Documentation: cgroup v2: Trivial heading correction.
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
a7165264 181static bool cgrp_dfl_visible;
ddbcc7e8 182
223ffb29 183/* Controllers blocked by the commandline in v1 */
6e5c8307 184static u16 cgroup_no_v1_mask;
223ffb29 185
5533e011 186/* some controllers are not supported in the default hierarchy */
a7165264 187static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 188
f6d635ad
TH
189/* some controllers are implicitly enabled on the default hierarchy */
190static unsigned long cgrp_dfl_implicit_ss_mask;
191
ddbcc7e8
PM
192/* The list of hierarchy roots */
193
9871bf95
TH
194static LIST_HEAD(cgroup_roots);
195static int cgroup_root_count;
ddbcc7e8 196
3417ae1f 197/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 198static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 199
794611a1 200/*
0cb51d71
TH
201 * Assign a monotonically increasing serial number to csses. It guarantees
202 * cgroups with bigger numbers are newer than those with smaller numbers.
203 * Also, as csses are always appended to the parent's ->children list, it
204 * guarantees that sibling csses are always sorted in the ascending serial
205 * number order on the list. Protected by cgroup_mutex.
794611a1 206 */
0cb51d71 207static u64 css_serial_nr_next = 1;
794611a1 208
cb4a3167
AS
209/*
210 * These bitmask flags indicate whether tasks in the fork and exit paths have
211 * fork/exit handlers to call. This avoids us having to do extra work in the
212 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 213 */
6e5c8307
TH
214static u16 have_fork_callback __read_mostly;
215static u16 have_exit_callback __read_mostly;
216static u16 have_free_callback __read_mostly;
ddbcc7e8 217
7e47682e 218/* Ditto for the can_fork callback. */
6e5c8307 219static u16 have_canfork_callback __read_mostly;
7e47682e 220
67e9c74b 221static struct file_system_type cgroup2_fs_type;
a14c6874
TH
222static struct cftype cgroup_dfl_base_files[];
223static struct cftype cgroup_legacy_base_files[];
628f7cd4 224
6e5c8307 225static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 226static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
227static int cgroup_apply_control(struct cgroup *cgrp);
228static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 229static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 230static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
231static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
232 struct cgroup_subsys *ss);
9d755d33 233static void css_release(struct percpu_ref *ref);
f8f22e53 234static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
235static int cgroup_addrm_files(struct cgroup_subsys_state *css,
236 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 237 bool is_add);
42809dd4 238
fc5ed1e9
TH
239/**
240 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
241 * @ssid: subsys ID of interest
242 *
243 * cgroup_subsys_enabled() can only be used with literal subsys names which
244 * is fine for individual subsystems but unsuitable for cgroup core. This
245 * is slower static_key_enabled() based test indexed by @ssid.
246 */
247static bool cgroup_ssid_enabled(int ssid)
248{
249 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
250}
251
223ffb29
JW
252static bool cgroup_ssid_no_v1(int ssid)
253{
254 return cgroup_no_v1_mask & (1 << ssid);
255}
256
9e10a130
TH
257/**
258 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
259 * @cgrp: the cgroup of interest
260 *
261 * The default hierarchy is the v2 interface of cgroup and this function
262 * can be used to test whether a cgroup is on the default hierarchy for
263 * cases where a subsystem should behave differnetly depending on the
264 * interface version.
265 *
266 * The set of behaviors which change on the default hierarchy are still
267 * being determined and the mount option is prefixed with __DEVEL__.
268 *
269 * List of changed behaviors:
270 *
271 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
272 * and "name" are disallowed.
273 *
274 * - When mounting an existing superblock, mount options should match.
275 *
276 * - Remount is disallowed.
277 *
278 * - rename(2) is disallowed.
279 *
280 * - "tasks" is removed. Everything should be at process granularity. Use
281 * "cgroup.procs" instead.
282 *
283 * - "cgroup.procs" is not sorted. pids will be unique unless they got
284 * recycled inbetween reads.
285 *
286 * - "release_agent" and "notify_on_release" are removed. Replacement
287 * notification mechanism will be implemented.
288 *
289 * - "cgroup.clone_children" is removed.
290 *
291 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
292 * and its descendants contain no task; otherwise, 1. The file also
293 * generates kernfs notification which can be monitored through poll and
294 * [di]notify when the value of the file changes.
295 *
296 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
297 * take masks of ancestors with non-empty cpus/mems, instead of being
298 * moved to an ancestor.
299 *
300 * - cpuset: a task can be moved into an empty cpuset, and again it takes
301 * masks of ancestors.
302 *
303 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
304 * is not created.
305 *
306 * - blkcg: blk-throttle becomes properly hierarchical.
307 *
308 * - debug: disallowed on the default hierarchy.
309 */
310static bool cgroup_on_dfl(const struct cgroup *cgrp)
311{
312 return cgrp->root == &cgrp_dfl_root;
313}
314
6fa4918d
TH
315/* IDR wrappers which synchronize using cgroup_idr_lock */
316static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
317 gfp_t gfp_mask)
318{
319 int ret;
320
321 idr_preload(gfp_mask);
54504e97 322 spin_lock_bh(&cgroup_idr_lock);
d0164adc 323 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 324 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
325 idr_preload_end();
326 return ret;
327}
328
329static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
330{
331 void *ret;
332
54504e97 333 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 334 ret = idr_replace(idr, ptr, id);
54504e97 335 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
336 return ret;
337}
338
339static void cgroup_idr_remove(struct idr *idr, int id)
340{
54504e97 341 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 342 idr_remove(idr, id);
54504e97 343 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
344}
345
d51f39b0
TH
346static struct cgroup *cgroup_parent(struct cgroup *cgrp)
347{
348 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
349
350 if (parent_css)
351 return container_of(parent_css, struct cgroup, self);
352 return NULL;
353}
354
5531dc91
TH
355/* subsystems visibly enabled on a cgroup */
356static u16 cgroup_control(struct cgroup *cgrp)
357{
358 struct cgroup *parent = cgroup_parent(cgrp);
359 u16 root_ss_mask = cgrp->root->subsys_mask;
360
361 if (parent)
362 return parent->subtree_control;
363
364 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
365 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
366 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
367 return root_ss_mask;
368}
369
370/* subsystems enabled on a cgroup */
371static u16 cgroup_ss_mask(struct cgroup *cgrp)
372{
373 struct cgroup *parent = cgroup_parent(cgrp);
374
375 if (parent)
376 return parent->subtree_ss_mask;
377
378 return cgrp->root->subsys_mask;
379}
380
95109b62
TH
381/**
382 * cgroup_css - obtain a cgroup's css for the specified subsystem
383 * @cgrp: the cgroup of interest
9d800df1 384 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 385 *
ca8bdcaf
TH
386 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
387 * function must be called either under cgroup_mutex or rcu_read_lock() and
388 * the caller is responsible for pinning the returned css if it wants to
389 * keep accessing it outside the said locks. This function may return
390 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
391 */
392static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 393 struct cgroup_subsys *ss)
95109b62 394{
ca8bdcaf 395 if (ss)
aec25020 396 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 397 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 398 else
9d800df1 399 return &cgrp->self;
95109b62 400}
42809dd4 401
aec3dfcb
TH
402/**
403 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
404 * @cgrp: the cgroup of interest
9d800df1 405 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 406 *
d0f702e6 407 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
408 * as the matching css of the nearest ancestor including self which has @ss
409 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
410 * function is guaranteed to return non-NULL css.
411 */
412static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
413 struct cgroup_subsys *ss)
414{
415 lockdep_assert_held(&cgroup_mutex);
416
417 if (!ss)
9d800df1 418 return &cgrp->self;
aec3dfcb 419
eeecbd19
TH
420 /*
421 * This function is used while updating css associations and thus
5531dc91 422 * can't test the csses directly. Test ss_mask.
eeecbd19 423 */
5531dc91 424 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 425 cgrp = cgroup_parent(cgrp);
5531dc91
TH
426 if (!cgrp)
427 return NULL;
428 }
aec3dfcb
TH
429
430 return cgroup_css(cgrp, ss);
95109b62 431}
42809dd4 432
eeecbd19
TH
433/**
434 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
435 * @cgrp: the cgroup of interest
436 * @ss: the subsystem of interest
437 *
438 * Find and get the effective css of @cgrp for @ss. The effective css is
439 * defined as the matching css of the nearest ancestor including self which
440 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
441 * the root css is returned, so this function always returns a valid css.
442 * The returned css must be put using css_put().
443 */
444struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
445 struct cgroup_subsys *ss)
446{
447 struct cgroup_subsys_state *css;
448
449 rcu_read_lock();
450
451 do {
452 css = cgroup_css(cgrp, ss);
453
454 if (css && css_tryget_online(css))
455 goto out_unlock;
456 cgrp = cgroup_parent(cgrp);
457 } while (cgrp);
458
459 css = init_css_set.subsys[ss->id];
460 css_get(css);
461out_unlock:
462 rcu_read_unlock();
463 return css;
464}
465
ddbcc7e8 466/* convenient tests for these bits */
54766d4a 467static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 468{
184faf32 469 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
470}
471
052c3f3a
TH
472static void cgroup_get(struct cgroup *cgrp)
473{
474 WARN_ON_ONCE(cgroup_is_dead(cgrp));
475 css_get(&cgrp->self);
476}
477
478static bool cgroup_tryget(struct cgroup *cgrp)
479{
480 return css_tryget(&cgrp->self);
481}
482
b4168640 483struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 484{
2bd59d48 485 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 486 struct cftype *cft = of_cft(of);
2bd59d48
TH
487
488 /*
489 * This is open and unprotected implementation of cgroup_css().
490 * seq_css() is only called from a kernfs file operation which has
491 * an active reference on the file. Because all the subsystem
492 * files are drained before a css is disassociated with a cgroup,
493 * the matching css from the cgroup's subsys table is guaranteed to
494 * be and stay valid until the enclosing operation is complete.
495 */
496 if (cft->ss)
497 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
498 else
9d800df1 499 return &cgrp->self;
59f5296b 500}
b4168640 501EXPORT_SYMBOL_GPL(of_css);
59f5296b 502
e9685a03 503static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 504{
bd89aabc 505 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
506}
507
1c6727af
TH
508/**
509 * for_each_css - iterate all css's of a cgroup
510 * @css: the iteration cursor
511 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
512 * @cgrp: the target cgroup to iterate css's of
513 *
aec3dfcb 514 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
515 */
516#define for_each_css(css, ssid, cgrp) \
517 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
518 if (!((css) = rcu_dereference_check( \
519 (cgrp)->subsys[(ssid)], \
520 lockdep_is_held(&cgroup_mutex)))) { } \
521 else
522
aec3dfcb
TH
523/**
524 * for_each_e_css - iterate all effective css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
529 * Should be called under cgroup_[tree_]mutex.
530 */
531#define for_each_e_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
534 ; \
535 else
536
30159ec7 537/**
3ed80a62 538 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 539 * @ss: the iteration cursor
780cd8b3 540 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 541 */
780cd8b3 542#define for_each_subsys(ss, ssid) \
3ed80a62
TH
543 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
544 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 545
cb4a3167 546/**
b4e0eeaf 547 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
548 * @ss: the iteration cursor
549 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 550 * @ss_mask: the bitmask
cb4a3167
AS
551 *
552 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 553 * @ss_mask is set.
cb4a3167 554 */
b4e0eeaf
TH
555#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
556 unsigned long __ss_mask = (ss_mask); \
557 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 558 (ssid) = 0; \
b4e0eeaf
TH
559 break; \
560 } \
561 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
562 (ss) = cgroup_subsys[ssid]; \
563 {
564
565#define while_each_subsys_mask() \
566 } \
567 } \
568} while (false)
cb4a3167 569
985ed670
TH
570/* iterate across the hierarchies */
571#define for_each_root(root) \
5549c497 572 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 573
f8f22e53
TH
574/* iterate over child cgrps, lock should be held throughout iteration */
575#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 576 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 577 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
578 cgroup_is_dead(child); })) \
579 ; \
580 else
7ae1bad9 581
ce3f1d9d
TH
582/* walk live descendants in preorder */
583#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
584 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
585 if (({ lockdep_assert_held(&cgroup_mutex); \
586 (dsct) = (d_css)->cgroup; \
587 cgroup_is_dead(dsct); })) \
588 ; \
589 else
590
591/* walk live descendants in postorder */
592#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
593 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
594 if (({ lockdep_assert_held(&cgroup_mutex); \
595 (dsct) = (d_css)->cgroup; \
596 cgroup_is_dead(dsct); })) \
597 ; \
598 else
599
81a6a5cd 600static void cgroup_release_agent(struct work_struct *work);
bd89aabc 601static void check_for_release(struct cgroup *cgrp);
81a6a5cd 602
69d0206c
TH
603/*
604 * A cgroup can be associated with multiple css_sets as different tasks may
605 * belong to different cgroups on different hierarchies. In the other
606 * direction, a css_set is naturally associated with multiple cgroups.
607 * This M:N relationship is represented by the following link structure
608 * which exists for each association and allows traversing the associations
609 * from both sides.
610 */
611struct cgrp_cset_link {
612 /* the cgroup and css_set this link associates */
613 struct cgroup *cgrp;
614 struct css_set *cset;
615
616 /* list of cgrp_cset_links anchored at cgrp->cset_links */
617 struct list_head cset_link;
618
619 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
620 struct list_head cgrp_link;
817929ec
PM
621};
622
172a2c06
TH
623/*
624 * The default css_set - used by init and its children prior to any
817929ec
PM
625 * hierarchies being mounted. It contains a pointer to the root state
626 * for each subsystem. Also used to anchor the list of css_sets. Not
627 * reference-counted, to improve performance when child cgroups
628 * haven't been created.
629 */
5024ae29 630struct css_set init_css_set = {
172a2c06
TH
631 .refcount = ATOMIC_INIT(1),
632 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
633 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
634 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
635 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
636 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 637 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 638};
817929ec 639
172a2c06 640static int css_set_count = 1; /* 1 for init_css_set */
817929ec 641
0de0942d
TH
642/**
643 * css_set_populated - does a css_set contain any tasks?
644 * @cset: target css_set
645 */
646static bool css_set_populated(struct css_set *cset)
647{
f0d9a5f1 648 lockdep_assert_held(&css_set_lock);
0de0942d
TH
649
650 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
651}
652
842b597e
TH
653/**
654 * cgroup_update_populated - updated populated count of a cgroup
655 * @cgrp: the target cgroup
656 * @populated: inc or dec populated count
657 *
0de0942d
TH
658 * One of the css_sets associated with @cgrp is either getting its first
659 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
660 * count is propagated towards root so that a given cgroup's populated_cnt
661 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
662 *
663 * @cgrp's interface file "cgroup.populated" is zero if
664 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
665 * changes from or to zero, userland is notified that the content of the
666 * interface file has changed. This can be used to detect when @cgrp and
667 * its descendants become populated or empty.
668 */
669static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
670{
f0d9a5f1 671 lockdep_assert_held(&css_set_lock);
842b597e
TH
672
673 do {
674 bool trigger;
675
676 if (populated)
677 trigger = !cgrp->populated_cnt++;
678 else
679 trigger = !--cgrp->populated_cnt;
680
681 if (!trigger)
682 break;
683
ad2ed2b3 684 check_for_release(cgrp);
6f60eade
TH
685 cgroup_file_notify(&cgrp->events_file);
686
d51f39b0 687 cgrp = cgroup_parent(cgrp);
842b597e
TH
688 } while (cgrp);
689}
690
0de0942d
TH
691/**
692 * css_set_update_populated - update populated state of a css_set
693 * @cset: target css_set
694 * @populated: whether @cset is populated or depopulated
695 *
696 * @cset is either getting the first task or losing the last. Update the
697 * ->populated_cnt of all associated cgroups accordingly.
698 */
699static void css_set_update_populated(struct css_set *cset, bool populated)
700{
701 struct cgrp_cset_link *link;
702
f0d9a5f1 703 lockdep_assert_held(&css_set_lock);
0de0942d
TH
704
705 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
706 cgroup_update_populated(link->cgrp, populated);
707}
708
f6d7d049
TH
709/**
710 * css_set_move_task - move a task from one css_set to another
711 * @task: task being moved
712 * @from_cset: css_set @task currently belongs to (may be NULL)
713 * @to_cset: new css_set @task is being moved to (may be NULL)
714 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
715 *
716 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
717 * css_set, @from_cset can be NULL. If @task is being disassociated
718 * instead of moved, @to_cset can be NULL.
719 *
ed27b9f7
TH
720 * This function automatically handles populated_cnt updates and
721 * css_task_iter adjustments but the caller is responsible for managing
722 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
723 */
724static void css_set_move_task(struct task_struct *task,
725 struct css_set *from_cset, struct css_set *to_cset,
726 bool use_mg_tasks)
727{
f0d9a5f1 728 lockdep_assert_held(&css_set_lock);
f6d7d049 729
20b454a6
TH
730 if (to_cset && !css_set_populated(to_cset))
731 css_set_update_populated(to_cset, true);
732
f6d7d049 733 if (from_cset) {
ed27b9f7
TH
734 struct css_task_iter *it, *pos;
735
f6d7d049 736 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
737
738 /*
739 * @task is leaving, advance task iterators which are
740 * pointing to it so that they can resume at the next
741 * position. Advancing an iterator might remove it from
742 * the list, use safe walk. See css_task_iter_advance*()
743 * for details.
744 */
745 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
746 iters_node)
747 if (it->task_pos == &task->cg_list)
748 css_task_iter_advance(it);
749
f6d7d049
TH
750 list_del_init(&task->cg_list);
751 if (!css_set_populated(from_cset))
752 css_set_update_populated(from_cset, false);
753 } else {
754 WARN_ON_ONCE(!list_empty(&task->cg_list));
755 }
756
757 if (to_cset) {
758 /*
759 * We are synchronized through cgroup_threadgroup_rwsem
760 * against PF_EXITING setting such that we can't race
761 * against cgroup_exit() changing the css_set to
762 * init_css_set and dropping the old one.
763 */
764 WARN_ON_ONCE(task->flags & PF_EXITING);
765
f6d7d049
TH
766 rcu_assign_pointer(task->cgroups, to_cset);
767 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
768 &to_cset->tasks);
769 }
770}
771
7717f7ba
PM
772/*
773 * hash table for cgroup groups. This improves the performance to find
774 * an existing css_set. This hash doesn't (currently) take into
775 * account cgroups in empty hierarchies.
776 */
472b1053 777#define CSS_SET_HASH_BITS 7
0ac801fe 778static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 779
0ac801fe 780static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 781{
0ac801fe 782 unsigned long key = 0UL;
30159ec7
TH
783 struct cgroup_subsys *ss;
784 int i;
472b1053 785
30159ec7 786 for_each_subsys(ss, i)
0ac801fe
LZ
787 key += (unsigned long)css[i];
788 key = (key >> 16) ^ key;
472b1053 789
0ac801fe 790 return key;
472b1053
LZ
791}
792
a25eb52e 793static void put_css_set_locked(struct css_set *cset)
b4f48b63 794{
69d0206c 795 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
796 struct cgroup_subsys *ss;
797 int ssid;
5abb8855 798
f0d9a5f1 799 lockdep_assert_held(&css_set_lock);
89c5509b
TH
800
801 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 802 return;
81a6a5cd 803
53254f90
TH
804 /* This css_set is dead. unlink it and release cgroup and css refs */
805 for_each_subsys(ss, ssid) {
2d8f243a 806 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
807 css_put(cset->subsys[ssid]);
808 }
5abb8855 809 hash_del(&cset->hlist);
2c6ab6d2
PM
810 css_set_count--;
811
69d0206c 812 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
813 list_del(&link->cset_link);
814 list_del(&link->cgrp_link);
2ceb231b
TH
815 if (cgroup_parent(link->cgrp))
816 cgroup_put(link->cgrp);
2c6ab6d2 817 kfree(link);
81a6a5cd 818 }
2c6ab6d2 819
5abb8855 820 kfree_rcu(cset, rcu_head);
b4f48b63
PM
821}
822
a25eb52e 823static void put_css_set(struct css_set *cset)
89c5509b
TH
824{
825 /*
826 * Ensure that the refcount doesn't hit zero while any readers
827 * can see it. Similar to atomic_dec_and_lock(), but for an
828 * rwlock
829 */
830 if (atomic_add_unless(&cset->refcount, -1, 1))
831 return;
832
f0d9a5f1 833 spin_lock_bh(&css_set_lock);
a25eb52e 834 put_css_set_locked(cset);
f0d9a5f1 835 spin_unlock_bh(&css_set_lock);
89c5509b
TH
836}
837
817929ec
PM
838/*
839 * refcounted get/put for css_set objects
840 */
5abb8855 841static inline void get_css_set(struct css_set *cset)
817929ec 842{
5abb8855 843 atomic_inc(&cset->refcount);
817929ec
PM
844}
845
b326f9d0 846/**
7717f7ba 847 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
848 * @cset: candidate css_set being tested
849 * @old_cset: existing css_set for a task
7717f7ba
PM
850 * @new_cgrp: cgroup that's being entered by the task
851 * @template: desired set of css pointers in css_set (pre-calculated)
852 *
6f4b7e63 853 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
854 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
855 */
5abb8855
TH
856static bool compare_css_sets(struct css_set *cset,
857 struct css_set *old_cset,
7717f7ba
PM
858 struct cgroup *new_cgrp,
859 struct cgroup_subsys_state *template[])
860{
861 struct list_head *l1, *l2;
862
aec3dfcb
TH
863 /*
864 * On the default hierarchy, there can be csets which are
865 * associated with the same set of cgroups but different csses.
866 * Let's first ensure that csses match.
867 */
868 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 869 return false;
7717f7ba
PM
870
871 /*
872 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
873 * different cgroups in hierarchies. As different cgroups may
874 * share the same effective css, this comparison is always
875 * necessary.
7717f7ba 876 */
69d0206c
TH
877 l1 = &cset->cgrp_links;
878 l2 = &old_cset->cgrp_links;
7717f7ba 879 while (1) {
69d0206c 880 struct cgrp_cset_link *link1, *link2;
5abb8855 881 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
882
883 l1 = l1->next;
884 l2 = l2->next;
885 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
886 if (l1 == &cset->cgrp_links) {
887 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
888 break;
889 } else {
69d0206c 890 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
891 }
892 /* Locate the cgroups associated with these links. */
69d0206c
TH
893 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
894 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
895 cgrp1 = link1->cgrp;
896 cgrp2 = link2->cgrp;
7717f7ba 897 /* Hierarchies should be linked in the same order. */
5abb8855 898 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
899
900 /*
901 * If this hierarchy is the hierarchy of the cgroup
902 * that's changing, then we need to check that this
903 * css_set points to the new cgroup; if it's any other
904 * hierarchy, then this css_set should point to the
905 * same cgroup as the old css_set.
906 */
5abb8855
TH
907 if (cgrp1->root == new_cgrp->root) {
908 if (cgrp1 != new_cgrp)
7717f7ba
PM
909 return false;
910 } else {
5abb8855 911 if (cgrp1 != cgrp2)
7717f7ba
PM
912 return false;
913 }
914 }
915 return true;
916}
917
b326f9d0
TH
918/**
919 * find_existing_css_set - init css array and find the matching css_set
920 * @old_cset: the css_set that we're using before the cgroup transition
921 * @cgrp: the cgroup that we're moving into
922 * @template: out param for the new set of csses, should be clear on entry
817929ec 923 */
5abb8855
TH
924static struct css_set *find_existing_css_set(struct css_set *old_cset,
925 struct cgroup *cgrp,
926 struct cgroup_subsys_state *template[])
b4f48b63 927{
3dd06ffa 928 struct cgroup_root *root = cgrp->root;
30159ec7 929 struct cgroup_subsys *ss;
5abb8855 930 struct css_set *cset;
0ac801fe 931 unsigned long key;
b326f9d0 932 int i;
817929ec 933
aae8aab4
BB
934 /*
935 * Build the set of subsystem state objects that we want to see in the
936 * new css_set. while subsystems can change globally, the entries here
937 * won't change, so no need for locking.
938 */
30159ec7 939 for_each_subsys(ss, i) {
f392e51c 940 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
941 /*
942 * @ss is in this hierarchy, so we want the
943 * effective css from @cgrp.
944 */
945 template[i] = cgroup_e_css(cgrp, ss);
817929ec 946 } else {
aec3dfcb
TH
947 /*
948 * @ss is not in this hierarchy, so we don't want
949 * to change the css.
950 */
5abb8855 951 template[i] = old_cset->subsys[i];
817929ec
PM
952 }
953 }
954
0ac801fe 955 key = css_set_hash(template);
5abb8855
TH
956 hash_for_each_possible(css_set_table, cset, hlist, key) {
957 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
958 continue;
959
960 /* This css_set matches what we need */
5abb8855 961 return cset;
472b1053 962 }
817929ec
PM
963
964 /* No existing cgroup group matched */
965 return NULL;
966}
967
69d0206c 968static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 969{
69d0206c 970 struct cgrp_cset_link *link, *tmp_link;
36553434 971
69d0206c
TH
972 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
973 list_del(&link->cset_link);
36553434
LZ
974 kfree(link);
975 }
976}
977
69d0206c
TH
978/**
979 * allocate_cgrp_cset_links - allocate cgrp_cset_links
980 * @count: the number of links to allocate
981 * @tmp_links: list_head the allocated links are put on
982 *
983 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
984 * through ->cset_link. Returns 0 on success or -errno.
817929ec 985 */
69d0206c 986static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 987{
69d0206c 988 struct cgrp_cset_link *link;
817929ec 989 int i;
69d0206c
TH
990
991 INIT_LIST_HEAD(tmp_links);
992
817929ec 993 for (i = 0; i < count; i++) {
f4f4be2b 994 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 995 if (!link) {
69d0206c 996 free_cgrp_cset_links(tmp_links);
817929ec
PM
997 return -ENOMEM;
998 }
69d0206c 999 list_add(&link->cset_link, tmp_links);
817929ec
PM
1000 }
1001 return 0;
1002}
1003
c12f65d4
LZ
1004/**
1005 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1006 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1007 * @cset: the css_set to be linked
c12f65d4
LZ
1008 * @cgrp: the destination cgroup
1009 */
69d0206c
TH
1010static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1011 struct cgroup *cgrp)
c12f65d4 1012{
69d0206c 1013 struct cgrp_cset_link *link;
c12f65d4 1014
69d0206c 1015 BUG_ON(list_empty(tmp_links));
6803c006
TH
1016
1017 if (cgroup_on_dfl(cgrp))
1018 cset->dfl_cgrp = cgrp;
1019
69d0206c
TH
1020 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1021 link->cset = cset;
7717f7ba 1022 link->cgrp = cgrp;
842b597e 1023
7717f7ba 1024 /*
389b9c1b
TH
1025 * Always add links to the tail of the lists so that the lists are
1026 * in choronological order.
7717f7ba 1027 */
389b9c1b 1028 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1029 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1030
1031 if (cgroup_parent(cgrp))
1032 cgroup_get(cgrp);
c12f65d4
LZ
1033}
1034
b326f9d0
TH
1035/**
1036 * find_css_set - return a new css_set with one cgroup updated
1037 * @old_cset: the baseline css_set
1038 * @cgrp: the cgroup to be updated
1039 *
1040 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1041 * substituted into the appropriate hierarchy.
817929ec 1042 */
5abb8855
TH
1043static struct css_set *find_css_set(struct css_set *old_cset,
1044 struct cgroup *cgrp)
817929ec 1045{
b326f9d0 1046 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1047 struct css_set *cset;
69d0206c
TH
1048 struct list_head tmp_links;
1049 struct cgrp_cset_link *link;
2d8f243a 1050 struct cgroup_subsys *ss;
0ac801fe 1051 unsigned long key;
2d8f243a 1052 int ssid;
472b1053 1053
b326f9d0
TH
1054 lockdep_assert_held(&cgroup_mutex);
1055
817929ec
PM
1056 /* First see if we already have a cgroup group that matches
1057 * the desired set */
f0d9a5f1 1058 spin_lock_bh(&css_set_lock);
5abb8855
TH
1059 cset = find_existing_css_set(old_cset, cgrp, template);
1060 if (cset)
1061 get_css_set(cset);
f0d9a5f1 1062 spin_unlock_bh(&css_set_lock);
817929ec 1063
5abb8855
TH
1064 if (cset)
1065 return cset;
817929ec 1066
f4f4be2b 1067 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1068 if (!cset)
817929ec
PM
1069 return NULL;
1070
69d0206c 1071 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1072 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1073 kfree(cset);
817929ec
PM
1074 return NULL;
1075 }
1076
5abb8855 1077 atomic_set(&cset->refcount, 1);
69d0206c 1078 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1079 INIT_LIST_HEAD(&cset->tasks);
c7561128 1080 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1081 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1082 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1083 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1084 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1085
1086 /* Copy the set of subsystem state objects generated in
1087 * find_existing_css_set() */
5abb8855 1088 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1089
f0d9a5f1 1090 spin_lock_bh(&css_set_lock);
817929ec 1091 /* Add reference counts and links from the new css_set. */
69d0206c 1092 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1093 struct cgroup *c = link->cgrp;
69d0206c 1094
7717f7ba
PM
1095 if (c->root == cgrp->root)
1096 c = cgrp;
69d0206c 1097 link_css_set(&tmp_links, cset, c);
7717f7ba 1098 }
817929ec 1099
69d0206c 1100 BUG_ON(!list_empty(&tmp_links));
817929ec 1101
817929ec 1102 css_set_count++;
472b1053 1103
2d8f243a 1104 /* Add @cset to the hash table */
5abb8855
TH
1105 key = css_set_hash(cset->subsys);
1106 hash_add(css_set_table, &cset->hlist, key);
472b1053 1107
53254f90
TH
1108 for_each_subsys(ss, ssid) {
1109 struct cgroup_subsys_state *css = cset->subsys[ssid];
1110
2d8f243a 1111 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1112 &css->cgroup->e_csets[ssid]);
1113 css_get(css);
1114 }
2d8f243a 1115
f0d9a5f1 1116 spin_unlock_bh(&css_set_lock);
817929ec 1117
5abb8855 1118 return cset;
b4f48b63
PM
1119}
1120
3dd06ffa 1121static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1122{
3dd06ffa 1123 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1124
3dd06ffa 1125 return root_cgrp->root;
2bd59d48
TH
1126}
1127
3dd06ffa 1128static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1129{
1130 int id;
1131
1132 lockdep_assert_held(&cgroup_mutex);
1133
985ed670 1134 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1135 if (id < 0)
1136 return id;
1137
1138 root->hierarchy_id = id;
1139 return 0;
1140}
1141
3dd06ffa 1142static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1143{
1144 lockdep_assert_held(&cgroup_mutex);
1145
1146 if (root->hierarchy_id) {
1147 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1148 root->hierarchy_id = 0;
1149 }
1150}
1151
3dd06ffa 1152static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1153{
1154 if (root) {
d0f702e6 1155 /* hierarchy ID should already have been released */
f2e85d57
TH
1156 WARN_ON_ONCE(root->hierarchy_id);
1157
1158 idr_destroy(&root->cgroup_idr);
1159 kfree(root);
1160 }
1161}
1162
3dd06ffa 1163static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1164{
3dd06ffa 1165 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1166 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1167
334c3679 1168 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1169
776f02fa 1170 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1171 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1172
f2e85d57 1173 /* Rebind all subsystems back to the default hierarchy */
334c3679 1174 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1175
7717f7ba 1176 /*
f2e85d57
TH
1177 * Release all the links from cset_links to this hierarchy's
1178 * root cgroup
7717f7ba 1179 */
f0d9a5f1 1180 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1181
1182 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1183 list_del(&link->cset_link);
1184 list_del(&link->cgrp_link);
1185 kfree(link);
1186 }
f0d9a5f1
TH
1187
1188 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1189
1190 if (!list_empty(&root->root_list)) {
1191 list_del(&root->root_list);
1192 cgroup_root_count--;
1193 }
1194
1195 cgroup_exit_root_id(root);
1196
1197 mutex_unlock(&cgroup_mutex);
f2e85d57 1198
2bd59d48 1199 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1200 cgroup_free_root(root);
1201}
1202
ceb6a081
TH
1203/* look up cgroup associated with given css_set on the specified hierarchy */
1204static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1205 struct cgroup_root *root)
7717f7ba 1206{
7717f7ba
PM
1207 struct cgroup *res = NULL;
1208
96d365e0 1209 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1210 lockdep_assert_held(&css_set_lock);
96d365e0 1211
5abb8855 1212 if (cset == &init_css_set) {
3dd06ffa 1213 res = &root->cgrp;
7717f7ba 1214 } else {
69d0206c
TH
1215 struct cgrp_cset_link *link;
1216
1217 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1218 struct cgroup *c = link->cgrp;
69d0206c 1219
7717f7ba
PM
1220 if (c->root == root) {
1221 res = c;
1222 break;
1223 }
1224 }
1225 }
96d365e0 1226
7717f7ba
PM
1227 BUG_ON(!res);
1228 return res;
1229}
1230
ddbcc7e8 1231/*
ceb6a081 1232 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1233 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1234 */
1235static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1236 struct cgroup_root *root)
ceb6a081
TH
1237{
1238 /*
1239 * No need to lock the task - since we hold cgroup_mutex the
1240 * task can't change groups, so the only thing that can happen
1241 * is that it exits and its css is set back to init_css_set.
1242 */
1243 return cset_cgroup_from_root(task_css_set(task), root);
1244}
1245
ddbcc7e8 1246/*
ddbcc7e8
PM
1247 * A task must hold cgroup_mutex to modify cgroups.
1248 *
1249 * Any task can increment and decrement the count field without lock.
1250 * So in general, code holding cgroup_mutex can't rely on the count
1251 * field not changing. However, if the count goes to zero, then only
956db3ca 1252 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1253 * means that no tasks are currently attached, therefore there is no
1254 * way a task attached to that cgroup can fork (the other way to
1255 * increment the count). So code holding cgroup_mutex can safely
1256 * assume that if the count is zero, it will stay zero. Similarly, if
1257 * a task holds cgroup_mutex on a cgroup with zero count, it
1258 * knows that the cgroup won't be removed, as cgroup_rmdir()
1259 * needs that mutex.
1260 *
ddbcc7e8
PM
1261 * A cgroup can only be deleted if both its 'count' of using tasks
1262 * is zero, and its list of 'children' cgroups is empty. Since all
1263 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1264 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1265 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1266 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1267 *
1268 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1269 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1270 */
1271
2bd59d48 1272static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1273static const struct file_operations proc_cgroupstats_operations;
a424316c 1274
8d7e6fb0
TH
1275static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1276 char *buf)
ddbcc7e8 1277{
3e1d2eed
TH
1278 struct cgroup_subsys *ss = cft->ss;
1279
8d7e6fb0
TH
1280 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1281 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1282 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1283 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1284 cft->name);
8d7e6fb0
TH
1285 else
1286 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1287 return buf;
ddbcc7e8
PM
1288}
1289
f2e85d57
TH
1290/**
1291 * cgroup_file_mode - deduce file mode of a control file
1292 * @cft: the control file in question
1293 *
7dbdb199 1294 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1295 */
1296static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1297{
f2e85d57 1298 umode_t mode = 0;
65dff759 1299
f2e85d57
TH
1300 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1301 mode |= S_IRUGO;
1302
7dbdb199
TH
1303 if (cft->write_u64 || cft->write_s64 || cft->write) {
1304 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1305 mode |= S_IWUGO;
1306 else
1307 mode |= S_IWUSR;
1308 }
f2e85d57
TH
1309
1310 return mode;
65dff759
LZ
1311}
1312
af0ba678 1313/**
8699b776 1314 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1315 * @subtree_control: the new subtree_control mask to consider
5ced2518 1316 * @this_ss_mask: available subsystems
af0ba678
TH
1317 *
1318 * On the default hierarchy, a subsystem may request other subsystems to be
1319 * enabled together through its ->depends_on mask. In such cases, more
1320 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1321 *
0f060deb 1322 * This function calculates which subsystems need to be enabled if
5ced2518 1323 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1324 */
5ced2518 1325static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1326{
6e5c8307 1327 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1328 struct cgroup_subsys *ss;
1329 int ssid;
1330
1331 lockdep_assert_held(&cgroup_mutex);
1332
f6d635ad
TH
1333 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1334
af0ba678 1335 while (true) {
6e5c8307 1336 u16 new_ss_mask = cur_ss_mask;
af0ba678 1337
b4e0eeaf 1338 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1339 new_ss_mask |= ss->depends_on;
b4e0eeaf 1340 } while_each_subsys_mask();
af0ba678
TH
1341
1342 /*
1343 * Mask out subsystems which aren't available. This can
1344 * happen only if some depended-upon subsystems were bound
1345 * to non-default hierarchies.
1346 */
5ced2518 1347 new_ss_mask &= this_ss_mask;
af0ba678
TH
1348
1349 if (new_ss_mask == cur_ss_mask)
1350 break;
1351 cur_ss_mask = new_ss_mask;
1352 }
1353
0f060deb
TH
1354 return cur_ss_mask;
1355}
1356
a9746d8d
TH
1357/**
1358 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1359 * @kn: the kernfs_node being serviced
1360 *
1361 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1362 * the method finishes if locking succeeded. Note that once this function
1363 * returns the cgroup returned by cgroup_kn_lock_live() may become
1364 * inaccessible any time. If the caller intends to continue to access the
1365 * cgroup, it should pin it before invoking this function.
1366 */
1367static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1368{
a9746d8d
TH
1369 struct cgroup *cgrp;
1370
1371 if (kernfs_type(kn) == KERNFS_DIR)
1372 cgrp = kn->priv;
1373 else
1374 cgrp = kn->parent->priv;
1375
1376 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1377
1378 kernfs_unbreak_active_protection(kn);
1379 cgroup_put(cgrp);
ddbcc7e8
PM
1380}
1381
a9746d8d
TH
1382/**
1383 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1384 * @kn: the kernfs_node being serviced
945ba199 1385 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1386 *
1387 * This helper is to be used by a cgroup kernfs method currently servicing
1388 * @kn. It breaks the active protection, performs cgroup locking and
1389 * verifies that the associated cgroup is alive. Returns the cgroup if
1390 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1391 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1392 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1393 *
1394 * Any cgroup kernfs method implementation which requires locking the
1395 * associated cgroup should use this helper. It avoids nesting cgroup
1396 * locking under kernfs active protection and allows all kernfs operations
1397 * including self-removal.
1398 */
945ba199
TH
1399static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1400 bool drain_offline)
05ef1d7c 1401{
a9746d8d
TH
1402 struct cgroup *cgrp;
1403
1404 if (kernfs_type(kn) == KERNFS_DIR)
1405 cgrp = kn->priv;
1406 else
1407 cgrp = kn->parent->priv;
05ef1d7c 1408
2739d3cc 1409 /*
01f6474c 1410 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1411 * active_ref. cgroup liveliness check alone provides enough
1412 * protection against removal. Ensure @cgrp stays accessible and
1413 * break the active_ref protection.
2739d3cc 1414 */
aa32362f
LZ
1415 if (!cgroup_tryget(cgrp))
1416 return NULL;
a9746d8d
TH
1417 kernfs_break_active_protection(kn);
1418
945ba199
TH
1419 if (drain_offline)
1420 cgroup_lock_and_drain_offline(cgrp);
1421 else
1422 mutex_lock(&cgroup_mutex);
05ef1d7c 1423
a9746d8d
TH
1424 if (!cgroup_is_dead(cgrp))
1425 return cgrp;
1426
1427 cgroup_kn_unlock(kn);
1428 return NULL;
ddbcc7e8 1429}
05ef1d7c 1430
2739d3cc 1431static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1432{
2bd59d48 1433 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1434
01f6474c 1435 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1436
1437 if (cft->file_offset) {
1438 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1439 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1440
1441 spin_lock_irq(&cgroup_file_kn_lock);
1442 cfile->kn = NULL;
1443 spin_unlock_irq(&cgroup_file_kn_lock);
1444 }
1445
2bd59d48 1446 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1447}
1448
13af07df 1449/**
4df8dc90
TH
1450 * css_clear_dir - remove subsys files in a cgroup directory
1451 * @css: taget css
13af07df 1452 */
334c3679 1453static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1454{
334c3679 1455 struct cgroup *cgrp = css->cgroup;
4df8dc90 1456 struct cftype *cfts;
05ef1d7c 1457
88cb04b9
TH
1458 if (!(css->flags & CSS_VISIBLE))
1459 return;
1460
1461 css->flags &= ~CSS_VISIBLE;
1462
4df8dc90
TH
1463 list_for_each_entry(cfts, &css->ss->cfts, node)
1464 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1465}
1466
ccdca218 1467/**
4df8dc90
TH
1468 * css_populate_dir - create subsys files in a cgroup directory
1469 * @css: target css
ccdca218
TH
1470 *
1471 * On failure, no file is added.
1472 */
334c3679 1473static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1474{
334c3679 1475 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1476 struct cftype *cfts, *failed_cfts;
1477 int ret;
ccdca218 1478
03970d3c 1479 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1480 return 0;
1481
4df8dc90
TH
1482 if (!css->ss) {
1483 if (cgroup_on_dfl(cgrp))
1484 cfts = cgroup_dfl_base_files;
1485 else
1486 cfts = cgroup_legacy_base_files;
ccdca218 1487
4df8dc90
TH
1488 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1489 }
ccdca218 1490
4df8dc90
TH
1491 list_for_each_entry(cfts, &css->ss->cfts, node) {
1492 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1493 if (ret < 0) {
1494 failed_cfts = cfts;
1495 goto err;
ccdca218
TH
1496 }
1497 }
88cb04b9
TH
1498
1499 css->flags |= CSS_VISIBLE;
1500
ccdca218
TH
1501 return 0;
1502err:
4df8dc90
TH
1503 list_for_each_entry(cfts, &css->ss->cfts, node) {
1504 if (cfts == failed_cfts)
1505 break;
1506 cgroup_addrm_files(css, cgrp, cfts, false);
1507 }
ccdca218
TH
1508 return ret;
1509}
1510
6e5c8307 1511static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1512{
1ada4838 1513 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1514 struct cgroup_subsys *ss;
2d8f243a 1515 int ssid, i, ret;
ddbcc7e8 1516
ace2bee8 1517 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1518
b4e0eeaf 1519 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1520 /*
1521 * If @ss has non-root csses attached to it, can't move.
1522 * If @ss is an implicit controller, it is exempt from this
1523 * rule and can be stolen.
1524 */
1525 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1526 !ss->implicit_on_dfl)
3ed80a62 1527 return -EBUSY;
1d5be6b2 1528
5df36032 1529 /* can't move between two non-dummy roots either */
7fd8c565 1530 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1531 return -EBUSY;
b4e0eeaf 1532 } while_each_subsys_mask();
ddbcc7e8 1533
b4e0eeaf 1534 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1535 struct cgroup_root *src_root = ss->root;
1536 struct cgroup *scgrp = &src_root->cgrp;
1537 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1538 struct css_set *cset;
a8a648c4 1539
1ada4838 1540 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1541
334c3679
TH
1542 /* disable from the source */
1543 src_root->subsys_mask &= ~(1 << ssid);
1544 WARN_ON(cgroup_apply_control(scgrp));
1545 cgroup_finalize_control(scgrp, 0);
4df8dc90 1546
334c3679 1547 /* rebind */
1ada4838
TH
1548 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1549 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1550 ss->root = dst_root;
1ada4838 1551 css->cgroup = dcgrp;
73e80ed8 1552
f0d9a5f1 1553 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1554 hash_for_each(css_set_table, i, cset, hlist)
1555 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1556 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1557 spin_unlock_bh(&css_set_lock);
2d8f243a 1558
bd53d617 1559 /* default hierarchy doesn't enable controllers by default */
f392e51c 1560 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1561 if (dst_root == &cgrp_dfl_root) {
1562 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1563 } else {
1ada4838 1564 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1565 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1566 }
a8a648c4 1567
334c3679
TH
1568 ret = cgroup_apply_control(dcgrp);
1569 if (ret)
1570 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1571 ss->name, ret);
1572
5df36032
TH
1573 if (ss->bind)
1574 ss->bind(css);
b4e0eeaf 1575 } while_each_subsys_mask();
ddbcc7e8 1576
1ada4838 1577 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1578 return 0;
1579}
1580
2bd59d48
TH
1581static int cgroup_show_options(struct seq_file *seq,
1582 struct kernfs_root *kf_root)
ddbcc7e8 1583{
3dd06ffa 1584 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1585 struct cgroup_subsys *ss;
b85d2040 1586 int ssid;
ddbcc7e8 1587
d98817d4
TH
1588 if (root != &cgrp_dfl_root)
1589 for_each_subsys(ss, ssid)
1590 if (root->subsys_mask & (1 << ssid))
61e57c0c 1591 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1592 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1593 seq_puts(seq, ",noprefix");
93438629 1594 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1595 seq_puts(seq, ",xattr");
69e943b7
TH
1596
1597 spin_lock(&release_agent_path_lock);
81a6a5cd 1598 if (strlen(root->release_agent_path))
a068acf2
KC
1599 seq_show_option(seq, "release_agent",
1600 root->release_agent_path);
69e943b7
TH
1601 spin_unlock(&release_agent_path_lock);
1602
3dd06ffa 1603 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1604 seq_puts(seq, ",clone_children");
c6d57f33 1605 if (strlen(root->name))
a068acf2 1606 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1607 return 0;
1608}
1609
1610struct cgroup_sb_opts {
6e5c8307 1611 u16 subsys_mask;
69dfa00c 1612 unsigned int flags;
81a6a5cd 1613 char *release_agent;
2260e7fc 1614 bool cpuset_clone_children;
c6d57f33 1615 char *name;
2c6ab6d2
PM
1616 /* User explicitly requested empty subsystem */
1617 bool none;
ddbcc7e8
PM
1618};
1619
cf5d5941 1620static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1621{
32a8cf23
DL
1622 char *token, *o = data;
1623 bool all_ss = false, one_ss = false;
6e5c8307 1624 u16 mask = U16_MAX;
30159ec7 1625 struct cgroup_subsys *ss;
7b9a6ba5 1626 int nr_opts = 0;
30159ec7 1627 int i;
f9ab5b5b
LZ
1628
1629#ifdef CONFIG_CPUSETS
6e5c8307 1630 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1631#endif
ddbcc7e8 1632
c6d57f33 1633 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1634
1635 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1636 nr_opts++;
1637
ddbcc7e8
PM
1638 if (!*token)
1639 return -EINVAL;
32a8cf23 1640 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1641 /* Explicitly have no subsystems */
1642 opts->none = true;
32a8cf23
DL
1643 continue;
1644 }
1645 if (!strcmp(token, "all")) {
1646 /* Mutually exclusive option 'all' + subsystem name */
1647 if (one_ss)
1648 return -EINVAL;
1649 all_ss = true;
1650 continue;
1651 }
1652 if (!strcmp(token, "noprefix")) {
93438629 1653 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1654 continue;
1655 }
1656 if (!strcmp(token, "clone_children")) {
2260e7fc 1657 opts->cpuset_clone_children = true;
32a8cf23
DL
1658 continue;
1659 }
03b1cde6 1660 if (!strcmp(token, "xattr")) {
93438629 1661 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1662 continue;
1663 }
32a8cf23 1664 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1665 /* Specifying two release agents is forbidden */
1666 if (opts->release_agent)
1667 return -EINVAL;
c6d57f33 1668 opts->release_agent =
e400c285 1669 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1670 if (!opts->release_agent)
1671 return -ENOMEM;
32a8cf23
DL
1672 continue;
1673 }
1674 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1675 const char *name = token + 5;
1676 /* Can't specify an empty name */
1677 if (!strlen(name))
1678 return -EINVAL;
1679 /* Must match [\w.-]+ */
1680 for (i = 0; i < strlen(name); i++) {
1681 char c = name[i];
1682 if (isalnum(c))
1683 continue;
1684 if ((c == '.') || (c == '-') || (c == '_'))
1685 continue;
1686 return -EINVAL;
1687 }
1688 /* Specifying two names is forbidden */
1689 if (opts->name)
1690 return -EINVAL;
1691 opts->name = kstrndup(name,
e400c285 1692 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1693 GFP_KERNEL);
1694 if (!opts->name)
1695 return -ENOMEM;
32a8cf23
DL
1696
1697 continue;
1698 }
1699
30159ec7 1700 for_each_subsys(ss, i) {
3e1d2eed 1701 if (strcmp(token, ss->legacy_name))
32a8cf23 1702 continue;
fc5ed1e9 1703 if (!cgroup_ssid_enabled(i))
32a8cf23 1704 continue;
223ffb29
JW
1705 if (cgroup_ssid_no_v1(i))
1706 continue;
32a8cf23
DL
1707
1708 /* Mutually exclusive option 'all' + subsystem name */
1709 if (all_ss)
1710 return -EINVAL;
69dfa00c 1711 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1712 one_ss = true;
1713
1714 break;
1715 }
1716 if (i == CGROUP_SUBSYS_COUNT)
1717 return -ENOENT;
1718 }
1719
7b9a6ba5
TH
1720 /*
1721 * If the 'all' option was specified select all the subsystems,
1722 * otherwise if 'none', 'name=' and a subsystem name options were
1723 * not specified, let's default to 'all'
1724 */
1725 if (all_ss || (!one_ss && !opts->none && !opts->name))
1726 for_each_subsys(ss, i)
223ffb29 1727 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1728 opts->subsys_mask |= (1 << i);
1729
1730 /*
1731 * We either have to specify by name or by subsystems. (So all
1732 * empty hierarchies must have a name).
1733 */
1734 if (!opts->subsys_mask && !opts->name)
1735 return -EINVAL;
1736
f9ab5b5b
LZ
1737 /*
1738 * Option noprefix was introduced just for backward compatibility
1739 * with the old cpuset, so we allow noprefix only if mounting just
1740 * the cpuset subsystem.
1741 */
93438629 1742 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1743 return -EINVAL;
1744
2c6ab6d2 1745 /* Can't specify "none" and some subsystems */
a1a71b45 1746 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1747 return -EINVAL;
1748
ddbcc7e8
PM
1749 return 0;
1750}
1751
2bd59d48 1752static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1753{
1754 int ret = 0;
3dd06ffa 1755 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1756 struct cgroup_sb_opts opts;
6e5c8307 1757 u16 added_mask, removed_mask;
ddbcc7e8 1758
aa6ec29b
TH
1759 if (root == &cgrp_dfl_root) {
1760 pr_err("remount is not allowed\n");
873fe09e
TH
1761 return -EINVAL;
1762 }
1763
334c3679 1764 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1765
1766 /* See what subsystems are wanted */
1767 ret = parse_cgroupfs_options(data, &opts);
1768 if (ret)
1769 goto out_unlock;
1770
f392e51c 1771 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1772 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1773 task_tgid_nr(current), current->comm);
8b5a5a9d 1774
f392e51c
TH
1775 added_mask = opts.subsys_mask & ~root->subsys_mask;
1776 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1777
cf5d5941 1778 /* Don't allow flags or name to change at remount */
7450e90b 1779 if ((opts.flags ^ root->flags) ||
cf5d5941 1780 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1781 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1782 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1783 ret = -EINVAL;
1784 goto out_unlock;
1785 }
1786
f172e67c 1787 /* remounting is not allowed for populated hierarchies */
d5c419b6 1788 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1789 ret = -EBUSY;
0670e08b 1790 goto out_unlock;
cf5d5941 1791 }
ddbcc7e8 1792
5df36032 1793 ret = rebind_subsystems(root, added_mask);
3126121f 1794 if (ret)
0670e08b 1795 goto out_unlock;
ddbcc7e8 1796
334c3679 1797 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1798
69e943b7
TH
1799 if (opts.release_agent) {
1800 spin_lock(&release_agent_path_lock);
81a6a5cd 1801 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1802 spin_unlock(&release_agent_path_lock);
1803 }
ddbcc7e8 1804 out_unlock:
66bdc9cf 1805 kfree(opts.release_agent);
c6d57f33 1806 kfree(opts.name);
ddbcc7e8 1807 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1808 return ret;
1809}
1810
afeb0f9f
TH
1811/*
1812 * To reduce the fork() overhead for systems that are not actually using
1813 * their cgroups capability, we don't maintain the lists running through
1814 * each css_set to its tasks until we see the list actually used - in other
1815 * words after the first mount.
1816 */
1817static bool use_task_css_set_links __read_mostly;
1818
1819static void cgroup_enable_task_cg_lists(void)
1820{
1821 struct task_struct *p, *g;
1822
f0d9a5f1 1823 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1824
1825 if (use_task_css_set_links)
1826 goto out_unlock;
1827
1828 use_task_css_set_links = true;
1829
1830 /*
1831 * We need tasklist_lock because RCU is not safe against
1832 * while_each_thread(). Besides, a forking task that has passed
1833 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1834 * is not guaranteed to have its child immediately visible in the
1835 * tasklist if we walk through it with RCU.
1836 */
1837 read_lock(&tasklist_lock);
1838 do_each_thread(g, p) {
afeb0f9f
TH
1839 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1840 task_css_set(p) != &init_css_set);
1841
1842 /*
1843 * We should check if the process is exiting, otherwise
1844 * it will race with cgroup_exit() in that the list
1845 * entry won't be deleted though the process has exited.
f153ad11
TH
1846 * Do it while holding siglock so that we don't end up
1847 * racing against cgroup_exit().
afeb0f9f 1848 */
f153ad11 1849 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1850 if (!(p->flags & PF_EXITING)) {
1851 struct css_set *cset = task_css_set(p);
1852
0de0942d
TH
1853 if (!css_set_populated(cset))
1854 css_set_update_populated(cset, true);
389b9c1b 1855 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1856 get_css_set(cset);
1857 }
f153ad11 1858 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1859 } while_each_thread(g, p);
1860 read_unlock(&tasklist_lock);
1861out_unlock:
f0d9a5f1 1862 spin_unlock_bh(&css_set_lock);
afeb0f9f 1863}
ddbcc7e8 1864
cc31edce
PM
1865static void init_cgroup_housekeeping(struct cgroup *cgrp)
1866{
2d8f243a
TH
1867 struct cgroup_subsys *ss;
1868 int ssid;
1869
d5c419b6
TH
1870 INIT_LIST_HEAD(&cgrp->self.sibling);
1871 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1872 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1873 INIT_LIST_HEAD(&cgrp->pidlists);
1874 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1875 cgrp->self.cgroup = cgrp;
184faf32 1876 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1877
1878 for_each_subsys(ss, ssid)
1879 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1880
1881 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1882 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1883}
c6d57f33 1884
3dd06ffa 1885static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1886 struct cgroup_sb_opts *opts)
ddbcc7e8 1887{
3dd06ffa 1888 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1889
ddbcc7e8 1890 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1891 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1892 cgrp->root = root;
cc31edce 1893 init_cgroup_housekeeping(cgrp);
4e96ee8e 1894 idr_init(&root->cgroup_idr);
c6d57f33 1895
c6d57f33
PM
1896 root->flags = opts->flags;
1897 if (opts->release_agent)
1898 strcpy(root->release_agent_path, opts->release_agent);
1899 if (opts->name)
1900 strcpy(root->name, opts->name);
2260e7fc 1901 if (opts->cpuset_clone_children)
3dd06ffa 1902 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1903}
1904
6e5c8307 1905static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1906{
d427dfeb 1907 LIST_HEAD(tmp_links);
3dd06ffa 1908 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1909 struct css_set *cset;
d427dfeb 1910 int i, ret;
2c6ab6d2 1911
d427dfeb 1912 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1913
cf780b7d 1914 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1915 if (ret < 0)
2bd59d48 1916 goto out;
d427dfeb 1917 root_cgrp->id = ret;
b11cfb58 1918 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1919
2aad2a86
TH
1920 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1921 GFP_KERNEL);
9d755d33
TH
1922 if (ret)
1923 goto out;
1924
d427dfeb 1925 /*
f0d9a5f1 1926 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 1927 * but that's OK - it can only be increased by someone holding
04313591
TH
1928 * cgroup_lock, and that's us. Later rebinding may disable
1929 * controllers on the default hierarchy and thus create new csets,
1930 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 1931 */
04313591 1932 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 1933 if (ret)
9d755d33 1934 goto cancel_ref;
ddbcc7e8 1935
985ed670 1936 ret = cgroup_init_root_id(root);
ddbcc7e8 1937 if (ret)
9d755d33 1938 goto cancel_ref;
ddbcc7e8 1939
2bd59d48
TH
1940 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1941 KERNFS_ROOT_CREATE_DEACTIVATED,
1942 root_cgrp);
1943 if (IS_ERR(root->kf_root)) {
1944 ret = PTR_ERR(root->kf_root);
1945 goto exit_root_id;
1946 }
1947 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1948
334c3679 1949 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 1950 if (ret)
2bd59d48 1951 goto destroy_root;
ddbcc7e8 1952
5df36032 1953 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1954 if (ret)
2bd59d48 1955 goto destroy_root;
ddbcc7e8 1956
d427dfeb
TH
1957 /*
1958 * There must be no failure case after here, since rebinding takes
1959 * care of subsystems' refcounts, which are explicitly dropped in
1960 * the failure exit path.
1961 */
1962 list_add(&root->root_list, &cgroup_roots);
1963 cgroup_root_count++;
0df6a63f 1964
d427dfeb 1965 /*
3dd06ffa 1966 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1967 * objects.
1968 */
f0d9a5f1 1969 spin_lock_bh(&css_set_lock);
0de0942d 1970 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1971 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1972 if (css_set_populated(cset))
1973 cgroup_update_populated(root_cgrp, true);
1974 }
f0d9a5f1 1975 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1976
d5c419b6 1977 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1978 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1979
2bd59d48 1980 kernfs_activate(root_cgrp->kn);
d427dfeb 1981 ret = 0;
2bd59d48 1982 goto out;
d427dfeb 1983
2bd59d48
TH
1984destroy_root:
1985 kernfs_destroy_root(root->kf_root);
1986 root->kf_root = NULL;
1987exit_root_id:
d427dfeb 1988 cgroup_exit_root_id(root);
9d755d33 1989cancel_ref:
9a1049da 1990 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1991out:
d427dfeb
TH
1992 free_cgrp_cset_links(&tmp_links);
1993 return ret;
ddbcc7e8
PM
1994}
1995
f7e83571 1996static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1997 int flags, const char *unused_dev_name,
f7e83571 1998 void *data)
ddbcc7e8 1999{
67e9c74b 2000 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2001 struct super_block *pinned_sb = NULL;
970317aa 2002 struct cgroup_subsys *ss;
3dd06ffa 2003 struct cgroup_root *root;
ddbcc7e8 2004 struct cgroup_sb_opts opts;
2bd59d48 2005 struct dentry *dentry;
8e30e2b8 2006 int ret;
970317aa 2007 int i;
c6b3d5bc 2008 bool new_sb;
ddbcc7e8 2009
56fde9e0
TH
2010 /*
2011 * The first time anyone tries to mount a cgroup, enable the list
2012 * linking each css_set to its tasks and fix up all existing tasks.
2013 */
2014 if (!use_task_css_set_links)
2015 cgroup_enable_task_cg_lists();
e37a06f1 2016
67e9c74b
TH
2017 if (is_v2) {
2018 if (data) {
2019 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2020 return ERR_PTR(-EINVAL);
2021 }
a7165264 2022 cgrp_dfl_visible = true;
67e9c74b
TH
2023 root = &cgrp_dfl_root;
2024 cgroup_get(&root->cgrp);
2025 goto out_mount;
2026 }
2027
334c3679 2028 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2029
2030 /* First find the desired set of subsystems */
ddbcc7e8 2031 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2032 if (ret)
8e30e2b8 2033 goto out_unlock;
a015edd2 2034
970317aa
LZ
2035 /*
2036 * Destruction of cgroup root is asynchronous, so subsystems may
2037 * still be dying after the previous unmount. Let's drain the
2038 * dying subsystems. We just need to ensure that the ones
2039 * unmounted previously finish dying and don't care about new ones
2040 * starting. Testing ref liveliness is good enough.
2041 */
2042 for_each_subsys(ss, i) {
2043 if (!(opts.subsys_mask & (1 << i)) ||
2044 ss->root == &cgrp_dfl_root)
2045 continue;
2046
2047 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2048 mutex_unlock(&cgroup_mutex);
2049 msleep(10);
2050 ret = restart_syscall();
2051 goto out_free;
2052 }
2053 cgroup_put(&ss->root->cgrp);
2054 }
2055
985ed670 2056 for_each_root(root) {
2bd59d48 2057 bool name_match = false;
3126121f 2058
3dd06ffa 2059 if (root == &cgrp_dfl_root)
985ed670 2060 continue;
3126121f 2061
cf5d5941 2062 /*
2bd59d48
TH
2063 * If we asked for a name then it must match. Also, if
2064 * name matches but sybsys_mask doesn't, we should fail.
2065 * Remember whether name matched.
cf5d5941 2066 */
2bd59d48
TH
2067 if (opts.name) {
2068 if (strcmp(opts.name, root->name))
2069 continue;
2070 name_match = true;
2071 }
ddbcc7e8 2072
c6d57f33 2073 /*
2bd59d48
TH
2074 * If we asked for subsystems (or explicitly for no
2075 * subsystems) then they must match.
c6d57f33 2076 */
2bd59d48 2077 if ((opts.subsys_mask || opts.none) &&
f392e51c 2078 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2079 if (!name_match)
2080 continue;
2081 ret = -EBUSY;
2082 goto out_unlock;
2083 }
873fe09e 2084
7b9a6ba5
TH
2085 if (root->flags ^ opts.flags)
2086 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2087
776f02fa 2088 /*
3a32bd72
LZ
2089 * We want to reuse @root whose lifetime is governed by its
2090 * ->cgrp. Let's check whether @root is alive and keep it
2091 * that way. As cgroup_kill_sb() can happen anytime, we
2092 * want to block it by pinning the sb so that @root doesn't
2093 * get killed before mount is complete.
2094 *
2095 * With the sb pinned, tryget_live can reliably indicate
2096 * whether @root can be reused. If it's being killed,
2097 * drain it. We can use wait_queue for the wait but this
2098 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2099 */
3a32bd72
LZ
2100 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2101 if (IS_ERR(pinned_sb) ||
2102 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2103 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2104 if (!IS_ERR_OR_NULL(pinned_sb))
2105 deactivate_super(pinned_sb);
776f02fa 2106 msleep(10);
a015edd2
TH
2107 ret = restart_syscall();
2108 goto out_free;
776f02fa 2109 }
ddbcc7e8 2110
776f02fa 2111 ret = 0;
2bd59d48 2112 goto out_unlock;
ddbcc7e8 2113 }
ddbcc7e8 2114
817929ec 2115 /*
172a2c06
TH
2116 * No such thing, create a new one. name= matching without subsys
2117 * specification is allowed for already existing hierarchies but we
2118 * can't create new one without subsys specification.
817929ec 2119 */
172a2c06
TH
2120 if (!opts.subsys_mask && !opts.none) {
2121 ret = -EINVAL;
2122 goto out_unlock;
817929ec 2123 }
817929ec 2124
172a2c06
TH
2125 root = kzalloc(sizeof(*root), GFP_KERNEL);
2126 if (!root) {
2127 ret = -ENOMEM;
2bd59d48 2128 goto out_unlock;
839ec545 2129 }
e5f6a860 2130
172a2c06
TH
2131 init_cgroup_root(root, &opts);
2132
35585573 2133 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2134 if (ret)
2135 cgroup_free_root(root);
fa3ca07e 2136
8e30e2b8 2137out_unlock:
ddbcc7e8 2138 mutex_unlock(&cgroup_mutex);
a015edd2 2139out_free:
c6d57f33
PM
2140 kfree(opts.release_agent);
2141 kfree(opts.name);
03b1cde6 2142
2bd59d48 2143 if (ret)
8e30e2b8 2144 return ERR_PTR(ret);
67e9c74b 2145out_mount:
c9482a5b 2146 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2147 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2148 &new_sb);
c6b3d5bc 2149 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2150 cgroup_put(&root->cgrp);
3a32bd72
LZ
2151
2152 /*
2153 * If @pinned_sb, we're reusing an existing root and holding an
2154 * extra ref on its sb. Mount is complete. Put the extra ref.
2155 */
2156 if (pinned_sb) {
2157 WARN_ON(new_sb);
2158 deactivate_super(pinned_sb);
2159 }
2160
2bd59d48
TH
2161 return dentry;
2162}
2163
2164static void cgroup_kill_sb(struct super_block *sb)
2165{
2166 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2167 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2168
9d755d33
TH
2169 /*
2170 * If @root doesn't have any mounts or children, start killing it.
2171 * This prevents new mounts by disabling percpu_ref_tryget_live().
2172 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2173 *
2174 * And don't kill the default root.
9d755d33 2175 */
3c606d35 2176 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2177 root == &cgrp_dfl_root)
9d755d33
TH
2178 cgroup_put(&root->cgrp);
2179 else
2180 percpu_ref_kill(&root->cgrp.self.refcnt);
2181
2bd59d48 2182 kernfs_kill_sb(sb);
ddbcc7e8
PM
2183}
2184
2185static struct file_system_type cgroup_fs_type = {
2186 .name = "cgroup",
f7e83571 2187 .mount = cgroup_mount,
ddbcc7e8
PM
2188 .kill_sb = cgroup_kill_sb,
2189};
2190
67e9c74b
TH
2191static struct file_system_type cgroup2_fs_type = {
2192 .name = "cgroup2",
2193 .mount = cgroup_mount,
2194 .kill_sb = cgroup_kill_sb,
2195};
2196
857a2beb 2197/**
913ffdb5 2198 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2199 * @task: target task
857a2beb
TH
2200 * @buf: the buffer to write the path into
2201 * @buflen: the length of the buffer
2202 *
913ffdb5
TH
2203 * Determine @task's cgroup on the first (the one with the lowest non-zero
2204 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2205 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2206 * cgroup controller callbacks.
2207 *
e61734c5 2208 * Return value is the same as kernfs_path().
857a2beb 2209 */
e61734c5 2210char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2211{
3dd06ffa 2212 struct cgroup_root *root;
913ffdb5 2213 struct cgroup *cgrp;
e61734c5
TH
2214 int hierarchy_id = 1;
2215 char *path = NULL;
857a2beb
TH
2216
2217 mutex_lock(&cgroup_mutex);
f0d9a5f1 2218 spin_lock_bh(&css_set_lock);
857a2beb 2219
913ffdb5
TH
2220 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2221
857a2beb
TH
2222 if (root) {
2223 cgrp = task_cgroup_from_root(task, root);
e61734c5 2224 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2225 } else {
2226 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2227 if (strlcpy(buf, "/", buflen) < buflen)
2228 path = buf;
857a2beb
TH
2229 }
2230
f0d9a5f1 2231 spin_unlock_bh(&css_set_lock);
857a2beb 2232 mutex_unlock(&cgroup_mutex);
e61734c5 2233 return path;
857a2beb 2234}
913ffdb5 2235EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2236
b3dc094e 2237/* used to track tasks and other necessary states during migration */
2f7ee569 2238struct cgroup_taskset {
b3dc094e
TH
2239 /* the src and dst cset list running through cset->mg_node */
2240 struct list_head src_csets;
2241 struct list_head dst_csets;
2242
1f7dd3e5
TH
2243 /* the subsys currently being processed */
2244 int ssid;
2245
b3dc094e
TH
2246 /*
2247 * Fields for cgroup_taskset_*() iteration.
2248 *
2249 * Before migration is committed, the target migration tasks are on
2250 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2251 * the csets on ->dst_csets. ->csets point to either ->src_csets
2252 * or ->dst_csets depending on whether migration is committed.
2253 *
2254 * ->cur_csets and ->cur_task point to the current task position
2255 * during iteration.
2256 */
2257 struct list_head *csets;
2258 struct css_set *cur_cset;
2259 struct task_struct *cur_task;
2f7ee569
TH
2260};
2261
adaae5dc
TH
2262#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2263 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2264 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2265 .csets = &tset.src_csets, \
2266}
2267
2268/**
2269 * cgroup_taskset_add - try to add a migration target task to a taskset
2270 * @task: target task
2271 * @tset: target taskset
2272 *
2273 * Add @task, which is a migration target, to @tset. This function becomes
2274 * noop if @task doesn't need to be migrated. @task's css_set should have
2275 * been added as a migration source and @task->cg_list will be moved from
2276 * the css_set's tasks list to mg_tasks one.
2277 */
2278static void cgroup_taskset_add(struct task_struct *task,
2279 struct cgroup_taskset *tset)
2280{
2281 struct css_set *cset;
2282
f0d9a5f1 2283 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2284
2285 /* @task either already exited or can't exit until the end */
2286 if (task->flags & PF_EXITING)
2287 return;
2288
2289 /* leave @task alone if post_fork() hasn't linked it yet */
2290 if (list_empty(&task->cg_list))
2291 return;
2292
2293 cset = task_css_set(task);
2294 if (!cset->mg_src_cgrp)
2295 return;
2296
2297 list_move_tail(&task->cg_list, &cset->mg_tasks);
2298 if (list_empty(&cset->mg_node))
2299 list_add_tail(&cset->mg_node, &tset->src_csets);
2300 if (list_empty(&cset->mg_dst_cset->mg_node))
2301 list_move_tail(&cset->mg_dst_cset->mg_node,
2302 &tset->dst_csets);
2303}
2304
2f7ee569
TH
2305/**
2306 * cgroup_taskset_first - reset taskset and return the first task
2307 * @tset: taskset of interest
1f7dd3e5 2308 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2309 *
2310 * @tset iteration is initialized and the first task is returned.
2311 */
1f7dd3e5
TH
2312struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2313 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2314{
b3dc094e
TH
2315 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2316 tset->cur_task = NULL;
2317
1f7dd3e5 2318 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2319}
2f7ee569
TH
2320
2321/**
2322 * cgroup_taskset_next - iterate to the next task in taskset
2323 * @tset: taskset of interest
1f7dd3e5 2324 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2325 *
2326 * Return the next task in @tset. Iteration must have been initialized
2327 * with cgroup_taskset_first().
2328 */
1f7dd3e5
TH
2329struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2330 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2331{
b3dc094e
TH
2332 struct css_set *cset = tset->cur_cset;
2333 struct task_struct *task = tset->cur_task;
2f7ee569 2334
b3dc094e
TH
2335 while (&cset->mg_node != tset->csets) {
2336 if (!task)
2337 task = list_first_entry(&cset->mg_tasks,
2338 struct task_struct, cg_list);
2339 else
2340 task = list_next_entry(task, cg_list);
2f7ee569 2341
b3dc094e
TH
2342 if (&task->cg_list != &cset->mg_tasks) {
2343 tset->cur_cset = cset;
2344 tset->cur_task = task;
1f7dd3e5
TH
2345
2346 /*
2347 * This function may be called both before and
2348 * after cgroup_taskset_migrate(). The two cases
2349 * can be distinguished by looking at whether @cset
2350 * has its ->mg_dst_cset set.
2351 */
2352 if (cset->mg_dst_cset)
2353 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2354 else
2355 *dst_cssp = cset->subsys[tset->ssid];
2356
b3dc094e
TH
2357 return task;
2358 }
2f7ee569 2359
b3dc094e
TH
2360 cset = list_next_entry(cset, mg_node);
2361 task = NULL;
2362 }
2f7ee569 2363
b3dc094e 2364 return NULL;
2f7ee569 2365}
2f7ee569 2366
adaae5dc 2367/**
37ff9f8f 2368 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2369 * @tset: taget taskset
37ff9f8f 2370 * @root: cgroup root the migration is taking place on
adaae5dc 2371 *
37ff9f8f
TH
2372 * Migrate tasks in @tset as setup by migration preparation functions.
2373 * This function fails iff one of the ->can_attach callbacks fails and
2374 * guarantees that either all or none of the tasks in @tset are migrated.
2375 * @tset is consumed regardless of success.
adaae5dc
TH
2376 */
2377static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2378 struct cgroup_root *root)
adaae5dc 2379{
37ff9f8f 2380 struct cgroup_subsys *ss;
adaae5dc
TH
2381 struct task_struct *task, *tmp_task;
2382 struct css_set *cset, *tmp_cset;
37ff9f8f 2383 int ssid, failed_ssid, ret;
adaae5dc
TH
2384
2385 /* methods shouldn't be called if no task is actually migrating */
2386 if (list_empty(&tset->src_csets))
2387 return 0;
2388
2389 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2390 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2391 if (ss->can_attach) {
2392 tset->ssid = ssid;
2393 ret = ss->can_attach(tset);
adaae5dc 2394 if (ret) {
37ff9f8f 2395 failed_ssid = ssid;
adaae5dc
TH
2396 goto out_cancel_attach;
2397 }
2398 }
37ff9f8f 2399 } while_each_subsys_mask();
adaae5dc
TH
2400
2401 /*
2402 * Now that we're guaranteed success, proceed to move all tasks to
2403 * the new cgroup. There are no failure cases after here, so this
2404 * is the commit point.
2405 */
f0d9a5f1 2406 spin_lock_bh(&css_set_lock);
adaae5dc 2407 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2408 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2409 struct css_set *from_cset = task_css_set(task);
2410 struct css_set *to_cset = cset->mg_dst_cset;
2411
2412 get_css_set(to_cset);
2413 css_set_move_task(task, from_cset, to_cset, true);
2414 put_css_set_locked(from_cset);
2415 }
adaae5dc 2416 }
f0d9a5f1 2417 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2418
2419 /*
2420 * Migration is committed, all target tasks are now on dst_csets.
2421 * Nothing is sensitive to fork() after this point. Notify
2422 * controllers that migration is complete.
2423 */
2424 tset->csets = &tset->dst_csets;
2425
37ff9f8f
TH
2426 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2427 if (ss->attach) {
2428 tset->ssid = ssid;
2429 ss->attach(tset);
1f7dd3e5 2430 }
37ff9f8f 2431 } while_each_subsys_mask();
adaae5dc
TH
2432
2433 ret = 0;
2434 goto out_release_tset;
2435
2436out_cancel_attach:
37ff9f8f
TH
2437 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2438 if (ssid == failed_ssid)
adaae5dc 2439 break;
37ff9f8f
TH
2440 if (ss->cancel_attach) {
2441 tset->ssid = ssid;
2442 ss->cancel_attach(tset);
1f7dd3e5 2443 }
37ff9f8f 2444 } while_each_subsys_mask();
adaae5dc 2445out_release_tset:
f0d9a5f1 2446 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2447 list_splice_init(&tset->dst_csets, &tset->src_csets);
2448 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2449 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2450 list_del_init(&cset->mg_node);
2451 }
f0d9a5f1 2452 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2453 return ret;
2454}
2455
6c694c88
TH
2456/**
2457 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2458 * @dst_cgrp: destination cgroup to test
2459 *
2460 * On the default hierarchy, except for the root, subtree_control must be
2461 * zero for migration destination cgroups with tasks so that child cgroups
2462 * don't compete against tasks.
2463 */
2464static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2465{
2466 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2467 !dst_cgrp->subtree_control;
2468}
2469
a043e3b2 2470/**
1958d2d5
TH
2471 * cgroup_migrate_finish - cleanup after attach
2472 * @preloaded_csets: list of preloaded css_sets
74a1166d 2473 *
1958d2d5
TH
2474 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2475 * those functions for details.
74a1166d 2476 */
1958d2d5 2477static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2478{
1958d2d5 2479 struct css_set *cset, *tmp_cset;
74a1166d 2480
1958d2d5
TH
2481 lockdep_assert_held(&cgroup_mutex);
2482
f0d9a5f1 2483 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2484 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2485 cset->mg_src_cgrp = NULL;
e4857982 2486 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2487 cset->mg_dst_cset = NULL;
2488 list_del_init(&cset->mg_preload_node);
a25eb52e 2489 put_css_set_locked(cset);
1958d2d5 2490 }
f0d9a5f1 2491 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2492}
2493
2494/**
2495 * cgroup_migrate_add_src - add a migration source css_set
2496 * @src_cset: the source css_set to add
2497 * @dst_cgrp: the destination cgroup
2498 * @preloaded_csets: list of preloaded css_sets
2499 *
2500 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2501 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2502 * up by cgroup_migrate_finish().
2503 *
1ed13287
TH
2504 * This function may be called without holding cgroup_threadgroup_rwsem
2505 * even if the target is a process. Threads may be created and destroyed
2506 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2507 * into play and the preloaded css_sets are guaranteed to cover all
2508 * migrations.
1958d2d5
TH
2509 */
2510static void cgroup_migrate_add_src(struct css_set *src_cset,
2511 struct cgroup *dst_cgrp,
2512 struct list_head *preloaded_csets)
2513{
2514 struct cgroup *src_cgrp;
2515
2516 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2517 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2518
2519 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2520
1958d2d5
TH
2521 if (!list_empty(&src_cset->mg_preload_node))
2522 return;
2523
2524 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2525 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2526 WARN_ON(!list_empty(&src_cset->mg_tasks));
2527 WARN_ON(!list_empty(&src_cset->mg_node));
2528
2529 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2530 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2531 get_css_set(src_cset);
2532 list_add(&src_cset->mg_preload_node, preloaded_csets);
2533}
2534
2535/**
2536 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2537 * @preloaded_csets: list of preloaded source css_sets
2538 *
e4857982
TH
2539 * Tasks are about to be moved and all the source css_sets have been
2540 * preloaded to @preloaded_csets. This function looks up and pins all
2541 * destination css_sets, links each to its source, and append them to
2542 * @preloaded_csets.
1958d2d5
TH
2543 *
2544 * This function must be called after cgroup_migrate_add_src() has been
2545 * called on each migration source css_set. After migration is performed
2546 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2547 * @preloaded_csets.
2548 */
e4857982 2549static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2550{
2551 LIST_HEAD(csets);
f817de98 2552 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2553
2554 lockdep_assert_held(&cgroup_mutex);
2555
2556 /* look up the dst cset for each src cset and link it to src */
f817de98 2557 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2558 struct css_set *dst_cset;
2559
e4857982 2560 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2561 if (!dst_cset)
2562 goto err;
2563
2564 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2565
2566 /*
2567 * If src cset equals dst, it's noop. Drop the src.
2568 * cgroup_migrate() will skip the cset too. Note that we
2569 * can't handle src == dst as some nodes are used by both.
2570 */
2571 if (src_cset == dst_cset) {
2572 src_cset->mg_src_cgrp = NULL;
e4857982 2573 src_cset->mg_dst_cgrp = NULL;
f817de98 2574 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2575 put_css_set(src_cset);
2576 put_css_set(dst_cset);
f817de98
TH
2577 continue;
2578 }
2579
1958d2d5
TH
2580 src_cset->mg_dst_cset = dst_cset;
2581
2582 if (list_empty(&dst_cset->mg_preload_node))
2583 list_add(&dst_cset->mg_preload_node, &csets);
2584 else
a25eb52e 2585 put_css_set(dst_cset);
1958d2d5
TH
2586 }
2587
f817de98 2588 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2589 return 0;
2590err:
2591 cgroup_migrate_finish(&csets);
2592 return -ENOMEM;
2593}
2594
2595/**
2596 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2597 * @leader: the leader of the process or the task to migrate
2598 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2599 * @root: cgroup root migration is taking place on
1958d2d5 2600 *
37ff9f8f
TH
2601 * Migrate a process or task denoted by @leader. If migrating a process,
2602 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2603 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2604 * cgroup_migrate_prepare_dst() on the targets before invoking this
2605 * function and following up with cgroup_migrate_finish().
2606 *
2607 * As long as a controller's ->can_attach() doesn't fail, this function is
2608 * guaranteed to succeed. This means that, excluding ->can_attach()
2609 * failure, when migrating multiple targets, the success or failure can be
2610 * decided for all targets by invoking group_migrate_prepare_dst() before
2611 * actually starting migrating.
2612 */
9af2ec45 2613static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2614 struct cgroup_root *root)
74a1166d 2615{
adaae5dc
TH
2616 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2617 struct task_struct *task;
74a1166d 2618
fb5d2b4c
MSB
2619 /*
2620 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2621 * already PF_EXITING could be freed from underneath us unless we
2622 * take an rcu_read_lock.
2623 */
f0d9a5f1 2624 spin_lock_bh(&css_set_lock);
fb5d2b4c 2625 rcu_read_lock();
9db8de37 2626 task = leader;
74a1166d 2627 do {
adaae5dc 2628 cgroup_taskset_add(task, &tset);
081aa458
LZ
2629 if (!threadgroup)
2630 break;
9db8de37 2631 } while_each_thread(leader, task);
fb5d2b4c 2632 rcu_read_unlock();
f0d9a5f1 2633 spin_unlock_bh(&css_set_lock);
74a1166d 2634
37ff9f8f 2635 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2636}
2637
1958d2d5
TH
2638/**
2639 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2640 * @dst_cgrp: the cgroup to attach to
2641 * @leader: the task or the leader of the threadgroup to be attached
2642 * @threadgroup: attach the whole threadgroup?
2643 *
1ed13287 2644 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2645 */
2646static int cgroup_attach_task(struct cgroup *dst_cgrp,
2647 struct task_struct *leader, bool threadgroup)
2648{
2649 LIST_HEAD(preloaded_csets);
2650 struct task_struct *task;
2651 int ret;
2652
6c694c88
TH
2653 if (!cgroup_may_migrate_to(dst_cgrp))
2654 return -EBUSY;
2655
1958d2d5 2656 /* look up all src csets */
f0d9a5f1 2657 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2658 rcu_read_lock();
2659 task = leader;
2660 do {
2661 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2662 &preloaded_csets);
2663 if (!threadgroup)
2664 break;
2665 } while_each_thread(leader, task);
2666 rcu_read_unlock();
f0d9a5f1 2667 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2668
2669 /* prepare dst csets and commit */
e4857982 2670 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2671 if (!ret)
37ff9f8f 2672 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2673
2674 cgroup_migrate_finish(&preloaded_csets);
2675 return ret;
74a1166d
BB
2676}
2677
187fe840
TH
2678static int cgroup_procs_write_permission(struct task_struct *task,
2679 struct cgroup *dst_cgrp,
2680 struct kernfs_open_file *of)
dedf22e9
TH
2681{
2682 const struct cred *cred = current_cred();
2683 const struct cred *tcred = get_task_cred(task);
2684 int ret = 0;
2685
2686 /*
2687 * even if we're attaching all tasks in the thread group, we only
2688 * need to check permissions on one of them.
2689 */
2690 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2691 !uid_eq(cred->euid, tcred->uid) &&
2692 !uid_eq(cred->euid, tcred->suid))
2693 ret = -EACCES;
2694
187fe840
TH
2695 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2696 struct super_block *sb = of->file->f_path.dentry->d_sb;
2697 struct cgroup *cgrp;
2698 struct inode *inode;
2699
f0d9a5f1 2700 spin_lock_bh(&css_set_lock);
187fe840 2701 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2702 spin_unlock_bh(&css_set_lock);
187fe840
TH
2703
2704 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2705 cgrp = cgroup_parent(cgrp);
2706
2707 ret = -ENOMEM;
6f60eade 2708 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2709 if (inode) {
2710 ret = inode_permission(inode, MAY_WRITE);
2711 iput(inode);
2712 }
2713 }
2714
dedf22e9
TH
2715 put_cred(tcred);
2716 return ret;
2717}
2718
74a1166d
BB
2719/*
2720 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2721 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2722 * cgroup_mutex and threadgroup.
bbcb81d0 2723 */
acbef755
TH
2724static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2725 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2726{
bbcb81d0 2727 struct task_struct *tsk;
e76ecaee 2728 struct cgroup *cgrp;
acbef755 2729 pid_t pid;
bbcb81d0
PM
2730 int ret;
2731
acbef755
TH
2732 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2733 return -EINVAL;
2734
945ba199 2735 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2736 if (!cgrp)
74a1166d
BB
2737 return -ENODEV;
2738
3014dde7 2739 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2740 rcu_read_lock();
bbcb81d0 2741 if (pid) {
73507f33 2742 tsk = find_task_by_vpid(pid);
74a1166d 2743 if (!tsk) {
dd4b0a46 2744 ret = -ESRCH;
3014dde7 2745 goto out_unlock_rcu;
bbcb81d0 2746 }
dedf22e9 2747 } else {
b78949eb 2748 tsk = current;
dedf22e9 2749 }
cd3d0952
TH
2750
2751 if (threadgroup)
b78949eb 2752 tsk = tsk->group_leader;
c4c27fbd
MG
2753
2754 /*
14a40ffc 2755 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2756 * trapped in a cpuset, or RT worker may be born in a cgroup
2757 * with no rt_runtime allocated. Just say no.
2758 */
14a40ffc 2759 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2760 ret = -EINVAL;
3014dde7 2761 goto out_unlock_rcu;
c4c27fbd
MG
2762 }
2763
b78949eb
MSB
2764 get_task_struct(tsk);
2765 rcu_read_unlock();
2766
187fe840 2767 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2768 if (!ret)
2769 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2770
f9f9e7b7 2771 put_task_struct(tsk);
3014dde7
TH
2772 goto out_unlock_threadgroup;
2773
2774out_unlock_rcu:
2775 rcu_read_unlock();
2776out_unlock_threadgroup:
2777 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2778 cgroup_kn_unlock(of->kn);
e93ad19d 2779 cpuset_post_attach_flush();
acbef755 2780 return ret ?: nbytes;
bbcb81d0
PM
2781}
2782
7ae1bad9
TH
2783/**
2784 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2785 * @from: attach to all cgroups of a given task
2786 * @tsk: the task to be attached
2787 */
2788int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2789{
3dd06ffa 2790 struct cgroup_root *root;
7ae1bad9
TH
2791 int retval = 0;
2792
47cfcd09 2793 mutex_lock(&cgroup_mutex);
985ed670 2794 for_each_root(root) {
96d365e0
TH
2795 struct cgroup *from_cgrp;
2796
3dd06ffa 2797 if (root == &cgrp_dfl_root)
985ed670
TH
2798 continue;
2799
f0d9a5f1 2800 spin_lock_bh(&css_set_lock);
96d365e0 2801 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2802 spin_unlock_bh(&css_set_lock);
7ae1bad9 2803
6f4b7e63 2804 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2805 if (retval)
2806 break;
2807 }
47cfcd09 2808 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2809
2810 return retval;
2811}
2812EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2813
acbef755
TH
2814static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2815 char *buf, size_t nbytes, loff_t off)
74a1166d 2816{
acbef755 2817 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2818}
2819
acbef755
TH
2820static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2821 char *buf, size_t nbytes, loff_t off)
af351026 2822{
acbef755 2823 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2824}
2825
451af504
TH
2826static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2827 char *buf, size_t nbytes, loff_t off)
e788e066 2828{
e76ecaee 2829 struct cgroup *cgrp;
5f469907 2830
e76ecaee 2831 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2832
945ba199 2833 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2834 if (!cgrp)
e788e066 2835 return -ENODEV;
69e943b7 2836 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2837 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2838 sizeof(cgrp->root->release_agent_path));
69e943b7 2839 spin_unlock(&release_agent_path_lock);
e76ecaee 2840 cgroup_kn_unlock(of->kn);
451af504 2841 return nbytes;
e788e066
PM
2842}
2843
2da8ca82 2844static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2845{
2da8ca82 2846 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2847
46cfeb04 2848 spin_lock(&release_agent_path_lock);
e788e066 2849 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2850 spin_unlock(&release_agent_path_lock);
e788e066 2851 seq_putc(seq, '\n');
e788e066
PM
2852 return 0;
2853}
2854
2da8ca82 2855static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2856{
c1d5d42e 2857 seq_puts(seq, "0\n");
e788e066
PM
2858 return 0;
2859}
2860
6e5c8307 2861static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2862{
f8f22e53
TH
2863 struct cgroup_subsys *ss;
2864 bool printed = false;
2865 int ssid;
a742c59d 2866
b4e0eeaf 2867 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2868 if (printed)
2869 seq_putc(seq, ' ');
2870 seq_printf(seq, "%s", ss->name);
2871 printed = true;
b4e0eeaf 2872 } while_each_subsys_mask();
f8f22e53
TH
2873 if (printed)
2874 seq_putc(seq, '\n');
355e0c48
PM
2875}
2876
f8f22e53
TH
2877/* show controllers which are enabled from the parent */
2878static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2879{
f8f22e53
TH
2880 struct cgroup *cgrp = seq_css(seq)->cgroup;
2881
5531dc91 2882 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2883 return 0;
ddbcc7e8
PM
2884}
2885
f8f22e53
TH
2886/* show controllers which are enabled for a given cgroup's children */
2887static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2888{
f8f22e53
TH
2889 struct cgroup *cgrp = seq_css(seq)->cgroup;
2890
667c2491 2891 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2892 return 0;
2893}
2894
2895/**
2896 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2897 * @cgrp: root of the subtree to update csses for
2898 *
54962604
TH
2899 * @cgrp's control masks have changed and its subtree's css associations
2900 * need to be updated accordingly. This function looks up all css_sets
2901 * which are attached to the subtree, creates the matching updated css_sets
2902 * and migrates the tasks to the new ones.
f8f22e53
TH
2903 */
2904static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2905{
2906 LIST_HEAD(preloaded_csets);
10265075 2907 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
2908 struct cgroup_subsys_state *d_css;
2909 struct cgroup *dsct;
f8f22e53
TH
2910 struct css_set *src_cset;
2911 int ret;
2912
f8f22e53
TH
2913 lockdep_assert_held(&cgroup_mutex);
2914
3014dde7
TH
2915 percpu_down_write(&cgroup_threadgroup_rwsem);
2916
f8f22e53 2917 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2918 spin_lock_bh(&css_set_lock);
54962604 2919 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
2920 struct cgrp_cset_link *link;
2921
54962604 2922 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 2923 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
2924 &preloaded_csets);
2925 }
f0d9a5f1 2926 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2927
2928 /* NULL dst indicates self on default hierarchy */
e4857982 2929 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
2930 if (ret)
2931 goto out_finish;
2932
f0d9a5f1 2933 spin_lock_bh(&css_set_lock);
f8f22e53 2934 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2935 struct task_struct *task, *ntask;
f8f22e53
TH
2936
2937 /* src_csets precede dst_csets, break on the first dst_cset */
2938 if (!src_cset->mg_src_cgrp)
2939 break;
2940
10265075
TH
2941 /* all tasks in src_csets need to be migrated */
2942 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2943 cgroup_taskset_add(task, &tset);
f8f22e53 2944 }
f0d9a5f1 2945 spin_unlock_bh(&css_set_lock);
f8f22e53 2946
37ff9f8f 2947 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
2948out_finish:
2949 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2950 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2951 return ret;
2952}
2953
1b9b96a1 2954/**
945ba199 2955 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 2956 * @cgrp: root of the target subtree
1b9b96a1
TH
2957 *
2958 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
2959 * controller while the previous css is still around. This function grabs
2960 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 2961 */
945ba199
TH
2962static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2963 __acquires(&cgroup_mutex)
1b9b96a1
TH
2964{
2965 struct cgroup *dsct;
ce3f1d9d 2966 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
2967 struct cgroup_subsys *ss;
2968 int ssid;
2969
945ba199
TH
2970restart:
2971 mutex_lock(&cgroup_mutex);
1b9b96a1 2972
ce3f1d9d 2973 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
2974 for_each_subsys(ss, ssid) {
2975 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2976 DEFINE_WAIT(wait);
2977
ce3f1d9d 2978 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
2979 continue;
2980
2981 cgroup_get(dsct);
2982 prepare_to_wait(&dsct->offline_waitq, &wait,
2983 TASK_UNINTERRUPTIBLE);
2984
2985 mutex_unlock(&cgroup_mutex);
2986 schedule();
2987 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
2988
2989 cgroup_put(dsct);
945ba199 2990 goto restart;
1b9b96a1
TH
2991 }
2992 }
1b9b96a1
TH
2993}
2994
15a27c36
TH
2995/**
2996 * cgroup_save_control - save control masks of a subtree
2997 * @cgrp: root of the target subtree
2998 *
2999 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3000 * prefixed fields for @cgrp's subtree including @cgrp itself.
3001 */
3002static void cgroup_save_control(struct cgroup *cgrp)
3003{
3004 struct cgroup *dsct;
3005 struct cgroup_subsys_state *d_css;
3006
3007 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3008 dsct->old_subtree_control = dsct->subtree_control;
3009 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3010 }
3011}
3012
3013/**
3014 * cgroup_propagate_control - refresh control masks of a subtree
3015 * @cgrp: root of the target subtree
3016 *
3017 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3018 * ->subtree_control and propagate controller availability through the
3019 * subtree so that descendants don't have unavailable controllers enabled.
3020 */
3021static void cgroup_propagate_control(struct cgroup *cgrp)
3022{
3023 struct cgroup *dsct;
3024 struct cgroup_subsys_state *d_css;
3025
3026 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3027 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3028 dsct->subtree_ss_mask =
3029 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3030 cgroup_ss_mask(dsct));
15a27c36
TH
3031 }
3032}
3033
3034/**
3035 * cgroup_restore_control - restore control masks of a subtree
3036 * @cgrp: root of the target subtree
3037 *
3038 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3039 * prefixed fields for @cgrp's subtree including @cgrp itself.
3040 */
3041static void cgroup_restore_control(struct cgroup *cgrp)
3042{
3043 struct cgroup *dsct;
3044 struct cgroup_subsys_state *d_css;
3045
3046 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3047 dsct->subtree_control = dsct->old_subtree_control;
3048 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3049 }
3050}
3051
f6d635ad
TH
3052static bool css_visible(struct cgroup_subsys_state *css)
3053{
3054 struct cgroup_subsys *ss = css->ss;
3055 struct cgroup *cgrp = css->cgroup;
3056
3057 if (cgroup_control(cgrp) & (1 << ss->id))
3058 return true;
3059 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3060 return false;
3061 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3062}
3063
bdb53bd7
TH
3064/**
3065 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3066 * @cgrp: root of the target subtree
bdb53bd7 3067 *
ce3f1d9d 3068 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3069 * visible. A css is created invisible if it's being implicitly enabled
3070 * through dependency. An invisible css is made visible when the userland
3071 * explicitly enables it.
3072 *
3073 * Returns 0 on success, -errno on failure. On failure, csses which have
3074 * been processed already aren't cleaned up. The caller is responsible for
3075 * cleaning up with cgroup_apply_control_disble().
3076 */
3077static int cgroup_apply_control_enable(struct cgroup *cgrp)
3078{
3079 struct cgroup *dsct;
ce3f1d9d 3080 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3081 struct cgroup_subsys *ss;
3082 int ssid, ret;
3083
ce3f1d9d 3084 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3085 for_each_subsys(ss, ssid) {
3086 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3087
945ba199
TH
3088 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3089
bdb53bd7
TH
3090 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3091 continue;
3092
3093 if (!css) {
3094 css = css_create(dsct, ss);
3095 if (IS_ERR(css))
3096 return PTR_ERR(css);
3097 }
3098
f6d635ad 3099 if (css_visible(css)) {
334c3679 3100 ret = css_populate_dir(css);
bdb53bd7
TH
3101 if (ret)
3102 return ret;
3103 }
3104 }
3105 }
3106
3107 return 0;
3108}
3109
12b3bb6a
TH
3110/**
3111 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3112 * @cgrp: root of the target subtree
12b3bb6a 3113 *
ce3f1d9d 3114 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3115 * cgroup_ss_mask() and cgroup_visible_mask().
3116 *
3117 * A css is hidden when the userland requests it to be disabled while other
3118 * subsystems are still depending on it. The css must not actively control
3119 * resources and be in the vanilla state if it's made visible again later.
3120 * Controllers which may be depended upon should provide ->css_reset() for
3121 * this purpose.
3122 */
3123static void cgroup_apply_control_disable(struct cgroup *cgrp)
3124{
3125 struct cgroup *dsct;
ce3f1d9d 3126 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3127 struct cgroup_subsys *ss;
3128 int ssid;
3129
ce3f1d9d 3130 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3131 for_each_subsys(ss, ssid) {
3132 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3133
945ba199
TH
3134 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3135
12b3bb6a
TH
3136 if (!css)
3137 continue;
3138
334c3679
TH
3139 if (css->parent &&
3140 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3141 kill_css(css);
f6d635ad 3142 } else if (!css_visible(css)) {
334c3679 3143 css_clear_dir(css);
12b3bb6a
TH
3144 if (ss->css_reset)
3145 ss->css_reset(css);
3146 }
3147 }
3148 }
3149}
3150
f7b2814b
TH
3151/**
3152 * cgroup_apply_control - apply control mask updates to the subtree
3153 * @cgrp: root of the target subtree
3154 *
3155 * subsystems can be enabled and disabled in a subtree using the following
3156 * steps.
3157 *
3158 * 1. Call cgroup_save_control() to stash the current state.
3159 * 2. Update ->subtree_control masks in the subtree as desired.
3160 * 3. Call cgroup_apply_control() to apply the changes.
3161 * 4. Optionally perform other related operations.
3162 * 5. Call cgroup_finalize_control() to finish up.
3163 *
3164 * This function implements step 3 and propagates the mask changes
3165 * throughout @cgrp's subtree, updates csses accordingly and perform
3166 * process migrations.
3167 */
3168static int cgroup_apply_control(struct cgroup *cgrp)
3169{
3170 int ret;
3171
3172 cgroup_propagate_control(cgrp);
3173
3174 ret = cgroup_apply_control_enable(cgrp);
3175 if (ret)
3176 return ret;
3177
3178 /*
3179 * At this point, cgroup_e_css() results reflect the new csses
3180 * making the following cgroup_update_dfl_csses() properly update
3181 * css associations of all tasks in the subtree.
3182 */
3183 ret = cgroup_update_dfl_csses(cgrp);
3184 if (ret)
3185 return ret;
3186
3187 return 0;
3188}
3189
3190/**
3191 * cgroup_finalize_control - finalize control mask update
3192 * @cgrp: root of the target subtree
3193 * @ret: the result of the update
3194 *
3195 * Finalize control mask update. See cgroup_apply_control() for more info.
3196 */
3197static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3198{
3199 if (ret) {
3200 cgroup_restore_control(cgrp);
3201 cgroup_propagate_control(cgrp);
3202 }
3203
3204 cgroup_apply_control_disable(cgrp);
3205}
3206
f8f22e53 3207/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3208static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3209 char *buf, size_t nbytes,
3210 loff_t off)
f8f22e53 3211{
6e5c8307 3212 u16 enable = 0, disable = 0;
a9746d8d 3213 struct cgroup *cgrp, *child;
f8f22e53 3214 struct cgroup_subsys *ss;
451af504 3215 char *tok;
f8f22e53
TH
3216 int ssid, ret;
3217
3218 /*
d37167ab
TH
3219 * Parse input - space separated list of subsystem names prefixed
3220 * with either + or -.
f8f22e53 3221 */
451af504
TH
3222 buf = strstrip(buf);
3223 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3224 if (tok[0] == '\0')
3225 continue;
a7165264 3226 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3227 if (!cgroup_ssid_enabled(ssid) ||
3228 strcmp(tok + 1, ss->name))
f8f22e53
TH
3229 continue;
3230
3231 if (*tok == '+') {
7d331fa9
TH
3232 enable |= 1 << ssid;
3233 disable &= ~(1 << ssid);
f8f22e53 3234 } else if (*tok == '-') {
7d331fa9
TH
3235 disable |= 1 << ssid;
3236 enable &= ~(1 << ssid);
f8f22e53
TH
3237 } else {
3238 return -EINVAL;
3239 }
3240 break;
b4e0eeaf 3241 } while_each_subsys_mask();
f8f22e53
TH
3242 if (ssid == CGROUP_SUBSYS_COUNT)
3243 return -EINVAL;
3244 }
3245
945ba199 3246 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3247 if (!cgrp)
3248 return -ENODEV;
f8f22e53
TH
3249
3250 for_each_subsys(ss, ssid) {
3251 if (enable & (1 << ssid)) {
667c2491 3252 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3253 enable &= ~(1 << ssid);
3254 continue;
3255 }
3256
5531dc91 3257 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3258 ret = -ENOENT;
3259 goto out_unlock;
3260 }
f8f22e53 3261 } else if (disable & (1 << ssid)) {
667c2491 3262 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3263 disable &= ~(1 << ssid);
3264 continue;
3265 }
3266
3267 /* a child has it enabled? */
3268 cgroup_for_each_live_child(child, cgrp) {
667c2491 3269 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3270 ret = -EBUSY;
ddab2b6e 3271 goto out_unlock;
f8f22e53
TH
3272 }
3273 }
3274 }
3275 }
3276
3277 if (!enable && !disable) {
3278 ret = 0;
ddab2b6e 3279 goto out_unlock;
f8f22e53
TH
3280 }
3281
3282 /*
667c2491 3283 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3284 * with tasks so that child cgroups don't compete against tasks.
3285 */
d51f39b0 3286 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3287 ret = -EBUSY;
3288 goto out_unlock;
3289 }
3290
15a27c36
TH
3291 /* save and update control masks and prepare csses */
3292 cgroup_save_control(cgrp);
f63070d3 3293
15a27c36
TH
3294 cgrp->subtree_control |= enable;
3295 cgrp->subtree_control &= ~disable;
c29adf24 3296
f7b2814b 3297 ret = cgroup_apply_control(cgrp);
f8f22e53 3298
f7b2814b 3299 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3300
3301 kernfs_activate(cgrp->kn);
3302 ret = 0;
3303out_unlock:
a9746d8d 3304 cgroup_kn_unlock(of->kn);
451af504 3305 return ret ?: nbytes;
f8f22e53
TH
3306}
3307
4a07c222 3308static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3309{
4a07c222 3310 seq_printf(seq, "populated %d\n",
27bd4dbb 3311 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3312 return 0;
3313}
3314
2bd59d48
TH
3315static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3316 size_t nbytes, loff_t off)
355e0c48 3317{
2bd59d48
TH
3318 struct cgroup *cgrp = of->kn->parent->priv;
3319 struct cftype *cft = of->kn->priv;
3320 struct cgroup_subsys_state *css;
a742c59d 3321 int ret;
355e0c48 3322
b4168640
TH
3323 if (cft->write)
3324 return cft->write(of, buf, nbytes, off);
3325
2bd59d48
TH
3326 /*
3327 * kernfs guarantees that a file isn't deleted with operations in
3328 * flight, which means that the matching css is and stays alive and
3329 * doesn't need to be pinned. The RCU locking is not necessary
3330 * either. It's just for the convenience of using cgroup_css().
3331 */
3332 rcu_read_lock();
3333 css = cgroup_css(cgrp, cft->ss);
3334 rcu_read_unlock();
a742c59d 3335
451af504 3336 if (cft->write_u64) {
a742c59d
TH
3337 unsigned long long v;
3338 ret = kstrtoull(buf, 0, &v);
3339 if (!ret)
3340 ret = cft->write_u64(css, cft, v);
3341 } else if (cft->write_s64) {
3342 long long v;
3343 ret = kstrtoll(buf, 0, &v);
3344 if (!ret)
3345 ret = cft->write_s64(css, cft, v);
e73d2c61 3346 } else {
a742c59d 3347 ret = -EINVAL;
e73d2c61 3348 }
2bd59d48 3349
a742c59d 3350 return ret ?: nbytes;
355e0c48
PM
3351}
3352
6612f05b 3353static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3354{
2bd59d48 3355 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3356}
3357
6612f05b 3358static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3359{
2bd59d48 3360 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3361}
3362
6612f05b 3363static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3364{
2bd59d48 3365 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3366}
3367
91796569 3368static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3369{
7da11279
TH
3370 struct cftype *cft = seq_cft(m);
3371 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3372
2da8ca82
TH
3373 if (cft->seq_show)
3374 return cft->seq_show(m, arg);
e73d2c61 3375
f4c753b7 3376 if (cft->read_u64)
896f5199
TH
3377 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3378 else if (cft->read_s64)
3379 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3380 else
3381 return -EINVAL;
3382 return 0;
91796569
PM
3383}
3384
2bd59d48
TH
3385static struct kernfs_ops cgroup_kf_single_ops = {
3386 .atomic_write_len = PAGE_SIZE,
3387 .write = cgroup_file_write,
3388 .seq_show = cgroup_seqfile_show,
91796569
PM
3389};
3390
2bd59d48
TH
3391static struct kernfs_ops cgroup_kf_ops = {
3392 .atomic_write_len = PAGE_SIZE,
3393 .write = cgroup_file_write,
3394 .seq_start = cgroup_seqfile_start,
3395 .seq_next = cgroup_seqfile_next,
3396 .seq_stop = cgroup_seqfile_stop,
3397 .seq_show = cgroup_seqfile_show,
3398};
ddbcc7e8
PM
3399
3400/*
3401 * cgroup_rename - Only allow simple rename of directories in place.
3402 */
2bd59d48
TH
3403static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3404 const char *new_name_str)
ddbcc7e8 3405{
2bd59d48 3406 struct cgroup *cgrp = kn->priv;
65dff759 3407 int ret;
65dff759 3408
2bd59d48 3409 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3410 return -ENOTDIR;
2bd59d48 3411 if (kn->parent != new_parent)
ddbcc7e8 3412 return -EIO;
65dff759 3413
6db8e85c
TH
3414 /*
3415 * This isn't a proper migration and its usefulness is very
aa6ec29b 3416 * limited. Disallow on the default hierarchy.
6db8e85c 3417 */
aa6ec29b 3418 if (cgroup_on_dfl(cgrp))
6db8e85c 3419 return -EPERM;
099fca32 3420
e1b2dc17 3421 /*
8353da1f 3422 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3423 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3424 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3425 */
3426 kernfs_break_active_protection(new_parent);
3427 kernfs_break_active_protection(kn);
099fca32 3428
2bd59d48 3429 mutex_lock(&cgroup_mutex);
099fca32 3430
2bd59d48 3431 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3432
2bd59d48 3433 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3434
3435 kernfs_unbreak_active_protection(kn);
3436 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3437 return ret;
099fca32
LZ
3438}
3439
49957f8e
TH
3440/* set uid and gid of cgroup dirs and files to that of the creator */
3441static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3442{
3443 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3444 .ia_uid = current_fsuid(),
3445 .ia_gid = current_fsgid(), };
3446
3447 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3448 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3449 return 0;
3450
3451 return kernfs_setattr(kn, &iattr);
3452}
3453
4df8dc90
TH
3454static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3455 struct cftype *cft)
ddbcc7e8 3456{
8d7e6fb0 3457 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3458 struct kernfs_node *kn;
3459 struct lock_class_key *key = NULL;
49957f8e 3460 int ret;
05ef1d7c 3461
2bd59d48
TH
3462#ifdef CONFIG_DEBUG_LOCK_ALLOC
3463 key = &cft->lockdep_key;
3464#endif
3465 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3466 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3467 NULL, key);
49957f8e
TH
3468 if (IS_ERR(kn))
3469 return PTR_ERR(kn);
3470
3471 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3472 if (ret) {
49957f8e 3473 kernfs_remove(kn);
f8f22e53
TH
3474 return ret;
3475 }
3476
6f60eade
TH
3477 if (cft->file_offset) {
3478 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3479
34c06254 3480 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3481 cfile->kn = kn;
34c06254 3482 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3483 }
3484
f8f22e53 3485 return 0;
ddbcc7e8
PM
3486}
3487
b1f28d31
TH
3488/**
3489 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3490 * @css: the target css
3491 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3492 * @cfts: array of cftypes to be added
3493 * @is_add: whether to add or remove
3494 *
3495 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3496 * For removals, this function never fails.
b1f28d31 3497 */
4df8dc90
TH
3498static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3499 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3500 bool is_add)
ddbcc7e8 3501{
6732ed85 3502 struct cftype *cft, *cft_end = NULL;
b598dde3 3503 int ret = 0;
b1f28d31 3504
01f6474c 3505 lockdep_assert_held(&cgroup_mutex);
db0416b6 3506
6732ed85
TH
3507restart:
3508 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3509 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3510 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3511 continue;
05ebb6e6 3512 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3513 continue;
d51f39b0 3514 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3515 continue;
d51f39b0 3516 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3517 continue;
3518
2739d3cc 3519 if (is_add) {
4df8dc90 3520 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3521 if (ret) {
ed3d261b
JP
3522 pr_warn("%s: failed to add %s, err=%d\n",
3523 __func__, cft->name, ret);
6732ed85
TH
3524 cft_end = cft;
3525 is_add = false;
3526 goto restart;
b1f28d31 3527 }
2739d3cc
LZ
3528 } else {
3529 cgroup_rm_file(cgrp, cft);
db0416b6 3530 }
ddbcc7e8 3531 }
b598dde3 3532 return ret;
ddbcc7e8
PM
3533}
3534
21a2d343 3535static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3536{
3537 LIST_HEAD(pending);
2bb566cb 3538 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3539 struct cgroup *root = &ss->root->cgrp;
492eb21b 3540 struct cgroup_subsys_state *css;
9ccece80 3541 int ret = 0;
8e3f6541 3542
01f6474c 3543 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3544
e8c82d20 3545 /* add/rm files for all cgroups created before */
ca8bdcaf 3546 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3547 struct cgroup *cgrp = css->cgroup;
3548
88cb04b9 3549 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3550 continue;
3551
4df8dc90 3552 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3553 if (ret)
3554 break;
8e3f6541 3555 }
21a2d343
TH
3556
3557 if (is_add && !ret)
3558 kernfs_activate(root->kn);
9ccece80 3559 return ret;
8e3f6541
TH
3560}
3561
2da440a2 3562static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3563{
2bb566cb 3564 struct cftype *cft;
8e3f6541 3565
2bd59d48
TH
3566 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3567 /* free copy for custom atomic_write_len, see init_cftypes() */
3568 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3569 kfree(cft->kf_ops);
3570 cft->kf_ops = NULL;
2da440a2 3571 cft->ss = NULL;
a8ddc821
TH
3572
3573 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3574 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3575 }
2da440a2
TH
3576}
3577
2bd59d48 3578static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3579{
3580 struct cftype *cft;
3581
2bd59d48
TH
3582 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3583 struct kernfs_ops *kf_ops;
3584
0adb0704
TH
3585 WARN_ON(cft->ss || cft->kf_ops);
3586
2bd59d48
TH
3587 if (cft->seq_start)
3588 kf_ops = &cgroup_kf_ops;
3589 else
3590 kf_ops = &cgroup_kf_single_ops;
3591
3592 /*
3593 * Ugh... if @cft wants a custom max_write_len, we need to
3594 * make a copy of kf_ops to set its atomic_write_len.
3595 */
3596 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3597 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3598 if (!kf_ops) {
3599 cgroup_exit_cftypes(cfts);
3600 return -ENOMEM;
3601 }
3602 kf_ops->atomic_write_len = cft->max_write_len;
3603 }
8e3f6541 3604
2bd59d48 3605 cft->kf_ops = kf_ops;
2bb566cb 3606 cft->ss = ss;
2bd59d48 3607 }
2bb566cb 3608
2bd59d48 3609 return 0;
2da440a2
TH
3610}
3611
21a2d343
TH
3612static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3613{
01f6474c 3614 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3615
3616 if (!cfts || !cfts[0].ss)
3617 return -ENOENT;
3618
3619 list_del(&cfts->node);
3620 cgroup_apply_cftypes(cfts, false);
3621 cgroup_exit_cftypes(cfts);
3622 return 0;
8e3f6541 3623}
8e3f6541 3624
79578621
TH
3625/**
3626 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3627 * @cfts: zero-length name terminated array of cftypes
3628 *
2bb566cb
TH
3629 * Unregister @cfts. Files described by @cfts are removed from all
3630 * existing cgroups and all future cgroups won't have them either. This
3631 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3632 *
3633 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3634 * registered.
79578621 3635 */
2bb566cb 3636int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3637{
21a2d343 3638 int ret;
79578621 3639
01f6474c 3640 mutex_lock(&cgroup_mutex);
21a2d343 3641 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3642 mutex_unlock(&cgroup_mutex);
21a2d343 3643 return ret;
80b13586
TH
3644}
3645
8e3f6541
TH
3646/**
3647 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3648 * @ss: target cgroup subsystem
3649 * @cfts: zero-length name terminated array of cftypes
3650 *
3651 * Register @cfts to @ss. Files described by @cfts are created for all
3652 * existing cgroups to which @ss is attached and all future cgroups will
3653 * have them too. This function can be called anytime whether @ss is
3654 * attached or not.
3655 *
3656 * Returns 0 on successful registration, -errno on failure. Note that this
3657 * function currently returns 0 as long as @cfts registration is successful
3658 * even if some file creation attempts on existing cgroups fail.
3659 */
2cf669a5 3660static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3661{
9ccece80 3662 int ret;
8e3f6541 3663
fc5ed1e9 3664 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3665 return 0;
3666
dc5736ed
LZ
3667 if (!cfts || cfts[0].name[0] == '\0')
3668 return 0;
2bb566cb 3669
2bd59d48
TH
3670 ret = cgroup_init_cftypes(ss, cfts);
3671 if (ret)
3672 return ret;
79578621 3673
01f6474c 3674 mutex_lock(&cgroup_mutex);
21a2d343 3675
0adb0704 3676 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3677 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3678 if (ret)
21a2d343 3679 cgroup_rm_cftypes_locked(cfts);
79578621 3680
01f6474c 3681 mutex_unlock(&cgroup_mutex);
9ccece80 3682 return ret;
79578621
TH
3683}
3684
a8ddc821
TH
3685/**
3686 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3687 * @ss: target cgroup subsystem
3688 * @cfts: zero-length name terminated array of cftypes
3689 *
3690 * Similar to cgroup_add_cftypes() but the added files are only used for
3691 * the default hierarchy.
3692 */
3693int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3694{
3695 struct cftype *cft;
3696
3697 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3698 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3699 return cgroup_add_cftypes(ss, cfts);
3700}
3701
3702/**
3703 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3704 * @ss: target cgroup subsystem
3705 * @cfts: zero-length name terminated array of cftypes
3706 *
3707 * Similar to cgroup_add_cftypes() but the added files are only used for
3708 * the legacy hierarchies.
3709 */
2cf669a5
TH
3710int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3711{
a8ddc821
TH
3712 struct cftype *cft;
3713
e4b7037c
TH
3714 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3715 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3716 return cgroup_add_cftypes(ss, cfts);
3717}
3718
34c06254
TH
3719/**
3720 * cgroup_file_notify - generate a file modified event for a cgroup_file
3721 * @cfile: target cgroup_file
3722 *
3723 * @cfile must have been obtained by setting cftype->file_offset.
3724 */
3725void cgroup_file_notify(struct cgroup_file *cfile)
3726{
3727 unsigned long flags;
3728
3729 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3730 if (cfile->kn)
3731 kernfs_notify(cfile->kn);
3732 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3733}
3734
a043e3b2
LZ
3735/**
3736 * cgroup_task_count - count the number of tasks in a cgroup.
3737 * @cgrp: the cgroup in question
3738 *
3739 * Return the number of tasks in the cgroup.
3740 */
07bc356e 3741static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3742{
3743 int count = 0;
69d0206c 3744 struct cgrp_cset_link *link;
817929ec 3745
f0d9a5f1 3746 spin_lock_bh(&css_set_lock);
69d0206c
TH
3747 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3748 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3749 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3750 return count;
3751}
3752
53fa5261 3753/**
492eb21b 3754 * css_next_child - find the next child of a given css
c2931b70
TH
3755 * @pos: the current position (%NULL to initiate traversal)
3756 * @parent: css whose children to walk
53fa5261 3757 *
c2931b70 3758 * This function returns the next child of @parent and should be called
87fb54f1 3759 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3760 * that @parent and @pos are accessible. The next sibling is guaranteed to
3761 * be returned regardless of their states.
3762 *
3763 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3764 * css which finished ->css_online() is guaranteed to be visible in the
3765 * future iterations and will stay visible until the last reference is put.
3766 * A css which hasn't finished ->css_online() or already finished
3767 * ->css_offline() may show up during traversal. It's each subsystem's
3768 * responsibility to synchronize against on/offlining.
53fa5261 3769 */
c2931b70
TH
3770struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3771 struct cgroup_subsys_state *parent)
53fa5261 3772{
c2931b70 3773 struct cgroup_subsys_state *next;
53fa5261 3774
8353da1f 3775 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3776
3777 /*
de3f0341
TH
3778 * @pos could already have been unlinked from the sibling list.
3779 * Once a cgroup is removed, its ->sibling.next is no longer
3780 * updated when its next sibling changes. CSS_RELEASED is set when
3781 * @pos is taken off list, at which time its next pointer is valid,
3782 * and, as releases are serialized, the one pointed to by the next
3783 * pointer is guaranteed to not have started release yet. This
3784 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3785 * critical section, the one pointed to by its next pointer is
3786 * guaranteed to not have finished its RCU grace period even if we
3787 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3788 *
de3f0341
TH
3789 * If @pos has CSS_RELEASED set, its next pointer can't be
3790 * dereferenced; however, as each css is given a monotonically
3791 * increasing unique serial number and always appended to the
3792 * sibling list, the next one can be found by walking the parent's
3793 * children until the first css with higher serial number than
3794 * @pos's. While this path can be slower, it happens iff iteration
3795 * races against release and the race window is very small.
53fa5261 3796 */
3b287a50 3797 if (!pos) {
c2931b70
TH
3798 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3799 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3800 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3801 } else {
c2931b70 3802 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3803 if (next->serial_nr > pos->serial_nr)
3804 break;
53fa5261
TH
3805 }
3806
3b281afb
TH
3807 /*
3808 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3809 * the next sibling.
3b281afb 3810 */
c2931b70
TH
3811 if (&next->sibling != &parent->children)
3812 return next;
3b281afb 3813 return NULL;
53fa5261 3814}
53fa5261 3815
574bd9f7 3816/**
492eb21b 3817 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3818 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3819 * @root: css whose descendants to walk
574bd9f7 3820 *
492eb21b 3821 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3822 * to visit for pre-order traversal of @root's descendants. @root is
3823 * included in the iteration and the first node to be visited.
75501a6d 3824 *
87fb54f1
TH
3825 * While this function requires cgroup_mutex or RCU read locking, it
3826 * doesn't require the whole traversal to be contained in a single critical
3827 * section. This function will return the correct next descendant as long
3828 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3829 *
3830 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3831 * css which finished ->css_online() is guaranteed to be visible in the
3832 * future iterations and will stay visible until the last reference is put.
3833 * A css which hasn't finished ->css_online() or already finished
3834 * ->css_offline() may show up during traversal. It's each subsystem's
3835 * responsibility to synchronize against on/offlining.
574bd9f7 3836 */
492eb21b
TH
3837struct cgroup_subsys_state *
3838css_next_descendant_pre(struct cgroup_subsys_state *pos,
3839 struct cgroup_subsys_state *root)
574bd9f7 3840{
492eb21b 3841 struct cgroup_subsys_state *next;
574bd9f7 3842
8353da1f 3843 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3844
bd8815a6 3845 /* if first iteration, visit @root */
7805d000 3846 if (!pos)
bd8815a6 3847 return root;
574bd9f7
TH
3848
3849 /* visit the first child if exists */
492eb21b 3850 next = css_next_child(NULL, pos);
574bd9f7
TH
3851 if (next)
3852 return next;
3853
3854 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3855 while (pos != root) {
5c9d535b 3856 next = css_next_child(pos, pos->parent);
75501a6d 3857 if (next)
574bd9f7 3858 return next;
5c9d535b 3859 pos = pos->parent;
7805d000 3860 }
574bd9f7
TH
3861
3862 return NULL;
3863}
574bd9f7 3864
12a9d2fe 3865/**
492eb21b
TH
3866 * css_rightmost_descendant - return the rightmost descendant of a css
3867 * @pos: css of interest
12a9d2fe 3868 *
492eb21b
TH
3869 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3870 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3871 * subtree of @pos.
75501a6d 3872 *
87fb54f1
TH
3873 * While this function requires cgroup_mutex or RCU read locking, it
3874 * doesn't require the whole traversal to be contained in a single critical
3875 * section. This function will return the correct rightmost descendant as
3876 * long as @pos is accessible.
12a9d2fe 3877 */
492eb21b
TH
3878struct cgroup_subsys_state *
3879css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3880{
492eb21b 3881 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3882
8353da1f 3883 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3884
3885 do {
3886 last = pos;
3887 /* ->prev isn't RCU safe, walk ->next till the end */
3888 pos = NULL;
492eb21b 3889 css_for_each_child(tmp, last)
12a9d2fe
TH
3890 pos = tmp;
3891 } while (pos);
3892
3893 return last;
3894}
12a9d2fe 3895
492eb21b
TH
3896static struct cgroup_subsys_state *
3897css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3898{
492eb21b 3899 struct cgroup_subsys_state *last;
574bd9f7
TH
3900
3901 do {
3902 last = pos;
492eb21b 3903 pos = css_next_child(NULL, pos);
574bd9f7
TH
3904 } while (pos);
3905
3906 return last;
3907}
3908
3909/**
492eb21b 3910 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3911 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3912 * @root: css whose descendants to walk
574bd9f7 3913 *
492eb21b 3914 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3915 * to visit for post-order traversal of @root's descendants. @root is
3916 * included in the iteration and the last node to be visited.
75501a6d 3917 *
87fb54f1
TH
3918 * While this function requires cgroup_mutex or RCU read locking, it
3919 * doesn't require the whole traversal to be contained in a single critical
3920 * section. This function will return the correct next descendant as long
3921 * as both @pos and @cgroup are accessible and @pos is a descendant of
3922 * @cgroup.
c2931b70
TH
3923 *
3924 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3925 * css which finished ->css_online() is guaranteed to be visible in the
3926 * future iterations and will stay visible until the last reference is put.
3927 * A css which hasn't finished ->css_online() or already finished
3928 * ->css_offline() may show up during traversal. It's each subsystem's
3929 * responsibility to synchronize against on/offlining.
574bd9f7 3930 */
492eb21b
TH
3931struct cgroup_subsys_state *
3932css_next_descendant_post(struct cgroup_subsys_state *pos,
3933 struct cgroup_subsys_state *root)
574bd9f7 3934{
492eb21b 3935 struct cgroup_subsys_state *next;
574bd9f7 3936
8353da1f 3937 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3938
58b79a91
TH
3939 /* if first iteration, visit leftmost descendant which may be @root */
3940 if (!pos)
3941 return css_leftmost_descendant(root);
574bd9f7 3942
bd8815a6
TH
3943 /* if we visited @root, we're done */
3944 if (pos == root)
3945 return NULL;
3946
574bd9f7 3947 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3948 next = css_next_child(pos, pos->parent);
75501a6d 3949 if (next)
492eb21b 3950 return css_leftmost_descendant(next);
574bd9f7
TH
3951
3952 /* no sibling left, visit parent */
5c9d535b 3953 return pos->parent;
574bd9f7 3954}
574bd9f7 3955
f3d46500
TH
3956/**
3957 * css_has_online_children - does a css have online children
3958 * @css: the target css
3959 *
3960 * Returns %true if @css has any online children; otherwise, %false. This
3961 * function can be called from any context but the caller is responsible
3962 * for synchronizing against on/offlining as necessary.
3963 */
3964bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3965{
f3d46500
TH
3966 struct cgroup_subsys_state *child;
3967 bool ret = false;
cbc125ef
TH
3968
3969 rcu_read_lock();
f3d46500 3970 css_for_each_child(child, css) {
99bae5f9 3971 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3972 ret = true;
3973 break;
cbc125ef
TH
3974 }
3975 }
3976 rcu_read_unlock();
f3d46500 3977 return ret;
574bd9f7 3978}
574bd9f7 3979
0942eeee 3980/**
ecb9d535 3981 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3982 * @it: the iterator to advance
3983 *
3984 * Advance @it to the next css_set to walk.
d515876e 3985 */
ecb9d535 3986static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3987{
0f0a2b4f 3988 struct list_head *l = it->cset_pos;
d515876e
TH
3989 struct cgrp_cset_link *link;
3990 struct css_set *cset;
3991
f0d9a5f1 3992 lockdep_assert_held(&css_set_lock);
ed27b9f7 3993
d515876e
TH
3994 /* Advance to the next non-empty css_set */
3995 do {
3996 l = l->next;
0f0a2b4f
TH
3997 if (l == it->cset_head) {
3998 it->cset_pos = NULL;
ecb9d535 3999 it->task_pos = NULL;
d515876e
TH
4000 return;
4001 }
3ebb2b6e
TH
4002
4003 if (it->ss) {
4004 cset = container_of(l, struct css_set,
4005 e_cset_node[it->ss->id]);
4006 } else {
4007 link = list_entry(l, struct cgrp_cset_link, cset_link);
4008 cset = link->cset;
4009 }
0de0942d 4010 } while (!css_set_populated(cset));
c7561128 4011
0f0a2b4f 4012 it->cset_pos = l;
c7561128
TH
4013
4014 if (!list_empty(&cset->tasks))
0f0a2b4f 4015 it->task_pos = cset->tasks.next;
c7561128 4016 else
0f0a2b4f
TH
4017 it->task_pos = cset->mg_tasks.next;
4018
4019 it->tasks_head = &cset->tasks;
4020 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4021
4022 /*
4023 * We don't keep css_sets locked across iteration steps and thus
4024 * need to take steps to ensure that iteration can be resumed after
4025 * the lock is re-acquired. Iteration is performed at two levels -
4026 * css_sets and tasks in them.
4027 *
4028 * Once created, a css_set never leaves its cgroup lists, so a
4029 * pinned css_set is guaranteed to stay put and we can resume
4030 * iteration afterwards.
4031 *
4032 * Tasks may leave @cset across iteration steps. This is resolved
4033 * by registering each iterator with the css_set currently being
4034 * walked and making css_set_move_task() advance iterators whose
4035 * next task is leaving.
4036 */
4037 if (it->cur_cset) {
4038 list_del(&it->iters_node);
4039 put_css_set_locked(it->cur_cset);
4040 }
4041 get_css_set(cset);
4042 it->cur_cset = cset;
4043 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4044}
4045
ecb9d535
TH
4046static void css_task_iter_advance(struct css_task_iter *it)
4047{
4048 struct list_head *l = it->task_pos;
4049
f0d9a5f1 4050 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4051 WARN_ON_ONCE(!l);
4052
4053 /*
4054 * Advance iterator to find next entry. cset->tasks is consumed
4055 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4056 * next cset.
4057 */
4058 l = l->next;
4059
4060 if (l == it->tasks_head)
4061 l = it->mg_tasks_head->next;
4062
4063 if (l == it->mg_tasks_head)
4064 css_task_iter_advance_css_set(it);
4065 else
4066 it->task_pos = l;
4067}
4068
0942eeee 4069/**
72ec7029
TH
4070 * css_task_iter_start - initiate task iteration
4071 * @css: the css to walk tasks of
0942eeee
TH
4072 * @it: the task iterator to use
4073 *
72ec7029
TH
4074 * Initiate iteration through the tasks of @css. The caller can call
4075 * css_task_iter_next() to walk through the tasks until the function
4076 * returns NULL. On completion of iteration, css_task_iter_end() must be
4077 * called.
0942eeee 4078 */
72ec7029
TH
4079void css_task_iter_start(struct cgroup_subsys_state *css,
4080 struct css_task_iter *it)
817929ec 4081{
56fde9e0
TH
4082 /* no one should try to iterate before mounting cgroups */
4083 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4084
ed27b9f7
TH
4085 memset(it, 0, sizeof(*it));
4086
f0d9a5f1 4087 spin_lock_bh(&css_set_lock);
c59cd3d8 4088
3ebb2b6e
TH
4089 it->ss = css->ss;
4090
4091 if (it->ss)
4092 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4093 else
4094 it->cset_pos = &css->cgroup->cset_links;
4095
0f0a2b4f 4096 it->cset_head = it->cset_pos;
c59cd3d8 4097
ecb9d535 4098 css_task_iter_advance_css_set(it);
ed27b9f7 4099
f0d9a5f1 4100 spin_unlock_bh(&css_set_lock);
817929ec
PM
4101}
4102
0942eeee 4103/**
72ec7029 4104 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4105 * @it: the task iterator being iterated
4106 *
4107 * The "next" function for task iteration. @it should have been
72ec7029
TH
4108 * initialized via css_task_iter_start(). Returns NULL when the iteration
4109 * reaches the end.
0942eeee 4110 */
72ec7029 4111struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4112{
d5745675 4113 if (it->cur_task) {
ed27b9f7 4114 put_task_struct(it->cur_task);
d5745675
TH
4115 it->cur_task = NULL;
4116 }
ed27b9f7 4117
f0d9a5f1 4118 spin_lock_bh(&css_set_lock);
ed27b9f7 4119
d5745675
TH
4120 if (it->task_pos) {
4121 it->cur_task = list_entry(it->task_pos, struct task_struct,
4122 cg_list);
4123 get_task_struct(it->cur_task);
4124 css_task_iter_advance(it);
4125 }
ed27b9f7 4126
f0d9a5f1 4127 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4128
4129 return it->cur_task;
817929ec
PM
4130}
4131
0942eeee 4132/**
72ec7029 4133 * css_task_iter_end - finish task iteration
0942eeee
TH
4134 * @it: the task iterator to finish
4135 *
72ec7029 4136 * Finish task iteration started by css_task_iter_start().
0942eeee 4137 */
72ec7029 4138void css_task_iter_end(struct css_task_iter *it)
31a7df01 4139{
ed27b9f7 4140 if (it->cur_cset) {
f0d9a5f1 4141 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4142 list_del(&it->iters_node);
4143 put_css_set_locked(it->cur_cset);
f0d9a5f1 4144 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4145 }
4146
4147 if (it->cur_task)
4148 put_task_struct(it->cur_task);
31a7df01
CW
4149}
4150
4151/**
8cc99345
TH
4152 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4153 * @to: cgroup to which the tasks will be moved
4154 * @from: cgroup in which the tasks currently reside
31a7df01 4155 *
eaf797ab
TH
4156 * Locking rules between cgroup_post_fork() and the migration path
4157 * guarantee that, if a task is forking while being migrated, the new child
4158 * is guaranteed to be either visible in the source cgroup after the
4159 * parent's migration is complete or put into the target cgroup. No task
4160 * can slip out of migration through forking.
31a7df01 4161 */
8cc99345 4162int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4163{
952aaa12
TH
4164 LIST_HEAD(preloaded_csets);
4165 struct cgrp_cset_link *link;
72ec7029 4166 struct css_task_iter it;
e406d1cf 4167 struct task_struct *task;
952aaa12 4168 int ret;
31a7df01 4169
6c694c88
TH
4170 if (!cgroup_may_migrate_to(to))
4171 return -EBUSY;
4172
952aaa12 4173 mutex_lock(&cgroup_mutex);
31a7df01 4174
952aaa12 4175 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4176 spin_lock_bh(&css_set_lock);
952aaa12
TH
4177 list_for_each_entry(link, &from->cset_links, cset_link)
4178 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4179 spin_unlock_bh(&css_set_lock);
31a7df01 4180
e4857982 4181 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4182 if (ret)
4183 goto out_err;
8cc99345 4184
952aaa12 4185 /*
2cfa2b19 4186 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4187 * ->can_attach() fails.
4188 */
e406d1cf 4189 do {
9d800df1 4190 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4191 task = css_task_iter_next(&it);
4192 if (task)
4193 get_task_struct(task);
4194 css_task_iter_end(&it);
4195
4196 if (task) {
37ff9f8f 4197 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4198 put_task_struct(task);
4199 }
4200 } while (task && !ret);
952aaa12
TH
4201out_err:
4202 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4203 mutex_unlock(&cgroup_mutex);
e406d1cf 4204 return ret;
8cc99345
TH
4205}
4206
bbcb81d0 4207/*
102a775e 4208 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4209 *
4210 * Reading this file can return large amounts of data if a cgroup has
4211 * *lots* of attached tasks. So it may need several calls to read(),
4212 * but we cannot guarantee that the information we produce is correct
4213 * unless we produce it entirely atomically.
4214 *
bbcb81d0 4215 */
bbcb81d0 4216
24528255
LZ
4217/* which pidlist file are we talking about? */
4218enum cgroup_filetype {
4219 CGROUP_FILE_PROCS,
4220 CGROUP_FILE_TASKS,
4221};
4222
4223/*
4224 * A pidlist is a list of pids that virtually represents the contents of one
4225 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4226 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4227 * to the cgroup.
4228 */
4229struct cgroup_pidlist {
4230 /*
4231 * used to find which pidlist is wanted. doesn't change as long as
4232 * this particular list stays in the list.
4233 */
4234 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4235 /* array of xids */
4236 pid_t *list;
4237 /* how many elements the above list has */
4238 int length;
24528255
LZ
4239 /* each of these stored in a list by its cgroup */
4240 struct list_head links;
4241 /* pointer to the cgroup we belong to, for list removal purposes */
4242 struct cgroup *owner;
b1a21367
TH
4243 /* for delayed destruction */
4244 struct delayed_work destroy_dwork;
24528255
LZ
4245};
4246
d1d9fd33
BB
4247/*
4248 * The following two functions "fix" the issue where there are more pids
4249 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4250 * TODO: replace with a kernel-wide solution to this problem
4251 */
4252#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4253static void *pidlist_allocate(int count)
4254{
4255 if (PIDLIST_TOO_LARGE(count))
4256 return vmalloc(count * sizeof(pid_t));
4257 else
4258 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4259}
b1a21367 4260
d1d9fd33
BB
4261static void pidlist_free(void *p)
4262{
58794514 4263 kvfree(p);
d1d9fd33 4264}
d1d9fd33 4265
b1a21367
TH
4266/*
4267 * Used to destroy all pidlists lingering waiting for destroy timer. None
4268 * should be left afterwards.
4269 */
4270static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4271{
4272 struct cgroup_pidlist *l, *tmp_l;
4273
4274 mutex_lock(&cgrp->pidlist_mutex);
4275 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4276 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4277 mutex_unlock(&cgrp->pidlist_mutex);
4278
4279 flush_workqueue(cgroup_pidlist_destroy_wq);
4280 BUG_ON(!list_empty(&cgrp->pidlists));
4281}
4282
4283static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4284{
4285 struct delayed_work *dwork = to_delayed_work(work);
4286 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4287 destroy_dwork);
4288 struct cgroup_pidlist *tofree = NULL;
4289
4290 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4291
4292 /*
04502365
TH
4293 * Destroy iff we didn't get queued again. The state won't change
4294 * as destroy_dwork can only be queued while locked.
b1a21367 4295 */
04502365 4296 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4297 list_del(&l->links);
4298 pidlist_free(l->list);
4299 put_pid_ns(l->key.ns);
4300 tofree = l;
4301 }
4302
b1a21367
TH
4303 mutex_unlock(&l->owner->pidlist_mutex);
4304 kfree(tofree);
4305}
4306
bbcb81d0 4307/*
102a775e 4308 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4309 * Returns the number of unique elements.
bbcb81d0 4310 */
6ee211ad 4311static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4312{
102a775e 4313 int src, dest = 1;
102a775e
BB
4314
4315 /*
4316 * we presume the 0th element is unique, so i starts at 1. trivial
4317 * edge cases first; no work needs to be done for either
4318 */
4319 if (length == 0 || length == 1)
4320 return length;
4321 /* src and dest walk down the list; dest counts unique elements */
4322 for (src = 1; src < length; src++) {
4323 /* find next unique element */
4324 while (list[src] == list[src-1]) {
4325 src++;
4326 if (src == length)
4327 goto after;
4328 }
4329 /* dest always points to where the next unique element goes */
4330 list[dest] = list[src];
4331 dest++;
4332 }
4333after:
102a775e
BB
4334 return dest;
4335}
4336
afb2bc14
TH
4337/*
4338 * The two pid files - task and cgroup.procs - guaranteed that the result
4339 * is sorted, which forced this whole pidlist fiasco. As pid order is
4340 * different per namespace, each namespace needs differently sorted list,
4341 * making it impossible to use, for example, single rbtree of member tasks
4342 * sorted by task pointer. As pidlists can be fairly large, allocating one
4343 * per open file is dangerous, so cgroup had to implement shared pool of
4344 * pidlists keyed by cgroup and namespace.
4345 *
4346 * All this extra complexity was caused by the original implementation
4347 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4348 * want to do away with it. Explicitly scramble sort order if on the
4349 * default hierarchy so that no such expectation exists in the new
4350 * interface.
afb2bc14
TH
4351 *
4352 * Scrambling is done by swapping every two consecutive bits, which is
4353 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4354 */
4355static pid_t pid_fry(pid_t pid)
4356{
4357 unsigned a = pid & 0x55555555;
4358 unsigned b = pid & 0xAAAAAAAA;
4359
4360 return (a << 1) | (b >> 1);
4361}
4362
4363static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4364{
aa6ec29b 4365 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4366 return pid_fry(pid);
4367 else
4368 return pid;
4369}
4370
102a775e
BB
4371static int cmppid(const void *a, const void *b)
4372{
4373 return *(pid_t *)a - *(pid_t *)b;
4374}
4375
afb2bc14
TH
4376static int fried_cmppid(const void *a, const void *b)
4377{
4378 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4379}
4380
e6b81710
TH
4381static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4382 enum cgroup_filetype type)
4383{
4384 struct cgroup_pidlist *l;
4385 /* don't need task_nsproxy() if we're looking at ourself */
4386 struct pid_namespace *ns = task_active_pid_ns(current);
4387
4388 lockdep_assert_held(&cgrp->pidlist_mutex);
4389
4390 list_for_each_entry(l, &cgrp->pidlists, links)
4391 if (l->key.type == type && l->key.ns == ns)
4392 return l;
4393 return NULL;
4394}
4395
72a8cb30
BB
4396/*
4397 * find the appropriate pidlist for our purpose (given procs vs tasks)
4398 * returns with the lock on that pidlist already held, and takes care
4399 * of the use count, or returns NULL with no locks held if we're out of
4400 * memory.
4401 */
e6b81710
TH
4402static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4403 enum cgroup_filetype type)
72a8cb30
BB
4404{
4405 struct cgroup_pidlist *l;
b70cc5fd 4406
e6b81710
TH
4407 lockdep_assert_held(&cgrp->pidlist_mutex);
4408
4409 l = cgroup_pidlist_find(cgrp, type);
4410 if (l)
4411 return l;
4412
72a8cb30 4413 /* entry not found; create a new one */
f4f4be2b 4414 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4415 if (!l)
72a8cb30 4416 return l;
e6b81710 4417
b1a21367 4418 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4419 l->key.type = type;
e6b81710
TH
4420 /* don't need task_nsproxy() if we're looking at ourself */
4421 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4422 l->owner = cgrp;
4423 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4424 return l;
4425}
4426
102a775e
BB
4427/*
4428 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4429 */
72a8cb30
BB
4430static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4431 struct cgroup_pidlist **lp)
102a775e
BB
4432{
4433 pid_t *array;
4434 int length;
4435 int pid, n = 0; /* used for populating the array */
72ec7029 4436 struct css_task_iter it;
817929ec 4437 struct task_struct *tsk;
102a775e
BB
4438 struct cgroup_pidlist *l;
4439
4bac00d1
TH
4440 lockdep_assert_held(&cgrp->pidlist_mutex);
4441
102a775e
BB
4442 /*
4443 * If cgroup gets more users after we read count, we won't have
4444 * enough space - tough. This race is indistinguishable to the
4445 * caller from the case that the additional cgroup users didn't
4446 * show up until sometime later on.
4447 */
4448 length = cgroup_task_count(cgrp);
d1d9fd33 4449 array = pidlist_allocate(length);
102a775e
BB
4450 if (!array)
4451 return -ENOMEM;
4452 /* now, populate the array */
9d800df1 4453 css_task_iter_start(&cgrp->self, &it);
72ec7029 4454 while ((tsk = css_task_iter_next(&it))) {
102a775e 4455 if (unlikely(n == length))
817929ec 4456 break;
102a775e 4457 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4458 if (type == CGROUP_FILE_PROCS)
4459 pid = task_tgid_vnr(tsk);
4460 else
4461 pid = task_pid_vnr(tsk);
102a775e
BB
4462 if (pid > 0) /* make sure to only use valid results */
4463 array[n++] = pid;
817929ec 4464 }
72ec7029 4465 css_task_iter_end(&it);
102a775e
BB
4466 length = n;
4467 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4468 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4469 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4470 else
4471 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4472 if (type == CGROUP_FILE_PROCS)
6ee211ad 4473 length = pidlist_uniq(array, length);
e6b81710 4474
e6b81710 4475 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4476 if (!l) {
d1d9fd33 4477 pidlist_free(array);
72a8cb30 4478 return -ENOMEM;
102a775e 4479 }
e6b81710
TH
4480
4481 /* store array, freeing old if necessary */
d1d9fd33 4482 pidlist_free(l->list);
102a775e
BB
4483 l->list = array;
4484 l->length = length;
72a8cb30 4485 *lp = l;
102a775e 4486 return 0;
bbcb81d0
PM
4487}
4488
846c7bb0 4489/**
a043e3b2 4490 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4491 * @stats: cgroupstats to fill information into
4492 * @dentry: A dentry entry belonging to the cgroup for which stats have
4493 * been requested.
a043e3b2
LZ
4494 *
4495 * Build and fill cgroupstats so that taskstats can export it to user
4496 * space.
846c7bb0
BS
4497 */
4498int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4499{
2bd59d48 4500 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4501 struct cgroup *cgrp;
72ec7029 4502 struct css_task_iter it;
846c7bb0 4503 struct task_struct *tsk;
33d283be 4504
2bd59d48
TH
4505 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4506 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4507 kernfs_type(kn) != KERNFS_DIR)
4508 return -EINVAL;
4509
bad34660
LZ
4510 mutex_lock(&cgroup_mutex);
4511
846c7bb0 4512 /*
2bd59d48 4513 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4514 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4515 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4516 */
2bd59d48
TH
4517 rcu_read_lock();
4518 cgrp = rcu_dereference(kn->priv);
bad34660 4519 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4520 rcu_read_unlock();
bad34660 4521 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4522 return -ENOENT;
4523 }
bad34660 4524 rcu_read_unlock();
846c7bb0 4525
9d800df1 4526 css_task_iter_start(&cgrp->self, &it);
72ec7029 4527 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4528 switch (tsk->state) {
4529 case TASK_RUNNING:
4530 stats->nr_running++;
4531 break;
4532 case TASK_INTERRUPTIBLE:
4533 stats->nr_sleeping++;
4534 break;
4535 case TASK_UNINTERRUPTIBLE:
4536 stats->nr_uninterruptible++;
4537 break;
4538 case TASK_STOPPED:
4539 stats->nr_stopped++;
4540 break;
4541 default:
4542 if (delayacct_is_task_waiting_on_io(tsk))
4543 stats->nr_io_wait++;
4544 break;
4545 }
4546 }
72ec7029 4547 css_task_iter_end(&it);
846c7bb0 4548
bad34660 4549 mutex_unlock(&cgroup_mutex);
2bd59d48 4550 return 0;
846c7bb0
BS
4551}
4552
8f3ff208 4553
bbcb81d0 4554/*
102a775e 4555 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4556 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4557 * in the cgroup->l->list array.
bbcb81d0 4558 */
cc31edce 4559
102a775e 4560static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4561{
cc31edce
PM
4562 /*
4563 * Initially we receive a position value that corresponds to
4564 * one more than the last pid shown (or 0 on the first call or
4565 * after a seek to the start). Use a binary-search to find the
4566 * next pid to display, if any
4567 */
2bd59d48 4568 struct kernfs_open_file *of = s->private;
7da11279 4569 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4570 struct cgroup_pidlist *l;
7da11279 4571 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4572 int index = 0, pid = *pos;
4bac00d1
TH
4573 int *iter, ret;
4574
4575 mutex_lock(&cgrp->pidlist_mutex);
4576
4577 /*
5d22444f 4578 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4579 * after open. If the matching pidlist is around, we can use that.
5d22444f 4580 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4581 * could already have been destroyed.
4582 */
5d22444f
TH
4583 if (of->priv)
4584 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4585
4586 /*
4587 * Either this is the first start() after open or the matching
4588 * pidlist has been destroyed inbetween. Create a new one.
4589 */
5d22444f
TH
4590 if (!of->priv) {
4591 ret = pidlist_array_load(cgrp, type,
4592 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4593 if (ret)
4594 return ERR_PTR(ret);
4595 }
5d22444f 4596 l = of->priv;
cc31edce 4597
cc31edce 4598 if (pid) {
102a775e 4599 int end = l->length;
20777766 4600
cc31edce
PM
4601 while (index < end) {
4602 int mid = (index + end) / 2;
afb2bc14 4603 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4604 index = mid;
4605 break;
afb2bc14 4606 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4607 index = mid + 1;
4608 else
4609 end = mid;
4610 }
4611 }
4612 /* If we're off the end of the array, we're done */
102a775e 4613 if (index >= l->length)
cc31edce
PM
4614 return NULL;
4615 /* Update the abstract position to be the actual pid that we found */
102a775e 4616 iter = l->list + index;
afb2bc14 4617 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4618 return iter;
4619}
4620
102a775e 4621static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4622{
2bd59d48 4623 struct kernfs_open_file *of = s->private;
5d22444f 4624 struct cgroup_pidlist *l = of->priv;
62236858 4625
5d22444f
TH
4626 if (l)
4627 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4628 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4629 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4630}
4631
102a775e 4632static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4633{
2bd59d48 4634 struct kernfs_open_file *of = s->private;
5d22444f 4635 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4636 pid_t *p = v;
4637 pid_t *end = l->list + l->length;
cc31edce
PM
4638 /*
4639 * Advance to the next pid in the array. If this goes off the
4640 * end, we're done
4641 */
4642 p++;
4643 if (p >= end) {
4644 return NULL;
4645 } else {
7da11279 4646 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4647 return p;
4648 }
4649}
4650
102a775e 4651static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4652{
94ff212d
JP
4653 seq_printf(s, "%d\n", *(int *)v);
4654
4655 return 0;
cc31edce 4656}
bbcb81d0 4657
182446d0
TH
4658static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4659 struct cftype *cft)
81a6a5cd 4660{
182446d0 4661 return notify_on_release(css->cgroup);
81a6a5cd
PM
4662}
4663
182446d0
TH
4664static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4665 struct cftype *cft, u64 val)
6379c106 4666{
6379c106 4667 if (val)
182446d0 4668 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4669 else
182446d0 4670 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4671 return 0;
4672}
4673
182446d0
TH
4674static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4675 struct cftype *cft)
97978e6d 4676{
182446d0 4677 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4678}
4679
182446d0
TH
4680static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4681 struct cftype *cft, u64 val)
97978e6d
DL
4682{
4683 if (val)
182446d0 4684 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4685 else
182446d0 4686 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4687 return 0;
4688}
4689
a14c6874
TH
4690/* cgroup core interface files for the default hierarchy */
4691static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4692 {
d5c56ced 4693 .name = "cgroup.procs",
6f60eade 4694 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4695 .seq_start = cgroup_pidlist_start,
4696 .seq_next = cgroup_pidlist_next,
4697 .seq_stop = cgroup_pidlist_stop,
4698 .seq_show = cgroup_pidlist_show,
5d22444f 4699 .private = CGROUP_FILE_PROCS,
acbef755 4700 .write = cgroup_procs_write,
102a775e 4701 },
f8f22e53
TH
4702 {
4703 .name = "cgroup.controllers",
f8f22e53
TH
4704 .seq_show = cgroup_controllers_show,
4705 },
4706 {
4707 .name = "cgroup.subtree_control",
f8f22e53 4708 .seq_show = cgroup_subtree_control_show,
451af504 4709 .write = cgroup_subtree_control_write,
f8f22e53 4710 },
842b597e 4711 {
4a07c222 4712 .name = "cgroup.events",
a14c6874 4713 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4714 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4715 .seq_show = cgroup_events_show,
842b597e 4716 },
a14c6874
TH
4717 { } /* terminate */
4718};
d5c56ced 4719
a14c6874
TH
4720/* cgroup core interface files for the legacy hierarchies */
4721static struct cftype cgroup_legacy_base_files[] = {
4722 {
4723 .name = "cgroup.procs",
4724 .seq_start = cgroup_pidlist_start,
4725 .seq_next = cgroup_pidlist_next,
4726 .seq_stop = cgroup_pidlist_stop,
4727 .seq_show = cgroup_pidlist_show,
4728 .private = CGROUP_FILE_PROCS,
4729 .write = cgroup_procs_write,
a14c6874
TH
4730 },
4731 {
4732 .name = "cgroup.clone_children",
4733 .read_u64 = cgroup_clone_children_read,
4734 .write_u64 = cgroup_clone_children_write,
4735 },
4736 {
4737 .name = "cgroup.sane_behavior",
4738 .flags = CFTYPE_ONLY_ON_ROOT,
4739 .seq_show = cgroup_sane_behavior_show,
4740 },
d5c56ced
TH
4741 {
4742 .name = "tasks",
6612f05b
TH
4743 .seq_start = cgroup_pidlist_start,
4744 .seq_next = cgroup_pidlist_next,
4745 .seq_stop = cgroup_pidlist_stop,
4746 .seq_show = cgroup_pidlist_show,
5d22444f 4747 .private = CGROUP_FILE_TASKS,
acbef755 4748 .write = cgroup_tasks_write,
d5c56ced
TH
4749 },
4750 {
4751 .name = "notify_on_release",
d5c56ced
TH
4752 .read_u64 = cgroup_read_notify_on_release,
4753 .write_u64 = cgroup_write_notify_on_release,
4754 },
6e6ff25b
TH
4755 {
4756 .name = "release_agent",
a14c6874 4757 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4758 .seq_show = cgroup_release_agent_show,
451af504 4759 .write = cgroup_release_agent_write,
5f469907 4760 .max_write_len = PATH_MAX - 1,
6e6ff25b 4761 },
db0416b6 4762 { } /* terminate */
bbcb81d0
PM
4763};
4764
0c21ead1
TH
4765/*
4766 * css destruction is four-stage process.
4767 *
4768 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4769 * Implemented in kill_css().
4770 *
4771 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4772 * and thus css_tryget_online() is guaranteed to fail, the css can be
4773 * offlined by invoking offline_css(). After offlining, the base ref is
4774 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4775 *
4776 * 3. When the percpu_ref reaches zero, the only possible remaining
4777 * accessors are inside RCU read sections. css_release() schedules the
4778 * RCU callback.
4779 *
4780 * 4. After the grace period, the css can be freed. Implemented in
4781 * css_free_work_fn().
4782 *
4783 * It is actually hairier because both step 2 and 4 require process context
4784 * and thus involve punting to css->destroy_work adding two additional
4785 * steps to the already complex sequence.
4786 */
35ef10da 4787static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4788{
4789 struct cgroup_subsys_state *css =
35ef10da 4790 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4791 struct cgroup_subsys *ss = css->ss;
0c21ead1 4792 struct cgroup *cgrp = css->cgroup;
48ddbe19 4793
9a1049da
TH
4794 percpu_ref_exit(&css->refcnt);
4795
01e58659 4796 if (ss) {
9d755d33 4797 /* css free path */
8bb5ef79 4798 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4799 int id = css->id;
4800
01e58659
VD
4801 ss->css_free(css);
4802 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4803 cgroup_put(cgrp);
8bb5ef79
TH
4804
4805 if (parent)
4806 css_put(parent);
9d755d33
TH
4807 } else {
4808 /* cgroup free path */
4809 atomic_dec(&cgrp->root->nr_cgrps);
4810 cgroup_pidlist_destroy_all(cgrp);
971ff493 4811 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4812
d51f39b0 4813 if (cgroup_parent(cgrp)) {
9d755d33
TH
4814 /*
4815 * We get a ref to the parent, and put the ref when
4816 * this cgroup is being freed, so it's guaranteed
4817 * that the parent won't be destroyed before its
4818 * children.
4819 */
d51f39b0 4820 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4821 kernfs_put(cgrp->kn);
4822 kfree(cgrp);
4823 } else {
4824 /*
4825 * This is root cgroup's refcnt reaching zero,
4826 * which indicates that the root should be
4827 * released.
4828 */
4829 cgroup_destroy_root(cgrp->root);
4830 }
4831 }
48ddbe19
TH
4832}
4833
0c21ead1 4834static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4835{
4836 struct cgroup_subsys_state *css =
0c21ead1 4837 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4838
35ef10da 4839 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4840 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4841}
4842
25e15d83 4843static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4844{
4845 struct cgroup_subsys_state *css =
25e15d83 4846 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4847 struct cgroup_subsys *ss = css->ss;
9d755d33 4848 struct cgroup *cgrp = css->cgroup;
15a4c835 4849
1fed1b2e
TH
4850 mutex_lock(&cgroup_mutex);
4851
de3f0341 4852 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4853 list_del_rcu(&css->sibling);
4854
9d755d33
TH
4855 if (ss) {
4856 /* css release path */
01e58659 4857 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4858 if (ss->css_released)
4859 ss->css_released(css);
9d755d33
TH
4860 } else {
4861 /* cgroup release path */
9d755d33
TH
4862 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4863 cgrp->id = -1;
a4189487
LZ
4864
4865 /*
4866 * There are two control paths which try to determine
4867 * cgroup from dentry without going through kernfs -
4868 * cgroupstats_build() and css_tryget_online_from_dir().
4869 * Those are supported by RCU protecting clearing of
4870 * cgrp->kn->priv backpointer.
4871 */
6cd0f5bb
TH
4872 if (cgrp->kn)
4873 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4874 NULL);
9d755d33 4875 }
d3daf28d 4876
1fed1b2e
TH
4877 mutex_unlock(&cgroup_mutex);
4878
0c21ead1 4879 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4880}
4881
d3daf28d
TH
4882static void css_release(struct percpu_ref *ref)
4883{
4884 struct cgroup_subsys_state *css =
4885 container_of(ref, struct cgroup_subsys_state, refcnt);
4886
25e15d83
TH
4887 INIT_WORK(&css->destroy_work, css_release_work_fn);
4888 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4889}
4890
ddfcadab
TH
4891static void init_and_link_css(struct cgroup_subsys_state *css,
4892 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4893{
0cb51d71
TH
4894 lockdep_assert_held(&cgroup_mutex);
4895
ddfcadab
TH
4896 cgroup_get(cgrp);
4897
d5c419b6 4898 memset(css, 0, sizeof(*css));
bd89aabc 4899 css->cgroup = cgrp;
72c97e54 4900 css->ss = ss;
d5c419b6
TH
4901 INIT_LIST_HEAD(&css->sibling);
4902 INIT_LIST_HEAD(&css->children);
0cb51d71 4903 css->serial_nr = css_serial_nr_next++;
aa226ff4 4904 atomic_set(&css->online_cnt, 0);
0ae78e0b 4905
d51f39b0
TH
4906 if (cgroup_parent(cgrp)) {
4907 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4908 css_get(css->parent);
ddfcadab 4909 }
48ddbe19 4910
ca8bdcaf 4911 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4912}
4913
2a4ac633 4914/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4915static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4916{
623f926b 4917 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4918 int ret = 0;
4919
a31f2d3f
TH
4920 lockdep_assert_held(&cgroup_mutex);
4921
92fb9748 4922 if (ss->css_online)
eb95419b 4923 ret = ss->css_online(css);
ae7f164a 4924 if (!ret) {
eb95419b 4925 css->flags |= CSS_ONLINE;
aec25020 4926 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4927
4928 atomic_inc(&css->online_cnt);
4929 if (css->parent)
4930 atomic_inc(&css->parent->online_cnt);
ae7f164a 4931 }
b1929db4 4932 return ret;
a31f2d3f
TH
4933}
4934
2a4ac633 4935/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4936static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4937{
623f926b 4938 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4939
4940 lockdep_assert_held(&cgroup_mutex);
4941
4942 if (!(css->flags & CSS_ONLINE))
4943 return;
4944
fa06235b
VD
4945 if (ss->css_reset)
4946 ss->css_reset(css);
4947
d7eeac19 4948 if (ss->css_offline)
eb95419b 4949 ss->css_offline(css);
a31f2d3f 4950
eb95419b 4951 css->flags &= ~CSS_ONLINE;
e3297803 4952 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4953
4954 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4955}
4956
c81c925a 4957/**
6cd0f5bb 4958 * css_create - create a cgroup_subsys_state
c81c925a
TH
4959 * @cgrp: the cgroup new css will be associated with
4960 * @ss: the subsys of new css
4961 *
4962 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
4963 * css is online and installed in @cgrp. This function doesn't create the
4964 * interface files. Returns 0 on success, -errno on failure.
c81c925a 4965 */
6cd0f5bb
TH
4966static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4967 struct cgroup_subsys *ss)
c81c925a 4968{
d51f39b0 4969 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4970 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4971 struct cgroup_subsys_state *css;
4972 int err;
4973
c81c925a
TH
4974 lockdep_assert_held(&cgroup_mutex);
4975
1fed1b2e 4976 css = ss->css_alloc(parent_css);
c81c925a 4977 if (IS_ERR(css))
6cd0f5bb 4978 return css;
c81c925a 4979
ddfcadab 4980 init_and_link_css(css, ss, cgrp);
a2bed820 4981
2aad2a86 4982 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4983 if (err)
3eb59ec6 4984 goto err_free_css;
c81c925a 4985
cf780b7d 4986 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4987 if (err < 0)
4988 goto err_free_percpu_ref;
4989 css->id = err;
c81c925a 4990
15a4c835 4991 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4992 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4993 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4994
4995 err = online_css(css);
4996 if (err)
1fed1b2e 4997 goto err_list_del;
94419627 4998
c81c925a 4999 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5000 cgroup_parent(parent)) {
ed3d261b 5001 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5002 current->comm, current->pid, ss->name);
c81c925a 5003 if (!strcmp(ss->name, "memory"))
ed3d261b 5004 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5005 ss->warned_broken_hierarchy = true;
5006 }
5007
6cd0f5bb 5008 return css;
c81c925a 5009
1fed1b2e
TH
5010err_list_del:
5011 list_del_rcu(&css->sibling);
15a4c835 5012 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 5013err_free_percpu_ref:
9a1049da 5014 percpu_ref_exit(&css->refcnt);
3eb59ec6 5015err_free_css:
a2bed820 5016 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5017 return ERR_PTR(err);
c81c925a
TH
5018}
5019
a5bca215 5020static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5021{
a5bca215 5022 struct cgroup_root *root = parent->root;
a5bca215
TH
5023 struct cgroup *cgrp, *tcgrp;
5024 int level = parent->level + 1;
03970d3c 5025 int ret;
ddbcc7e8 5026
0a950f65 5027 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5028 cgrp = kzalloc(sizeof(*cgrp) +
5029 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5030 if (!cgrp)
5031 return ERR_PTR(-ENOMEM);
0ab02ca8 5032
2aad2a86 5033 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5034 if (ret)
5035 goto out_free_cgrp;
5036
0ab02ca8
LZ
5037 /*
5038 * Temporarily set the pointer to NULL, so idr_find() won't return
5039 * a half-baked cgroup.
5040 */
cf780b7d 5041 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5042 if (cgrp->id < 0) {
ba0f4d76 5043 ret = -ENOMEM;
9d755d33 5044 goto out_cancel_ref;
976c06bc
TH
5045 }
5046
cc31edce 5047 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5048
9d800df1 5049 cgrp->self.parent = &parent->self;
ba0f4d76 5050 cgrp->root = root;
b11cfb58
TH
5051 cgrp->level = level;
5052
5053 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5054 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5055
b6abdb0e
LZ
5056 if (notify_on_release(parent))
5057 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5058
2260e7fc
TH
5059 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5060 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5061
0cb51d71 5062 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5063
4e139afc 5064 /* allocation complete, commit to creation */
d5c419b6 5065 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5066 atomic_inc(&root->nr_cgrps);
59f5296b 5067 cgroup_get(parent);
415cf07a 5068
0d80255e
TH
5069 /*
5070 * @cgrp is now fully operational. If something fails after this
5071 * point, it'll be released via the normal destruction path.
5072 */
6fa4918d 5073 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5074
bd53d617
TH
5075 /*
5076 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5077 * subtree_control from the parent. Each is configured manually.
bd53d617 5078 */
03970d3c 5079 if (!cgroup_on_dfl(cgrp))
5531dc91 5080 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5081
5082 cgroup_propagate_control(cgrp);
5083
5084 /* @cgrp doesn't have dir yet so the following will only create csses */
5085 ret = cgroup_apply_control_enable(cgrp);
5086 if (ret)
5087 goto out_destroy;
2bd59d48 5088
a5bca215
TH
5089 return cgrp;
5090
5091out_cancel_ref:
5092 percpu_ref_exit(&cgrp->self.refcnt);
5093out_free_cgrp:
5094 kfree(cgrp);
5095 return ERR_PTR(ret);
5096out_destroy:
5097 cgroup_destroy_locked(cgrp);
5098 return ERR_PTR(ret);
5099}
5100
5101static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5102 umode_t mode)
5103{
5104 struct cgroup *parent, *cgrp;
a5bca215 5105 struct kernfs_node *kn;
03970d3c 5106 int ret;
a5bca215
TH
5107
5108 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5109 if (strchr(name, '\n'))
5110 return -EINVAL;
5111
945ba199 5112 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5113 if (!parent)
5114 return -ENODEV;
5115
5116 cgrp = cgroup_create(parent);
5117 if (IS_ERR(cgrp)) {
5118 ret = PTR_ERR(cgrp);
5119 goto out_unlock;
5120 }
5121
195e9b6c
TH
5122 /* create the directory */
5123 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5124 if (IS_ERR(kn)) {
5125 ret = PTR_ERR(kn);
5126 goto out_destroy;
5127 }
5128 cgrp->kn = kn;
5129
5130 /*
5131 * This extra ref will be put in cgroup_free_fn() and guarantees
5132 * that @cgrp->kn is always accessible.
5133 */
5134 kernfs_get(kn);
5135
5136 ret = cgroup_kn_set_ugid(kn);
5137 if (ret)
5138 goto out_destroy;
5139
334c3679 5140 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5141 if (ret)
5142 goto out_destroy;
5143
03970d3c
TH
5144 ret = cgroup_apply_control_enable(cgrp);
5145 if (ret)
5146 goto out_destroy;
195e9b6c
TH
5147
5148 /* let's create and online css's */
2bd59d48 5149 kernfs_activate(kn);
ddbcc7e8 5150
ba0f4d76
TH
5151 ret = 0;
5152 goto out_unlock;
ddbcc7e8 5153
a5bca215
TH
5154out_destroy:
5155 cgroup_destroy_locked(cgrp);
ba0f4d76 5156out_unlock:
a9746d8d 5157 cgroup_kn_unlock(parent_kn);
ba0f4d76 5158 return ret;
ddbcc7e8
PM
5159}
5160
223dbc38
TH
5161/*
5162 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5163 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5164 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5165 */
5166static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5167{
223dbc38
TH
5168 struct cgroup_subsys_state *css =
5169 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5170
f20104de 5171 mutex_lock(&cgroup_mutex);
09a503ea 5172
aa226ff4
TH
5173 do {
5174 offline_css(css);
5175 css_put(css);
5176 /* @css can't go away while we're holding cgroup_mutex */
5177 css = css->parent;
5178 } while (css && atomic_dec_and_test(&css->online_cnt));
5179
5180 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5181}
5182
223dbc38
TH
5183/* css kill confirmation processing requires process context, bounce */
5184static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5185{
5186 struct cgroup_subsys_state *css =
5187 container_of(ref, struct cgroup_subsys_state, refcnt);
5188
aa226ff4
TH
5189 if (atomic_dec_and_test(&css->online_cnt)) {
5190 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5191 queue_work(cgroup_destroy_wq, &css->destroy_work);
5192 }
d3daf28d
TH
5193}
5194
f392e51c
TH
5195/**
5196 * kill_css - destroy a css
5197 * @css: css to destroy
5198 *
5199 * This function initiates destruction of @css by removing cgroup interface
5200 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5201 * asynchronously once css_tryget_online() is guaranteed to fail and when
5202 * the reference count reaches zero, @css will be released.
f392e51c
TH
5203 */
5204static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5205{
01f6474c 5206 lockdep_assert_held(&cgroup_mutex);
94419627 5207
2bd59d48
TH
5208 /*
5209 * This must happen before css is disassociated with its cgroup.
5210 * See seq_css() for details.
5211 */
334c3679 5212 css_clear_dir(css);
3c14f8b4 5213
edae0c33
TH
5214 /*
5215 * Killing would put the base ref, but we need to keep it alive
5216 * until after ->css_offline().
5217 */
5218 css_get(css);
5219
5220 /*
5221 * cgroup core guarantees that, by the time ->css_offline() is
5222 * invoked, no new css reference will be given out via
ec903c0c 5223 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5224 * proceed to offlining css's because percpu_ref_kill() doesn't
5225 * guarantee that the ref is seen as killed on all CPUs on return.
5226 *
5227 * Use percpu_ref_kill_and_confirm() to get notifications as each
5228 * css is confirmed to be seen as killed on all CPUs.
5229 */
5230 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5231}
5232
5233/**
5234 * cgroup_destroy_locked - the first stage of cgroup destruction
5235 * @cgrp: cgroup to be destroyed
5236 *
5237 * css's make use of percpu refcnts whose killing latency shouldn't be
5238 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5239 * guarantee that css_tryget_online() won't succeed by the time
5240 * ->css_offline() is invoked. To satisfy all the requirements,
5241 * destruction is implemented in the following two steps.
d3daf28d
TH
5242 *
5243 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5244 * userland visible parts and start killing the percpu refcnts of
5245 * css's. Set up so that the next stage will be kicked off once all
5246 * the percpu refcnts are confirmed to be killed.
5247 *
5248 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5249 * rest of destruction. Once all cgroup references are gone, the
5250 * cgroup is RCU-freed.
5251 *
5252 * This function implements s1. After this step, @cgrp is gone as far as
5253 * the userland is concerned and a new cgroup with the same name may be
5254 * created. As cgroup doesn't care about the names internally, this
5255 * doesn't cause any problem.
5256 */
42809dd4
TH
5257static int cgroup_destroy_locked(struct cgroup *cgrp)
5258 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5259{
2bd59d48 5260 struct cgroup_subsys_state *css;
1c6727af 5261 int ssid;
ddbcc7e8 5262
42809dd4
TH
5263 lockdep_assert_held(&cgroup_mutex);
5264
91486f61
TH
5265 /*
5266 * Only migration can raise populated from zero and we're already
5267 * holding cgroup_mutex.
5268 */
5269 if (cgroup_is_populated(cgrp))
ddbcc7e8 5270 return -EBUSY;
a043e3b2 5271
bb78a92f 5272 /*
d5c419b6
TH
5273 * Make sure there's no live children. We can't test emptiness of
5274 * ->self.children as dead children linger on it while being
5275 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5276 */
f3d46500 5277 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5278 return -EBUSY;
5279
455050d2
TH
5280 /*
5281 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5282 * creation by disabling cgroup_lock_live_group().
455050d2 5283 */
184faf32 5284 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5285
249f3468 5286 /* initiate massacre of all css's */
1c6727af
TH
5287 for_each_css(css, ssid, cgrp)
5288 kill_css(css);
455050d2 5289
455050d2 5290 /*
01f6474c
TH
5291 * Remove @cgrp directory along with the base files. @cgrp has an
5292 * extra ref on its kn.
f20104de 5293 */
01f6474c 5294 kernfs_remove(cgrp->kn);
f20104de 5295
d51f39b0 5296 check_for_release(cgroup_parent(cgrp));
2bd59d48 5297
249f3468 5298 /* put the base reference */
9d755d33 5299 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5300
ea15f8cc
TH
5301 return 0;
5302};
5303
2bd59d48 5304static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5305{
a9746d8d 5306 struct cgroup *cgrp;
2bd59d48 5307 int ret = 0;
42809dd4 5308
945ba199 5309 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5310 if (!cgrp)
5311 return 0;
42809dd4 5312
a9746d8d 5313 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5314
a9746d8d 5315 cgroup_kn_unlock(kn);
42809dd4 5316 return ret;
8e3f6541
TH
5317}
5318
2bd59d48
TH
5319static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5320 .remount_fs = cgroup_remount,
5321 .show_options = cgroup_show_options,
5322 .mkdir = cgroup_mkdir,
5323 .rmdir = cgroup_rmdir,
5324 .rename = cgroup_rename,
5325};
5326
15a4c835 5327static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5328{
ddbcc7e8 5329 struct cgroup_subsys_state *css;
cfe36bde 5330
a5ae9899 5331 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5332
648bb56d
TH
5333 mutex_lock(&cgroup_mutex);
5334
15a4c835 5335 idr_init(&ss->css_idr);
0adb0704 5336 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5337
3dd06ffa
TH
5338 /* Create the root cgroup state for this subsystem */
5339 ss->root = &cgrp_dfl_root;
5340 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5341 /* We don't handle early failures gracefully */
5342 BUG_ON(IS_ERR(css));
ddfcadab 5343 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5344
5345 /*
5346 * Root csses are never destroyed and we can't initialize
5347 * percpu_ref during early init. Disable refcnting.
5348 */
5349 css->flags |= CSS_NO_REF;
5350
15a4c835 5351 if (early) {
9395a450 5352 /* allocation can't be done safely during early init */
15a4c835
TH
5353 css->id = 1;
5354 } else {
5355 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5356 BUG_ON(css->id < 0);
5357 }
ddbcc7e8 5358
e8d55fde 5359 /* Update the init_css_set to contain a subsys
817929ec 5360 * pointer to this state - since the subsystem is
e8d55fde 5361 * newly registered, all tasks and hence the
3dd06ffa 5362 * init_css_set is in the subsystem's root cgroup. */
aec25020 5363 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5364
cb4a3167
AS
5365 have_fork_callback |= (bool)ss->fork << ss->id;
5366 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5367 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5368 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5369
e8d55fde
LZ
5370 /* At system boot, before all subsystems have been
5371 * registered, no tasks have been forked, so we don't
5372 * need to invoke fork callbacks here. */
5373 BUG_ON(!list_empty(&init_task.tasks));
5374
ae7f164a 5375 BUG_ON(online_css(css));
a8638030 5376
cf5d5941
BB
5377 mutex_unlock(&cgroup_mutex);
5378}
cf5d5941 5379
ddbcc7e8 5380/**
a043e3b2
LZ
5381 * cgroup_init_early - cgroup initialization at system boot
5382 *
5383 * Initialize cgroups at system boot, and initialize any
5384 * subsystems that request early init.
ddbcc7e8
PM
5385 */
5386int __init cgroup_init_early(void)
5387{
7b9a6ba5 5388 static struct cgroup_sb_opts __initdata opts;
30159ec7 5389 struct cgroup_subsys *ss;
ddbcc7e8 5390 int i;
30159ec7 5391
3dd06ffa 5392 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5393 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5394
a4ea1cc9 5395 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5396
3ed80a62 5397 for_each_subsys(ss, i) {
aec25020 5398 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5399 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5400 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5401 ss->id, ss->name);
073219e9
TH
5402 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5403 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5404
aec25020 5405 ss->id = i;
073219e9 5406 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5407 if (!ss->legacy_name)
5408 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5409
5410 if (ss->early_init)
15a4c835 5411 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5412 }
5413 return 0;
5414}
5415
6e5c8307 5416static u16 cgroup_disable_mask __initdata;
a3e72739 5417
ddbcc7e8 5418/**
a043e3b2
LZ
5419 * cgroup_init - cgroup initialization
5420 *
5421 * Register cgroup filesystem and /proc file, and initialize
5422 * any subsystems that didn't request early init.
ddbcc7e8
PM
5423 */
5424int __init cgroup_init(void)
5425{
30159ec7 5426 struct cgroup_subsys *ss;
035f4f51 5427 int ssid;
ddbcc7e8 5428
6e5c8307 5429 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5430 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5431 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5432 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5433
54e7b4eb 5434 mutex_lock(&cgroup_mutex);
54e7b4eb 5435
2378d8b8
TH
5436 /*
5437 * Add init_css_set to the hash table so that dfl_root can link to
5438 * it during init.
5439 */
5440 hash_add(css_set_table, &init_css_set.hlist,
5441 css_set_hash(init_css_set.subsys));
82fe9b0d 5442
3dd06ffa 5443 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5444
54e7b4eb
TH
5445 mutex_unlock(&cgroup_mutex);
5446
172a2c06 5447 for_each_subsys(ss, ssid) {
15a4c835
TH
5448 if (ss->early_init) {
5449 struct cgroup_subsys_state *css =
5450 init_css_set.subsys[ss->id];
5451
5452 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5453 GFP_KERNEL);
5454 BUG_ON(css->id < 0);
5455 } else {
5456 cgroup_init_subsys(ss, false);
5457 }
172a2c06 5458
2d8f243a
TH
5459 list_add_tail(&init_css_set.e_cset_node[ssid],
5460 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5461
5462 /*
c731ae1d
LZ
5463 * Setting dfl_root subsys_mask needs to consider the
5464 * disabled flag and cftype registration needs kmalloc,
5465 * both of which aren't available during early_init.
172a2c06 5466 */
a3e72739
TH
5467 if (cgroup_disable_mask & (1 << ssid)) {
5468 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5469 printk(KERN_INFO "Disabling %s control group subsystem\n",
5470 ss->name);
a8ddc821 5471 continue;
a3e72739 5472 }
a8ddc821 5473
223ffb29
JW
5474 if (cgroup_ssid_no_v1(ssid))
5475 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5476 ss->name);
5477
a8ddc821
TH
5478 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5479
f6d635ad
TH
5480 if (ss->implicit_on_dfl)
5481 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5482 else if (!ss->dfl_cftypes)
a7165264 5483 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5484
a8ddc821
TH
5485 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5486 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5487 } else {
5488 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5489 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5490 }
295458e6
VD
5491
5492 if (ss->bind)
5493 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5494 }
5495
2378d8b8
TH
5496 /* init_css_set.subsys[] has been updated, re-hash */
5497 hash_del(&init_css_set.hlist);
5498 hash_add(css_set_table, &init_css_set.hlist,
5499 css_set_hash(init_css_set.subsys));
5500
035f4f51
TH
5501 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5502 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5503 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5504 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5505
2bd59d48 5506 return 0;
ddbcc7e8 5507}
b4f48b63 5508
e5fca243
TH
5509static int __init cgroup_wq_init(void)
5510{
5511 /*
5512 * There isn't much point in executing destruction path in
5513 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5514 * Use 1 for @max_active.
e5fca243
TH
5515 *
5516 * We would prefer to do this in cgroup_init() above, but that
5517 * is called before init_workqueues(): so leave this until after.
5518 */
1a11533f 5519 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5520 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5521
5522 /*
5523 * Used to destroy pidlists and separate to serve as flush domain.
5524 * Cap @max_active to 1 too.
5525 */
5526 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5527 0, 1);
5528 BUG_ON(!cgroup_pidlist_destroy_wq);
5529
e5fca243
TH
5530 return 0;
5531}
5532core_initcall(cgroup_wq_init);
5533
a424316c
PM
5534/*
5535 * proc_cgroup_show()
5536 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5537 * - Used for /proc/<pid>/cgroup.
a424316c 5538 */
006f4ac4
ZL
5539int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5540 struct pid *pid, struct task_struct *tsk)
a424316c 5541{
e61734c5 5542 char *buf, *path;
a424316c 5543 int retval;
3dd06ffa 5544 struct cgroup_root *root;
a424316c
PM
5545
5546 retval = -ENOMEM;
e61734c5 5547 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5548 if (!buf)
5549 goto out;
5550
a424316c 5551 mutex_lock(&cgroup_mutex);
f0d9a5f1 5552 spin_lock_bh(&css_set_lock);
a424316c 5553
985ed670 5554 for_each_root(root) {
a424316c 5555 struct cgroup_subsys *ss;
bd89aabc 5556 struct cgroup *cgrp;
b85d2040 5557 int ssid, count = 0;
a424316c 5558
a7165264 5559 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5560 continue;
5561
2c6ab6d2 5562 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5563 if (root != &cgrp_dfl_root)
5564 for_each_subsys(ss, ssid)
5565 if (root->subsys_mask & (1 << ssid))
5566 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5567 ss->legacy_name);
c6d57f33
PM
5568 if (strlen(root->name))
5569 seq_printf(m, "%sname=%s", count ? "," : "",
5570 root->name);
a424316c 5571 seq_putc(m, ':');
2e91fa7f 5572
7717f7ba 5573 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5574
5575 /*
5576 * On traditional hierarchies, all zombie tasks show up as
5577 * belonging to the root cgroup. On the default hierarchy,
5578 * while a zombie doesn't show up in "cgroup.procs" and
5579 * thus can't be migrated, its /proc/PID/cgroup keeps
5580 * reporting the cgroup it belonged to before exiting. If
5581 * the cgroup is removed before the zombie is reaped,
5582 * " (deleted)" is appended to the cgroup path.
5583 */
5584 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5585 path = cgroup_path(cgrp, buf, PATH_MAX);
5586 if (!path) {
5587 retval = -ENAMETOOLONG;
5588 goto out_unlock;
5589 }
5590 } else {
5591 path = "/";
e61734c5 5592 }
2e91fa7f 5593
e61734c5 5594 seq_puts(m, path);
2e91fa7f
TH
5595
5596 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5597 seq_puts(m, " (deleted)\n");
5598 else
5599 seq_putc(m, '\n');
a424316c
PM
5600 }
5601
006f4ac4 5602 retval = 0;
a424316c 5603out_unlock:
f0d9a5f1 5604 spin_unlock_bh(&css_set_lock);
a424316c 5605 mutex_unlock(&cgroup_mutex);
a424316c
PM
5606 kfree(buf);
5607out:
5608 return retval;
5609}
5610
a424316c
PM
5611/* Display information about each subsystem and each hierarchy */
5612static int proc_cgroupstats_show(struct seq_file *m, void *v)
5613{
30159ec7 5614 struct cgroup_subsys *ss;
a424316c 5615 int i;
a424316c 5616
8bab8dde 5617 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5618 /*
5619 * ideally we don't want subsystems moving around while we do this.
5620 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5621 * subsys/hierarchy state.
5622 */
a424316c 5623 mutex_lock(&cgroup_mutex);
30159ec7
TH
5624
5625 for_each_subsys(ss, i)
2c6ab6d2 5626 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5627 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5628 atomic_read(&ss->root->nr_cgrps),
5629 cgroup_ssid_enabled(i));
30159ec7 5630
a424316c
PM
5631 mutex_unlock(&cgroup_mutex);
5632 return 0;
5633}
5634
5635static int cgroupstats_open(struct inode *inode, struct file *file)
5636{
9dce07f1 5637 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5638}
5639
828c0950 5640static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5641 .open = cgroupstats_open,
5642 .read = seq_read,
5643 .llseek = seq_lseek,
5644 .release = single_release,
5645};
5646
b4f48b63 5647/**
eaf797ab 5648 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5649 * @child: pointer to task_struct of forking parent process.
b4f48b63 5650 *
eaf797ab
TH
5651 * A task is associated with the init_css_set until cgroup_post_fork()
5652 * attaches it to the parent's css_set. Empty cg_list indicates that
5653 * @child isn't holding reference to its css_set.
b4f48b63
PM
5654 */
5655void cgroup_fork(struct task_struct *child)
5656{
eaf797ab 5657 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5658 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5659}
5660
7e47682e
AS
5661/**
5662 * cgroup_can_fork - called on a new task before the process is exposed
5663 * @child: the task in question.
5664 *
5665 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5666 * returns an error, the fork aborts with that error code. This allows for
5667 * a cgroup subsystem to conditionally allow or deny new forks.
5668 */
b53202e6 5669int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5670{
5671 struct cgroup_subsys *ss;
5672 int i, j, ret;
5673
b4e0eeaf 5674 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5675 ret = ss->can_fork(child);
7e47682e
AS
5676 if (ret)
5677 goto out_revert;
b4e0eeaf 5678 } while_each_subsys_mask();
7e47682e
AS
5679
5680 return 0;
5681
5682out_revert:
5683 for_each_subsys(ss, j) {
5684 if (j >= i)
5685 break;
5686 if (ss->cancel_fork)
b53202e6 5687 ss->cancel_fork(child);
7e47682e
AS
5688 }
5689
5690 return ret;
5691}
5692
5693/**
5694 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5695 * @child: the task in question
5696 *
5697 * This calls the cancel_fork() callbacks if a fork failed *after*
5698 * cgroup_can_fork() succeded.
5699 */
b53202e6 5700void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5701{
5702 struct cgroup_subsys *ss;
5703 int i;
5704
5705 for_each_subsys(ss, i)
5706 if (ss->cancel_fork)
b53202e6 5707 ss->cancel_fork(child);
7e47682e
AS
5708}
5709
817929ec 5710/**
a043e3b2
LZ
5711 * cgroup_post_fork - called on a new task after adding it to the task list
5712 * @child: the task in question
5713 *
5edee61e
TH
5714 * Adds the task to the list running through its css_set if necessary and
5715 * call the subsystem fork() callbacks. Has to be after the task is
5716 * visible on the task list in case we race with the first call to
0942eeee 5717 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5718 * list.
a043e3b2 5719 */
b53202e6 5720void cgroup_post_fork(struct task_struct *child)
817929ec 5721{
30159ec7 5722 struct cgroup_subsys *ss;
5edee61e
TH
5723 int i;
5724
3ce3230a 5725 /*
251f8c03 5726 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5727 * function sets use_task_css_set_links before grabbing
5728 * tasklist_lock and we just went through tasklist_lock to add
5729 * @child, it's guaranteed that either we see the set
5730 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5731 * @child during its iteration.
5732 *
5733 * If we won the race, @child is associated with %current's
f0d9a5f1 5734 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5735 * association is stable, and, on completion of the parent's
5736 * migration, @child is visible in the source of migration or
5737 * already in the destination cgroup. This guarantee is necessary
5738 * when implementing operations which need to migrate all tasks of
5739 * a cgroup to another.
5740 *
251f8c03 5741 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5742 * will remain in init_css_set. This is safe because all tasks are
5743 * in the init_css_set before cg_links is enabled and there's no
5744 * operation which transfers all tasks out of init_css_set.
3ce3230a 5745 */
817929ec 5746 if (use_task_css_set_links) {
eaf797ab
TH
5747 struct css_set *cset;
5748
f0d9a5f1 5749 spin_lock_bh(&css_set_lock);
0e1d768f 5750 cset = task_css_set(current);
eaf797ab 5751 if (list_empty(&child->cg_list)) {
eaf797ab 5752 get_css_set(cset);
f6d7d049 5753 css_set_move_task(child, NULL, cset, false);
eaf797ab 5754 }
f0d9a5f1 5755 spin_unlock_bh(&css_set_lock);
817929ec 5756 }
5edee61e
TH
5757
5758 /*
5759 * Call ss->fork(). This must happen after @child is linked on
5760 * css_set; otherwise, @child might change state between ->fork()
5761 * and addition to css_set.
5762 */
b4e0eeaf 5763 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5764 ss->fork(child);
b4e0eeaf 5765 } while_each_subsys_mask();
817929ec 5766}
5edee61e 5767
b4f48b63
PM
5768/**
5769 * cgroup_exit - detach cgroup from exiting task
5770 * @tsk: pointer to task_struct of exiting process
5771 *
5772 * Description: Detach cgroup from @tsk and release it.
5773 *
5774 * Note that cgroups marked notify_on_release force every task in
5775 * them to take the global cgroup_mutex mutex when exiting.
5776 * This could impact scaling on very large systems. Be reluctant to
5777 * use notify_on_release cgroups where very high task exit scaling
5778 * is required on large systems.
5779 *
0e1d768f
TH
5780 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5781 * call cgroup_exit() while the task is still competent to handle
5782 * notify_on_release(), then leave the task attached to the root cgroup in
5783 * each hierarchy for the remainder of its exit. No need to bother with
5784 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5785 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5786 */
1ec41830 5787void cgroup_exit(struct task_struct *tsk)
b4f48b63 5788{
30159ec7 5789 struct cgroup_subsys *ss;
5abb8855 5790 struct css_set *cset;
d41d5a01 5791 int i;
817929ec
PM
5792
5793 /*
0e1d768f 5794 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5795 * with us, we can check css_set and cg_list without synchronization.
817929ec 5796 */
0de0942d
TH
5797 cset = task_css_set(tsk);
5798
817929ec 5799 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5800 spin_lock_bh(&css_set_lock);
f6d7d049 5801 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5802 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5803 } else {
5804 get_css_set(cset);
817929ec
PM
5805 }
5806
cb4a3167 5807 /* see cgroup_post_fork() for details */
b4e0eeaf 5808 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5809 ss->exit(tsk);
b4e0eeaf 5810 } while_each_subsys_mask();
2e91fa7f 5811}
30159ec7 5812
2e91fa7f
TH
5813void cgroup_free(struct task_struct *task)
5814{
5815 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5816 struct cgroup_subsys *ss;
5817 int ssid;
5818
b4e0eeaf 5819 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5820 ss->free(task);
b4e0eeaf 5821 } while_each_subsys_mask();
d41d5a01 5822
2e91fa7f 5823 put_css_set(cset);
b4f48b63 5824}
697f4161 5825
bd89aabc 5826static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5827{
27bd4dbb 5828 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5829 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5830 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5831}
5832
81a6a5cd
PM
5833/*
5834 * Notify userspace when a cgroup is released, by running the
5835 * configured release agent with the name of the cgroup (path
5836 * relative to the root of cgroup file system) as the argument.
5837 *
5838 * Most likely, this user command will try to rmdir this cgroup.
5839 *
5840 * This races with the possibility that some other task will be
5841 * attached to this cgroup before it is removed, or that some other
5842 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5843 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5844 * unused, and this cgroup will be reprieved from its death sentence,
5845 * to continue to serve a useful existence. Next time it's released,
5846 * we will get notified again, if it still has 'notify_on_release' set.
5847 *
5848 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5849 * means only wait until the task is successfully execve()'d. The
5850 * separate release agent task is forked by call_usermodehelper(),
5851 * then control in this thread returns here, without waiting for the
5852 * release agent task. We don't bother to wait because the caller of
5853 * this routine has no use for the exit status of the release agent
5854 * task, so no sense holding our caller up for that.
81a6a5cd 5855 */
81a6a5cd
PM
5856static void cgroup_release_agent(struct work_struct *work)
5857{
971ff493
ZL
5858 struct cgroup *cgrp =
5859 container_of(work, struct cgroup, release_agent_work);
5860 char *pathbuf = NULL, *agentbuf = NULL, *path;
5861 char *argv[3], *envp[3];
5862
81a6a5cd 5863 mutex_lock(&cgroup_mutex);
971ff493
ZL
5864
5865 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5866 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5867 if (!pathbuf || !agentbuf)
5868 goto out;
5869
5870 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5871 if (!path)
5872 goto out;
5873
5874 argv[0] = agentbuf;
5875 argv[1] = path;
5876 argv[2] = NULL;
5877
5878 /* minimal command environment */
5879 envp[0] = "HOME=/";
5880 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5881 envp[2] = NULL;
5882
81a6a5cd 5883 mutex_unlock(&cgroup_mutex);
971ff493 5884 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5885 goto out_free;
971ff493 5886out:
81a6a5cd 5887 mutex_unlock(&cgroup_mutex);
3e2cd91a 5888out_free:
971ff493
ZL
5889 kfree(agentbuf);
5890 kfree(pathbuf);
81a6a5cd 5891}
8bab8dde
PM
5892
5893static int __init cgroup_disable(char *str)
5894{
30159ec7 5895 struct cgroup_subsys *ss;
8bab8dde 5896 char *token;
30159ec7 5897 int i;
8bab8dde
PM
5898
5899 while ((token = strsep(&str, ",")) != NULL) {
5900 if (!*token)
5901 continue;
be45c900 5902
3ed80a62 5903 for_each_subsys(ss, i) {
3e1d2eed
TH
5904 if (strcmp(token, ss->name) &&
5905 strcmp(token, ss->legacy_name))
5906 continue;
a3e72739 5907 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5908 }
5909 }
5910 return 1;
5911}
5912__setup("cgroup_disable=", cgroup_disable);
38460b48 5913
223ffb29
JW
5914static int __init cgroup_no_v1(char *str)
5915{
5916 struct cgroup_subsys *ss;
5917 char *token;
5918 int i;
5919
5920 while ((token = strsep(&str, ",")) != NULL) {
5921 if (!*token)
5922 continue;
5923
5924 if (!strcmp(token, "all")) {
6e5c8307 5925 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
5926 break;
5927 }
5928
5929 for_each_subsys(ss, i) {
5930 if (strcmp(token, ss->name) &&
5931 strcmp(token, ss->legacy_name))
5932 continue;
5933
5934 cgroup_no_v1_mask |= 1 << i;
5935 }
5936 }
5937 return 1;
5938}
5939__setup("cgroup_no_v1=", cgroup_no_v1);
5940
b77d7b60 5941/**
ec903c0c 5942 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5943 * @dentry: directory dentry of interest
5944 * @ss: subsystem of interest
b77d7b60 5945 *
5a17f543
TH
5946 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5947 * to get the corresponding css and return it. If such css doesn't exist
5948 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5949 */
ec903c0c
TH
5950struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5951 struct cgroup_subsys *ss)
e5d1367f 5952{
2bd59d48 5953 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 5954 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 5955 struct cgroup_subsys_state *css = NULL;
e5d1367f 5956 struct cgroup *cgrp;
e5d1367f 5957
35cf0836 5958 /* is @dentry a cgroup dir? */
f17fc25f
TH
5959 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5960 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5961 return ERR_PTR(-EBADF);
5962
5a17f543
TH
5963 rcu_read_lock();
5964
2bd59d48
TH
5965 /*
5966 * This path doesn't originate from kernfs and @kn could already
5967 * have been or be removed at any point. @kn->priv is RCU
a4189487 5968 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5969 */
5970 cgrp = rcu_dereference(kn->priv);
5971 if (cgrp)
5972 css = cgroup_css(cgrp, ss);
5a17f543 5973
ec903c0c 5974 if (!css || !css_tryget_online(css))
5a17f543
TH
5975 css = ERR_PTR(-ENOENT);
5976
5977 rcu_read_unlock();
5978 return css;
e5d1367f 5979}
e5d1367f 5980
1cb650b9
LZ
5981/**
5982 * css_from_id - lookup css by id
5983 * @id: the cgroup id
5984 * @ss: cgroup subsys to be looked into
5985 *
5986 * Returns the css if there's valid one with @id, otherwise returns NULL.
5987 * Should be called under rcu_read_lock().
5988 */
5989struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5990{
6fa4918d 5991 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5992 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5993}
5994
16af4396
TH
5995/**
5996 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5997 * @path: path on the default hierarchy
5998 *
5999 * Find the cgroup at @path on the default hierarchy, increment its
6000 * reference count and return it. Returns pointer to the found cgroup on
6001 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6002 * if @path points to a non-directory.
6003 */
6004struct cgroup *cgroup_get_from_path(const char *path)
6005{
6006 struct kernfs_node *kn;
6007 struct cgroup *cgrp;
6008
6009 mutex_lock(&cgroup_mutex);
6010
6011 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6012 if (kn) {
6013 if (kernfs_type(kn) == KERNFS_DIR) {
6014 cgrp = kn->priv;
6015 cgroup_get(cgrp);
6016 } else {
6017 cgrp = ERR_PTR(-ENOTDIR);
6018 }
6019 kernfs_put(kn);
6020 } else {
6021 cgrp = ERR_PTR(-ENOENT);
6022 }
6023
6024 mutex_unlock(&cgroup_mutex);
6025 return cgrp;
6026}
6027EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6028
bd1060a1
TH
6029/*
6030 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6031 * definition in cgroup-defs.h.
6032 */
6033#ifdef CONFIG_SOCK_CGROUP_DATA
6034
6035#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6036
3fa4cc9c 6037DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6038static bool cgroup_sk_alloc_disabled __read_mostly;
6039
6040void cgroup_sk_alloc_disable(void)
6041{
6042 if (cgroup_sk_alloc_disabled)
6043 return;
6044 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6045 cgroup_sk_alloc_disabled = true;
6046}
6047
6048#else
6049
6050#define cgroup_sk_alloc_disabled false
6051
6052#endif
6053
6054void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6055{
6056 if (cgroup_sk_alloc_disabled)
6057 return;
6058
6059 rcu_read_lock();
6060
6061 while (true) {
6062 struct css_set *cset;
6063
6064 cset = task_css_set(current);
6065 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6066 skcd->val = (unsigned long)cset->dfl_cgrp;
6067 break;
6068 }
6069 cpu_relax();
6070 }
6071
6072 rcu_read_unlock();
6073}
6074
6075void cgroup_sk_free(struct sock_cgroup_data *skcd)
6076{
6077 cgroup_put(sock_cgroup_ptr(skcd));
6078}
6079
6080#endif /* CONFIG_SOCK_CGROUP_DATA */
6081
fe693435 6082#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6083static struct cgroup_subsys_state *
6084debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6085{
6086 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6087
6088 if (!css)
6089 return ERR_PTR(-ENOMEM);
6090
6091 return css;
6092}
6093
eb95419b 6094static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6095{
eb95419b 6096 kfree(css);
fe693435
PM
6097}
6098
182446d0
TH
6099static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6100 struct cftype *cft)
fe693435 6101{
182446d0 6102 return cgroup_task_count(css->cgroup);
fe693435
PM
6103}
6104
182446d0
TH
6105static u64 current_css_set_read(struct cgroup_subsys_state *css,
6106 struct cftype *cft)
fe693435
PM
6107{
6108 return (u64)(unsigned long)current->cgroups;
6109}
6110
182446d0 6111static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6112 struct cftype *cft)
fe693435
PM
6113{
6114 u64 count;
6115
6116 rcu_read_lock();
a8ad805c 6117 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6118 rcu_read_unlock();
6119 return count;
6120}
6121
2da8ca82 6122static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6123{
69d0206c 6124 struct cgrp_cset_link *link;
5abb8855 6125 struct css_set *cset;
e61734c5
TH
6126 char *name_buf;
6127
6128 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6129 if (!name_buf)
6130 return -ENOMEM;
7717f7ba 6131
f0d9a5f1 6132 spin_lock_bh(&css_set_lock);
7717f7ba 6133 rcu_read_lock();
5abb8855 6134 cset = rcu_dereference(current->cgroups);
69d0206c 6135 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6136 struct cgroup *c = link->cgrp;
7717f7ba 6137
a2dd4247 6138 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6139 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6140 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6141 }
6142 rcu_read_unlock();
f0d9a5f1 6143 spin_unlock_bh(&css_set_lock);
e61734c5 6144 kfree(name_buf);
7717f7ba
PM
6145 return 0;
6146}
6147
6148#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6149static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6150{
2da8ca82 6151 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6152 struct cgrp_cset_link *link;
7717f7ba 6153
f0d9a5f1 6154 spin_lock_bh(&css_set_lock);
182446d0 6155 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6156 struct css_set *cset = link->cset;
7717f7ba
PM
6157 struct task_struct *task;
6158 int count = 0;
c7561128 6159
5abb8855 6160 seq_printf(seq, "css_set %p\n", cset);
c7561128 6161
5abb8855 6162 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6163 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6164 goto overflow;
6165 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6166 }
6167
6168 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6169 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6170 goto overflow;
6171 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6172 }
c7561128
TH
6173 continue;
6174 overflow:
6175 seq_puts(seq, " ...\n");
7717f7ba 6176 }
f0d9a5f1 6177 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6178 return 0;
6179}
6180
182446d0 6181static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6182{
27bd4dbb 6183 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6184 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6185}
6186
6187static struct cftype debug_files[] = {
fe693435
PM
6188 {
6189 .name = "taskcount",
6190 .read_u64 = debug_taskcount_read,
6191 },
6192
6193 {
6194 .name = "current_css_set",
6195 .read_u64 = current_css_set_read,
6196 },
6197
6198 {
6199 .name = "current_css_set_refcount",
6200 .read_u64 = current_css_set_refcount_read,
6201 },
6202
7717f7ba
PM
6203 {
6204 .name = "current_css_set_cg_links",
2da8ca82 6205 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6206 },
6207
6208 {
6209 .name = "cgroup_css_links",
2da8ca82 6210 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6211 },
6212
fe693435
PM
6213 {
6214 .name = "releasable",
6215 .read_u64 = releasable_read,
6216 },
fe693435 6217
4baf6e33
TH
6218 { } /* terminate */
6219};
fe693435 6220
073219e9 6221struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6222 .css_alloc = debug_css_alloc,
6223 .css_free = debug_css_free,
5577964e 6224 .legacy_cftypes = debug_files,
fe693435
PM
6225};
6226#endif /* CONFIG_CGROUP_DEBUG */