cgroup: drop CGRP_ROOT_SUBSYS_BOUND
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8
PM
44#include <linux/spinlock.h>
45#include <linux/string.h>
bbcb81d0 46#include <linux/sort.h>
81a6a5cd 47#include <linux/kmod.h>
846c7bb0
BS
48#include <linux/delayacct.h>
49#include <linux/cgroupstats.h>
0ac801fe 50#include <linux/hashtable.h>
096b7fe0 51#include <linux/pid_namespace.h>
2c6ab6d2 52#include <linux/idr.h>
d1d9fd33 53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 54#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
8af01f56 86EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 87#else
81a6a5cd 88static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
89#endif
90
69e943b7
TH
91/*
92 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
93 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
94 */
95static DEFINE_SPINLOCK(release_agent_path_lock);
96
ace2bee8 97#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 98 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 99 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 100 lockdep_is_held(&cgroup_mutex), \
ace2bee8 101 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 102
e5fca243
TH
103/*
104 * cgroup destruction makes heavy use of work items and there can be a lot
105 * of concurrent destructions. Use a separate workqueue so that cgroup
106 * destruction work items don't end up filling up max_active of system_wq
107 * which may lead to deadlock.
108 */
109static struct workqueue_struct *cgroup_destroy_wq;
110
b1a21367
TH
111/*
112 * pidlist destructions need to be flushed on cgroup destruction. Use a
113 * separate workqueue as flush domain.
114 */
115static struct workqueue_struct *cgroup_pidlist_destroy_wq;
116
3ed80a62 117/* generate an array of cgroup subsystem pointers */
073219e9 118#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 119static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
120#include <linux/cgroup_subsys.h>
121};
073219e9
TH
122#undef SUBSYS
123
124/* array of cgroup subsystem names */
125#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126static const char *cgroup_subsys_name[] = {
127#include <linux/cgroup_subsys.h>
128};
129#undef SUBSYS
ddbcc7e8 130
ddbcc7e8 131/*
9871bf95
TH
132 * The dummy hierarchy, reserved for the subsystems that are otherwise
133 * unattached - it never has more than a single cgroup, and all tasks are
134 * part of that cgroup.
ddbcc7e8 135 */
9871bf95
TH
136static struct cgroupfs_root cgroup_dummy_root;
137
138/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
139static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
140
141/* The list of hierarchy roots */
142
9871bf95
TH
143static LIST_HEAD(cgroup_roots);
144static int cgroup_root_count;
ddbcc7e8 145
3417ae1f 146/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 147static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 148
794611a1
LZ
149/*
150 * Assign a monotonically increasing serial number to cgroups. It
151 * guarantees cgroups with bigger numbers are newer than those with smaller
152 * numbers. Also, as cgroups are always appended to the parent's
153 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
154 * the ascending serial number order on the list. Protected by
155 * cgroup_mutex.
794611a1 156 */
00356bd5 157static u64 cgroup_serial_nr_next = 1;
794611a1 158
ddbcc7e8 159/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
160 * check for fork/exit handlers to call. This avoids us having to do
161 * extra work in the fork/exit path if none of the subsystems need to
162 * be called.
ddbcc7e8 163 */
8947f9d5 164static int need_forkexit_callback __read_mostly;
ddbcc7e8 165
628f7cd4
TH
166static struct cftype cgroup_base_files[];
167
59f5296b 168static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
169static int rebind_subsystems(struct cgroupfs_root *root,
170 unsigned long added_mask, unsigned removed_mask);
f20104de 171static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 172static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
173static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
174 bool is_add);
b1a21367 175static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 176
95109b62
TH
177/**
178 * cgroup_css - obtain a cgroup's css for the specified subsystem
179 * @cgrp: the cgroup of interest
ca8bdcaf 180 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 181 *
ca8bdcaf
TH
182 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
183 * function must be called either under cgroup_mutex or rcu_read_lock() and
184 * the caller is responsible for pinning the returned css if it wants to
185 * keep accessing it outside the said locks. This function may return
186 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
187 */
188static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 189 struct cgroup_subsys *ss)
95109b62 190{
ca8bdcaf 191 if (ss)
aec25020 192 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
193 lockdep_is_held(&cgroup_tree_mutex) ||
194 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
195 else
196 return &cgrp->dummy_css;
95109b62 197}
42809dd4 198
ddbcc7e8 199/* convenient tests for these bits */
54766d4a 200static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 201{
54766d4a 202 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
203}
204
59f5296b
TH
205struct cgroup_subsys_state *seq_css(struct seq_file *seq)
206{
2bd59d48
TH
207 struct kernfs_open_file *of = seq->private;
208 struct cgroup *cgrp = of->kn->parent->priv;
209 struct cftype *cft = seq_cft(seq);
210
211 /*
212 * This is open and unprotected implementation of cgroup_css().
213 * seq_css() is only called from a kernfs file operation which has
214 * an active reference on the file. Because all the subsystem
215 * files are drained before a css is disassociated with a cgroup,
216 * the matching css from the cgroup's subsys table is guaranteed to
217 * be and stay valid until the enclosing operation is complete.
218 */
219 if (cft->ss)
220 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
221 else
222 return &cgrp->dummy_css;
59f5296b
TH
223}
224EXPORT_SYMBOL_GPL(seq_css);
225
78574cf9
LZ
226/**
227 * cgroup_is_descendant - test ancestry
228 * @cgrp: the cgroup to be tested
229 * @ancestor: possible ancestor of @cgrp
230 *
231 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
232 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
233 * and @ancestor are accessible.
234 */
235bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
236{
237 while (cgrp) {
238 if (cgrp == ancestor)
239 return true;
240 cgrp = cgrp->parent;
241 }
242 return false;
243}
244EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 245
e9685a03 246static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
247{
248 const int bits =
bd89aabc
PM
249 (1 << CGRP_RELEASABLE) |
250 (1 << CGRP_NOTIFY_ON_RELEASE);
251 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
252}
253
e9685a03 254static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 255{
bd89aabc 256 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
257}
258
1c6727af
TH
259/**
260 * for_each_css - iterate all css's of a cgroup
261 * @css: the iteration cursor
262 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
263 * @cgrp: the target cgroup to iterate css's of
264 *
265 * Should be called under cgroup_mutex.
266 */
267#define for_each_css(css, ssid, cgrp) \
268 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
269 if (!((css) = rcu_dereference_check( \
270 (cgrp)->subsys[(ssid)], \
ace2bee8 271 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
272 lockdep_is_held(&cgroup_mutex)))) { } \
273 else
274
30159ec7 275/**
3ed80a62 276 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 277 * @ss: the iteration cursor
780cd8b3 278 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 279 */
780cd8b3 280#define for_each_subsys(ss, ssid) \
3ed80a62
TH
281 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
282 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 283
5549c497
TH
284/* iterate across the active hierarchies */
285#define for_each_active_root(root) \
286 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
0942eeee
TH
343/*
344 * css_set_lock protects the list of css_set objects, and the chain of
345 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 346 * css_task_iter_start().
0942eeee 347 */
817929ec
PM
348static DEFINE_RWLOCK(css_set_lock);
349static int css_set_count;
350
7717f7ba
PM
351/*
352 * hash table for cgroup groups. This improves the performance to find
353 * an existing css_set. This hash doesn't (currently) take into
354 * account cgroups in empty hierarchies.
355 */
472b1053 356#define CSS_SET_HASH_BITS 7
0ac801fe 357static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 358
0ac801fe 359static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 360{
0ac801fe 361 unsigned long key = 0UL;
30159ec7
TH
362 struct cgroup_subsys *ss;
363 int i;
472b1053 364
30159ec7 365 for_each_subsys(ss, i)
0ac801fe
LZ
366 key += (unsigned long)css[i];
367 key = (key >> 16) ^ key;
472b1053 368
0ac801fe 369 return key;
472b1053
LZ
370}
371
0942eeee
TH
372/*
373 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
374 * until after the first call to css_task_iter_start(). This reduces the
375 * fork()/exit() overhead for people who have cgroups compiled into their
376 * kernel but not actually in use.
0942eeee 377 */
8947f9d5 378static int use_task_css_set_links __read_mostly;
817929ec 379
5abb8855 380static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 381{
69d0206c 382 struct cgrp_cset_link *link, *tmp_link;
5abb8855 383
146aa1bd
LJ
384 /*
385 * Ensure that the refcount doesn't hit zero while any readers
386 * can see it. Similar to atomic_dec_and_lock(), but for an
387 * rwlock
388 */
5abb8855 389 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
390 return;
391 write_lock(&css_set_lock);
5abb8855 392 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
393 write_unlock(&css_set_lock);
394 return;
395 }
81a6a5cd 396
2c6ab6d2 397 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 398 hash_del(&cset->hlist);
2c6ab6d2
PM
399 css_set_count--;
400
69d0206c 401 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 402 struct cgroup *cgrp = link->cgrp;
5abb8855 403
69d0206c
TH
404 list_del(&link->cset_link);
405 list_del(&link->cgrp_link);
71b5707e 406
ddd69148 407 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 408 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 409 if (taskexit)
bd89aabc
PM
410 set_bit(CGRP_RELEASABLE, &cgrp->flags);
411 check_for_release(cgrp);
81a6a5cd 412 }
2c6ab6d2
PM
413
414 kfree(link);
81a6a5cd 415 }
2c6ab6d2
PM
416
417 write_unlock(&css_set_lock);
5abb8855 418 kfree_rcu(cset, rcu_head);
b4f48b63
PM
419}
420
817929ec
PM
421/*
422 * refcounted get/put for css_set objects
423 */
5abb8855 424static inline void get_css_set(struct css_set *cset)
817929ec 425{
5abb8855 426 atomic_inc(&cset->refcount);
817929ec
PM
427}
428
5abb8855 429static inline void put_css_set(struct css_set *cset)
817929ec 430{
5abb8855 431 __put_css_set(cset, 0);
817929ec
PM
432}
433
5abb8855 434static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 435{
5abb8855 436 __put_css_set(cset, 1);
81a6a5cd
PM
437}
438
b326f9d0 439/**
7717f7ba 440 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
441 * @cset: candidate css_set being tested
442 * @old_cset: existing css_set for a task
7717f7ba
PM
443 * @new_cgrp: cgroup that's being entered by the task
444 * @template: desired set of css pointers in css_set (pre-calculated)
445 *
6f4b7e63 446 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
447 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
448 */
5abb8855
TH
449static bool compare_css_sets(struct css_set *cset,
450 struct css_set *old_cset,
7717f7ba
PM
451 struct cgroup *new_cgrp,
452 struct cgroup_subsys_state *template[])
453{
454 struct list_head *l1, *l2;
455
5abb8855 456 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
457 /* Not all subsystems matched */
458 return false;
459 }
460
461 /*
462 * Compare cgroup pointers in order to distinguish between
463 * different cgroups in heirarchies with no subsystems. We
464 * could get by with just this check alone (and skip the
465 * memcmp above) but on most setups the memcmp check will
466 * avoid the need for this more expensive check on almost all
467 * candidates.
468 */
469
69d0206c
TH
470 l1 = &cset->cgrp_links;
471 l2 = &old_cset->cgrp_links;
7717f7ba 472 while (1) {
69d0206c 473 struct cgrp_cset_link *link1, *link2;
5abb8855 474 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
475
476 l1 = l1->next;
477 l2 = l2->next;
478 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
479 if (l1 == &cset->cgrp_links) {
480 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
481 break;
482 } else {
69d0206c 483 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
484 }
485 /* Locate the cgroups associated with these links. */
69d0206c
TH
486 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
487 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
488 cgrp1 = link1->cgrp;
489 cgrp2 = link2->cgrp;
7717f7ba 490 /* Hierarchies should be linked in the same order. */
5abb8855 491 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
492
493 /*
494 * If this hierarchy is the hierarchy of the cgroup
495 * that's changing, then we need to check that this
496 * css_set points to the new cgroup; if it's any other
497 * hierarchy, then this css_set should point to the
498 * same cgroup as the old css_set.
499 */
5abb8855
TH
500 if (cgrp1->root == new_cgrp->root) {
501 if (cgrp1 != new_cgrp)
7717f7ba
PM
502 return false;
503 } else {
5abb8855 504 if (cgrp1 != cgrp2)
7717f7ba
PM
505 return false;
506 }
507 }
508 return true;
509}
510
b326f9d0
TH
511/**
512 * find_existing_css_set - init css array and find the matching css_set
513 * @old_cset: the css_set that we're using before the cgroup transition
514 * @cgrp: the cgroup that we're moving into
515 * @template: out param for the new set of csses, should be clear on entry
817929ec 516 */
5abb8855
TH
517static struct css_set *find_existing_css_set(struct css_set *old_cset,
518 struct cgroup *cgrp,
519 struct cgroup_subsys_state *template[])
b4f48b63 520{
bd89aabc 521 struct cgroupfs_root *root = cgrp->root;
30159ec7 522 struct cgroup_subsys *ss;
5abb8855 523 struct css_set *cset;
0ac801fe 524 unsigned long key;
b326f9d0 525 int i;
817929ec 526
aae8aab4
BB
527 /*
528 * Build the set of subsystem state objects that we want to see in the
529 * new css_set. while subsystems can change globally, the entries here
530 * won't change, so no need for locking.
531 */
30159ec7 532 for_each_subsys(ss, i) {
a1a71b45 533 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
534 /* Subsystem is in this hierarchy. So we want
535 * the subsystem state from the new
536 * cgroup */
ca8bdcaf 537 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
538 } else {
539 /* Subsystem is not in this hierarchy, so we
540 * don't want to change the subsystem state */
5abb8855 541 template[i] = old_cset->subsys[i];
817929ec
PM
542 }
543 }
544
0ac801fe 545 key = css_set_hash(template);
5abb8855
TH
546 hash_for_each_possible(css_set_table, cset, hlist, key) {
547 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
548 continue;
549
550 /* This css_set matches what we need */
5abb8855 551 return cset;
472b1053 552 }
817929ec
PM
553
554 /* No existing cgroup group matched */
555 return NULL;
556}
557
69d0206c 558static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 559{
69d0206c 560 struct cgrp_cset_link *link, *tmp_link;
36553434 561
69d0206c
TH
562 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
563 list_del(&link->cset_link);
36553434
LZ
564 kfree(link);
565 }
566}
567
69d0206c
TH
568/**
569 * allocate_cgrp_cset_links - allocate cgrp_cset_links
570 * @count: the number of links to allocate
571 * @tmp_links: list_head the allocated links are put on
572 *
573 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
574 * through ->cset_link. Returns 0 on success or -errno.
817929ec 575 */
69d0206c 576static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 577{
69d0206c 578 struct cgrp_cset_link *link;
817929ec 579 int i;
69d0206c
TH
580
581 INIT_LIST_HEAD(tmp_links);
582
817929ec 583 for (i = 0; i < count; i++) {
f4f4be2b 584 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 585 if (!link) {
69d0206c 586 free_cgrp_cset_links(tmp_links);
817929ec
PM
587 return -ENOMEM;
588 }
69d0206c 589 list_add(&link->cset_link, tmp_links);
817929ec
PM
590 }
591 return 0;
592}
593
c12f65d4
LZ
594/**
595 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 596 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 597 * @cset: the css_set to be linked
c12f65d4
LZ
598 * @cgrp: the destination cgroup
599 */
69d0206c
TH
600static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
601 struct cgroup *cgrp)
c12f65d4 602{
69d0206c 603 struct cgrp_cset_link *link;
c12f65d4 604
69d0206c
TH
605 BUG_ON(list_empty(tmp_links));
606 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
607 link->cset = cset;
7717f7ba 608 link->cgrp = cgrp;
69d0206c 609 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
610 /*
611 * Always add links to the tail of the list so that the list
612 * is sorted by order of hierarchy creation
613 */
69d0206c 614 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
615}
616
b326f9d0
TH
617/**
618 * find_css_set - return a new css_set with one cgroup updated
619 * @old_cset: the baseline css_set
620 * @cgrp: the cgroup to be updated
621 *
622 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
623 * substituted into the appropriate hierarchy.
817929ec 624 */
5abb8855
TH
625static struct css_set *find_css_set(struct css_set *old_cset,
626 struct cgroup *cgrp)
817929ec 627{
b326f9d0 628 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 629 struct css_set *cset;
69d0206c
TH
630 struct list_head tmp_links;
631 struct cgrp_cset_link *link;
0ac801fe 632 unsigned long key;
472b1053 633
b326f9d0
TH
634 lockdep_assert_held(&cgroup_mutex);
635
817929ec
PM
636 /* First see if we already have a cgroup group that matches
637 * the desired set */
7e9abd89 638 read_lock(&css_set_lock);
5abb8855
TH
639 cset = find_existing_css_set(old_cset, cgrp, template);
640 if (cset)
641 get_css_set(cset);
7e9abd89 642 read_unlock(&css_set_lock);
817929ec 643
5abb8855
TH
644 if (cset)
645 return cset;
817929ec 646
f4f4be2b 647 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 648 if (!cset)
817929ec
PM
649 return NULL;
650
69d0206c 651 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 652 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 653 kfree(cset);
817929ec
PM
654 return NULL;
655 }
656
5abb8855 657 atomic_set(&cset->refcount, 1);
69d0206c 658 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
659 INIT_LIST_HEAD(&cset->tasks);
660 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
661
662 /* Copy the set of subsystem state objects generated in
663 * find_existing_css_set() */
5abb8855 664 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
665
666 write_lock(&css_set_lock);
667 /* Add reference counts and links from the new css_set. */
69d0206c 668 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 669 struct cgroup *c = link->cgrp;
69d0206c 670
7717f7ba
PM
671 if (c->root == cgrp->root)
672 c = cgrp;
69d0206c 673 link_css_set(&tmp_links, cset, c);
7717f7ba 674 }
817929ec 675
69d0206c 676 BUG_ON(!list_empty(&tmp_links));
817929ec 677
817929ec 678 css_set_count++;
472b1053
LZ
679
680 /* Add this cgroup group to the hash table */
5abb8855
TH
681 key = css_set_hash(cset->subsys);
682 hash_add(css_set_table, &cset->hlist, key);
472b1053 683
817929ec
PM
684 write_unlock(&css_set_lock);
685
5abb8855 686 return cset;
b4f48b63
PM
687}
688
2bd59d48
TH
689static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
690{
691 struct cgroup *top_cgrp = kf_root->kn->priv;
692
693 return top_cgrp->root;
694}
695
f2e85d57
TH
696static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
697{
698 int id;
699
700 lockdep_assert_held(&cgroup_mutex);
701
702 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
703 GFP_KERNEL);
704 if (id < 0)
705 return id;
706
707 root->hierarchy_id = id;
708 return 0;
709}
710
711static void cgroup_exit_root_id(struct cgroupfs_root *root)
712{
713 lockdep_assert_held(&cgroup_mutex);
714
715 if (root->hierarchy_id) {
716 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
717 root->hierarchy_id = 0;
718 }
719}
720
721static void cgroup_free_root(struct cgroupfs_root *root)
722{
723 if (root) {
724 /* hierarhcy ID shoulid already have been released */
725 WARN_ON_ONCE(root->hierarchy_id);
726
727 idr_destroy(&root->cgroup_idr);
728 kfree(root);
729 }
730}
731
776f02fa 732static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 733{
f2e85d57
TH
734 struct cgroup *cgrp = &root->top_cgroup;
735 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 736
2bd59d48 737 mutex_lock(&cgroup_tree_mutex);
2bd59d48 738 mutex_lock(&cgroup_mutex);
f2e85d57 739
776f02fa 740 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
741 BUG_ON(!list_empty(&cgrp->children));
742
f2e85d57 743 /* Rebind all subsystems back to the default hierarchy */
35585573 744 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
745
746 /*
747 * Release all the links from cset_links to this hierarchy's
748 * root cgroup
749 */
750 write_lock(&css_set_lock);
751
752 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
753 list_del(&link->cset_link);
754 list_del(&link->cgrp_link);
755 kfree(link);
756 }
757 write_unlock(&css_set_lock);
758
759 if (!list_empty(&root->root_list)) {
760 list_del(&root->root_list);
761 cgroup_root_count--;
762 }
763
764 cgroup_exit_root_id(root);
765
766 mutex_unlock(&cgroup_mutex);
767 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 768
2bd59d48 769 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
770 cgroup_free_root(root);
771}
772
7717f7ba
PM
773/*
774 * Return the cgroup for "task" from the given hierarchy. Must be
775 * called with cgroup_mutex held.
776 */
777static struct cgroup *task_cgroup_from_root(struct task_struct *task,
778 struct cgroupfs_root *root)
779{
5abb8855 780 struct css_set *cset;
7717f7ba
PM
781 struct cgroup *res = NULL;
782
783 BUG_ON(!mutex_is_locked(&cgroup_mutex));
784 read_lock(&css_set_lock);
785 /*
786 * No need to lock the task - since we hold cgroup_mutex the
787 * task can't change groups, so the only thing that can happen
788 * is that it exits and its css is set back to init_css_set.
789 */
a8ad805c 790 cset = task_css_set(task);
5abb8855 791 if (cset == &init_css_set) {
7717f7ba
PM
792 res = &root->top_cgroup;
793 } else {
69d0206c
TH
794 struct cgrp_cset_link *link;
795
796 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 797 struct cgroup *c = link->cgrp;
69d0206c 798
7717f7ba
PM
799 if (c->root == root) {
800 res = c;
801 break;
802 }
803 }
804 }
805 read_unlock(&css_set_lock);
806 BUG_ON(!res);
807 return res;
808}
809
ddbcc7e8
PM
810/*
811 * There is one global cgroup mutex. We also require taking
812 * task_lock() when dereferencing a task's cgroup subsys pointers.
813 * See "The task_lock() exception", at the end of this comment.
814 *
815 * A task must hold cgroup_mutex to modify cgroups.
816 *
817 * Any task can increment and decrement the count field without lock.
818 * So in general, code holding cgroup_mutex can't rely on the count
819 * field not changing. However, if the count goes to zero, then only
956db3ca 820 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
821 * means that no tasks are currently attached, therefore there is no
822 * way a task attached to that cgroup can fork (the other way to
823 * increment the count). So code holding cgroup_mutex can safely
824 * assume that if the count is zero, it will stay zero. Similarly, if
825 * a task holds cgroup_mutex on a cgroup with zero count, it
826 * knows that the cgroup won't be removed, as cgroup_rmdir()
827 * needs that mutex.
828 *
ddbcc7e8
PM
829 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
830 * (usually) take cgroup_mutex. These are the two most performance
831 * critical pieces of code here. The exception occurs on cgroup_exit(),
832 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
833 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
834 * to the release agent with the name of the cgroup (path relative to
835 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
836 *
837 * A cgroup can only be deleted if both its 'count' of using tasks
838 * is zero, and its list of 'children' cgroups is empty. Since all
839 * tasks in the system use _some_ cgroup, and since there is always at
840 * least one task in the system (init, pid == 1), therefore, top_cgroup
841 * always has either children cgroups and/or using tasks. So we don't
842 * need a special hack to ensure that top_cgroup cannot be deleted.
843 *
844 * The task_lock() exception
845 *
846 * The need for this exception arises from the action of
d0b2fdd2 847 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 848 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
849 * several performance critical places that need to reference
850 * task->cgroup without the expense of grabbing a system global
851 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 852 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
853 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
854 * the task_struct routinely used for such matters.
855 *
856 * P.S. One more locking exception. RCU is used to guard the
956db3ca 857 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
858 */
859
628f7cd4 860static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 861static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 862static const struct file_operations proc_cgroupstats_operations;
a424316c 863
8d7e6fb0
TH
864static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
865 char *buf)
866{
867 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
868 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
869 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
870 cft->ss->name, cft->name);
871 else
872 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
873 return buf;
874}
875
f2e85d57
TH
876/**
877 * cgroup_file_mode - deduce file mode of a control file
878 * @cft: the control file in question
879 *
880 * returns cft->mode if ->mode is not 0
881 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
882 * returns S_IRUGO if it has only a read handler
883 * returns S_IWUSR if it has only a write hander
884 */
885static umode_t cgroup_file_mode(const struct cftype *cft)
886{
887 umode_t mode = 0;
888
889 if (cft->mode)
890 return cft->mode;
891
892 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
893 mode |= S_IRUGO;
894
895 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
896 cft->trigger)
897 mode |= S_IWUSR;
898
899 return mode;
900}
901
be445626
LZ
902static void cgroup_free_fn(struct work_struct *work)
903{
ea15f8cc 904 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 905
3c9c825b 906 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 907 cgroup_pidlist_destroy_all(cgrp);
be445626 908
776f02fa
TH
909 if (cgrp->parent) {
910 /*
911 * We get a ref to the parent, and put the ref when this
912 * cgroup is being freed, so it's guaranteed that the
913 * parent won't be destroyed before its children.
914 */
915 cgroup_put(cgrp->parent);
916 kernfs_put(cgrp->kn);
917 kfree(cgrp);
918 } else {
919 /*
920 * This is top cgroup's refcnt reaching zero, which
921 * indicates that the root should be released.
922 */
923 cgroup_destroy_root(cgrp->root);
924 }
be445626
LZ
925}
926
927static void cgroup_free_rcu(struct rcu_head *head)
928{
929 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
930
ea15f8cc 931 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 932 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
933}
934
59f5296b
TH
935static void cgroup_get(struct cgroup *cgrp)
936{
2bd59d48
TH
937 WARN_ON_ONCE(cgroup_is_dead(cgrp));
938 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
939 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
940}
941
59f5296b
TH
942static void cgroup_put(struct cgroup *cgrp)
943{
2bd59d48
TH
944 if (!atomic_dec_and_test(&cgrp->refcnt))
945 return;
776f02fa 946 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 947 return;
59f5296b 948
2bd59d48
TH
949 /*
950 * XXX: cgrp->id is only used to look up css's. As cgroup and
951 * css's lifetimes will be decoupled, it should be made
952 * per-subsystem and moved to css->id so that lookups are
953 * successful until the target css is released.
954 */
955 mutex_lock(&cgroup_mutex);
956 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
957 mutex_unlock(&cgroup_mutex);
958 cgrp->id = -1;
ddbcc7e8 959
2bd59d48 960 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
961}
962
2739d3cc 963static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 964{
2bd59d48 965 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 966
ace2bee8 967 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 968 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
969}
970
13af07df 971/**
628f7cd4 972 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 973 * @cgrp: target cgroup
13af07df
AR
974 * @subsys_mask: mask of the subsystem ids whose files should be removed
975 */
628f7cd4 976static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 977{
13af07df 978 struct cgroup_subsys *ss;
b420ba7d 979 int i;
05ef1d7c 980
b420ba7d 981 for_each_subsys(ss, i) {
0adb0704 982 struct cftype *cfts;
b420ba7d
TH
983
984 if (!test_bit(i, &subsys_mask))
13af07df 985 continue;
0adb0704
TH
986 list_for_each_entry(cfts, &ss->cfts, node)
987 cgroup_addrm_files(cgrp, cfts, false);
13af07df 988 }
ddbcc7e8
PM
989}
990
ddbcc7e8 991static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 992 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 993{
bd89aabc 994 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 995 struct cgroup_subsys *ss;
3126121f 996 int i, ret;
ddbcc7e8 997
ace2bee8
TH
998 lockdep_assert_held(&cgroup_tree_mutex);
999 lockdep_assert_held(&cgroup_mutex);
aae8aab4 1000
ddbcc7e8 1001 /* Check that any added subsystems are currently free */
3ed80a62
TH
1002 for_each_subsys(ss, i)
1003 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
1004 return -EBUSY;
ddbcc7e8 1005
3126121f
TH
1006 ret = cgroup_populate_dir(cgrp, added_mask);
1007 if (ret)
3ed80a62 1008 return ret;
3126121f
TH
1009
1010 /*
1011 * Nothing can fail from this point on. Remove files for the
1012 * removed subsystems and rebind each subsystem.
1013 */
4ac06017 1014 mutex_unlock(&cgroup_mutex);
3126121f 1015 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1016 mutex_lock(&cgroup_mutex);
ddbcc7e8 1017
30159ec7 1018 for_each_subsys(ss, i) {
ddbcc7e8 1019 unsigned long bit = 1UL << i;
30159ec7 1020
a1a71b45 1021 if (bit & added_mask) {
ddbcc7e8 1022 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1023 BUG_ON(cgroup_css(cgrp, ss));
1024 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1025 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1026
73e80ed8 1027 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1028 cgroup_css(cgroup_dummy_top, ss));
1029 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1030
b2aa30f7 1031 ss->root = root;
ddbcc7e8 1032 if (ss->bind)
ca8bdcaf 1033 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1034
cf5d5941 1035 /* refcount was already taken, and we're keeping it */
a8a648c4 1036 root->subsys_mask |= bit;
a1a71b45 1037 } else if (bit & removed_mask) {
ddbcc7e8 1038 /* We're removing this subsystem */
ca8bdcaf
TH
1039 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1040 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1041
ddbcc7e8 1042 if (ss->bind)
ca8bdcaf 1043 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1044
ca8bdcaf 1045 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1046 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1047
9871bf95 1048 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1049 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1050 }
1051 }
ddbcc7e8 1052
2bd59d48 1053 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1054 return 0;
1055}
1056
2bd59d48
TH
1057static int cgroup_show_options(struct seq_file *seq,
1058 struct kernfs_root *kf_root)
ddbcc7e8 1059{
2bd59d48 1060 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1061 struct cgroup_subsys *ss;
b85d2040 1062 int ssid;
ddbcc7e8 1063
b85d2040
TH
1064 for_each_subsys(ss, ssid)
1065 if (root->subsys_mask & (1 << ssid))
1066 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1067 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1068 seq_puts(seq, ",sane_behavior");
93438629 1069 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1070 seq_puts(seq, ",noprefix");
93438629 1071 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1072 seq_puts(seq, ",xattr");
69e943b7
TH
1073
1074 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1075 if (strlen(root->release_agent_path))
1076 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1077 spin_unlock(&release_agent_path_lock);
1078
2260e7fc 1079 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1080 seq_puts(seq, ",clone_children");
c6d57f33
PM
1081 if (strlen(root->name))
1082 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1083 return 0;
1084}
1085
1086struct cgroup_sb_opts {
a1a71b45 1087 unsigned long subsys_mask;
ddbcc7e8 1088 unsigned long flags;
81a6a5cd 1089 char *release_agent;
2260e7fc 1090 bool cpuset_clone_children;
c6d57f33 1091 char *name;
2c6ab6d2
PM
1092 /* User explicitly requested empty subsystem */
1093 bool none;
ddbcc7e8
PM
1094};
1095
aae8aab4 1096/*
9871bf95
TH
1097 * Convert a hierarchy specifier into a bitmask of subsystems and
1098 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1099 * array. This function takes refcounts on subsystems to be used, unless it
1100 * returns error, in which case no refcounts are taken.
aae8aab4 1101 */
cf5d5941 1102static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1103{
32a8cf23
DL
1104 char *token, *o = data;
1105 bool all_ss = false, one_ss = false;
f9ab5b5b 1106 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1107 struct cgroup_subsys *ss;
1108 int i;
f9ab5b5b 1109
aae8aab4
BB
1110 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1111
f9ab5b5b 1112#ifdef CONFIG_CPUSETS
073219e9 1113 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1114#endif
ddbcc7e8 1115
c6d57f33 1116 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1117
1118 while ((token = strsep(&o, ",")) != NULL) {
1119 if (!*token)
1120 return -EINVAL;
32a8cf23 1121 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1122 /* Explicitly have no subsystems */
1123 opts->none = true;
32a8cf23
DL
1124 continue;
1125 }
1126 if (!strcmp(token, "all")) {
1127 /* Mutually exclusive option 'all' + subsystem name */
1128 if (one_ss)
1129 return -EINVAL;
1130 all_ss = true;
1131 continue;
1132 }
873fe09e
TH
1133 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1134 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1135 continue;
1136 }
32a8cf23 1137 if (!strcmp(token, "noprefix")) {
93438629 1138 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1139 continue;
1140 }
1141 if (!strcmp(token, "clone_children")) {
2260e7fc 1142 opts->cpuset_clone_children = true;
32a8cf23
DL
1143 continue;
1144 }
03b1cde6 1145 if (!strcmp(token, "xattr")) {
93438629 1146 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1147 continue;
1148 }
32a8cf23 1149 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1150 /* Specifying two release agents is forbidden */
1151 if (opts->release_agent)
1152 return -EINVAL;
c6d57f33 1153 opts->release_agent =
e400c285 1154 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1155 if (!opts->release_agent)
1156 return -ENOMEM;
32a8cf23
DL
1157 continue;
1158 }
1159 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1160 const char *name = token + 5;
1161 /* Can't specify an empty name */
1162 if (!strlen(name))
1163 return -EINVAL;
1164 /* Must match [\w.-]+ */
1165 for (i = 0; i < strlen(name); i++) {
1166 char c = name[i];
1167 if (isalnum(c))
1168 continue;
1169 if ((c == '.') || (c == '-') || (c == '_'))
1170 continue;
1171 return -EINVAL;
1172 }
1173 /* Specifying two names is forbidden */
1174 if (opts->name)
1175 return -EINVAL;
1176 opts->name = kstrndup(name,
e400c285 1177 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1178 GFP_KERNEL);
1179 if (!opts->name)
1180 return -ENOMEM;
32a8cf23
DL
1181
1182 continue;
1183 }
1184
30159ec7 1185 for_each_subsys(ss, i) {
32a8cf23
DL
1186 if (strcmp(token, ss->name))
1187 continue;
1188 if (ss->disabled)
1189 continue;
1190
1191 /* Mutually exclusive option 'all' + subsystem name */
1192 if (all_ss)
1193 return -EINVAL;
a1a71b45 1194 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1195 one_ss = true;
1196
1197 break;
1198 }
1199 if (i == CGROUP_SUBSYS_COUNT)
1200 return -ENOENT;
1201 }
1202
1203 /*
1204 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1205 * otherwise if 'none', 'name=' and a subsystem name options
1206 * were not specified, let's default to 'all'
32a8cf23 1207 */
30159ec7
TH
1208 if (all_ss || (!one_ss && !opts->none && !opts->name))
1209 for_each_subsys(ss, i)
1210 if (!ss->disabled)
1211 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1212
2c6ab6d2
PM
1213 /* Consistency checks */
1214
873fe09e
TH
1215 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1216 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1217
d3ba07c3
TH
1218 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1219 opts->cpuset_clone_children || opts->release_agent ||
1220 opts->name) {
1221 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1222 return -EINVAL;
1223 }
873fe09e
TH
1224 }
1225
f9ab5b5b
LZ
1226 /*
1227 * Option noprefix was introduced just for backward compatibility
1228 * with the old cpuset, so we allow noprefix only if mounting just
1229 * the cpuset subsystem.
1230 */
93438629 1231 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1232 return -EINVAL;
1233
2c6ab6d2
PM
1234
1235 /* Can't specify "none" and some subsystems */
a1a71b45 1236 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1237 return -EINVAL;
1238
1239 /*
1240 * We either have to specify by name or by subsystems. (So all
1241 * empty hierarchies must have a name).
1242 */
a1a71b45 1243 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1244 return -EINVAL;
1245
1246 return 0;
1247}
1248
2bd59d48 1249static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1250{
1251 int ret = 0;
2bd59d48 1252 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1253 struct cgroup_sb_opts opts;
a1a71b45 1254 unsigned long added_mask, removed_mask;
ddbcc7e8 1255
873fe09e
TH
1256 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1257 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1258 return -EINVAL;
1259 }
1260
ace2bee8 1261 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1262 mutex_lock(&cgroup_mutex);
1263
1264 /* See what subsystems are wanted */
1265 ret = parse_cgroupfs_options(data, &opts);
1266 if (ret)
1267 goto out_unlock;
1268
a8a648c4 1269 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1270 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1271 task_tgid_nr(current), current->comm);
1272
a1a71b45
AR
1273 added_mask = opts.subsys_mask & ~root->subsys_mask;
1274 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1275
cf5d5941 1276 /* Don't allow flags or name to change at remount */
0ce6cba3 1277 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1278 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1279 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1280 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1281 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1282 ret = -EINVAL;
1283 goto out_unlock;
1284 }
1285
f172e67c 1286 /* remounting is not allowed for populated hierarchies */
3c9c825b 1287 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1288 ret = -EBUSY;
0670e08b 1289 goto out_unlock;
cf5d5941 1290 }
ddbcc7e8 1291
a8a648c4 1292 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1293 if (ret)
0670e08b 1294 goto out_unlock;
ddbcc7e8 1295
69e943b7
TH
1296 if (opts.release_agent) {
1297 spin_lock(&release_agent_path_lock);
81a6a5cd 1298 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1299 spin_unlock(&release_agent_path_lock);
1300 }
ddbcc7e8 1301 out_unlock:
66bdc9cf 1302 kfree(opts.release_agent);
c6d57f33 1303 kfree(opts.name);
ddbcc7e8 1304 mutex_unlock(&cgroup_mutex);
ace2bee8 1305 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1306 return ret;
1307}
1308
cc31edce
PM
1309static void init_cgroup_housekeeping(struct cgroup *cgrp)
1310{
2bd59d48 1311 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1312 INIT_LIST_HEAD(&cgrp->sibling);
1313 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1314 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1315 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1316 INIT_LIST_HEAD(&cgrp->pidlists);
1317 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1318 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1319}
c6d57f33 1320
ddbcc7e8
PM
1321static void init_cgroup_root(struct cgroupfs_root *root)
1322{
bd89aabc 1323 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1324
ddbcc7e8 1325 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1326 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1327 cgrp->root = root;
cc31edce 1328 init_cgroup_housekeeping(cgrp);
4e96ee8e 1329 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1330}
1331
c6d57f33
PM
1332static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1333{
1334 struct cgroupfs_root *root;
1335
a1a71b45 1336 if (!opts->subsys_mask && !opts->none)
2bd59d48 1337 return ERR_PTR(-EINVAL);
c6d57f33
PM
1338
1339 root = kzalloc(sizeof(*root), GFP_KERNEL);
1340 if (!root)
1341 return ERR_PTR(-ENOMEM);
1342
1343 init_cgroup_root(root);
2c6ab6d2 1344
c6d57f33
PM
1345 root->flags = opts->flags;
1346 if (opts->release_agent)
1347 strcpy(root->release_agent_path, opts->release_agent);
1348 if (opts->name)
1349 strcpy(root->name, opts->name);
2260e7fc
TH
1350 if (opts->cpuset_clone_children)
1351 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1352 return root;
1353}
1354
35585573 1355static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1356{
1357 LIST_HEAD(tmp_links);
d427dfeb 1358 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1359 struct css_set *cset;
d427dfeb
TH
1360 int i, ret;
1361
1362 lockdep_assert_held(&cgroup_tree_mutex);
1363 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1364
1365 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1366 if (ret < 0)
2bd59d48 1367 goto out;
d427dfeb
TH
1368 root_cgrp->id = ret;
1369
d427dfeb
TH
1370 /*
1371 * We're accessing css_set_count without locking css_set_lock here,
1372 * but that's OK - it can only be increased by someone holding
1373 * cgroup_lock, and that's us. The worst that can happen is that we
1374 * have some link structures left over
1375 */
1376 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1377 if (ret)
2bd59d48 1378 goto out;
d427dfeb
TH
1379
1380 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1381 ret = cgroup_init_root_id(root, 2, 0);
1382 if (ret)
2bd59d48 1383 goto out;
d427dfeb 1384
2bd59d48
TH
1385 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1386 KERNFS_ROOT_CREATE_DEACTIVATED,
1387 root_cgrp);
1388 if (IS_ERR(root->kf_root)) {
1389 ret = PTR_ERR(root->kf_root);
1390 goto exit_root_id;
1391 }
1392 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1393
1394 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1395 if (ret)
2bd59d48 1396 goto destroy_root;
d427dfeb 1397
35585573 1398 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1399 if (ret)
2bd59d48 1400 goto destroy_root;
d427dfeb
TH
1401
1402 /*
1403 * There must be no failure case after here, since rebinding takes
1404 * care of subsystems' refcounts, which are explicitly dropped in
1405 * the failure exit path.
1406 */
1407 list_add(&root->root_list, &cgroup_roots);
1408 cgroup_root_count++;
1409
1410 /*
1411 * Link the top cgroup in this hierarchy into all the css_set
1412 * objects.
1413 */
1414 write_lock(&css_set_lock);
1415 hash_for_each(css_set_table, i, cset, hlist)
1416 link_css_set(&tmp_links, cset, root_cgrp);
1417 write_unlock(&css_set_lock);
1418
1419 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1420 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1421
2bd59d48 1422 kernfs_activate(root_cgrp->kn);
d427dfeb 1423 ret = 0;
2bd59d48 1424 goto out;
d427dfeb 1425
2bd59d48
TH
1426destroy_root:
1427 kernfs_destroy_root(root->kf_root);
1428 root->kf_root = NULL;
1429exit_root_id:
d427dfeb 1430 cgroup_exit_root_id(root);
2bd59d48 1431out:
d427dfeb
TH
1432 free_cgrp_cset_links(&tmp_links);
1433 return ret;
1434}
1435
f7e83571 1436static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1437 int flags, const char *unused_dev_name,
f7e83571 1438 void *data)
ddbcc7e8 1439{
2bd59d48 1440 struct cgroupfs_root *root;
ddbcc7e8 1441 struct cgroup_sb_opts opts;
2bd59d48 1442 struct dentry *dentry;
8e30e2b8 1443 int ret;
776f02fa 1444retry:
8e30e2b8 1445 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1446 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1447
1448 /* First find the desired set of subsystems */
ddbcc7e8 1449 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1450 if (ret)
8e30e2b8 1451 goto out_unlock;
ddbcc7e8 1452
2bd59d48
TH
1453 /* look for a matching existing root */
1454 for_each_active_root(root) {
1455 bool name_match = false;
ddbcc7e8 1456
2bd59d48
TH
1457 /*
1458 * If we asked for a name then it must match. Also, if
1459 * name matches but sybsys_mask doesn't, we should fail.
1460 * Remember whether name matched.
1461 */
1462 if (opts.name) {
1463 if (strcmp(opts.name, root->name))
1464 continue;
1465 name_match = true;
1466 }
ddbcc7e8 1467
c6d57f33 1468 /*
2bd59d48
TH
1469 * If we asked for subsystems (or explicitly for no
1470 * subsystems) then they must match.
c6d57f33 1471 */
2bd59d48
TH
1472 if ((opts.subsys_mask || opts.none) &&
1473 (opts.subsys_mask != root->subsys_mask)) {
1474 if (!name_match)
1475 continue;
1476 ret = -EBUSY;
1477 goto out_unlock;
1478 }
873fe09e 1479
c7ba8287 1480 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1481 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1482 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1483 ret = -EINVAL;
8e30e2b8 1484 goto out_unlock;
2a0ff3fb
JL
1485 } else {
1486 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1487 }
873fe09e 1488 }
2bd59d48 1489
776f02fa
TH
1490 /*
1491 * A root's lifetime is governed by its top cgroup. Zero
1492 * ref indicate that the root is being destroyed. Wait for
1493 * destruction to complete so that the subsystems are free.
1494 * We can use wait_queue for the wait but this path is
1495 * super cold. Let's just sleep for a bit and retry.
1496 */
1497 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1498 mutex_unlock(&cgroup_mutex);
1499 mutex_unlock(&cgroup_tree_mutex);
1500 msleep(10);
1501 goto retry;
1502 }
1503
1504 ret = 0;
2bd59d48 1505 goto out_unlock;
ddbcc7e8
PM
1506 }
1507
2bd59d48
TH
1508 /* no such thing, create a new one */
1509 root = cgroup_root_from_opts(&opts);
1510 if (IS_ERR(root)) {
1511 ret = PTR_ERR(root);
1512 goto out_unlock;
1513 }
1514
35585573 1515 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1516 if (ret)
1517 cgroup_free_root(root);
1518
8e30e2b8 1519out_unlock:
e25e2cbb 1520 mutex_unlock(&cgroup_mutex);
ace2bee8 1521 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1522
c6d57f33
PM
1523 kfree(opts.release_agent);
1524 kfree(opts.name);
8e30e2b8 1525
2bd59d48 1526 if (ret)
8e30e2b8 1527 return ERR_PTR(ret);
2bd59d48
TH
1528
1529 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1530 if (IS_ERR(dentry))
776f02fa 1531 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1532 return dentry;
1533}
1534
1535static void cgroup_kill_sb(struct super_block *sb)
1536{
1537 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1538 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1539
776f02fa 1540 cgroup_put(&root->top_cgroup);
2bd59d48 1541 kernfs_kill_sb(sb);
ddbcc7e8
PM
1542}
1543
ddbcc7e8
PM
1544static struct file_system_type cgroup_fs_type = {
1545 .name = "cgroup",
f7e83571 1546 .mount = cgroup_mount,
ddbcc7e8
PM
1547 .kill_sb = cgroup_kill_sb,
1548};
1549
676db4af
GK
1550static struct kobject *cgroup_kobj;
1551
857a2beb 1552/**
913ffdb5 1553 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1554 * @task: target task
857a2beb
TH
1555 * @buf: the buffer to write the path into
1556 * @buflen: the length of the buffer
1557 *
913ffdb5
TH
1558 * Determine @task's cgroup on the first (the one with the lowest non-zero
1559 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1560 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1561 * cgroup controller callbacks.
1562 *
e61734c5 1563 * Return value is the same as kernfs_path().
857a2beb 1564 */
e61734c5 1565char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1566{
1567 struct cgroupfs_root *root;
913ffdb5 1568 struct cgroup *cgrp;
e61734c5
TH
1569 int hierarchy_id = 1;
1570 char *path = NULL;
857a2beb
TH
1571
1572 mutex_lock(&cgroup_mutex);
1573
913ffdb5
TH
1574 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1575
857a2beb
TH
1576 if (root) {
1577 cgrp = task_cgroup_from_root(task, root);
e61734c5 1578 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1579 } else {
1580 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1581 if (strlcpy(buf, "/", buflen) < buflen)
1582 path = buf;
857a2beb
TH
1583 }
1584
1585 mutex_unlock(&cgroup_mutex);
e61734c5 1586 return path;
857a2beb 1587}
913ffdb5 1588EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1589
2f7ee569
TH
1590/*
1591 * Control Group taskset
1592 */
134d3373
TH
1593struct task_and_cgroup {
1594 struct task_struct *task;
1595 struct cgroup *cgrp;
6f4b7e63 1596 struct css_set *cset;
134d3373
TH
1597};
1598
2f7ee569
TH
1599struct cgroup_taskset {
1600 struct task_and_cgroup single;
1601 struct flex_array *tc_array;
1602 int tc_array_len;
1603 int idx;
1604 struct cgroup *cur_cgrp;
1605};
1606
1607/**
1608 * cgroup_taskset_first - reset taskset and return the first task
1609 * @tset: taskset of interest
1610 *
1611 * @tset iteration is initialized and the first task is returned.
1612 */
1613struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1614{
1615 if (tset->tc_array) {
1616 tset->idx = 0;
1617 return cgroup_taskset_next(tset);
1618 } else {
1619 tset->cur_cgrp = tset->single.cgrp;
1620 return tset->single.task;
1621 }
1622}
1623EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1624
1625/**
1626 * cgroup_taskset_next - iterate to the next task in taskset
1627 * @tset: taskset of interest
1628 *
1629 * Return the next task in @tset. Iteration must have been initialized
1630 * with cgroup_taskset_first().
1631 */
1632struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1633{
1634 struct task_and_cgroup *tc;
1635
1636 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1637 return NULL;
1638
1639 tc = flex_array_get(tset->tc_array, tset->idx++);
1640 tset->cur_cgrp = tc->cgrp;
1641 return tc->task;
1642}
1643EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1644
1645/**
d99c8727 1646 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1647 * @tset: taskset of interest
d99c8727 1648 * @subsys_id: the ID of the target subsystem
2f7ee569 1649 *
d99c8727
TH
1650 * Return the css for the current (last returned) task of @tset for
1651 * subsystem specified by @subsys_id. This function must be preceded by
1652 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1653 */
d99c8727
TH
1654struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1655 int subsys_id)
2f7ee569 1656{
ca8bdcaf 1657 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1658}
d99c8727 1659EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1660
1661/**
1662 * cgroup_taskset_size - return the number of tasks in taskset
1663 * @tset: taskset of interest
1664 */
1665int cgroup_taskset_size(struct cgroup_taskset *tset)
1666{
1667 return tset->tc_array ? tset->tc_array_len : 1;
1668}
1669EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1670
1671
74a1166d
BB
1672/*
1673 * cgroup_task_migrate - move a task from one cgroup to another.
1674 *
d0b2fdd2 1675 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1676 */
5abb8855
TH
1677static void cgroup_task_migrate(struct cgroup *old_cgrp,
1678 struct task_struct *tsk,
1679 struct css_set *new_cset)
74a1166d 1680{
5abb8855 1681 struct css_set *old_cset;
74a1166d
BB
1682
1683 /*
026085ef
MSB
1684 * We are synchronized through threadgroup_lock() against PF_EXITING
1685 * setting such that we can't race against cgroup_exit() changing the
1686 * css_set to init_css_set and dropping the old one.
74a1166d 1687 */
c84cdf75 1688 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1689 old_cset = task_css_set(tsk);
74a1166d 1690
74a1166d 1691 task_lock(tsk);
5abb8855 1692 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1693 task_unlock(tsk);
1694
1695 /* Update the css_set linked lists if we're using them */
1696 write_lock(&css_set_lock);
1697 if (!list_empty(&tsk->cg_list))
5abb8855 1698 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1699 write_unlock(&css_set_lock);
1700
1701 /*
5abb8855
TH
1702 * We just gained a reference on old_cset by taking it from the
1703 * task. As trading it for new_cset is protected by cgroup_mutex,
1704 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1705 */
5abb8855
TH
1706 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1707 put_css_set(old_cset);
74a1166d
BB
1708}
1709
a043e3b2 1710/**
081aa458 1711 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1712 * @cgrp: the cgroup to attach to
081aa458
LZ
1713 * @tsk: the task or the leader of the threadgroup to be attached
1714 * @threadgroup: attach the whole threadgroup?
74a1166d 1715 *
257058ae 1716 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1717 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1718 */
47cfcd09
TH
1719static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1720 bool threadgroup)
74a1166d
BB
1721{
1722 int retval, i, group_size;
74a1166d 1723 struct cgroupfs_root *root = cgrp->root;
1c6727af 1724 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1725 /* threadgroup list cursor and array */
081aa458 1726 struct task_struct *leader = tsk;
134d3373 1727 struct task_and_cgroup *tc;
d846687d 1728 struct flex_array *group;
2f7ee569 1729 struct cgroup_taskset tset = { };
74a1166d
BB
1730
1731 /*
1732 * step 0: in order to do expensive, possibly blocking operations for
1733 * every thread, we cannot iterate the thread group list, since it needs
1734 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1735 * group - group_rwsem prevents new threads from appearing, and if
1736 * threads exit, this will just be an over-estimate.
74a1166d 1737 */
081aa458
LZ
1738 if (threadgroup)
1739 group_size = get_nr_threads(tsk);
1740 else
1741 group_size = 1;
d846687d 1742 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1743 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1744 if (!group)
1745 return -ENOMEM;
d846687d 1746 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1747 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1748 if (retval)
1749 goto out_free_group_list;
74a1166d 1750
74a1166d 1751 i = 0;
fb5d2b4c
MSB
1752 /*
1753 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1754 * already PF_EXITING could be freed from underneath us unless we
1755 * take an rcu_read_lock.
1756 */
1757 rcu_read_lock();
74a1166d 1758 do {
134d3373
TH
1759 struct task_and_cgroup ent;
1760
cd3d0952
TH
1761 /* @tsk either already exited or can't exit until the end */
1762 if (tsk->flags & PF_EXITING)
ea84753c 1763 goto next;
cd3d0952 1764
74a1166d
BB
1765 /* as per above, nr_threads may decrease, but not increase. */
1766 BUG_ON(i >= group_size);
134d3373
TH
1767 ent.task = tsk;
1768 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1769 /* nothing to do if this task is already in the cgroup */
1770 if (ent.cgrp == cgrp)
ea84753c 1771 goto next;
61d1d219
MSB
1772 /*
1773 * saying GFP_ATOMIC has no effect here because we did prealloc
1774 * earlier, but it's good form to communicate our expectations.
1775 */
134d3373 1776 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1777 BUG_ON(retval != 0);
74a1166d 1778 i++;
ea84753c 1779 next:
081aa458
LZ
1780 if (!threadgroup)
1781 break;
74a1166d 1782 } while_each_thread(leader, tsk);
fb5d2b4c 1783 rcu_read_unlock();
74a1166d
BB
1784 /* remember the number of threads in the array for later. */
1785 group_size = i;
2f7ee569
TH
1786 tset.tc_array = group;
1787 tset.tc_array_len = group_size;
74a1166d 1788
134d3373
TH
1789 /* methods shouldn't be called if no task is actually migrating */
1790 retval = 0;
892a2b90 1791 if (!group_size)
b07ef774 1792 goto out_free_group_list;
134d3373 1793
74a1166d
BB
1794 /*
1795 * step 1: check that we can legitimately attach to the cgroup.
1796 */
1c6727af
TH
1797 for_each_css(css, i, cgrp) {
1798 if (css->ss->can_attach) {
1799 retval = css->ss->can_attach(css, &tset);
74a1166d 1800 if (retval) {
1c6727af 1801 failed_css = css;
74a1166d
BB
1802 goto out_cancel_attach;
1803 }
1804 }
74a1166d
BB
1805 }
1806
1807 /*
1808 * step 2: make sure css_sets exist for all threads to be migrated.
1809 * we use find_css_set, which allocates a new one if necessary.
1810 */
74a1166d 1811 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1812 struct css_set *old_cset;
1813
134d3373 1814 tc = flex_array_get(group, i);
a8ad805c 1815 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1816 tc->cset = find_css_set(old_cset, cgrp);
1817 if (!tc->cset) {
61d1d219
MSB
1818 retval = -ENOMEM;
1819 goto out_put_css_set_refs;
74a1166d
BB
1820 }
1821 }
1822
1823 /*
494c167c
TH
1824 * step 3: now that we're guaranteed success wrt the css_sets,
1825 * proceed to move all tasks to the new cgroup. There are no
1826 * failure cases after here, so this is the commit point.
74a1166d 1827 */
74a1166d 1828 for (i = 0; i < group_size; i++) {
134d3373 1829 tc = flex_array_get(group, i);
6f4b7e63 1830 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
1831 }
1832 /* nothing is sensitive to fork() after this point. */
1833
1834 /*
494c167c 1835 * step 4: do subsystem attach callbacks.
74a1166d 1836 */
1c6727af
TH
1837 for_each_css(css, i, cgrp)
1838 if (css->ss->attach)
1839 css->ss->attach(css, &tset);
74a1166d
BB
1840
1841 /*
1842 * step 5: success! and cleanup
1843 */
74a1166d 1844 retval = 0;
61d1d219
MSB
1845out_put_css_set_refs:
1846 if (retval) {
1847 for (i = 0; i < group_size; i++) {
1848 tc = flex_array_get(group, i);
6f4b7e63 1849 if (!tc->cset)
61d1d219 1850 break;
6f4b7e63 1851 put_css_set(tc->cset);
61d1d219 1852 }
74a1166d
BB
1853 }
1854out_cancel_attach:
74a1166d 1855 if (retval) {
1c6727af
TH
1856 for_each_css(css, i, cgrp) {
1857 if (css == failed_css)
74a1166d 1858 break;
1c6727af
TH
1859 if (css->ss->cancel_attach)
1860 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1861 }
1862 }
74a1166d 1863out_free_group_list:
d846687d 1864 flex_array_free(group);
74a1166d
BB
1865 return retval;
1866}
1867
1868/*
1869 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1870 * function to attach either it or all tasks in its threadgroup. Will lock
1871 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1872 */
74a1166d 1873static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1874{
bbcb81d0 1875 struct task_struct *tsk;
c69e8d9c 1876 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1877 int ret;
1878
74a1166d
BB
1879 if (!cgroup_lock_live_group(cgrp))
1880 return -ENODEV;
1881
b78949eb
MSB
1882retry_find_task:
1883 rcu_read_lock();
bbcb81d0 1884 if (pid) {
73507f33 1885 tsk = find_task_by_vpid(pid);
74a1166d
BB
1886 if (!tsk) {
1887 rcu_read_unlock();
dd4b0a46 1888 ret = -ESRCH;
b78949eb 1889 goto out_unlock_cgroup;
bbcb81d0 1890 }
74a1166d
BB
1891 /*
1892 * even if we're attaching all tasks in the thread group, we
1893 * only need to check permissions on one of them.
1894 */
c69e8d9c 1895 tcred = __task_cred(tsk);
14a590c3
EB
1896 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1897 !uid_eq(cred->euid, tcred->uid) &&
1898 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1899 rcu_read_unlock();
b78949eb
MSB
1900 ret = -EACCES;
1901 goto out_unlock_cgroup;
bbcb81d0 1902 }
b78949eb
MSB
1903 } else
1904 tsk = current;
cd3d0952
TH
1905
1906 if (threadgroup)
b78949eb 1907 tsk = tsk->group_leader;
c4c27fbd
MG
1908
1909 /*
14a40ffc 1910 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1911 * trapped in a cpuset, or RT worker may be born in a cgroup
1912 * with no rt_runtime allocated. Just say no.
1913 */
14a40ffc 1914 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1915 ret = -EINVAL;
1916 rcu_read_unlock();
1917 goto out_unlock_cgroup;
1918 }
1919
b78949eb
MSB
1920 get_task_struct(tsk);
1921 rcu_read_unlock();
1922
1923 threadgroup_lock(tsk);
1924 if (threadgroup) {
1925 if (!thread_group_leader(tsk)) {
1926 /*
1927 * a race with de_thread from another thread's exec()
1928 * may strip us of our leadership, if this happens,
1929 * there is no choice but to throw this task away and
1930 * try again; this is
1931 * "double-double-toil-and-trouble-check locking".
1932 */
1933 threadgroup_unlock(tsk);
1934 put_task_struct(tsk);
1935 goto retry_find_task;
1936 }
081aa458
LZ
1937 }
1938
1939 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1940
cd3d0952
TH
1941 threadgroup_unlock(tsk);
1942
bbcb81d0 1943 put_task_struct(tsk);
b78949eb 1944out_unlock_cgroup:
47cfcd09 1945 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1946 return ret;
1947}
1948
7ae1bad9
TH
1949/**
1950 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1951 * @from: attach to all cgroups of a given task
1952 * @tsk: the task to be attached
1953 */
1954int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1955{
1956 struct cgroupfs_root *root;
1957 int retval = 0;
1958
47cfcd09 1959 mutex_lock(&cgroup_mutex);
7ae1bad9 1960 for_each_active_root(root) {
6f4b7e63 1961 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 1962
6f4b7e63 1963 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
1964 if (retval)
1965 break;
1966 }
47cfcd09 1967 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
1968
1969 return retval;
1970}
1971EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1972
182446d0
TH
1973static int cgroup_tasks_write(struct cgroup_subsys_state *css,
1974 struct cftype *cft, u64 pid)
74a1166d 1975{
182446d0 1976 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
1977}
1978
182446d0
TH
1979static int cgroup_procs_write(struct cgroup_subsys_state *css,
1980 struct cftype *cft, u64 tgid)
af351026 1981{
182446d0 1982 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
1983}
1984
182446d0
TH
1985static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
1986 struct cftype *cft, const char *buffer)
e788e066 1987{
5f469907
TH
1988 struct cgroupfs_root *root = css->cgroup->root;
1989
1990 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 1991 if (!cgroup_lock_live_group(css->cgroup))
e788e066 1992 return -ENODEV;
69e943b7 1993 spin_lock(&release_agent_path_lock);
5f469907
TH
1994 strlcpy(root->release_agent_path, buffer,
1995 sizeof(root->release_agent_path));
69e943b7 1996 spin_unlock(&release_agent_path_lock);
47cfcd09 1997 mutex_unlock(&cgroup_mutex);
e788e066
PM
1998 return 0;
1999}
2000
2da8ca82 2001static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2002{
2da8ca82 2003 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2004
e788e066
PM
2005 if (!cgroup_lock_live_group(cgrp))
2006 return -ENODEV;
2007 seq_puts(seq, cgrp->root->release_agent_path);
2008 seq_putc(seq, '\n');
47cfcd09 2009 mutex_unlock(&cgroup_mutex);
e788e066
PM
2010 return 0;
2011}
2012
2da8ca82 2013static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2014{
2da8ca82
TH
2015 struct cgroup *cgrp = seq_css(seq)->cgroup;
2016
2017 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2018 return 0;
2019}
2020
2bd59d48
TH
2021static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2022 size_t nbytes, loff_t off)
355e0c48 2023{
2bd59d48
TH
2024 struct cgroup *cgrp = of->kn->parent->priv;
2025 struct cftype *cft = of->kn->priv;
2026 struct cgroup_subsys_state *css;
a742c59d 2027 int ret;
355e0c48 2028
2bd59d48
TH
2029 /*
2030 * kernfs guarantees that a file isn't deleted with operations in
2031 * flight, which means that the matching css is and stays alive and
2032 * doesn't need to be pinned. The RCU locking is not necessary
2033 * either. It's just for the convenience of using cgroup_css().
2034 */
2035 rcu_read_lock();
2036 css = cgroup_css(cgrp, cft->ss);
2037 rcu_read_unlock();
a742c59d
TH
2038
2039 if (cft->write_string) {
2040 ret = cft->write_string(css, cft, strstrip(buf));
2041 } else if (cft->write_u64) {
2042 unsigned long long v;
2043 ret = kstrtoull(buf, 0, &v);
2044 if (!ret)
2045 ret = cft->write_u64(css, cft, v);
2046 } else if (cft->write_s64) {
2047 long long v;
2048 ret = kstrtoll(buf, 0, &v);
2049 if (!ret)
2050 ret = cft->write_s64(css, cft, v);
2051 } else if (cft->trigger) {
2052 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2053 } else {
a742c59d 2054 ret = -EINVAL;
e73d2c61 2055 }
2bd59d48 2056
a742c59d 2057 return ret ?: nbytes;
355e0c48
PM
2058}
2059
6612f05b 2060static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2061{
2bd59d48 2062 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2063}
2064
6612f05b 2065static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2066{
2bd59d48 2067 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2068}
2069
6612f05b 2070static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2071{
2bd59d48 2072 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2073}
2074
91796569 2075static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2076{
7da11279
TH
2077 struct cftype *cft = seq_cft(m);
2078 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2079
2da8ca82
TH
2080 if (cft->seq_show)
2081 return cft->seq_show(m, arg);
e73d2c61 2082
f4c753b7 2083 if (cft->read_u64)
896f5199
TH
2084 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2085 else if (cft->read_s64)
2086 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2087 else
2088 return -EINVAL;
2089 return 0;
91796569
PM
2090}
2091
2bd59d48
TH
2092static struct kernfs_ops cgroup_kf_single_ops = {
2093 .atomic_write_len = PAGE_SIZE,
2094 .write = cgroup_file_write,
2095 .seq_show = cgroup_seqfile_show,
91796569
PM
2096};
2097
2bd59d48
TH
2098static struct kernfs_ops cgroup_kf_ops = {
2099 .atomic_write_len = PAGE_SIZE,
2100 .write = cgroup_file_write,
2101 .seq_start = cgroup_seqfile_start,
2102 .seq_next = cgroup_seqfile_next,
2103 .seq_stop = cgroup_seqfile_stop,
2104 .seq_show = cgroup_seqfile_show,
2105};
ddbcc7e8
PM
2106
2107/*
2108 * cgroup_rename - Only allow simple rename of directories in place.
2109 */
2bd59d48
TH
2110static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2111 const char *new_name_str)
ddbcc7e8 2112{
2bd59d48 2113 struct cgroup *cgrp = kn->priv;
2bd59d48 2114 int ret;
65dff759 2115
2bd59d48 2116 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2117 return -ENOTDIR;
2bd59d48 2118 if (kn->parent != new_parent)
ddbcc7e8 2119 return -EIO;
65dff759 2120
6db8e85c
TH
2121 /*
2122 * This isn't a proper migration and its usefulness is very
2123 * limited. Disallow if sane_behavior.
2124 */
2125 if (cgroup_sane_behavior(cgrp))
2126 return -EPERM;
2127
2bd59d48
TH
2128 mutex_lock(&cgroup_tree_mutex);
2129 mutex_lock(&cgroup_mutex);
2130
2131 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2132
2bd59d48
TH
2133 mutex_unlock(&cgroup_mutex);
2134 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2135 return ret;
ddbcc7e8
PM
2136}
2137
2bb566cb 2138static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2139{
8d7e6fb0 2140 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2141 struct kernfs_node *kn;
2142 struct lock_class_key *key = NULL;
05ef1d7c 2143
2bd59d48
TH
2144#ifdef CONFIG_DEBUG_LOCK_ALLOC
2145 key = &cft->lockdep_key;
2146#endif
2147 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2148 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2149 NULL, false, key);
2150 if (IS_ERR(kn))
2151 return PTR_ERR(kn);
2152 return 0;
ddbcc7e8
PM
2153}
2154
b1f28d31
TH
2155/**
2156 * cgroup_addrm_files - add or remove files to a cgroup directory
2157 * @cgrp: the target cgroup
b1f28d31
TH
2158 * @cfts: array of cftypes to be added
2159 * @is_add: whether to add or remove
2160 *
2161 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2162 * For removals, this function never fails. If addition fails, this
2163 * function doesn't remove files already added. The caller is responsible
2164 * for cleaning up.
b1f28d31 2165 */
2bb566cb
TH
2166static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2167 bool is_add)
ddbcc7e8 2168{
03b1cde6 2169 struct cftype *cft;
b1f28d31
TH
2170 int ret;
2171
ace2bee8 2172 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2173
2174 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2175 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2176 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2177 continue;
f33fddc2
G
2178 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2179 continue;
2180 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2181 continue;
2182
2739d3cc 2183 if (is_add) {
2bb566cb 2184 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2185 if (ret) {
2739d3cc 2186 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2187 cft->name, ret);
2188 return ret;
2189 }
2739d3cc
LZ
2190 } else {
2191 cgroup_rm_file(cgrp, cft);
db0416b6 2192 }
ddbcc7e8 2193 }
b1f28d31 2194 return 0;
ddbcc7e8
PM
2195}
2196
21a2d343 2197static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2198{
2199 LIST_HEAD(pending);
2bb566cb 2200 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2201 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2202 struct cgroup_subsys_state *css;
9ccece80 2203 int ret = 0;
8e3f6541 2204
21a2d343 2205 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2206
21a2d343
TH
2207 /* don't bother if @ss isn't attached */
2208 if (ss->root == &cgroup_dummy_root)
9ccece80 2209 return 0;
e8c82d20 2210
e8c82d20 2211 /* add/rm files for all cgroups created before */
ca8bdcaf 2212 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2213 struct cgroup *cgrp = css->cgroup;
2214
e8c82d20
LZ
2215 if (cgroup_is_dead(cgrp))
2216 continue;
2217
21a2d343 2218 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2219 if (ret)
2220 break;
8e3f6541 2221 }
21a2d343
TH
2222
2223 if (is_add && !ret)
2224 kernfs_activate(root->kn);
9ccece80 2225 return ret;
8e3f6541
TH
2226}
2227
2da440a2
TH
2228static void cgroup_exit_cftypes(struct cftype *cfts)
2229{
2230 struct cftype *cft;
2231
2bd59d48
TH
2232 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2233 /* free copy for custom atomic_write_len, see init_cftypes() */
2234 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2235 kfree(cft->kf_ops);
2236 cft->kf_ops = NULL;
2da440a2 2237 cft->ss = NULL;
2bd59d48 2238 }
2da440a2
TH
2239}
2240
2bd59d48 2241static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2242{
2243 struct cftype *cft;
2244
2bd59d48
TH
2245 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2246 struct kernfs_ops *kf_ops;
2247
0adb0704
TH
2248 WARN_ON(cft->ss || cft->kf_ops);
2249
2bd59d48
TH
2250 if (cft->seq_start)
2251 kf_ops = &cgroup_kf_ops;
2252 else
2253 kf_ops = &cgroup_kf_single_ops;
2254
2255 /*
2256 * Ugh... if @cft wants a custom max_write_len, we need to
2257 * make a copy of kf_ops to set its atomic_write_len.
2258 */
2259 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2260 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2261 if (!kf_ops) {
2262 cgroup_exit_cftypes(cfts);
2263 return -ENOMEM;
2264 }
2265 kf_ops->atomic_write_len = cft->max_write_len;
2266 }
2267
2268 cft->kf_ops = kf_ops;
2da440a2 2269 cft->ss = ss;
2bd59d48
TH
2270 }
2271
2272 return 0;
2da440a2
TH
2273}
2274
21a2d343
TH
2275static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2276{
2277 lockdep_assert_held(&cgroup_tree_mutex);
2278
2279 if (!cfts || !cfts[0].ss)
2280 return -ENOENT;
2281
2282 list_del(&cfts->node);
2283 cgroup_apply_cftypes(cfts, false);
2284 cgroup_exit_cftypes(cfts);
2285 return 0;
2286}
2287
80b13586
TH
2288/**
2289 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2290 * @cfts: zero-length name terminated array of cftypes
2291 *
2292 * Unregister @cfts. Files described by @cfts are removed from all
2293 * existing cgroups and all future cgroups won't have them either. This
2294 * function can be called anytime whether @cfts' subsys is attached or not.
2295 *
2296 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2297 * registered.
2298 */
2299int cgroup_rm_cftypes(struct cftype *cfts)
2300{
21a2d343 2301 int ret;
80b13586 2302
21a2d343
TH
2303 mutex_lock(&cgroup_tree_mutex);
2304 ret = cgroup_rm_cftypes_locked(cfts);
2305 mutex_unlock(&cgroup_tree_mutex);
2306 return ret;
80b13586
TH
2307}
2308
8e3f6541
TH
2309/**
2310 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2311 * @ss: target cgroup subsystem
2312 * @cfts: zero-length name terminated array of cftypes
2313 *
2314 * Register @cfts to @ss. Files described by @cfts are created for all
2315 * existing cgroups to which @ss is attached and all future cgroups will
2316 * have them too. This function can be called anytime whether @ss is
2317 * attached or not.
2318 *
2319 * Returns 0 on successful registration, -errno on failure. Note that this
2320 * function currently returns 0 as long as @cfts registration is successful
2321 * even if some file creation attempts on existing cgroups fail.
2322 */
03b1cde6 2323int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2324{
9ccece80 2325 int ret;
8e3f6541 2326
2bd59d48
TH
2327 ret = cgroup_init_cftypes(ss, cfts);
2328 if (ret)
2329 return ret;
2bb566cb 2330
21a2d343
TH
2331 mutex_lock(&cgroup_tree_mutex);
2332
0adb0704 2333 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2334 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2335 if (ret)
21a2d343
TH
2336 cgroup_rm_cftypes_locked(cfts);
2337
2338 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2339 return ret;
8e3f6541
TH
2340}
2341EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2342
a043e3b2
LZ
2343/**
2344 * cgroup_task_count - count the number of tasks in a cgroup.
2345 * @cgrp: the cgroup in question
2346 *
2347 * Return the number of tasks in the cgroup.
2348 */
bd89aabc 2349int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2350{
2351 int count = 0;
69d0206c 2352 struct cgrp_cset_link *link;
817929ec
PM
2353
2354 read_lock(&css_set_lock);
69d0206c
TH
2355 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2356 count += atomic_read(&link->cset->refcount);
817929ec 2357 read_unlock(&css_set_lock);
bbcb81d0
PM
2358 return count;
2359}
2360
817929ec 2361/*
0942eeee
TH
2362 * To reduce the fork() overhead for systems that are not actually using
2363 * their cgroups capability, we don't maintain the lists running through
2364 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2365 * words after the first call to css_task_iter_start().
31a7df01 2366 */
3df91fe3 2367static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2368{
2369 struct task_struct *p, *g;
2370 write_lock(&css_set_lock);
2371 use_task_css_set_links = 1;
3ce3230a
FW
2372 /*
2373 * We need tasklist_lock because RCU is not safe against
2374 * while_each_thread(). Besides, a forking task that has passed
2375 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2376 * is not guaranteed to have its child immediately visible in the
2377 * tasklist if we walk through it with RCU.
2378 */
2379 read_lock(&tasklist_lock);
31a7df01
CW
2380 do_each_thread(g, p) {
2381 task_lock(p);
0e04388f
LZ
2382 /*
2383 * We should check if the process is exiting, otherwise
2384 * it will race with cgroup_exit() in that the list
2385 * entry won't be deleted though the process has exited.
2386 */
2387 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2388 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2389 task_unlock(p);
2390 } while_each_thread(g, p);
3ce3230a 2391 read_unlock(&tasklist_lock);
31a7df01
CW
2392 write_unlock(&css_set_lock);
2393}
2394
53fa5261 2395/**
492eb21b
TH
2396 * css_next_child - find the next child of a given css
2397 * @pos_css: the current position (%NULL to initiate traversal)
2398 * @parent_css: css whose children to walk
53fa5261 2399 *
492eb21b 2400 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2401 * under either cgroup_mutex or RCU read lock. The only requirement is
2402 * that @parent_css and @pos_css are accessible. The next sibling is
2403 * guaranteed to be returned regardless of their states.
53fa5261 2404 */
492eb21b
TH
2405struct cgroup_subsys_state *
2406css_next_child(struct cgroup_subsys_state *pos_css,
2407 struct cgroup_subsys_state *parent_css)
53fa5261 2408{
492eb21b
TH
2409 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2410 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2411 struct cgroup *next;
2412
ace2bee8 2413 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2414
2415 /*
2416 * @pos could already have been removed. Once a cgroup is removed,
2417 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2418 * changes. As CGRP_DEAD assertion is serialized and happens
2419 * before the cgroup is taken off the ->sibling list, if we see it
2420 * unasserted, it's guaranteed that the next sibling hasn't
2421 * finished its grace period even if it's already removed, and thus
2422 * safe to dereference from this RCU critical section. If
2423 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2424 * to be visible as %true here.
3b287a50
TH
2425 *
2426 * If @pos is dead, its next pointer can't be dereferenced;
2427 * however, as each cgroup is given a monotonically increasing
2428 * unique serial number and always appended to the sibling list,
2429 * the next one can be found by walking the parent's children until
2430 * we see a cgroup with higher serial number than @pos's. While
2431 * this path can be slower, it's taken only when either the current
2432 * cgroup is removed or iteration and removal race.
53fa5261 2433 */
3b287a50
TH
2434 if (!pos) {
2435 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2436 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2437 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2438 } else {
2439 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2440 if (next->serial_nr > pos->serial_nr)
2441 break;
53fa5261
TH
2442 }
2443
492eb21b
TH
2444 if (&next->sibling == &cgrp->children)
2445 return NULL;
2446
ca8bdcaf 2447 return cgroup_css(next, parent_css->ss);
53fa5261 2448}
492eb21b 2449EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2450
574bd9f7 2451/**
492eb21b 2452 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2453 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2454 * @root: css whose descendants to walk
574bd9f7 2455 *
492eb21b 2456 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2457 * to visit for pre-order traversal of @root's descendants. @root is
2458 * included in the iteration and the first node to be visited.
75501a6d 2459 *
87fb54f1
TH
2460 * While this function requires cgroup_mutex or RCU read locking, it
2461 * doesn't require the whole traversal to be contained in a single critical
2462 * section. This function will return the correct next descendant as long
2463 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2464 */
492eb21b
TH
2465struct cgroup_subsys_state *
2466css_next_descendant_pre(struct cgroup_subsys_state *pos,
2467 struct cgroup_subsys_state *root)
574bd9f7 2468{
492eb21b 2469 struct cgroup_subsys_state *next;
574bd9f7 2470
ace2bee8 2471 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2472
bd8815a6 2473 /* if first iteration, visit @root */
7805d000 2474 if (!pos)
bd8815a6 2475 return root;
574bd9f7
TH
2476
2477 /* visit the first child if exists */
492eb21b 2478 next = css_next_child(NULL, pos);
574bd9f7
TH
2479 if (next)
2480 return next;
2481
2482 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2483 while (pos != root) {
2484 next = css_next_child(pos, css_parent(pos));
75501a6d 2485 if (next)
574bd9f7 2486 return next;
492eb21b 2487 pos = css_parent(pos);
7805d000 2488 }
574bd9f7
TH
2489
2490 return NULL;
2491}
492eb21b 2492EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2493
12a9d2fe 2494/**
492eb21b
TH
2495 * css_rightmost_descendant - return the rightmost descendant of a css
2496 * @pos: css of interest
12a9d2fe 2497 *
492eb21b
TH
2498 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2499 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2500 * subtree of @pos.
75501a6d 2501 *
87fb54f1
TH
2502 * While this function requires cgroup_mutex or RCU read locking, it
2503 * doesn't require the whole traversal to be contained in a single critical
2504 * section. This function will return the correct rightmost descendant as
2505 * long as @pos is accessible.
12a9d2fe 2506 */
492eb21b
TH
2507struct cgroup_subsys_state *
2508css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2509{
492eb21b 2510 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2511
ace2bee8 2512 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2513
2514 do {
2515 last = pos;
2516 /* ->prev isn't RCU safe, walk ->next till the end */
2517 pos = NULL;
492eb21b 2518 css_for_each_child(tmp, last)
12a9d2fe
TH
2519 pos = tmp;
2520 } while (pos);
2521
2522 return last;
2523}
492eb21b 2524EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 2525
492eb21b
TH
2526static struct cgroup_subsys_state *
2527css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2528{
492eb21b 2529 struct cgroup_subsys_state *last;
574bd9f7
TH
2530
2531 do {
2532 last = pos;
492eb21b 2533 pos = css_next_child(NULL, pos);
574bd9f7
TH
2534 } while (pos);
2535
2536 return last;
2537}
2538
2539/**
492eb21b 2540 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2541 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2542 * @root: css whose descendants to walk
574bd9f7 2543 *
492eb21b 2544 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2545 * to visit for post-order traversal of @root's descendants. @root is
2546 * included in the iteration and the last node to be visited.
75501a6d 2547 *
87fb54f1
TH
2548 * While this function requires cgroup_mutex or RCU read locking, it
2549 * doesn't require the whole traversal to be contained in a single critical
2550 * section. This function will return the correct next descendant as long
2551 * as both @pos and @cgroup are accessible and @pos is a descendant of
2552 * @cgroup.
574bd9f7 2553 */
492eb21b
TH
2554struct cgroup_subsys_state *
2555css_next_descendant_post(struct cgroup_subsys_state *pos,
2556 struct cgroup_subsys_state *root)
574bd9f7 2557{
492eb21b 2558 struct cgroup_subsys_state *next;
574bd9f7 2559
ace2bee8 2560 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2561
58b79a91
TH
2562 /* if first iteration, visit leftmost descendant which may be @root */
2563 if (!pos)
2564 return css_leftmost_descendant(root);
574bd9f7 2565
bd8815a6
TH
2566 /* if we visited @root, we're done */
2567 if (pos == root)
2568 return NULL;
2569
574bd9f7 2570 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2571 next = css_next_child(pos, css_parent(pos));
75501a6d 2572 if (next)
492eb21b 2573 return css_leftmost_descendant(next);
574bd9f7
TH
2574
2575 /* no sibling left, visit parent */
bd8815a6 2576 return css_parent(pos);
574bd9f7 2577}
492eb21b 2578EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 2579
0942eeee 2580/**
72ec7029 2581 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2582 * @it: the iterator to advance
2583 *
2584 * Advance @it to the next css_set to walk.
d515876e 2585 */
72ec7029 2586static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2587{
2588 struct list_head *l = it->cset_link;
2589 struct cgrp_cset_link *link;
2590 struct css_set *cset;
2591
2592 /* Advance to the next non-empty css_set */
2593 do {
2594 l = l->next;
72ec7029 2595 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2596 it->cset_link = NULL;
2597 return;
2598 }
2599 link = list_entry(l, struct cgrp_cset_link, cset_link);
2600 cset = link->cset;
2601 } while (list_empty(&cset->tasks));
2602 it->cset_link = l;
2603 it->task = cset->tasks.next;
2604}
2605
0942eeee 2606/**
72ec7029
TH
2607 * css_task_iter_start - initiate task iteration
2608 * @css: the css to walk tasks of
0942eeee
TH
2609 * @it: the task iterator to use
2610 *
72ec7029
TH
2611 * Initiate iteration through the tasks of @css. The caller can call
2612 * css_task_iter_next() to walk through the tasks until the function
2613 * returns NULL. On completion of iteration, css_task_iter_end() must be
2614 * called.
0942eeee
TH
2615 *
2616 * Note that this function acquires a lock which is released when the
2617 * iteration finishes. The caller can't sleep while iteration is in
2618 * progress.
2619 */
72ec7029
TH
2620void css_task_iter_start(struct cgroup_subsys_state *css,
2621 struct css_task_iter *it)
c6ca5750 2622 __acquires(css_set_lock)
817929ec
PM
2623{
2624 /*
72ec7029
TH
2625 * The first time anyone tries to iterate across a css, we need to
2626 * enable the list linking each css_set to its tasks, and fix up
2627 * all existing tasks.
817929ec 2628 */
31a7df01
CW
2629 if (!use_task_css_set_links)
2630 cgroup_enable_task_cg_lists();
2631
817929ec 2632 read_lock(&css_set_lock);
c59cd3d8 2633
72ec7029
TH
2634 it->origin_css = css;
2635 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2636
72ec7029 2637 css_advance_task_iter(it);
817929ec
PM
2638}
2639
0942eeee 2640/**
72ec7029 2641 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2642 * @it: the task iterator being iterated
2643 *
2644 * The "next" function for task iteration. @it should have been
72ec7029
TH
2645 * initialized via css_task_iter_start(). Returns NULL when the iteration
2646 * reaches the end.
0942eeee 2647 */
72ec7029 2648struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2649{
2650 struct task_struct *res;
2651 struct list_head *l = it->task;
69d0206c 2652 struct cgrp_cset_link *link;
817929ec
PM
2653
2654 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2655 if (!it->cset_link)
817929ec
PM
2656 return NULL;
2657 res = list_entry(l, struct task_struct, cg_list);
2658 /* Advance iterator to find next entry */
2659 l = l->next;
69d0206c
TH
2660 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2661 if (l == &link->cset->tasks) {
0942eeee
TH
2662 /*
2663 * We reached the end of this task list - move on to the
2664 * next cgrp_cset_link.
2665 */
72ec7029 2666 css_advance_task_iter(it);
817929ec
PM
2667 } else {
2668 it->task = l;
2669 }
2670 return res;
2671}
2672
0942eeee 2673/**
72ec7029 2674 * css_task_iter_end - finish task iteration
0942eeee
TH
2675 * @it: the task iterator to finish
2676 *
72ec7029 2677 * Finish task iteration started by css_task_iter_start().
0942eeee 2678 */
72ec7029 2679void css_task_iter_end(struct css_task_iter *it)
c6ca5750 2680 __releases(css_set_lock)
817929ec
PM
2681{
2682 read_unlock(&css_set_lock);
2683}
2684
31a7df01
CW
2685static inline int started_after_time(struct task_struct *t1,
2686 struct timespec *time,
2687 struct task_struct *t2)
2688{
2689 int start_diff = timespec_compare(&t1->start_time, time);
2690 if (start_diff > 0) {
2691 return 1;
2692 } else if (start_diff < 0) {
2693 return 0;
2694 } else {
2695 /*
2696 * Arbitrarily, if two processes started at the same
2697 * time, we'll say that the lower pointer value
2698 * started first. Note that t2 may have exited by now
2699 * so this may not be a valid pointer any longer, but
2700 * that's fine - it still serves to distinguish
2701 * between two tasks started (effectively) simultaneously.
2702 */
2703 return t1 > t2;
2704 }
2705}
2706
2707/*
2708 * This function is a callback from heap_insert() and is used to order
2709 * the heap.
2710 * In this case we order the heap in descending task start time.
2711 */
2712static inline int started_after(void *p1, void *p2)
2713{
2714 struct task_struct *t1 = p1;
2715 struct task_struct *t2 = p2;
2716 return started_after_time(t1, &t2->start_time, t2);
2717}
2718
2719/**
72ec7029
TH
2720 * css_scan_tasks - iterate though all the tasks in a css
2721 * @css: the css to iterate tasks of
e535837b
TH
2722 * @test: optional test callback
2723 * @process: process callback
2724 * @data: data passed to @test and @process
2725 * @heap: optional pre-allocated heap used for task iteration
31a7df01 2726 *
72ec7029
TH
2727 * Iterate through all the tasks in @css, calling @test for each, and if it
2728 * returns %true, call @process for it also.
31a7df01 2729 *
e535837b 2730 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 2731 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
2732 * lock css_set_lock for the call to @process.
2733 *
2734 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
2735 * of @css for the duration of this call. This function may or may not
2736 * call @process for tasks that exit or move to a different css during the
2737 * call, or are forked or move into the css during the call.
31a7df01 2738 *
e535837b
TH
2739 * Note that @test may be called with locks held, and may in some
2740 * situations be called multiple times for the same task, so it should be
2741 * cheap.
31a7df01 2742 *
e535837b
TH
2743 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
2744 * heap operations (and its "gt" member will be overwritten), else a
2745 * temporary heap will be used (allocation of which may cause this function
2746 * to fail).
31a7df01 2747 */
72ec7029
TH
2748int css_scan_tasks(struct cgroup_subsys_state *css,
2749 bool (*test)(struct task_struct *, void *),
2750 void (*process)(struct task_struct *, void *),
2751 void *data, struct ptr_heap *heap)
31a7df01
CW
2752{
2753 int retval, i;
72ec7029 2754 struct css_task_iter it;
31a7df01
CW
2755 struct task_struct *p, *dropped;
2756 /* Never dereference latest_task, since it's not refcounted */
2757 struct task_struct *latest_task = NULL;
2758 struct ptr_heap tmp_heap;
31a7df01
CW
2759 struct timespec latest_time = { 0, 0 };
2760
e535837b 2761 if (heap) {
31a7df01 2762 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
2763 heap->gt = &started_after;
2764 } else {
2765 /* We need to allocate our own heap memory */
2766 heap = &tmp_heap;
2767 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2768 if (retval)
2769 /* cannot allocate the heap */
2770 return retval;
2771 }
2772
2773 again:
2774 /*
72ec7029 2775 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
2776 * which are of interest, and invoking @process callback on the
2777 * ones which need an update. Since we don't want to hold any
2778 * locks during the task updates, gather tasks to be processed in a
2779 * heap structure. The heap is sorted by descending task start
2780 * time. If the statically-sized heap fills up, we overflow tasks
2781 * that started later, and in future iterations only consider tasks
2782 * that started after the latest task in the previous pass. This
31a7df01
CW
2783 * guarantees forward progress and that we don't miss any tasks.
2784 */
2785 heap->size = 0;
72ec7029
TH
2786 css_task_iter_start(css, &it);
2787 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
2788 /*
2789 * Only affect tasks that qualify per the caller's callback,
2790 * if he provided one
2791 */
e535837b 2792 if (test && !test(p, data))
31a7df01
CW
2793 continue;
2794 /*
2795 * Only process tasks that started after the last task
2796 * we processed
2797 */
2798 if (!started_after_time(p, &latest_time, latest_task))
2799 continue;
2800 dropped = heap_insert(heap, p);
2801 if (dropped == NULL) {
2802 /*
2803 * The new task was inserted; the heap wasn't
2804 * previously full
2805 */
2806 get_task_struct(p);
2807 } else if (dropped != p) {
2808 /*
2809 * The new task was inserted, and pushed out a
2810 * different task
2811 */
2812 get_task_struct(p);
2813 put_task_struct(dropped);
2814 }
2815 /*
2816 * Else the new task was newer than anything already in
2817 * the heap and wasn't inserted
2818 */
2819 }
72ec7029 2820 css_task_iter_end(&it);
31a7df01
CW
2821
2822 if (heap->size) {
2823 for (i = 0; i < heap->size; i++) {
4fe91d51 2824 struct task_struct *q = heap->ptrs[i];
31a7df01 2825 if (i == 0) {
4fe91d51
PJ
2826 latest_time = q->start_time;
2827 latest_task = q;
31a7df01
CW
2828 }
2829 /* Process the task per the caller's callback */
e535837b 2830 process(q, data);
4fe91d51 2831 put_task_struct(q);
31a7df01
CW
2832 }
2833 /*
2834 * If we had to process any tasks at all, scan again
2835 * in case some of them were in the middle of forking
2836 * children that didn't get processed.
2837 * Not the most efficient way to do it, but it avoids
2838 * having to take callback_mutex in the fork path
2839 */
2840 goto again;
2841 }
2842 if (heap == &tmp_heap)
2843 heap_free(&tmp_heap);
2844 return 0;
2845}
2846
e535837b 2847static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 2848{
e535837b 2849 struct cgroup *new_cgroup = data;
8cc99345 2850
47cfcd09 2851 mutex_lock(&cgroup_mutex);
8cc99345 2852 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 2853 mutex_unlock(&cgroup_mutex);
8cc99345
TH
2854}
2855
2856/**
2857 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2858 * @to: cgroup to which the tasks will be moved
2859 * @from: cgroup in which the tasks currently reside
2860 */
2861int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2862{
72ec7029
TH
2863 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
2864 to, NULL);
8cc99345
TH
2865}
2866
bbcb81d0 2867/*
102a775e 2868 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2869 *
2870 * Reading this file can return large amounts of data if a cgroup has
2871 * *lots* of attached tasks. So it may need several calls to read(),
2872 * but we cannot guarantee that the information we produce is correct
2873 * unless we produce it entirely atomically.
2874 *
bbcb81d0 2875 */
bbcb81d0 2876
24528255
LZ
2877/* which pidlist file are we talking about? */
2878enum cgroup_filetype {
2879 CGROUP_FILE_PROCS,
2880 CGROUP_FILE_TASKS,
2881};
2882
2883/*
2884 * A pidlist is a list of pids that virtually represents the contents of one
2885 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2886 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2887 * to the cgroup.
2888 */
2889struct cgroup_pidlist {
2890 /*
2891 * used to find which pidlist is wanted. doesn't change as long as
2892 * this particular list stays in the list.
2893 */
2894 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2895 /* array of xids */
2896 pid_t *list;
2897 /* how many elements the above list has */
2898 int length;
24528255
LZ
2899 /* each of these stored in a list by its cgroup */
2900 struct list_head links;
2901 /* pointer to the cgroup we belong to, for list removal purposes */
2902 struct cgroup *owner;
b1a21367
TH
2903 /* for delayed destruction */
2904 struct delayed_work destroy_dwork;
24528255
LZ
2905};
2906
d1d9fd33
BB
2907/*
2908 * The following two functions "fix" the issue where there are more pids
2909 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2910 * TODO: replace with a kernel-wide solution to this problem
2911 */
2912#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2913static void *pidlist_allocate(int count)
2914{
2915 if (PIDLIST_TOO_LARGE(count))
2916 return vmalloc(count * sizeof(pid_t));
2917 else
2918 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2919}
b1a21367 2920
d1d9fd33
BB
2921static void pidlist_free(void *p)
2922{
2923 if (is_vmalloc_addr(p))
2924 vfree(p);
2925 else
2926 kfree(p);
2927}
d1d9fd33 2928
b1a21367
TH
2929/*
2930 * Used to destroy all pidlists lingering waiting for destroy timer. None
2931 * should be left afterwards.
2932 */
2933static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2934{
2935 struct cgroup_pidlist *l, *tmp_l;
2936
2937 mutex_lock(&cgrp->pidlist_mutex);
2938 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2939 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2940 mutex_unlock(&cgrp->pidlist_mutex);
2941
2942 flush_workqueue(cgroup_pidlist_destroy_wq);
2943 BUG_ON(!list_empty(&cgrp->pidlists));
2944}
2945
2946static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2947{
2948 struct delayed_work *dwork = to_delayed_work(work);
2949 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2950 destroy_dwork);
2951 struct cgroup_pidlist *tofree = NULL;
2952
2953 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2954
2955 /*
04502365
TH
2956 * Destroy iff we didn't get queued again. The state won't change
2957 * as destroy_dwork can only be queued while locked.
b1a21367 2958 */
04502365 2959 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2960 list_del(&l->links);
2961 pidlist_free(l->list);
2962 put_pid_ns(l->key.ns);
2963 tofree = l;
2964 }
2965
b1a21367
TH
2966 mutex_unlock(&l->owner->pidlist_mutex);
2967 kfree(tofree);
2968}
2969
bbcb81d0 2970/*
102a775e 2971 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2972 * Returns the number of unique elements.
bbcb81d0 2973 */
6ee211ad 2974static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2975{
102a775e 2976 int src, dest = 1;
102a775e
BB
2977
2978 /*
2979 * we presume the 0th element is unique, so i starts at 1. trivial
2980 * edge cases first; no work needs to be done for either
2981 */
2982 if (length == 0 || length == 1)
2983 return length;
2984 /* src and dest walk down the list; dest counts unique elements */
2985 for (src = 1; src < length; src++) {
2986 /* find next unique element */
2987 while (list[src] == list[src-1]) {
2988 src++;
2989 if (src == length)
2990 goto after;
2991 }
2992 /* dest always points to where the next unique element goes */
2993 list[dest] = list[src];
2994 dest++;
2995 }
2996after:
102a775e
BB
2997 return dest;
2998}
2999
afb2bc14
TH
3000/*
3001 * The two pid files - task and cgroup.procs - guaranteed that the result
3002 * is sorted, which forced this whole pidlist fiasco. As pid order is
3003 * different per namespace, each namespace needs differently sorted list,
3004 * making it impossible to use, for example, single rbtree of member tasks
3005 * sorted by task pointer. As pidlists can be fairly large, allocating one
3006 * per open file is dangerous, so cgroup had to implement shared pool of
3007 * pidlists keyed by cgroup and namespace.
3008 *
3009 * All this extra complexity was caused by the original implementation
3010 * committing to an entirely unnecessary property. In the long term, we
3011 * want to do away with it. Explicitly scramble sort order if
3012 * sane_behavior so that no such expectation exists in the new interface.
3013 *
3014 * Scrambling is done by swapping every two consecutive bits, which is
3015 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3016 */
3017static pid_t pid_fry(pid_t pid)
3018{
3019 unsigned a = pid & 0x55555555;
3020 unsigned b = pid & 0xAAAAAAAA;
3021
3022 return (a << 1) | (b >> 1);
3023}
3024
3025static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3026{
3027 if (cgroup_sane_behavior(cgrp))
3028 return pid_fry(pid);
3029 else
3030 return pid;
3031}
3032
102a775e
BB
3033static int cmppid(const void *a, const void *b)
3034{
3035 return *(pid_t *)a - *(pid_t *)b;
3036}
3037
afb2bc14
TH
3038static int fried_cmppid(const void *a, const void *b)
3039{
3040 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3041}
3042
e6b81710
TH
3043static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3044 enum cgroup_filetype type)
3045{
3046 struct cgroup_pidlist *l;
3047 /* don't need task_nsproxy() if we're looking at ourself */
3048 struct pid_namespace *ns = task_active_pid_ns(current);
3049
3050 lockdep_assert_held(&cgrp->pidlist_mutex);
3051
3052 list_for_each_entry(l, &cgrp->pidlists, links)
3053 if (l->key.type == type && l->key.ns == ns)
3054 return l;
3055 return NULL;
3056}
3057
72a8cb30
BB
3058/*
3059 * find the appropriate pidlist for our purpose (given procs vs tasks)
3060 * returns with the lock on that pidlist already held, and takes care
3061 * of the use count, or returns NULL with no locks held if we're out of
3062 * memory.
3063 */
e6b81710
TH
3064static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3065 enum cgroup_filetype type)
72a8cb30
BB
3066{
3067 struct cgroup_pidlist *l;
b70cc5fd 3068
e6b81710
TH
3069 lockdep_assert_held(&cgrp->pidlist_mutex);
3070
3071 l = cgroup_pidlist_find(cgrp, type);
3072 if (l)
3073 return l;
3074
72a8cb30 3075 /* entry not found; create a new one */
f4f4be2b 3076 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3077 if (!l)
72a8cb30 3078 return l;
e6b81710 3079
b1a21367 3080 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3081 l->key.type = type;
e6b81710
TH
3082 /* don't need task_nsproxy() if we're looking at ourself */
3083 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3084 l->owner = cgrp;
3085 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3086 return l;
3087}
3088
102a775e
BB
3089/*
3090 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3091 */
72a8cb30
BB
3092static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3093 struct cgroup_pidlist **lp)
102a775e
BB
3094{
3095 pid_t *array;
3096 int length;
3097 int pid, n = 0; /* used for populating the array */
72ec7029 3098 struct css_task_iter it;
817929ec 3099 struct task_struct *tsk;
102a775e
BB
3100 struct cgroup_pidlist *l;
3101
4bac00d1
TH
3102 lockdep_assert_held(&cgrp->pidlist_mutex);
3103
102a775e
BB
3104 /*
3105 * If cgroup gets more users after we read count, we won't have
3106 * enough space - tough. This race is indistinguishable to the
3107 * caller from the case that the additional cgroup users didn't
3108 * show up until sometime later on.
3109 */
3110 length = cgroup_task_count(cgrp);
d1d9fd33 3111 array = pidlist_allocate(length);
102a775e
BB
3112 if (!array)
3113 return -ENOMEM;
3114 /* now, populate the array */
72ec7029
TH
3115 css_task_iter_start(&cgrp->dummy_css, &it);
3116 while ((tsk = css_task_iter_next(&it))) {
102a775e 3117 if (unlikely(n == length))
817929ec 3118 break;
102a775e 3119 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3120 if (type == CGROUP_FILE_PROCS)
3121 pid = task_tgid_vnr(tsk);
3122 else
3123 pid = task_pid_vnr(tsk);
102a775e
BB
3124 if (pid > 0) /* make sure to only use valid results */
3125 array[n++] = pid;
817929ec 3126 }
72ec7029 3127 css_task_iter_end(&it);
102a775e
BB
3128 length = n;
3129 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3130 if (cgroup_sane_behavior(cgrp))
3131 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3132 else
3133 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3134 if (type == CGROUP_FILE_PROCS)
6ee211ad 3135 length = pidlist_uniq(array, length);
e6b81710 3136
e6b81710 3137 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3138 if (!l) {
e6b81710 3139 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3140 pidlist_free(array);
72a8cb30 3141 return -ENOMEM;
102a775e 3142 }
e6b81710
TH
3143
3144 /* store array, freeing old if necessary */
d1d9fd33 3145 pidlist_free(l->list);
102a775e
BB
3146 l->list = array;
3147 l->length = length;
72a8cb30 3148 *lp = l;
102a775e 3149 return 0;
bbcb81d0
PM
3150}
3151
846c7bb0 3152/**
a043e3b2 3153 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3154 * @stats: cgroupstats to fill information into
3155 * @dentry: A dentry entry belonging to the cgroup for which stats have
3156 * been requested.
a043e3b2
LZ
3157 *
3158 * Build and fill cgroupstats so that taskstats can export it to user
3159 * space.
846c7bb0
BS
3160 */
3161int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3162{
2bd59d48 3163 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3164 struct cgroup *cgrp;
72ec7029 3165 struct css_task_iter it;
846c7bb0 3166 struct task_struct *tsk;
33d283be 3167
2bd59d48
TH
3168 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3169 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3170 kernfs_type(kn) != KERNFS_DIR)
3171 return -EINVAL;
3172
846c7bb0 3173 /*
2bd59d48
TH
3174 * We aren't being called from kernfs and there's no guarantee on
3175 * @kn->priv's validity. For this and css_tryget_from_dir(),
3176 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3177 */
2bd59d48
TH
3178 rcu_read_lock();
3179 cgrp = rcu_dereference(kn->priv);
3180 if (!cgrp) {
3181 rcu_read_unlock();
3182 return -ENOENT;
3183 }
846c7bb0 3184
72ec7029
TH
3185 css_task_iter_start(&cgrp->dummy_css, &it);
3186 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3187 switch (tsk->state) {
3188 case TASK_RUNNING:
3189 stats->nr_running++;
3190 break;
3191 case TASK_INTERRUPTIBLE:
3192 stats->nr_sleeping++;
3193 break;
3194 case TASK_UNINTERRUPTIBLE:
3195 stats->nr_uninterruptible++;
3196 break;
3197 case TASK_STOPPED:
3198 stats->nr_stopped++;
3199 break;
3200 default:
3201 if (delayacct_is_task_waiting_on_io(tsk))
3202 stats->nr_io_wait++;
3203 break;
3204 }
3205 }
72ec7029 3206 css_task_iter_end(&it);
846c7bb0 3207
2bd59d48
TH
3208 rcu_read_unlock();
3209 return 0;
846c7bb0
BS
3210}
3211
8f3ff208 3212
bbcb81d0 3213/*
102a775e 3214 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3215 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3216 * in the cgroup->l->list array.
bbcb81d0 3217 */
cc31edce 3218
102a775e 3219static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3220{
cc31edce
PM
3221 /*
3222 * Initially we receive a position value that corresponds to
3223 * one more than the last pid shown (or 0 on the first call or
3224 * after a seek to the start). Use a binary-search to find the
3225 * next pid to display, if any
3226 */
2bd59d48 3227 struct kernfs_open_file *of = s->private;
7da11279 3228 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3229 struct cgroup_pidlist *l;
7da11279 3230 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3231 int index = 0, pid = *pos;
4bac00d1
TH
3232 int *iter, ret;
3233
3234 mutex_lock(&cgrp->pidlist_mutex);
3235
3236 /*
5d22444f 3237 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3238 * after open. If the matching pidlist is around, we can use that.
5d22444f 3239 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3240 * could already have been destroyed.
3241 */
5d22444f
TH
3242 if (of->priv)
3243 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3244
3245 /*
3246 * Either this is the first start() after open or the matching
3247 * pidlist has been destroyed inbetween. Create a new one.
3248 */
5d22444f
TH
3249 if (!of->priv) {
3250 ret = pidlist_array_load(cgrp, type,
3251 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3252 if (ret)
3253 return ERR_PTR(ret);
3254 }
5d22444f 3255 l = of->priv;
cc31edce 3256
cc31edce 3257 if (pid) {
102a775e 3258 int end = l->length;
20777766 3259
cc31edce
PM
3260 while (index < end) {
3261 int mid = (index + end) / 2;
afb2bc14 3262 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3263 index = mid;
3264 break;
afb2bc14 3265 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3266 index = mid + 1;
3267 else
3268 end = mid;
3269 }
3270 }
3271 /* If we're off the end of the array, we're done */
102a775e 3272 if (index >= l->length)
cc31edce
PM
3273 return NULL;
3274 /* Update the abstract position to be the actual pid that we found */
102a775e 3275 iter = l->list + index;
afb2bc14 3276 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3277 return iter;
3278}
3279
102a775e 3280static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3281{
2bd59d48 3282 struct kernfs_open_file *of = s->private;
5d22444f 3283 struct cgroup_pidlist *l = of->priv;
62236858 3284
5d22444f
TH
3285 if (l)
3286 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3287 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3288 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3289}
3290
102a775e 3291static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3292{
2bd59d48 3293 struct kernfs_open_file *of = s->private;
5d22444f 3294 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3295 pid_t *p = v;
3296 pid_t *end = l->list + l->length;
cc31edce
PM
3297 /*
3298 * Advance to the next pid in the array. If this goes off the
3299 * end, we're done
3300 */
3301 p++;
3302 if (p >= end) {
3303 return NULL;
3304 } else {
7da11279 3305 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3306 return p;
3307 }
3308}
3309
102a775e 3310static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3311{
3312 return seq_printf(s, "%d\n", *(int *)v);
3313}
bbcb81d0 3314
102a775e
BB
3315/*
3316 * seq_operations functions for iterating on pidlists through seq_file -
3317 * independent of whether it's tasks or procs
3318 */
3319static const struct seq_operations cgroup_pidlist_seq_operations = {
3320 .start = cgroup_pidlist_start,
3321 .stop = cgroup_pidlist_stop,
3322 .next = cgroup_pidlist_next,
3323 .show = cgroup_pidlist_show,
cc31edce
PM
3324};
3325
182446d0
TH
3326static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3327 struct cftype *cft)
81a6a5cd 3328{
182446d0 3329 return notify_on_release(css->cgroup);
81a6a5cd
PM
3330}
3331
182446d0
TH
3332static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3333 struct cftype *cft, u64 val)
6379c106 3334{
182446d0 3335 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3336 if (val)
182446d0 3337 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3338 else
182446d0 3339 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3340 return 0;
3341}
3342
182446d0
TH
3343static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3344 struct cftype *cft)
97978e6d 3345{
182446d0 3346 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3347}
3348
182446d0
TH
3349static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3350 struct cftype *cft, u64 val)
97978e6d
DL
3351{
3352 if (val)
182446d0 3353 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3354 else
182446d0 3355 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3356 return 0;
3357}
3358
d5c56ced 3359static struct cftype cgroup_base_files[] = {
81a6a5cd 3360 {
d5c56ced 3361 .name = "cgroup.procs",
6612f05b
TH
3362 .seq_start = cgroup_pidlist_start,
3363 .seq_next = cgroup_pidlist_next,
3364 .seq_stop = cgroup_pidlist_stop,
3365 .seq_show = cgroup_pidlist_show,
5d22444f 3366 .private = CGROUP_FILE_PROCS,
74a1166d 3367 .write_u64 = cgroup_procs_write,
74a1166d 3368 .mode = S_IRUGO | S_IWUSR,
102a775e 3369 },
97978e6d
DL
3370 {
3371 .name = "cgroup.clone_children",
873fe09e 3372 .flags = CFTYPE_INSANE,
97978e6d
DL
3373 .read_u64 = cgroup_clone_children_read,
3374 .write_u64 = cgroup_clone_children_write,
3375 },
873fe09e
TH
3376 {
3377 .name = "cgroup.sane_behavior",
3378 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3379 .seq_show = cgroup_sane_behavior_show,
873fe09e 3380 },
d5c56ced
TH
3381
3382 /*
3383 * Historical crazy stuff. These don't have "cgroup." prefix and
3384 * don't exist if sane_behavior. If you're depending on these, be
3385 * prepared to be burned.
3386 */
3387 {
3388 .name = "tasks",
3389 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3390 .seq_start = cgroup_pidlist_start,
3391 .seq_next = cgroup_pidlist_next,
3392 .seq_stop = cgroup_pidlist_stop,
3393 .seq_show = cgroup_pidlist_show,
5d22444f 3394 .private = CGROUP_FILE_TASKS,
d5c56ced 3395 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3396 .mode = S_IRUGO | S_IWUSR,
3397 },
3398 {
3399 .name = "notify_on_release",
3400 .flags = CFTYPE_INSANE,
3401 .read_u64 = cgroup_read_notify_on_release,
3402 .write_u64 = cgroup_write_notify_on_release,
3403 },
6e6ff25b
TH
3404 {
3405 .name = "release_agent",
cc5943a7 3406 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3407 .seq_show = cgroup_release_agent_show,
6e6ff25b 3408 .write_string = cgroup_release_agent_write,
5f469907 3409 .max_write_len = PATH_MAX - 1,
6e6ff25b 3410 },
db0416b6 3411 { } /* terminate */
bbcb81d0
PM
3412};
3413
13af07df 3414/**
628f7cd4 3415 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3416 * @cgrp: target cgroup
13af07df 3417 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3418 *
3419 * On failure, no file is added.
13af07df 3420 */
628f7cd4 3421static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3422{
ddbcc7e8 3423 struct cgroup_subsys *ss;
b420ba7d 3424 int i, ret = 0;
bbcb81d0 3425
8e3f6541 3426 /* process cftsets of each subsystem */
b420ba7d 3427 for_each_subsys(ss, i) {
0adb0704 3428 struct cftype *cfts;
b420ba7d
TH
3429
3430 if (!test_bit(i, &subsys_mask))
13af07df 3431 continue;
8e3f6541 3432
0adb0704
TH
3433 list_for_each_entry(cfts, &ss->cfts, node) {
3434 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3435 if (ret < 0)
3436 goto err;
3437 }
ddbcc7e8 3438 }
ddbcc7e8 3439 return 0;
bee55099
TH
3440err:
3441 cgroup_clear_dir(cgrp, subsys_mask);
3442 return ret;
ddbcc7e8
PM
3443}
3444
0c21ead1
TH
3445/*
3446 * css destruction is four-stage process.
3447 *
3448 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3449 * Implemented in kill_css().
3450 *
3451 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3452 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3453 * by invoking offline_css(). After offlining, the base ref is put.
3454 * Implemented in css_killed_work_fn().
3455 *
3456 * 3. When the percpu_ref reaches zero, the only possible remaining
3457 * accessors are inside RCU read sections. css_release() schedules the
3458 * RCU callback.
3459 *
3460 * 4. After the grace period, the css can be freed. Implemented in
3461 * css_free_work_fn().
3462 *
3463 * It is actually hairier because both step 2 and 4 require process context
3464 * and thus involve punting to css->destroy_work adding two additional
3465 * steps to the already complex sequence.
3466 */
35ef10da 3467static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3468{
3469 struct cgroup_subsys_state *css =
35ef10da 3470 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3471 struct cgroup *cgrp = css->cgroup;
48ddbe19 3472
0ae78e0b
TH
3473 if (css->parent)
3474 css_put(css->parent);
3475
0c21ead1 3476 css->ss->css_free(css);
2bd59d48 3477 cgroup_put(cgrp);
48ddbe19
TH
3478}
3479
0c21ead1 3480static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3481{
3482 struct cgroup_subsys_state *css =
0c21ead1 3483 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3484
35ef10da 3485 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3486 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3487}
3488
d3daf28d
TH
3489static void css_release(struct percpu_ref *ref)
3490{
3491 struct cgroup_subsys_state *css =
3492 container_of(ref, struct cgroup_subsys_state, refcnt);
3493
aec25020 3494 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3495 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3496}
3497
623f926b
TH
3498static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3499 struct cgroup *cgrp)
ddbcc7e8 3500{
bd89aabc 3501 css->cgroup = cgrp;
72c97e54 3502 css->ss = ss;
ddbcc7e8 3503 css->flags = 0;
0ae78e0b
TH
3504
3505 if (cgrp->parent)
ca8bdcaf 3506 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3507 else
38b53aba 3508 css->flags |= CSS_ROOT;
48ddbe19 3509
ca8bdcaf 3510 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3511}
3512
2a4ac633 3513/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3514static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3515{
623f926b 3516 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3517 int ret = 0;
3518
ace2bee8 3519 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3520 lockdep_assert_held(&cgroup_mutex);
3521
92fb9748 3522 if (ss->css_online)
eb95419b 3523 ret = ss->css_online(css);
ae7f164a 3524 if (!ret) {
eb95419b 3525 css->flags |= CSS_ONLINE;
f20104de 3526 css->cgroup->nr_css++;
aec25020 3527 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3528 }
b1929db4 3529 return ret;
a31f2d3f
TH
3530}
3531
2a4ac633 3532/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3533static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3534{
623f926b 3535 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3536
ace2bee8 3537 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3538 lockdep_assert_held(&cgroup_mutex);
3539
3540 if (!(css->flags & CSS_ONLINE))
3541 return;
3542
d7eeac19 3543 if (ss->css_offline)
eb95419b 3544 ss->css_offline(css);
a31f2d3f 3545
eb95419b 3546 css->flags &= ~CSS_ONLINE;
09a503ea 3547 css->cgroup->nr_css--;
aec25020 3548 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3549}
3550
c81c925a
TH
3551/**
3552 * create_css - create a cgroup_subsys_state
3553 * @cgrp: the cgroup new css will be associated with
3554 * @ss: the subsys of new css
3555 *
3556 * Create a new css associated with @cgrp - @ss pair. On success, the new
3557 * css is online and installed in @cgrp with all interface files created.
3558 * Returns 0 on success, -errno on failure.
3559 */
3560static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3561{
3562 struct cgroup *parent = cgrp->parent;
3563 struct cgroup_subsys_state *css;
3564 int err;
3565
c81c925a
TH
3566 lockdep_assert_held(&cgroup_mutex);
3567
3568 css = ss->css_alloc(cgroup_css(parent, ss));
3569 if (IS_ERR(css))
3570 return PTR_ERR(css);
3571
3572 err = percpu_ref_init(&css->refcnt, css_release);
3573 if (err)
3574 goto err_free;
3575
3576 init_css(css, ss, cgrp);
3577
aec25020 3578 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3579 if (err)
3580 goto err_free;
3581
3582 err = online_css(css);
3583 if (err)
3584 goto err_free;
3585
59f5296b 3586 cgroup_get(cgrp);
c81c925a
TH
3587 css_get(css->parent);
3588
3589 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3590 parent->parent) {
3591 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3592 current->comm, current->pid, ss->name);
3593 if (!strcmp(ss->name, "memory"))
3594 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3595 ss->warned_broken_hierarchy = true;
3596 }
3597
3598 return 0;
3599
3600err_free:
3601 percpu_ref_cancel_init(&css->refcnt);
3602 ss->css_free(css);
3603 return err;
3604}
3605
2bd59d48 3606/**
a043e3b2
LZ
3607 * cgroup_create - create a cgroup
3608 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3609 * @name: name of the new cgroup
2bd59d48 3610 * @mode: mode to set on new cgroup
ddbcc7e8 3611 */
e61734c5 3612static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3613 umode_t mode)
ddbcc7e8 3614{
bd89aabc 3615 struct cgroup *cgrp;
ddbcc7e8 3616 struct cgroupfs_root *root = parent->root;
b58c8998 3617 int ssid, err;
ddbcc7e8 3618 struct cgroup_subsys *ss;
2bd59d48 3619 struct kernfs_node *kn;
ddbcc7e8 3620
0a950f65 3621 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3622 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3623 if (!cgrp)
ddbcc7e8
PM
3624 return -ENOMEM;
3625
ace2bee8
TH
3626 mutex_lock(&cgroup_tree_mutex);
3627
976c06bc
TH
3628 /*
3629 * Only live parents can have children. Note that the liveliness
3630 * check isn't strictly necessary because cgroup_mkdir() and
3631 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3632 * anyway so that locking is contained inside cgroup proper and we
3633 * don't get nasty surprises if we ever grow another caller.
3634 */
3635 if (!cgroup_lock_live_group(parent)) {
3636 err = -ENODEV;
ace2bee8 3637 goto err_unlock_tree;
0ab02ca8
LZ
3638 }
3639
3640 /*
3641 * Temporarily set the pointer to NULL, so idr_find() won't return
3642 * a half-baked cgroup.
3643 */
3644 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3645 if (cgrp->id < 0) {
3646 err = -ENOMEM;
3647 goto err_unlock;
976c06bc
TH
3648 }
3649
cc31edce 3650 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3651
bd89aabc 3652 cgrp->parent = parent;
0ae78e0b 3653 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3654 cgrp->root = parent->root;
ddbcc7e8 3655
b6abdb0e
LZ
3656 if (notify_on_release(parent))
3657 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3658
2260e7fc
TH
3659 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3660 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3661
2bd59d48 3662 /* create the directory */
e61734c5 3663 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3664 if (IS_ERR(kn)) {
3665 err = PTR_ERR(kn);
0ab02ca8 3666 goto err_free_id;
2bd59d48
TH
3667 }
3668 cgrp->kn = kn;
ddbcc7e8 3669
6f30558f
TH
3670 /*
3671 * This extra ref will be put in cgroup_free_fn() and guarantees
3672 * that @cgrp->kn is always accessible.
3673 */
3674 kernfs_get(kn);
3675
00356bd5 3676 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3677
4e139afc 3678 /* allocation complete, commit to creation */
4e139afc 3679 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3680 atomic_inc(&root->nr_cgrps);
59f5296b 3681 cgroup_get(parent);
415cf07a 3682
0d80255e
TH
3683 /*
3684 * @cgrp is now fully operational. If something fails after this
3685 * point, it'll be released via the normal destruction path.
3686 */
4e96ee8e
LZ
3687 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3688
2bb566cb 3689 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3690 if (err)
3691 goto err_destroy;
3692
9d403e99 3693 /* let's create and online css's */
b85d2040
TH
3694 for_each_subsys(ss, ssid) {
3695 if (root->subsys_mask & (1 << ssid)) {
3696 err = create_css(cgrp, ss);
3697 if (err)
3698 goto err_destroy;
3699 }
a8638030 3700 }
ddbcc7e8 3701
2bd59d48
TH
3702 kernfs_activate(kn);
3703
ddbcc7e8 3704 mutex_unlock(&cgroup_mutex);
ace2bee8 3705 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3706
3707 return 0;
3708
0a950f65 3709err_free_id:
4e96ee8e 3710 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3711err_unlock:
3712 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3713err_unlock_tree:
3714 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3715 kfree(cgrp);
ddbcc7e8 3716 return err;
4b8b47eb
TH
3717
3718err_destroy:
3719 cgroup_destroy_locked(cgrp);
3720 mutex_unlock(&cgroup_mutex);
ace2bee8 3721 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3722 return err;
ddbcc7e8
PM
3723}
3724
2bd59d48
TH
3725static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3726 umode_t mode)
ddbcc7e8 3727{
2bd59d48 3728 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3729
2bd59d48 3730 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3731}
3732
223dbc38
TH
3733/*
3734 * This is called when the refcnt of a css is confirmed to be killed.
3735 * css_tryget() is now guaranteed to fail.
3736 */
3737static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3738{
223dbc38
TH
3739 struct cgroup_subsys_state *css =
3740 container_of(work, struct cgroup_subsys_state, destroy_work);
3741 struct cgroup *cgrp = css->cgroup;
d3daf28d 3742
ace2bee8 3743 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3744 mutex_lock(&cgroup_mutex);
3745
09a503ea
TH
3746 /*
3747 * css_tryget() is guaranteed to fail now. Tell subsystems to
3748 * initate destruction.
3749 */
3750 offline_css(css);
3751
f20104de
TH
3752 /*
3753 * If @cgrp is marked dead, it's waiting for refs of all css's to
3754 * be disabled before proceeding to the second phase of cgroup
3755 * destruction. If we are the last one, kick it off.
3756 */
09a503ea 3757 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3758 cgroup_destroy_css_killed(cgrp);
3759
3760 mutex_unlock(&cgroup_mutex);
ace2bee8 3761 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3762
3763 /*
3764 * Put the css refs from kill_css(). Each css holds an extra
3765 * reference to the cgroup's dentry and cgroup removal proceeds
3766 * regardless of css refs. On the last put of each css, whenever
3767 * that may be, the extra dentry ref is put so that dentry
3768 * destruction happens only after all css's are released.
3769 */
3770 css_put(css);
d3daf28d
TH
3771}
3772
223dbc38
TH
3773/* css kill confirmation processing requires process context, bounce */
3774static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3775{
3776 struct cgroup_subsys_state *css =
3777 container_of(ref, struct cgroup_subsys_state, refcnt);
3778
223dbc38 3779 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3780 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3781}
3782
edae0c33
TH
3783/**
3784 * kill_css - destroy a css
3785 * @css: css to destroy
3786 *
3c14f8b4
TH
3787 * This function initiates destruction of @css by removing cgroup interface
3788 * files and putting its base reference. ->css_offline() will be invoked
3789 * asynchronously once css_tryget() is guaranteed to fail and when the
3790 * reference count reaches zero, @css will be released.
edae0c33
TH
3791 */
3792static void kill_css(struct cgroup_subsys_state *css)
3793{
2bd59d48
TH
3794 /*
3795 * This must happen before css is disassociated with its cgroup.
3796 * See seq_css() for details.
3797 */
aec25020 3798 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3799
edae0c33
TH
3800 /*
3801 * Killing would put the base ref, but we need to keep it alive
3802 * until after ->css_offline().
3803 */
3804 css_get(css);
3805
3806 /*
3807 * cgroup core guarantees that, by the time ->css_offline() is
3808 * invoked, no new css reference will be given out via
3809 * css_tryget(). We can't simply call percpu_ref_kill() and
3810 * proceed to offlining css's because percpu_ref_kill() doesn't
3811 * guarantee that the ref is seen as killed on all CPUs on return.
3812 *
3813 * Use percpu_ref_kill_and_confirm() to get notifications as each
3814 * css is confirmed to be seen as killed on all CPUs.
3815 */
3816 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3817}
3818
3819/**
3820 * cgroup_destroy_locked - the first stage of cgroup destruction
3821 * @cgrp: cgroup to be destroyed
3822 *
3823 * css's make use of percpu refcnts whose killing latency shouldn't be
3824 * exposed to userland and are RCU protected. Also, cgroup core needs to
3825 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3826 * invoked. To satisfy all the requirements, destruction is implemented in
3827 * the following two steps.
3828 *
3829 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3830 * userland visible parts and start killing the percpu refcnts of
3831 * css's. Set up so that the next stage will be kicked off once all
3832 * the percpu refcnts are confirmed to be killed.
3833 *
3834 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3835 * rest of destruction. Once all cgroup references are gone, the
3836 * cgroup is RCU-freed.
3837 *
3838 * This function implements s1. After this step, @cgrp is gone as far as
3839 * the userland is concerned and a new cgroup with the same name may be
3840 * created. As cgroup doesn't care about the names internally, this
3841 * doesn't cause any problem.
3842 */
42809dd4
TH
3843static int cgroup_destroy_locked(struct cgroup *cgrp)
3844 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3845{
bb78a92f 3846 struct cgroup *child;
2bd59d48 3847 struct cgroup_subsys_state *css;
ddd69148 3848 bool empty;
1c6727af 3849 int ssid;
ddbcc7e8 3850
ace2bee8 3851 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3852 lockdep_assert_held(&cgroup_mutex);
3853
ddd69148 3854 /*
6f3d828f
TH
3855 * css_set_lock synchronizes access to ->cset_links and prevents
3856 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
3857 */
3858 read_lock(&css_set_lock);
bb78a92f 3859 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
3860 read_unlock(&css_set_lock);
3861 if (!empty)
ddbcc7e8 3862 return -EBUSY;
a043e3b2 3863
bb78a92f
HD
3864 /*
3865 * Make sure there's no live children. We can't test ->children
3866 * emptiness as dead children linger on it while being destroyed;
3867 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3868 */
3869 empty = true;
3870 rcu_read_lock();
3871 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3872 empty = cgroup_is_dead(child);
3873 if (!empty)
3874 break;
3875 }
3876 rcu_read_unlock();
3877 if (!empty)
3878 return -EBUSY;
3879
88703267 3880 /*
edae0c33
TH
3881 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3882 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3883 * percpu refs of all css's are confirmed to be killed. This
3884 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3885 */
4ac06017 3886 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3887 for_each_css(css, ssid, cgrp)
3888 kill_css(css);
4ac06017 3889 mutex_lock(&cgroup_mutex);
455050d2
TH
3890
3891 /*
3892 * Mark @cgrp dead. This prevents further task migration and child
3893 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3894 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3895 * resume iteration after dropping RCU read lock. See
492eb21b 3896 * css_next_child() for details.
455050d2 3897 */
54766d4a 3898 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3899
455050d2
TH
3900 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3901 raw_spin_lock(&release_list_lock);
3902 if (!list_empty(&cgrp->release_list))
3903 list_del_init(&cgrp->release_list);
3904 raw_spin_unlock(&release_list_lock);
3905
3906 /*
f20104de
TH
3907 * If @cgrp has css's attached, the second stage of cgroup
3908 * destruction is kicked off from css_killed_work_fn() after the
3909 * refs of all attached css's are killed. If @cgrp doesn't have
3910 * any css, we kick it off here.
3911 */
3912 if (!cgrp->nr_css)
3913 cgroup_destroy_css_killed(cgrp);
3914
2bd59d48
TH
3915 /* remove @cgrp directory along with the base files */
3916 mutex_unlock(&cgroup_mutex);
3917
455050d2 3918 /*
2bd59d48
TH
3919 * There are two control paths which try to determine cgroup from
3920 * dentry without going through kernfs - cgroupstats_build() and
3921 * css_tryget_from_dir(). Those are supported by RCU protecting
3922 * clearing of cgrp->kn->priv backpointer, which should happen
3923 * after all files under it have been removed.
455050d2 3924 */
6f30558f 3925 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3926 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3927
4ac06017 3928 mutex_lock(&cgroup_mutex);
455050d2 3929
ea15f8cc
TH
3930 return 0;
3931};
3932
d3daf28d 3933/**
f20104de 3934 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3935 * @work: cgroup->destroy_free_work
3936 *
3937 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3938 * destroyed after all css's are offlined and performs the rest of
3939 * destruction. This is the second step of destruction described in the
3940 * comment above cgroup_destroy_locked().
d3daf28d 3941 */
f20104de 3942static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3943{
ea15f8cc 3944 struct cgroup *parent = cgrp->parent;
ea15f8cc 3945
ace2bee8 3946 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3947 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3948
999cd8a4 3949 /* delete this cgroup from parent->children */
eb6fd504 3950 list_del_rcu(&cgrp->sibling);
ed957793 3951
59f5296b 3952 cgroup_put(cgrp);
ddbcc7e8 3953
bd89aabc 3954 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3955 check_for_release(parent);
ddbcc7e8
PM
3956}
3957
2bd59d48 3958static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3959{
2bd59d48
TH
3960 struct cgroup *cgrp = kn->priv;
3961 int ret = 0;
3962
3963 /*
3964 * This is self-destruction but @kn can't be removed while this
3965 * callback is in progress. Let's break active protection. Once
3966 * the protection is broken, @cgrp can be destroyed at any point.
3967 * Pin it so that it stays accessible.
3968 */
3969 cgroup_get(cgrp);
3970 kernfs_break_active_protection(kn);
42809dd4 3971
ace2bee8 3972 mutex_lock(&cgroup_tree_mutex);
42809dd4 3973 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3974
3975 /*
3976 * @cgrp might already have been destroyed while we're trying to
3977 * grab the mutexes.
3978 */
3979 if (!cgroup_is_dead(cgrp))
3980 ret = cgroup_destroy_locked(cgrp);
3981
42809dd4 3982 mutex_unlock(&cgroup_mutex);
ace2bee8 3983 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3984
2bd59d48
TH
3985 kernfs_unbreak_active_protection(kn);
3986 cgroup_put(cgrp);
42809dd4
TH
3987 return ret;
3988}
3989
2bd59d48
TH
3990static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3991 .remount_fs = cgroup_remount,
3992 .show_options = cgroup_show_options,
3993 .mkdir = cgroup_mkdir,
3994 .rmdir = cgroup_rmdir,
3995 .rename = cgroup_rename,
3996};
3997
06a11920 3998static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3999{
ddbcc7e8 4000 struct cgroup_subsys_state *css;
cfe36bde
DC
4001
4002 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4003
ace2bee8 4004 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4005 mutex_lock(&cgroup_mutex);
4006
0adb0704 4007 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4008
ddbcc7e8 4009 /* Create the top cgroup state for this subsystem */
9871bf95 4010 ss->root = &cgroup_dummy_root;
ca8bdcaf 4011 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4012 /* We don't handle early failures gracefully */
4013 BUG_ON(IS_ERR(css));
623f926b 4014 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4015
e8d55fde 4016 /* Update the init_css_set to contain a subsys
817929ec 4017 * pointer to this state - since the subsystem is
e8d55fde
LZ
4018 * newly registered, all tasks and hence the
4019 * init_css_set is in the subsystem's top cgroup. */
aec25020 4020 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4021
4022 need_forkexit_callback |= ss->fork || ss->exit;
4023
e8d55fde
LZ
4024 /* At system boot, before all subsystems have been
4025 * registered, no tasks have been forked, so we don't
4026 * need to invoke fork callbacks here. */
4027 BUG_ON(!list_empty(&init_task.tasks));
4028
ae7f164a 4029 BUG_ON(online_css(css));
a8638030 4030
648bb56d 4031 mutex_unlock(&cgroup_mutex);
ace2bee8 4032 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4033}
4034
ddbcc7e8 4035/**
a043e3b2
LZ
4036 * cgroup_init_early - cgroup initialization at system boot
4037 *
4038 * Initialize cgroups at system boot, and initialize any
4039 * subsystems that request early init.
ddbcc7e8
PM
4040 */
4041int __init cgroup_init_early(void)
4042{
30159ec7 4043 struct cgroup_subsys *ss;
ddbcc7e8 4044 int i;
30159ec7 4045
146aa1bd 4046 atomic_set(&init_css_set.refcount, 1);
69d0206c 4047 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4048 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4049 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4050 css_set_count = 1;
9871bf95
TH
4051 init_cgroup_root(&cgroup_dummy_root);
4052 cgroup_root_count = 1;
a4ea1cc9 4053 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4054
69d0206c 4055 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4056 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4057 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4058 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4059
3ed80a62 4060 for_each_subsys(ss, i) {
aec25020 4061 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4062 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4063 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4064 ss->id, ss->name);
073219e9
TH
4065 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4066 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4067
aec25020 4068 ss->id = i;
073219e9 4069 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4070
4071 if (ss->early_init)
4072 cgroup_init_subsys(ss);
4073 }
4074 return 0;
4075}
4076
4077/**
a043e3b2
LZ
4078 * cgroup_init - cgroup initialization
4079 *
4080 * Register cgroup filesystem and /proc file, and initialize
4081 * any subsystems that didn't request early init.
ddbcc7e8
PM
4082 */
4083int __init cgroup_init(void)
4084{
30159ec7 4085 struct cgroup_subsys *ss;
0ac801fe 4086 unsigned long key;
30159ec7 4087 int i, err;
a424316c 4088
2bd59d48 4089 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4090
3ed80a62 4091 for_each_subsys(ss, i) {
ddbcc7e8
PM
4092 if (!ss->early_init)
4093 cgroup_init_subsys(ss);
de00ffa5
TH
4094
4095 /*
4096 * cftype registration needs kmalloc and can't be done
4097 * during early_init. Register base cftypes separately.
4098 */
4099 if (ss->base_cftypes)
4100 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
4101 }
4102
fa3ca07e 4103 /* allocate id for the dummy hierarchy */
54e7b4eb 4104 mutex_lock(&cgroup_mutex);
54e7b4eb 4105
82fe9b0d
TH
4106 /* Add init_css_set to the hash table */
4107 key = css_set_hash(init_css_set.subsys);
4108 hash_add(css_set_table, &init_css_set.hlist, key);
4109
fc76df70 4110 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4111
4e96ee8e
LZ
4112 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4113 0, 1, GFP_KERNEL);
4114 BUG_ON(err < 0);
4115
54e7b4eb
TH
4116 mutex_unlock(&cgroup_mutex);
4117
676db4af 4118 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4119 if (!cgroup_kobj)
4120 return -ENOMEM;
676db4af 4121
ddbcc7e8 4122 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4123 if (err < 0) {
4124 kobject_put(cgroup_kobj);
2bd59d48 4125 return err;
676db4af 4126 }
ddbcc7e8 4127
46ae220b 4128 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4129 return 0;
ddbcc7e8 4130}
b4f48b63 4131
e5fca243
TH
4132static int __init cgroup_wq_init(void)
4133{
4134 /*
4135 * There isn't much point in executing destruction path in
4136 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
4137 *
4138 * XXX: Must be ordered to make sure parent is offlined after
4139 * children. The ordering requirement is for memcg where a
4140 * parent's offline may wait for a child's leading to deadlock. In
4141 * the long term, this should be fixed from memcg side.
e5fca243
TH
4142 *
4143 * We would prefer to do this in cgroup_init() above, but that
4144 * is called before init_workqueues(): so leave this until after.
4145 */
ab3f5faa 4146 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 4147 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4148
4149 /*
4150 * Used to destroy pidlists and separate to serve as flush domain.
4151 * Cap @max_active to 1 too.
4152 */
4153 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4154 0, 1);
4155 BUG_ON(!cgroup_pidlist_destroy_wq);
4156
e5fca243
TH
4157 return 0;
4158}
4159core_initcall(cgroup_wq_init);
4160
a424316c
PM
4161/*
4162 * proc_cgroup_show()
4163 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4164 * - Used for /proc/<pid>/cgroup.
4165 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4166 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4167 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4168 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4169 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4170 * cgroup to top_cgroup.
4171 */
4172
4173/* TODO: Use a proper seq_file iterator */
8d8b97ba 4174int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4175{
4176 struct pid *pid;
4177 struct task_struct *tsk;
e61734c5 4178 char *buf, *path;
a424316c
PM
4179 int retval;
4180 struct cgroupfs_root *root;
4181
4182 retval = -ENOMEM;
e61734c5 4183 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4184 if (!buf)
4185 goto out;
4186
4187 retval = -ESRCH;
4188 pid = m->private;
4189 tsk = get_pid_task(pid, PIDTYPE_PID);
4190 if (!tsk)
4191 goto out_free;
4192
4193 retval = 0;
4194
4195 mutex_lock(&cgroup_mutex);
4196
e5f6a860 4197 for_each_active_root(root) {
a424316c 4198 struct cgroup_subsys *ss;
bd89aabc 4199 struct cgroup *cgrp;
b85d2040 4200 int ssid, count = 0;
a424316c 4201
2c6ab6d2 4202 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4203 for_each_subsys(ss, ssid)
4204 if (root->subsys_mask & (1 << ssid))
4205 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4206 if (strlen(root->name))
4207 seq_printf(m, "%sname=%s", count ? "," : "",
4208 root->name);
a424316c 4209 seq_putc(m, ':');
7717f7ba 4210 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4211 path = cgroup_path(cgrp, buf, PATH_MAX);
4212 if (!path) {
4213 retval = -ENAMETOOLONG;
a424316c 4214 goto out_unlock;
e61734c5
TH
4215 }
4216 seq_puts(m, path);
a424316c
PM
4217 seq_putc(m, '\n');
4218 }
4219
4220out_unlock:
4221 mutex_unlock(&cgroup_mutex);
4222 put_task_struct(tsk);
4223out_free:
4224 kfree(buf);
4225out:
4226 return retval;
4227}
4228
a424316c
PM
4229/* Display information about each subsystem and each hierarchy */
4230static int proc_cgroupstats_show(struct seq_file *m, void *v)
4231{
30159ec7 4232 struct cgroup_subsys *ss;
a424316c 4233 int i;
a424316c 4234
8bab8dde 4235 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4236 /*
4237 * ideally we don't want subsystems moving around while we do this.
4238 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4239 * subsys/hierarchy state.
4240 */
a424316c 4241 mutex_lock(&cgroup_mutex);
30159ec7
TH
4242
4243 for_each_subsys(ss, i)
2c6ab6d2
PM
4244 seq_printf(m, "%s\t%d\t%d\t%d\n",
4245 ss->name, ss->root->hierarchy_id,
3c9c825b 4246 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4247
a424316c
PM
4248 mutex_unlock(&cgroup_mutex);
4249 return 0;
4250}
4251
4252static int cgroupstats_open(struct inode *inode, struct file *file)
4253{
9dce07f1 4254 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4255}
4256
828c0950 4257static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4258 .open = cgroupstats_open,
4259 .read = seq_read,
4260 .llseek = seq_lseek,
4261 .release = single_release,
4262};
4263
b4f48b63
PM
4264/**
4265 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4266 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4267 *
4268 * Description: A task inherits its parent's cgroup at fork().
4269 *
4270 * A pointer to the shared css_set was automatically copied in
4271 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4272 * it was not made under the protection of RCU or cgroup_mutex, so
4273 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4274 * have already changed current->cgroups, allowing the previously
4275 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4276 *
4277 * At the point that cgroup_fork() is called, 'current' is the parent
4278 * task, and the passed argument 'child' points to the child task.
4279 */
4280void cgroup_fork(struct task_struct *child)
4281{
9bb71308 4282 task_lock(current);
a8ad805c 4283 get_css_set(task_css_set(current));
817929ec 4284 child->cgroups = current->cgroups;
9bb71308 4285 task_unlock(current);
817929ec 4286 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4287}
4288
817929ec 4289/**
a043e3b2
LZ
4290 * cgroup_post_fork - called on a new task after adding it to the task list
4291 * @child: the task in question
4292 *
5edee61e
TH
4293 * Adds the task to the list running through its css_set if necessary and
4294 * call the subsystem fork() callbacks. Has to be after the task is
4295 * visible on the task list in case we race with the first call to
0942eeee 4296 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4297 * list.
a043e3b2 4298 */
817929ec
PM
4299void cgroup_post_fork(struct task_struct *child)
4300{
30159ec7 4301 struct cgroup_subsys *ss;
5edee61e
TH
4302 int i;
4303
3ce3230a
FW
4304 /*
4305 * use_task_css_set_links is set to 1 before we walk the tasklist
4306 * under the tasklist_lock and we read it here after we added the child
4307 * to the tasklist under the tasklist_lock as well. If the child wasn't
4308 * yet in the tasklist when we walked through it from
4309 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4310 * should be visible now due to the paired locking and barriers implied
4311 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4312 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4313 * lock on fork.
4314 */
817929ec
PM
4315 if (use_task_css_set_links) {
4316 write_lock(&css_set_lock);
d8783832
TH
4317 task_lock(child);
4318 if (list_empty(&child->cg_list))
a8ad805c 4319 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4320 task_unlock(child);
817929ec
PM
4321 write_unlock(&css_set_lock);
4322 }
5edee61e
TH
4323
4324 /*
4325 * Call ss->fork(). This must happen after @child is linked on
4326 * css_set; otherwise, @child might change state between ->fork()
4327 * and addition to css_set.
4328 */
4329 if (need_forkexit_callback) {
3ed80a62 4330 for_each_subsys(ss, i)
5edee61e
TH
4331 if (ss->fork)
4332 ss->fork(child);
5edee61e 4333 }
817929ec 4334}
5edee61e 4335
b4f48b63
PM
4336/**
4337 * cgroup_exit - detach cgroup from exiting task
4338 * @tsk: pointer to task_struct of exiting process
a043e3b2 4339 * @run_callback: run exit callbacks?
b4f48b63
PM
4340 *
4341 * Description: Detach cgroup from @tsk and release it.
4342 *
4343 * Note that cgroups marked notify_on_release force every task in
4344 * them to take the global cgroup_mutex mutex when exiting.
4345 * This could impact scaling on very large systems. Be reluctant to
4346 * use notify_on_release cgroups where very high task exit scaling
4347 * is required on large systems.
4348 *
4349 * the_top_cgroup_hack:
4350 *
4351 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4352 *
4353 * We call cgroup_exit() while the task is still competent to
4354 * handle notify_on_release(), then leave the task attached to the
4355 * root cgroup in each hierarchy for the remainder of its exit.
4356 *
4357 * To do this properly, we would increment the reference count on
4358 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4359 * code we would add a second cgroup function call, to drop that
4360 * reference. This would just create an unnecessary hot spot on
4361 * the top_cgroup reference count, to no avail.
4362 *
4363 * Normally, holding a reference to a cgroup without bumping its
4364 * count is unsafe. The cgroup could go away, or someone could
4365 * attach us to a different cgroup, decrementing the count on
4366 * the first cgroup that we never incremented. But in this case,
4367 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4368 * which wards off any cgroup_attach_task() attempts, or task is a failed
4369 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4370 */
4371void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4372{
30159ec7 4373 struct cgroup_subsys *ss;
5abb8855 4374 struct css_set *cset;
d41d5a01 4375 int i;
817929ec
PM
4376
4377 /*
4378 * Unlink from the css_set task list if necessary.
4379 * Optimistically check cg_list before taking
4380 * css_set_lock
4381 */
4382 if (!list_empty(&tsk->cg_list)) {
4383 write_lock(&css_set_lock);
4384 if (!list_empty(&tsk->cg_list))
8d258797 4385 list_del_init(&tsk->cg_list);
817929ec
PM
4386 write_unlock(&css_set_lock);
4387 }
4388
b4f48b63
PM
4389 /* Reassign the task to the init_css_set. */
4390 task_lock(tsk);
a8ad805c
TH
4391 cset = task_css_set(tsk);
4392 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4393
4394 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4395 /* see cgroup_post_fork() for details */
4396 for_each_subsys(ss, i) {
d41d5a01 4397 if (ss->exit) {
eb95419b
TH
4398 struct cgroup_subsys_state *old_css = cset->subsys[i];
4399 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4400
eb95419b 4401 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4402 }
4403 }
4404 }
b4f48b63 4405 task_unlock(tsk);
d41d5a01 4406
5abb8855 4407 put_css_set_taskexit(cset);
b4f48b63 4408}
697f4161 4409
bd89aabc 4410static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4411{
f50daa70 4412 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4413 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4414 /*
4415 * Control Group is currently removeable. If it's not
81a6a5cd 4416 * already queued for a userspace notification, queue
f50daa70
LZ
4417 * it now
4418 */
81a6a5cd 4419 int need_schedule_work = 0;
f50daa70 4420
cdcc136f 4421 raw_spin_lock(&release_list_lock);
54766d4a 4422 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4423 list_empty(&cgrp->release_list)) {
4424 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4425 need_schedule_work = 1;
4426 }
cdcc136f 4427 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4428 if (need_schedule_work)
4429 schedule_work(&release_agent_work);
4430 }
4431}
4432
81a6a5cd
PM
4433/*
4434 * Notify userspace when a cgroup is released, by running the
4435 * configured release agent with the name of the cgroup (path
4436 * relative to the root of cgroup file system) as the argument.
4437 *
4438 * Most likely, this user command will try to rmdir this cgroup.
4439 *
4440 * This races with the possibility that some other task will be
4441 * attached to this cgroup before it is removed, or that some other
4442 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4443 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4444 * unused, and this cgroup will be reprieved from its death sentence,
4445 * to continue to serve a useful existence. Next time it's released,
4446 * we will get notified again, if it still has 'notify_on_release' set.
4447 *
4448 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4449 * means only wait until the task is successfully execve()'d. The
4450 * separate release agent task is forked by call_usermodehelper(),
4451 * then control in this thread returns here, without waiting for the
4452 * release agent task. We don't bother to wait because the caller of
4453 * this routine has no use for the exit status of the release agent
4454 * task, so no sense holding our caller up for that.
81a6a5cd 4455 */
81a6a5cd
PM
4456static void cgroup_release_agent(struct work_struct *work)
4457{
4458 BUG_ON(work != &release_agent_work);
4459 mutex_lock(&cgroup_mutex);
cdcc136f 4460 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4461 while (!list_empty(&release_list)) {
4462 char *argv[3], *envp[3];
4463 int i;
e61734c5 4464 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4465 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4466 struct cgroup,
4467 release_list);
bd89aabc 4468 list_del_init(&cgrp->release_list);
cdcc136f 4469 raw_spin_unlock(&release_list_lock);
e61734c5 4470 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4471 if (!pathbuf)
4472 goto continue_free;
e61734c5
TH
4473 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4474 if (!path)
e788e066
PM
4475 goto continue_free;
4476 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4477 if (!agentbuf)
4478 goto continue_free;
81a6a5cd
PM
4479
4480 i = 0;
e788e066 4481 argv[i++] = agentbuf;
e61734c5 4482 argv[i++] = path;
81a6a5cd
PM
4483 argv[i] = NULL;
4484
4485 i = 0;
4486 /* minimal command environment */
4487 envp[i++] = "HOME=/";
4488 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4489 envp[i] = NULL;
4490
4491 /* Drop the lock while we invoke the usermode helper,
4492 * since the exec could involve hitting disk and hence
4493 * be a slow process */
4494 mutex_unlock(&cgroup_mutex);
4495 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4496 mutex_lock(&cgroup_mutex);
e788e066
PM
4497 continue_free:
4498 kfree(pathbuf);
4499 kfree(agentbuf);
cdcc136f 4500 raw_spin_lock(&release_list_lock);
81a6a5cd 4501 }
cdcc136f 4502 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4503 mutex_unlock(&cgroup_mutex);
4504}
8bab8dde
PM
4505
4506static int __init cgroup_disable(char *str)
4507{
30159ec7 4508 struct cgroup_subsys *ss;
8bab8dde 4509 char *token;
30159ec7 4510 int i;
8bab8dde
PM
4511
4512 while ((token = strsep(&str, ",")) != NULL) {
4513 if (!*token)
4514 continue;
be45c900 4515
3ed80a62 4516 for_each_subsys(ss, i) {
8bab8dde
PM
4517 if (!strcmp(token, ss->name)) {
4518 ss->disabled = 1;
4519 printk(KERN_INFO "Disabling %s control group"
4520 " subsystem\n", ss->name);
4521 break;
4522 }
4523 }
4524 }
4525 return 1;
4526}
4527__setup("cgroup_disable=", cgroup_disable);
38460b48 4528
b77d7b60 4529/**
5a17f543 4530 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4531 * @dentry: directory dentry of interest
4532 * @ss: subsystem of interest
b77d7b60 4533 *
5a17f543
TH
4534 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4535 * to get the corresponding css and return it. If such css doesn't exist
4536 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4537 */
5a17f543
TH
4538struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4539 struct cgroup_subsys *ss)
e5d1367f 4540{
2bd59d48
TH
4541 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4542 struct cgroup_subsys_state *css = NULL;
e5d1367f 4543 struct cgroup *cgrp;
b77d7b60 4544
35cf0836 4545 /* is @dentry a cgroup dir? */
2bd59d48
TH
4546 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4547 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4548 return ERR_PTR(-EBADF);
4549
5a17f543
TH
4550 rcu_read_lock();
4551
2bd59d48
TH
4552 /*
4553 * This path doesn't originate from kernfs and @kn could already
4554 * have been or be removed at any point. @kn->priv is RCU
4555 * protected for this access. See destroy_locked() for details.
4556 */
4557 cgrp = rcu_dereference(kn->priv);
4558 if (cgrp)
4559 css = cgroup_css(cgrp, ss);
5a17f543
TH
4560
4561 if (!css || !css_tryget(css))
4562 css = ERR_PTR(-ENOENT);
4563
4564 rcu_read_unlock();
4565 return css;
e5d1367f 4566}
e5d1367f 4567
1cb650b9
LZ
4568/**
4569 * css_from_id - lookup css by id
4570 * @id: the cgroup id
4571 * @ss: cgroup subsys to be looked into
4572 *
4573 * Returns the css if there's valid one with @id, otherwise returns NULL.
4574 * Should be called under rcu_read_lock().
4575 */
4576struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4577{
4578 struct cgroup *cgrp;
4579
ace2bee8 4580 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4581
4582 cgrp = idr_find(&ss->root->cgroup_idr, id);
4583 if (cgrp)
d1625964 4584 return cgroup_css(cgrp, ss);
1cb650b9 4585 return NULL;
e5d1367f
SE
4586}
4587
fe693435 4588#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4589static struct cgroup_subsys_state *
4590debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4591{
4592 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4593
4594 if (!css)
4595 return ERR_PTR(-ENOMEM);
4596
4597 return css;
4598}
4599
eb95419b 4600static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4601{
eb95419b 4602 kfree(css);
fe693435
PM
4603}
4604
182446d0
TH
4605static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4606 struct cftype *cft)
fe693435 4607{
182446d0 4608 return cgroup_task_count(css->cgroup);
fe693435
PM
4609}
4610
182446d0
TH
4611static u64 current_css_set_read(struct cgroup_subsys_state *css,
4612 struct cftype *cft)
fe693435
PM
4613{
4614 return (u64)(unsigned long)current->cgroups;
4615}
4616
182446d0 4617static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4618 struct cftype *cft)
fe693435
PM
4619{
4620 u64 count;
4621
4622 rcu_read_lock();
a8ad805c 4623 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4624 rcu_read_unlock();
4625 return count;
4626}
4627
2da8ca82 4628static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4629{
69d0206c 4630 struct cgrp_cset_link *link;
5abb8855 4631 struct css_set *cset;
e61734c5
TH
4632 char *name_buf;
4633
4634 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4635 if (!name_buf)
4636 return -ENOMEM;
7717f7ba
PM
4637
4638 read_lock(&css_set_lock);
4639 rcu_read_lock();
5abb8855 4640 cset = rcu_dereference(current->cgroups);
69d0206c 4641 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4642 struct cgroup *c = link->cgrp;
59f5296b
TH
4643 const char *name = "?";
4644
e61734c5
TH
4645 if (c != cgroup_dummy_top) {
4646 cgroup_name(c, name_buf, NAME_MAX + 1);
4647 name = name_buf;
4648 }
7717f7ba 4649
2c6ab6d2
PM
4650 seq_printf(seq, "Root %d group %s\n",
4651 c->root->hierarchy_id, name);
7717f7ba
PM
4652 }
4653 rcu_read_unlock();
4654 read_unlock(&css_set_lock);
e61734c5 4655 kfree(name_buf);
7717f7ba
PM
4656 return 0;
4657}
4658
4659#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4660static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4661{
2da8ca82 4662 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4663 struct cgrp_cset_link *link;
7717f7ba
PM
4664
4665 read_lock(&css_set_lock);
182446d0 4666 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4667 struct css_set *cset = link->cset;
7717f7ba
PM
4668 struct task_struct *task;
4669 int count = 0;
5abb8855
TH
4670 seq_printf(seq, "css_set %p\n", cset);
4671 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4672 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4673 seq_puts(seq, " ...\n");
4674 break;
4675 } else {
4676 seq_printf(seq, " task %d\n",
4677 task_pid_vnr(task));
4678 }
4679 }
4680 }
4681 read_unlock(&css_set_lock);
4682 return 0;
4683}
4684
182446d0 4685static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4686{
182446d0 4687 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4688}
4689
4690static struct cftype debug_files[] = {
fe693435
PM
4691 {
4692 .name = "taskcount",
4693 .read_u64 = debug_taskcount_read,
4694 },
4695
4696 {
4697 .name = "current_css_set",
4698 .read_u64 = current_css_set_read,
4699 },
4700
4701 {
4702 .name = "current_css_set_refcount",
4703 .read_u64 = current_css_set_refcount_read,
4704 },
4705
7717f7ba
PM
4706 {
4707 .name = "current_css_set_cg_links",
2da8ca82 4708 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4709 },
4710
4711 {
4712 .name = "cgroup_css_links",
2da8ca82 4713 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4714 },
4715
fe693435
PM
4716 {
4717 .name = "releasable",
4718 .read_u64 = releasable_read,
4719 },
fe693435 4720
4baf6e33
TH
4721 { } /* terminate */
4722};
fe693435 4723
073219e9 4724struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4725 .css_alloc = debug_css_alloc,
4726 .css_free = debug_css_free,
4baf6e33 4727 .base_cftypes = debug_files,
fe693435
PM
4728};
4729#endif /* CONFIG_CGROUP_DEBUG */