hugetlb_cgroup: pass around @hugetlb_cgroup instead of @cgroup
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
8af01f56 84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
9871bf95
TH
189static LIST_HEAD(cgroup_roots);
190static int cgroup_root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
628f7cd4
TH
218static struct cftype cgroup_base_files[];
219
ea15f8cc 220static void cgroup_offline_fn(struct work_struct *work);
42809dd4 221static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
222static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
223 struct cftype cfts[], bool is_add);
42809dd4 224
ddbcc7e8 225/* convenient tests for these bits */
54766d4a 226static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 227{
54766d4a 228 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
229}
230
78574cf9
LZ
231/**
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
235 *
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
239 */
240bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241{
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
246 }
247 return false;
248}
249EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 250
e9685a03 251static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
252{
253 const int bits =
bd89aabc
PM
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
257}
258
e9685a03 259static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 260{
bd89aabc 261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
262}
263
30159ec7
TH
264/**
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
268 *
269 * Should be called under cgroup_mutex.
270 */
271#define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
276
277/**
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
281 *
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
284 */
285#define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
288
5549c497
TH
289/* iterate each subsystem attached to a hierarchy */
290#define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 292
5549c497
TH
293/* iterate across the active hierarchies */
294#define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 296
f6ea9372
TH
297static inline struct cgroup *__d_cgrp(struct dentry *dentry)
298{
299 return dentry->d_fsdata;
300}
301
05ef1d7c 302static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
303{
304 return dentry->d_fsdata;
305}
306
05ef1d7c
TH
307static inline struct cftype *__d_cft(struct dentry *dentry)
308{
309 return __d_cfe(dentry)->type;
310}
311
7ae1bad9
TH
312/**
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
315 *
47cfcd09
TH
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
7ae1bad9 318 */
b9777cf8 319static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
320{
321 mutex_lock(&cgroup_mutex);
54766d4a 322 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
323 mutex_unlock(&cgroup_mutex);
324 return false;
325 }
326 return true;
327}
7ae1bad9 328
81a6a5cd
PM
329/* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331static LIST_HEAD(release_list);
cdcc136f 332static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
333static void cgroup_release_agent(struct work_struct *work);
334static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 335static void check_for_release(struct cgroup *cgrp);
81a6a5cd 336
69d0206c
TH
337/*
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
344 */
345struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
349
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
352
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
817929ec
PM
355};
356
357/* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
362 */
363
364static struct css_set init_css_set;
69d0206c 365static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 366
e6a1105b
BB
367static int cgroup_init_idr(struct cgroup_subsys *ss,
368 struct cgroup_subsys_state *css);
38460b48 369
817929ec
PM
370/* css_set_lock protects the list of css_set objects, and the
371 * chain of tasks off each css_set. Nests outside task->alloc_lock
372 * due to cgroup_iter_start() */
373static DEFINE_RWLOCK(css_set_lock);
374static int css_set_count;
375
7717f7ba
PM
376/*
377 * hash table for cgroup groups. This improves the performance to find
378 * an existing css_set. This hash doesn't (currently) take into
379 * account cgroups in empty hierarchies.
380 */
472b1053 381#define CSS_SET_HASH_BITS 7
0ac801fe 382static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 383
0ac801fe 384static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 385{
0ac801fe 386 unsigned long key = 0UL;
30159ec7
TH
387 struct cgroup_subsys *ss;
388 int i;
472b1053 389
30159ec7 390 for_each_subsys(ss, i)
0ac801fe
LZ
391 key += (unsigned long)css[i];
392 key = (key >> 16) ^ key;
472b1053 393
0ac801fe 394 return key;
472b1053
LZ
395}
396
817929ec
PM
397/* We don't maintain the lists running through each css_set to its
398 * task until after the first call to cgroup_iter_start(). This
399 * reduces the fork()/exit() overhead for people who have cgroups
400 * compiled into their kernel but not actually in use */
8947f9d5 401static int use_task_css_set_links __read_mostly;
817929ec 402
5abb8855 403static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 404{
69d0206c 405 struct cgrp_cset_link *link, *tmp_link;
5abb8855 406
146aa1bd
LJ
407 /*
408 * Ensure that the refcount doesn't hit zero while any readers
409 * can see it. Similar to atomic_dec_and_lock(), but for an
410 * rwlock
411 */
5abb8855 412 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
413 return;
414 write_lock(&css_set_lock);
5abb8855 415 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
416 write_unlock(&css_set_lock);
417 return;
418 }
81a6a5cd 419
2c6ab6d2 420 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 421 hash_del(&cset->hlist);
2c6ab6d2
PM
422 css_set_count--;
423
69d0206c 424 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 425 struct cgroup *cgrp = link->cgrp;
5abb8855 426
69d0206c
TH
427 list_del(&link->cset_link);
428 list_del(&link->cgrp_link);
71b5707e 429
ddd69148 430 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 431 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 432 if (taskexit)
bd89aabc
PM
433 set_bit(CGRP_RELEASABLE, &cgrp->flags);
434 check_for_release(cgrp);
81a6a5cd 435 }
2c6ab6d2
PM
436
437 kfree(link);
81a6a5cd 438 }
2c6ab6d2
PM
439
440 write_unlock(&css_set_lock);
5abb8855 441 kfree_rcu(cset, rcu_head);
b4f48b63
PM
442}
443
817929ec
PM
444/*
445 * refcounted get/put for css_set objects
446 */
5abb8855 447static inline void get_css_set(struct css_set *cset)
817929ec 448{
5abb8855 449 atomic_inc(&cset->refcount);
817929ec
PM
450}
451
5abb8855 452static inline void put_css_set(struct css_set *cset)
817929ec 453{
5abb8855 454 __put_css_set(cset, 0);
817929ec
PM
455}
456
5abb8855 457static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 458{
5abb8855 459 __put_css_set(cset, 1);
81a6a5cd
PM
460}
461
b326f9d0 462/**
7717f7ba 463 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
464 * @cset: candidate css_set being tested
465 * @old_cset: existing css_set for a task
7717f7ba
PM
466 * @new_cgrp: cgroup that's being entered by the task
467 * @template: desired set of css pointers in css_set (pre-calculated)
468 *
6f4b7e63 469 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
470 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
471 */
5abb8855
TH
472static bool compare_css_sets(struct css_set *cset,
473 struct css_set *old_cset,
7717f7ba
PM
474 struct cgroup *new_cgrp,
475 struct cgroup_subsys_state *template[])
476{
477 struct list_head *l1, *l2;
478
5abb8855 479 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
480 /* Not all subsystems matched */
481 return false;
482 }
483
484 /*
485 * Compare cgroup pointers in order to distinguish between
486 * different cgroups in heirarchies with no subsystems. We
487 * could get by with just this check alone (and skip the
488 * memcmp above) but on most setups the memcmp check will
489 * avoid the need for this more expensive check on almost all
490 * candidates.
491 */
492
69d0206c
TH
493 l1 = &cset->cgrp_links;
494 l2 = &old_cset->cgrp_links;
7717f7ba 495 while (1) {
69d0206c 496 struct cgrp_cset_link *link1, *link2;
5abb8855 497 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
498
499 l1 = l1->next;
500 l2 = l2->next;
501 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
502 if (l1 == &cset->cgrp_links) {
503 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
504 break;
505 } else {
69d0206c 506 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
507 }
508 /* Locate the cgroups associated with these links. */
69d0206c
TH
509 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
510 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
511 cgrp1 = link1->cgrp;
512 cgrp2 = link2->cgrp;
7717f7ba 513 /* Hierarchies should be linked in the same order. */
5abb8855 514 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
515
516 /*
517 * If this hierarchy is the hierarchy of the cgroup
518 * that's changing, then we need to check that this
519 * css_set points to the new cgroup; if it's any other
520 * hierarchy, then this css_set should point to the
521 * same cgroup as the old css_set.
522 */
5abb8855
TH
523 if (cgrp1->root == new_cgrp->root) {
524 if (cgrp1 != new_cgrp)
7717f7ba
PM
525 return false;
526 } else {
5abb8855 527 if (cgrp1 != cgrp2)
7717f7ba
PM
528 return false;
529 }
530 }
531 return true;
532}
533
b326f9d0
TH
534/**
535 * find_existing_css_set - init css array and find the matching css_set
536 * @old_cset: the css_set that we're using before the cgroup transition
537 * @cgrp: the cgroup that we're moving into
538 * @template: out param for the new set of csses, should be clear on entry
817929ec 539 */
5abb8855
TH
540static struct css_set *find_existing_css_set(struct css_set *old_cset,
541 struct cgroup *cgrp,
542 struct cgroup_subsys_state *template[])
b4f48b63 543{
bd89aabc 544 struct cgroupfs_root *root = cgrp->root;
30159ec7 545 struct cgroup_subsys *ss;
5abb8855 546 struct css_set *cset;
0ac801fe 547 unsigned long key;
b326f9d0 548 int i;
817929ec 549
aae8aab4
BB
550 /*
551 * Build the set of subsystem state objects that we want to see in the
552 * new css_set. while subsystems can change globally, the entries here
553 * won't change, so no need for locking.
554 */
30159ec7 555 for_each_subsys(ss, i) {
a1a71b45 556 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
557 /* Subsystem is in this hierarchy. So we want
558 * the subsystem state from the new
559 * cgroup */
bd89aabc 560 template[i] = cgrp->subsys[i];
817929ec
PM
561 } else {
562 /* Subsystem is not in this hierarchy, so we
563 * don't want to change the subsystem state */
5abb8855 564 template[i] = old_cset->subsys[i];
817929ec
PM
565 }
566 }
567
0ac801fe 568 key = css_set_hash(template);
5abb8855
TH
569 hash_for_each_possible(css_set_table, cset, hlist, key) {
570 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
571 continue;
572
573 /* This css_set matches what we need */
5abb8855 574 return cset;
472b1053 575 }
817929ec
PM
576
577 /* No existing cgroup group matched */
578 return NULL;
579}
580
69d0206c 581static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 582{
69d0206c 583 struct cgrp_cset_link *link, *tmp_link;
36553434 584
69d0206c
TH
585 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
586 list_del(&link->cset_link);
36553434
LZ
587 kfree(link);
588 }
589}
590
69d0206c
TH
591/**
592 * allocate_cgrp_cset_links - allocate cgrp_cset_links
593 * @count: the number of links to allocate
594 * @tmp_links: list_head the allocated links are put on
595 *
596 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
597 * through ->cset_link. Returns 0 on success or -errno.
817929ec 598 */
69d0206c 599static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 600{
69d0206c 601 struct cgrp_cset_link *link;
817929ec 602 int i;
69d0206c
TH
603
604 INIT_LIST_HEAD(tmp_links);
605
817929ec 606 for (i = 0; i < count; i++) {
f4f4be2b 607 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 608 if (!link) {
69d0206c 609 free_cgrp_cset_links(tmp_links);
817929ec
PM
610 return -ENOMEM;
611 }
69d0206c 612 list_add(&link->cset_link, tmp_links);
817929ec
PM
613 }
614 return 0;
615}
616
c12f65d4
LZ
617/**
618 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 619 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 620 * @cset: the css_set to be linked
c12f65d4
LZ
621 * @cgrp: the destination cgroup
622 */
69d0206c
TH
623static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
624 struct cgroup *cgrp)
c12f65d4 625{
69d0206c 626 struct cgrp_cset_link *link;
c12f65d4 627
69d0206c
TH
628 BUG_ON(list_empty(tmp_links));
629 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
630 link->cset = cset;
7717f7ba 631 link->cgrp = cgrp;
69d0206c 632 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
633 /*
634 * Always add links to the tail of the list so that the list
635 * is sorted by order of hierarchy creation
636 */
69d0206c 637 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
638}
639
b326f9d0
TH
640/**
641 * find_css_set - return a new css_set with one cgroup updated
642 * @old_cset: the baseline css_set
643 * @cgrp: the cgroup to be updated
644 *
645 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
646 * substituted into the appropriate hierarchy.
817929ec 647 */
5abb8855
TH
648static struct css_set *find_css_set(struct css_set *old_cset,
649 struct cgroup *cgrp)
817929ec 650{
b326f9d0 651 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 652 struct css_set *cset;
69d0206c
TH
653 struct list_head tmp_links;
654 struct cgrp_cset_link *link;
0ac801fe 655 unsigned long key;
472b1053 656
b326f9d0
TH
657 lockdep_assert_held(&cgroup_mutex);
658
817929ec
PM
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
7e9abd89 661 read_lock(&css_set_lock);
5abb8855
TH
662 cset = find_existing_css_set(old_cset, cgrp, template);
663 if (cset)
664 get_css_set(cset);
7e9abd89 665 read_unlock(&css_set_lock);
817929ec 666
5abb8855
TH
667 if (cset)
668 return cset;
817929ec 669
f4f4be2b 670 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 671 if (!cset)
817929ec
PM
672 return NULL;
673
69d0206c 674 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 675 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 676 kfree(cset);
817929ec
PM
677 return NULL;
678 }
679
5abb8855 680 atomic_set(&cset->refcount, 1);
69d0206c 681 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
682 INIT_LIST_HEAD(&cset->tasks);
683 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
5abb8855 687 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
69d0206c 691 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 692 struct cgroup *c = link->cgrp;
69d0206c 693
7717f7ba
PM
694 if (c->root == cgrp->root)
695 c = cgrp;
69d0206c 696 link_css_set(&tmp_links, cset, c);
7717f7ba 697 }
817929ec 698
69d0206c 699 BUG_ON(!list_empty(&tmp_links));
817929ec 700
817929ec 701 css_set_count++;
472b1053
LZ
702
703 /* Add this cgroup group to the hash table */
5abb8855
TH
704 key = css_set_hash(cset->subsys);
705 hash_add(css_set_table, &cset->hlist, key);
472b1053 706
817929ec
PM
707 write_unlock(&css_set_lock);
708
5abb8855 709 return cset;
b4f48b63
PM
710}
711
7717f7ba
PM
712/*
713 * Return the cgroup for "task" from the given hierarchy. Must be
714 * called with cgroup_mutex held.
715 */
716static struct cgroup *task_cgroup_from_root(struct task_struct *task,
717 struct cgroupfs_root *root)
718{
5abb8855 719 struct css_set *cset;
7717f7ba
PM
720 struct cgroup *res = NULL;
721
722 BUG_ON(!mutex_is_locked(&cgroup_mutex));
723 read_lock(&css_set_lock);
724 /*
725 * No need to lock the task - since we hold cgroup_mutex the
726 * task can't change groups, so the only thing that can happen
727 * is that it exits and its css is set back to init_css_set.
728 */
a8ad805c 729 cset = task_css_set(task);
5abb8855 730 if (cset == &init_css_set) {
7717f7ba
PM
731 res = &root->top_cgroup;
732 } else {
69d0206c
TH
733 struct cgrp_cset_link *link;
734
735 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 736 struct cgroup *c = link->cgrp;
69d0206c 737
7717f7ba
PM
738 if (c->root == root) {
739 res = c;
740 break;
741 }
742 }
743 }
744 read_unlock(&css_set_lock);
745 BUG_ON(!res);
746 return res;
747}
748
ddbcc7e8
PM
749/*
750 * There is one global cgroup mutex. We also require taking
751 * task_lock() when dereferencing a task's cgroup subsys pointers.
752 * See "The task_lock() exception", at the end of this comment.
753 *
754 * A task must hold cgroup_mutex to modify cgroups.
755 *
756 * Any task can increment and decrement the count field without lock.
757 * So in general, code holding cgroup_mutex can't rely on the count
758 * field not changing. However, if the count goes to zero, then only
956db3ca 759 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
760 * means that no tasks are currently attached, therefore there is no
761 * way a task attached to that cgroup can fork (the other way to
762 * increment the count). So code holding cgroup_mutex can safely
763 * assume that if the count is zero, it will stay zero. Similarly, if
764 * a task holds cgroup_mutex on a cgroup with zero count, it
765 * knows that the cgroup won't be removed, as cgroup_rmdir()
766 * needs that mutex.
767 *
ddbcc7e8
PM
768 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
769 * (usually) take cgroup_mutex. These are the two most performance
770 * critical pieces of code here. The exception occurs on cgroup_exit(),
771 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
772 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
773 * to the release agent with the name of the cgroup (path relative to
774 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
775 *
776 * A cgroup can only be deleted if both its 'count' of using tasks
777 * is zero, and its list of 'children' cgroups is empty. Since all
778 * tasks in the system use _some_ cgroup, and since there is always at
779 * least one task in the system (init, pid == 1), therefore, top_cgroup
780 * always has either children cgroups and/or using tasks. So we don't
781 * need a special hack to ensure that top_cgroup cannot be deleted.
782 *
783 * The task_lock() exception
784 *
785 * The need for this exception arises from the action of
d0b2fdd2 786 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 787 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
788 * several performance critical places that need to reference
789 * task->cgroup without the expense of grabbing a system global
790 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 791 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
792 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
793 * the task_struct routinely used for such matters.
794 *
795 * P.S. One more locking exception. RCU is used to guard the
956db3ca 796 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
797 */
798
ddbcc7e8
PM
799/*
800 * A couple of forward declarations required, due to cyclic reference loop:
801 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
802 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
803 * -> cgroup_mkdir.
804 */
805
18bb1db3 806static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 807static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 808static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 809static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 810static const struct inode_operations cgroup_dir_inode_operations;
828c0950 811static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
812
813static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 814 .name = "cgroup",
e4ad08fe 815 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 816};
ddbcc7e8 817
38460b48
KH
818static int alloc_css_id(struct cgroup_subsys *ss,
819 struct cgroup *parent, struct cgroup *child);
820
a5e7ed32 821static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
822{
823 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
824
825 if (inode) {
85fe4025 826 inode->i_ino = get_next_ino();
ddbcc7e8 827 inode->i_mode = mode;
76aac0e9
DH
828 inode->i_uid = current_fsuid();
829 inode->i_gid = current_fsgid();
ddbcc7e8
PM
830 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
831 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
832 }
833 return inode;
834}
835
65dff759
LZ
836static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
837{
838 struct cgroup_name *name;
839
840 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
841 if (!name)
842 return NULL;
843 strcpy(name->name, dentry->d_name.name);
844 return name;
845}
846
be445626
LZ
847static void cgroup_free_fn(struct work_struct *work)
848{
ea15f8cc 849 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
850 struct cgroup_subsys *ss;
851
852 mutex_lock(&cgroup_mutex);
853 /*
854 * Release the subsystem state objects.
855 */
5549c497 856 for_each_root_subsys(cgrp->root, ss)
be445626
LZ
857 ss->css_free(cgrp);
858
859 cgrp->root->number_of_cgroups--;
860 mutex_unlock(&cgroup_mutex);
861
415cf07a
LZ
862 /*
863 * We get a ref to the parent's dentry, and put the ref when
864 * this cgroup is being freed, so it's guaranteed that the
865 * parent won't be destroyed before its children.
866 */
867 dput(cgrp->parent->dentry);
868
be445626
LZ
869 /*
870 * Drop the active superblock reference that we took when we
cc20e01c
LZ
871 * created the cgroup. This will free cgrp->root, if we are
872 * holding the last reference to @sb.
be445626
LZ
873 */
874 deactivate_super(cgrp->root->sb);
875
876 /*
877 * if we're getting rid of the cgroup, refcount should ensure
878 * that there are no pidlists left.
879 */
880 BUG_ON(!list_empty(&cgrp->pidlists));
881
882 simple_xattrs_free(&cgrp->xattrs);
883
65dff759 884 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
885 kfree(cgrp);
886}
887
888static void cgroup_free_rcu(struct rcu_head *head)
889{
890 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
891
ea15f8cc
TH
892 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
893 schedule_work(&cgrp->destroy_work);
be445626
LZ
894}
895
ddbcc7e8
PM
896static void cgroup_diput(struct dentry *dentry, struct inode *inode)
897{
898 /* is dentry a directory ? if so, kfree() associated cgroup */
899 if (S_ISDIR(inode->i_mode)) {
bd89aabc 900 struct cgroup *cgrp = dentry->d_fsdata;
be445626 901
54766d4a 902 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 903 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
904 } else {
905 struct cfent *cfe = __d_cfe(dentry);
906 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
907
908 WARN_ONCE(!list_empty(&cfe->node) &&
909 cgrp != &cgrp->root->top_cgroup,
910 "cfe still linked for %s\n", cfe->type->name);
712317ad 911 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 912 kfree(cfe);
ddbcc7e8
PM
913 }
914 iput(inode);
915}
916
c72a04e3
AV
917static int cgroup_delete(const struct dentry *d)
918{
919 return 1;
920}
921
ddbcc7e8
PM
922static void remove_dir(struct dentry *d)
923{
924 struct dentry *parent = dget(d->d_parent);
925
926 d_delete(d);
927 simple_rmdir(parent->d_inode, d);
928 dput(parent);
929}
930
2739d3cc 931static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
932{
933 struct cfent *cfe;
934
935 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
936 lockdep_assert_held(&cgroup_mutex);
937
2739d3cc
LZ
938 /*
939 * If we're doing cleanup due to failure of cgroup_create(),
940 * the corresponding @cfe may not exist.
941 */
05ef1d7c
TH
942 list_for_each_entry(cfe, &cgrp->files, node) {
943 struct dentry *d = cfe->dentry;
944
945 if (cft && cfe->type != cft)
946 continue;
947
948 dget(d);
949 d_delete(d);
ce27e317 950 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
951 list_del_init(&cfe->node);
952 dput(d);
953
2739d3cc 954 break;
ddbcc7e8 955 }
05ef1d7c
TH
956}
957
13af07df 958/**
628f7cd4 959 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 960 * @cgrp: target cgroup
13af07df
AR
961 * @subsys_mask: mask of the subsystem ids whose files should be removed
962 */
628f7cd4 963static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 964{
13af07df 965 struct cgroup_subsys *ss;
b420ba7d 966 int i;
05ef1d7c 967
b420ba7d 968 for_each_subsys(ss, i) {
13af07df 969 struct cftype_set *set;
b420ba7d
TH
970
971 if (!test_bit(i, &subsys_mask))
13af07df
AR
972 continue;
973 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 974 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df 975 }
ddbcc7e8
PM
976}
977
978/*
979 * NOTE : the dentry must have been dget()'ed
980 */
981static void cgroup_d_remove_dir(struct dentry *dentry)
982{
2fd6b7f5 983 struct dentry *parent;
ddbcc7e8 984
2fd6b7f5
NP
985 parent = dentry->d_parent;
986 spin_lock(&parent->d_lock);
3ec762ad 987 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 988 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
989 spin_unlock(&dentry->d_lock);
990 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
991 remove_dir(dentry);
992}
993
aae8aab4 994/*
cf5d5941
BB
995 * Call with cgroup_mutex held. Drops reference counts on modules, including
996 * any duplicate ones that parse_cgroupfs_options took. If this function
997 * returns an error, no reference counts are touched.
aae8aab4 998 */
ddbcc7e8 999static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1000 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1001{
bd89aabc 1002 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1003 struct cgroup_subsys *ss;
1d5be6b2 1004 unsigned long pinned = 0;
3126121f 1005 int i, ret;
ddbcc7e8 1006
aae8aab4 1007 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1008 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1009
ddbcc7e8 1010 /* Check that any added subsystems are currently free */
30159ec7 1011 for_each_subsys(ss, i) {
1d5be6b2 1012 if (!(added_mask & (1 << i)))
ddbcc7e8 1013 continue;
30159ec7 1014
1d5be6b2 1015 /* is the subsystem mounted elsewhere? */
9871bf95 1016 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
1017 ret = -EBUSY;
1018 goto out_put;
1019 }
1020
1021 /* pin the module */
1022 if (!try_module_get(ss->module)) {
1023 ret = -ENOENT;
1024 goto out_put;
ddbcc7e8 1025 }
1d5be6b2
TH
1026 pinned |= 1 << i;
1027 }
1028
1029 /* subsys could be missing if unloaded between parsing and here */
1030 if (added_mask != pinned) {
1031 ret = -ENOENT;
1032 goto out_put;
ddbcc7e8
PM
1033 }
1034
3126121f
TH
1035 ret = cgroup_populate_dir(cgrp, added_mask);
1036 if (ret)
1d5be6b2 1037 goto out_put;
3126121f
TH
1038
1039 /*
1040 * Nothing can fail from this point on. Remove files for the
1041 * removed subsystems and rebind each subsystem.
1042 */
1043 cgroup_clear_dir(cgrp, removed_mask);
1044
30159ec7 1045 for_each_subsys(ss, i) {
ddbcc7e8 1046 unsigned long bit = 1UL << i;
30159ec7 1047
a1a71b45 1048 if (bit & added_mask) {
ddbcc7e8 1049 /* We're binding this subsystem to this hierarchy */
bd89aabc 1050 BUG_ON(cgrp->subsys[i]);
9871bf95
TH
1051 BUG_ON(!cgroup_dummy_top->subsys[i]);
1052 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
a8a648c4 1053
9871bf95 1054 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
bd89aabc 1055 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1056 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1057 ss->root = root;
ddbcc7e8 1058 if (ss->bind)
761b3ef5 1059 ss->bind(cgrp);
a8a648c4 1060
cf5d5941 1061 /* refcount was already taken, and we're keeping it */
a8a648c4 1062 root->subsys_mask |= bit;
a1a71b45 1063 } else if (bit & removed_mask) {
ddbcc7e8 1064 /* We're removing this subsystem */
9871bf95 1065 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
bd89aabc 1066 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
a8a648c4 1067
ddbcc7e8 1068 if (ss->bind)
9871bf95
TH
1069 ss->bind(cgroup_dummy_top);
1070 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
bd89aabc 1071 cgrp->subsys[i] = NULL;
9871bf95
TH
1072 cgroup_subsys[i]->root = &cgroup_dummy_root;
1073 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1074
cf5d5941
BB
1075 /* subsystem is now free - drop reference on module */
1076 module_put(ss->module);
a8a648c4 1077 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1078 }
1079 }
ddbcc7e8 1080
1672d040
TH
1081 /*
1082 * Mark @root has finished binding subsystems. @root->subsys_mask
1083 * now matches the bound subsystems.
1084 */
1085 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1086
ddbcc7e8 1087 return 0;
1d5be6b2
TH
1088
1089out_put:
1090 for_each_subsys(ss, i)
1091 if (pinned & (1 << i))
1092 module_put(ss->module);
1093 return ret;
ddbcc7e8
PM
1094}
1095
34c80b1d 1096static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1097{
34c80b1d 1098 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1099 struct cgroup_subsys *ss;
1100
e25e2cbb 1101 mutex_lock(&cgroup_root_mutex);
5549c497 1102 for_each_root_subsys(root, ss)
ddbcc7e8 1103 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1104 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1105 seq_puts(seq, ",sane_behavior");
93438629 1106 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1107 seq_puts(seq, ",noprefix");
93438629 1108 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1109 seq_puts(seq, ",xattr");
81a6a5cd
PM
1110 if (strlen(root->release_agent_path))
1111 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1112 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1113 seq_puts(seq, ",clone_children");
c6d57f33
PM
1114 if (strlen(root->name))
1115 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1116 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1117 return 0;
1118}
1119
1120struct cgroup_sb_opts {
a1a71b45 1121 unsigned long subsys_mask;
ddbcc7e8 1122 unsigned long flags;
81a6a5cd 1123 char *release_agent;
2260e7fc 1124 bool cpuset_clone_children;
c6d57f33 1125 char *name;
2c6ab6d2
PM
1126 /* User explicitly requested empty subsystem */
1127 bool none;
c6d57f33
PM
1128
1129 struct cgroupfs_root *new_root;
2c6ab6d2 1130
ddbcc7e8
PM
1131};
1132
aae8aab4 1133/*
9871bf95
TH
1134 * Convert a hierarchy specifier into a bitmask of subsystems and
1135 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1136 * array. This function takes refcounts on subsystems to be used, unless it
1137 * returns error, in which case no refcounts are taken.
aae8aab4 1138 */
cf5d5941 1139static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1140{
32a8cf23
DL
1141 char *token, *o = data;
1142 bool all_ss = false, one_ss = false;
f9ab5b5b 1143 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1144 struct cgroup_subsys *ss;
1145 int i;
f9ab5b5b 1146
aae8aab4
BB
1147 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1148
f9ab5b5b
LZ
1149#ifdef CONFIG_CPUSETS
1150 mask = ~(1UL << cpuset_subsys_id);
1151#endif
ddbcc7e8 1152
c6d57f33 1153 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1154
1155 while ((token = strsep(&o, ",")) != NULL) {
1156 if (!*token)
1157 return -EINVAL;
32a8cf23 1158 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1159 /* Explicitly have no subsystems */
1160 opts->none = true;
32a8cf23
DL
1161 continue;
1162 }
1163 if (!strcmp(token, "all")) {
1164 /* Mutually exclusive option 'all' + subsystem name */
1165 if (one_ss)
1166 return -EINVAL;
1167 all_ss = true;
1168 continue;
1169 }
873fe09e
TH
1170 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1171 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1172 continue;
1173 }
32a8cf23 1174 if (!strcmp(token, "noprefix")) {
93438629 1175 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1176 continue;
1177 }
1178 if (!strcmp(token, "clone_children")) {
2260e7fc 1179 opts->cpuset_clone_children = true;
32a8cf23
DL
1180 continue;
1181 }
03b1cde6 1182 if (!strcmp(token, "xattr")) {
93438629 1183 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1184 continue;
1185 }
32a8cf23 1186 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1187 /* Specifying two release agents is forbidden */
1188 if (opts->release_agent)
1189 return -EINVAL;
c6d57f33 1190 opts->release_agent =
e400c285 1191 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1192 if (!opts->release_agent)
1193 return -ENOMEM;
32a8cf23
DL
1194 continue;
1195 }
1196 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1197 const char *name = token + 5;
1198 /* Can't specify an empty name */
1199 if (!strlen(name))
1200 return -EINVAL;
1201 /* Must match [\w.-]+ */
1202 for (i = 0; i < strlen(name); i++) {
1203 char c = name[i];
1204 if (isalnum(c))
1205 continue;
1206 if ((c == '.') || (c == '-') || (c == '_'))
1207 continue;
1208 return -EINVAL;
1209 }
1210 /* Specifying two names is forbidden */
1211 if (opts->name)
1212 return -EINVAL;
1213 opts->name = kstrndup(name,
e400c285 1214 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1215 GFP_KERNEL);
1216 if (!opts->name)
1217 return -ENOMEM;
32a8cf23
DL
1218
1219 continue;
1220 }
1221
30159ec7 1222 for_each_subsys(ss, i) {
32a8cf23
DL
1223 if (strcmp(token, ss->name))
1224 continue;
1225 if (ss->disabled)
1226 continue;
1227
1228 /* Mutually exclusive option 'all' + subsystem name */
1229 if (all_ss)
1230 return -EINVAL;
a1a71b45 1231 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1232 one_ss = true;
1233
1234 break;
1235 }
1236 if (i == CGROUP_SUBSYS_COUNT)
1237 return -ENOENT;
1238 }
1239
1240 /*
1241 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1242 * otherwise if 'none', 'name=' and a subsystem name options
1243 * were not specified, let's default to 'all'
32a8cf23 1244 */
30159ec7
TH
1245 if (all_ss || (!one_ss && !opts->none && !opts->name))
1246 for_each_subsys(ss, i)
1247 if (!ss->disabled)
1248 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1249
2c6ab6d2
PM
1250 /* Consistency checks */
1251
873fe09e
TH
1252 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1253 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1254
1255 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1256 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1257 return -EINVAL;
1258 }
1259
1260 if (opts->cpuset_clone_children) {
1261 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1262 return -EINVAL;
1263 }
1264 }
1265
f9ab5b5b
LZ
1266 /*
1267 * Option noprefix was introduced just for backward compatibility
1268 * with the old cpuset, so we allow noprefix only if mounting just
1269 * the cpuset subsystem.
1270 */
93438629 1271 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1272 return -EINVAL;
1273
2c6ab6d2
PM
1274
1275 /* Can't specify "none" and some subsystems */
a1a71b45 1276 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1277 return -EINVAL;
1278
1279 /*
1280 * We either have to specify by name or by subsystems. (So all
1281 * empty hierarchies must have a name).
1282 */
a1a71b45 1283 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1284 return -EINVAL;
1285
1286 return 0;
1287}
1288
1289static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1290{
1291 int ret = 0;
1292 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1293 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1294 struct cgroup_sb_opts opts;
a1a71b45 1295 unsigned long added_mask, removed_mask;
ddbcc7e8 1296
873fe09e
TH
1297 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1298 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1299 return -EINVAL;
1300 }
1301
bd89aabc 1302 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1303 mutex_lock(&cgroup_mutex);
e25e2cbb 1304 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1305
1306 /* See what subsystems are wanted */
1307 ret = parse_cgroupfs_options(data, &opts);
1308 if (ret)
1309 goto out_unlock;
1310
a8a648c4 1311 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1312 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1313 task_tgid_nr(current), current->comm);
1314
a1a71b45
AR
1315 added_mask = opts.subsys_mask & ~root->subsys_mask;
1316 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1317
cf5d5941 1318 /* Don't allow flags or name to change at remount */
0ce6cba3 1319 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1320 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1321 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1322 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1323 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1324 ret = -EINVAL;
1325 goto out_unlock;
1326 }
1327
f172e67c
TH
1328 /* remounting is not allowed for populated hierarchies */
1329 if (root->number_of_cgroups > 1) {
1330 ret = -EBUSY;
1331 goto out_unlock;
1332 }
1333
a8a648c4 1334 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1335 if (ret)
0670e08b 1336 goto out_unlock;
ddbcc7e8 1337
81a6a5cd
PM
1338 if (opts.release_agent)
1339 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1340 out_unlock:
66bdc9cf 1341 kfree(opts.release_agent);
c6d57f33 1342 kfree(opts.name);
e25e2cbb 1343 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1344 mutex_unlock(&cgroup_mutex);
bd89aabc 1345 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1346 return ret;
1347}
1348
b87221de 1349static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1350 .statfs = simple_statfs,
1351 .drop_inode = generic_delete_inode,
1352 .show_options = cgroup_show_options,
1353 .remount_fs = cgroup_remount,
1354};
1355
cc31edce
PM
1356static void init_cgroup_housekeeping(struct cgroup *cgrp)
1357{
1358 INIT_LIST_HEAD(&cgrp->sibling);
1359 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1360 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1361 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1362 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1363 INIT_LIST_HEAD(&cgrp->pidlists);
1364 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1365 INIT_LIST_HEAD(&cgrp->event_list);
1366 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1367 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1368}
c6d57f33 1369
ddbcc7e8
PM
1370static void init_cgroup_root(struct cgroupfs_root *root)
1371{
bd89aabc 1372 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1373
ddbcc7e8
PM
1374 INIT_LIST_HEAD(&root->subsys_list);
1375 INIT_LIST_HEAD(&root->root_list);
1376 root->number_of_cgroups = 1;
bd89aabc 1377 cgrp->root = root;
a4ea1cc9 1378 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1379 init_cgroup_housekeeping(cgrp);
4e96ee8e 1380 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1381}
1382
fc76df70 1383static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1384{
1a574231 1385 int id;
2c6ab6d2 1386
54e7b4eb
TH
1387 lockdep_assert_held(&cgroup_mutex);
1388 lockdep_assert_held(&cgroup_root_mutex);
1389
fc76df70
TH
1390 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1391 GFP_KERNEL);
1a574231
TH
1392 if (id < 0)
1393 return id;
1394
1395 root->hierarchy_id = id;
fa3ca07e
TH
1396 return 0;
1397}
1398
1399static void cgroup_exit_root_id(struct cgroupfs_root *root)
1400{
54e7b4eb
TH
1401 lockdep_assert_held(&cgroup_mutex);
1402 lockdep_assert_held(&cgroup_root_mutex);
1403
fa3ca07e 1404 if (root->hierarchy_id) {
1a574231 1405 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1406 root->hierarchy_id = 0;
1407 }
2c6ab6d2
PM
1408}
1409
ddbcc7e8
PM
1410static int cgroup_test_super(struct super_block *sb, void *data)
1411{
c6d57f33 1412 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1413 struct cgroupfs_root *root = sb->s_fs_info;
1414
c6d57f33
PM
1415 /* If we asked for a name then it must match */
1416 if (opts->name && strcmp(opts->name, root->name))
1417 return 0;
ddbcc7e8 1418
2c6ab6d2
PM
1419 /*
1420 * If we asked for subsystems (or explicitly for no
1421 * subsystems) then they must match
1422 */
a1a71b45
AR
1423 if ((opts->subsys_mask || opts->none)
1424 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1425 return 0;
1426
1427 return 1;
1428}
1429
c6d57f33
PM
1430static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1431{
1432 struct cgroupfs_root *root;
1433
a1a71b45 1434 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1435 return NULL;
1436
1437 root = kzalloc(sizeof(*root), GFP_KERNEL);
1438 if (!root)
1439 return ERR_PTR(-ENOMEM);
1440
1441 init_cgroup_root(root);
2c6ab6d2 1442
1672d040
TH
1443 /*
1444 * We need to set @root->subsys_mask now so that @root can be
1445 * matched by cgroup_test_super() before it finishes
1446 * initialization; otherwise, competing mounts with the same
1447 * options may try to bind the same subsystems instead of waiting
1448 * for the first one leading to unexpected mount errors.
1449 * SUBSYS_BOUND will be set once actual binding is complete.
1450 */
a1a71b45 1451 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1452 root->flags = opts->flags;
1453 if (opts->release_agent)
1454 strcpy(root->release_agent_path, opts->release_agent);
1455 if (opts->name)
1456 strcpy(root->name, opts->name);
2260e7fc
TH
1457 if (opts->cpuset_clone_children)
1458 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1459 return root;
1460}
1461
fa3ca07e 1462static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1463{
fa3ca07e
TH
1464 if (root) {
1465 /* hierarhcy ID shoulid already have been released */
1466 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1467
4e96ee8e 1468 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1469 kfree(root);
1470 }
2c6ab6d2
PM
1471}
1472
ddbcc7e8
PM
1473static int cgroup_set_super(struct super_block *sb, void *data)
1474{
1475 int ret;
c6d57f33
PM
1476 struct cgroup_sb_opts *opts = data;
1477
1478 /* If we don't have a new root, we can't set up a new sb */
1479 if (!opts->new_root)
1480 return -EINVAL;
1481
a1a71b45 1482 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1483
1484 ret = set_anon_super(sb, NULL);
1485 if (ret)
1486 return ret;
1487
c6d57f33
PM
1488 sb->s_fs_info = opts->new_root;
1489 opts->new_root->sb = sb;
ddbcc7e8
PM
1490
1491 sb->s_blocksize = PAGE_CACHE_SIZE;
1492 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1493 sb->s_magic = CGROUP_SUPER_MAGIC;
1494 sb->s_op = &cgroup_ops;
1495
1496 return 0;
1497}
1498
1499static int cgroup_get_rootdir(struct super_block *sb)
1500{
0df6a63f
AV
1501 static const struct dentry_operations cgroup_dops = {
1502 .d_iput = cgroup_diput,
c72a04e3 1503 .d_delete = cgroup_delete,
0df6a63f
AV
1504 };
1505
ddbcc7e8
PM
1506 struct inode *inode =
1507 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1508
1509 if (!inode)
1510 return -ENOMEM;
1511
ddbcc7e8
PM
1512 inode->i_fop = &simple_dir_operations;
1513 inode->i_op = &cgroup_dir_inode_operations;
1514 /* directories start off with i_nlink == 2 (for "." entry) */
1515 inc_nlink(inode);
48fde701
AV
1516 sb->s_root = d_make_root(inode);
1517 if (!sb->s_root)
ddbcc7e8 1518 return -ENOMEM;
0df6a63f
AV
1519 /* for everything else we want ->d_op set */
1520 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1521 return 0;
1522}
1523
f7e83571 1524static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1525 int flags, const char *unused_dev_name,
f7e83571 1526 void *data)
ddbcc7e8
PM
1527{
1528 struct cgroup_sb_opts opts;
c6d57f33 1529 struct cgroupfs_root *root;
ddbcc7e8
PM
1530 int ret = 0;
1531 struct super_block *sb;
c6d57f33 1532 struct cgroupfs_root *new_root;
3126121f 1533 struct list_head tmp_links;
e25e2cbb 1534 struct inode *inode;
3126121f 1535 const struct cred *cred;
ddbcc7e8
PM
1536
1537 /* First find the desired set of subsystems */
aae8aab4 1538 mutex_lock(&cgroup_mutex);
ddbcc7e8 1539 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1540 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1541 if (ret)
1542 goto out_err;
ddbcc7e8 1543
c6d57f33
PM
1544 /*
1545 * Allocate a new cgroup root. We may not need it if we're
1546 * reusing an existing hierarchy.
1547 */
1548 new_root = cgroup_root_from_opts(&opts);
1549 if (IS_ERR(new_root)) {
1550 ret = PTR_ERR(new_root);
1d5be6b2 1551 goto out_err;
81a6a5cd 1552 }
c6d57f33 1553 opts.new_root = new_root;
ddbcc7e8 1554
c6d57f33 1555 /* Locate an existing or new sb for this hierarchy */
9249e17f 1556 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1557 if (IS_ERR(sb)) {
c6d57f33 1558 ret = PTR_ERR(sb);
fa3ca07e 1559 cgroup_free_root(opts.new_root);
1d5be6b2 1560 goto out_err;
ddbcc7e8
PM
1561 }
1562
c6d57f33
PM
1563 root = sb->s_fs_info;
1564 BUG_ON(!root);
1565 if (root == opts.new_root) {
1566 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1567 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1568 struct cgroupfs_root *existing_root;
28fd5dfc 1569 int i;
5abb8855 1570 struct css_set *cset;
ddbcc7e8
PM
1571
1572 BUG_ON(sb->s_root != NULL);
1573
1574 ret = cgroup_get_rootdir(sb);
1575 if (ret)
1576 goto drop_new_super;
817929ec 1577 inode = sb->s_root->d_inode;
ddbcc7e8 1578
817929ec 1579 mutex_lock(&inode->i_mutex);
ddbcc7e8 1580 mutex_lock(&cgroup_mutex);
e25e2cbb 1581 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1582
4e96ee8e
LZ
1583 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1584 0, 1, GFP_KERNEL);
1585 if (root_cgrp->id < 0)
1586 goto unlock_drop;
1587
e25e2cbb
TH
1588 /* Check for name clashes with existing mounts */
1589 ret = -EBUSY;
1590 if (strlen(root->name))
1591 for_each_active_root(existing_root)
1592 if (!strcmp(existing_root->name, root->name))
1593 goto unlock_drop;
c6d57f33 1594
817929ec
PM
1595 /*
1596 * We're accessing css_set_count without locking
1597 * css_set_lock here, but that's OK - it can only be
1598 * increased by someone holding cgroup_lock, and
1599 * that's us. The worst that can happen is that we
1600 * have some link structures left over
1601 */
69d0206c 1602 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1603 if (ret)
1604 goto unlock_drop;
817929ec 1605
fc76df70
TH
1606 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1607 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1608 if (ret)
1609 goto unlock_drop;
1610
3126121f
TH
1611 sb->s_root->d_fsdata = root_cgrp;
1612 root_cgrp->dentry = sb->s_root;
1613
1614 /*
1615 * We're inside get_sb() and will call lookup_one_len() to
1616 * create the root files, which doesn't work if SELinux is
1617 * in use. The following cred dancing somehow works around
1618 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1619 * populating new cgroupfs mount") for more details.
1620 */
1621 cred = override_creds(&init_cred);
1622
1623 ret = cgroup_addrm_files(root_cgrp, NULL, cgroup_base_files, true);
1624 if (ret)
1625 goto rm_base_files;
1626
a8a648c4 1627 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1628 if (ret)
1629 goto rm_base_files;
1630
1631 revert_creds(cred);
1632
cf5d5941
BB
1633 /*
1634 * There must be no failure case after here, since rebinding
1635 * takes care of subsystems' refcounts, which are explicitly
1636 * dropped in the failure exit path.
1637 */
ddbcc7e8 1638
9871bf95
TH
1639 list_add(&root->root_list, &cgroup_roots);
1640 cgroup_root_count++;
ddbcc7e8 1641
817929ec
PM
1642 /* Link the top cgroup in this hierarchy into all
1643 * the css_set objects */
1644 write_lock(&css_set_lock);
5abb8855 1645 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1646 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1647 write_unlock(&css_set_lock);
1648
69d0206c 1649 free_cgrp_cset_links(&tmp_links);
817929ec 1650
c12f65d4 1651 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1652 BUG_ON(root->number_of_cgroups != 1);
1653
e25e2cbb 1654 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1655 mutex_unlock(&cgroup_mutex);
34f77a90 1656 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1657 } else {
1658 /*
1659 * We re-used an existing hierarchy - the new root (if
1660 * any) is not needed
1661 */
fa3ca07e 1662 cgroup_free_root(opts.new_root);
873fe09e 1663
c7ba8287 1664 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1665 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1666 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1667 ret = -EINVAL;
1668 goto drop_new_super;
1669 } else {
1670 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1671 }
873fe09e 1672 }
ddbcc7e8
PM
1673 }
1674
c6d57f33
PM
1675 kfree(opts.release_agent);
1676 kfree(opts.name);
f7e83571 1677 return dget(sb->s_root);
ddbcc7e8 1678
3126121f
TH
1679 rm_base_files:
1680 free_cgrp_cset_links(&tmp_links);
1681 cgroup_addrm_files(&root->top_cgroup, NULL, cgroup_base_files, false);
1682 revert_creds(cred);
e25e2cbb 1683 unlock_drop:
fa3ca07e 1684 cgroup_exit_root_id(root);
e25e2cbb
TH
1685 mutex_unlock(&cgroup_root_mutex);
1686 mutex_unlock(&cgroup_mutex);
1687 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1688 drop_new_super:
6f5bbff9 1689 deactivate_locked_super(sb);
c6d57f33
PM
1690 out_err:
1691 kfree(opts.release_agent);
1692 kfree(opts.name);
f7e83571 1693 return ERR_PTR(ret);
ddbcc7e8
PM
1694}
1695
1696static void cgroup_kill_sb(struct super_block *sb) {
1697 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1698 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1699 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1700 int ret;
1701
1702 BUG_ON(!root);
1703
1704 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1705 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1706
3126121f 1707 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1708 mutex_lock(&cgroup_mutex);
e25e2cbb 1709 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1710
1711 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1712 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1713 ret = rebind_subsystems(root, 0, root->subsys_mask);
1714 /* Shouldn't be able to fail ... */
1715 BUG_ON(ret);
1716 }
ddbcc7e8 1717
817929ec 1718 /*
69d0206c 1719 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1720 * root cgroup
1721 */
1722 write_lock(&css_set_lock);
71cbb949 1723
69d0206c
TH
1724 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1725 list_del(&link->cset_link);
1726 list_del(&link->cgrp_link);
817929ec
PM
1727 kfree(link);
1728 }
1729 write_unlock(&css_set_lock);
1730
839ec545
PM
1731 if (!list_empty(&root->root_list)) {
1732 list_del(&root->root_list);
9871bf95 1733 cgroup_root_count--;
839ec545 1734 }
e5f6a860 1735
fa3ca07e
TH
1736 cgroup_exit_root_id(root);
1737
e25e2cbb 1738 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1739 mutex_unlock(&cgroup_mutex);
3126121f 1740 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1741
03b1cde6
AR
1742 simple_xattrs_free(&cgrp->xattrs);
1743
ddbcc7e8 1744 kill_litter_super(sb);
fa3ca07e 1745 cgroup_free_root(root);
ddbcc7e8
PM
1746}
1747
1748static struct file_system_type cgroup_fs_type = {
1749 .name = "cgroup",
f7e83571 1750 .mount = cgroup_mount,
ddbcc7e8
PM
1751 .kill_sb = cgroup_kill_sb,
1752};
1753
676db4af
GK
1754static struct kobject *cgroup_kobj;
1755
a043e3b2
LZ
1756/**
1757 * cgroup_path - generate the path of a cgroup
1758 * @cgrp: the cgroup in question
1759 * @buf: the buffer to write the path into
1760 * @buflen: the length of the buffer
1761 *
65dff759
LZ
1762 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1763 *
1764 * We can't generate cgroup path using dentry->d_name, as accessing
1765 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1766 * inode's i_mutex, while on the other hand cgroup_path() can be called
1767 * with some irq-safe spinlocks held.
ddbcc7e8 1768 */
bd89aabc 1769int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1770{
65dff759 1771 int ret = -ENAMETOOLONG;
ddbcc7e8 1772 char *start;
febfcef6 1773
da1f296f
TH
1774 if (!cgrp->parent) {
1775 if (strlcpy(buf, "/", buflen) >= buflen)
1776 return -ENAMETOOLONG;
ddbcc7e8
PM
1777 return 0;
1778 }
1779
316eb661 1780 start = buf + buflen - 1;
316eb661 1781 *start = '\0';
9a9686b6 1782
65dff759 1783 rcu_read_lock();
da1f296f 1784 do {
65dff759
LZ
1785 const char *name = cgroup_name(cgrp);
1786 int len;
1787
1788 len = strlen(name);
ddbcc7e8 1789 if ((start -= len) < buf)
65dff759
LZ
1790 goto out;
1791 memcpy(start, name, len);
9a9686b6 1792
ddbcc7e8 1793 if (--start < buf)
65dff759 1794 goto out;
ddbcc7e8 1795 *start = '/';
65dff759
LZ
1796
1797 cgrp = cgrp->parent;
da1f296f 1798 } while (cgrp->parent);
65dff759 1799 ret = 0;
ddbcc7e8 1800 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1801out:
1802 rcu_read_unlock();
1803 return ret;
ddbcc7e8 1804}
67523c48 1805EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1806
857a2beb 1807/**
913ffdb5 1808 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1809 * @task: target task
857a2beb
TH
1810 * @buf: the buffer to write the path into
1811 * @buflen: the length of the buffer
1812 *
913ffdb5
TH
1813 * Determine @task's cgroup on the first (the one with the lowest non-zero
1814 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1815 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1816 * cgroup controller callbacks.
1817 *
1818 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1819 */
913ffdb5 1820int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1821{
1822 struct cgroupfs_root *root;
913ffdb5
TH
1823 struct cgroup *cgrp;
1824 int hierarchy_id = 1, ret = 0;
1825
1826 if (buflen < 2)
1827 return -ENAMETOOLONG;
857a2beb
TH
1828
1829 mutex_lock(&cgroup_mutex);
1830
913ffdb5
TH
1831 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1832
857a2beb
TH
1833 if (root) {
1834 cgrp = task_cgroup_from_root(task, root);
1835 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1836 } else {
1837 /* if no hierarchy exists, everyone is in "/" */
1838 memcpy(buf, "/", 2);
857a2beb
TH
1839 }
1840
1841 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1842 return ret;
1843}
913ffdb5 1844EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1845
2f7ee569
TH
1846/*
1847 * Control Group taskset
1848 */
134d3373
TH
1849struct task_and_cgroup {
1850 struct task_struct *task;
1851 struct cgroup *cgrp;
6f4b7e63 1852 struct css_set *cset;
134d3373
TH
1853};
1854
2f7ee569
TH
1855struct cgroup_taskset {
1856 struct task_and_cgroup single;
1857 struct flex_array *tc_array;
1858 int tc_array_len;
1859 int idx;
1860 struct cgroup *cur_cgrp;
1861};
1862
1863/**
1864 * cgroup_taskset_first - reset taskset and return the first task
1865 * @tset: taskset of interest
1866 *
1867 * @tset iteration is initialized and the first task is returned.
1868 */
1869struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1870{
1871 if (tset->tc_array) {
1872 tset->idx = 0;
1873 return cgroup_taskset_next(tset);
1874 } else {
1875 tset->cur_cgrp = tset->single.cgrp;
1876 return tset->single.task;
1877 }
1878}
1879EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1880
1881/**
1882 * cgroup_taskset_next - iterate to the next task in taskset
1883 * @tset: taskset of interest
1884 *
1885 * Return the next task in @tset. Iteration must have been initialized
1886 * with cgroup_taskset_first().
1887 */
1888struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1889{
1890 struct task_and_cgroup *tc;
1891
1892 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1893 return NULL;
1894
1895 tc = flex_array_get(tset->tc_array, tset->idx++);
1896 tset->cur_cgrp = tc->cgrp;
1897 return tc->task;
1898}
1899EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1900
1901/**
1902 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1903 * @tset: taskset of interest
1904 *
1905 * Return the cgroup for the current (last returned) task of @tset. This
1906 * function must be preceded by either cgroup_taskset_first() or
1907 * cgroup_taskset_next().
1908 */
1909struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1910{
1911 return tset->cur_cgrp;
1912}
1913EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1914
1915/**
1916 * cgroup_taskset_size - return the number of tasks in taskset
1917 * @tset: taskset of interest
1918 */
1919int cgroup_taskset_size(struct cgroup_taskset *tset)
1920{
1921 return tset->tc_array ? tset->tc_array_len : 1;
1922}
1923EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1924
1925
74a1166d
BB
1926/*
1927 * cgroup_task_migrate - move a task from one cgroup to another.
1928 *
d0b2fdd2 1929 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1930 */
5abb8855
TH
1931static void cgroup_task_migrate(struct cgroup *old_cgrp,
1932 struct task_struct *tsk,
1933 struct css_set *new_cset)
74a1166d 1934{
5abb8855 1935 struct css_set *old_cset;
74a1166d
BB
1936
1937 /*
026085ef
MSB
1938 * We are synchronized through threadgroup_lock() against PF_EXITING
1939 * setting such that we can't race against cgroup_exit() changing the
1940 * css_set to init_css_set and dropping the old one.
74a1166d 1941 */
c84cdf75 1942 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1943 old_cset = task_css_set(tsk);
74a1166d 1944
74a1166d 1945 task_lock(tsk);
5abb8855 1946 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1947 task_unlock(tsk);
1948
1949 /* Update the css_set linked lists if we're using them */
1950 write_lock(&css_set_lock);
1951 if (!list_empty(&tsk->cg_list))
5abb8855 1952 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1953 write_unlock(&css_set_lock);
1954
1955 /*
5abb8855
TH
1956 * We just gained a reference on old_cset by taking it from the
1957 * task. As trading it for new_cset is protected by cgroup_mutex,
1958 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1959 */
5abb8855
TH
1960 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1961 put_css_set(old_cset);
74a1166d
BB
1962}
1963
a043e3b2 1964/**
081aa458 1965 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1966 * @cgrp: the cgroup to attach to
081aa458
LZ
1967 * @tsk: the task or the leader of the threadgroup to be attached
1968 * @threadgroup: attach the whole threadgroup?
74a1166d 1969 *
257058ae 1970 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1971 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1972 */
47cfcd09
TH
1973static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1974 bool threadgroup)
74a1166d
BB
1975{
1976 int retval, i, group_size;
1977 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1978 struct cgroupfs_root *root = cgrp->root;
1979 /* threadgroup list cursor and array */
081aa458 1980 struct task_struct *leader = tsk;
134d3373 1981 struct task_and_cgroup *tc;
d846687d 1982 struct flex_array *group;
2f7ee569 1983 struct cgroup_taskset tset = { };
74a1166d
BB
1984
1985 /*
1986 * step 0: in order to do expensive, possibly blocking operations for
1987 * every thread, we cannot iterate the thread group list, since it needs
1988 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1989 * group - group_rwsem prevents new threads from appearing, and if
1990 * threads exit, this will just be an over-estimate.
74a1166d 1991 */
081aa458
LZ
1992 if (threadgroup)
1993 group_size = get_nr_threads(tsk);
1994 else
1995 group_size = 1;
d846687d 1996 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1997 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1998 if (!group)
1999 return -ENOMEM;
d846687d 2000 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2001 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2002 if (retval)
2003 goto out_free_group_list;
74a1166d 2004
74a1166d 2005 i = 0;
fb5d2b4c
MSB
2006 /*
2007 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2008 * already PF_EXITING could be freed from underneath us unless we
2009 * take an rcu_read_lock.
2010 */
2011 rcu_read_lock();
74a1166d 2012 do {
134d3373
TH
2013 struct task_and_cgroup ent;
2014
cd3d0952
TH
2015 /* @tsk either already exited or can't exit until the end */
2016 if (tsk->flags & PF_EXITING)
2017 continue;
2018
74a1166d
BB
2019 /* as per above, nr_threads may decrease, but not increase. */
2020 BUG_ON(i >= group_size);
134d3373
TH
2021 ent.task = tsk;
2022 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2023 /* nothing to do if this task is already in the cgroup */
2024 if (ent.cgrp == cgrp)
2025 continue;
61d1d219
MSB
2026 /*
2027 * saying GFP_ATOMIC has no effect here because we did prealloc
2028 * earlier, but it's good form to communicate our expectations.
2029 */
134d3373 2030 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2031 BUG_ON(retval != 0);
74a1166d 2032 i++;
081aa458
LZ
2033
2034 if (!threadgroup)
2035 break;
74a1166d 2036 } while_each_thread(leader, tsk);
fb5d2b4c 2037 rcu_read_unlock();
74a1166d
BB
2038 /* remember the number of threads in the array for later. */
2039 group_size = i;
2f7ee569
TH
2040 tset.tc_array = group;
2041 tset.tc_array_len = group_size;
74a1166d 2042
134d3373
TH
2043 /* methods shouldn't be called if no task is actually migrating */
2044 retval = 0;
892a2b90 2045 if (!group_size)
b07ef774 2046 goto out_free_group_list;
134d3373 2047
74a1166d
BB
2048 /*
2049 * step 1: check that we can legitimately attach to the cgroup.
2050 */
5549c497 2051 for_each_root_subsys(root, ss) {
74a1166d 2052 if (ss->can_attach) {
761b3ef5 2053 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2054 if (retval) {
2055 failed_ss = ss;
2056 goto out_cancel_attach;
2057 }
2058 }
74a1166d
BB
2059 }
2060
2061 /*
2062 * step 2: make sure css_sets exist for all threads to be migrated.
2063 * we use find_css_set, which allocates a new one if necessary.
2064 */
74a1166d 2065 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2066 struct css_set *old_cset;
2067
134d3373 2068 tc = flex_array_get(group, i);
a8ad805c 2069 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2070 tc->cset = find_css_set(old_cset, cgrp);
2071 if (!tc->cset) {
61d1d219
MSB
2072 retval = -ENOMEM;
2073 goto out_put_css_set_refs;
74a1166d
BB
2074 }
2075 }
2076
2077 /*
494c167c
TH
2078 * step 3: now that we're guaranteed success wrt the css_sets,
2079 * proceed to move all tasks to the new cgroup. There are no
2080 * failure cases after here, so this is the commit point.
74a1166d 2081 */
74a1166d 2082 for (i = 0; i < group_size; i++) {
134d3373 2083 tc = flex_array_get(group, i);
6f4b7e63 2084 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2085 }
2086 /* nothing is sensitive to fork() after this point. */
2087
2088 /*
494c167c 2089 * step 4: do subsystem attach callbacks.
74a1166d 2090 */
5549c497 2091 for_each_root_subsys(root, ss) {
74a1166d 2092 if (ss->attach)
761b3ef5 2093 ss->attach(cgrp, &tset);
74a1166d
BB
2094 }
2095
2096 /*
2097 * step 5: success! and cleanup
2098 */
74a1166d 2099 retval = 0;
61d1d219
MSB
2100out_put_css_set_refs:
2101 if (retval) {
2102 for (i = 0; i < group_size; i++) {
2103 tc = flex_array_get(group, i);
6f4b7e63 2104 if (!tc->cset)
61d1d219 2105 break;
6f4b7e63 2106 put_css_set(tc->cset);
61d1d219 2107 }
74a1166d
BB
2108 }
2109out_cancel_attach:
74a1166d 2110 if (retval) {
5549c497 2111 for_each_root_subsys(root, ss) {
494c167c 2112 if (ss == failed_ss)
74a1166d 2113 break;
74a1166d 2114 if (ss->cancel_attach)
761b3ef5 2115 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2116 }
2117 }
74a1166d 2118out_free_group_list:
d846687d 2119 flex_array_free(group);
74a1166d
BB
2120 return retval;
2121}
2122
2123/*
2124 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2125 * function to attach either it or all tasks in its threadgroup. Will lock
2126 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2127 */
74a1166d 2128static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2129{
bbcb81d0 2130 struct task_struct *tsk;
c69e8d9c 2131 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2132 int ret;
2133
74a1166d
BB
2134 if (!cgroup_lock_live_group(cgrp))
2135 return -ENODEV;
2136
b78949eb
MSB
2137retry_find_task:
2138 rcu_read_lock();
bbcb81d0 2139 if (pid) {
73507f33 2140 tsk = find_task_by_vpid(pid);
74a1166d
BB
2141 if (!tsk) {
2142 rcu_read_unlock();
b78949eb
MSB
2143 ret= -ESRCH;
2144 goto out_unlock_cgroup;
bbcb81d0 2145 }
74a1166d
BB
2146 /*
2147 * even if we're attaching all tasks in the thread group, we
2148 * only need to check permissions on one of them.
2149 */
c69e8d9c 2150 tcred = __task_cred(tsk);
14a590c3
EB
2151 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2152 !uid_eq(cred->euid, tcred->uid) &&
2153 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2154 rcu_read_unlock();
b78949eb
MSB
2155 ret = -EACCES;
2156 goto out_unlock_cgroup;
bbcb81d0 2157 }
b78949eb
MSB
2158 } else
2159 tsk = current;
cd3d0952
TH
2160
2161 if (threadgroup)
b78949eb 2162 tsk = tsk->group_leader;
c4c27fbd
MG
2163
2164 /*
14a40ffc 2165 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2166 * trapped in a cpuset, or RT worker may be born in a cgroup
2167 * with no rt_runtime allocated. Just say no.
2168 */
14a40ffc 2169 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2170 ret = -EINVAL;
2171 rcu_read_unlock();
2172 goto out_unlock_cgroup;
2173 }
2174
b78949eb
MSB
2175 get_task_struct(tsk);
2176 rcu_read_unlock();
2177
2178 threadgroup_lock(tsk);
2179 if (threadgroup) {
2180 if (!thread_group_leader(tsk)) {
2181 /*
2182 * a race with de_thread from another thread's exec()
2183 * may strip us of our leadership, if this happens,
2184 * there is no choice but to throw this task away and
2185 * try again; this is
2186 * "double-double-toil-and-trouble-check locking".
2187 */
2188 threadgroup_unlock(tsk);
2189 put_task_struct(tsk);
2190 goto retry_find_task;
2191 }
081aa458
LZ
2192 }
2193
2194 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2195
cd3d0952
TH
2196 threadgroup_unlock(tsk);
2197
bbcb81d0 2198 put_task_struct(tsk);
b78949eb 2199out_unlock_cgroup:
47cfcd09 2200 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2201 return ret;
2202}
2203
7ae1bad9
TH
2204/**
2205 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2206 * @from: attach to all cgroups of a given task
2207 * @tsk: the task to be attached
2208 */
2209int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2210{
2211 struct cgroupfs_root *root;
2212 int retval = 0;
2213
47cfcd09 2214 mutex_lock(&cgroup_mutex);
7ae1bad9 2215 for_each_active_root(root) {
6f4b7e63 2216 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2217
6f4b7e63 2218 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2219 if (retval)
2220 break;
2221 }
47cfcd09 2222 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2223
2224 return retval;
2225}
2226EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2227
af351026 2228static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2229{
2230 return attach_task_by_pid(cgrp, pid, false);
2231}
2232
2233static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2234{
b78949eb 2235 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2236}
2237
e788e066
PM
2238static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2239 const char *buffer)
2240{
2241 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2242 if (strlen(buffer) >= PATH_MAX)
2243 return -EINVAL;
e788e066
PM
2244 if (!cgroup_lock_live_group(cgrp))
2245 return -ENODEV;
e25e2cbb 2246 mutex_lock(&cgroup_root_mutex);
e788e066 2247 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2248 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2249 mutex_unlock(&cgroup_mutex);
e788e066
PM
2250 return 0;
2251}
2252
2253static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2254 struct seq_file *seq)
2255{
2256 if (!cgroup_lock_live_group(cgrp))
2257 return -ENODEV;
2258 seq_puts(seq, cgrp->root->release_agent_path);
2259 seq_putc(seq, '\n');
47cfcd09 2260 mutex_unlock(&cgroup_mutex);
e788e066
PM
2261 return 0;
2262}
2263
873fe09e
TH
2264static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2265 struct seq_file *seq)
2266{
2267 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2268 return 0;
2269}
2270
84eea842
PM
2271/* A buffer size big enough for numbers or short strings */
2272#define CGROUP_LOCAL_BUFFER_SIZE 64
2273
e73d2c61 2274static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2275 struct file *file,
2276 const char __user *userbuf,
2277 size_t nbytes, loff_t *unused_ppos)
355e0c48 2278{
84eea842 2279 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2280 int retval = 0;
355e0c48
PM
2281 char *end;
2282
2283 if (!nbytes)
2284 return -EINVAL;
2285 if (nbytes >= sizeof(buffer))
2286 return -E2BIG;
2287 if (copy_from_user(buffer, userbuf, nbytes))
2288 return -EFAULT;
2289
2290 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2291 if (cft->write_u64) {
478988d3 2292 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2293 if (*end)
2294 return -EINVAL;
2295 retval = cft->write_u64(cgrp, cft, val);
2296 } else {
478988d3 2297 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2298 if (*end)
2299 return -EINVAL;
2300 retval = cft->write_s64(cgrp, cft, val);
2301 }
355e0c48
PM
2302 if (!retval)
2303 retval = nbytes;
2304 return retval;
2305}
2306
db3b1497
PM
2307static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2308 struct file *file,
2309 const char __user *userbuf,
2310 size_t nbytes, loff_t *unused_ppos)
2311{
84eea842 2312 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2313 int retval = 0;
2314 size_t max_bytes = cft->max_write_len;
2315 char *buffer = local_buffer;
2316
2317 if (!max_bytes)
2318 max_bytes = sizeof(local_buffer) - 1;
2319 if (nbytes >= max_bytes)
2320 return -E2BIG;
2321 /* Allocate a dynamic buffer if we need one */
2322 if (nbytes >= sizeof(local_buffer)) {
2323 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2324 if (buffer == NULL)
2325 return -ENOMEM;
2326 }
5a3eb9f6
LZ
2327 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2328 retval = -EFAULT;
2329 goto out;
2330 }
db3b1497
PM
2331
2332 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2333 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2334 if (!retval)
2335 retval = nbytes;
5a3eb9f6 2336out:
db3b1497
PM
2337 if (buffer != local_buffer)
2338 kfree(buffer);
2339 return retval;
2340}
2341
ddbcc7e8
PM
2342static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2343 size_t nbytes, loff_t *ppos)
2344{
2345 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2346 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2347
54766d4a 2348 if (cgroup_is_dead(cgrp))
ddbcc7e8 2349 return -ENODEV;
355e0c48 2350 if (cft->write)
bd89aabc 2351 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2352 if (cft->write_u64 || cft->write_s64)
2353 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2354 if (cft->write_string)
2355 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2356 if (cft->trigger) {
2357 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2358 return ret ? ret : nbytes;
2359 }
355e0c48 2360 return -EINVAL;
ddbcc7e8
PM
2361}
2362
f4c753b7
PM
2363static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2364 struct file *file,
2365 char __user *buf, size_t nbytes,
2366 loff_t *ppos)
ddbcc7e8 2367{
84eea842 2368 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2369 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2370 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2371
2372 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2373}
2374
e73d2c61
PM
2375static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2376 struct file *file,
2377 char __user *buf, size_t nbytes,
2378 loff_t *ppos)
2379{
84eea842 2380 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2381 s64 val = cft->read_s64(cgrp, cft);
2382 int len = sprintf(tmp, "%lld\n", (long long) val);
2383
2384 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2385}
2386
ddbcc7e8
PM
2387static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2388 size_t nbytes, loff_t *ppos)
2389{
2390 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2391 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2392
54766d4a 2393 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2394 return -ENODEV;
2395
2396 if (cft->read)
bd89aabc 2397 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2398 if (cft->read_u64)
2399 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2400 if (cft->read_s64)
2401 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2402 return -EINVAL;
2403}
2404
91796569
PM
2405/*
2406 * seqfile ops/methods for returning structured data. Currently just
2407 * supports string->u64 maps, but can be extended in future.
2408 */
2409
91796569
PM
2410static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2411{
2412 struct seq_file *sf = cb->state;
2413 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2414}
2415
2416static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2417{
e0798ce2
LZ
2418 struct cfent *cfe = m->private;
2419 struct cftype *cft = cfe->type;
2420 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2421
29486df3
SH
2422 if (cft->read_map) {
2423 struct cgroup_map_cb cb = {
2424 .fill = cgroup_map_add,
2425 .state = m,
2426 };
e0798ce2 2427 return cft->read_map(cgrp, cft, &cb);
29486df3 2428 }
e0798ce2 2429 return cft->read_seq_string(cgrp, cft, m);
91796569
PM
2430}
2431
828c0950 2432static const struct file_operations cgroup_seqfile_operations = {
91796569 2433 .read = seq_read,
e788e066 2434 .write = cgroup_file_write,
91796569 2435 .llseek = seq_lseek,
e0798ce2 2436 .release = single_release,
91796569
PM
2437};
2438
ddbcc7e8
PM
2439static int cgroup_file_open(struct inode *inode, struct file *file)
2440{
2441 int err;
e0798ce2 2442 struct cfent *cfe;
ddbcc7e8
PM
2443 struct cftype *cft;
2444
2445 err = generic_file_open(inode, file);
2446 if (err)
2447 return err;
e0798ce2
LZ
2448 cfe = __d_cfe(file->f_dentry);
2449 cft = cfe->type;
75139b82 2450
29486df3 2451 if (cft->read_map || cft->read_seq_string) {
91796569 2452 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2453 err = single_open(file, cgroup_seqfile_show, cfe);
2454 } else if (cft->open) {
ddbcc7e8 2455 err = cft->open(inode, file);
e0798ce2 2456 }
ddbcc7e8
PM
2457
2458 return err;
2459}
2460
2461static int cgroup_file_release(struct inode *inode, struct file *file)
2462{
2463 struct cftype *cft = __d_cft(file->f_dentry);
2464 if (cft->release)
2465 return cft->release(inode, file);
2466 return 0;
2467}
2468
2469/*
2470 * cgroup_rename - Only allow simple rename of directories in place.
2471 */
2472static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2473 struct inode *new_dir, struct dentry *new_dentry)
2474{
65dff759
LZ
2475 int ret;
2476 struct cgroup_name *name, *old_name;
2477 struct cgroup *cgrp;
2478
2479 /*
2480 * It's convinient to use parent dir's i_mutex to protected
2481 * cgrp->name.
2482 */
2483 lockdep_assert_held(&old_dir->i_mutex);
2484
ddbcc7e8
PM
2485 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2486 return -ENOTDIR;
2487 if (new_dentry->d_inode)
2488 return -EEXIST;
2489 if (old_dir != new_dir)
2490 return -EIO;
65dff759
LZ
2491
2492 cgrp = __d_cgrp(old_dentry);
2493
6db8e85c
TH
2494 /*
2495 * This isn't a proper migration and its usefulness is very
2496 * limited. Disallow if sane_behavior.
2497 */
2498 if (cgroup_sane_behavior(cgrp))
2499 return -EPERM;
2500
65dff759
LZ
2501 name = cgroup_alloc_name(new_dentry);
2502 if (!name)
2503 return -ENOMEM;
2504
2505 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2506 if (ret) {
2507 kfree(name);
2508 return ret;
2509 }
2510
a4ea1cc9 2511 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2512 rcu_assign_pointer(cgrp->name, name);
2513
2514 kfree_rcu(old_name, rcu_head);
2515 return 0;
ddbcc7e8
PM
2516}
2517
03b1cde6
AR
2518static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2519{
2520 if (S_ISDIR(dentry->d_inode->i_mode))
2521 return &__d_cgrp(dentry)->xattrs;
2522 else
712317ad 2523 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2524}
2525
2526static inline int xattr_enabled(struct dentry *dentry)
2527{
2528 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2529 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2530}
2531
2532static bool is_valid_xattr(const char *name)
2533{
2534 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2535 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2536 return true;
2537 return false;
2538}
2539
2540static int cgroup_setxattr(struct dentry *dentry, const char *name,
2541 const void *val, size_t size, int flags)
2542{
2543 if (!xattr_enabled(dentry))
2544 return -EOPNOTSUPP;
2545 if (!is_valid_xattr(name))
2546 return -EINVAL;
2547 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2548}
2549
2550static int cgroup_removexattr(struct dentry *dentry, const char *name)
2551{
2552 if (!xattr_enabled(dentry))
2553 return -EOPNOTSUPP;
2554 if (!is_valid_xattr(name))
2555 return -EINVAL;
2556 return simple_xattr_remove(__d_xattrs(dentry), name);
2557}
2558
2559static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2560 void *buf, size_t size)
2561{
2562 if (!xattr_enabled(dentry))
2563 return -EOPNOTSUPP;
2564 if (!is_valid_xattr(name))
2565 return -EINVAL;
2566 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2567}
2568
2569static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2570{
2571 if (!xattr_enabled(dentry))
2572 return -EOPNOTSUPP;
2573 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2574}
2575
828c0950 2576static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2577 .read = cgroup_file_read,
2578 .write = cgroup_file_write,
2579 .llseek = generic_file_llseek,
2580 .open = cgroup_file_open,
2581 .release = cgroup_file_release,
2582};
2583
03b1cde6
AR
2584static const struct inode_operations cgroup_file_inode_operations = {
2585 .setxattr = cgroup_setxattr,
2586 .getxattr = cgroup_getxattr,
2587 .listxattr = cgroup_listxattr,
2588 .removexattr = cgroup_removexattr,
2589};
2590
6e1d5dcc 2591static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2592 .lookup = cgroup_lookup,
ddbcc7e8
PM
2593 .mkdir = cgroup_mkdir,
2594 .rmdir = cgroup_rmdir,
2595 .rename = cgroup_rename,
03b1cde6
AR
2596 .setxattr = cgroup_setxattr,
2597 .getxattr = cgroup_getxattr,
2598 .listxattr = cgroup_listxattr,
2599 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2600};
2601
00cd8dd3 2602static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2603{
2604 if (dentry->d_name.len > NAME_MAX)
2605 return ERR_PTR(-ENAMETOOLONG);
2606 d_add(dentry, NULL);
2607 return NULL;
2608}
2609
0dea1168
KS
2610/*
2611 * Check if a file is a control file
2612 */
2613static inline struct cftype *__file_cft(struct file *file)
2614{
496ad9aa 2615 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2616 return ERR_PTR(-EINVAL);
2617 return __d_cft(file->f_dentry);
2618}
2619
a5e7ed32 2620static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2621 struct super_block *sb)
2622{
ddbcc7e8
PM
2623 struct inode *inode;
2624
2625 if (!dentry)
2626 return -ENOENT;
2627 if (dentry->d_inode)
2628 return -EEXIST;
2629
2630 inode = cgroup_new_inode(mode, sb);
2631 if (!inode)
2632 return -ENOMEM;
2633
2634 if (S_ISDIR(mode)) {
2635 inode->i_op = &cgroup_dir_inode_operations;
2636 inode->i_fop = &simple_dir_operations;
2637
2638 /* start off with i_nlink == 2 (for "." entry) */
2639 inc_nlink(inode);
28fd6f30 2640 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2641
b8a2df6a
TH
2642 /*
2643 * Control reaches here with cgroup_mutex held.
2644 * @inode->i_mutex should nest outside cgroup_mutex but we
2645 * want to populate it immediately without releasing
2646 * cgroup_mutex. As @inode isn't visible to anyone else
2647 * yet, trylock will always succeed without affecting
2648 * lockdep checks.
2649 */
2650 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2651 } else if (S_ISREG(mode)) {
2652 inode->i_size = 0;
2653 inode->i_fop = &cgroup_file_operations;
03b1cde6 2654 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2655 }
ddbcc7e8
PM
2656 d_instantiate(dentry, inode);
2657 dget(dentry); /* Extra count - pin the dentry in core */
2658 return 0;
2659}
2660
099fca32
LZ
2661/**
2662 * cgroup_file_mode - deduce file mode of a control file
2663 * @cft: the control file in question
2664 *
2665 * returns cft->mode if ->mode is not 0
2666 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2667 * returns S_IRUGO if it has only a read handler
2668 * returns S_IWUSR if it has only a write hander
2669 */
a5e7ed32 2670static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2671{
a5e7ed32 2672 umode_t mode = 0;
099fca32
LZ
2673
2674 if (cft->mode)
2675 return cft->mode;
2676
2677 if (cft->read || cft->read_u64 || cft->read_s64 ||
2678 cft->read_map || cft->read_seq_string)
2679 mode |= S_IRUGO;
2680
2681 if (cft->write || cft->write_u64 || cft->write_s64 ||
2682 cft->write_string || cft->trigger)
2683 mode |= S_IWUSR;
2684
2685 return mode;
2686}
2687
db0416b6 2688static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2689 struct cftype *cft)
ddbcc7e8 2690{
bd89aabc 2691 struct dentry *dir = cgrp->dentry;
05ef1d7c 2692 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2693 struct dentry *dentry;
05ef1d7c 2694 struct cfent *cfe;
ddbcc7e8 2695 int error;
a5e7ed32 2696 umode_t mode;
ddbcc7e8 2697 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2698
93438629 2699 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2700 strcpy(name, subsys->name);
2701 strcat(name, ".");
2702 }
2703 strcat(name, cft->name);
05ef1d7c 2704
ddbcc7e8 2705 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2706
2707 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2708 if (!cfe)
2709 return -ENOMEM;
2710
ddbcc7e8 2711 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2712 if (IS_ERR(dentry)) {
ddbcc7e8 2713 error = PTR_ERR(dentry);
05ef1d7c
TH
2714 goto out;
2715 }
2716
d6cbf35d
LZ
2717 cfe->type = (void *)cft;
2718 cfe->dentry = dentry;
2719 dentry->d_fsdata = cfe;
2720 simple_xattrs_init(&cfe->xattrs);
2721
05ef1d7c
TH
2722 mode = cgroup_file_mode(cft);
2723 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2724 if (!error) {
05ef1d7c
TH
2725 list_add_tail(&cfe->node, &parent->files);
2726 cfe = NULL;
2727 }
2728 dput(dentry);
2729out:
2730 kfree(cfe);
ddbcc7e8
PM
2731 return error;
2732}
2733
b1f28d31
TH
2734/**
2735 * cgroup_addrm_files - add or remove files to a cgroup directory
2736 * @cgrp: the target cgroup
2737 * @subsys: the subsystem of files to be added
2738 * @cfts: array of cftypes to be added
2739 * @is_add: whether to add or remove
2740 *
2741 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2742 * All @cfts should belong to @subsys. For removals, this function never
2743 * fails. If addition fails, this function doesn't remove files already
2744 * added. The caller is responsible for cleaning up.
2745 */
79578621 2746static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2747 struct cftype cfts[], bool is_add)
ddbcc7e8 2748{
03b1cde6 2749 struct cftype *cft;
b1f28d31
TH
2750 int ret;
2751
2752 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2753 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2754
2755 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2756 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2757 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2758 continue;
f33fddc2
G
2759 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2760 continue;
2761 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2762 continue;
2763
2739d3cc 2764 if (is_add) {
b1f28d31
TH
2765 ret = cgroup_add_file(cgrp, subsys, cft);
2766 if (ret) {
2739d3cc 2767 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2768 cft->name, ret);
2769 return ret;
2770 }
2739d3cc
LZ
2771 } else {
2772 cgroup_rm_file(cgrp, cft);
db0416b6 2773 }
ddbcc7e8 2774 }
b1f28d31 2775 return 0;
ddbcc7e8
PM
2776}
2777
8e3f6541 2778static void cgroup_cfts_prepare(void)
e8c82d20 2779 __acquires(&cgroup_mutex)
8e3f6541
TH
2780{
2781 /*
2782 * Thanks to the entanglement with vfs inode locking, we can't walk
2783 * the existing cgroups under cgroup_mutex and create files.
e8c82d20
LZ
2784 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2785 * read lock before calling cgroup_addrm_files().
8e3f6541 2786 */
8e3f6541
TH
2787 mutex_lock(&cgroup_mutex);
2788}
2789
9ccece80
TH
2790static int cgroup_cfts_commit(struct cgroup_subsys *ss,
2791 struct cftype *cfts, bool is_add)
e8c82d20 2792 __releases(&cgroup_mutex)
8e3f6541
TH
2793{
2794 LIST_HEAD(pending);
e8c82d20 2795 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
084457f2 2796 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2797 struct dentry *prev = NULL;
2798 struct inode *inode;
00356bd5 2799 u64 update_before;
9ccece80 2800 int ret = 0;
8e3f6541
TH
2801
2802 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2803 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2804 !atomic_inc_not_zero(&sb->s_active)) {
2805 mutex_unlock(&cgroup_mutex);
9ccece80 2806 return 0;
8e3f6541
TH
2807 }
2808
8e3f6541 2809 /*
e8c82d20
LZ
2810 * All cgroups which are created after we drop cgroup_mutex will
2811 * have the updated set of files, so we only need to update the
00356bd5 2812 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2813 */
00356bd5 2814 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2815
2816 mutex_unlock(&cgroup_mutex);
2817
2818 /* @root always needs to be updated */
2819 inode = root->dentry->d_inode;
2820 mutex_lock(&inode->i_mutex);
2821 mutex_lock(&cgroup_mutex);
9ccece80 2822 ret = cgroup_addrm_files(root, ss, cfts, is_add);
e8c82d20
LZ
2823 mutex_unlock(&cgroup_mutex);
2824 mutex_unlock(&inode->i_mutex);
2825
9ccece80
TH
2826 if (ret)
2827 goto out_deact;
2828
e8c82d20
LZ
2829 /* add/rm files for all cgroups created before */
2830 rcu_read_lock();
2831 cgroup_for_each_descendant_pre(cgrp, root) {
2832 if (cgroup_is_dead(cgrp))
2833 continue;
2834
2835 inode = cgrp->dentry->d_inode;
2836 dget(cgrp->dentry);
2837 rcu_read_unlock();
2838
2839 dput(prev);
2840 prev = cgrp->dentry;
8e3f6541
TH
2841
2842 mutex_lock(&inode->i_mutex);
2843 mutex_lock(&cgroup_mutex);
00356bd5 2844 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
9ccece80 2845 ret = cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2846 mutex_unlock(&cgroup_mutex);
2847 mutex_unlock(&inode->i_mutex);
2848
e8c82d20 2849 rcu_read_lock();
9ccece80
TH
2850 if (ret)
2851 break;
8e3f6541 2852 }
e8c82d20
LZ
2853 rcu_read_unlock();
2854 dput(prev);
9ccece80 2855out_deact:
e8c82d20 2856 deactivate_super(sb);
9ccece80 2857 return ret;
8e3f6541
TH
2858}
2859
2860/**
2861 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2862 * @ss: target cgroup subsystem
2863 * @cfts: zero-length name terminated array of cftypes
2864 *
2865 * Register @cfts to @ss. Files described by @cfts are created for all
2866 * existing cgroups to which @ss is attached and all future cgroups will
2867 * have them too. This function can be called anytime whether @ss is
2868 * attached or not.
2869 *
2870 * Returns 0 on successful registration, -errno on failure. Note that this
2871 * function currently returns 0 as long as @cfts registration is successful
2872 * even if some file creation attempts on existing cgroups fail.
2873 */
03b1cde6 2874int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2875{
2876 struct cftype_set *set;
9ccece80 2877 int ret;
8e3f6541
TH
2878
2879 set = kzalloc(sizeof(*set), GFP_KERNEL);
2880 if (!set)
2881 return -ENOMEM;
2882
2883 cgroup_cfts_prepare();
2884 set->cfts = cfts;
2885 list_add_tail(&set->node, &ss->cftsets);
9ccece80
TH
2886 ret = cgroup_cfts_commit(ss, cfts, true);
2887 if (ret)
2888 cgroup_rm_cftypes(ss, cfts);
2889 return ret;
8e3f6541
TH
2890}
2891EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2892
79578621
TH
2893/**
2894 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2895 * @ss: target cgroup subsystem
2896 * @cfts: zero-length name terminated array of cftypes
2897 *
2898 * Unregister @cfts from @ss. Files described by @cfts are removed from
2899 * all existing cgroups to which @ss is attached and all future cgroups
2900 * won't have them either. This function can be called anytime whether @ss
2901 * is attached or not.
2902 *
2903 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2904 * registered with @ss.
2905 */
03b1cde6 2906int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2907{
2908 struct cftype_set *set;
2909
2910 cgroup_cfts_prepare();
2911
2912 list_for_each_entry(set, &ss->cftsets, node) {
2913 if (set->cfts == cfts) {
f57947d2
LZ
2914 list_del(&set->node);
2915 kfree(set);
79578621
TH
2916 cgroup_cfts_commit(ss, cfts, false);
2917 return 0;
2918 }
2919 }
2920
2921 cgroup_cfts_commit(ss, NULL, false);
2922 return -ENOENT;
2923}
2924
a043e3b2
LZ
2925/**
2926 * cgroup_task_count - count the number of tasks in a cgroup.
2927 * @cgrp: the cgroup in question
2928 *
2929 * Return the number of tasks in the cgroup.
2930 */
bd89aabc 2931int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2932{
2933 int count = 0;
69d0206c 2934 struct cgrp_cset_link *link;
817929ec
PM
2935
2936 read_lock(&css_set_lock);
69d0206c
TH
2937 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2938 count += atomic_read(&link->cset->refcount);
817929ec 2939 read_unlock(&css_set_lock);
bbcb81d0
PM
2940 return count;
2941}
2942
817929ec
PM
2943/*
2944 * Advance a list_head iterator. The iterator should be positioned at
2945 * the start of a css_set
2946 */
69d0206c 2947static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2948{
69d0206c
TH
2949 struct list_head *l = it->cset_link;
2950 struct cgrp_cset_link *link;
5abb8855 2951 struct css_set *cset;
817929ec
PM
2952
2953 /* Advance to the next non-empty css_set */
2954 do {
2955 l = l->next;
69d0206c
TH
2956 if (l == &cgrp->cset_links) {
2957 it->cset_link = NULL;
817929ec
PM
2958 return;
2959 }
69d0206c
TH
2960 link = list_entry(l, struct cgrp_cset_link, cset_link);
2961 cset = link->cset;
5abb8855 2962 } while (list_empty(&cset->tasks));
69d0206c 2963 it->cset_link = l;
5abb8855 2964 it->task = cset->tasks.next;
817929ec
PM
2965}
2966
31a7df01
CW
2967/*
2968 * To reduce the fork() overhead for systems that are not actually
2969 * using their cgroups capability, we don't maintain the lists running
2970 * through each css_set to its tasks until we see the list actually
2971 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2972 */
3df91fe3 2973static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2974{
2975 struct task_struct *p, *g;
2976 write_lock(&css_set_lock);
2977 use_task_css_set_links = 1;
3ce3230a
FW
2978 /*
2979 * We need tasklist_lock because RCU is not safe against
2980 * while_each_thread(). Besides, a forking task that has passed
2981 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2982 * is not guaranteed to have its child immediately visible in the
2983 * tasklist if we walk through it with RCU.
2984 */
2985 read_lock(&tasklist_lock);
31a7df01
CW
2986 do_each_thread(g, p) {
2987 task_lock(p);
0e04388f
LZ
2988 /*
2989 * We should check if the process is exiting, otherwise
2990 * it will race with cgroup_exit() in that the list
2991 * entry won't be deleted though the process has exited.
2992 */
2993 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2994 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2995 task_unlock(p);
2996 } while_each_thread(g, p);
3ce3230a 2997 read_unlock(&tasklist_lock);
31a7df01
CW
2998 write_unlock(&css_set_lock);
2999}
3000
53fa5261
TH
3001/**
3002 * cgroup_next_sibling - find the next sibling of a given cgroup
3003 * @pos: the current cgroup
3004 *
3005 * This function returns the next sibling of @pos and should be called
3006 * under RCU read lock. The only requirement is that @pos is accessible.
3007 * The next sibling is guaranteed to be returned regardless of @pos's
3008 * state.
3009 */
3010struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3011{
3012 struct cgroup *next;
3013
3014 WARN_ON_ONCE(!rcu_read_lock_held());
3015
3016 /*
3017 * @pos could already have been removed. Once a cgroup is removed,
3018 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3019 * changes. As CGRP_DEAD assertion is serialized and happens
3020 * before the cgroup is taken off the ->sibling list, if we see it
3021 * unasserted, it's guaranteed that the next sibling hasn't
3022 * finished its grace period even if it's already removed, and thus
3023 * safe to dereference from this RCU critical section. If
3024 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3025 * to be visible as %true here.
53fa5261 3026 */
54766d4a 3027 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3028 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3029 if (&next->sibling != &pos->parent->children)
3030 return next;
3031 return NULL;
3032 }
3033
3034 /*
3035 * Can't dereference the next pointer. Each cgroup is given a
3036 * monotonically increasing unique serial number and always
3037 * appended to the sibling list, so the next one can be found by
3038 * walking the parent's children until we see a cgroup with higher
3039 * serial number than @pos's.
3040 *
3041 * While this path can be slow, it's taken only when either the
3042 * current cgroup is removed or iteration and removal race.
3043 */
3044 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3045 if (next->serial_nr > pos->serial_nr)
3046 return next;
3047 return NULL;
3048}
3049EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3050
574bd9f7
TH
3051/**
3052 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3053 * @pos: the current position (%NULL to initiate traversal)
3054 * @cgroup: cgroup whose descendants to walk
3055 *
3056 * To be used by cgroup_for_each_descendant_pre(). Find the next
3057 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3058 *
3059 * While this function requires RCU read locking, it doesn't require the
3060 * whole traversal to be contained in a single RCU critical section. This
3061 * function will return the correct next descendant as long as both @pos
3062 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3063 */
3064struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3065 struct cgroup *cgroup)
3066{
3067 struct cgroup *next;
3068
3069 WARN_ON_ONCE(!rcu_read_lock_held());
3070
3071 /* if first iteration, pretend we just visited @cgroup */
7805d000 3072 if (!pos)
574bd9f7 3073 pos = cgroup;
574bd9f7
TH
3074
3075 /* visit the first child if exists */
3076 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3077 if (next)
3078 return next;
3079
3080 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3081 while (pos != cgroup) {
75501a6d
TH
3082 next = cgroup_next_sibling(pos);
3083 if (next)
574bd9f7 3084 return next;
574bd9f7 3085 pos = pos->parent;
7805d000 3086 }
574bd9f7
TH
3087
3088 return NULL;
3089}
3090EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3091
12a9d2fe
TH
3092/**
3093 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3094 * @pos: cgroup of interest
3095 *
3096 * Return the rightmost descendant of @pos. If there's no descendant,
3097 * @pos is returned. This can be used during pre-order traversal to skip
3098 * subtree of @pos.
75501a6d
TH
3099 *
3100 * While this function requires RCU read locking, it doesn't require the
3101 * whole traversal to be contained in a single RCU critical section. This
3102 * function will return the correct rightmost descendant as long as @pos is
3103 * accessible.
12a9d2fe
TH
3104 */
3105struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3106{
3107 struct cgroup *last, *tmp;
3108
3109 WARN_ON_ONCE(!rcu_read_lock_held());
3110
3111 do {
3112 last = pos;
3113 /* ->prev isn't RCU safe, walk ->next till the end */
3114 pos = NULL;
3115 list_for_each_entry_rcu(tmp, &last->children, sibling)
3116 pos = tmp;
3117 } while (pos);
3118
3119 return last;
3120}
3121EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3122
574bd9f7
TH
3123static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3124{
3125 struct cgroup *last;
3126
3127 do {
3128 last = pos;
3129 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3130 sibling);
3131 } while (pos);
3132
3133 return last;
3134}
3135
3136/**
3137 * cgroup_next_descendant_post - find the next descendant for post-order walk
3138 * @pos: the current position (%NULL to initiate traversal)
3139 * @cgroup: cgroup whose descendants to walk
3140 *
3141 * To be used by cgroup_for_each_descendant_post(). Find the next
3142 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3143 *
3144 * While this function requires RCU read locking, it doesn't require the
3145 * whole traversal to be contained in a single RCU critical section. This
3146 * function will return the correct next descendant as long as both @pos
3147 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3148 */
3149struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3150 struct cgroup *cgroup)
3151{
3152 struct cgroup *next;
3153
3154 WARN_ON_ONCE(!rcu_read_lock_held());
3155
3156 /* if first iteration, visit the leftmost descendant */
3157 if (!pos) {
3158 next = cgroup_leftmost_descendant(cgroup);
3159 return next != cgroup ? next : NULL;
3160 }
3161
3162 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3163 next = cgroup_next_sibling(pos);
3164 if (next)
574bd9f7
TH
3165 return cgroup_leftmost_descendant(next);
3166
3167 /* no sibling left, visit parent */
3168 next = pos->parent;
3169 return next != cgroup ? next : NULL;
3170}
3171EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3172
bd89aabc 3173void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3174 __acquires(css_set_lock)
817929ec
PM
3175{
3176 /*
3177 * The first time anyone tries to iterate across a cgroup,
3178 * we need to enable the list linking each css_set to its
3179 * tasks, and fix up all existing tasks.
3180 */
31a7df01
CW
3181 if (!use_task_css_set_links)
3182 cgroup_enable_task_cg_lists();
3183
817929ec 3184 read_lock(&css_set_lock);
69d0206c 3185 it->cset_link = &cgrp->cset_links;
bd89aabc 3186 cgroup_advance_iter(cgrp, it);
817929ec
PM
3187}
3188
bd89aabc 3189struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3190 struct cgroup_iter *it)
3191{
3192 struct task_struct *res;
3193 struct list_head *l = it->task;
69d0206c 3194 struct cgrp_cset_link *link;
817929ec
PM
3195
3196 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3197 if (!it->cset_link)
817929ec
PM
3198 return NULL;
3199 res = list_entry(l, struct task_struct, cg_list);
3200 /* Advance iterator to find next entry */
3201 l = l->next;
69d0206c
TH
3202 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3203 if (l == &link->cset->tasks) {
817929ec
PM
3204 /* We reached the end of this task list - move on to
3205 * the next cg_cgroup_link */
bd89aabc 3206 cgroup_advance_iter(cgrp, it);
817929ec
PM
3207 } else {
3208 it->task = l;
3209 }
3210 return res;
3211}
3212
bd89aabc 3213void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3214 __releases(css_set_lock)
817929ec
PM
3215{
3216 read_unlock(&css_set_lock);
3217}
3218
31a7df01
CW
3219static inline int started_after_time(struct task_struct *t1,
3220 struct timespec *time,
3221 struct task_struct *t2)
3222{
3223 int start_diff = timespec_compare(&t1->start_time, time);
3224 if (start_diff > 0) {
3225 return 1;
3226 } else if (start_diff < 0) {
3227 return 0;
3228 } else {
3229 /*
3230 * Arbitrarily, if two processes started at the same
3231 * time, we'll say that the lower pointer value
3232 * started first. Note that t2 may have exited by now
3233 * so this may not be a valid pointer any longer, but
3234 * that's fine - it still serves to distinguish
3235 * between two tasks started (effectively) simultaneously.
3236 */
3237 return t1 > t2;
3238 }
3239}
3240
3241/*
3242 * This function is a callback from heap_insert() and is used to order
3243 * the heap.
3244 * In this case we order the heap in descending task start time.
3245 */
3246static inline int started_after(void *p1, void *p2)
3247{
3248 struct task_struct *t1 = p1;
3249 struct task_struct *t2 = p2;
3250 return started_after_time(t1, &t2->start_time, t2);
3251}
3252
3253/**
3254 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3255 * @scan: struct cgroup_scanner containing arguments for the scan
3256 *
3257 * Arguments include pointers to callback functions test_task() and
3258 * process_task().
3259 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3260 * and if it returns true, call process_task() for it also.
3261 * The test_task pointer may be NULL, meaning always true (select all tasks).
3262 * Effectively duplicates cgroup_iter_{start,next,end}()
3263 * but does not lock css_set_lock for the call to process_task().
3264 * The struct cgroup_scanner may be embedded in any structure of the caller's
3265 * creation.
3266 * It is guaranteed that process_task() will act on every task that
3267 * is a member of the cgroup for the duration of this call. This
3268 * function may or may not call process_task() for tasks that exit
3269 * or move to a different cgroup during the call, or are forked or
3270 * move into the cgroup during the call.
3271 *
3272 * Note that test_task() may be called with locks held, and may in some
3273 * situations be called multiple times for the same task, so it should
3274 * be cheap.
3275 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3276 * pre-allocated and will be used for heap operations (and its "gt" member will
3277 * be overwritten), else a temporary heap will be used (allocation of which
3278 * may cause this function to fail).
3279 */
3280int cgroup_scan_tasks(struct cgroup_scanner *scan)
3281{
3282 int retval, i;
3283 struct cgroup_iter it;
3284 struct task_struct *p, *dropped;
3285 /* Never dereference latest_task, since it's not refcounted */
3286 struct task_struct *latest_task = NULL;
3287 struct ptr_heap tmp_heap;
3288 struct ptr_heap *heap;
3289 struct timespec latest_time = { 0, 0 };
3290
3291 if (scan->heap) {
3292 /* The caller supplied our heap and pre-allocated its memory */
3293 heap = scan->heap;
3294 heap->gt = &started_after;
3295 } else {
3296 /* We need to allocate our own heap memory */
3297 heap = &tmp_heap;
3298 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3299 if (retval)
3300 /* cannot allocate the heap */
3301 return retval;
3302 }
3303
3304 again:
3305 /*
3306 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3307 * to determine which are of interest, and using the scanner's
3308 * "process_task" callback to process any of them that need an update.
3309 * Since we don't want to hold any locks during the task updates,
3310 * gather tasks to be processed in a heap structure.
3311 * The heap is sorted by descending task start time.
3312 * If the statically-sized heap fills up, we overflow tasks that
3313 * started later, and in future iterations only consider tasks that
3314 * started after the latest task in the previous pass. This
3315 * guarantees forward progress and that we don't miss any tasks.
3316 */
3317 heap->size = 0;
6f4b7e63
LZ
3318 cgroup_iter_start(scan->cgrp, &it);
3319 while ((p = cgroup_iter_next(scan->cgrp, &it))) {
31a7df01
CW
3320 /*
3321 * Only affect tasks that qualify per the caller's callback,
3322 * if he provided one
3323 */
3324 if (scan->test_task && !scan->test_task(p, scan))
3325 continue;
3326 /*
3327 * Only process tasks that started after the last task
3328 * we processed
3329 */
3330 if (!started_after_time(p, &latest_time, latest_task))
3331 continue;
3332 dropped = heap_insert(heap, p);
3333 if (dropped == NULL) {
3334 /*
3335 * The new task was inserted; the heap wasn't
3336 * previously full
3337 */
3338 get_task_struct(p);
3339 } else if (dropped != p) {
3340 /*
3341 * The new task was inserted, and pushed out a
3342 * different task
3343 */
3344 get_task_struct(p);
3345 put_task_struct(dropped);
3346 }
3347 /*
3348 * Else the new task was newer than anything already in
3349 * the heap and wasn't inserted
3350 */
3351 }
6f4b7e63 3352 cgroup_iter_end(scan->cgrp, &it);
31a7df01
CW
3353
3354 if (heap->size) {
3355 for (i = 0; i < heap->size; i++) {
4fe91d51 3356 struct task_struct *q = heap->ptrs[i];
31a7df01 3357 if (i == 0) {
4fe91d51
PJ
3358 latest_time = q->start_time;
3359 latest_task = q;
31a7df01
CW
3360 }
3361 /* Process the task per the caller's callback */
4fe91d51
PJ
3362 scan->process_task(q, scan);
3363 put_task_struct(q);
31a7df01
CW
3364 }
3365 /*
3366 * If we had to process any tasks at all, scan again
3367 * in case some of them were in the middle of forking
3368 * children that didn't get processed.
3369 * Not the most efficient way to do it, but it avoids
3370 * having to take callback_mutex in the fork path
3371 */
3372 goto again;
3373 }
3374 if (heap == &tmp_heap)
3375 heap_free(&tmp_heap);
3376 return 0;
3377}
3378
8cc99345
TH
3379static void cgroup_transfer_one_task(struct task_struct *task,
3380 struct cgroup_scanner *scan)
3381{
3382 struct cgroup *new_cgroup = scan->data;
3383
47cfcd09 3384 mutex_lock(&cgroup_mutex);
8cc99345 3385 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3386 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3387}
3388
3389/**
3390 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3391 * @to: cgroup to which the tasks will be moved
3392 * @from: cgroup in which the tasks currently reside
3393 */
3394int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3395{
3396 struct cgroup_scanner scan;
3397
6f4b7e63 3398 scan.cgrp = from;
8cc99345
TH
3399 scan.test_task = NULL; /* select all tasks in cgroup */
3400 scan.process_task = cgroup_transfer_one_task;
3401 scan.heap = NULL;
3402 scan.data = to;
3403
3404 return cgroup_scan_tasks(&scan);
3405}
3406
bbcb81d0 3407/*
102a775e 3408 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3409 *
3410 * Reading this file can return large amounts of data if a cgroup has
3411 * *lots* of attached tasks. So it may need several calls to read(),
3412 * but we cannot guarantee that the information we produce is correct
3413 * unless we produce it entirely atomically.
3414 *
bbcb81d0 3415 */
bbcb81d0 3416
24528255
LZ
3417/* which pidlist file are we talking about? */
3418enum cgroup_filetype {
3419 CGROUP_FILE_PROCS,
3420 CGROUP_FILE_TASKS,
3421};
3422
3423/*
3424 * A pidlist is a list of pids that virtually represents the contents of one
3425 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3426 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3427 * to the cgroup.
3428 */
3429struct cgroup_pidlist {
3430 /*
3431 * used to find which pidlist is wanted. doesn't change as long as
3432 * this particular list stays in the list.
3433 */
3434 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3435 /* array of xids */
3436 pid_t *list;
3437 /* how many elements the above list has */
3438 int length;
3439 /* how many files are using the current array */
3440 int use_count;
3441 /* each of these stored in a list by its cgroup */
3442 struct list_head links;
3443 /* pointer to the cgroup we belong to, for list removal purposes */
3444 struct cgroup *owner;
3445 /* protects the other fields */
b395890a 3446 struct rw_semaphore rwsem;
24528255
LZ
3447};
3448
d1d9fd33
BB
3449/*
3450 * The following two functions "fix" the issue where there are more pids
3451 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3452 * TODO: replace with a kernel-wide solution to this problem
3453 */
3454#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3455static void *pidlist_allocate(int count)
3456{
3457 if (PIDLIST_TOO_LARGE(count))
3458 return vmalloc(count * sizeof(pid_t));
3459 else
3460 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3461}
3462static void pidlist_free(void *p)
3463{
3464 if (is_vmalloc_addr(p))
3465 vfree(p);
3466 else
3467 kfree(p);
3468}
d1d9fd33 3469
bbcb81d0 3470/*
102a775e 3471 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3472 * Returns the number of unique elements.
bbcb81d0 3473 */
6ee211ad 3474static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3475{
102a775e 3476 int src, dest = 1;
102a775e
BB
3477
3478 /*
3479 * we presume the 0th element is unique, so i starts at 1. trivial
3480 * edge cases first; no work needs to be done for either
3481 */
3482 if (length == 0 || length == 1)
3483 return length;
3484 /* src and dest walk down the list; dest counts unique elements */
3485 for (src = 1; src < length; src++) {
3486 /* find next unique element */
3487 while (list[src] == list[src-1]) {
3488 src++;
3489 if (src == length)
3490 goto after;
3491 }
3492 /* dest always points to where the next unique element goes */
3493 list[dest] = list[src];
3494 dest++;
3495 }
3496after:
102a775e
BB
3497 return dest;
3498}
3499
3500static int cmppid(const void *a, const void *b)
3501{
3502 return *(pid_t *)a - *(pid_t *)b;
3503}
3504
72a8cb30
BB
3505/*
3506 * find the appropriate pidlist for our purpose (given procs vs tasks)
3507 * returns with the lock on that pidlist already held, and takes care
3508 * of the use count, or returns NULL with no locks held if we're out of
3509 * memory.
3510 */
3511static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3512 enum cgroup_filetype type)
3513{
3514 struct cgroup_pidlist *l;
3515 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3516 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3517
72a8cb30 3518 /*
b395890a 3519 * We can't drop the pidlist_mutex before taking the l->rwsem in case
72a8cb30
BB
3520 * the last ref-holder is trying to remove l from the list at the same
3521 * time. Holding the pidlist_mutex precludes somebody taking whichever
3522 * list we find out from under us - compare release_pid_array().
3523 */
3524 mutex_lock(&cgrp->pidlist_mutex);
3525 list_for_each_entry(l, &cgrp->pidlists, links) {
3526 if (l->key.type == type && l->key.ns == ns) {
72a8cb30 3527 /* make sure l doesn't vanish out from under us */
b395890a 3528 down_write(&l->rwsem);
72a8cb30 3529 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3530 return l;
3531 }
3532 }
3533 /* entry not found; create a new one */
f4f4be2b 3534 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3535 if (!l) {
3536 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3537 return l;
3538 }
b395890a
LZ
3539 init_rwsem(&l->rwsem);
3540 down_write(&l->rwsem);
72a8cb30 3541 l->key.type = type;
b70cc5fd 3542 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3543 l->owner = cgrp;
3544 list_add(&l->links, &cgrp->pidlists);
3545 mutex_unlock(&cgrp->pidlist_mutex);
3546 return l;
3547}
3548
102a775e
BB
3549/*
3550 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3551 */
72a8cb30
BB
3552static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3553 struct cgroup_pidlist **lp)
102a775e
BB
3554{
3555 pid_t *array;
3556 int length;
3557 int pid, n = 0; /* used for populating the array */
817929ec
PM
3558 struct cgroup_iter it;
3559 struct task_struct *tsk;
102a775e
BB
3560 struct cgroup_pidlist *l;
3561
3562 /*
3563 * If cgroup gets more users after we read count, we won't have
3564 * enough space - tough. This race is indistinguishable to the
3565 * caller from the case that the additional cgroup users didn't
3566 * show up until sometime later on.
3567 */
3568 length = cgroup_task_count(cgrp);
d1d9fd33 3569 array = pidlist_allocate(length);
102a775e
BB
3570 if (!array)
3571 return -ENOMEM;
3572 /* now, populate the array */
bd89aabc
PM
3573 cgroup_iter_start(cgrp, &it);
3574 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3575 if (unlikely(n == length))
817929ec 3576 break;
102a775e 3577 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3578 if (type == CGROUP_FILE_PROCS)
3579 pid = task_tgid_vnr(tsk);
3580 else
3581 pid = task_pid_vnr(tsk);
102a775e
BB
3582 if (pid > 0) /* make sure to only use valid results */
3583 array[n++] = pid;
817929ec 3584 }
bd89aabc 3585 cgroup_iter_end(cgrp, &it);
102a775e
BB
3586 length = n;
3587 /* now sort & (if procs) strip out duplicates */
3588 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3589 if (type == CGROUP_FILE_PROCS)
6ee211ad 3590 length = pidlist_uniq(array, length);
72a8cb30
BB
3591 l = cgroup_pidlist_find(cgrp, type);
3592 if (!l) {
d1d9fd33 3593 pidlist_free(array);
72a8cb30 3594 return -ENOMEM;
102a775e 3595 }
72a8cb30 3596 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3597 pidlist_free(l->list);
102a775e
BB
3598 l->list = array;
3599 l->length = length;
3600 l->use_count++;
b395890a 3601 up_write(&l->rwsem);
72a8cb30 3602 *lp = l;
102a775e 3603 return 0;
bbcb81d0
PM
3604}
3605
846c7bb0 3606/**
a043e3b2 3607 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3608 * @stats: cgroupstats to fill information into
3609 * @dentry: A dentry entry belonging to the cgroup for which stats have
3610 * been requested.
a043e3b2
LZ
3611 *
3612 * Build and fill cgroupstats so that taskstats can export it to user
3613 * space.
846c7bb0
BS
3614 */
3615int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3616{
3617 int ret = -EINVAL;
bd89aabc 3618 struct cgroup *cgrp;
846c7bb0
BS
3619 struct cgroup_iter it;
3620 struct task_struct *tsk;
33d283be 3621
846c7bb0 3622 /*
33d283be
LZ
3623 * Validate dentry by checking the superblock operations,
3624 * and make sure it's a directory.
846c7bb0 3625 */
33d283be
LZ
3626 if (dentry->d_sb->s_op != &cgroup_ops ||
3627 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3628 goto err;
3629
3630 ret = 0;
bd89aabc 3631 cgrp = dentry->d_fsdata;
846c7bb0 3632
bd89aabc
PM
3633 cgroup_iter_start(cgrp, &it);
3634 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3635 switch (tsk->state) {
3636 case TASK_RUNNING:
3637 stats->nr_running++;
3638 break;
3639 case TASK_INTERRUPTIBLE:
3640 stats->nr_sleeping++;
3641 break;
3642 case TASK_UNINTERRUPTIBLE:
3643 stats->nr_uninterruptible++;
3644 break;
3645 case TASK_STOPPED:
3646 stats->nr_stopped++;
3647 break;
3648 default:
3649 if (delayacct_is_task_waiting_on_io(tsk))
3650 stats->nr_io_wait++;
3651 break;
3652 }
3653 }
bd89aabc 3654 cgroup_iter_end(cgrp, &it);
846c7bb0 3655
846c7bb0
BS
3656err:
3657 return ret;
3658}
3659
8f3ff208 3660
bbcb81d0 3661/*
102a775e 3662 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3663 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3664 * in the cgroup->l->list array.
bbcb81d0 3665 */
cc31edce 3666
102a775e 3667static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3668{
cc31edce
PM
3669 /*
3670 * Initially we receive a position value that corresponds to
3671 * one more than the last pid shown (or 0 on the first call or
3672 * after a seek to the start). Use a binary-search to find the
3673 * next pid to display, if any
3674 */
102a775e 3675 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3676 int index = 0, pid = *pos;
3677 int *iter;
3678
b395890a 3679 down_read(&l->rwsem);
cc31edce 3680 if (pid) {
102a775e 3681 int end = l->length;
20777766 3682
cc31edce
PM
3683 while (index < end) {
3684 int mid = (index + end) / 2;
102a775e 3685 if (l->list[mid] == pid) {
cc31edce
PM
3686 index = mid;
3687 break;
102a775e 3688 } else if (l->list[mid] <= pid)
cc31edce
PM
3689 index = mid + 1;
3690 else
3691 end = mid;
3692 }
3693 }
3694 /* If we're off the end of the array, we're done */
102a775e 3695 if (index >= l->length)
cc31edce
PM
3696 return NULL;
3697 /* Update the abstract position to be the actual pid that we found */
102a775e 3698 iter = l->list + index;
cc31edce
PM
3699 *pos = *iter;
3700 return iter;
3701}
3702
102a775e 3703static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3704{
102a775e 3705 struct cgroup_pidlist *l = s->private;
b395890a 3706 up_read(&l->rwsem);
cc31edce
PM
3707}
3708
102a775e 3709static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3710{
102a775e
BB
3711 struct cgroup_pidlist *l = s->private;
3712 pid_t *p = v;
3713 pid_t *end = l->list + l->length;
cc31edce
PM
3714 /*
3715 * Advance to the next pid in the array. If this goes off the
3716 * end, we're done
3717 */
3718 p++;
3719 if (p >= end) {
3720 return NULL;
3721 } else {
3722 *pos = *p;
3723 return p;
3724 }
3725}
3726
102a775e 3727static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3728{
3729 return seq_printf(s, "%d\n", *(int *)v);
3730}
bbcb81d0 3731
102a775e
BB
3732/*
3733 * seq_operations functions for iterating on pidlists through seq_file -
3734 * independent of whether it's tasks or procs
3735 */
3736static const struct seq_operations cgroup_pidlist_seq_operations = {
3737 .start = cgroup_pidlist_start,
3738 .stop = cgroup_pidlist_stop,
3739 .next = cgroup_pidlist_next,
3740 .show = cgroup_pidlist_show,
cc31edce
PM
3741};
3742
102a775e 3743static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3744{
72a8cb30
BB
3745 /*
3746 * the case where we're the last user of this particular pidlist will
3747 * have us remove it from the cgroup's list, which entails taking the
3748 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3749 * pidlist_mutex, we have to take pidlist_mutex first.
3750 */
3751 mutex_lock(&l->owner->pidlist_mutex);
b395890a 3752 down_write(&l->rwsem);
102a775e
BB
3753 BUG_ON(!l->use_count);
3754 if (!--l->use_count) {
72a8cb30
BB
3755 /* we're the last user if refcount is 0; remove and free */
3756 list_del(&l->links);
3757 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3758 pidlist_free(l->list);
72a8cb30 3759 put_pid_ns(l->key.ns);
b395890a 3760 up_write(&l->rwsem);
72a8cb30
BB
3761 kfree(l);
3762 return;
cc31edce 3763 }
72a8cb30 3764 mutex_unlock(&l->owner->pidlist_mutex);
b395890a 3765 up_write(&l->rwsem);
bbcb81d0
PM
3766}
3767
102a775e 3768static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3769{
102a775e 3770 struct cgroup_pidlist *l;
cc31edce
PM
3771 if (!(file->f_mode & FMODE_READ))
3772 return 0;
102a775e
BB
3773 /*
3774 * the seq_file will only be initialized if the file was opened for
3775 * reading; hence we check if it's not null only in that case.
3776 */
3777 l = ((struct seq_file *)file->private_data)->private;
3778 cgroup_release_pid_array(l);
cc31edce
PM
3779 return seq_release(inode, file);
3780}
3781
102a775e 3782static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3783 .read = seq_read,
3784 .llseek = seq_lseek,
3785 .write = cgroup_file_write,
102a775e 3786 .release = cgroup_pidlist_release,
cc31edce
PM
3787};
3788
bbcb81d0 3789/*
102a775e
BB
3790 * The following functions handle opens on a file that displays a pidlist
3791 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3792 * in the cgroup.
bbcb81d0 3793 */
102a775e 3794/* helper function for the two below it */
72a8cb30 3795static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3796{
bd89aabc 3797 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3798 struct cgroup_pidlist *l;
cc31edce 3799 int retval;
bbcb81d0 3800
cc31edce 3801 /* Nothing to do for write-only files */
bbcb81d0
PM
3802 if (!(file->f_mode & FMODE_READ))
3803 return 0;
3804
102a775e 3805 /* have the array populated */
72a8cb30 3806 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3807 if (retval)
3808 return retval;
3809 /* configure file information */
3810 file->f_op = &cgroup_pidlist_operations;
cc31edce 3811
102a775e 3812 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3813 if (retval) {
102a775e 3814 cgroup_release_pid_array(l);
cc31edce 3815 return retval;
bbcb81d0 3816 }
102a775e 3817 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3818 return 0;
3819}
102a775e
BB
3820static int cgroup_tasks_open(struct inode *unused, struct file *file)
3821{
72a8cb30 3822 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3823}
3824static int cgroup_procs_open(struct inode *unused, struct file *file)
3825{
72a8cb30 3826 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3827}
bbcb81d0 3828
bd89aabc 3829static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3830 struct cftype *cft)
3831{
bd89aabc 3832 return notify_on_release(cgrp);
81a6a5cd
PM
3833}
3834
6379c106
PM
3835static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3836 struct cftype *cft,
3837 u64 val)
3838{
3839 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3840 if (val)
3841 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3842 else
3843 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3844 return 0;
3845}
3846
1c8158ee
LZ
3847/*
3848 * When dput() is called asynchronously, if umount has been done and
3849 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3850 * there's a small window that vfs will see the root dentry with non-zero
3851 * refcnt and trigger BUG().
3852 *
3853 * That's why we hold a reference before dput() and drop it right after.
3854 */
3855static void cgroup_dput(struct cgroup *cgrp)
3856{
3857 struct super_block *sb = cgrp->root->sb;
3858
3859 atomic_inc(&sb->s_active);
3860 dput(cgrp->dentry);
3861 deactivate_super(sb);
3862}
3863
0dea1168
KS
3864/*
3865 * Unregister event and free resources.
3866 *
3867 * Gets called from workqueue.
3868 */
3869static void cgroup_event_remove(struct work_struct *work)
3870{
3871 struct cgroup_event *event = container_of(work, struct cgroup_event,
3872 remove);
3873 struct cgroup *cgrp = event->cgrp;
3874
810cbee4
LZ
3875 remove_wait_queue(event->wqh, &event->wait);
3876
0dea1168
KS
3877 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3878
810cbee4
LZ
3879 /* Notify userspace the event is going away. */
3880 eventfd_signal(event->eventfd, 1);
3881
0dea1168 3882 eventfd_ctx_put(event->eventfd);
0dea1168 3883 kfree(event);
1c8158ee 3884 cgroup_dput(cgrp);
0dea1168
KS
3885}
3886
3887/*
3888 * Gets called on POLLHUP on eventfd when user closes it.
3889 *
3890 * Called with wqh->lock held and interrupts disabled.
3891 */
3892static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3893 int sync, void *key)
3894{
3895 struct cgroup_event *event = container_of(wait,
3896 struct cgroup_event, wait);
3897 struct cgroup *cgrp = event->cgrp;
3898 unsigned long flags = (unsigned long)key;
3899
3900 if (flags & POLLHUP) {
0dea1168 3901 /*
810cbee4
LZ
3902 * If the event has been detached at cgroup removal, we
3903 * can simply return knowing the other side will cleanup
3904 * for us.
3905 *
3906 * We can't race against event freeing since the other
3907 * side will require wqh->lock via remove_wait_queue(),
3908 * which we hold.
0dea1168 3909 */
810cbee4
LZ
3910 spin_lock(&cgrp->event_list_lock);
3911 if (!list_empty(&event->list)) {
3912 list_del_init(&event->list);
3913 /*
3914 * We are in atomic context, but cgroup_event_remove()
3915 * may sleep, so we have to call it in workqueue.
3916 */
3917 schedule_work(&event->remove);
3918 }
3919 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3920 }
3921
3922 return 0;
3923}
3924
3925static void cgroup_event_ptable_queue_proc(struct file *file,
3926 wait_queue_head_t *wqh, poll_table *pt)
3927{
3928 struct cgroup_event *event = container_of(pt,
3929 struct cgroup_event, pt);
3930
3931 event->wqh = wqh;
3932 add_wait_queue(wqh, &event->wait);
3933}
3934
3935/*
3936 * Parse input and register new cgroup event handler.
3937 *
3938 * Input must be in format '<event_fd> <control_fd> <args>'.
3939 * Interpretation of args is defined by control file implementation.
3940 */
3941static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3942 const char *buffer)
3943{
876ede8b 3944 struct cgroup_event *event;
f169007b 3945 struct cgroup *cgrp_cfile;
0dea1168 3946 unsigned int efd, cfd;
876ede8b
LZ
3947 struct file *efile;
3948 struct file *cfile;
0dea1168
KS
3949 char *endp;
3950 int ret;
3951
3952 efd = simple_strtoul(buffer, &endp, 10);
3953 if (*endp != ' ')
3954 return -EINVAL;
3955 buffer = endp + 1;
3956
3957 cfd = simple_strtoul(buffer, &endp, 10);
3958 if ((*endp != ' ') && (*endp != '\0'))
3959 return -EINVAL;
3960 buffer = endp + 1;
3961
3962 event = kzalloc(sizeof(*event), GFP_KERNEL);
3963 if (!event)
3964 return -ENOMEM;
3965 event->cgrp = cgrp;
3966 INIT_LIST_HEAD(&event->list);
3967 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3968 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3969 INIT_WORK(&event->remove, cgroup_event_remove);
3970
3971 efile = eventfd_fget(efd);
3972 if (IS_ERR(efile)) {
3973 ret = PTR_ERR(efile);
876ede8b 3974 goto out_kfree;
0dea1168
KS
3975 }
3976
3977 event->eventfd = eventfd_ctx_fileget(efile);
3978 if (IS_ERR(event->eventfd)) {
3979 ret = PTR_ERR(event->eventfd);
876ede8b 3980 goto out_put_efile;
0dea1168
KS
3981 }
3982
3983 cfile = fget(cfd);
3984 if (!cfile) {
3985 ret = -EBADF;
876ede8b 3986 goto out_put_eventfd;
0dea1168
KS
3987 }
3988
3989 /* the process need read permission on control file */
3bfa784a 3990 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3991 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168 3992 if (ret < 0)
876ede8b 3993 goto out_put_cfile;
0dea1168
KS
3994
3995 event->cft = __file_cft(cfile);
3996 if (IS_ERR(event->cft)) {
3997 ret = PTR_ERR(event->cft);
876ede8b 3998 goto out_put_cfile;
0dea1168
KS
3999 }
4000
f169007b
LZ
4001 /*
4002 * The file to be monitored must be in the same cgroup as
4003 * cgroup.event_control is.
4004 */
4005 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4006 if (cgrp_cfile != cgrp) {
4007 ret = -EINVAL;
876ede8b 4008 goto out_put_cfile;
f169007b
LZ
4009 }
4010
0dea1168
KS
4011 if (!event->cft->register_event || !event->cft->unregister_event) {
4012 ret = -EINVAL;
876ede8b 4013 goto out_put_cfile;
0dea1168
KS
4014 }
4015
4016 ret = event->cft->register_event(cgrp, event->cft,
4017 event->eventfd, buffer);
4018 if (ret)
876ede8b 4019 goto out_put_cfile;
0dea1168 4020
7ef70e48 4021 efile->f_op->poll(efile, &event->pt);
0dea1168 4022
a0a4db54
KS
4023 /*
4024 * Events should be removed after rmdir of cgroup directory, but before
4025 * destroying subsystem state objects. Let's take reference to cgroup
4026 * directory dentry to do that.
4027 */
4028 dget(cgrp->dentry);
4029
0dea1168
KS
4030 spin_lock(&cgrp->event_list_lock);
4031 list_add(&event->list, &cgrp->event_list);
4032 spin_unlock(&cgrp->event_list_lock);
4033
4034 fput(cfile);
4035 fput(efile);
4036
4037 return 0;
4038
876ede8b
LZ
4039out_put_cfile:
4040 fput(cfile);
4041out_put_eventfd:
4042 eventfd_ctx_put(event->eventfd);
4043out_put_efile:
4044 fput(efile);
4045out_kfree:
0dea1168
KS
4046 kfree(event);
4047
4048 return ret;
4049}
4050
97978e6d
DL
4051static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4052 struct cftype *cft)
4053{
2260e7fc 4054 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4055}
4056
4057static int cgroup_clone_children_write(struct cgroup *cgrp,
4058 struct cftype *cft,
4059 u64 val)
4060{
4061 if (val)
2260e7fc 4062 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4063 else
2260e7fc 4064 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4065 return 0;
4066}
4067
d5c56ced 4068static struct cftype cgroup_base_files[] = {
81a6a5cd 4069 {
d5c56ced 4070 .name = "cgroup.procs",
102a775e 4071 .open = cgroup_procs_open,
74a1166d 4072 .write_u64 = cgroup_procs_write,
102a775e 4073 .release = cgroup_pidlist_release,
74a1166d 4074 .mode = S_IRUGO | S_IWUSR,
102a775e 4075 },
81a6a5cd 4076 {
d5c56ced 4077 .name = "cgroup.event_control",
0dea1168
KS
4078 .write_string = cgroup_write_event_control,
4079 .mode = S_IWUGO,
4080 },
97978e6d
DL
4081 {
4082 .name = "cgroup.clone_children",
873fe09e 4083 .flags = CFTYPE_INSANE,
97978e6d
DL
4084 .read_u64 = cgroup_clone_children_read,
4085 .write_u64 = cgroup_clone_children_write,
4086 },
873fe09e
TH
4087 {
4088 .name = "cgroup.sane_behavior",
4089 .flags = CFTYPE_ONLY_ON_ROOT,
4090 .read_seq_string = cgroup_sane_behavior_show,
4091 },
d5c56ced
TH
4092
4093 /*
4094 * Historical crazy stuff. These don't have "cgroup." prefix and
4095 * don't exist if sane_behavior. If you're depending on these, be
4096 * prepared to be burned.
4097 */
4098 {
4099 .name = "tasks",
4100 .flags = CFTYPE_INSANE, /* use "procs" instead */
4101 .open = cgroup_tasks_open,
4102 .write_u64 = cgroup_tasks_write,
4103 .release = cgroup_pidlist_release,
4104 .mode = S_IRUGO | S_IWUSR,
4105 },
4106 {
4107 .name = "notify_on_release",
4108 .flags = CFTYPE_INSANE,
4109 .read_u64 = cgroup_read_notify_on_release,
4110 .write_u64 = cgroup_write_notify_on_release,
4111 },
6e6ff25b
TH
4112 {
4113 .name = "release_agent",
cc5943a7 4114 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4115 .read_seq_string = cgroup_release_agent_show,
4116 .write_string = cgroup_release_agent_write,
4117 .max_write_len = PATH_MAX,
4118 },
db0416b6 4119 { } /* terminate */
bbcb81d0
PM
4120};
4121
13af07df 4122/**
628f7cd4 4123 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4124 * @cgrp: target cgroup
13af07df 4125 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4126 *
4127 * On failure, no file is added.
13af07df 4128 */
628f7cd4 4129static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4130{
ddbcc7e8 4131 struct cgroup_subsys *ss;
b420ba7d 4132 int i, ret = 0;
ddbcc7e8 4133
8e3f6541 4134 /* process cftsets of each subsystem */
b420ba7d 4135 for_each_subsys(ss, i) {
8e3f6541 4136 struct cftype_set *set;
b420ba7d
TH
4137
4138 if (!test_bit(i, &subsys_mask))
13af07df 4139 continue;
8e3f6541 4140
bee55099
TH
4141 list_for_each_entry(set, &ss->cftsets, node) {
4142 ret = cgroup_addrm_files(cgrp, ss, set->cfts, true);
4143 if (ret < 0)
4144 goto err;
4145 }
ddbcc7e8 4146 }
8e3f6541 4147
38460b48 4148 /* This cgroup is ready now */
5549c497 4149 for_each_root_subsys(cgrp->root, ss) {
38460b48 4150 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
a4ea1cc9
TH
4151 struct css_id *id = rcu_dereference_protected(css->id, true);
4152
38460b48
KH
4153 /*
4154 * Update id->css pointer and make this css visible from
4155 * CSS ID functions. This pointer will be dereferened
4156 * from RCU-read-side without locks.
4157 */
a4ea1cc9
TH
4158 if (id)
4159 rcu_assign_pointer(id->css, css);
38460b48 4160 }
ddbcc7e8
PM
4161
4162 return 0;
bee55099
TH
4163err:
4164 cgroup_clear_dir(cgrp, subsys_mask);
4165 return ret;
ddbcc7e8
PM
4166}
4167
48ddbe19
TH
4168static void css_dput_fn(struct work_struct *work)
4169{
4170 struct cgroup_subsys_state *css =
4171 container_of(work, struct cgroup_subsys_state, dput_work);
4172
1c8158ee 4173 cgroup_dput(css->cgroup);
48ddbe19
TH
4174}
4175
d3daf28d
TH
4176static void css_release(struct percpu_ref *ref)
4177{
4178 struct cgroup_subsys_state *css =
4179 container_of(ref, struct cgroup_subsys_state, refcnt);
4180
4181 schedule_work(&css->dput_work);
4182}
4183
ddbcc7e8
PM
4184static void init_cgroup_css(struct cgroup_subsys_state *css,
4185 struct cgroup_subsys *ss,
bd89aabc 4186 struct cgroup *cgrp)
ddbcc7e8 4187{
bd89aabc 4188 css->cgroup = cgrp;
ddbcc7e8 4189 css->flags = 0;
38460b48 4190 css->id = NULL;
9871bf95 4191 if (cgrp == cgroup_dummy_top)
38b53aba 4192 css->flags |= CSS_ROOT;
bd89aabc
PM
4193 BUG_ON(cgrp->subsys[ss->subsys_id]);
4194 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4195
4196 /*
ed957793
TH
4197 * css holds an extra ref to @cgrp->dentry which is put on the last
4198 * css_put(). dput() requires process context, which css_put() may
4199 * be called without. @css->dput_work will be used to invoke
4200 * dput() asynchronously from css_put().
48ddbe19
TH
4201 */
4202 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4203}
4204
2a4ac633 4205/* invoke ->css_online() on a new CSS and mark it online if successful */
b1929db4 4206static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4207{
b1929db4
TH
4208 int ret = 0;
4209
a31f2d3f
TH
4210 lockdep_assert_held(&cgroup_mutex);
4211
92fb9748
TH
4212 if (ss->css_online)
4213 ret = ss->css_online(cgrp);
b1929db4
TH
4214 if (!ret)
4215 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4216 return ret;
a31f2d3f
TH
4217}
4218
2a4ac633 4219/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
a31f2d3f 4220static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f
TH
4221{
4222 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4223
4224 lockdep_assert_held(&cgroup_mutex);
4225
4226 if (!(css->flags & CSS_ONLINE))
4227 return;
4228
d7eeac19 4229 if (ss->css_offline)
92fb9748 4230 ss->css_offline(cgrp);
a31f2d3f
TH
4231
4232 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4233}
4234
ddbcc7e8 4235/*
a043e3b2
LZ
4236 * cgroup_create - create a cgroup
4237 * @parent: cgroup that will be parent of the new cgroup
4238 * @dentry: dentry of the new cgroup
4239 * @mode: mode to set on new inode
ddbcc7e8 4240 *
a043e3b2 4241 * Must be called with the mutex on the parent inode held
ddbcc7e8 4242 */
ddbcc7e8 4243static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4244 umode_t mode)
ddbcc7e8 4245{
bd89aabc 4246 struct cgroup *cgrp;
65dff759 4247 struct cgroup_name *name;
ddbcc7e8
PM
4248 struct cgroupfs_root *root = parent->root;
4249 int err = 0;
4250 struct cgroup_subsys *ss;
4251 struct super_block *sb = root->sb;
4252
0a950f65 4253 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4254 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4255 if (!cgrp)
ddbcc7e8
PM
4256 return -ENOMEM;
4257
65dff759
LZ
4258 name = cgroup_alloc_name(dentry);
4259 if (!name)
4260 goto err_free_cgrp;
4261 rcu_assign_pointer(cgrp->name, name);
4262
4e96ee8e
LZ
4263 /*
4264 * Temporarily set the pointer to NULL, so idr_find() won't return
4265 * a half-baked cgroup.
4266 */
4267 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4268 if (cgrp->id < 0)
65dff759 4269 goto err_free_name;
0a950f65 4270
976c06bc
TH
4271 /*
4272 * Only live parents can have children. Note that the liveliness
4273 * check isn't strictly necessary because cgroup_mkdir() and
4274 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4275 * anyway so that locking is contained inside cgroup proper and we
4276 * don't get nasty surprises if we ever grow another caller.
4277 */
4278 if (!cgroup_lock_live_group(parent)) {
4279 err = -ENODEV;
0a950f65 4280 goto err_free_id;
976c06bc
TH
4281 }
4282
ddbcc7e8
PM
4283 /* Grab a reference on the superblock so the hierarchy doesn't
4284 * get deleted on unmount if there are child cgroups. This
4285 * can be done outside cgroup_mutex, since the sb can't
4286 * disappear while someone has an open control file on the
4287 * fs */
4288 atomic_inc(&sb->s_active);
4289
cc31edce 4290 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4291
fe1c06ca
LZ
4292 dentry->d_fsdata = cgrp;
4293 cgrp->dentry = dentry;
4294
bd89aabc
PM
4295 cgrp->parent = parent;
4296 cgrp->root = parent->root;
ddbcc7e8 4297
b6abdb0e
LZ
4298 if (notify_on_release(parent))
4299 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4300
2260e7fc
TH
4301 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4302 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4303
5549c497 4304 for_each_root_subsys(root, ss) {
8c7f6edb 4305 struct cgroup_subsys_state *css;
4528fd05 4306
92fb9748 4307 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4308 if (IS_ERR(css)) {
4309 err = PTR_ERR(css);
4b8b47eb 4310 goto err_free_all;
ddbcc7e8 4311 }
d3daf28d
TH
4312
4313 err = percpu_ref_init(&css->refcnt, css_release);
da0a12ca
LZ
4314 if (err) {
4315 ss->css_free(cgrp);
d3daf28d 4316 goto err_free_all;
da0a12ca 4317 }
d3daf28d 4318
bd89aabc 4319 init_cgroup_css(css, ss, cgrp);
d3daf28d 4320
4528fd05
LZ
4321 if (ss->use_id) {
4322 err = alloc_css_id(ss, parent, cgrp);
4323 if (err)
4b8b47eb 4324 goto err_free_all;
4528fd05 4325 }
ddbcc7e8
PM
4326 }
4327
4e139afc
TH
4328 /*
4329 * Create directory. cgroup_create_file() returns with the new
4330 * directory locked on success so that it can be populated without
4331 * dropping cgroup_mutex.
4332 */
28fd6f30 4333 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4334 if (err < 0)
4b8b47eb 4335 goto err_free_all;
4e139afc 4336 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4337
00356bd5 4338 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4339
4e139afc 4340 /* allocation complete, commit to creation */
4e139afc
TH
4341 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4342 root->number_of_cgroups++;
28fd6f30 4343
b1929db4 4344 /* each css holds a ref to the cgroup's dentry */
5549c497 4345 for_each_root_subsys(root, ss)
ed957793 4346 dget(dentry);
48ddbe19 4347
415cf07a
LZ
4348 /* hold a ref to the parent's dentry */
4349 dget(parent->dentry);
4350
b1929db4 4351 /* creation succeeded, notify subsystems */
5549c497 4352 for_each_root_subsys(root, ss) {
b1929db4
TH
4353 err = online_css(ss, cgrp);
4354 if (err)
4355 goto err_destroy;
1f869e87
GC
4356
4357 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4358 parent->parent) {
4359 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4360 current->comm, current->pid, ss->name);
4361 if (!strcmp(ss->name, "memory"))
4362 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4363 ss->warned_broken_hierarchy = true;
4364 }
a8638030
TH
4365 }
4366
4e96ee8e
LZ
4367 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4368
628f7cd4
TH
4369 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4370 if (err)
4371 goto err_destroy;
4372
4373 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4374 if (err)
4375 goto err_destroy;
ddbcc7e8
PM
4376
4377 mutex_unlock(&cgroup_mutex);
bd89aabc 4378 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4379
4380 return 0;
4381
4b8b47eb 4382err_free_all:
5549c497 4383 for_each_root_subsys(root, ss) {
d3daf28d
TH
4384 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4385
4386 if (css) {
4387 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4388 ss->css_free(cgrp);
d3daf28d 4389 }
ddbcc7e8 4390 }
ddbcc7e8 4391 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4392 /* Release the reference count that we took on the superblock */
4393 deactivate_super(sb);
0a950f65 4394err_free_id:
4e96ee8e 4395 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4396err_free_name:
4397 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4398err_free_cgrp:
bd89aabc 4399 kfree(cgrp);
ddbcc7e8 4400 return err;
4b8b47eb
TH
4401
4402err_destroy:
4403 cgroup_destroy_locked(cgrp);
4404 mutex_unlock(&cgroup_mutex);
4405 mutex_unlock(&dentry->d_inode->i_mutex);
4406 return err;
ddbcc7e8
PM
4407}
4408
18bb1db3 4409static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4410{
4411 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4412
4413 /* the vfs holds inode->i_mutex already */
4414 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4415}
4416
d3daf28d
TH
4417static void cgroup_css_killed(struct cgroup *cgrp)
4418{
4419 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4420 return;
4421
4422 /* percpu ref's of all css's are killed, kick off the next step */
4423 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4424 schedule_work(&cgrp->destroy_work);
4425}
4426
4427static void css_ref_killed_fn(struct percpu_ref *ref)
4428{
4429 struct cgroup_subsys_state *css =
4430 container_of(ref, struct cgroup_subsys_state, refcnt);
4431
4432 cgroup_css_killed(css->cgroup);
4433}
4434
4435/**
4436 * cgroup_destroy_locked - the first stage of cgroup destruction
4437 * @cgrp: cgroup to be destroyed
4438 *
4439 * css's make use of percpu refcnts whose killing latency shouldn't be
4440 * exposed to userland and are RCU protected. Also, cgroup core needs to
4441 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4442 * invoked. To satisfy all the requirements, destruction is implemented in
4443 * the following two steps.
4444 *
4445 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4446 * userland visible parts and start killing the percpu refcnts of
4447 * css's. Set up so that the next stage will be kicked off once all
4448 * the percpu refcnts are confirmed to be killed.
4449 *
4450 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4451 * rest of destruction. Once all cgroup references are gone, the
4452 * cgroup is RCU-freed.
4453 *
4454 * This function implements s1. After this step, @cgrp is gone as far as
4455 * the userland is concerned and a new cgroup with the same name may be
4456 * created. As cgroup doesn't care about the names internally, this
4457 * doesn't cause any problem.
4458 */
42809dd4
TH
4459static int cgroup_destroy_locked(struct cgroup *cgrp)
4460 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4461{
42809dd4 4462 struct dentry *d = cgrp->dentry;
4ab78683 4463 struct cgroup_event *event, *tmp;
ed957793 4464 struct cgroup_subsys *ss;
ddd69148 4465 bool empty;
ddbcc7e8 4466
42809dd4
TH
4467 lockdep_assert_held(&d->d_inode->i_mutex);
4468 lockdep_assert_held(&cgroup_mutex);
4469
ddd69148 4470 /*
6f3d828f
TH
4471 * css_set_lock synchronizes access to ->cset_links and prevents
4472 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4473 */
4474 read_lock(&css_set_lock);
6f3d828f 4475 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4476 read_unlock(&css_set_lock);
4477 if (!empty)
ddbcc7e8 4478 return -EBUSY;
a043e3b2 4479
88703267 4480 /*
d3daf28d
TH
4481 * Block new css_tryget() by killing css refcnts. cgroup core
4482 * guarantees that, by the time ->css_offline() is invoked, no new
4483 * css reference will be given out via css_tryget(). We can't
4484 * simply call percpu_ref_kill() and proceed to offlining css's
4485 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4486 * as killed on all CPUs on return.
4487 *
4488 * Use percpu_ref_kill_and_confirm() to get notifications as each
4489 * css is confirmed to be seen as killed on all CPUs. The
4490 * notification callback keeps track of the number of css's to be
4491 * killed and schedules cgroup_offline_fn() to perform the rest of
4492 * destruction once the percpu refs of all css's are confirmed to
4493 * be killed.
88703267 4494 */
d3daf28d 4495 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4496 for_each_root_subsys(cgrp->root, ss) {
ed957793 4497 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4498
d3daf28d
TH
4499 /*
4500 * Killing would put the base ref, but we need to keep it
4501 * alive until after ->css_offline.
4502 */
4503 percpu_ref_get(&css->refcnt);
4504
4505 atomic_inc(&cgrp->css_kill_cnt);
4506 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4507 }
d3daf28d 4508 cgroup_css_killed(cgrp);
455050d2
TH
4509
4510 /*
4511 * Mark @cgrp dead. This prevents further task migration and child
4512 * creation by disabling cgroup_lock_live_group(). Note that
4513 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4514 * resume iteration after dropping RCU read lock. See
4515 * cgroup_next_sibling() for details.
4516 */
54766d4a 4517 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4518
455050d2
TH
4519 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4520 raw_spin_lock(&release_list_lock);
4521 if (!list_empty(&cgrp->release_list))
4522 list_del_init(&cgrp->release_list);
4523 raw_spin_unlock(&release_list_lock);
4524
4525 /*
8f89140a
TH
4526 * Clear and remove @cgrp directory. The removal puts the base ref
4527 * but we aren't quite done with @cgrp yet, so hold onto it.
455050d2 4528 */
628f7cd4
TH
4529 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
4530 cgroup_addrm_files(cgrp, NULL, cgroup_base_files, false);
455050d2
TH
4531 dget(d);
4532 cgroup_d_remove_dir(d);
4533
4534 /*
4535 * Unregister events and notify userspace.
4536 * Notify userspace about cgroup removing only after rmdir of cgroup
4537 * directory to avoid race between userspace and kernelspace.
4538 */
4539 spin_lock(&cgrp->event_list_lock);
4540 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4541 list_del_init(&event->list);
4542 schedule_work(&event->remove);
4543 }
4544 spin_unlock(&cgrp->event_list_lock);
4545
ea15f8cc
TH
4546 return 0;
4547};
4548
d3daf28d
TH
4549/**
4550 * cgroup_offline_fn - the second step of cgroup destruction
4551 * @work: cgroup->destroy_free_work
4552 *
4553 * This function is invoked from a work item for a cgroup which is being
4554 * destroyed after the percpu refcnts of all css's are guaranteed to be
4555 * seen as killed on all CPUs, and performs the rest of destruction. This
4556 * is the second step of destruction described in the comment above
4557 * cgroup_destroy_locked().
4558 */
ea15f8cc
TH
4559static void cgroup_offline_fn(struct work_struct *work)
4560{
4561 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4562 struct cgroup *parent = cgrp->parent;
4563 struct dentry *d = cgrp->dentry;
4564 struct cgroup_subsys *ss;
4565
4566 mutex_lock(&cgroup_mutex);
4567
d3daf28d
TH
4568 /*
4569 * css_tryget() is guaranteed to fail now. Tell subsystems to
4570 * initate destruction.
4571 */
5549c497 4572 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4573 offline_css(ss, cgrp);
ed957793
TH
4574
4575 /*
d3daf28d
TH
4576 * Put the css refs from cgroup_destroy_locked(). Each css holds
4577 * an extra reference to the cgroup's dentry and cgroup removal
4578 * proceeds regardless of css refs. On the last put of each css,
4579 * whenever that may be, the extra dentry ref is put so that dentry
4580 * destruction happens only after all css's are released.
ed957793 4581 */
5549c497 4582 for_each_root_subsys(cgrp->root, ss)
e9316080 4583 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4584
999cd8a4 4585 /* delete this cgroup from parent->children */
eb6fd504 4586 list_del_rcu(&cgrp->sibling);
b0ca5a84 4587
4e96ee8e
LZ
4588 /*
4589 * We should remove the cgroup object from idr before its grace
4590 * period starts, so we won't be looking up a cgroup while the
4591 * cgroup is being freed.
4592 */
4593 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4594 cgrp->id = -1;
4595
ddbcc7e8 4596 dput(d);
ddbcc7e8 4597
bd89aabc 4598 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4599 check_for_release(parent);
4600
ea15f8cc 4601 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4602}
4603
42809dd4
TH
4604static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4605{
4606 int ret;
4607
4608 mutex_lock(&cgroup_mutex);
4609 ret = cgroup_destroy_locked(dentry->d_fsdata);
4610 mutex_unlock(&cgroup_mutex);
4611
4612 return ret;
4613}
4614
8e3f6541
TH
4615static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4616{
4617 INIT_LIST_HEAD(&ss->cftsets);
4618
4619 /*
4620 * base_cftset is embedded in subsys itself, no need to worry about
4621 * deregistration.
4622 */
4623 if (ss->base_cftypes) {
4624 ss->base_cftset.cfts = ss->base_cftypes;
4625 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4626 }
4627}
4628
06a11920 4629static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4630{
ddbcc7e8 4631 struct cgroup_subsys_state *css;
cfe36bde
DC
4632
4633 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4634
648bb56d
TH
4635 mutex_lock(&cgroup_mutex);
4636
8e3f6541
TH
4637 /* init base cftset */
4638 cgroup_init_cftsets(ss);
4639
ddbcc7e8 4640 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4641 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4642 ss->root = &cgroup_dummy_root;
4643 css = ss->css_alloc(cgroup_dummy_top);
ddbcc7e8
PM
4644 /* We don't handle early failures gracefully */
4645 BUG_ON(IS_ERR(css));
9871bf95 4646 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4647
e8d55fde 4648 /* Update the init_css_set to contain a subsys
817929ec 4649 * pointer to this state - since the subsystem is
e8d55fde
LZ
4650 * newly registered, all tasks and hence the
4651 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4652 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4653
4654 need_forkexit_callback |= ss->fork || ss->exit;
4655
e8d55fde
LZ
4656 /* At system boot, before all subsystems have been
4657 * registered, no tasks have been forked, so we don't
4658 * need to invoke fork callbacks here. */
4659 BUG_ON(!list_empty(&init_task.tasks));
4660
9871bf95 4661 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4662
648bb56d
TH
4663 mutex_unlock(&cgroup_mutex);
4664
e6a1105b
BB
4665 /* this function shouldn't be used with modular subsystems, since they
4666 * need to register a subsys_id, among other things */
4667 BUG_ON(ss->module);
4668}
4669
4670/**
4671 * cgroup_load_subsys: load and register a modular subsystem at runtime
4672 * @ss: the subsystem to load
4673 *
4674 * This function should be called in a modular subsystem's initcall. If the
88393161 4675 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4676 * up for use. If the subsystem is built-in anyway, work is delegated to the
4677 * simpler cgroup_init_subsys.
4678 */
4679int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4680{
e6a1105b 4681 struct cgroup_subsys_state *css;
d19e19de 4682 int i, ret;
b67bfe0d 4683 struct hlist_node *tmp;
5abb8855 4684 struct css_set *cset;
0ac801fe 4685 unsigned long key;
e6a1105b
BB
4686
4687 /* check name and function validity */
4688 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4689 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4690 return -EINVAL;
4691
4692 /*
4693 * we don't support callbacks in modular subsystems. this check is
4694 * before the ss->module check for consistency; a subsystem that could
4695 * be a module should still have no callbacks even if the user isn't
4696 * compiling it as one.
4697 */
4698 if (ss->fork || ss->exit)
4699 return -EINVAL;
4700
4701 /*
4702 * an optionally modular subsystem is built-in: we want to do nothing,
4703 * since cgroup_init_subsys will have already taken care of it.
4704 */
4705 if (ss->module == NULL) {
be45c900 4706 /* a sanity check */
9871bf95 4707 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4708 return 0;
4709 }
4710
8e3f6541
TH
4711 /* init base cftset */
4712 cgroup_init_cftsets(ss);
4713
e6a1105b 4714 mutex_lock(&cgroup_mutex);
9871bf95 4715 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4716
4717 /*
92fb9748 4718 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4719 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4720 * attachment).
e6a1105b 4721 */
9871bf95 4722 css = ss->css_alloc(cgroup_dummy_top);
e6a1105b 4723 if (IS_ERR(css)) {
9871bf95
TH
4724 /* failure case - need to deassign the cgroup_subsys[] slot. */
4725 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4726 mutex_unlock(&cgroup_mutex);
4727 return PTR_ERR(css);
4728 }
4729
9871bf95
TH
4730 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4731 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4732
4733 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4734 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4735 /* init_idr must be after init_cgroup_css because it sets css->id. */
4736 if (ss->use_id) {
d19e19de
TH
4737 ret = cgroup_init_idr(ss, css);
4738 if (ret)
4739 goto err_unload;
e6a1105b
BB
4740 }
4741
4742 /*
4743 * Now we need to entangle the css into the existing css_sets. unlike
4744 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4745 * will need a new pointer to it; done by iterating the css_set_table.
4746 * furthermore, modifying the existing css_sets will corrupt the hash
4747 * table state, so each changed css_set will need its hash recomputed.
4748 * this is all done under the css_set_lock.
4749 */
4750 write_lock(&css_set_lock);
5abb8855 4751 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4752 /* skip entries that we already rehashed */
5abb8855 4753 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4754 continue;
4755 /* remove existing entry */
5abb8855 4756 hash_del(&cset->hlist);
0ac801fe 4757 /* set new value */
5abb8855 4758 cset->subsys[ss->subsys_id] = css;
0ac801fe 4759 /* recompute hash and restore entry */
5abb8855
TH
4760 key = css_set_hash(cset->subsys);
4761 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4762 }
4763 write_unlock(&css_set_lock);
4764
9871bf95 4765 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4766 if (ret)
4767 goto err_unload;
a8638030 4768
e6a1105b
BB
4769 /* success! */
4770 mutex_unlock(&cgroup_mutex);
4771 return 0;
d19e19de
TH
4772
4773err_unload:
4774 mutex_unlock(&cgroup_mutex);
4775 /* @ss can't be mounted here as try_module_get() would fail */
4776 cgroup_unload_subsys(ss);
4777 return ret;
ddbcc7e8 4778}
e6a1105b 4779EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4780
cf5d5941
BB
4781/**
4782 * cgroup_unload_subsys: unload a modular subsystem
4783 * @ss: the subsystem to unload
4784 *
4785 * This function should be called in a modular subsystem's exitcall. When this
4786 * function is invoked, the refcount on the subsystem's module will be 0, so
4787 * the subsystem will not be attached to any hierarchy.
4788 */
4789void cgroup_unload_subsys(struct cgroup_subsys *ss)
4790{
69d0206c 4791 struct cgrp_cset_link *link;
cf5d5941
BB
4792
4793 BUG_ON(ss->module == NULL);
4794
4795 /*
4796 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4797 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4798 * doesn't start being used while we're killing it off.
4799 */
9871bf95 4800 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4801
4802 mutex_lock(&cgroup_mutex);
02ae7486 4803
9871bf95 4804 offline_css(ss, cgroup_dummy_top);
02ae7486 4805
c897ff68 4806 if (ss->use_id)
02ae7486 4807 idr_destroy(&ss->idr);
02ae7486 4808
cf5d5941 4809 /* deassign the subsys_id */
9871bf95 4810 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4811
9871bf95 4812 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4813 list_del_init(&ss->sibling);
cf5d5941
BB
4814
4815 /*
9871bf95
TH
4816 * disentangle the css from all css_sets attached to the dummy
4817 * top. as in loading, we need to pay our respects to the hashtable
4818 * gods.
cf5d5941
BB
4819 */
4820 write_lock(&css_set_lock);
9871bf95 4821 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4822 struct css_set *cset = link->cset;
0ac801fe 4823 unsigned long key;
cf5d5941 4824
5abb8855
TH
4825 hash_del(&cset->hlist);
4826 cset->subsys[ss->subsys_id] = NULL;
4827 key = css_set_hash(cset->subsys);
4828 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4829 }
4830 write_unlock(&css_set_lock);
4831
4832 /*
9871bf95
TH
4833 * remove subsystem's css from the cgroup_dummy_top and free it -
4834 * need to free before marking as null because ss->css_free needs
4835 * the cgrp->subsys pointer to find their state. note that this
4836 * also takes care of freeing the css_id.
cf5d5941 4837 */
9871bf95
TH
4838 ss->css_free(cgroup_dummy_top);
4839 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4840
4841 mutex_unlock(&cgroup_mutex);
4842}
4843EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4844
ddbcc7e8 4845/**
a043e3b2
LZ
4846 * cgroup_init_early - cgroup initialization at system boot
4847 *
4848 * Initialize cgroups at system boot, and initialize any
4849 * subsystems that request early init.
ddbcc7e8
PM
4850 */
4851int __init cgroup_init_early(void)
4852{
30159ec7 4853 struct cgroup_subsys *ss;
ddbcc7e8 4854 int i;
30159ec7 4855
146aa1bd 4856 atomic_set(&init_css_set.refcount, 1);
69d0206c 4857 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4858 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4859 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4860 css_set_count = 1;
9871bf95
TH
4861 init_cgroup_root(&cgroup_dummy_root);
4862 cgroup_root_count = 1;
a4ea1cc9 4863 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4864
69d0206c 4865 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4866 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4867 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4868 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4869
30159ec7
TH
4870 /* at bootup time, we don't worry about modular subsystems */
4871 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4872 BUG_ON(!ss->name);
4873 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4874 BUG_ON(!ss->css_alloc);
4875 BUG_ON(!ss->css_free);
ddbcc7e8 4876 if (ss->subsys_id != i) {
cfe36bde 4877 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4878 ss->name, ss->subsys_id);
4879 BUG();
4880 }
4881
4882 if (ss->early_init)
4883 cgroup_init_subsys(ss);
4884 }
4885 return 0;
4886}
4887
4888/**
a043e3b2
LZ
4889 * cgroup_init - cgroup initialization
4890 *
4891 * Register cgroup filesystem and /proc file, and initialize
4892 * any subsystems that didn't request early init.
ddbcc7e8
PM
4893 */
4894int __init cgroup_init(void)
4895{
30159ec7 4896 struct cgroup_subsys *ss;
0ac801fe 4897 unsigned long key;
30159ec7 4898 int i, err;
a424316c
PM
4899
4900 err = bdi_init(&cgroup_backing_dev_info);
4901 if (err)
4902 return err;
ddbcc7e8 4903
30159ec7 4904 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4905 if (!ss->early_init)
4906 cgroup_init_subsys(ss);
38460b48 4907 if (ss->use_id)
e6a1105b 4908 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4909 }
4910
fa3ca07e 4911 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4912 mutex_lock(&cgroup_mutex);
4913 mutex_lock(&cgroup_root_mutex);
4914
82fe9b0d
TH
4915 /* Add init_css_set to the hash table */
4916 key = css_set_hash(init_css_set.subsys);
4917 hash_add(css_set_table, &init_css_set.hlist, key);
4918
fc76df70 4919 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4920
4e96ee8e
LZ
4921 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4922 0, 1, GFP_KERNEL);
4923 BUG_ON(err < 0);
4924
54e7b4eb
TH
4925 mutex_unlock(&cgroup_root_mutex);
4926 mutex_unlock(&cgroup_mutex);
4927
676db4af
GK
4928 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4929 if (!cgroup_kobj) {
4930 err = -ENOMEM;
4931 goto out;
4932 }
4933
ddbcc7e8 4934 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4935 if (err < 0) {
4936 kobject_put(cgroup_kobj);
ddbcc7e8 4937 goto out;
676db4af 4938 }
ddbcc7e8 4939
46ae220b 4940 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4941
ddbcc7e8 4942out:
a424316c
PM
4943 if (err)
4944 bdi_destroy(&cgroup_backing_dev_info);
4945
ddbcc7e8
PM
4946 return err;
4947}
b4f48b63 4948
a424316c
PM
4949/*
4950 * proc_cgroup_show()
4951 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4952 * - Used for /proc/<pid>/cgroup.
4953 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4954 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4955 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4956 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4957 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4958 * cgroup to top_cgroup.
4959 */
4960
4961/* TODO: Use a proper seq_file iterator */
8d8b97ba 4962int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4963{
4964 struct pid *pid;
4965 struct task_struct *tsk;
4966 char *buf;
4967 int retval;
4968 struct cgroupfs_root *root;
4969
4970 retval = -ENOMEM;
4971 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4972 if (!buf)
4973 goto out;
4974
4975 retval = -ESRCH;
4976 pid = m->private;
4977 tsk = get_pid_task(pid, PIDTYPE_PID);
4978 if (!tsk)
4979 goto out_free;
4980
4981 retval = 0;
4982
4983 mutex_lock(&cgroup_mutex);
4984
e5f6a860 4985 for_each_active_root(root) {
a424316c 4986 struct cgroup_subsys *ss;
bd89aabc 4987 struct cgroup *cgrp;
a424316c
PM
4988 int count = 0;
4989
2c6ab6d2 4990 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 4991 for_each_root_subsys(root, ss)
a424316c 4992 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4993 if (strlen(root->name))
4994 seq_printf(m, "%sname=%s", count ? "," : "",
4995 root->name);
a424316c 4996 seq_putc(m, ':');
7717f7ba 4997 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4998 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4999 if (retval < 0)
5000 goto out_unlock;
5001 seq_puts(m, buf);
5002 seq_putc(m, '\n');
5003 }
5004
5005out_unlock:
5006 mutex_unlock(&cgroup_mutex);
5007 put_task_struct(tsk);
5008out_free:
5009 kfree(buf);
5010out:
5011 return retval;
5012}
5013
a424316c
PM
5014/* Display information about each subsystem and each hierarchy */
5015static int proc_cgroupstats_show(struct seq_file *m, void *v)
5016{
30159ec7 5017 struct cgroup_subsys *ss;
a424316c 5018 int i;
a424316c 5019
8bab8dde 5020 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5021 /*
5022 * ideally we don't want subsystems moving around while we do this.
5023 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5024 * subsys/hierarchy state.
5025 */
a424316c 5026 mutex_lock(&cgroup_mutex);
30159ec7
TH
5027
5028 for_each_subsys(ss, i)
2c6ab6d2
PM
5029 seq_printf(m, "%s\t%d\t%d\t%d\n",
5030 ss->name, ss->root->hierarchy_id,
8bab8dde 5031 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5032
a424316c
PM
5033 mutex_unlock(&cgroup_mutex);
5034 return 0;
5035}
5036
5037static int cgroupstats_open(struct inode *inode, struct file *file)
5038{
9dce07f1 5039 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5040}
5041
828c0950 5042static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5043 .open = cgroupstats_open,
5044 .read = seq_read,
5045 .llseek = seq_lseek,
5046 .release = single_release,
5047};
5048
b4f48b63
PM
5049/**
5050 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5051 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5052 *
5053 * Description: A task inherits its parent's cgroup at fork().
5054 *
5055 * A pointer to the shared css_set was automatically copied in
5056 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5057 * it was not made under the protection of RCU or cgroup_mutex, so
5058 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5059 * have already changed current->cgroups, allowing the previously
5060 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5061 *
5062 * At the point that cgroup_fork() is called, 'current' is the parent
5063 * task, and the passed argument 'child' points to the child task.
5064 */
5065void cgroup_fork(struct task_struct *child)
5066{
9bb71308 5067 task_lock(current);
a8ad805c 5068 get_css_set(task_css_set(current));
817929ec 5069 child->cgroups = current->cgroups;
9bb71308 5070 task_unlock(current);
817929ec 5071 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5072}
5073
817929ec 5074/**
a043e3b2
LZ
5075 * cgroup_post_fork - called on a new task after adding it to the task list
5076 * @child: the task in question
5077 *
5edee61e
TH
5078 * Adds the task to the list running through its css_set if necessary and
5079 * call the subsystem fork() callbacks. Has to be after the task is
5080 * visible on the task list in case we race with the first call to
5081 * cgroup_iter_start() - to guarantee that the new task ends up on its
5082 * list.
a043e3b2 5083 */
817929ec
PM
5084void cgroup_post_fork(struct task_struct *child)
5085{
30159ec7 5086 struct cgroup_subsys *ss;
5edee61e
TH
5087 int i;
5088
3ce3230a
FW
5089 /*
5090 * use_task_css_set_links is set to 1 before we walk the tasklist
5091 * under the tasklist_lock and we read it here after we added the child
5092 * to the tasklist under the tasklist_lock as well. If the child wasn't
5093 * yet in the tasklist when we walked through it from
5094 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5095 * should be visible now due to the paired locking and barriers implied
5096 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5097 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5098 * lock on fork.
5099 */
817929ec
PM
5100 if (use_task_css_set_links) {
5101 write_lock(&css_set_lock);
d8783832
TH
5102 task_lock(child);
5103 if (list_empty(&child->cg_list))
a8ad805c 5104 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5105 task_unlock(child);
817929ec
PM
5106 write_unlock(&css_set_lock);
5107 }
5edee61e
TH
5108
5109 /*
5110 * Call ss->fork(). This must happen after @child is linked on
5111 * css_set; otherwise, @child might change state between ->fork()
5112 * and addition to css_set.
5113 */
5114 if (need_forkexit_callback) {
7d8e0bf5
LZ
5115 /*
5116 * fork/exit callbacks are supported only for builtin
5117 * subsystems, and the builtin section of the subsys
5118 * array is immutable, so we don't need to lock the
5119 * subsys array here. On the other hand, modular section
5120 * of the array can be freed at module unload, so we
5121 * can't touch that.
5122 */
30159ec7 5123 for_each_builtin_subsys(ss, i)
5edee61e
TH
5124 if (ss->fork)
5125 ss->fork(child);
5edee61e 5126 }
817929ec 5127}
5edee61e 5128
b4f48b63
PM
5129/**
5130 * cgroup_exit - detach cgroup from exiting task
5131 * @tsk: pointer to task_struct of exiting process
a043e3b2 5132 * @run_callback: run exit callbacks?
b4f48b63
PM
5133 *
5134 * Description: Detach cgroup from @tsk and release it.
5135 *
5136 * Note that cgroups marked notify_on_release force every task in
5137 * them to take the global cgroup_mutex mutex when exiting.
5138 * This could impact scaling on very large systems. Be reluctant to
5139 * use notify_on_release cgroups where very high task exit scaling
5140 * is required on large systems.
5141 *
5142 * the_top_cgroup_hack:
5143 *
5144 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5145 *
5146 * We call cgroup_exit() while the task is still competent to
5147 * handle notify_on_release(), then leave the task attached to the
5148 * root cgroup in each hierarchy for the remainder of its exit.
5149 *
5150 * To do this properly, we would increment the reference count on
5151 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5152 * code we would add a second cgroup function call, to drop that
5153 * reference. This would just create an unnecessary hot spot on
5154 * the top_cgroup reference count, to no avail.
5155 *
5156 * Normally, holding a reference to a cgroup without bumping its
5157 * count is unsafe. The cgroup could go away, or someone could
5158 * attach us to a different cgroup, decrementing the count on
5159 * the first cgroup that we never incremented. But in this case,
5160 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5161 * which wards off any cgroup_attach_task() attempts, or task is a failed
5162 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5163 */
5164void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5165{
30159ec7 5166 struct cgroup_subsys *ss;
5abb8855 5167 struct css_set *cset;
d41d5a01 5168 int i;
817929ec
PM
5169
5170 /*
5171 * Unlink from the css_set task list if necessary.
5172 * Optimistically check cg_list before taking
5173 * css_set_lock
5174 */
5175 if (!list_empty(&tsk->cg_list)) {
5176 write_lock(&css_set_lock);
5177 if (!list_empty(&tsk->cg_list))
8d258797 5178 list_del_init(&tsk->cg_list);
817929ec
PM
5179 write_unlock(&css_set_lock);
5180 }
5181
b4f48b63
PM
5182 /* Reassign the task to the init_css_set. */
5183 task_lock(tsk);
a8ad805c
TH
5184 cset = task_css_set(tsk);
5185 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5186
5187 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5188 /*
5189 * fork/exit callbacks are supported only for builtin
5190 * subsystems, see cgroup_post_fork() for details.
5191 */
30159ec7 5192 for_each_builtin_subsys(ss, i) {
d41d5a01 5193 if (ss->exit) {
a8ad805c 5194 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
d41d5a01 5195 struct cgroup *cgrp = task_cgroup(tsk, i);
30159ec7 5196
761b3ef5 5197 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5198 }
5199 }
5200 }
b4f48b63 5201 task_unlock(tsk);
d41d5a01 5202
5abb8855 5203 put_css_set_taskexit(cset);
b4f48b63 5204}
697f4161 5205
bd89aabc 5206static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5207{
f50daa70 5208 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5209 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5210 /*
5211 * Control Group is currently removeable. If it's not
81a6a5cd 5212 * already queued for a userspace notification, queue
f50daa70
LZ
5213 * it now
5214 */
81a6a5cd 5215 int need_schedule_work = 0;
f50daa70 5216
cdcc136f 5217 raw_spin_lock(&release_list_lock);
54766d4a 5218 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5219 list_empty(&cgrp->release_list)) {
5220 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5221 need_schedule_work = 1;
5222 }
cdcc136f 5223 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5224 if (need_schedule_work)
5225 schedule_work(&release_agent_work);
5226 }
5227}
5228
81a6a5cd
PM
5229/*
5230 * Notify userspace when a cgroup is released, by running the
5231 * configured release agent with the name of the cgroup (path
5232 * relative to the root of cgroup file system) as the argument.
5233 *
5234 * Most likely, this user command will try to rmdir this cgroup.
5235 *
5236 * This races with the possibility that some other task will be
5237 * attached to this cgroup before it is removed, or that some other
5238 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5239 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5240 * unused, and this cgroup will be reprieved from its death sentence,
5241 * to continue to serve a useful existence. Next time it's released,
5242 * we will get notified again, if it still has 'notify_on_release' set.
5243 *
5244 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5245 * means only wait until the task is successfully execve()'d. The
5246 * separate release agent task is forked by call_usermodehelper(),
5247 * then control in this thread returns here, without waiting for the
5248 * release agent task. We don't bother to wait because the caller of
5249 * this routine has no use for the exit status of the release agent
5250 * task, so no sense holding our caller up for that.
81a6a5cd 5251 */
81a6a5cd
PM
5252static void cgroup_release_agent(struct work_struct *work)
5253{
5254 BUG_ON(work != &release_agent_work);
5255 mutex_lock(&cgroup_mutex);
cdcc136f 5256 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5257 while (!list_empty(&release_list)) {
5258 char *argv[3], *envp[3];
5259 int i;
e788e066 5260 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5261 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5262 struct cgroup,
5263 release_list);
bd89aabc 5264 list_del_init(&cgrp->release_list);
cdcc136f 5265 raw_spin_unlock(&release_list_lock);
81a6a5cd 5266 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5267 if (!pathbuf)
5268 goto continue_free;
5269 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5270 goto continue_free;
5271 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5272 if (!agentbuf)
5273 goto continue_free;
81a6a5cd
PM
5274
5275 i = 0;
e788e066
PM
5276 argv[i++] = agentbuf;
5277 argv[i++] = pathbuf;
81a6a5cd
PM
5278 argv[i] = NULL;
5279
5280 i = 0;
5281 /* minimal command environment */
5282 envp[i++] = "HOME=/";
5283 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5284 envp[i] = NULL;
5285
5286 /* Drop the lock while we invoke the usermode helper,
5287 * since the exec could involve hitting disk and hence
5288 * be a slow process */
5289 mutex_unlock(&cgroup_mutex);
5290 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5291 mutex_lock(&cgroup_mutex);
e788e066
PM
5292 continue_free:
5293 kfree(pathbuf);
5294 kfree(agentbuf);
cdcc136f 5295 raw_spin_lock(&release_list_lock);
81a6a5cd 5296 }
cdcc136f 5297 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5298 mutex_unlock(&cgroup_mutex);
5299}
8bab8dde
PM
5300
5301static int __init cgroup_disable(char *str)
5302{
30159ec7 5303 struct cgroup_subsys *ss;
8bab8dde 5304 char *token;
30159ec7 5305 int i;
8bab8dde
PM
5306
5307 while ((token = strsep(&str, ",")) != NULL) {
5308 if (!*token)
5309 continue;
be45c900 5310
30159ec7
TH
5311 /*
5312 * cgroup_disable, being at boot time, can't know about
5313 * module subsystems, so we don't worry about them.
5314 */
5315 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5316 if (!strcmp(token, ss->name)) {
5317 ss->disabled = 1;
5318 printk(KERN_INFO "Disabling %s control group"
5319 " subsystem\n", ss->name);
5320 break;
5321 }
5322 }
5323 }
5324 return 1;
5325}
5326__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5327
5328/*
5329 * Functons for CSS ID.
5330 */
5331
54766d4a 5332/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5333unsigned short css_id(struct cgroup_subsys_state *css)
5334{
7f0f1546
KH
5335 struct css_id *cssid;
5336
5337 /*
5338 * This css_id() can return correct value when somone has refcnt
5339 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5340 * it's unchanged until freed.
5341 */
d3daf28d 5342 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5343
5344 if (cssid)
5345 return cssid->id;
5346 return 0;
5347}
67523c48 5348EXPORT_SYMBOL_GPL(css_id);
38460b48 5349
747388d7
KH
5350/**
5351 * css_is_ancestor - test "root" css is an ancestor of "child"
5352 * @child: the css to be tested.
5353 * @root: the css supporsed to be an ancestor of the child.
5354 *
5355 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5356 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5357 * But, considering usual usage, the csses should be valid objects after test.
5358 * Assuming that the caller will do some action to the child if this returns
5359 * returns true, the caller must take "child";s reference count.
5360 * If "child" is valid object and this returns true, "root" is valid, too.
5361 */
5362
38460b48 5363bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5364 const struct cgroup_subsys_state *root)
38460b48 5365{
747388d7
KH
5366 struct css_id *child_id;
5367 struct css_id *root_id;
38460b48 5368
747388d7 5369 child_id = rcu_dereference(child->id);
91c63734
JW
5370 if (!child_id)
5371 return false;
747388d7 5372 root_id = rcu_dereference(root->id);
91c63734
JW
5373 if (!root_id)
5374 return false;
5375 if (child_id->depth < root_id->depth)
5376 return false;
5377 if (child_id->stack[root_id->depth] != root_id->id)
5378 return false;
5379 return true;
38460b48
KH
5380}
5381
38460b48
KH
5382void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5383{
a4ea1cc9
TH
5384 struct css_id *id = rcu_dereference_protected(css->id, true);
5385
38460b48
KH
5386 /* When this is called before css_id initialization, id can be NULL */
5387 if (!id)
5388 return;
5389
5390 BUG_ON(!ss->use_id);
5391
5392 rcu_assign_pointer(id->css, NULL);
5393 rcu_assign_pointer(css->id, NULL);
42aee6c4 5394 spin_lock(&ss->id_lock);
38460b48 5395 idr_remove(&ss->idr, id->id);
42aee6c4 5396 spin_unlock(&ss->id_lock);
025cea99 5397 kfree_rcu(id, rcu_head);
38460b48 5398}
67523c48 5399EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5400
5401/*
5402 * This is called by init or create(). Then, calls to this function are
5403 * always serialized (By cgroup_mutex() at create()).
5404 */
5405
5406static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5407{
5408 struct css_id *newid;
d228d9ec 5409 int ret, size;
38460b48
KH
5410
5411 BUG_ON(!ss->use_id);
5412
5413 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5414 newid = kzalloc(size, GFP_KERNEL);
5415 if (!newid)
5416 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5417
5418 idr_preload(GFP_KERNEL);
42aee6c4 5419 spin_lock(&ss->id_lock);
38460b48 5420 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5421 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5422 spin_unlock(&ss->id_lock);
d228d9ec 5423 idr_preload_end();
38460b48
KH
5424
5425 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5426 if (ret < 0)
38460b48 5427 goto err_out;
38460b48 5428
d228d9ec 5429 newid->id = ret;
38460b48
KH
5430 newid->depth = depth;
5431 return newid;
38460b48
KH
5432err_out:
5433 kfree(newid);
d228d9ec 5434 return ERR_PTR(ret);
38460b48
KH
5435
5436}
5437
e6a1105b
BB
5438static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5439 struct cgroup_subsys_state *rootcss)
38460b48
KH
5440{
5441 struct css_id *newid;
38460b48 5442
42aee6c4 5443 spin_lock_init(&ss->id_lock);
38460b48
KH
5444 idr_init(&ss->idr);
5445
38460b48
KH
5446 newid = get_new_cssid(ss, 0);
5447 if (IS_ERR(newid))
5448 return PTR_ERR(newid);
5449
5450 newid->stack[0] = newid->id;
a4ea1cc9
TH
5451 RCU_INIT_POINTER(newid->css, rootcss);
5452 RCU_INIT_POINTER(rootcss->id, newid);
38460b48
KH
5453 return 0;
5454}
5455
5456static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5457 struct cgroup *child)
5458{
5459 int subsys_id, i, depth = 0;
5460 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5461 struct css_id *child_id, *parent_id;
38460b48
KH
5462
5463 subsys_id = ss->subsys_id;
5464 parent_css = parent->subsys[subsys_id];
5465 child_css = child->subsys[subsys_id];
a4ea1cc9 5466 parent_id = rcu_dereference_protected(parent_css->id, true);
94b3dd0f 5467 depth = parent_id->depth + 1;
38460b48
KH
5468
5469 child_id = get_new_cssid(ss, depth);
5470 if (IS_ERR(child_id))
5471 return PTR_ERR(child_id);
5472
5473 for (i = 0; i < depth; i++)
5474 child_id->stack[i] = parent_id->stack[i];
5475 child_id->stack[depth] = child_id->id;
5476 /*
5477 * child_id->css pointer will be set after this cgroup is available
5478 * see cgroup_populate_dir()
5479 */
5480 rcu_assign_pointer(child_css->id, child_id);
5481
5482 return 0;
5483}
5484
5485/**
5486 * css_lookup - lookup css by id
5487 * @ss: cgroup subsys to be looked into.
5488 * @id: the id
5489 *
5490 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5491 * NULL if not. Should be called under rcu_read_lock()
5492 */
5493struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5494{
5495 struct css_id *cssid = NULL;
5496
5497 BUG_ON(!ss->use_id);
5498 cssid = idr_find(&ss->idr, id);
5499
5500 if (unlikely(!cssid))
5501 return NULL;
5502
5503 return rcu_dereference(cssid->css);
5504}
67523c48 5505EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5506
e5d1367f
SE
5507/*
5508 * get corresponding css from file open on cgroupfs directory
5509 */
5510struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5511{
5512 struct cgroup *cgrp;
5513 struct inode *inode;
5514 struct cgroup_subsys_state *css;
5515
496ad9aa 5516 inode = file_inode(f);
e5d1367f
SE
5517 /* check in cgroup filesystem dir */
5518 if (inode->i_op != &cgroup_dir_inode_operations)
5519 return ERR_PTR(-EBADF);
5520
5521 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5522 return ERR_PTR(-EINVAL);
5523
5524 /* get cgroup */
5525 cgrp = __d_cgrp(f->f_dentry);
5526 css = cgrp->subsys[id];
5527 return css ? css : ERR_PTR(-ENOENT);
5528}
5529
fe693435 5530#ifdef CONFIG_CGROUP_DEBUG
03c78cbe 5531static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
fe693435
PM
5532{
5533 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5534
5535 if (!css)
5536 return ERR_PTR(-ENOMEM);
5537
5538 return css;
5539}
5540
03c78cbe 5541static void debug_css_free(struct cgroup *cgrp)
fe693435 5542{
03c78cbe 5543 kfree(cgrp->subsys[debug_subsys_id]);
fe693435
PM
5544}
5545
03c78cbe 5546static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
fe693435 5547{
03c78cbe 5548 return cgroup_task_count(cgrp);
fe693435
PM
5549}
5550
03c78cbe 5551static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
fe693435
PM
5552{
5553 return (u64)(unsigned long)current->cgroups;
5554}
5555
03c78cbe
LZ
5556static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5557 struct cftype *cft)
fe693435
PM
5558{
5559 u64 count;
5560
5561 rcu_read_lock();
a8ad805c 5562 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5563 rcu_read_unlock();
5564 return count;
5565}
5566
03c78cbe 5567static int current_css_set_cg_links_read(struct cgroup *cgrp,
7717f7ba
PM
5568 struct cftype *cft,
5569 struct seq_file *seq)
5570{
69d0206c 5571 struct cgrp_cset_link *link;
5abb8855 5572 struct css_set *cset;
7717f7ba
PM
5573
5574 read_lock(&css_set_lock);
5575 rcu_read_lock();
5abb8855 5576 cset = rcu_dereference(current->cgroups);
69d0206c 5577 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5578 struct cgroup *c = link->cgrp;
5579 const char *name;
5580
5581 if (c->dentry)
5582 name = c->dentry->d_name.name;
5583 else
5584 name = "?";
2c6ab6d2
PM
5585 seq_printf(seq, "Root %d group %s\n",
5586 c->root->hierarchy_id, name);
7717f7ba
PM
5587 }
5588 rcu_read_unlock();
5589 read_unlock(&css_set_lock);
5590 return 0;
5591}
5592
5593#define MAX_TASKS_SHOWN_PER_CSS 25
03c78cbe 5594static int cgroup_css_links_read(struct cgroup *cgrp,
7717f7ba
PM
5595 struct cftype *cft,
5596 struct seq_file *seq)
5597{
69d0206c 5598 struct cgrp_cset_link *link;
7717f7ba
PM
5599
5600 read_lock(&css_set_lock);
03c78cbe 5601 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
69d0206c 5602 struct css_set *cset = link->cset;
7717f7ba
PM
5603 struct task_struct *task;
5604 int count = 0;
5abb8855
TH
5605 seq_printf(seq, "css_set %p\n", cset);
5606 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5607 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5608 seq_puts(seq, " ...\n");
5609 break;
5610 } else {
5611 seq_printf(seq, " task %d\n",
5612 task_pid_vnr(task));
5613 }
5614 }
5615 }
5616 read_unlock(&css_set_lock);
5617 return 0;
5618}
5619
fe693435
PM
5620static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5621{
5622 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5623}
5624
5625static struct cftype debug_files[] = {
fe693435
PM
5626 {
5627 .name = "taskcount",
5628 .read_u64 = debug_taskcount_read,
5629 },
5630
5631 {
5632 .name = "current_css_set",
5633 .read_u64 = current_css_set_read,
5634 },
5635
5636 {
5637 .name = "current_css_set_refcount",
5638 .read_u64 = current_css_set_refcount_read,
5639 },
5640
7717f7ba
PM
5641 {
5642 .name = "current_css_set_cg_links",
5643 .read_seq_string = current_css_set_cg_links_read,
5644 },
5645
5646 {
5647 .name = "cgroup_css_links",
5648 .read_seq_string = cgroup_css_links_read,
5649 },
5650
fe693435
PM
5651 {
5652 .name = "releasable",
5653 .read_u64 = releasable_read,
5654 },
fe693435 5655
4baf6e33
TH
5656 { } /* terminate */
5657};
fe693435
PM
5658
5659struct cgroup_subsys debug_subsys = {
5660 .name = "debug",
92fb9748
TH
5661 .css_alloc = debug_css_alloc,
5662 .css_free = debug_css_free,
fe693435 5663 .subsys_id = debug_subsys_id,
4baf6e33 5664 .base_cftypes = debug_files,
fe693435
PM
5665};
5666#endif /* CONFIG_CGROUP_DEBUG */