cgroup: use do_each_subsys_mask() where applicable
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
181static bool cgrp_dfl_root_visible;
ddbcc7e8 182
223ffb29
JW
183/* Controllers blocked by the commandline in v1 */
184static unsigned long cgroup_no_v1_mask;
185
5533e011 186/* some controllers are not supported in the default hierarchy */
8ab456ac 187static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
9871bf95
TH
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
ddbcc7e8 193
3417ae1f 194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 195static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 196
794611a1 197/*
0cb51d71
TH
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
794611a1 203 */
0cb51d71 204static u64 css_serial_nr_next = 1;
794611a1 205
cb4a3167
AS
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 210 */
cb4a3167
AS
211static unsigned long have_fork_callback __read_mostly;
212static unsigned long have_exit_callback __read_mostly;
afcf6c8b 213static unsigned long have_free_callback __read_mostly;
ddbcc7e8 214
7e47682e
AS
215/* Ditto for the can_fork callback. */
216static unsigned long have_canfork_callback __read_mostly;
217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
a14c6874
TH
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
628f7cd4 221
3dd06ffa 222static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 223 unsigned long ss_mask);
ed27b9f7 224static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 225static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
226static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
227 bool visible);
9d755d33 228static void css_release(struct percpu_ref *ref);
f8f22e53 229static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
230static int cgroup_addrm_files(struct cgroup_subsys_state *css,
231 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 232 bool is_add);
42809dd4 233
fc5ed1e9
TH
234/**
235 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
236 * @ssid: subsys ID of interest
237 *
238 * cgroup_subsys_enabled() can only be used with literal subsys names which
239 * is fine for individual subsystems but unsuitable for cgroup core. This
240 * is slower static_key_enabled() based test indexed by @ssid.
241 */
242static bool cgroup_ssid_enabled(int ssid)
243{
244 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
245}
246
223ffb29
JW
247static bool cgroup_ssid_no_v1(int ssid)
248{
249 return cgroup_no_v1_mask & (1 << ssid);
250}
251
9e10a130
TH
252/**
253 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
254 * @cgrp: the cgroup of interest
255 *
256 * The default hierarchy is the v2 interface of cgroup and this function
257 * can be used to test whether a cgroup is on the default hierarchy for
258 * cases where a subsystem should behave differnetly depending on the
259 * interface version.
260 *
261 * The set of behaviors which change on the default hierarchy are still
262 * being determined and the mount option is prefixed with __DEVEL__.
263 *
264 * List of changed behaviors:
265 *
266 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
267 * and "name" are disallowed.
268 *
269 * - When mounting an existing superblock, mount options should match.
270 *
271 * - Remount is disallowed.
272 *
273 * - rename(2) is disallowed.
274 *
275 * - "tasks" is removed. Everything should be at process granularity. Use
276 * "cgroup.procs" instead.
277 *
278 * - "cgroup.procs" is not sorted. pids will be unique unless they got
279 * recycled inbetween reads.
280 *
281 * - "release_agent" and "notify_on_release" are removed. Replacement
282 * notification mechanism will be implemented.
283 *
284 * - "cgroup.clone_children" is removed.
285 *
286 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
287 * and its descendants contain no task; otherwise, 1. The file also
288 * generates kernfs notification which can be monitored through poll and
289 * [di]notify when the value of the file changes.
290 *
291 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
292 * take masks of ancestors with non-empty cpus/mems, instead of being
293 * moved to an ancestor.
294 *
295 * - cpuset: a task can be moved into an empty cpuset, and again it takes
296 * masks of ancestors.
297 *
298 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
299 * is not created.
300 *
301 * - blkcg: blk-throttle becomes properly hierarchical.
302 *
303 * - debug: disallowed on the default hierarchy.
304 */
305static bool cgroup_on_dfl(const struct cgroup *cgrp)
306{
307 return cgrp->root == &cgrp_dfl_root;
308}
309
6fa4918d
TH
310/* IDR wrappers which synchronize using cgroup_idr_lock */
311static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
312 gfp_t gfp_mask)
313{
314 int ret;
315
316 idr_preload(gfp_mask);
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
d0164adc 318 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 idr_preload_end();
321 return ret;
322}
323
324static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
325{
326 void *ret;
327
54504e97 328 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 329 ret = idr_replace(idr, ptr, id);
54504e97 330 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
331 return ret;
332}
333
334static void cgroup_idr_remove(struct idr *idr, int id)
335{
54504e97 336 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 337 idr_remove(idr, id);
54504e97 338 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
339}
340
d51f39b0
TH
341static struct cgroup *cgroup_parent(struct cgroup *cgrp)
342{
343 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
344
345 if (parent_css)
346 return container_of(parent_css, struct cgroup, self);
347 return NULL;
348}
349
95109b62
TH
350/**
351 * cgroup_css - obtain a cgroup's css for the specified subsystem
352 * @cgrp: the cgroup of interest
9d800df1 353 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 354 *
ca8bdcaf
TH
355 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
356 * function must be called either under cgroup_mutex or rcu_read_lock() and
357 * the caller is responsible for pinning the returned css if it wants to
358 * keep accessing it outside the said locks. This function may return
359 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
360 */
361static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 362 struct cgroup_subsys *ss)
95109b62 363{
ca8bdcaf 364 if (ss)
aec25020 365 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 366 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 367 else
9d800df1 368 return &cgrp->self;
95109b62 369}
42809dd4 370
aec3dfcb
TH
371/**
372 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
373 * @cgrp: the cgroup of interest
9d800df1 374 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 375 *
d0f702e6 376 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
377 * as the matching css of the nearest ancestor including self which has @ss
378 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
379 * function is guaranteed to return non-NULL css.
380 */
381static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
382 struct cgroup_subsys *ss)
383{
384 lockdep_assert_held(&cgroup_mutex);
385
386 if (!ss)
9d800df1 387 return &cgrp->self;
aec3dfcb
TH
388
389 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
390 return NULL;
391
eeecbd19
TH
392 /*
393 * This function is used while updating css associations and thus
8699b776 394 * can't test the csses directly. Use ->subtree_ss_mask.
eeecbd19 395 */
d51f39b0 396 while (cgroup_parent(cgrp) &&
8699b776 397 !(cgroup_parent(cgrp)->subtree_ss_mask & (1 << ss->id)))
d51f39b0 398 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
399
400 return cgroup_css(cgrp, ss);
95109b62 401}
42809dd4 402
eeecbd19
TH
403/**
404 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
405 * @cgrp: the cgroup of interest
406 * @ss: the subsystem of interest
407 *
408 * Find and get the effective css of @cgrp for @ss. The effective css is
409 * defined as the matching css of the nearest ancestor including self which
410 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
411 * the root css is returned, so this function always returns a valid css.
412 * The returned css must be put using css_put().
413 */
414struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
415 struct cgroup_subsys *ss)
416{
417 struct cgroup_subsys_state *css;
418
419 rcu_read_lock();
420
421 do {
422 css = cgroup_css(cgrp, ss);
423
424 if (css && css_tryget_online(css))
425 goto out_unlock;
426 cgrp = cgroup_parent(cgrp);
427 } while (cgrp);
428
429 css = init_css_set.subsys[ss->id];
430 css_get(css);
431out_unlock:
432 rcu_read_unlock();
433 return css;
434}
435
ddbcc7e8 436/* convenient tests for these bits */
54766d4a 437static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 438{
184faf32 439 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
440}
441
052c3f3a
TH
442static void cgroup_get(struct cgroup *cgrp)
443{
444 WARN_ON_ONCE(cgroup_is_dead(cgrp));
445 css_get(&cgrp->self);
446}
447
448static bool cgroup_tryget(struct cgroup *cgrp)
449{
450 return css_tryget(&cgrp->self);
451}
452
b4168640 453struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 454{
2bd59d48 455 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 456 struct cftype *cft = of_cft(of);
2bd59d48
TH
457
458 /*
459 * This is open and unprotected implementation of cgroup_css().
460 * seq_css() is only called from a kernfs file operation which has
461 * an active reference on the file. Because all the subsystem
462 * files are drained before a css is disassociated with a cgroup,
463 * the matching css from the cgroup's subsys table is guaranteed to
464 * be and stay valid until the enclosing operation is complete.
465 */
466 if (cft->ss)
467 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
468 else
9d800df1 469 return &cgrp->self;
59f5296b 470}
b4168640 471EXPORT_SYMBOL_GPL(of_css);
59f5296b 472
e9685a03 473static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 474{
bd89aabc 475 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
476}
477
1c6727af
TH
478/**
479 * for_each_css - iterate all css's of a cgroup
480 * @css: the iteration cursor
481 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
482 * @cgrp: the target cgroup to iterate css's of
483 *
aec3dfcb 484 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
485 */
486#define for_each_css(css, ssid, cgrp) \
487 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
488 if (!((css) = rcu_dereference_check( \
489 (cgrp)->subsys[(ssid)], \
490 lockdep_is_held(&cgroup_mutex)))) { } \
491 else
492
aec3dfcb
TH
493/**
494 * for_each_e_css - iterate all effective css's of a cgroup
495 * @css: the iteration cursor
496 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
497 * @cgrp: the target cgroup to iterate css's of
498 *
499 * Should be called under cgroup_[tree_]mutex.
500 */
501#define for_each_e_css(css, ssid, cgrp) \
502 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
503 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
504 ; \
505 else
506
30159ec7 507/**
3ed80a62 508 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 509 * @ss: the iteration cursor
780cd8b3 510 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 511 */
780cd8b3 512#define for_each_subsys(ss, ssid) \
3ed80a62
TH
513 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
514 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 515
cb4a3167 516/**
b4e0eeaf 517 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
518 * @ss: the iteration cursor
519 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 520 * @ss_mask: the bitmask
cb4a3167
AS
521 *
522 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 523 * @ss_mask is set.
cb4a3167 524 */
b4e0eeaf
TH
525#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
526 unsigned long __ss_mask = (ss_mask); \
527 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 528 (ssid) = 0; \
b4e0eeaf
TH
529 break; \
530 } \
531 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
532 (ss) = cgroup_subsys[ssid]; \
533 {
534
535#define while_each_subsys_mask() \
536 } \
537 } \
538} while (false)
cb4a3167 539
985ed670
TH
540/* iterate across the hierarchies */
541#define for_each_root(root) \
5549c497 542 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 543
f8f22e53
TH
544/* iterate over child cgrps, lock should be held throughout iteration */
545#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 546 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 547 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
548 cgroup_is_dead(child); })) \
549 ; \
550 else
7ae1bad9 551
81a6a5cd 552static void cgroup_release_agent(struct work_struct *work);
bd89aabc 553static void check_for_release(struct cgroup *cgrp);
81a6a5cd 554
69d0206c
TH
555/*
556 * A cgroup can be associated with multiple css_sets as different tasks may
557 * belong to different cgroups on different hierarchies. In the other
558 * direction, a css_set is naturally associated with multiple cgroups.
559 * This M:N relationship is represented by the following link structure
560 * which exists for each association and allows traversing the associations
561 * from both sides.
562 */
563struct cgrp_cset_link {
564 /* the cgroup and css_set this link associates */
565 struct cgroup *cgrp;
566 struct css_set *cset;
567
568 /* list of cgrp_cset_links anchored at cgrp->cset_links */
569 struct list_head cset_link;
570
571 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
572 struct list_head cgrp_link;
817929ec
PM
573};
574
172a2c06
TH
575/*
576 * The default css_set - used by init and its children prior to any
817929ec
PM
577 * hierarchies being mounted. It contains a pointer to the root state
578 * for each subsystem. Also used to anchor the list of css_sets. Not
579 * reference-counted, to improve performance when child cgroups
580 * haven't been created.
581 */
5024ae29 582struct css_set init_css_set = {
172a2c06
TH
583 .refcount = ATOMIC_INIT(1),
584 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
585 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
586 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
587 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
588 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 589 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 590};
817929ec 591
172a2c06 592static int css_set_count = 1; /* 1 for init_css_set */
817929ec 593
0de0942d
TH
594/**
595 * css_set_populated - does a css_set contain any tasks?
596 * @cset: target css_set
597 */
598static bool css_set_populated(struct css_set *cset)
599{
f0d9a5f1 600 lockdep_assert_held(&css_set_lock);
0de0942d
TH
601
602 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
603}
604
842b597e
TH
605/**
606 * cgroup_update_populated - updated populated count of a cgroup
607 * @cgrp: the target cgroup
608 * @populated: inc or dec populated count
609 *
0de0942d
TH
610 * One of the css_sets associated with @cgrp is either getting its first
611 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
612 * count is propagated towards root so that a given cgroup's populated_cnt
613 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
614 *
615 * @cgrp's interface file "cgroup.populated" is zero if
616 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
617 * changes from or to zero, userland is notified that the content of the
618 * interface file has changed. This can be used to detect when @cgrp and
619 * its descendants become populated or empty.
620 */
621static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
622{
f0d9a5f1 623 lockdep_assert_held(&css_set_lock);
842b597e
TH
624
625 do {
626 bool trigger;
627
628 if (populated)
629 trigger = !cgrp->populated_cnt++;
630 else
631 trigger = !--cgrp->populated_cnt;
632
633 if (!trigger)
634 break;
635
ad2ed2b3 636 check_for_release(cgrp);
6f60eade
TH
637 cgroup_file_notify(&cgrp->events_file);
638
d51f39b0 639 cgrp = cgroup_parent(cgrp);
842b597e
TH
640 } while (cgrp);
641}
642
0de0942d
TH
643/**
644 * css_set_update_populated - update populated state of a css_set
645 * @cset: target css_set
646 * @populated: whether @cset is populated or depopulated
647 *
648 * @cset is either getting the first task or losing the last. Update the
649 * ->populated_cnt of all associated cgroups accordingly.
650 */
651static void css_set_update_populated(struct css_set *cset, bool populated)
652{
653 struct cgrp_cset_link *link;
654
f0d9a5f1 655 lockdep_assert_held(&css_set_lock);
0de0942d
TH
656
657 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
658 cgroup_update_populated(link->cgrp, populated);
659}
660
f6d7d049
TH
661/**
662 * css_set_move_task - move a task from one css_set to another
663 * @task: task being moved
664 * @from_cset: css_set @task currently belongs to (may be NULL)
665 * @to_cset: new css_set @task is being moved to (may be NULL)
666 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
667 *
668 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
669 * css_set, @from_cset can be NULL. If @task is being disassociated
670 * instead of moved, @to_cset can be NULL.
671 *
ed27b9f7
TH
672 * This function automatically handles populated_cnt updates and
673 * css_task_iter adjustments but the caller is responsible for managing
674 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
675 */
676static void css_set_move_task(struct task_struct *task,
677 struct css_set *from_cset, struct css_set *to_cset,
678 bool use_mg_tasks)
679{
f0d9a5f1 680 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
681
682 if (from_cset) {
ed27b9f7
TH
683 struct css_task_iter *it, *pos;
684
f6d7d049 685 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
686
687 /*
688 * @task is leaving, advance task iterators which are
689 * pointing to it so that they can resume at the next
690 * position. Advancing an iterator might remove it from
691 * the list, use safe walk. See css_task_iter_advance*()
692 * for details.
693 */
694 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
695 iters_node)
696 if (it->task_pos == &task->cg_list)
697 css_task_iter_advance(it);
698
f6d7d049
TH
699 list_del_init(&task->cg_list);
700 if (!css_set_populated(from_cset))
701 css_set_update_populated(from_cset, false);
702 } else {
703 WARN_ON_ONCE(!list_empty(&task->cg_list));
704 }
705
706 if (to_cset) {
707 /*
708 * We are synchronized through cgroup_threadgroup_rwsem
709 * against PF_EXITING setting such that we can't race
710 * against cgroup_exit() changing the css_set to
711 * init_css_set and dropping the old one.
712 */
713 WARN_ON_ONCE(task->flags & PF_EXITING);
714
715 if (!css_set_populated(to_cset))
716 css_set_update_populated(to_cset, true);
717 rcu_assign_pointer(task->cgroups, to_cset);
718 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
719 &to_cset->tasks);
720 }
721}
722
7717f7ba
PM
723/*
724 * hash table for cgroup groups. This improves the performance to find
725 * an existing css_set. This hash doesn't (currently) take into
726 * account cgroups in empty hierarchies.
727 */
472b1053 728#define CSS_SET_HASH_BITS 7
0ac801fe 729static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 730
0ac801fe 731static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 732{
0ac801fe 733 unsigned long key = 0UL;
30159ec7
TH
734 struct cgroup_subsys *ss;
735 int i;
472b1053 736
30159ec7 737 for_each_subsys(ss, i)
0ac801fe
LZ
738 key += (unsigned long)css[i];
739 key = (key >> 16) ^ key;
472b1053 740
0ac801fe 741 return key;
472b1053
LZ
742}
743
a25eb52e 744static void put_css_set_locked(struct css_set *cset)
b4f48b63 745{
69d0206c 746 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
747 struct cgroup_subsys *ss;
748 int ssid;
5abb8855 749
f0d9a5f1 750 lockdep_assert_held(&css_set_lock);
89c5509b
TH
751
752 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 753 return;
81a6a5cd 754
53254f90
TH
755 /* This css_set is dead. unlink it and release cgroup and css refs */
756 for_each_subsys(ss, ssid) {
2d8f243a 757 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
758 css_put(cset->subsys[ssid]);
759 }
5abb8855 760 hash_del(&cset->hlist);
2c6ab6d2
PM
761 css_set_count--;
762
69d0206c 763 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
764 list_del(&link->cset_link);
765 list_del(&link->cgrp_link);
2ceb231b
TH
766 if (cgroup_parent(link->cgrp))
767 cgroup_put(link->cgrp);
2c6ab6d2 768 kfree(link);
81a6a5cd 769 }
2c6ab6d2 770
5abb8855 771 kfree_rcu(cset, rcu_head);
b4f48b63
PM
772}
773
a25eb52e 774static void put_css_set(struct css_set *cset)
89c5509b
TH
775{
776 /*
777 * Ensure that the refcount doesn't hit zero while any readers
778 * can see it. Similar to atomic_dec_and_lock(), but for an
779 * rwlock
780 */
781 if (atomic_add_unless(&cset->refcount, -1, 1))
782 return;
783
f0d9a5f1 784 spin_lock_bh(&css_set_lock);
a25eb52e 785 put_css_set_locked(cset);
f0d9a5f1 786 spin_unlock_bh(&css_set_lock);
89c5509b
TH
787}
788
817929ec
PM
789/*
790 * refcounted get/put for css_set objects
791 */
5abb8855 792static inline void get_css_set(struct css_set *cset)
817929ec 793{
5abb8855 794 atomic_inc(&cset->refcount);
817929ec
PM
795}
796
b326f9d0 797/**
7717f7ba 798 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
799 * @cset: candidate css_set being tested
800 * @old_cset: existing css_set for a task
7717f7ba
PM
801 * @new_cgrp: cgroup that's being entered by the task
802 * @template: desired set of css pointers in css_set (pre-calculated)
803 *
6f4b7e63 804 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
805 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
806 */
5abb8855
TH
807static bool compare_css_sets(struct css_set *cset,
808 struct css_set *old_cset,
7717f7ba
PM
809 struct cgroup *new_cgrp,
810 struct cgroup_subsys_state *template[])
811{
812 struct list_head *l1, *l2;
813
aec3dfcb
TH
814 /*
815 * On the default hierarchy, there can be csets which are
816 * associated with the same set of cgroups but different csses.
817 * Let's first ensure that csses match.
818 */
819 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 820 return false;
7717f7ba
PM
821
822 /*
823 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
824 * different cgroups in hierarchies. As different cgroups may
825 * share the same effective css, this comparison is always
826 * necessary.
7717f7ba 827 */
69d0206c
TH
828 l1 = &cset->cgrp_links;
829 l2 = &old_cset->cgrp_links;
7717f7ba 830 while (1) {
69d0206c 831 struct cgrp_cset_link *link1, *link2;
5abb8855 832 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
833
834 l1 = l1->next;
835 l2 = l2->next;
836 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
837 if (l1 == &cset->cgrp_links) {
838 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
839 break;
840 } else {
69d0206c 841 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
842 }
843 /* Locate the cgroups associated with these links. */
69d0206c
TH
844 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
845 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
846 cgrp1 = link1->cgrp;
847 cgrp2 = link2->cgrp;
7717f7ba 848 /* Hierarchies should be linked in the same order. */
5abb8855 849 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
850
851 /*
852 * If this hierarchy is the hierarchy of the cgroup
853 * that's changing, then we need to check that this
854 * css_set points to the new cgroup; if it's any other
855 * hierarchy, then this css_set should point to the
856 * same cgroup as the old css_set.
857 */
5abb8855
TH
858 if (cgrp1->root == new_cgrp->root) {
859 if (cgrp1 != new_cgrp)
7717f7ba
PM
860 return false;
861 } else {
5abb8855 862 if (cgrp1 != cgrp2)
7717f7ba
PM
863 return false;
864 }
865 }
866 return true;
867}
868
b326f9d0
TH
869/**
870 * find_existing_css_set - init css array and find the matching css_set
871 * @old_cset: the css_set that we're using before the cgroup transition
872 * @cgrp: the cgroup that we're moving into
873 * @template: out param for the new set of csses, should be clear on entry
817929ec 874 */
5abb8855
TH
875static struct css_set *find_existing_css_set(struct css_set *old_cset,
876 struct cgroup *cgrp,
877 struct cgroup_subsys_state *template[])
b4f48b63 878{
3dd06ffa 879 struct cgroup_root *root = cgrp->root;
30159ec7 880 struct cgroup_subsys *ss;
5abb8855 881 struct css_set *cset;
0ac801fe 882 unsigned long key;
b326f9d0 883 int i;
817929ec 884
aae8aab4
BB
885 /*
886 * Build the set of subsystem state objects that we want to see in the
887 * new css_set. while subsystems can change globally, the entries here
888 * won't change, so no need for locking.
889 */
30159ec7 890 for_each_subsys(ss, i) {
f392e51c 891 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
892 /*
893 * @ss is in this hierarchy, so we want the
894 * effective css from @cgrp.
895 */
896 template[i] = cgroup_e_css(cgrp, ss);
817929ec 897 } else {
aec3dfcb
TH
898 /*
899 * @ss is not in this hierarchy, so we don't want
900 * to change the css.
901 */
5abb8855 902 template[i] = old_cset->subsys[i];
817929ec
PM
903 }
904 }
905
0ac801fe 906 key = css_set_hash(template);
5abb8855
TH
907 hash_for_each_possible(css_set_table, cset, hlist, key) {
908 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
909 continue;
910
911 /* This css_set matches what we need */
5abb8855 912 return cset;
472b1053 913 }
817929ec
PM
914
915 /* No existing cgroup group matched */
916 return NULL;
917}
918
69d0206c 919static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 920{
69d0206c 921 struct cgrp_cset_link *link, *tmp_link;
36553434 922
69d0206c
TH
923 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
924 list_del(&link->cset_link);
36553434
LZ
925 kfree(link);
926 }
927}
928
69d0206c
TH
929/**
930 * allocate_cgrp_cset_links - allocate cgrp_cset_links
931 * @count: the number of links to allocate
932 * @tmp_links: list_head the allocated links are put on
933 *
934 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
935 * through ->cset_link. Returns 0 on success or -errno.
817929ec 936 */
69d0206c 937static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 938{
69d0206c 939 struct cgrp_cset_link *link;
817929ec 940 int i;
69d0206c
TH
941
942 INIT_LIST_HEAD(tmp_links);
943
817929ec 944 for (i = 0; i < count; i++) {
f4f4be2b 945 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 946 if (!link) {
69d0206c 947 free_cgrp_cset_links(tmp_links);
817929ec
PM
948 return -ENOMEM;
949 }
69d0206c 950 list_add(&link->cset_link, tmp_links);
817929ec
PM
951 }
952 return 0;
953}
954
c12f65d4
LZ
955/**
956 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 957 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 958 * @cset: the css_set to be linked
c12f65d4
LZ
959 * @cgrp: the destination cgroup
960 */
69d0206c
TH
961static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
962 struct cgroup *cgrp)
c12f65d4 963{
69d0206c 964 struct cgrp_cset_link *link;
c12f65d4 965
69d0206c 966 BUG_ON(list_empty(tmp_links));
6803c006
TH
967
968 if (cgroup_on_dfl(cgrp))
969 cset->dfl_cgrp = cgrp;
970
69d0206c
TH
971 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
972 link->cset = cset;
7717f7ba 973 link->cgrp = cgrp;
842b597e 974
7717f7ba 975 /*
389b9c1b
TH
976 * Always add links to the tail of the lists so that the lists are
977 * in choronological order.
7717f7ba 978 */
389b9c1b 979 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 980 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
981
982 if (cgroup_parent(cgrp))
983 cgroup_get(cgrp);
c12f65d4
LZ
984}
985
b326f9d0
TH
986/**
987 * find_css_set - return a new css_set with one cgroup updated
988 * @old_cset: the baseline css_set
989 * @cgrp: the cgroup to be updated
990 *
991 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
992 * substituted into the appropriate hierarchy.
817929ec 993 */
5abb8855
TH
994static struct css_set *find_css_set(struct css_set *old_cset,
995 struct cgroup *cgrp)
817929ec 996{
b326f9d0 997 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 998 struct css_set *cset;
69d0206c
TH
999 struct list_head tmp_links;
1000 struct cgrp_cset_link *link;
2d8f243a 1001 struct cgroup_subsys *ss;
0ac801fe 1002 unsigned long key;
2d8f243a 1003 int ssid;
472b1053 1004
b326f9d0
TH
1005 lockdep_assert_held(&cgroup_mutex);
1006
817929ec
PM
1007 /* First see if we already have a cgroup group that matches
1008 * the desired set */
f0d9a5f1 1009 spin_lock_bh(&css_set_lock);
5abb8855
TH
1010 cset = find_existing_css_set(old_cset, cgrp, template);
1011 if (cset)
1012 get_css_set(cset);
f0d9a5f1 1013 spin_unlock_bh(&css_set_lock);
817929ec 1014
5abb8855
TH
1015 if (cset)
1016 return cset;
817929ec 1017
f4f4be2b 1018 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1019 if (!cset)
817929ec
PM
1020 return NULL;
1021
69d0206c 1022 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1023 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1024 kfree(cset);
817929ec
PM
1025 return NULL;
1026 }
1027
5abb8855 1028 atomic_set(&cset->refcount, 1);
69d0206c 1029 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1030 INIT_LIST_HEAD(&cset->tasks);
c7561128 1031 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1032 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1033 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1034 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1035 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1036
1037 /* Copy the set of subsystem state objects generated in
1038 * find_existing_css_set() */
5abb8855 1039 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1040
f0d9a5f1 1041 spin_lock_bh(&css_set_lock);
817929ec 1042 /* Add reference counts and links from the new css_set. */
69d0206c 1043 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1044 struct cgroup *c = link->cgrp;
69d0206c 1045
7717f7ba
PM
1046 if (c->root == cgrp->root)
1047 c = cgrp;
69d0206c 1048 link_css_set(&tmp_links, cset, c);
7717f7ba 1049 }
817929ec 1050
69d0206c 1051 BUG_ON(!list_empty(&tmp_links));
817929ec 1052
817929ec 1053 css_set_count++;
472b1053 1054
2d8f243a 1055 /* Add @cset to the hash table */
5abb8855
TH
1056 key = css_set_hash(cset->subsys);
1057 hash_add(css_set_table, &cset->hlist, key);
472b1053 1058
53254f90
TH
1059 for_each_subsys(ss, ssid) {
1060 struct cgroup_subsys_state *css = cset->subsys[ssid];
1061
2d8f243a 1062 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1063 &css->cgroup->e_csets[ssid]);
1064 css_get(css);
1065 }
2d8f243a 1066
f0d9a5f1 1067 spin_unlock_bh(&css_set_lock);
817929ec 1068
5abb8855 1069 return cset;
b4f48b63
PM
1070}
1071
3dd06ffa 1072static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1073{
3dd06ffa 1074 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1075
3dd06ffa 1076 return root_cgrp->root;
2bd59d48
TH
1077}
1078
3dd06ffa 1079static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1080{
1081 int id;
1082
1083 lockdep_assert_held(&cgroup_mutex);
1084
985ed670 1085 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1086 if (id < 0)
1087 return id;
1088
1089 root->hierarchy_id = id;
1090 return 0;
1091}
1092
3dd06ffa 1093static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1094{
1095 lockdep_assert_held(&cgroup_mutex);
1096
1097 if (root->hierarchy_id) {
1098 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1099 root->hierarchy_id = 0;
1100 }
1101}
1102
3dd06ffa 1103static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1104{
1105 if (root) {
d0f702e6 1106 /* hierarchy ID should already have been released */
f2e85d57
TH
1107 WARN_ON_ONCE(root->hierarchy_id);
1108
1109 idr_destroy(&root->cgroup_idr);
1110 kfree(root);
1111 }
1112}
1113
3dd06ffa 1114static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1115{
3dd06ffa 1116 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1117 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1118
2bd59d48 1119 mutex_lock(&cgroup_mutex);
f2e85d57 1120
776f02fa 1121 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1122 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1123
f2e85d57 1124 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1125 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1126
7717f7ba 1127 /*
f2e85d57
TH
1128 * Release all the links from cset_links to this hierarchy's
1129 * root cgroup
7717f7ba 1130 */
f0d9a5f1 1131 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1132
1133 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1134 list_del(&link->cset_link);
1135 list_del(&link->cgrp_link);
1136 kfree(link);
1137 }
f0d9a5f1
TH
1138
1139 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1140
1141 if (!list_empty(&root->root_list)) {
1142 list_del(&root->root_list);
1143 cgroup_root_count--;
1144 }
1145
1146 cgroup_exit_root_id(root);
1147
1148 mutex_unlock(&cgroup_mutex);
f2e85d57 1149
2bd59d48 1150 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1151 cgroup_free_root(root);
1152}
1153
ceb6a081
TH
1154/* look up cgroup associated with given css_set on the specified hierarchy */
1155static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1156 struct cgroup_root *root)
7717f7ba 1157{
7717f7ba
PM
1158 struct cgroup *res = NULL;
1159
96d365e0 1160 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1161 lockdep_assert_held(&css_set_lock);
96d365e0 1162
5abb8855 1163 if (cset == &init_css_set) {
3dd06ffa 1164 res = &root->cgrp;
7717f7ba 1165 } else {
69d0206c
TH
1166 struct cgrp_cset_link *link;
1167
1168 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1169 struct cgroup *c = link->cgrp;
69d0206c 1170
7717f7ba
PM
1171 if (c->root == root) {
1172 res = c;
1173 break;
1174 }
1175 }
1176 }
96d365e0 1177
7717f7ba
PM
1178 BUG_ON(!res);
1179 return res;
1180}
1181
ddbcc7e8 1182/*
ceb6a081 1183 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1184 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1185 */
1186static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1187 struct cgroup_root *root)
ceb6a081
TH
1188{
1189 /*
1190 * No need to lock the task - since we hold cgroup_mutex the
1191 * task can't change groups, so the only thing that can happen
1192 * is that it exits and its css is set back to init_css_set.
1193 */
1194 return cset_cgroup_from_root(task_css_set(task), root);
1195}
1196
ddbcc7e8 1197/*
ddbcc7e8
PM
1198 * A task must hold cgroup_mutex to modify cgroups.
1199 *
1200 * Any task can increment and decrement the count field without lock.
1201 * So in general, code holding cgroup_mutex can't rely on the count
1202 * field not changing. However, if the count goes to zero, then only
956db3ca 1203 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1204 * means that no tasks are currently attached, therefore there is no
1205 * way a task attached to that cgroup can fork (the other way to
1206 * increment the count). So code holding cgroup_mutex can safely
1207 * assume that if the count is zero, it will stay zero. Similarly, if
1208 * a task holds cgroup_mutex on a cgroup with zero count, it
1209 * knows that the cgroup won't be removed, as cgroup_rmdir()
1210 * needs that mutex.
1211 *
ddbcc7e8
PM
1212 * A cgroup can only be deleted if both its 'count' of using tasks
1213 * is zero, and its list of 'children' cgroups is empty. Since all
1214 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1215 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1216 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1217 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1218 *
1219 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1220 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1221 */
1222
2bd59d48 1223static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1224static const struct file_operations proc_cgroupstats_operations;
a424316c 1225
8d7e6fb0
TH
1226static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1227 char *buf)
ddbcc7e8 1228{
3e1d2eed
TH
1229 struct cgroup_subsys *ss = cft->ss;
1230
8d7e6fb0
TH
1231 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1232 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1233 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1234 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1235 cft->name);
8d7e6fb0
TH
1236 else
1237 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1238 return buf;
ddbcc7e8
PM
1239}
1240
f2e85d57
TH
1241/**
1242 * cgroup_file_mode - deduce file mode of a control file
1243 * @cft: the control file in question
1244 *
7dbdb199 1245 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1246 */
1247static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1248{
f2e85d57 1249 umode_t mode = 0;
65dff759 1250
f2e85d57
TH
1251 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1252 mode |= S_IRUGO;
1253
7dbdb199
TH
1254 if (cft->write_u64 || cft->write_s64 || cft->write) {
1255 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1256 mode |= S_IWUGO;
1257 else
1258 mode |= S_IWUSR;
1259 }
f2e85d57
TH
1260
1261 return mode;
65dff759
LZ
1262}
1263
af0ba678 1264/**
8699b776 1265 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
af0ba678 1266 * @cgrp: the target cgroup
0f060deb 1267 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1268 *
1269 * On the default hierarchy, a subsystem may request other subsystems to be
1270 * enabled together through its ->depends_on mask. In such cases, more
1271 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1272 *
0f060deb
TH
1273 * This function calculates which subsystems need to be enabled if
1274 * @subtree_control is to be applied to @cgrp. The returned mask is always
1275 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1276 */
8699b776
TH
1277static unsigned long cgroup_calc_subtree_ss_mask(struct cgroup *cgrp,
1278 unsigned long subtree_control)
667c2491 1279{
af0ba678 1280 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1281 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1282 struct cgroup_subsys *ss;
1283 int ssid;
1284
1285 lockdep_assert_held(&cgroup_mutex);
1286
0f060deb
TH
1287 if (!cgroup_on_dfl(cgrp))
1288 return cur_ss_mask;
af0ba678
TH
1289
1290 while (true) {
8ab456ac 1291 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1292
b4e0eeaf 1293 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1294 new_ss_mask |= ss->depends_on;
b4e0eeaf 1295 } while_each_subsys_mask();
af0ba678
TH
1296
1297 /*
1298 * Mask out subsystems which aren't available. This can
1299 * happen only if some depended-upon subsystems were bound
1300 * to non-default hierarchies.
1301 */
1302 if (parent)
8699b776 1303 new_ss_mask &= parent->subtree_ss_mask;
af0ba678
TH
1304 else
1305 new_ss_mask &= cgrp->root->subsys_mask;
1306
1307 if (new_ss_mask == cur_ss_mask)
1308 break;
1309 cur_ss_mask = new_ss_mask;
1310 }
1311
0f060deb
TH
1312 return cur_ss_mask;
1313}
1314
1315/**
8699b776 1316 * cgroup_refresh_subtree_ss_mask - update subtree_ss_mask
0f060deb
TH
1317 * @cgrp: the target cgroup
1318 *
8699b776
TH
1319 * Update @cgrp->subtree_ss_mask according to the current
1320 * @cgrp->subtree_control using cgroup_calc_subtree_ss_mask().
0f060deb 1321 */
8699b776 1322static void cgroup_refresh_subtree_ss_mask(struct cgroup *cgrp)
0f060deb 1323{
8699b776
TH
1324 cgrp->subtree_ss_mask =
1325 cgroup_calc_subtree_ss_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1326}
1327
a9746d8d
TH
1328/**
1329 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1330 * @kn: the kernfs_node being serviced
1331 *
1332 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1333 * the method finishes if locking succeeded. Note that once this function
1334 * returns the cgroup returned by cgroup_kn_lock_live() may become
1335 * inaccessible any time. If the caller intends to continue to access the
1336 * cgroup, it should pin it before invoking this function.
1337 */
1338static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1339{
a9746d8d
TH
1340 struct cgroup *cgrp;
1341
1342 if (kernfs_type(kn) == KERNFS_DIR)
1343 cgrp = kn->priv;
1344 else
1345 cgrp = kn->parent->priv;
1346
1347 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1348
1349 kernfs_unbreak_active_protection(kn);
1350 cgroup_put(cgrp);
ddbcc7e8
PM
1351}
1352
a9746d8d
TH
1353/**
1354 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1355 * @kn: the kernfs_node being serviced
1356 *
1357 * This helper is to be used by a cgroup kernfs method currently servicing
1358 * @kn. It breaks the active protection, performs cgroup locking and
1359 * verifies that the associated cgroup is alive. Returns the cgroup if
1360 * alive; otherwise, %NULL. A successful return should be undone by a
1361 * matching cgroup_kn_unlock() invocation.
1362 *
1363 * Any cgroup kernfs method implementation which requires locking the
1364 * associated cgroup should use this helper. It avoids nesting cgroup
1365 * locking under kernfs active protection and allows all kernfs operations
1366 * including self-removal.
1367 */
1368static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1369{
a9746d8d
TH
1370 struct cgroup *cgrp;
1371
1372 if (kernfs_type(kn) == KERNFS_DIR)
1373 cgrp = kn->priv;
1374 else
1375 cgrp = kn->parent->priv;
05ef1d7c 1376
2739d3cc 1377 /*
01f6474c 1378 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1379 * active_ref. cgroup liveliness check alone provides enough
1380 * protection against removal. Ensure @cgrp stays accessible and
1381 * break the active_ref protection.
2739d3cc 1382 */
aa32362f
LZ
1383 if (!cgroup_tryget(cgrp))
1384 return NULL;
a9746d8d
TH
1385 kernfs_break_active_protection(kn);
1386
2bd59d48 1387 mutex_lock(&cgroup_mutex);
05ef1d7c 1388
a9746d8d
TH
1389 if (!cgroup_is_dead(cgrp))
1390 return cgrp;
1391
1392 cgroup_kn_unlock(kn);
1393 return NULL;
ddbcc7e8 1394}
05ef1d7c 1395
2739d3cc 1396static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1397{
2bd59d48 1398 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1399
01f6474c 1400 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1401
1402 if (cft->file_offset) {
1403 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1404 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1405
1406 spin_lock_irq(&cgroup_file_kn_lock);
1407 cfile->kn = NULL;
1408 spin_unlock_irq(&cgroup_file_kn_lock);
1409 }
1410
2bd59d48 1411 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1412}
1413
13af07df 1414/**
4df8dc90
TH
1415 * css_clear_dir - remove subsys files in a cgroup directory
1416 * @css: taget css
1417 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1418 */
4df8dc90
TH
1419static void css_clear_dir(struct cgroup_subsys_state *css,
1420 struct cgroup *cgrp_override)
05ef1d7c 1421{
4df8dc90
TH
1422 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1423 struct cftype *cfts;
05ef1d7c 1424
4df8dc90
TH
1425 list_for_each_entry(cfts, &css->ss->cfts, node)
1426 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1427}
1428
ccdca218 1429/**
4df8dc90
TH
1430 * css_populate_dir - create subsys files in a cgroup directory
1431 * @css: target css
1432 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1433 *
1434 * On failure, no file is added.
1435 */
4df8dc90
TH
1436static int css_populate_dir(struct cgroup_subsys_state *css,
1437 struct cgroup *cgrp_override)
ccdca218 1438{
4df8dc90
TH
1439 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1440 struct cftype *cfts, *failed_cfts;
1441 int ret;
ccdca218 1442
4df8dc90
TH
1443 if (!css->ss) {
1444 if (cgroup_on_dfl(cgrp))
1445 cfts = cgroup_dfl_base_files;
1446 else
1447 cfts = cgroup_legacy_base_files;
ccdca218 1448
4df8dc90
TH
1449 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1450 }
ccdca218 1451
4df8dc90
TH
1452 list_for_each_entry(cfts, &css->ss->cfts, node) {
1453 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1454 if (ret < 0) {
1455 failed_cfts = cfts;
1456 goto err;
ccdca218
TH
1457 }
1458 }
1459 return 0;
1460err:
4df8dc90
TH
1461 list_for_each_entry(cfts, &css->ss->cfts, node) {
1462 if (cfts == failed_cfts)
1463 break;
1464 cgroup_addrm_files(css, cgrp, cfts, false);
1465 }
ccdca218
TH
1466 return ret;
1467}
1468
8ab456ac
AS
1469static int rebind_subsystems(struct cgroup_root *dst_root,
1470 unsigned long ss_mask)
ddbcc7e8 1471{
1ada4838 1472 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1473 struct cgroup_subsys *ss;
8ab456ac 1474 unsigned long tmp_ss_mask;
2d8f243a 1475 int ssid, i, ret;
ddbcc7e8 1476
ace2bee8 1477 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1478
b4e0eeaf 1479 do_each_subsys_mask(ss, ssid, ss_mask) {
7fd8c565
TH
1480 /* if @ss has non-root csses attached to it, can't move */
1481 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1482 return -EBUSY;
1d5be6b2 1483
5df36032 1484 /* can't move between two non-dummy roots either */
7fd8c565 1485 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1486 return -EBUSY;
b4e0eeaf 1487 } while_each_subsys_mask();
ddbcc7e8 1488
5533e011
TH
1489 /* skip creating root files on dfl_root for inhibited subsystems */
1490 tmp_ss_mask = ss_mask;
1491 if (dst_root == &cgrp_dfl_root)
1492 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1493
b4e0eeaf 1494 do_each_subsys_mask(ss, ssid, tmp_ss_mask) {
4df8dc90
TH
1495 struct cgroup *scgrp = &ss->root->cgrp;
1496 int tssid;
1497
1498 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1499 if (!ret)
1500 continue;
ddbcc7e8 1501
a2dd4247
TH
1502 /*
1503 * Rebinding back to the default root is not allowed to
1504 * fail. Using both default and non-default roots should
1505 * be rare. Moving subsystems back and forth even more so.
1506 * Just warn about it and continue.
1507 */
4df8dc90
TH
1508 if (dst_root == &cgrp_dfl_root) {
1509 if (cgrp_dfl_root_visible) {
1510 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1511 ret, ss_mask);
1512 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1513 }
1514 continue;
a2dd4247 1515 }
4df8dc90 1516
b4e0eeaf 1517 do_each_subsys_mask(ss, tssid, tmp_ss_mask) {
4df8dc90
TH
1518 if (tssid == ssid)
1519 break;
1520 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
b4e0eeaf 1521 } while_each_subsys_mask();
4df8dc90 1522 return ret;
b4e0eeaf 1523 } while_each_subsys_mask();
3126121f
TH
1524
1525 /*
1526 * Nothing can fail from this point on. Remove files for the
1527 * removed subsystems and rebind each subsystem.
1528 */
b4e0eeaf 1529 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1530 struct cgroup_root *src_root = ss->root;
1531 struct cgroup *scgrp = &src_root->cgrp;
1532 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1533 struct css_set *cset;
a8a648c4 1534
1ada4838 1535 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1536
4df8dc90
TH
1537 css_clear_dir(css, NULL);
1538
1ada4838
TH
1539 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1540 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1541 ss->root = dst_root;
1ada4838 1542 css->cgroup = dcgrp;
73e80ed8 1543
f0d9a5f1 1544 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1545 hash_for_each(css_set_table, i, cset, hlist)
1546 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1547 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1548 spin_unlock_bh(&css_set_lock);
2d8f243a 1549
f392e51c 1550 src_root->subsys_mask &= ~(1 << ssid);
1ada4838 1551 scgrp->subtree_control &= ~(1 << ssid);
8699b776 1552 cgroup_refresh_subtree_ss_mask(scgrp);
f392e51c 1553
bd53d617 1554 /* default hierarchy doesn't enable controllers by default */
f392e51c 1555 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1556 if (dst_root == &cgrp_dfl_root) {
1557 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1558 } else {
1ada4838 1559 dcgrp->subtree_control |= 1 << ssid;
8699b776 1560 cgroup_refresh_subtree_ss_mask(dcgrp);
49d1dc4b 1561 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1562 }
a8a648c4 1563
5df36032
TH
1564 if (ss->bind)
1565 ss->bind(css);
b4e0eeaf 1566 } while_each_subsys_mask();
ddbcc7e8 1567
1ada4838 1568 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1569 return 0;
1570}
1571
2bd59d48
TH
1572static int cgroup_show_options(struct seq_file *seq,
1573 struct kernfs_root *kf_root)
ddbcc7e8 1574{
3dd06ffa 1575 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1576 struct cgroup_subsys *ss;
b85d2040 1577 int ssid;
ddbcc7e8 1578
d98817d4
TH
1579 if (root != &cgrp_dfl_root)
1580 for_each_subsys(ss, ssid)
1581 if (root->subsys_mask & (1 << ssid))
61e57c0c 1582 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1583 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1584 seq_puts(seq, ",noprefix");
93438629 1585 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1586 seq_puts(seq, ",xattr");
69e943b7
TH
1587
1588 spin_lock(&release_agent_path_lock);
81a6a5cd 1589 if (strlen(root->release_agent_path))
a068acf2
KC
1590 seq_show_option(seq, "release_agent",
1591 root->release_agent_path);
69e943b7
TH
1592 spin_unlock(&release_agent_path_lock);
1593
3dd06ffa 1594 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1595 seq_puts(seq, ",clone_children");
c6d57f33 1596 if (strlen(root->name))
a068acf2 1597 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1598 return 0;
1599}
1600
1601struct cgroup_sb_opts {
8ab456ac 1602 unsigned long subsys_mask;
69dfa00c 1603 unsigned int flags;
81a6a5cd 1604 char *release_agent;
2260e7fc 1605 bool cpuset_clone_children;
c6d57f33 1606 char *name;
2c6ab6d2
PM
1607 /* User explicitly requested empty subsystem */
1608 bool none;
ddbcc7e8
PM
1609};
1610
cf5d5941 1611static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1612{
32a8cf23
DL
1613 char *token, *o = data;
1614 bool all_ss = false, one_ss = false;
8ab456ac 1615 unsigned long mask = -1UL;
30159ec7 1616 struct cgroup_subsys *ss;
7b9a6ba5 1617 int nr_opts = 0;
30159ec7 1618 int i;
f9ab5b5b
LZ
1619
1620#ifdef CONFIG_CPUSETS
69dfa00c 1621 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1622#endif
ddbcc7e8 1623
c6d57f33 1624 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1625
1626 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1627 nr_opts++;
1628
ddbcc7e8
PM
1629 if (!*token)
1630 return -EINVAL;
32a8cf23 1631 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1632 /* Explicitly have no subsystems */
1633 opts->none = true;
32a8cf23
DL
1634 continue;
1635 }
1636 if (!strcmp(token, "all")) {
1637 /* Mutually exclusive option 'all' + subsystem name */
1638 if (one_ss)
1639 return -EINVAL;
1640 all_ss = true;
1641 continue;
1642 }
1643 if (!strcmp(token, "noprefix")) {
93438629 1644 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1645 continue;
1646 }
1647 if (!strcmp(token, "clone_children")) {
2260e7fc 1648 opts->cpuset_clone_children = true;
32a8cf23
DL
1649 continue;
1650 }
03b1cde6 1651 if (!strcmp(token, "xattr")) {
93438629 1652 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1653 continue;
1654 }
32a8cf23 1655 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1656 /* Specifying two release agents is forbidden */
1657 if (opts->release_agent)
1658 return -EINVAL;
c6d57f33 1659 opts->release_agent =
e400c285 1660 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1661 if (!opts->release_agent)
1662 return -ENOMEM;
32a8cf23
DL
1663 continue;
1664 }
1665 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1666 const char *name = token + 5;
1667 /* Can't specify an empty name */
1668 if (!strlen(name))
1669 return -EINVAL;
1670 /* Must match [\w.-]+ */
1671 for (i = 0; i < strlen(name); i++) {
1672 char c = name[i];
1673 if (isalnum(c))
1674 continue;
1675 if ((c == '.') || (c == '-') || (c == '_'))
1676 continue;
1677 return -EINVAL;
1678 }
1679 /* Specifying two names is forbidden */
1680 if (opts->name)
1681 return -EINVAL;
1682 opts->name = kstrndup(name,
e400c285 1683 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1684 GFP_KERNEL);
1685 if (!opts->name)
1686 return -ENOMEM;
32a8cf23
DL
1687
1688 continue;
1689 }
1690
30159ec7 1691 for_each_subsys(ss, i) {
3e1d2eed 1692 if (strcmp(token, ss->legacy_name))
32a8cf23 1693 continue;
fc5ed1e9 1694 if (!cgroup_ssid_enabled(i))
32a8cf23 1695 continue;
223ffb29
JW
1696 if (cgroup_ssid_no_v1(i))
1697 continue;
32a8cf23
DL
1698
1699 /* Mutually exclusive option 'all' + subsystem name */
1700 if (all_ss)
1701 return -EINVAL;
69dfa00c 1702 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1703 one_ss = true;
1704
1705 break;
1706 }
1707 if (i == CGROUP_SUBSYS_COUNT)
1708 return -ENOENT;
1709 }
1710
7b9a6ba5
TH
1711 /*
1712 * If the 'all' option was specified select all the subsystems,
1713 * otherwise if 'none', 'name=' and a subsystem name options were
1714 * not specified, let's default to 'all'
1715 */
1716 if (all_ss || (!one_ss && !opts->none && !opts->name))
1717 for_each_subsys(ss, i)
223ffb29 1718 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1719 opts->subsys_mask |= (1 << i);
1720
1721 /*
1722 * We either have to specify by name or by subsystems. (So all
1723 * empty hierarchies must have a name).
1724 */
1725 if (!opts->subsys_mask && !opts->name)
1726 return -EINVAL;
1727
f9ab5b5b
LZ
1728 /*
1729 * Option noprefix was introduced just for backward compatibility
1730 * with the old cpuset, so we allow noprefix only if mounting just
1731 * the cpuset subsystem.
1732 */
93438629 1733 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1734 return -EINVAL;
1735
2c6ab6d2 1736 /* Can't specify "none" and some subsystems */
a1a71b45 1737 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1738 return -EINVAL;
1739
ddbcc7e8
PM
1740 return 0;
1741}
1742
2bd59d48 1743static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1744{
1745 int ret = 0;
3dd06ffa 1746 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1747 struct cgroup_sb_opts opts;
8ab456ac 1748 unsigned long added_mask, removed_mask;
ddbcc7e8 1749
aa6ec29b
TH
1750 if (root == &cgrp_dfl_root) {
1751 pr_err("remount is not allowed\n");
873fe09e
TH
1752 return -EINVAL;
1753 }
1754
ddbcc7e8
PM
1755 mutex_lock(&cgroup_mutex);
1756
1757 /* See what subsystems are wanted */
1758 ret = parse_cgroupfs_options(data, &opts);
1759 if (ret)
1760 goto out_unlock;
1761
f392e51c 1762 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1763 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1764 task_tgid_nr(current), current->comm);
8b5a5a9d 1765
f392e51c
TH
1766 added_mask = opts.subsys_mask & ~root->subsys_mask;
1767 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1768
cf5d5941 1769 /* Don't allow flags or name to change at remount */
7450e90b 1770 if ((opts.flags ^ root->flags) ||
cf5d5941 1771 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1772 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1773 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1774 ret = -EINVAL;
1775 goto out_unlock;
1776 }
1777
f172e67c 1778 /* remounting is not allowed for populated hierarchies */
d5c419b6 1779 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1780 ret = -EBUSY;
0670e08b 1781 goto out_unlock;
cf5d5941 1782 }
ddbcc7e8 1783
5df36032 1784 ret = rebind_subsystems(root, added_mask);
3126121f 1785 if (ret)
0670e08b 1786 goto out_unlock;
ddbcc7e8 1787
3dd06ffa 1788 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1789
69e943b7
TH
1790 if (opts.release_agent) {
1791 spin_lock(&release_agent_path_lock);
81a6a5cd 1792 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1793 spin_unlock(&release_agent_path_lock);
1794 }
ddbcc7e8 1795 out_unlock:
66bdc9cf 1796 kfree(opts.release_agent);
c6d57f33 1797 kfree(opts.name);
ddbcc7e8 1798 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1799 return ret;
1800}
1801
afeb0f9f
TH
1802/*
1803 * To reduce the fork() overhead for systems that are not actually using
1804 * their cgroups capability, we don't maintain the lists running through
1805 * each css_set to its tasks until we see the list actually used - in other
1806 * words after the first mount.
1807 */
1808static bool use_task_css_set_links __read_mostly;
1809
1810static void cgroup_enable_task_cg_lists(void)
1811{
1812 struct task_struct *p, *g;
1813
f0d9a5f1 1814 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1815
1816 if (use_task_css_set_links)
1817 goto out_unlock;
1818
1819 use_task_css_set_links = true;
1820
1821 /*
1822 * We need tasklist_lock because RCU is not safe against
1823 * while_each_thread(). Besides, a forking task that has passed
1824 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1825 * is not guaranteed to have its child immediately visible in the
1826 * tasklist if we walk through it with RCU.
1827 */
1828 read_lock(&tasklist_lock);
1829 do_each_thread(g, p) {
afeb0f9f
TH
1830 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1831 task_css_set(p) != &init_css_set);
1832
1833 /*
1834 * We should check if the process is exiting, otherwise
1835 * it will race with cgroup_exit() in that the list
1836 * entry won't be deleted though the process has exited.
f153ad11
TH
1837 * Do it while holding siglock so that we don't end up
1838 * racing against cgroup_exit().
afeb0f9f 1839 */
f153ad11 1840 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1841 if (!(p->flags & PF_EXITING)) {
1842 struct css_set *cset = task_css_set(p);
1843
0de0942d
TH
1844 if (!css_set_populated(cset))
1845 css_set_update_populated(cset, true);
389b9c1b 1846 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1847 get_css_set(cset);
1848 }
f153ad11 1849 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1850 } while_each_thread(g, p);
1851 read_unlock(&tasklist_lock);
1852out_unlock:
f0d9a5f1 1853 spin_unlock_bh(&css_set_lock);
afeb0f9f 1854}
ddbcc7e8 1855
cc31edce
PM
1856static void init_cgroup_housekeeping(struct cgroup *cgrp)
1857{
2d8f243a
TH
1858 struct cgroup_subsys *ss;
1859 int ssid;
1860
d5c419b6
TH
1861 INIT_LIST_HEAD(&cgrp->self.sibling);
1862 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1863 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1864 INIT_LIST_HEAD(&cgrp->pidlists);
1865 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1866 cgrp->self.cgroup = cgrp;
184faf32 1867 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1868
1869 for_each_subsys(ss, ssid)
1870 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1871
1872 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1873 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1874}
c6d57f33 1875
3dd06ffa 1876static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1877 struct cgroup_sb_opts *opts)
ddbcc7e8 1878{
3dd06ffa 1879 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1880
ddbcc7e8 1881 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1882 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1883 cgrp->root = root;
cc31edce 1884 init_cgroup_housekeeping(cgrp);
4e96ee8e 1885 idr_init(&root->cgroup_idr);
c6d57f33 1886
c6d57f33
PM
1887 root->flags = opts->flags;
1888 if (opts->release_agent)
1889 strcpy(root->release_agent_path, opts->release_agent);
1890 if (opts->name)
1891 strcpy(root->name, opts->name);
2260e7fc 1892 if (opts->cpuset_clone_children)
3dd06ffa 1893 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1894}
1895
8ab456ac 1896static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1897{
d427dfeb 1898 LIST_HEAD(tmp_links);
3dd06ffa 1899 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1900 struct css_set *cset;
d427dfeb 1901 int i, ret;
2c6ab6d2 1902
d427dfeb 1903 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1904
cf780b7d 1905 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1906 if (ret < 0)
2bd59d48 1907 goto out;
d427dfeb 1908 root_cgrp->id = ret;
b11cfb58 1909 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1910
2aad2a86
TH
1911 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1912 GFP_KERNEL);
9d755d33
TH
1913 if (ret)
1914 goto out;
1915
d427dfeb 1916 /*
f0d9a5f1 1917 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1918 * but that's OK - it can only be increased by someone holding
1919 * cgroup_lock, and that's us. The worst that can happen is that we
1920 * have some link structures left over
1921 */
1922 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1923 if (ret)
9d755d33 1924 goto cancel_ref;
ddbcc7e8 1925
985ed670 1926 ret = cgroup_init_root_id(root);
ddbcc7e8 1927 if (ret)
9d755d33 1928 goto cancel_ref;
ddbcc7e8 1929
2bd59d48
TH
1930 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1931 KERNFS_ROOT_CREATE_DEACTIVATED,
1932 root_cgrp);
1933 if (IS_ERR(root->kf_root)) {
1934 ret = PTR_ERR(root->kf_root);
1935 goto exit_root_id;
1936 }
1937 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1938
4df8dc90 1939 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1940 if (ret)
2bd59d48 1941 goto destroy_root;
ddbcc7e8 1942
5df36032 1943 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1944 if (ret)
2bd59d48 1945 goto destroy_root;
ddbcc7e8 1946
d427dfeb
TH
1947 /*
1948 * There must be no failure case after here, since rebinding takes
1949 * care of subsystems' refcounts, which are explicitly dropped in
1950 * the failure exit path.
1951 */
1952 list_add(&root->root_list, &cgroup_roots);
1953 cgroup_root_count++;
0df6a63f 1954
d427dfeb 1955 /*
3dd06ffa 1956 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1957 * objects.
1958 */
f0d9a5f1 1959 spin_lock_bh(&css_set_lock);
0de0942d 1960 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1961 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1962 if (css_set_populated(cset))
1963 cgroup_update_populated(root_cgrp, true);
1964 }
f0d9a5f1 1965 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1966
d5c419b6 1967 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1968 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1969
2bd59d48 1970 kernfs_activate(root_cgrp->kn);
d427dfeb 1971 ret = 0;
2bd59d48 1972 goto out;
d427dfeb 1973
2bd59d48
TH
1974destroy_root:
1975 kernfs_destroy_root(root->kf_root);
1976 root->kf_root = NULL;
1977exit_root_id:
d427dfeb 1978 cgroup_exit_root_id(root);
9d755d33 1979cancel_ref:
9a1049da 1980 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1981out:
d427dfeb
TH
1982 free_cgrp_cset_links(&tmp_links);
1983 return ret;
ddbcc7e8
PM
1984}
1985
f7e83571 1986static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1987 int flags, const char *unused_dev_name,
f7e83571 1988 void *data)
ddbcc7e8 1989{
67e9c74b 1990 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 1991 struct super_block *pinned_sb = NULL;
970317aa 1992 struct cgroup_subsys *ss;
3dd06ffa 1993 struct cgroup_root *root;
ddbcc7e8 1994 struct cgroup_sb_opts opts;
2bd59d48 1995 struct dentry *dentry;
8e30e2b8 1996 int ret;
970317aa 1997 int i;
c6b3d5bc 1998 bool new_sb;
ddbcc7e8 1999
56fde9e0
TH
2000 /*
2001 * The first time anyone tries to mount a cgroup, enable the list
2002 * linking each css_set to its tasks and fix up all existing tasks.
2003 */
2004 if (!use_task_css_set_links)
2005 cgroup_enable_task_cg_lists();
e37a06f1 2006
67e9c74b
TH
2007 if (is_v2) {
2008 if (data) {
2009 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2010 return ERR_PTR(-EINVAL);
2011 }
2012 cgrp_dfl_root_visible = true;
2013 root = &cgrp_dfl_root;
2014 cgroup_get(&root->cgrp);
2015 goto out_mount;
2016 }
2017
aae8aab4 2018 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2019
2020 /* First find the desired set of subsystems */
ddbcc7e8 2021 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2022 if (ret)
8e30e2b8 2023 goto out_unlock;
a015edd2 2024
970317aa
LZ
2025 /*
2026 * Destruction of cgroup root is asynchronous, so subsystems may
2027 * still be dying after the previous unmount. Let's drain the
2028 * dying subsystems. We just need to ensure that the ones
2029 * unmounted previously finish dying and don't care about new ones
2030 * starting. Testing ref liveliness is good enough.
2031 */
2032 for_each_subsys(ss, i) {
2033 if (!(opts.subsys_mask & (1 << i)) ||
2034 ss->root == &cgrp_dfl_root)
2035 continue;
2036
2037 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2038 mutex_unlock(&cgroup_mutex);
2039 msleep(10);
2040 ret = restart_syscall();
2041 goto out_free;
2042 }
2043 cgroup_put(&ss->root->cgrp);
2044 }
2045
985ed670 2046 for_each_root(root) {
2bd59d48 2047 bool name_match = false;
3126121f 2048
3dd06ffa 2049 if (root == &cgrp_dfl_root)
985ed670 2050 continue;
3126121f 2051
cf5d5941 2052 /*
2bd59d48
TH
2053 * If we asked for a name then it must match. Also, if
2054 * name matches but sybsys_mask doesn't, we should fail.
2055 * Remember whether name matched.
cf5d5941 2056 */
2bd59d48
TH
2057 if (opts.name) {
2058 if (strcmp(opts.name, root->name))
2059 continue;
2060 name_match = true;
2061 }
ddbcc7e8 2062
c6d57f33 2063 /*
2bd59d48
TH
2064 * If we asked for subsystems (or explicitly for no
2065 * subsystems) then they must match.
c6d57f33 2066 */
2bd59d48 2067 if ((opts.subsys_mask || opts.none) &&
f392e51c 2068 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2069 if (!name_match)
2070 continue;
2071 ret = -EBUSY;
2072 goto out_unlock;
2073 }
873fe09e 2074
7b9a6ba5
TH
2075 if (root->flags ^ opts.flags)
2076 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2077
776f02fa 2078 /*
3a32bd72
LZ
2079 * We want to reuse @root whose lifetime is governed by its
2080 * ->cgrp. Let's check whether @root is alive and keep it
2081 * that way. As cgroup_kill_sb() can happen anytime, we
2082 * want to block it by pinning the sb so that @root doesn't
2083 * get killed before mount is complete.
2084 *
2085 * With the sb pinned, tryget_live can reliably indicate
2086 * whether @root can be reused. If it's being killed,
2087 * drain it. We can use wait_queue for the wait but this
2088 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2089 */
3a32bd72
LZ
2090 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2091 if (IS_ERR(pinned_sb) ||
2092 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2093 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2094 if (!IS_ERR_OR_NULL(pinned_sb))
2095 deactivate_super(pinned_sb);
776f02fa 2096 msleep(10);
a015edd2
TH
2097 ret = restart_syscall();
2098 goto out_free;
776f02fa 2099 }
ddbcc7e8 2100
776f02fa 2101 ret = 0;
2bd59d48 2102 goto out_unlock;
ddbcc7e8 2103 }
ddbcc7e8 2104
817929ec 2105 /*
172a2c06
TH
2106 * No such thing, create a new one. name= matching without subsys
2107 * specification is allowed for already existing hierarchies but we
2108 * can't create new one without subsys specification.
817929ec 2109 */
172a2c06
TH
2110 if (!opts.subsys_mask && !opts.none) {
2111 ret = -EINVAL;
2112 goto out_unlock;
817929ec 2113 }
817929ec 2114
172a2c06
TH
2115 root = kzalloc(sizeof(*root), GFP_KERNEL);
2116 if (!root) {
2117 ret = -ENOMEM;
2bd59d48 2118 goto out_unlock;
839ec545 2119 }
e5f6a860 2120
172a2c06
TH
2121 init_cgroup_root(root, &opts);
2122
35585573 2123 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2124 if (ret)
2125 cgroup_free_root(root);
fa3ca07e 2126
8e30e2b8 2127out_unlock:
ddbcc7e8 2128 mutex_unlock(&cgroup_mutex);
a015edd2 2129out_free:
c6d57f33
PM
2130 kfree(opts.release_agent);
2131 kfree(opts.name);
03b1cde6 2132
2bd59d48 2133 if (ret)
8e30e2b8 2134 return ERR_PTR(ret);
67e9c74b 2135out_mount:
c9482a5b 2136 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2137 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2138 &new_sb);
c6b3d5bc 2139 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2140 cgroup_put(&root->cgrp);
3a32bd72
LZ
2141
2142 /*
2143 * If @pinned_sb, we're reusing an existing root and holding an
2144 * extra ref on its sb. Mount is complete. Put the extra ref.
2145 */
2146 if (pinned_sb) {
2147 WARN_ON(new_sb);
2148 deactivate_super(pinned_sb);
2149 }
2150
2bd59d48
TH
2151 return dentry;
2152}
2153
2154static void cgroup_kill_sb(struct super_block *sb)
2155{
2156 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2157 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2158
9d755d33
TH
2159 /*
2160 * If @root doesn't have any mounts or children, start killing it.
2161 * This prevents new mounts by disabling percpu_ref_tryget_live().
2162 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2163 *
2164 * And don't kill the default root.
9d755d33 2165 */
3c606d35 2166 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2167 root == &cgrp_dfl_root)
9d755d33
TH
2168 cgroup_put(&root->cgrp);
2169 else
2170 percpu_ref_kill(&root->cgrp.self.refcnt);
2171
2bd59d48 2172 kernfs_kill_sb(sb);
ddbcc7e8
PM
2173}
2174
2175static struct file_system_type cgroup_fs_type = {
2176 .name = "cgroup",
f7e83571 2177 .mount = cgroup_mount,
ddbcc7e8
PM
2178 .kill_sb = cgroup_kill_sb,
2179};
2180
67e9c74b
TH
2181static struct file_system_type cgroup2_fs_type = {
2182 .name = "cgroup2",
2183 .mount = cgroup_mount,
2184 .kill_sb = cgroup_kill_sb,
2185};
2186
857a2beb 2187/**
913ffdb5 2188 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2189 * @task: target task
857a2beb
TH
2190 * @buf: the buffer to write the path into
2191 * @buflen: the length of the buffer
2192 *
913ffdb5
TH
2193 * Determine @task's cgroup on the first (the one with the lowest non-zero
2194 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2195 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2196 * cgroup controller callbacks.
2197 *
e61734c5 2198 * Return value is the same as kernfs_path().
857a2beb 2199 */
e61734c5 2200char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2201{
3dd06ffa 2202 struct cgroup_root *root;
913ffdb5 2203 struct cgroup *cgrp;
e61734c5
TH
2204 int hierarchy_id = 1;
2205 char *path = NULL;
857a2beb
TH
2206
2207 mutex_lock(&cgroup_mutex);
f0d9a5f1 2208 spin_lock_bh(&css_set_lock);
857a2beb 2209
913ffdb5
TH
2210 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2211
857a2beb
TH
2212 if (root) {
2213 cgrp = task_cgroup_from_root(task, root);
e61734c5 2214 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2215 } else {
2216 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2217 if (strlcpy(buf, "/", buflen) < buflen)
2218 path = buf;
857a2beb
TH
2219 }
2220
f0d9a5f1 2221 spin_unlock_bh(&css_set_lock);
857a2beb 2222 mutex_unlock(&cgroup_mutex);
e61734c5 2223 return path;
857a2beb 2224}
913ffdb5 2225EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2226
b3dc094e 2227/* used to track tasks and other necessary states during migration */
2f7ee569 2228struct cgroup_taskset {
b3dc094e
TH
2229 /* the src and dst cset list running through cset->mg_node */
2230 struct list_head src_csets;
2231 struct list_head dst_csets;
2232
1f7dd3e5
TH
2233 /* the subsys currently being processed */
2234 int ssid;
2235
b3dc094e
TH
2236 /*
2237 * Fields for cgroup_taskset_*() iteration.
2238 *
2239 * Before migration is committed, the target migration tasks are on
2240 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2241 * the csets on ->dst_csets. ->csets point to either ->src_csets
2242 * or ->dst_csets depending on whether migration is committed.
2243 *
2244 * ->cur_csets and ->cur_task point to the current task position
2245 * during iteration.
2246 */
2247 struct list_head *csets;
2248 struct css_set *cur_cset;
2249 struct task_struct *cur_task;
2f7ee569
TH
2250};
2251
adaae5dc
TH
2252#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2253 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2254 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2255 .csets = &tset.src_csets, \
2256}
2257
2258/**
2259 * cgroup_taskset_add - try to add a migration target task to a taskset
2260 * @task: target task
2261 * @tset: target taskset
2262 *
2263 * Add @task, which is a migration target, to @tset. This function becomes
2264 * noop if @task doesn't need to be migrated. @task's css_set should have
2265 * been added as a migration source and @task->cg_list will be moved from
2266 * the css_set's tasks list to mg_tasks one.
2267 */
2268static void cgroup_taskset_add(struct task_struct *task,
2269 struct cgroup_taskset *tset)
2270{
2271 struct css_set *cset;
2272
f0d9a5f1 2273 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2274
2275 /* @task either already exited or can't exit until the end */
2276 if (task->flags & PF_EXITING)
2277 return;
2278
2279 /* leave @task alone if post_fork() hasn't linked it yet */
2280 if (list_empty(&task->cg_list))
2281 return;
2282
2283 cset = task_css_set(task);
2284 if (!cset->mg_src_cgrp)
2285 return;
2286
2287 list_move_tail(&task->cg_list, &cset->mg_tasks);
2288 if (list_empty(&cset->mg_node))
2289 list_add_tail(&cset->mg_node, &tset->src_csets);
2290 if (list_empty(&cset->mg_dst_cset->mg_node))
2291 list_move_tail(&cset->mg_dst_cset->mg_node,
2292 &tset->dst_csets);
2293}
2294
2f7ee569
TH
2295/**
2296 * cgroup_taskset_first - reset taskset and return the first task
2297 * @tset: taskset of interest
1f7dd3e5 2298 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2299 *
2300 * @tset iteration is initialized and the first task is returned.
2301 */
1f7dd3e5
TH
2302struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2303 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2304{
b3dc094e
TH
2305 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2306 tset->cur_task = NULL;
2307
1f7dd3e5 2308 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2309}
2f7ee569
TH
2310
2311/**
2312 * cgroup_taskset_next - iterate to the next task in taskset
2313 * @tset: taskset of interest
1f7dd3e5 2314 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2315 *
2316 * Return the next task in @tset. Iteration must have been initialized
2317 * with cgroup_taskset_first().
2318 */
1f7dd3e5
TH
2319struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2320 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2321{
b3dc094e
TH
2322 struct css_set *cset = tset->cur_cset;
2323 struct task_struct *task = tset->cur_task;
2f7ee569 2324
b3dc094e
TH
2325 while (&cset->mg_node != tset->csets) {
2326 if (!task)
2327 task = list_first_entry(&cset->mg_tasks,
2328 struct task_struct, cg_list);
2329 else
2330 task = list_next_entry(task, cg_list);
2f7ee569 2331
b3dc094e
TH
2332 if (&task->cg_list != &cset->mg_tasks) {
2333 tset->cur_cset = cset;
2334 tset->cur_task = task;
1f7dd3e5
TH
2335
2336 /*
2337 * This function may be called both before and
2338 * after cgroup_taskset_migrate(). The two cases
2339 * can be distinguished by looking at whether @cset
2340 * has its ->mg_dst_cset set.
2341 */
2342 if (cset->mg_dst_cset)
2343 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2344 else
2345 *dst_cssp = cset->subsys[tset->ssid];
2346
b3dc094e
TH
2347 return task;
2348 }
2f7ee569 2349
b3dc094e
TH
2350 cset = list_next_entry(cset, mg_node);
2351 task = NULL;
2352 }
2f7ee569 2353
b3dc094e 2354 return NULL;
2f7ee569 2355}
2f7ee569 2356
adaae5dc
TH
2357/**
2358 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2359 * @tset: taget taskset
2360 * @dst_cgrp: destination cgroup
2361 *
2362 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2363 * ->can_attach callbacks fails and guarantees that either all or none of
2364 * the tasks in @tset are migrated. @tset is consumed regardless of
2365 * success.
2366 */
2367static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2368 struct cgroup *dst_cgrp)
2369{
2370 struct cgroup_subsys_state *css, *failed_css = NULL;
2371 struct task_struct *task, *tmp_task;
2372 struct css_set *cset, *tmp_cset;
2373 int i, ret;
2374
2375 /* methods shouldn't be called if no task is actually migrating */
2376 if (list_empty(&tset->src_csets))
2377 return 0;
2378
2379 /* check that we can legitimately attach to the cgroup */
2380 for_each_e_css(css, i, dst_cgrp) {
2381 if (css->ss->can_attach) {
1f7dd3e5
TH
2382 tset->ssid = i;
2383 ret = css->ss->can_attach(tset);
adaae5dc
TH
2384 if (ret) {
2385 failed_css = css;
2386 goto out_cancel_attach;
2387 }
2388 }
2389 }
2390
2391 /*
2392 * Now that we're guaranteed success, proceed to move all tasks to
2393 * the new cgroup. There are no failure cases after here, so this
2394 * is the commit point.
2395 */
f0d9a5f1 2396 spin_lock_bh(&css_set_lock);
adaae5dc 2397 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2398 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2399 struct css_set *from_cset = task_css_set(task);
2400 struct css_set *to_cset = cset->mg_dst_cset;
2401
2402 get_css_set(to_cset);
2403 css_set_move_task(task, from_cset, to_cset, true);
2404 put_css_set_locked(from_cset);
2405 }
adaae5dc 2406 }
f0d9a5f1 2407 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2408
2409 /*
2410 * Migration is committed, all target tasks are now on dst_csets.
2411 * Nothing is sensitive to fork() after this point. Notify
2412 * controllers that migration is complete.
2413 */
2414 tset->csets = &tset->dst_csets;
2415
1f7dd3e5
TH
2416 for_each_e_css(css, i, dst_cgrp) {
2417 if (css->ss->attach) {
2418 tset->ssid = i;
2419 css->ss->attach(tset);
2420 }
2421 }
adaae5dc
TH
2422
2423 ret = 0;
2424 goto out_release_tset;
2425
2426out_cancel_attach:
2427 for_each_e_css(css, i, dst_cgrp) {
2428 if (css == failed_css)
2429 break;
1f7dd3e5
TH
2430 if (css->ss->cancel_attach) {
2431 tset->ssid = i;
2432 css->ss->cancel_attach(tset);
2433 }
adaae5dc
TH
2434 }
2435out_release_tset:
f0d9a5f1 2436 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2437 list_splice_init(&tset->dst_csets, &tset->src_csets);
2438 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2439 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2440 list_del_init(&cset->mg_node);
2441 }
f0d9a5f1 2442 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2443 return ret;
2444}
2445
a043e3b2 2446/**
1958d2d5
TH
2447 * cgroup_migrate_finish - cleanup after attach
2448 * @preloaded_csets: list of preloaded css_sets
74a1166d 2449 *
1958d2d5
TH
2450 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2451 * those functions for details.
74a1166d 2452 */
1958d2d5 2453static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2454{
1958d2d5 2455 struct css_set *cset, *tmp_cset;
74a1166d 2456
1958d2d5
TH
2457 lockdep_assert_held(&cgroup_mutex);
2458
f0d9a5f1 2459 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2460 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2461 cset->mg_src_cgrp = NULL;
2462 cset->mg_dst_cset = NULL;
2463 list_del_init(&cset->mg_preload_node);
a25eb52e 2464 put_css_set_locked(cset);
1958d2d5 2465 }
f0d9a5f1 2466 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2467}
2468
2469/**
2470 * cgroup_migrate_add_src - add a migration source css_set
2471 * @src_cset: the source css_set to add
2472 * @dst_cgrp: the destination cgroup
2473 * @preloaded_csets: list of preloaded css_sets
2474 *
2475 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2476 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2477 * up by cgroup_migrate_finish().
2478 *
1ed13287
TH
2479 * This function may be called without holding cgroup_threadgroup_rwsem
2480 * even if the target is a process. Threads may be created and destroyed
2481 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2482 * into play and the preloaded css_sets are guaranteed to cover all
2483 * migrations.
1958d2d5
TH
2484 */
2485static void cgroup_migrate_add_src(struct css_set *src_cset,
2486 struct cgroup *dst_cgrp,
2487 struct list_head *preloaded_csets)
2488{
2489 struct cgroup *src_cgrp;
2490
2491 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2492 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2493
2494 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2495
1958d2d5
TH
2496 if (!list_empty(&src_cset->mg_preload_node))
2497 return;
2498
2499 WARN_ON(src_cset->mg_src_cgrp);
2500 WARN_ON(!list_empty(&src_cset->mg_tasks));
2501 WARN_ON(!list_empty(&src_cset->mg_node));
2502
2503 src_cset->mg_src_cgrp = src_cgrp;
2504 get_css_set(src_cset);
2505 list_add(&src_cset->mg_preload_node, preloaded_csets);
2506}
2507
2508/**
2509 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2510 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2511 * @preloaded_csets: list of preloaded source css_sets
2512 *
2513 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2514 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2515 * pins all destination css_sets, links each to its source, and append them
2516 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2517 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2518 *
2519 * This function must be called after cgroup_migrate_add_src() has been
2520 * called on each migration source css_set. After migration is performed
2521 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2522 * @preloaded_csets.
2523 */
2524static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2525 struct list_head *preloaded_csets)
2526{
2527 LIST_HEAD(csets);
f817de98 2528 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2529
2530 lockdep_assert_held(&cgroup_mutex);
2531
f8f22e53 2532 /*
8699b776 2533 * Except for the root, subtree_ss_mask must be zero for a cgroup
f8f22e53
TH
2534 * with tasks so that child cgroups don't compete against tasks.
2535 */
d51f39b0 2536 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
8699b776 2537 dst_cgrp->subtree_ss_mask)
f8f22e53
TH
2538 return -EBUSY;
2539
1958d2d5 2540 /* look up the dst cset for each src cset and link it to src */
f817de98 2541 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2542 struct css_set *dst_cset;
2543
f817de98
TH
2544 dst_cset = find_css_set(src_cset,
2545 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2546 if (!dst_cset)
2547 goto err;
2548
2549 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2550
2551 /*
2552 * If src cset equals dst, it's noop. Drop the src.
2553 * cgroup_migrate() will skip the cset too. Note that we
2554 * can't handle src == dst as some nodes are used by both.
2555 */
2556 if (src_cset == dst_cset) {
2557 src_cset->mg_src_cgrp = NULL;
2558 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2559 put_css_set(src_cset);
2560 put_css_set(dst_cset);
f817de98
TH
2561 continue;
2562 }
2563
1958d2d5
TH
2564 src_cset->mg_dst_cset = dst_cset;
2565
2566 if (list_empty(&dst_cset->mg_preload_node))
2567 list_add(&dst_cset->mg_preload_node, &csets);
2568 else
a25eb52e 2569 put_css_set(dst_cset);
1958d2d5
TH
2570 }
2571
f817de98 2572 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2573 return 0;
2574err:
2575 cgroup_migrate_finish(&csets);
2576 return -ENOMEM;
2577}
2578
2579/**
2580 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2581 * @leader: the leader of the process or the task to migrate
2582 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2583 * @cgrp: the destination cgroup
1958d2d5
TH
2584 *
2585 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2586 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2587 * caller is also responsible for invoking cgroup_migrate_add_src() and
2588 * cgroup_migrate_prepare_dst() on the targets before invoking this
2589 * function and following up with cgroup_migrate_finish().
2590 *
2591 * As long as a controller's ->can_attach() doesn't fail, this function is
2592 * guaranteed to succeed. This means that, excluding ->can_attach()
2593 * failure, when migrating multiple targets, the success or failure can be
2594 * decided for all targets by invoking group_migrate_prepare_dst() before
2595 * actually starting migrating.
2596 */
9af2ec45
TH
2597static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2598 struct cgroup *cgrp)
74a1166d 2599{
adaae5dc
TH
2600 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2601 struct task_struct *task;
74a1166d 2602
fb5d2b4c
MSB
2603 /*
2604 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2605 * already PF_EXITING could be freed from underneath us unless we
2606 * take an rcu_read_lock.
2607 */
f0d9a5f1 2608 spin_lock_bh(&css_set_lock);
fb5d2b4c 2609 rcu_read_lock();
9db8de37 2610 task = leader;
74a1166d 2611 do {
adaae5dc 2612 cgroup_taskset_add(task, &tset);
081aa458
LZ
2613 if (!threadgroup)
2614 break;
9db8de37 2615 } while_each_thread(leader, task);
fb5d2b4c 2616 rcu_read_unlock();
f0d9a5f1 2617 spin_unlock_bh(&css_set_lock);
74a1166d 2618
adaae5dc 2619 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2620}
2621
1958d2d5
TH
2622/**
2623 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2624 * @dst_cgrp: the cgroup to attach to
2625 * @leader: the task or the leader of the threadgroup to be attached
2626 * @threadgroup: attach the whole threadgroup?
2627 *
1ed13287 2628 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2629 */
2630static int cgroup_attach_task(struct cgroup *dst_cgrp,
2631 struct task_struct *leader, bool threadgroup)
2632{
2633 LIST_HEAD(preloaded_csets);
2634 struct task_struct *task;
2635 int ret;
2636
2637 /* look up all src csets */
f0d9a5f1 2638 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2639 rcu_read_lock();
2640 task = leader;
2641 do {
2642 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2643 &preloaded_csets);
2644 if (!threadgroup)
2645 break;
2646 } while_each_thread(leader, task);
2647 rcu_read_unlock();
f0d9a5f1 2648 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2649
2650 /* prepare dst csets and commit */
2651 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2652 if (!ret)
9af2ec45 2653 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2654
2655 cgroup_migrate_finish(&preloaded_csets);
2656 return ret;
74a1166d
BB
2657}
2658
187fe840
TH
2659static int cgroup_procs_write_permission(struct task_struct *task,
2660 struct cgroup *dst_cgrp,
2661 struct kernfs_open_file *of)
dedf22e9
TH
2662{
2663 const struct cred *cred = current_cred();
2664 const struct cred *tcred = get_task_cred(task);
2665 int ret = 0;
2666
2667 /*
2668 * even if we're attaching all tasks in the thread group, we only
2669 * need to check permissions on one of them.
2670 */
2671 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2672 !uid_eq(cred->euid, tcred->uid) &&
2673 !uid_eq(cred->euid, tcred->suid))
2674 ret = -EACCES;
2675
187fe840
TH
2676 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2677 struct super_block *sb = of->file->f_path.dentry->d_sb;
2678 struct cgroup *cgrp;
2679 struct inode *inode;
2680
f0d9a5f1 2681 spin_lock_bh(&css_set_lock);
187fe840 2682 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2683 spin_unlock_bh(&css_set_lock);
187fe840
TH
2684
2685 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2686 cgrp = cgroup_parent(cgrp);
2687
2688 ret = -ENOMEM;
6f60eade 2689 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2690 if (inode) {
2691 ret = inode_permission(inode, MAY_WRITE);
2692 iput(inode);
2693 }
2694 }
2695
dedf22e9
TH
2696 put_cred(tcred);
2697 return ret;
2698}
2699
74a1166d
BB
2700/*
2701 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2702 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2703 * cgroup_mutex and threadgroup.
bbcb81d0 2704 */
acbef755
TH
2705static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2706 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2707{
bbcb81d0 2708 struct task_struct *tsk;
e76ecaee 2709 struct cgroup *cgrp;
acbef755 2710 pid_t pid;
bbcb81d0
PM
2711 int ret;
2712
acbef755
TH
2713 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2714 return -EINVAL;
2715
e76ecaee
TH
2716 cgrp = cgroup_kn_lock_live(of->kn);
2717 if (!cgrp)
74a1166d
BB
2718 return -ENODEV;
2719
3014dde7 2720 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2721 rcu_read_lock();
bbcb81d0 2722 if (pid) {
73507f33 2723 tsk = find_task_by_vpid(pid);
74a1166d 2724 if (!tsk) {
dd4b0a46 2725 ret = -ESRCH;
3014dde7 2726 goto out_unlock_rcu;
bbcb81d0 2727 }
dedf22e9 2728 } else {
b78949eb 2729 tsk = current;
dedf22e9 2730 }
cd3d0952
TH
2731
2732 if (threadgroup)
b78949eb 2733 tsk = tsk->group_leader;
c4c27fbd
MG
2734
2735 /*
14a40ffc 2736 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2737 * trapped in a cpuset, or RT worker may be born in a cgroup
2738 * with no rt_runtime allocated. Just say no.
2739 */
14a40ffc 2740 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2741 ret = -EINVAL;
3014dde7 2742 goto out_unlock_rcu;
c4c27fbd
MG
2743 }
2744
b78949eb
MSB
2745 get_task_struct(tsk);
2746 rcu_read_unlock();
2747
187fe840 2748 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2749 if (!ret)
2750 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2751
f9f9e7b7 2752 put_task_struct(tsk);
3014dde7
TH
2753 goto out_unlock_threadgroup;
2754
2755out_unlock_rcu:
2756 rcu_read_unlock();
2757out_unlock_threadgroup:
2758 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2759 cgroup_kn_unlock(of->kn);
e93ad19d 2760 cpuset_post_attach_flush();
acbef755 2761 return ret ?: nbytes;
bbcb81d0
PM
2762}
2763
7ae1bad9
TH
2764/**
2765 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2766 * @from: attach to all cgroups of a given task
2767 * @tsk: the task to be attached
2768 */
2769int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2770{
3dd06ffa 2771 struct cgroup_root *root;
7ae1bad9
TH
2772 int retval = 0;
2773
47cfcd09 2774 mutex_lock(&cgroup_mutex);
985ed670 2775 for_each_root(root) {
96d365e0
TH
2776 struct cgroup *from_cgrp;
2777
3dd06ffa 2778 if (root == &cgrp_dfl_root)
985ed670
TH
2779 continue;
2780
f0d9a5f1 2781 spin_lock_bh(&css_set_lock);
96d365e0 2782 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2783 spin_unlock_bh(&css_set_lock);
7ae1bad9 2784
6f4b7e63 2785 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2786 if (retval)
2787 break;
2788 }
47cfcd09 2789 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2790
2791 return retval;
2792}
2793EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2794
acbef755
TH
2795static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2796 char *buf, size_t nbytes, loff_t off)
74a1166d 2797{
acbef755 2798 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2799}
2800
acbef755
TH
2801static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2802 char *buf, size_t nbytes, loff_t off)
af351026 2803{
acbef755 2804 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2805}
2806
451af504
TH
2807static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2808 char *buf, size_t nbytes, loff_t off)
e788e066 2809{
e76ecaee 2810 struct cgroup *cgrp;
5f469907 2811
e76ecaee 2812 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2813
e76ecaee
TH
2814 cgrp = cgroup_kn_lock_live(of->kn);
2815 if (!cgrp)
e788e066 2816 return -ENODEV;
69e943b7 2817 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2818 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2819 sizeof(cgrp->root->release_agent_path));
69e943b7 2820 spin_unlock(&release_agent_path_lock);
e76ecaee 2821 cgroup_kn_unlock(of->kn);
451af504 2822 return nbytes;
e788e066
PM
2823}
2824
2da8ca82 2825static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2826{
2da8ca82 2827 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2828
46cfeb04 2829 spin_lock(&release_agent_path_lock);
e788e066 2830 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2831 spin_unlock(&release_agent_path_lock);
e788e066 2832 seq_putc(seq, '\n');
e788e066
PM
2833 return 0;
2834}
2835
2da8ca82 2836static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2837{
c1d5d42e 2838 seq_puts(seq, "0\n");
e788e066
PM
2839 return 0;
2840}
2841
8ab456ac 2842static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2843{
f8f22e53
TH
2844 struct cgroup_subsys *ss;
2845 bool printed = false;
2846 int ssid;
a742c59d 2847
b4e0eeaf 2848 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2849 if (printed)
2850 seq_putc(seq, ' ');
2851 seq_printf(seq, "%s", ss->name);
2852 printed = true;
b4e0eeaf 2853 } while_each_subsys_mask();
f8f22e53
TH
2854 if (printed)
2855 seq_putc(seq, '\n');
355e0c48
PM
2856}
2857
f8f22e53
TH
2858/* show controllers which are currently attached to the default hierarchy */
2859static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2860{
f8f22e53
TH
2861 struct cgroup *cgrp = seq_css(seq)->cgroup;
2862
5533e011
TH
2863 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2864 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2865 return 0;
db3b1497
PM
2866}
2867
f8f22e53
TH
2868/* show controllers which are enabled from the parent */
2869static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2870{
f8f22e53
TH
2871 struct cgroup *cgrp = seq_css(seq)->cgroup;
2872
667c2491 2873 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2874 return 0;
ddbcc7e8
PM
2875}
2876
f8f22e53
TH
2877/* show controllers which are enabled for a given cgroup's children */
2878static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2879{
f8f22e53
TH
2880 struct cgroup *cgrp = seq_css(seq)->cgroup;
2881
667c2491 2882 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2883 return 0;
2884}
2885
2886/**
2887 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2888 * @cgrp: root of the subtree to update csses for
2889 *
8699b776 2890 * @cgrp's subtree_ss_mask has changed and its subtree's (self excluded)
f8f22e53
TH
2891 * css associations need to be updated accordingly. This function looks up
2892 * all css_sets which are attached to the subtree, creates the matching
2893 * updated css_sets and migrates the tasks to the new ones.
2894 */
2895static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2896{
2897 LIST_HEAD(preloaded_csets);
10265075 2898 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2899 struct cgroup_subsys_state *css;
2900 struct css_set *src_cset;
2901 int ret;
2902
f8f22e53
TH
2903 lockdep_assert_held(&cgroup_mutex);
2904
3014dde7
TH
2905 percpu_down_write(&cgroup_threadgroup_rwsem);
2906
f8f22e53 2907 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2908 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2909 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2910 struct cgrp_cset_link *link;
2911
8699b776 2912 /* self is not affected by subtree_ss_mask change */
f8f22e53
TH
2913 if (css->cgroup == cgrp)
2914 continue;
2915
2916 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2917 cgroup_migrate_add_src(link->cset, cgrp,
2918 &preloaded_csets);
2919 }
f0d9a5f1 2920 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2921
2922 /* NULL dst indicates self on default hierarchy */
2923 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2924 if (ret)
2925 goto out_finish;
2926
f0d9a5f1 2927 spin_lock_bh(&css_set_lock);
f8f22e53 2928 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2929 struct task_struct *task, *ntask;
f8f22e53
TH
2930
2931 /* src_csets precede dst_csets, break on the first dst_cset */
2932 if (!src_cset->mg_src_cgrp)
2933 break;
2934
10265075
TH
2935 /* all tasks in src_csets need to be migrated */
2936 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2937 cgroup_taskset_add(task, &tset);
f8f22e53 2938 }
f0d9a5f1 2939 spin_unlock_bh(&css_set_lock);
f8f22e53 2940
10265075 2941 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2942out_finish:
2943 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2944 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2945 return ret;
2946}
2947
2948/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2949static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2950 char *buf, size_t nbytes,
2951 loff_t off)
f8f22e53 2952{
8ab456ac
AS
2953 unsigned long enable = 0, disable = 0;
2954 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2955 struct cgroup *cgrp, *child;
f8f22e53 2956 struct cgroup_subsys *ss;
451af504 2957 char *tok;
f8f22e53
TH
2958 int ssid, ret;
2959
2960 /*
d37167ab
TH
2961 * Parse input - space separated list of subsystem names prefixed
2962 * with either + or -.
f8f22e53 2963 */
451af504
TH
2964 buf = strstrip(buf);
2965 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2966 if (tok[0] == '\0')
2967 continue;
b4e0eeaf 2968 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_root_inhibit_ss_mask) {
fc5ed1e9
TH
2969 if (!cgroup_ssid_enabled(ssid) ||
2970 strcmp(tok + 1, ss->name))
f8f22e53
TH
2971 continue;
2972
2973 if (*tok == '+') {
7d331fa9
TH
2974 enable |= 1 << ssid;
2975 disable &= ~(1 << ssid);
f8f22e53 2976 } else if (*tok == '-') {
7d331fa9
TH
2977 disable |= 1 << ssid;
2978 enable &= ~(1 << ssid);
f8f22e53
TH
2979 } else {
2980 return -EINVAL;
2981 }
2982 break;
b4e0eeaf 2983 } while_each_subsys_mask();
f8f22e53
TH
2984 if (ssid == CGROUP_SUBSYS_COUNT)
2985 return -EINVAL;
2986 }
2987
a9746d8d
TH
2988 cgrp = cgroup_kn_lock_live(of->kn);
2989 if (!cgrp)
2990 return -ENODEV;
f8f22e53
TH
2991
2992 for_each_subsys(ss, ssid) {
2993 if (enable & (1 << ssid)) {
667c2491 2994 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2995 enable &= ~(1 << ssid);
2996 continue;
2997 }
2998
c29adf24
TH
2999 /* unavailable or not enabled on the parent? */
3000 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3001 (cgroup_parent(cgrp) &&
667c2491 3002 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
3003 ret = -ENOENT;
3004 goto out_unlock;
3005 }
f8f22e53 3006 } else if (disable & (1 << ssid)) {
667c2491 3007 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3008 disable &= ~(1 << ssid);
3009 continue;
3010 }
3011
3012 /* a child has it enabled? */
3013 cgroup_for_each_live_child(child, cgrp) {
667c2491 3014 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3015 ret = -EBUSY;
ddab2b6e 3016 goto out_unlock;
f8f22e53
TH
3017 }
3018 }
3019 }
3020 }
3021
3022 if (!enable && !disable) {
3023 ret = 0;
ddab2b6e 3024 goto out_unlock;
f8f22e53
TH
3025 }
3026
3027 /*
667c2491 3028 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3029 * with tasks so that child cgroups don't compete against tasks.
3030 */
d51f39b0 3031 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3032 ret = -EBUSY;
3033 goto out_unlock;
3034 }
3035
3036 /*
f63070d3
TH
3037 * Update subsys masks and calculate what needs to be done. More
3038 * subsystems than specified may need to be enabled or disabled
3039 * depending on subsystem dependencies.
3040 */
755bf5ee 3041 old_sc = cgrp->subtree_control;
8699b776 3042 old_ss = cgrp->subtree_ss_mask;
755bf5ee 3043 new_sc = (old_sc | enable) & ~disable;
8699b776 3044 new_ss = cgroup_calc_subtree_ss_mask(cgrp, new_sc);
f63070d3 3045
755bf5ee
TH
3046 css_enable = ~old_ss & new_ss;
3047 css_disable = old_ss & ~new_ss;
f63070d3
TH
3048 enable |= css_enable;
3049 disable |= css_disable;
c29adf24 3050
db6e3053
TH
3051 /*
3052 * Because css offlining is asynchronous, userland might try to
3053 * re-enable the same controller while the previous instance is
3054 * still around. In such cases, wait till it's gone using
3055 * offline_waitq.
3056 */
b4e0eeaf 3057 do_each_subsys_mask(ss, ssid, css_enable) {
db6e3053
TH
3058 cgroup_for_each_live_child(child, cgrp) {
3059 DEFINE_WAIT(wait);
3060
3061 if (!cgroup_css(child, ss))
3062 continue;
3063
3064 cgroup_get(child);
3065 prepare_to_wait(&child->offline_waitq, &wait,
3066 TASK_UNINTERRUPTIBLE);
3067 cgroup_kn_unlock(of->kn);
3068 schedule();
3069 finish_wait(&child->offline_waitq, &wait);
3070 cgroup_put(child);
3071
3072 return restart_syscall();
3073 }
b4e0eeaf 3074 } while_each_subsys_mask();
db6e3053 3075
755bf5ee 3076 cgrp->subtree_control = new_sc;
8699b776 3077 cgrp->subtree_ss_mask = new_ss;
755bf5ee 3078
f63070d3
TH
3079 /*
3080 * Create new csses or make the existing ones visible. A css is
3081 * created invisible if it's being implicitly enabled through
3082 * dependency. An invisible css is made visible when the userland
3083 * explicitly enables it.
f8f22e53 3084 */
996cd1fb 3085 do_each_subsys_mask(ss, ssid, enable) {
f8f22e53 3086 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3087 if (css_enable & (1 << ssid))
3088 ret = create_css(child, ss,
3089 cgrp->subtree_control & (1 << ssid));
3090 else
4df8dc90
TH
3091 ret = css_populate_dir(cgroup_css(child, ss),
3092 NULL);
f8f22e53
TH
3093 if (ret)
3094 goto err_undo_css;
3095 }
996cd1fb 3096 } while_each_subsys_mask();
f8f22e53 3097
c29adf24
TH
3098 /*
3099 * At this point, cgroup_e_css() results reflect the new csses
3100 * making the following cgroup_update_dfl_csses() properly update
3101 * css associations of all tasks in the subtree.
3102 */
f8f22e53
TH
3103 ret = cgroup_update_dfl_csses(cgrp);
3104 if (ret)
3105 goto err_undo_css;
3106
f63070d3
TH
3107 /*
3108 * All tasks are migrated out of disabled csses. Kill or hide
3109 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3110 * disabled while other subsystems are still depending on it. The
3111 * css must not actively control resources and be in the vanilla
3112 * state if it's made visible again later. Controllers which may
3113 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3114 */
996cd1fb 3115 do_each_subsys_mask(ss, ssid, disable) {
f63070d3 3116 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3117 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3118
3119 if (css_disable & (1 << ssid)) {
3120 kill_css(css);
3121 } else {
4df8dc90 3122 css_clear_dir(css, NULL);
b4536f0c
TH
3123 if (ss->css_reset)
3124 ss->css_reset(css);
3125 }
f63070d3 3126 }
996cd1fb 3127 } while_each_subsys_mask();
f8f22e53
TH
3128
3129 kernfs_activate(cgrp->kn);
3130 ret = 0;
3131out_unlock:
a9746d8d 3132 cgroup_kn_unlock(of->kn);
451af504 3133 return ret ?: nbytes;
f8f22e53
TH
3134
3135err_undo_css:
755bf5ee 3136 cgrp->subtree_control = old_sc;
8699b776 3137 cgrp->subtree_ss_mask = old_ss;
f8f22e53 3138
996cd1fb 3139 do_each_subsys_mask(ss, ssid, enable) {
f8f22e53
TH
3140 cgroup_for_each_live_child(child, cgrp) {
3141 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3142
3143 if (!css)
3144 continue;
3145
3146 if (css_enable & (1 << ssid))
f8f22e53 3147 kill_css(css);
f63070d3 3148 else
4df8dc90 3149 css_clear_dir(css, NULL);
f8f22e53 3150 }
996cd1fb 3151 } while_each_subsys_mask();
f8f22e53
TH
3152 goto out_unlock;
3153}
3154
4a07c222 3155static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3156{
4a07c222 3157 seq_printf(seq, "populated %d\n",
27bd4dbb 3158 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3159 return 0;
3160}
3161
2bd59d48
TH
3162static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3163 size_t nbytes, loff_t off)
355e0c48 3164{
2bd59d48
TH
3165 struct cgroup *cgrp = of->kn->parent->priv;
3166 struct cftype *cft = of->kn->priv;
3167 struct cgroup_subsys_state *css;
a742c59d 3168 int ret;
355e0c48 3169
b4168640
TH
3170 if (cft->write)
3171 return cft->write(of, buf, nbytes, off);
3172
2bd59d48
TH
3173 /*
3174 * kernfs guarantees that a file isn't deleted with operations in
3175 * flight, which means that the matching css is and stays alive and
3176 * doesn't need to be pinned. The RCU locking is not necessary
3177 * either. It's just for the convenience of using cgroup_css().
3178 */
3179 rcu_read_lock();
3180 css = cgroup_css(cgrp, cft->ss);
3181 rcu_read_unlock();
a742c59d 3182
451af504 3183 if (cft->write_u64) {
a742c59d
TH
3184 unsigned long long v;
3185 ret = kstrtoull(buf, 0, &v);
3186 if (!ret)
3187 ret = cft->write_u64(css, cft, v);
3188 } else if (cft->write_s64) {
3189 long long v;
3190 ret = kstrtoll(buf, 0, &v);
3191 if (!ret)
3192 ret = cft->write_s64(css, cft, v);
e73d2c61 3193 } else {
a742c59d 3194 ret = -EINVAL;
e73d2c61 3195 }
2bd59d48 3196
a742c59d 3197 return ret ?: nbytes;
355e0c48
PM
3198}
3199
6612f05b 3200static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3201{
2bd59d48 3202 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3203}
3204
6612f05b 3205static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3206{
2bd59d48 3207 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3208}
3209
6612f05b 3210static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3211{
2bd59d48 3212 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3213}
3214
91796569 3215static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3216{
7da11279
TH
3217 struct cftype *cft = seq_cft(m);
3218 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3219
2da8ca82
TH
3220 if (cft->seq_show)
3221 return cft->seq_show(m, arg);
e73d2c61 3222
f4c753b7 3223 if (cft->read_u64)
896f5199
TH
3224 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3225 else if (cft->read_s64)
3226 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3227 else
3228 return -EINVAL;
3229 return 0;
91796569
PM
3230}
3231
2bd59d48
TH
3232static struct kernfs_ops cgroup_kf_single_ops = {
3233 .atomic_write_len = PAGE_SIZE,
3234 .write = cgroup_file_write,
3235 .seq_show = cgroup_seqfile_show,
91796569
PM
3236};
3237
2bd59d48
TH
3238static struct kernfs_ops cgroup_kf_ops = {
3239 .atomic_write_len = PAGE_SIZE,
3240 .write = cgroup_file_write,
3241 .seq_start = cgroup_seqfile_start,
3242 .seq_next = cgroup_seqfile_next,
3243 .seq_stop = cgroup_seqfile_stop,
3244 .seq_show = cgroup_seqfile_show,
3245};
ddbcc7e8
PM
3246
3247/*
3248 * cgroup_rename - Only allow simple rename of directories in place.
3249 */
2bd59d48
TH
3250static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3251 const char *new_name_str)
ddbcc7e8 3252{
2bd59d48 3253 struct cgroup *cgrp = kn->priv;
65dff759 3254 int ret;
65dff759 3255
2bd59d48 3256 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3257 return -ENOTDIR;
2bd59d48 3258 if (kn->parent != new_parent)
ddbcc7e8 3259 return -EIO;
65dff759 3260
6db8e85c
TH
3261 /*
3262 * This isn't a proper migration and its usefulness is very
aa6ec29b 3263 * limited. Disallow on the default hierarchy.
6db8e85c 3264 */
aa6ec29b 3265 if (cgroup_on_dfl(cgrp))
6db8e85c 3266 return -EPERM;
099fca32 3267
e1b2dc17 3268 /*
8353da1f 3269 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3270 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3271 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3272 */
3273 kernfs_break_active_protection(new_parent);
3274 kernfs_break_active_protection(kn);
099fca32 3275
2bd59d48 3276 mutex_lock(&cgroup_mutex);
099fca32 3277
2bd59d48 3278 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3279
2bd59d48 3280 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3281
3282 kernfs_unbreak_active_protection(kn);
3283 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3284 return ret;
099fca32
LZ
3285}
3286
49957f8e
TH
3287/* set uid and gid of cgroup dirs and files to that of the creator */
3288static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3289{
3290 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3291 .ia_uid = current_fsuid(),
3292 .ia_gid = current_fsgid(), };
3293
3294 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3295 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3296 return 0;
3297
3298 return kernfs_setattr(kn, &iattr);
3299}
3300
4df8dc90
TH
3301static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3302 struct cftype *cft)
ddbcc7e8 3303{
8d7e6fb0 3304 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3305 struct kernfs_node *kn;
3306 struct lock_class_key *key = NULL;
49957f8e 3307 int ret;
05ef1d7c 3308
2bd59d48
TH
3309#ifdef CONFIG_DEBUG_LOCK_ALLOC
3310 key = &cft->lockdep_key;
3311#endif
3312 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3313 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3314 NULL, key);
49957f8e
TH
3315 if (IS_ERR(kn))
3316 return PTR_ERR(kn);
3317
3318 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3319 if (ret) {
49957f8e 3320 kernfs_remove(kn);
f8f22e53
TH
3321 return ret;
3322 }
3323
6f60eade
TH
3324 if (cft->file_offset) {
3325 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3326
34c06254 3327 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3328 cfile->kn = kn;
34c06254 3329 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3330 }
3331
f8f22e53 3332 return 0;
ddbcc7e8
PM
3333}
3334
b1f28d31
TH
3335/**
3336 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3337 * @css: the target css
3338 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3339 * @cfts: array of cftypes to be added
3340 * @is_add: whether to add or remove
3341 *
3342 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3343 * For removals, this function never fails.
b1f28d31 3344 */
4df8dc90
TH
3345static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3346 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3347 bool is_add)
ddbcc7e8 3348{
6732ed85 3349 struct cftype *cft, *cft_end = NULL;
b598dde3 3350 int ret = 0;
b1f28d31 3351
01f6474c 3352 lockdep_assert_held(&cgroup_mutex);
db0416b6 3353
6732ed85
TH
3354restart:
3355 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3356 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3357 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3358 continue;
05ebb6e6 3359 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3360 continue;
d51f39b0 3361 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3362 continue;
d51f39b0 3363 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3364 continue;
3365
2739d3cc 3366 if (is_add) {
4df8dc90 3367 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3368 if (ret) {
ed3d261b
JP
3369 pr_warn("%s: failed to add %s, err=%d\n",
3370 __func__, cft->name, ret);
6732ed85
TH
3371 cft_end = cft;
3372 is_add = false;
3373 goto restart;
b1f28d31 3374 }
2739d3cc
LZ
3375 } else {
3376 cgroup_rm_file(cgrp, cft);
db0416b6 3377 }
ddbcc7e8 3378 }
b598dde3 3379 return ret;
ddbcc7e8
PM
3380}
3381
21a2d343 3382static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3383{
3384 LIST_HEAD(pending);
2bb566cb 3385 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3386 struct cgroup *root = &ss->root->cgrp;
492eb21b 3387 struct cgroup_subsys_state *css;
9ccece80 3388 int ret = 0;
8e3f6541 3389
01f6474c 3390 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3391
e8c82d20 3392 /* add/rm files for all cgroups created before */
ca8bdcaf 3393 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3394 struct cgroup *cgrp = css->cgroup;
3395
e8c82d20
LZ
3396 if (cgroup_is_dead(cgrp))
3397 continue;
3398
4df8dc90 3399 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3400 if (ret)
3401 break;
8e3f6541 3402 }
21a2d343
TH
3403
3404 if (is_add && !ret)
3405 kernfs_activate(root->kn);
9ccece80 3406 return ret;
8e3f6541
TH
3407}
3408
2da440a2 3409static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3410{
2bb566cb 3411 struct cftype *cft;
8e3f6541 3412
2bd59d48
TH
3413 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3414 /* free copy for custom atomic_write_len, see init_cftypes() */
3415 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3416 kfree(cft->kf_ops);
3417 cft->kf_ops = NULL;
2da440a2 3418 cft->ss = NULL;
a8ddc821
TH
3419
3420 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3421 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3422 }
2da440a2
TH
3423}
3424
2bd59d48 3425static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3426{
3427 struct cftype *cft;
3428
2bd59d48
TH
3429 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3430 struct kernfs_ops *kf_ops;
3431
0adb0704
TH
3432 WARN_ON(cft->ss || cft->kf_ops);
3433
2bd59d48
TH
3434 if (cft->seq_start)
3435 kf_ops = &cgroup_kf_ops;
3436 else
3437 kf_ops = &cgroup_kf_single_ops;
3438
3439 /*
3440 * Ugh... if @cft wants a custom max_write_len, we need to
3441 * make a copy of kf_ops to set its atomic_write_len.
3442 */
3443 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3444 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3445 if (!kf_ops) {
3446 cgroup_exit_cftypes(cfts);
3447 return -ENOMEM;
3448 }
3449 kf_ops->atomic_write_len = cft->max_write_len;
3450 }
8e3f6541 3451
2bd59d48 3452 cft->kf_ops = kf_ops;
2bb566cb 3453 cft->ss = ss;
2bd59d48 3454 }
2bb566cb 3455
2bd59d48 3456 return 0;
2da440a2
TH
3457}
3458
21a2d343
TH
3459static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3460{
01f6474c 3461 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3462
3463 if (!cfts || !cfts[0].ss)
3464 return -ENOENT;
3465
3466 list_del(&cfts->node);
3467 cgroup_apply_cftypes(cfts, false);
3468 cgroup_exit_cftypes(cfts);
3469 return 0;
8e3f6541 3470}
8e3f6541 3471
79578621
TH
3472/**
3473 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3474 * @cfts: zero-length name terminated array of cftypes
3475 *
2bb566cb
TH
3476 * Unregister @cfts. Files described by @cfts are removed from all
3477 * existing cgroups and all future cgroups won't have them either. This
3478 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3479 *
3480 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3481 * registered.
79578621 3482 */
2bb566cb 3483int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3484{
21a2d343 3485 int ret;
79578621 3486
01f6474c 3487 mutex_lock(&cgroup_mutex);
21a2d343 3488 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3489 mutex_unlock(&cgroup_mutex);
21a2d343 3490 return ret;
80b13586
TH
3491}
3492
8e3f6541
TH
3493/**
3494 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3495 * @ss: target cgroup subsystem
3496 * @cfts: zero-length name terminated array of cftypes
3497 *
3498 * Register @cfts to @ss. Files described by @cfts are created for all
3499 * existing cgroups to which @ss is attached and all future cgroups will
3500 * have them too. This function can be called anytime whether @ss is
3501 * attached or not.
3502 *
3503 * Returns 0 on successful registration, -errno on failure. Note that this
3504 * function currently returns 0 as long as @cfts registration is successful
3505 * even if some file creation attempts on existing cgroups fail.
3506 */
2cf669a5 3507static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3508{
9ccece80 3509 int ret;
8e3f6541 3510
fc5ed1e9 3511 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3512 return 0;
3513
dc5736ed
LZ
3514 if (!cfts || cfts[0].name[0] == '\0')
3515 return 0;
2bb566cb 3516
2bd59d48
TH
3517 ret = cgroup_init_cftypes(ss, cfts);
3518 if (ret)
3519 return ret;
79578621 3520
01f6474c 3521 mutex_lock(&cgroup_mutex);
21a2d343 3522
0adb0704 3523 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3524 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3525 if (ret)
21a2d343 3526 cgroup_rm_cftypes_locked(cfts);
79578621 3527
01f6474c 3528 mutex_unlock(&cgroup_mutex);
9ccece80 3529 return ret;
79578621
TH
3530}
3531
a8ddc821
TH
3532/**
3533 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3534 * @ss: target cgroup subsystem
3535 * @cfts: zero-length name terminated array of cftypes
3536 *
3537 * Similar to cgroup_add_cftypes() but the added files are only used for
3538 * the default hierarchy.
3539 */
3540int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3541{
3542 struct cftype *cft;
3543
3544 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3545 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3546 return cgroup_add_cftypes(ss, cfts);
3547}
3548
3549/**
3550 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3551 * @ss: target cgroup subsystem
3552 * @cfts: zero-length name terminated array of cftypes
3553 *
3554 * Similar to cgroup_add_cftypes() but the added files are only used for
3555 * the legacy hierarchies.
3556 */
2cf669a5
TH
3557int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3558{
a8ddc821
TH
3559 struct cftype *cft;
3560
e4b7037c
TH
3561 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3562 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3563 return cgroup_add_cftypes(ss, cfts);
3564}
3565
34c06254
TH
3566/**
3567 * cgroup_file_notify - generate a file modified event for a cgroup_file
3568 * @cfile: target cgroup_file
3569 *
3570 * @cfile must have been obtained by setting cftype->file_offset.
3571 */
3572void cgroup_file_notify(struct cgroup_file *cfile)
3573{
3574 unsigned long flags;
3575
3576 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3577 if (cfile->kn)
3578 kernfs_notify(cfile->kn);
3579 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3580}
3581
a043e3b2
LZ
3582/**
3583 * cgroup_task_count - count the number of tasks in a cgroup.
3584 * @cgrp: the cgroup in question
3585 *
3586 * Return the number of tasks in the cgroup.
3587 */
07bc356e 3588static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3589{
3590 int count = 0;
69d0206c 3591 struct cgrp_cset_link *link;
817929ec 3592
f0d9a5f1 3593 spin_lock_bh(&css_set_lock);
69d0206c
TH
3594 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3595 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3596 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3597 return count;
3598}
3599
53fa5261 3600/**
492eb21b 3601 * css_next_child - find the next child of a given css
c2931b70
TH
3602 * @pos: the current position (%NULL to initiate traversal)
3603 * @parent: css whose children to walk
53fa5261 3604 *
c2931b70 3605 * This function returns the next child of @parent and should be called
87fb54f1 3606 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3607 * that @parent and @pos are accessible. The next sibling is guaranteed to
3608 * be returned regardless of their states.
3609 *
3610 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3611 * css which finished ->css_online() is guaranteed to be visible in the
3612 * future iterations and will stay visible until the last reference is put.
3613 * A css which hasn't finished ->css_online() or already finished
3614 * ->css_offline() may show up during traversal. It's each subsystem's
3615 * responsibility to synchronize against on/offlining.
53fa5261 3616 */
c2931b70
TH
3617struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3618 struct cgroup_subsys_state *parent)
53fa5261 3619{
c2931b70 3620 struct cgroup_subsys_state *next;
53fa5261 3621
8353da1f 3622 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3623
3624 /*
de3f0341
TH
3625 * @pos could already have been unlinked from the sibling list.
3626 * Once a cgroup is removed, its ->sibling.next is no longer
3627 * updated when its next sibling changes. CSS_RELEASED is set when
3628 * @pos is taken off list, at which time its next pointer is valid,
3629 * and, as releases are serialized, the one pointed to by the next
3630 * pointer is guaranteed to not have started release yet. This
3631 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3632 * critical section, the one pointed to by its next pointer is
3633 * guaranteed to not have finished its RCU grace period even if we
3634 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3635 *
de3f0341
TH
3636 * If @pos has CSS_RELEASED set, its next pointer can't be
3637 * dereferenced; however, as each css is given a monotonically
3638 * increasing unique serial number and always appended to the
3639 * sibling list, the next one can be found by walking the parent's
3640 * children until the first css with higher serial number than
3641 * @pos's. While this path can be slower, it happens iff iteration
3642 * races against release and the race window is very small.
53fa5261 3643 */
3b287a50 3644 if (!pos) {
c2931b70
TH
3645 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3646 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3647 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3648 } else {
c2931b70 3649 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3650 if (next->serial_nr > pos->serial_nr)
3651 break;
53fa5261
TH
3652 }
3653
3b281afb
TH
3654 /*
3655 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3656 * the next sibling.
3b281afb 3657 */
c2931b70
TH
3658 if (&next->sibling != &parent->children)
3659 return next;
3b281afb 3660 return NULL;
53fa5261 3661}
53fa5261 3662
574bd9f7 3663/**
492eb21b 3664 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3665 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3666 * @root: css whose descendants to walk
574bd9f7 3667 *
492eb21b 3668 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3669 * to visit for pre-order traversal of @root's descendants. @root is
3670 * included in the iteration and the first node to be visited.
75501a6d 3671 *
87fb54f1
TH
3672 * While this function requires cgroup_mutex or RCU read locking, it
3673 * doesn't require the whole traversal to be contained in a single critical
3674 * section. This function will return the correct next descendant as long
3675 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3676 *
3677 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3678 * css which finished ->css_online() is guaranteed to be visible in the
3679 * future iterations and will stay visible until the last reference is put.
3680 * A css which hasn't finished ->css_online() or already finished
3681 * ->css_offline() may show up during traversal. It's each subsystem's
3682 * responsibility to synchronize against on/offlining.
574bd9f7 3683 */
492eb21b
TH
3684struct cgroup_subsys_state *
3685css_next_descendant_pre(struct cgroup_subsys_state *pos,
3686 struct cgroup_subsys_state *root)
574bd9f7 3687{
492eb21b 3688 struct cgroup_subsys_state *next;
574bd9f7 3689
8353da1f 3690 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3691
bd8815a6 3692 /* if first iteration, visit @root */
7805d000 3693 if (!pos)
bd8815a6 3694 return root;
574bd9f7
TH
3695
3696 /* visit the first child if exists */
492eb21b 3697 next = css_next_child(NULL, pos);
574bd9f7
TH
3698 if (next)
3699 return next;
3700
3701 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3702 while (pos != root) {
5c9d535b 3703 next = css_next_child(pos, pos->parent);
75501a6d 3704 if (next)
574bd9f7 3705 return next;
5c9d535b 3706 pos = pos->parent;
7805d000 3707 }
574bd9f7
TH
3708
3709 return NULL;
3710}
574bd9f7 3711
12a9d2fe 3712/**
492eb21b
TH
3713 * css_rightmost_descendant - return the rightmost descendant of a css
3714 * @pos: css of interest
12a9d2fe 3715 *
492eb21b
TH
3716 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3717 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3718 * subtree of @pos.
75501a6d 3719 *
87fb54f1
TH
3720 * While this function requires cgroup_mutex or RCU read locking, it
3721 * doesn't require the whole traversal to be contained in a single critical
3722 * section. This function will return the correct rightmost descendant as
3723 * long as @pos is accessible.
12a9d2fe 3724 */
492eb21b
TH
3725struct cgroup_subsys_state *
3726css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3727{
492eb21b 3728 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3729
8353da1f 3730 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3731
3732 do {
3733 last = pos;
3734 /* ->prev isn't RCU safe, walk ->next till the end */
3735 pos = NULL;
492eb21b 3736 css_for_each_child(tmp, last)
12a9d2fe
TH
3737 pos = tmp;
3738 } while (pos);
3739
3740 return last;
3741}
12a9d2fe 3742
492eb21b
TH
3743static struct cgroup_subsys_state *
3744css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3745{
492eb21b 3746 struct cgroup_subsys_state *last;
574bd9f7
TH
3747
3748 do {
3749 last = pos;
492eb21b 3750 pos = css_next_child(NULL, pos);
574bd9f7
TH
3751 } while (pos);
3752
3753 return last;
3754}
3755
3756/**
492eb21b 3757 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3758 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3759 * @root: css whose descendants to walk
574bd9f7 3760 *
492eb21b 3761 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3762 * to visit for post-order traversal of @root's descendants. @root is
3763 * included in the iteration and the last node to be visited.
75501a6d 3764 *
87fb54f1
TH
3765 * While this function requires cgroup_mutex or RCU read locking, it
3766 * doesn't require the whole traversal to be contained in a single critical
3767 * section. This function will return the correct next descendant as long
3768 * as both @pos and @cgroup are accessible and @pos is a descendant of
3769 * @cgroup.
c2931b70
TH
3770 *
3771 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3772 * css which finished ->css_online() is guaranteed to be visible in the
3773 * future iterations and will stay visible until the last reference is put.
3774 * A css which hasn't finished ->css_online() or already finished
3775 * ->css_offline() may show up during traversal. It's each subsystem's
3776 * responsibility to synchronize against on/offlining.
574bd9f7 3777 */
492eb21b
TH
3778struct cgroup_subsys_state *
3779css_next_descendant_post(struct cgroup_subsys_state *pos,
3780 struct cgroup_subsys_state *root)
574bd9f7 3781{
492eb21b 3782 struct cgroup_subsys_state *next;
574bd9f7 3783
8353da1f 3784 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3785
58b79a91
TH
3786 /* if first iteration, visit leftmost descendant which may be @root */
3787 if (!pos)
3788 return css_leftmost_descendant(root);
574bd9f7 3789
bd8815a6
TH
3790 /* if we visited @root, we're done */
3791 if (pos == root)
3792 return NULL;
3793
574bd9f7 3794 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3795 next = css_next_child(pos, pos->parent);
75501a6d 3796 if (next)
492eb21b 3797 return css_leftmost_descendant(next);
574bd9f7
TH
3798
3799 /* no sibling left, visit parent */
5c9d535b 3800 return pos->parent;
574bd9f7 3801}
574bd9f7 3802
f3d46500
TH
3803/**
3804 * css_has_online_children - does a css have online children
3805 * @css: the target css
3806 *
3807 * Returns %true if @css has any online children; otherwise, %false. This
3808 * function can be called from any context but the caller is responsible
3809 * for synchronizing against on/offlining as necessary.
3810 */
3811bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3812{
f3d46500
TH
3813 struct cgroup_subsys_state *child;
3814 bool ret = false;
cbc125ef
TH
3815
3816 rcu_read_lock();
f3d46500 3817 css_for_each_child(child, css) {
99bae5f9 3818 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3819 ret = true;
3820 break;
cbc125ef
TH
3821 }
3822 }
3823 rcu_read_unlock();
f3d46500 3824 return ret;
574bd9f7 3825}
574bd9f7 3826
0942eeee 3827/**
ecb9d535 3828 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3829 * @it: the iterator to advance
3830 *
3831 * Advance @it to the next css_set to walk.
d515876e 3832 */
ecb9d535 3833static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3834{
0f0a2b4f 3835 struct list_head *l = it->cset_pos;
d515876e
TH
3836 struct cgrp_cset_link *link;
3837 struct css_set *cset;
3838
f0d9a5f1 3839 lockdep_assert_held(&css_set_lock);
ed27b9f7 3840
d515876e
TH
3841 /* Advance to the next non-empty css_set */
3842 do {
3843 l = l->next;
0f0a2b4f
TH
3844 if (l == it->cset_head) {
3845 it->cset_pos = NULL;
ecb9d535 3846 it->task_pos = NULL;
d515876e
TH
3847 return;
3848 }
3ebb2b6e
TH
3849
3850 if (it->ss) {
3851 cset = container_of(l, struct css_set,
3852 e_cset_node[it->ss->id]);
3853 } else {
3854 link = list_entry(l, struct cgrp_cset_link, cset_link);
3855 cset = link->cset;
3856 }
0de0942d 3857 } while (!css_set_populated(cset));
c7561128 3858
0f0a2b4f 3859 it->cset_pos = l;
c7561128
TH
3860
3861 if (!list_empty(&cset->tasks))
0f0a2b4f 3862 it->task_pos = cset->tasks.next;
c7561128 3863 else
0f0a2b4f
TH
3864 it->task_pos = cset->mg_tasks.next;
3865
3866 it->tasks_head = &cset->tasks;
3867 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3868
3869 /*
3870 * We don't keep css_sets locked across iteration steps and thus
3871 * need to take steps to ensure that iteration can be resumed after
3872 * the lock is re-acquired. Iteration is performed at two levels -
3873 * css_sets and tasks in them.
3874 *
3875 * Once created, a css_set never leaves its cgroup lists, so a
3876 * pinned css_set is guaranteed to stay put and we can resume
3877 * iteration afterwards.
3878 *
3879 * Tasks may leave @cset across iteration steps. This is resolved
3880 * by registering each iterator with the css_set currently being
3881 * walked and making css_set_move_task() advance iterators whose
3882 * next task is leaving.
3883 */
3884 if (it->cur_cset) {
3885 list_del(&it->iters_node);
3886 put_css_set_locked(it->cur_cset);
3887 }
3888 get_css_set(cset);
3889 it->cur_cset = cset;
3890 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3891}
3892
ecb9d535
TH
3893static void css_task_iter_advance(struct css_task_iter *it)
3894{
3895 struct list_head *l = it->task_pos;
3896
f0d9a5f1 3897 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3898 WARN_ON_ONCE(!l);
3899
3900 /*
3901 * Advance iterator to find next entry. cset->tasks is consumed
3902 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3903 * next cset.
3904 */
3905 l = l->next;
3906
3907 if (l == it->tasks_head)
3908 l = it->mg_tasks_head->next;
3909
3910 if (l == it->mg_tasks_head)
3911 css_task_iter_advance_css_set(it);
3912 else
3913 it->task_pos = l;
3914}
3915
0942eeee 3916/**
72ec7029
TH
3917 * css_task_iter_start - initiate task iteration
3918 * @css: the css to walk tasks of
0942eeee
TH
3919 * @it: the task iterator to use
3920 *
72ec7029
TH
3921 * Initiate iteration through the tasks of @css. The caller can call
3922 * css_task_iter_next() to walk through the tasks until the function
3923 * returns NULL. On completion of iteration, css_task_iter_end() must be
3924 * called.
0942eeee 3925 */
72ec7029
TH
3926void css_task_iter_start(struct cgroup_subsys_state *css,
3927 struct css_task_iter *it)
817929ec 3928{
56fde9e0
TH
3929 /* no one should try to iterate before mounting cgroups */
3930 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3931
ed27b9f7
TH
3932 memset(it, 0, sizeof(*it));
3933
f0d9a5f1 3934 spin_lock_bh(&css_set_lock);
c59cd3d8 3935
3ebb2b6e
TH
3936 it->ss = css->ss;
3937
3938 if (it->ss)
3939 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3940 else
3941 it->cset_pos = &css->cgroup->cset_links;
3942
0f0a2b4f 3943 it->cset_head = it->cset_pos;
c59cd3d8 3944
ecb9d535 3945 css_task_iter_advance_css_set(it);
ed27b9f7 3946
f0d9a5f1 3947 spin_unlock_bh(&css_set_lock);
817929ec
PM
3948}
3949
0942eeee 3950/**
72ec7029 3951 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3952 * @it: the task iterator being iterated
3953 *
3954 * The "next" function for task iteration. @it should have been
72ec7029
TH
3955 * initialized via css_task_iter_start(). Returns NULL when the iteration
3956 * reaches the end.
0942eeee 3957 */
72ec7029 3958struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3959{
d5745675 3960 if (it->cur_task) {
ed27b9f7 3961 put_task_struct(it->cur_task);
d5745675
TH
3962 it->cur_task = NULL;
3963 }
ed27b9f7 3964
f0d9a5f1 3965 spin_lock_bh(&css_set_lock);
ed27b9f7 3966
d5745675
TH
3967 if (it->task_pos) {
3968 it->cur_task = list_entry(it->task_pos, struct task_struct,
3969 cg_list);
3970 get_task_struct(it->cur_task);
3971 css_task_iter_advance(it);
3972 }
ed27b9f7 3973
f0d9a5f1 3974 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3975
3976 return it->cur_task;
817929ec
PM
3977}
3978
0942eeee 3979/**
72ec7029 3980 * css_task_iter_end - finish task iteration
0942eeee
TH
3981 * @it: the task iterator to finish
3982 *
72ec7029 3983 * Finish task iteration started by css_task_iter_start().
0942eeee 3984 */
72ec7029 3985void css_task_iter_end(struct css_task_iter *it)
31a7df01 3986{
ed27b9f7 3987 if (it->cur_cset) {
f0d9a5f1 3988 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3989 list_del(&it->iters_node);
3990 put_css_set_locked(it->cur_cset);
f0d9a5f1 3991 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3992 }
3993
3994 if (it->cur_task)
3995 put_task_struct(it->cur_task);
31a7df01
CW
3996}
3997
3998/**
8cc99345
TH
3999 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4000 * @to: cgroup to which the tasks will be moved
4001 * @from: cgroup in which the tasks currently reside
31a7df01 4002 *
eaf797ab
TH
4003 * Locking rules between cgroup_post_fork() and the migration path
4004 * guarantee that, if a task is forking while being migrated, the new child
4005 * is guaranteed to be either visible in the source cgroup after the
4006 * parent's migration is complete or put into the target cgroup. No task
4007 * can slip out of migration through forking.
31a7df01 4008 */
8cc99345 4009int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4010{
952aaa12
TH
4011 LIST_HEAD(preloaded_csets);
4012 struct cgrp_cset_link *link;
72ec7029 4013 struct css_task_iter it;
e406d1cf 4014 struct task_struct *task;
952aaa12 4015 int ret;
31a7df01 4016
952aaa12 4017 mutex_lock(&cgroup_mutex);
31a7df01 4018
952aaa12 4019 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4020 spin_lock_bh(&css_set_lock);
952aaa12
TH
4021 list_for_each_entry(link, &from->cset_links, cset_link)
4022 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4023 spin_unlock_bh(&css_set_lock);
31a7df01 4024
952aaa12
TH
4025 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4026 if (ret)
4027 goto out_err;
8cc99345 4028
952aaa12 4029 /*
2cfa2b19 4030 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4031 * ->can_attach() fails.
4032 */
e406d1cf 4033 do {
9d800df1 4034 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4035 task = css_task_iter_next(&it);
4036 if (task)
4037 get_task_struct(task);
4038 css_task_iter_end(&it);
4039
4040 if (task) {
9af2ec45 4041 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4042 put_task_struct(task);
4043 }
4044 } while (task && !ret);
952aaa12
TH
4045out_err:
4046 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4047 mutex_unlock(&cgroup_mutex);
e406d1cf 4048 return ret;
8cc99345
TH
4049}
4050
bbcb81d0 4051/*
102a775e 4052 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4053 *
4054 * Reading this file can return large amounts of data if a cgroup has
4055 * *lots* of attached tasks. So it may need several calls to read(),
4056 * but we cannot guarantee that the information we produce is correct
4057 * unless we produce it entirely atomically.
4058 *
bbcb81d0 4059 */
bbcb81d0 4060
24528255
LZ
4061/* which pidlist file are we talking about? */
4062enum cgroup_filetype {
4063 CGROUP_FILE_PROCS,
4064 CGROUP_FILE_TASKS,
4065};
4066
4067/*
4068 * A pidlist is a list of pids that virtually represents the contents of one
4069 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4070 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4071 * to the cgroup.
4072 */
4073struct cgroup_pidlist {
4074 /*
4075 * used to find which pidlist is wanted. doesn't change as long as
4076 * this particular list stays in the list.
4077 */
4078 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4079 /* array of xids */
4080 pid_t *list;
4081 /* how many elements the above list has */
4082 int length;
24528255
LZ
4083 /* each of these stored in a list by its cgroup */
4084 struct list_head links;
4085 /* pointer to the cgroup we belong to, for list removal purposes */
4086 struct cgroup *owner;
b1a21367
TH
4087 /* for delayed destruction */
4088 struct delayed_work destroy_dwork;
24528255
LZ
4089};
4090
d1d9fd33
BB
4091/*
4092 * The following two functions "fix" the issue where there are more pids
4093 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4094 * TODO: replace with a kernel-wide solution to this problem
4095 */
4096#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4097static void *pidlist_allocate(int count)
4098{
4099 if (PIDLIST_TOO_LARGE(count))
4100 return vmalloc(count * sizeof(pid_t));
4101 else
4102 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4103}
b1a21367 4104
d1d9fd33
BB
4105static void pidlist_free(void *p)
4106{
58794514 4107 kvfree(p);
d1d9fd33 4108}
d1d9fd33 4109
b1a21367
TH
4110/*
4111 * Used to destroy all pidlists lingering waiting for destroy timer. None
4112 * should be left afterwards.
4113 */
4114static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4115{
4116 struct cgroup_pidlist *l, *tmp_l;
4117
4118 mutex_lock(&cgrp->pidlist_mutex);
4119 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4120 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4121 mutex_unlock(&cgrp->pidlist_mutex);
4122
4123 flush_workqueue(cgroup_pidlist_destroy_wq);
4124 BUG_ON(!list_empty(&cgrp->pidlists));
4125}
4126
4127static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4128{
4129 struct delayed_work *dwork = to_delayed_work(work);
4130 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4131 destroy_dwork);
4132 struct cgroup_pidlist *tofree = NULL;
4133
4134 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4135
4136 /*
04502365
TH
4137 * Destroy iff we didn't get queued again. The state won't change
4138 * as destroy_dwork can only be queued while locked.
b1a21367 4139 */
04502365 4140 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4141 list_del(&l->links);
4142 pidlist_free(l->list);
4143 put_pid_ns(l->key.ns);
4144 tofree = l;
4145 }
4146
b1a21367
TH
4147 mutex_unlock(&l->owner->pidlist_mutex);
4148 kfree(tofree);
4149}
4150
bbcb81d0 4151/*
102a775e 4152 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4153 * Returns the number of unique elements.
bbcb81d0 4154 */
6ee211ad 4155static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4156{
102a775e 4157 int src, dest = 1;
102a775e
BB
4158
4159 /*
4160 * we presume the 0th element is unique, so i starts at 1. trivial
4161 * edge cases first; no work needs to be done for either
4162 */
4163 if (length == 0 || length == 1)
4164 return length;
4165 /* src and dest walk down the list; dest counts unique elements */
4166 for (src = 1; src < length; src++) {
4167 /* find next unique element */
4168 while (list[src] == list[src-1]) {
4169 src++;
4170 if (src == length)
4171 goto after;
4172 }
4173 /* dest always points to where the next unique element goes */
4174 list[dest] = list[src];
4175 dest++;
4176 }
4177after:
102a775e
BB
4178 return dest;
4179}
4180
afb2bc14
TH
4181/*
4182 * The two pid files - task and cgroup.procs - guaranteed that the result
4183 * is sorted, which forced this whole pidlist fiasco. As pid order is
4184 * different per namespace, each namespace needs differently sorted list,
4185 * making it impossible to use, for example, single rbtree of member tasks
4186 * sorted by task pointer. As pidlists can be fairly large, allocating one
4187 * per open file is dangerous, so cgroup had to implement shared pool of
4188 * pidlists keyed by cgroup and namespace.
4189 *
4190 * All this extra complexity was caused by the original implementation
4191 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4192 * want to do away with it. Explicitly scramble sort order if on the
4193 * default hierarchy so that no such expectation exists in the new
4194 * interface.
afb2bc14
TH
4195 *
4196 * Scrambling is done by swapping every two consecutive bits, which is
4197 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4198 */
4199static pid_t pid_fry(pid_t pid)
4200{
4201 unsigned a = pid & 0x55555555;
4202 unsigned b = pid & 0xAAAAAAAA;
4203
4204 return (a << 1) | (b >> 1);
4205}
4206
4207static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4208{
aa6ec29b 4209 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4210 return pid_fry(pid);
4211 else
4212 return pid;
4213}
4214
102a775e
BB
4215static int cmppid(const void *a, const void *b)
4216{
4217 return *(pid_t *)a - *(pid_t *)b;
4218}
4219
afb2bc14
TH
4220static int fried_cmppid(const void *a, const void *b)
4221{
4222 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4223}
4224
e6b81710
TH
4225static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4226 enum cgroup_filetype type)
4227{
4228 struct cgroup_pidlist *l;
4229 /* don't need task_nsproxy() if we're looking at ourself */
4230 struct pid_namespace *ns = task_active_pid_ns(current);
4231
4232 lockdep_assert_held(&cgrp->pidlist_mutex);
4233
4234 list_for_each_entry(l, &cgrp->pidlists, links)
4235 if (l->key.type == type && l->key.ns == ns)
4236 return l;
4237 return NULL;
4238}
4239
72a8cb30
BB
4240/*
4241 * find the appropriate pidlist for our purpose (given procs vs tasks)
4242 * returns with the lock on that pidlist already held, and takes care
4243 * of the use count, or returns NULL with no locks held if we're out of
4244 * memory.
4245 */
e6b81710
TH
4246static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4247 enum cgroup_filetype type)
72a8cb30
BB
4248{
4249 struct cgroup_pidlist *l;
b70cc5fd 4250
e6b81710
TH
4251 lockdep_assert_held(&cgrp->pidlist_mutex);
4252
4253 l = cgroup_pidlist_find(cgrp, type);
4254 if (l)
4255 return l;
4256
72a8cb30 4257 /* entry not found; create a new one */
f4f4be2b 4258 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4259 if (!l)
72a8cb30 4260 return l;
e6b81710 4261
b1a21367 4262 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4263 l->key.type = type;
e6b81710
TH
4264 /* don't need task_nsproxy() if we're looking at ourself */
4265 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4266 l->owner = cgrp;
4267 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4268 return l;
4269}
4270
102a775e
BB
4271/*
4272 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4273 */
72a8cb30
BB
4274static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4275 struct cgroup_pidlist **lp)
102a775e
BB
4276{
4277 pid_t *array;
4278 int length;
4279 int pid, n = 0; /* used for populating the array */
72ec7029 4280 struct css_task_iter it;
817929ec 4281 struct task_struct *tsk;
102a775e
BB
4282 struct cgroup_pidlist *l;
4283
4bac00d1
TH
4284 lockdep_assert_held(&cgrp->pidlist_mutex);
4285
102a775e
BB
4286 /*
4287 * If cgroup gets more users after we read count, we won't have
4288 * enough space - tough. This race is indistinguishable to the
4289 * caller from the case that the additional cgroup users didn't
4290 * show up until sometime later on.
4291 */
4292 length = cgroup_task_count(cgrp);
d1d9fd33 4293 array = pidlist_allocate(length);
102a775e
BB
4294 if (!array)
4295 return -ENOMEM;
4296 /* now, populate the array */
9d800df1 4297 css_task_iter_start(&cgrp->self, &it);
72ec7029 4298 while ((tsk = css_task_iter_next(&it))) {
102a775e 4299 if (unlikely(n == length))
817929ec 4300 break;
102a775e 4301 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4302 if (type == CGROUP_FILE_PROCS)
4303 pid = task_tgid_vnr(tsk);
4304 else
4305 pid = task_pid_vnr(tsk);
102a775e
BB
4306 if (pid > 0) /* make sure to only use valid results */
4307 array[n++] = pid;
817929ec 4308 }
72ec7029 4309 css_task_iter_end(&it);
102a775e
BB
4310 length = n;
4311 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4312 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4313 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4314 else
4315 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4316 if (type == CGROUP_FILE_PROCS)
6ee211ad 4317 length = pidlist_uniq(array, length);
e6b81710 4318
e6b81710 4319 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4320 if (!l) {
d1d9fd33 4321 pidlist_free(array);
72a8cb30 4322 return -ENOMEM;
102a775e 4323 }
e6b81710
TH
4324
4325 /* store array, freeing old if necessary */
d1d9fd33 4326 pidlist_free(l->list);
102a775e
BB
4327 l->list = array;
4328 l->length = length;
72a8cb30 4329 *lp = l;
102a775e 4330 return 0;
bbcb81d0
PM
4331}
4332
846c7bb0 4333/**
a043e3b2 4334 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4335 * @stats: cgroupstats to fill information into
4336 * @dentry: A dentry entry belonging to the cgroup for which stats have
4337 * been requested.
a043e3b2
LZ
4338 *
4339 * Build and fill cgroupstats so that taskstats can export it to user
4340 * space.
846c7bb0
BS
4341 */
4342int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4343{
2bd59d48 4344 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4345 struct cgroup *cgrp;
72ec7029 4346 struct css_task_iter it;
846c7bb0 4347 struct task_struct *tsk;
33d283be 4348
2bd59d48
TH
4349 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4350 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4351 kernfs_type(kn) != KERNFS_DIR)
4352 return -EINVAL;
4353
bad34660
LZ
4354 mutex_lock(&cgroup_mutex);
4355
846c7bb0 4356 /*
2bd59d48 4357 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4358 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4359 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4360 */
2bd59d48
TH
4361 rcu_read_lock();
4362 cgrp = rcu_dereference(kn->priv);
bad34660 4363 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4364 rcu_read_unlock();
bad34660 4365 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4366 return -ENOENT;
4367 }
bad34660 4368 rcu_read_unlock();
846c7bb0 4369
9d800df1 4370 css_task_iter_start(&cgrp->self, &it);
72ec7029 4371 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4372 switch (tsk->state) {
4373 case TASK_RUNNING:
4374 stats->nr_running++;
4375 break;
4376 case TASK_INTERRUPTIBLE:
4377 stats->nr_sleeping++;
4378 break;
4379 case TASK_UNINTERRUPTIBLE:
4380 stats->nr_uninterruptible++;
4381 break;
4382 case TASK_STOPPED:
4383 stats->nr_stopped++;
4384 break;
4385 default:
4386 if (delayacct_is_task_waiting_on_io(tsk))
4387 stats->nr_io_wait++;
4388 break;
4389 }
4390 }
72ec7029 4391 css_task_iter_end(&it);
846c7bb0 4392
bad34660 4393 mutex_unlock(&cgroup_mutex);
2bd59d48 4394 return 0;
846c7bb0
BS
4395}
4396
8f3ff208 4397
bbcb81d0 4398/*
102a775e 4399 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4400 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4401 * in the cgroup->l->list array.
bbcb81d0 4402 */
cc31edce 4403
102a775e 4404static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4405{
cc31edce
PM
4406 /*
4407 * Initially we receive a position value that corresponds to
4408 * one more than the last pid shown (or 0 on the first call or
4409 * after a seek to the start). Use a binary-search to find the
4410 * next pid to display, if any
4411 */
2bd59d48 4412 struct kernfs_open_file *of = s->private;
7da11279 4413 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4414 struct cgroup_pidlist *l;
7da11279 4415 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4416 int index = 0, pid = *pos;
4bac00d1
TH
4417 int *iter, ret;
4418
4419 mutex_lock(&cgrp->pidlist_mutex);
4420
4421 /*
5d22444f 4422 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4423 * after open. If the matching pidlist is around, we can use that.
5d22444f 4424 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4425 * could already have been destroyed.
4426 */
5d22444f
TH
4427 if (of->priv)
4428 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4429
4430 /*
4431 * Either this is the first start() after open or the matching
4432 * pidlist has been destroyed inbetween. Create a new one.
4433 */
5d22444f
TH
4434 if (!of->priv) {
4435 ret = pidlist_array_load(cgrp, type,
4436 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4437 if (ret)
4438 return ERR_PTR(ret);
4439 }
5d22444f 4440 l = of->priv;
cc31edce 4441
cc31edce 4442 if (pid) {
102a775e 4443 int end = l->length;
20777766 4444
cc31edce
PM
4445 while (index < end) {
4446 int mid = (index + end) / 2;
afb2bc14 4447 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4448 index = mid;
4449 break;
afb2bc14 4450 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4451 index = mid + 1;
4452 else
4453 end = mid;
4454 }
4455 }
4456 /* If we're off the end of the array, we're done */
102a775e 4457 if (index >= l->length)
cc31edce
PM
4458 return NULL;
4459 /* Update the abstract position to be the actual pid that we found */
102a775e 4460 iter = l->list + index;
afb2bc14 4461 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4462 return iter;
4463}
4464
102a775e 4465static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4466{
2bd59d48 4467 struct kernfs_open_file *of = s->private;
5d22444f 4468 struct cgroup_pidlist *l = of->priv;
62236858 4469
5d22444f
TH
4470 if (l)
4471 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4472 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4473 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4474}
4475
102a775e 4476static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4477{
2bd59d48 4478 struct kernfs_open_file *of = s->private;
5d22444f 4479 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4480 pid_t *p = v;
4481 pid_t *end = l->list + l->length;
cc31edce
PM
4482 /*
4483 * Advance to the next pid in the array. If this goes off the
4484 * end, we're done
4485 */
4486 p++;
4487 if (p >= end) {
4488 return NULL;
4489 } else {
7da11279 4490 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4491 return p;
4492 }
4493}
4494
102a775e 4495static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4496{
94ff212d
JP
4497 seq_printf(s, "%d\n", *(int *)v);
4498
4499 return 0;
cc31edce 4500}
bbcb81d0 4501
182446d0
TH
4502static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4503 struct cftype *cft)
81a6a5cd 4504{
182446d0 4505 return notify_on_release(css->cgroup);
81a6a5cd
PM
4506}
4507
182446d0
TH
4508static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4509 struct cftype *cft, u64 val)
6379c106 4510{
6379c106 4511 if (val)
182446d0 4512 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4513 else
182446d0 4514 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4515 return 0;
4516}
4517
182446d0
TH
4518static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4519 struct cftype *cft)
97978e6d 4520{
182446d0 4521 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4522}
4523
182446d0
TH
4524static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4525 struct cftype *cft, u64 val)
97978e6d
DL
4526{
4527 if (val)
182446d0 4528 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4529 else
182446d0 4530 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4531 return 0;
4532}
4533
a14c6874
TH
4534/* cgroup core interface files for the default hierarchy */
4535static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4536 {
d5c56ced 4537 .name = "cgroup.procs",
6f60eade 4538 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4539 .seq_start = cgroup_pidlist_start,
4540 .seq_next = cgroup_pidlist_next,
4541 .seq_stop = cgroup_pidlist_stop,
4542 .seq_show = cgroup_pidlist_show,
5d22444f 4543 .private = CGROUP_FILE_PROCS,
acbef755 4544 .write = cgroup_procs_write,
102a775e 4545 },
f8f22e53
TH
4546 {
4547 .name = "cgroup.controllers",
a14c6874 4548 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4549 .seq_show = cgroup_root_controllers_show,
4550 },
4551 {
4552 .name = "cgroup.controllers",
a14c6874 4553 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4554 .seq_show = cgroup_controllers_show,
4555 },
4556 {
4557 .name = "cgroup.subtree_control",
f8f22e53 4558 .seq_show = cgroup_subtree_control_show,
451af504 4559 .write = cgroup_subtree_control_write,
f8f22e53 4560 },
842b597e 4561 {
4a07c222 4562 .name = "cgroup.events",
a14c6874 4563 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4564 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4565 .seq_show = cgroup_events_show,
842b597e 4566 },
a14c6874
TH
4567 { } /* terminate */
4568};
d5c56ced 4569
a14c6874
TH
4570/* cgroup core interface files for the legacy hierarchies */
4571static struct cftype cgroup_legacy_base_files[] = {
4572 {
4573 .name = "cgroup.procs",
4574 .seq_start = cgroup_pidlist_start,
4575 .seq_next = cgroup_pidlist_next,
4576 .seq_stop = cgroup_pidlist_stop,
4577 .seq_show = cgroup_pidlist_show,
4578 .private = CGROUP_FILE_PROCS,
4579 .write = cgroup_procs_write,
a14c6874
TH
4580 },
4581 {
4582 .name = "cgroup.clone_children",
4583 .read_u64 = cgroup_clone_children_read,
4584 .write_u64 = cgroup_clone_children_write,
4585 },
4586 {
4587 .name = "cgroup.sane_behavior",
4588 .flags = CFTYPE_ONLY_ON_ROOT,
4589 .seq_show = cgroup_sane_behavior_show,
4590 },
d5c56ced
TH
4591 {
4592 .name = "tasks",
6612f05b
TH
4593 .seq_start = cgroup_pidlist_start,
4594 .seq_next = cgroup_pidlist_next,
4595 .seq_stop = cgroup_pidlist_stop,
4596 .seq_show = cgroup_pidlist_show,
5d22444f 4597 .private = CGROUP_FILE_TASKS,
acbef755 4598 .write = cgroup_tasks_write,
d5c56ced
TH
4599 },
4600 {
4601 .name = "notify_on_release",
d5c56ced
TH
4602 .read_u64 = cgroup_read_notify_on_release,
4603 .write_u64 = cgroup_write_notify_on_release,
4604 },
6e6ff25b
TH
4605 {
4606 .name = "release_agent",
a14c6874 4607 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4608 .seq_show = cgroup_release_agent_show,
451af504 4609 .write = cgroup_release_agent_write,
5f469907 4610 .max_write_len = PATH_MAX - 1,
6e6ff25b 4611 },
db0416b6 4612 { } /* terminate */
bbcb81d0
PM
4613};
4614
0c21ead1
TH
4615/*
4616 * css destruction is four-stage process.
4617 *
4618 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4619 * Implemented in kill_css().
4620 *
4621 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4622 * and thus css_tryget_online() is guaranteed to fail, the css can be
4623 * offlined by invoking offline_css(). After offlining, the base ref is
4624 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4625 *
4626 * 3. When the percpu_ref reaches zero, the only possible remaining
4627 * accessors are inside RCU read sections. css_release() schedules the
4628 * RCU callback.
4629 *
4630 * 4. After the grace period, the css can be freed. Implemented in
4631 * css_free_work_fn().
4632 *
4633 * It is actually hairier because both step 2 and 4 require process context
4634 * and thus involve punting to css->destroy_work adding two additional
4635 * steps to the already complex sequence.
4636 */
35ef10da 4637static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4638{
4639 struct cgroup_subsys_state *css =
35ef10da 4640 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4641 struct cgroup_subsys *ss = css->ss;
0c21ead1 4642 struct cgroup *cgrp = css->cgroup;
48ddbe19 4643
9a1049da
TH
4644 percpu_ref_exit(&css->refcnt);
4645
01e58659 4646 if (ss) {
9d755d33 4647 /* css free path */
8bb5ef79 4648 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4649 int id = css->id;
4650
01e58659
VD
4651 ss->css_free(css);
4652 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4653 cgroup_put(cgrp);
8bb5ef79
TH
4654
4655 if (parent)
4656 css_put(parent);
9d755d33
TH
4657 } else {
4658 /* cgroup free path */
4659 atomic_dec(&cgrp->root->nr_cgrps);
4660 cgroup_pidlist_destroy_all(cgrp);
971ff493 4661 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4662
d51f39b0 4663 if (cgroup_parent(cgrp)) {
9d755d33
TH
4664 /*
4665 * We get a ref to the parent, and put the ref when
4666 * this cgroup is being freed, so it's guaranteed
4667 * that the parent won't be destroyed before its
4668 * children.
4669 */
d51f39b0 4670 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4671 kernfs_put(cgrp->kn);
4672 kfree(cgrp);
4673 } else {
4674 /*
4675 * This is root cgroup's refcnt reaching zero,
4676 * which indicates that the root should be
4677 * released.
4678 */
4679 cgroup_destroy_root(cgrp->root);
4680 }
4681 }
48ddbe19
TH
4682}
4683
0c21ead1 4684static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4685{
4686 struct cgroup_subsys_state *css =
0c21ead1 4687 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4688
35ef10da 4689 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4690 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4691}
4692
25e15d83 4693static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4694{
4695 struct cgroup_subsys_state *css =
25e15d83 4696 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4697 struct cgroup_subsys *ss = css->ss;
9d755d33 4698 struct cgroup *cgrp = css->cgroup;
15a4c835 4699
1fed1b2e
TH
4700 mutex_lock(&cgroup_mutex);
4701
de3f0341 4702 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4703 list_del_rcu(&css->sibling);
4704
9d755d33
TH
4705 if (ss) {
4706 /* css release path */
01e58659 4707 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4708 if (ss->css_released)
4709 ss->css_released(css);
9d755d33
TH
4710 } else {
4711 /* cgroup release path */
9d755d33
TH
4712 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4713 cgrp->id = -1;
a4189487
LZ
4714
4715 /*
4716 * There are two control paths which try to determine
4717 * cgroup from dentry without going through kernfs -
4718 * cgroupstats_build() and css_tryget_online_from_dir().
4719 * Those are supported by RCU protecting clearing of
4720 * cgrp->kn->priv backpointer.
4721 */
4722 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4723 }
d3daf28d 4724
1fed1b2e
TH
4725 mutex_unlock(&cgroup_mutex);
4726
0c21ead1 4727 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4728}
4729
d3daf28d
TH
4730static void css_release(struct percpu_ref *ref)
4731{
4732 struct cgroup_subsys_state *css =
4733 container_of(ref, struct cgroup_subsys_state, refcnt);
4734
25e15d83
TH
4735 INIT_WORK(&css->destroy_work, css_release_work_fn);
4736 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4737}
4738
ddfcadab
TH
4739static void init_and_link_css(struct cgroup_subsys_state *css,
4740 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4741{
0cb51d71
TH
4742 lockdep_assert_held(&cgroup_mutex);
4743
ddfcadab
TH
4744 cgroup_get(cgrp);
4745
d5c419b6 4746 memset(css, 0, sizeof(*css));
bd89aabc 4747 css->cgroup = cgrp;
72c97e54 4748 css->ss = ss;
d5c419b6
TH
4749 INIT_LIST_HEAD(&css->sibling);
4750 INIT_LIST_HEAD(&css->children);
0cb51d71 4751 css->serial_nr = css_serial_nr_next++;
aa226ff4 4752 atomic_set(&css->online_cnt, 0);
0ae78e0b 4753
d51f39b0
TH
4754 if (cgroup_parent(cgrp)) {
4755 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4756 css_get(css->parent);
ddfcadab 4757 }
48ddbe19 4758
ca8bdcaf 4759 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4760}
4761
2a4ac633 4762/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4763static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4764{
623f926b 4765 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4766 int ret = 0;
4767
a31f2d3f
TH
4768 lockdep_assert_held(&cgroup_mutex);
4769
92fb9748 4770 if (ss->css_online)
eb95419b 4771 ret = ss->css_online(css);
ae7f164a 4772 if (!ret) {
eb95419b 4773 css->flags |= CSS_ONLINE;
aec25020 4774 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4775
4776 atomic_inc(&css->online_cnt);
4777 if (css->parent)
4778 atomic_inc(&css->parent->online_cnt);
ae7f164a 4779 }
b1929db4 4780 return ret;
a31f2d3f
TH
4781}
4782
2a4ac633 4783/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4784static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4785{
623f926b 4786 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4787
4788 lockdep_assert_held(&cgroup_mutex);
4789
4790 if (!(css->flags & CSS_ONLINE))
4791 return;
4792
d7eeac19 4793 if (ss->css_offline)
eb95419b 4794 ss->css_offline(css);
a31f2d3f 4795
eb95419b 4796 css->flags &= ~CSS_ONLINE;
e3297803 4797 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4798
4799 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4800}
4801
c81c925a
TH
4802/**
4803 * create_css - create a cgroup_subsys_state
4804 * @cgrp: the cgroup new css will be associated with
4805 * @ss: the subsys of new css
f63070d3 4806 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4807 *
4808 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4809 * css is online and installed in @cgrp with all interface files created if
4810 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4811 */
f63070d3
TH
4812static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4813 bool visible)
c81c925a 4814{
d51f39b0 4815 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4816 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4817 struct cgroup_subsys_state *css;
4818 int err;
4819
c81c925a
TH
4820 lockdep_assert_held(&cgroup_mutex);
4821
1fed1b2e 4822 css = ss->css_alloc(parent_css);
c81c925a
TH
4823 if (IS_ERR(css))
4824 return PTR_ERR(css);
4825
ddfcadab 4826 init_and_link_css(css, ss, cgrp);
a2bed820 4827
2aad2a86 4828 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4829 if (err)
3eb59ec6 4830 goto err_free_css;
c81c925a 4831
cf780b7d 4832 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4833 if (err < 0)
4834 goto err_free_percpu_ref;
4835 css->id = err;
c81c925a 4836
f63070d3 4837 if (visible) {
4df8dc90 4838 err = css_populate_dir(css, NULL);
f63070d3
TH
4839 if (err)
4840 goto err_free_id;
4841 }
15a4c835
TH
4842
4843 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4844 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4845 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4846
4847 err = online_css(css);
4848 if (err)
1fed1b2e 4849 goto err_list_del;
94419627 4850
c81c925a 4851 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4852 cgroup_parent(parent)) {
ed3d261b 4853 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4854 current->comm, current->pid, ss->name);
c81c925a 4855 if (!strcmp(ss->name, "memory"))
ed3d261b 4856 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4857 ss->warned_broken_hierarchy = true;
4858 }
4859
4860 return 0;
4861
1fed1b2e
TH
4862err_list_del:
4863 list_del_rcu(&css->sibling);
4df8dc90 4864 css_clear_dir(css, NULL);
15a4c835
TH
4865err_free_id:
4866 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4867err_free_percpu_ref:
9a1049da 4868 percpu_ref_exit(&css->refcnt);
3eb59ec6 4869err_free_css:
a2bed820 4870 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4871 return err;
4872}
4873
b3bfd983
TH
4874static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4875 umode_t mode)
ddbcc7e8 4876{
b11cfb58 4877 struct cgroup *parent, *cgrp, *tcgrp;
a9746d8d 4878 struct cgroup_root *root;
ddbcc7e8 4879 struct cgroup_subsys *ss;
2bd59d48 4880 struct kernfs_node *kn;
b11cfb58 4881 int level, ssid, ret;
ddbcc7e8 4882
71b1fb5c
AC
4883 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4884 */
4885 if (strchr(name, '\n'))
4886 return -EINVAL;
4887
a9746d8d
TH
4888 parent = cgroup_kn_lock_live(parent_kn);
4889 if (!parent)
4890 return -ENODEV;
4891 root = parent->root;
b11cfb58 4892 level = parent->level + 1;
ddbcc7e8 4893
0a950f65 4894 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4895 cgrp = kzalloc(sizeof(*cgrp) +
4896 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
ba0f4d76
TH
4897 if (!cgrp) {
4898 ret = -ENOMEM;
4899 goto out_unlock;
0ab02ca8
LZ
4900 }
4901
2aad2a86 4902 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4903 if (ret)
4904 goto out_free_cgrp;
4905
0ab02ca8
LZ
4906 /*
4907 * Temporarily set the pointer to NULL, so idr_find() won't return
4908 * a half-baked cgroup.
4909 */
cf780b7d 4910 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4911 if (cgrp->id < 0) {
ba0f4d76 4912 ret = -ENOMEM;
9d755d33 4913 goto out_cancel_ref;
976c06bc
TH
4914 }
4915
cc31edce 4916 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4917
9d800df1 4918 cgrp->self.parent = &parent->self;
ba0f4d76 4919 cgrp->root = root;
b11cfb58
TH
4920 cgrp->level = level;
4921
4922 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4923 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4924
b6abdb0e
LZ
4925 if (notify_on_release(parent))
4926 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4927
2260e7fc
TH
4928 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4929 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4930
2bd59d48 4931 /* create the directory */
e61734c5 4932 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4933 if (IS_ERR(kn)) {
ba0f4d76
TH
4934 ret = PTR_ERR(kn);
4935 goto out_free_id;
2bd59d48
TH
4936 }
4937 cgrp->kn = kn;
ddbcc7e8 4938
4e139afc 4939 /*
6f30558f
TH
4940 * This extra ref will be put in cgroup_free_fn() and guarantees
4941 * that @cgrp->kn is always accessible.
4e139afc 4942 */
6f30558f 4943 kernfs_get(kn);
ddbcc7e8 4944
0cb51d71 4945 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4946
4e139afc 4947 /* allocation complete, commit to creation */
d5c419b6 4948 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4949 atomic_inc(&root->nr_cgrps);
59f5296b 4950 cgroup_get(parent);
415cf07a 4951
0d80255e
TH
4952 /*
4953 * @cgrp is now fully operational. If something fails after this
4954 * point, it'll be released via the normal destruction path.
4955 */
6fa4918d 4956 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4957
ba0f4d76
TH
4958 ret = cgroup_kn_set_ugid(kn);
4959 if (ret)
4960 goto out_destroy;
49957f8e 4961
4df8dc90 4962 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4963 if (ret)
4964 goto out_destroy;
628f7cd4 4965
9d403e99 4966 /* let's create and online css's */
996cd1fb
TH
4967 do_each_subsys_mask(ss, ssid, parent->subtree_ss_mask) {
4968 ret = create_css(cgrp, ss,
4969 parent->subtree_control & (1 << ssid));
4970 if (ret)
4971 goto out_destroy;
4972 } while_each_subsys_mask();
ddbcc7e8 4973
bd53d617
TH
4974 /*
4975 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4976 * subtree_control from the parent. Each is configured manually.
bd53d617 4977 */
667c2491
TH
4978 if (!cgroup_on_dfl(cgrp)) {
4979 cgrp->subtree_control = parent->subtree_control;
8699b776 4980 cgroup_refresh_subtree_ss_mask(cgrp);
667c2491 4981 }
2bd59d48 4982
2bd59d48 4983 kernfs_activate(kn);
ddbcc7e8 4984
ba0f4d76
TH
4985 ret = 0;
4986 goto out_unlock;
ddbcc7e8 4987
ba0f4d76 4988out_free_id:
6fa4918d 4989 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4990out_cancel_ref:
9a1049da 4991 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4992out_free_cgrp:
bd89aabc 4993 kfree(cgrp);
ba0f4d76 4994out_unlock:
a9746d8d 4995 cgroup_kn_unlock(parent_kn);
ba0f4d76 4996 return ret;
4b8b47eb 4997
ba0f4d76 4998out_destroy:
4b8b47eb 4999 cgroup_destroy_locked(cgrp);
ba0f4d76 5000 goto out_unlock;
ddbcc7e8
PM
5001}
5002
223dbc38
TH
5003/*
5004 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5005 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5006 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5007 */
5008static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5009{
223dbc38
TH
5010 struct cgroup_subsys_state *css =
5011 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5012
f20104de 5013 mutex_lock(&cgroup_mutex);
09a503ea 5014
aa226ff4
TH
5015 do {
5016 offline_css(css);
5017 css_put(css);
5018 /* @css can't go away while we're holding cgroup_mutex */
5019 css = css->parent;
5020 } while (css && atomic_dec_and_test(&css->online_cnt));
5021
5022 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5023}
5024
223dbc38
TH
5025/* css kill confirmation processing requires process context, bounce */
5026static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5027{
5028 struct cgroup_subsys_state *css =
5029 container_of(ref, struct cgroup_subsys_state, refcnt);
5030
aa226ff4
TH
5031 if (atomic_dec_and_test(&css->online_cnt)) {
5032 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5033 queue_work(cgroup_destroy_wq, &css->destroy_work);
5034 }
d3daf28d
TH
5035}
5036
f392e51c
TH
5037/**
5038 * kill_css - destroy a css
5039 * @css: css to destroy
5040 *
5041 * This function initiates destruction of @css by removing cgroup interface
5042 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5043 * asynchronously once css_tryget_online() is guaranteed to fail and when
5044 * the reference count reaches zero, @css will be released.
f392e51c
TH
5045 */
5046static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5047{
01f6474c 5048 lockdep_assert_held(&cgroup_mutex);
94419627 5049
2bd59d48
TH
5050 /*
5051 * This must happen before css is disassociated with its cgroup.
5052 * See seq_css() for details.
5053 */
4df8dc90 5054 css_clear_dir(css, NULL);
3c14f8b4 5055
edae0c33
TH
5056 /*
5057 * Killing would put the base ref, but we need to keep it alive
5058 * until after ->css_offline().
5059 */
5060 css_get(css);
5061
5062 /*
5063 * cgroup core guarantees that, by the time ->css_offline() is
5064 * invoked, no new css reference will be given out via
ec903c0c 5065 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5066 * proceed to offlining css's because percpu_ref_kill() doesn't
5067 * guarantee that the ref is seen as killed on all CPUs on return.
5068 *
5069 * Use percpu_ref_kill_and_confirm() to get notifications as each
5070 * css is confirmed to be seen as killed on all CPUs.
5071 */
5072 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5073}
5074
5075/**
5076 * cgroup_destroy_locked - the first stage of cgroup destruction
5077 * @cgrp: cgroup to be destroyed
5078 *
5079 * css's make use of percpu refcnts whose killing latency shouldn't be
5080 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5081 * guarantee that css_tryget_online() won't succeed by the time
5082 * ->css_offline() is invoked. To satisfy all the requirements,
5083 * destruction is implemented in the following two steps.
d3daf28d
TH
5084 *
5085 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5086 * userland visible parts and start killing the percpu refcnts of
5087 * css's. Set up so that the next stage will be kicked off once all
5088 * the percpu refcnts are confirmed to be killed.
5089 *
5090 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5091 * rest of destruction. Once all cgroup references are gone, the
5092 * cgroup is RCU-freed.
5093 *
5094 * This function implements s1. After this step, @cgrp is gone as far as
5095 * the userland is concerned and a new cgroup with the same name may be
5096 * created. As cgroup doesn't care about the names internally, this
5097 * doesn't cause any problem.
5098 */
42809dd4
TH
5099static int cgroup_destroy_locked(struct cgroup *cgrp)
5100 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5101{
2bd59d48 5102 struct cgroup_subsys_state *css;
1c6727af 5103 int ssid;
ddbcc7e8 5104
42809dd4
TH
5105 lockdep_assert_held(&cgroup_mutex);
5106
91486f61
TH
5107 /*
5108 * Only migration can raise populated from zero and we're already
5109 * holding cgroup_mutex.
5110 */
5111 if (cgroup_is_populated(cgrp))
ddbcc7e8 5112 return -EBUSY;
a043e3b2 5113
bb78a92f 5114 /*
d5c419b6
TH
5115 * Make sure there's no live children. We can't test emptiness of
5116 * ->self.children as dead children linger on it while being
5117 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5118 */
f3d46500 5119 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5120 return -EBUSY;
5121
455050d2
TH
5122 /*
5123 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5124 * creation by disabling cgroup_lock_live_group().
455050d2 5125 */
184faf32 5126 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5127
249f3468 5128 /* initiate massacre of all css's */
1c6727af
TH
5129 for_each_css(css, ssid, cgrp)
5130 kill_css(css);
455050d2 5131
455050d2 5132 /*
01f6474c
TH
5133 * Remove @cgrp directory along with the base files. @cgrp has an
5134 * extra ref on its kn.
f20104de 5135 */
01f6474c 5136 kernfs_remove(cgrp->kn);
f20104de 5137
d51f39b0 5138 check_for_release(cgroup_parent(cgrp));
2bd59d48 5139
249f3468 5140 /* put the base reference */
9d755d33 5141 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5142
ea15f8cc
TH
5143 return 0;
5144};
5145
2bd59d48 5146static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5147{
a9746d8d 5148 struct cgroup *cgrp;
2bd59d48 5149 int ret = 0;
42809dd4 5150
a9746d8d
TH
5151 cgrp = cgroup_kn_lock_live(kn);
5152 if (!cgrp)
5153 return 0;
42809dd4 5154
a9746d8d 5155 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5156
a9746d8d 5157 cgroup_kn_unlock(kn);
42809dd4 5158 return ret;
8e3f6541
TH
5159}
5160
2bd59d48
TH
5161static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5162 .remount_fs = cgroup_remount,
5163 .show_options = cgroup_show_options,
5164 .mkdir = cgroup_mkdir,
5165 .rmdir = cgroup_rmdir,
5166 .rename = cgroup_rename,
5167};
5168
15a4c835 5169static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5170{
ddbcc7e8 5171 struct cgroup_subsys_state *css;
cfe36bde 5172
a5ae9899 5173 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5174
648bb56d
TH
5175 mutex_lock(&cgroup_mutex);
5176
15a4c835 5177 idr_init(&ss->css_idr);
0adb0704 5178 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5179
3dd06ffa
TH
5180 /* Create the root cgroup state for this subsystem */
5181 ss->root = &cgrp_dfl_root;
5182 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5183 /* We don't handle early failures gracefully */
5184 BUG_ON(IS_ERR(css));
ddfcadab 5185 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5186
5187 /*
5188 * Root csses are never destroyed and we can't initialize
5189 * percpu_ref during early init. Disable refcnting.
5190 */
5191 css->flags |= CSS_NO_REF;
5192
15a4c835 5193 if (early) {
9395a450 5194 /* allocation can't be done safely during early init */
15a4c835
TH
5195 css->id = 1;
5196 } else {
5197 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5198 BUG_ON(css->id < 0);
5199 }
ddbcc7e8 5200
e8d55fde 5201 /* Update the init_css_set to contain a subsys
817929ec 5202 * pointer to this state - since the subsystem is
e8d55fde 5203 * newly registered, all tasks and hence the
3dd06ffa 5204 * init_css_set is in the subsystem's root cgroup. */
aec25020 5205 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5206
cb4a3167
AS
5207 have_fork_callback |= (bool)ss->fork << ss->id;
5208 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5209 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5210 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5211
e8d55fde
LZ
5212 /* At system boot, before all subsystems have been
5213 * registered, no tasks have been forked, so we don't
5214 * need to invoke fork callbacks here. */
5215 BUG_ON(!list_empty(&init_task.tasks));
5216
ae7f164a 5217 BUG_ON(online_css(css));
a8638030 5218
cf5d5941
BB
5219 mutex_unlock(&cgroup_mutex);
5220}
cf5d5941 5221
ddbcc7e8 5222/**
a043e3b2
LZ
5223 * cgroup_init_early - cgroup initialization at system boot
5224 *
5225 * Initialize cgroups at system boot, and initialize any
5226 * subsystems that request early init.
ddbcc7e8
PM
5227 */
5228int __init cgroup_init_early(void)
5229{
7b9a6ba5 5230 static struct cgroup_sb_opts __initdata opts;
30159ec7 5231 struct cgroup_subsys *ss;
ddbcc7e8 5232 int i;
30159ec7 5233
3dd06ffa 5234 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5235 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5236
a4ea1cc9 5237 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5238
3ed80a62 5239 for_each_subsys(ss, i) {
aec25020 5240 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5241 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5242 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5243 ss->id, ss->name);
073219e9
TH
5244 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5245 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5246
aec25020 5247 ss->id = i;
073219e9 5248 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5249 if (!ss->legacy_name)
5250 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5251
5252 if (ss->early_init)
15a4c835 5253 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5254 }
5255 return 0;
5256}
5257
a3e72739
TH
5258static unsigned long cgroup_disable_mask __initdata;
5259
ddbcc7e8 5260/**
a043e3b2
LZ
5261 * cgroup_init - cgroup initialization
5262 *
5263 * Register cgroup filesystem and /proc file, and initialize
5264 * any subsystems that didn't request early init.
ddbcc7e8
PM
5265 */
5266int __init cgroup_init(void)
5267{
30159ec7 5268 struct cgroup_subsys *ss;
0ac801fe 5269 unsigned long key;
035f4f51 5270 int ssid;
ddbcc7e8 5271
1ed13287 5272 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5273 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5274 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5275
54e7b4eb 5276 mutex_lock(&cgroup_mutex);
54e7b4eb 5277
82fe9b0d
TH
5278 /* Add init_css_set to the hash table */
5279 key = css_set_hash(init_css_set.subsys);
5280 hash_add(css_set_table, &init_css_set.hlist, key);
5281
3dd06ffa 5282 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5283
54e7b4eb
TH
5284 mutex_unlock(&cgroup_mutex);
5285
172a2c06 5286 for_each_subsys(ss, ssid) {
15a4c835
TH
5287 if (ss->early_init) {
5288 struct cgroup_subsys_state *css =
5289 init_css_set.subsys[ss->id];
5290
5291 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5292 GFP_KERNEL);
5293 BUG_ON(css->id < 0);
5294 } else {
5295 cgroup_init_subsys(ss, false);
5296 }
172a2c06 5297
2d8f243a
TH
5298 list_add_tail(&init_css_set.e_cset_node[ssid],
5299 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5300
5301 /*
c731ae1d
LZ
5302 * Setting dfl_root subsys_mask needs to consider the
5303 * disabled flag and cftype registration needs kmalloc,
5304 * both of which aren't available during early_init.
172a2c06 5305 */
a3e72739
TH
5306 if (cgroup_disable_mask & (1 << ssid)) {
5307 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5308 printk(KERN_INFO "Disabling %s control group subsystem\n",
5309 ss->name);
a8ddc821 5310 continue;
a3e72739 5311 }
a8ddc821 5312
223ffb29
JW
5313 if (cgroup_ssid_no_v1(ssid))
5314 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5315 ss->name);
5316
a8ddc821
TH
5317 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5318
5de4fa13
TH
5319 if (!ss->dfl_cftypes)
5320 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5321
a8ddc821
TH
5322 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5323 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5324 } else {
5325 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5326 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5327 }
295458e6
VD
5328
5329 if (ss->bind)
5330 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5331 }
5332
035f4f51
TH
5333 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5334 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5335 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5336 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5337
2bd59d48 5338 return 0;
ddbcc7e8 5339}
b4f48b63 5340
e5fca243
TH
5341static int __init cgroup_wq_init(void)
5342{
5343 /*
5344 * There isn't much point in executing destruction path in
5345 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5346 * Use 1 for @max_active.
e5fca243
TH
5347 *
5348 * We would prefer to do this in cgroup_init() above, but that
5349 * is called before init_workqueues(): so leave this until after.
5350 */
1a11533f 5351 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5352 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5353
5354 /*
5355 * Used to destroy pidlists and separate to serve as flush domain.
5356 * Cap @max_active to 1 too.
5357 */
5358 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5359 0, 1);
5360 BUG_ON(!cgroup_pidlist_destroy_wq);
5361
e5fca243
TH
5362 return 0;
5363}
5364core_initcall(cgroup_wq_init);
5365
a424316c
PM
5366/*
5367 * proc_cgroup_show()
5368 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5369 * - Used for /proc/<pid>/cgroup.
a424316c 5370 */
006f4ac4
ZL
5371int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5372 struct pid *pid, struct task_struct *tsk)
a424316c 5373{
e61734c5 5374 char *buf, *path;
a424316c 5375 int retval;
3dd06ffa 5376 struct cgroup_root *root;
a424316c
PM
5377
5378 retval = -ENOMEM;
e61734c5 5379 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5380 if (!buf)
5381 goto out;
5382
a424316c 5383 mutex_lock(&cgroup_mutex);
f0d9a5f1 5384 spin_lock_bh(&css_set_lock);
a424316c 5385
985ed670 5386 for_each_root(root) {
a424316c 5387 struct cgroup_subsys *ss;
bd89aabc 5388 struct cgroup *cgrp;
b85d2040 5389 int ssid, count = 0;
a424316c 5390
a2dd4247 5391 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5392 continue;
5393
2c6ab6d2 5394 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5395 if (root != &cgrp_dfl_root)
5396 for_each_subsys(ss, ssid)
5397 if (root->subsys_mask & (1 << ssid))
5398 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5399 ss->legacy_name);
c6d57f33
PM
5400 if (strlen(root->name))
5401 seq_printf(m, "%sname=%s", count ? "," : "",
5402 root->name);
a424316c 5403 seq_putc(m, ':');
2e91fa7f 5404
7717f7ba 5405 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5406
5407 /*
5408 * On traditional hierarchies, all zombie tasks show up as
5409 * belonging to the root cgroup. On the default hierarchy,
5410 * while a zombie doesn't show up in "cgroup.procs" and
5411 * thus can't be migrated, its /proc/PID/cgroup keeps
5412 * reporting the cgroup it belonged to before exiting. If
5413 * the cgroup is removed before the zombie is reaped,
5414 * " (deleted)" is appended to the cgroup path.
5415 */
5416 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5417 path = cgroup_path(cgrp, buf, PATH_MAX);
5418 if (!path) {
5419 retval = -ENAMETOOLONG;
5420 goto out_unlock;
5421 }
5422 } else {
5423 path = "/";
e61734c5 5424 }
2e91fa7f 5425
e61734c5 5426 seq_puts(m, path);
2e91fa7f
TH
5427
5428 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5429 seq_puts(m, " (deleted)\n");
5430 else
5431 seq_putc(m, '\n');
a424316c
PM
5432 }
5433
006f4ac4 5434 retval = 0;
a424316c 5435out_unlock:
f0d9a5f1 5436 spin_unlock_bh(&css_set_lock);
a424316c 5437 mutex_unlock(&cgroup_mutex);
a424316c
PM
5438 kfree(buf);
5439out:
5440 return retval;
5441}
5442
a424316c
PM
5443/* Display information about each subsystem and each hierarchy */
5444static int proc_cgroupstats_show(struct seq_file *m, void *v)
5445{
30159ec7 5446 struct cgroup_subsys *ss;
a424316c 5447 int i;
a424316c 5448
8bab8dde 5449 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5450 /*
5451 * ideally we don't want subsystems moving around while we do this.
5452 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5453 * subsys/hierarchy state.
5454 */
a424316c 5455 mutex_lock(&cgroup_mutex);
30159ec7
TH
5456
5457 for_each_subsys(ss, i)
2c6ab6d2 5458 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5459 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5460 atomic_read(&ss->root->nr_cgrps),
5461 cgroup_ssid_enabled(i));
30159ec7 5462
a424316c
PM
5463 mutex_unlock(&cgroup_mutex);
5464 return 0;
5465}
5466
5467static int cgroupstats_open(struct inode *inode, struct file *file)
5468{
9dce07f1 5469 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5470}
5471
828c0950 5472static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5473 .open = cgroupstats_open,
5474 .read = seq_read,
5475 .llseek = seq_lseek,
5476 .release = single_release,
5477};
5478
b4f48b63 5479/**
eaf797ab 5480 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5481 * @child: pointer to task_struct of forking parent process.
b4f48b63 5482 *
eaf797ab
TH
5483 * A task is associated with the init_css_set until cgroup_post_fork()
5484 * attaches it to the parent's css_set. Empty cg_list indicates that
5485 * @child isn't holding reference to its css_set.
b4f48b63
PM
5486 */
5487void cgroup_fork(struct task_struct *child)
5488{
eaf797ab 5489 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5490 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5491}
5492
7e47682e
AS
5493/**
5494 * cgroup_can_fork - called on a new task before the process is exposed
5495 * @child: the task in question.
5496 *
5497 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5498 * returns an error, the fork aborts with that error code. This allows for
5499 * a cgroup subsystem to conditionally allow or deny new forks.
5500 */
b53202e6 5501int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5502{
5503 struct cgroup_subsys *ss;
5504 int i, j, ret;
5505
b4e0eeaf 5506 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5507 ret = ss->can_fork(child);
7e47682e
AS
5508 if (ret)
5509 goto out_revert;
b4e0eeaf 5510 } while_each_subsys_mask();
7e47682e
AS
5511
5512 return 0;
5513
5514out_revert:
5515 for_each_subsys(ss, j) {
5516 if (j >= i)
5517 break;
5518 if (ss->cancel_fork)
b53202e6 5519 ss->cancel_fork(child);
7e47682e
AS
5520 }
5521
5522 return ret;
5523}
5524
5525/**
5526 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5527 * @child: the task in question
5528 *
5529 * This calls the cancel_fork() callbacks if a fork failed *after*
5530 * cgroup_can_fork() succeded.
5531 */
b53202e6 5532void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5533{
5534 struct cgroup_subsys *ss;
5535 int i;
5536
5537 for_each_subsys(ss, i)
5538 if (ss->cancel_fork)
b53202e6 5539 ss->cancel_fork(child);
7e47682e
AS
5540}
5541
817929ec 5542/**
a043e3b2
LZ
5543 * cgroup_post_fork - called on a new task after adding it to the task list
5544 * @child: the task in question
5545 *
5edee61e
TH
5546 * Adds the task to the list running through its css_set if necessary and
5547 * call the subsystem fork() callbacks. Has to be after the task is
5548 * visible on the task list in case we race with the first call to
0942eeee 5549 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5550 * list.
a043e3b2 5551 */
b53202e6 5552void cgroup_post_fork(struct task_struct *child)
817929ec 5553{
30159ec7 5554 struct cgroup_subsys *ss;
5edee61e
TH
5555 int i;
5556
3ce3230a 5557 /*
251f8c03 5558 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5559 * function sets use_task_css_set_links before grabbing
5560 * tasklist_lock and we just went through tasklist_lock to add
5561 * @child, it's guaranteed that either we see the set
5562 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5563 * @child during its iteration.
5564 *
5565 * If we won the race, @child is associated with %current's
f0d9a5f1 5566 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5567 * association is stable, and, on completion of the parent's
5568 * migration, @child is visible in the source of migration or
5569 * already in the destination cgroup. This guarantee is necessary
5570 * when implementing operations which need to migrate all tasks of
5571 * a cgroup to another.
5572 *
251f8c03 5573 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5574 * will remain in init_css_set. This is safe because all tasks are
5575 * in the init_css_set before cg_links is enabled and there's no
5576 * operation which transfers all tasks out of init_css_set.
3ce3230a 5577 */
817929ec 5578 if (use_task_css_set_links) {
eaf797ab
TH
5579 struct css_set *cset;
5580
f0d9a5f1 5581 spin_lock_bh(&css_set_lock);
0e1d768f 5582 cset = task_css_set(current);
eaf797ab 5583 if (list_empty(&child->cg_list)) {
eaf797ab 5584 get_css_set(cset);
f6d7d049 5585 css_set_move_task(child, NULL, cset, false);
eaf797ab 5586 }
f0d9a5f1 5587 spin_unlock_bh(&css_set_lock);
817929ec 5588 }
5edee61e
TH
5589
5590 /*
5591 * Call ss->fork(). This must happen after @child is linked on
5592 * css_set; otherwise, @child might change state between ->fork()
5593 * and addition to css_set.
5594 */
b4e0eeaf 5595 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5596 ss->fork(child);
b4e0eeaf 5597 } while_each_subsys_mask();
817929ec 5598}
5edee61e 5599
b4f48b63
PM
5600/**
5601 * cgroup_exit - detach cgroup from exiting task
5602 * @tsk: pointer to task_struct of exiting process
5603 *
5604 * Description: Detach cgroup from @tsk and release it.
5605 *
5606 * Note that cgroups marked notify_on_release force every task in
5607 * them to take the global cgroup_mutex mutex when exiting.
5608 * This could impact scaling on very large systems. Be reluctant to
5609 * use notify_on_release cgroups where very high task exit scaling
5610 * is required on large systems.
5611 *
0e1d768f
TH
5612 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5613 * call cgroup_exit() while the task is still competent to handle
5614 * notify_on_release(), then leave the task attached to the root cgroup in
5615 * each hierarchy for the remainder of its exit. No need to bother with
5616 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5617 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5618 */
1ec41830 5619void cgroup_exit(struct task_struct *tsk)
b4f48b63 5620{
30159ec7 5621 struct cgroup_subsys *ss;
5abb8855 5622 struct css_set *cset;
d41d5a01 5623 int i;
817929ec
PM
5624
5625 /*
0e1d768f 5626 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5627 * with us, we can check css_set and cg_list without synchronization.
817929ec 5628 */
0de0942d
TH
5629 cset = task_css_set(tsk);
5630
817929ec 5631 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5632 spin_lock_bh(&css_set_lock);
f6d7d049 5633 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5634 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5635 } else {
5636 get_css_set(cset);
817929ec
PM
5637 }
5638
cb4a3167 5639 /* see cgroup_post_fork() for details */
b4e0eeaf 5640 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5641 ss->exit(tsk);
b4e0eeaf 5642 } while_each_subsys_mask();
2e91fa7f 5643}
30159ec7 5644
2e91fa7f
TH
5645void cgroup_free(struct task_struct *task)
5646{
5647 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5648 struct cgroup_subsys *ss;
5649 int ssid;
5650
b4e0eeaf 5651 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5652 ss->free(task);
b4e0eeaf 5653 } while_each_subsys_mask();
d41d5a01 5654
2e91fa7f 5655 put_css_set(cset);
b4f48b63 5656}
697f4161 5657
bd89aabc 5658static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5659{
27bd4dbb 5660 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5661 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5662 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5663}
5664
81a6a5cd
PM
5665/*
5666 * Notify userspace when a cgroup is released, by running the
5667 * configured release agent with the name of the cgroup (path
5668 * relative to the root of cgroup file system) as the argument.
5669 *
5670 * Most likely, this user command will try to rmdir this cgroup.
5671 *
5672 * This races with the possibility that some other task will be
5673 * attached to this cgroup before it is removed, or that some other
5674 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5675 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5676 * unused, and this cgroup will be reprieved from its death sentence,
5677 * to continue to serve a useful existence. Next time it's released,
5678 * we will get notified again, if it still has 'notify_on_release' set.
5679 *
5680 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5681 * means only wait until the task is successfully execve()'d. The
5682 * separate release agent task is forked by call_usermodehelper(),
5683 * then control in this thread returns here, without waiting for the
5684 * release agent task. We don't bother to wait because the caller of
5685 * this routine has no use for the exit status of the release agent
5686 * task, so no sense holding our caller up for that.
81a6a5cd 5687 */
81a6a5cd
PM
5688static void cgroup_release_agent(struct work_struct *work)
5689{
971ff493
ZL
5690 struct cgroup *cgrp =
5691 container_of(work, struct cgroup, release_agent_work);
5692 char *pathbuf = NULL, *agentbuf = NULL, *path;
5693 char *argv[3], *envp[3];
5694
81a6a5cd 5695 mutex_lock(&cgroup_mutex);
971ff493
ZL
5696
5697 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5698 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5699 if (!pathbuf || !agentbuf)
5700 goto out;
5701
5702 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5703 if (!path)
5704 goto out;
5705
5706 argv[0] = agentbuf;
5707 argv[1] = path;
5708 argv[2] = NULL;
5709
5710 /* minimal command environment */
5711 envp[0] = "HOME=/";
5712 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5713 envp[2] = NULL;
5714
81a6a5cd 5715 mutex_unlock(&cgroup_mutex);
971ff493 5716 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5717 goto out_free;
971ff493 5718out:
81a6a5cd 5719 mutex_unlock(&cgroup_mutex);
3e2cd91a 5720out_free:
971ff493
ZL
5721 kfree(agentbuf);
5722 kfree(pathbuf);
81a6a5cd 5723}
8bab8dde
PM
5724
5725static int __init cgroup_disable(char *str)
5726{
30159ec7 5727 struct cgroup_subsys *ss;
8bab8dde 5728 char *token;
30159ec7 5729 int i;
8bab8dde
PM
5730
5731 while ((token = strsep(&str, ",")) != NULL) {
5732 if (!*token)
5733 continue;
be45c900 5734
3ed80a62 5735 for_each_subsys(ss, i) {
3e1d2eed
TH
5736 if (strcmp(token, ss->name) &&
5737 strcmp(token, ss->legacy_name))
5738 continue;
a3e72739 5739 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5740 }
5741 }
5742 return 1;
5743}
5744__setup("cgroup_disable=", cgroup_disable);
38460b48 5745
223ffb29
JW
5746static int __init cgroup_no_v1(char *str)
5747{
5748 struct cgroup_subsys *ss;
5749 char *token;
5750 int i;
5751
5752 while ((token = strsep(&str, ",")) != NULL) {
5753 if (!*token)
5754 continue;
5755
5756 if (!strcmp(token, "all")) {
5757 cgroup_no_v1_mask = ~0UL;
5758 break;
5759 }
5760
5761 for_each_subsys(ss, i) {
5762 if (strcmp(token, ss->name) &&
5763 strcmp(token, ss->legacy_name))
5764 continue;
5765
5766 cgroup_no_v1_mask |= 1 << i;
5767 }
5768 }
5769 return 1;
5770}
5771__setup("cgroup_no_v1=", cgroup_no_v1);
5772
b77d7b60 5773/**
ec903c0c 5774 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5775 * @dentry: directory dentry of interest
5776 * @ss: subsystem of interest
b77d7b60 5777 *
5a17f543
TH
5778 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5779 * to get the corresponding css and return it. If such css doesn't exist
5780 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5781 */
ec903c0c
TH
5782struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5783 struct cgroup_subsys *ss)
e5d1367f 5784{
2bd59d48
TH
5785 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5786 struct cgroup_subsys_state *css = NULL;
e5d1367f 5787 struct cgroup *cgrp;
e5d1367f 5788
35cf0836 5789 /* is @dentry a cgroup dir? */
2bd59d48
TH
5790 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5791 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5792 return ERR_PTR(-EBADF);
5793
5a17f543
TH
5794 rcu_read_lock();
5795
2bd59d48
TH
5796 /*
5797 * This path doesn't originate from kernfs and @kn could already
5798 * have been or be removed at any point. @kn->priv is RCU
a4189487 5799 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5800 */
5801 cgrp = rcu_dereference(kn->priv);
5802 if (cgrp)
5803 css = cgroup_css(cgrp, ss);
5a17f543 5804
ec903c0c 5805 if (!css || !css_tryget_online(css))
5a17f543
TH
5806 css = ERR_PTR(-ENOENT);
5807
5808 rcu_read_unlock();
5809 return css;
e5d1367f 5810}
e5d1367f 5811
1cb650b9
LZ
5812/**
5813 * css_from_id - lookup css by id
5814 * @id: the cgroup id
5815 * @ss: cgroup subsys to be looked into
5816 *
5817 * Returns the css if there's valid one with @id, otherwise returns NULL.
5818 * Should be called under rcu_read_lock().
5819 */
5820struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5821{
6fa4918d 5822 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5823 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5824}
5825
16af4396
TH
5826/**
5827 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5828 * @path: path on the default hierarchy
5829 *
5830 * Find the cgroup at @path on the default hierarchy, increment its
5831 * reference count and return it. Returns pointer to the found cgroup on
5832 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5833 * if @path points to a non-directory.
5834 */
5835struct cgroup *cgroup_get_from_path(const char *path)
5836{
5837 struct kernfs_node *kn;
5838 struct cgroup *cgrp;
5839
5840 mutex_lock(&cgroup_mutex);
5841
5842 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5843 if (kn) {
5844 if (kernfs_type(kn) == KERNFS_DIR) {
5845 cgrp = kn->priv;
5846 cgroup_get(cgrp);
5847 } else {
5848 cgrp = ERR_PTR(-ENOTDIR);
5849 }
5850 kernfs_put(kn);
5851 } else {
5852 cgrp = ERR_PTR(-ENOENT);
5853 }
5854
5855 mutex_unlock(&cgroup_mutex);
5856 return cgrp;
5857}
5858EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5859
bd1060a1
TH
5860/*
5861 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5862 * definition in cgroup-defs.h.
5863 */
5864#ifdef CONFIG_SOCK_CGROUP_DATA
5865
5866#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5867
3fa4cc9c 5868DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
5869static bool cgroup_sk_alloc_disabled __read_mostly;
5870
5871void cgroup_sk_alloc_disable(void)
5872{
5873 if (cgroup_sk_alloc_disabled)
5874 return;
5875 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5876 cgroup_sk_alloc_disabled = true;
5877}
5878
5879#else
5880
5881#define cgroup_sk_alloc_disabled false
5882
5883#endif
5884
5885void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5886{
5887 if (cgroup_sk_alloc_disabled)
5888 return;
5889
5890 rcu_read_lock();
5891
5892 while (true) {
5893 struct css_set *cset;
5894
5895 cset = task_css_set(current);
5896 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5897 skcd->val = (unsigned long)cset->dfl_cgrp;
5898 break;
5899 }
5900 cpu_relax();
5901 }
5902
5903 rcu_read_unlock();
5904}
5905
5906void cgroup_sk_free(struct sock_cgroup_data *skcd)
5907{
5908 cgroup_put(sock_cgroup_ptr(skcd));
5909}
5910
5911#endif /* CONFIG_SOCK_CGROUP_DATA */
5912
fe693435 5913#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5914static struct cgroup_subsys_state *
5915debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5916{
5917 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5918
5919 if (!css)
5920 return ERR_PTR(-ENOMEM);
5921
5922 return css;
5923}
5924
eb95419b 5925static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5926{
eb95419b 5927 kfree(css);
fe693435
PM
5928}
5929
182446d0
TH
5930static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5931 struct cftype *cft)
fe693435 5932{
182446d0 5933 return cgroup_task_count(css->cgroup);
fe693435
PM
5934}
5935
182446d0
TH
5936static u64 current_css_set_read(struct cgroup_subsys_state *css,
5937 struct cftype *cft)
fe693435
PM
5938{
5939 return (u64)(unsigned long)current->cgroups;
5940}
5941
182446d0 5942static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5943 struct cftype *cft)
fe693435
PM
5944{
5945 u64 count;
5946
5947 rcu_read_lock();
a8ad805c 5948 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5949 rcu_read_unlock();
5950 return count;
5951}
5952
2da8ca82 5953static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5954{
69d0206c 5955 struct cgrp_cset_link *link;
5abb8855 5956 struct css_set *cset;
e61734c5
TH
5957 char *name_buf;
5958
5959 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5960 if (!name_buf)
5961 return -ENOMEM;
7717f7ba 5962
f0d9a5f1 5963 spin_lock_bh(&css_set_lock);
7717f7ba 5964 rcu_read_lock();
5abb8855 5965 cset = rcu_dereference(current->cgroups);
69d0206c 5966 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5967 struct cgroup *c = link->cgrp;
7717f7ba 5968
a2dd4247 5969 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5970 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5971 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5972 }
5973 rcu_read_unlock();
f0d9a5f1 5974 spin_unlock_bh(&css_set_lock);
e61734c5 5975 kfree(name_buf);
7717f7ba
PM
5976 return 0;
5977}
5978
5979#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5980static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5981{
2da8ca82 5982 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5983 struct cgrp_cset_link *link;
7717f7ba 5984
f0d9a5f1 5985 spin_lock_bh(&css_set_lock);
182446d0 5986 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5987 struct css_set *cset = link->cset;
7717f7ba
PM
5988 struct task_struct *task;
5989 int count = 0;
c7561128 5990
5abb8855 5991 seq_printf(seq, "css_set %p\n", cset);
c7561128 5992
5abb8855 5993 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5994 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5995 goto overflow;
5996 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5997 }
5998
5999 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6000 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6001 goto overflow;
6002 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6003 }
c7561128
TH
6004 continue;
6005 overflow:
6006 seq_puts(seq, " ...\n");
7717f7ba 6007 }
f0d9a5f1 6008 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6009 return 0;
6010}
6011
182446d0 6012static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6013{
27bd4dbb 6014 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6015 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6016}
6017
6018static struct cftype debug_files[] = {
fe693435
PM
6019 {
6020 .name = "taskcount",
6021 .read_u64 = debug_taskcount_read,
6022 },
6023
6024 {
6025 .name = "current_css_set",
6026 .read_u64 = current_css_set_read,
6027 },
6028
6029 {
6030 .name = "current_css_set_refcount",
6031 .read_u64 = current_css_set_refcount_read,
6032 },
6033
7717f7ba
PM
6034 {
6035 .name = "current_css_set_cg_links",
2da8ca82 6036 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6037 },
6038
6039 {
6040 .name = "cgroup_css_links",
2da8ca82 6041 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6042 },
6043
fe693435
PM
6044 {
6045 .name = "releasable",
6046 .read_u64 = releasable_read,
6047 },
fe693435 6048
4baf6e33
TH
6049 { } /* terminate */
6050};
fe693435 6051
073219e9 6052struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6053 .css_alloc = debug_css_alloc,
6054 .css_free = debug_css_free,
5577964e 6055 .legacy_cftypes = debug_files,
fe693435
PM
6056};
6057#endif /* CONFIG_CGROUP_DEBUG */