cgroup: CSS ID support
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
472b1053 47#include <linux/hash.h>
3f8206d4 48#include <linux/namei.h>
846c7bb0 49
ddbcc7e8
PM
50#include <asm/atomic.h>
51
81a6a5cd
PM
52static DEFINE_MUTEX(cgroup_mutex);
53
ddbcc7e8
PM
54/* Generate an array of cgroup subsystem pointers */
55#define SUBSYS(_x) &_x ## _subsys,
56
57static struct cgroup_subsys *subsys[] = {
58#include <linux/cgroup_subsys.h>
59};
60
61/*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
e5f6a860 87 /* A list running through the active hierarchies */
ddbcc7e8
PM
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
81a6a5cd 92
e788e066 93 /* The path to use for release notifications. */
81a6a5cd 94 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
95};
96
ddbcc7e8
PM
97/*
98 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
99 * subsystems that are otherwise unattached - it never has more than a
100 * single cgroup, and all tasks are part of that cgroup.
101 */
102static struct cgroupfs_root rootnode;
103
38460b48
KH
104/*
105 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
106 * cgroup_subsys->use_id != 0.
107 */
108#define CSS_ID_MAX (65535)
109struct css_id {
110 /*
111 * The css to which this ID points. This pointer is set to valid value
112 * after cgroup is populated. If cgroup is removed, this will be NULL.
113 * This pointer is expected to be RCU-safe because destroy()
114 * is called after synchronize_rcu(). But for safe use, css_is_removed()
115 * css_tryget() should be used for avoiding race.
116 */
117 struct cgroup_subsys_state *css;
118 /*
119 * ID of this css.
120 */
121 unsigned short id;
122 /*
123 * Depth in hierarchy which this ID belongs to.
124 */
125 unsigned short depth;
126 /*
127 * ID is freed by RCU. (and lookup routine is RCU safe.)
128 */
129 struct rcu_head rcu_head;
130 /*
131 * Hierarchy of CSS ID belongs to.
132 */
133 unsigned short stack[0]; /* Array of Length (depth+1) */
134};
135
136
ddbcc7e8
PM
137/* The list of hierarchy roots */
138
139static LIST_HEAD(roots);
817929ec 140static int root_count;
ddbcc7e8
PM
141
142/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
143#define dummytop (&rootnode.top_cgroup)
144
145/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
146 * check for fork/exit handlers to call. This avoids us having to do
147 * extra work in the fork/exit path if none of the subsystems need to
148 * be called.
ddbcc7e8 149 */
8947f9d5 150static int need_forkexit_callback __read_mostly;
ddbcc7e8 151
ddbcc7e8 152/* convenient tests for these bits */
bd89aabc 153inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 154{
bd89aabc 155 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
156}
157
158/* bits in struct cgroupfs_root flags field */
159enum {
160 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
161};
162
e9685a03 163static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
164{
165 const int bits =
bd89aabc
PM
166 (1 << CGRP_RELEASABLE) |
167 (1 << CGRP_NOTIFY_ON_RELEASE);
168 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
169}
170
e9685a03 171static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 172{
bd89aabc 173 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
174}
175
ddbcc7e8
PM
176/*
177 * for_each_subsys() allows you to iterate on each subsystem attached to
178 * an active hierarchy
179 */
180#define for_each_subsys(_root, _ss) \
181list_for_each_entry(_ss, &_root->subsys_list, sibling)
182
e5f6a860
LZ
183/* for_each_active_root() allows you to iterate across the active hierarchies */
184#define for_each_active_root(_root) \
ddbcc7e8
PM
185list_for_each_entry(_root, &roots, root_list)
186
81a6a5cd
PM
187/* the list of cgroups eligible for automatic release. Protected by
188 * release_list_lock */
189static LIST_HEAD(release_list);
190static DEFINE_SPINLOCK(release_list_lock);
191static void cgroup_release_agent(struct work_struct *work);
192static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 193static void check_for_release(struct cgroup *cgrp);
81a6a5cd 194
817929ec
PM
195/* Link structure for associating css_set objects with cgroups */
196struct cg_cgroup_link {
197 /*
198 * List running through cg_cgroup_links associated with a
199 * cgroup, anchored on cgroup->css_sets
200 */
bd89aabc 201 struct list_head cgrp_link_list;
817929ec
PM
202 /*
203 * List running through cg_cgroup_links pointing at a
204 * single css_set object, anchored on css_set->cg_links
205 */
206 struct list_head cg_link_list;
207 struct css_set *cg;
208};
209
210/* The default css_set - used by init and its children prior to any
211 * hierarchies being mounted. It contains a pointer to the root state
212 * for each subsystem. Also used to anchor the list of css_sets. Not
213 * reference-counted, to improve performance when child cgroups
214 * haven't been created.
215 */
216
217static struct css_set init_css_set;
218static struct cg_cgroup_link init_css_set_link;
219
38460b48
KH
220static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
221
817929ec
PM
222/* css_set_lock protects the list of css_set objects, and the
223 * chain of tasks off each css_set. Nests outside task->alloc_lock
224 * due to cgroup_iter_start() */
225static DEFINE_RWLOCK(css_set_lock);
226static int css_set_count;
227
472b1053
LZ
228/* hash table for cgroup groups. This improves the performance to
229 * find an existing css_set */
230#define CSS_SET_HASH_BITS 7
231#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
232static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
233
234static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
235{
236 int i;
237 int index;
238 unsigned long tmp = 0UL;
239
240 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
241 tmp += (unsigned long)css[i];
242 tmp = (tmp >> 16) ^ tmp;
243
244 index = hash_long(tmp, CSS_SET_HASH_BITS);
245
246 return &css_set_table[index];
247}
248
817929ec
PM
249/* We don't maintain the lists running through each css_set to its
250 * task until after the first call to cgroup_iter_start(). This
251 * reduces the fork()/exit() overhead for people who have cgroups
252 * compiled into their kernel but not actually in use */
8947f9d5 253static int use_task_css_set_links __read_mostly;
817929ec
PM
254
255/* When we create or destroy a css_set, the operation simply
256 * takes/releases a reference count on all the cgroups referenced
257 * by subsystems in this css_set. This can end up multiple-counting
258 * some cgroups, but that's OK - the ref-count is just a
259 * busy/not-busy indicator; ensuring that we only count each cgroup
260 * once would require taking a global lock to ensure that no
b4f48b63
PM
261 * subsystems moved between hierarchies while we were doing so.
262 *
263 * Possible TODO: decide at boot time based on the number of
264 * registered subsystems and the number of CPUs or NUMA nodes whether
265 * it's better for performance to ref-count every subsystem, or to
266 * take a global lock and only add one ref count to each hierarchy.
267 */
817929ec
PM
268
269/*
270 * unlink a css_set from the list and free it
271 */
81a6a5cd 272static void unlink_css_set(struct css_set *cg)
b4f48b63 273{
71cbb949
KM
274 struct cg_cgroup_link *link;
275 struct cg_cgroup_link *saved_link;
276
472b1053 277 hlist_del(&cg->hlist);
817929ec 278 css_set_count--;
71cbb949
KM
279
280 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
281 cg_link_list) {
817929ec 282 list_del(&link->cg_link_list);
bd89aabc 283 list_del(&link->cgrp_link_list);
817929ec
PM
284 kfree(link);
285 }
81a6a5cd
PM
286}
287
146aa1bd 288static void __put_css_set(struct css_set *cg, int taskexit)
81a6a5cd
PM
289{
290 int i;
146aa1bd
LJ
291 /*
292 * Ensure that the refcount doesn't hit zero while any readers
293 * can see it. Similar to atomic_dec_and_lock(), but for an
294 * rwlock
295 */
296 if (atomic_add_unless(&cg->refcount, -1, 1))
297 return;
298 write_lock(&css_set_lock);
299 if (!atomic_dec_and_test(&cg->refcount)) {
300 write_unlock(&css_set_lock);
301 return;
302 }
81a6a5cd 303 unlink_css_set(cg);
146aa1bd 304 write_unlock(&css_set_lock);
81a6a5cd
PM
305
306 rcu_read_lock();
307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a47295e6 308 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
bd89aabc
PM
309 if (atomic_dec_and_test(&cgrp->count) &&
310 notify_on_release(cgrp)) {
81a6a5cd 311 if (taskexit)
bd89aabc
PM
312 set_bit(CGRP_RELEASABLE, &cgrp->flags);
313 check_for_release(cgrp);
81a6a5cd
PM
314 }
315 }
316 rcu_read_unlock();
817929ec 317 kfree(cg);
b4f48b63
PM
318}
319
817929ec
PM
320/*
321 * refcounted get/put for css_set objects
322 */
323static inline void get_css_set(struct css_set *cg)
324{
146aa1bd 325 atomic_inc(&cg->refcount);
817929ec
PM
326}
327
328static inline void put_css_set(struct css_set *cg)
329{
146aa1bd 330 __put_css_set(cg, 0);
817929ec
PM
331}
332
81a6a5cd
PM
333static inline void put_css_set_taskexit(struct css_set *cg)
334{
146aa1bd 335 __put_css_set(cg, 1);
81a6a5cd
PM
336}
337
817929ec
PM
338/*
339 * find_existing_css_set() is a helper for
340 * find_css_set(), and checks to see whether an existing
472b1053 341 * css_set is suitable.
817929ec
PM
342 *
343 * oldcg: the cgroup group that we're using before the cgroup
344 * transition
345 *
bd89aabc 346 * cgrp: the cgroup that we're moving into
817929ec
PM
347 *
348 * template: location in which to build the desired set of subsystem
349 * state objects for the new cgroup group
350 */
817929ec
PM
351static struct css_set *find_existing_css_set(
352 struct css_set *oldcg,
bd89aabc 353 struct cgroup *cgrp,
817929ec 354 struct cgroup_subsys_state *template[])
b4f48b63
PM
355{
356 int i;
bd89aabc 357 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
358 struct hlist_head *hhead;
359 struct hlist_node *node;
360 struct css_set *cg;
817929ec
PM
361
362 /* Built the set of subsystem state objects that we want to
363 * see in the new css_set */
364 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 365 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
366 /* Subsystem is in this hierarchy. So we want
367 * the subsystem state from the new
368 * cgroup */
bd89aabc 369 template[i] = cgrp->subsys[i];
817929ec
PM
370 } else {
371 /* Subsystem is not in this hierarchy, so we
372 * don't want to change the subsystem state */
373 template[i] = oldcg->subsys[i];
374 }
375 }
376
472b1053
LZ
377 hhead = css_set_hash(template);
378 hlist_for_each_entry(cg, node, hhead, hlist) {
817929ec
PM
379 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
380 /* All subsystems matched */
381 return cg;
382 }
472b1053 383 }
817929ec
PM
384
385 /* No existing cgroup group matched */
386 return NULL;
387}
388
36553434
LZ
389static void free_cg_links(struct list_head *tmp)
390{
391 struct cg_cgroup_link *link;
392 struct cg_cgroup_link *saved_link;
393
394 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
395 list_del(&link->cgrp_link_list);
396 kfree(link);
397 }
398}
399
817929ec
PM
400/*
401 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 402 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
403 * success or a negative error
404 */
817929ec
PM
405static int allocate_cg_links(int count, struct list_head *tmp)
406{
407 struct cg_cgroup_link *link;
408 int i;
409 INIT_LIST_HEAD(tmp);
410 for (i = 0; i < count; i++) {
411 link = kmalloc(sizeof(*link), GFP_KERNEL);
412 if (!link) {
36553434 413 free_cg_links(tmp);
817929ec
PM
414 return -ENOMEM;
415 }
bd89aabc 416 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
417 }
418 return 0;
419}
420
c12f65d4
LZ
421/**
422 * link_css_set - a helper function to link a css_set to a cgroup
423 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
424 * @cg: the css_set to be linked
425 * @cgrp: the destination cgroup
426 */
427static void link_css_set(struct list_head *tmp_cg_links,
428 struct css_set *cg, struct cgroup *cgrp)
429{
430 struct cg_cgroup_link *link;
431
432 BUG_ON(list_empty(tmp_cg_links));
433 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
434 cgrp_link_list);
435 link->cg = cg;
436 list_move(&link->cgrp_link_list, &cgrp->css_sets);
437 list_add(&link->cg_link_list, &cg->cg_links);
438}
439
817929ec
PM
440/*
441 * find_css_set() takes an existing cgroup group and a
442 * cgroup object, and returns a css_set object that's
443 * equivalent to the old group, but with the given cgroup
444 * substituted into the appropriate hierarchy. Must be called with
445 * cgroup_mutex held
446 */
817929ec 447static struct css_set *find_css_set(
bd89aabc 448 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
449{
450 struct css_set *res;
451 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
452 int i;
453
454 struct list_head tmp_cg_links;
817929ec 455
472b1053
LZ
456 struct hlist_head *hhead;
457
817929ec
PM
458 /* First see if we already have a cgroup group that matches
459 * the desired set */
7e9abd89 460 read_lock(&css_set_lock);
bd89aabc 461 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
462 if (res)
463 get_css_set(res);
7e9abd89 464 read_unlock(&css_set_lock);
817929ec
PM
465
466 if (res)
467 return res;
468
469 res = kmalloc(sizeof(*res), GFP_KERNEL);
470 if (!res)
471 return NULL;
472
473 /* Allocate all the cg_cgroup_link objects that we'll need */
474 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
475 kfree(res);
476 return NULL;
477 }
478
146aa1bd 479 atomic_set(&res->refcount, 1);
817929ec
PM
480 INIT_LIST_HEAD(&res->cg_links);
481 INIT_LIST_HEAD(&res->tasks);
472b1053 482 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
483
484 /* Copy the set of subsystem state objects generated in
485 * find_existing_css_set() */
486 memcpy(res->subsys, template, sizeof(res->subsys));
487
488 write_lock(&css_set_lock);
489 /* Add reference counts and links from the new css_set. */
490 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 491 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 492 struct cgroup_subsys *ss = subsys[i];
bd89aabc 493 atomic_inc(&cgrp->count);
817929ec
PM
494 /*
495 * We want to add a link once per cgroup, so we
496 * only do it for the first subsystem in each
497 * hierarchy
498 */
c12f65d4
LZ
499 if (ss->root->subsys_list.next == &ss->sibling)
500 link_css_set(&tmp_cg_links, res, cgrp);
817929ec 501 }
c12f65d4
LZ
502 if (list_empty(&rootnode.subsys_list))
503 link_css_set(&tmp_cg_links, res, dummytop);
817929ec
PM
504
505 BUG_ON(!list_empty(&tmp_cg_links));
506
817929ec 507 css_set_count++;
472b1053
LZ
508
509 /* Add this cgroup group to the hash table */
510 hhead = css_set_hash(res->subsys);
511 hlist_add_head(&res->hlist, hhead);
512
817929ec
PM
513 write_unlock(&css_set_lock);
514
515 return res;
b4f48b63
PM
516}
517
ddbcc7e8
PM
518/*
519 * There is one global cgroup mutex. We also require taking
520 * task_lock() when dereferencing a task's cgroup subsys pointers.
521 * See "The task_lock() exception", at the end of this comment.
522 *
523 * A task must hold cgroup_mutex to modify cgroups.
524 *
525 * Any task can increment and decrement the count field without lock.
526 * So in general, code holding cgroup_mutex can't rely on the count
527 * field not changing. However, if the count goes to zero, then only
956db3ca 528 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
529 * means that no tasks are currently attached, therefore there is no
530 * way a task attached to that cgroup can fork (the other way to
531 * increment the count). So code holding cgroup_mutex can safely
532 * assume that if the count is zero, it will stay zero. Similarly, if
533 * a task holds cgroup_mutex on a cgroup with zero count, it
534 * knows that the cgroup won't be removed, as cgroup_rmdir()
535 * needs that mutex.
536 *
ddbcc7e8
PM
537 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
538 * (usually) take cgroup_mutex. These are the two most performance
539 * critical pieces of code here. The exception occurs on cgroup_exit(),
540 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
541 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
542 * to the release agent with the name of the cgroup (path relative to
543 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
544 *
545 * A cgroup can only be deleted if both its 'count' of using tasks
546 * is zero, and its list of 'children' cgroups is empty. Since all
547 * tasks in the system use _some_ cgroup, and since there is always at
548 * least one task in the system (init, pid == 1), therefore, top_cgroup
549 * always has either children cgroups and/or using tasks. So we don't
550 * need a special hack to ensure that top_cgroup cannot be deleted.
551 *
552 * The task_lock() exception
553 *
554 * The need for this exception arises from the action of
956db3ca 555 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 556 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
557 * several performance critical places that need to reference
558 * task->cgroup without the expense of grabbing a system global
559 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 560 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
561 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
562 * the task_struct routinely used for such matters.
563 *
564 * P.S. One more locking exception. RCU is used to guard the
956db3ca 565 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
566 */
567
ddbcc7e8
PM
568/**
569 * cgroup_lock - lock out any changes to cgroup structures
570 *
571 */
ddbcc7e8
PM
572void cgroup_lock(void)
573{
574 mutex_lock(&cgroup_mutex);
575}
576
577/**
578 * cgroup_unlock - release lock on cgroup changes
579 *
580 * Undo the lock taken in a previous cgroup_lock() call.
581 */
ddbcc7e8
PM
582void cgroup_unlock(void)
583{
584 mutex_unlock(&cgroup_mutex);
585}
586
587/*
588 * A couple of forward declarations required, due to cyclic reference loop:
589 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
590 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
591 * -> cgroup_mkdir.
592 */
593
594static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
595static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 596static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 597static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
598static struct file_operations proc_cgroupstats_operations;
599
600static struct backing_dev_info cgroup_backing_dev_info = {
e4ad08fe 601 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 602};
ddbcc7e8 603
38460b48
KH
604static int alloc_css_id(struct cgroup_subsys *ss,
605 struct cgroup *parent, struct cgroup *child);
606
ddbcc7e8
PM
607static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
608{
609 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
610
611 if (inode) {
612 inode->i_mode = mode;
76aac0e9
DH
613 inode->i_uid = current_fsuid();
614 inode->i_gid = current_fsgid();
ddbcc7e8
PM
615 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
616 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
617 }
618 return inode;
619}
620
4fca88c8
KH
621/*
622 * Call subsys's pre_destroy handler.
623 * This is called before css refcnt check.
624 */
4fca88c8
KH
625static void cgroup_call_pre_destroy(struct cgroup *cgrp)
626{
627 struct cgroup_subsys *ss;
628 for_each_subsys(cgrp->root, ss)
75139b82 629 if (ss->pre_destroy)
4fca88c8
KH
630 ss->pre_destroy(ss, cgrp);
631 return;
632}
633
a47295e6
PM
634static void free_cgroup_rcu(struct rcu_head *obj)
635{
636 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
637
638 kfree(cgrp);
639}
640
ddbcc7e8
PM
641static void cgroup_diput(struct dentry *dentry, struct inode *inode)
642{
643 /* is dentry a directory ? if so, kfree() associated cgroup */
644 if (S_ISDIR(inode->i_mode)) {
bd89aabc 645 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 646 struct cgroup_subsys *ss;
bd89aabc 647 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
648 /* It's possible for external users to be holding css
649 * reference counts on a cgroup; css_put() needs to
650 * be able to access the cgroup after decrementing
651 * the reference count in order to know if it needs to
652 * queue the cgroup to be handled by the release
653 * agent */
654 synchronize_rcu();
8dc4f3e1
PM
655
656 mutex_lock(&cgroup_mutex);
657 /*
658 * Release the subsystem state objects.
659 */
75139b82
LZ
660 for_each_subsys(cgrp->root, ss)
661 ss->destroy(ss, cgrp);
8dc4f3e1
PM
662
663 cgrp->root->number_of_cgroups--;
664 mutex_unlock(&cgroup_mutex);
665
a47295e6
PM
666 /*
667 * Drop the active superblock reference that we took when we
668 * created the cgroup
669 */
8dc4f3e1
PM
670 deactivate_super(cgrp->root->sb);
671
a47295e6 672 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
ddbcc7e8
PM
673 }
674 iput(inode);
675}
676
677static void remove_dir(struct dentry *d)
678{
679 struct dentry *parent = dget(d->d_parent);
680
681 d_delete(d);
682 simple_rmdir(parent->d_inode, d);
683 dput(parent);
684}
685
686static void cgroup_clear_directory(struct dentry *dentry)
687{
688 struct list_head *node;
689
690 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
691 spin_lock(&dcache_lock);
692 node = dentry->d_subdirs.next;
693 while (node != &dentry->d_subdirs) {
694 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
695 list_del_init(node);
696 if (d->d_inode) {
697 /* This should never be called on a cgroup
698 * directory with child cgroups */
699 BUG_ON(d->d_inode->i_mode & S_IFDIR);
700 d = dget_locked(d);
701 spin_unlock(&dcache_lock);
702 d_delete(d);
703 simple_unlink(dentry->d_inode, d);
704 dput(d);
705 spin_lock(&dcache_lock);
706 }
707 node = dentry->d_subdirs.next;
708 }
709 spin_unlock(&dcache_lock);
710}
711
712/*
713 * NOTE : the dentry must have been dget()'ed
714 */
715static void cgroup_d_remove_dir(struct dentry *dentry)
716{
717 cgroup_clear_directory(dentry);
718
719 spin_lock(&dcache_lock);
720 list_del_init(&dentry->d_u.d_child);
721 spin_unlock(&dcache_lock);
722 remove_dir(dentry);
723}
724
725static int rebind_subsystems(struct cgroupfs_root *root,
726 unsigned long final_bits)
727{
728 unsigned long added_bits, removed_bits;
bd89aabc 729 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
730 int i;
731
732 removed_bits = root->actual_subsys_bits & ~final_bits;
733 added_bits = final_bits & ~root->actual_subsys_bits;
734 /* Check that any added subsystems are currently free */
735 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 736 unsigned long bit = 1UL << i;
ddbcc7e8
PM
737 struct cgroup_subsys *ss = subsys[i];
738 if (!(bit & added_bits))
739 continue;
740 if (ss->root != &rootnode) {
741 /* Subsystem isn't free */
742 return -EBUSY;
743 }
744 }
745
746 /* Currently we don't handle adding/removing subsystems when
747 * any child cgroups exist. This is theoretically supportable
748 * but involves complex error handling, so it's being left until
749 * later */
307257cf 750 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
751 return -EBUSY;
752
753 /* Process each subsystem */
754 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
755 struct cgroup_subsys *ss = subsys[i];
756 unsigned long bit = 1UL << i;
757 if (bit & added_bits) {
758 /* We're binding this subsystem to this hierarchy */
bd89aabc 759 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
760 BUG_ON(!dummytop->subsys[i]);
761 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 762 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
763 cgrp->subsys[i] = dummytop->subsys[i];
764 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 765 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 766 ss->root = root;
ddbcc7e8 767 if (ss->bind)
bd89aabc 768 ss->bind(ss, cgrp);
999cd8a4 769 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
770 } else if (bit & removed_bits) {
771 /* We're removing this subsystem */
bd89aabc
PM
772 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
773 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 774 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
775 if (ss->bind)
776 ss->bind(ss, dummytop);
777 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 778 cgrp->subsys[i] = NULL;
b2aa30f7 779 subsys[i]->root = &rootnode;
33a68ac1 780 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 781 mutex_unlock(&ss->hierarchy_mutex);
ddbcc7e8
PM
782 } else if (bit & final_bits) {
783 /* Subsystem state should already exist */
bd89aabc 784 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
785 } else {
786 /* Subsystem state shouldn't exist */
bd89aabc 787 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
788 }
789 }
790 root->subsys_bits = root->actual_subsys_bits = final_bits;
791 synchronize_rcu();
792
793 return 0;
794}
795
796static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
797{
798 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
799 struct cgroup_subsys *ss;
800
801 mutex_lock(&cgroup_mutex);
802 for_each_subsys(root, ss)
803 seq_printf(seq, ",%s", ss->name);
804 if (test_bit(ROOT_NOPREFIX, &root->flags))
805 seq_puts(seq, ",noprefix");
81a6a5cd
PM
806 if (strlen(root->release_agent_path))
807 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
808 mutex_unlock(&cgroup_mutex);
809 return 0;
810}
811
812struct cgroup_sb_opts {
813 unsigned long subsys_bits;
814 unsigned long flags;
81a6a5cd 815 char *release_agent;
ddbcc7e8
PM
816};
817
818/* Convert a hierarchy specifier into a bitmask of subsystems and
819 * flags. */
820static int parse_cgroupfs_options(char *data,
821 struct cgroup_sb_opts *opts)
822{
823 char *token, *o = data ?: "all";
824
825 opts->subsys_bits = 0;
826 opts->flags = 0;
81a6a5cd 827 opts->release_agent = NULL;
ddbcc7e8
PM
828
829 while ((token = strsep(&o, ",")) != NULL) {
830 if (!*token)
831 return -EINVAL;
832 if (!strcmp(token, "all")) {
8bab8dde
PM
833 /* Add all non-disabled subsystems */
834 int i;
835 opts->subsys_bits = 0;
836 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
837 struct cgroup_subsys *ss = subsys[i];
838 if (!ss->disabled)
839 opts->subsys_bits |= 1ul << i;
840 }
ddbcc7e8
PM
841 } else if (!strcmp(token, "noprefix")) {
842 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
843 } else if (!strncmp(token, "release_agent=", 14)) {
844 /* Specifying two release agents is forbidden */
845 if (opts->release_agent)
846 return -EINVAL;
847 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
848 if (!opts->release_agent)
849 return -ENOMEM;
850 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
851 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
852 } else {
853 struct cgroup_subsys *ss;
854 int i;
855 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
856 ss = subsys[i];
857 if (!strcmp(token, ss->name)) {
8bab8dde
PM
858 if (!ss->disabled)
859 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
860 break;
861 }
862 }
863 if (i == CGROUP_SUBSYS_COUNT)
864 return -ENOENT;
865 }
866 }
867
868 /* We can't have an empty hierarchy */
869 if (!opts->subsys_bits)
870 return -EINVAL;
871
872 return 0;
873}
874
875static int cgroup_remount(struct super_block *sb, int *flags, char *data)
876{
877 int ret = 0;
878 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 879 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
880 struct cgroup_sb_opts opts;
881
bd89aabc 882 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
883 mutex_lock(&cgroup_mutex);
884
885 /* See what subsystems are wanted */
886 ret = parse_cgroupfs_options(data, &opts);
887 if (ret)
888 goto out_unlock;
889
890 /* Don't allow flags to change at remount */
891 if (opts.flags != root->flags) {
892 ret = -EINVAL;
893 goto out_unlock;
894 }
895
896 ret = rebind_subsystems(root, opts.subsys_bits);
897
898 /* (re)populate subsystem files */
899 if (!ret)
bd89aabc 900 cgroup_populate_dir(cgrp);
ddbcc7e8 901
81a6a5cd
PM
902 if (opts.release_agent)
903 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 904 out_unlock:
81a6a5cd
PM
905 if (opts.release_agent)
906 kfree(opts.release_agent);
ddbcc7e8 907 mutex_unlock(&cgroup_mutex);
bd89aabc 908 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
909 return ret;
910}
911
912static struct super_operations cgroup_ops = {
913 .statfs = simple_statfs,
914 .drop_inode = generic_delete_inode,
915 .show_options = cgroup_show_options,
916 .remount_fs = cgroup_remount,
917};
918
cc31edce
PM
919static void init_cgroup_housekeeping(struct cgroup *cgrp)
920{
921 INIT_LIST_HEAD(&cgrp->sibling);
922 INIT_LIST_HEAD(&cgrp->children);
923 INIT_LIST_HEAD(&cgrp->css_sets);
924 INIT_LIST_HEAD(&cgrp->release_list);
925 init_rwsem(&cgrp->pids_mutex);
926}
ddbcc7e8
PM
927static void init_cgroup_root(struct cgroupfs_root *root)
928{
bd89aabc 929 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
930 INIT_LIST_HEAD(&root->subsys_list);
931 INIT_LIST_HEAD(&root->root_list);
932 root->number_of_cgroups = 1;
bd89aabc
PM
933 cgrp->root = root;
934 cgrp->top_cgroup = cgrp;
cc31edce 935 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
936}
937
938static int cgroup_test_super(struct super_block *sb, void *data)
939{
940 struct cgroupfs_root *new = data;
941 struct cgroupfs_root *root = sb->s_fs_info;
942
943 /* First check subsystems */
944 if (new->subsys_bits != root->subsys_bits)
945 return 0;
946
947 /* Next check flags */
948 if (new->flags != root->flags)
949 return 0;
950
951 return 1;
952}
953
954static int cgroup_set_super(struct super_block *sb, void *data)
955{
956 int ret;
957 struct cgroupfs_root *root = data;
958
959 ret = set_anon_super(sb, NULL);
960 if (ret)
961 return ret;
962
963 sb->s_fs_info = root;
964 root->sb = sb;
965
966 sb->s_blocksize = PAGE_CACHE_SIZE;
967 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
968 sb->s_magic = CGROUP_SUPER_MAGIC;
969 sb->s_op = &cgroup_ops;
970
971 return 0;
972}
973
974static int cgroup_get_rootdir(struct super_block *sb)
975{
976 struct inode *inode =
977 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
978 struct dentry *dentry;
979
980 if (!inode)
981 return -ENOMEM;
982
ddbcc7e8
PM
983 inode->i_fop = &simple_dir_operations;
984 inode->i_op = &cgroup_dir_inode_operations;
985 /* directories start off with i_nlink == 2 (for "." entry) */
986 inc_nlink(inode);
987 dentry = d_alloc_root(inode);
988 if (!dentry) {
989 iput(inode);
990 return -ENOMEM;
991 }
992 sb->s_root = dentry;
993 return 0;
994}
995
996static int cgroup_get_sb(struct file_system_type *fs_type,
997 int flags, const char *unused_dev_name,
998 void *data, struct vfsmount *mnt)
999{
1000 struct cgroup_sb_opts opts;
1001 int ret = 0;
1002 struct super_block *sb;
1003 struct cgroupfs_root *root;
28fd5dfc 1004 struct list_head tmp_cg_links;
ddbcc7e8
PM
1005
1006 /* First find the desired set of subsystems */
1007 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
1008 if (ret) {
1009 if (opts.release_agent)
1010 kfree(opts.release_agent);
ddbcc7e8 1011 return ret;
81a6a5cd 1012 }
ddbcc7e8
PM
1013
1014 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738
LZ
1015 if (!root) {
1016 if (opts.release_agent)
1017 kfree(opts.release_agent);
ddbcc7e8 1018 return -ENOMEM;
f7770738 1019 }
ddbcc7e8
PM
1020
1021 init_cgroup_root(root);
1022 root->subsys_bits = opts.subsys_bits;
1023 root->flags = opts.flags;
81a6a5cd
PM
1024 if (opts.release_agent) {
1025 strcpy(root->release_agent_path, opts.release_agent);
1026 kfree(opts.release_agent);
1027 }
ddbcc7e8
PM
1028
1029 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
1030
1031 if (IS_ERR(sb)) {
1032 kfree(root);
1033 return PTR_ERR(sb);
1034 }
1035
1036 if (sb->s_fs_info != root) {
1037 /* Reusing an existing superblock */
1038 BUG_ON(sb->s_root == NULL);
1039 kfree(root);
1040 root = NULL;
1041 } else {
1042 /* New superblock */
c12f65d4 1043 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1044 struct inode *inode;
28fd5dfc 1045 int i;
ddbcc7e8
PM
1046
1047 BUG_ON(sb->s_root != NULL);
1048
1049 ret = cgroup_get_rootdir(sb);
1050 if (ret)
1051 goto drop_new_super;
817929ec 1052 inode = sb->s_root->d_inode;
ddbcc7e8 1053
817929ec 1054 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1055 mutex_lock(&cgroup_mutex);
1056
817929ec
PM
1057 /*
1058 * We're accessing css_set_count without locking
1059 * css_set_lock here, but that's OK - it can only be
1060 * increased by someone holding cgroup_lock, and
1061 * that's us. The worst that can happen is that we
1062 * have some link structures left over
1063 */
1064 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1065 if (ret) {
1066 mutex_unlock(&cgroup_mutex);
1067 mutex_unlock(&inode->i_mutex);
1068 goto drop_new_super;
1069 }
1070
ddbcc7e8
PM
1071 ret = rebind_subsystems(root, root->subsys_bits);
1072 if (ret == -EBUSY) {
1073 mutex_unlock(&cgroup_mutex);
817929ec 1074 mutex_unlock(&inode->i_mutex);
20ca9b3f 1075 goto free_cg_links;
ddbcc7e8
PM
1076 }
1077
1078 /* EBUSY should be the only error here */
1079 BUG_ON(ret);
1080
1081 list_add(&root->root_list, &roots);
817929ec 1082 root_count++;
ddbcc7e8 1083
c12f65d4 1084 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1085 root->top_cgroup.dentry = sb->s_root;
1086
817929ec
PM
1087 /* Link the top cgroup in this hierarchy into all
1088 * the css_set objects */
1089 write_lock(&css_set_lock);
28fd5dfc
LZ
1090 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1091 struct hlist_head *hhead = &css_set_table[i];
1092 struct hlist_node *node;
817929ec 1093 struct css_set *cg;
28fd5dfc 1094
c12f65d4
LZ
1095 hlist_for_each_entry(cg, node, hhead, hlist)
1096 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1097 }
817929ec
PM
1098 write_unlock(&css_set_lock);
1099
1100 free_cg_links(&tmp_cg_links);
1101
c12f65d4
LZ
1102 BUG_ON(!list_empty(&root_cgrp->sibling));
1103 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1104 BUG_ON(root->number_of_cgroups != 1);
1105
c12f65d4 1106 cgroup_populate_dir(root_cgrp);
817929ec 1107 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1108 mutex_unlock(&cgroup_mutex);
1109 }
1110
a3ec947c
SB
1111 simple_set_mnt(mnt, sb);
1112 return 0;
ddbcc7e8 1113
20ca9b3f
LZ
1114 free_cg_links:
1115 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1116 drop_new_super:
1117 up_write(&sb->s_umount);
1118 deactivate_super(sb);
1119 return ret;
1120}
1121
1122static void cgroup_kill_sb(struct super_block *sb) {
1123 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1124 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1125 int ret;
71cbb949
KM
1126 struct cg_cgroup_link *link;
1127 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1128
1129 BUG_ON(!root);
1130
1131 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1132 BUG_ON(!list_empty(&cgrp->children));
1133 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1134
1135 mutex_lock(&cgroup_mutex);
1136
1137 /* Rebind all subsystems back to the default hierarchy */
1138 ret = rebind_subsystems(root, 0);
1139 /* Shouldn't be able to fail ... */
1140 BUG_ON(ret);
1141
817929ec
PM
1142 /*
1143 * Release all the links from css_sets to this hierarchy's
1144 * root cgroup
1145 */
1146 write_lock(&css_set_lock);
71cbb949
KM
1147
1148 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1149 cgrp_link_list) {
817929ec 1150 list_del(&link->cg_link_list);
bd89aabc 1151 list_del(&link->cgrp_link_list);
817929ec
PM
1152 kfree(link);
1153 }
1154 write_unlock(&css_set_lock);
1155
839ec545
PM
1156 if (!list_empty(&root->root_list)) {
1157 list_del(&root->root_list);
1158 root_count--;
1159 }
e5f6a860 1160
ddbcc7e8
PM
1161 mutex_unlock(&cgroup_mutex);
1162
ddbcc7e8 1163 kill_litter_super(sb);
67e055d1 1164 kfree(root);
ddbcc7e8
PM
1165}
1166
1167static struct file_system_type cgroup_fs_type = {
1168 .name = "cgroup",
1169 .get_sb = cgroup_get_sb,
1170 .kill_sb = cgroup_kill_sb,
1171};
1172
bd89aabc 1173static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1174{
1175 return dentry->d_fsdata;
1176}
1177
1178static inline struct cftype *__d_cft(struct dentry *dentry)
1179{
1180 return dentry->d_fsdata;
1181}
1182
a043e3b2
LZ
1183/**
1184 * cgroup_path - generate the path of a cgroup
1185 * @cgrp: the cgroup in question
1186 * @buf: the buffer to write the path into
1187 * @buflen: the length of the buffer
1188 *
a47295e6
PM
1189 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1190 * reference. Writes path of cgroup into buf. Returns 0 on success,
1191 * -errno on error.
ddbcc7e8 1192 */
bd89aabc 1193int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1194{
1195 char *start;
a47295e6 1196 struct dentry *dentry = rcu_dereference(cgrp->dentry);
ddbcc7e8 1197
a47295e6 1198 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1199 /*
1200 * Inactive subsystems have no dentry for their root
1201 * cgroup
1202 */
1203 strcpy(buf, "/");
1204 return 0;
1205 }
1206
1207 start = buf + buflen;
1208
1209 *--start = '\0';
1210 for (;;) {
a47295e6 1211 int len = dentry->d_name.len;
ddbcc7e8
PM
1212 if ((start -= len) < buf)
1213 return -ENAMETOOLONG;
bd89aabc
PM
1214 memcpy(start, cgrp->dentry->d_name.name, len);
1215 cgrp = cgrp->parent;
1216 if (!cgrp)
ddbcc7e8 1217 break;
a47295e6 1218 dentry = rcu_dereference(cgrp->dentry);
bd89aabc 1219 if (!cgrp->parent)
ddbcc7e8
PM
1220 continue;
1221 if (--start < buf)
1222 return -ENAMETOOLONG;
1223 *start = '/';
1224 }
1225 memmove(buf, start, buf + buflen - start);
1226 return 0;
1227}
1228
bbcb81d0
PM
1229/*
1230 * Return the first subsystem attached to a cgroup's hierarchy, and
1231 * its subsystem id.
1232 */
1233
bd89aabc 1234static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1235 struct cgroup_subsys_state **css, int *subsys_id)
1236{
bd89aabc 1237 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1238 const struct cgroup_subsys *test_ss;
1239 BUG_ON(list_empty(&root->subsys_list));
1240 test_ss = list_entry(root->subsys_list.next,
1241 struct cgroup_subsys, sibling);
1242 if (css) {
bd89aabc 1243 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1244 BUG_ON(!*css);
1245 }
1246 if (subsys_id)
1247 *subsys_id = test_ss->subsys_id;
1248}
1249
a043e3b2
LZ
1250/**
1251 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1252 * @cgrp: the cgroup the task is attaching to
1253 * @tsk: the task to be attached
bbcb81d0 1254 *
a043e3b2
LZ
1255 * Call holding cgroup_mutex. May take task_lock of
1256 * the task 'tsk' during call.
bbcb81d0 1257 */
956db3ca 1258int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1259{
1260 int retval = 0;
1261 struct cgroup_subsys *ss;
bd89aabc 1262 struct cgroup *oldcgrp;
77efecd9 1263 struct css_set *cg;
817929ec 1264 struct css_set *newcg;
bd89aabc 1265 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1266 int subsys_id;
1267
bd89aabc 1268 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1269
1270 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1271 oldcgrp = task_cgroup(tsk, subsys_id);
1272 if (cgrp == oldcgrp)
bbcb81d0
PM
1273 return 0;
1274
1275 for_each_subsys(root, ss) {
1276 if (ss->can_attach) {
bd89aabc 1277 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1278 if (retval)
bbcb81d0 1279 return retval;
bbcb81d0
PM
1280 }
1281 }
1282
77efecd9
LJ
1283 task_lock(tsk);
1284 cg = tsk->cgroups;
1285 get_css_set(cg);
1286 task_unlock(tsk);
817929ec
PM
1287 /*
1288 * Locate or allocate a new css_set for this task,
1289 * based on its final set of cgroups
1290 */
bd89aabc 1291 newcg = find_css_set(cg, cgrp);
77efecd9 1292 put_css_set(cg);
e18f6318 1293 if (!newcg)
817929ec 1294 return -ENOMEM;
817929ec 1295
bbcb81d0
PM
1296 task_lock(tsk);
1297 if (tsk->flags & PF_EXITING) {
1298 task_unlock(tsk);
817929ec 1299 put_css_set(newcg);
bbcb81d0
PM
1300 return -ESRCH;
1301 }
817929ec 1302 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1303 task_unlock(tsk);
1304
817929ec
PM
1305 /* Update the css_set linked lists if we're using them */
1306 write_lock(&css_set_lock);
1307 if (!list_empty(&tsk->cg_list)) {
1308 list_del(&tsk->cg_list);
1309 list_add(&tsk->cg_list, &newcg->tasks);
1310 }
1311 write_unlock(&css_set_lock);
1312
bbcb81d0 1313 for_each_subsys(root, ss) {
e18f6318 1314 if (ss->attach)
bd89aabc 1315 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1316 }
bd89aabc 1317 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1318 synchronize_rcu();
817929ec 1319 put_css_set(cg);
bbcb81d0
PM
1320 return 0;
1321}
1322
1323/*
af351026
PM
1324 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1325 * held. May take task_lock of task
bbcb81d0 1326 */
af351026 1327static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1328{
bbcb81d0 1329 struct task_struct *tsk;
c69e8d9c 1330 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1331 int ret;
1332
bbcb81d0
PM
1333 if (pid) {
1334 rcu_read_lock();
73507f33 1335 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1336 if (!tsk || tsk->flags & PF_EXITING) {
1337 rcu_read_unlock();
1338 return -ESRCH;
1339 }
bbcb81d0 1340
c69e8d9c
DH
1341 tcred = __task_cred(tsk);
1342 if (cred->euid &&
1343 cred->euid != tcred->uid &&
1344 cred->euid != tcred->suid) {
1345 rcu_read_unlock();
bbcb81d0
PM
1346 return -EACCES;
1347 }
c69e8d9c
DH
1348 get_task_struct(tsk);
1349 rcu_read_unlock();
bbcb81d0
PM
1350 } else {
1351 tsk = current;
1352 get_task_struct(tsk);
1353 }
1354
956db3ca 1355 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1356 put_task_struct(tsk);
1357 return ret;
1358}
1359
af351026
PM
1360static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1361{
1362 int ret;
1363 if (!cgroup_lock_live_group(cgrp))
1364 return -ENODEV;
1365 ret = attach_task_by_pid(cgrp, pid);
1366 cgroup_unlock();
1367 return ret;
1368}
1369
ddbcc7e8 1370/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1371enum cgroup_filetype {
1372 FILE_ROOT,
1373 FILE_DIR,
1374 FILE_TASKLIST,
81a6a5cd 1375 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1376 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1377};
1378
e788e066
PM
1379/**
1380 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1381 * @cgrp: the cgroup to be checked for liveness
1382 *
84eea842
PM
1383 * On success, returns true; the lock should be later released with
1384 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1385 */
84eea842 1386bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1387{
1388 mutex_lock(&cgroup_mutex);
1389 if (cgroup_is_removed(cgrp)) {
1390 mutex_unlock(&cgroup_mutex);
1391 return false;
1392 }
1393 return true;
1394}
1395
1396static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1397 const char *buffer)
1398{
1399 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1400 if (!cgroup_lock_live_group(cgrp))
1401 return -ENODEV;
1402 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1403 cgroup_unlock();
e788e066
PM
1404 return 0;
1405}
1406
1407static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1408 struct seq_file *seq)
1409{
1410 if (!cgroup_lock_live_group(cgrp))
1411 return -ENODEV;
1412 seq_puts(seq, cgrp->root->release_agent_path);
1413 seq_putc(seq, '\n');
84eea842 1414 cgroup_unlock();
e788e066
PM
1415 return 0;
1416}
1417
84eea842
PM
1418/* A buffer size big enough for numbers or short strings */
1419#define CGROUP_LOCAL_BUFFER_SIZE 64
1420
e73d2c61 1421static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1422 struct file *file,
1423 const char __user *userbuf,
1424 size_t nbytes, loff_t *unused_ppos)
355e0c48 1425{
84eea842 1426 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1427 int retval = 0;
355e0c48
PM
1428 char *end;
1429
1430 if (!nbytes)
1431 return -EINVAL;
1432 if (nbytes >= sizeof(buffer))
1433 return -E2BIG;
1434 if (copy_from_user(buffer, userbuf, nbytes))
1435 return -EFAULT;
1436
1437 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1438 strstrip(buffer);
e73d2c61
PM
1439 if (cft->write_u64) {
1440 u64 val = simple_strtoull(buffer, &end, 0);
1441 if (*end)
1442 return -EINVAL;
1443 retval = cft->write_u64(cgrp, cft, val);
1444 } else {
1445 s64 val = simple_strtoll(buffer, &end, 0);
1446 if (*end)
1447 return -EINVAL;
1448 retval = cft->write_s64(cgrp, cft, val);
1449 }
355e0c48
PM
1450 if (!retval)
1451 retval = nbytes;
1452 return retval;
1453}
1454
db3b1497
PM
1455static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1456 struct file *file,
1457 const char __user *userbuf,
1458 size_t nbytes, loff_t *unused_ppos)
1459{
84eea842 1460 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1461 int retval = 0;
1462 size_t max_bytes = cft->max_write_len;
1463 char *buffer = local_buffer;
1464
1465 if (!max_bytes)
1466 max_bytes = sizeof(local_buffer) - 1;
1467 if (nbytes >= max_bytes)
1468 return -E2BIG;
1469 /* Allocate a dynamic buffer if we need one */
1470 if (nbytes >= sizeof(local_buffer)) {
1471 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1472 if (buffer == NULL)
1473 return -ENOMEM;
1474 }
5a3eb9f6
LZ
1475 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1476 retval = -EFAULT;
1477 goto out;
1478 }
db3b1497
PM
1479
1480 buffer[nbytes] = 0; /* nul-terminate */
1481 strstrip(buffer);
1482 retval = cft->write_string(cgrp, cft, buffer);
1483 if (!retval)
1484 retval = nbytes;
5a3eb9f6 1485out:
db3b1497
PM
1486 if (buffer != local_buffer)
1487 kfree(buffer);
1488 return retval;
1489}
1490
ddbcc7e8
PM
1491static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1492 size_t nbytes, loff_t *ppos)
1493{
1494 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1495 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1496
75139b82 1497 if (cgroup_is_removed(cgrp))
ddbcc7e8 1498 return -ENODEV;
355e0c48 1499 if (cft->write)
bd89aabc 1500 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1501 if (cft->write_u64 || cft->write_s64)
1502 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1503 if (cft->write_string)
1504 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1505 if (cft->trigger) {
1506 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1507 return ret ? ret : nbytes;
1508 }
355e0c48 1509 return -EINVAL;
ddbcc7e8
PM
1510}
1511
f4c753b7
PM
1512static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1513 struct file *file,
1514 char __user *buf, size_t nbytes,
1515 loff_t *ppos)
ddbcc7e8 1516{
84eea842 1517 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1518 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1519 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1520
1521 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1522}
1523
e73d2c61
PM
1524static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1525 struct file *file,
1526 char __user *buf, size_t nbytes,
1527 loff_t *ppos)
1528{
84eea842 1529 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1530 s64 val = cft->read_s64(cgrp, cft);
1531 int len = sprintf(tmp, "%lld\n", (long long) val);
1532
1533 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1534}
1535
ddbcc7e8
PM
1536static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1537 size_t nbytes, loff_t *ppos)
1538{
1539 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1540 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1541
75139b82 1542 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
1543 return -ENODEV;
1544
1545 if (cft->read)
bd89aabc 1546 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1547 if (cft->read_u64)
1548 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1549 if (cft->read_s64)
1550 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1551 return -EINVAL;
1552}
1553
91796569
PM
1554/*
1555 * seqfile ops/methods for returning structured data. Currently just
1556 * supports string->u64 maps, but can be extended in future.
1557 */
1558
1559struct cgroup_seqfile_state {
1560 struct cftype *cft;
1561 struct cgroup *cgroup;
1562};
1563
1564static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1565{
1566 struct seq_file *sf = cb->state;
1567 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1568}
1569
1570static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1571{
1572 struct cgroup_seqfile_state *state = m->private;
1573 struct cftype *cft = state->cft;
29486df3
SH
1574 if (cft->read_map) {
1575 struct cgroup_map_cb cb = {
1576 .fill = cgroup_map_add,
1577 .state = m,
1578 };
1579 return cft->read_map(state->cgroup, cft, &cb);
1580 }
1581 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1582}
1583
96930a63 1584static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
1585{
1586 struct seq_file *seq = file->private_data;
1587 kfree(seq->private);
1588 return single_release(inode, file);
1589}
1590
1591static struct file_operations cgroup_seqfile_operations = {
1592 .read = seq_read,
e788e066 1593 .write = cgroup_file_write,
91796569
PM
1594 .llseek = seq_lseek,
1595 .release = cgroup_seqfile_release,
1596};
1597
ddbcc7e8
PM
1598static int cgroup_file_open(struct inode *inode, struct file *file)
1599{
1600 int err;
1601 struct cftype *cft;
1602
1603 err = generic_file_open(inode, file);
1604 if (err)
1605 return err;
ddbcc7e8 1606 cft = __d_cft(file->f_dentry);
75139b82 1607
29486df3 1608 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1609 struct cgroup_seqfile_state *state =
1610 kzalloc(sizeof(*state), GFP_USER);
1611 if (!state)
1612 return -ENOMEM;
1613 state->cft = cft;
1614 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1615 file->f_op = &cgroup_seqfile_operations;
1616 err = single_open(file, cgroup_seqfile_show, state);
1617 if (err < 0)
1618 kfree(state);
1619 } else if (cft->open)
ddbcc7e8
PM
1620 err = cft->open(inode, file);
1621 else
1622 err = 0;
1623
1624 return err;
1625}
1626
1627static int cgroup_file_release(struct inode *inode, struct file *file)
1628{
1629 struct cftype *cft = __d_cft(file->f_dentry);
1630 if (cft->release)
1631 return cft->release(inode, file);
1632 return 0;
1633}
1634
1635/*
1636 * cgroup_rename - Only allow simple rename of directories in place.
1637 */
1638static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1639 struct inode *new_dir, struct dentry *new_dentry)
1640{
1641 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1642 return -ENOTDIR;
1643 if (new_dentry->d_inode)
1644 return -EEXIST;
1645 if (old_dir != new_dir)
1646 return -EIO;
1647 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1648}
1649
1650static struct file_operations cgroup_file_operations = {
1651 .read = cgroup_file_read,
1652 .write = cgroup_file_write,
1653 .llseek = generic_file_llseek,
1654 .open = cgroup_file_open,
1655 .release = cgroup_file_release,
1656};
1657
1658static struct inode_operations cgroup_dir_inode_operations = {
1659 .lookup = simple_lookup,
1660 .mkdir = cgroup_mkdir,
1661 .rmdir = cgroup_rmdir,
1662 .rename = cgroup_rename,
1663};
1664
1665static int cgroup_create_file(struct dentry *dentry, int mode,
1666 struct super_block *sb)
1667{
3ba13d17 1668 static const struct dentry_operations cgroup_dops = {
ddbcc7e8
PM
1669 .d_iput = cgroup_diput,
1670 };
1671
1672 struct inode *inode;
1673
1674 if (!dentry)
1675 return -ENOENT;
1676 if (dentry->d_inode)
1677 return -EEXIST;
1678
1679 inode = cgroup_new_inode(mode, sb);
1680 if (!inode)
1681 return -ENOMEM;
1682
1683 if (S_ISDIR(mode)) {
1684 inode->i_op = &cgroup_dir_inode_operations;
1685 inode->i_fop = &simple_dir_operations;
1686
1687 /* start off with i_nlink == 2 (for "." entry) */
1688 inc_nlink(inode);
1689
1690 /* start with the directory inode held, so that we can
1691 * populate it without racing with another mkdir */
817929ec 1692 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1693 } else if (S_ISREG(mode)) {
1694 inode->i_size = 0;
1695 inode->i_fop = &cgroup_file_operations;
1696 }
1697 dentry->d_op = &cgroup_dops;
1698 d_instantiate(dentry, inode);
1699 dget(dentry); /* Extra count - pin the dentry in core */
1700 return 0;
1701}
1702
1703/*
a043e3b2
LZ
1704 * cgroup_create_dir - create a directory for an object.
1705 * @cgrp: the cgroup we create the directory for. It must have a valid
1706 * ->parent field. And we are going to fill its ->dentry field.
1707 * @dentry: dentry of the new cgroup
1708 * @mode: mode to set on new directory.
ddbcc7e8 1709 */
bd89aabc 1710static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1711 int mode)
1712{
1713 struct dentry *parent;
1714 int error = 0;
1715
bd89aabc
PM
1716 parent = cgrp->parent->dentry;
1717 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1718 if (!error) {
bd89aabc 1719 dentry->d_fsdata = cgrp;
ddbcc7e8 1720 inc_nlink(parent->d_inode);
a47295e6 1721 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
1722 dget(dentry);
1723 }
1724 dput(dentry);
1725
1726 return error;
1727}
1728
bd89aabc 1729int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1730 struct cgroup_subsys *subsys,
1731 const struct cftype *cft)
1732{
bd89aabc 1733 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1734 struct dentry *dentry;
1735 int error;
1736
1737 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1738 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1739 strcpy(name, subsys->name);
1740 strcat(name, ".");
1741 }
1742 strcat(name, cft->name);
1743 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1744 dentry = lookup_one_len(name, dir, strlen(name));
1745 if (!IS_ERR(dentry)) {
1746 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1747 cgrp->root->sb);
ddbcc7e8
PM
1748 if (!error)
1749 dentry->d_fsdata = (void *)cft;
1750 dput(dentry);
1751 } else
1752 error = PTR_ERR(dentry);
1753 return error;
1754}
1755
bd89aabc 1756int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1757 struct cgroup_subsys *subsys,
1758 const struct cftype cft[],
1759 int count)
1760{
1761 int i, err;
1762 for (i = 0; i < count; i++) {
bd89aabc 1763 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1764 if (err)
1765 return err;
1766 }
1767 return 0;
1768}
1769
a043e3b2
LZ
1770/**
1771 * cgroup_task_count - count the number of tasks in a cgroup.
1772 * @cgrp: the cgroup in question
1773 *
1774 * Return the number of tasks in the cgroup.
1775 */
bd89aabc 1776int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1777{
1778 int count = 0;
71cbb949 1779 struct cg_cgroup_link *link;
817929ec
PM
1780
1781 read_lock(&css_set_lock);
71cbb949 1782 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 1783 count += atomic_read(&link->cg->refcount);
817929ec
PM
1784 }
1785 read_unlock(&css_set_lock);
bbcb81d0
PM
1786 return count;
1787}
1788
817929ec
PM
1789/*
1790 * Advance a list_head iterator. The iterator should be positioned at
1791 * the start of a css_set
1792 */
bd89aabc 1793static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1794 struct cgroup_iter *it)
1795{
1796 struct list_head *l = it->cg_link;
1797 struct cg_cgroup_link *link;
1798 struct css_set *cg;
1799
1800 /* Advance to the next non-empty css_set */
1801 do {
1802 l = l->next;
bd89aabc 1803 if (l == &cgrp->css_sets) {
817929ec
PM
1804 it->cg_link = NULL;
1805 return;
1806 }
bd89aabc 1807 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1808 cg = link->cg;
1809 } while (list_empty(&cg->tasks));
1810 it->cg_link = l;
1811 it->task = cg->tasks.next;
1812}
1813
31a7df01
CW
1814/*
1815 * To reduce the fork() overhead for systems that are not actually
1816 * using their cgroups capability, we don't maintain the lists running
1817 * through each css_set to its tasks until we see the list actually
1818 * used - in other words after the first call to cgroup_iter_start().
1819 *
1820 * The tasklist_lock is not held here, as do_each_thread() and
1821 * while_each_thread() are protected by RCU.
1822 */
3df91fe3 1823static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1824{
1825 struct task_struct *p, *g;
1826 write_lock(&css_set_lock);
1827 use_task_css_set_links = 1;
1828 do_each_thread(g, p) {
1829 task_lock(p);
0e04388f
LZ
1830 /*
1831 * We should check if the process is exiting, otherwise
1832 * it will race with cgroup_exit() in that the list
1833 * entry won't be deleted though the process has exited.
1834 */
1835 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1836 list_add(&p->cg_list, &p->cgroups->tasks);
1837 task_unlock(p);
1838 } while_each_thread(g, p);
1839 write_unlock(&css_set_lock);
1840}
1841
bd89aabc 1842void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1843{
1844 /*
1845 * The first time anyone tries to iterate across a cgroup,
1846 * we need to enable the list linking each css_set to its
1847 * tasks, and fix up all existing tasks.
1848 */
31a7df01
CW
1849 if (!use_task_css_set_links)
1850 cgroup_enable_task_cg_lists();
1851
817929ec 1852 read_lock(&css_set_lock);
bd89aabc
PM
1853 it->cg_link = &cgrp->css_sets;
1854 cgroup_advance_iter(cgrp, it);
817929ec
PM
1855}
1856
bd89aabc 1857struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1858 struct cgroup_iter *it)
1859{
1860 struct task_struct *res;
1861 struct list_head *l = it->task;
2019f634 1862 struct cg_cgroup_link *link;
817929ec
PM
1863
1864 /* If the iterator cg is NULL, we have no tasks */
1865 if (!it->cg_link)
1866 return NULL;
1867 res = list_entry(l, struct task_struct, cg_list);
1868 /* Advance iterator to find next entry */
1869 l = l->next;
2019f634
LJ
1870 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1871 if (l == &link->cg->tasks) {
817929ec
PM
1872 /* We reached the end of this task list - move on to
1873 * the next cg_cgroup_link */
bd89aabc 1874 cgroup_advance_iter(cgrp, it);
817929ec
PM
1875 } else {
1876 it->task = l;
1877 }
1878 return res;
1879}
1880
bd89aabc 1881void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1882{
1883 read_unlock(&css_set_lock);
1884}
1885
31a7df01
CW
1886static inline int started_after_time(struct task_struct *t1,
1887 struct timespec *time,
1888 struct task_struct *t2)
1889{
1890 int start_diff = timespec_compare(&t1->start_time, time);
1891 if (start_diff > 0) {
1892 return 1;
1893 } else if (start_diff < 0) {
1894 return 0;
1895 } else {
1896 /*
1897 * Arbitrarily, if two processes started at the same
1898 * time, we'll say that the lower pointer value
1899 * started first. Note that t2 may have exited by now
1900 * so this may not be a valid pointer any longer, but
1901 * that's fine - it still serves to distinguish
1902 * between two tasks started (effectively) simultaneously.
1903 */
1904 return t1 > t2;
1905 }
1906}
1907
1908/*
1909 * This function is a callback from heap_insert() and is used to order
1910 * the heap.
1911 * In this case we order the heap in descending task start time.
1912 */
1913static inline int started_after(void *p1, void *p2)
1914{
1915 struct task_struct *t1 = p1;
1916 struct task_struct *t2 = p2;
1917 return started_after_time(t1, &t2->start_time, t2);
1918}
1919
1920/**
1921 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1922 * @scan: struct cgroup_scanner containing arguments for the scan
1923 *
1924 * Arguments include pointers to callback functions test_task() and
1925 * process_task().
1926 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1927 * and if it returns true, call process_task() for it also.
1928 * The test_task pointer may be NULL, meaning always true (select all tasks).
1929 * Effectively duplicates cgroup_iter_{start,next,end}()
1930 * but does not lock css_set_lock for the call to process_task().
1931 * The struct cgroup_scanner may be embedded in any structure of the caller's
1932 * creation.
1933 * It is guaranteed that process_task() will act on every task that
1934 * is a member of the cgroup for the duration of this call. This
1935 * function may or may not call process_task() for tasks that exit
1936 * or move to a different cgroup during the call, or are forked or
1937 * move into the cgroup during the call.
1938 *
1939 * Note that test_task() may be called with locks held, and may in some
1940 * situations be called multiple times for the same task, so it should
1941 * be cheap.
1942 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1943 * pre-allocated and will be used for heap operations (and its "gt" member will
1944 * be overwritten), else a temporary heap will be used (allocation of which
1945 * may cause this function to fail).
1946 */
1947int cgroup_scan_tasks(struct cgroup_scanner *scan)
1948{
1949 int retval, i;
1950 struct cgroup_iter it;
1951 struct task_struct *p, *dropped;
1952 /* Never dereference latest_task, since it's not refcounted */
1953 struct task_struct *latest_task = NULL;
1954 struct ptr_heap tmp_heap;
1955 struct ptr_heap *heap;
1956 struct timespec latest_time = { 0, 0 };
1957
1958 if (scan->heap) {
1959 /* The caller supplied our heap and pre-allocated its memory */
1960 heap = scan->heap;
1961 heap->gt = &started_after;
1962 } else {
1963 /* We need to allocate our own heap memory */
1964 heap = &tmp_heap;
1965 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1966 if (retval)
1967 /* cannot allocate the heap */
1968 return retval;
1969 }
1970
1971 again:
1972 /*
1973 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1974 * to determine which are of interest, and using the scanner's
1975 * "process_task" callback to process any of them that need an update.
1976 * Since we don't want to hold any locks during the task updates,
1977 * gather tasks to be processed in a heap structure.
1978 * The heap is sorted by descending task start time.
1979 * If the statically-sized heap fills up, we overflow tasks that
1980 * started later, and in future iterations only consider tasks that
1981 * started after the latest task in the previous pass. This
1982 * guarantees forward progress and that we don't miss any tasks.
1983 */
1984 heap->size = 0;
1985 cgroup_iter_start(scan->cg, &it);
1986 while ((p = cgroup_iter_next(scan->cg, &it))) {
1987 /*
1988 * Only affect tasks that qualify per the caller's callback,
1989 * if he provided one
1990 */
1991 if (scan->test_task && !scan->test_task(p, scan))
1992 continue;
1993 /*
1994 * Only process tasks that started after the last task
1995 * we processed
1996 */
1997 if (!started_after_time(p, &latest_time, latest_task))
1998 continue;
1999 dropped = heap_insert(heap, p);
2000 if (dropped == NULL) {
2001 /*
2002 * The new task was inserted; the heap wasn't
2003 * previously full
2004 */
2005 get_task_struct(p);
2006 } else if (dropped != p) {
2007 /*
2008 * The new task was inserted, and pushed out a
2009 * different task
2010 */
2011 get_task_struct(p);
2012 put_task_struct(dropped);
2013 }
2014 /*
2015 * Else the new task was newer than anything already in
2016 * the heap and wasn't inserted
2017 */
2018 }
2019 cgroup_iter_end(scan->cg, &it);
2020
2021 if (heap->size) {
2022 for (i = 0; i < heap->size; i++) {
4fe91d51 2023 struct task_struct *q = heap->ptrs[i];
31a7df01 2024 if (i == 0) {
4fe91d51
PJ
2025 latest_time = q->start_time;
2026 latest_task = q;
31a7df01
CW
2027 }
2028 /* Process the task per the caller's callback */
4fe91d51
PJ
2029 scan->process_task(q, scan);
2030 put_task_struct(q);
31a7df01
CW
2031 }
2032 /*
2033 * If we had to process any tasks at all, scan again
2034 * in case some of them were in the middle of forking
2035 * children that didn't get processed.
2036 * Not the most efficient way to do it, but it avoids
2037 * having to take callback_mutex in the fork path
2038 */
2039 goto again;
2040 }
2041 if (heap == &tmp_heap)
2042 heap_free(&tmp_heap);
2043 return 0;
2044}
2045
bbcb81d0
PM
2046/*
2047 * Stuff for reading the 'tasks' file.
2048 *
2049 * Reading this file can return large amounts of data if a cgroup has
2050 * *lots* of attached tasks. So it may need several calls to read(),
2051 * but we cannot guarantee that the information we produce is correct
2052 * unless we produce it entirely atomically.
2053 *
bbcb81d0 2054 */
bbcb81d0
PM
2055
2056/*
2057 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2058 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2059 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2060 * read section, so the css_set can't go away, and is
2061 * immutable after creation.
2062 */
bd89aabc 2063static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0 2064{
e7b80bb6 2065 int n = 0, pid;
817929ec
PM
2066 struct cgroup_iter it;
2067 struct task_struct *tsk;
bd89aabc
PM
2068 cgroup_iter_start(cgrp, &it);
2069 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2070 if (unlikely(n == npids))
2071 break;
e7b80bb6
G
2072 pid = task_pid_vnr(tsk);
2073 if (pid > 0)
2074 pidarray[n++] = pid;
817929ec 2075 }
bd89aabc 2076 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2077 return n;
2078}
2079
846c7bb0 2080/**
a043e3b2 2081 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2082 * @stats: cgroupstats to fill information into
2083 * @dentry: A dentry entry belonging to the cgroup for which stats have
2084 * been requested.
a043e3b2
LZ
2085 *
2086 * Build and fill cgroupstats so that taskstats can export it to user
2087 * space.
846c7bb0
BS
2088 */
2089int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2090{
2091 int ret = -EINVAL;
bd89aabc 2092 struct cgroup *cgrp;
846c7bb0
BS
2093 struct cgroup_iter it;
2094 struct task_struct *tsk;
33d283be 2095
846c7bb0 2096 /*
33d283be
LZ
2097 * Validate dentry by checking the superblock operations,
2098 * and make sure it's a directory.
846c7bb0 2099 */
33d283be
LZ
2100 if (dentry->d_sb->s_op != &cgroup_ops ||
2101 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2102 goto err;
2103
2104 ret = 0;
bd89aabc 2105 cgrp = dentry->d_fsdata;
846c7bb0 2106
bd89aabc
PM
2107 cgroup_iter_start(cgrp, &it);
2108 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2109 switch (tsk->state) {
2110 case TASK_RUNNING:
2111 stats->nr_running++;
2112 break;
2113 case TASK_INTERRUPTIBLE:
2114 stats->nr_sleeping++;
2115 break;
2116 case TASK_UNINTERRUPTIBLE:
2117 stats->nr_uninterruptible++;
2118 break;
2119 case TASK_STOPPED:
2120 stats->nr_stopped++;
2121 break;
2122 default:
2123 if (delayacct_is_task_waiting_on_io(tsk))
2124 stats->nr_io_wait++;
2125 break;
2126 }
2127 }
bd89aabc 2128 cgroup_iter_end(cgrp, &it);
846c7bb0 2129
846c7bb0
BS
2130err:
2131 return ret;
2132}
2133
bbcb81d0
PM
2134static int cmppid(const void *a, const void *b)
2135{
2136 return *(pid_t *)a - *(pid_t *)b;
2137}
2138
cc31edce 2139
bbcb81d0 2140/*
cc31edce
PM
2141 * seq_file methods for the "tasks" file. The seq_file position is the
2142 * next pid to display; the seq_file iterator is a pointer to the pid
2143 * in the cgroup->tasks_pids array.
bbcb81d0 2144 */
cc31edce
PM
2145
2146static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2147{
cc31edce
PM
2148 /*
2149 * Initially we receive a position value that corresponds to
2150 * one more than the last pid shown (or 0 on the first call or
2151 * after a seek to the start). Use a binary-search to find the
2152 * next pid to display, if any
2153 */
2154 struct cgroup *cgrp = s->private;
2155 int index = 0, pid = *pos;
2156 int *iter;
2157
2158 down_read(&cgrp->pids_mutex);
2159 if (pid) {
2160 int end = cgrp->pids_length;
20777766 2161
cc31edce
PM
2162 while (index < end) {
2163 int mid = (index + end) / 2;
2164 if (cgrp->tasks_pids[mid] == pid) {
2165 index = mid;
2166 break;
2167 } else if (cgrp->tasks_pids[mid] <= pid)
2168 index = mid + 1;
2169 else
2170 end = mid;
2171 }
2172 }
2173 /* If we're off the end of the array, we're done */
2174 if (index >= cgrp->pids_length)
2175 return NULL;
2176 /* Update the abstract position to be the actual pid that we found */
2177 iter = cgrp->tasks_pids + index;
2178 *pos = *iter;
2179 return iter;
2180}
2181
2182static void cgroup_tasks_stop(struct seq_file *s, void *v)
2183{
2184 struct cgroup *cgrp = s->private;
2185 up_read(&cgrp->pids_mutex);
2186}
2187
2188static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2189{
2190 struct cgroup *cgrp = s->private;
2191 int *p = v;
2192 int *end = cgrp->tasks_pids + cgrp->pids_length;
2193
2194 /*
2195 * Advance to the next pid in the array. If this goes off the
2196 * end, we're done
2197 */
2198 p++;
2199 if (p >= end) {
2200 return NULL;
2201 } else {
2202 *pos = *p;
2203 return p;
2204 }
2205}
2206
2207static int cgroup_tasks_show(struct seq_file *s, void *v)
2208{
2209 return seq_printf(s, "%d\n", *(int *)v);
2210}
bbcb81d0 2211
cc31edce
PM
2212static struct seq_operations cgroup_tasks_seq_operations = {
2213 .start = cgroup_tasks_start,
2214 .stop = cgroup_tasks_stop,
2215 .next = cgroup_tasks_next,
2216 .show = cgroup_tasks_show,
2217};
2218
2219static void release_cgroup_pid_array(struct cgroup *cgrp)
2220{
2221 down_write(&cgrp->pids_mutex);
2222 BUG_ON(!cgrp->pids_use_count);
2223 if (!--cgrp->pids_use_count) {
2224 kfree(cgrp->tasks_pids);
2225 cgrp->tasks_pids = NULL;
2226 cgrp->pids_length = 0;
2227 }
2228 up_write(&cgrp->pids_mutex);
bbcb81d0
PM
2229}
2230
cc31edce
PM
2231static int cgroup_tasks_release(struct inode *inode, struct file *file)
2232{
2233 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2234
2235 if (!(file->f_mode & FMODE_READ))
2236 return 0;
2237
2238 release_cgroup_pid_array(cgrp);
2239 return seq_release(inode, file);
2240}
2241
2242static struct file_operations cgroup_tasks_operations = {
2243 .read = seq_read,
2244 .llseek = seq_lseek,
2245 .write = cgroup_file_write,
2246 .release = cgroup_tasks_release,
2247};
2248
bbcb81d0 2249/*
cc31edce 2250 * Handle an open on 'tasks' file. Prepare an array containing the
bbcb81d0 2251 * process id's of tasks currently attached to the cgroup being opened.
bbcb81d0 2252 */
cc31edce 2253
bbcb81d0
PM
2254static int cgroup_tasks_open(struct inode *unused, struct file *file)
2255{
bd89aabc 2256 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2257 pid_t *pidarray;
2258 int npids;
cc31edce 2259 int retval;
bbcb81d0 2260
cc31edce 2261 /* Nothing to do for write-only files */
bbcb81d0
PM
2262 if (!(file->f_mode & FMODE_READ))
2263 return 0;
2264
bbcb81d0
PM
2265 /*
2266 * If cgroup gets more users after we read count, we won't have
2267 * enough space - tough. This race is indistinguishable to the
2268 * caller from the case that the additional cgroup users didn't
2269 * show up until sometime later on.
2270 */
bd89aabc 2271 npids = cgroup_task_count(cgrp);
cc31edce
PM
2272 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2273 if (!pidarray)
2274 return -ENOMEM;
2275 npids = pid_array_load(pidarray, npids, cgrp);
2276 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
bbcb81d0 2277
cc31edce
PM
2278 /*
2279 * Store the array in the cgroup, freeing the old
2280 * array if necessary
2281 */
2282 down_write(&cgrp->pids_mutex);
2283 kfree(cgrp->tasks_pids);
2284 cgrp->tasks_pids = pidarray;
2285 cgrp->pids_length = npids;
2286 cgrp->pids_use_count++;
2287 up_write(&cgrp->pids_mutex);
2288
2289 file->f_op = &cgroup_tasks_operations;
2290
2291 retval = seq_open(file, &cgroup_tasks_seq_operations);
2292 if (retval) {
2293 release_cgroup_pid_array(cgrp);
2294 return retval;
bbcb81d0 2295 }
cc31edce 2296 ((struct seq_file *)file->private_data)->private = cgrp;
bbcb81d0
PM
2297 return 0;
2298}
2299
bd89aabc 2300static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2301 struct cftype *cft)
2302{
bd89aabc 2303 return notify_on_release(cgrp);
81a6a5cd
PM
2304}
2305
6379c106
PM
2306static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2307 struct cftype *cft,
2308 u64 val)
2309{
2310 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2311 if (val)
2312 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2313 else
2314 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2315 return 0;
2316}
2317
bbcb81d0
PM
2318/*
2319 * for the common functions, 'private' gives the type of file
2320 */
81a6a5cd
PM
2321static struct cftype files[] = {
2322 {
2323 .name = "tasks",
2324 .open = cgroup_tasks_open,
af351026 2325 .write_u64 = cgroup_tasks_write,
81a6a5cd
PM
2326 .release = cgroup_tasks_release,
2327 .private = FILE_TASKLIST,
2328 },
2329
2330 {
2331 .name = "notify_on_release",
f4c753b7 2332 .read_u64 = cgroup_read_notify_on_release,
6379c106 2333 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd
PM
2334 .private = FILE_NOTIFY_ON_RELEASE,
2335 },
81a6a5cd
PM
2336};
2337
2338static struct cftype cft_release_agent = {
2339 .name = "release_agent",
e788e066
PM
2340 .read_seq_string = cgroup_release_agent_show,
2341 .write_string = cgroup_release_agent_write,
2342 .max_write_len = PATH_MAX,
81a6a5cd 2343 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2344};
2345
bd89aabc 2346static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2347{
2348 int err;
2349 struct cgroup_subsys *ss;
2350
2351 /* First clear out any existing files */
bd89aabc 2352 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2353
bd89aabc 2354 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2355 if (err < 0)
2356 return err;
2357
bd89aabc
PM
2358 if (cgrp == cgrp->top_cgroup) {
2359 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2360 return err;
2361 }
2362
bd89aabc
PM
2363 for_each_subsys(cgrp->root, ss) {
2364 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2365 return err;
2366 }
38460b48
KH
2367 /* This cgroup is ready now */
2368 for_each_subsys(cgrp->root, ss) {
2369 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2370 /*
2371 * Update id->css pointer and make this css visible from
2372 * CSS ID functions. This pointer will be dereferened
2373 * from RCU-read-side without locks.
2374 */
2375 if (css->id)
2376 rcu_assign_pointer(css->id->css, css);
2377 }
ddbcc7e8
PM
2378
2379 return 0;
2380}
2381
2382static void init_cgroup_css(struct cgroup_subsys_state *css,
2383 struct cgroup_subsys *ss,
bd89aabc 2384 struct cgroup *cgrp)
ddbcc7e8 2385{
bd89aabc 2386 css->cgroup = cgrp;
e7c5ec91 2387 atomic_set(&css->refcnt, 1);
ddbcc7e8 2388 css->flags = 0;
38460b48 2389 css->id = NULL;
bd89aabc 2390 if (cgrp == dummytop)
ddbcc7e8 2391 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2392 BUG_ON(cgrp->subsys[ss->subsys_id]);
2393 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2394}
2395
999cd8a4
PM
2396static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2397{
2398 /* We need to take each hierarchy_mutex in a consistent order */
2399 int i;
2400
2401 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2402 struct cgroup_subsys *ss = subsys[i];
2403 if (ss->root == root)
cfebe563 2404 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
2405 }
2406}
2407
2408static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2409{
2410 int i;
2411
2412 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2413 struct cgroup_subsys *ss = subsys[i];
2414 if (ss->root == root)
2415 mutex_unlock(&ss->hierarchy_mutex);
2416 }
2417}
2418
ddbcc7e8 2419/*
a043e3b2
LZ
2420 * cgroup_create - create a cgroup
2421 * @parent: cgroup that will be parent of the new cgroup
2422 * @dentry: dentry of the new cgroup
2423 * @mode: mode to set on new inode
ddbcc7e8 2424 *
a043e3b2 2425 * Must be called with the mutex on the parent inode held
ddbcc7e8 2426 */
ddbcc7e8
PM
2427static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2428 int mode)
2429{
bd89aabc 2430 struct cgroup *cgrp;
ddbcc7e8
PM
2431 struct cgroupfs_root *root = parent->root;
2432 int err = 0;
2433 struct cgroup_subsys *ss;
2434 struct super_block *sb = root->sb;
2435
bd89aabc
PM
2436 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2437 if (!cgrp)
ddbcc7e8
PM
2438 return -ENOMEM;
2439
2440 /* Grab a reference on the superblock so the hierarchy doesn't
2441 * get deleted on unmount if there are child cgroups. This
2442 * can be done outside cgroup_mutex, since the sb can't
2443 * disappear while someone has an open control file on the
2444 * fs */
2445 atomic_inc(&sb->s_active);
2446
2447 mutex_lock(&cgroup_mutex);
2448
cc31edce 2449 init_cgroup_housekeeping(cgrp);
ddbcc7e8 2450
bd89aabc
PM
2451 cgrp->parent = parent;
2452 cgrp->root = parent->root;
2453 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2454
b6abdb0e
LZ
2455 if (notify_on_release(parent))
2456 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2457
ddbcc7e8 2458 for_each_subsys(root, ss) {
bd89aabc 2459 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2460 if (IS_ERR(css)) {
2461 err = PTR_ERR(css);
2462 goto err_destroy;
2463 }
bd89aabc 2464 init_cgroup_css(css, ss, cgrp);
38460b48
KH
2465 if (ss->use_id)
2466 if (alloc_css_id(ss, parent, cgrp))
2467 goto err_destroy;
2468 /* At error, ->destroy() callback has to free assigned ID. */
ddbcc7e8
PM
2469 }
2470
999cd8a4 2471 cgroup_lock_hierarchy(root);
bd89aabc 2472 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 2473 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2474 root->number_of_cgroups++;
2475
bd89aabc 2476 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2477 if (err < 0)
2478 goto err_remove;
2479
2480 /* The cgroup directory was pre-locked for us */
bd89aabc 2481 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2482
bd89aabc 2483 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2484 /* If err < 0, we have a half-filled directory - oh well ;) */
2485
2486 mutex_unlock(&cgroup_mutex);
bd89aabc 2487 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2488
2489 return 0;
2490
2491 err_remove:
2492
baef99a0 2493 cgroup_lock_hierarchy(root);
bd89aabc 2494 list_del(&cgrp->sibling);
baef99a0 2495 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
2496 root->number_of_cgroups--;
2497
2498 err_destroy:
2499
2500 for_each_subsys(root, ss) {
bd89aabc
PM
2501 if (cgrp->subsys[ss->subsys_id])
2502 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2503 }
2504
2505 mutex_unlock(&cgroup_mutex);
2506
2507 /* Release the reference count that we took on the superblock */
2508 deactivate_super(sb);
2509
bd89aabc 2510 kfree(cgrp);
ddbcc7e8
PM
2511 return err;
2512}
2513
2514static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2515{
2516 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2517
2518 /* the vfs holds inode->i_mutex already */
2519 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2520}
2521
55b6fd01 2522static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2523{
2524 /* Check the reference count on each subsystem. Since we
2525 * already established that there are no tasks in the
e7c5ec91 2526 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
2527 * be no outstanding references, so the subsystem is safe to
2528 * destroy. We scan across all subsystems rather than using
2529 * the per-hierarchy linked list of mounted subsystems since
2530 * we can be called via check_for_release() with no
2531 * synchronization other than RCU, and the subsystem linked
2532 * list isn't RCU-safe */
2533 int i;
2534 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2535 struct cgroup_subsys *ss = subsys[i];
2536 struct cgroup_subsys_state *css;
2537 /* Skip subsystems not in this hierarchy */
bd89aabc 2538 if (ss->root != cgrp->root)
81a6a5cd 2539 continue;
bd89aabc 2540 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2541 /* When called from check_for_release() it's possible
2542 * that by this point the cgroup has been removed
2543 * and the css deleted. But a false-positive doesn't
2544 * matter, since it can only happen if the cgroup
2545 * has been deleted and hence no longer needs the
2546 * release agent to be called anyway. */
e7c5ec91 2547 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 2548 return 1;
81a6a5cd
PM
2549 }
2550 return 0;
2551}
2552
e7c5ec91
PM
2553/*
2554 * Atomically mark all (or else none) of the cgroup's CSS objects as
2555 * CSS_REMOVED. Return true on success, or false if the cgroup has
2556 * busy subsystems. Call with cgroup_mutex held
2557 */
2558
2559static int cgroup_clear_css_refs(struct cgroup *cgrp)
2560{
2561 struct cgroup_subsys *ss;
2562 unsigned long flags;
2563 bool failed = false;
2564 local_irq_save(flags);
2565 for_each_subsys(cgrp->root, ss) {
2566 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2567 int refcnt;
804b3c28 2568 while (1) {
e7c5ec91
PM
2569 /* We can only remove a CSS with a refcnt==1 */
2570 refcnt = atomic_read(&css->refcnt);
2571 if (refcnt > 1) {
2572 failed = true;
2573 goto done;
2574 }
2575 BUG_ON(!refcnt);
2576 /*
2577 * Drop the refcnt to 0 while we check other
2578 * subsystems. This will cause any racing
2579 * css_tryget() to spin until we set the
2580 * CSS_REMOVED bits or abort
2581 */
804b3c28
PM
2582 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2583 break;
2584 cpu_relax();
2585 }
e7c5ec91
PM
2586 }
2587 done:
2588 for_each_subsys(cgrp->root, ss) {
2589 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2590 if (failed) {
2591 /*
2592 * Restore old refcnt if we previously managed
2593 * to clear it from 1 to 0
2594 */
2595 if (!atomic_read(&css->refcnt))
2596 atomic_set(&css->refcnt, 1);
2597 } else {
2598 /* Commit the fact that the CSS is removed */
2599 set_bit(CSS_REMOVED, &css->flags);
2600 }
2601 }
2602 local_irq_restore(flags);
2603 return !failed;
2604}
2605
ddbcc7e8
PM
2606static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2607{
bd89aabc 2608 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2609 struct dentry *d;
2610 struct cgroup *parent;
ddbcc7e8
PM
2611
2612 /* the vfs holds both inode->i_mutex already */
2613
2614 mutex_lock(&cgroup_mutex);
bd89aabc 2615 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2616 mutex_unlock(&cgroup_mutex);
2617 return -EBUSY;
2618 }
bd89aabc 2619 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2620 mutex_unlock(&cgroup_mutex);
2621 return -EBUSY;
2622 }
3fa59dfb 2623 mutex_unlock(&cgroup_mutex);
a043e3b2 2624
4fca88c8 2625 /*
a043e3b2
LZ
2626 * Call pre_destroy handlers of subsys. Notify subsystems
2627 * that rmdir() request comes.
4fca88c8
KH
2628 */
2629 cgroup_call_pre_destroy(cgrp);
ddbcc7e8 2630
3fa59dfb
KH
2631 mutex_lock(&cgroup_mutex);
2632 parent = cgrp->parent;
3fa59dfb
KH
2633
2634 if (atomic_read(&cgrp->count)
2635 || !list_empty(&cgrp->children)
e7c5ec91 2636 || !cgroup_clear_css_refs(cgrp)) {
ddbcc7e8
PM
2637 mutex_unlock(&cgroup_mutex);
2638 return -EBUSY;
2639 }
2640
81a6a5cd 2641 spin_lock(&release_list_lock);
bd89aabc
PM
2642 set_bit(CGRP_REMOVED, &cgrp->flags);
2643 if (!list_empty(&cgrp->release_list))
2644 list_del(&cgrp->release_list);
81a6a5cd 2645 spin_unlock(&release_list_lock);
999cd8a4
PM
2646
2647 cgroup_lock_hierarchy(cgrp->root);
2648 /* delete this cgroup from parent->children */
bd89aabc 2649 list_del(&cgrp->sibling);
999cd8a4
PM
2650 cgroup_unlock_hierarchy(cgrp->root);
2651
bd89aabc
PM
2652 spin_lock(&cgrp->dentry->d_lock);
2653 d = dget(cgrp->dentry);
ddbcc7e8
PM
2654 spin_unlock(&d->d_lock);
2655
2656 cgroup_d_remove_dir(d);
2657 dput(d);
ddbcc7e8 2658
bd89aabc 2659 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2660 check_for_release(parent);
2661
ddbcc7e8 2662 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2663 return 0;
2664}
2665
06a11920 2666static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 2667{
ddbcc7e8 2668 struct cgroup_subsys_state *css;
cfe36bde
DC
2669
2670 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2671
2672 /* Create the top cgroup state for this subsystem */
33a68ac1 2673 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
2674 ss->root = &rootnode;
2675 css = ss->create(ss, dummytop);
2676 /* We don't handle early failures gracefully */
2677 BUG_ON(IS_ERR(css));
2678 init_cgroup_css(css, ss, dummytop);
2679
e8d55fde 2680 /* Update the init_css_set to contain a subsys
817929ec 2681 * pointer to this state - since the subsystem is
e8d55fde
LZ
2682 * newly registered, all tasks and hence the
2683 * init_css_set is in the subsystem's top cgroup. */
2684 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
2685
2686 need_forkexit_callback |= ss->fork || ss->exit;
2687
e8d55fde
LZ
2688 /* At system boot, before all subsystems have been
2689 * registered, no tasks have been forked, so we don't
2690 * need to invoke fork callbacks here. */
2691 BUG_ON(!list_empty(&init_task.tasks));
2692
999cd8a4 2693 mutex_init(&ss->hierarchy_mutex);
cfebe563 2694 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8
PM
2695 ss->active = 1;
2696}
2697
2698/**
a043e3b2
LZ
2699 * cgroup_init_early - cgroup initialization at system boot
2700 *
2701 * Initialize cgroups at system boot, and initialize any
2702 * subsystems that request early init.
ddbcc7e8
PM
2703 */
2704int __init cgroup_init_early(void)
2705{
2706 int i;
146aa1bd 2707 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
2708 INIT_LIST_HEAD(&init_css_set.cg_links);
2709 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 2710 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 2711 css_set_count = 1;
ddbcc7e8 2712 init_cgroup_root(&rootnode);
817929ec
PM
2713 root_count = 1;
2714 init_task.cgroups = &init_css_set;
2715
2716 init_css_set_link.cg = &init_css_set;
bd89aabc 2717 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2718 &rootnode.top_cgroup.css_sets);
2719 list_add(&init_css_set_link.cg_link_list,
2720 &init_css_set.cg_links);
ddbcc7e8 2721
472b1053
LZ
2722 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2723 INIT_HLIST_HEAD(&css_set_table[i]);
2724
ddbcc7e8
PM
2725 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2726 struct cgroup_subsys *ss = subsys[i];
2727
2728 BUG_ON(!ss->name);
2729 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2730 BUG_ON(!ss->create);
2731 BUG_ON(!ss->destroy);
2732 if (ss->subsys_id != i) {
cfe36bde 2733 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2734 ss->name, ss->subsys_id);
2735 BUG();
2736 }
2737
2738 if (ss->early_init)
2739 cgroup_init_subsys(ss);
2740 }
2741 return 0;
2742}
2743
2744/**
a043e3b2
LZ
2745 * cgroup_init - cgroup initialization
2746 *
2747 * Register cgroup filesystem and /proc file, and initialize
2748 * any subsystems that didn't request early init.
ddbcc7e8
PM
2749 */
2750int __init cgroup_init(void)
2751{
2752 int err;
2753 int i;
472b1053 2754 struct hlist_head *hhead;
a424316c
PM
2755
2756 err = bdi_init(&cgroup_backing_dev_info);
2757 if (err)
2758 return err;
ddbcc7e8
PM
2759
2760 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2761 struct cgroup_subsys *ss = subsys[i];
2762 if (!ss->early_init)
2763 cgroup_init_subsys(ss);
38460b48
KH
2764 if (ss->use_id)
2765 cgroup_subsys_init_idr(ss);
ddbcc7e8
PM
2766 }
2767
472b1053
LZ
2768 /* Add init_css_set to the hash table */
2769 hhead = css_set_hash(init_css_set.subsys);
2770 hlist_add_head(&init_css_set.hlist, hhead);
2771
ddbcc7e8
PM
2772 err = register_filesystem(&cgroup_fs_type);
2773 if (err < 0)
2774 goto out;
2775
46ae220b 2776 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 2777
ddbcc7e8 2778out:
a424316c
PM
2779 if (err)
2780 bdi_destroy(&cgroup_backing_dev_info);
2781
ddbcc7e8
PM
2782 return err;
2783}
b4f48b63 2784
a424316c
PM
2785/*
2786 * proc_cgroup_show()
2787 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2788 * - Used for /proc/<pid>/cgroup.
2789 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2790 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2791 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2792 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2793 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2794 * cgroup to top_cgroup.
2795 */
2796
2797/* TODO: Use a proper seq_file iterator */
2798static int proc_cgroup_show(struct seq_file *m, void *v)
2799{
2800 struct pid *pid;
2801 struct task_struct *tsk;
2802 char *buf;
2803 int retval;
2804 struct cgroupfs_root *root;
2805
2806 retval = -ENOMEM;
2807 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2808 if (!buf)
2809 goto out;
2810
2811 retval = -ESRCH;
2812 pid = m->private;
2813 tsk = get_pid_task(pid, PIDTYPE_PID);
2814 if (!tsk)
2815 goto out_free;
2816
2817 retval = 0;
2818
2819 mutex_lock(&cgroup_mutex);
2820
e5f6a860 2821 for_each_active_root(root) {
a424316c 2822 struct cgroup_subsys *ss;
bd89aabc 2823 struct cgroup *cgrp;
a424316c
PM
2824 int subsys_id;
2825 int count = 0;
2826
b6c3006d 2827 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2828 for_each_subsys(root, ss)
2829 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2830 seq_putc(m, ':');
2831 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2832 cgrp = task_cgroup(tsk, subsys_id);
2833 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2834 if (retval < 0)
2835 goto out_unlock;
2836 seq_puts(m, buf);
2837 seq_putc(m, '\n');
2838 }
2839
2840out_unlock:
2841 mutex_unlock(&cgroup_mutex);
2842 put_task_struct(tsk);
2843out_free:
2844 kfree(buf);
2845out:
2846 return retval;
2847}
2848
2849static int cgroup_open(struct inode *inode, struct file *file)
2850{
2851 struct pid *pid = PROC_I(inode)->pid;
2852 return single_open(file, proc_cgroup_show, pid);
2853}
2854
2855struct file_operations proc_cgroup_operations = {
2856 .open = cgroup_open,
2857 .read = seq_read,
2858 .llseek = seq_lseek,
2859 .release = single_release,
2860};
2861
2862/* Display information about each subsystem and each hierarchy */
2863static int proc_cgroupstats_show(struct seq_file *m, void *v)
2864{
2865 int i;
a424316c 2866
8bab8dde 2867 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2868 mutex_lock(&cgroup_mutex);
a424316c
PM
2869 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2870 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2871 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2872 ss->name, ss->root->subsys_bits,
8bab8dde 2873 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2874 }
2875 mutex_unlock(&cgroup_mutex);
2876 return 0;
2877}
2878
2879static int cgroupstats_open(struct inode *inode, struct file *file)
2880{
9dce07f1 2881 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2882}
2883
2884static struct file_operations proc_cgroupstats_operations = {
2885 .open = cgroupstats_open,
2886 .read = seq_read,
2887 .llseek = seq_lseek,
2888 .release = single_release,
2889};
2890
b4f48b63
PM
2891/**
2892 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2893 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2894 *
2895 * Description: A task inherits its parent's cgroup at fork().
2896 *
2897 * A pointer to the shared css_set was automatically copied in
2898 * fork.c by dup_task_struct(). However, we ignore that copy, since
2899 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2900 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2901 * have already changed current->cgroups, allowing the previously
2902 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2903 *
2904 * At the point that cgroup_fork() is called, 'current' is the parent
2905 * task, and the passed argument 'child' points to the child task.
2906 */
2907void cgroup_fork(struct task_struct *child)
2908{
817929ec
PM
2909 task_lock(current);
2910 child->cgroups = current->cgroups;
2911 get_css_set(child->cgroups);
2912 task_unlock(current);
2913 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2914}
2915
2916/**
a043e3b2
LZ
2917 * cgroup_fork_callbacks - run fork callbacks
2918 * @child: the new task
2919 *
2920 * Called on a new task very soon before adding it to the
2921 * tasklist. No need to take any locks since no-one can
2922 * be operating on this task.
b4f48b63
PM
2923 */
2924void cgroup_fork_callbacks(struct task_struct *child)
2925{
2926 if (need_forkexit_callback) {
2927 int i;
2928 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2929 struct cgroup_subsys *ss = subsys[i];
2930 if (ss->fork)
2931 ss->fork(ss, child);
2932 }
2933 }
2934}
2935
817929ec 2936/**
a043e3b2
LZ
2937 * cgroup_post_fork - called on a new task after adding it to the task list
2938 * @child: the task in question
2939 *
2940 * Adds the task to the list running through its css_set if necessary.
2941 * Has to be after the task is visible on the task list in case we race
2942 * with the first call to cgroup_iter_start() - to guarantee that the
2943 * new task ends up on its list.
2944 */
817929ec
PM
2945void cgroup_post_fork(struct task_struct *child)
2946{
2947 if (use_task_css_set_links) {
2948 write_lock(&css_set_lock);
b12b533f 2949 task_lock(child);
817929ec
PM
2950 if (list_empty(&child->cg_list))
2951 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 2952 task_unlock(child);
817929ec
PM
2953 write_unlock(&css_set_lock);
2954 }
2955}
b4f48b63
PM
2956/**
2957 * cgroup_exit - detach cgroup from exiting task
2958 * @tsk: pointer to task_struct of exiting process
a043e3b2 2959 * @run_callback: run exit callbacks?
b4f48b63
PM
2960 *
2961 * Description: Detach cgroup from @tsk and release it.
2962 *
2963 * Note that cgroups marked notify_on_release force every task in
2964 * them to take the global cgroup_mutex mutex when exiting.
2965 * This could impact scaling on very large systems. Be reluctant to
2966 * use notify_on_release cgroups where very high task exit scaling
2967 * is required on large systems.
2968 *
2969 * the_top_cgroup_hack:
2970 *
2971 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2972 *
2973 * We call cgroup_exit() while the task is still competent to
2974 * handle notify_on_release(), then leave the task attached to the
2975 * root cgroup in each hierarchy for the remainder of its exit.
2976 *
2977 * To do this properly, we would increment the reference count on
2978 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2979 * code we would add a second cgroup function call, to drop that
2980 * reference. This would just create an unnecessary hot spot on
2981 * the top_cgroup reference count, to no avail.
2982 *
2983 * Normally, holding a reference to a cgroup without bumping its
2984 * count is unsafe. The cgroup could go away, or someone could
2985 * attach us to a different cgroup, decrementing the count on
2986 * the first cgroup that we never incremented. But in this case,
2987 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
2988 * which wards off any cgroup_attach_task() attempts, or task is a failed
2989 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
2990 */
2991void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2992{
2993 int i;
817929ec 2994 struct css_set *cg;
b4f48b63
PM
2995
2996 if (run_callbacks && need_forkexit_callback) {
2997 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2998 struct cgroup_subsys *ss = subsys[i];
2999 if (ss->exit)
3000 ss->exit(ss, tsk);
3001 }
3002 }
817929ec
PM
3003
3004 /*
3005 * Unlink from the css_set task list if necessary.
3006 * Optimistically check cg_list before taking
3007 * css_set_lock
3008 */
3009 if (!list_empty(&tsk->cg_list)) {
3010 write_lock(&css_set_lock);
3011 if (!list_empty(&tsk->cg_list))
3012 list_del(&tsk->cg_list);
3013 write_unlock(&css_set_lock);
3014 }
3015
b4f48b63
PM
3016 /* Reassign the task to the init_css_set. */
3017 task_lock(tsk);
817929ec
PM
3018 cg = tsk->cgroups;
3019 tsk->cgroups = &init_css_set;
b4f48b63 3020 task_unlock(tsk);
817929ec 3021 if (cg)
81a6a5cd 3022 put_css_set_taskexit(cg);
b4f48b63 3023}
697f4161
PM
3024
3025/**
a043e3b2
LZ
3026 * cgroup_clone - clone the cgroup the given subsystem is attached to
3027 * @tsk: the task to be moved
3028 * @subsys: the given subsystem
e885dcde 3029 * @nodename: the name for the new cgroup
a043e3b2
LZ
3030 *
3031 * Duplicate the current cgroup in the hierarchy that the given
3032 * subsystem is attached to, and move this task into the new
3033 * child.
697f4161 3034 */
e885dcde
SH
3035int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3036 char *nodename)
697f4161
PM
3037{
3038 struct dentry *dentry;
3039 int ret = 0;
697f4161
PM
3040 struct cgroup *parent, *child;
3041 struct inode *inode;
3042 struct css_set *cg;
3043 struct cgroupfs_root *root;
3044 struct cgroup_subsys *ss;
3045
3046 /* We shouldn't be called by an unregistered subsystem */
3047 BUG_ON(!subsys->active);
3048
3049 /* First figure out what hierarchy and cgroup we're dealing
3050 * with, and pin them so we can drop cgroup_mutex */
3051 mutex_lock(&cgroup_mutex);
3052 again:
3053 root = subsys->root;
3054 if (root == &rootnode) {
697f4161
PM
3055 mutex_unlock(&cgroup_mutex);
3056 return 0;
3057 }
697f4161 3058
697f4161 3059 /* Pin the hierarchy */
1404f065 3060 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
3061 /* We race with the final deactivate_super() */
3062 mutex_unlock(&cgroup_mutex);
3063 return 0;
3064 }
697f4161 3065
817929ec 3066 /* Keep the cgroup alive */
1404f065
LZ
3067 task_lock(tsk);
3068 parent = task_cgroup(tsk, subsys->subsys_id);
3069 cg = tsk->cgroups;
817929ec 3070 get_css_set(cg);
104cbd55 3071 task_unlock(tsk);
1404f065 3072
697f4161
PM
3073 mutex_unlock(&cgroup_mutex);
3074
3075 /* Now do the VFS work to create a cgroup */
3076 inode = parent->dentry->d_inode;
3077
3078 /* Hold the parent directory mutex across this operation to
3079 * stop anyone else deleting the new cgroup */
3080 mutex_lock(&inode->i_mutex);
3081 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3082 if (IS_ERR(dentry)) {
3083 printk(KERN_INFO
cfe36bde 3084 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
3085 PTR_ERR(dentry));
3086 ret = PTR_ERR(dentry);
3087 goto out_release;
3088 }
3089
3090 /* Create the cgroup directory, which also creates the cgroup */
75139b82 3091 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 3092 child = __d_cgrp(dentry);
697f4161
PM
3093 dput(dentry);
3094 if (ret) {
3095 printk(KERN_INFO
3096 "Failed to create cgroup %s: %d\n", nodename,
3097 ret);
3098 goto out_release;
3099 }
3100
697f4161
PM
3101 /* The cgroup now exists. Retake cgroup_mutex and check
3102 * that we're still in the same state that we thought we
3103 * were. */
3104 mutex_lock(&cgroup_mutex);
3105 if ((root != subsys->root) ||
3106 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3107 /* Aargh, we raced ... */
3108 mutex_unlock(&inode->i_mutex);
817929ec 3109 put_css_set(cg);
697f4161 3110
1404f065 3111 deactivate_super(root->sb);
697f4161
PM
3112 /* The cgroup is still accessible in the VFS, but
3113 * we're not going to try to rmdir() it at this
3114 * point. */
3115 printk(KERN_INFO
3116 "Race in cgroup_clone() - leaking cgroup %s\n",
3117 nodename);
3118 goto again;
3119 }
3120
3121 /* do any required auto-setup */
3122 for_each_subsys(root, ss) {
3123 if (ss->post_clone)
3124 ss->post_clone(ss, child);
3125 }
3126
3127 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 3128 ret = cgroup_attach_task(child, tsk);
697f4161
PM
3129 mutex_unlock(&cgroup_mutex);
3130
3131 out_release:
3132 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
3133
3134 mutex_lock(&cgroup_mutex);
817929ec 3135 put_css_set(cg);
81a6a5cd 3136 mutex_unlock(&cgroup_mutex);
1404f065 3137 deactivate_super(root->sb);
697f4161
PM
3138 return ret;
3139}
3140
a043e3b2 3141/**
313e924c 3142 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 3143 * @cgrp: the cgroup in question
313e924c 3144 * @task: the task in question
a043e3b2 3145 *
313e924c
GN
3146 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3147 * hierarchy.
697f4161
PM
3148 *
3149 * If we are sending in dummytop, then presumably we are creating
3150 * the top cgroup in the subsystem.
3151 *
3152 * Called only by the ns (nsproxy) cgroup.
3153 */
313e924c 3154int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
3155{
3156 int ret;
3157 struct cgroup *target;
3158 int subsys_id;
3159
bd89aabc 3160 if (cgrp == dummytop)
697f4161
PM
3161 return 1;
3162
bd89aabc 3163 get_first_subsys(cgrp, NULL, &subsys_id);
313e924c 3164 target = task_cgroup(task, subsys_id);
bd89aabc
PM
3165 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3166 cgrp = cgrp->parent;
3167 ret = (cgrp == target);
697f4161
PM
3168 return ret;
3169}
81a6a5cd 3170
bd89aabc 3171static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3172{
3173 /* All of these checks rely on RCU to keep the cgroup
3174 * structure alive */
bd89aabc
PM
3175 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3176 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3177 /* Control Group is currently removeable. If it's not
3178 * already queued for a userspace notification, queue
3179 * it now */
3180 int need_schedule_work = 0;
3181 spin_lock(&release_list_lock);
bd89aabc
PM
3182 if (!cgroup_is_removed(cgrp) &&
3183 list_empty(&cgrp->release_list)) {
3184 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3185 need_schedule_work = 1;
3186 }
3187 spin_unlock(&release_list_lock);
3188 if (need_schedule_work)
3189 schedule_work(&release_agent_work);
3190 }
3191}
3192
3193void __css_put(struct cgroup_subsys_state *css)
3194{
bd89aabc 3195 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3196 rcu_read_lock();
e7c5ec91
PM
3197 if ((atomic_dec_return(&css->refcnt) == 1) &&
3198 notify_on_release(cgrp)) {
bd89aabc
PM
3199 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3200 check_for_release(cgrp);
81a6a5cd
PM
3201 }
3202 rcu_read_unlock();
3203}
3204
3205/*
3206 * Notify userspace when a cgroup is released, by running the
3207 * configured release agent with the name of the cgroup (path
3208 * relative to the root of cgroup file system) as the argument.
3209 *
3210 * Most likely, this user command will try to rmdir this cgroup.
3211 *
3212 * This races with the possibility that some other task will be
3213 * attached to this cgroup before it is removed, or that some other
3214 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3215 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3216 * unused, and this cgroup will be reprieved from its death sentence,
3217 * to continue to serve a useful existence. Next time it's released,
3218 * we will get notified again, if it still has 'notify_on_release' set.
3219 *
3220 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3221 * means only wait until the task is successfully execve()'d. The
3222 * separate release agent task is forked by call_usermodehelper(),
3223 * then control in this thread returns here, without waiting for the
3224 * release agent task. We don't bother to wait because the caller of
3225 * this routine has no use for the exit status of the release agent
3226 * task, so no sense holding our caller up for that.
81a6a5cd 3227 */
81a6a5cd
PM
3228static void cgroup_release_agent(struct work_struct *work)
3229{
3230 BUG_ON(work != &release_agent_work);
3231 mutex_lock(&cgroup_mutex);
3232 spin_lock(&release_list_lock);
3233 while (!list_empty(&release_list)) {
3234 char *argv[3], *envp[3];
3235 int i;
e788e066 3236 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3237 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3238 struct cgroup,
3239 release_list);
bd89aabc 3240 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3241 spin_unlock(&release_list_lock);
3242 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3243 if (!pathbuf)
3244 goto continue_free;
3245 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3246 goto continue_free;
3247 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3248 if (!agentbuf)
3249 goto continue_free;
81a6a5cd
PM
3250
3251 i = 0;
e788e066
PM
3252 argv[i++] = agentbuf;
3253 argv[i++] = pathbuf;
81a6a5cd
PM
3254 argv[i] = NULL;
3255
3256 i = 0;
3257 /* minimal command environment */
3258 envp[i++] = "HOME=/";
3259 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3260 envp[i] = NULL;
3261
3262 /* Drop the lock while we invoke the usermode helper,
3263 * since the exec could involve hitting disk and hence
3264 * be a slow process */
3265 mutex_unlock(&cgroup_mutex);
3266 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3267 mutex_lock(&cgroup_mutex);
e788e066
PM
3268 continue_free:
3269 kfree(pathbuf);
3270 kfree(agentbuf);
81a6a5cd
PM
3271 spin_lock(&release_list_lock);
3272 }
3273 spin_unlock(&release_list_lock);
3274 mutex_unlock(&cgroup_mutex);
3275}
8bab8dde
PM
3276
3277static int __init cgroup_disable(char *str)
3278{
3279 int i;
3280 char *token;
3281
3282 while ((token = strsep(&str, ",")) != NULL) {
3283 if (!*token)
3284 continue;
3285
3286 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3287 struct cgroup_subsys *ss = subsys[i];
3288
3289 if (!strcmp(token, ss->name)) {
3290 ss->disabled = 1;
3291 printk(KERN_INFO "Disabling %s control group"
3292 " subsystem\n", ss->name);
3293 break;
3294 }
3295 }
3296 }
3297 return 1;
3298}
3299__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
3300
3301/*
3302 * Functons for CSS ID.
3303 */
3304
3305/*
3306 *To get ID other than 0, this should be called when !cgroup_is_removed().
3307 */
3308unsigned short css_id(struct cgroup_subsys_state *css)
3309{
3310 struct css_id *cssid = rcu_dereference(css->id);
3311
3312 if (cssid)
3313 return cssid->id;
3314 return 0;
3315}
3316
3317unsigned short css_depth(struct cgroup_subsys_state *css)
3318{
3319 struct css_id *cssid = rcu_dereference(css->id);
3320
3321 if (cssid)
3322 return cssid->depth;
3323 return 0;
3324}
3325
3326bool css_is_ancestor(struct cgroup_subsys_state *child,
3327 struct cgroup_subsys_state *root)
3328{
3329 struct css_id *child_id = rcu_dereference(child->id);
3330 struct css_id *root_id = rcu_dereference(root->id);
3331
3332 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3333 return false;
3334 return child_id->stack[root_id->depth] == root_id->id;
3335}
3336
3337static void __free_css_id_cb(struct rcu_head *head)
3338{
3339 struct css_id *id;
3340
3341 id = container_of(head, struct css_id, rcu_head);
3342 kfree(id);
3343}
3344
3345void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3346{
3347 struct css_id *id = css->id;
3348 /* When this is called before css_id initialization, id can be NULL */
3349 if (!id)
3350 return;
3351
3352 BUG_ON(!ss->use_id);
3353
3354 rcu_assign_pointer(id->css, NULL);
3355 rcu_assign_pointer(css->id, NULL);
3356 spin_lock(&ss->id_lock);
3357 idr_remove(&ss->idr, id->id);
3358 spin_unlock(&ss->id_lock);
3359 call_rcu(&id->rcu_head, __free_css_id_cb);
3360}
3361
3362/*
3363 * This is called by init or create(). Then, calls to this function are
3364 * always serialized (By cgroup_mutex() at create()).
3365 */
3366
3367static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3368{
3369 struct css_id *newid;
3370 int myid, error, size;
3371
3372 BUG_ON(!ss->use_id);
3373
3374 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3375 newid = kzalloc(size, GFP_KERNEL);
3376 if (!newid)
3377 return ERR_PTR(-ENOMEM);
3378 /* get id */
3379 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3380 error = -ENOMEM;
3381 goto err_out;
3382 }
3383 spin_lock(&ss->id_lock);
3384 /* Don't use 0. allocates an ID of 1-65535 */
3385 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3386 spin_unlock(&ss->id_lock);
3387
3388 /* Returns error when there are no free spaces for new ID.*/
3389 if (error) {
3390 error = -ENOSPC;
3391 goto err_out;
3392 }
3393 if (myid > CSS_ID_MAX)
3394 goto remove_idr;
3395
3396 newid->id = myid;
3397 newid->depth = depth;
3398 return newid;
3399remove_idr:
3400 error = -ENOSPC;
3401 spin_lock(&ss->id_lock);
3402 idr_remove(&ss->idr, myid);
3403 spin_unlock(&ss->id_lock);
3404err_out:
3405 kfree(newid);
3406 return ERR_PTR(error);
3407
3408}
3409
3410static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3411{
3412 struct css_id *newid;
3413 struct cgroup_subsys_state *rootcss;
3414
3415 spin_lock_init(&ss->id_lock);
3416 idr_init(&ss->idr);
3417
3418 rootcss = init_css_set.subsys[ss->subsys_id];
3419 newid = get_new_cssid(ss, 0);
3420 if (IS_ERR(newid))
3421 return PTR_ERR(newid);
3422
3423 newid->stack[0] = newid->id;
3424 newid->css = rootcss;
3425 rootcss->id = newid;
3426 return 0;
3427}
3428
3429static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3430 struct cgroup *child)
3431{
3432 int subsys_id, i, depth = 0;
3433 struct cgroup_subsys_state *parent_css, *child_css;
3434 struct css_id *child_id, *parent_id = NULL;
3435
3436 subsys_id = ss->subsys_id;
3437 parent_css = parent->subsys[subsys_id];
3438 child_css = child->subsys[subsys_id];
3439 depth = css_depth(parent_css) + 1;
3440 parent_id = parent_css->id;
3441
3442 child_id = get_new_cssid(ss, depth);
3443 if (IS_ERR(child_id))
3444 return PTR_ERR(child_id);
3445
3446 for (i = 0; i < depth; i++)
3447 child_id->stack[i] = parent_id->stack[i];
3448 child_id->stack[depth] = child_id->id;
3449 /*
3450 * child_id->css pointer will be set after this cgroup is available
3451 * see cgroup_populate_dir()
3452 */
3453 rcu_assign_pointer(child_css->id, child_id);
3454
3455 return 0;
3456}
3457
3458/**
3459 * css_lookup - lookup css by id
3460 * @ss: cgroup subsys to be looked into.
3461 * @id: the id
3462 *
3463 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3464 * NULL if not. Should be called under rcu_read_lock()
3465 */
3466struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3467{
3468 struct css_id *cssid = NULL;
3469
3470 BUG_ON(!ss->use_id);
3471 cssid = idr_find(&ss->idr, id);
3472
3473 if (unlikely(!cssid))
3474 return NULL;
3475
3476 return rcu_dereference(cssid->css);
3477}
3478
3479/**
3480 * css_get_next - lookup next cgroup under specified hierarchy.
3481 * @ss: pointer to subsystem
3482 * @id: current position of iteration.
3483 * @root: pointer to css. search tree under this.
3484 * @foundid: position of found object.
3485 *
3486 * Search next css under the specified hierarchy of rootid. Calling under
3487 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3488 */
3489struct cgroup_subsys_state *
3490css_get_next(struct cgroup_subsys *ss, int id,
3491 struct cgroup_subsys_state *root, int *foundid)
3492{
3493 struct cgroup_subsys_state *ret = NULL;
3494 struct css_id *tmp;
3495 int tmpid;
3496 int rootid = css_id(root);
3497 int depth = css_depth(root);
3498
3499 if (!rootid)
3500 return NULL;
3501
3502 BUG_ON(!ss->use_id);
3503 /* fill start point for scan */
3504 tmpid = id;
3505 while (1) {
3506 /*
3507 * scan next entry from bitmap(tree), tmpid is updated after
3508 * idr_get_next().
3509 */
3510 spin_lock(&ss->id_lock);
3511 tmp = idr_get_next(&ss->idr, &tmpid);
3512 spin_unlock(&ss->id_lock);
3513
3514 if (!tmp)
3515 break;
3516 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3517 ret = rcu_dereference(tmp->css);
3518 if (ret) {
3519 *foundid = tmpid;
3520 break;
3521 }
3522 }
3523 /* continue to scan from next id */
3524 tmpid = tmpid + 1;
3525 }
3526 return ret;
3527}
3528