
f0d9a5f1 5817 spin_lock_bh(&css_set_lock);
7717f7ba 5818 rcu_read_lock();
5abb8855 5819 cset = rcu_dereference(current->cgroups);
69d0206c 5820 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5821 struct cgroup *c = link->cgrp;
7717f7ba 5822
a2dd4247 5823 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5824 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5825 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5826 }
5827 rcu_read_unlock();
f0d9a5f1 5828 spin_unlock_bh(&css_set_lock);
e61734c5 5829 kfree(name_buf);
7717f7ba
PM
5830 return 0;
5831}
5832
5833#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5834static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5835{
2da8ca82 5836 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5837 struct cgrp_cset_link *link;
7717f7ba 5838
f0d9a5f1 5839 spin_lock_bh(&css_set_lock);
182446d0 5840 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5841 struct css_set *cset = link->cset;
7717f7ba
PM
5842 struct task_struct *task;
5843 int count = 0;
c7561128 5844
5abb8855 5845 seq_printf(seq, "css_set %p\n", cset);
c7561128 5846
5abb8855 5847 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5848 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5849 goto overflow;
5850 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5851 }
5852
5853 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5854 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5855 goto overflow;
5856 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5857 }
c7561128
TH
5858 continue;
5859 overflow:
5860 seq_puts(seq, " ...\n");
7717f7ba 5861 }
f0d9a5f1 5862 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5863 return 0;
5864}
5865
182446d0 5866static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5867{
27bd4dbb 5868 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5869 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5870}
5871
5872static struct cftype debug_files[] = {
fe693435
PM
5873 {
5874 .name = "taskcount",
5875 .read_u64 = debug_taskcount_read,
5876 },
5877
5878 {
5879 .name = "current_css_set",
5880 .read_u64 = current_css_set_read,
5881 },
5882
5883 {
5884 .name = "current_css_set_refcount",
5885 .read_u64 = current_css_set_refcount_read,
5886 },
5887
7717f7ba
PM
5888 {
5889 .name = "current_css_set_cg_links",
2da8ca82 5890 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5891 },
5892
5893 {
5894 .name = "cgroup_css_links",
2da8ca82 5895 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5896 },
5897
fe693435
PM
5898 {
5899 .name = "releasable",
5900 .read_u64 = releasable_read,
5901 },
fe693435 5902
4baf6e33
TH
5903 { } /* terminate */
5904};
fe693435 5905
073219e9 5906struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5907 .css_alloc = debug_css_alloc,
5908 .css_free = debug_css_free,
5577964e 5909 .legacy_cftypes = debug_files,
fe693435
PM
5910};
5911#endif /* CONFIG_CGROUP_DEBUG */