cgroup: separate out taskset operations from cgroup_migrate()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
b4168640 431struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 432{
2bd59d48 433 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 434 struct cftype *cft = of_cft(of);
2bd59d48
TH
435
436 /*
437 * This is open and unprotected implementation of cgroup_css().
438 * seq_css() is only called from a kernfs file operation which has
439 * an active reference on the file. Because all the subsystem
440 * files are drained before a css is disassociated with a cgroup,
441 * the matching css from the cgroup's subsys table is guaranteed to
442 * be and stay valid until the enclosing operation is complete.
443 */
444 if (cft->ss)
445 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
446 else
9d800df1 447 return &cgrp->self;
59f5296b 448}
b4168640 449EXPORT_SYMBOL_GPL(of_css);
59f5296b 450
78574cf9
LZ
451/**
452 * cgroup_is_descendant - test ancestry
453 * @cgrp: the cgroup to be tested
454 * @ancestor: possible ancestor of @cgrp
455 *
456 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
457 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
458 * and @ancestor are accessible.
459 */
460bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
461{
462 while (cgrp) {
463 if (cgrp == ancestor)
464 return true;
d51f39b0 465 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
466 }
467 return false;
468}
ddbcc7e8 469
e9685a03 470static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 471{
bd89aabc 472 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
473}
474
1c6727af
TH
475/**
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
480 *
aec3dfcb 481 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
482 */
483#define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
489
aec3dfcb
TH
490/**
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
496 * Should be called under cgroup_[tree_]mutex.
497 */
498#define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
501 ; \
502 else
503
30159ec7 504/**
3ed80a62 505 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 506 * @ss: the iteration cursor
780cd8b3 507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 508 */
780cd8b3 509#define for_each_subsys(ss, ssid) \
3ed80a62
TH
510 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
511 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 512
cb4a3167
AS
513/**
514 * for_each_subsys_which - filter for_each_subsys with a bitmask
515 * @ss: the iteration cursor
516 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
517 * @ss_maskp: a pointer to the bitmask
518 *
519 * The block will only run for cases where the ssid-th bit (1 << ssid) of
520 * mask is set to 1.
521 */
522#define for_each_subsys_which(ss, ssid, ss_maskp) \
523 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 524 (ssid) = 0; \
cb4a3167
AS
525 else \
526 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
527 if (((ss) = cgroup_subsys[ssid]) && false) \
528 break; \
529 else
530
985ed670
TH
531/* iterate across the hierarchies */
532#define for_each_root(root) \
5549c497 533 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 534
f8f22e53
TH
535/* iterate over child cgrps, lock should be held throughout iteration */
536#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 537 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 538 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
539 cgroup_is_dead(child); })) \
540 ; \
541 else
7ae1bad9 542
81a6a5cd 543static void cgroup_release_agent(struct work_struct *work);
bd89aabc 544static void check_for_release(struct cgroup *cgrp);
81a6a5cd 545
69d0206c
TH
546/*
547 * A cgroup can be associated with multiple css_sets as different tasks may
548 * belong to different cgroups on different hierarchies. In the other
549 * direction, a css_set is naturally associated with multiple cgroups.
550 * This M:N relationship is represented by the following link structure
551 * which exists for each association and allows traversing the associations
552 * from both sides.
553 */
554struct cgrp_cset_link {
555 /* the cgroup and css_set this link associates */
556 struct cgroup *cgrp;
557 struct css_set *cset;
558
559 /* list of cgrp_cset_links anchored at cgrp->cset_links */
560 struct list_head cset_link;
561
562 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
563 struct list_head cgrp_link;
817929ec
PM
564};
565
172a2c06
TH
566/*
567 * The default css_set - used by init and its children prior to any
817929ec
PM
568 * hierarchies being mounted. It contains a pointer to the root state
569 * for each subsystem. Also used to anchor the list of css_sets. Not
570 * reference-counted, to improve performance when child cgroups
571 * haven't been created.
572 */
5024ae29 573struct css_set init_css_set = {
172a2c06
TH
574 .refcount = ATOMIC_INIT(1),
575 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
576 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
577 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
578 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
579 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
580};
817929ec 581
172a2c06 582static int css_set_count = 1; /* 1 for init_css_set */
817929ec 583
842b597e
TH
584/**
585 * cgroup_update_populated - updated populated count of a cgroup
586 * @cgrp: the target cgroup
587 * @populated: inc or dec populated count
588 *
589 * @cgrp is either getting the first task (css_set) or losing the last.
590 * Update @cgrp->populated_cnt accordingly. The count is propagated
591 * towards root so that a given cgroup's populated_cnt is zero iff the
592 * cgroup and all its descendants are empty.
593 *
594 * @cgrp's interface file "cgroup.populated" is zero if
595 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
596 * changes from or to zero, userland is notified that the content of the
597 * interface file has changed. This can be used to detect when @cgrp and
598 * its descendants become populated or empty.
599 */
600static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
601{
602 lockdep_assert_held(&css_set_rwsem);
603
604 do {
605 bool trigger;
606
607 if (populated)
608 trigger = !cgrp->populated_cnt++;
609 else
610 trigger = !--cgrp->populated_cnt;
611
612 if (!trigger)
613 break;
614
6f60eade
TH
615 cgroup_file_notify(&cgrp->events_file);
616
d51f39b0 617 cgrp = cgroup_parent(cgrp);
842b597e
TH
618 } while (cgrp);
619}
620
7717f7ba
PM
621/*
622 * hash table for cgroup groups. This improves the performance to find
623 * an existing css_set. This hash doesn't (currently) take into
624 * account cgroups in empty hierarchies.
625 */
472b1053 626#define CSS_SET_HASH_BITS 7
0ac801fe 627static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 628
0ac801fe 629static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 630{
0ac801fe 631 unsigned long key = 0UL;
30159ec7
TH
632 struct cgroup_subsys *ss;
633 int i;
472b1053 634
30159ec7 635 for_each_subsys(ss, i)
0ac801fe
LZ
636 key += (unsigned long)css[i];
637 key = (key >> 16) ^ key;
472b1053 638
0ac801fe 639 return key;
472b1053
LZ
640}
641
a25eb52e 642static void put_css_set_locked(struct css_set *cset)
b4f48b63 643{
69d0206c 644 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
645 struct cgroup_subsys *ss;
646 int ssid;
5abb8855 647
89c5509b
TH
648 lockdep_assert_held(&css_set_rwsem);
649
650 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 651 return;
81a6a5cd 652
2c6ab6d2 653 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
654 for_each_subsys(ss, ssid)
655 list_del(&cset->e_cset_node[ssid]);
5abb8855 656 hash_del(&cset->hlist);
2c6ab6d2
PM
657 css_set_count--;
658
69d0206c 659 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 660 struct cgroup *cgrp = link->cgrp;
5abb8855 661
69d0206c
TH
662 list_del(&link->cset_link);
663 list_del(&link->cgrp_link);
71b5707e 664
96d365e0 665 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
666 if (list_empty(&cgrp->cset_links)) {
667 cgroup_update_populated(cgrp, false);
a25eb52e 668 check_for_release(cgrp);
81a6a5cd 669 }
2c6ab6d2
PM
670
671 kfree(link);
81a6a5cd 672 }
2c6ab6d2 673
5abb8855 674 kfree_rcu(cset, rcu_head);
b4f48b63
PM
675}
676
a25eb52e 677static void put_css_set(struct css_set *cset)
89c5509b
TH
678{
679 /*
680 * Ensure that the refcount doesn't hit zero while any readers
681 * can see it. Similar to atomic_dec_and_lock(), but for an
682 * rwlock
683 */
684 if (atomic_add_unless(&cset->refcount, -1, 1))
685 return;
686
687 down_write(&css_set_rwsem);
a25eb52e 688 put_css_set_locked(cset);
89c5509b
TH
689 up_write(&css_set_rwsem);
690}
691
817929ec
PM
692/*
693 * refcounted get/put for css_set objects
694 */
5abb8855 695static inline void get_css_set(struct css_set *cset)
817929ec 696{
5abb8855 697 atomic_inc(&cset->refcount);
817929ec
PM
698}
699
b326f9d0 700/**
7717f7ba 701 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
702 * @cset: candidate css_set being tested
703 * @old_cset: existing css_set for a task
7717f7ba
PM
704 * @new_cgrp: cgroup that's being entered by the task
705 * @template: desired set of css pointers in css_set (pre-calculated)
706 *
6f4b7e63 707 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
708 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
709 */
5abb8855
TH
710static bool compare_css_sets(struct css_set *cset,
711 struct css_set *old_cset,
7717f7ba
PM
712 struct cgroup *new_cgrp,
713 struct cgroup_subsys_state *template[])
714{
715 struct list_head *l1, *l2;
716
aec3dfcb
TH
717 /*
718 * On the default hierarchy, there can be csets which are
719 * associated with the same set of cgroups but different csses.
720 * Let's first ensure that csses match.
721 */
722 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 723 return false;
7717f7ba
PM
724
725 /*
726 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
727 * different cgroups in hierarchies. As different cgroups may
728 * share the same effective css, this comparison is always
729 * necessary.
7717f7ba 730 */
69d0206c
TH
731 l1 = &cset->cgrp_links;
732 l2 = &old_cset->cgrp_links;
7717f7ba 733 while (1) {
69d0206c 734 struct cgrp_cset_link *link1, *link2;
5abb8855 735 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
736
737 l1 = l1->next;
738 l2 = l2->next;
739 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
740 if (l1 == &cset->cgrp_links) {
741 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
742 break;
743 } else {
69d0206c 744 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
745 }
746 /* Locate the cgroups associated with these links. */
69d0206c
TH
747 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
748 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
749 cgrp1 = link1->cgrp;
750 cgrp2 = link2->cgrp;
7717f7ba 751 /* Hierarchies should be linked in the same order. */
5abb8855 752 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
753
754 /*
755 * If this hierarchy is the hierarchy of the cgroup
756 * that's changing, then we need to check that this
757 * css_set points to the new cgroup; if it's any other
758 * hierarchy, then this css_set should point to the
759 * same cgroup as the old css_set.
760 */
5abb8855
TH
761 if (cgrp1->root == new_cgrp->root) {
762 if (cgrp1 != new_cgrp)
7717f7ba
PM
763 return false;
764 } else {
5abb8855 765 if (cgrp1 != cgrp2)
7717f7ba
PM
766 return false;
767 }
768 }
769 return true;
770}
771
b326f9d0
TH
772/**
773 * find_existing_css_set - init css array and find the matching css_set
774 * @old_cset: the css_set that we're using before the cgroup transition
775 * @cgrp: the cgroup that we're moving into
776 * @template: out param for the new set of csses, should be clear on entry
817929ec 777 */
5abb8855
TH
778static struct css_set *find_existing_css_set(struct css_set *old_cset,
779 struct cgroup *cgrp,
780 struct cgroup_subsys_state *template[])
b4f48b63 781{
3dd06ffa 782 struct cgroup_root *root = cgrp->root;
30159ec7 783 struct cgroup_subsys *ss;
5abb8855 784 struct css_set *cset;
0ac801fe 785 unsigned long key;
b326f9d0 786 int i;
817929ec 787
aae8aab4
BB
788 /*
789 * Build the set of subsystem state objects that we want to see in the
790 * new css_set. while subsystems can change globally, the entries here
791 * won't change, so no need for locking.
792 */
30159ec7 793 for_each_subsys(ss, i) {
f392e51c 794 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
795 /*
796 * @ss is in this hierarchy, so we want the
797 * effective css from @cgrp.
798 */
799 template[i] = cgroup_e_css(cgrp, ss);
817929ec 800 } else {
aec3dfcb
TH
801 /*
802 * @ss is not in this hierarchy, so we don't want
803 * to change the css.
804 */
5abb8855 805 template[i] = old_cset->subsys[i];
817929ec
PM
806 }
807 }
808
0ac801fe 809 key = css_set_hash(template);
5abb8855
TH
810 hash_for_each_possible(css_set_table, cset, hlist, key) {
811 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
812 continue;
813
814 /* This css_set matches what we need */
5abb8855 815 return cset;
472b1053 816 }
817929ec
PM
817
818 /* No existing cgroup group matched */
819 return NULL;
820}
821
69d0206c 822static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 823{
69d0206c 824 struct cgrp_cset_link *link, *tmp_link;
36553434 825
69d0206c
TH
826 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
827 list_del(&link->cset_link);
36553434
LZ
828 kfree(link);
829 }
830}
831
69d0206c
TH
832/**
833 * allocate_cgrp_cset_links - allocate cgrp_cset_links
834 * @count: the number of links to allocate
835 * @tmp_links: list_head the allocated links are put on
836 *
837 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
838 * through ->cset_link. Returns 0 on success or -errno.
817929ec 839 */
69d0206c 840static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 841{
69d0206c 842 struct cgrp_cset_link *link;
817929ec 843 int i;
69d0206c
TH
844
845 INIT_LIST_HEAD(tmp_links);
846
817929ec 847 for (i = 0; i < count; i++) {
f4f4be2b 848 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 849 if (!link) {
69d0206c 850 free_cgrp_cset_links(tmp_links);
817929ec
PM
851 return -ENOMEM;
852 }
69d0206c 853 list_add(&link->cset_link, tmp_links);
817929ec
PM
854 }
855 return 0;
856}
857
c12f65d4
LZ
858/**
859 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 860 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 861 * @cset: the css_set to be linked
c12f65d4
LZ
862 * @cgrp: the destination cgroup
863 */
69d0206c
TH
864static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
865 struct cgroup *cgrp)
c12f65d4 866{
69d0206c 867 struct cgrp_cset_link *link;
c12f65d4 868
69d0206c 869 BUG_ON(list_empty(tmp_links));
6803c006
TH
870
871 if (cgroup_on_dfl(cgrp))
872 cset->dfl_cgrp = cgrp;
873
69d0206c
TH
874 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
875 link->cset = cset;
7717f7ba 876 link->cgrp = cgrp;
842b597e
TH
877
878 if (list_empty(&cgrp->cset_links))
879 cgroup_update_populated(cgrp, true);
69d0206c 880 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 881
7717f7ba
PM
882 /*
883 * Always add links to the tail of the list so that the list
884 * is sorted by order of hierarchy creation
885 */
69d0206c 886 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
887}
888
b326f9d0
TH
889/**
890 * find_css_set - return a new css_set with one cgroup updated
891 * @old_cset: the baseline css_set
892 * @cgrp: the cgroup to be updated
893 *
894 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
895 * substituted into the appropriate hierarchy.
817929ec 896 */
5abb8855
TH
897static struct css_set *find_css_set(struct css_set *old_cset,
898 struct cgroup *cgrp)
817929ec 899{
b326f9d0 900 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 901 struct css_set *cset;
69d0206c
TH
902 struct list_head tmp_links;
903 struct cgrp_cset_link *link;
2d8f243a 904 struct cgroup_subsys *ss;
0ac801fe 905 unsigned long key;
2d8f243a 906 int ssid;
472b1053 907
b326f9d0
TH
908 lockdep_assert_held(&cgroup_mutex);
909
817929ec
PM
910 /* First see if we already have a cgroup group that matches
911 * the desired set */
96d365e0 912 down_read(&css_set_rwsem);
5abb8855
TH
913 cset = find_existing_css_set(old_cset, cgrp, template);
914 if (cset)
915 get_css_set(cset);
96d365e0 916 up_read(&css_set_rwsem);
817929ec 917
5abb8855
TH
918 if (cset)
919 return cset;
817929ec 920
f4f4be2b 921 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 922 if (!cset)
817929ec
PM
923 return NULL;
924
69d0206c 925 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 926 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 927 kfree(cset);
817929ec
PM
928 return NULL;
929 }
930
5abb8855 931 atomic_set(&cset->refcount, 1);
69d0206c 932 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 933 INIT_LIST_HEAD(&cset->tasks);
c7561128 934 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 935 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 936 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 937 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
938
939 /* Copy the set of subsystem state objects generated in
940 * find_existing_css_set() */
5abb8855 941 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 942
96d365e0 943 down_write(&css_set_rwsem);
817929ec 944 /* Add reference counts and links from the new css_set. */
69d0206c 945 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 946 struct cgroup *c = link->cgrp;
69d0206c 947
7717f7ba
PM
948 if (c->root == cgrp->root)
949 c = cgrp;
69d0206c 950 link_css_set(&tmp_links, cset, c);
7717f7ba 951 }
817929ec 952
69d0206c 953 BUG_ON(!list_empty(&tmp_links));
817929ec 954
817929ec 955 css_set_count++;
472b1053 956
2d8f243a 957 /* Add @cset to the hash table */
5abb8855
TH
958 key = css_set_hash(cset->subsys);
959 hash_add(css_set_table, &cset->hlist, key);
472b1053 960
2d8f243a
TH
961 for_each_subsys(ss, ssid)
962 list_add_tail(&cset->e_cset_node[ssid],
963 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
964
96d365e0 965 up_write(&css_set_rwsem);
817929ec 966
5abb8855 967 return cset;
b4f48b63
PM
968}
969
3dd06ffa 970static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 971{
3dd06ffa 972 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 973
3dd06ffa 974 return root_cgrp->root;
2bd59d48
TH
975}
976
3dd06ffa 977static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
978{
979 int id;
980
981 lockdep_assert_held(&cgroup_mutex);
982
985ed670 983 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
984 if (id < 0)
985 return id;
986
987 root->hierarchy_id = id;
988 return 0;
989}
990
3dd06ffa 991static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
992{
993 lockdep_assert_held(&cgroup_mutex);
994
995 if (root->hierarchy_id) {
996 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
997 root->hierarchy_id = 0;
998 }
999}
1000
3dd06ffa 1001static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1002{
1003 if (root) {
d0f702e6 1004 /* hierarchy ID should already have been released */
f2e85d57
TH
1005 WARN_ON_ONCE(root->hierarchy_id);
1006
1007 idr_destroy(&root->cgroup_idr);
1008 kfree(root);
1009 }
1010}
1011
3dd06ffa 1012static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1013{
3dd06ffa 1014 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1015 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1016
2bd59d48 1017 mutex_lock(&cgroup_mutex);
f2e85d57 1018
776f02fa 1019 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1020 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1021
f2e85d57 1022 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1023 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1024
7717f7ba 1025 /*
f2e85d57
TH
1026 * Release all the links from cset_links to this hierarchy's
1027 * root cgroup
7717f7ba 1028 */
96d365e0 1029 down_write(&css_set_rwsem);
f2e85d57
TH
1030
1031 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1032 list_del(&link->cset_link);
1033 list_del(&link->cgrp_link);
1034 kfree(link);
1035 }
96d365e0 1036 up_write(&css_set_rwsem);
f2e85d57
TH
1037
1038 if (!list_empty(&root->root_list)) {
1039 list_del(&root->root_list);
1040 cgroup_root_count--;
1041 }
1042
1043 cgroup_exit_root_id(root);
1044
1045 mutex_unlock(&cgroup_mutex);
f2e85d57 1046
2bd59d48 1047 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1048 cgroup_free_root(root);
1049}
1050
ceb6a081
TH
1051/* look up cgroup associated with given css_set on the specified hierarchy */
1052static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1053 struct cgroup_root *root)
7717f7ba 1054{
7717f7ba
PM
1055 struct cgroup *res = NULL;
1056
96d365e0
TH
1057 lockdep_assert_held(&cgroup_mutex);
1058 lockdep_assert_held(&css_set_rwsem);
1059
5abb8855 1060 if (cset == &init_css_set) {
3dd06ffa 1061 res = &root->cgrp;
7717f7ba 1062 } else {
69d0206c
TH
1063 struct cgrp_cset_link *link;
1064
1065 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1066 struct cgroup *c = link->cgrp;
69d0206c 1067
7717f7ba
PM
1068 if (c->root == root) {
1069 res = c;
1070 break;
1071 }
1072 }
1073 }
96d365e0 1074
7717f7ba
PM
1075 BUG_ON(!res);
1076 return res;
1077}
1078
ddbcc7e8 1079/*
ceb6a081
TH
1080 * Return the cgroup for "task" from the given hierarchy. Must be
1081 * called with cgroup_mutex and css_set_rwsem held.
1082 */
1083static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1084 struct cgroup_root *root)
ceb6a081
TH
1085{
1086 /*
1087 * No need to lock the task - since we hold cgroup_mutex the
1088 * task can't change groups, so the only thing that can happen
1089 * is that it exits and its css is set back to init_css_set.
1090 */
1091 return cset_cgroup_from_root(task_css_set(task), root);
1092}
1093
ddbcc7e8 1094/*
ddbcc7e8
PM
1095 * A task must hold cgroup_mutex to modify cgroups.
1096 *
1097 * Any task can increment and decrement the count field without lock.
1098 * So in general, code holding cgroup_mutex can't rely on the count
1099 * field not changing. However, if the count goes to zero, then only
956db3ca 1100 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1101 * means that no tasks are currently attached, therefore there is no
1102 * way a task attached to that cgroup can fork (the other way to
1103 * increment the count). So code holding cgroup_mutex can safely
1104 * assume that if the count is zero, it will stay zero. Similarly, if
1105 * a task holds cgroup_mutex on a cgroup with zero count, it
1106 * knows that the cgroup won't be removed, as cgroup_rmdir()
1107 * needs that mutex.
1108 *
ddbcc7e8
PM
1109 * A cgroup can only be deleted if both its 'count' of using tasks
1110 * is zero, and its list of 'children' cgroups is empty. Since all
1111 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1112 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1113 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1114 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1115 *
1116 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1117 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1118 */
1119
2bd59d48 1120static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1121static const struct file_operations proc_cgroupstats_operations;
a424316c 1122
8d7e6fb0
TH
1123static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1124 char *buf)
ddbcc7e8 1125{
3e1d2eed
TH
1126 struct cgroup_subsys *ss = cft->ss;
1127
8d7e6fb0
TH
1128 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1129 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1130 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1131 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1132 cft->name);
8d7e6fb0
TH
1133 else
1134 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1135 return buf;
ddbcc7e8
PM
1136}
1137
f2e85d57
TH
1138/**
1139 * cgroup_file_mode - deduce file mode of a control file
1140 * @cft: the control file in question
1141 *
7dbdb199 1142 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1143 */
1144static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1145{
f2e85d57 1146 umode_t mode = 0;
65dff759 1147
f2e85d57
TH
1148 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1149 mode |= S_IRUGO;
1150
7dbdb199
TH
1151 if (cft->write_u64 || cft->write_s64 || cft->write) {
1152 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1153 mode |= S_IWUGO;
1154 else
1155 mode |= S_IWUSR;
1156 }
f2e85d57
TH
1157
1158 return mode;
65dff759
LZ
1159}
1160
59f5296b 1161static void cgroup_get(struct cgroup *cgrp)
be445626 1162{
2bd59d48 1163 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1164 css_get(&cgrp->self);
be445626
LZ
1165}
1166
aa32362f
LZ
1167static bool cgroup_tryget(struct cgroup *cgrp)
1168{
1169 return css_tryget(&cgrp->self);
1170}
1171
59f5296b 1172static void cgroup_put(struct cgroup *cgrp)
be445626 1173{
9d755d33 1174 css_put(&cgrp->self);
be445626
LZ
1175}
1176
af0ba678 1177/**
0f060deb 1178 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1179 * @cgrp: the target cgroup
0f060deb 1180 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1181 *
1182 * On the default hierarchy, a subsystem may request other subsystems to be
1183 * enabled together through its ->depends_on mask. In such cases, more
1184 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1185 *
0f060deb
TH
1186 * This function calculates which subsystems need to be enabled if
1187 * @subtree_control is to be applied to @cgrp. The returned mask is always
1188 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1189 */
8ab456ac
AS
1190static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1191 unsigned long subtree_control)
667c2491 1192{
af0ba678 1193 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1194 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1195 struct cgroup_subsys *ss;
1196 int ssid;
1197
1198 lockdep_assert_held(&cgroup_mutex);
1199
0f060deb
TH
1200 if (!cgroup_on_dfl(cgrp))
1201 return cur_ss_mask;
af0ba678
TH
1202
1203 while (true) {
8ab456ac 1204 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1205
a966a4ed
AS
1206 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1207 new_ss_mask |= ss->depends_on;
af0ba678
TH
1208
1209 /*
1210 * Mask out subsystems which aren't available. This can
1211 * happen only if some depended-upon subsystems were bound
1212 * to non-default hierarchies.
1213 */
1214 if (parent)
1215 new_ss_mask &= parent->child_subsys_mask;
1216 else
1217 new_ss_mask &= cgrp->root->subsys_mask;
1218
1219 if (new_ss_mask == cur_ss_mask)
1220 break;
1221 cur_ss_mask = new_ss_mask;
1222 }
1223
0f060deb
TH
1224 return cur_ss_mask;
1225}
1226
1227/**
1228 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1229 * @cgrp: the target cgroup
1230 *
1231 * Update @cgrp->child_subsys_mask according to the current
1232 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1233 */
1234static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1235{
1236 cgrp->child_subsys_mask =
1237 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1238}
1239
a9746d8d
TH
1240/**
1241 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1242 * @kn: the kernfs_node being serviced
1243 *
1244 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1245 * the method finishes if locking succeeded. Note that once this function
1246 * returns the cgroup returned by cgroup_kn_lock_live() may become
1247 * inaccessible any time. If the caller intends to continue to access the
1248 * cgroup, it should pin it before invoking this function.
1249 */
1250static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1251{
a9746d8d
TH
1252 struct cgroup *cgrp;
1253
1254 if (kernfs_type(kn) == KERNFS_DIR)
1255 cgrp = kn->priv;
1256 else
1257 cgrp = kn->parent->priv;
1258
1259 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1260
1261 kernfs_unbreak_active_protection(kn);
1262 cgroup_put(cgrp);
ddbcc7e8
PM
1263}
1264
a9746d8d
TH
1265/**
1266 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1267 * @kn: the kernfs_node being serviced
1268 *
1269 * This helper is to be used by a cgroup kernfs method currently servicing
1270 * @kn. It breaks the active protection, performs cgroup locking and
1271 * verifies that the associated cgroup is alive. Returns the cgroup if
1272 * alive; otherwise, %NULL. A successful return should be undone by a
1273 * matching cgroup_kn_unlock() invocation.
1274 *
1275 * Any cgroup kernfs method implementation which requires locking the
1276 * associated cgroup should use this helper. It avoids nesting cgroup
1277 * locking under kernfs active protection and allows all kernfs operations
1278 * including self-removal.
1279 */
1280static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1281{
a9746d8d
TH
1282 struct cgroup *cgrp;
1283
1284 if (kernfs_type(kn) == KERNFS_DIR)
1285 cgrp = kn->priv;
1286 else
1287 cgrp = kn->parent->priv;
05ef1d7c 1288
2739d3cc 1289 /*
01f6474c 1290 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1291 * active_ref. cgroup liveliness check alone provides enough
1292 * protection against removal. Ensure @cgrp stays accessible and
1293 * break the active_ref protection.
2739d3cc 1294 */
aa32362f
LZ
1295 if (!cgroup_tryget(cgrp))
1296 return NULL;
a9746d8d
TH
1297 kernfs_break_active_protection(kn);
1298
2bd59d48 1299 mutex_lock(&cgroup_mutex);
05ef1d7c 1300
a9746d8d
TH
1301 if (!cgroup_is_dead(cgrp))
1302 return cgrp;
1303
1304 cgroup_kn_unlock(kn);
1305 return NULL;
ddbcc7e8 1306}
05ef1d7c 1307
2739d3cc 1308static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1309{
2bd59d48 1310 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1311
01f6474c 1312 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1313 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1314}
1315
13af07df 1316/**
4df8dc90
TH
1317 * css_clear_dir - remove subsys files in a cgroup directory
1318 * @css: taget css
1319 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1320 */
4df8dc90
TH
1321static void css_clear_dir(struct cgroup_subsys_state *css,
1322 struct cgroup *cgrp_override)
05ef1d7c 1323{
4df8dc90
TH
1324 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1325 struct cftype *cfts;
05ef1d7c 1326
4df8dc90
TH
1327 list_for_each_entry(cfts, &css->ss->cfts, node)
1328 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1329}
1330
ccdca218 1331/**
4df8dc90
TH
1332 * css_populate_dir - create subsys files in a cgroup directory
1333 * @css: target css
1334 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1335 *
1336 * On failure, no file is added.
1337 */
4df8dc90
TH
1338static int css_populate_dir(struct cgroup_subsys_state *css,
1339 struct cgroup *cgrp_override)
ccdca218 1340{
4df8dc90
TH
1341 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1342 struct cftype *cfts, *failed_cfts;
1343 int ret;
ccdca218 1344
4df8dc90
TH
1345 if (!css->ss) {
1346 if (cgroup_on_dfl(cgrp))
1347 cfts = cgroup_dfl_base_files;
1348 else
1349 cfts = cgroup_legacy_base_files;
ccdca218 1350
4df8dc90
TH
1351 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1352 }
ccdca218 1353
4df8dc90
TH
1354 list_for_each_entry(cfts, &css->ss->cfts, node) {
1355 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1356 if (ret < 0) {
1357 failed_cfts = cfts;
1358 goto err;
ccdca218
TH
1359 }
1360 }
1361 return 0;
1362err:
4df8dc90
TH
1363 list_for_each_entry(cfts, &css->ss->cfts, node) {
1364 if (cfts == failed_cfts)
1365 break;
1366 cgroup_addrm_files(css, cgrp, cfts, false);
1367 }
ccdca218
TH
1368 return ret;
1369}
1370
8ab456ac
AS
1371static int rebind_subsystems(struct cgroup_root *dst_root,
1372 unsigned long ss_mask)
ddbcc7e8 1373{
1ada4838 1374 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1375 struct cgroup_subsys *ss;
8ab456ac 1376 unsigned long tmp_ss_mask;
2d8f243a 1377 int ssid, i, ret;
ddbcc7e8 1378
ace2bee8 1379 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1380
a966a4ed 1381 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1382 /* if @ss has non-root csses attached to it, can't move */
1383 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1384 return -EBUSY;
1d5be6b2 1385
5df36032 1386 /* can't move between two non-dummy roots either */
7fd8c565 1387 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1388 return -EBUSY;
ddbcc7e8
PM
1389 }
1390
5533e011
TH
1391 /* skip creating root files on dfl_root for inhibited subsystems */
1392 tmp_ss_mask = ss_mask;
1393 if (dst_root == &cgrp_dfl_root)
1394 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1395
4df8dc90
TH
1396 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1397 struct cgroup *scgrp = &ss->root->cgrp;
1398 int tssid;
1399
1400 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1401 if (!ret)
1402 continue;
ddbcc7e8 1403
a2dd4247
TH
1404 /*
1405 * Rebinding back to the default root is not allowed to
1406 * fail. Using both default and non-default roots should
1407 * be rare. Moving subsystems back and forth even more so.
1408 * Just warn about it and continue.
1409 */
4df8dc90
TH
1410 if (dst_root == &cgrp_dfl_root) {
1411 if (cgrp_dfl_root_visible) {
1412 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1413 ret, ss_mask);
1414 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1415 }
1416 continue;
a2dd4247 1417 }
4df8dc90
TH
1418
1419 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1420 if (tssid == ssid)
1421 break;
1422 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1423 }
1424 return ret;
5df36032 1425 }
3126121f
TH
1426
1427 /*
1428 * Nothing can fail from this point on. Remove files for the
1429 * removed subsystems and rebind each subsystem.
1430 */
a966a4ed 1431 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1432 struct cgroup_root *src_root = ss->root;
1433 struct cgroup *scgrp = &src_root->cgrp;
1434 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1435 struct css_set *cset;
a8a648c4 1436
1ada4838 1437 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1438
4df8dc90
TH
1439 css_clear_dir(css, NULL);
1440
1ada4838
TH
1441 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1442 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1443 ss->root = dst_root;
1ada4838 1444 css->cgroup = dcgrp;
73e80ed8 1445
2d8f243a
TH
1446 down_write(&css_set_rwsem);
1447 hash_for_each(css_set_table, i, cset, hlist)
1448 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1449 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1450 up_write(&css_set_rwsem);
1451
f392e51c 1452 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1453 scgrp->subtree_control &= ~(1 << ssid);
1454 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1455
bd53d617 1456 /* default hierarchy doesn't enable controllers by default */
f392e51c 1457 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1458 if (dst_root == &cgrp_dfl_root) {
1459 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1460 } else {
1ada4838
TH
1461 dcgrp->subtree_control |= 1 << ssid;
1462 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1463 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1464 }
a8a648c4 1465
5df36032
TH
1466 if (ss->bind)
1467 ss->bind(css);
ddbcc7e8 1468 }
ddbcc7e8 1469
1ada4838 1470 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1471 return 0;
1472}
1473
2bd59d48
TH
1474static int cgroup_show_options(struct seq_file *seq,
1475 struct kernfs_root *kf_root)
ddbcc7e8 1476{
3dd06ffa 1477 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1478 struct cgroup_subsys *ss;
b85d2040 1479 int ssid;
ddbcc7e8 1480
d98817d4
TH
1481 if (root != &cgrp_dfl_root)
1482 for_each_subsys(ss, ssid)
1483 if (root->subsys_mask & (1 << ssid))
61e57c0c 1484 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1485 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1486 seq_puts(seq, ",noprefix");
93438629 1487 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1488 seq_puts(seq, ",xattr");
69e943b7
TH
1489
1490 spin_lock(&release_agent_path_lock);
81a6a5cd 1491 if (strlen(root->release_agent_path))
a068acf2
KC
1492 seq_show_option(seq, "release_agent",
1493 root->release_agent_path);
69e943b7
TH
1494 spin_unlock(&release_agent_path_lock);
1495
3dd06ffa 1496 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1497 seq_puts(seq, ",clone_children");
c6d57f33 1498 if (strlen(root->name))
a068acf2 1499 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1500 return 0;
1501}
1502
1503struct cgroup_sb_opts {
8ab456ac 1504 unsigned long subsys_mask;
69dfa00c 1505 unsigned int flags;
81a6a5cd 1506 char *release_agent;
2260e7fc 1507 bool cpuset_clone_children;
c6d57f33 1508 char *name;
2c6ab6d2
PM
1509 /* User explicitly requested empty subsystem */
1510 bool none;
ddbcc7e8
PM
1511};
1512
cf5d5941 1513static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1514{
32a8cf23
DL
1515 char *token, *o = data;
1516 bool all_ss = false, one_ss = false;
8ab456ac 1517 unsigned long mask = -1UL;
30159ec7 1518 struct cgroup_subsys *ss;
7b9a6ba5 1519 int nr_opts = 0;
30159ec7 1520 int i;
f9ab5b5b
LZ
1521
1522#ifdef CONFIG_CPUSETS
69dfa00c 1523 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1524#endif
ddbcc7e8 1525
c6d57f33 1526 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1527
1528 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1529 nr_opts++;
1530
ddbcc7e8
PM
1531 if (!*token)
1532 return -EINVAL;
32a8cf23 1533 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1534 /* Explicitly have no subsystems */
1535 opts->none = true;
32a8cf23
DL
1536 continue;
1537 }
1538 if (!strcmp(token, "all")) {
1539 /* Mutually exclusive option 'all' + subsystem name */
1540 if (one_ss)
1541 return -EINVAL;
1542 all_ss = true;
1543 continue;
1544 }
873fe09e
TH
1545 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1546 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1547 continue;
1548 }
32a8cf23 1549 if (!strcmp(token, "noprefix")) {
93438629 1550 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1551 continue;
1552 }
1553 if (!strcmp(token, "clone_children")) {
2260e7fc 1554 opts->cpuset_clone_children = true;
32a8cf23
DL
1555 continue;
1556 }
03b1cde6 1557 if (!strcmp(token, "xattr")) {
93438629 1558 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1559 continue;
1560 }
32a8cf23 1561 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1562 /* Specifying two release agents is forbidden */
1563 if (opts->release_agent)
1564 return -EINVAL;
c6d57f33 1565 opts->release_agent =
e400c285 1566 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1567 if (!opts->release_agent)
1568 return -ENOMEM;
32a8cf23
DL
1569 continue;
1570 }
1571 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1572 const char *name = token + 5;
1573 /* Can't specify an empty name */
1574 if (!strlen(name))
1575 return -EINVAL;
1576 /* Must match [\w.-]+ */
1577 for (i = 0; i < strlen(name); i++) {
1578 char c = name[i];
1579 if (isalnum(c))
1580 continue;
1581 if ((c == '.') || (c == '-') || (c == '_'))
1582 continue;
1583 return -EINVAL;
1584 }
1585 /* Specifying two names is forbidden */
1586 if (opts->name)
1587 return -EINVAL;
1588 opts->name = kstrndup(name,
e400c285 1589 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1590 GFP_KERNEL);
1591 if (!opts->name)
1592 return -ENOMEM;
32a8cf23
DL
1593
1594 continue;
1595 }
1596
30159ec7 1597 for_each_subsys(ss, i) {
3e1d2eed 1598 if (strcmp(token, ss->legacy_name))
32a8cf23 1599 continue;
fc5ed1e9 1600 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1601 continue;
1602
1603 /* Mutually exclusive option 'all' + subsystem name */
1604 if (all_ss)
1605 return -EINVAL;
69dfa00c 1606 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1607 one_ss = true;
1608
1609 break;
1610 }
1611 if (i == CGROUP_SUBSYS_COUNT)
1612 return -ENOENT;
1613 }
1614
873fe09e 1615 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1616 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1617 if (nr_opts != 1) {
1618 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1619 return -EINVAL;
1620 }
7b9a6ba5 1621 return 0;
873fe09e
TH
1622 }
1623
7b9a6ba5
TH
1624 /*
1625 * If the 'all' option was specified select all the subsystems,
1626 * otherwise if 'none', 'name=' and a subsystem name options were
1627 * not specified, let's default to 'all'
1628 */
1629 if (all_ss || (!one_ss && !opts->none && !opts->name))
1630 for_each_subsys(ss, i)
fc5ed1e9 1631 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1632 opts->subsys_mask |= (1 << i);
1633
1634 /*
1635 * We either have to specify by name or by subsystems. (So all
1636 * empty hierarchies must have a name).
1637 */
1638 if (!opts->subsys_mask && !opts->name)
1639 return -EINVAL;
1640
f9ab5b5b
LZ
1641 /*
1642 * Option noprefix was introduced just for backward compatibility
1643 * with the old cpuset, so we allow noprefix only if mounting just
1644 * the cpuset subsystem.
1645 */
93438629 1646 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1647 return -EINVAL;
1648
2c6ab6d2 1649 /* Can't specify "none" and some subsystems */
a1a71b45 1650 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1651 return -EINVAL;
1652
ddbcc7e8
PM
1653 return 0;
1654}
1655
2bd59d48 1656static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1657{
1658 int ret = 0;
3dd06ffa 1659 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1660 struct cgroup_sb_opts opts;
8ab456ac 1661 unsigned long added_mask, removed_mask;
ddbcc7e8 1662
aa6ec29b
TH
1663 if (root == &cgrp_dfl_root) {
1664 pr_err("remount is not allowed\n");
873fe09e
TH
1665 return -EINVAL;
1666 }
1667
ddbcc7e8
PM
1668 mutex_lock(&cgroup_mutex);
1669
1670 /* See what subsystems are wanted */
1671 ret = parse_cgroupfs_options(data, &opts);
1672 if (ret)
1673 goto out_unlock;
1674
f392e51c 1675 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1676 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1677 task_tgid_nr(current), current->comm);
8b5a5a9d 1678
f392e51c
TH
1679 added_mask = opts.subsys_mask & ~root->subsys_mask;
1680 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1681
cf5d5941 1682 /* Don't allow flags or name to change at remount */
7450e90b 1683 if ((opts.flags ^ root->flags) ||
cf5d5941 1684 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1685 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1686 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1687 ret = -EINVAL;
1688 goto out_unlock;
1689 }
1690
f172e67c 1691 /* remounting is not allowed for populated hierarchies */
d5c419b6 1692 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1693 ret = -EBUSY;
0670e08b 1694 goto out_unlock;
cf5d5941 1695 }
ddbcc7e8 1696
5df36032 1697 ret = rebind_subsystems(root, added_mask);
3126121f 1698 if (ret)
0670e08b 1699 goto out_unlock;
ddbcc7e8 1700
3dd06ffa 1701 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1702
69e943b7
TH
1703 if (opts.release_agent) {
1704 spin_lock(&release_agent_path_lock);
81a6a5cd 1705 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1706 spin_unlock(&release_agent_path_lock);
1707 }
ddbcc7e8 1708 out_unlock:
66bdc9cf 1709 kfree(opts.release_agent);
c6d57f33 1710 kfree(opts.name);
ddbcc7e8 1711 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1712 return ret;
1713}
1714
afeb0f9f
TH
1715/*
1716 * To reduce the fork() overhead for systems that are not actually using
1717 * their cgroups capability, we don't maintain the lists running through
1718 * each css_set to its tasks until we see the list actually used - in other
1719 * words after the first mount.
1720 */
1721static bool use_task_css_set_links __read_mostly;
1722
1723static void cgroup_enable_task_cg_lists(void)
1724{
1725 struct task_struct *p, *g;
1726
96d365e0 1727 down_write(&css_set_rwsem);
afeb0f9f
TH
1728
1729 if (use_task_css_set_links)
1730 goto out_unlock;
1731
1732 use_task_css_set_links = true;
1733
1734 /*
1735 * We need tasklist_lock because RCU is not safe against
1736 * while_each_thread(). Besides, a forking task that has passed
1737 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1738 * is not guaranteed to have its child immediately visible in the
1739 * tasklist if we walk through it with RCU.
1740 */
1741 read_lock(&tasklist_lock);
1742 do_each_thread(g, p) {
afeb0f9f
TH
1743 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1744 task_css_set(p) != &init_css_set);
1745
1746 /*
1747 * We should check if the process is exiting, otherwise
1748 * it will race with cgroup_exit() in that the list
1749 * entry won't be deleted though the process has exited.
f153ad11
TH
1750 * Do it while holding siglock so that we don't end up
1751 * racing against cgroup_exit().
afeb0f9f 1752 */
f153ad11 1753 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1754 if (!(p->flags & PF_EXITING)) {
1755 struct css_set *cset = task_css_set(p);
1756
1757 list_add(&p->cg_list, &cset->tasks);
1758 get_css_set(cset);
1759 }
f153ad11 1760 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1761 } while_each_thread(g, p);
1762 read_unlock(&tasklist_lock);
1763out_unlock:
96d365e0 1764 up_write(&css_set_rwsem);
afeb0f9f 1765}
ddbcc7e8 1766
cc31edce
PM
1767static void init_cgroup_housekeeping(struct cgroup *cgrp)
1768{
2d8f243a
TH
1769 struct cgroup_subsys *ss;
1770 int ssid;
1771
d5c419b6
TH
1772 INIT_LIST_HEAD(&cgrp->self.sibling);
1773 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1774 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1775 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1776 INIT_LIST_HEAD(&cgrp->pidlists);
1777 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1778 cgrp->self.cgroup = cgrp;
184faf32 1779 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1780
1781 for_each_subsys(ss, ssid)
1782 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1783
1784 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1785 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1786}
c6d57f33 1787
3dd06ffa 1788static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1789 struct cgroup_sb_opts *opts)
ddbcc7e8 1790{
3dd06ffa 1791 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1792
ddbcc7e8 1793 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1794 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1795 cgrp->root = root;
cc31edce 1796 init_cgroup_housekeeping(cgrp);
4e96ee8e 1797 idr_init(&root->cgroup_idr);
c6d57f33 1798
c6d57f33
PM
1799 root->flags = opts->flags;
1800 if (opts->release_agent)
1801 strcpy(root->release_agent_path, opts->release_agent);
1802 if (opts->name)
1803 strcpy(root->name, opts->name);
2260e7fc 1804 if (opts->cpuset_clone_children)
3dd06ffa 1805 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1806}
1807
8ab456ac 1808static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1809{
d427dfeb 1810 LIST_HEAD(tmp_links);
3dd06ffa 1811 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1812 struct css_set *cset;
d427dfeb 1813 int i, ret;
2c6ab6d2 1814
d427dfeb 1815 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1816
cf780b7d 1817 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1818 if (ret < 0)
2bd59d48 1819 goto out;
d427dfeb 1820 root_cgrp->id = ret;
c6d57f33 1821
2aad2a86
TH
1822 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1823 GFP_KERNEL);
9d755d33
TH
1824 if (ret)
1825 goto out;
1826
d427dfeb 1827 /*
96d365e0 1828 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1829 * but that's OK - it can only be increased by someone holding
1830 * cgroup_lock, and that's us. The worst that can happen is that we
1831 * have some link structures left over
1832 */
1833 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1834 if (ret)
9d755d33 1835 goto cancel_ref;
ddbcc7e8 1836
985ed670 1837 ret = cgroup_init_root_id(root);
ddbcc7e8 1838 if (ret)
9d755d33 1839 goto cancel_ref;
ddbcc7e8 1840
2bd59d48
TH
1841 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1842 KERNFS_ROOT_CREATE_DEACTIVATED,
1843 root_cgrp);
1844 if (IS_ERR(root->kf_root)) {
1845 ret = PTR_ERR(root->kf_root);
1846 goto exit_root_id;
1847 }
1848 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1849
4df8dc90 1850 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1851 if (ret)
2bd59d48 1852 goto destroy_root;
ddbcc7e8 1853
5df36032 1854 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1855 if (ret)
2bd59d48 1856 goto destroy_root;
ddbcc7e8 1857
d427dfeb
TH
1858 /*
1859 * There must be no failure case after here, since rebinding takes
1860 * care of subsystems' refcounts, which are explicitly dropped in
1861 * the failure exit path.
1862 */
1863 list_add(&root->root_list, &cgroup_roots);
1864 cgroup_root_count++;
0df6a63f 1865
d427dfeb 1866 /*
3dd06ffa 1867 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1868 * objects.
1869 */
96d365e0 1870 down_write(&css_set_rwsem);
d427dfeb
TH
1871 hash_for_each(css_set_table, i, cset, hlist)
1872 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1873 up_write(&css_set_rwsem);
ddbcc7e8 1874
d5c419b6 1875 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1876 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1877
2bd59d48 1878 kernfs_activate(root_cgrp->kn);
d427dfeb 1879 ret = 0;
2bd59d48 1880 goto out;
d427dfeb 1881
2bd59d48
TH
1882destroy_root:
1883 kernfs_destroy_root(root->kf_root);
1884 root->kf_root = NULL;
1885exit_root_id:
d427dfeb 1886 cgroup_exit_root_id(root);
9d755d33 1887cancel_ref:
9a1049da 1888 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1889out:
d427dfeb
TH
1890 free_cgrp_cset_links(&tmp_links);
1891 return ret;
ddbcc7e8
PM
1892}
1893
f7e83571 1894static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1895 int flags, const char *unused_dev_name,
f7e83571 1896 void *data)
ddbcc7e8 1897{
3a32bd72 1898 struct super_block *pinned_sb = NULL;
970317aa 1899 struct cgroup_subsys *ss;
3dd06ffa 1900 struct cgroup_root *root;
ddbcc7e8 1901 struct cgroup_sb_opts opts;
2bd59d48 1902 struct dentry *dentry;
8e30e2b8 1903 int ret;
970317aa 1904 int i;
c6b3d5bc 1905 bool new_sb;
ddbcc7e8 1906
56fde9e0
TH
1907 /*
1908 * The first time anyone tries to mount a cgroup, enable the list
1909 * linking each css_set to its tasks and fix up all existing tasks.
1910 */
1911 if (!use_task_css_set_links)
1912 cgroup_enable_task_cg_lists();
e37a06f1 1913
aae8aab4 1914 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1915
1916 /* First find the desired set of subsystems */
ddbcc7e8 1917 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1918 if (ret)
8e30e2b8 1919 goto out_unlock;
a015edd2 1920
2bd59d48 1921 /* look for a matching existing root */
7b9a6ba5 1922 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1923 cgrp_dfl_root_visible = true;
1924 root = &cgrp_dfl_root;
1925 cgroup_get(&root->cgrp);
1926 ret = 0;
1927 goto out_unlock;
ddbcc7e8
PM
1928 }
1929
970317aa
LZ
1930 /*
1931 * Destruction of cgroup root is asynchronous, so subsystems may
1932 * still be dying after the previous unmount. Let's drain the
1933 * dying subsystems. We just need to ensure that the ones
1934 * unmounted previously finish dying and don't care about new ones
1935 * starting. Testing ref liveliness is good enough.
1936 */
1937 for_each_subsys(ss, i) {
1938 if (!(opts.subsys_mask & (1 << i)) ||
1939 ss->root == &cgrp_dfl_root)
1940 continue;
1941
1942 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1943 mutex_unlock(&cgroup_mutex);
1944 msleep(10);
1945 ret = restart_syscall();
1946 goto out_free;
1947 }
1948 cgroup_put(&ss->root->cgrp);
1949 }
1950
985ed670 1951 for_each_root(root) {
2bd59d48 1952 bool name_match = false;
3126121f 1953
3dd06ffa 1954 if (root == &cgrp_dfl_root)
985ed670 1955 continue;
3126121f 1956
cf5d5941 1957 /*
2bd59d48
TH
1958 * If we asked for a name then it must match. Also, if
1959 * name matches but sybsys_mask doesn't, we should fail.
1960 * Remember whether name matched.
cf5d5941 1961 */
2bd59d48
TH
1962 if (opts.name) {
1963 if (strcmp(opts.name, root->name))
1964 continue;
1965 name_match = true;
1966 }
ddbcc7e8 1967
c6d57f33 1968 /*
2bd59d48
TH
1969 * If we asked for subsystems (or explicitly for no
1970 * subsystems) then they must match.
c6d57f33 1971 */
2bd59d48 1972 if ((opts.subsys_mask || opts.none) &&
f392e51c 1973 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1974 if (!name_match)
1975 continue;
1976 ret = -EBUSY;
1977 goto out_unlock;
1978 }
873fe09e 1979
7b9a6ba5
TH
1980 if (root->flags ^ opts.flags)
1981 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1982
776f02fa 1983 /*
3a32bd72
LZ
1984 * We want to reuse @root whose lifetime is governed by its
1985 * ->cgrp. Let's check whether @root is alive and keep it
1986 * that way. As cgroup_kill_sb() can happen anytime, we
1987 * want to block it by pinning the sb so that @root doesn't
1988 * get killed before mount is complete.
1989 *
1990 * With the sb pinned, tryget_live can reliably indicate
1991 * whether @root can be reused. If it's being killed,
1992 * drain it. We can use wait_queue for the wait but this
1993 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1994 */
3a32bd72
LZ
1995 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1996 if (IS_ERR(pinned_sb) ||
1997 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1998 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1999 if (!IS_ERR_OR_NULL(pinned_sb))
2000 deactivate_super(pinned_sb);
776f02fa 2001 msleep(10);
a015edd2
TH
2002 ret = restart_syscall();
2003 goto out_free;
776f02fa 2004 }
ddbcc7e8 2005
776f02fa 2006 ret = 0;
2bd59d48 2007 goto out_unlock;
ddbcc7e8 2008 }
ddbcc7e8 2009
817929ec 2010 /*
172a2c06
TH
2011 * No such thing, create a new one. name= matching without subsys
2012 * specification is allowed for already existing hierarchies but we
2013 * can't create new one without subsys specification.
817929ec 2014 */
172a2c06
TH
2015 if (!opts.subsys_mask && !opts.none) {
2016 ret = -EINVAL;
2017 goto out_unlock;
817929ec 2018 }
817929ec 2019
172a2c06
TH
2020 root = kzalloc(sizeof(*root), GFP_KERNEL);
2021 if (!root) {
2022 ret = -ENOMEM;
2bd59d48 2023 goto out_unlock;
839ec545 2024 }
e5f6a860 2025
172a2c06
TH
2026 init_cgroup_root(root, &opts);
2027
35585573 2028 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2029 if (ret)
2030 cgroup_free_root(root);
fa3ca07e 2031
8e30e2b8 2032out_unlock:
ddbcc7e8 2033 mutex_unlock(&cgroup_mutex);
a015edd2 2034out_free:
c6d57f33
PM
2035 kfree(opts.release_agent);
2036 kfree(opts.name);
03b1cde6 2037
2bd59d48 2038 if (ret)
8e30e2b8 2039 return ERR_PTR(ret);
2bd59d48 2040
c9482a5b
JZ
2041 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2042 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2043 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2044 cgroup_put(&root->cgrp);
3a32bd72
LZ
2045
2046 /*
2047 * If @pinned_sb, we're reusing an existing root and holding an
2048 * extra ref on its sb. Mount is complete. Put the extra ref.
2049 */
2050 if (pinned_sb) {
2051 WARN_ON(new_sb);
2052 deactivate_super(pinned_sb);
2053 }
2054
2bd59d48
TH
2055 return dentry;
2056}
2057
2058static void cgroup_kill_sb(struct super_block *sb)
2059{
2060 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2061 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2062
9d755d33
TH
2063 /*
2064 * If @root doesn't have any mounts or children, start killing it.
2065 * This prevents new mounts by disabling percpu_ref_tryget_live().
2066 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2067 *
2068 * And don't kill the default root.
9d755d33 2069 */
3c606d35 2070 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2071 root == &cgrp_dfl_root)
9d755d33
TH
2072 cgroup_put(&root->cgrp);
2073 else
2074 percpu_ref_kill(&root->cgrp.self.refcnt);
2075
2bd59d48 2076 kernfs_kill_sb(sb);
ddbcc7e8
PM
2077}
2078
2079static struct file_system_type cgroup_fs_type = {
2080 .name = "cgroup",
f7e83571 2081 .mount = cgroup_mount,
ddbcc7e8
PM
2082 .kill_sb = cgroup_kill_sb,
2083};
2084
857a2beb 2085/**
913ffdb5 2086 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2087 * @task: target task
857a2beb
TH
2088 * @buf: the buffer to write the path into
2089 * @buflen: the length of the buffer
2090 *
913ffdb5
TH
2091 * Determine @task's cgroup on the first (the one with the lowest non-zero
2092 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2093 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2094 * cgroup controller callbacks.
2095 *
e61734c5 2096 * Return value is the same as kernfs_path().
857a2beb 2097 */
e61734c5 2098char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2099{
3dd06ffa 2100 struct cgroup_root *root;
913ffdb5 2101 struct cgroup *cgrp;
e61734c5
TH
2102 int hierarchy_id = 1;
2103 char *path = NULL;
857a2beb
TH
2104
2105 mutex_lock(&cgroup_mutex);
96d365e0 2106 down_read(&css_set_rwsem);
857a2beb 2107
913ffdb5
TH
2108 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2109
857a2beb
TH
2110 if (root) {
2111 cgrp = task_cgroup_from_root(task, root);
e61734c5 2112 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2113 } else {
2114 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2115 if (strlcpy(buf, "/", buflen) < buflen)
2116 path = buf;
857a2beb
TH
2117 }
2118
96d365e0 2119 up_read(&css_set_rwsem);
857a2beb 2120 mutex_unlock(&cgroup_mutex);
e61734c5 2121 return path;
857a2beb 2122}
913ffdb5 2123EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2124
b3dc094e 2125/* used to track tasks and other necessary states during migration */
2f7ee569 2126struct cgroup_taskset {
b3dc094e
TH
2127 /* the src and dst cset list running through cset->mg_node */
2128 struct list_head src_csets;
2129 struct list_head dst_csets;
2130
2131 /*
2132 * Fields for cgroup_taskset_*() iteration.
2133 *
2134 * Before migration is committed, the target migration tasks are on
2135 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2136 * the csets on ->dst_csets. ->csets point to either ->src_csets
2137 * or ->dst_csets depending on whether migration is committed.
2138 *
2139 * ->cur_csets and ->cur_task point to the current task position
2140 * during iteration.
2141 */
2142 struct list_head *csets;
2143 struct css_set *cur_cset;
2144 struct task_struct *cur_task;
2f7ee569
TH
2145};
2146
adaae5dc
TH
2147#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2148 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2149 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2150 .csets = &tset.src_csets, \
2151}
2152
2153/**
2154 * cgroup_taskset_add - try to add a migration target task to a taskset
2155 * @task: target task
2156 * @tset: target taskset
2157 *
2158 * Add @task, which is a migration target, to @tset. This function becomes
2159 * noop if @task doesn't need to be migrated. @task's css_set should have
2160 * been added as a migration source and @task->cg_list will be moved from
2161 * the css_set's tasks list to mg_tasks one.
2162 */
2163static void cgroup_taskset_add(struct task_struct *task,
2164 struct cgroup_taskset *tset)
2165{
2166 struct css_set *cset;
2167
2168 lockdep_assert_held(&css_set_rwsem);
2169
2170 /* @task either already exited or can't exit until the end */
2171 if (task->flags & PF_EXITING)
2172 return;
2173
2174 /* leave @task alone if post_fork() hasn't linked it yet */
2175 if (list_empty(&task->cg_list))
2176 return;
2177
2178 cset = task_css_set(task);
2179 if (!cset->mg_src_cgrp)
2180 return;
2181
2182 list_move_tail(&task->cg_list, &cset->mg_tasks);
2183 if (list_empty(&cset->mg_node))
2184 list_add_tail(&cset->mg_node, &tset->src_csets);
2185 if (list_empty(&cset->mg_dst_cset->mg_node))
2186 list_move_tail(&cset->mg_dst_cset->mg_node,
2187 &tset->dst_csets);
2188}
2189
2f7ee569
TH
2190/**
2191 * cgroup_taskset_first - reset taskset and return the first task
2192 * @tset: taskset of interest
2193 *
2194 * @tset iteration is initialized and the first task is returned.
2195 */
2196struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2197{
b3dc094e
TH
2198 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2199 tset->cur_task = NULL;
2200
2201 return cgroup_taskset_next(tset);
2f7ee569 2202}
2f7ee569
TH
2203
2204/**
2205 * cgroup_taskset_next - iterate to the next task in taskset
2206 * @tset: taskset of interest
2207 *
2208 * Return the next task in @tset. Iteration must have been initialized
2209 * with cgroup_taskset_first().
2210 */
2211struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2212{
b3dc094e
TH
2213 struct css_set *cset = tset->cur_cset;
2214 struct task_struct *task = tset->cur_task;
2f7ee569 2215
b3dc094e
TH
2216 while (&cset->mg_node != tset->csets) {
2217 if (!task)
2218 task = list_first_entry(&cset->mg_tasks,
2219 struct task_struct, cg_list);
2220 else
2221 task = list_next_entry(task, cg_list);
2f7ee569 2222
b3dc094e
TH
2223 if (&task->cg_list != &cset->mg_tasks) {
2224 tset->cur_cset = cset;
2225 tset->cur_task = task;
2226 return task;
2227 }
2f7ee569 2228
b3dc094e
TH
2229 cset = list_next_entry(cset, mg_node);
2230 task = NULL;
2231 }
2f7ee569 2232
b3dc094e 2233 return NULL;
2f7ee569 2234}
2f7ee569 2235
cb0f1fe9 2236/**
74a1166d 2237 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2238 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2239 * @tsk: the task being migrated
2240 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2241 *
cb0f1fe9 2242 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2243 */
5abb8855
TH
2244static void cgroup_task_migrate(struct cgroup *old_cgrp,
2245 struct task_struct *tsk,
2246 struct css_set *new_cset)
74a1166d 2247{
5abb8855 2248 struct css_set *old_cset;
74a1166d 2249
cb0f1fe9
TH
2250 lockdep_assert_held(&cgroup_mutex);
2251 lockdep_assert_held(&css_set_rwsem);
2252
74a1166d 2253 /*
1ed13287
TH
2254 * We are synchronized through cgroup_threadgroup_rwsem against
2255 * PF_EXITING setting such that we can't race against cgroup_exit()
2256 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2257 */
c84cdf75 2258 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2259 old_cset = task_css_set(tsk);
74a1166d 2260
b3dc094e 2261 get_css_set(new_cset);
5abb8855 2262 rcu_assign_pointer(tsk->cgroups, new_cset);
1b9aba49 2263 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2264
2265 /*
5abb8855
TH
2266 * We just gained a reference on old_cset by taking it from the
2267 * task. As trading it for new_cset is protected by cgroup_mutex,
2268 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2269 */
a25eb52e 2270 put_css_set_locked(old_cset);
74a1166d
BB
2271}
2272
adaae5dc
TH
2273/**
2274 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2275 * @tset: taget taskset
2276 * @dst_cgrp: destination cgroup
2277 *
2278 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2279 * ->can_attach callbacks fails and guarantees that either all or none of
2280 * the tasks in @tset are migrated. @tset is consumed regardless of
2281 * success.
2282 */
2283static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2284 struct cgroup *dst_cgrp)
2285{
2286 struct cgroup_subsys_state *css, *failed_css = NULL;
2287 struct task_struct *task, *tmp_task;
2288 struct css_set *cset, *tmp_cset;
2289 int i, ret;
2290
2291 /* methods shouldn't be called if no task is actually migrating */
2292 if (list_empty(&tset->src_csets))
2293 return 0;
2294
2295 /* check that we can legitimately attach to the cgroup */
2296 for_each_e_css(css, i, dst_cgrp) {
2297 if (css->ss->can_attach) {
2298 ret = css->ss->can_attach(css, tset);
2299 if (ret) {
2300 failed_css = css;
2301 goto out_cancel_attach;
2302 }
2303 }
2304 }
2305
2306 /*
2307 * Now that we're guaranteed success, proceed to move all tasks to
2308 * the new cgroup. There are no failure cases after here, so this
2309 * is the commit point.
2310 */
2311 down_write(&css_set_rwsem);
2312 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2313 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2314 cgroup_task_migrate(cset->mg_src_cgrp, task,
2315 cset->mg_dst_cset);
2316 }
2317 up_write(&css_set_rwsem);
2318
2319 /*
2320 * Migration is committed, all target tasks are now on dst_csets.
2321 * Nothing is sensitive to fork() after this point. Notify
2322 * controllers that migration is complete.
2323 */
2324 tset->csets = &tset->dst_csets;
2325
2326 for_each_e_css(css, i, dst_cgrp)
2327 if (css->ss->attach)
2328 css->ss->attach(css, tset);
2329
2330 ret = 0;
2331 goto out_release_tset;
2332
2333out_cancel_attach:
2334 for_each_e_css(css, i, dst_cgrp) {
2335 if (css == failed_css)
2336 break;
2337 if (css->ss->cancel_attach)
2338 css->ss->cancel_attach(css, tset);
2339 }
2340out_release_tset:
2341 down_write(&css_set_rwsem);
2342 list_splice_init(&tset->dst_csets, &tset->src_csets);
2343 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2344 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2345 list_del_init(&cset->mg_node);
2346 }
2347 up_write(&css_set_rwsem);
2348 return ret;
2349}
2350
a043e3b2 2351/**
1958d2d5
TH
2352 * cgroup_migrate_finish - cleanup after attach
2353 * @preloaded_csets: list of preloaded css_sets
74a1166d 2354 *
1958d2d5
TH
2355 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2356 * those functions for details.
74a1166d 2357 */
1958d2d5 2358static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2359{
1958d2d5 2360 struct css_set *cset, *tmp_cset;
74a1166d 2361
1958d2d5
TH
2362 lockdep_assert_held(&cgroup_mutex);
2363
2364 down_write(&css_set_rwsem);
2365 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2366 cset->mg_src_cgrp = NULL;
2367 cset->mg_dst_cset = NULL;
2368 list_del_init(&cset->mg_preload_node);
a25eb52e 2369 put_css_set_locked(cset);
1958d2d5
TH
2370 }
2371 up_write(&css_set_rwsem);
2372}
2373
2374/**
2375 * cgroup_migrate_add_src - add a migration source css_set
2376 * @src_cset: the source css_set to add
2377 * @dst_cgrp: the destination cgroup
2378 * @preloaded_csets: list of preloaded css_sets
2379 *
2380 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2381 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2382 * up by cgroup_migrate_finish().
2383 *
1ed13287
TH
2384 * This function may be called without holding cgroup_threadgroup_rwsem
2385 * even if the target is a process. Threads may be created and destroyed
2386 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2387 * into play and the preloaded css_sets are guaranteed to cover all
2388 * migrations.
1958d2d5
TH
2389 */
2390static void cgroup_migrate_add_src(struct css_set *src_cset,
2391 struct cgroup *dst_cgrp,
2392 struct list_head *preloaded_csets)
2393{
2394 struct cgroup *src_cgrp;
2395
2396 lockdep_assert_held(&cgroup_mutex);
2397 lockdep_assert_held(&css_set_rwsem);
2398
2399 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2400
1958d2d5
TH
2401 if (!list_empty(&src_cset->mg_preload_node))
2402 return;
2403
2404 WARN_ON(src_cset->mg_src_cgrp);
2405 WARN_ON(!list_empty(&src_cset->mg_tasks));
2406 WARN_ON(!list_empty(&src_cset->mg_node));
2407
2408 src_cset->mg_src_cgrp = src_cgrp;
2409 get_css_set(src_cset);
2410 list_add(&src_cset->mg_preload_node, preloaded_csets);
2411}
2412
2413/**
2414 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2415 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2416 * @preloaded_csets: list of preloaded source css_sets
2417 *
2418 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2419 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2420 * pins all destination css_sets, links each to its source, and append them
2421 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2422 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2423 *
2424 * This function must be called after cgroup_migrate_add_src() has been
2425 * called on each migration source css_set. After migration is performed
2426 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2427 * @preloaded_csets.
2428 */
2429static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2430 struct list_head *preloaded_csets)
2431{
2432 LIST_HEAD(csets);
f817de98 2433 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2434
2435 lockdep_assert_held(&cgroup_mutex);
2436
f8f22e53
TH
2437 /*
2438 * Except for the root, child_subsys_mask must be zero for a cgroup
2439 * with tasks so that child cgroups don't compete against tasks.
2440 */
d51f39b0 2441 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2442 dst_cgrp->child_subsys_mask)
2443 return -EBUSY;
2444
1958d2d5 2445 /* look up the dst cset for each src cset and link it to src */
f817de98 2446 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2447 struct css_set *dst_cset;
2448
f817de98
TH
2449 dst_cset = find_css_set(src_cset,
2450 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2451 if (!dst_cset)
2452 goto err;
2453
2454 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2455
2456 /*
2457 * If src cset equals dst, it's noop. Drop the src.
2458 * cgroup_migrate() will skip the cset too. Note that we
2459 * can't handle src == dst as some nodes are used by both.
2460 */
2461 if (src_cset == dst_cset) {
2462 src_cset->mg_src_cgrp = NULL;
2463 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2464 put_css_set(src_cset);
2465 put_css_set(dst_cset);
f817de98
TH
2466 continue;
2467 }
2468
1958d2d5
TH
2469 src_cset->mg_dst_cset = dst_cset;
2470
2471 if (list_empty(&dst_cset->mg_preload_node))
2472 list_add(&dst_cset->mg_preload_node, &csets);
2473 else
a25eb52e 2474 put_css_set(dst_cset);
1958d2d5
TH
2475 }
2476
f817de98 2477 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2478 return 0;
2479err:
2480 cgroup_migrate_finish(&csets);
2481 return -ENOMEM;
2482}
2483
2484/**
2485 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2486 * @leader: the leader of the process or the task to migrate
2487 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2488 * @cgrp: the destination cgroup
1958d2d5
TH
2489 *
2490 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2491 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2492 * caller is also responsible for invoking cgroup_migrate_add_src() and
2493 * cgroup_migrate_prepare_dst() on the targets before invoking this
2494 * function and following up with cgroup_migrate_finish().
2495 *
2496 * As long as a controller's ->can_attach() doesn't fail, this function is
2497 * guaranteed to succeed. This means that, excluding ->can_attach()
2498 * failure, when migrating multiple targets, the success or failure can be
2499 * decided for all targets by invoking group_migrate_prepare_dst() before
2500 * actually starting migrating.
2501 */
9af2ec45
TH
2502static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2503 struct cgroup *cgrp)
74a1166d 2504{
adaae5dc
TH
2505 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2506 struct task_struct *task;
74a1166d 2507
fb5d2b4c
MSB
2508 /*
2509 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2510 * already PF_EXITING could be freed from underneath us unless we
2511 * take an rcu_read_lock.
2512 */
b3dc094e 2513 down_write(&css_set_rwsem);
fb5d2b4c 2514 rcu_read_lock();
9db8de37 2515 task = leader;
74a1166d 2516 do {
adaae5dc 2517 cgroup_taskset_add(task, &tset);
081aa458
LZ
2518 if (!threadgroup)
2519 break;
9db8de37 2520 } while_each_thread(leader, task);
fb5d2b4c 2521 rcu_read_unlock();
b3dc094e 2522 up_write(&css_set_rwsem);
74a1166d 2523
adaae5dc 2524 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2525}
2526
1958d2d5
TH
2527/**
2528 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2529 * @dst_cgrp: the cgroup to attach to
2530 * @leader: the task or the leader of the threadgroup to be attached
2531 * @threadgroup: attach the whole threadgroup?
2532 *
1ed13287 2533 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2534 */
2535static int cgroup_attach_task(struct cgroup *dst_cgrp,
2536 struct task_struct *leader, bool threadgroup)
2537{
2538 LIST_HEAD(preloaded_csets);
2539 struct task_struct *task;
2540 int ret;
2541
2542 /* look up all src csets */
2543 down_read(&css_set_rwsem);
2544 rcu_read_lock();
2545 task = leader;
2546 do {
2547 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2548 &preloaded_csets);
2549 if (!threadgroup)
2550 break;
2551 } while_each_thread(leader, task);
2552 rcu_read_unlock();
2553 up_read(&css_set_rwsem);
2554
2555 /* prepare dst csets and commit */
2556 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2557 if (!ret)
9af2ec45 2558 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2559
2560 cgroup_migrate_finish(&preloaded_csets);
2561 return ret;
74a1166d
BB
2562}
2563
187fe840
TH
2564static int cgroup_procs_write_permission(struct task_struct *task,
2565 struct cgroup *dst_cgrp,
2566 struct kernfs_open_file *of)
dedf22e9
TH
2567{
2568 const struct cred *cred = current_cred();
2569 const struct cred *tcred = get_task_cred(task);
2570 int ret = 0;
2571
2572 /*
2573 * even if we're attaching all tasks in the thread group, we only
2574 * need to check permissions on one of them.
2575 */
2576 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2577 !uid_eq(cred->euid, tcred->uid) &&
2578 !uid_eq(cred->euid, tcred->suid))
2579 ret = -EACCES;
2580
187fe840
TH
2581 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2582 struct super_block *sb = of->file->f_path.dentry->d_sb;
2583 struct cgroup *cgrp;
2584 struct inode *inode;
2585
2586 down_read(&css_set_rwsem);
2587 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2588 up_read(&css_set_rwsem);
2589
2590 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2591 cgrp = cgroup_parent(cgrp);
2592
2593 ret = -ENOMEM;
6f60eade 2594 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2595 if (inode) {
2596 ret = inode_permission(inode, MAY_WRITE);
2597 iput(inode);
2598 }
2599 }
2600
dedf22e9
TH
2601 put_cred(tcred);
2602 return ret;
2603}
2604
74a1166d
BB
2605/*
2606 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2607 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2608 * cgroup_mutex and threadgroup.
bbcb81d0 2609 */
acbef755
TH
2610static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2611 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2612{
bbcb81d0 2613 struct task_struct *tsk;
e76ecaee 2614 struct cgroup *cgrp;
acbef755 2615 pid_t pid;
bbcb81d0
PM
2616 int ret;
2617
acbef755
TH
2618 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2619 return -EINVAL;
2620
e76ecaee
TH
2621 cgrp = cgroup_kn_lock_live(of->kn);
2622 if (!cgrp)
74a1166d
BB
2623 return -ENODEV;
2624
3014dde7 2625 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2626 rcu_read_lock();
bbcb81d0 2627 if (pid) {
73507f33 2628 tsk = find_task_by_vpid(pid);
74a1166d 2629 if (!tsk) {
dd4b0a46 2630 ret = -ESRCH;
3014dde7 2631 goto out_unlock_rcu;
bbcb81d0 2632 }
dedf22e9 2633 } else {
b78949eb 2634 tsk = current;
dedf22e9 2635 }
cd3d0952
TH
2636
2637 if (threadgroup)
b78949eb 2638 tsk = tsk->group_leader;
c4c27fbd
MG
2639
2640 /*
14a40ffc 2641 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2642 * trapped in a cpuset, or RT worker may be born in a cgroup
2643 * with no rt_runtime allocated. Just say no.
2644 */
14a40ffc 2645 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2646 ret = -EINVAL;
3014dde7 2647 goto out_unlock_rcu;
c4c27fbd
MG
2648 }
2649
b78949eb
MSB
2650 get_task_struct(tsk);
2651 rcu_read_unlock();
2652
187fe840 2653 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2654 if (!ret)
2655 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2656
f9f9e7b7 2657 put_task_struct(tsk);
3014dde7
TH
2658 goto out_unlock_threadgroup;
2659
2660out_unlock_rcu:
2661 rcu_read_unlock();
2662out_unlock_threadgroup:
2663 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2664 cgroup_kn_unlock(of->kn);
acbef755 2665 return ret ?: nbytes;
bbcb81d0
PM
2666}
2667
7ae1bad9
TH
2668/**
2669 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2670 * @from: attach to all cgroups of a given task
2671 * @tsk: the task to be attached
2672 */
2673int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2674{
3dd06ffa 2675 struct cgroup_root *root;
7ae1bad9
TH
2676 int retval = 0;
2677
47cfcd09 2678 mutex_lock(&cgroup_mutex);
985ed670 2679 for_each_root(root) {
96d365e0
TH
2680 struct cgroup *from_cgrp;
2681
3dd06ffa 2682 if (root == &cgrp_dfl_root)
985ed670
TH
2683 continue;
2684
96d365e0
TH
2685 down_read(&css_set_rwsem);
2686 from_cgrp = task_cgroup_from_root(from, root);
2687 up_read(&css_set_rwsem);
7ae1bad9 2688
6f4b7e63 2689 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2690 if (retval)
2691 break;
2692 }
47cfcd09 2693 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2694
2695 return retval;
2696}
2697EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2698
acbef755
TH
2699static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2700 char *buf, size_t nbytes, loff_t off)
74a1166d 2701{
acbef755 2702 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2703}
2704
acbef755
TH
2705static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2706 char *buf, size_t nbytes, loff_t off)
af351026 2707{
acbef755 2708 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2709}
2710
451af504
TH
2711static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2712 char *buf, size_t nbytes, loff_t off)
e788e066 2713{
e76ecaee 2714 struct cgroup *cgrp;
5f469907 2715
e76ecaee 2716 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2717
e76ecaee
TH
2718 cgrp = cgroup_kn_lock_live(of->kn);
2719 if (!cgrp)
e788e066 2720 return -ENODEV;
69e943b7 2721 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2722 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2723 sizeof(cgrp->root->release_agent_path));
69e943b7 2724 spin_unlock(&release_agent_path_lock);
e76ecaee 2725 cgroup_kn_unlock(of->kn);
451af504 2726 return nbytes;
e788e066
PM
2727}
2728
2da8ca82 2729static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2730{
2da8ca82 2731 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2732
46cfeb04 2733 spin_lock(&release_agent_path_lock);
e788e066 2734 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2735 spin_unlock(&release_agent_path_lock);
e788e066 2736 seq_putc(seq, '\n');
e788e066
PM
2737 return 0;
2738}
2739
2da8ca82 2740static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2741{
c1d5d42e 2742 seq_puts(seq, "0\n");
e788e066
PM
2743 return 0;
2744}
2745
8ab456ac 2746static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2747{
f8f22e53
TH
2748 struct cgroup_subsys *ss;
2749 bool printed = false;
2750 int ssid;
a742c59d 2751
a966a4ed
AS
2752 for_each_subsys_which(ss, ssid, &ss_mask) {
2753 if (printed)
2754 seq_putc(seq, ' ');
2755 seq_printf(seq, "%s", ss->name);
2756 printed = true;
e73d2c61 2757 }
f8f22e53
TH
2758 if (printed)
2759 seq_putc(seq, '\n');
355e0c48
PM
2760}
2761
f8f22e53
TH
2762/* show controllers which are currently attached to the default hierarchy */
2763static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2764{
f8f22e53
TH
2765 struct cgroup *cgrp = seq_css(seq)->cgroup;
2766
5533e011
TH
2767 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2768 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2769 return 0;
db3b1497
PM
2770}
2771
f8f22e53
TH
2772/* show controllers which are enabled from the parent */
2773static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2774{
f8f22e53
TH
2775 struct cgroup *cgrp = seq_css(seq)->cgroup;
2776
667c2491 2777 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2778 return 0;
ddbcc7e8
PM
2779}
2780
f8f22e53
TH
2781/* show controllers which are enabled for a given cgroup's children */
2782static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2783{
f8f22e53
TH
2784 struct cgroup *cgrp = seq_css(seq)->cgroup;
2785
667c2491 2786 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2787 return 0;
2788}
2789
2790/**
2791 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2792 * @cgrp: root of the subtree to update csses for
2793 *
2794 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2795 * css associations need to be updated accordingly. This function looks up
2796 * all css_sets which are attached to the subtree, creates the matching
2797 * updated css_sets and migrates the tasks to the new ones.
2798 */
2799static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2800{
2801 LIST_HEAD(preloaded_csets);
2802 struct cgroup_subsys_state *css;
2803 struct css_set *src_cset;
2804 int ret;
2805
f8f22e53
TH
2806 lockdep_assert_held(&cgroup_mutex);
2807
3014dde7
TH
2808 percpu_down_write(&cgroup_threadgroup_rwsem);
2809
f8f22e53
TH
2810 /* look up all csses currently attached to @cgrp's subtree */
2811 down_read(&css_set_rwsem);
2812 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2813 struct cgrp_cset_link *link;
2814
2815 /* self is not affected by child_subsys_mask change */
2816 if (css->cgroup == cgrp)
2817 continue;
2818
2819 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2820 cgroup_migrate_add_src(link->cset, cgrp,
2821 &preloaded_csets);
2822 }
2823 up_read(&css_set_rwsem);
2824
2825 /* NULL dst indicates self on default hierarchy */
2826 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2827 if (ret)
2828 goto out_finish;
2829
2830 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2831 struct task_struct *last_task = NULL, *task;
2832
2833 /* src_csets precede dst_csets, break on the first dst_cset */
2834 if (!src_cset->mg_src_cgrp)
2835 break;
2836
2837 /*
2838 * All tasks in src_cset need to be migrated to the
2839 * matching dst_cset. Empty it process by process. We
2840 * walk tasks but migrate processes. The leader might even
2841 * belong to a different cset but such src_cset would also
2842 * be among the target src_csets because the default
2843 * hierarchy enforces per-process membership.
2844 */
2845 while (true) {
2846 down_read(&css_set_rwsem);
2847 task = list_first_entry_or_null(&src_cset->tasks,
2848 struct task_struct, cg_list);
2849 if (task) {
2850 task = task->group_leader;
2851 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2852 get_task_struct(task);
2853 }
2854 up_read(&css_set_rwsem);
2855
2856 if (!task)
2857 break;
2858
2859 /* guard against possible infinite loop */
2860 if (WARN(last_task == task,
2861 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2862 goto out_finish;
2863 last_task = task;
2864
9af2ec45 2865 ret = cgroup_migrate(task, true, src_cset->dfl_cgrp);
f8f22e53 2866
f8f22e53
TH
2867 put_task_struct(task);
2868
2869 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2870 goto out_finish;
2871 }
2872 }
2873
2874out_finish:
2875 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2876 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2877 return ret;
2878}
2879
2880/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2881static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2882 char *buf, size_t nbytes,
2883 loff_t off)
f8f22e53 2884{
8ab456ac
AS
2885 unsigned long enable = 0, disable = 0;
2886 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2887 struct cgroup *cgrp, *child;
f8f22e53 2888 struct cgroup_subsys *ss;
451af504 2889 char *tok;
f8f22e53
TH
2890 int ssid, ret;
2891
2892 /*
d37167ab
TH
2893 * Parse input - space separated list of subsystem names prefixed
2894 * with either + or -.
f8f22e53 2895 */
451af504
TH
2896 buf = strstrip(buf);
2897 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2898 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2899
d37167ab
TH
2900 if (tok[0] == '\0')
2901 continue;
a966a4ed 2902 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2903 if (!cgroup_ssid_enabled(ssid) ||
2904 strcmp(tok + 1, ss->name))
f8f22e53
TH
2905 continue;
2906
2907 if (*tok == '+') {
7d331fa9
TH
2908 enable |= 1 << ssid;
2909 disable &= ~(1 << ssid);
f8f22e53 2910 } else if (*tok == '-') {
7d331fa9
TH
2911 disable |= 1 << ssid;
2912 enable &= ~(1 << ssid);
f8f22e53
TH
2913 } else {
2914 return -EINVAL;
2915 }
2916 break;
2917 }
2918 if (ssid == CGROUP_SUBSYS_COUNT)
2919 return -EINVAL;
2920 }
2921
a9746d8d
TH
2922 cgrp = cgroup_kn_lock_live(of->kn);
2923 if (!cgrp)
2924 return -ENODEV;
f8f22e53
TH
2925
2926 for_each_subsys(ss, ssid) {
2927 if (enable & (1 << ssid)) {
667c2491 2928 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2929 enable &= ~(1 << ssid);
2930 continue;
2931 }
2932
c29adf24
TH
2933 /* unavailable or not enabled on the parent? */
2934 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2935 (cgroup_parent(cgrp) &&
667c2491 2936 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2937 ret = -ENOENT;
2938 goto out_unlock;
2939 }
f8f22e53 2940 } else if (disable & (1 << ssid)) {
667c2491 2941 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2942 disable &= ~(1 << ssid);
2943 continue;
2944 }
2945
2946 /* a child has it enabled? */
2947 cgroup_for_each_live_child(child, cgrp) {
667c2491 2948 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2949 ret = -EBUSY;
ddab2b6e 2950 goto out_unlock;
f8f22e53
TH
2951 }
2952 }
2953 }
2954 }
2955
2956 if (!enable && !disable) {
2957 ret = 0;
ddab2b6e 2958 goto out_unlock;
f8f22e53
TH
2959 }
2960
2961 /*
667c2491 2962 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2963 * with tasks so that child cgroups don't compete against tasks.
2964 */
d51f39b0 2965 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2966 ret = -EBUSY;
2967 goto out_unlock;
2968 }
2969
2970 /*
f63070d3
TH
2971 * Update subsys masks and calculate what needs to be done. More
2972 * subsystems than specified may need to be enabled or disabled
2973 * depending on subsystem dependencies.
2974 */
755bf5ee
TH
2975 old_sc = cgrp->subtree_control;
2976 old_ss = cgrp->child_subsys_mask;
2977 new_sc = (old_sc | enable) & ~disable;
2978 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2979
755bf5ee
TH
2980 css_enable = ~old_ss & new_ss;
2981 css_disable = old_ss & ~new_ss;
f63070d3
TH
2982 enable |= css_enable;
2983 disable |= css_disable;
c29adf24 2984
db6e3053
TH
2985 /*
2986 * Because css offlining is asynchronous, userland might try to
2987 * re-enable the same controller while the previous instance is
2988 * still around. In such cases, wait till it's gone using
2989 * offline_waitq.
2990 */
a966a4ed 2991 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2992 cgroup_for_each_live_child(child, cgrp) {
2993 DEFINE_WAIT(wait);
2994
2995 if (!cgroup_css(child, ss))
2996 continue;
2997
2998 cgroup_get(child);
2999 prepare_to_wait(&child->offline_waitq, &wait,
3000 TASK_UNINTERRUPTIBLE);
3001 cgroup_kn_unlock(of->kn);
3002 schedule();
3003 finish_wait(&child->offline_waitq, &wait);
3004 cgroup_put(child);
3005
3006 return restart_syscall();
3007 }
3008 }
3009
755bf5ee
TH
3010 cgrp->subtree_control = new_sc;
3011 cgrp->child_subsys_mask = new_ss;
3012
f63070d3
TH
3013 /*
3014 * Create new csses or make the existing ones visible. A css is
3015 * created invisible if it's being implicitly enabled through
3016 * dependency. An invisible css is made visible when the userland
3017 * explicitly enables it.
f8f22e53
TH
3018 */
3019 for_each_subsys(ss, ssid) {
3020 if (!(enable & (1 << ssid)))
3021 continue;
3022
3023 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3024 if (css_enable & (1 << ssid))
3025 ret = create_css(child, ss,
3026 cgrp->subtree_control & (1 << ssid));
3027 else
4df8dc90
TH
3028 ret = css_populate_dir(cgroup_css(child, ss),
3029 NULL);
f8f22e53
TH
3030 if (ret)
3031 goto err_undo_css;
3032 }
3033 }
3034
c29adf24
TH
3035 /*
3036 * At this point, cgroup_e_css() results reflect the new csses
3037 * making the following cgroup_update_dfl_csses() properly update
3038 * css associations of all tasks in the subtree.
3039 */
f8f22e53
TH
3040 ret = cgroup_update_dfl_csses(cgrp);
3041 if (ret)
3042 goto err_undo_css;
3043
f63070d3
TH
3044 /*
3045 * All tasks are migrated out of disabled csses. Kill or hide
3046 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3047 * disabled while other subsystems are still depending on it. The
3048 * css must not actively control resources and be in the vanilla
3049 * state if it's made visible again later. Controllers which may
3050 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3051 */
f8f22e53
TH
3052 for_each_subsys(ss, ssid) {
3053 if (!(disable & (1 << ssid)))
3054 continue;
3055
f63070d3 3056 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3057 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3058
3059 if (css_disable & (1 << ssid)) {
3060 kill_css(css);
3061 } else {
4df8dc90 3062 css_clear_dir(css, NULL);
b4536f0c
TH
3063 if (ss->css_reset)
3064 ss->css_reset(css);
3065 }
f63070d3 3066 }
f8f22e53
TH
3067 }
3068
56c807ba
TH
3069 /*
3070 * The effective csses of all the descendants (excluding @cgrp) may
3071 * have changed. Subsystems can optionally subscribe to this event
3072 * by implementing ->css_e_css_changed() which is invoked if any of
3073 * the effective csses seen from the css's cgroup may have changed.
3074 */
3075 for_each_subsys(ss, ssid) {
3076 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3077 struct cgroup_subsys_state *css;
3078
3079 if (!ss->css_e_css_changed || !this_css)
3080 continue;
3081
3082 css_for_each_descendant_pre(css, this_css)
3083 if (css != this_css)
3084 ss->css_e_css_changed(css);
3085 }
3086
f8f22e53
TH
3087 kernfs_activate(cgrp->kn);
3088 ret = 0;
3089out_unlock:
a9746d8d 3090 cgroup_kn_unlock(of->kn);
451af504 3091 return ret ?: nbytes;
f8f22e53
TH
3092
3093err_undo_css:
755bf5ee
TH
3094 cgrp->subtree_control = old_sc;
3095 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3096
3097 for_each_subsys(ss, ssid) {
3098 if (!(enable & (1 << ssid)))
3099 continue;
3100
3101 cgroup_for_each_live_child(child, cgrp) {
3102 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3103
3104 if (!css)
3105 continue;
3106
3107 if (css_enable & (1 << ssid))
f8f22e53 3108 kill_css(css);
f63070d3 3109 else
4df8dc90 3110 css_clear_dir(css, NULL);
f8f22e53
TH
3111 }
3112 }
3113 goto out_unlock;
3114}
3115
4a07c222 3116static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3117{
4a07c222
TH
3118 seq_printf(seq, "populated %d\n",
3119 (bool)seq_css(seq)->cgroup->populated_cnt);
842b597e
TH
3120 return 0;
3121}
3122
2bd59d48
TH
3123static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3124 size_t nbytes, loff_t off)
355e0c48 3125{
2bd59d48
TH
3126 struct cgroup *cgrp = of->kn->parent->priv;
3127 struct cftype *cft = of->kn->priv;
3128 struct cgroup_subsys_state *css;
a742c59d 3129 int ret;
355e0c48 3130
b4168640
TH
3131 if (cft->write)
3132 return cft->write(of, buf, nbytes, off);
3133
2bd59d48
TH
3134 /*
3135 * kernfs guarantees that a file isn't deleted with operations in
3136 * flight, which means that the matching css is and stays alive and
3137 * doesn't need to be pinned. The RCU locking is not necessary
3138 * either. It's just for the convenience of using cgroup_css().
3139 */
3140 rcu_read_lock();
3141 css = cgroup_css(cgrp, cft->ss);
3142 rcu_read_unlock();
a742c59d 3143
451af504 3144 if (cft->write_u64) {
a742c59d
TH
3145 unsigned long long v;
3146 ret = kstrtoull(buf, 0, &v);
3147 if (!ret)
3148 ret = cft->write_u64(css, cft, v);
3149 } else if (cft->write_s64) {
3150 long long v;
3151 ret = kstrtoll(buf, 0, &v);
3152 if (!ret)
3153 ret = cft->write_s64(css, cft, v);
e73d2c61 3154 } else {
a742c59d 3155 ret = -EINVAL;
e73d2c61 3156 }
2bd59d48 3157
a742c59d 3158 return ret ?: nbytes;
355e0c48
PM
3159}
3160
6612f05b 3161static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3162{
2bd59d48 3163 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3164}
3165
6612f05b 3166static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3167{
2bd59d48 3168 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3169}
3170
6612f05b 3171static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3172{
2bd59d48 3173 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3174}
3175
91796569 3176static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3177{
7da11279
TH
3178 struct cftype *cft = seq_cft(m);
3179 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3180
2da8ca82
TH
3181 if (cft->seq_show)
3182 return cft->seq_show(m, arg);
e73d2c61 3183
f4c753b7 3184 if (cft->read_u64)
896f5199
TH
3185 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3186 else if (cft->read_s64)
3187 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3188 else
3189 return -EINVAL;
3190 return 0;
91796569
PM
3191}
3192
2bd59d48
TH
3193static struct kernfs_ops cgroup_kf_single_ops = {
3194 .atomic_write_len = PAGE_SIZE,
3195 .write = cgroup_file_write,
3196 .seq_show = cgroup_seqfile_show,
91796569
PM
3197};
3198
2bd59d48
TH
3199static struct kernfs_ops cgroup_kf_ops = {
3200 .atomic_write_len = PAGE_SIZE,
3201 .write = cgroup_file_write,
3202 .seq_start = cgroup_seqfile_start,
3203 .seq_next = cgroup_seqfile_next,
3204 .seq_stop = cgroup_seqfile_stop,
3205 .seq_show = cgroup_seqfile_show,
3206};
ddbcc7e8
PM
3207
3208/*
3209 * cgroup_rename - Only allow simple rename of directories in place.
3210 */
2bd59d48
TH
3211static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3212 const char *new_name_str)
ddbcc7e8 3213{
2bd59d48 3214 struct cgroup *cgrp = kn->priv;
65dff759 3215 int ret;
65dff759 3216
2bd59d48 3217 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3218 return -ENOTDIR;
2bd59d48 3219 if (kn->parent != new_parent)
ddbcc7e8 3220 return -EIO;
65dff759 3221
6db8e85c
TH
3222 /*
3223 * This isn't a proper migration and its usefulness is very
aa6ec29b 3224 * limited. Disallow on the default hierarchy.
6db8e85c 3225 */
aa6ec29b 3226 if (cgroup_on_dfl(cgrp))
6db8e85c 3227 return -EPERM;
099fca32 3228
e1b2dc17 3229 /*
8353da1f 3230 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3231 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3232 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3233 */
3234 kernfs_break_active_protection(new_parent);
3235 kernfs_break_active_protection(kn);
099fca32 3236
2bd59d48 3237 mutex_lock(&cgroup_mutex);
099fca32 3238
2bd59d48 3239 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3240
2bd59d48 3241 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3242
3243 kernfs_unbreak_active_protection(kn);
3244 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3245 return ret;
099fca32
LZ
3246}
3247
49957f8e
TH
3248/* set uid and gid of cgroup dirs and files to that of the creator */
3249static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3250{
3251 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3252 .ia_uid = current_fsuid(),
3253 .ia_gid = current_fsgid(), };
3254
3255 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3256 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3257 return 0;
3258
3259 return kernfs_setattr(kn, &iattr);
3260}
3261
4df8dc90
TH
3262static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3263 struct cftype *cft)
ddbcc7e8 3264{
8d7e6fb0 3265 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3266 struct kernfs_node *kn;
3267 struct lock_class_key *key = NULL;
49957f8e 3268 int ret;
05ef1d7c 3269
2bd59d48
TH
3270#ifdef CONFIG_DEBUG_LOCK_ALLOC
3271 key = &cft->lockdep_key;
3272#endif
3273 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3274 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3275 NULL, key);
49957f8e
TH
3276 if (IS_ERR(kn))
3277 return PTR_ERR(kn);
3278
3279 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3280 if (ret) {
49957f8e 3281 kernfs_remove(kn);
f8f22e53
TH
3282 return ret;
3283 }
3284
6f60eade
TH
3285 if (cft->file_offset) {
3286 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3287
3288 kernfs_get(kn);
3289 cfile->kn = kn;
3290 list_add(&cfile->node, &css->files);
3291 }
3292
f8f22e53 3293 return 0;
ddbcc7e8
PM
3294}
3295
b1f28d31
TH
3296/**
3297 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3298 * @css: the target css
3299 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3300 * @cfts: array of cftypes to be added
3301 * @is_add: whether to add or remove
3302 *
3303 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3304 * For removals, this function never fails.
b1f28d31 3305 */
4df8dc90
TH
3306static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3307 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3308 bool is_add)
ddbcc7e8 3309{
6732ed85 3310 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3311 int ret;
3312
01f6474c 3313 lockdep_assert_held(&cgroup_mutex);
db0416b6 3314
6732ed85
TH
3315restart:
3316 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3317 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3318 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3319 continue;
05ebb6e6 3320 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3321 continue;
d51f39b0 3322 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3323 continue;
d51f39b0 3324 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3325 continue;
3326
2739d3cc 3327 if (is_add) {
4df8dc90 3328 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3329 if (ret) {
ed3d261b
JP
3330 pr_warn("%s: failed to add %s, err=%d\n",
3331 __func__, cft->name, ret);
6732ed85
TH
3332 cft_end = cft;
3333 is_add = false;
3334 goto restart;
b1f28d31 3335 }
2739d3cc
LZ
3336 } else {
3337 cgroup_rm_file(cgrp, cft);
db0416b6 3338 }
ddbcc7e8 3339 }
b1f28d31 3340 return 0;
ddbcc7e8
PM
3341}
3342
21a2d343 3343static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3344{
3345 LIST_HEAD(pending);
2bb566cb 3346 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3347 struct cgroup *root = &ss->root->cgrp;
492eb21b 3348 struct cgroup_subsys_state *css;
9ccece80 3349 int ret = 0;
8e3f6541 3350
01f6474c 3351 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3352
e8c82d20 3353 /* add/rm files for all cgroups created before */
ca8bdcaf 3354 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3355 struct cgroup *cgrp = css->cgroup;
3356
e8c82d20
LZ
3357 if (cgroup_is_dead(cgrp))
3358 continue;
3359
4df8dc90 3360 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3361 if (ret)
3362 break;
8e3f6541 3363 }
21a2d343
TH
3364
3365 if (is_add && !ret)
3366 kernfs_activate(root->kn);
9ccece80 3367 return ret;
8e3f6541
TH
3368}
3369
2da440a2 3370static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3371{
2bb566cb 3372 struct cftype *cft;
8e3f6541 3373
2bd59d48
TH
3374 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3375 /* free copy for custom atomic_write_len, see init_cftypes() */
3376 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3377 kfree(cft->kf_ops);
3378 cft->kf_ops = NULL;
2da440a2 3379 cft->ss = NULL;
a8ddc821
TH
3380
3381 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3382 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3383 }
2da440a2
TH
3384}
3385
2bd59d48 3386static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3387{
3388 struct cftype *cft;
3389
2bd59d48
TH
3390 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3391 struct kernfs_ops *kf_ops;
3392
0adb0704
TH
3393 WARN_ON(cft->ss || cft->kf_ops);
3394
2bd59d48
TH
3395 if (cft->seq_start)
3396 kf_ops = &cgroup_kf_ops;
3397 else
3398 kf_ops = &cgroup_kf_single_ops;
3399
3400 /*
3401 * Ugh... if @cft wants a custom max_write_len, we need to
3402 * make a copy of kf_ops to set its atomic_write_len.
3403 */
3404 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3405 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3406 if (!kf_ops) {
3407 cgroup_exit_cftypes(cfts);
3408 return -ENOMEM;
3409 }
3410 kf_ops->atomic_write_len = cft->max_write_len;
3411 }
8e3f6541 3412
2bd59d48 3413 cft->kf_ops = kf_ops;
2bb566cb 3414 cft->ss = ss;
2bd59d48 3415 }
2bb566cb 3416
2bd59d48 3417 return 0;
2da440a2
TH
3418}
3419
21a2d343
TH
3420static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3421{
01f6474c 3422 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3423
3424 if (!cfts || !cfts[0].ss)
3425 return -ENOENT;
3426
3427 list_del(&cfts->node);
3428 cgroup_apply_cftypes(cfts, false);
3429 cgroup_exit_cftypes(cfts);
3430 return 0;
8e3f6541 3431}
8e3f6541 3432
79578621
TH
3433/**
3434 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3435 * @cfts: zero-length name terminated array of cftypes
3436 *
2bb566cb
TH
3437 * Unregister @cfts. Files described by @cfts are removed from all
3438 * existing cgroups and all future cgroups won't have them either. This
3439 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3440 *
3441 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3442 * registered.
79578621 3443 */
2bb566cb 3444int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3445{
21a2d343 3446 int ret;
79578621 3447
01f6474c 3448 mutex_lock(&cgroup_mutex);
21a2d343 3449 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3450 mutex_unlock(&cgroup_mutex);
21a2d343 3451 return ret;
80b13586
TH
3452}
3453
8e3f6541
TH
3454/**
3455 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3456 * @ss: target cgroup subsystem
3457 * @cfts: zero-length name terminated array of cftypes
3458 *
3459 * Register @cfts to @ss. Files described by @cfts are created for all
3460 * existing cgroups to which @ss is attached and all future cgroups will
3461 * have them too. This function can be called anytime whether @ss is
3462 * attached or not.
3463 *
3464 * Returns 0 on successful registration, -errno on failure. Note that this
3465 * function currently returns 0 as long as @cfts registration is successful
3466 * even if some file creation attempts on existing cgroups fail.
3467 */
2cf669a5 3468static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3469{
9ccece80 3470 int ret;
8e3f6541 3471
fc5ed1e9 3472 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3473 return 0;
3474
dc5736ed
LZ
3475 if (!cfts || cfts[0].name[0] == '\0')
3476 return 0;
2bb566cb 3477
2bd59d48
TH
3478 ret = cgroup_init_cftypes(ss, cfts);
3479 if (ret)
3480 return ret;
79578621 3481
01f6474c 3482 mutex_lock(&cgroup_mutex);
21a2d343 3483
0adb0704 3484 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3485 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3486 if (ret)
21a2d343 3487 cgroup_rm_cftypes_locked(cfts);
79578621 3488
01f6474c 3489 mutex_unlock(&cgroup_mutex);
9ccece80 3490 return ret;
79578621
TH
3491}
3492
a8ddc821
TH
3493/**
3494 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3495 * @ss: target cgroup subsystem
3496 * @cfts: zero-length name terminated array of cftypes
3497 *
3498 * Similar to cgroup_add_cftypes() but the added files are only used for
3499 * the default hierarchy.
3500 */
3501int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3502{
3503 struct cftype *cft;
3504
3505 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3506 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3507 return cgroup_add_cftypes(ss, cfts);
3508}
3509
3510/**
3511 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3512 * @ss: target cgroup subsystem
3513 * @cfts: zero-length name terminated array of cftypes
3514 *
3515 * Similar to cgroup_add_cftypes() but the added files are only used for
3516 * the legacy hierarchies.
3517 */
2cf669a5
TH
3518int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3519{
a8ddc821
TH
3520 struct cftype *cft;
3521
fa8137be
VG
3522 /*
3523 * If legacy_flies_on_dfl, we want to show the legacy files on the
3524 * dfl hierarchy but iff the target subsystem hasn't been updated
3525 * for the dfl hierarchy yet.
3526 */
3527 if (!cgroup_legacy_files_on_dfl ||
3528 ss->dfl_cftypes != ss->legacy_cftypes) {
3529 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3530 cft->flags |= __CFTYPE_NOT_ON_DFL;
3531 }
3532
2cf669a5
TH
3533 return cgroup_add_cftypes(ss, cfts);
3534}
3535
a043e3b2
LZ
3536/**
3537 * cgroup_task_count - count the number of tasks in a cgroup.
3538 * @cgrp: the cgroup in question
3539 *
3540 * Return the number of tasks in the cgroup.
3541 */
07bc356e 3542static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3543{
3544 int count = 0;
69d0206c 3545 struct cgrp_cset_link *link;
817929ec 3546
96d365e0 3547 down_read(&css_set_rwsem);
69d0206c
TH
3548 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3549 count += atomic_read(&link->cset->refcount);
96d365e0 3550 up_read(&css_set_rwsem);
bbcb81d0
PM
3551 return count;
3552}
3553
53fa5261 3554/**
492eb21b 3555 * css_next_child - find the next child of a given css
c2931b70
TH
3556 * @pos: the current position (%NULL to initiate traversal)
3557 * @parent: css whose children to walk
53fa5261 3558 *
c2931b70 3559 * This function returns the next child of @parent and should be called
87fb54f1 3560 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3561 * that @parent and @pos are accessible. The next sibling is guaranteed to
3562 * be returned regardless of their states.
3563 *
3564 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3565 * css which finished ->css_online() is guaranteed to be visible in the
3566 * future iterations and will stay visible until the last reference is put.
3567 * A css which hasn't finished ->css_online() or already finished
3568 * ->css_offline() may show up during traversal. It's each subsystem's
3569 * responsibility to synchronize against on/offlining.
53fa5261 3570 */
c2931b70
TH
3571struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3572 struct cgroup_subsys_state *parent)
53fa5261 3573{
c2931b70 3574 struct cgroup_subsys_state *next;
53fa5261 3575
8353da1f 3576 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3577
3578 /*
de3f0341
TH
3579 * @pos could already have been unlinked from the sibling list.
3580 * Once a cgroup is removed, its ->sibling.next is no longer
3581 * updated when its next sibling changes. CSS_RELEASED is set when
3582 * @pos is taken off list, at which time its next pointer is valid,
3583 * and, as releases are serialized, the one pointed to by the next
3584 * pointer is guaranteed to not have started release yet. This
3585 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3586 * critical section, the one pointed to by its next pointer is
3587 * guaranteed to not have finished its RCU grace period even if we
3588 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3589 *
de3f0341
TH
3590 * If @pos has CSS_RELEASED set, its next pointer can't be
3591 * dereferenced; however, as each css is given a monotonically
3592 * increasing unique serial number and always appended to the
3593 * sibling list, the next one can be found by walking the parent's
3594 * children until the first css with higher serial number than
3595 * @pos's. While this path can be slower, it happens iff iteration
3596 * races against release and the race window is very small.
53fa5261 3597 */
3b287a50 3598 if (!pos) {
c2931b70
TH
3599 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3600 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3601 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3602 } else {
c2931b70 3603 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3604 if (next->serial_nr > pos->serial_nr)
3605 break;
53fa5261
TH
3606 }
3607
3b281afb
TH
3608 /*
3609 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3610 * the next sibling.
3b281afb 3611 */
c2931b70
TH
3612 if (&next->sibling != &parent->children)
3613 return next;
3b281afb 3614 return NULL;
53fa5261 3615}
53fa5261 3616
574bd9f7 3617/**
492eb21b 3618 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3619 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3620 * @root: css whose descendants to walk
574bd9f7 3621 *
492eb21b 3622 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3623 * to visit for pre-order traversal of @root's descendants. @root is
3624 * included in the iteration and the first node to be visited.
75501a6d 3625 *
87fb54f1
TH
3626 * While this function requires cgroup_mutex or RCU read locking, it
3627 * doesn't require the whole traversal to be contained in a single critical
3628 * section. This function will return the correct next descendant as long
3629 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3630 *
3631 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3632 * css which finished ->css_online() is guaranteed to be visible in the
3633 * future iterations and will stay visible until the last reference is put.
3634 * A css which hasn't finished ->css_online() or already finished
3635 * ->css_offline() may show up during traversal. It's each subsystem's
3636 * responsibility to synchronize against on/offlining.
574bd9f7 3637 */
492eb21b
TH
3638struct cgroup_subsys_state *
3639css_next_descendant_pre(struct cgroup_subsys_state *pos,
3640 struct cgroup_subsys_state *root)
574bd9f7 3641{
492eb21b 3642 struct cgroup_subsys_state *next;
574bd9f7 3643
8353da1f 3644 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3645
bd8815a6 3646 /* if first iteration, visit @root */
7805d000 3647 if (!pos)
bd8815a6 3648 return root;
574bd9f7
TH
3649
3650 /* visit the first child if exists */
492eb21b 3651 next = css_next_child(NULL, pos);
574bd9f7
TH
3652 if (next)
3653 return next;
3654
3655 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3656 while (pos != root) {
5c9d535b 3657 next = css_next_child(pos, pos->parent);
75501a6d 3658 if (next)
574bd9f7 3659 return next;
5c9d535b 3660 pos = pos->parent;
7805d000 3661 }
574bd9f7
TH
3662
3663 return NULL;
3664}
574bd9f7 3665
12a9d2fe 3666/**
492eb21b
TH
3667 * css_rightmost_descendant - return the rightmost descendant of a css
3668 * @pos: css of interest
12a9d2fe 3669 *
492eb21b
TH
3670 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3671 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3672 * subtree of @pos.
75501a6d 3673 *
87fb54f1
TH
3674 * While this function requires cgroup_mutex or RCU read locking, it
3675 * doesn't require the whole traversal to be contained in a single critical
3676 * section. This function will return the correct rightmost descendant as
3677 * long as @pos is accessible.
12a9d2fe 3678 */
492eb21b
TH
3679struct cgroup_subsys_state *
3680css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3681{
492eb21b 3682 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3683
8353da1f 3684 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3685
3686 do {
3687 last = pos;
3688 /* ->prev isn't RCU safe, walk ->next till the end */
3689 pos = NULL;
492eb21b 3690 css_for_each_child(tmp, last)
12a9d2fe
TH
3691 pos = tmp;
3692 } while (pos);
3693
3694 return last;
3695}
12a9d2fe 3696
492eb21b
TH
3697static struct cgroup_subsys_state *
3698css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3699{
492eb21b 3700 struct cgroup_subsys_state *last;
574bd9f7
TH
3701
3702 do {
3703 last = pos;
492eb21b 3704 pos = css_next_child(NULL, pos);
574bd9f7
TH
3705 } while (pos);
3706
3707 return last;
3708}
3709
3710/**
492eb21b 3711 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3712 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3713 * @root: css whose descendants to walk
574bd9f7 3714 *
492eb21b 3715 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3716 * to visit for post-order traversal of @root's descendants. @root is
3717 * included in the iteration and the last node to be visited.
75501a6d 3718 *
87fb54f1
TH
3719 * While this function requires cgroup_mutex or RCU read locking, it
3720 * doesn't require the whole traversal to be contained in a single critical
3721 * section. This function will return the correct next descendant as long
3722 * as both @pos and @cgroup are accessible and @pos is a descendant of
3723 * @cgroup.
c2931b70
TH
3724 *
3725 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3726 * css which finished ->css_online() is guaranteed to be visible in the
3727 * future iterations and will stay visible until the last reference is put.
3728 * A css which hasn't finished ->css_online() or already finished
3729 * ->css_offline() may show up during traversal. It's each subsystem's
3730 * responsibility to synchronize against on/offlining.
574bd9f7 3731 */
492eb21b
TH
3732struct cgroup_subsys_state *
3733css_next_descendant_post(struct cgroup_subsys_state *pos,
3734 struct cgroup_subsys_state *root)
574bd9f7 3735{
492eb21b 3736 struct cgroup_subsys_state *next;
574bd9f7 3737
8353da1f 3738 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3739
58b79a91
TH
3740 /* if first iteration, visit leftmost descendant which may be @root */
3741 if (!pos)
3742 return css_leftmost_descendant(root);
574bd9f7 3743
bd8815a6
TH
3744 /* if we visited @root, we're done */
3745 if (pos == root)
3746 return NULL;
3747
574bd9f7 3748 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3749 next = css_next_child(pos, pos->parent);
75501a6d 3750 if (next)
492eb21b 3751 return css_leftmost_descendant(next);
574bd9f7
TH
3752
3753 /* no sibling left, visit parent */
5c9d535b 3754 return pos->parent;
574bd9f7 3755}
574bd9f7 3756
f3d46500
TH
3757/**
3758 * css_has_online_children - does a css have online children
3759 * @css: the target css
3760 *
3761 * Returns %true if @css has any online children; otherwise, %false. This
3762 * function can be called from any context but the caller is responsible
3763 * for synchronizing against on/offlining as necessary.
3764 */
3765bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3766{
f3d46500
TH
3767 struct cgroup_subsys_state *child;
3768 bool ret = false;
cbc125ef
TH
3769
3770 rcu_read_lock();
f3d46500 3771 css_for_each_child(child, css) {
99bae5f9 3772 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3773 ret = true;
3774 break;
cbc125ef
TH
3775 }
3776 }
3777 rcu_read_unlock();
f3d46500 3778 return ret;
574bd9f7 3779}
574bd9f7 3780
0942eeee 3781/**
72ec7029 3782 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3783 * @it: the iterator to advance
3784 *
3785 * Advance @it to the next css_set to walk.
d515876e 3786 */
72ec7029 3787static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3788{
0f0a2b4f 3789 struct list_head *l = it->cset_pos;
d515876e
TH
3790 struct cgrp_cset_link *link;
3791 struct css_set *cset;
3792
3793 /* Advance to the next non-empty css_set */
3794 do {
3795 l = l->next;
0f0a2b4f
TH
3796 if (l == it->cset_head) {
3797 it->cset_pos = NULL;
d515876e
TH
3798 return;
3799 }
3ebb2b6e
TH
3800
3801 if (it->ss) {
3802 cset = container_of(l, struct css_set,
3803 e_cset_node[it->ss->id]);
3804 } else {
3805 link = list_entry(l, struct cgrp_cset_link, cset_link);
3806 cset = link->cset;
3807 }
c7561128
TH
3808 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3809
0f0a2b4f 3810 it->cset_pos = l;
c7561128
TH
3811
3812 if (!list_empty(&cset->tasks))
0f0a2b4f 3813 it->task_pos = cset->tasks.next;
c7561128 3814 else
0f0a2b4f
TH
3815 it->task_pos = cset->mg_tasks.next;
3816
3817 it->tasks_head = &cset->tasks;
3818 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3819}
3820
0942eeee 3821/**
72ec7029
TH
3822 * css_task_iter_start - initiate task iteration
3823 * @css: the css to walk tasks of
0942eeee
TH
3824 * @it: the task iterator to use
3825 *
72ec7029
TH
3826 * Initiate iteration through the tasks of @css. The caller can call
3827 * css_task_iter_next() to walk through the tasks until the function
3828 * returns NULL. On completion of iteration, css_task_iter_end() must be
3829 * called.
0942eeee
TH
3830 *
3831 * Note that this function acquires a lock which is released when the
3832 * iteration finishes. The caller can't sleep while iteration is in
3833 * progress.
3834 */
72ec7029
TH
3835void css_task_iter_start(struct cgroup_subsys_state *css,
3836 struct css_task_iter *it)
96d365e0 3837 __acquires(css_set_rwsem)
817929ec 3838{
56fde9e0
TH
3839 /* no one should try to iterate before mounting cgroups */
3840 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3841
96d365e0 3842 down_read(&css_set_rwsem);
c59cd3d8 3843
3ebb2b6e
TH
3844 it->ss = css->ss;
3845
3846 if (it->ss)
3847 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3848 else
3849 it->cset_pos = &css->cgroup->cset_links;
3850
0f0a2b4f 3851 it->cset_head = it->cset_pos;
c59cd3d8 3852
72ec7029 3853 css_advance_task_iter(it);
817929ec
PM
3854}
3855
0942eeee 3856/**
72ec7029 3857 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3858 * @it: the task iterator being iterated
3859 *
3860 * The "next" function for task iteration. @it should have been
72ec7029
TH
3861 * initialized via css_task_iter_start(). Returns NULL when the iteration
3862 * reaches the end.
0942eeee 3863 */
72ec7029 3864struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3865{
3866 struct task_struct *res;
0f0a2b4f 3867 struct list_head *l = it->task_pos;
817929ec
PM
3868
3869 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3870 if (!it->cset_pos)
817929ec
PM
3871 return NULL;
3872 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3873
3874 /*
3875 * Advance iterator to find next entry. cset->tasks is consumed
3876 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3877 * next cset.
3878 */
817929ec 3879 l = l->next;
c7561128 3880
0f0a2b4f
TH
3881 if (l == it->tasks_head)
3882 l = it->mg_tasks_head->next;
c7561128 3883
0f0a2b4f 3884 if (l == it->mg_tasks_head)
72ec7029 3885 css_advance_task_iter(it);
c7561128 3886 else
0f0a2b4f 3887 it->task_pos = l;
c7561128 3888
817929ec
PM
3889 return res;
3890}
3891
0942eeee 3892/**
72ec7029 3893 * css_task_iter_end - finish task iteration
0942eeee
TH
3894 * @it: the task iterator to finish
3895 *
72ec7029 3896 * Finish task iteration started by css_task_iter_start().
0942eeee 3897 */
72ec7029 3898void css_task_iter_end(struct css_task_iter *it)
96d365e0 3899 __releases(css_set_rwsem)
31a7df01 3900{
96d365e0 3901 up_read(&css_set_rwsem);
31a7df01
CW
3902}
3903
3904/**
8cc99345
TH
3905 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3906 * @to: cgroup to which the tasks will be moved
3907 * @from: cgroup in which the tasks currently reside
31a7df01 3908 *
eaf797ab
TH
3909 * Locking rules between cgroup_post_fork() and the migration path
3910 * guarantee that, if a task is forking while being migrated, the new child
3911 * is guaranteed to be either visible in the source cgroup after the
3912 * parent's migration is complete or put into the target cgroup. No task
3913 * can slip out of migration through forking.
31a7df01 3914 */
8cc99345 3915int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3916{
952aaa12
TH
3917 LIST_HEAD(preloaded_csets);
3918 struct cgrp_cset_link *link;
72ec7029 3919 struct css_task_iter it;
e406d1cf 3920 struct task_struct *task;
952aaa12 3921 int ret;
31a7df01 3922
952aaa12 3923 mutex_lock(&cgroup_mutex);
31a7df01 3924
952aaa12
TH
3925 /* all tasks in @from are being moved, all csets are source */
3926 down_read(&css_set_rwsem);
3927 list_for_each_entry(link, &from->cset_links, cset_link)
3928 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3929 up_read(&css_set_rwsem);
31a7df01 3930
952aaa12
TH
3931 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3932 if (ret)
3933 goto out_err;
8cc99345 3934
952aaa12
TH
3935 /*
3936 * Migrate tasks one-by-one until @form is empty. This fails iff
3937 * ->can_attach() fails.
3938 */
e406d1cf 3939 do {
9d800df1 3940 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3941 task = css_task_iter_next(&it);
3942 if (task)
3943 get_task_struct(task);
3944 css_task_iter_end(&it);
3945
3946 if (task) {
9af2ec45 3947 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3948 put_task_struct(task);
3949 }
3950 } while (task && !ret);
952aaa12
TH
3951out_err:
3952 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3953 mutex_unlock(&cgroup_mutex);
e406d1cf 3954 return ret;
8cc99345
TH
3955}
3956
bbcb81d0 3957/*
102a775e 3958 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3959 *
3960 * Reading this file can return large amounts of data if a cgroup has
3961 * *lots* of attached tasks. So it may need several calls to read(),
3962 * but we cannot guarantee that the information we produce is correct
3963 * unless we produce it entirely atomically.
3964 *
bbcb81d0 3965 */
bbcb81d0 3966
24528255
LZ
3967/* which pidlist file are we talking about? */
3968enum cgroup_filetype {
3969 CGROUP_FILE_PROCS,
3970 CGROUP_FILE_TASKS,
3971};
3972
3973/*
3974 * A pidlist is a list of pids that virtually represents the contents of one
3975 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3976 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3977 * to the cgroup.
3978 */
3979struct cgroup_pidlist {
3980 /*
3981 * used to find which pidlist is wanted. doesn't change as long as
3982 * this particular list stays in the list.
3983 */
3984 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3985 /* array of xids */
3986 pid_t *list;
3987 /* how many elements the above list has */
3988 int length;
24528255
LZ
3989 /* each of these stored in a list by its cgroup */
3990 struct list_head links;
3991 /* pointer to the cgroup we belong to, for list removal purposes */
3992 struct cgroup *owner;
b1a21367
TH
3993 /* for delayed destruction */
3994 struct delayed_work destroy_dwork;
24528255
LZ
3995};
3996
d1d9fd33
BB
3997/*
3998 * The following two functions "fix" the issue where there are more pids
3999 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4000 * TODO: replace with a kernel-wide solution to this problem
4001 */
4002#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4003static void *pidlist_allocate(int count)
4004{
4005 if (PIDLIST_TOO_LARGE(count))
4006 return vmalloc(count * sizeof(pid_t));
4007 else
4008 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4009}
b1a21367 4010
d1d9fd33
BB
4011static void pidlist_free(void *p)
4012{
58794514 4013 kvfree(p);
d1d9fd33 4014}
d1d9fd33 4015
b1a21367
TH
4016/*
4017 * Used to destroy all pidlists lingering waiting for destroy timer. None
4018 * should be left afterwards.
4019 */
4020static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4021{
4022 struct cgroup_pidlist *l, *tmp_l;
4023
4024 mutex_lock(&cgrp->pidlist_mutex);
4025 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4026 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4027 mutex_unlock(&cgrp->pidlist_mutex);
4028
4029 flush_workqueue(cgroup_pidlist_destroy_wq);
4030 BUG_ON(!list_empty(&cgrp->pidlists));
4031}
4032
4033static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4034{
4035 struct delayed_work *dwork = to_delayed_work(work);
4036 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4037 destroy_dwork);
4038 struct cgroup_pidlist *tofree = NULL;
4039
4040 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4041
4042 /*
04502365
TH
4043 * Destroy iff we didn't get queued again. The state won't change
4044 * as destroy_dwork can only be queued while locked.
b1a21367 4045 */
04502365 4046 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4047 list_del(&l->links);
4048 pidlist_free(l->list);
4049 put_pid_ns(l->key.ns);
4050 tofree = l;
4051 }
4052
b1a21367
TH
4053 mutex_unlock(&l->owner->pidlist_mutex);
4054 kfree(tofree);
4055}
4056
bbcb81d0 4057/*
102a775e 4058 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4059 * Returns the number of unique elements.
bbcb81d0 4060 */
6ee211ad 4061static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4062{
102a775e 4063 int src, dest = 1;
102a775e
BB
4064
4065 /*
4066 * we presume the 0th element is unique, so i starts at 1. trivial
4067 * edge cases first; no work needs to be done for either
4068 */
4069 if (length == 0 || length == 1)
4070 return length;
4071 /* src and dest walk down the list; dest counts unique elements */
4072 for (src = 1; src < length; src++) {
4073 /* find next unique element */
4074 while (list[src] == list[src-1]) {
4075 src++;
4076 if (src == length)
4077 goto after;
4078 }
4079 /* dest always points to where the next unique element goes */
4080 list[dest] = list[src];
4081 dest++;
4082 }
4083after:
102a775e
BB
4084 return dest;
4085}
4086
afb2bc14
TH
4087/*
4088 * The two pid files - task and cgroup.procs - guaranteed that the result
4089 * is sorted, which forced this whole pidlist fiasco. As pid order is
4090 * different per namespace, each namespace needs differently sorted list,
4091 * making it impossible to use, for example, single rbtree of member tasks
4092 * sorted by task pointer. As pidlists can be fairly large, allocating one
4093 * per open file is dangerous, so cgroup had to implement shared pool of
4094 * pidlists keyed by cgroup and namespace.
4095 *
4096 * All this extra complexity was caused by the original implementation
4097 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4098 * want to do away with it. Explicitly scramble sort order if on the
4099 * default hierarchy so that no such expectation exists in the new
4100 * interface.
afb2bc14
TH
4101 *
4102 * Scrambling is done by swapping every two consecutive bits, which is
4103 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4104 */
4105static pid_t pid_fry(pid_t pid)
4106{
4107 unsigned a = pid & 0x55555555;
4108 unsigned b = pid & 0xAAAAAAAA;
4109
4110 return (a << 1) | (b >> 1);
4111}
4112
4113static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4114{
aa6ec29b 4115 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4116 return pid_fry(pid);
4117 else
4118 return pid;
4119}
4120
102a775e
BB
4121static int cmppid(const void *a, const void *b)
4122{
4123 return *(pid_t *)a - *(pid_t *)b;
4124}
4125
afb2bc14
TH
4126static int fried_cmppid(const void *a, const void *b)
4127{
4128 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4129}
4130
e6b81710
TH
4131static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4132 enum cgroup_filetype type)
4133{
4134 struct cgroup_pidlist *l;
4135 /* don't need task_nsproxy() if we're looking at ourself */
4136 struct pid_namespace *ns = task_active_pid_ns(current);
4137
4138 lockdep_assert_held(&cgrp->pidlist_mutex);
4139
4140 list_for_each_entry(l, &cgrp->pidlists, links)
4141 if (l->key.type == type && l->key.ns == ns)
4142 return l;
4143 return NULL;
4144}
4145
72a8cb30
BB
4146/*
4147 * find the appropriate pidlist for our purpose (given procs vs tasks)
4148 * returns with the lock on that pidlist already held, and takes care
4149 * of the use count, or returns NULL with no locks held if we're out of
4150 * memory.
4151 */
e6b81710
TH
4152static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4153 enum cgroup_filetype type)
72a8cb30
BB
4154{
4155 struct cgroup_pidlist *l;
b70cc5fd 4156
e6b81710
TH
4157 lockdep_assert_held(&cgrp->pidlist_mutex);
4158
4159 l = cgroup_pidlist_find(cgrp, type);
4160 if (l)
4161 return l;
4162
72a8cb30 4163 /* entry not found; create a new one */
f4f4be2b 4164 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4165 if (!l)
72a8cb30 4166 return l;
e6b81710 4167
b1a21367 4168 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4169 l->key.type = type;
e6b81710
TH
4170 /* don't need task_nsproxy() if we're looking at ourself */
4171 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4172 l->owner = cgrp;
4173 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4174 return l;
4175}
4176
102a775e
BB
4177/*
4178 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4179 */
72a8cb30
BB
4180static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4181 struct cgroup_pidlist **lp)
102a775e
BB
4182{
4183 pid_t *array;
4184 int length;
4185 int pid, n = 0; /* used for populating the array */
72ec7029 4186 struct css_task_iter it;
817929ec 4187 struct task_struct *tsk;
102a775e
BB
4188 struct cgroup_pidlist *l;
4189
4bac00d1
TH
4190 lockdep_assert_held(&cgrp->pidlist_mutex);
4191
102a775e
BB
4192 /*
4193 * If cgroup gets more users after we read count, we won't have
4194 * enough space - tough. This race is indistinguishable to the
4195 * caller from the case that the additional cgroup users didn't
4196 * show up until sometime later on.
4197 */
4198 length = cgroup_task_count(cgrp);
d1d9fd33 4199 array = pidlist_allocate(length);
102a775e
BB
4200 if (!array)
4201 return -ENOMEM;
4202 /* now, populate the array */
9d800df1 4203 css_task_iter_start(&cgrp->self, &it);
72ec7029 4204 while ((tsk = css_task_iter_next(&it))) {
102a775e 4205 if (unlikely(n == length))
817929ec 4206 break;
102a775e 4207 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4208 if (type == CGROUP_FILE_PROCS)
4209 pid = task_tgid_vnr(tsk);
4210 else
4211 pid = task_pid_vnr(tsk);
102a775e
BB
4212 if (pid > 0) /* make sure to only use valid results */
4213 array[n++] = pid;
817929ec 4214 }
72ec7029 4215 css_task_iter_end(&it);
102a775e
BB
4216 length = n;
4217 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4218 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4219 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4220 else
4221 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4222 if (type == CGROUP_FILE_PROCS)
6ee211ad 4223 length = pidlist_uniq(array, length);
e6b81710 4224
e6b81710 4225 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4226 if (!l) {
d1d9fd33 4227 pidlist_free(array);
72a8cb30 4228 return -ENOMEM;
102a775e 4229 }
e6b81710
TH
4230
4231 /* store array, freeing old if necessary */
d1d9fd33 4232 pidlist_free(l->list);
102a775e
BB
4233 l->list = array;
4234 l->length = length;
72a8cb30 4235 *lp = l;
102a775e 4236 return 0;
bbcb81d0
PM
4237}
4238
846c7bb0 4239/**
a043e3b2 4240 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4241 * @stats: cgroupstats to fill information into
4242 * @dentry: A dentry entry belonging to the cgroup for which stats have
4243 * been requested.
a043e3b2
LZ
4244 *
4245 * Build and fill cgroupstats so that taskstats can export it to user
4246 * space.
846c7bb0
BS
4247 */
4248int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4249{
2bd59d48 4250 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4251 struct cgroup *cgrp;
72ec7029 4252 struct css_task_iter it;
846c7bb0 4253 struct task_struct *tsk;
33d283be 4254
2bd59d48
TH
4255 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4256 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4257 kernfs_type(kn) != KERNFS_DIR)
4258 return -EINVAL;
4259
bad34660
LZ
4260 mutex_lock(&cgroup_mutex);
4261
846c7bb0 4262 /*
2bd59d48 4263 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4264 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4265 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4266 */
2bd59d48
TH
4267 rcu_read_lock();
4268 cgrp = rcu_dereference(kn->priv);
bad34660 4269 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4270 rcu_read_unlock();
bad34660 4271 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4272 return -ENOENT;
4273 }
bad34660 4274 rcu_read_unlock();
846c7bb0 4275
9d800df1 4276 css_task_iter_start(&cgrp->self, &it);
72ec7029 4277 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4278 switch (tsk->state) {
4279 case TASK_RUNNING:
4280 stats->nr_running++;
4281 break;
4282 case TASK_INTERRUPTIBLE:
4283 stats->nr_sleeping++;
4284 break;
4285 case TASK_UNINTERRUPTIBLE:
4286 stats->nr_uninterruptible++;
4287 break;
4288 case TASK_STOPPED:
4289 stats->nr_stopped++;
4290 break;
4291 default:
4292 if (delayacct_is_task_waiting_on_io(tsk))
4293 stats->nr_io_wait++;
4294 break;
4295 }
4296 }
72ec7029 4297 css_task_iter_end(&it);
846c7bb0 4298
bad34660 4299 mutex_unlock(&cgroup_mutex);
2bd59d48 4300 return 0;
846c7bb0
BS
4301}
4302
8f3ff208 4303
bbcb81d0 4304/*
102a775e 4305 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4306 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4307 * in the cgroup->l->list array.
bbcb81d0 4308 */
cc31edce 4309
102a775e 4310static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4311{
cc31edce
PM
4312 /*
4313 * Initially we receive a position value that corresponds to
4314 * one more than the last pid shown (or 0 on the first call or
4315 * after a seek to the start). Use a binary-search to find the
4316 * next pid to display, if any
4317 */
2bd59d48 4318 struct kernfs_open_file *of = s->private;
7da11279 4319 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4320 struct cgroup_pidlist *l;
7da11279 4321 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4322 int index = 0, pid = *pos;
4bac00d1
TH
4323 int *iter, ret;
4324
4325 mutex_lock(&cgrp->pidlist_mutex);
4326
4327 /*
5d22444f 4328 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4329 * after open. If the matching pidlist is around, we can use that.
5d22444f 4330 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4331 * could already have been destroyed.
4332 */
5d22444f
TH
4333 if (of->priv)
4334 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4335
4336 /*
4337 * Either this is the first start() after open or the matching
4338 * pidlist has been destroyed inbetween. Create a new one.
4339 */
5d22444f
TH
4340 if (!of->priv) {
4341 ret = pidlist_array_load(cgrp, type,
4342 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4343 if (ret)
4344 return ERR_PTR(ret);
4345 }
5d22444f 4346 l = of->priv;
cc31edce 4347
cc31edce 4348 if (pid) {
102a775e 4349 int end = l->length;
20777766 4350
cc31edce
PM
4351 while (index < end) {
4352 int mid = (index + end) / 2;
afb2bc14 4353 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4354 index = mid;
4355 break;
afb2bc14 4356 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4357 index = mid + 1;
4358 else
4359 end = mid;
4360 }
4361 }
4362 /* If we're off the end of the array, we're done */
102a775e 4363 if (index >= l->length)
cc31edce
PM
4364 return NULL;
4365 /* Update the abstract position to be the actual pid that we found */
102a775e 4366 iter = l->list + index;
afb2bc14 4367 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4368 return iter;
4369}
4370
102a775e 4371static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4372{
2bd59d48 4373 struct kernfs_open_file *of = s->private;
5d22444f 4374 struct cgroup_pidlist *l = of->priv;
62236858 4375
5d22444f
TH
4376 if (l)
4377 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4378 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4379 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4380}
4381
102a775e 4382static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4383{
2bd59d48 4384 struct kernfs_open_file *of = s->private;
5d22444f 4385 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4386 pid_t *p = v;
4387 pid_t *end = l->list + l->length;
cc31edce
PM
4388 /*
4389 * Advance to the next pid in the array. If this goes off the
4390 * end, we're done
4391 */
4392 p++;
4393 if (p >= end) {
4394 return NULL;
4395 } else {
7da11279 4396 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4397 return p;
4398 }
4399}
4400
102a775e 4401static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4402{
94ff212d
JP
4403 seq_printf(s, "%d\n", *(int *)v);
4404
4405 return 0;
cc31edce 4406}
bbcb81d0 4407
182446d0
TH
4408static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4409 struct cftype *cft)
81a6a5cd 4410{
182446d0 4411 return notify_on_release(css->cgroup);
81a6a5cd
PM
4412}
4413
182446d0
TH
4414static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4415 struct cftype *cft, u64 val)
6379c106 4416{
6379c106 4417 if (val)
182446d0 4418 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4419 else
182446d0 4420 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4421 return 0;
4422}
4423
182446d0
TH
4424static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4425 struct cftype *cft)
97978e6d 4426{
182446d0 4427 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4428}
4429
182446d0
TH
4430static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4431 struct cftype *cft, u64 val)
97978e6d
DL
4432{
4433 if (val)
182446d0 4434 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4435 else
182446d0 4436 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4437 return 0;
4438}
4439
a14c6874
TH
4440/* cgroup core interface files for the default hierarchy */
4441static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4442 {
d5c56ced 4443 .name = "cgroup.procs",
6f60eade 4444 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4445 .seq_start = cgroup_pidlist_start,
4446 .seq_next = cgroup_pidlist_next,
4447 .seq_stop = cgroup_pidlist_stop,
4448 .seq_show = cgroup_pidlist_show,
5d22444f 4449 .private = CGROUP_FILE_PROCS,
acbef755 4450 .write = cgroup_procs_write,
102a775e 4451 },
f8f22e53
TH
4452 {
4453 .name = "cgroup.controllers",
a14c6874 4454 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4455 .seq_show = cgroup_root_controllers_show,
4456 },
4457 {
4458 .name = "cgroup.controllers",
a14c6874 4459 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4460 .seq_show = cgroup_controllers_show,
4461 },
4462 {
4463 .name = "cgroup.subtree_control",
f8f22e53 4464 .seq_show = cgroup_subtree_control_show,
451af504 4465 .write = cgroup_subtree_control_write,
f8f22e53 4466 },
842b597e 4467 {
4a07c222 4468 .name = "cgroup.events",
a14c6874 4469 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4470 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4471 .seq_show = cgroup_events_show,
842b597e 4472 },
a14c6874
TH
4473 { } /* terminate */
4474};
d5c56ced 4475
a14c6874
TH
4476/* cgroup core interface files for the legacy hierarchies */
4477static struct cftype cgroup_legacy_base_files[] = {
4478 {
4479 .name = "cgroup.procs",
4480 .seq_start = cgroup_pidlist_start,
4481 .seq_next = cgroup_pidlist_next,
4482 .seq_stop = cgroup_pidlist_stop,
4483 .seq_show = cgroup_pidlist_show,
4484 .private = CGROUP_FILE_PROCS,
4485 .write = cgroup_procs_write,
a14c6874
TH
4486 },
4487 {
4488 .name = "cgroup.clone_children",
4489 .read_u64 = cgroup_clone_children_read,
4490 .write_u64 = cgroup_clone_children_write,
4491 },
4492 {
4493 .name = "cgroup.sane_behavior",
4494 .flags = CFTYPE_ONLY_ON_ROOT,
4495 .seq_show = cgroup_sane_behavior_show,
4496 },
d5c56ced
TH
4497 {
4498 .name = "tasks",
6612f05b
TH
4499 .seq_start = cgroup_pidlist_start,
4500 .seq_next = cgroup_pidlist_next,
4501 .seq_stop = cgroup_pidlist_stop,
4502 .seq_show = cgroup_pidlist_show,
5d22444f 4503 .private = CGROUP_FILE_TASKS,
acbef755 4504 .write = cgroup_tasks_write,
d5c56ced
TH
4505 },
4506 {
4507 .name = "notify_on_release",
d5c56ced
TH
4508 .read_u64 = cgroup_read_notify_on_release,
4509 .write_u64 = cgroup_write_notify_on_release,
4510 },
6e6ff25b
TH
4511 {
4512 .name = "release_agent",
a14c6874 4513 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4514 .seq_show = cgroup_release_agent_show,
451af504 4515 .write = cgroup_release_agent_write,
5f469907 4516 .max_write_len = PATH_MAX - 1,
6e6ff25b 4517 },
db0416b6 4518 { } /* terminate */
bbcb81d0
PM
4519};
4520
0c21ead1
TH
4521/*
4522 * css destruction is four-stage process.
4523 *
4524 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4525 * Implemented in kill_css().
4526 *
4527 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4528 * and thus css_tryget_online() is guaranteed to fail, the css can be
4529 * offlined by invoking offline_css(). After offlining, the base ref is
4530 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4531 *
4532 * 3. When the percpu_ref reaches zero, the only possible remaining
4533 * accessors are inside RCU read sections. css_release() schedules the
4534 * RCU callback.
4535 *
4536 * 4. After the grace period, the css can be freed. Implemented in
4537 * css_free_work_fn().
4538 *
4539 * It is actually hairier because both step 2 and 4 require process context
4540 * and thus involve punting to css->destroy_work adding two additional
4541 * steps to the already complex sequence.
4542 */
35ef10da 4543static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4544{
4545 struct cgroup_subsys_state *css =
35ef10da 4546 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4547 struct cgroup_subsys *ss = css->ss;
0c21ead1 4548 struct cgroup *cgrp = css->cgroup;
6f60eade 4549 struct cgroup_file *cfile;
48ddbe19 4550
9a1049da
TH
4551 percpu_ref_exit(&css->refcnt);
4552
6f60eade
TH
4553 list_for_each_entry(cfile, &css->files, node)
4554 kernfs_put(cfile->kn);
4555
01e58659 4556 if (ss) {
9d755d33 4557 /* css free path */
01e58659
VD
4558 int id = css->id;
4559
9d755d33
TH
4560 if (css->parent)
4561 css_put(css->parent);
0ae78e0b 4562
01e58659
VD
4563 ss->css_free(css);
4564 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4565 cgroup_put(cgrp);
4566 } else {
4567 /* cgroup free path */
4568 atomic_dec(&cgrp->root->nr_cgrps);
4569 cgroup_pidlist_destroy_all(cgrp);
971ff493 4570 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4571
d51f39b0 4572 if (cgroup_parent(cgrp)) {
9d755d33
TH
4573 /*
4574 * We get a ref to the parent, and put the ref when
4575 * this cgroup is being freed, so it's guaranteed
4576 * that the parent won't be destroyed before its
4577 * children.
4578 */
d51f39b0 4579 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4580 kernfs_put(cgrp->kn);
4581 kfree(cgrp);
4582 } else {
4583 /*
4584 * This is root cgroup's refcnt reaching zero,
4585 * which indicates that the root should be
4586 * released.
4587 */
4588 cgroup_destroy_root(cgrp->root);
4589 }
4590 }
48ddbe19
TH
4591}
4592
0c21ead1 4593static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4594{
4595 struct cgroup_subsys_state *css =
0c21ead1 4596 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4597
35ef10da 4598 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4599 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4600}
4601
25e15d83 4602static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4603{
4604 struct cgroup_subsys_state *css =
25e15d83 4605 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4606 struct cgroup_subsys *ss = css->ss;
9d755d33 4607 struct cgroup *cgrp = css->cgroup;
15a4c835 4608
1fed1b2e
TH
4609 mutex_lock(&cgroup_mutex);
4610
de3f0341 4611 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4612 list_del_rcu(&css->sibling);
4613
9d755d33
TH
4614 if (ss) {
4615 /* css release path */
01e58659 4616 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4617 if (ss->css_released)
4618 ss->css_released(css);
9d755d33
TH
4619 } else {
4620 /* cgroup release path */
9d755d33
TH
4621 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4622 cgrp->id = -1;
a4189487
LZ
4623
4624 /*
4625 * There are two control paths which try to determine
4626 * cgroup from dentry without going through kernfs -
4627 * cgroupstats_build() and css_tryget_online_from_dir().
4628 * Those are supported by RCU protecting clearing of
4629 * cgrp->kn->priv backpointer.
4630 */
4631 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4632 }
d3daf28d 4633
1fed1b2e
TH
4634 mutex_unlock(&cgroup_mutex);
4635
0c21ead1 4636 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4637}
4638
d3daf28d
TH
4639static void css_release(struct percpu_ref *ref)
4640{
4641 struct cgroup_subsys_state *css =
4642 container_of(ref, struct cgroup_subsys_state, refcnt);
4643
25e15d83
TH
4644 INIT_WORK(&css->destroy_work, css_release_work_fn);
4645 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4646}
4647
ddfcadab
TH
4648static void init_and_link_css(struct cgroup_subsys_state *css,
4649 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4650{
0cb51d71
TH
4651 lockdep_assert_held(&cgroup_mutex);
4652
ddfcadab
TH
4653 cgroup_get(cgrp);
4654
d5c419b6 4655 memset(css, 0, sizeof(*css));
bd89aabc 4656 css->cgroup = cgrp;
72c97e54 4657 css->ss = ss;
d5c419b6
TH
4658 INIT_LIST_HEAD(&css->sibling);
4659 INIT_LIST_HEAD(&css->children);
6f60eade 4660 INIT_LIST_HEAD(&css->files);
0cb51d71 4661 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4662
d51f39b0
TH
4663 if (cgroup_parent(cgrp)) {
4664 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4665 css_get(css->parent);
ddfcadab 4666 }
48ddbe19 4667
ca8bdcaf 4668 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4669}
4670
2a4ac633 4671/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4672static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4673{
623f926b 4674 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4675 int ret = 0;
4676
a31f2d3f
TH
4677 lockdep_assert_held(&cgroup_mutex);
4678
92fb9748 4679 if (ss->css_online)
eb95419b 4680 ret = ss->css_online(css);
ae7f164a 4681 if (!ret) {
eb95419b 4682 css->flags |= CSS_ONLINE;
aec25020 4683 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4684 }
b1929db4 4685 return ret;
a31f2d3f
TH
4686}
4687
2a4ac633 4688/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4689static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4690{
623f926b 4691 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4692
4693 lockdep_assert_held(&cgroup_mutex);
4694
4695 if (!(css->flags & CSS_ONLINE))
4696 return;
4697
d7eeac19 4698 if (ss->css_offline)
eb95419b 4699 ss->css_offline(css);
a31f2d3f 4700
eb95419b 4701 css->flags &= ~CSS_ONLINE;
e3297803 4702 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4703
4704 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4705}
4706
c81c925a
TH
4707/**
4708 * create_css - create a cgroup_subsys_state
4709 * @cgrp: the cgroup new css will be associated with
4710 * @ss: the subsys of new css
f63070d3 4711 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4712 *
4713 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4714 * css is online and installed in @cgrp with all interface files created if
4715 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4716 */
f63070d3
TH
4717static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4718 bool visible)
c81c925a 4719{
d51f39b0 4720 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4721 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4722 struct cgroup_subsys_state *css;
4723 int err;
4724
c81c925a
TH
4725 lockdep_assert_held(&cgroup_mutex);
4726
1fed1b2e 4727 css = ss->css_alloc(parent_css);
c81c925a
TH
4728 if (IS_ERR(css))
4729 return PTR_ERR(css);
4730
ddfcadab 4731 init_and_link_css(css, ss, cgrp);
a2bed820 4732
2aad2a86 4733 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4734 if (err)
3eb59ec6 4735 goto err_free_css;
c81c925a 4736
cf780b7d 4737 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4738 if (err < 0)
4739 goto err_free_percpu_ref;
4740 css->id = err;
c81c925a 4741
f63070d3 4742 if (visible) {
4df8dc90 4743 err = css_populate_dir(css, NULL);
f63070d3
TH
4744 if (err)
4745 goto err_free_id;
4746 }
15a4c835
TH
4747
4748 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4749 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4750 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4751
4752 err = online_css(css);
4753 if (err)
1fed1b2e 4754 goto err_list_del;
94419627 4755
c81c925a 4756 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4757 cgroup_parent(parent)) {
ed3d261b 4758 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4759 current->comm, current->pid, ss->name);
c81c925a 4760 if (!strcmp(ss->name, "memory"))
ed3d261b 4761 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4762 ss->warned_broken_hierarchy = true;
4763 }
4764
4765 return 0;
4766
1fed1b2e
TH
4767err_list_del:
4768 list_del_rcu(&css->sibling);
4df8dc90 4769 css_clear_dir(css, NULL);
15a4c835
TH
4770err_free_id:
4771 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4772err_free_percpu_ref:
9a1049da 4773 percpu_ref_exit(&css->refcnt);
3eb59ec6 4774err_free_css:
a2bed820 4775 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4776 return err;
4777}
4778
b3bfd983
TH
4779static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4780 umode_t mode)
ddbcc7e8 4781{
a9746d8d
TH
4782 struct cgroup *parent, *cgrp;
4783 struct cgroup_root *root;
ddbcc7e8 4784 struct cgroup_subsys *ss;
2bd59d48 4785 struct kernfs_node *kn;
b3bfd983 4786 int ssid, ret;
ddbcc7e8 4787
71b1fb5c
AC
4788 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4789 */
4790 if (strchr(name, '\n'))
4791 return -EINVAL;
4792
a9746d8d
TH
4793 parent = cgroup_kn_lock_live(parent_kn);
4794 if (!parent)
4795 return -ENODEV;
4796 root = parent->root;
ddbcc7e8 4797
0a950f65 4798 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4799 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4800 if (!cgrp) {
4801 ret = -ENOMEM;
4802 goto out_unlock;
0ab02ca8
LZ
4803 }
4804
2aad2a86 4805 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4806 if (ret)
4807 goto out_free_cgrp;
4808
0ab02ca8
LZ
4809 /*
4810 * Temporarily set the pointer to NULL, so idr_find() won't return
4811 * a half-baked cgroup.
4812 */
cf780b7d 4813 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4814 if (cgrp->id < 0) {
ba0f4d76 4815 ret = -ENOMEM;
9d755d33 4816 goto out_cancel_ref;
976c06bc
TH
4817 }
4818
cc31edce 4819 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4820
9d800df1 4821 cgrp->self.parent = &parent->self;
ba0f4d76 4822 cgrp->root = root;
ddbcc7e8 4823
b6abdb0e
LZ
4824 if (notify_on_release(parent))
4825 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4826
2260e7fc
TH
4827 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4828 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4829
2bd59d48 4830 /* create the directory */
e61734c5 4831 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4832 if (IS_ERR(kn)) {
ba0f4d76
TH
4833 ret = PTR_ERR(kn);
4834 goto out_free_id;
2bd59d48
TH
4835 }
4836 cgrp->kn = kn;
ddbcc7e8 4837
4e139afc 4838 /*
6f30558f
TH
4839 * This extra ref will be put in cgroup_free_fn() and guarantees
4840 * that @cgrp->kn is always accessible.
4e139afc 4841 */
6f30558f 4842 kernfs_get(kn);
ddbcc7e8 4843
0cb51d71 4844 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4845
4e139afc 4846 /* allocation complete, commit to creation */
d5c419b6 4847 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4848 atomic_inc(&root->nr_cgrps);
59f5296b 4849 cgroup_get(parent);
415cf07a 4850
0d80255e
TH
4851 /*
4852 * @cgrp is now fully operational. If something fails after this
4853 * point, it'll be released via the normal destruction path.
4854 */
6fa4918d 4855 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4856
ba0f4d76
TH
4857 ret = cgroup_kn_set_ugid(kn);
4858 if (ret)
4859 goto out_destroy;
49957f8e 4860
4df8dc90 4861 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4862 if (ret)
4863 goto out_destroy;
628f7cd4 4864
9d403e99 4865 /* let's create and online css's */
b85d2040 4866 for_each_subsys(ss, ssid) {
f392e51c 4867 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4868 ret = create_css(cgrp, ss,
4869 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4870 if (ret)
4871 goto out_destroy;
b85d2040 4872 }
a8638030 4873 }
ddbcc7e8 4874
bd53d617
TH
4875 /*
4876 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4877 * subtree_control from the parent. Each is configured manually.
bd53d617 4878 */
667c2491
TH
4879 if (!cgroup_on_dfl(cgrp)) {
4880 cgrp->subtree_control = parent->subtree_control;
4881 cgroup_refresh_child_subsys_mask(cgrp);
4882 }
2bd59d48 4883
2bd59d48 4884 kernfs_activate(kn);
ddbcc7e8 4885
ba0f4d76
TH
4886 ret = 0;
4887 goto out_unlock;
ddbcc7e8 4888
ba0f4d76 4889out_free_id:
6fa4918d 4890 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4891out_cancel_ref:
9a1049da 4892 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4893out_free_cgrp:
bd89aabc 4894 kfree(cgrp);
ba0f4d76 4895out_unlock:
a9746d8d 4896 cgroup_kn_unlock(parent_kn);
ba0f4d76 4897 return ret;
4b8b47eb 4898
ba0f4d76 4899out_destroy:
4b8b47eb 4900 cgroup_destroy_locked(cgrp);
ba0f4d76 4901 goto out_unlock;
ddbcc7e8
PM
4902}
4903
223dbc38
TH
4904/*
4905 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4906 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4907 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4908 */
4909static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4910{
223dbc38
TH
4911 struct cgroup_subsys_state *css =
4912 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4913
f20104de 4914 mutex_lock(&cgroup_mutex);
09a503ea 4915 offline_css(css);
f20104de 4916 mutex_unlock(&cgroup_mutex);
09a503ea 4917
09a503ea 4918 css_put(css);
d3daf28d
TH
4919}
4920
223dbc38
TH
4921/* css kill confirmation processing requires process context, bounce */
4922static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4923{
4924 struct cgroup_subsys_state *css =
4925 container_of(ref, struct cgroup_subsys_state, refcnt);
4926
223dbc38 4927 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4928 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4929}
4930
f392e51c
TH
4931/**
4932 * kill_css - destroy a css
4933 * @css: css to destroy
4934 *
4935 * This function initiates destruction of @css by removing cgroup interface
4936 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4937 * asynchronously once css_tryget_online() is guaranteed to fail and when
4938 * the reference count reaches zero, @css will be released.
f392e51c
TH
4939 */
4940static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4941{
01f6474c 4942 lockdep_assert_held(&cgroup_mutex);
94419627 4943
2bd59d48
TH
4944 /*
4945 * This must happen before css is disassociated with its cgroup.
4946 * See seq_css() for details.
4947 */
4df8dc90 4948 css_clear_dir(css, NULL);
3c14f8b4 4949
edae0c33
TH
4950 /*
4951 * Killing would put the base ref, but we need to keep it alive
4952 * until after ->css_offline().
4953 */
4954 css_get(css);
4955
4956 /*
4957 * cgroup core guarantees that, by the time ->css_offline() is
4958 * invoked, no new css reference will be given out via
ec903c0c 4959 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4960 * proceed to offlining css's because percpu_ref_kill() doesn't
4961 * guarantee that the ref is seen as killed on all CPUs on return.
4962 *
4963 * Use percpu_ref_kill_and_confirm() to get notifications as each
4964 * css is confirmed to be seen as killed on all CPUs.
4965 */
4966 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4967}
4968
4969/**
4970 * cgroup_destroy_locked - the first stage of cgroup destruction
4971 * @cgrp: cgroup to be destroyed
4972 *
4973 * css's make use of percpu refcnts whose killing latency shouldn't be
4974 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4975 * guarantee that css_tryget_online() won't succeed by the time
4976 * ->css_offline() is invoked. To satisfy all the requirements,
4977 * destruction is implemented in the following two steps.
d3daf28d
TH
4978 *
4979 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4980 * userland visible parts and start killing the percpu refcnts of
4981 * css's. Set up so that the next stage will be kicked off once all
4982 * the percpu refcnts are confirmed to be killed.
4983 *
4984 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4985 * rest of destruction. Once all cgroup references are gone, the
4986 * cgroup is RCU-freed.
4987 *
4988 * This function implements s1. After this step, @cgrp is gone as far as
4989 * the userland is concerned and a new cgroup with the same name may be
4990 * created. As cgroup doesn't care about the names internally, this
4991 * doesn't cause any problem.
4992 */
42809dd4
TH
4993static int cgroup_destroy_locked(struct cgroup *cgrp)
4994 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4995{
2bd59d48 4996 struct cgroup_subsys_state *css;
ddd69148 4997 bool empty;
1c6727af 4998 int ssid;
ddbcc7e8 4999
42809dd4
TH
5000 lockdep_assert_held(&cgroup_mutex);
5001
ddd69148 5002 /*
96d365e0 5003 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 5004 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 5005 */
96d365e0 5006 down_read(&css_set_rwsem);
bb78a92f 5007 empty = list_empty(&cgrp->cset_links);
96d365e0 5008 up_read(&css_set_rwsem);
ddd69148 5009 if (!empty)
ddbcc7e8 5010 return -EBUSY;
a043e3b2 5011
bb78a92f 5012 /*
d5c419b6
TH
5013 * Make sure there's no live children. We can't test emptiness of
5014 * ->self.children as dead children linger on it while being
5015 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5016 */
f3d46500 5017 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5018 return -EBUSY;
5019
455050d2
TH
5020 /*
5021 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5022 * creation by disabling cgroup_lock_live_group().
455050d2 5023 */
184faf32 5024 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5025
249f3468 5026 /* initiate massacre of all css's */
1c6727af
TH
5027 for_each_css(css, ssid, cgrp)
5028 kill_css(css);
455050d2 5029
455050d2 5030 /*
01f6474c
TH
5031 * Remove @cgrp directory along with the base files. @cgrp has an
5032 * extra ref on its kn.
f20104de 5033 */
01f6474c 5034 kernfs_remove(cgrp->kn);
f20104de 5035
d51f39b0 5036 check_for_release(cgroup_parent(cgrp));
2bd59d48 5037
249f3468 5038 /* put the base reference */
9d755d33 5039 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5040
ea15f8cc
TH
5041 return 0;
5042};
5043
2bd59d48 5044static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5045{
a9746d8d 5046 struct cgroup *cgrp;
2bd59d48 5047 int ret = 0;
42809dd4 5048
a9746d8d
TH
5049 cgrp = cgroup_kn_lock_live(kn);
5050 if (!cgrp)
5051 return 0;
42809dd4 5052
a9746d8d 5053 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5054
a9746d8d 5055 cgroup_kn_unlock(kn);
42809dd4 5056 return ret;
8e3f6541
TH
5057}
5058
2bd59d48
TH
5059static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5060 .remount_fs = cgroup_remount,
5061 .show_options = cgroup_show_options,
5062 .mkdir = cgroup_mkdir,
5063 .rmdir = cgroup_rmdir,
5064 .rename = cgroup_rename,
5065};
5066
15a4c835 5067static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5068{
ddbcc7e8 5069 struct cgroup_subsys_state *css;
cfe36bde
DC
5070
5071 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5072
648bb56d
TH
5073 mutex_lock(&cgroup_mutex);
5074
15a4c835 5075 idr_init(&ss->css_idr);
0adb0704 5076 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5077
3dd06ffa
TH
5078 /* Create the root cgroup state for this subsystem */
5079 ss->root = &cgrp_dfl_root;
5080 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5081 /* We don't handle early failures gracefully */
5082 BUG_ON(IS_ERR(css));
ddfcadab 5083 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5084
5085 /*
5086 * Root csses are never destroyed and we can't initialize
5087 * percpu_ref during early init. Disable refcnting.
5088 */
5089 css->flags |= CSS_NO_REF;
5090
15a4c835 5091 if (early) {
9395a450 5092 /* allocation can't be done safely during early init */
15a4c835
TH
5093 css->id = 1;
5094 } else {
5095 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5096 BUG_ON(css->id < 0);
5097 }
ddbcc7e8 5098
e8d55fde 5099 /* Update the init_css_set to contain a subsys
817929ec 5100 * pointer to this state - since the subsystem is
e8d55fde 5101 * newly registered, all tasks and hence the
3dd06ffa 5102 * init_css_set is in the subsystem's root cgroup. */
aec25020 5103 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5104
cb4a3167
AS
5105 have_fork_callback |= (bool)ss->fork << ss->id;
5106 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5107 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5108
e8d55fde
LZ
5109 /* At system boot, before all subsystems have been
5110 * registered, no tasks have been forked, so we don't
5111 * need to invoke fork callbacks here. */
5112 BUG_ON(!list_empty(&init_task.tasks));
5113
ae7f164a 5114 BUG_ON(online_css(css));
a8638030 5115
cf5d5941
BB
5116 mutex_unlock(&cgroup_mutex);
5117}
cf5d5941 5118
ddbcc7e8 5119/**
a043e3b2
LZ
5120 * cgroup_init_early - cgroup initialization at system boot
5121 *
5122 * Initialize cgroups at system boot, and initialize any
5123 * subsystems that request early init.
ddbcc7e8
PM
5124 */
5125int __init cgroup_init_early(void)
5126{
7b9a6ba5 5127 static struct cgroup_sb_opts __initdata opts;
30159ec7 5128 struct cgroup_subsys *ss;
ddbcc7e8 5129 int i;
30159ec7 5130
3dd06ffa 5131 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5132 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5133
a4ea1cc9 5134 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5135
3ed80a62 5136 for_each_subsys(ss, i) {
aec25020 5137 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5138 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5139 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5140 ss->id, ss->name);
073219e9
TH
5141 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5142 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5143
aec25020 5144 ss->id = i;
073219e9 5145 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5146 if (!ss->legacy_name)
5147 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5148
5149 if (ss->early_init)
15a4c835 5150 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5151 }
5152 return 0;
5153}
5154
5155/**
a043e3b2
LZ
5156 * cgroup_init - cgroup initialization
5157 *
5158 * Register cgroup filesystem and /proc file, and initialize
5159 * any subsystems that didn't request early init.
ddbcc7e8
PM
5160 */
5161int __init cgroup_init(void)
5162{
30159ec7 5163 struct cgroup_subsys *ss;
0ac801fe 5164 unsigned long key;
172a2c06 5165 int ssid, err;
ddbcc7e8 5166
1ed13287 5167 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5168 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5169 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5170
54e7b4eb 5171 mutex_lock(&cgroup_mutex);
54e7b4eb 5172
82fe9b0d
TH
5173 /* Add init_css_set to the hash table */
5174 key = css_set_hash(init_css_set.subsys);
5175 hash_add(css_set_table, &init_css_set.hlist, key);
5176
3dd06ffa 5177 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5178
54e7b4eb
TH
5179 mutex_unlock(&cgroup_mutex);
5180
172a2c06 5181 for_each_subsys(ss, ssid) {
15a4c835
TH
5182 if (ss->early_init) {
5183 struct cgroup_subsys_state *css =
5184 init_css_set.subsys[ss->id];
5185
5186 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5187 GFP_KERNEL);
5188 BUG_ON(css->id < 0);
5189 } else {
5190 cgroup_init_subsys(ss, false);
5191 }
172a2c06 5192
2d8f243a
TH
5193 list_add_tail(&init_css_set.e_cset_node[ssid],
5194 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5195
5196 /*
c731ae1d
LZ
5197 * Setting dfl_root subsys_mask needs to consider the
5198 * disabled flag and cftype registration needs kmalloc,
5199 * both of which aren't available during early_init.
172a2c06 5200 */
fc5ed1e9 5201 if (!cgroup_ssid_enabled(ssid))
a8ddc821
TH
5202 continue;
5203
5204 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5205
5206 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5207 ss->dfl_cftypes = ss->legacy_cftypes;
5208
5de4fa13
TH
5209 if (!ss->dfl_cftypes)
5210 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5211
a8ddc821
TH
5212 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5213 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5214 } else {
5215 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5216 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5217 }
295458e6
VD
5218
5219 if (ss->bind)
5220 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5221 }
5222
f9bb4882
EB
5223 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5224 if (err)
5225 return err;
676db4af 5226
ddbcc7e8 5227 err = register_filesystem(&cgroup_fs_type);
676db4af 5228 if (err < 0) {
f9bb4882 5229 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5230 return err;
676db4af 5231 }
ddbcc7e8 5232
46ae220b 5233 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5234 return 0;
ddbcc7e8 5235}
b4f48b63 5236
e5fca243
TH
5237static int __init cgroup_wq_init(void)
5238{
5239 /*
5240 * There isn't much point in executing destruction path in
5241 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5242 * Use 1 for @max_active.
e5fca243
TH
5243 *
5244 * We would prefer to do this in cgroup_init() above, but that
5245 * is called before init_workqueues(): so leave this until after.
5246 */
1a11533f 5247 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5248 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5249
5250 /*
5251 * Used to destroy pidlists and separate to serve as flush domain.
5252 * Cap @max_active to 1 too.
5253 */
5254 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5255 0, 1);
5256 BUG_ON(!cgroup_pidlist_destroy_wq);
5257
e5fca243
TH
5258 return 0;
5259}
5260core_initcall(cgroup_wq_init);
5261
a424316c
PM
5262/*
5263 * proc_cgroup_show()
5264 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5265 * - Used for /proc/<pid>/cgroup.
a424316c 5266 */
006f4ac4
ZL
5267int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5268 struct pid *pid, struct task_struct *tsk)
a424316c 5269{
e61734c5 5270 char *buf, *path;
a424316c 5271 int retval;
3dd06ffa 5272 struct cgroup_root *root;
a424316c
PM
5273
5274 retval = -ENOMEM;
e61734c5 5275 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5276 if (!buf)
5277 goto out;
5278
a424316c 5279 mutex_lock(&cgroup_mutex);
96d365e0 5280 down_read(&css_set_rwsem);
a424316c 5281
985ed670 5282 for_each_root(root) {
a424316c 5283 struct cgroup_subsys *ss;
bd89aabc 5284 struct cgroup *cgrp;
b85d2040 5285 int ssid, count = 0;
a424316c 5286
a2dd4247 5287 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5288 continue;
5289
2c6ab6d2 5290 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5291 if (root != &cgrp_dfl_root)
5292 for_each_subsys(ss, ssid)
5293 if (root->subsys_mask & (1 << ssid))
5294 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5295 ss->legacy_name);
c6d57f33
PM
5296 if (strlen(root->name))
5297 seq_printf(m, "%sname=%s", count ? "," : "",
5298 root->name);
a424316c 5299 seq_putc(m, ':');
7717f7ba 5300 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5301 path = cgroup_path(cgrp, buf, PATH_MAX);
5302 if (!path) {
5303 retval = -ENAMETOOLONG;
a424316c 5304 goto out_unlock;
e61734c5
TH
5305 }
5306 seq_puts(m, path);
a424316c
PM
5307 seq_putc(m, '\n');
5308 }
5309
006f4ac4 5310 retval = 0;
a424316c 5311out_unlock:
96d365e0 5312 up_read(&css_set_rwsem);
a424316c 5313 mutex_unlock(&cgroup_mutex);
a424316c
PM
5314 kfree(buf);
5315out:
5316 return retval;
5317}
5318
a424316c
PM
5319/* Display information about each subsystem and each hierarchy */
5320static int proc_cgroupstats_show(struct seq_file *m, void *v)
5321{
30159ec7 5322 struct cgroup_subsys *ss;
a424316c 5323 int i;
a424316c 5324
8bab8dde 5325 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5326 /*
5327 * ideally we don't want subsystems moving around while we do this.
5328 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5329 * subsys/hierarchy state.
5330 */
a424316c 5331 mutex_lock(&cgroup_mutex);
30159ec7
TH
5332
5333 for_each_subsys(ss, i)
2c6ab6d2 5334 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5335 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5336 atomic_read(&ss->root->nr_cgrps),
5337 cgroup_ssid_enabled(i));
30159ec7 5338
a424316c
PM
5339 mutex_unlock(&cgroup_mutex);
5340 return 0;
5341}
5342
5343static int cgroupstats_open(struct inode *inode, struct file *file)
5344{
9dce07f1 5345 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5346}
5347
828c0950 5348static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5349 .open = cgroupstats_open,
5350 .read = seq_read,
5351 .llseek = seq_lseek,
5352 .release = single_release,
5353};
5354
7e47682e
AS
5355static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5356{
5357 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5358 return &ss_priv[i - CGROUP_CANFORK_START];
5359 return NULL;
5360}
5361
5362static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5363{
5364 void **private = subsys_canfork_priv_p(ss_priv, i);
5365 return private ? *private : NULL;
5366}
5367
b4f48b63 5368/**
eaf797ab 5369 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5370 * @child: pointer to task_struct of forking parent process.
b4f48b63 5371 *
eaf797ab
TH
5372 * A task is associated with the init_css_set until cgroup_post_fork()
5373 * attaches it to the parent's css_set. Empty cg_list indicates that
5374 * @child isn't holding reference to its css_set.
b4f48b63
PM
5375 */
5376void cgroup_fork(struct task_struct *child)
5377{
eaf797ab 5378 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5379 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5380}
5381
7e47682e
AS
5382/**
5383 * cgroup_can_fork - called on a new task before the process is exposed
5384 * @child: the task in question.
5385 *
5386 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5387 * returns an error, the fork aborts with that error code. This allows for
5388 * a cgroup subsystem to conditionally allow or deny new forks.
5389 */
5390int cgroup_can_fork(struct task_struct *child,
5391 void *ss_priv[CGROUP_CANFORK_COUNT])
5392{
5393 struct cgroup_subsys *ss;
5394 int i, j, ret;
5395
5396 for_each_subsys_which(ss, i, &have_canfork_callback) {
5397 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5398 if (ret)
5399 goto out_revert;
5400 }
5401
5402 return 0;
5403
5404out_revert:
5405 for_each_subsys(ss, j) {
5406 if (j >= i)
5407 break;
5408 if (ss->cancel_fork)
5409 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5410 }
5411
5412 return ret;
5413}
5414
5415/**
5416 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5417 * @child: the task in question
5418 *
5419 * This calls the cancel_fork() callbacks if a fork failed *after*
5420 * cgroup_can_fork() succeded.
5421 */
5422void cgroup_cancel_fork(struct task_struct *child,
5423 void *ss_priv[CGROUP_CANFORK_COUNT])
5424{
5425 struct cgroup_subsys *ss;
5426 int i;
5427
5428 for_each_subsys(ss, i)
5429 if (ss->cancel_fork)
5430 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5431}
5432
817929ec 5433/**
a043e3b2
LZ
5434 * cgroup_post_fork - called on a new task after adding it to the task list
5435 * @child: the task in question
5436 *
5edee61e
TH
5437 * Adds the task to the list running through its css_set if necessary and
5438 * call the subsystem fork() callbacks. Has to be after the task is
5439 * visible on the task list in case we race with the first call to
0942eeee 5440 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5441 * list.
a043e3b2 5442 */
7e47682e
AS
5443void cgroup_post_fork(struct task_struct *child,
5444 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5445{
30159ec7 5446 struct cgroup_subsys *ss;
5edee61e
TH
5447 int i;
5448
3ce3230a 5449 /*
251f8c03 5450 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5451 * function sets use_task_css_set_links before grabbing
5452 * tasklist_lock and we just went through tasklist_lock to add
5453 * @child, it's guaranteed that either we see the set
5454 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5455 * @child during its iteration.
5456 *
5457 * If we won the race, @child is associated with %current's
5458 * css_set. Grabbing css_set_rwsem guarantees both that the
5459 * association is stable, and, on completion of the parent's
5460 * migration, @child is visible in the source of migration or
5461 * already in the destination cgroup. This guarantee is necessary
5462 * when implementing operations which need to migrate all tasks of
5463 * a cgroup to another.
5464 *
251f8c03 5465 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5466 * will remain in init_css_set. This is safe because all tasks are
5467 * in the init_css_set before cg_links is enabled and there's no
5468 * operation which transfers all tasks out of init_css_set.
3ce3230a 5469 */
817929ec 5470 if (use_task_css_set_links) {
eaf797ab
TH
5471 struct css_set *cset;
5472
96d365e0 5473 down_write(&css_set_rwsem);
0e1d768f 5474 cset = task_css_set(current);
eaf797ab
TH
5475 if (list_empty(&child->cg_list)) {
5476 rcu_assign_pointer(child->cgroups, cset);
5477 list_add(&child->cg_list, &cset->tasks);
5478 get_css_set(cset);
5479 }
96d365e0 5480 up_write(&css_set_rwsem);
817929ec 5481 }
5edee61e
TH
5482
5483 /*
5484 * Call ss->fork(). This must happen after @child is linked on
5485 * css_set; otherwise, @child might change state between ->fork()
5486 * and addition to css_set.
5487 */
cb4a3167 5488 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5489 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5490}
5edee61e 5491
b4f48b63
PM
5492/**
5493 * cgroup_exit - detach cgroup from exiting task
5494 * @tsk: pointer to task_struct of exiting process
5495 *
5496 * Description: Detach cgroup from @tsk and release it.
5497 *
5498 * Note that cgroups marked notify_on_release force every task in
5499 * them to take the global cgroup_mutex mutex when exiting.
5500 * This could impact scaling on very large systems. Be reluctant to
5501 * use notify_on_release cgroups where very high task exit scaling
5502 * is required on large systems.
5503 *
0e1d768f
TH
5504 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5505 * call cgroup_exit() while the task is still competent to handle
5506 * notify_on_release(), then leave the task attached to the root cgroup in
5507 * each hierarchy for the remainder of its exit. No need to bother with
5508 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5509 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5510 */
1ec41830 5511void cgroup_exit(struct task_struct *tsk)
b4f48b63 5512{
30159ec7 5513 struct cgroup_subsys *ss;
5abb8855 5514 struct css_set *cset;
eaf797ab 5515 bool put_cset = false;
d41d5a01 5516 int i;
817929ec
PM
5517
5518 /*
0e1d768f
TH
5519 * Unlink from @tsk from its css_set. As migration path can't race
5520 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5521 */
5522 if (!list_empty(&tsk->cg_list)) {
96d365e0 5523 down_write(&css_set_rwsem);
0e1d768f 5524 list_del_init(&tsk->cg_list);
96d365e0 5525 up_write(&css_set_rwsem);
0e1d768f 5526 put_cset = true;
817929ec
PM
5527 }
5528
b4f48b63 5529 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5530 cset = task_css_set(tsk);
5531 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5532
cb4a3167
AS
5533 /* see cgroup_post_fork() for details */
5534 for_each_subsys_which(ss, i, &have_exit_callback) {
5535 struct cgroup_subsys_state *old_css = cset->subsys[i];
5536 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5537
cb4a3167 5538 ss->exit(css, old_css, tsk);
d41d5a01 5539 }
d41d5a01 5540
eaf797ab 5541 if (put_cset)
a25eb52e 5542 put_css_set(cset);
b4f48b63 5543}
697f4161 5544
bd89aabc 5545static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5546{
a25eb52e 5547 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5548 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5549 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5550}
5551
81a6a5cd
PM
5552/*
5553 * Notify userspace when a cgroup is released, by running the
5554 * configured release agent with the name of the cgroup (path
5555 * relative to the root of cgroup file system) as the argument.
5556 *
5557 * Most likely, this user command will try to rmdir this cgroup.
5558 *
5559 * This races with the possibility that some other task will be
5560 * attached to this cgroup before it is removed, or that some other
5561 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5562 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5563 * unused, and this cgroup will be reprieved from its death sentence,
5564 * to continue to serve a useful existence. Next time it's released,
5565 * we will get notified again, if it still has 'notify_on_release' set.
5566 *
5567 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5568 * means only wait until the task is successfully execve()'d. The
5569 * separate release agent task is forked by call_usermodehelper(),
5570 * then control in this thread returns here, without waiting for the
5571 * release agent task. We don't bother to wait because the caller of
5572 * this routine has no use for the exit status of the release agent
5573 * task, so no sense holding our caller up for that.
81a6a5cd 5574 */
81a6a5cd
PM
5575static void cgroup_release_agent(struct work_struct *work)
5576{
971ff493
ZL
5577 struct cgroup *cgrp =
5578 container_of(work, struct cgroup, release_agent_work);
5579 char *pathbuf = NULL, *agentbuf = NULL, *path;
5580 char *argv[3], *envp[3];
5581
81a6a5cd 5582 mutex_lock(&cgroup_mutex);
971ff493
ZL
5583
5584 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5585 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5586 if (!pathbuf || !agentbuf)
5587 goto out;
5588
5589 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5590 if (!path)
5591 goto out;
5592
5593 argv[0] = agentbuf;
5594 argv[1] = path;
5595 argv[2] = NULL;
5596
5597 /* minimal command environment */
5598 envp[0] = "HOME=/";
5599 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5600 envp[2] = NULL;
5601
81a6a5cd 5602 mutex_unlock(&cgroup_mutex);
971ff493 5603 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5604 goto out_free;
971ff493 5605out:
81a6a5cd 5606 mutex_unlock(&cgroup_mutex);
3e2cd91a 5607out_free:
971ff493
ZL
5608 kfree(agentbuf);
5609 kfree(pathbuf);
81a6a5cd 5610}
8bab8dde
PM
5611
5612static int __init cgroup_disable(char *str)
5613{
30159ec7 5614 struct cgroup_subsys *ss;
8bab8dde 5615 char *token;
30159ec7 5616 int i;
8bab8dde
PM
5617
5618 while ((token = strsep(&str, ",")) != NULL) {
5619 if (!*token)
5620 continue;
be45c900 5621
3ed80a62 5622 for_each_subsys(ss, i) {
3e1d2eed
TH
5623 if (strcmp(token, ss->name) &&
5624 strcmp(token, ss->legacy_name))
5625 continue;
5626
49d1dc4b 5627 static_branch_disable(cgroup_subsys_enabled_key[i]);
3e1d2eed
TH
5628 printk(KERN_INFO "Disabling %s control group subsystem\n",
5629 ss->name);
5630 break;
8bab8dde
PM
5631 }
5632 }
5633 return 1;
5634}
5635__setup("cgroup_disable=", cgroup_disable);
38460b48 5636
a8ddc821
TH
5637static int __init cgroup_set_legacy_files_on_dfl(char *str)
5638{
5639 printk("cgroup: using legacy files on the default hierarchy\n");
5640 cgroup_legacy_files_on_dfl = true;
5641 return 0;
5642}
5643__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5644
b77d7b60 5645/**
ec903c0c 5646 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5647 * @dentry: directory dentry of interest
5648 * @ss: subsystem of interest
b77d7b60 5649 *
5a17f543
TH
5650 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5651 * to get the corresponding css and return it. If such css doesn't exist
5652 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5653 */
ec903c0c
TH
5654struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5655 struct cgroup_subsys *ss)
e5d1367f 5656{
2bd59d48
TH
5657 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5658 struct cgroup_subsys_state *css = NULL;
e5d1367f 5659 struct cgroup *cgrp;
e5d1367f 5660
35cf0836 5661 /* is @dentry a cgroup dir? */
2bd59d48
TH
5662 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5663 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5664 return ERR_PTR(-EBADF);
5665
5a17f543
TH
5666 rcu_read_lock();
5667
2bd59d48
TH
5668 /*
5669 * This path doesn't originate from kernfs and @kn could already
5670 * have been or be removed at any point. @kn->priv is RCU
a4189487 5671 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5672 */
5673 cgrp = rcu_dereference(kn->priv);
5674 if (cgrp)
5675 css = cgroup_css(cgrp, ss);
5a17f543 5676
ec903c0c 5677 if (!css || !css_tryget_online(css))
5a17f543
TH
5678 css = ERR_PTR(-ENOENT);
5679
5680 rcu_read_unlock();
5681 return css;
e5d1367f 5682}
e5d1367f 5683
1cb650b9
LZ
5684/**
5685 * css_from_id - lookup css by id
5686 * @id: the cgroup id
5687 * @ss: cgroup subsys to be looked into
5688 *
5689 * Returns the css if there's valid one with @id, otherwise returns NULL.
5690 * Should be called under rcu_read_lock().
5691 */
5692struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5693{
6fa4918d 5694 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5695 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5696}
5697
fe693435 5698#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5699static struct cgroup_subsys_state *
5700debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5701{
5702 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5703
5704 if (!css)
5705 return ERR_PTR(-ENOMEM);
5706
5707 return css;
5708}
5709
eb95419b 5710static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5711{
eb95419b 5712 kfree(css);
fe693435
PM
5713}
5714
182446d0
TH
5715static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5716 struct cftype *cft)
fe693435 5717{
182446d0 5718 return cgroup_task_count(css->cgroup);
fe693435
PM
5719}
5720
182446d0
TH
5721static u64 current_css_set_read(struct cgroup_subsys_state *css,
5722 struct cftype *cft)
fe693435
PM
5723{
5724 return (u64)(unsigned long)current->cgroups;
5725}
5726
182446d0 5727static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5728 struct cftype *cft)
fe693435
PM
5729{
5730 u64 count;
5731
5732 rcu_read_lock();
a8ad805c 5733 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5734 rcu_read_unlock();
5735 return count;
5736}
5737
2da8ca82 5738static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5739{
69d0206c 5740 struct cgrp_cset_link *link;
5abb8855 5741 struct css_set *cset;
e61734c5
TH
5742 char *name_buf;
5743
5744 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5745 if (!name_buf)
5746 return -ENOMEM;
7717f7ba 5747
96d365e0 5748 down_read(&css_set_rwsem);
7717f7ba 5749 rcu_read_lock();
5abb8855 5750 cset = rcu_dereference(current->cgroups);
69d0206c 5751 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5752 struct cgroup *c = link->cgrp;
7717f7ba 5753
a2dd4247 5754 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5755 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5756 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5757 }
5758 rcu_read_unlock();
96d365e0 5759 up_read(&css_set_rwsem);
e61734c5 5760 kfree(name_buf);
7717f7ba
PM
5761 return 0;
5762}
5763
5764#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5765static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5766{
2da8ca82 5767 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5768 struct cgrp_cset_link *link;
7717f7ba 5769
96d365e0 5770 down_read(&css_set_rwsem);
182446d0 5771 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5772 struct css_set *cset = link->cset;
7717f7ba
PM
5773 struct task_struct *task;
5774 int count = 0;
c7561128 5775
5abb8855 5776 seq_printf(seq, "css_set %p\n", cset);
c7561128 5777
5abb8855 5778 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5779 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5780 goto overflow;
5781 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5782 }
5783
5784 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5785 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5786 goto overflow;
5787 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5788 }
c7561128
TH
5789 continue;
5790 overflow:
5791 seq_puts(seq, " ...\n");
7717f7ba 5792 }
96d365e0 5793 up_read(&css_set_rwsem);
7717f7ba
PM
5794 return 0;
5795}
5796
182446d0 5797static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5798{
a25eb52e
ZL
5799 return (!cgroup_has_tasks(css->cgroup) &&
5800 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5801}
5802
5803static struct cftype debug_files[] = {
fe693435
PM
5804 {
5805 .name = "taskcount",
5806 .read_u64 = debug_taskcount_read,
5807 },
5808
5809 {
5810 .name = "current_css_set",
5811 .read_u64 = current_css_set_read,
5812 },
5813
5814 {
5815 .name = "current_css_set_refcount",
5816 .read_u64 = current_css_set_refcount_read,
5817 },
5818
7717f7ba
PM
5819 {
5820 .name = "current_css_set_cg_links",
2da8ca82 5821 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5822 },
5823
5824 {
5825 .name = "cgroup_css_links",
2da8ca82 5826 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5827 },
5828
fe693435
PM
5829 {
5830 .name = "releasable",
5831 .read_u64 = releasable_read,
5832 },
fe693435 5833
4baf6e33
TH
5834 { } /* terminate */
5835};
fe693435 5836
073219e9 5837struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5838 .css_alloc = debug_css_alloc,
5839 .css_free = debug_css_free,
5577964e 5840 .legacy_cftypes = debug_files,
fe693435
PM
5841};
5842#endif /* CONFIG_CGROUP_DEBUG */