cgroup: fix RCU accesses around task->cgroups
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
9871bf95
TH
189static LIST_HEAD(cgroup_roots);
190static int cgroup_root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
ea15f8cc 218static void cgroup_offline_fn(struct work_struct *work);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
220static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
42809dd4 222
ddbcc7e8 223/* convenient tests for these bits */
54766d4a 224static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 225{
54766d4a 226 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
227}
228
78574cf9
LZ
229/**
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
233 *
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
237 */
238bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
239{
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
244 }
245 return false;
246}
247EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 248
e9685a03 249static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
250{
251 const int bits =
bd89aabc
PM
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
255}
256
e9685a03 257static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 258{
bd89aabc 259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
260}
261
30159ec7
TH
262/**
263 * for_each_subsys - iterate all loaded cgroup subsystems
264 * @ss: the iteration cursor
265 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
266 *
267 * Should be called under cgroup_mutex.
268 */
269#define for_each_subsys(ss, i) \
270 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
271 if (({ lockdep_assert_held(&cgroup_mutex); \
272 !((ss) = cgroup_subsys[i]); })) { } \
273 else
274
275/**
276 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
277 * @ss: the iteration cursor
278 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
279 *
280 * Bulit-in subsystems are always present and iteration itself doesn't
281 * require any synchronization.
282 */
283#define for_each_builtin_subsys(ss, i) \
284 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
285 (((ss) = cgroup_subsys[i]) || true); (i)++)
286
5549c497
TH
287/* iterate each subsystem attached to a hierarchy */
288#define for_each_root_subsys(root, ss) \
289 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 290
5549c497
TH
291/* iterate across the active hierarchies */
292#define for_each_active_root(root) \
293 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 294
f6ea9372
TH
295static inline struct cgroup *__d_cgrp(struct dentry *dentry)
296{
297 return dentry->d_fsdata;
298}
299
05ef1d7c 300static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
301{
302 return dentry->d_fsdata;
303}
304
05ef1d7c
TH
305static inline struct cftype *__d_cft(struct dentry *dentry)
306{
307 return __d_cfe(dentry)->type;
308}
309
7ae1bad9
TH
310/**
311 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
312 * @cgrp: the cgroup to be checked for liveness
313 *
47cfcd09
TH
314 * On success, returns true; the mutex should be later unlocked. On
315 * failure returns false with no lock held.
7ae1bad9 316 */
b9777cf8 317static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
318{
319 mutex_lock(&cgroup_mutex);
54766d4a 320 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
321 mutex_unlock(&cgroup_mutex);
322 return false;
323 }
324 return true;
325}
7ae1bad9 326
81a6a5cd
PM
327/* the list of cgroups eligible for automatic release. Protected by
328 * release_list_lock */
329static LIST_HEAD(release_list);
cdcc136f 330static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
331static void cgroup_release_agent(struct work_struct *work);
332static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 333static void check_for_release(struct cgroup *cgrp);
81a6a5cd 334
69d0206c
TH
335/*
336 * A cgroup can be associated with multiple css_sets as different tasks may
337 * belong to different cgroups on different hierarchies. In the other
338 * direction, a css_set is naturally associated with multiple cgroups.
339 * This M:N relationship is represented by the following link structure
340 * which exists for each association and allows traversing the associations
341 * from both sides.
342 */
343struct cgrp_cset_link {
344 /* the cgroup and css_set this link associates */
345 struct cgroup *cgrp;
346 struct css_set *cset;
347
348 /* list of cgrp_cset_links anchored at cgrp->cset_links */
349 struct list_head cset_link;
350
351 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
352 struct list_head cgrp_link;
817929ec
PM
353};
354
355/* The default css_set - used by init and its children prior to any
356 * hierarchies being mounted. It contains a pointer to the root state
357 * for each subsystem. Also used to anchor the list of css_sets. Not
358 * reference-counted, to improve performance when child cgroups
359 * haven't been created.
360 */
361
362static struct css_set init_css_set;
69d0206c 363static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 364
e6a1105b
BB
365static int cgroup_init_idr(struct cgroup_subsys *ss,
366 struct cgroup_subsys_state *css);
38460b48 367
817929ec
PM
368/* css_set_lock protects the list of css_set objects, and the
369 * chain of tasks off each css_set. Nests outside task->alloc_lock
370 * due to cgroup_iter_start() */
371static DEFINE_RWLOCK(css_set_lock);
372static int css_set_count;
373
7717f7ba
PM
374/*
375 * hash table for cgroup groups. This improves the performance to find
376 * an existing css_set. This hash doesn't (currently) take into
377 * account cgroups in empty hierarchies.
378 */
472b1053 379#define CSS_SET_HASH_BITS 7
0ac801fe 380static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 381
0ac801fe 382static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 383{
0ac801fe 384 unsigned long key = 0UL;
30159ec7
TH
385 struct cgroup_subsys *ss;
386 int i;
472b1053 387
30159ec7 388 for_each_subsys(ss, i)
0ac801fe
LZ
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
472b1053 391
0ac801fe 392 return key;
472b1053
LZ
393}
394
817929ec
PM
395/* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
8947f9d5 399static int use_task_css_set_links __read_mostly;
817929ec 400
5abb8855 401static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 402{
69d0206c 403 struct cgrp_cset_link *link, *tmp_link;
5abb8855 404
146aa1bd
LJ
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
5abb8855 410 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
411 return;
412 write_lock(&css_set_lock);
5abb8855 413 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
414 write_unlock(&css_set_lock);
415 return;
416 }
81a6a5cd 417
2c6ab6d2 418 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 419 hash_del(&cset->hlist);
2c6ab6d2
PM
420 css_set_count--;
421
69d0206c 422 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 423 struct cgroup *cgrp = link->cgrp;
5abb8855 424
69d0206c
TH
425 list_del(&link->cset_link);
426 list_del(&link->cgrp_link);
71b5707e 427
ddd69148 428 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 429 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 430 if (taskexit)
bd89aabc
PM
431 set_bit(CGRP_RELEASABLE, &cgrp->flags);
432 check_for_release(cgrp);
81a6a5cd 433 }
2c6ab6d2
PM
434
435 kfree(link);
81a6a5cd 436 }
2c6ab6d2
PM
437
438 write_unlock(&css_set_lock);
5abb8855 439 kfree_rcu(cset, rcu_head);
b4f48b63
PM
440}
441
817929ec
PM
442/*
443 * refcounted get/put for css_set objects
444 */
5abb8855 445static inline void get_css_set(struct css_set *cset)
817929ec 446{
5abb8855 447 atomic_inc(&cset->refcount);
817929ec
PM
448}
449
5abb8855 450static inline void put_css_set(struct css_set *cset)
817929ec 451{
5abb8855 452 __put_css_set(cset, 0);
817929ec
PM
453}
454
5abb8855 455static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 456{
5abb8855 457 __put_css_set(cset, 1);
81a6a5cd
PM
458}
459
b326f9d0 460/**
7717f7ba 461 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
462 * @cset: candidate css_set being tested
463 * @old_cset: existing css_set for a task
7717f7ba
PM
464 * @new_cgrp: cgroup that's being entered by the task
465 * @template: desired set of css pointers in css_set (pre-calculated)
466 *
467 * Returns true if "cg" matches "old_cg" except for the hierarchy
468 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 */
5abb8855
TH
470static bool compare_css_sets(struct css_set *cset,
471 struct css_set *old_cset,
7717f7ba
PM
472 struct cgroup *new_cgrp,
473 struct cgroup_subsys_state *template[])
474{
475 struct list_head *l1, *l2;
476
5abb8855 477 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
478 /* Not all subsystems matched */
479 return false;
480 }
481
482 /*
483 * Compare cgroup pointers in order to distinguish between
484 * different cgroups in heirarchies with no subsystems. We
485 * could get by with just this check alone (and skip the
486 * memcmp above) but on most setups the memcmp check will
487 * avoid the need for this more expensive check on almost all
488 * candidates.
489 */
490
69d0206c
TH
491 l1 = &cset->cgrp_links;
492 l2 = &old_cset->cgrp_links;
7717f7ba 493 while (1) {
69d0206c 494 struct cgrp_cset_link *link1, *link2;
5abb8855 495 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
496
497 l1 = l1->next;
498 l2 = l2->next;
499 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
500 if (l1 == &cset->cgrp_links) {
501 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
502 break;
503 } else {
69d0206c 504 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
505 }
506 /* Locate the cgroups associated with these links. */
69d0206c
TH
507 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
508 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
509 cgrp1 = link1->cgrp;
510 cgrp2 = link2->cgrp;
7717f7ba 511 /* Hierarchies should be linked in the same order. */
5abb8855 512 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
513
514 /*
515 * If this hierarchy is the hierarchy of the cgroup
516 * that's changing, then we need to check that this
517 * css_set points to the new cgroup; if it's any other
518 * hierarchy, then this css_set should point to the
519 * same cgroup as the old css_set.
520 */
5abb8855
TH
521 if (cgrp1->root == new_cgrp->root) {
522 if (cgrp1 != new_cgrp)
7717f7ba
PM
523 return false;
524 } else {
5abb8855 525 if (cgrp1 != cgrp2)
7717f7ba
PM
526 return false;
527 }
528 }
529 return true;
530}
531
b326f9d0
TH
532/**
533 * find_existing_css_set - init css array and find the matching css_set
534 * @old_cset: the css_set that we're using before the cgroup transition
535 * @cgrp: the cgroup that we're moving into
536 * @template: out param for the new set of csses, should be clear on entry
817929ec 537 */
5abb8855
TH
538static struct css_set *find_existing_css_set(struct css_set *old_cset,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
b4f48b63 541{
bd89aabc 542 struct cgroupfs_root *root = cgrp->root;
30159ec7 543 struct cgroup_subsys *ss;
5abb8855 544 struct css_set *cset;
0ac801fe 545 unsigned long key;
b326f9d0 546 int i;
817929ec 547
aae8aab4
BB
548 /*
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
552 */
30159ec7 553 for_each_subsys(ss, i) {
a1a71b45 554 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
bd89aabc 558 template[i] = cgrp->subsys[i];
817929ec
PM
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
5abb8855 562 template[i] = old_cset->subsys[i];
817929ec
PM
563 }
564 }
565
0ac801fe 566 key = css_set_hash(template);
5abb8855
TH
567 hash_for_each_possible(css_set_table, cset, hlist, key) {
568 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
569 continue;
570
571 /* This css_set matches what we need */
5abb8855 572 return cset;
472b1053 573 }
817929ec
PM
574
575 /* No existing cgroup group matched */
576 return NULL;
577}
578
69d0206c 579static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 580{
69d0206c 581 struct cgrp_cset_link *link, *tmp_link;
36553434 582
69d0206c
TH
583 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
584 list_del(&link->cset_link);
36553434
LZ
585 kfree(link);
586 }
587}
588
69d0206c
TH
589/**
590 * allocate_cgrp_cset_links - allocate cgrp_cset_links
591 * @count: the number of links to allocate
592 * @tmp_links: list_head the allocated links are put on
593 *
594 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
595 * through ->cset_link. Returns 0 on success or -errno.
817929ec 596 */
69d0206c 597static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 598{
69d0206c 599 struct cgrp_cset_link *link;
817929ec 600 int i;
69d0206c
TH
601
602 INIT_LIST_HEAD(tmp_links);
603
817929ec 604 for (i = 0; i < count; i++) {
f4f4be2b 605 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 606 if (!link) {
69d0206c 607 free_cgrp_cset_links(tmp_links);
817929ec
PM
608 return -ENOMEM;
609 }
69d0206c 610 list_add(&link->cset_link, tmp_links);
817929ec
PM
611 }
612 return 0;
613}
614
c12f65d4
LZ
615/**
616 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 617 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 618 * @cset: the css_set to be linked
c12f65d4
LZ
619 * @cgrp: the destination cgroup
620 */
69d0206c
TH
621static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
622 struct cgroup *cgrp)
c12f65d4 623{
69d0206c 624 struct cgrp_cset_link *link;
c12f65d4 625
69d0206c
TH
626 BUG_ON(list_empty(tmp_links));
627 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
628 link->cset = cset;
7717f7ba 629 link->cgrp = cgrp;
69d0206c 630 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
631 /*
632 * Always add links to the tail of the list so that the list
633 * is sorted by order of hierarchy creation
634 */
69d0206c 635 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
636}
637
b326f9d0
TH
638/**
639 * find_css_set - return a new css_set with one cgroup updated
640 * @old_cset: the baseline css_set
641 * @cgrp: the cgroup to be updated
642 *
643 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
644 * substituted into the appropriate hierarchy.
817929ec 645 */
5abb8855
TH
646static struct css_set *find_css_set(struct css_set *old_cset,
647 struct cgroup *cgrp)
817929ec 648{
b326f9d0 649 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 650 struct css_set *cset;
69d0206c
TH
651 struct list_head tmp_links;
652 struct cgrp_cset_link *link;
0ac801fe 653 unsigned long key;
472b1053 654
b326f9d0
TH
655 lockdep_assert_held(&cgroup_mutex);
656
817929ec
PM
657 /* First see if we already have a cgroup group that matches
658 * the desired set */
7e9abd89 659 read_lock(&css_set_lock);
5abb8855
TH
660 cset = find_existing_css_set(old_cset, cgrp, template);
661 if (cset)
662 get_css_set(cset);
7e9abd89 663 read_unlock(&css_set_lock);
817929ec 664
5abb8855
TH
665 if (cset)
666 return cset;
817929ec 667
f4f4be2b 668 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 669 if (!cset)
817929ec
PM
670 return NULL;
671
69d0206c 672 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 673 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 674 kfree(cset);
817929ec
PM
675 return NULL;
676 }
677
5abb8855 678 atomic_set(&cset->refcount, 1);
69d0206c 679 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
680 INIT_LIST_HEAD(&cset->tasks);
681 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
682
683 /* Copy the set of subsystem state objects generated in
684 * find_existing_css_set() */
5abb8855 685 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
686
687 write_lock(&css_set_lock);
688 /* Add reference counts and links from the new css_set. */
69d0206c 689 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 690 struct cgroup *c = link->cgrp;
69d0206c 691
7717f7ba
PM
692 if (c->root == cgrp->root)
693 c = cgrp;
69d0206c 694 link_css_set(&tmp_links, cset, c);
7717f7ba 695 }
817929ec 696
69d0206c 697 BUG_ON(!list_empty(&tmp_links));
817929ec 698
817929ec 699 css_set_count++;
472b1053
LZ
700
701 /* Add this cgroup group to the hash table */
5abb8855
TH
702 key = css_set_hash(cset->subsys);
703 hash_add(css_set_table, &cset->hlist, key);
472b1053 704
817929ec
PM
705 write_unlock(&css_set_lock);
706
5abb8855 707 return cset;
b4f48b63
PM
708}
709
7717f7ba
PM
710/*
711 * Return the cgroup for "task" from the given hierarchy. Must be
712 * called with cgroup_mutex held.
713 */
714static struct cgroup *task_cgroup_from_root(struct task_struct *task,
715 struct cgroupfs_root *root)
716{
5abb8855 717 struct css_set *cset;
7717f7ba
PM
718 struct cgroup *res = NULL;
719
720 BUG_ON(!mutex_is_locked(&cgroup_mutex));
721 read_lock(&css_set_lock);
722 /*
723 * No need to lock the task - since we hold cgroup_mutex the
724 * task can't change groups, so the only thing that can happen
725 * is that it exits and its css is set back to init_css_set.
726 */
a8ad805c 727 cset = task_css_set(task);
5abb8855 728 if (cset == &init_css_set) {
7717f7ba
PM
729 res = &root->top_cgroup;
730 } else {
69d0206c
TH
731 struct cgrp_cset_link *link;
732
733 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 734 struct cgroup *c = link->cgrp;
69d0206c 735
7717f7ba
PM
736 if (c->root == root) {
737 res = c;
738 break;
739 }
740 }
741 }
742 read_unlock(&css_set_lock);
743 BUG_ON(!res);
744 return res;
745}
746
ddbcc7e8
PM
747/*
748 * There is one global cgroup mutex. We also require taking
749 * task_lock() when dereferencing a task's cgroup subsys pointers.
750 * See "The task_lock() exception", at the end of this comment.
751 *
752 * A task must hold cgroup_mutex to modify cgroups.
753 *
754 * Any task can increment and decrement the count field without lock.
755 * So in general, code holding cgroup_mutex can't rely on the count
756 * field not changing. However, if the count goes to zero, then only
956db3ca 757 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
758 * means that no tasks are currently attached, therefore there is no
759 * way a task attached to that cgroup can fork (the other way to
760 * increment the count). So code holding cgroup_mutex can safely
761 * assume that if the count is zero, it will stay zero. Similarly, if
762 * a task holds cgroup_mutex on a cgroup with zero count, it
763 * knows that the cgroup won't be removed, as cgroup_rmdir()
764 * needs that mutex.
765 *
ddbcc7e8
PM
766 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
767 * (usually) take cgroup_mutex. These are the two most performance
768 * critical pieces of code here. The exception occurs on cgroup_exit(),
769 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
770 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
771 * to the release agent with the name of the cgroup (path relative to
772 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
773 *
774 * A cgroup can only be deleted if both its 'count' of using tasks
775 * is zero, and its list of 'children' cgroups is empty. Since all
776 * tasks in the system use _some_ cgroup, and since there is always at
777 * least one task in the system (init, pid == 1), therefore, top_cgroup
778 * always has either children cgroups and/or using tasks. So we don't
779 * need a special hack to ensure that top_cgroup cannot be deleted.
780 *
781 * The task_lock() exception
782 *
783 * The need for this exception arises from the action of
d0b2fdd2 784 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 785 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
786 * several performance critical places that need to reference
787 * task->cgroup without the expense of grabbing a system global
788 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 789 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
790 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
791 * the task_struct routinely used for such matters.
792 *
793 * P.S. One more locking exception. RCU is used to guard the
956db3ca 794 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
795 */
796
ddbcc7e8
PM
797/*
798 * A couple of forward declarations required, due to cyclic reference loop:
799 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
800 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
801 * -> cgroup_mkdir.
802 */
803
18bb1db3 804static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 805static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 806static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
807static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
808 unsigned long subsys_mask);
6e1d5dcc 809static const struct inode_operations cgroup_dir_inode_operations;
828c0950 810static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
811
812static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 813 .name = "cgroup",
e4ad08fe 814 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 815};
ddbcc7e8 816
38460b48
KH
817static int alloc_css_id(struct cgroup_subsys *ss,
818 struct cgroup *parent, struct cgroup *child);
819
a5e7ed32 820static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
821{
822 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
823
824 if (inode) {
85fe4025 825 inode->i_ino = get_next_ino();
ddbcc7e8 826 inode->i_mode = mode;
76aac0e9
DH
827 inode->i_uid = current_fsuid();
828 inode->i_gid = current_fsgid();
ddbcc7e8
PM
829 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
830 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
831 }
832 return inode;
833}
834
65dff759
LZ
835static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
836{
837 struct cgroup_name *name;
838
839 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
840 if (!name)
841 return NULL;
842 strcpy(name->name, dentry->d_name.name);
843 return name;
844}
845
be445626
LZ
846static void cgroup_free_fn(struct work_struct *work)
847{
ea15f8cc 848 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
849 struct cgroup_subsys *ss;
850
851 mutex_lock(&cgroup_mutex);
852 /*
853 * Release the subsystem state objects.
854 */
5549c497 855 for_each_root_subsys(cgrp->root, ss)
be445626
LZ
856 ss->css_free(cgrp);
857
858 cgrp->root->number_of_cgroups--;
859 mutex_unlock(&cgroup_mutex);
860
415cf07a
LZ
861 /*
862 * We get a ref to the parent's dentry, and put the ref when
863 * this cgroup is being freed, so it's guaranteed that the
864 * parent won't be destroyed before its children.
865 */
866 dput(cgrp->parent->dentry);
867
cc20e01c
LZ
868 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
869
be445626
LZ
870 /*
871 * Drop the active superblock reference that we took when we
cc20e01c
LZ
872 * created the cgroup. This will free cgrp->root, if we are
873 * holding the last reference to @sb.
be445626
LZ
874 */
875 deactivate_super(cgrp->root->sb);
876
877 /*
878 * if we're getting rid of the cgroup, refcount should ensure
879 * that there are no pidlists left.
880 */
881 BUG_ON(!list_empty(&cgrp->pidlists));
882
883 simple_xattrs_free(&cgrp->xattrs);
884
65dff759 885 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
886 kfree(cgrp);
887}
888
889static void cgroup_free_rcu(struct rcu_head *head)
890{
891 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
892
ea15f8cc
TH
893 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
894 schedule_work(&cgrp->destroy_work);
be445626
LZ
895}
896
ddbcc7e8
PM
897static void cgroup_diput(struct dentry *dentry, struct inode *inode)
898{
899 /* is dentry a directory ? if so, kfree() associated cgroup */
900 if (S_ISDIR(inode->i_mode)) {
bd89aabc 901 struct cgroup *cgrp = dentry->d_fsdata;
be445626 902
54766d4a 903 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 904 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
905 } else {
906 struct cfent *cfe = __d_cfe(dentry);
907 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
908
909 WARN_ONCE(!list_empty(&cfe->node) &&
910 cgrp != &cgrp->root->top_cgroup,
911 "cfe still linked for %s\n", cfe->type->name);
712317ad 912 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 913 kfree(cfe);
ddbcc7e8
PM
914 }
915 iput(inode);
916}
917
c72a04e3
AV
918static int cgroup_delete(const struct dentry *d)
919{
920 return 1;
921}
922
ddbcc7e8
PM
923static void remove_dir(struct dentry *d)
924{
925 struct dentry *parent = dget(d->d_parent);
926
927 d_delete(d);
928 simple_rmdir(parent->d_inode, d);
929 dput(parent);
930}
931
2739d3cc 932static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
933{
934 struct cfent *cfe;
935
936 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
937 lockdep_assert_held(&cgroup_mutex);
938
2739d3cc
LZ
939 /*
940 * If we're doing cleanup due to failure of cgroup_create(),
941 * the corresponding @cfe may not exist.
942 */
05ef1d7c
TH
943 list_for_each_entry(cfe, &cgrp->files, node) {
944 struct dentry *d = cfe->dentry;
945
946 if (cft && cfe->type != cft)
947 continue;
948
949 dget(d);
950 d_delete(d);
ce27e317 951 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
952 list_del_init(&cfe->node);
953 dput(d);
954
2739d3cc 955 break;
ddbcc7e8 956 }
05ef1d7c
TH
957}
958
13af07df
AR
959/**
960 * cgroup_clear_directory - selective removal of base and subsystem files
961 * @dir: directory containing the files
962 * @base_files: true if the base files should be removed
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
965static void cgroup_clear_directory(struct dentry *dir, bool base_files,
966 unsigned long subsys_mask)
05ef1d7c
TH
967{
968 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 969 struct cgroup_subsys *ss;
05ef1d7c 970
5549c497 971 for_each_root_subsys(cgrp->root, ss) {
13af07df
AR
972 struct cftype_set *set;
973 if (!test_bit(ss->subsys_id, &subsys_mask))
974 continue;
975 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 976 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
977 }
978 if (base_files) {
979 while (!list_empty(&cgrp->files))
980 cgroup_rm_file(cgrp, NULL);
981 }
ddbcc7e8
PM
982}
983
984/*
985 * NOTE : the dentry must have been dget()'ed
986 */
987static void cgroup_d_remove_dir(struct dentry *dentry)
988{
2fd6b7f5 989 struct dentry *parent;
13af07df 990 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 991
a1a71b45 992 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 993
2fd6b7f5
NP
994 parent = dentry->d_parent;
995 spin_lock(&parent->d_lock);
3ec762ad 996 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 997 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
998 spin_unlock(&dentry->d_lock);
999 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1000 remove_dir(dentry);
1001}
1002
aae8aab4 1003/*
cf5d5941
BB
1004 * Call with cgroup_mutex held. Drops reference counts on modules, including
1005 * any duplicate ones that parse_cgroupfs_options took. If this function
1006 * returns an error, no reference counts are touched.
aae8aab4 1007 */
ddbcc7e8 1008static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1009 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1010{
bd89aabc 1011 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1012 struct cgroup_subsys *ss;
ddbcc7e8
PM
1013 int i;
1014
aae8aab4 1015 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1016 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1017
ddbcc7e8 1018 /* Check that any added subsystems are currently free */
30159ec7 1019 for_each_subsys(ss, i) {
8d53d55d 1020 unsigned long bit = 1UL << i;
30159ec7 1021
a1a71b45 1022 if (!(bit & added_mask))
ddbcc7e8 1023 continue;
30159ec7 1024
9871bf95 1025 if (ss->root != &cgroup_dummy_root) {
ddbcc7e8
PM
1026 /* Subsystem isn't free */
1027 return -EBUSY;
1028 }
1029 }
1030
1031 /* Currently we don't handle adding/removing subsystems when
1032 * any child cgroups exist. This is theoretically supportable
1033 * but involves complex error handling, so it's being left until
1034 * later */
307257cf 1035 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1036 return -EBUSY;
1037
1038 /* Process each subsystem */
30159ec7 1039 for_each_subsys(ss, i) {
ddbcc7e8 1040 unsigned long bit = 1UL << i;
30159ec7 1041
a1a71b45 1042 if (bit & added_mask) {
ddbcc7e8 1043 /* We're binding this subsystem to this hierarchy */
bd89aabc 1044 BUG_ON(cgrp->subsys[i]);
9871bf95
TH
1045 BUG_ON(!cgroup_dummy_top->subsys[i]);
1046 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
a8a648c4 1047
9871bf95 1048 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
bd89aabc 1049 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1050 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1051 ss->root = root;
ddbcc7e8 1052 if (ss->bind)
761b3ef5 1053 ss->bind(cgrp);
a8a648c4 1054
cf5d5941 1055 /* refcount was already taken, and we're keeping it */
a8a648c4 1056 root->subsys_mask |= bit;
a1a71b45 1057 } else if (bit & removed_mask) {
ddbcc7e8 1058 /* We're removing this subsystem */
9871bf95 1059 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
bd89aabc 1060 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
a8a648c4 1061
ddbcc7e8 1062 if (ss->bind)
9871bf95
TH
1063 ss->bind(cgroup_dummy_top);
1064 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
bd89aabc 1065 cgrp->subsys[i] = NULL;
9871bf95
TH
1066 cgroup_subsys[i]->root = &cgroup_dummy_root;
1067 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1068
cf5d5941
BB
1069 /* subsystem is now free - drop reference on module */
1070 module_put(ss->module);
a8a648c4
TH
1071 root->subsys_mask &= ~bit;
1072 } else if (bit & root->subsys_mask) {
ddbcc7e8 1073 /* Subsystem state should already exist */
bd89aabc 1074 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1075 /*
1076 * a refcount was taken, but we already had one, so
1077 * drop the extra reference.
1078 */
1079 module_put(ss->module);
1080#ifdef CONFIG_MODULE_UNLOAD
1081 BUG_ON(ss->module && !module_refcount(ss->module));
1082#endif
ddbcc7e8
PM
1083 } else {
1084 /* Subsystem state shouldn't exist */
bd89aabc 1085 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1086 }
1087 }
ddbcc7e8 1088
1672d040
TH
1089 /*
1090 * Mark @root has finished binding subsystems. @root->subsys_mask
1091 * now matches the bound subsystems.
1092 */
1093 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1094
ddbcc7e8
PM
1095 return 0;
1096}
1097
34c80b1d 1098static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1099{
34c80b1d 1100 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1101 struct cgroup_subsys *ss;
1102
e25e2cbb 1103 mutex_lock(&cgroup_root_mutex);
5549c497 1104 for_each_root_subsys(root, ss)
ddbcc7e8 1105 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1106 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1107 seq_puts(seq, ",sane_behavior");
93438629 1108 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1109 seq_puts(seq, ",noprefix");
93438629 1110 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1111 seq_puts(seq, ",xattr");
81a6a5cd
PM
1112 if (strlen(root->release_agent_path))
1113 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1114 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1115 seq_puts(seq, ",clone_children");
c6d57f33
PM
1116 if (strlen(root->name))
1117 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1118 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1119 return 0;
1120}
1121
1122struct cgroup_sb_opts {
a1a71b45 1123 unsigned long subsys_mask;
ddbcc7e8 1124 unsigned long flags;
81a6a5cd 1125 char *release_agent;
2260e7fc 1126 bool cpuset_clone_children;
c6d57f33 1127 char *name;
2c6ab6d2
PM
1128 /* User explicitly requested empty subsystem */
1129 bool none;
c6d57f33
PM
1130
1131 struct cgroupfs_root *new_root;
2c6ab6d2 1132
ddbcc7e8
PM
1133};
1134
aae8aab4 1135/*
9871bf95
TH
1136 * Convert a hierarchy specifier into a bitmask of subsystems and
1137 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1138 * array. This function takes refcounts on subsystems to be used, unless it
1139 * returns error, in which case no refcounts are taken.
aae8aab4 1140 */
cf5d5941 1141static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1142{
32a8cf23
DL
1143 char *token, *o = data;
1144 bool all_ss = false, one_ss = false;
f9ab5b5b 1145 unsigned long mask = (unsigned long)-1;
cf5d5941 1146 bool module_pin_failed = false;
30159ec7
TH
1147 struct cgroup_subsys *ss;
1148 int i;
f9ab5b5b 1149
aae8aab4
BB
1150 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1151
f9ab5b5b
LZ
1152#ifdef CONFIG_CPUSETS
1153 mask = ~(1UL << cpuset_subsys_id);
1154#endif
ddbcc7e8 1155
c6d57f33 1156 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1157
1158 while ((token = strsep(&o, ",")) != NULL) {
1159 if (!*token)
1160 return -EINVAL;
32a8cf23 1161 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1162 /* Explicitly have no subsystems */
1163 opts->none = true;
32a8cf23
DL
1164 continue;
1165 }
1166 if (!strcmp(token, "all")) {
1167 /* Mutually exclusive option 'all' + subsystem name */
1168 if (one_ss)
1169 return -EINVAL;
1170 all_ss = true;
1171 continue;
1172 }
873fe09e
TH
1173 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1174 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1175 continue;
1176 }
32a8cf23 1177 if (!strcmp(token, "noprefix")) {
93438629 1178 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1179 continue;
1180 }
1181 if (!strcmp(token, "clone_children")) {
2260e7fc 1182 opts->cpuset_clone_children = true;
32a8cf23
DL
1183 continue;
1184 }
03b1cde6 1185 if (!strcmp(token, "xattr")) {
93438629 1186 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1187 continue;
1188 }
32a8cf23 1189 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1190 /* Specifying two release agents is forbidden */
1191 if (opts->release_agent)
1192 return -EINVAL;
c6d57f33 1193 opts->release_agent =
e400c285 1194 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1195 if (!opts->release_agent)
1196 return -ENOMEM;
32a8cf23
DL
1197 continue;
1198 }
1199 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1200 const char *name = token + 5;
1201 /* Can't specify an empty name */
1202 if (!strlen(name))
1203 return -EINVAL;
1204 /* Must match [\w.-]+ */
1205 for (i = 0; i < strlen(name); i++) {
1206 char c = name[i];
1207 if (isalnum(c))
1208 continue;
1209 if ((c == '.') || (c == '-') || (c == '_'))
1210 continue;
1211 return -EINVAL;
1212 }
1213 /* Specifying two names is forbidden */
1214 if (opts->name)
1215 return -EINVAL;
1216 opts->name = kstrndup(name,
e400c285 1217 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1218 GFP_KERNEL);
1219 if (!opts->name)
1220 return -ENOMEM;
32a8cf23
DL
1221
1222 continue;
1223 }
1224
30159ec7 1225 for_each_subsys(ss, i) {
32a8cf23
DL
1226 if (strcmp(token, ss->name))
1227 continue;
1228 if (ss->disabled)
1229 continue;
1230
1231 /* Mutually exclusive option 'all' + subsystem name */
1232 if (all_ss)
1233 return -EINVAL;
a1a71b45 1234 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1235 one_ss = true;
1236
1237 break;
1238 }
1239 if (i == CGROUP_SUBSYS_COUNT)
1240 return -ENOENT;
1241 }
1242
1243 /*
1244 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1245 * otherwise if 'none', 'name=' and a subsystem name options
1246 * were not specified, let's default to 'all'
32a8cf23 1247 */
30159ec7
TH
1248 if (all_ss || (!one_ss && !opts->none && !opts->name))
1249 for_each_subsys(ss, i)
1250 if (!ss->disabled)
1251 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1252
2c6ab6d2
PM
1253 /* Consistency checks */
1254
873fe09e
TH
1255 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1256 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1257
1258 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1259 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1260 return -EINVAL;
1261 }
1262
1263 if (opts->cpuset_clone_children) {
1264 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1265 return -EINVAL;
1266 }
1267 }
1268
f9ab5b5b
LZ
1269 /*
1270 * Option noprefix was introduced just for backward compatibility
1271 * with the old cpuset, so we allow noprefix only if mounting just
1272 * the cpuset subsystem.
1273 */
93438629 1274 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1275 return -EINVAL;
1276
2c6ab6d2
PM
1277
1278 /* Can't specify "none" and some subsystems */
a1a71b45 1279 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1280 return -EINVAL;
1281
1282 /*
1283 * We either have to specify by name or by subsystems. (So all
1284 * empty hierarchies must have a name).
1285 */
a1a71b45 1286 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1287 return -EINVAL;
1288
cf5d5941
BB
1289 /*
1290 * Grab references on all the modules we'll need, so the subsystems
1291 * don't dance around before rebind_subsystems attaches them. This may
1292 * take duplicate reference counts on a subsystem that's already used,
1293 * but rebind_subsystems handles this case.
1294 */
30159ec7
TH
1295 for_each_subsys(ss, i) {
1296 if (!(opts->subsys_mask & (1UL << i)))
cf5d5941 1297 continue;
9871bf95 1298 if (!try_module_get(cgroup_subsys[i]->module)) {
cf5d5941
BB
1299 module_pin_failed = true;
1300 break;
1301 }
1302 }
1303 if (module_pin_failed) {
1304 /*
1305 * oops, one of the modules was going away. this means that we
1306 * raced with a module_delete call, and to the user this is
1307 * essentially a "subsystem doesn't exist" case.
1308 */
be45c900 1309 for (i--; i >= 0; i--) {
cf5d5941
BB
1310 /* drop refcounts only on the ones we took */
1311 unsigned long bit = 1UL << i;
1312
a1a71b45 1313 if (!(bit & opts->subsys_mask))
cf5d5941 1314 continue;
9871bf95 1315 module_put(cgroup_subsys[i]->module);
cf5d5941
BB
1316 }
1317 return -ENOENT;
1318 }
1319
ddbcc7e8
PM
1320 return 0;
1321}
1322
a1a71b45 1323static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941 1324{
30159ec7 1325 struct cgroup_subsys *ss;
cf5d5941 1326 int i;
cf5d5941 1327
eb178d06
TH
1328 mutex_lock(&cgroup_mutex);
1329 for_each_subsys(ss, i)
1330 if (subsys_mask & (1UL << i))
1331 module_put(cgroup_subsys[i]->module);
1332 mutex_unlock(&cgroup_mutex);
cf5d5941
BB
1333}
1334
ddbcc7e8
PM
1335static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1336{
1337 int ret = 0;
1338 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1339 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1340 struct cgroup_sb_opts opts;
a1a71b45 1341 unsigned long added_mask, removed_mask;
ddbcc7e8 1342
873fe09e
TH
1343 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1344 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1345 return -EINVAL;
1346 }
1347
bd89aabc 1348 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1349 mutex_lock(&cgroup_mutex);
e25e2cbb 1350 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1351
1352 /* See what subsystems are wanted */
1353 ret = parse_cgroupfs_options(data, &opts);
1354 if (ret)
1355 goto out_unlock;
1356
a8a648c4 1357 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1358 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1359 task_tgid_nr(current), current->comm);
1360
a1a71b45
AR
1361 added_mask = opts.subsys_mask & ~root->subsys_mask;
1362 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1363
cf5d5941
BB
1364 /* Don't allow flags or name to change at remount */
1365 if (opts.flags != root->flags ||
1366 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1367 ret = -EINVAL;
a1a71b45 1368 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1369 goto out_unlock;
1370 }
1371
7083d037
G
1372 /*
1373 * Clear out the files of subsystems that should be removed, do
1374 * this before rebind_subsystems, since rebind_subsystems may
1375 * change this hierarchy's subsys_list.
1376 */
1377 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1378
a8a648c4 1379 ret = rebind_subsystems(root, added_mask, removed_mask);
cf5d5941 1380 if (ret) {
7083d037
G
1381 /* rebind_subsystems failed, re-populate the removed files */
1382 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1383 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1384 goto out_unlock;
cf5d5941 1385 }
ddbcc7e8 1386
13af07df 1387 /* re-populate subsystem files */
a1a71b45 1388 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1389
81a6a5cd
PM
1390 if (opts.release_agent)
1391 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1392 out_unlock:
66bdc9cf 1393 kfree(opts.release_agent);
c6d57f33 1394 kfree(opts.name);
e25e2cbb 1395 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1396 mutex_unlock(&cgroup_mutex);
bd89aabc 1397 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1398 return ret;
1399}
1400
b87221de 1401static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1402 .statfs = simple_statfs,
1403 .drop_inode = generic_delete_inode,
1404 .show_options = cgroup_show_options,
1405 .remount_fs = cgroup_remount,
1406};
1407
cc31edce
PM
1408static void init_cgroup_housekeeping(struct cgroup *cgrp)
1409{
1410 INIT_LIST_HEAD(&cgrp->sibling);
1411 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1412 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1413 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1414 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1415 INIT_LIST_HEAD(&cgrp->pidlists);
1416 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1417 INIT_LIST_HEAD(&cgrp->event_list);
1418 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1419 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1420}
c6d57f33 1421
ddbcc7e8
PM
1422static void init_cgroup_root(struct cgroupfs_root *root)
1423{
bd89aabc 1424 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1425
ddbcc7e8
PM
1426 INIT_LIST_HEAD(&root->subsys_list);
1427 INIT_LIST_HEAD(&root->root_list);
1428 root->number_of_cgroups = 1;
bd89aabc 1429 cgrp->root = root;
65dff759 1430 cgrp->name = &root_cgroup_name;
cc31edce 1431 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1432}
1433
fc76df70 1434static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1435{
1a574231 1436 int id;
2c6ab6d2 1437
54e7b4eb
TH
1438 lockdep_assert_held(&cgroup_mutex);
1439 lockdep_assert_held(&cgroup_root_mutex);
1440
fc76df70
TH
1441 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1442 GFP_KERNEL);
1a574231
TH
1443 if (id < 0)
1444 return id;
1445
1446 root->hierarchy_id = id;
fa3ca07e
TH
1447 return 0;
1448}
1449
1450static void cgroup_exit_root_id(struct cgroupfs_root *root)
1451{
54e7b4eb
TH
1452 lockdep_assert_held(&cgroup_mutex);
1453 lockdep_assert_held(&cgroup_root_mutex);
1454
fa3ca07e 1455 if (root->hierarchy_id) {
1a574231 1456 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1457 root->hierarchy_id = 0;
1458 }
2c6ab6d2
PM
1459}
1460
ddbcc7e8
PM
1461static int cgroup_test_super(struct super_block *sb, void *data)
1462{
c6d57f33 1463 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1464 struct cgroupfs_root *root = sb->s_fs_info;
1465
c6d57f33
PM
1466 /* If we asked for a name then it must match */
1467 if (opts->name && strcmp(opts->name, root->name))
1468 return 0;
ddbcc7e8 1469
2c6ab6d2
PM
1470 /*
1471 * If we asked for subsystems (or explicitly for no
1472 * subsystems) then they must match
1473 */
a1a71b45
AR
1474 if ((opts->subsys_mask || opts->none)
1475 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1476 return 0;
1477
1478 return 1;
1479}
1480
c6d57f33
PM
1481static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1482{
1483 struct cgroupfs_root *root;
1484
a1a71b45 1485 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1486 return NULL;
1487
1488 root = kzalloc(sizeof(*root), GFP_KERNEL);
1489 if (!root)
1490 return ERR_PTR(-ENOMEM);
1491
1492 init_cgroup_root(root);
2c6ab6d2 1493
1672d040
TH
1494 /*
1495 * We need to set @root->subsys_mask now so that @root can be
1496 * matched by cgroup_test_super() before it finishes
1497 * initialization; otherwise, competing mounts with the same
1498 * options may try to bind the same subsystems instead of waiting
1499 * for the first one leading to unexpected mount errors.
1500 * SUBSYS_BOUND will be set once actual binding is complete.
1501 */
a1a71b45 1502 root->subsys_mask = opts->subsys_mask;
c6d57f33 1503 root->flags = opts->flags;
0a950f65 1504 ida_init(&root->cgroup_ida);
c6d57f33
PM
1505 if (opts->release_agent)
1506 strcpy(root->release_agent_path, opts->release_agent);
1507 if (opts->name)
1508 strcpy(root->name, opts->name);
2260e7fc
TH
1509 if (opts->cpuset_clone_children)
1510 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1511 return root;
1512}
1513
fa3ca07e 1514static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1515{
fa3ca07e
TH
1516 if (root) {
1517 /* hierarhcy ID shoulid already have been released */
1518 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1519
fa3ca07e
TH
1520 ida_destroy(&root->cgroup_ida);
1521 kfree(root);
1522 }
2c6ab6d2
PM
1523}
1524
ddbcc7e8
PM
1525static int cgroup_set_super(struct super_block *sb, void *data)
1526{
1527 int ret;
c6d57f33
PM
1528 struct cgroup_sb_opts *opts = data;
1529
1530 /* If we don't have a new root, we can't set up a new sb */
1531 if (!opts->new_root)
1532 return -EINVAL;
1533
a1a71b45 1534 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1535
1536 ret = set_anon_super(sb, NULL);
1537 if (ret)
1538 return ret;
1539
c6d57f33
PM
1540 sb->s_fs_info = opts->new_root;
1541 opts->new_root->sb = sb;
ddbcc7e8
PM
1542
1543 sb->s_blocksize = PAGE_CACHE_SIZE;
1544 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1545 sb->s_magic = CGROUP_SUPER_MAGIC;
1546 sb->s_op = &cgroup_ops;
1547
1548 return 0;
1549}
1550
1551static int cgroup_get_rootdir(struct super_block *sb)
1552{
0df6a63f
AV
1553 static const struct dentry_operations cgroup_dops = {
1554 .d_iput = cgroup_diput,
c72a04e3 1555 .d_delete = cgroup_delete,
0df6a63f
AV
1556 };
1557
ddbcc7e8
PM
1558 struct inode *inode =
1559 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1560
1561 if (!inode)
1562 return -ENOMEM;
1563
ddbcc7e8
PM
1564 inode->i_fop = &simple_dir_operations;
1565 inode->i_op = &cgroup_dir_inode_operations;
1566 /* directories start off with i_nlink == 2 (for "." entry) */
1567 inc_nlink(inode);
48fde701
AV
1568 sb->s_root = d_make_root(inode);
1569 if (!sb->s_root)
ddbcc7e8 1570 return -ENOMEM;
0df6a63f
AV
1571 /* for everything else we want ->d_op set */
1572 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1573 return 0;
1574}
1575
f7e83571 1576static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1577 int flags, const char *unused_dev_name,
f7e83571 1578 void *data)
ddbcc7e8
PM
1579{
1580 struct cgroup_sb_opts opts;
c6d57f33 1581 struct cgroupfs_root *root;
ddbcc7e8
PM
1582 int ret = 0;
1583 struct super_block *sb;
c6d57f33 1584 struct cgroupfs_root *new_root;
e25e2cbb 1585 struct inode *inode;
ddbcc7e8
PM
1586
1587 /* First find the desired set of subsystems */
aae8aab4 1588 mutex_lock(&cgroup_mutex);
ddbcc7e8 1589 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1590 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1591 if (ret)
1592 goto out_err;
ddbcc7e8 1593
c6d57f33
PM
1594 /*
1595 * Allocate a new cgroup root. We may not need it if we're
1596 * reusing an existing hierarchy.
1597 */
1598 new_root = cgroup_root_from_opts(&opts);
1599 if (IS_ERR(new_root)) {
1600 ret = PTR_ERR(new_root);
cf5d5941 1601 goto drop_modules;
81a6a5cd 1602 }
c6d57f33 1603 opts.new_root = new_root;
ddbcc7e8 1604
c6d57f33 1605 /* Locate an existing or new sb for this hierarchy */
9249e17f 1606 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1607 if (IS_ERR(sb)) {
c6d57f33 1608 ret = PTR_ERR(sb);
fa3ca07e 1609 cgroup_free_root(opts.new_root);
cf5d5941 1610 goto drop_modules;
ddbcc7e8
PM
1611 }
1612
c6d57f33
PM
1613 root = sb->s_fs_info;
1614 BUG_ON(!root);
1615 if (root == opts.new_root) {
1616 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1617 struct list_head tmp_links;
c12f65d4 1618 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1619 struct cgroupfs_root *existing_root;
2ce9738b 1620 const struct cred *cred;
28fd5dfc 1621 int i;
5abb8855 1622 struct css_set *cset;
ddbcc7e8
PM
1623
1624 BUG_ON(sb->s_root != NULL);
1625
1626 ret = cgroup_get_rootdir(sb);
1627 if (ret)
1628 goto drop_new_super;
817929ec 1629 inode = sb->s_root->d_inode;
ddbcc7e8 1630
817929ec 1631 mutex_lock(&inode->i_mutex);
ddbcc7e8 1632 mutex_lock(&cgroup_mutex);
e25e2cbb 1633 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1634
e25e2cbb
TH
1635 /* Check for name clashes with existing mounts */
1636 ret = -EBUSY;
1637 if (strlen(root->name))
1638 for_each_active_root(existing_root)
1639 if (!strcmp(existing_root->name, root->name))
1640 goto unlock_drop;
c6d57f33 1641
817929ec
PM
1642 /*
1643 * We're accessing css_set_count without locking
1644 * css_set_lock here, but that's OK - it can only be
1645 * increased by someone holding cgroup_lock, and
1646 * that's us. The worst that can happen is that we
1647 * have some link structures left over
1648 */
69d0206c 1649 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1650 if (ret)
1651 goto unlock_drop;
817929ec 1652
fc76df70
TH
1653 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1654 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1655 if (ret)
1656 goto unlock_drop;
1657
a8a648c4 1658 ret = rebind_subsystems(root, root->subsys_mask, 0);
ddbcc7e8 1659 if (ret == -EBUSY) {
69d0206c 1660 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1661 goto unlock_drop;
ddbcc7e8 1662 }
cf5d5941
BB
1663 /*
1664 * There must be no failure case after here, since rebinding
1665 * takes care of subsystems' refcounts, which are explicitly
1666 * dropped in the failure exit path.
1667 */
ddbcc7e8
PM
1668
1669 /* EBUSY should be the only error here */
1670 BUG_ON(ret);
1671
9871bf95
TH
1672 list_add(&root->root_list, &cgroup_roots);
1673 cgroup_root_count++;
ddbcc7e8 1674
c12f65d4 1675 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1676 root->top_cgroup.dentry = sb->s_root;
1677
817929ec
PM
1678 /* Link the top cgroup in this hierarchy into all
1679 * the css_set objects */
1680 write_lock(&css_set_lock);
5abb8855 1681 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1682 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1683 write_unlock(&css_set_lock);
1684
69d0206c 1685 free_cgrp_cset_links(&tmp_links);
817929ec 1686
c12f65d4 1687 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1688 BUG_ON(root->number_of_cgroups != 1);
1689
2ce9738b 1690 cred = override_creds(&init_cred);
a1a71b45 1691 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1692 revert_creds(cred);
e25e2cbb 1693 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1694 mutex_unlock(&cgroup_mutex);
34f77a90 1695 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1696 } else {
1697 /*
1698 * We re-used an existing hierarchy - the new root (if
1699 * any) is not needed
1700 */
fa3ca07e 1701 cgroup_free_root(opts.new_root);
873fe09e 1702
2a0ff3fb
JL
1703 if (root->flags != opts.flags) {
1704 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1705 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1706 ret = -EINVAL;
1707 goto drop_new_super;
1708 } else {
1709 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1710 }
873fe09e
TH
1711 }
1712
cf5d5941 1713 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1714 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1715 }
1716
c6d57f33
PM
1717 kfree(opts.release_agent);
1718 kfree(opts.name);
f7e83571 1719 return dget(sb->s_root);
ddbcc7e8 1720
e25e2cbb 1721 unlock_drop:
fa3ca07e 1722 cgroup_exit_root_id(root);
e25e2cbb
TH
1723 mutex_unlock(&cgroup_root_mutex);
1724 mutex_unlock(&cgroup_mutex);
1725 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1726 drop_new_super:
6f5bbff9 1727 deactivate_locked_super(sb);
cf5d5941 1728 drop_modules:
a1a71b45 1729 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1730 out_err:
1731 kfree(opts.release_agent);
1732 kfree(opts.name);
f7e83571 1733 return ERR_PTR(ret);
ddbcc7e8
PM
1734}
1735
1736static void cgroup_kill_sb(struct super_block *sb) {
1737 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1738 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1739 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1740 int ret;
1741
1742 BUG_ON(!root);
1743
1744 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1745 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1746
1747 mutex_lock(&cgroup_mutex);
e25e2cbb 1748 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1749
1750 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1751 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1752 ret = rebind_subsystems(root, 0, root->subsys_mask);
1753 /* Shouldn't be able to fail ... */
1754 BUG_ON(ret);
1755 }
ddbcc7e8 1756
817929ec 1757 /*
69d0206c 1758 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1759 * root cgroup
1760 */
1761 write_lock(&css_set_lock);
71cbb949 1762
69d0206c
TH
1763 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1764 list_del(&link->cset_link);
1765 list_del(&link->cgrp_link);
817929ec
PM
1766 kfree(link);
1767 }
1768 write_unlock(&css_set_lock);
1769
839ec545
PM
1770 if (!list_empty(&root->root_list)) {
1771 list_del(&root->root_list);
9871bf95 1772 cgroup_root_count--;
839ec545 1773 }
e5f6a860 1774
fa3ca07e
TH
1775 cgroup_exit_root_id(root);
1776
e25e2cbb 1777 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1778 mutex_unlock(&cgroup_mutex);
1779
03b1cde6
AR
1780 simple_xattrs_free(&cgrp->xattrs);
1781
ddbcc7e8 1782 kill_litter_super(sb);
fa3ca07e 1783 cgroup_free_root(root);
ddbcc7e8
PM
1784}
1785
1786static struct file_system_type cgroup_fs_type = {
1787 .name = "cgroup",
f7e83571 1788 .mount = cgroup_mount,
ddbcc7e8
PM
1789 .kill_sb = cgroup_kill_sb,
1790};
1791
676db4af
GK
1792static struct kobject *cgroup_kobj;
1793
a043e3b2
LZ
1794/**
1795 * cgroup_path - generate the path of a cgroup
1796 * @cgrp: the cgroup in question
1797 * @buf: the buffer to write the path into
1798 * @buflen: the length of the buffer
1799 *
65dff759
LZ
1800 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1801 *
1802 * We can't generate cgroup path using dentry->d_name, as accessing
1803 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1804 * inode's i_mutex, while on the other hand cgroup_path() can be called
1805 * with some irq-safe spinlocks held.
ddbcc7e8 1806 */
bd89aabc 1807int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1808{
65dff759 1809 int ret = -ENAMETOOLONG;
ddbcc7e8 1810 char *start;
febfcef6 1811
da1f296f
TH
1812 if (!cgrp->parent) {
1813 if (strlcpy(buf, "/", buflen) >= buflen)
1814 return -ENAMETOOLONG;
ddbcc7e8
PM
1815 return 0;
1816 }
1817
316eb661 1818 start = buf + buflen - 1;
316eb661 1819 *start = '\0';
9a9686b6 1820
65dff759 1821 rcu_read_lock();
da1f296f 1822 do {
65dff759
LZ
1823 const char *name = cgroup_name(cgrp);
1824 int len;
1825
1826 len = strlen(name);
ddbcc7e8 1827 if ((start -= len) < buf)
65dff759
LZ
1828 goto out;
1829 memcpy(start, name, len);
9a9686b6 1830
ddbcc7e8 1831 if (--start < buf)
65dff759 1832 goto out;
ddbcc7e8 1833 *start = '/';
65dff759
LZ
1834
1835 cgrp = cgrp->parent;
da1f296f 1836 } while (cgrp->parent);
65dff759 1837 ret = 0;
ddbcc7e8 1838 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1839out:
1840 rcu_read_unlock();
1841 return ret;
ddbcc7e8 1842}
67523c48 1843EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1844
857a2beb
TH
1845/**
1846 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1847 * @task: target task
1848 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1849 * @buf: the buffer to write the path into
1850 * @buflen: the length of the buffer
1851 *
1852 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1853 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1854 * be used inside locks used by cgroup controller callbacks.
1855 */
1856int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1857 char *buf, size_t buflen)
1858{
1859 struct cgroupfs_root *root;
1860 struct cgroup *cgrp = NULL;
1861 int ret = -ENOENT;
1862
1863 mutex_lock(&cgroup_mutex);
1864
1865 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1866 if (root) {
1867 cgrp = task_cgroup_from_root(task, root);
1868 ret = cgroup_path(cgrp, buf, buflen);
1869 }
1870
1871 mutex_unlock(&cgroup_mutex);
1872
1873 return ret;
1874}
1875EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1876
2f7ee569
TH
1877/*
1878 * Control Group taskset
1879 */
134d3373
TH
1880struct task_and_cgroup {
1881 struct task_struct *task;
1882 struct cgroup *cgrp;
61d1d219 1883 struct css_set *cg;
134d3373
TH
1884};
1885
2f7ee569
TH
1886struct cgroup_taskset {
1887 struct task_and_cgroup single;
1888 struct flex_array *tc_array;
1889 int tc_array_len;
1890 int idx;
1891 struct cgroup *cur_cgrp;
1892};
1893
1894/**
1895 * cgroup_taskset_first - reset taskset and return the first task
1896 * @tset: taskset of interest
1897 *
1898 * @tset iteration is initialized and the first task is returned.
1899 */
1900struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1901{
1902 if (tset->tc_array) {
1903 tset->idx = 0;
1904 return cgroup_taskset_next(tset);
1905 } else {
1906 tset->cur_cgrp = tset->single.cgrp;
1907 return tset->single.task;
1908 }
1909}
1910EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1911
1912/**
1913 * cgroup_taskset_next - iterate to the next task in taskset
1914 * @tset: taskset of interest
1915 *
1916 * Return the next task in @tset. Iteration must have been initialized
1917 * with cgroup_taskset_first().
1918 */
1919struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1920{
1921 struct task_and_cgroup *tc;
1922
1923 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1924 return NULL;
1925
1926 tc = flex_array_get(tset->tc_array, tset->idx++);
1927 tset->cur_cgrp = tc->cgrp;
1928 return tc->task;
1929}
1930EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1931
1932/**
1933 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1934 * @tset: taskset of interest
1935 *
1936 * Return the cgroup for the current (last returned) task of @tset. This
1937 * function must be preceded by either cgroup_taskset_first() or
1938 * cgroup_taskset_next().
1939 */
1940struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1941{
1942 return tset->cur_cgrp;
1943}
1944EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1945
1946/**
1947 * cgroup_taskset_size - return the number of tasks in taskset
1948 * @tset: taskset of interest
1949 */
1950int cgroup_taskset_size(struct cgroup_taskset *tset)
1951{
1952 return tset->tc_array ? tset->tc_array_len : 1;
1953}
1954EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1955
1956
74a1166d
BB
1957/*
1958 * cgroup_task_migrate - move a task from one cgroup to another.
1959 *
d0b2fdd2 1960 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1961 */
5abb8855
TH
1962static void cgroup_task_migrate(struct cgroup *old_cgrp,
1963 struct task_struct *tsk,
1964 struct css_set *new_cset)
74a1166d 1965{
5abb8855 1966 struct css_set *old_cset;
74a1166d
BB
1967
1968 /*
026085ef
MSB
1969 * We are synchronized through threadgroup_lock() against PF_EXITING
1970 * setting such that we can't race against cgroup_exit() changing the
1971 * css_set to init_css_set and dropping the old one.
74a1166d 1972 */
c84cdf75 1973 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1974 old_cset = task_css_set(tsk);
74a1166d 1975
74a1166d 1976 task_lock(tsk);
5abb8855 1977 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1978 task_unlock(tsk);
1979
1980 /* Update the css_set linked lists if we're using them */
1981 write_lock(&css_set_lock);
1982 if (!list_empty(&tsk->cg_list))
5abb8855 1983 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1984 write_unlock(&css_set_lock);
1985
1986 /*
5abb8855
TH
1987 * We just gained a reference on old_cset by taking it from the
1988 * task. As trading it for new_cset is protected by cgroup_mutex,
1989 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1990 */
5abb8855
TH
1991 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1992 put_css_set(old_cset);
74a1166d
BB
1993}
1994
a043e3b2 1995/**
081aa458 1996 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1997 * @cgrp: the cgroup to attach to
081aa458
LZ
1998 * @tsk: the task or the leader of the threadgroup to be attached
1999 * @threadgroup: attach the whole threadgroup?
74a1166d 2000 *
257058ae 2001 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 2002 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 2003 */
47cfcd09
TH
2004static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2005 bool threadgroup)
74a1166d
BB
2006{
2007 int retval, i, group_size;
2008 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
2009 struct cgroupfs_root *root = cgrp->root;
2010 /* threadgroup list cursor and array */
081aa458 2011 struct task_struct *leader = tsk;
134d3373 2012 struct task_and_cgroup *tc;
d846687d 2013 struct flex_array *group;
2f7ee569 2014 struct cgroup_taskset tset = { };
74a1166d
BB
2015
2016 /*
2017 * step 0: in order to do expensive, possibly blocking operations for
2018 * every thread, we cannot iterate the thread group list, since it needs
2019 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2020 * group - group_rwsem prevents new threads from appearing, and if
2021 * threads exit, this will just be an over-estimate.
74a1166d 2022 */
081aa458
LZ
2023 if (threadgroup)
2024 group_size = get_nr_threads(tsk);
2025 else
2026 group_size = 1;
d846687d 2027 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2028 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2029 if (!group)
2030 return -ENOMEM;
d846687d 2031 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2032 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2033 if (retval)
2034 goto out_free_group_list;
74a1166d 2035
74a1166d 2036 i = 0;
fb5d2b4c
MSB
2037 /*
2038 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2039 * already PF_EXITING could be freed from underneath us unless we
2040 * take an rcu_read_lock.
2041 */
2042 rcu_read_lock();
74a1166d 2043 do {
134d3373
TH
2044 struct task_and_cgroup ent;
2045
cd3d0952
TH
2046 /* @tsk either already exited or can't exit until the end */
2047 if (tsk->flags & PF_EXITING)
2048 continue;
2049
74a1166d
BB
2050 /* as per above, nr_threads may decrease, but not increase. */
2051 BUG_ON(i >= group_size);
134d3373
TH
2052 ent.task = tsk;
2053 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2054 /* nothing to do if this task is already in the cgroup */
2055 if (ent.cgrp == cgrp)
2056 continue;
61d1d219
MSB
2057 /*
2058 * saying GFP_ATOMIC has no effect here because we did prealloc
2059 * earlier, but it's good form to communicate our expectations.
2060 */
134d3373 2061 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2062 BUG_ON(retval != 0);
74a1166d 2063 i++;
081aa458
LZ
2064
2065 if (!threadgroup)
2066 break;
74a1166d 2067 } while_each_thread(leader, tsk);
fb5d2b4c 2068 rcu_read_unlock();
74a1166d
BB
2069 /* remember the number of threads in the array for later. */
2070 group_size = i;
2f7ee569
TH
2071 tset.tc_array = group;
2072 tset.tc_array_len = group_size;
74a1166d 2073
134d3373
TH
2074 /* methods shouldn't be called if no task is actually migrating */
2075 retval = 0;
892a2b90 2076 if (!group_size)
b07ef774 2077 goto out_free_group_list;
134d3373 2078
74a1166d
BB
2079 /*
2080 * step 1: check that we can legitimately attach to the cgroup.
2081 */
5549c497 2082 for_each_root_subsys(root, ss) {
74a1166d 2083 if (ss->can_attach) {
761b3ef5 2084 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2085 if (retval) {
2086 failed_ss = ss;
2087 goto out_cancel_attach;
2088 }
2089 }
74a1166d
BB
2090 }
2091
2092 /*
2093 * step 2: make sure css_sets exist for all threads to be migrated.
2094 * we use find_css_set, which allocates a new one if necessary.
2095 */
74a1166d 2096 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2097 struct css_set *old_cset;
2098
134d3373 2099 tc = flex_array_get(group, i);
a8ad805c
TH
2100 old_cset = task_css_set(tc->task);
2101 tc->cg = find_css_set(old_cset, cgrp);
61d1d219
MSB
2102 if (!tc->cg) {
2103 retval = -ENOMEM;
2104 goto out_put_css_set_refs;
74a1166d
BB
2105 }
2106 }
2107
2108 /*
494c167c
TH
2109 * step 3: now that we're guaranteed success wrt the css_sets,
2110 * proceed to move all tasks to the new cgroup. There are no
2111 * failure cases after here, so this is the commit point.
74a1166d 2112 */
74a1166d 2113 for (i = 0; i < group_size; i++) {
134d3373 2114 tc = flex_array_get(group, i);
1e2ccd1c 2115 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2116 }
2117 /* nothing is sensitive to fork() after this point. */
2118
2119 /*
494c167c 2120 * step 4: do subsystem attach callbacks.
74a1166d 2121 */
5549c497 2122 for_each_root_subsys(root, ss) {
74a1166d 2123 if (ss->attach)
761b3ef5 2124 ss->attach(cgrp, &tset);
74a1166d
BB
2125 }
2126
2127 /*
2128 * step 5: success! and cleanup
2129 */
74a1166d 2130 retval = 0;
61d1d219
MSB
2131out_put_css_set_refs:
2132 if (retval) {
2133 for (i = 0; i < group_size; i++) {
2134 tc = flex_array_get(group, i);
2135 if (!tc->cg)
2136 break;
2137 put_css_set(tc->cg);
2138 }
74a1166d
BB
2139 }
2140out_cancel_attach:
74a1166d 2141 if (retval) {
5549c497 2142 for_each_root_subsys(root, ss) {
494c167c 2143 if (ss == failed_ss)
74a1166d 2144 break;
74a1166d 2145 if (ss->cancel_attach)
761b3ef5 2146 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2147 }
2148 }
74a1166d 2149out_free_group_list:
d846687d 2150 flex_array_free(group);
74a1166d
BB
2151 return retval;
2152}
2153
2154/*
2155 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2156 * function to attach either it or all tasks in its threadgroup. Will lock
2157 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2158 */
74a1166d 2159static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2160{
bbcb81d0 2161 struct task_struct *tsk;
c69e8d9c 2162 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2163 int ret;
2164
74a1166d
BB
2165 if (!cgroup_lock_live_group(cgrp))
2166 return -ENODEV;
2167
b78949eb
MSB
2168retry_find_task:
2169 rcu_read_lock();
bbcb81d0 2170 if (pid) {
73507f33 2171 tsk = find_task_by_vpid(pid);
74a1166d
BB
2172 if (!tsk) {
2173 rcu_read_unlock();
b78949eb
MSB
2174 ret= -ESRCH;
2175 goto out_unlock_cgroup;
bbcb81d0 2176 }
74a1166d
BB
2177 /*
2178 * even if we're attaching all tasks in the thread group, we
2179 * only need to check permissions on one of them.
2180 */
c69e8d9c 2181 tcred = __task_cred(tsk);
14a590c3
EB
2182 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2183 !uid_eq(cred->euid, tcred->uid) &&
2184 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2185 rcu_read_unlock();
b78949eb
MSB
2186 ret = -EACCES;
2187 goto out_unlock_cgroup;
bbcb81d0 2188 }
b78949eb
MSB
2189 } else
2190 tsk = current;
cd3d0952
TH
2191
2192 if (threadgroup)
b78949eb 2193 tsk = tsk->group_leader;
c4c27fbd
MG
2194
2195 /*
14a40ffc 2196 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2197 * trapped in a cpuset, or RT worker may be born in a cgroup
2198 * with no rt_runtime allocated. Just say no.
2199 */
14a40ffc 2200 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2201 ret = -EINVAL;
2202 rcu_read_unlock();
2203 goto out_unlock_cgroup;
2204 }
2205
b78949eb
MSB
2206 get_task_struct(tsk);
2207 rcu_read_unlock();
2208
2209 threadgroup_lock(tsk);
2210 if (threadgroup) {
2211 if (!thread_group_leader(tsk)) {
2212 /*
2213 * a race with de_thread from another thread's exec()
2214 * may strip us of our leadership, if this happens,
2215 * there is no choice but to throw this task away and
2216 * try again; this is
2217 * "double-double-toil-and-trouble-check locking".
2218 */
2219 threadgroup_unlock(tsk);
2220 put_task_struct(tsk);
2221 goto retry_find_task;
2222 }
081aa458
LZ
2223 }
2224
2225 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2226
cd3d0952
TH
2227 threadgroup_unlock(tsk);
2228
bbcb81d0 2229 put_task_struct(tsk);
b78949eb 2230out_unlock_cgroup:
47cfcd09 2231 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2232 return ret;
2233}
2234
7ae1bad9
TH
2235/**
2236 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2237 * @from: attach to all cgroups of a given task
2238 * @tsk: the task to be attached
2239 */
2240int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2241{
2242 struct cgroupfs_root *root;
2243 int retval = 0;
2244
47cfcd09 2245 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2246 for_each_active_root(root) {
2247 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2248
2249 retval = cgroup_attach_task(from_cg, tsk, false);
2250 if (retval)
2251 break;
2252 }
47cfcd09 2253 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2254
2255 return retval;
2256}
2257EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2258
af351026 2259static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2260{
2261 return attach_task_by_pid(cgrp, pid, false);
2262}
2263
2264static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2265{
b78949eb 2266 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2267}
2268
e788e066
PM
2269static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2270 const char *buffer)
2271{
2272 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2273 if (strlen(buffer) >= PATH_MAX)
2274 return -EINVAL;
e788e066
PM
2275 if (!cgroup_lock_live_group(cgrp))
2276 return -ENODEV;
e25e2cbb 2277 mutex_lock(&cgroup_root_mutex);
e788e066 2278 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2279 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2280 mutex_unlock(&cgroup_mutex);
e788e066
PM
2281 return 0;
2282}
2283
2284static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2285 struct seq_file *seq)
2286{
2287 if (!cgroup_lock_live_group(cgrp))
2288 return -ENODEV;
2289 seq_puts(seq, cgrp->root->release_agent_path);
2290 seq_putc(seq, '\n');
47cfcd09 2291 mutex_unlock(&cgroup_mutex);
e788e066
PM
2292 return 0;
2293}
2294
873fe09e
TH
2295static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2296 struct seq_file *seq)
2297{
2298 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2299 return 0;
2300}
2301
84eea842
PM
2302/* A buffer size big enough for numbers or short strings */
2303#define CGROUP_LOCAL_BUFFER_SIZE 64
2304
e73d2c61 2305static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2306 struct file *file,
2307 const char __user *userbuf,
2308 size_t nbytes, loff_t *unused_ppos)
355e0c48 2309{
84eea842 2310 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2311 int retval = 0;
355e0c48
PM
2312 char *end;
2313
2314 if (!nbytes)
2315 return -EINVAL;
2316 if (nbytes >= sizeof(buffer))
2317 return -E2BIG;
2318 if (copy_from_user(buffer, userbuf, nbytes))
2319 return -EFAULT;
2320
2321 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2322 if (cft->write_u64) {
478988d3 2323 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2324 if (*end)
2325 return -EINVAL;
2326 retval = cft->write_u64(cgrp, cft, val);
2327 } else {
478988d3 2328 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2329 if (*end)
2330 return -EINVAL;
2331 retval = cft->write_s64(cgrp, cft, val);
2332 }
355e0c48
PM
2333 if (!retval)
2334 retval = nbytes;
2335 return retval;
2336}
2337
db3b1497
PM
2338static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2339 struct file *file,
2340 const char __user *userbuf,
2341 size_t nbytes, loff_t *unused_ppos)
2342{
84eea842 2343 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2344 int retval = 0;
2345 size_t max_bytes = cft->max_write_len;
2346 char *buffer = local_buffer;
2347
2348 if (!max_bytes)
2349 max_bytes = sizeof(local_buffer) - 1;
2350 if (nbytes >= max_bytes)
2351 return -E2BIG;
2352 /* Allocate a dynamic buffer if we need one */
2353 if (nbytes >= sizeof(local_buffer)) {
2354 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2355 if (buffer == NULL)
2356 return -ENOMEM;
2357 }
5a3eb9f6
LZ
2358 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2359 retval = -EFAULT;
2360 goto out;
2361 }
db3b1497
PM
2362
2363 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2364 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2365 if (!retval)
2366 retval = nbytes;
5a3eb9f6 2367out:
db3b1497
PM
2368 if (buffer != local_buffer)
2369 kfree(buffer);
2370 return retval;
2371}
2372
ddbcc7e8
PM
2373static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2374 size_t nbytes, loff_t *ppos)
2375{
2376 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2377 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2378
54766d4a 2379 if (cgroup_is_dead(cgrp))
ddbcc7e8 2380 return -ENODEV;
355e0c48 2381 if (cft->write)
bd89aabc 2382 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2383 if (cft->write_u64 || cft->write_s64)
2384 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2385 if (cft->write_string)
2386 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2387 if (cft->trigger) {
2388 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2389 return ret ? ret : nbytes;
2390 }
355e0c48 2391 return -EINVAL;
ddbcc7e8
PM
2392}
2393
f4c753b7
PM
2394static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2395 struct file *file,
2396 char __user *buf, size_t nbytes,
2397 loff_t *ppos)
ddbcc7e8 2398{
84eea842 2399 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2400 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2401 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2402
2403 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2404}
2405
e73d2c61
PM
2406static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2407 struct file *file,
2408 char __user *buf, size_t nbytes,
2409 loff_t *ppos)
2410{
84eea842 2411 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2412 s64 val = cft->read_s64(cgrp, cft);
2413 int len = sprintf(tmp, "%lld\n", (long long) val);
2414
2415 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2416}
2417
ddbcc7e8
PM
2418static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2419 size_t nbytes, loff_t *ppos)
2420{
2421 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2422 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2423
54766d4a 2424 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2425 return -ENODEV;
2426
2427 if (cft->read)
bd89aabc 2428 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2429 if (cft->read_u64)
2430 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2431 if (cft->read_s64)
2432 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2433 return -EINVAL;
2434}
2435
91796569
PM
2436/*
2437 * seqfile ops/methods for returning structured data. Currently just
2438 * supports string->u64 maps, but can be extended in future.
2439 */
2440
2441struct cgroup_seqfile_state {
2442 struct cftype *cft;
2443 struct cgroup *cgroup;
2444};
2445
2446static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2447{
2448 struct seq_file *sf = cb->state;
2449 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2450}
2451
2452static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2453{
2454 struct cgroup_seqfile_state *state = m->private;
2455 struct cftype *cft = state->cft;
29486df3
SH
2456 if (cft->read_map) {
2457 struct cgroup_map_cb cb = {
2458 .fill = cgroup_map_add,
2459 .state = m,
2460 };
2461 return cft->read_map(state->cgroup, cft, &cb);
2462 }
2463 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2464}
2465
96930a63 2466static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2467{
2468 struct seq_file *seq = file->private_data;
2469 kfree(seq->private);
2470 return single_release(inode, file);
2471}
2472
828c0950 2473static const struct file_operations cgroup_seqfile_operations = {
91796569 2474 .read = seq_read,
e788e066 2475 .write = cgroup_file_write,
91796569
PM
2476 .llseek = seq_lseek,
2477 .release = cgroup_seqfile_release,
2478};
2479
ddbcc7e8
PM
2480static int cgroup_file_open(struct inode *inode, struct file *file)
2481{
2482 int err;
2483 struct cftype *cft;
2484
2485 err = generic_file_open(inode, file);
2486 if (err)
2487 return err;
ddbcc7e8 2488 cft = __d_cft(file->f_dentry);
75139b82 2489
29486df3 2490 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2491 struct cgroup_seqfile_state *state;
2492
2493 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2494 if (!state)
2495 return -ENOMEM;
f4f4be2b 2496
91796569
PM
2497 state->cft = cft;
2498 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2499 file->f_op = &cgroup_seqfile_operations;
2500 err = single_open(file, cgroup_seqfile_show, state);
2501 if (err < 0)
2502 kfree(state);
2503 } else if (cft->open)
ddbcc7e8
PM
2504 err = cft->open(inode, file);
2505 else
2506 err = 0;
2507
2508 return err;
2509}
2510
2511static int cgroup_file_release(struct inode *inode, struct file *file)
2512{
2513 struct cftype *cft = __d_cft(file->f_dentry);
2514 if (cft->release)
2515 return cft->release(inode, file);
2516 return 0;
2517}
2518
2519/*
2520 * cgroup_rename - Only allow simple rename of directories in place.
2521 */
2522static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2523 struct inode *new_dir, struct dentry *new_dentry)
2524{
65dff759
LZ
2525 int ret;
2526 struct cgroup_name *name, *old_name;
2527 struct cgroup *cgrp;
2528
2529 /*
2530 * It's convinient to use parent dir's i_mutex to protected
2531 * cgrp->name.
2532 */
2533 lockdep_assert_held(&old_dir->i_mutex);
2534
ddbcc7e8
PM
2535 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2536 return -ENOTDIR;
2537 if (new_dentry->d_inode)
2538 return -EEXIST;
2539 if (old_dir != new_dir)
2540 return -EIO;
65dff759
LZ
2541
2542 cgrp = __d_cgrp(old_dentry);
2543
6db8e85c
TH
2544 /*
2545 * This isn't a proper migration and its usefulness is very
2546 * limited. Disallow if sane_behavior.
2547 */
2548 if (cgroup_sane_behavior(cgrp))
2549 return -EPERM;
2550
65dff759
LZ
2551 name = cgroup_alloc_name(new_dentry);
2552 if (!name)
2553 return -ENOMEM;
2554
2555 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2556 if (ret) {
2557 kfree(name);
2558 return ret;
2559 }
2560
2561 old_name = cgrp->name;
2562 rcu_assign_pointer(cgrp->name, name);
2563
2564 kfree_rcu(old_name, rcu_head);
2565 return 0;
ddbcc7e8
PM
2566}
2567
03b1cde6
AR
2568static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2569{
2570 if (S_ISDIR(dentry->d_inode->i_mode))
2571 return &__d_cgrp(dentry)->xattrs;
2572 else
712317ad 2573 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2574}
2575
2576static inline int xattr_enabled(struct dentry *dentry)
2577{
2578 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2579 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2580}
2581
2582static bool is_valid_xattr(const char *name)
2583{
2584 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2585 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2586 return true;
2587 return false;
2588}
2589
2590static int cgroup_setxattr(struct dentry *dentry, const char *name,
2591 const void *val, size_t size, int flags)
2592{
2593 if (!xattr_enabled(dentry))
2594 return -EOPNOTSUPP;
2595 if (!is_valid_xattr(name))
2596 return -EINVAL;
2597 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2598}
2599
2600static int cgroup_removexattr(struct dentry *dentry, const char *name)
2601{
2602 if (!xattr_enabled(dentry))
2603 return -EOPNOTSUPP;
2604 if (!is_valid_xattr(name))
2605 return -EINVAL;
2606 return simple_xattr_remove(__d_xattrs(dentry), name);
2607}
2608
2609static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2610 void *buf, size_t size)
2611{
2612 if (!xattr_enabled(dentry))
2613 return -EOPNOTSUPP;
2614 if (!is_valid_xattr(name))
2615 return -EINVAL;
2616 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2617}
2618
2619static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2620{
2621 if (!xattr_enabled(dentry))
2622 return -EOPNOTSUPP;
2623 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2624}
2625
828c0950 2626static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2627 .read = cgroup_file_read,
2628 .write = cgroup_file_write,
2629 .llseek = generic_file_llseek,
2630 .open = cgroup_file_open,
2631 .release = cgroup_file_release,
2632};
2633
03b1cde6
AR
2634static const struct inode_operations cgroup_file_inode_operations = {
2635 .setxattr = cgroup_setxattr,
2636 .getxattr = cgroup_getxattr,
2637 .listxattr = cgroup_listxattr,
2638 .removexattr = cgroup_removexattr,
2639};
2640
6e1d5dcc 2641static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2642 .lookup = cgroup_lookup,
ddbcc7e8
PM
2643 .mkdir = cgroup_mkdir,
2644 .rmdir = cgroup_rmdir,
2645 .rename = cgroup_rename,
03b1cde6
AR
2646 .setxattr = cgroup_setxattr,
2647 .getxattr = cgroup_getxattr,
2648 .listxattr = cgroup_listxattr,
2649 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2650};
2651
00cd8dd3 2652static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2653{
2654 if (dentry->d_name.len > NAME_MAX)
2655 return ERR_PTR(-ENAMETOOLONG);
2656 d_add(dentry, NULL);
2657 return NULL;
2658}
2659
0dea1168
KS
2660/*
2661 * Check if a file is a control file
2662 */
2663static inline struct cftype *__file_cft(struct file *file)
2664{
496ad9aa 2665 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2666 return ERR_PTR(-EINVAL);
2667 return __d_cft(file->f_dentry);
2668}
2669
a5e7ed32 2670static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2671 struct super_block *sb)
2672{
ddbcc7e8
PM
2673 struct inode *inode;
2674
2675 if (!dentry)
2676 return -ENOENT;
2677 if (dentry->d_inode)
2678 return -EEXIST;
2679
2680 inode = cgroup_new_inode(mode, sb);
2681 if (!inode)
2682 return -ENOMEM;
2683
2684 if (S_ISDIR(mode)) {
2685 inode->i_op = &cgroup_dir_inode_operations;
2686 inode->i_fop = &simple_dir_operations;
2687
2688 /* start off with i_nlink == 2 (for "." entry) */
2689 inc_nlink(inode);
28fd6f30 2690 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2691
b8a2df6a
TH
2692 /*
2693 * Control reaches here with cgroup_mutex held.
2694 * @inode->i_mutex should nest outside cgroup_mutex but we
2695 * want to populate it immediately without releasing
2696 * cgroup_mutex. As @inode isn't visible to anyone else
2697 * yet, trylock will always succeed without affecting
2698 * lockdep checks.
2699 */
2700 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2701 } else if (S_ISREG(mode)) {
2702 inode->i_size = 0;
2703 inode->i_fop = &cgroup_file_operations;
03b1cde6 2704 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2705 }
ddbcc7e8
PM
2706 d_instantiate(dentry, inode);
2707 dget(dentry); /* Extra count - pin the dentry in core */
2708 return 0;
2709}
2710
099fca32
LZ
2711/**
2712 * cgroup_file_mode - deduce file mode of a control file
2713 * @cft: the control file in question
2714 *
2715 * returns cft->mode if ->mode is not 0
2716 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2717 * returns S_IRUGO if it has only a read handler
2718 * returns S_IWUSR if it has only a write hander
2719 */
a5e7ed32 2720static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2721{
a5e7ed32 2722 umode_t mode = 0;
099fca32
LZ
2723
2724 if (cft->mode)
2725 return cft->mode;
2726
2727 if (cft->read || cft->read_u64 || cft->read_s64 ||
2728 cft->read_map || cft->read_seq_string)
2729 mode |= S_IRUGO;
2730
2731 if (cft->write || cft->write_u64 || cft->write_s64 ||
2732 cft->write_string || cft->trigger)
2733 mode |= S_IWUSR;
2734
2735 return mode;
2736}
2737
db0416b6 2738static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2739 struct cftype *cft)
ddbcc7e8 2740{
bd89aabc 2741 struct dentry *dir = cgrp->dentry;
05ef1d7c 2742 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2743 struct dentry *dentry;
05ef1d7c 2744 struct cfent *cfe;
ddbcc7e8 2745 int error;
a5e7ed32 2746 umode_t mode;
ddbcc7e8 2747 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2748
93438629 2749 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2750 strcpy(name, subsys->name);
2751 strcat(name, ".");
2752 }
2753 strcat(name, cft->name);
05ef1d7c 2754
ddbcc7e8 2755 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2756
2757 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2758 if (!cfe)
2759 return -ENOMEM;
2760
ddbcc7e8 2761 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2762 if (IS_ERR(dentry)) {
ddbcc7e8 2763 error = PTR_ERR(dentry);
05ef1d7c
TH
2764 goto out;
2765 }
2766
d6cbf35d
LZ
2767 cfe->type = (void *)cft;
2768 cfe->dentry = dentry;
2769 dentry->d_fsdata = cfe;
2770 simple_xattrs_init(&cfe->xattrs);
2771
05ef1d7c
TH
2772 mode = cgroup_file_mode(cft);
2773 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2774 if (!error) {
05ef1d7c
TH
2775 list_add_tail(&cfe->node, &parent->files);
2776 cfe = NULL;
2777 }
2778 dput(dentry);
2779out:
2780 kfree(cfe);
ddbcc7e8
PM
2781 return error;
2782}
2783
79578621 2784static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2785 struct cftype cfts[], bool is_add)
ddbcc7e8 2786{
03b1cde6 2787 struct cftype *cft;
db0416b6
TH
2788 int err, ret = 0;
2789
2790 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2791 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2792 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2793 continue;
f33fddc2
G
2794 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2795 continue;
2796 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2797 continue;
2798
2739d3cc 2799 if (is_add) {
79578621 2800 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2801 if (err)
2802 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2803 cft->name, err);
db0416b6 2804 ret = err;
2739d3cc
LZ
2805 } else {
2806 cgroup_rm_file(cgrp, cft);
db0416b6 2807 }
ddbcc7e8 2808 }
db0416b6 2809 return ret;
ddbcc7e8
PM
2810}
2811
8e3f6541 2812static void cgroup_cfts_prepare(void)
e8c82d20 2813 __acquires(&cgroup_mutex)
8e3f6541
TH
2814{
2815 /*
2816 * Thanks to the entanglement with vfs inode locking, we can't walk
2817 * the existing cgroups under cgroup_mutex and create files.
e8c82d20
LZ
2818 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2819 * read lock before calling cgroup_addrm_files().
8e3f6541 2820 */
8e3f6541
TH
2821 mutex_lock(&cgroup_mutex);
2822}
2823
2824static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2825 struct cftype *cfts, bool is_add)
e8c82d20 2826 __releases(&cgroup_mutex)
8e3f6541
TH
2827{
2828 LIST_HEAD(pending);
e8c82d20 2829 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
084457f2 2830 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2831 struct dentry *prev = NULL;
2832 struct inode *inode;
00356bd5 2833 u64 update_before;
8e3f6541
TH
2834
2835 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2836 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2837 !atomic_inc_not_zero(&sb->s_active)) {
2838 mutex_unlock(&cgroup_mutex);
2839 return;
8e3f6541
TH
2840 }
2841
8e3f6541 2842 /*
e8c82d20
LZ
2843 * All cgroups which are created after we drop cgroup_mutex will
2844 * have the updated set of files, so we only need to update the
00356bd5 2845 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2846 */
00356bd5 2847 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2848
2849 mutex_unlock(&cgroup_mutex);
2850
2851 /* @root always needs to be updated */
2852 inode = root->dentry->d_inode;
2853 mutex_lock(&inode->i_mutex);
2854 mutex_lock(&cgroup_mutex);
2855 cgroup_addrm_files(root, ss, cfts, is_add);
2856 mutex_unlock(&cgroup_mutex);
2857 mutex_unlock(&inode->i_mutex);
2858
2859 /* add/rm files for all cgroups created before */
2860 rcu_read_lock();
2861 cgroup_for_each_descendant_pre(cgrp, root) {
2862 if (cgroup_is_dead(cgrp))
2863 continue;
2864
2865 inode = cgrp->dentry->d_inode;
2866 dget(cgrp->dentry);
2867 rcu_read_unlock();
2868
2869 dput(prev);
2870 prev = cgrp->dentry;
8e3f6541
TH
2871
2872 mutex_lock(&inode->i_mutex);
2873 mutex_lock(&cgroup_mutex);
00356bd5 2874 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
79578621 2875 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2876 mutex_unlock(&cgroup_mutex);
2877 mutex_unlock(&inode->i_mutex);
2878
e8c82d20 2879 rcu_read_lock();
8e3f6541 2880 }
e8c82d20
LZ
2881 rcu_read_unlock();
2882 dput(prev);
2883 deactivate_super(sb);
8e3f6541
TH
2884}
2885
2886/**
2887 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2888 * @ss: target cgroup subsystem
2889 * @cfts: zero-length name terminated array of cftypes
2890 *
2891 * Register @cfts to @ss. Files described by @cfts are created for all
2892 * existing cgroups to which @ss is attached and all future cgroups will
2893 * have them too. This function can be called anytime whether @ss is
2894 * attached or not.
2895 *
2896 * Returns 0 on successful registration, -errno on failure. Note that this
2897 * function currently returns 0 as long as @cfts registration is successful
2898 * even if some file creation attempts on existing cgroups fail.
2899 */
03b1cde6 2900int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2901{
2902 struct cftype_set *set;
2903
2904 set = kzalloc(sizeof(*set), GFP_KERNEL);
2905 if (!set)
2906 return -ENOMEM;
2907
2908 cgroup_cfts_prepare();
2909 set->cfts = cfts;
2910 list_add_tail(&set->node, &ss->cftsets);
79578621 2911 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2912
2913 return 0;
2914}
2915EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2916
79578621
TH
2917/**
2918 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2919 * @ss: target cgroup subsystem
2920 * @cfts: zero-length name terminated array of cftypes
2921 *
2922 * Unregister @cfts from @ss. Files described by @cfts are removed from
2923 * all existing cgroups to which @ss is attached and all future cgroups
2924 * won't have them either. This function can be called anytime whether @ss
2925 * is attached or not.
2926 *
2927 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2928 * registered with @ss.
2929 */
03b1cde6 2930int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2931{
2932 struct cftype_set *set;
2933
2934 cgroup_cfts_prepare();
2935
2936 list_for_each_entry(set, &ss->cftsets, node) {
2937 if (set->cfts == cfts) {
f57947d2
LZ
2938 list_del(&set->node);
2939 kfree(set);
79578621
TH
2940 cgroup_cfts_commit(ss, cfts, false);
2941 return 0;
2942 }
2943 }
2944
2945 cgroup_cfts_commit(ss, NULL, false);
2946 return -ENOENT;
2947}
2948
a043e3b2
LZ
2949/**
2950 * cgroup_task_count - count the number of tasks in a cgroup.
2951 * @cgrp: the cgroup in question
2952 *
2953 * Return the number of tasks in the cgroup.
2954 */
bd89aabc 2955int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2956{
2957 int count = 0;
69d0206c 2958 struct cgrp_cset_link *link;
817929ec
PM
2959
2960 read_lock(&css_set_lock);
69d0206c
TH
2961 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2962 count += atomic_read(&link->cset->refcount);
817929ec 2963 read_unlock(&css_set_lock);
bbcb81d0
PM
2964 return count;
2965}
2966
817929ec
PM
2967/*
2968 * Advance a list_head iterator. The iterator should be positioned at
2969 * the start of a css_set
2970 */
69d0206c 2971static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2972{
69d0206c
TH
2973 struct list_head *l = it->cset_link;
2974 struct cgrp_cset_link *link;
5abb8855 2975 struct css_set *cset;
817929ec
PM
2976
2977 /* Advance to the next non-empty css_set */
2978 do {
2979 l = l->next;
69d0206c
TH
2980 if (l == &cgrp->cset_links) {
2981 it->cset_link = NULL;
817929ec
PM
2982 return;
2983 }
69d0206c
TH
2984 link = list_entry(l, struct cgrp_cset_link, cset_link);
2985 cset = link->cset;
5abb8855 2986 } while (list_empty(&cset->tasks));
69d0206c 2987 it->cset_link = l;
5abb8855 2988 it->task = cset->tasks.next;
817929ec
PM
2989}
2990
31a7df01
CW
2991/*
2992 * To reduce the fork() overhead for systems that are not actually
2993 * using their cgroups capability, we don't maintain the lists running
2994 * through each css_set to its tasks until we see the list actually
2995 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2996 */
3df91fe3 2997static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2998{
2999 struct task_struct *p, *g;
3000 write_lock(&css_set_lock);
3001 use_task_css_set_links = 1;
3ce3230a
FW
3002 /*
3003 * We need tasklist_lock because RCU is not safe against
3004 * while_each_thread(). Besides, a forking task that has passed
3005 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3006 * is not guaranteed to have its child immediately visible in the
3007 * tasklist if we walk through it with RCU.
3008 */
3009 read_lock(&tasklist_lock);
31a7df01
CW
3010 do_each_thread(g, p) {
3011 task_lock(p);
0e04388f
LZ
3012 /*
3013 * We should check if the process is exiting, otherwise
3014 * it will race with cgroup_exit() in that the list
3015 * entry won't be deleted though the process has exited.
3016 */
3017 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 3018 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
3019 task_unlock(p);
3020 } while_each_thread(g, p);
3ce3230a 3021 read_unlock(&tasklist_lock);
31a7df01
CW
3022 write_unlock(&css_set_lock);
3023}
3024
53fa5261
TH
3025/**
3026 * cgroup_next_sibling - find the next sibling of a given cgroup
3027 * @pos: the current cgroup
3028 *
3029 * This function returns the next sibling of @pos and should be called
3030 * under RCU read lock. The only requirement is that @pos is accessible.
3031 * The next sibling is guaranteed to be returned regardless of @pos's
3032 * state.
3033 */
3034struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3035{
3036 struct cgroup *next;
3037
3038 WARN_ON_ONCE(!rcu_read_lock_held());
3039
3040 /*
3041 * @pos could already have been removed. Once a cgroup is removed,
3042 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3043 * changes. As CGRP_DEAD assertion is serialized and happens
3044 * before the cgroup is taken off the ->sibling list, if we see it
3045 * unasserted, it's guaranteed that the next sibling hasn't
3046 * finished its grace period even if it's already removed, and thus
3047 * safe to dereference from this RCU critical section. If
3048 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3049 * to be visible as %true here.
53fa5261 3050 */
54766d4a 3051 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3052 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3053 if (&next->sibling != &pos->parent->children)
3054 return next;
3055 return NULL;
3056 }
3057
3058 /*
3059 * Can't dereference the next pointer. Each cgroup is given a
3060 * monotonically increasing unique serial number and always
3061 * appended to the sibling list, so the next one can be found by
3062 * walking the parent's children until we see a cgroup with higher
3063 * serial number than @pos's.
3064 *
3065 * While this path can be slow, it's taken only when either the
3066 * current cgroup is removed or iteration and removal race.
3067 */
3068 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3069 if (next->serial_nr > pos->serial_nr)
3070 return next;
3071 return NULL;
3072}
3073EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3074
574bd9f7
TH
3075/**
3076 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3077 * @pos: the current position (%NULL to initiate traversal)
3078 * @cgroup: cgroup whose descendants to walk
3079 *
3080 * To be used by cgroup_for_each_descendant_pre(). Find the next
3081 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3082 *
3083 * While this function requires RCU read locking, it doesn't require the
3084 * whole traversal to be contained in a single RCU critical section. This
3085 * function will return the correct next descendant as long as both @pos
3086 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3087 */
3088struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3089 struct cgroup *cgroup)
3090{
3091 struct cgroup *next;
3092
3093 WARN_ON_ONCE(!rcu_read_lock_held());
3094
3095 /* if first iteration, pretend we just visited @cgroup */
7805d000 3096 if (!pos)
574bd9f7 3097 pos = cgroup;
574bd9f7
TH
3098
3099 /* visit the first child if exists */
3100 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3101 if (next)
3102 return next;
3103
3104 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3105 while (pos != cgroup) {
75501a6d
TH
3106 next = cgroup_next_sibling(pos);
3107 if (next)
574bd9f7 3108 return next;
574bd9f7 3109 pos = pos->parent;
7805d000 3110 }
574bd9f7
TH
3111
3112 return NULL;
3113}
3114EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3115
12a9d2fe
TH
3116/**
3117 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3118 * @pos: cgroup of interest
3119 *
3120 * Return the rightmost descendant of @pos. If there's no descendant,
3121 * @pos is returned. This can be used during pre-order traversal to skip
3122 * subtree of @pos.
75501a6d
TH
3123 *
3124 * While this function requires RCU read locking, it doesn't require the
3125 * whole traversal to be contained in a single RCU critical section. This
3126 * function will return the correct rightmost descendant as long as @pos is
3127 * accessible.
12a9d2fe
TH
3128 */
3129struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3130{
3131 struct cgroup *last, *tmp;
3132
3133 WARN_ON_ONCE(!rcu_read_lock_held());
3134
3135 do {
3136 last = pos;
3137 /* ->prev isn't RCU safe, walk ->next till the end */
3138 pos = NULL;
3139 list_for_each_entry_rcu(tmp, &last->children, sibling)
3140 pos = tmp;
3141 } while (pos);
3142
3143 return last;
3144}
3145EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3146
574bd9f7
TH
3147static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3148{
3149 struct cgroup *last;
3150
3151 do {
3152 last = pos;
3153 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3154 sibling);
3155 } while (pos);
3156
3157 return last;
3158}
3159
3160/**
3161 * cgroup_next_descendant_post - find the next descendant for post-order walk
3162 * @pos: the current position (%NULL to initiate traversal)
3163 * @cgroup: cgroup whose descendants to walk
3164 *
3165 * To be used by cgroup_for_each_descendant_post(). Find the next
3166 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3167 *
3168 * While this function requires RCU read locking, it doesn't require the
3169 * whole traversal to be contained in a single RCU critical section. This
3170 * function will return the correct next descendant as long as both @pos
3171 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3172 */
3173struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3174 struct cgroup *cgroup)
3175{
3176 struct cgroup *next;
3177
3178 WARN_ON_ONCE(!rcu_read_lock_held());
3179
3180 /* if first iteration, visit the leftmost descendant */
3181 if (!pos) {
3182 next = cgroup_leftmost_descendant(cgroup);
3183 return next != cgroup ? next : NULL;
3184 }
3185
3186 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3187 next = cgroup_next_sibling(pos);
3188 if (next)
574bd9f7
TH
3189 return cgroup_leftmost_descendant(next);
3190
3191 /* no sibling left, visit parent */
3192 next = pos->parent;
3193 return next != cgroup ? next : NULL;
3194}
3195EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3196
bd89aabc 3197void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3198 __acquires(css_set_lock)
817929ec
PM
3199{
3200 /*
3201 * The first time anyone tries to iterate across a cgroup,
3202 * we need to enable the list linking each css_set to its
3203 * tasks, and fix up all existing tasks.
3204 */
31a7df01
CW
3205 if (!use_task_css_set_links)
3206 cgroup_enable_task_cg_lists();
3207
817929ec 3208 read_lock(&css_set_lock);
69d0206c 3209 it->cset_link = &cgrp->cset_links;
bd89aabc 3210 cgroup_advance_iter(cgrp, it);
817929ec
PM
3211}
3212
bd89aabc 3213struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3214 struct cgroup_iter *it)
3215{
3216 struct task_struct *res;
3217 struct list_head *l = it->task;
69d0206c 3218 struct cgrp_cset_link *link;
817929ec
PM
3219
3220 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3221 if (!it->cset_link)
817929ec
PM
3222 return NULL;
3223 res = list_entry(l, struct task_struct, cg_list);
3224 /* Advance iterator to find next entry */
3225 l = l->next;
69d0206c
TH
3226 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3227 if (l == &link->cset->tasks) {
817929ec
PM
3228 /* We reached the end of this task list - move on to
3229 * the next cg_cgroup_link */
bd89aabc 3230 cgroup_advance_iter(cgrp, it);
817929ec
PM
3231 } else {
3232 it->task = l;
3233 }
3234 return res;
3235}
3236
bd89aabc 3237void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3238 __releases(css_set_lock)
817929ec
PM
3239{
3240 read_unlock(&css_set_lock);
3241}
3242
31a7df01
CW
3243static inline int started_after_time(struct task_struct *t1,
3244 struct timespec *time,
3245 struct task_struct *t2)
3246{
3247 int start_diff = timespec_compare(&t1->start_time, time);
3248 if (start_diff > 0) {
3249 return 1;
3250 } else if (start_diff < 0) {
3251 return 0;
3252 } else {
3253 /*
3254 * Arbitrarily, if two processes started at the same
3255 * time, we'll say that the lower pointer value
3256 * started first. Note that t2 may have exited by now
3257 * so this may not be a valid pointer any longer, but
3258 * that's fine - it still serves to distinguish
3259 * between two tasks started (effectively) simultaneously.
3260 */
3261 return t1 > t2;
3262 }
3263}
3264
3265/*
3266 * This function is a callback from heap_insert() and is used to order
3267 * the heap.
3268 * In this case we order the heap in descending task start time.
3269 */
3270static inline int started_after(void *p1, void *p2)
3271{
3272 struct task_struct *t1 = p1;
3273 struct task_struct *t2 = p2;
3274 return started_after_time(t1, &t2->start_time, t2);
3275}
3276
3277/**
3278 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3279 * @scan: struct cgroup_scanner containing arguments for the scan
3280 *
3281 * Arguments include pointers to callback functions test_task() and
3282 * process_task().
3283 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3284 * and if it returns true, call process_task() for it also.
3285 * The test_task pointer may be NULL, meaning always true (select all tasks).
3286 * Effectively duplicates cgroup_iter_{start,next,end}()
3287 * but does not lock css_set_lock for the call to process_task().
3288 * The struct cgroup_scanner may be embedded in any structure of the caller's
3289 * creation.
3290 * It is guaranteed that process_task() will act on every task that
3291 * is a member of the cgroup for the duration of this call. This
3292 * function may or may not call process_task() for tasks that exit
3293 * or move to a different cgroup during the call, or are forked or
3294 * move into the cgroup during the call.
3295 *
3296 * Note that test_task() may be called with locks held, and may in some
3297 * situations be called multiple times for the same task, so it should
3298 * be cheap.
3299 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3300 * pre-allocated and will be used for heap operations (and its "gt" member will
3301 * be overwritten), else a temporary heap will be used (allocation of which
3302 * may cause this function to fail).
3303 */
3304int cgroup_scan_tasks(struct cgroup_scanner *scan)
3305{
3306 int retval, i;
3307 struct cgroup_iter it;
3308 struct task_struct *p, *dropped;
3309 /* Never dereference latest_task, since it's not refcounted */
3310 struct task_struct *latest_task = NULL;
3311 struct ptr_heap tmp_heap;
3312 struct ptr_heap *heap;
3313 struct timespec latest_time = { 0, 0 };
3314
3315 if (scan->heap) {
3316 /* The caller supplied our heap and pre-allocated its memory */
3317 heap = scan->heap;
3318 heap->gt = &started_after;
3319 } else {
3320 /* We need to allocate our own heap memory */
3321 heap = &tmp_heap;
3322 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3323 if (retval)
3324 /* cannot allocate the heap */
3325 return retval;
3326 }
3327
3328 again:
3329 /*
3330 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3331 * to determine which are of interest, and using the scanner's
3332 * "process_task" callback to process any of them that need an update.
3333 * Since we don't want to hold any locks during the task updates,
3334 * gather tasks to be processed in a heap structure.
3335 * The heap is sorted by descending task start time.
3336 * If the statically-sized heap fills up, we overflow tasks that
3337 * started later, and in future iterations only consider tasks that
3338 * started after the latest task in the previous pass. This
3339 * guarantees forward progress and that we don't miss any tasks.
3340 */
3341 heap->size = 0;
3342 cgroup_iter_start(scan->cg, &it);
3343 while ((p = cgroup_iter_next(scan->cg, &it))) {
3344 /*
3345 * Only affect tasks that qualify per the caller's callback,
3346 * if he provided one
3347 */
3348 if (scan->test_task && !scan->test_task(p, scan))
3349 continue;
3350 /*
3351 * Only process tasks that started after the last task
3352 * we processed
3353 */
3354 if (!started_after_time(p, &latest_time, latest_task))
3355 continue;
3356 dropped = heap_insert(heap, p);
3357 if (dropped == NULL) {
3358 /*
3359 * The new task was inserted; the heap wasn't
3360 * previously full
3361 */
3362 get_task_struct(p);
3363 } else if (dropped != p) {
3364 /*
3365 * The new task was inserted, and pushed out a
3366 * different task
3367 */
3368 get_task_struct(p);
3369 put_task_struct(dropped);
3370 }
3371 /*
3372 * Else the new task was newer than anything already in
3373 * the heap and wasn't inserted
3374 */
3375 }
3376 cgroup_iter_end(scan->cg, &it);
3377
3378 if (heap->size) {
3379 for (i = 0; i < heap->size; i++) {
4fe91d51 3380 struct task_struct *q = heap->ptrs[i];
31a7df01 3381 if (i == 0) {
4fe91d51
PJ
3382 latest_time = q->start_time;
3383 latest_task = q;
31a7df01
CW
3384 }
3385 /* Process the task per the caller's callback */
4fe91d51
PJ
3386 scan->process_task(q, scan);
3387 put_task_struct(q);
31a7df01
CW
3388 }
3389 /*
3390 * If we had to process any tasks at all, scan again
3391 * in case some of them were in the middle of forking
3392 * children that didn't get processed.
3393 * Not the most efficient way to do it, but it avoids
3394 * having to take callback_mutex in the fork path
3395 */
3396 goto again;
3397 }
3398 if (heap == &tmp_heap)
3399 heap_free(&tmp_heap);
3400 return 0;
3401}
3402
8cc99345
TH
3403static void cgroup_transfer_one_task(struct task_struct *task,
3404 struct cgroup_scanner *scan)
3405{
3406 struct cgroup *new_cgroup = scan->data;
3407
47cfcd09 3408 mutex_lock(&cgroup_mutex);
8cc99345 3409 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3410 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3411}
3412
3413/**
3414 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3415 * @to: cgroup to which the tasks will be moved
3416 * @from: cgroup in which the tasks currently reside
3417 */
3418int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3419{
3420 struct cgroup_scanner scan;
3421
3422 scan.cg = from;
3423 scan.test_task = NULL; /* select all tasks in cgroup */
3424 scan.process_task = cgroup_transfer_one_task;
3425 scan.heap = NULL;
3426 scan.data = to;
3427
3428 return cgroup_scan_tasks(&scan);
3429}
3430
bbcb81d0 3431/*
102a775e 3432 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3433 *
3434 * Reading this file can return large amounts of data if a cgroup has
3435 * *lots* of attached tasks. So it may need several calls to read(),
3436 * but we cannot guarantee that the information we produce is correct
3437 * unless we produce it entirely atomically.
3438 *
bbcb81d0 3439 */
bbcb81d0 3440
24528255
LZ
3441/* which pidlist file are we talking about? */
3442enum cgroup_filetype {
3443 CGROUP_FILE_PROCS,
3444 CGROUP_FILE_TASKS,
3445};
3446
3447/*
3448 * A pidlist is a list of pids that virtually represents the contents of one
3449 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3450 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3451 * to the cgroup.
3452 */
3453struct cgroup_pidlist {
3454 /*
3455 * used to find which pidlist is wanted. doesn't change as long as
3456 * this particular list stays in the list.
3457 */
3458 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3459 /* array of xids */
3460 pid_t *list;
3461 /* how many elements the above list has */
3462 int length;
3463 /* how many files are using the current array */
3464 int use_count;
3465 /* each of these stored in a list by its cgroup */
3466 struct list_head links;
3467 /* pointer to the cgroup we belong to, for list removal purposes */
3468 struct cgroup *owner;
3469 /* protects the other fields */
3470 struct rw_semaphore mutex;
3471};
3472
d1d9fd33
BB
3473/*
3474 * The following two functions "fix" the issue where there are more pids
3475 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3476 * TODO: replace with a kernel-wide solution to this problem
3477 */
3478#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3479static void *pidlist_allocate(int count)
3480{
3481 if (PIDLIST_TOO_LARGE(count))
3482 return vmalloc(count * sizeof(pid_t));
3483 else
3484 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3485}
3486static void pidlist_free(void *p)
3487{
3488 if (is_vmalloc_addr(p))
3489 vfree(p);
3490 else
3491 kfree(p);
3492}
d1d9fd33 3493
bbcb81d0 3494/*
102a775e 3495 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3496 * Returns the number of unique elements.
bbcb81d0 3497 */
6ee211ad 3498static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3499{
102a775e 3500 int src, dest = 1;
102a775e
BB
3501
3502 /*
3503 * we presume the 0th element is unique, so i starts at 1. trivial
3504 * edge cases first; no work needs to be done for either
3505 */
3506 if (length == 0 || length == 1)
3507 return length;
3508 /* src and dest walk down the list; dest counts unique elements */
3509 for (src = 1; src < length; src++) {
3510 /* find next unique element */
3511 while (list[src] == list[src-1]) {
3512 src++;
3513 if (src == length)
3514 goto after;
3515 }
3516 /* dest always points to where the next unique element goes */
3517 list[dest] = list[src];
3518 dest++;
3519 }
3520after:
102a775e
BB
3521 return dest;
3522}
3523
3524static int cmppid(const void *a, const void *b)
3525{
3526 return *(pid_t *)a - *(pid_t *)b;
3527}
3528
72a8cb30
BB
3529/*
3530 * find the appropriate pidlist for our purpose (given procs vs tasks)
3531 * returns with the lock on that pidlist already held, and takes care
3532 * of the use count, or returns NULL with no locks held if we're out of
3533 * memory.
3534 */
3535static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3536 enum cgroup_filetype type)
3537{
3538 struct cgroup_pidlist *l;
3539 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3540 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3541
72a8cb30
BB
3542 /*
3543 * We can't drop the pidlist_mutex before taking the l->mutex in case
3544 * the last ref-holder is trying to remove l from the list at the same
3545 * time. Holding the pidlist_mutex precludes somebody taking whichever
3546 * list we find out from under us - compare release_pid_array().
3547 */
3548 mutex_lock(&cgrp->pidlist_mutex);
3549 list_for_each_entry(l, &cgrp->pidlists, links) {
3550 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3551 /* make sure l doesn't vanish out from under us */
3552 down_write(&l->mutex);
3553 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3554 return l;
3555 }
3556 }
3557 /* entry not found; create a new one */
f4f4be2b 3558 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3559 if (!l) {
3560 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3561 return l;
3562 }
3563 init_rwsem(&l->mutex);
3564 down_write(&l->mutex);
3565 l->key.type = type;
b70cc5fd 3566 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3567 l->owner = cgrp;
3568 list_add(&l->links, &cgrp->pidlists);
3569 mutex_unlock(&cgrp->pidlist_mutex);
3570 return l;
3571}
3572
102a775e
BB
3573/*
3574 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3575 */
72a8cb30
BB
3576static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3577 struct cgroup_pidlist **lp)
102a775e
BB
3578{
3579 pid_t *array;
3580 int length;
3581 int pid, n = 0; /* used for populating the array */
817929ec
PM
3582 struct cgroup_iter it;
3583 struct task_struct *tsk;
102a775e
BB
3584 struct cgroup_pidlist *l;
3585
3586 /*
3587 * If cgroup gets more users after we read count, we won't have
3588 * enough space - tough. This race is indistinguishable to the
3589 * caller from the case that the additional cgroup users didn't
3590 * show up until sometime later on.
3591 */
3592 length = cgroup_task_count(cgrp);
d1d9fd33 3593 array = pidlist_allocate(length);
102a775e
BB
3594 if (!array)
3595 return -ENOMEM;
3596 /* now, populate the array */
bd89aabc
PM
3597 cgroup_iter_start(cgrp, &it);
3598 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3599 if (unlikely(n == length))
817929ec 3600 break;
102a775e 3601 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3602 if (type == CGROUP_FILE_PROCS)
3603 pid = task_tgid_vnr(tsk);
3604 else
3605 pid = task_pid_vnr(tsk);
102a775e
BB
3606 if (pid > 0) /* make sure to only use valid results */
3607 array[n++] = pid;
817929ec 3608 }
bd89aabc 3609 cgroup_iter_end(cgrp, &it);
102a775e
BB
3610 length = n;
3611 /* now sort & (if procs) strip out duplicates */
3612 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3613 if (type == CGROUP_FILE_PROCS)
6ee211ad 3614 length = pidlist_uniq(array, length);
72a8cb30
BB
3615 l = cgroup_pidlist_find(cgrp, type);
3616 if (!l) {
d1d9fd33 3617 pidlist_free(array);
72a8cb30 3618 return -ENOMEM;
102a775e 3619 }
72a8cb30 3620 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3621 pidlist_free(l->list);
102a775e
BB
3622 l->list = array;
3623 l->length = length;
3624 l->use_count++;
3625 up_write(&l->mutex);
72a8cb30 3626 *lp = l;
102a775e 3627 return 0;
bbcb81d0
PM
3628}
3629
846c7bb0 3630/**
a043e3b2 3631 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3632 * @stats: cgroupstats to fill information into
3633 * @dentry: A dentry entry belonging to the cgroup for which stats have
3634 * been requested.
a043e3b2
LZ
3635 *
3636 * Build and fill cgroupstats so that taskstats can export it to user
3637 * space.
846c7bb0
BS
3638 */
3639int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3640{
3641 int ret = -EINVAL;
bd89aabc 3642 struct cgroup *cgrp;
846c7bb0
BS
3643 struct cgroup_iter it;
3644 struct task_struct *tsk;
33d283be 3645
846c7bb0 3646 /*
33d283be
LZ
3647 * Validate dentry by checking the superblock operations,
3648 * and make sure it's a directory.
846c7bb0 3649 */
33d283be
LZ
3650 if (dentry->d_sb->s_op != &cgroup_ops ||
3651 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3652 goto err;
3653
3654 ret = 0;
bd89aabc 3655 cgrp = dentry->d_fsdata;
846c7bb0 3656
bd89aabc
PM
3657 cgroup_iter_start(cgrp, &it);
3658 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3659 switch (tsk->state) {
3660 case TASK_RUNNING:
3661 stats->nr_running++;
3662 break;
3663 case TASK_INTERRUPTIBLE:
3664 stats->nr_sleeping++;
3665 break;
3666 case TASK_UNINTERRUPTIBLE:
3667 stats->nr_uninterruptible++;
3668 break;
3669 case TASK_STOPPED:
3670 stats->nr_stopped++;
3671 break;
3672 default:
3673 if (delayacct_is_task_waiting_on_io(tsk))
3674 stats->nr_io_wait++;
3675 break;
3676 }
3677 }
bd89aabc 3678 cgroup_iter_end(cgrp, &it);
846c7bb0 3679
846c7bb0
BS
3680err:
3681 return ret;
3682}
3683
8f3ff208 3684
bbcb81d0 3685/*
102a775e 3686 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3687 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3688 * in the cgroup->l->list array.
bbcb81d0 3689 */
cc31edce 3690
102a775e 3691static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3692{
cc31edce
PM
3693 /*
3694 * Initially we receive a position value that corresponds to
3695 * one more than the last pid shown (or 0 on the first call or
3696 * after a seek to the start). Use a binary-search to find the
3697 * next pid to display, if any
3698 */
102a775e 3699 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3700 int index = 0, pid = *pos;
3701 int *iter;
3702
102a775e 3703 down_read(&l->mutex);
cc31edce 3704 if (pid) {
102a775e 3705 int end = l->length;
20777766 3706
cc31edce
PM
3707 while (index < end) {
3708 int mid = (index + end) / 2;
102a775e 3709 if (l->list[mid] == pid) {
cc31edce
PM
3710 index = mid;
3711 break;
102a775e 3712 } else if (l->list[mid] <= pid)
cc31edce
PM
3713 index = mid + 1;
3714 else
3715 end = mid;
3716 }
3717 }
3718 /* If we're off the end of the array, we're done */
102a775e 3719 if (index >= l->length)
cc31edce
PM
3720 return NULL;
3721 /* Update the abstract position to be the actual pid that we found */
102a775e 3722 iter = l->list + index;
cc31edce
PM
3723 *pos = *iter;
3724 return iter;
3725}
3726
102a775e 3727static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3728{
102a775e
BB
3729 struct cgroup_pidlist *l = s->private;
3730 up_read(&l->mutex);
cc31edce
PM
3731}
3732
102a775e 3733static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3734{
102a775e
BB
3735 struct cgroup_pidlist *l = s->private;
3736 pid_t *p = v;
3737 pid_t *end = l->list + l->length;
cc31edce
PM
3738 /*
3739 * Advance to the next pid in the array. If this goes off the
3740 * end, we're done
3741 */
3742 p++;
3743 if (p >= end) {
3744 return NULL;
3745 } else {
3746 *pos = *p;
3747 return p;
3748 }
3749}
3750
102a775e 3751static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3752{
3753 return seq_printf(s, "%d\n", *(int *)v);
3754}
bbcb81d0 3755
102a775e
BB
3756/*
3757 * seq_operations functions for iterating on pidlists through seq_file -
3758 * independent of whether it's tasks or procs
3759 */
3760static const struct seq_operations cgroup_pidlist_seq_operations = {
3761 .start = cgroup_pidlist_start,
3762 .stop = cgroup_pidlist_stop,
3763 .next = cgroup_pidlist_next,
3764 .show = cgroup_pidlist_show,
cc31edce
PM
3765};
3766
102a775e 3767static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3768{
72a8cb30
BB
3769 /*
3770 * the case where we're the last user of this particular pidlist will
3771 * have us remove it from the cgroup's list, which entails taking the
3772 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3773 * pidlist_mutex, we have to take pidlist_mutex first.
3774 */
3775 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3776 down_write(&l->mutex);
3777 BUG_ON(!l->use_count);
3778 if (!--l->use_count) {
72a8cb30
BB
3779 /* we're the last user if refcount is 0; remove and free */
3780 list_del(&l->links);
3781 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3782 pidlist_free(l->list);
72a8cb30
BB
3783 put_pid_ns(l->key.ns);
3784 up_write(&l->mutex);
3785 kfree(l);
3786 return;
cc31edce 3787 }
72a8cb30 3788 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3789 up_write(&l->mutex);
bbcb81d0
PM
3790}
3791
102a775e 3792static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3793{
102a775e 3794 struct cgroup_pidlist *l;
cc31edce
PM
3795 if (!(file->f_mode & FMODE_READ))
3796 return 0;
102a775e
BB
3797 /*
3798 * the seq_file will only be initialized if the file was opened for
3799 * reading; hence we check if it's not null only in that case.
3800 */
3801 l = ((struct seq_file *)file->private_data)->private;
3802 cgroup_release_pid_array(l);
cc31edce
PM
3803 return seq_release(inode, file);
3804}
3805
102a775e 3806static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3807 .read = seq_read,
3808 .llseek = seq_lseek,
3809 .write = cgroup_file_write,
102a775e 3810 .release = cgroup_pidlist_release,
cc31edce
PM
3811};
3812
bbcb81d0 3813/*
102a775e
BB
3814 * The following functions handle opens on a file that displays a pidlist
3815 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3816 * in the cgroup.
bbcb81d0 3817 */
102a775e 3818/* helper function for the two below it */
72a8cb30 3819static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3820{
bd89aabc 3821 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3822 struct cgroup_pidlist *l;
cc31edce 3823 int retval;
bbcb81d0 3824
cc31edce 3825 /* Nothing to do for write-only files */
bbcb81d0
PM
3826 if (!(file->f_mode & FMODE_READ))
3827 return 0;
3828
102a775e 3829 /* have the array populated */
72a8cb30 3830 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3831 if (retval)
3832 return retval;
3833 /* configure file information */
3834 file->f_op = &cgroup_pidlist_operations;
cc31edce 3835
102a775e 3836 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3837 if (retval) {
102a775e 3838 cgroup_release_pid_array(l);
cc31edce 3839 return retval;
bbcb81d0 3840 }
102a775e 3841 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3842 return 0;
3843}
102a775e
BB
3844static int cgroup_tasks_open(struct inode *unused, struct file *file)
3845{
72a8cb30 3846 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3847}
3848static int cgroup_procs_open(struct inode *unused, struct file *file)
3849{
72a8cb30 3850 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3851}
bbcb81d0 3852
bd89aabc 3853static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3854 struct cftype *cft)
3855{
bd89aabc 3856 return notify_on_release(cgrp);
81a6a5cd
PM
3857}
3858
6379c106
PM
3859static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3860 struct cftype *cft,
3861 u64 val)
3862{
3863 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3864 if (val)
3865 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3866 else
3867 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3868 return 0;
3869}
3870
1c8158ee
LZ
3871/*
3872 * When dput() is called asynchronously, if umount has been done and
3873 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3874 * there's a small window that vfs will see the root dentry with non-zero
3875 * refcnt and trigger BUG().
3876 *
3877 * That's why we hold a reference before dput() and drop it right after.
3878 */
3879static void cgroup_dput(struct cgroup *cgrp)
3880{
3881 struct super_block *sb = cgrp->root->sb;
3882
3883 atomic_inc(&sb->s_active);
3884 dput(cgrp->dentry);
3885 deactivate_super(sb);
3886}
3887
0dea1168
KS
3888/*
3889 * Unregister event and free resources.
3890 *
3891 * Gets called from workqueue.
3892 */
3893static void cgroup_event_remove(struct work_struct *work)
3894{
3895 struct cgroup_event *event = container_of(work, struct cgroup_event,
3896 remove);
3897 struct cgroup *cgrp = event->cgrp;
3898
810cbee4
LZ
3899 remove_wait_queue(event->wqh, &event->wait);
3900
0dea1168
KS
3901 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3902
810cbee4
LZ
3903 /* Notify userspace the event is going away. */
3904 eventfd_signal(event->eventfd, 1);
3905
0dea1168 3906 eventfd_ctx_put(event->eventfd);
0dea1168 3907 kfree(event);
1c8158ee 3908 cgroup_dput(cgrp);
0dea1168
KS
3909}
3910
3911/*
3912 * Gets called on POLLHUP on eventfd when user closes it.
3913 *
3914 * Called with wqh->lock held and interrupts disabled.
3915 */
3916static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3917 int sync, void *key)
3918{
3919 struct cgroup_event *event = container_of(wait,
3920 struct cgroup_event, wait);
3921 struct cgroup *cgrp = event->cgrp;
3922 unsigned long flags = (unsigned long)key;
3923
3924 if (flags & POLLHUP) {
0dea1168 3925 /*
810cbee4
LZ
3926 * If the event has been detached at cgroup removal, we
3927 * can simply return knowing the other side will cleanup
3928 * for us.
3929 *
3930 * We can't race against event freeing since the other
3931 * side will require wqh->lock via remove_wait_queue(),
3932 * which we hold.
0dea1168 3933 */
810cbee4
LZ
3934 spin_lock(&cgrp->event_list_lock);
3935 if (!list_empty(&event->list)) {
3936 list_del_init(&event->list);
3937 /*
3938 * We are in atomic context, but cgroup_event_remove()
3939 * may sleep, so we have to call it in workqueue.
3940 */
3941 schedule_work(&event->remove);
3942 }
3943 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3944 }
3945
3946 return 0;
3947}
3948
3949static void cgroup_event_ptable_queue_proc(struct file *file,
3950 wait_queue_head_t *wqh, poll_table *pt)
3951{
3952 struct cgroup_event *event = container_of(pt,
3953 struct cgroup_event, pt);
3954
3955 event->wqh = wqh;
3956 add_wait_queue(wqh, &event->wait);
3957}
3958
3959/*
3960 * Parse input and register new cgroup event handler.
3961 *
3962 * Input must be in format '<event_fd> <control_fd> <args>'.
3963 * Interpretation of args is defined by control file implementation.
3964 */
3965static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3966 const char *buffer)
3967{
3968 struct cgroup_event *event = NULL;
f169007b 3969 struct cgroup *cgrp_cfile;
0dea1168
KS
3970 unsigned int efd, cfd;
3971 struct file *efile = NULL;
3972 struct file *cfile = NULL;
3973 char *endp;
3974 int ret;
3975
3976 efd = simple_strtoul(buffer, &endp, 10);
3977 if (*endp != ' ')
3978 return -EINVAL;
3979 buffer = endp + 1;
3980
3981 cfd = simple_strtoul(buffer, &endp, 10);
3982 if ((*endp != ' ') && (*endp != '\0'))
3983 return -EINVAL;
3984 buffer = endp + 1;
3985
3986 event = kzalloc(sizeof(*event), GFP_KERNEL);
3987 if (!event)
3988 return -ENOMEM;
3989 event->cgrp = cgrp;
3990 INIT_LIST_HEAD(&event->list);
3991 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3992 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3993 INIT_WORK(&event->remove, cgroup_event_remove);
3994
3995 efile = eventfd_fget(efd);
3996 if (IS_ERR(efile)) {
3997 ret = PTR_ERR(efile);
3998 goto fail;
3999 }
4000
4001 event->eventfd = eventfd_ctx_fileget(efile);
4002 if (IS_ERR(event->eventfd)) {
4003 ret = PTR_ERR(event->eventfd);
4004 goto fail;
4005 }
4006
4007 cfile = fget(cfd);
4008 if (!cfile) {
4009 ret = -EBADF;
4010 goto fail;
4011 }
4012
4013 /* the process need read permission on control file */
3bfa784a 4014 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 4015 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
4016 if (ret < 0)
4017 goto fail;
4018
4019 event->cft = __file_cft(cfile);
4020 if (IS_ERR(event->cft)) {
4021 ret = PTR_ERR(event->cft);
4022 goto fail;
4023 }
4024
f169007b
LZ
4025 /*
4026 * The file to be monitored must be in the same cgroup as
4027 * cgroup.event_control is.
4028 */
4029 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4030 if (cgrp_cfile != cgrp) {
4031 ret = -EINVAL;
4032 goto fail;
4033 }
4034
0dea1168
KS
4035 if (!event->cft->register_event || !event->cft->unregister_event) {
4036 ret = -EINVAL;
4037 goto fail;
4038 }
4039
4040 ret = event->cft->register_event(cgrp, event->cft,
4041 event->eventfd, buffer);
4042 if (ret)
4043 goto fail;
4044
7ef70e48 4045 efile->f_op->poll(efile, &event->pt);
0dea1168 4046
a0a4db54
KS
4047 /*
4048 * Events should be removed after rmdir of cgroup directory, but before
4049 * destroying subsystem state objects. Let's take reference to cgroup
4050 * directory dentry to do that.
4051 */
4052 dget(cgrp->dentry);
4053
0dea1168
KS
4054 spin_lock(&cgrp->event_list_lock);
4055 list_add(&event->list, &cgrp->event_list);
4056 spin_unlock(&cgrp->event_list_lock);
4057
4058 fput(cfile);
4059 fput(efile);
4060
4061 return 0;
4062
4063fail:
4064 if (cfile)
4065 fput(cfile);
4066
4067 if (event && event->eventfd && !IS_ERR(event->eventfd))
4068 eventfd_ctx_put(event->eventfd);
4069
4070 if (!IS_ERR_OR_NULL(efile))
4071 fput(efile);
4072
4073 kfree(event);
4074
4075 return ret;
4076}
4077
97978e6d
DL
4078static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4079 struct cftype *cft)
4080{
2260e7fc 4081 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4082}
4083
4084static int cgroup_clone_children_write(struct cgroup *cgrp,
4085 struct cftype *cft,
4086 u64 val)
4087{
4088 if (val)
2260e7fc 4089 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4090 else
2260e7fc 4091 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4092 return 0;
4093}
4094
d5c56ced 4095static struct cftype cgroup_base_files[] = {
81a6a5cd 4096 {
d5c56ced 4097 .name = "cgroup.procs",
102a775e 4098 .open = cgroup_procs_open,
74a1166d 4099 .write_u64 = cgroup_procs_write,
102a775e 4100 .release = cgroup_pidlist_release,
74a1166d 4101 .mode = S_IRUGO | S_IWUSR,
102a775e 4102 },
81a6a5cd 4103 {
d5c56ced 4104 .name = "cgroup.event_control",
0dea1168
KS
4105 .write_string = cgroup_write_event_control,
4106 .mode = S_IWUGO,
4107 },
97978e6d
DL
4108 {
4109 .name = "cgroup.clone_children",
873fe09e 4110 .flags = CFTYPE_INSANE,
97978e6d
DL
4111 .read_u64 = cgroup_clone_children_read,
4112 .write_u64 = cgroup_clone_children_write,
4113 },
873fe09e
TH
4114 {
4115 .name = "cgroup.sane_behavior",
4116 .flags = CFTYPE_ONLY_ON_ROOT,
4117 .read_seq_string = cgroup_sane_behavior_show,
4118 },
d5c56ced
TH
4119
4120 /*
4121 * Historical crazy stuff. These don't have "cgroup." prefix and
4122 * don't exist if sane_behavior. If you're depending on these, be
4123 * prepared to be burned.
4124 */
4125 {
4126 .name = "tasks",
4127 .flags = CFTYPE_INSANE, /* use "procs" instead */
4128 .open = cgroup_tasks_open,
4129 .write_u64 = cgroup_tasks_write,
4130 .release = cgroup_pidlist_release,
4131 .mode = S_IRUGO | S_IWUSR,
4132 },
4133 {
4134 .name = "notify_on_release",
4135 .flags = CFTYPE_INSANE,
4136 .read_u64 = cgroup_read_notify_on_release,
4137 .write_u64 = cgroup_write_notify_on_release,
4138 },
6e6ff25b
TH
4139 {
4140 .name = "release_agent",
cc5943a7 4141 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4142 .read_seq_string = cgroup_release_agent_show,
4143 .write_string = cgroup_release_agent_write,
4144 .max_write_len = PATH_MAX,
4145 },
db0416b6 4146 { } /* terminate */
bbcb81d0
PM
4147};
4148
13af07df
AR
4149/**
4150 * cgroup_populate_dir - selectively creation of files in a directory
4151 * @cgrp: target cgroup
4152 * @base_files: true if the base files should be added
4153 * @subsys_mask: mask of the subsystem ids whose files should be added
4154 */
4155static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4156 unsigned long subsys_mask)
ddbcc7e8
PM
4157{
4158 int err;
4159 struct cgroup_subsys *ss;
4160
13af07df 4161 if (base_files) {
d5c56ced 4162 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4163 if (err < 0)
4164 return err;
4165 }
bbcb81d0 4166
8e3f6541 4167 /* process cftsets of each subsystem */
5549c497 4168 for_each_root_subsys(cgrp->root, ss) {
8e3f6541 4169 struct cftype_set *set;
13af07df
AR
4170 if (!test_bit(ss->subsys_id, &subsys_mask))
4171 continue;
8e3f6541 4172
db0416b6 4173 list_for_each_entry(set, &ss->cftsets, node)
79578621 4174 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4175 }
8e3f6541 4176
38460b48 4177 /* This cgroup is ready now */
5549c497 4178 for_each_root_subsys(cgrp->root, ss) {
38460b48
KH
4179 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4180 /*
4181 * Update id->css pointer and make this css visible from
4182 * CSS ID functions. This pointer will be dereferened
4183 * from RCU-read-side without locks.
4184 */
4185 if (css->id)
4186 rcu_assign_pointer(css->id->css, css);
4187 }
ddbcc7e8
PM
4188
4189 return 0;
4190}
4191
48ddbe19
TH
4192static void css_dput_fn(struct work_struct *work)
4193{
4194 struct cgroup_subsys_state *css =
4195 container_of(work, struct cgroup_subsys_state, dput_work);
4196
1c8158ee 4197 cgroup_dput(css->cgroup);
48ddbe19
TH
4198}
4199
d3daf28d
TH
4200static void css_release(struct percpu_ref *ref)
4201{
4202 struct cgroup_subsys_state *css =
4203 container_of(ref, struct cgroup_subsys_state, refcnt);
4204
4205 schedule_work(&css->dput_work);
4206}
4207
ddbcc7e8
PM
4208static void init_cgroup_css(struct cgroup_subsys_state *css,
4209 struct cgroup_subsys *ss,
bd89aabc 4210 struct cgroup *cgrp)
ddbcc7e8 4211{
bd89aabc 4212 css->cgroup = cgrp;
ddbcc7e8 4213 css->flags = 0;
38460b48 4214 css->id = NULL;
9871bf95 4215 if (cgrp == cgroup_dummy_top)
38b53aba 4216 css->flags |= CSS_ROOT;
bd89aabc
PM
4217 BUG_ON(cgrp->subsys[ss->subsys_id]);
4218 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4219
4220 /*
ed957793
TH
4221 * css holds an extra ref to @cgrp->dentry which is put on the last
4222 * css_put(). dput() requires process context, which css_put() may
4223 * be called without. @css->dput_work will be used to invoke
4224 * dput() asynchronously from css_put().
48ddbe19
TH
4225 */
4226 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4227}
4228
b1929db4
TH
4229/* invoke ->post_create() on a new CSS and mark it online if successful */
4230static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4231{
b1929db4
TH
4232 int ret = 0;
4233
a31f2d3f
TH
4234 lockdep_assert_held(&cgroup_mutex);
4235
92fb9748
TH
4236 if (ss->css_online)
4237 ret = ss->css_online(cgrp);
b1929db4
TH
4238 if (!ret)
4239 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4240 return ret;
a31f2d3f
TH
4241}
4242
4243/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4244static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4245 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4246{
4247 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4248
4249 lockdep_assert_held(&cgroup_mutex);
4250
4251 if (!(css->flags & CSS_ONLINE))
4252 return;
4253
d7eeac19 4254 if (ss->css_offline)
92fb9748 4255 ss->css_offline(cgrp);
a31f2d3f
TH
4256
4257 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4258}
4259
ddbcc7e8 4260/*
a043e3b2
LZ
4261 * cgroup_create - create a cgroup
4262 * @parent: cgroup that will be parent of the new cgroup
4263 * @dentry: dentry of the new cgroup
4264 * @mode: mode to set on new inode
ddbcc7e8 4265 *
a043e3b2 4266 * Must be called with the mutex on the parent inode held
ddbcc7e8 4267 */
ddbcc7e8 4268static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4269 umode_t mode)
ddbcc7e8 4270{
bd89aabc 4271 struct cgroup *cgrp;
65dff759 4272 struct cgroup_name *name;
ddbcc7e8
PM
4273 struct cgroupfs_root *root = parent->root;
4274 int err = 0;
4275 struct cgroup_subsys *ss;
4276 struct super_block *sb = root->sb;
4277
0a950f65 4278 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4279 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4280 if (!cgrp)
ddbcc7e8
PM
4281 return -ENOMEM;
4282
65dff759
LZ
4283 name = cgroup_alloc_name(dentry);
4284 if (!name)
4285 goto err_free_cgrp;
4286 rcu_assign_pointer(cgrp->name, name);
4287
0a950f65
TH
4288 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4289 if (cgrp->id < 0)
65dff759 4290 goto err_free_name;
0a950f65 4291
976c06bc
TH
4292 /*
4293 * Only live parents can have children. Note that the liveliness
4294 * check isn't strictly necessary because cgroup_mkdir() and
4295 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4296 * anyway so that locking is contained inside cgroup proper and we
4297 * don't get nasty surprises if we ever grow another caller.
4298 */
4299 if (!cgroup_lock_live_group(parent)) {
4300 err = -ENODEV;
0a950f65 4301 goto err_free_id;
976c06bc
TH
4302 }
4303
ddbcc7e8
PM
4304 /* Grab a reference on the superblock so the hierarchy doesn't
4305 * get deleted on unmount if there are child cgroups. This
4306 * can be done outside cgroup_mutex, since the sb can't
4307 * disappear while someone has an open control file on the
4308 * fs */
4309 atomic_inc(&sb->s_active);
4310
cc31edce 4311 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4312
fe1c06ca
LZ
4313 dentry->d_fsdata = cgrp;
4314 cgrp->dentry = dentry;
4315
bd89aabc
PM
4316 cgrp->parent = parent;
4317 cgrp->root = parent->root;
ddbcc7e8 4318
b6abdb0e
LZ
4319 if (notify_on_release(parent))
4320 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4321
2260e7fc
TH
4322 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4323 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4324
5549c497 4325 for_each_root_subsys(root, ss) {
8c7f6edb 4326 struct cgroup_subsys_state *css;
4528fd05 4327
92fb9748 4328 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4329 if (IS_ERR(css)) {
4330 err = PTR_ERR(css);
4b8b47eb 4331 goto err_free_all;
ddbcc7e8 4332 }
d3daf28d
TH
4333
4334 err = percpu_ref_init(&css->refcnt, css_release);
4335 if (err)
4336 goto err_free_all;
4337
bd89aabc 4338 init_cgroup_css(css, ss, cgrp);
d3daf28d 4339
4528fd05
LZ
4340 if (ss->use_id) {
4341 err = alloc_css_id(ss, parent, cgrp);
4342 if (err)
4b8b47eb 4343 goto err_free_all;
4528fd05 4344 }
ddbcc7e8
PM
4345 }
4346
4e139afc
TH
4347 /*
4348 * Create directory. cgroup_create_file() returns with the new
4349 * directory locked on success so that it can be populated without
4350 * dropping cgroup_mutex.
4351 */
28fd6f30 4352 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4353 if (err < 0)
4b8b47eb 4354 goto err_free_all;
4e139afc 4355 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4356
00356bd5 4357 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4358
4e139afc 4359 /* allocation complete, commit to creation */
4e139afc
TH
4360 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4361 root->number_of_cgroups++;
28fd6f30 4362
b1929db4 4363 /* each css holds a ref to the cgroup's dentry */
5549c497 4364 for_each_root_subsys(root, ss)
ed957793 4365 dget(dentry);
48ddbe19 4366
415cf07a
LZ
4367 /* hold a ref to the parent's dentry */
4368 dget(parent->dentry);
4369
b1929db4 4370 /* creation succeeded, notify subsystems */
5549c497 4371 for_each_root_subsys(root, ss) {
b1929db4
TH
4372 err = online_css(ss, cgrp);
4373 if (err)
4374 goto err_destroy;
1f869e87
GC
4375
4376 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4377 parent->parent) {
4378 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4379 current->comm, current->pid, ss->name);
4380 if (!strcmp(ss->name, "memory"))
4381 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4382 ss->warned_broken_hierarchy = true;
4383 }
a8638030
TH
4384 }
4385
a1a71b45 4386 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4387 if (err)
4388 goto err_destroy;
ddbcc7e8
PM
4389
4390 mutex_unlock(&cgroup_mutex);
bd89aabc 4391 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4392
4393 return 0;
4394
4b8b47eb 4395err_free_all:
5549c497 4396 for_each_root_subsys(root, ss) {
d3daf28d
TH
4397 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4398
4399 if (css) {
4400 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4401 ss->css_free(cgrp);
d3daf28d 4402 }
ddbcc7e8 4403 }
ddbcc7e8 4404 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4405 /* Release the reference count that we took on the superblock */
4406 deactivate_super(sb);
0a950f65
TH
4407err_free_id:
4408 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4409err_free_name:
4410 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4411err_free_cgrp:
bd89aabc 4412 kfree(cgrp);
ddbcc7e8 4413 return err;
4b8b47eb
TH
4414
4415err_destroy:
4416 cgroup_destroy_locked(cgrp);
4417 mutex_unlock(&cgroup_mutex);
4418 mutex_unlock(&dentry->d_inode->i_mutex);
4419 return err;
ddbcc7e8
PM
4420}
4421
18bb1db3 4422static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4423{
4424 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4425
4426 /* the vfs holds inode->i_mutex already */
4427 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4428}
4429
d3daf28d
TH
4430static void cgroup_css_killed(struct cgroup *cgrp)
4431{
4432 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4433 return;
4434
4435 /* percpu ref's of all css's are killed, kick off the next step */
4436 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4437 schedule_work(&cgrp->destroy_work);
4438}
4439
4440static void css_ref_killed_fn(struct percpu_ref *ref)
4441{
4442 struct cgroup_subsys_state *css =
4443 container_of(ref, struct cgroup_subsys_state, refcnt);
4444
4445 cgroup_css_killed(css->cgroup);
4446}
4447
4448/**
4449 * cgroup_destroy_locked - the first stage of cgroup destruction
4450 * @cgrp: cgroup to be destroyed
4451 *
4452 * css's make use of percpu refcnts whose killing latency shouldn't be
4453 * exposed to userland and are RCU protected. Also, cgroup core needs to
4454 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4455 * invoked. To satisfy all the requirements, destruction is implemented in
4456 * the following two steps.
4457 *
4458 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4459 * userland visible parts and start killing the percpu refcnts of
4460 * css's. Set up so that the next stage will be kicked off once all
4461 * the percpu refcnts are confirmed to be killed.
4462 *
4463 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4464 * rest of destruction. Once all cgroup references are gone, the
4465 * cgroup is RCU-freed.
4466 *
4467 * This function implements s1. After this step, @cgrp is gone as far as
4468 * the userland is concerned and a new cgroup with the same name may be
4469 * created. As cgroup doesn't care about the names internally, this
4470 * doesn't cause any problem.
4471 */
42809dd4
TH
4472static int cgroup_destroy_locked(struct cgroup *cgrp)
4473 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4474{
42809dd4 4475 struct dentry *d = cgrp->dentry;
4ab78683 4476 struct cgroup_event *event, *tmp;
ed957793 4477 struct cgroup_subsys *ss;
ddd69148 4478 bool empty;
ddbcc7e8 4479
42809dd4
TH
4480 lockdep_assert_held(&d->d_inode->i_mutex);
4481 lockdep_assert_held(&cgroup_mutex);
4482
ddd69148 4483 /*
6f3d828f
TH
4484 * css_set_lock synchronizes access to ->cset_links and prevents
4485 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4486 */
4487 read_lock(&css_set_lock);
6f3d828f 4488 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4489 read_unlock(&css_set_lock);
4490 if (!empty)
ddbcc7e8 4491 return -EBUSY;
a043e3b2 4492
88703267 4493 /*
d3daf28d
TH
4494 * Block new css_tryget() by killing css refcnts. cgroup core
4495 * guarantees that, by the time ->css_offline() is invoked, no new
4496 * css reference will be given out via css_tryget(). We can't
4497 * simply call percpu_ref_kill() and proceed to offlining css's
4498 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4499 * as killed on all CPUs on return.
4500 *
4501 * Use percpu_ref_kill_and_confirm() to get notifications as each
4502 * css is confirmed to be seen as killed on all CPUs. The
4503 * notification callback keeps track of the number of css's to be
4504 * killed and schedules cgroup_offline_fn() to perform the rest of
4505 * destruction once the percpu refs of all css's are confirmed to
4506 * be killed.
88703267 4507 */
d3daf28d 4508 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4509 for_each_root_subsys(cgrp->root, ss) {
ed957793 4510 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4511
d3daf28d
TH
4512 /*
4513 * Killing would put the base ref, but we need to keep it
4514 * alive until after ->css_offline.
4515 */
4516 percpu_ref_get(&css->refcnt);
4517
4518 atomic_inc(&cgrp->css_kill_cnt);
4519 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4520 }
d3daf28d 4521 cgroup_css_killed(cgrp);
455050d2
TH
4522
4523 /*
4524 * Mark @cgrp dead. This prevents further task migration and child
4525 * creation by disabling cgroup_lock_live_group(). Note that
4526 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4527 * resume iteration after dropping RCU read lock. See
4528 * cgroup_next_sibling() for details.
4529 */
54766d4a 4530 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4531
455050d2
TH
4532 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4533 raw_spin_lock(&release_list_lock);
4534 if (!list_empty(&cgrp->release_list))
4535 list_del_init(&cgrp->release_list);
4536 raw_spin_unlock(&release_list_lock);
4537
4538 /*
4539 * Remove @cgrp directory. The removal puts the base ref but we
4540 * aren't quite done with @cgrp yet, so hold onto it.
4541 */
4542 dget(d);
4543 cgroup_d_remove_dir(d);
4544
4545 /*
4546 * Unregister events and notify userspace.
4547 * Notify userspace about cgroup removing only after rmdir of cgroup
4548 * directory to avoid race between userspace and kernelspace.
4549 */
4550 spin_lock(&cgrp->event_list_lock);
4551 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4552 list_del_init(&event->list);
4553 schedule_work(&event->remove);
4554 }
4555 spin_unlock(&cgrp->event_list_lock);
4556
ea15f8cc
TH
4557 return 0;
4558};
4559
d3daf28d
TH
4560/**
4561 * cgroup_offline_fn - the second step of cgroup destruction
4562 * @work: cgroup->destroy_free_work
4563 *
4564 * This function is invoked from a work item for a cgroup which is being
4565 * destroyed after the percpu refcnts of all css's are guaranteed to be
4566 * seen as killed on all CPUs, and performs the rest of destruction. This
4567 * is the second step of destruction described in the comment above
4568 * cgroup_destroy_locked().
4569 */
ea15f8cc
TH
4570static void cgroup_offline_fn(struct work_struct *work)
4571{
4572 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4573 struct cgroup *parent = cgrp->parent;
4574 struct dentry *d = cgrp->dentry;
4575 struct cgroup_subsys *ss;
4576
4577 mutex_lock(&cgroup_mutex);
4578
d3daf28d
TH
4579 /*
4580 * css_tryget() is guaranteed to fail now. Tell subsystems to
4581 * initate destruction.
4582 */
5549c497 4583 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4584 offline_css(ss, cgrp);
ed957793
TH
4585
4586 /*
d3daf28d
TH
4587 * Put the css refs from cgroup_destroy_locked(). Each css holds
4588 * an extra reference to the cgroup's dentry and cgroup removal
4589 * proceeds regardless of css refs. On the last put of each css,
4590 * whenever that may be, the extra dentry ref is put so that dentry
4591 * destruction happens only after all css's are released.
ed957793 4592 */
5549c497 4593 for_each_root_subsys(cgrp->root, ss)
e9316080 4594 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4595
999cd8a4 4596 /* delete this cgroup from parent->children */
eb6fd504 4597 list_del_rcu(&cgrp->sibling);
b0ca5a84 4598
ddbcc7e8 4599 dput(d);
ddbcc7e8 4600
bd89aabc 4601 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4602 check_for_release(parent);
4603
ea15f8cc 4604 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4605}
4606
42809dd4
TH
4607static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4608{
4609 int ret;
4610
4611 mutex_lock(&cgroup_mutex);
4612 ret = cgroup_destroy_locked(dentry->d_fsdata);
4613 mutex_unlock(&cgroup_mutex);
4614
4615 return ret;
4616}
4617
8e3f6541
TH
4618static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4619{
4620 INIT_LIST_HEAD(&ss->cftsets);
4621
4622 /*
4623 * base_cftset is embedded in subsys itself, no need to worry about
4624 * deregistration.
4625 */
4626 if (ss->base_cftypes) {
4627 ss->base_cftset.cfts = ss->base_cftypes;
4628 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4629 }
4630}
4631
06a11920 4632static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4633{
ddbcc7e8 4634 struct cgroup_subsys_state *css;
cfe36bde
DC
4635
4636 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4637
648bb56d
TH
4638 mutex_lock(&cgroup_mutex);
4639
8e3f6541
TH
4640 /* init base cftset */
4641 cgroup_init_cftsets(ss);
4642
ddbcc7e8 4643 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4644 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4645 ss->root = &cgroup_dummy_root;
4646 css = ss->css_alloc(cgroup_dummy_top);
ddbcc7e8
PM
4647 /* We don't handle early failures gracefully */
4648 BUG_ON(IS_ERR(css));
9871bf95 4649 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4650
e8d55fde 4651 /* Update the init_css_set to contain a subsys
817929ec 4652 * pointer to this state - since the subsystem is
e8d55fde
LZ
4653 * newly registered, all tasks and hence the
4654 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4655 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4656
4657 need_forkexit_callback |= ss->fork || ss->exit;
4658
e8d55fde
LZ
4659 /* At system boot, before all subsystems have been
4660 * registered, no tasks have been forked, so we don't
4661 * need to invoke fork callbacks here. */
4662 BUG_ON(!list_empty(&init_task.tasks));
4663
9871bf95 4664 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4665
648bb56d
TH
4666 mutex_unlock(&cgroup_mutex);
4667
e6a1105b
BB
4668 /* this function shouldn't be used with modular subsystems, since they
4669 * need to register a subsys_id, among other things */
4670 BUG_ON(ss->module);
4671}
4672
4673/**
4674 * cgroup_load_subsys: load and register a modular subsystem at runtime
4675 * @ss: the subsystem to load
4676 *
4677 * This function should be called in a modular subsystem's initcall. If the
88393161 4678 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4679 * up for use. If the subsystem is built-in anyway, work is delegated to the
4680 * simpler cgroup_init_subsys.
4681 */
4682int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4683{
e6a1105b 4684 struct cgroup_subsys_state *css;
d19e19de 4685 int i, ret;
b67bfe0d 4686 struct hlist_node *tmp;
5abb8855 4687 struct css_set *cset;
0ac801fe 4688 unsigned long key;
e6a1105b
BB
4689
4690 /* check name and function validity */
4691 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4692 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4693 return -EINVAL;
4694
4695 /*
4696 * we don't support callbacks in modular subsystems. this check is
4697 * before the ss->module check for consistency; a subsystem that could
4698 * be a module should still have no callbacks even if the user isn't
4699 * compiling it as one.
4700 */
4701 if (ss->fork || ss->exit)
4702 return -EINVAL;
4703
4704 /*
4705 * an optionally modular subsystem is built-in: we want to do nothing,
4706 * since cgroup_init_subsys will have already taken care of it.
4707 */
4708 if (ss->module == NULL) {
be45c900 4709 /* a sanity check */
9871bf95 4710 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4711 return 0;
4712 }
4713
8e3f6541
TH
4714 /* init base cftset */
4715 cgroup_init_cftsets(ss);
4716
e6a1105b 4717 mutex_lock(&cgroup_mutex);
9871bf95 4718 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4719
4720 /*
92fb9748 4721 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4722 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4723 * attachment).
e6a1105b 4724 */
9871bf95 4725 css = ss->css_alloc(cgroup_dummy_top);
e6a1105b 4726 if (IS_ERR(css)) {
9871bf95
TH
4727 /* failure case - need to deassign the cgroup_subsys[] slot. */
4728 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4729 mutex_unlock(&cgroup_mutex);
4730 return PTR_ERR(css);
4731 }
4732
9871bf95
TH
4733 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4734 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4735
4736 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4737 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4738 /* init_idr must be after init_cgroup_css because it sets css->id. */
4739 if (ss->use_id) {
d19e19de
TH
4740 ret = cgroup_init_idr(ss, css);
4741 if (ret)
4742 goto err_unload;
e6a1105b
BB
4743 }
4744
4745 /*
4746 * Now we need to entangle the css into the existing css_sets. unlike
4747 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4748 * will need a new pointer to it; done by iterating the css_set_table.
4749 * furthermore, modifying the existing css_sets will corrupt the hash
4750 * table state, so each changed css_set will need its hash recomputed.
4751 * this is all done under the css_set_lock.
4752 */
4753 write_lock(&css_set_lock);
5abb8855 4754 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4755 /* skip entries that we already rehashed */
5abb8855 4756 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4757 continue;
4758 /* remove existing entry */
5abb8855 4759 hash_del(&cset->hlist);
0ac801fe 4760 /* set new value */
5abb8855 4761 cset->subsys[ss->subsys_id] = css;
0ac801fe 4762 /* recompute hash and restore entry */
5abb8855
TH
4763 key = css_set_hash(cset->subsys);
4764 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4765 }
4766 write_unlock(&css_set_lock);
4767
9871bf95 4768 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4769 if (ret)
4770 goto err_unload;
a8638030 4771
e6a1105b
BB
4772 /* success! */
4773 mutex_unlock(&cgroup_mutex);
4774 return 0;
d19e19de
TH
4775
4776err_unload:
4777 mutex_unlock(&cgroup_mutex);
4778 /* @ss can't be mounted here as try_module_get() would fail */
4779 cgroup_unload_subsys(ss);
4780 return ret;
ddbcc7e8 4781}
e6a1105b 4782EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4783
cf5d5941
BB
4784/**
4785 * cgroup_unload_subsys: unload a modular subsystem
4786 * @ss: the subsystem to unload
4787 *
4788 * This function should be called in a modular subsystem's exitcall. When this
4789 * function is invoked, the refcount on the subsystem's module will be 0, so
4790 * the subsystem will not be attached to any hierarchy.
4791 */
4792void cgroup_unload_subsys(struct cgroup_subsys *ss)
4793{
69d0206c 4794 struct cgrp_cset_link *link;
cf5d5941
BB
4795
4796 BUG_ON(ss->module == NULL);
4797
4798 /*
4799 * we shouldn't be called if the subsystem is in use, and the use of
4800 * try_module_get in parse_cgroupfs_options should ensure that it
4801 * doesn't start being used while we're killing it off.
4802 */
9871bf95 4803 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4804
4805 mutex_lock(&cgroup_mutex);
02ae7486 4806
9871bf95 4807 offline_css(ss, cgroup_dummy_top);
02ae7486 4808
c897ff68 4809 if (ss->use_id)
02ae7486 4810 idr_destroy(&ss->idr);
02ae7486 4811
cf5d5941 4812 /* deassign the subsys_id */
9871bf95 4813 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4814
9871bf95 4815 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4816 list_del_init(&ss->sibling);
cf5d5941
BB
4817
4818 /*
9871bf95
TH
4819 * disentangle the css from all css_sets attached to the dummy
4820 * top. as in loading, we need to pay our respects to the hashtable
4821 * gods.
cf5d5941
BB
4822 */
4823 write_lock(&css_set_lock);
9871bf95 4824 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4825 struct css_set *cset = link->cset;
0ac801fe 4826 unsigned long key;
cf5d5941 4827
5abb8855
TH
4828 hash_del(&cset->hlist);
4829 cset->subsys[ss->subsys_id] = NULL;
4830 key = css_set_hash(cset->subsys);
4831 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4832 }
4833 write_unlock(&css_set_lock);
4834
4835 /*
9871bf95
TH
4836 * remove subsystem's css from the cgroup_dummy_top and free it -
4837 * need to free before marking as null because ss->css_free needs
4838 * the cgrp->subsys pointer to find their state. note that this
4839 * also takes care of freeing the css_id.
cf5d5941 4840 */
9871bf95
TH
4841 ss->css_free(cgroup_dummy_top);
4842 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4843
4844 mutex_unlock(&cgroup_mutex);
4845}
4846EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4847
ddbcc7e8 4848/**
a043e3b2
LZ
4849 * cgroup_init_early - cgroup initialization at system boot
4850 *
4851 * Initialize cgroups at system boot, and initialize any
4852 * subsystems that request early init.
ddbcc7e8
PM
4853 */
4854int __init cgroup_init_early(void)
4855{
30159ec7 4856 struct cgroup_subsys *ss;
ddbcc7e8 4857 int i;
30159ec7 4858
146aa1bd 4859 atomic_set(&init_css_set.refcount, 1);
69d0206c 4860 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4861 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4862 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4863 css_set_count = 1;
9871bf95
TH
4864 init_cgroup_root(&cgroup_dummy_root);
4865 cgroup_root_count = 1;
817929ec
PM
4866 init_task.cgroups = &init_css_set;
4867
69d0206c 4868 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4869 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4870 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4871 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4872
30159ec7
TH
4873 /* at bootup time, we don't worry about modular subsystems */
4874 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4875 BUG_ON(!ss->name);
4876 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4877 BUG_ON(!ss->css_alloc);
4878 BUG_ON(!ss->css_free);
ddbcc7e8 4879 if (ss->subsys_id != i) {
cfe36bde 4880 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4881 ss->name, ss->subsys_id);
4882 BUG();
4883 }
4884
4885 if (ss->early_init)
4886 cgroup_init_subsys(ss);
4887 }
4888 return 0;
4889}
4890
4891/**
a043e3b2
LZ
4892 * cgroup_init - cgroup initialization
4893 *
4894 * Register cgroup filesystem and /proc file, and initialize
4895 * any subsystems that didn't request early init.
ddbcc7e8
PM
4896 */
4897int __init cgroup_init(void)
4898{
30159ec7 4899 struct cgroup_subsys *ss;
0ac801fe 4900 unsigned long key;
30159ec7 4901 int i, err;
a424316c
PM
4902
4903 err = bdi_init(&cgroup_backing_dev_info);
4904 if (err)
4905 return err;
ddbcc7e8 4906
30159ec7 4907 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4908 if (!ss->early_init)
4909 cgroup_init_subsys(ss);
38460b48 4910 if (ss->use_id)
e6a1105b 4911 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4912 }
4913
fa3ca07e 4914 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4915 mutex_lock(&cgroup_mutex);
4916 mutex_lock(&cgroup_root_mutex);
4917
82fe9b0d
TH
4918 /* Add init_css_set to the hash table */
4919 key = css_set_hash(init_css_set.subsys);
4920 hash_add(css_set_table, &init_css_set.hlist, key);
4921
fc76df70 4922 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4923
54e7b4eb
TH
4924 mutex_unlock(&cgroup_root_mutex);
4925 mutex_unlock(&cgroup_mutex);
4926
676db4af
GK
4927 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4928 if (!cgroup_kobj) {
4929 err = -ENOMEM;
4930 goto out;
4931 }
4932
ddbcc7e8 4933 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4934 if (err < 0) {
4935 kobject_put(cgroup_kobj);
ddbcc7e8 4936 goto out;
676db4af 4937 }
ddbcc7e8 4938
46ae220b 4939 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4940
ddbcc7e8 4941out:
a424316c
PM
4942 if (err)
4943 bdi_destroy(&cgroup_backing_dev_info);
4944
ddbcc7e8
PM
4945 return err;
4946}
b4f48b63 4947
a424316c
PM
4948/*
4949 * proc_cgroup_show()
4950 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4951 * - Used for /proc/<pid>/cgroup.
4952 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4953 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4954 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4955 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4956 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4957 * cgroup to top_cgroup.
4958 */
4959
4960/* TODO: Use a proper seq_file iterator */
8d8b97ba 4961int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4962{
4963 struct pid *pid;
4964 struct task_struct *tsk;
4965 char *buf;
4966 int retval;
4967 struct cgroupfs_root *root;
4968
4969 retval = -ENOMEM;
4970 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4971 if (!buf)
4972 goto out;
4973
4974 retval = -ESRCH;
4975 pid = m->private;
4976 tsk = get_pid_task(pid, PIDTYPE_PID);
4977 if (!tsk)
4978 goto out_free;
4979
4980 retval = 0;
4981
4982 mutex_lock(&cgroup_mutex);
4983
e5f6a860 4984 for_each_active_root(root) {
a424316c 4985 struct cgroup_subsys *ss;
bd89aabc 4986 struct cgroup *cgrp;
a424316c
PM
4987 int count = 0;
4988
2c6ab6d2 4989 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 4990 for_each_root_subsys(root, ss)
a424316c 4991 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4992 if (strlen(root->name))
4993 seq_printf(m, "%sname=%s", count ? "," : "",
4994 root->name);
a424316c 4995 seq_putc(m, ':');
7717f7ba 4996 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4997 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4998 if (retval < 0)
4999 goto out_unlock;
5000 seq_puts(m, buf);
5001 seq_putc(m, '\n');
5002 }
5003
5004out_unlock:
5005 mutex_unlock(&cgroup_mutex);
5006 put_task_struct(tsk);
5007out_free:
5008 kfree(buf);
5009out:
5010 return retval;
5011}
5012
a424316c
PM
5013/* Display information about each subsystem and each hierarchy */
5014static int proc_cgroupstats_show(struct seq_file *m, void *v)
5015{
30159ec7 5016 struct cgroup_subsys *ss;
a424316c 5017 int i;
a424316c 5018
8bab8dde 5019 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5020 /*
5021 * ideally we don't want subsystems moving around while we do this.
5022 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5023 * subsys/hierarchy state.
5024 */
a424316c 5025 mutex_lock(&cgroup_mutex);
30159ec7
TH
5026
5027 for_each_subsys(ss, i)
2c6ab6d2
PM
5028 seq_printf(m, "%s\t%d\t%d\t%d\n",
5029 ss->name, ss->root->hierarchy_id,
8bab8dde 5030 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5031
a424316c
PM
5032 mutex_unlock(&cgroup_mutex);
5033 return 0;
5034}
5035
5036static int cgroupstats_open(struct inode *inode, struct file *file)
5037{
9dce07f1 5038 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5039}
5040
828c0950 5041static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5042 .open = cgroupstats_open,
5043 .read = seq_read,
5044 .llseek = seq_lseek,
5045 .release = single_release,
5046};
5047
b4f48b63
PM
5048/**
5049 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5050 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5051 *
5052 * Description: A task inherits its parent's cgroup at fork().
5053 *
5054 * A pointer to the shared css_set was automatically copied in
5055 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5056 * it was not made under the protection of RCU or cgroup_mutex, so
5057 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5058 * have already changed current->cgroups, allowing the previously
5059 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5060 *
5061 * At the point that cgroup_fork() is called, 'current' is the parent
5062 * task, and the passed argument 'child' points to the child task.
5063 */
5064void cgroup_fork(struct task_struct *child)
5065{
9bb71308 5066 task_lock(current);
a8ad805c 5067 get_css_set(task_css_set(current));
817929ec 5068 child->cgroups = current->cgroups;
9bb71308 5069 task_unlock(current);
817929ec 5070 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5071}
5072
817929ec 5073/**
a043e3b2
LZ
5074 * cgroup_post_fork - called on a new task after adding it to the task list
5075 * @child: the task in question
5076 *
5edee61e
TH
5077 * Adds the task to the list running through its css_set if necessary and
5078 * call the subsystem fork() callbacks. Has to be after the task is
5079 * visible on the task list in case we race with the first call to
5080 * cgroup_iter_start() - to guarantee that the new task ends up on its
5081 * list.
a043e3b2 5082 */
817929ec
PM
5083void cgroup_post_fork(struct task_struct *child)
5084{
30159ec7 5085 struct cgroup_subsys *ss;
5edee61e
TH
5086 int i;
5087
3ce3230a
FW
5088 /*
5089 * use_task_css_set_links is set to 1 before we walk the tasklist
5090 * under the tasklist_lock and we read it here after we added the child
5091 * to the tasklist under the tasklist_lock as well. If the child wasn't
5092 * yet in the tasklist when we walked through it from
5093 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5094 * should be visible now due to the paired locking and barriers implied
5095 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5096 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5097 * lock on fork.
5098 */
817929ec
PM
5099 if (use_task_css_set_links) {
5100 write_lock(&css_set_lock);
d8783832
TH
5101 task_lock(child);
5102 if (list_empty(&child->cg_list))
a8ad805c 5103 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5104 task_unlock(child);
817929ec
PM
5105 write_unlock(&css_set_lock);
5106 }
5edee61e
TH
5107
5108 /*
5109 * Call ss->fork(). This must happen after @child is linked on
5110 * css_set; otherwise, @child might change state between ->fork()
5111 * and addition to css_set.
5112 */
5113 if (need_forkexit_callback) {
7d8e0bf5
LZ
5114 /*
5115 * fork/exit callbacks are supported only for builtin
5116 * subsystems, and the builtin section of the subsys
5117 * array is immutable, so we don't need to lock the
5118 * subsys array here. On the other hand, modular section
5119 * of the array can be freed at module unload, so we
5120 * can't touch that.
5121 */
30159ec7 5122 for_each_builtin_subsys(ss, i)
5edee61e
TH
5123 if (ss->fork)
5124 ss->fork(child);
5edee61e 5125 }
817929ec 5126}
5edee61e 5127
b4f48b63
PM
5128/**
5129 * cgroup_exit - detach cgroup from exiting task
5130 * @tsk: pointer to task_struct of exiting process
a043e3b2 5131 * @run_callback: run exit callbacks?
b4f48b63
PM
5132 *
5133 * Description: Detach cgroup from @tsk and release it.
5134 *
5135 * Note that cgroups marked notify_on_release force every task in
5136 * them to take the global cgroup_mutex mutex when exiting.
5137 * This could impact scaling on very large systems. Be reluctant to
5138 * use notify_on_release cgroups where very high task exit scaling
5139 * is required on large systems.
5140 *
5141 * the_top_cgroup_hack:
5142 *
5143 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5144 *
5145 * We call cgroup_exit() while the task is still competent to
5146 * handle notify_on_release(), then leave the task attached to the
5147 * root cgroup in each hierarchy for the remainder of its exit.
5148 *
5149 * To do this properly, we would increment the reference count on
5150 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5151 * code we would add a second cgroup function call, to drop that
5152 * reference. This would just create an unnecessary hot spot on
5153 * the top_cgroup reference count, to no avail.
5154 *
5155 * Normally, holding a reference to a cgroup without bumping its
5156 * count is unsafe. The cgroup could go away, or someone could
5157 * attach us to a different cgroup, decrementing the count on
5158 * the first cgroup that we never incremented. But in this case,
5159 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5160 * which wards off any cgroup_attach_task() attempts, or task is a failed
5161 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5162 */
5163void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5164{
30159ec7 5165 struct cgroup_subsys *ss;
5abb8855 5166 struct css_set *cset;
d41d5a01 5167 int i;
817929ec
PM
5168
5169 /*
5170 * Unlink from the css_set task list if necessary.
5171 * Optimistically check cg_list before taking
5172 * css_set_lock
5173 */
5174 if (!list_empty(&tsk->cg_list)) {
5175 write_lock(&css_set_lock);
5176 if (!list_empty(&tsk->cg_list))
8d258797 5177 list_del_init(&tsk->cg_list);
817929ec
PM
5178 write_unlock(&css_set_lock);
5179 }
5180
b4f48b63
PM
5181 /* Reassign the task to the init_css_set. */
5182 task_lock(tsk);
a8ad805c
TH
5183 cset = task_css_set(tsk);
5184 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5185
5186 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5187 /*
5188 * fork/exit callbacks are supported only for builtin
5189 * subsystems, see cgroup_post_fork() for details.
5190 */
30159ec7 5191 for_each_builtin_subsys(ss, i) {
d41d5a01 5192 if (ss->exit) {
a8ad805c 5193 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
d41d5a01 5194 struct cgroup *cgrp = task_cgroup(tsk, i);
30159ec7 5195
761b3ef5 5196 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5197 }
5198 }
5199 }
b4f48b63 5200 task_unlock(tsk);
d41d5a01 5201
5abb8855 5202 put_css_set_taskexit(cset);
b4f48b63 5203}
697f4161 5204
bd89aabc 5205static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5206{
f50daa70 5207 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5208 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5209 /*
5210 * Control Group is currently removeable. If it's not
81a6a5cd 5211 * already queued for a userspace notification, queue
f50daa70
LZ
5212 * it now
5213 */
81a6a5cd 5214 int need_schedule_work = 0;
f50daa70 5215
cdcc136f 5216 raw_spin_lock(&release_list_lock);
54766d4a 5217 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5218 list_empty(&cgrp->release_list)) {
5219 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5220 need_schedule_work = 1;
5221 }
cdcc136f 5222 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5223 if (need_schedule_work)
5224 schedule_work(&release_agent_work);
5225 }
5226}
5227
81a6a5cd
PM
5228/*
5229 * Notify userspace when a cgroup is released, by running the
5230 * configured release agent with the name of the cgroup (path
5231 * relative to the root of cgroup file system) as the argument.
5232 *
5233 * Most likely, this user command will try to rmdir this cgroup.
5234 *
5235 * This races with the possibility that some other task will be
5236 * attached to this cgroup before it is removed, or that some other
5237 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5238 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5239 * unused, and this cgroup will be reprieved from its death sentence,
5240 * to continue to serve a useful existence. Next time it's released,
5241 * we will get notified again, if it still has 'notify_on_release' set.
5242 *
5243 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5244 * means only wait until the task is successfully execve()'d. The
5245 * separate release agent task is forked by call_usermodehelper(),
5246 * then control in this thread returns here, without waiting for the
5247 * release agent task. We don't bother to wait because the caller of
5248 * this routine has no use for the exit status of the release agent
5249 * task, so no sense holding our caller up for that.
81a6a5cd 5250 */
81a6a5cd
PM
5251static void cgroup_release_agent(struct work_struct *work)
5252{
5253 BUG_ON(work != &release_agent_work);
5254 mutex_lock(&cgroup_mutex);
cdcc136f 5255 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5256 while (!list_empty(&release_list)) {
5257 char *argv[3], *envp[3];
5258 int i;
e788e066 5259 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5260 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5261 struct cgroup,
5262 release_list);
bd89aabc 5263 list_del_init(&cgrp->release_list);
cdcc136f 5264 raw_spin_unlock(&release_list_lock);
81a6a5cd 5265 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5266 if (!pathbuf)
5267 goto continue_free;
5268 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5269 goto continue_free;
5270 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5271 if (!agentbuf)
5272 goto continue_free;
81a6a5cd
PM
5273
5274 i = 0;
e788e066
PM
5275 argv[i++] = agentbuf;
5276 argv[i++] = pathbuf;
81a6a5cd
PM
5277 argv[i] = NULL;
5278
5279 i = 0;
5280 /* minimal command environment */
5281 envp[i++] = "HOME=/";
5282 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5283 envp[i] = NULL;
5284
5285 /* Drop the lock while we invoke the usermode helper,
5286 * since the exec could involve hitting disk and hence
5287 * be a slow process */
5288 mutex_unlock(&cgroup_mutex);
5289 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5290 mutex_lock(&cgroup_mutex);
e788e066
PM
5291 continue_free:
5292 kfree(pathbuf);
5293 kfree(agentbuf);
cdcc136f 5294 raw_spin_lock(&release_list_lock);
81a6a5cd 5295 }
cdcc136f 5296 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5297 mutex_unlock(&cgroup_mutex);
5298}
8bab8dde
PM
5299
5300static int __init cgroup_disable(char *str)
5301{
30159ec7 5302 struct cgroup_subsys *ss;
8bab8dde 5303 char *token;
30159ec7 5304 int i;
8bab8dde
PM
5305
5306 while ((token = strsep(&str, ",")) != NULL) {
5307 if (!*token)
5308 continue;
be45c900 5309
30159ec7
TH
5310 /*
5311 * cgroup_disable, being at boot time, can't know about
5312 * module subsystems, so we don't worry about them.
5313 */
5314 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5315 if (!strcmp(token, ss->name)) {
5316 ss->disabled = 1;
5317 printk(KERN_INFO "Disabling %s control group"
5318 " subsystem\n", ss->name);
5319 break;
5320 }
5321 }
5322 }
5323 return 1;
5324}
5325__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5326
5327/*
5328 * Functons for CSS ID.
5329 */
5330
54766d4a 5331/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5332unsigned short css_id(struct cgroup_subsys_state *css)
5333{
7f0f1546
KH
5334 struct css_id *cssid;
5335
5336 /*
5337 * This css_id() can return correct value when somone has refcnt
5338 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5339 * it's unchanged until freed.
5340 */
d3daf28d 5341 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5342
5343 if (cssid)
5344 return cssid->id;
5345 return 0;
5346}
67523c48 5347EXPORT_SYMBOL_GPL(css_id);
38460b48 5348
747388d7
KH
5349/**
5350 * css_is_ancestor - test "root" css is an ancestor of "child"
5351 * @child: the css to be tested.
5352 * @root: the css supporsed to be an ancestor of the child.
5353 *
5354 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5355 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5356 * But, considering usual usage, the csses should be valid objects after test.
5357 * Assuming that the caller will do some action to the child if this returns
5358 * returns true, the caller must take "child";s reference count.
5359 * If "child" is valid object and this returns true, "root" is valid, too.
5360 */
5361
38460b48 5362bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5363 const struct cgroup_subsys_state *root)
38460b48 5364{
747388d7
KH
5365 struct css_id *child_id;
5366 struct css_id *root_id;
38460b48 5367
747388d7 5368 child_id = rcu_dereference(child->id);
91c63734
JW
5369 if (!child_id)
5370 return false;
747388d7 5371 root_id = rcu_dereference(root->id);
91c63734
JW
5372 if (!root_id)
5373 return false;
5374 if (child_id->depth < root_id->depth)
5375 return false;
5376 if (child_id->stack[root_id->depth] != root_id->id)
5377 return false;
5378 return true;
38460b48
KH
5379}
5380
38460b48
KH
5381void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5382{
5383 struct css_id *id = css->id;
5384 /* When this is called before css_id initialization, id can be NULL */
5385 if (!id)
5386 return;
5387
5388 BUG_ON(!ss->use_id);
5389
5390 rcu_assign_pointer(id->css, NULL);
5391 rcu_assign_pointer(css->id, NULL);
42aee6c4 5392 spin_lock(&ss->id_lock);
38460b48 5393 idr_remove(&ss->idr, id->id);
42aee6c4 5394 spin_unlock(&ss->id_lock);
025cea99 5395 kfree_rcu(id, rcu_head);
38460b48 5396}
67523c48 5397EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5398
5399/*
5400 * This is called by init or create(). Then, calls to this function are
5401 * always serialized (By cgroup_mutex() at create()).
5402 */
5403
5404static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5405{
5406 struct css_id *newid;
d228d9ec 5407 int ret, size;
38460b48
KH
5408
5409 BUG_ON(!ss->use_id);
5410
5411 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5412 newid = kzalloc(size, GFP_KERNEL);
5413 if (!newid)
5414 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5415
5416 idr_preload(GFP_KERNEL);
42aee6c4 5417 spin_lock(&ss->id_lock);
38460b48 5418 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5419 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5420 spin_unlock(&ss->id_lock);
d228d9ec 5421 idr_preload_end();
38460b48
KH
5422
5423 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5424 if (ret < 0)
38460b48 5425 goto err_out;
38460b48 5426
d228d9ec 5427 newid->id = ret;
38460b48
KH
5428 newid->depth = depth;
5429 return newid;
38460b48
KH
5430err_out:
5431 kfree(newid);
d228d9ec 5432 return ERR_PTR(ret);
38460b48
KH
5433
5434}
5435
e6a1105b
BB
5436static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5437 struct cgroup_subsys_state *rootcss)
38460b48
KH
5438{
5439 struct css_id *newid;
38460b48 5440
42aee6c4 5441 spin_lock_init(&ss->id_lock);
38460b48
KH
5442 idr_init(&ss->idr);
5443
38460b48
KH
5444 newid = get_new_cssid(ss, 0);
5445 if (IS_ERR(newid))
5446 return PTR_ERR(newid);
5447
5448 newid->stack[0] = newid->id;
5449 newid->css = rootcss;
5450 rootcss->id = newid;
5451 return 0;
5452}
5453
5454static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5455 struct cgroup *child)
5456{
5457 int subsys_id, i, depth = 0;
5458 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5459 struct css_id *child_id, *parent_id;
38460b48
KH
5460
5461 subsys_id = ss->subsys_id;
5462 parent_css = parent->subsys[subsys_id];
5463 child_css = child->subsys[subsys_id];
38460b48 5464 parent_id = parent_css->id;
94b3dd0f 5465 depth = parent_id->depth + 1;
38460b48
KH
5466
5467 child_id = get_new_cssid(ss, depth);
5468 if (IS_ERR(child_id))
5469 return PTR_ERR(child_id);
5470
5471 for (i = 0; i < depth; i++)
5472 child_id->stack[i] = parent_id->stack[i];
5473 child_id->stack[depth] = child_id->id;
5474 /*
5475 * child_id->css pointer will be set after this cgroup is available
5476 * see cgroup_populate_dir()
5477 */
5478 rcu_assign_pointer(child_css->id, child_id);
5479
5480 return 0;
5481}
5482
5483/**
5484 * css_lookup - lookup css by id
5485 * @ss: cgroup subsys to be looked into.
5486 * @id: the id
5487 *
5488 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5489 * NULL if not. Should be called under rcu_read_lock()
5490 */
5491struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5492{
5493 struct css_id *cssid = NULL;
5494
5495 BUG_ON(!ss->use_id);
5496 cssid = idr_find(&ss->idr, id);
5497
5498 if (unlikely(!cssid))
5499 return NULL;
5500
5501 return rcu_dereference(cssid->css);
5502}
67523c48 5503EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5504
e5d1367f
SE
5505/*
5506 * get corresponding css from file open on cgroupfs directory
5507 */
5508struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5509{
5510 struct cgroup *cgrp;
5511 struct inode *inode;
5512 struct cgroup_subsys_state *css;
5513
496ad9aa 5514 inode = file_inode(f);
e5d1367f
SE
5515 /* check in cgroup filesystem dir */
5516 if (inode->i_op != &cgroup_dir_inode_operations)
5517 return ERR_PTR(-EBADF);
5518
5519 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5520 return ERR_PTR(-EINVAL);
5521
5522 /* get cgroup */
5523 cgrp = __d_cgrp(f->f_dentry);
5524 css = cgrp->subsys[id];
5525 return css ? css : ERR_PTR(-ENOENT);
5526}
5527
fe693435 5528#ifdef CONFIG_CGROUP_DEBUG
03c78cbe 5529static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
fe693435
PM
5530{
5531 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5532
5533 if (!css)
5534 return ERR_PTR(-ENOMEM);
5535
5536 return css;
5537}
5538
03c78cbe 5539static void debug_css_free(struct cgroup *cgrp)
fe693435 5540{
03c78cbe 5541 kfree(cgrp->subsys[debug_subsys_id]);
fe693435
PM
5542}
5543
03c78cbe 5544static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
fe693435 5545{
03c78cbe 5546 return cgroup_task_count(cgrp);
fe693435
PM
5547}
5548
03c78cbe 5549static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
fe693435
PM
5550{
5551 return (u64)(unsigned long)current->cgroups;
5552}
5553
03c78cbe
LZ
5554static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5555 struct cftype *cft)
fe693435
PM
5556{
5557 u64 count;
5558
5559 rcu_read_lock();
a8ad805c 5560 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5561 rcu_read_unlock();
5562 return count;
5563}
5564
03c78cbe 5565static int current_css_set_cg_links_read(struct cgroup *cgrp,
7717f7ba
PM
5566 struct cftype *cft,
5567 struct seq_file *seq)
5568{
69d0206c 5569 struct cgrp_cset_link *link;
5abb8855 5570 struct css_set *cset;
7717f7ba
PM
5571
5572 read_lock(&css_set_lock);
5573 rcu_read_lock();
5abb8855 5574 cset = rcu_dereference(current->cgroups);
69d0206c 5575 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5576 struct cgroup *c = link->cgrp;
5577 const char *name;
5578
5579 if (c->dentry)
5580 name = c->dentry->d_name.name;
5581 else
5582 name = "?";
2c6ab6d2
PM
5583 seq_printf(seq, "Root %d group %s\n",
5584 c->root->hierarchy_id, name);
7717f7ba
PM
5585 }
5586 rcu_read_unlock();
5587 read_unlock(&css_set_lock);
5588 return 0;
5589}
5590
5591#define MAX_TASKS_SHOWN_PER_CSS 25
03c78cbe 5592static int cgroup_css_links_read(struct cgroup *cgrp,
7717f7ba
PM
5593 struct cftype *cft,
5594 struct seq_file *seq)
5595{
69d0206c 5596 struct cgrp_cset_link *link;
7717f7ba
PM
5597
5598 read_lock(&css_set_lock);
03c78cbe 5599 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
69d0206c 5600 struct css_set *cset = link->cset;
7717f7ba
PM
5601 struct task_struct *task;
5602 int count = 0;
5abb8855
TH
5603 seq_printf(seq, "css_set %p\n", cset);
5604 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5605 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5606 seq_puts(seq, " ...\n");
5607 break;
5608 } else {
5609 seq_printf(seq, " task %d\n",
5610 task_pid_vnr(task));
5611 }
5612 }
5613 }
5614 read_unlock(&css_set_lock);
5615 return 0;
5616}
5617
fe693435
PM
5618static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5619{
5620 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5621}
5622
5623static struct cftype debug_files[] = {
fe693435
PM
5624 {
5625 .name = "taskcount",
5626 .read_u64 = debug_taskcount_read,
5627 },
5628
5629 {
5630 .name = "current_css_set",
5631 .read_u64 = current_css_set_read,
5632 },
5633
5634 {
5635 .name = "current_css_set_refcount",
5636 .read_u64 = current_css_set_refcount_read,
5637 },
5638
7717f7ba
PM
5639 {
5640 .name = "current_css_set_cg_links",
5641 .read_seq_string = current_css_set_cg_links_read,
5642 },
5643
5644 {
5645 .name = "cgroup_css_links",
5646 .read_seq_string = cgroup_css_links_read,
5647 },
5648
fe693435
PM
5649 {
5650 .name = "releasable",
5651 .read_u64 = releasable_read,
5652 },
fe693435 5653
4baf6e33
TH
5654 { } /* terminate */
5655};
fe693435
PM
5656
5657struct cgroup_subsys debug_subsys = {
5658 .name = "debug",
92fb9748
TH
5659 .css_alloc = debug_css_alloc,
5660 .css_free = debug_css_free,
fe693435 5661 .subsys_id = debug_subsys_id,
4baf6e33 5662 .base_cftypes = debug_files,
fe693435
PM
5663};
5664#endif /* CONFIG_CGROUP_DEBUG */