vfs: simple_set_mnt() should return void
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
472b1053 47#include <linux/hash.h>
3f8206d4 48#include <linux/namei.h>
846c7bb0 49
ddbcc7e8
PM
50#include <asm/atomic.h>
51
81a6a5cd
PM
52static DEFINE_MUTEX(cgroup_mutex);
53
ddbcc7e8
PM
54/* Generate an array of cgroup subsystem pointers */
55#define SUBSYS(_x) &_x ## _subsys,
56
57static struct cgroup_subsys *subsys[] = {
58#include <linux/cgroup_subsys.h>
59};
60
61/*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
e5f6a860 87 /* A list running through the active hierarchies */
ddbcc7e8
PM
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
81a6a5cd 92
e788e066 93 /* The path to use for release notifications. */
81a6a5cd 94 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
95};
96
97
98/*
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
102 */
103static struct cgroupfs_root rootnode;
104
105/* The list of hierarchy roots */
106
107static LIST_HEAD(roots);
817929ec 108static int root_count;
ddbcc7e8
PM
109
110/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111#define dummytop (&rootnode.top_cgroup)
112
113/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
ddbcc7e8 117 */
8947f9d5 118static int need_forkexit_callback __read_mostly;
ddbcc7e8 119
ddbcc7e8 120/* convenient tests for these bits */
bd89aabc 121inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 122{
bd89aabc 123 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
124}
125
126/* bits in struct cgroupfs_root flags field */
127enum {
128 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
129};
130
e9685a03 131static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
132{
133 const int bits =
bd89aabc
PM
134 (1 << CGRP_RELEASABLE) |
135 (1 << CGRP_NOTIFY_ON_RELEASE);
136 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
137}
138
e9685a03 139static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 140{
bd89aabc 141 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
142}
143
ddbcc7e8
PM
144/*
145 * for_each_subsys() allows you to iterate on each subsystem attached to
146 * an active hierarchy
147 */
148#define for_each_subsys(_root, _ss) \
149list_for_each_entry(_ss, &_root->subsys_list, sibling)
150
e5f6a860
LZ
151/* for_each_active_root() allows you to iterate across the active hierarchies */
152#define for_each_active_root(_root) \
ddbcc7e8
PM
153list_for_each_entry(_root, &roots, root_list)
154
81a6a5cd
PM
155/* the list of cgroups eligible for automatic release. Protected by
156 * release_list_lock */
157static LIST_HEAD(release_list);
158static DEFINE_SPINLOCK(release_list_lock);
159static void cgroup_release_agent(struct work_struct *work);
160static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 161static void check_for_release(struct cgroup *cgrp);
81a6a5cd 162
817929ec
PM
163/* Link structure for associating css_set objects with cgroups */
164struct cg_cgroup_link {
165 /*
166 * List running through cg_cgroup_links associated with a
167 * cgroup, anchored on cgroup->css_sets
168 */
bd89aabc 169 struct list_head cgrp_link_list;
817929ec
PM
170 /*
171 * List running through cg_cgroup_links pointing at a
172 * single css_set object, anchored on css_set->cg_links
173 */
174 struct list_head cg_link_list;
175 struct css_set *cg;
176};
177
178/* The default css_set - used by init and its children prior to any
179 * hierarchies being mounted. It contains a pointer to the root state
180 * for each subsystem. Also used to anchor the list of css_sets. Not
181 * reference-counted, to improve performance when child cgroups
182 * haven't been created.
183 */
184
185static struct css_set init_css_set;
186static struct cg_cgroup_link init_css_set_link;
187
188/* css_set_lock protects the list of css_set objects, and the
189 * chain of tasks off each css_set. Nests outside task->alloc_lock
190 * due to cgroup_iter_start() */
191static DEFINE_RWLOCK(css_set_lock);
192static int css_set_count;
193
472b1053
LZ
194/* hash table for cgroup groups. This improves the performance to
195 * find an existing css_set */
196#define CSS_SET_HASH_BITS 7
197#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
198static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
199
200static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
201{
202 int i;
203 int index;
204 unsigned long tmp = 0UL;
205
206 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
207 tmp += (unsigned long)css[i];
208 tmp = (tmp >> 16) ^ tmp;
209
210 index = hash_long(tmp, CSS_SET_HASH_BITS);
211
212 return &css_set_table[index];
213}
214
817929ec
PM
215/* We don't maintain the lists running through each css_set to its
216 * task until after the first call to cgroup_iter_start(). This
217 * reduces the fork()/exit() overhead for people who have cgroups
218 * compiled into their kernel but not actually in use */
8947f9d5 219static int use_task_css_set_links __read_mostly;
817929ec
PM
220
221/* When we create or destroy a css_set, the operation simply
222 * takes/releases a reference count on all the cgroups referenced
223 * by subsystems in this css_set. This can end up multiple-counting
224 * some cgroups, but that's OK - the ref-count is just a
225 * busy/not-busy indicator; ensuring that we only count each cgroup
226 * once would require taking a global lock to ensure that no
b4f48b63
PM
227 * subsystems moved between hierarchies while we were doing so.
228 *
229 * Possible TODO: decide at boot time based on the number of
230 * registered subsystems and the number of CPUs or NUMA nodes whether
231 * it's better for performance to ref-count every subsystem, or to
232 * take a global lock and only add one ref count to each hierarchy.
233 */
817929ec
PM
234
235/*
236 * unlink a css_set from the list and free it
237 */
81a6a5cd 238static void unlink_css_set(struct css_set *cg)
b4f48b63 239{
71cbb949
KM
240 struct cg_cgroup_link *link;
241 struct cg_cgroup_link *saved_link;
242
472b1053 243 hlist_del(&cg->hlist);
817929ec 244 css_set_count--;
71cbb949
KM
245
246 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
247 cg_link_list) {
817929ec 248 list_del(&link->cg_link_list);
bd89aabc 249 list_del(&link->cgrp_link_list);
817929ec
PM
250 kfree(link);
251 }
81a6a5cd
PM
252}
253
146aa1bd 254static void __put_css_set(struct css_set *cg, int taskexit)
81a6a5cd
PM
255{
256 int i;
146aa1bd
LJ
257 /*
258 * Ensure that the refcount doesn't hit zero while any readers
259 * can see it. Similar to atomic_dec_and_lock(), but for an
260 * rwlock
261 */
262 if (atomic_add_unless(&cg->refcount, -1, 1))
263 return;
264 write_lock(&css_set_lock);
265 if (!atomic_dec_and_test(&cg->refcount)) {
266 write_unlock(&css_set_lock);
267 return;
268 }
81a6a5cd 269 unlink_css_set(cg);
146aa1bd 270 write_unlock(&css_set_lock);
81a6a5cd
PM
271
272 rcu_read_lock();
273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a47295e6 274 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
bd89aabc
PM
275 if (atomic_dec_and_test(&cgrp->count) &&
276 notify_on_release(cgrp)) {
81a6a5cd 277 if (taskexit)
bd89aabc
PM
278 set_bit(CGRP_RELEASABLE, &cgrp->flags);
279 check_for_release(cgrp);
81a6a5cd
PM
280 }
281 }
282 rcu_read_unlock();
817929ec 283 kfree(cg);
b4f48b63
PM
284}
285
817929ec
PM
286/*
287 * refcounted get/put for css_set objects
288 */
289static inline void get_css_set(struct css_set *cg)
290{
146aa1bd 291 atomic_inc(&cg->refcount);
817929ec
PM
292}
293
294static inline void put_css_set(struct css_set *cg)
295{
146aa1bd 296 __put_css_set(cg, 0);
817929ec
PM
297}
298
81a6a5cd
PM
299static inline void put_css_set_taskexit(struct css_set *cg)
300{
146aa1bd 301 __put_css_set(cg, 1);
81a6a5cd
PM
302}
303
817929ec
PM
304/*
305 * find_existing_css_set() is a helper for
306 * find_css_set(), and checks to see whether an existing
472b1053 307 * css_set is suitable.
817929ec
PM
308 *
309 * oldcg: the cgroup group that we're using before the cgroup
310 * transition
311 *
bd89aabc 312 * cgrp: the cgroup that we're moving into
817929ec
PM
313 *
314 * template: location in which to build the desired set of subsystem
315 * state objects for the new cgroup group
316 */
817929ec
PM
317static struct css_set *find_existing_css_set(
318 struct css_set *oldcg,
bd89aabc 319 struct cgroup *cgrp,
817929ec 320 struct cgroup_subsys_state *template[])
b4f48b63
PM
321{
322 int i;
bd89aabc 323 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
324 struct hlist_head *hhead;
325 struct hlist_node *node;
326 struct css_set *cg;
817929ec
PM
327
328 /* Built the set of subsystem state objects that we want to
329 * see in the new css_set */
330 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 331 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
332 /* Subsystem is in this hierarchy. So we want
333 * the subsystem state from the new
334 * cgroup */
bd89aabc 335 template[i] = cgrp->subsys[i];
817929ec
PM
336 } else {
337 /* Subsystem is not in this hierarchy, so we
338 * don't want to change the subsystem state */
339 template[i] = oldcg->subsys[i];
340 }
341 }
342
472b1053
LZ
343 hhead = css_set_hash(template);
344 hlist_for_each_entry(cg, node, hhead, hlist) {
817929ec
PM
345 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
346 /* All subsystems matched */
347 return cg;
348 }
472b1053 349 }
817929ec
PM
350
351 /* No existing cgroup group matched */
352 return NULL;
353}
354
36553434
LZ
355static void free_cg_links(struct list_head *tmp)
356{
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359
360 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
361 list_del(&link->cgrp_link_list);
362 kfree(link);
363 }
364}
365
817929ec
PM
366/*
367 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 368 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
369 * success or a negative error
370 */
817929ec
PM
371static int allocate_cg_links(int count, struct list_head *tmp)
372{
373 struct cg_cgroup_link *link;
374 int i;
375 INIT_LIST_HEAD(tmp);
376 for (i = 0; i < count; i++) {
377 link = kmalloc(sizeof(*link), GFP_KERNEL);
378 if (!link) {
36553434 379 free_cg_links(tmp);
817929ec
PM
380 return -ENOMEM;
381 }
bd89aabc 382 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
383 }
384 return 0;
385}
386
c12f65d4
LZ
387/**
388 * link_css_set - a helper function to link a css_set to a cgroup
389 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
390 * @cg: the css_set to be linked
391 * @cgrp: the destination cgroup
392 */
393static void link_css_set(struct list_head *tmp_cg_links,
394 struct css_set *cg, struct cgroup *cgrp)
395{
396 struct cg_cgroup_link *link;
397
398 BUG_ON(list_empty(tmp_cg_links));
399 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
400 cgrp_link_list);
401 link->cg = cg;
402 list_move(&link->cgrp_link_list, &cgrp->css_sets);
403 list_add(&link->cg_link_list, &cg->cg_links);
404}
405
817929ec
PM
406/*
407 * find_css_set() takes an existing cgroup group and a
408 * cgroup object, and returns a css_set object that's
409 * equivalent to the old group, but with the given cgroup
410 * substituted into the appropriate hierarchy. Must be called with
411 * cgroup_mutex held
412 */
817929ec 413static struct css_set *find_css_set(
bd89aabc 414 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
415{
416 struct css_set *res;
417 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
418 int i;
419
420 struct list_head tmp_cg_links;
817929ec 421
472b1053
LZ
422 struct hlist_head *hhead;
423
817929ec
PM
424 /* First see if we already have a cgroup group that matches
425 * the desired set */
7e9abd89 426 read_lock(&css_set_lock);
bd89aabc 427 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
428 if (res)
429 get_css_set(res);
7e9abd89 430 read_unlock(&css_set_lock);
817929ec
PM
431
432 if (res)
433 return res;
434
435 res = kmalloc(sizeof(*res), GFP_KERNEL);
436 if (!res)
437 return NULL;
438
439 /* Allocate all the cg_cgroup_link objects that we'll need */
440 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
441 kfree(res);
442 return NULL;
443 }
444
146aa1bd 445 atomic_set(&res->refcount, 1);
817929ec
PM
446 INIT_LIST_HEAD(&res->cg_links);
447 INIT_LIST_HEAD(&res->tasks);
472b1053 448 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
449
450 /* Copy the set of subsystem state objects generated in
451 * find_existing_css_set() */
452 memcpy(res->subsys, template, sizeof(res->subsys));
453
454 write_lock(&css_set_lock);
455 /* Add reference counts and links from the new css_set. */
456 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 457 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 458 struct cgroup_subsys *ss = subsys[i];
bd89aabc 459 atomic_inc(&cgrp->count);
817929ec
PM
460 /*
461 * We want to add a link once per cgroup, so we
462 * only do it for the first subsystem in each
463 * hierarchy
464 */
c12f65d4
LZ
465 if (ss->root->subsys_list.next == &ss->sibling)
466 link_css_set(&tmp_cg_links, res, cgrp);
817929ec 467 }
c12f65d4
LZ
468 if (list_empty(&rootnode.subsys_list))
469 link_css_set(&tmp_cg_links, res, dummytop);
817929ec
PM
470
471 BUG_ON(!list_empty(&tmp_cg_links));
472
817929ec 473 css_set_count++;
472b1053
LZ
474
475 /* Add this cgroup group to the hash table */
476 hhead = css_set_hash(res->subsys);
477 hlist_add_head(&res->hlist, hhead);
478
817929ec
PM
479 write_unlock(&css_set_lock);
480
481 return res;
b4f48b63
PM
482}
483
ddbcc7e8
PM
484/*
485 * There is one global cgroup mutex. We also require taking
486 * task_lock() when dereferencing a task's cgroup subsys pointers.
487 * See "The task_lock() exception", at the end of this comment.
488 *
489 * A task must hold cgroup_mutex to modify cgroups.
490 *
491 * Any task can increment and decrement the count field without lock.
492 * So in general, code holding cgroup_mutex can't rely on the count
493 * field not changing. However, if the count goes to zero, then only
956db3ca 494 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
495 * means that no tasks are currently attached, therefore there is no
496 * way a task attached to that cgroup can fork (the other way to
497 * increment the count). So code holding cgroup_mutex can safely
498 * assume that if the count is zero, it will stay zero. Similarly, if
499 * a task holds cgroup_mutex on a cgroup with zero count, it
500 * knows that the cgroup won't be removed, as cgroup_rmdir()
501 * needs that mutex.
502 *
ddbcc7e8
PM
503 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
504 * (usually) take cgroup_mutex. These are the two most performance
505 * critical pieces of code here. The exception occurs on cgroup_exit(),
506 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
507 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
508 * to the release agent with the name of the cgroup (path relative to
509 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
510 *
511 * A cgroup can only be deleted if both its 'count' of using tasks
512 * is zero, and its list of 'children' cgroups is empty. Since all
513 * tasks in the system use _some_ cgroup, and since there is always at
514 * least one task in the system (init, pid == 1), therefore, top_cgroup
515 * always has either children cgroups and/or using tasks. So we don't
516 * need a special hack to ensure that top_cgroup cannot be deleted.
517 *
518 * The task_lock() exception
519 *
520 * The need for this exception arises from the action of
956db3ca 521 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 522 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
523 * several performance critical places that need to reference
524 * task->cgroup without the expense of grabbing a system global
525 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 526 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
527 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
528 * the task_struct routinely used for such matters.
529 *
530 * P.S. One more locking exception. RCU is used to guard the
956db3ca 531 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
532 */
533
ddbcc7e8
PM
534/**
535 * cgroup_lock - lock out any changes to cgroup structures
536 *
537 */
ddbcc7e8
PM
538void cgroup_lock(void)
539{
540 mutex_lock(&cgroup_mutex);
541}
542
543/**
544 * cgroup_unlock - release lock on cgroup changes
545 *
546 * Undo the lock taken in a previous cgroup_lock() call.
547 */
ddbcc7e8
PM
548void cgroup_unlock(void)
549{
550 mutex_unlock(&cgroup_mutex);
551}
552
553/*
554 * A couple of forward declarations required, due to cyclic reference loop:
555 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
556 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
557 * -> cgroup_mkdir.
558 */
559
560static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
561static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 562static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 563static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
564static struct file_operations proc_cgroupstats_operations;
565
566static struct backing_dev_info cgroup_backing_dev_info = {
e4ad08fe 567 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 568};
ddbcc7e8
PM
569
570static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
571{
572 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
573
574 if (inode) {
575 inode->i_mode = mode;
76aac0e9
DH
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
ddbcc7e8
PM
578 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
579 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
580 }
581 return inode;
582}
583
4fca88c8
KH
584/*
585 * Call subsys's pre_destroy handler.
586 * This is called before css refcnt check.
587 */
4fca88c8
KH
588static void cgroup_call_pre_destroy(struct cgroup *cgrp)
589{
590 struct cgroup_subsys *ss;
591 for_each_subsys(cgrp->root, ss)
75139b82 592 if (ss->pre_destroy)
4fca88c8
KH
593 ss->pre_destroy(ss, cgrp);
594 return;
595}
596
a47295e6
PM
597static void free_cgroup_rcu(struct rcu_head *obj)
598{
599 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
600
601 kfree(cgrp);
602}
603
ddbcc7e8
PM
604static void cgroup_diput(struct dentry *dentry, struct inode *inode)
605{
606 /* is dentry a directory ? if so, kfree() associated cgroup */
607 if (S_ISDIR(inode->i_mode)) {
bd89aabc 608 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 609 struct cgroup_subsys *ss;
bd89aabc 610 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
611 /* It's possible for external users to be holding css
612 * reference counts on a cgroup; css_put() needs to
613 * be able to access the cgroup after decrementing
614 * the reference count in order to know if it needs to
615 * queue the cgroup to be handled by the release
616 * agent */
617 synchronize_rcu();
8dc4f3e1
PM
618
619 mutex_lock(&cgroup_mutex);
620 /*
621 * Release the subsystem state objects.
622 */
75139b82
LZ
623 for_each_subsys(cgrp->root, ss)
624 ss->destroy(ss, cgrp);
8dc4f3e1
PM
625
626 cgrp->root->number_of_cgroups--;
627 mutex_unlock(&cgroup_mutex);
628
a47295e6
PM
629 /*
630 * Drop the active superblock reference that we took when we
631 * created the cgroup
632 */
8dc4f3e1
PM
633 deactivate_super(cgrp->root->sb);
634
a47295e6 635 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
ddbcc7e8
PM
636 }
637 iput(inode);
638}
639
640static void remove_dir(struct dentry *d)
641{
642 struct dentry *parent = dget(d->d_parent);
643
644 d_delete(d);
645 simple_rmdir(parent->d_inode, d);
646 dput(parent);
647}
648
649static void cgroup_clear_directory(struct dentry *dentry)
650{
651 struct list_head *node;
652
653 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
654 spin_lock(&dcache_lock);
655 node = dentry->d_subdirs.next;
656 while (node != &dentry->d_subdirs) {
657 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
658 list_del_init(node);
659 if (d->d_inode) {
660 /* This should never be called on a cgroup
661 * directory with child cgroups */
662 BUG_ON(d->d_inode->i_mode & S_IFDIR);
663 d = dget_locked(d);
664 spin_unlock(&dcache_lock);
665 d_delete(d);
666 simple_unlink(dentry->d_inode, d);
667 dput(d);
668 spin_lock(&dcache_lock);
669 }
670 node = dentry->d_subdirs.next;
671 }
672 spin_unlock(&dcache_lock);
673}
674
675/*
676 * NOTE : the dentry must have been dget()'ed
677 */
678static void cgroup_d_remove_dir(struct dentry *dentry)
679{
680 cgroup_clear_directory(dentry);
681
682 spin_lock(&dcache_lock);
683 list_del_init(&dentry->d_u.d_child);
684 spin_unlock(&dcache_lock);
685 remove_dir(dentry);
686}
687
688static int rebind_subsystems(struct cgroupfs_root *root,
689 unsigned long final_bits)
690{
691 unsigned long added_bits, removed_bits;
bd89aabc 692 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
693 int i;
694
695 removed_bits = root->actual_subsys_bits & ~final_bits;
696 added_bits = final_bits & ~root->actual_subsys_bits;
697 /* Check that any added subsystems are currently free */
698 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 699 unsigned long bit = 1UL << i;
ddbcc7e8
PM
700 struct cgroup_subsys *ss = subsys[i];
701 if (!(bit & added_bits))
702 continue;
703 if (ss->root != &rootnode) {
704 /* Subsystem isn't free */
705 return -EBUSY;
706 }
707 }
708
709 /* Currently we don't handle adding/removing subsystems when
710 * any child cgroups exist. This is theoretically supportable
711 * but involves complex error handling, so it's being left until
712 * later */
307257cf 713 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
714 return -EBUSY;
715
716 /* Process each subsystem */
717 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
718 struct cgroup_subsys *ss = subsys[i];
719 unsigned long bit = 1UL << i;
720 if (bit & added_bits) {
721 /* We're binding this subsystem to this hierarchy */
bd89aabc 722 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
723 BUG_ON(!dummytop->subsys[i]);
724 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 725 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
726 cgrp->subsys[i] = dummytop->subsys[i];
727 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 728 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 729 ss->root = root;
ddbcc7e8 730 if (ss->bind)
bd89aabc 731 ss->bind(ss, cgrp);
999cd8a4 732 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
733 } else if (bit & removed_bits) {
734 /* We're removing this subsystem */
bd89aabc
PM
735 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
736 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 737 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
738 if (ss->bind)
739 ss->bind(ss, dummytop);
740 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 741 cgrp->subsys[i] = NULL;
b2aa30f7 742 subsys[i]->root = &rootnode;
33a68ac1 743 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 744 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
745 } else if (bit & final_bits) {
746 /* Subsystem state should already exist */
bd89aabc 747 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
748 } else {
749 /* Subsystem state shouldn't exist */
bd89aabc 750 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
751 }
752 }
753 root->subsys_bits = root->actual_subsys_bits = final_bits;
754 synchronize_rcu();
755
756 return 0;
757}
758
759static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
760{
761 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
762 struct cgroup_subsys *ss;
763
764 mutex_lock(&cgroup_mutex);
765 for_each_subsys(root, ss)
766 seq_printf(seq, ",%s", ss->name);
767 if (test_bit(ROOT_NOPREFIX, &root->flags))
768 seq_puts(seq, ",noprefix");
81a6a5cd
PM
769 if (strlen(root->release_agent_path))
770 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
771 mutex_unlock(&cgroup_mutex);
772 return 0;
773}
774
775struct cgroup_sb_opts {
776 unsigned long subsys_bits;
777 unsigned long flags;
81a6a5cd 778 char *release_agent;
ddbcc7e8
PM
779};
780
781/* Convert a hierarchy specifier into a bitmask of subsystems and
782 * flags. */
783static int parse_cgroupfs_options(char *data,
784 struct cgroup_sb_opts *opts)
785{
786 char *token, *o = data ?: "all";
787
788 opts->subsys_bits = 0;
789 opts->flags = 0;
81a6a5cd 790 opts->release_agent = NULL;
ddbcc7e8
PM
791
792 while ((token = strsep(&o, ",")) != NULL) {
793 if (!*token)
794 return -EINVAL;
795 if (!strcmp(token, "all")) {
8bab8dde
PM
796 /* Add all non-disabled subsystems */
797 int i;
798 opts->subsys_bits = 0;
799 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
800 struct cgroup_subsys *ss = subsys[i];
801 if (!ss->disabled)
802 opts->subsys_bits |= 1ul << i;
803 }
ddbcc7e8
PM
804 } else if (!strcmp(token, "noprefix")) {
805 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
806 } else if (!strncmp(token, "release_agent=", 14)) {
807 /* Specifying two release agents is forbidden */
808 if (opts->release_agent)
809 return -EINVAL;
810 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
811 if (!opts->release_agent)
812 return -ENOMEM;
813 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
814 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
815 } else {
816 struct cgroup_subsys *ss;
817 int i;
818 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
819 ss = subsys[i];
820 if (!strcmp(token, ss->name)) {
8bab8dde
PM
821 if (!ss->disabled)
822 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
823 break;
824 }
825 }
826 if (i == CGROUP_SUBSYS_COUNT)
827 return -ENOENT;
828 }
829 }
830
831 /* We can't have an empty hierarchy */
832 if (!opts->subsys_bits)
833 return -EINVAL;
834
835 return 0;
836}
837
838static int cgroup_remount(struct super_block *sb, int *flags, char *data)
839{
840 int ret = 0;
841 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 842 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
843 struct cgroup_sb_opts opts;
844
bd89aabc 845 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
846 mutex_lock(&cgroup_mutex);
847
848 /* See what subsystems are wanted */
849 ret = parse_cgroupfs_options(data, &opts);
850 if (ret)
851 goto out_unlock;
852
853 /* Don't allow flags to change at remount */
854 if (opts.flags != root->flags) {
855 ret = -EINVAL;
856 goto out_unlock;
857 }
858
859 ret = rebind_subsystems(root, opts.subsys_bits);
860
861 /* (re)populate subsystem files */
862 if (!ret)
bd89aabc 863 cgroup_populate_dir(cgrp);
ddbcc7e8 864
81a6a5cd
PM
865 if (opts.release_agent)
866 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 867 out_unlock:
81a6a5cd
PM
868 if (opts.release_agent)
869 kfree(opts.release_agent);
ddbcc7e8 870 mutex_unlock(&cgroup_mutex);
bd89aabc 871 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
872 return ret;
873}
874
875static struct super_operations cgroup_ops = {
876 .statfs = simple_statfs,
877 .drop_inode = generic_delete_inode,
878 .show_options = cgroup_show_options,
879 .remount_fs = cgroup_remount,
880};
881
cc31edce
PM
882static void init_cgroup_housekeeping(struct cgroup *cgrp)
883{
884 INIT_LIST_HEAD(&cgrp->sibling);
885 INIT_LIST_HEAD(&cgrp->children);
886 INIT_LIST_HEAD(&cgrp->css_sets);
887 INIT_LIST_HEAD(&cgrp->release_list);
888 init_rwsem(&cgrp->pids_mutex);
889}
ddbcc7e8
PM
890static void init_cgroup_root(struct cgroupfs_root *root)
891{
bd89aabc 892 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
893 INIT_LIST_HEAD(&root->subsys_list);
894 INIT_LIST_HEAD(&root->root_list);
895 root->number_of_cgroups = 1;
bd89aabc
PM
896 cgrp->root = root;
897 cgrp->top_cgroup = cgrp;
cc31edce 898 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
899}
900
901static int cgroup_test_super(struct super_block *sb, void *data)
902{
903 struct cgroupfs_root *new = data;
904 struct cgroupfs_root *root = sb->s_fs_info;
905
906 /* First check subsystems */
907 if (new->subsys_bits != root->subsys_bits)
908 return 0;
909
910 /* Next check flags */
911 if (new->flags != root->flags)
912 return 0;
913
914 return 1;
915}
916
917static int cgroup_set_super(struct super_block *sb, void *data)
918{
919 int ret;
920 struct cgroupfs_root *root = data;
921
922 ret = set_anon_super(sb, NULL);
923 if (ret)
924 return ret;
925
926 sb->s_fs_info = root;
927 root->sb = sb;
928
929 sb->s_blocksize = PAGE_CACHE_SIZE;
930 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
931 sb->s_magic = CGROUP_SUPER_MAGIC;
932 sb->s_op = &cgroup_ops;
933
934 return 0;
935}
936
937static int cgroup_get_rootdir(struct super_block *sb)
938{
939 struct inode *inode =
940 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
941 struct dentry *dentry;
942
943 if (!inode)
944 return -ENOMEM;
945
ddbcc7e8
PM
946 inode->i_fop = &simple_dir_operations;
947 inode->i_op = &cgroup_dir_inode_operations;
948 /* directories start off with i_nlink == 2 (for "." entry) */
949 inc_nlink(inode);
950 dentry = d_alloc_root(inode);
951 if (!dentry) {
952 iput(inode);
953 return -ENOMEM;
954 }
955 sb->s_root = dentry;
956 return 0;
957}
958
959static int cgroup_get_sb(struct file_system_type *fs_type,
960 int flags, const char *unused_dev_name,
961 void *data, struct vfsmount *mnt)
962{
963 struct cgroup_sb_opts opts;
964 int ret = 0;
965 struct super_block *sb;
966 struct cgroupfs_root *root;
28fd5dfc 967 struct list_head tmp_cg_links;
ddbcc7e8
PM
968
969 /* First find the desired set of subsystems */
970 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
971 if (ret) {
972 if (opts.release_agent)
973 kfree(opts.release_agent);
ddbcc7e8 974 return ret;
81a6a5cd 975 }
ddbcc7e8
PM
976
977 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738
LZ
978 if (!root) {
979 if (opts.release_agent)
980 kfree(opts.release_agent);
ddbcc7e8 981 return -ENOMEM;
f7770738 982 }
ddbcc7e8
PM
983
984 init_cgroup_root(root);
985 root->subsys_bits = opts.subsys_bits;
986 root->flags = opts.flags;
81a6a5cd
PM
987 if (opts.release_agent) {
988 strcpy(root->release_agent_path, opts.release_agent);
989 kfree(opts.release_agent);
990 }
ddbcc7e8
PM
991
992 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
993
994 if (IS_ERR(sb)) {
995 kfree(root);
996 return PTR_ERR(sb);
997 }
998
999 if (sb->s_fs_info != root) {
1000 /* Reusing an existing superblock */
1001 BUG_ON(sb->s_root == NULL);
1002 kfree(root);
1003 root = NULL;
1004 } else {
1005 /* New superblock */
c12f65d4 1006 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1007 struct inode *inode;
28fd5dfc 1008 int i;
ddbcc7e8
PM
1009
1010 BUG_ON(sb->s_root != NULL);
1011
1012 ret = cgroup_get_rootdir(sb);
1013 if (ret)
1014 goto drop_new_super;
817929ec 1015 inode = sb->s_root->d_inode;
ddbcc7e8 1016
817929ec 1017 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1018 mutex_lock(&cgroup_mutex);
1019
817929ec
PM
1020 /*
1021 * We're accessing css_set_count without locking
1022 * css_set_lock here, but that's OK - it can only be
1023 * increased by someone holding cgroup_lock, and
1024 * that's us. The worst that can happen is that we
1025 * have some link structures left over
1026 */
1027 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1028 if (ret) {
1029 mutex_unlock(&cgroup_mutex);
1030 mutex_unlock(&inode->i_mutex);
1031 goto drop_new_super;
1032 }
1033
ddbcc7e8
PM
1034 ret = rebind_subsystems(root, root->subsys_bits);
1035 if (ret == -EBUSY) {
1036 mutex_unlock(&cgroup_mutex);
817929ec 1037 mutex_unlock(&inode->i_mutex);
20ca9b3f 1038 goto free_cg_links;
ddbcc7e8
PM
1039 }
1040
1041 /* EBUSY should be the only error here */
1042 BUG_ON(ret);
1043
1044 list_add(&root->root_list, &roots);
817929ec 1045 root_count++;
ddbcc7e8 1046
c12f65d4 1047 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1048 root->top_cgroup.dentry = sb->s_root;
1049
817929ec
PM
1050 /* Link the top cgroup in this hierarchy into all
1051 * the css_set objects */
1052 write_lock(&css_set_lock);
28fd5dfc
LZ
1053 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1054 struct hlist_head *hhead = &css_set_table[i];
1055 struct hlist_node *node;
817929ec 1056 struct css_set *cg;
28fd5dfc 1057
c12f65d4
LZ
1058 hlist_for_each_entry(cg, node, hhead, hlist)
1059 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1060 }
817929ec
PM
1061 write_unlock(&css_set_lock);
1062
1063 free_cg_links(&tmp_cg_links);
1064
c12f65d4
LZ
1065 BUG_ON(!list_empty(&root_cgrp->sibling));
1066 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1067 BUG_ON(root->number_of_cgroups != 1);
1068
c12f65d4 1069 cgroup_populate_dir(root_cgrp);
817929ec 1070 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1071 mutex_unlock(&cgroup_mutex);
1072 }
1073
a3ec947c
SB
1074 simple_set_mnt(mnt, sb);
1075 return 0;
ddbcc7e8 1076
20ca9b3f
LZ
1077 free_cg_links:
1078 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1079 drop_new_super:
1080 up_write(&sb->s_umount);
1081 deactivate_super(sb);
1082 return ret;
1083}
1084
1085static void cgroup_kill_sb(struct super_block *sb) {
1086 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1087 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1088 int ret;
71cbb949
KM
1089 struct cg_cgroup_link *link;
1090 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1091
1092 BUG_ON(!root);
1093
1094 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1095 BUG_ON(!list_empty(&cgrp->children));
1096 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1097
1098 mutex_lock(&cgroup_mutex);
1099
1100 /* Rebind all subsystems back to the default hierarchy */
1101 ret = rebind_subsystems(root, 0);
1102 /* Shouldn't be able to fail ... */
1103 BUG_ON(ret);
1104
817929ec
PM
1105 /*
1106 * Release all the links from css_sets to this hierarchy's
1107 * root cgroup
1108 */
1109 write_lock(&css_set_lock);
71cbb949
KM
1110
1111 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1112 cgrp_link_list) {
817929ec 1113 list_del(&link->cg_link_list);
bd89aabc 1114 list_del(&link->cgrp_link_list);
817929ec
PM
1115 kfree(link);
1116 }
1117 write_unlock(&css_set_lock);
1118
839ec545
PM
1119 if (!list_empty(&root->root_list)) {
1120 list_del(&root->root_list);
1121 root_count--;
1122 }
e5f6a860 1123
ddbcc7e8
PM
1124 mutex_unlock(&cgroup_mutex);
1125
ddbcc7e8 1126 kill_litter_super(sb);
67e055d1 1127 kfree(root);
ddbcc7e8
PM
1128}
1129
1130static struct file_system_type cgroup_fs_type = {
1131 .name = "cgroup",
1132 .get_sb = cgroup_get_sb,
1133 .kill_sb = cgroup_kill_sb,
1134};
1135
bd89aabc 1136static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1137{
1138 return dentry->d_fsdata;
1139}
1140
1141static inline struct cftype *__d_cft(struct dentry *dentry)
1142{
1143 return dentry->d_fsdata;
1144}
1145
a043e3b2
LZ
1146/**
1147 * cgroup_path - generate the path of a cgroup
1148 * @cgrp: the cgroup in question
1149 * @buf: the buffer to write the path into
1150 * @buflen: the length of the buffer
1151 *
a47295e6
PM
1152 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1153 * reference. Writes path of cgroup into buf. Returns 0 on success,
1154 * -errno on error.
ddbcc7e8 1155 */
bd89aabc 1156int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1157{
1158 char *start;
a47295e6 1159 struct dentry *dentry = rcu_dereference(cgrp->dentry);
ddbcc7e8 1160
a47295e6 1161 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1162 /*
1163 * Inactive subsystems have no dentry for their root
1164 * cgroup
1165 */
1166 strcpy(buf, "/");
1167 return 0;
1168 }
1169
1170 start = buf + buflen;
1171
1172 *--start = '\0';
1173 for (;;) {
a47295e6 1174 int len = dentry->d_name.len;
ddbcc7e8
PM
1175 if ((start -= len) < buf)
1176 return -ENAMETOOLONG;
bd89aabc
PM
1177 memcpy(start, cgrp->dentry->d_name.name, len);
1178 cgrp = cgrp->parent;
1179 if (!cgrp)
ddbcc7e8 1180 break;
a47295e6 1181 dentry = rcu_dereference(cgrp->dentry);
bd89aabc 1182 if (!cgrp->parent)
ddbcc7e8
PM
1183 continue;
1184 if (--start < buf)
1185 return -ENAMETOOLONG;
1186 *start = '/';
1187 }
1188 memmove(buf, start, buf + buflen - start);
1189 return 0;
1190}
1191
bbcb81d0
PM
1192/*
1193 * Return the first subsystem attached to a cgroup's hierarchy, and
1194 * its subsystem id.
1195 */
1196
bd89aabc 1197static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1198 struct cgroup_subsys_state **css, int *subsys_id)
1199{
bd89aabc 1200 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1201 const struct cgroup_subsys *test_ss;
1202 BUG_ON(list_empty(&root->subsys_list));
1203 test_ss = list_entry(root->subsys_list.next,
1204 struct cgroup_subsys, sibling);
1205 if (css) {
bd89aabc 1206 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1207 BUG_ON(!*css);
1208 }
1209 if (subsys_id)
1210 *subsys_id = test_ss->subsys_id;
1211}
1212
a043e3b2
LZ
1213/**
1214 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1215 * @cgrp: the cgroup the task is attaching to
1216 * @tsk: the task to be attached
bbcb81d0 1217 *
a043e3b2
LZ
1218 * Call holding cgroup_mutex. May take task_lock of
1219 * the task 'tsk' during call.
bbcb81d0 1220 */
956db3ca 1221int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1222{
1223 int retval = 0;
1224 struct cgroup_subsys *ss;
bd89aabc 1225 struct cgroup *oldcgrp;
77efecd9 1226 struct css_set *cg;
817929ec 1227 struct css_set *newcg;
bd89aabc 1228 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1229 int subsys_id;
1230
bd89aabc 1231 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1232
1233 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1234 oldcgrp = task_cgroup(tsk, subsys_id);
1235 if (cgrp == oldcgrp)
bbcb81d0
PM
1236 return 0;
1237
1238 for_each_subsys(root, ss) {
1239 if (ss->can_attach) {
bd89aabc 1240 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1241 if (retval)
bbcb81d0 1242 return retval;
bbcb81d0
PM
1243 }
1244 }
1245
77efecd9
LJ
1246 task_lock(tsk);
1247 cg = tsk->cgroups;
1248 get_css_set(cg);
1249 task_unlock(tsk);
817929ec
PM
1250 /*
1251 * Locate or allocate a new css_set for this task,
1252 * based on its final set of cgroups
1253 */
bd89aabc 1254 newcg = find_css_set(cg, cgrp);
77efecd9 1255 put_css_set(cg);
e18f6318 1256 if (!newcg)
817929ec 1257 return -ENOMEM;
817929ec 1258
bbcb81d0
PM
1259 task_lock(tsk);
1260 if (tsk->flags & PF_EXITING) {
1261 task_unlock(tsk);
817929ec 1262 put_css_set(newcg);
bbcb81d0
PM
1263 return -ESRCH;
1264 }
817929ec 1265 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1266 task_unlock(tsk);
1267
817929ec
PM
1268 /* Update the css_set linked lists if we're using them */
1269 write_lock(&css_set_lock);
1270 if (!list_empty(&tsk->cg_list)) {
1271 list_del(&tsk->cg_list);
1272 list_add(&tsk->cg_list, &newcg->tasks);
1273 }
1274 write_unlock(&css_set_lock);
1275
bbcb81d0 1276 for_each_subsys(root, ss) {
e18f6318 1277 if (ss->attach)
bd89aabc 1278 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1279 }
bd89aabc 1280 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1281 synchronize_rcu();
817929ec 1282 put_css_set(cg);
bbcb81d0
PM
1283 return 0;
1284}
1285
1286/*
af351026
PM
1287 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1288 * held. May take task_lock of task
bbcb81d0 1289 */
af351026 1290static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1291{
bbcb81d0 1292 struct task_struct *tsk;
c69e8d9c 1293 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1294 int ret;
1295
bbcb81d0
PM
1296 if (pid) {
1297 rcu_read_lock();
73507f33 1298 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1299 if (!tsk || tsk->flags & PF_EXITING) {
1300 rcu_read_unlock();
1301 return -ESRCH;
1302 }
bbcb81d0 1303
c69e8d9c
DH
1304 tcred = __task_cred(tsk);
1305 if (cred->euid &&
1306 cred->euid != tcred->uid &&
1307 cred->euid != tcred->suid) {
1308 rcu_read_unlock();
bbcb81d0
PM
1309 return -EACCES;
1310 }
c69e8d9c
DH
1311 get_task_struct(tsk);
1312 rcu_read_unlock();
bbcb81d0
PM
1313 } else {
1314 tsk = current;
1315 get_task_struct(tsk);
1316 }
1317
956db3ca 1318 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1319 put_task_struct(tsk);
1320 return ret;
1321}
1322
af351026
PM
1323static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1324{
1325 int ret;
1326 if (!cgroup_lock_live_group(cgrp))
1327 return -ENODEV;
1328 ret = attach_task_by_pid(cgrp, pid);
1329 cgroup_unlock();
1330 return ret;
1331}
1332
ddbcc7e8 1333/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1334enum cgroup_filetype {
1335 FILE_ROOT,
1336 FILE_DIR,
1337 FILE_TASKLIST,
81a6a5cd 1338 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1339 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1340};
1341
e788e066
PM
1342/**
1343 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1344 * @cgrp: the cgroup to be checked for liveness
1345 *
84eea842
PM
1346 * On success, returns true; the lock should be later released with
1347 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1348 */
84eea842 1349bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1350{
1351 mutex_lock(&cgroup_mutex);
1352 if (cgroup_is_removed(cgrp)) {
1353 mutex_unlock(&cgroup_mutex);
1354 return false;
1355 }
1356 return true;
1357}
1358
1359static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1360 const char *buffer)
1361{
1362 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1363 if (!cgroup_lock_live_group(cgrp))
1364 return -ENODEV;
1365 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1366 cgroup_unlock();
e788e066
PM
1367 return 0;
1368}
1369
1370static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1371 struct seq_file *seq)
1372{
1373 if (!cgroup_lock_live_group(cgrp))
1374 return -ENODEV;
1375 seq_puts(seq, cgrp->root->release_agent_path);
1376 seq_putc(seq, '\n');
84eea842 1377 cgroup_unlock();
e788e066
PM
1378 return 0;
1379}
1380
84eea842
PM
1381/* A buffer size big enough for numbers or short strings */
1382#define CGROUP_LOCAL_BUFFER_SIZE 64
1383
e73d2c61 1384static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1385 struct file *file,
1386 const char __user *userbuf,
1387 size_t nbytes, loff_t *unused_ppos)
355e0c48 1388{
84eea842 1389 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1390 int retval = 0;
355e0c48
PM
1391 char *end;
1392
1393 if (!nbytes)
1394 return -EINVAL;
1395 if (nbytes >= sizeof(buffer))
1396 return -E2BIG;
1397 if (copy_from_user(buffer, userbuf, nbytes))
1398 return -EFAULT;
1399
1400 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1401 strstrip(buffer);
e73d2c61
PM
1402 if (cft->write_u64) {
1403 u64 val = simple_strtoull(buffer, &end, 0);
1404 if (*end)
1405 return -EINVAL;
1406 retval = cft->write_u64(cgrp, cft, val);
1407 } else {
1408 s64 val = simple_strtoll(buffer, &end, 0);
1409 if (*end)
1410 return -EINVAL;
1411 retval = cft->write_s64(cgrp, cft, val);
1412 }
355e0c48
PM
1413 if (!retval)
1414 retval = nbytes;
1415 return retval;
1416}
1417
db3b1497
PM
1418static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1419 struct file *file,
1420 const char __user *userbuf,
1421 size_t nbytes, loff_t *unused_ppos)
1422{
84eea842 1423 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1424 int retval = 0;
1425 size_t max_bytes = cft->max_write_len;
1426 char *buffer = local_buffer;
1427
1428 if (!max_bytes)
1429 max_bytes = sizeof(local_buffer) - 1;
1430 if (nbytes >= max_bytes)
1431 return -E2BIG;
1432 /* Allocate a dynamic buffer if we need one */
1433 if (nbytes >= sizeof(local_buffer)) {
1434 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1435 if (buffer == NULL)
1436 return -ENOMEM;
1437 }
5a3eb9f6
LZ
1438 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1439 retval = -EFAULT;
1440 goto out;
1441 }
db3b1497
PM
1442
1443 buffer[nbytes] = 0; /* nul-terminate */
1444 strstrip(buffer);
1445 retval = cft->write_string(cgrp, cft, buffer);
1446 if (!retval)
1447 retval = nbytes;
5a3eb9f6 1448out:
db3b1497
PM
1449 if (buffer != local_buffer)
1450 kfree(buffer);
1451 return retval;
1452}
1453
ddbcc7e8
PM
1454static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1455 size_t nbytes, loff_t *ppos)
1456{
1457 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1458 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1459
75139b82 1460 if (cgroup_is_removed(cgrp))
ddbcc7e8 1461 return -ENODEV;
355e0c48 1462 if (cft->write)
bd89aabc 1463 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1464 if (cft->write_u64 || cft->write_s64)
1465 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1466 if (cft->write_string)
1467 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1468 if (cft->trigger) {
1469 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1470 return ret ? ret : nbytes;
1471 }
355e0c48 1472 return -EINVAL;
ddbcc7e8
PM
1473}
1474
f4c753b7
PM
1475static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1476 struct file *file,
1477 char __user *buf, size_t nbytes,
1478 loff_t *ppos)
ddbcc7e8 1479{
84eea842 1480 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1481 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1482 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1483
1484 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1485}
1486
e73d2c61
PM
1487static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1488 struct file *file,
1489 char __user *buf, size_t nbytes,
1490 loff_t *ppos)
1491{
84eea842 1492 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1493 s64 val = cft->read_s64(cgrp, cft);
1494 int len = sprintf(tmp, "%lld\n", (long long) val);
1495
1496 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1497}
1498
ddbcc7e8
PM
1499static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1500 size_t nbytes, loff_t *ppos)
1501{
1502 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1503 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1504
75139b82 1505 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
1506 return -ENODEV;
1507
1508 if (cft->read)
bd89aabc 1509 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1510 if (cft->read_u64)
1511 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1512 if (cft->read_s64)
1513 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1514 return -EINVAL;
1515}
1516
91796569
PM
1517/*
1518 * seqfile ops/methods for returning structured data. Currently just
1519 * supports string->u64 maps, but can be extended in future.
1520 */
1521
1522struct cgroup_seqfile_state {
1523 struct cftype *cft;
1524 struct cgroup *cgroup;
1525};
1526
1527static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1528{
1529 struct seq_file *sf = cb->state;
1530 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1531}
1532
1533static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1534{
1535 struct cgroup_seqfile_state *state = m->private;
1536 struct cftype *cft = state->cft;
29486df3
SH
1537 if (cft->read_map) {
1538 struct cgroup_map_cb cb = {
1539 .fill = cgroup_map_add,
1540 .state = m,
1541 };
1542 return cft->read_map(state->cgroup, cft, &cb);
1543 }
1544 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1545}
1546
96930a63 1547static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
1548{
1549 struct seq_file *seq = file->private_data;
1550 kfree(seq->private);
1551 return single_release(inode, file);
1552}
1553
1554static struct file_operations cgroup_seqfile_operations = {
1555 .read = seq_read,
e788e066 1556 .write = cgroup_file_write,
91796569
PM
1557 .llseek = seq_lseek,
1558 .release = cgroup_seqfile_release,
1559};
1560
ddbcc7e8
PM
1561static int cgroup_file_open(struct inode *inode, struct file *file)
1562{
1563 int err;
1564 struct cftype *cft;
1565
1566 err = generic_file_open(inode, file);
1567 if (err)
1568 return err;
ddbcc7e8 1569 cft = __d_cft(file->f_dentry);
75139b82 1570
29486df3 1571 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1572 struct cgroup_seqfile_state *state =
1573 kzalloc(sizeof(*state), GFP_USER);
1574 if (!state)
1575 return -ENOMEM;
1576 state->cft = cft;
1577 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1578 file->f_op = &cgroup_seqfile_operations;
1579 err = single_open(file, cgroup_seqfile_show, state);
1580 if (err < 0)
1581 kfree(state);
1582 } else if (cft->open)
ddbcc7e8
PM
1583 err = cft->open(inode, file);
1584 else
1585 err = 0;
1586
1587 return err;
1588}
1589
1590static int cgroup_file_release(struct inode *inode, struct file *file)
1591{
1592 struct cftype *cft = __d_cft(file->f_dentry);
1593 if (cft->release)
1594 return cft->release(inode, file);
1595 return 0;
1596}
1597
1598/*
1599 * cgroup_rename - Only allow simple rename of directories in place.
1600 */
1601static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1602 struct inode *new_dir, struct dentry *new_dentry)
1603{
1604 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1605 return -ENOTDIR;
1606 if (new_dentry->d_inode)
1607 return -EEXIST;
1608 if (old_dir != new_dir)
1609 return -EIO;
1610 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1611}
1612
1613static struct file_operations cgroup_file_operations = {
1614 .read = cgroup_file_read,
1615 .write = cgroup_file_write,
1616 .llseek = generic_file_llseek,
1617 .open = cgroup_file_open,
1618 .release = cgroup_file_release,
1619};
1620
1621static struct inode_operations cgroup_dir_inode_operations = {
1622 .lookup = simple_lookup,
1623 .mkdir = cgroup_mkdir,
1624 .rmdir = cgroup_rmdir,
1625 .rename = cgroup_rename,
1626};
1627
1628static int cgroup_create_file(struct dentry *dentry, int mode,
1629 struct super_block *sb)
1630{
3ba13d17 1631 static const struct dentry_operations cgroup_dops = {
ddbcc7e8
PM
1632 .d_iput = cgroup_diput,
1633 };
1634
1635 struct inode *inode;
1636
1637 if (!dentry)
1638 return -ENOENT;
1639 if (dentry->d_inode)
1640 return -EEXIST;
1641
1642 inode = cgroup_new_inode(mode, sb);
1643 if (!inode)
1644 return -ENOMEM;
1645
1646 if (S_ISDIR(mode)) {
1647 inode->i_op = &cgroup_dir_inode_operations;
1648 inode->i_fop = &simple_dir_operations;
1649
1650 /* start off with i_nlink == 2 (for "." entry) */
1651 inc_nlink(inode);
1652
1653 /* start with the directory inode held, so that we can
1654 * populate it without racing with another mkdir */
817929ec 1655 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1656 } else if (S_ISREG(mode)) {
1657 inode->i_size = 0;
1658 inode->i_fop = &cgroup_file_operations;
1659 }
1660 dentry->d_op = &cgroup_dops;
1661 d_instantiate(dentry, inode);
1662 dget(dentry); /* Extra count - pin the dentry in core */
1663 return 0;
1664}
1665
1666/*
a043e3b2
LZ
1667 * cgroup_create_dir - create a directory for an object.
1668 * @cgrp: the cgroup we create the directory for. It must have a valid
1669 * ->parent field. And we are going to fill its ->dentry field.
1670 * @dentry: dentry of the new cgroup
1671 * @mode: mode to set on new directory.
ddbcc7e8 1672 */
bd89aabc 1673static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1674 int mode)
1675{
1676 struct dentry *parent;
1677 int error = 0;
1678
bd89aabc
PM
1679 parent = cgrp->parent->dentry;
1680 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1681 if (!error) {
bd89aabc 1682 dentry->d_fsdata = cgrp;
ddbcc7e8 1683 inc_nlink(parent->d_inode);
a47295e6 1684 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
1685 dget(dentry);
1686 }
1687 dput(dentry);
1688
1689 return error;
1690}
1691
bd89aabc 1692int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1693 struct cgroup_subsys *subsys,
1694 const struct cftype *cft)
1695{
bd89aabc 1696 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1697 struct dentry *dentry;
1698 int error;
1699
1700 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1701 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1702 strcpy(name, subsys->name);
1703 strcat(name, ".");
1704 }
1705 strcat(name, cft->name);
1706 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1707 dentry = lookup_one_len(name, dir, strlen(name));
1708 if (!IS_ERR(dentry)) {
1709 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1710 cgrp->root->sb);
ddbcc7e8
PM
1711 if (!error)
1712 dentry->d_fsdata = (void *)cft;
1713 dput(dentry);
1714 } else
1715 error = PTR_ERR(dentry);
1716 return error;
1717}
1718
bd89aabc 1719int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1720 struct cgroup_subsys *subsys,
1721 const struct cftype cft[],
1722 int count)
1723{
1724 int i, err;
1725 for (i = 0; i < count; i++) {
bd89aabc 1726 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1727 if (err)
1728 return err;
1729 }
1730 return 0;
1731}
1732
a043e3b2
LZ
1733/**
1734 * cgroup_task_count - count the number of tasks in a cgroup.
1735 * @cgrp: the cgroup in question
1736 *
1737 * Return the number of tasks in the cgroup.
1738 */
bd89aabc 1739int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1740{
1741 int count = 0;
71cbb949 1742 struct cg_cgroup_link *link;
817929ec
PM
1743
1744 read_lock(&css_set_lock);
71cbb949 1745 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 1746 count += atomic_read(&link->cg->refcount);
817929ec
PM
1747 }
1748 read_unlock(&css_set_lock);
bbcb81d0
PM
1749 return count;
1750}
1751
817929ec
PM
1752/*
1753 * Advance a list_head iterator. The iterator should be positioned at
1754 * the start of a css_set
1755 */
bd89aabc 1756static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1757 struct cgroup_iter *it)
1758{
1759 struct list_head *l = it->cg_link;
1760 struct cg_cgroup_link *link;
1761 struct css_set *cg;
1762
1763 /* Advance to the next non-empty css_set */
1764 do {
1765 l = l->next;
bd89aabc 1766 if (l == &cgrp->css_sets) {
817929ec
PM
1767 it->cg_link = NULL;
1768 return;
1769 }
bd89aabc 1770 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1771 cg = link->cg;
1772 } while (list_empty(&cg->tasks));
1773 it->cg_link = l;
1774 it->task = cg->tasks.next;
1775}
1776
31a7df01
CW
1777/*
1778 * To reduce the fork() overhead for systems that are not actually
1779 * using their cgroups capability, we don't maintain the lists running
1780 * through each css_set to its tasks until we see the list actually
1781 * used - in other words after the first call to cgroup_iter_start().
1782 *
1783 * The tasklist_lock is not held here, as do_each_thread() and
1784 * while_each_thread() are protected by RCU.
1785 */
3df91fe3 1786static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1787{
1788 struct task_struct *p, *g;
1789 write_lock(&css_set_lock);
1790 use_task_css_set_links = 1;
1791 do_each_thread(g, p) {
1792 task_lock(p);
0e04388f
LZ
1793 /*
1794 * We should check if the process is exiting, otherwise
1795 * it will race with cgroup_exit() in that the list
1796 * entry won't be deleted though the process has exited.
1797 */
1798 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1799 list_add(&p->cg_list, &p->cgroups->tasks);
1800 task_unlock(p);
1801 } while_each_thread(g, p);
1802 write_unlock(&css_set_lock);
1803}
1804
bd89aabc 1805void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1806{
1807 /*
1808 * The first time anyone tries to iterate across a cgroup,
1809 * we need to enable the list linking each css_set to its
1810 * tasks, and fix up all existing tasks.
1811 */
31a7df01
CW
1812 if (!use_task_css_set_links)
1813 cgroup_enable_task_cg_lists();
1814
817929ec 1815 read_lock(&css_set_lock);
bd89aabc
PM
1816 it->cg_link = &cgrp->css_sets;
1817 cgroup_advance_iter(cgrp, it);
817929ec
PM
1818}
1819
bd89aabc 1820struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1821 struct cgroup_iter *it)
1822{
1823 struct task_struct *res;
1824 struct list_head *l = it->task;
2019f634 1825 struct cg_cgroup_link *link;
817929ec
PM
1826
1827 /* If the iterator cg is NULL, we have no tasks */
1828 if (!it->cg_link)
1829 return NULL;
1830 res = list_entry(l, struct task_struct, cg_list);
1831 /* Advance iterator to find next entry */
1832 l = l->next;
2019f634
LJ
1833 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1834 if (l == &link->cg->tasks) {
817929ec
PM
1835 /* We reached the end of this task list - move on to
1836 * the next cg_cgroup_link */
bd89aabc 1837 cgroup_advance_iter(cgrp, it);
817929ec
PM
1838 } else {
1839 it->task = l;
1840 }
1841 return res;
1842}
1843
bd89aabc 1844void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1845{
1846 read_unlock(&css_set_lock);
1847}
1848
31a7df01
CW
1849static inline int started_after_time(struct task_struct *t1,
1850 struct timespec *time,
1851 struct task_struct *t2)
1852{
1853 int start_diff = timespec_compare(&t1->start_time, time);
1854 if (start_diff > 0) {
1855 return 1;
1856 } else if (start_diff < 0) {
1857 return 0;
1858 } else {
1859 /*
1860 * Arbitrarily, if two processes started at the same
1861 * time, we'll say that the lower pointer value
1862 * started first. Note that t2 may have exited by now
1863 * so this may not be a valid pointer any longer, but
1864 * that's fine - it still serves to distinguish
1865 * between two tasks started (effectively) simultaneously.
1866 */
1867 return t1 > t2;
1868 }
1869}
1870
1871/*
1872 * This function is a callback from heap_insert() and is used to order
1873 * the heap.
1874 * In this case we order the heap in descending task start time.
1875 */
1876static inline int started_after(void *p1, void *p2)
1877{
1878 struct task_struct *t1 = p1;
1879 struct task_struct *t2 = p2;
1880 return started_after_time(t1, &t2->start_time, t2);
1881}
1882
1883/**
1884 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1885 * @scan: struct cgroup_scanner containing arguments for the scan
1886 *
1887 * Arguments include pointers to callback functions test_task() and
1888 * process_task().
1889 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1890 * and if it returns true, call process_task() for it also.
1891 * The test_task pointer may be NULL, meaning always true (select all tasks).
1892 * Effectively duplicates cgroup_iter_{start,next,end}()
1893 * but does not lock css_set_lock for the call to process_task().
1894 * The struct cgroup_scanner may be embedded in any structure of the caller's
1895 * creation.
1896 * It is guaranteed that process_task() will act on every task that
1897 * is a member of the cgroup for the duration of this call. This
1898 * function may or may not call process_task() for tasks that exit
1899 * or move to a different cgroup during the call, or are forked or
1900 * move into the cgroup during the call.
1901 *
1902 * Note that test_task() may be called with locks held, and may in some
1903 * situations be called multiple times for the same task, so it should
1904 * be cheap.
1905 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1906 * pre-allocated and will be used for heap operations (and its "gt" member will
1907 * be overwritten), else a temporary heap will be used (allocation of which
1908 * may cause this function to fail).
1909 */
1910int cgroup_scan_tasks(struct cgroup_scanner *scan)
1911{
1912 int retval, i;
1913 struct cgroup_iter it;
1914 struct task_struct *p, *dropped;
1915 /* Never dereference latest_task, since it's not refcounted */
1916 struct task_struct *latest_task = NULL;
1917 struct ptr_heap tmp_heap;
1918 struct ptr_heap *heap;
1919 struct timespec latest_time = { 0, 0 };
1920
1921 if (scan->heap) {
1922 /* The caller supplied our heap and pre-allocated its memory */
1923 heap = scan->heap;
1924 heap->gt = &started_after;
1925 } else {
1926 /* We need to allocate our own heap memory */
1927 heap = &tmp_heap;
1928 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1929 if (retval)
1930 /* cannot allocate the heap */
1931 return retval;
1932 }
1933
1934 again:
1935 /*
1936 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1937 * to determine which are of interest, and using the scanner's
1938 * "process_task" callback to process any of them that need an update.
1939 * Since we don't want to hold any locks during the task updates,
1940 * gather tasks to be processed in a heap structure.
1941 * The heap is sorted by descending task start time.
1942 * If the statically-sized heap fills up, we overflow tasks that
1943 * started later, and in future iterations only consider tasks that
1944 * started after the latest task in the previous pass. This
1945 * guarantees forward progress and that we don't miss any tasks.
1946 */
1947 heap->size = 0;
1948 cgroup_iter_start(scan->cg, &it);
1949 while ((p = cgroup_iter_next(scan->cg, &it))) {
1950 /*
1951 * Only affect tasks that qualify per the caller's callback,
1952 * if he provided one
1953 */
1954 if (scan->test_task && !scan->test_task(p, scan))
1955 continue;
1956 /*
1957 * Only process tasks that started after the last task
1958 * we processed
1959 */
1960 if (!started_after_time(p, &latest_time, latest_task))
1961 continue;
1962 dropped = heap_insert(heap, p);
1963 if (dropped == NULL) {
1964 /*
1965 * The new task was inserted; the heap wasn't
1966 * previously full
1967 */
1968 get_task_struct(p);
1969 } else if (dropped != p) {
1970 /*
1971 * The new task was inserted, and pushed out a
1972 * different task
1973 */
1974 get_task_struct(p);
1975 put_task_struct(dropped);
1976 }
1977 /*
1978 * Else the new task was newer than anything already in
1979 * the heap and wasn't inserted
1980 */
1981 }
1982 cgroup_iter_end(scan->cg, &it);
1983
1984 if (heap->size) {
1985 for (i = 0; i < heap->size; i++) {
4fe91d51 1986 struct task_struct *q = heap->ptrs[i];
31a7df01 1987 if (i == 0) {
4fe91d51
PJ
1988 latest_time = q->start_time;
1989 latest_task = q;
31a7df01
CW
1990 }
1991 /* Process the task per the caller's callback */
4fe91d51
PJ
1992 scan->process_task(q, scan);
1993 put_task_struct(q);
31a7df01
CW
1994 }
1995 /*
1996 * If we had to process any tasks at all, scan again
1997 * in case some of them were in the middle of forking
1998 * children that didn't get processed.
1999 * Not the most efficient way to do it, but it avoids
2000 * having to take callback_mutex in the fork path
2001 */
2002 goto again;
2003 }
2004 if (heap == &tmp_heap)
2005 heap_free(&tmp_heap);
2006 return 0;
2007}
2008
bbcb81d0
PM
2009/*
2010 * Stuff for reading the 'tasks' file.
2011 *
2012 * Reading this file can return large amounts of data if a cgroup has
2013 * *lots* of attached tasks. So it may need several calls to read(),
2014 * but we cannot guarantee that the information we produce is correct
2015 * unless we produce it entirely atomically.
2016 *
bbcb81d0 2017 */
bbcb81d0
PM
2018
2019/*
2020 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2021 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2022 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2023 * read section, so the css_set can't go away, and is
2024 * immutable after creation.
2025 */
bd89aabc 2026static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0 2027{
e7b80bb6 2028 int n = 0, pid;
817929ec
PM
2029 struct cgroup_iter it;
2030 struct task_struct *tsk;
bd89aabc
PM
2031 cgroup_iter_start(cgrp, &it);
2032 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2033 if (unlikely(n == npids))
2034 break;
e7b80bb6
G
2035 pid = task_pid_vnr(tsk);
2036 if (pid > 0)
2037 pidarray[n++] = pid;
817929ec 2038 }
bd89aabc 2039 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2040 return n;
2041}
2042
846c7bb0 2043/**
a043e3b2 2044 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2045 * @stats: cgroupstats to fill information into
2046 * @dentry: A dentry entry belonging to the cgroup for which stats have
2047 * been requested.
a043e3b2
LZ
2048 *
2049 * Build and fill cgroupstats so that taskstats can export it to user
2050 * space.
846c7bb0
BS
2051 */
2052int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2053{
2054 int ret = -EINVAL;
bd89aabc 2055 struct cgroup *cgrp;
846c7bb0
BS
2056 struct cgroup_iter it;
2057 struct task_struct *tsk;
33d283be 2058
846c7bb0 2059 /*
33d283be
LZ
2060 * Validate dentry by checking the superblock operations,
2061 * and make sure it's a directory.
846c7bb0 2062 */
33d283be
LZ
2063 if (dentry->d_sb->s_op != &cgroup_ops ||
2064 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2065 goto err;
2066
2067 ret = 0;
bd89aabc 2068 cgrp = dentry->d_fsdata;
846c7bb0 2069
bd89aabc
PM
2070 cgroup_iter_start(cgrp, &it);
2071 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2072 switch (tsk->state) {
2073 case TASK_RUNNING:
2074 stats->nr_running++;
2075 break;
2076 case TASK_INTERRUPTIBLE:
2077 stats->nr_sleeping++;
2078 break;
2079 case TASK_UNINTERRUPTIBLE:
2080 stats->nr_uninterruptible++;
2081 break;
2082 case TASK_STOPPED:
2083 stats->nr_stopped++;
2084 break;
2085 default:
2086 if (delayacct_is_task_waiting_on_io(tsk))
2087 stats->nr_io_wait++;
2088 break;
2089 }
2090 }
bd89aabc 2091 cgroup_iter_end(cgrp, &it);
846c7bb0 2092
846c7bb0
BS
2093err:
2094 return ret;
2095}
2096
bbcb81d0
PM
2097static int cmppid(const void *a, const void *b)
2098{
2099 return *(pid_t *)a - *(pid_t *)b;
2100}
2101
cc31edce 2102
bbcb81d0 2103/*
cc31edce
PM
2104 * seq_file methods for the "tasks" file. The seq_file position is the
2105 * next pid to display; the seq_file iterator is a pointer to the pid
2106 * in the cgroup->tasks_pids array.
bbcb81d0 2107 */
cc31edce
PM
2108
2109static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2110{
cc31edce
PM
2111 /*
2112 * Initially we receive a position value that corresponds to
2113 * one more than the last pid shown (or 0 on the first call or
2114 * after a seek to the start). Use a binary-search to find the
2115 * next pid to display, if any
2116 */
2117 struct cgroup *cgrp = s->private;
2118 int index = 0, pid = *pos;
2119 int *iter;
2120
2121 down_read(&cgrp->pids_mutex);
2122 if (pid) {
2123 int end = cgrp->pids_length;
20777766 2124
cc31edce
PM
2125 while (index < end) {
2126 int mid = (index + end) / 2;
2127 if (cgrp->tasks_pids[mid] == pid) {
2128 index = mid;
2129 break;
2130 } else if (cgrp->tasks_pids[mid] <= pid)
2131 index = mid + 1;
2132 else
2133 end = mid;
2134 }
2135 }
2136 /* If we're off the end of the array, we're done */
2137 if (index >= cgrp->pids_length)
2138 return NULL;
2139 /* Update the abstract position to be the actual pid that we found */
2140 iter = cgrp->tasks_pids + index;
2141 *pos = *iter;
2142 return iter;
2143}
2144
2145static void cgroup_tasks_stop(struct seq_file *s, void *v)
2146{
2147 struct cgroup *cgrp = s->private;
2148 up_read(&cgrp->pids_mutex);
2149}
2150
2151static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2152{
2153 struct cgroup *cgrp = s->private;
2154 int *p = v;
2155 int *end = cgrp->tasks_pids + cgrp->pids_length;
2156
2157 /*
2158 * Advance to the next pid in the array. If this goes off the
2159 * end, we're done
2160 */
2161 p++;
2162 if (p >= end) {
2163 return NULL;
2164 } else {
2165 *pos = *p;
2166 return p;
2167 }
2168}
2169
2170static int cgroup_tasks_show(struct seq_file *s, void *v)
2171{
2172 return seq_printf(s, "%d\n", *(int *)v);
2173}
bbcb81d0 2174
cc31edce
PM
2175static struct seq_operations cgroup_tasks_seq_operations = {
2176 .start = cgroup_tasks_start,
2177 .stop = cgroup_tasks_stop,
2178 .next = cgroup_tasks_next,
2179 .show = cgroup_tasks_show,
2180};
2181
2182static void release_cgroup_pid_array(struct cgroup *cgrp)
2183{
2184 down_write(&cgrp->pids_mutex);
2185 BUG_ON(!cgrp->pids_use_count);
2186 if (!--cgrp->pids_use_count) {
2187 kfree(cgrp->tasks_pids);
2188 cgrp->tasks_pids = NULL;
2189 cgrp->pids_length = 0;
2190 }
2191 up_write(&cgrp->pids_mutex);
bbcb81d0
PM
2192}
2193
cc31edce
PM
2194static int cgroup_tasks_release(struct inode *inode, struct file *file)
2195{
2196 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2197
2198 if (!(file->f_mode & FMODE_READ))
2199 return 0;
2200
2201 release_cgroup_pid_array(cgrp);
2202 return seq_release(inode, file);
2203}
2204
2205static struct file_operations cgroup_tasks_operations = {
2206 .read = seq_read,
2207 .llseek = seq_lseek,
2208 .write = cgroup_file_write,
2209 .release = cgroup_tasks_release,
2210};
2211
bbcb81d0 2212/*
cc31edce 2213 * Handle an open on 'tasks' file. Prepare an array containing the
bbcb81d0 2214 * process id's of tasks currently attached to the cgroup being opened.
bbcb81d0 2215 */
cc31edce 2216
bbcb81d0
PM
2217static int cgroup_tasks_open(struct inode *unused, struct file *file)
2218{
bd89aabc 2219 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2220 pid_t *pidarray;
2221 int npids;
cc31edce 2222 int retval;
bbcb81d0 2223
cc31edce 2224 /* Nothing to do for write-only files */
bbcb81d0
PM
2225 if (!(file->f_mode & FMODE_READ))
2226 return 0;
2227
bbcb81d0
PM
2228 /*
2229 * If cgroup gets more users after we read count, we won't have
2230 * enough space - tough. This race is indistinguishable to the
2231 * caller from the case that the additional cgroup users didn't
2232 * show up until sometime later on.
2233 */
bd89aabc 2234 npids = cgroup_task_count(cgrp);
cc31edce
PM
2235 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2236 if (!pidarray)
2237 return -ENOMEM;
2238 npids = pid_array_load(pidarray, npids, cgrp);
2239 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
bbcb81d0 2240
cc31edce
PM
2241 /*
2242 * Store the array in the cgroup, freeing the old
2243 * array if necessary
2244 */
2245 down_write(&cgrp->pids_mutex);
2246 kfree(cgrp->tasks_pids);
2247 cgrp->tasks_pids = pidarray;
2248 cgrp->pids_length = npids;
2249 cgrp->pids_use_count++;
2250 up_write(&cgrp->pids_mutex);
2251
2252 file->f_op = &cgroup_tasks_operations;
2253
2254 retval = seq_open(file, &cgroup_tasks_seq_operations);
2255 if (retval) {
2256 release_cgroup_pid_array(cgrp);
2257 return retval;
bbcb81d0 2258 }
cc31edce 2259 ((struct seq_file *)file->private_data)->private = cgrp;
bbcb81d0
PM
2260 return 0;
2261}
2262
bd89aabc 2263static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2264 struct cftype *cft)
2265{
bd89aabc 2266 return notify_on_release(cgrp);
81a6a5cd
PM
2267}
2268
6379c106
PM
2269static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2270 struct cftype *cft,
2271 u64 val)
2272{
2273 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2274 if (val)
2275 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2276 else
2277 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2278 return 0;
2279}
2280
bbcb81d0
PM
2281/*
2282 * for the common functions, 'private' gives the type of file
2283 */
81a6a5cd
PM
2284static struct cftype files[] = {
2285 {
2286 .name = "tasks",
2287 .open = cgroup_tasks_open,
af351026 2288 .write_u64 = cgroup_tasks_write,
81a6a5cd
PM
2289 .release = cgroup_tasks_release,
2290 .private = FILE_TASKLIST,
2291 },
2292
2293 {
2294 .name = "notify_on_release",
f4c753b7 2295 .read_u64 = cgroup_read_notify_on_release,
6379c106 2296 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd
PM
2297 .private = FILE_NOTIFY_ON_RELEASE,
2298 },
81a6a5cd
PM
2299};
2300
2301static struct cftype cft_release_agent = {
2302 .name = "release_agent",
e788e066
PM
2303 .read_seq_string = cgroup_release_agent_show,
2304 .write_string = cgroup_release_agent_write,
2305 .max_write_len = PATH_MAX,
81a6a5cd 2306 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2307};
2308
bd89aabc 2309static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2310{
2311 int err;
2312 struct cgroup_subsys *ss;
2313
2314 /* First clear out any existing files */
bd89aabc 2315 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2316
bd89aabc 2317 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2318 if (err < 0)
2319 return err;
2320
bd89aabc
PM
2321 if (cgrp == cgrp->top_cgroup) {
2322 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2323 return err;
2324 }
2325
bd89aabc
PM
2326 for_each_subsys(cgrp->root, ss) {
2327 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2328 return err;
2329 }
2330
2331 return 0;
2332}
2333
2334static void init_cgroup_css(struct cgroup_subsys_state *css,
2335 struct cgroup_subsys *ss,
bd89aabc 2336 struct cgroup *cgrp)
ddbcc7e8 2337{
bd89aabc 2338 css->cgroup = cgrp;
e7c5ec91 2339 atomic_set(&css->refcnt, 1);
ddbcc7e8 2340 css->flags = 0;
bd89aabc 2341 if (cgrp == dummytop)
ddbcc7e8 2342 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2343 BUG_ON(cgrp->subsys[ss->subsys_id]);
2344 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2345}
2346
999cd8a4
PM
2347static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2348{
2349 /* We need to take each hierarchy_mutex in a consistent order */
2350 int i;
2351
2352 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2353 struct cgroup_subsys *ss = subsys[i];
2354 if (ss->root == root)
cfebe563 2355 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
2356 }
2357}
2358
2359static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2360{
2361 int i;
2362
2363 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2364 struct cgroup_subsys *ss = subsys[i];
2365 if (ss->root == root)
2366 mutex_unlock(&ss->hierarchy_mutex);
2367 }
2368}
2369
ddbcc7e8 2370/*
a043e3b2
LZ
2371 * cgroup_create - create a cgroup
2372 * @parent: cgroup that will be parent of the new cgroup
2373 * @dentry: dentry of the new cgroup
2374 * @mode: mode to set on new inode
ddbcc7e8 2375 *
a043e3b2 2376 * Must be called with the mutex on the parent inode held
ddbcc7e8 2377 */
ddbcc7e8
PM
2378static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2379 int mode)
2380{
bd89aabc 2381 struct cgroup *cgrp;
ddbcc7e8
PM
2382 struct cgroupfs_root *root = parent->root;
2383 int err = 0;
2384 struct cgroup_subsys *ss;
2385 struct super_block *sb = root->sb;
2386
bd89aabc
PM
2387 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2388 if (!cgrp)
ddbcc7e8
PM
2389 return -ENOMEM;
2390
2391 /* Grab a reference on the superblock so the hierarchy doesn't
2392 * get deleted on unmount if there are child cgroups. This
2393 * can be done outside cgroup_mutex, since the sb can't
2394 * disappear while someone has an open control file on the
2395 * fs */
2396 atomic_inc(&sb->s_active);
2397
2398 mutex_lock(&cgroup_mutex);
2399
cc31edce 2400 init_cgroup_housekeeping(cgrp);
ddbcc7e8 2401
bd89aabc
PM
2402 cgrp->parent = parent;
2403 cgrp->root = parent->root;
2404 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2405
b6abdb0e
LZ
2406 if (notify_on_release(parent))
2407 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2408
ddbcc7e8 2409 for_each_subsys(root, ss) {
bd89aabc 2410 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2411 if (IS_ERR(css)) {
2412 err = PTR_ERR(css);
2413 goto err_destroy;
2414 }
bd89aabc 2415 init_cgroup_css(css, ss, cgrp);
ddbcc7e8
PM
2416 }
2417
999cd8a4 2418 cgroup_lock_hierarchy(root);
bd89aabc 2419 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 2420 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2421 root->number_of_cgroups++;
2422
bd89aabc 2423 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2424 if (err < 0)
2425 goto err_remove;
2426
2427 /* The cgroup directory was pre-locked for us */
bd89aabc 2428 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2429
bd89aabc 2430 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2431 /* If err < 0, we have a half-filled directory - oh well ;) */
2432
2433 mutex_unlock(&cgroup_mutex);
bd89aabc 2434 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2435
2436 return 0;
2437
2438 err_remove:
2439
baef99a0 2440 cgroup_lock_hierarchy(root);
bd89aabc 2441 list_del(&cgrp->sibling);
baef99a0 2442 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2443 root->number_of_cgroups--;
2444
2445 err_destroy:
2446
2447 for_each_subsys(root, ss) {
bd89aabc
PM
2448 if (cgrp->subsys[ss->subsys_id])
2449 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2450 }
2451
2452 mutex_unlock(&cgroup_mutex);
2453
2454 /* Release the reference count that we took on the superblock */
2455 deactivate_super(sb);
2456
bd89aabc 2457 kfree(cgrp);
ddbcc7e8
PM
2458 return err;
2459}
2460
2461static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2462{
2463 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2464
2465 /* the vfs holds inode->i_mutex already */
2466 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2467}
2468
55b6fd01 2469static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2470{
2471 /* Check the reference count on each subsystem. Since we
2472 * already established that there are no tasks in the
e7c5ec91 2473 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
2474 * be no outstanding references, so the subsystem is safe to
2475 * destroy. We scan across all subsystems rather than using
2476 * the per-hierarchy linked list of mounted subsystems since
2477 * we can be called via check_for_release() with no
2478 * synchronization other than RCU, and the subsystem linked
2479 * list isn't RCU-safe */
2480 int i;
2481 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2482 struct cgroup_subsys *ss = subsys[i];
2483 struct cgroup_subsys_state *css;
2484 /* Skip subsystems not in this hierarchy */
bd89aabc 2485 if (ss->root != cgrp->root)
81a6a5cd 2486 continue;
bd89aabc 2487 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2488 /* When called from check_for_release() it's possible
2489 * that by this point the cgroup has been removed
2490 * and the css deleted. But a false-positive doesn't
2491 * matter, since it can only happen if the cgroup
2492 * has been deleted and hence no longer needs the
2493 * release agent to be called anyway. */
e7c5ec91 2494 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 2495 return 1;
81a6a5cd
PM
2496 }
2497 return 0;
2498}
2499
e7c5ec91
PM
2500/*
2501 * Atomically mark all (or else none) of the cgroup's CSS objects as
2502 * CSS_REMOVED. Return true on success, or false if the cgroup has
2503 * busy subsystems. Call with cgroup_mutex held
2504 */
2505
2506static int cgroup_clear_css_refs(struct cgroup *cgrp)
2507{
2508 struct cgroup_subsys *ss;
2509 unsigned long flags;
2510 bool failed = false;
2511 local_irq_save(flags);
2512 for_each_subsys(cgrp->root, ss) {
2513 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2514 int refcnt;
804b3c28 2515 while (1) {
e7c5ec91
PM
2516 /* We can only remove a CSS with a refcnt==1 */
2517 refcnt = atomic_read(&css->refcnt);
2518 if (refcnt > 1) {
2519 failed = true;
2520 goto done;
2521 }
2522 BUG_ON(!refcnt);
2523 /*
2524 * Drop the refcnt to 0 while we check other
2525 * subsystems. This will cause any racing
2526 * css_tryget() to spin until we set the
2527 * CSS_REMOVED bits or abort
2528 */
804b3c28
PM
2529 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2530 break;
2531 cpu_relax();
2532 }
e7c5ec91
PM
2533 }
2534 done:
2535 for_each_subsys(cgrp->root, ss) {
2536 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2537 if (failed) {
2538 /*
2539 * Restore old refcnt if we previously managed
2540 * to clear it from 1 to 0
2541 */
2542 if (!atomic_read(&css->refcnt))
2543 atomic_set(&css->refcnt, 1);
2544 } else {
2545 /* Commit the fact that the CSS is removed */
2546 set_bit(CSS_REMOVED, &css->flags);
2547 }
2548 }
2549 local_irq_restore(flags);
2550 return !failed;
2551}
2552
ddbcc7e8
PM
2553static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2554{
bd89aabc 2555 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2556 struct dentry *d;
2557 struct cgroup *parent;
ddbcc7e8
PM
2558
2559 /* the vfs holds both inode->i_mutex already */
2560
2561 mutex_lock(&cgroup_mutex);
bd89aabc 2562 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2563 mutex_unlock(&cgroup_mutex);
2564 return -EBUSY;
2565 }
bd89aabc 2566 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2567 mutex_unlock(&cgroup_mutex);
2568 return -EBUSY;
2569 }
3fa59dfb 2570 mutex_unlock(&cgroup_mutex);
a043e3b2 2571
4fca88c8 2572 /*
a043e3b2
LZ
2573 * Call pre_destroy handlers of subsys. Notify subsystems
2574 * that rmdir() request comes.
4fca88c8
KH
2575 */
2576 cgroup_call_pre_destroy(cgrp);
ddbcc7e8 2577
3fa59dfb
KH
2578 mutex_lock(&cgroup_mutex);
2579 parent = cgrp->parent;
3fa59dfb
KH
2580
2581 if (atomic_read(&cgrp->count)
2582 || !list_empty(&cgrp->children)
e7c5ec91 2583 || !cgroup_clear_css_refs(cgrp)) {
ddbcc7e8
PM
2584 mutex_unlock(&cgroup_mutex);
2585 return -EBUSY;
2586 }
2587
81a6a5cd 2588 spin_lock(&release_list_lock);
bd89aabc
PM
2589 set_bit(CGRP_REMOVED, &cgrp->flags);
2590 if (!list_empty(&cgrp->release_list))
2591 list_del(&cgrp->release_list);
81a6a5cd 2592 spin_unlock(&release_list_lock);
999cd8a4
PM
2593
2594 cgroup_lock_hierarchy(cgrp->root);
2595 /* delete this cgroup from parent->children */
bd89aabc 2596 list_del(&cgrp->sibling);
999cd8a4
PM
2597 cgroup_unlock_hierarchy(cgrp->root);
2598
bd89aabc
PM
2599 spin_lock(&cgrp->dentry->d_lock);
2600 d = dget(cgrp->dentry);
ddbcc7e8
PM
2601 spin_unlock(&d->d_lock);
2602
2603 cgroup_d_remove_dir(d);
2604 dput(d);
ddbcc7e8 2605
bd89aabc 2606 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2607 check_for_release(parent);
2608
ddbcc7e8 2609 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2610 return 0;
2611}
2612
06a11920 2613static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 2614{
ddbcc7e8 2615 struct cgroup_subsys_state *css;
cfe36bde
DC
2616
2617 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2618
2619 /* Create the top cgroup state for this subsystem */
33a68ac1 2620 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
2621 ss->root = &rootnode;
2622 css = ss->create(ss, dummytop);
2623 /* We don't handle early failures gracefully */
2624 BUG_ON(IS_ERR(css));
2625 init_cgroup_css(css, ss, dummytop);
2626
e8d55fde 2627 /* Update the init_css_set to contain a subsys
817929ec 2628 * pointer to this state - since the subsystem is
e8d55fde
LZ
2629 * newly registered, all tasks and hence the
2630 * init_css_set is in the subsystem's top cgroup. */
2631 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
2632
2633 need_forkexit_callback |= ss->fork || ss->exit;
2634
e8d55fde
LZ
2635 /* At system boot, before all subsystems have been
2636 * registered, no tasks have been forked, so we don't
2637 * need to invoke fork callbacks here. */
2638 BUG_ON(!list_empty(&init_task.tasks));
2639
999cd8a4 2640 mutex_init(&ss->hierarchy_mutex);
cfebe563 2641 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8
PM
2642 ss->active = 1;
2643}
2644
2645/**
a043e3b2
LZ
2646 * cgroup_init_early - cgroup initialization at system boot
2647 *
2648 * Initialize cgroups at system boot, and initialize any
2649 * subsystems that request early init.
ddbcc7e8
PM
2650 */
2651int __init cgroup_init_early(void)
2652{
2653 int i;
146aa1bd 2654 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
2655 INIT_LIST_HEAD(&init_css_set.cg_links);
2656 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 2657 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 2658 css_set_count = 1;
ddbcc7e8 2659 init_cgroup_root(&rootnode);
817929ec
PM
2660 root_count = 1;
2661 init_task.cgroups = &init_css_set;
2662
2663 init_css_set_link.cg = &init_css_set;
bd89aabc 2664 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2665 &rootnode.top_cgroup.css_sets);
2666 list_add(&init_css_set_link.cg_link_list,
2667 &init_css_set.cg_links);
ddbcc7e8 2668
472b1053
LZ
2669 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2670 INIT_HLIST_HEAD(&css_set_table[i]);
2671
ddbcc7e8
PM
2672 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2673 struct cgroup_subsys *ss = subsys[i];
2674
2675 BUG_ON(!ss->name);
2676 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2677 BUG_ON(!ss->create);
2678 BUG_ON(!ss->destroy);
2679 if (ss->subsys_id != i) {
cfe36bde 2680 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2681 ss->name, ss->subsys_id);
2682 BUG();
2683 }
2684
2685 if (ss->early_init)
2686 cgroup_init_subsys(ss);
2687 }
2688 return 0;
2689}
2690
2691/**
a043e3b2
LZ
2692 * cgroup_init - cgroup initialization
2693 *
2694 * Register cgroup filesystem and /proc file, and initialize
2695 * any subsystems that didn't request early init.
ddbcc7e8
PM
2696 */
2697int __init cgroup_init(void)
2698{
2699 int err;
2700 int i;
472b1053 2701 struct hlist_head *hhead;
a424316c
PM
2702
2703 err = bdi_init(&cgroup_backing_dev_info);
2704 if (err)
2705 return err;
ddbcc7e8
PM
2706
2707 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2708 struct cgroup_subsys *ss = subsys[i];
2709 if (!ss->early_init)
2710 cgroup_init_subsys(ss);
2711 }
2712
472b1053
LZ
2713 /* Add init_css_set to the hash table */
2714 hhead = css_set_hash(init_css_set.subsys);
2715 hlist_add_head(&init_css_set.hlist, hhead);
2716
ddbcc7e8
PM
2717 err = register_filesystem(&cgroup_fs_type);
2718 if (err < 0)
2719 goto out;
2720
46ae220b 2721 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 2722
ddbcc7e8 2723out:
a424316c
PM
2724 if (err)
2725 bdi_destroy(&cgroup_backing_dev_info);
2726
ddbcc7e8
PM
2727 return err;
2728}
b4f48b63 2729
a424316c
PM
2730/*
2731 * proc_cgroup_show()
2732 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2733 * - Used for /proc/<pid>/cgroup.
2734 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2735 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2736 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2737 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2738 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2739 * cgroup to top_cgroup.
2740 */
2741
2742/* TODO: Use a proper seq_file iterator */
2743static int proc_cgroup_show(struct seq_file *m, void *v)
2744{
2745 struct pid *pid;
2746 struct task_struct *tsk;
2747 char *buf;
2748 int retval;
2749 struct cgroupfs_root *root;
2750
2751 retval = -ENOMEM;
2752 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2753 if (!buf)
2754 goto out;
2755
2756 retval = -ESRCH;
2757 pid = m->private;
2758 tsk = get_pid_task(pid, PIDTYPE_PID);
2759 if (!tsk)
2760 goto out_free;
2761
2762 retval = 0;
2763
2764 mutex_lock(&cgroup_mutex);
2765
e5f6a860 2766 for_each_active_root(root) {
a424316c 2767 struct cgroup_subsys *ss;
bd89aabc 2768 struct cgroup *cgrp;
a424316c
PM
2769 int subsys_id;
2770 int count = 0;
2771
b6c3006d 2772 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2773 for_each_subsys(root, ss)
2774 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2775 seq_putc(m, ':');
2776 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2777 cgrp = task_cgroup(tsk, subsys_id);
2778 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2779 if (retval < 0)
2780 goto out_unlock;
2781 seq_puts(m, buf);
2782 seq_putc(m, '\n');
2783 }
2784
2785out_unlock:
2786 mutex_unlock(&cgroup_mutex);
2787 put_task_struct(tsk);
2788out_free:
2789 kfree(buf);
2790out:
2791 return retval;
2792}
2793
2794static int cgroup_open(struct inode *inode, struct file *file)
2795{
2796 struct pid *pid = PROC_I(inode)->pid;
2797 return single_open(file, proc_cgroup_show, pid);
2798}
2799
2800struct file_operations proc_cgroup_operations = {
2801 .open = cgroup_open,
2802 .read = seq_read,
2803 .llseek = seq_lseek,
2804 .release = single_release,
2805};
2806
2807/* Display information about each subsystem and each hierarchy */
2808static int proc_cgroupstats_show(struct seq_file *m, void *v)
2809{
2810 int i;
a424316c 2811
8bab8dde 2812 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2813 mutex_lock(&cgroup_mutex);
a424316c
PM
2814 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2815 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2816 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2817 ss->name, ss->root->subsys_bits,
8bab8dde 2818 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2819 }
2820 mutex_unlock(&cgroup_mutex);
2821 return 0;
2822}
2823
2824static int cgroupstats_open(struct inode *inode, struct file *file)
2825{
9dce07f1 2826 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2827}
2828
2829static struct file_operations proc_cgroupstats_operations = {
2830 .open = cgroupstats_open,
2831 .read = seq_read,
2832 .llseek = seq_lseek,
2833 .release = single_release,
2834};
2835
b4f48b63
PM
2836/**
2837 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2838 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2839 *
2840 * Description: A task inherits its parent's cgroup at fork().
2841 *
2842 * A pointer to the shared css_set was automatically copied in
2843 * fork.c by dup_task_struct(). However, we ignore that copy, since
2844 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2845 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2846 * have already changed current->cgroups, allowing the previously
2847 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2848 *
2849 * At the point that cgroup_fork() is called, 'current' is the parent
2850 * task, and the passed argument 'child' points to the child task.
2851 */
2852void cgroup_fork(struct task_struct *child)
2853{
817929ec
PM
2854 task_lock(current);
2855 child->cgroups = current->cgroups;
2856 get_css_set(child->cgroups);
2857 task_unlock(current);
2858 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2859}
2860
2861/**
a043e3b2
LZ
2862 * cgroup_fork_callbacks - run fork callbacks
2863 * @child: the new task
2864 *
2865 * Called on a new task very soon before adding it to the
2866 * tasklist. No need to take any locks since no-one can
2867 * be operating on this task.
b4f48b63
PM
2868 */
2869void cgroup_fork_callbacks(struct task_struct *child)
2870{
2871 if (need_forkexit_callback) {
2872 int i;
2873 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2874 struct cgroup_subsys *ss = subsys[i];
2875 if (ss->fork)
2876 ss->fork(ss, child);
2877 }
2878 }
2879}
2880
817929ec 2881/**
a043e3b2
LZ
2882 * cgroup_post_fork - called on a new task after adding it to the task list
2883 * @child: the task in question
2884 *
2885 * Adds the task to the list running through its css_set if necessary.
2886 * Has to be after the task is visible on the task list in case we race
2887 * with the first call to cgroup_iter_start() - to guarantee that the
2888 * new task ends up on its list.
2889 */
817929ec
PM
2890void cgroup_post_fork(struct task_struct *child)
2891{
2892 if (use_task_css_set_links) {
2893 write_lock(&css_set_lock);
b12b533f 2894 task_lock(child);
817929ec
PM
2895 if (list_empty(&child->cg_list))
2896 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 2897 task_unlock(child);
817929ec
PM
2898 write_unlock(&css_set_lock);
2899 }
2900}
b4f48b63
PM
2901/**
2902 * cgroup_exit - detach cgroup from exiting task
2903 * @tsk: pointer to task_struct of exiting process
a043e3b2 2904 * @run_callback: run exit callbacks?
b4f48b63
PM
2905 *
2906 * Description: Detach cgroup from @tsk and release it.
2907 *
2908 * Note that cgroups marked notify_on_release force every task in
2909 * them to take the global cgroup_mutex mutex when exiting.
2910 * This could impact scaling on very large systems. Be reluctant to
2911 * use notify_on_release cgroups where very high task exit scaling
2912 * is required on large systems.
2913 *
2914 * the_top_cgroup_hack:
2915 *
2916 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2917 *
2918 * We call cgroup_exit() while the task is still competent to
2919 * handle notify_on_release(), then leave the task attached to the
2920 * root cgroup in each hierarchy for the remainder of its exit.
2921 *
2922 * To do this properly, we would increment the reference count on
2923 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2924 * code we would add a second cgroup function call, to drop that
2925 * reference. This would just create an unnecessary hot spot on
2926 * the top_cgroup reference count, to no avail.
2927 *
2928 * Normally, holding a reference to a cgroup without bumping its
2929 * count is unsafe. The cgroup could go away, or someone could
2930 * attach us to a different cgroup, decrementing the count on
2931 * the first cgroup that we never incremented. But in this case,
2932 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
2933 * which wards off any cgroup_attach_task() attempts, or task is a failed
2934 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
2935 */
2936void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2937{
2938 int i;
817929ec 2939 struct css_set *cg;
b4f48b63
PM
2940
2941 if (run_callbacks && need_forkexit_callback) {
2942 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2943 struct cgroup_subsys *ss = subsys[i];
2944 if (ss->exit)
2945 ss->exit(ss, tsk);
2946 }
2947 }
817929ec
PM
2948
2949 /*
2950 * Unlink from the css_set task list if necessary.
2951 * Optimistically check cg_list before taking
2952 * css_set_lock
2953 */
2954 if (!list_empty(&tsk->cg_list)) {
2955 write_lock(&css_set_lock);
2956 if (!list_empty(&tsk->cg_list))
2957 list_del(&tsk->cg_list);
2958 write_unlock(&css_set_lock);
2959 }
2960
b4f48b63
PM
2961 /* Reassign the task to the init_css_set. */
2962 task_lock(tsk);
817929ec
PM
2963 cg = tsk->cgroups;
2964 tsk->cgroups = &init_css_set;
b4f48b63 2965 task_unlock(tsk);
817929ec 2966 if (cg)
81a6a5cd 2967 put_css_set_taskexit(cg);
b4f48b63 2968}
697f4161
PM
2969
2970/**
a043e3b2
LZ
2971 * cgroup_clone - clone the cgroup the given subsystem is attached to
2972 * @tsk: the task to be moved
2973 * @subsys: the given subsystem
e885dcde 2974 * @nodename: the name for the new cgroup
a043e3b2
LZ
2975 *
2976 * Duplicate the current cgroup in the hierarchy that the given
2977 * subsystem is attached to, and move this task into the new
2978 * child.
697f4161 2979 */
e885dcde
SH
2980int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2981 char *nodename)
697f4161
PM
2982{
2983 struct dentry *dentry;
2984 int ret = 0;
697f4161
PM
2985 struct cgroup *parent, *child;
2986 struct inode *inode;
2987 struct css_set *cg;
2988 struct cgroupfs_root *root;
2989 struct cgroup_subsys *ss;
2990
2991 /* We shouldn't be called by an unregistered subsystem */
2992 BUG_ON(!subsys->active);
2993
2994 /* First figure out what hierarchy and cgroup we're dealing
2995 * with, and pin them so we can drop cgroup_mutex */
2996 mutex_lock(&cgroup_mutex);
2997 again:
2998 root = subsys->root;
2999 if (root == &rootnode) {
697f4161
PM
3000 mutex_unlock(&cgroup_mutex);
3001 return 0;
3002 }
697f4161 3003
697f4161 3004 /* Pin the hierarchy */
1404f065 3005 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
3006 /* We race with the final deactivate_super() */
3007 mutex_unlock(&cgroup_mutex);
3008 return 0;
3009 }
697f4161 3010
817929ec 3011 /* Keep the cgroup alive */
1404f065
LZ
3012 task_lock(tsk);
3013 parent = task_cgroup(tsk, subsys->subsys_id);
3014 cg = tsk->cgroups;
817929ec 3015 get_css_set(cg);
104cbd55 3016 task_unlock(tsk);
1404f065 3017
697f4161
PM
3018 mutex_unlock(&cgroup_mutex);
3019
3020 /* Now do the VFS work to create a cgroup */
3021 inode = parent->dentry->d_inode;
3022
3023 /* Hold the parent directory mutex across this operation to
3024 * stop anyone else deleting the new cgroup */
3025 mutex_lock(&inode->i_mutex);
3026 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3027 if (IS_ERR(dentry)) {
3028 printk(KERN_INFO
cfe36bde 3029 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
3030 PTR_ERR(dentry));
3031 ret = PTR_ERR(dentry);
3032 goto out_release;
3033 }
3034
3035 /* Create the cgroup directory, which also creates the cgroup */
75139b82 3036 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 3037 child = __d_cgrp(dentry);
697f4161
PM
3038 dput(dentry);
3039 if (ret) {
3040 printk(KERN_INFO
3041 "Failed to create cgroup %s: %d\n", nodename,
3042 ret);
3043 goto out_release;
3044 }
3045
697f4161
PM
3046 /* The cgroup now exists. Retake cgroup_mutex and check
3047 * that we're still in the same state that we thought we
3048 * were. */
3049 mutex_lock(&cgroup_mutex);
3050 if ((root != subsys->root) ||
3051 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3052 /* Aargh, we raced ... */
3053 mutex_unlock(&inode->i_mutex);
817929ec 3054 put_css_set(cg);
697f4161 3055
1404f065 3056 deactivate_super(root->sb);
697f4161
PM
3057 /* The cgroup is still accessible in the VFS, but
3058 * we're not going to try to rmdir() it at this
3059 * point. */
3060 printk(KERN_INFO
3061 "Race in cgroup_clone() - leaking cgroup %s\n",
3062 nodename);
3063 goto again;
3064 }
3065
3066 /* do any required auto-setup */
3067 for_each_subsys(root, ss) {
3068 if (ss->post_clone)
3069 ss->post_clone(ss, child);
3070 }
3071
3072 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 3073 ret = cgroup_attach_task(child, tsk);
697f4161
PM
3074 mutex_unlock(&cgroup_mutex);
3075
3076 out_release:
3077 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
3078
3079 mutex_lock(&cgroup_mutex);
817929ec 3080 put_css_set(cg);
81a6a5cd 3081 mutex_unlock(&cgroup_mutex);
1404f065 3082 deactivate_super(root->sb);
697f4161
PM
3083 return ret;
3084}
3085
a043e3b2
LZ
3086/**
3087 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
3088 * @cgrp: the cgroup in question
3089 *
3090 * See if @cgrp is a descendant of the current task's cgroup in
3091 * the appropriate hierarchy.
697f4161
PM
3092 *
3093 * If we are sending in dummytop, then presumably we are creating
3094 * the top cgroup in the subsystem.
3095 *
3096 * Called only by the ns (nsproxy) cgroup.
3097 */
bd89aabc 3098int cgroup_is_descendant(const struct cgroup *cgrp)
697f4161
PM
3099{
3100 int ret;
3101 struct cgroup *target;
3102 int subsys_id;
3103
bd89aabc 3104 if (cgrp == dummytop)
697f4161
PM
3105 return 1;
3106
bd89aabc 3107 get_first_subsys(cgrp, NULL, &subsys_id);
697f4161 3108 target = task_cgroup(current, subsys_id);
bd89aabc
PM
3109 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3110 cgrp = cgrp->parent;
3111 ret = (cgrp == target);
697f4161
PM
3112 return ret;
3113}
81a6a5cd 3114
bd89aabc 3115static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3116{
3117 /* All of these checks rely on RCU to keep the cgroup
3118 * structure alive */
bd89aabc
PM
3119 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3120 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3121 /* Control Group is currently removeable. If it's not
3122 * already queued for a userspace notification, queue
3123 * it now */
3124 int need_schedule_work = 0;
3125 spin_lock(&release_list_lock);
bd89aabc
PM
3126 if (!cgroup_is_removed(cgrp) &&
3127 list_empty(&cgrp->release_list)) {
3128 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3129 need_schedule_work = 1;
3130 }
3131 spin_unlock(&release_list_lock);
3132 if (need_schedule_work)
3133 schedule_work(&release_agent_work);
3134 }
3135}
3136
3137void __css_put(struct cgroup_subsys_state *css)
3138{
bd89aabc 3139 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3140 rcu_read_lock();
e7c5ec91
PM
3141 if ((atomic_dec_return(&css->refcnt) == 1) &&
3142 notify_on_release(cgrp)) {
bd89aabc
PM
3143 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3144 check_for_release(cgrp);
81a6a5cd
PM
3145 }
3146 rcu_read_unlock();
3147}
3148
3149/*
3150 * Notify userspace when a cgroup is released, by running the
3151 * configured release agent with the name of the cgroup (path
3152 * relative to the root of cgroup file system) as the argument.
3153 *
3154 * Most likely, this user command will try to rmdir this cgroup.
3155 *
3156 * This races with the possibility that some other task will be
3157 * attached to this cgroup before it is removed, or that some other
3158 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3159 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3160 * unused, and this cgroup will be reprieved from its death sentence,
3161 * to continue to serve a useful existence. Next time it's released,
3162 * we will get notified again, if it still has 'notify_on_release' set.
3163 *
3164 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3165 * means only wait until the task is successfully execve()'d. The
3166 * separate release agent task is forked by call_usermodehelper(),
3167 * then control in this thread returns here, without waiting for the
3168 * release agent task. We don't bother to wait because the caller of
3169 * this routine has no use for the exit status of the release agent
3170 * task, so no sense holding our caller up for that.
81a6a5cd 3171 */
81a6a5cd
PM
3172static void cgroup_release_agent(struct work_struct *work)
3173{
3174 BUG_ON(work != &release_agent_work);
3175 mutex_lock(&cgroup_mutex);
3176 spin_lock(&release_list_lock);
3177 while (!list_empty(&release_list)) {
3178 char *argv[3], *envp[3];
3179 int i;
e788e066 3180 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3181 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3182 struct cgroup,
3183 release_list);
bd89aabc 3184 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3185 spin_unlock(&release_list_lock);
3186 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3187 if (!pathbuf)
3188 goto continue_free;
3189 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3190 goto continue_free;
3191 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3192 if (!agentbuf)
3193 goto continue_free;
81a6a5cd
PM
3194
3195 i = 0;
e788e066
PM
3196 argv[i++] = agentbuf;
3197 argv[i++] = pathbuf;
81a6a5cd
PM
3198 argv[i] = NULL;
3199
3200 i = 0;
3201 /* minimal command environment */
3202 envp[i++] = "HOME=/";
3203 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3204 envp[i] = NULL;
3205
3206 /* Drop the lock while we invoke the usermode helper,
3207 * since the exec could involve hitting disk and hence
3208 * be a slow process */
3209 mutex_unlock(&cgroup_mutex);
3210 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3211 mutex_lock(&cgroup_mutex);
e788e066
PM
3212 continue_free:
3213 kfree(pathbuf);
3214 kfree(agentbuf);
81a6a5cd
PM
3215 spin_lock(&release_list_lock);
3216 }
3217 spin_unlock(&release_list_lock);
3218 mutex_unlock(&cgroup_mutex);
3219}
8bab8dde
PM
3220
3221static int __init cgroup_disable(char *str)
3222{
3223 int i;
3224 char *token;
3225
3226 while ((token = strsep(&str, ",")) != NULL) {
3227 if (!*token)
3228 continue;
3229
3230 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3231 struct cgroup_subsys *ss = subsys[i];
3232
3233 if (!strcmp(token, ss->name)) {
3234 ss->disabled = 1;
3235 printk(KERN_INFO "Disabling %s control group"
3236 " subsystem\n", ss->name);
3237 break;
3238 }
3239 }
3240 }
3241 return 1;
3242}
3243__setup("cgroup_disable=", cgroup_disable);