cgroup: fix cftype->file_offset handling
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
34c06254
TH
100/*
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
103 */
104static DEFINE_SPINLOCK(cgroup_file_kn_lock);
105
69e943b7
TH
106/*
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
109 */
110static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 111
1ed13287
TH
112struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
113
8353da1f 114#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
8353da1f 117 "cgroup_mutex or RCU read lock required");
780cd8b3 118
e5fca243
TH
119/*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125static struct workqueue_struct *cgroup_destroy_wq;
126
b1a21367
TH
127/*
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
130 */
131static struct workqueue_struct *cgroup_pidlist_destroy_wq;
132
3ed80a62 133/* generate an array of cgroup subsystem pointers */
073219e9 134#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 135static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9
TH
138#undef SUBSYS
139
140/* array of cgroup subsystem names */
141#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
143#include <linux/cgroup_subsys.h>
144};
073219e9 145#undef SUBSYS
ddbcc7e8 146
49d1dc4b
TH
147/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148#define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153#include <linux/cgroup_subsys.h>
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157static struct static_key_true *cgroup_subsys_enabled_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
162#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164#include <linux/cgroup_subsys.h>
165};
166#undef SUBSYS
167
ddbcc7e8 168/*
3dd06ffa 169 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
ddbcc7e8 172 */
a2dd4247 173struct cgroup_root cgrp_dfl_root;
d0ec4230 174EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 175
a2dd4247
TH
176/*
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
179 */
180static bool cgrp_dfl_root_visible;
ddbcc7e8 181
5533e011 182/* some controllers are not supported in the default hierarchy */
8ab456ac 183static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 184
ddbcc7e8
PM
185/* The list of hierarchy roots */
186
9871bf95
TH
187static LIST_HEAD(cgroup_roots);
188static int cgroup_root_count;
ddbcc7e8 189
3417ae1f 190/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 191static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 192
794611a1 193/*
0cb51d71
TH
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
794611a1 199 */
0cb51d71 200static u64 css_serial_nr_next = 1;
794611a1 201
cb4a3167
AS
202/*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 206 */
cb4a3167
AS
207static unsigned long have_fork_callback __read_mostly;
208static unsigned long have_exit_callback __read_mostly;
afcf6c8b 209static unsigned long have_free_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
ed27b9f7 219static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 220static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
221static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
9d755d33 223static void css_release(struct percpu_ref *ref);
f8f22e53 224static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
225static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 227 bool is_add);
42809dd4 228
fc5ed1e9
TH
229/**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
237static bool cgroup_ssid_enabled(int ssid)
238{
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240}
241
9e10a130
TH
242/**
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
245 *
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
250 *
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
253 *
254 * List of changed behaviors:
255 *
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
258 *
259 * - When mounting an existing superblock, mount options should match.
260 *
261 * - Remount is disallowed.
262 *
263 * - rename(2) is disallowed.
264 *
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
267 *
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
270 *
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
273 *
274 * - "cgroup.clone_children" is removed.
275 *
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
280 *
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
284 *
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
287 *
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289 * is not created.
290 *
291 * - blkcg: blk-throttle becomes properly hierarchical.
292 *
293 * - debug: disallowed on the default hierarchy.
294 */
295static bool cgroup_on_dfl(const struct cgroup *cgrp)
296{
297 return cgrp->root == &cgrp_dfl_root;
298}
299
6fa4918d
TH
300/* IDR wrappers which synchronize using cgroup_idr_lock */
301static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 gfp_t gfp_mask)
303{
304 int ret;
305
306 idr_preload(gfp_mask);
54504e97 307 spin_lock_bh(&cgroup_idr_lock);
d0164adc 308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 309 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
310 idr_preload_end();
311 return ret;
312}
313
314static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315{
316 void *ret;
317
54504e97 318 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 319 ret = idr_replace(idr, ptr, id);
54504e97 320 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
321 return ret;
322}
323
324static void cgroup_idr_remove(struct idr *idr, int id)
325{
54504e97 326 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 327 idr_remove(idr, id);
54504e97 328 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
329}
330
d51f39b0
TH
331static struct cgroup *cgroup_parent(struct cgroup *cgrp)
332{
333 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
334
335 if (parent_css)
336 return container_of(parent_css, struct cgroup, self);
337 return NULL;
338}
339
95109b62
TH
340/**
341 * cgroup_css - obtain a cgroup's css for the specified subsystem
342 * @cgrp: the cgroup of interest
9d800df1 343 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 344 *
ca8bdcaf
TH
345 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
346 * function must be called either under cgroup_mutex or rcu_read_lock() and
347 * the caller is responsible for pinning the returned css if it wants to
348 * keep accessing it outside the said locks. This function may return
349 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
350 */
351static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 352 struct cgroup_subsys *ss)
95109b62 353{
ca8bdcaf 354 if (ss)
aec25020 355 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 356 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 357 else
9d800df1 358 return &cgrp->self;
95109b62 359}
42809dd4 360
aec3dfcb
TH
361/**
362 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
363 * @cgrp: the cgroup of interest
9d800df1 364 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 365 *
d0f702e6 366 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
367 * as the matching css of the nearest ancestor including self which has @ss
368 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
369 * function is guaranteed to return non-NULL css.
370 */
371static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
372 struct cgroup_subsys *ss)
373{
374 lockdep_assert_held(&cgroup_mutex);
375
376 if (!ss)
9d800df1 377 return &cgrp->self;
aec3dfcb
TH
378
379 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
380 return NULL;
381
eeecbd19
TH
382 /*
383 * This function is used while updating css associations and thus
384 * can't test the csses directly. Use ->child_subsys_mask.
385 */
d51f39b0
TH
386 while (cgroup_parent(cgrp) &&
387 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
388 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
389
390 return cgroup_css(cgrp, ss);
95109b62 391}
42809dd4 392
eeecbd19
TH
393/**
394 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
395 * @cgrp: the cgroup of interest
396 * @ss: the subsystem of interest
397 *
398 * Find and get the effective css of @cgrp for @ss. The effective css is
399 * defined as the matching css of the nearest ancestor including self which
400 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
401 * the root css is returned, so this function always returns a valid css.
402 * The returned css must be put using css_put().
403 */
404struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
405 struct cgroup_subsys *ss)
406{
407 struct cgroup_subsys_state *css;
408
409 rcu_read_lock();
410
411 do {
412 css = cgroup_css(cgrp, ss);
413
414 if (css && css_tryget_online(css))
415 goto out_unlock;
416 cgrp = cgroup_parent(cgrp);
417 } while (cgrp);
418
419 css = init_css_set.subsys[ss->id];
420 css_get(css);
421out_unlock:
422 rcu_read_unlock();
423 return css;
424}
425
ddbcc7e8 426/* convenient tests for these bits */
54766d4a 427static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 428{
184faf32 429 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
430}
431
052c3f3a
TH
432static void cgroup_get(struct cgroup *cgrp)
433{
434 WARN_ON_ONCE(cgroup_is_dead(cgrp));
435 css_get(&cgrp->self);
436}
437
438static bool cgroup_tryget(struct cgroup *cgrp)
439{
440 return css_tryget(&cgrp->self);
441}
442
443static void cgroup_put(struct cgroup *cgrp)
444{
445 css_put(&cgrp->self);
446}
447
b4168640 448struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 449{
2bd59d48 450 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 451 struct cftype *cft = of_cft(of);
2bd59d48
TH
452
453 /*
454 * This is open and unprotected implementation of cgroup_css().
455 * seq_css() is only called from a kernfs file operation which has
456 * an active reference on the file. Because all the subsystem
457 * files are drained before a css is disassociated with a cgroup,
458 * the matching css from the cgroup's subsys table is guaranteed to
459 * be and stay valid until the enclosing operation is complete.
460 */
461 if (cft->ss)
462 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
463 else
9d800df1 464 return &cgrp->self;
59f5296b 465}
b4168640 466EXPORT_SYMBOL_GPL(of_css);
59f5296b 467
78574cf9
LZ
468/**
469 * cgroup_is_descendant - test ancestry
470 * @cgrp: the cgroup to be tested
471 * @ancestor: possible ancestor of @cgrp
472 *
473 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
474 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
475 * and @ancestor are accessible.
476 */
477bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
478{
479 while (cgrp) {
480 if (cgrp == ancestor)
481 return true;
d51f39b0 482 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
483 }
484 return false;
485}
ddbcc7e8 486
e9685a03 487static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 488{
bd89aabc 489 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
490}
491
1c6727af
TH
492/**
493 * for_each_css - iterate all css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
aec3dfcb 498 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
499 */
500#define for_each_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = rcu_dereference_check( \
503 (cgrp)->subsys[(ssid)], \
504 lockdep_is_held(&cgroup_mutex)))) { } \
505 else
506
aec3dfcb
TH
507/**
508 * for_each_e_css - iterate all effective css's of a cgroup
509 * @css: the iteration cursor
510 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
511 * @cgrp: the target cgroup to iterate css's of
512 *
513 * Should be called under cgroup_[tree_]mutex.
514 */
515#define for_each_e_css(css, ssid, cgrp) \
516 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
517 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
518 ; \
519 else
520
30159ec7 521/**
3ed80a62 522 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 523 * @ss: the iteration cursor
780cd8b3 524 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 525 */
780cd8b3 526#define for_each_subsys(ss, ssid) \
3ed80a62
TH
527 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
528 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 529
cb4a3167
AS
530/**
531 * for_each_subsys_which - filter for_each_subsys with a bitmask
532 * @ss: the iteration cursor
533 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
534 * @ss_maskp: a pointer to the bitmask
535 *
536 * The block will only run for cases where the ssid-th bit (1 << ssid) of
537 * mask is set to 1.
538 */
539#define for_each_subsys_which(ss, ssid, ss_maskp) \
540 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 541 (ssid) = 0; \
cb4a3167
AS
542 else \
543 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
544 if (((ss) = cgroup_subsys[ssid]) && false) \
545 break; \
546 else
547
985ed670
TH
548/* iterate across the hierarchies */
549#define for_each_root(root) \
5549c497 550 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 551
f8f22e53
TH
552/* iterate over child cgrps, lock should be held throughout iteration */
553#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 554 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 555 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
556 cgroup_is_dead(child); })) \
557 ; \
558 else
7ae1bad9 559
81a6a5cd 560static void cgroup_release_agent(struct work_struct *work);
bd89aabc 561static void check_for_release(struct cgroup *cgrp);
81a6a5cd 562
69d0206c
TH
563/*
564 * A cgroup can be associated with multiple css_sets as different tasks may
565 * belong to different cgroups on different hierarchies. In the other
566 * direction, a css_set is naturally associated with multiple cgroups.
567 * This M:N relationship is represented by the following link structure
568 * which exists for each association and allows traversing the associations
569 * from both sides.
570 */
571struct cgrp_cset_link {
572 /* the cgroup and css_set this link associates */
573 struct cgroup *cgrp;
574 struct css_set *cset;
575
576 /* list of cgrp_cset_links anchored at cgrp->cset_links */
577 struct list_head cset_link;
578
579 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
580 struct list_head cgrp_link;
817929ec
PM
581};
582
172a2c06
TH
583/*
584 * The default css_set - used by init and its children prior to any
817929ec
PM
585 * hierarchies being mounted. It contains a pointer to the root state
586 * for each subsystem. Also used to anchor the list of css_sets. Not
587 * reference-counted, to improve performance when child cgroups
588 * haven't been created.
589 */
5024ae29 590struct css_set init_css_set = {
172a2c06
TH
591 .refcount = ATOMIC_INIT(1),
592 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
593 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
594 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
595 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
596 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 597 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 598};
817929ec 599
172a2c06 600static int css_set_count = 1; /* 1 for init_css_set */
817929ec 601
0de0942d
TH
602/**
603 * css_set_populated - does a css_set contain any tasks?
604 * @cset: target css_set
605 */
606static bool css_set_populated(struct css_set *cset)
607{
f0d9a5f1 608 lockdep_assert_held(&css_set_lock);
0de0942d
TH
609
610 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
611}
612
842b597e
TH
613/**
614 * cgroup_update_populated - updated populated count of a cgroup
615 * @cgrp: the target cgroup
616 * @populated: inc or dec populated count
617 *
0de0942d
TH
618 * One of the css_sets associated with @cgrp is either getting its first
619 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
620 * count is propagated towards root so that a given cgroup's populated_cnt
621 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
622 *
623 * @cgrp's interface file "cgroup.populated" is zero if
624 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
625 * changes from or to zero, userland is notified that the content of the
626 * interface file has changed. This can be used to detect when @cgrp and
627 * its descendants become populated or empty.
628 */
629static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
630{
f0d9a5f1 631 lockdep_assert_held(&css_set_lock);
842b597e
TH
632
633 do {
634 bool trigger;
635
636 if (populated)
637 trigger = !cgrp->populated_cnt++;
638 else
639 trigger = !--cgrp->populated_cnt;
640
641 if (!trigger)
642 break;
643
ad2ed2b3 644 check_for_release(cgrp);
6f60eade
TH
645 cgroup_file_notify(&cgrp->events_file);
646
d51f39b0 647 cgrp = cgroup_parent(cgrp);
842b597e
TH
648 } while (cgrp);
649}
650
0de0942d
TH
651/**
652 * css_set_update_populated - update populated state of a css_set
653 * @cset: target css_set
654 * @populated: whether @cset is populated or depopulated
655 *
656 * @cset is either getting the first task or losing the last. Update the
657 * ->populated_cnt of all associated cgroups accordingly.
658 */
659static void css_set_update_populated(struct css_set *cset, bool populated)
660{
661 struct cgrp_cset_link *link;
662
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
666 cgroup_update_populated(link->cgrp, populated);
667}
668
f6d7d049
TH
669/**
670 * css_set_move_task - move a task from one css_set to another
671 * @task: task being moved
672 * @from_cset: css_set @task currently belongs to (may be NULL)
673 * @to_cset: new css_set @task is being moved to (may be NULL)
674 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
675 *
676 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
677 * css_set, @from_cset can be NULL. If @task is being disassociated
678 * instead of moved, @to_cset can be NULL.
679 *
ed27b9f7
TH
680 * This function automatically handles populated_cnt updates and
681 * css_task_iter adjustments but the caller is responsible for managing
682 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
683 */
684static void css_set_move_task(struct task_struct *task,
685 struct css_set *from_cset, struct css_set *to_cset,
686 bool use_mg_tasks)
687{
f0d9a5f1 688 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
689
690 if (from_cset) {
ed27b9f7
TH
691 struct css_task_iter *it, *pos;
692
f6d7d049 693 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
694
695 /*
696 * @task is leaving, advance task iterators which are
697 * pointing to it so that they can resume at the next
698 * position. Advancing an iterator might remove it from
699 * the list, use safe walk. See css_task_iter_advance*()
700 * for details.
701 */
702 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
703 iters_node)
704 if (it->task_pos == &task->cg_list)
705 css_task_iter_advance(it);
706
f6d7d049
TH
707 list_del_init(&task->cg_list);
708 if (!css_set_populated(from_cset))
709 css_set_update_populated(from_cset, false);
710 } else {
711 WARN_ON_ONCE(!list_empty(&task->cg_list));
712 }
713
714 if (to_cset) {
715 /*
716 * We are synchronized through cgroup_threadgroup_rwsem
717 * against PF_EXITING setting such that we can't race
718 * against cgroup_exit() changing the css_set to
719 * init_css_set and dropping the old one.
720 */
721 WARN_ON_ONCE(task->flags & PF_EXITING);
722
723 if (!css_set_populated(to_cset))
724 css_set_update_populated(to_cset, true);
725 rcu_assign_pointer(task->cgroups, to_cset);
726 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
727 &to_cset->tasks);
728 }
729}
730
7717f7ba
PM
731/*
732 * hash table for cgroup groups. This improves the performance to find
733 * an existing css_set. This hash doesn't (currently) take into
734 * account cgroups in empty hierarchies.
735 */
472b1053 736#define CSS_SET_HASH_BITS 7
0ac801fe 737static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 738
0ac801fe 739static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 740{
0ac801fe 741 unsigned long key = 0UL;
30159ec7
TH
742 struct cgroup_subsys *ss;
743 int i;
472b1053 744
30159ec7 745 for_each_subsys(ss, i)
0ac801fe
LZ
746 key += (unsigned long)css[i];
747 key = (key >> 16) ^ key;
472b1053 748
0ac801fe 749 return key;
472b1053
LZ
750}
751
a25eb52e 752static void put_css_set_locked(struct css_set *cset)
b4f48b63 753{
69d0206c 754 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
755 struct cgroup_subsys *ss;
756 int ssid;
5abb8855 757
f0d9a5f1 758 lockdep_assert_held(&css_set_lock);
89c5509b
TH
759
760 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 761 return;
81a6a5cd 762
2c6ab6d2 763 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
764 for_each_subsys(ss, ssid)
765 list_del(&cset->e_cset_node[ssid]);
5abb8855 766 hash_del(&cset->hlist);
2c6ab6d2
PM
767 css_set_count--;
768
69d0206c 769 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
770 list_del(&link->cset_link);
771 list_del(&link->cgrp_link);
2ceb231b
TH
772 if (cgroup_parent(link->cgrp))
773 cgroup_put(link->cgrp);
2c6ab6d2 774 kfree(link);
81a6a5cd 775 }
2c6ab6d2 776
5abb8855 777 kfree_rcu(cset, rcu_head);
b4f48b63
PM
778}
779
a25eb52e 780static void put_css_set(struct css_set *cset)
89c5509b
TH
781{
782 /*
783 * Ensure that the refcount doesn't hit zero while any readers
784 * can see it. Similar to atomic_dec_and_lock(), but for an
785 * rwlock
786 */
787 if (atomic_add_unless(&cset->refcount, -1, 1))
788 return;
789
f0d9a5f1 790 spin_lock_bh(&css_set_lock);
a25eb52e 791 put_css_set_locked(cset);
f0d9a5f1 792 spin_unlock_bh(&css_set_lock);
89c5509b
TH
793}
794
817929ec
PM
795/*
796 * refcounted get/put for css_set objects
797 */
5abb8855 798static inline void get_css_set(struct css_set *cset)
817929ec 799{
5abb8855 800 atomic_inc(&cset->refcount);
817929ec
PM
801}
802
b326f9d0 803/**
7717f7ba 804 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
805 * @cset: candidate css_set being tested
806 * @old_cset: existing css_set for a task
7717f7ba
PM
807 * @new_cgrp: cgroup that's being entered by the task
808 * @template: desired set of css pointers in css_set (pre-calculated)
809 *
6f4b7e63 810 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
811 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
812 */
5abb8855
TH
813static bool compare_css_sets(struct css_set *cset,
814 struct css_set *old_cset,
7717f7ba
PM
815 struct cgroup *new_cgrp,
816 struct cgroup_subsys_state *template[])
817{
818 struct list_head *l1, *l2;
819
aec3dfcb
TH
820 /*
821 * On the default hierarchy, there can be csets which are
822 * associated with the same set of cgroups but different csses.
823 * Let's first ensure that csses match.
824 */
825 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 826 return false;
7717f7ba
PM
827
828 /*
829 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
830 * different cgroups in hierarchies. As different cgroups may
831 * share the same effective css, this comparison is always
832 * necessary.
7717f7ba 833 */
69d0206c
TH
834 l1 = &cset->cgrp_links;
835 l2 = &old_cset->cgrp_links;
7717f7ba 836 while (1) {
69d0206c 837 struct cgrp_cset_link *link1, *link2;
5abb8855 838 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
839
840 l1 = l1->next;
841 l2 = l2->next;
842 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
843 if (l1 == &cset->cgrp_links) {
844 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
845 break;
846 } else {
69d0206c 847 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
848 }
849 /* Locate the cgroups associated with these links. */
69d0206c
TH
850 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
851 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
852 cgrp1 = link1->cgrp;
853 cgrp2 = link2->cgrp;
7717f7ba 854 /* Hierarchies should be linked in the same order. */
5abb8855 855 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
856
857 /*
858 * If this hierarchy is the hierarchy of the cgroup
859 * that's changing, then we need to check that this
860 * css_set points to the new cgroup; if it's any other
861 * hierarchy, then this css_set should point to the
862 * same cgroup as the old css_set.
863 */
5abb8855
TH
864 if (cgrp1->root == new_cgrp->root) {
865 if (cgrp1 != new_cgrp)
7717f7ba
PM
866 return false;
867 } else {
5abb8855 868 if (cgrp1 != cgrp2)
7717f7ba
PM
869 return false;
870 }
871 }
872 return true;
873}
874
b326f9d0
TH
875/**
876 * find_existing_css_set - init css array and find the matching css_set
877 * @old_cset: the css_set that we're using before the cgroup transition
878 * @cgrp: the cgroup that we're moving into
879 * @template: out param for the new set of csses, should be clear on entry
817929ec 880 */
5abb8855
TH
881static struct css_set *find_existing_css_set(struct css_set *old_cset,
882 struct cgroup *cgrp,
883 struct cgroup_subsys_state *template[])
b4f48b63 884{
3dd06ffa 885 struct cgroup_root *root = cgrp->root;
30159ec7 886 struct cgroup_subsys *ss;
5abb8855 887 struct css_set *cset;
0ac801fe 888 unsigned long key;
b326f9d0 889 int i;
817929ec 890
aae8aab4
BB
891 /*
892 * Build the set of subsystem state objects that we want to see in the
893 * new css_set. while subsystems can change globally, the entries here
894 * won't change, so no need for locking.
895 */
30159ec7 896 for_each_subsys(ss, i) {
f392e51c 897 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
898 /*
899 * @ss is in this hierarchy, so we want the
900 * effective css from @cgrp.
901 */
902 template[i] = cgroup_e_css(cgrp, ss);
817929ec 903 } else {
aec3dfcb
TH
904 /*
905 * @ss is not in this hierarchy, so we don't want
906 * to change the css.
907 */
5abb8855 908 template[i] = old_cset->subsys[i];
817929ec
PM
909 }
910 }
911
0ac801fe 912 key = css_set_hash(template);
5abb8855
TH
913 hash_for_each_possible(css_set_table, cset, hlist, key) {
914 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
915 continue;
916
917 /* This css_set matches what we need */
5abb8855 918 return cset;
472b1053 919 }
817929ec
PM
920
921 /* No existing cgroup group matched */
922 return NULL;
923}
924
69d0206c 925static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 926{
69d0206c 927 struct cgrp_cset_link *link, *tmp_link;
36553434 928
69d0206c
TH
929 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
930 list_del(&link->cset_link);
36553434
LZ
931 kfree(link);
932 }
933}
934
69d0206c
TH
935/**
936 * allocate_cgrp_cset_links - allocate cgrp_cset_links
937 * @count: the number of links to allocate
938 * @tmp_links: list_head the allocated links are put on
939 *
940 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
941 * through ->cset_link. Returns 0 on success or -errno.
817929ec 942 */
69d0206c 943static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 944{
69d0206c 945 struct cgrp_cset_link *link;
817929ec 946 int i;
69d0206c
TH
947
948 INIT_LIST_HEAD(tmp_links);
949
817929ec 950 for (i = 0; i < count; i++) {
f4f4be2b 951 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 952 if (!link) {
69d0206c 953 free_cgrp_cset_links(tmp_links);
817929ec
PM
954 return -ENOMEM;
955 }
69d0206c 956 list_add(&link->cset_link, tmp_links);
817929ec
PM
957 }
958 return 0;
959}
960
c12f65d4
LZ
961/**
962 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 963 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 964 * @cset: the css_set to be linked
c12f65d4
LZ
965 * @cgrp: the destination cgroup
966 */
69d0206c
TH
967static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
968 struct cgroup *cgrp)
c12f65d4 969{
69d0206c 970 struct cgrp_cset_link *link;
c12f65d4 971
69d0206c 972 BUG_ON(list_empty(tmp_links));
6803c006
TH
973
974 if (cgroup_on_dfl(cgrp))
975 cset->dfl_cgrp = cgrp;
976
69d0206c
TH
977 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
978 link->cset = cset;
7717f7ba 979 link->cgrp = cgrp;
842b597e 980
7717f7ba 981 /*
389b9c1b
TH
982 * Always add links to the tail of the lists so that the lists are
983 * in choronological order.
7717f7ba 984 */
389b9c1b 985 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 986 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
987
988 if (cgroup_parent(cgrp))
989 cgroup_get(cgrp);
c12f65d4
LZ
990}
991
b326f9d0
TH
992/**
993 * find_css_set - return a new css_set with one cgroup updated
994 * @old_cset: the baseline css_set
995 * @cgrp: the cgroup to be updated
996 *
997 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
998 * substituted into the appropriate hierarchy.
817929ec 999 */
5abb8855
TH
1000static struct css_set *find_css_set(struct css_set *old_cset,
1001 struct cgroup *cgrp)
817929ec 1002{
b326f9d0 1003 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1004 struct css_set *cset;
69d0206c
TH
1005 struct list_head tmp_links;
1006 struct cgrp_cset_link *link;
2d8f243a 1007 struct cgroup_subsys *ss;
0ac801fe 1008 unsigned long key;
2d8f243a 1009 int ssid;
472b1053 1010
b326f9d0
TH
1011 lockdep_assert_held(&cgroup_mutex);
1012
817929ec
PM
1013 /* First see if we already have a cgroup group that matches
1014 * the desired set */
f0d9a5f1 1015 spin_lock_bh(&css_set_lock);
5abb8855
TH
1016 cset = find_existing_css_set(old_cset, cgrp, template);
1017 if (cset)
1018 get_css_set(cset);
f0d9a5f1 1019 spin_unlock_bh(&css_set_lock);
817929ec 1020
5abb8855
TH
1021 if (cset)
1022 return cset;
817929ec 1023
f4f4be2b 1024 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1025 if (!cset)
817929ec
PM
1026 return NULL;
1027
69d0206c 1028 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1029 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1030 kfree(cset);
817929ec
PM
1031 return NULL;
1032 }
1033
5abb8855 1034 atomic_set(&cset->refcount, 1);
69d0206c 1035 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1036 INIT_LIST_HEAD(&cset->tasks);
c7561128 1037 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1038 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1039 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1040 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1041 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1042
1043 /* Copy the set of subsystem state objects generated in
1044 * find_existing_css_set() */
5abb8855 1045 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1046
f0d9a5f1 1047 spin_lock_bh(&css_set_lock);
817929ec 1048 /* Add reference counts and links from the new css_set. */
69d0206c 1049 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1050 struct cgroup *c = link->cgrp;
69d0206c 1051
7717f7ba
PM
1052 if (c->root == cgrp->root)
1053 c = cgrp;
69d0206c 1054 link_css_set(&tmp_links, cset, c);
7717f7ba 1055 }
817929ec 1056
69d0206c 1057 BUG_ON(!list_empty(&tmp_links));
817929ec 1058
817929ec 1059 css_set_count++;
472b1053 1060
2d8f243a 1061 /* Add @cset to the hash table */
5abb8855
TH
1062 key = css_set_hash(cset->subsys);
1063 hash_add(css_set_table, &cset->hlist, key);
472b1053 1064
2d8f243a
TH
1065 for_each_subsys(ss, ssid)
1066 list_add_tail(&cset->e_cset_node[ssid],
1067 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1068
f0d9a5f1 1069 spin_unlock_bh(&css_set_lock);
817929ec 1070
5abb8855 1071 return cset;
b4f48b63
PM
1072}
1073
3dd06ffa 1074static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1075{
3dd06ffa 1076 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1077
3dd06ffa 1078 return root_cgrp->root;
2bd59d48
TH
1079}
1080
3dd06ffa 1081static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1082{
1083 int id;
1084
1085 lockdep_assert_held(&cgroup_mutex);
1086
985ed670 1087 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1088 if (id < 0)
1089 return id;
1090
1091 root->hierarchy_id = id;
1092 return 0;
1093}
1094
3dd06ffa 1095static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1096{
1097 lockdep_assert_held(&cgroup_mutex);
1098
1099 if (root->hierarchy_id) {
1100 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1101 root->hierarchy_id = 0;
1102 }
1103}
1104
3dd06ffa 1105static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1106{
1107 if (root) {
d0f702e6 1108 /* hierarchy ID should already have been released */
f2e85d57
TH
1109 WARN_ON_ONCE(root->hierarchy_id);
1110
1111 idr_destroy(&root->cgroup_idr);
1112 kfree(root);
1113 }
1114}
1115
3dd06ffa 1116static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1117{
3dd06ffa 1118 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1119 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1120
2bd59d48 1121 mutex_lock(&cgroup_mutex);
f2e85d57 1122
776f02fa 1123 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1124 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1125
f2e85d57 1126 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1127 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1128
7717f7ba 1129 /*
f2e85d57
TH
1130 * Release all the links from cset_links to this hierarchy's
1131 * root cgroup
7717f7ba 1132 */
f0d9a5f1 1133 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1134
1135 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1136 list_del(&link->cset_link);
1137 list_del(&link->cgrp_link);
1138 kfree(link);
1139 }
f0d9a5f1
TH
1140
1141 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1142
1143 if (!list_empty(&root->root_list)) {
1144 list_del(&root->root_list);
1145 cgroup_root_count--;
1146 }
1147
1148 cgroup_exit_root_id(root);
1149
1150 mutex_unlock(&cgroup_mutex);
f2e85d57 1151
2bd59d48 1152 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1153 cgroup_free_root(root);
1154}
1155
ceb6a081
TH
1156/* look up cgroup associated with given css_set on the specified hierarchy */
1157static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1158 struct cgroup_root *root)
7717f7ba 1159{
7717f7ba
PM
1160 struct cgroup *res = NULL;
1161
96d365e0 1162 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1163 lockdep_assert_held(&css_set_lock);
96d365e0 1164
5abb8855 1165 if (cset == &init_css_set) {
3dd06ffa 1166 res = &root->cgrp;
7717f7ba 1167 } else {
69d0206c
TH
1168 struct cgrp_cset_link *link;
1169
1170 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1171 struct cgroup *c = link->cgrp;
69d0206c 1172
7717f7ba
PM
1173 if (c->root == root) {
1174 res = c;
1175 break;
1176 }
1177 }
1178 }
96d365e0 1179
7717f7ba
PM
1180 BUG_ON(!res);
1181 return res;
1182}
1183
ddbcc7e8 1184/*
ceb6a081 1185 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1186 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1187 */
1188static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1189 struct cgroup_root *root)
ceb6a081
TH
1190{
1191 /*
1192 * No need to lock the task - since we hold cgroup_mutex the
1193 * task can't change groups, so the only thing that can happen
1194 * is that it exits and its css is set back to init_css_set.
1195 */
1196 return cset_cgroup_from_root(task_css_set(task), root);
1197}
1198
ddbcc7e8 1199/*
ddbcc7e8
PM
1200 * A task must hold cgroup_mutex to modify cgroups.
1201 *
1202 * Any task can increment and decrement the count field without lock.
1203 * So in general, code holding cgroup_mutex can't rely on the count
1204 * field not changing. However, if the count goes to zero, then only
956db3ca 1205 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1206 * means that no tasks are currently attached, therefore there is no
1207 * way a task attached to that cgroup can fork (the other way to
1208 * increment the count). So code holding cgroup_mutex can safely
1209 * assume that if the count is zero, it will stay zero. Similarly, if
1210 * a task holds cgroup_mutex on a cgroup with zero count, it
1211 * knows that the cgroup won't be removed, as cgroup_rmdir()
1212 * needs that mutex.
1213 *
ddbcc7e8
PM
1214 * A cgroup can only be deleted if both its 'count' of using tasks
1215 * is zero, and its list of 'children' cgroups is empty. Since all
1216 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1217 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1218 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1219 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1220 *
1221 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1222 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1223 */
1224
2bd59d48 1225static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1226static const struct file_operations proc_cgroupstats_operations;
a424316c 1227
8d7e6fb0
TH
1228static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1229 char *buf)
ddbcc7e8 1230{
3e1d2eed
TH
1231 struct cgroup_subsys *ss = cft->ss;
1232
8d7e6fb0
TH
1233 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1234 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1235 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1236 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1237 cft->name);
8d7e6fb0
TH
1238 else
1239 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1240 return buf;
ddbcc7e8
PM
1241}
1242
f2e85d57
TH
1243/**
1244 * cgroup_file_mode - deduce file mode of a control file
1245 * @cft: the control file in question
1246 *
7dbdb199 1247 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1248 */
1249static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1250{
f2e85d57 1251 umode_t mode = 0;
65dff759 1252
f2e85d57
TH
1253 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1254 mode |= S_IRUGO;
1255
7dbdb199
TH
1256 if (cft->write_u64 || cft->write_s64 || cft->write) {
1257 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1258 mode |= S_IWUGO;
1259 else
1260 mode |= S_IWUSR;
1261 }
f2e85d57
TH
1262
1263 return mode;
65dff759
LZ
1264}
1265
af0ba678 1266/**
0f060deb 1267 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1268 * @cgrp: the target cgroup
0f060deb 1269 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1270 *
1271 * On the default hierarchy, a subsystem may request other subsystems to be
1272 * enabled together through its ->depends_on mask. In such cases, more
1273 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1274 *
0f060deb
TH
1275 * This function calculates which subsystems need to be enabled if
1276 * @subtree_control is to be applied to @cgrp. The returned mask is always
1277 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1278 */
8ab456ac
AS
1279static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1280 unsigned long subtree_control)
667c2491 1281{
af0ba678 1282 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1283 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1284 struct cgroup_subsys *ss;
1285 int ssid;
1286
1287 lockdep_assert_held(&cgroup_mutex);
1288
0f060deb
TH
1289 if (!cgroup_on_dfl(cgrp))
1290 return cur_ss_mask;
af0ba678
TH
1291
1292 while (true) {
8ab456ac 1293 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1294
a966a4ed
AS
1295 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1296 new_ss_mask |= ss->depends_on;
af0ba678
TH
1297
1298 /*
1299 * Mask out subsystems which aren't available. This can
1300 * happen only if some depended-upon subsystems were bound
1301 * to non-default hierarchies.
1302 */
1303 if (parent)
1304 new_ss_mask &= parent->child_subsys_mask;
1305 else
1306 new_ss_mask &= cgrp->root->subsys_mask;
1307
1308 if (new_ss_mask == cur_ss_mask)
1309 break;
1310 cur_ss_mask = new_ss_mask;
1311 }
1312
0f060deb
TH
1313 return cur_ss_mask;
1314}
1315
1316/**
1317 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1318 * @cgrp: the target cgroup
1319 *
1320 * Update @cgrp->child_subsys_mask according to the current
1321 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1322 */
1323static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1324{
1325 cgrp->child_subsys_mask =
1326 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1327}
1328
a9746d8d
TH
1329/**
1330 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1331 * @kn: the kernfs_node being serviced
1332 *
1333 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1334 * the method finishes if locking succeeded. Note that once this function
1335 * returns the cgroup returned by cgroup_kn_lock_live() may become
1336 * inaccessible any time. If the caller intends to continue to access the
1337 * cgroup, it should pin it before invoking this function.
1338 */
1339static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1340{
a9746d8d
TH
1341 struct cgroup *cgrp;
1342
1343 if (kernfs_type(kn) == KERNFS_DIR)
1344 cgrp = kn->priv;
1345 else
1346 cgrp = kn->parent->priv;
1347
1348 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1349
1350 kernfs_unbreak_active_protection(kn);
1351 cgroup_put(cgrp);
ddbcc7e8
PM
1352}
1353
a9746d8d
TH
1354/**
1355 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1356 * @kn: the kernfs_node being serviced
1357 *
1358 * This helper is to be used by a cgroup kernfs method currently servicing
1359 * @kn. It breaks the active protection, performs cgroup locking and
1360 * verifies that the associated cgroup is alive. Returns the cgroup if
1361 * alive; otherwise, %NULL. A successful return should be undone by a
1362 * matching cgroup_kn_unlock() invocation.
1363 *
1364 * Any cgroup kernfs method implementation which requires locking the
1365 * associated cgroup should use this helper. It avoids nesting cgroup
1366 * locking under kernfs active protection and allows all kernfs operations
1367 * including self-removal.
1368 */
1369static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1370{
a9746d8d
TH
1371 struct cgroup *cgrp;
1372
1373 if (kernfs_type(kn) == KERNFS_DIR)
1374 cgrp = kn->priv;
1375 else
1376 cgrp = kn->parent->priv;
05ef1d7c 1377
2739d3cc 1378 /*
01f6474c 1379 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1380 * active_ref. cgroup liveliness check alone provides enough
1381 * protection against removal. Ensure @cgrp stays accessible and
1382 * break the active_ref protection.
2739d3cc 1383 */
aa32362f
LZ
1384 if (!cgroup_tryget(cgrp))
1385 return NULL;
a9746d8d
TH
1386 kernfs_break_active_protection(kn);
1387
2bd59d48 1388 mutex_lock(&cgroup_mutex);
05ef1d7c 1389
a9746d8d
TH
1390 if (!cgroup_is_dead(cgrp))
1391 return cgrp;
1392
1393 cgroup_kn_unlock(kn);
1394 return NULL;
ddbcc7e8 1395}
05ef1d7c 1396
2739d3cc 1397static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1398{
2bd59d48 1399 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1400
01f6474c 1401 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1402
1403 if (cft->file_offset) {
1404 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1405 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1406
1407 spin_lock_irq(&cgroup_file_kn_lock);
1408 cfile->kn = NULL;
1409 spin_unlock_irq(&cgroup_file_kn_lock);
1410 }
1411
2bd59d48 1412 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1413}
1414
13af07df 1415/**
4df8dc90
TH
1416 * css_clear_dir - remove subsys files in a cgroup directory
1417 * @css: taget css
1418 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1419 */
4df8dc90
TH
1420static void css_clear_dir(struct cgroup_subsys_state *css,
1421 struct cgroup *cgrp_override)
05ef1d7c 1422{
4df8dc90
TH
1423 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1424 struct cftype *cfts;
05ef1d7c 1425
4df8dc90
TH
1426 list_for_each_entry(cfts, &css->ss->cfts, node)
1427 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1428}
1429
ccdca218 1430/**
4df8dc90
TH
1431 * css_populate_dir - create subsys files in a cgroup directory
1432 * @css: target css
1433 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1434 *
1435 * On failure, no file is added.
1436 */
4df8dc90
TH
1437static int css_populate_dir(struct cgroup_subsys_state *css,
1438 struct cgroup *cgrp_override)
ccdca218 1439{
4df8dc90
TH
1440 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1441 struct cftype *cfts, *failed_cfts;
1442 int ret;
ccdca218 1443
4df8dc90
TH
1444 if (!css->ss) {
1445 if (cgroup_on_dfl(cgrp))
1446 cfts = cgroup_dfl_base_files;
1447 else
1448 cfts = cgroup_legacy_base_files;
ccdca218 1449
4df8dc90
TH
1450 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1451 }
ccdca218 1452
4df8dc90
TH
1453 list_for_each_entry(cfts, &css->ss->cfts, node) {
1454 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1455 if (ret < 0) {
1456 failed_cfts = cfts;
1457 goto err;
ccdca218
TH
1458 }
1459 }
1460 return 0;
1461err:
4df8dc90
TH
1462 list_for_each_entry(cfts, &css->ss->cfts, node) {
1463 if (cfts == failed_cfts)
1464 break;
1465 cgroup_addrm_files(css, cgrp, cfts, false);
1466 }
ccdca218
TH
1467 return ret;
1468}
1469
8ab456ac
AS
1470static int rebind_subsystems(struct cgroup_root *dst_root,
1471 unsigned long ss_mask)
ddbcc7e8 1472{
1ada4838 1473 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1474 struct cgroup_subsys *ss;
8ab456ac 1475 unsigned long tmp_ss_mask;
2d8f243a 1476 int ssid, i, ret;
ddbcc7e8 1477
ace2bee8 1478 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1479
a966a4ed 1480 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1481 /* if @ss has non-root csses attached to it, can't move */
1482 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1483 return -EBUSY;
1d5be6b2 1484
5df36032 1485 /* can't move between two non-dummy roots either */
7fd8c565 1486 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1487 return -EBUSY;
ddbcc7e8
PM
1488 }
1489
5533e011
TH
1490 /* skip creating root files on dfl_root for inhibited subsystems */
1491 tmp_ss_mask = ss_mask;
1492 if (dst_root == &cgrp_dfl_root)
1493 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1494
4df8dc90
TH
1495 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1496 struct cgroup *scgrp = &ss->root->cgrp;
1497 int tssid;
1498
1499 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1500 if (!ret)
1501 continue;
ddbcc7e8 1502
a2dd4247
TH
1503 /*
1504 * Rebinding back to the default root is not allowed to
1505 * fail. Using both default and non-default roots should
1506 * be rare. Moving subsystems back and forth even more so.
1507 * Just warn about it and continue.
1508 */
4df8dc90
TH
1509 if (dst_root == &cgrp_dfl_root) {
1510 if (cgrp_dfl_root_visible) {
1511 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1512 ret, ss_mask);
1513 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1514 }
1515 continue;
a2dd4247 1516 }
4df8dc90
TH
1517
1518 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1519 if (tssid == ssid)
1520 break;
1521 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1522 }
1523 return ret;
5df36032 1524 }
3126121f
TH
1525
1526 /*
1527 * Nothing can fail from this point on. Remove files for the
1528 * removed subsystems and rebind each subsystem.
1529 */
a966a4ed 1530 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1531 struct cgroup_root *src_root = ss->root;
1532 struct cgroup *scgrp = &src_root->cgrp;
1533 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1534 struct css_set *cset;
a8a648c4 1535
1ada4838 1536 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1537
4df8dc90
TH
1538 css_clear_dir(css, NULL);
1539
1ada4838
TH
1540 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1541 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1542 ss->root = dst_root;
1ada4838 1543 css->cgroup = dcgrp;
73e80ed8 1544
f0d9a5f1 1545 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1546 hash_for_each(css_set_table, i, cset, hlist)
1547 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1548 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1549 spin_unlock_bh(&css_set_lock);
2d8f243a 1550
f392e51c 1551 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1552 scgrp->subtree_control &= ~(1 << ssid);
1553 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1554
bd53d617 1555 /* default hierarchy doesn't enable controllers by default */
f392e51c 1556 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1557 if (dst_root == &cgrp_dfl_root) {
1558 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1559 } else {
1ada4838
TH
1560 dcgrp->subtree_control |= 1 << ssid;
1561 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1562 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1563 }
a8a648c4 1564
5df36032
TH
1565 if (ss->bind)
1566 ss->bind(css);
ddbcc7e8 1567 }
ddbcc7e8 1568
1ada4838 1569 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1570 return 0;
1571}
1572
2bd59d48
TH
1573static int cgroup_show_options(struct seq_file *seq,
1574 struct kernfs_root *kf_root)
ddbcc7e8 1575{
3dd06ffa 1576 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1577 struct cgroup_subsys *ss;
b85d2040 1578 int ssid;
ddbcc7e8 1579
d98817d4
TH
1580 if (root != &cgrp_dfl_root)
1581 for_each_subsys(ss, ssid)
1582 if (root->subsys_mask & (1 << ssid))
61e57c0c 1583 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1584 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1585 seq_puts(seq, ",noprefix");
93438629 1586 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1587 seq_puts(seq, ",xattr");
69e943b7
TH
1588
1589 spin_lock(&release_agent_path_lock);
81a6a5cd 1590 if (strlen(root->release_agent_path))
a068acf2
KC
1591 seq_show_option(seq, "release_agent",
1592 root->release_agent_path);
69e943b7
TH
1593 spin_unlock(&release_agent_path_lock);
1594
3dd06ffa 1595 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1596 seq_puts(seq, ",clone_children");
c6d57f33 1597 if (strlen(root->name))
a068acf2 1598 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1599 return 0;
1600}
1601
1602struct cgroup_sb_opts {
8ab456ac 1603 unsigned long subsys_mask;
69dfa00c 1604 unsigned int flags;
81a6a5cd 1605 char *release_agent;
2260e7fc 1606 bool cpuset_clone_children;
c6d57f33 1607 char *name;
2c6ab6d2
PM
1608 /* User explicitly requested empty subsystem */
1609 bool none;
ddbcc7e8
PM
1610};
1611
cf5d5941 1612static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1613{
32a8cf23
DL
1614 char *token, *o = data;
1615 bool all_ss = false, one_ss = false;
8ab456ac 1616 unsigned long mask = -1UL;
30159ec7 1617 struct cgroup_subsys *ss;
7b9a6ba5 1618 int nr_opts = 0;
30159ec7 1619 int i;
f9ab5b5b
LZ
1620
1621#ifdef CONFIG_CPUSETS
69dfa00c 1622 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1623#endif
ddbcc7e8 1624
c6d57f33 1625 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1626
1627 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1628 nr_opts++;
1629
ddbcc7e8
PM
1630 if (!*token)
1631 return -EINVAL;
32a8cf23 1632 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1633 /* Explicitly have no subsystems */
1634 opts->none = true;
32a8cf23
DL
1635 continue;
1636 }
1637 if (!strcmp(token, "all")) {
1638 /* Mutually exclusive option 'all' + subsystem name */
1639 if (one_ss)
1640 return -EINVAL;
1641 all_ss = true;
1642 continue;
1643 }
873fe09e
TH
1644 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1645 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1646 continue;
1647 }
32a8cf23 1648 if (!strcmp(token, "noprefix")) {
93438629 1649 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1650 continue;
1651 }
1652 if (!strcmp(token, "clone_children")) {
2260e7fc 1653 opts->cpuset_clone_children = true;
32a8cf23
DL
1654 continue;
1655 }
03b1cde6 1656 if (!strcmp(token, "xattr")) {
93438629 1657 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1658 continue;
1659 }
32a8cf23 1660 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1661 /* Specifying two release agents is forbidden */
1662 if (opts->release_agent)
1663 return -EINVAL;
c6d57f33 1664 opts->release_agent =
e400c285 1665 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1666 if (!opts->release_agent)
1667 return -ENOMEM;
32a8cf23
DL
1668 continue;
1669 }
1670 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1671 const char *name = token + 5;
1672 /* Can't specify an empty name */
1673 if (!strlen(name))
1674 return -EINVAL;
1675 /* Must match [\w.-]+ */
1676 for (i = 0; i < strlen(name); i++) {
1677 char c = name[i];
1678 if (isalnum(c))
1679 continue;
1680 if ((c == '.') || (c == '-') || (c == '_'))
1681 continue;
1682 return -EINVAL;
1683 }
1684 /* Specifying two names is forbidden */
1685 if (opts->name)
1686 return -EINVAL;
1687 opts->name = kstrndup(name,
e400c285 1688 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1689 GFP_KERNEL);
1690 if (!opts->name)
1691 return -ENOMEM;
32a8cf23
DL
1692
1693 continue;
1694 }
1695
30159ec7 1696 for_each_subsys(ss, i) {
3e1d2eed 1697 if (strcmp(token, ss->legacy_name))
32a8cf23 1698 continue;
fc5ed1e9 1699 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1700 continue;
1701
1702 /* Mutually exclusive option 'all' + subsystem name */
1703 if (all_ss)
1704 return -EINVAL;
69dfa00c 1705 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1706 one_ss = true;
1707
1708 break;
1709 }
1710 if (i == CGROUP_SUBSYS_COUNT)
1711 return -ENOENT;
1712 }
1713
873fe09e 1714 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1715 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1716 if (nr_opts != 1) {
1717 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1718 return -EINVAL;
1719 }
7b9a6ba5 1720 return 0;
873fe09e
TH
1721 }
1722
7b9a6ba5
TH
1723 /*
1724 * If the 'all' option was specified select all the subsystems,
1725 * otherwise if 'none', 'name=' and a subsystem name options were
1726 * not specified, let's default to 'all'
1727 */
1728 if (all_ss || (!one_ss && !opts->none && !opts->name))
1729 for_each_subsys(ss, i)
fc5ed1e9 1730 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1731 opts->subsys_mask |= (1 << i);
1732
1733 /*
1734 * We either have to specify by name or by subsystems. (So all
1735 * empty hierarchies must have a name).
1736 */
1737 if (!opts->subsys_mask && !opts->name)
1738 return -EINVAL;
1739
f9ab5b5b
LZ
1740 /*
1741 * Option noprefix was introduced just for backward compatibility
1742 * with the old cpuset, so we allow noprefix only if mounting just
1743 * the cpuset subsystem.
1744 */
93438629 1745 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1746 return -EINVAL;
1747
2c6ab6d2 1748 /* Can't specify "none" and some subsystems */
a1a71b45 1749 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1750 return -EINVAL;
1751
ddbcc7e8
PM
1752 return 0;
1753}
1754
2bd59d48 1755static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1756{
1757 int ret = 0;
3dd06ffa 1758 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1759 struct cgroup_sb_opts opts;
8ab456ac 1760 unsigned long added_mask, removed_mask;
ddbcc7e8 1761
aa6ec29b
TH
1762 if (root == &cgrp_dfl_root) {
1763 pr_err("remount is not allowed\n");
873fe09e
TH
1764 return -EINVAL;
1765 }
1766
ddbcc7e8
PM
1767 mutex_lock(&cgroup_mutex);
1768
1769 /* See what subsystems are wanted */
1770 ret = parse_cgroupfs_options(data, &opts);
1771 if (ret)
1772 goto out_unlock;
1773
f392e51c 1774 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1775 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1776 task_tgid_nr(current), current->comm);
8b5a5a9d 1777
f392e51c
TH
1778 added_mask = opts.subsys_mask & ~root->subsys_mask;
1779 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1780
cf5d5941 1781 /* Don't allow flags or name to change at remount */
7450e90b 1782 if ((opts.flags ^ root->flags) ||
cf5d5941 1783 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1784 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1785 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1786 ret = -EINVAL;
1787 goto out_unlock;
1788 }
1789
f172e67c 1790 /* remounting is not allowed for populated hierarchies */
d5c419b6 1791 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1792 ret = -EBUSY;
0670e08b 1793 goto out_unlock;
cf5d5941 1794 }
ddbcc7e8 1795
5df36032 1796 ret = rebind_subsystems(root, added_mask);
3126121f 1797 if (ret)
0670e08b 1798 goto out_unlock;
ddbcc7e8 1799
3dd06ffa 1800 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1801
69e943b7
TH
1802 if (opts.release_agent) {
1803 spin_lock(&release_agent_path_lock);
81a6a5cd 1804 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1805 spin_unlock(&release_agent_path_lock);
1806 }
ddbcc7e8 1807 out_unlock:
66bdc9cf 1808 kfree(opts.release_agent);
c6d57f33 1809 kfree(opts.name);
ddbcc7e8 1810 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1811 return ret;
1812}
1813
afeb0f9f
TH
1814/*
1815 * To reduce the fork() overhead for systems that are not actually using
1816 * their cgroups capability, we don't maintain the lists running through
1817 * each css_set to its tasks until we see the list actually used - in other
1818 * words after the first mount.
1819 */
1820static bool use_task_css_set_links __read_mostly;
1821
1822static void cgroup_enable_task_cg_lists(void)
1823{
1824 struct task_struct *p, *g;
1825
f0d9a5f1 1826 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1827
1828 if (use_task_css_set_links)
1829 goto out_unlock;
1830
1831 use_task_css_set_links = true;
1832
1833 /*
1834 * We need tasklist_lock because RCU is not safe against
1835 * while_each_thread(). Besides, a forking task that has passed
1836 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1837 * is not guaranteed to have its child immediately visible in the
1838 * tasklist if we walk through it with RCU.
1839 */
1840 read_lock(&tasklist_lock);
1841 do_each_thread(g, p) {
afeb0f9f
TH
1842 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1843 task_css_set(p) != &init_css_set);
1844
1845 /*
1846 * We should check if the process is exiting, otherwise
1847 * it will race with cgroup_exit() in that the list
1848 * entry won't be deleted though the process has exited.
f153ad11
TH
1849 * Do it while holding siglock so that we don't end up
1850 * racing against cgroup_exit().
afeb0f9f 1851 */
f153ad11 1852 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1853 if (!(p->flags & PF_EXITING)) {
1854 struct css_set *cset = task_css_set(p);
1855
0de0942d
TH
1856 if (!css_set_populated(cset))
1857 css_set_update_populated(cset, true);
389b9c1b 1858 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1859 get_css_set(cset);
1860 }
f153ad11 1861 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1862 } while_each_thread(g, p);
1863 read_unlock(&tasklist_lock);
1864out_unlock:
f0d9a5f1 1865 spin_unlock_bh(&css_set_lock);
afeb0f9f 1866}
ddbcc7e8 1867
cc31edce
PM
1868static void init_cgroup_housekeeping(struct cgroup *cgrp)
1869{
2d8f243a
TH
1870 struct cgroup_subsys *ss;
1871 int ssid;
1872
d5c419b6
TH
1873 INIT_LIST_HEAD(&cgrp->self.sibling);
1874 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1875 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1876 INIT_LIST_HEAD(&cgrp->pidlists);
1877 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1878 cgrp->self.cgroup = cgrp;
184faf32 1879 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1880
1881 for_each_subsys(ss, ssid)
1882 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1883
1884 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1885 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1886}
c6d57f33 1887
3dd06ffa 1888static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1889 struct cgroup_sb_opts *opts)
ddbcc7e8 1890{
3dd06ffa 1891 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1892
ddbcc7e8 1893 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1894 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1895 cgrp->root = root;
cc31edce 1896 init_cgroup_housekeeping(cgrp);
4e96ee8e 1897 idr_init(&root->cgroup_idr);
c6d57f33 1898
c6d57f33
PM
1899 root->flags = opts->flags;
1900 if (opts->release_agent)
1901 strcpy(root->release_agent_path, opts->release_agent);
1902 if (opts->name)
1903 strcpy(root->name, opts->name);
2260e7fc 1904 if (opts->cpuset_clone_children)
3dd06ffa 1905 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1906}
1907
8ab456ac 1908static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1909{
d427dfeb 1910 LIST_HEAD(tmp_links);
3dd06ffa 1911 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1912 struct css_set *cset;
d427dfeb 1913 int i, ret;
2c6ab6d2 1914
d427dfeb 1915 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1916
cf780b7d 1917 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1918 if (ret < 0)
2bd59d48 1919 goto out;
d427dfeb 1920 root_cgrp->id = ret;
c6d57f33 1921
2aad2a86
TH
1922 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1923 GFP_KERNEL);
9d755d33
TH
1924 if (ret)
1925 goto out;
1926
d427dfeb 1927 /*
f0d9a5f1 1928 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1929 * but that's OK - it can only be increased by someone holding
1930 * cgroup_lock, and that's us. The worst that can happen is that we
1931 * have some link structures left over
1932 */
1933 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1934 if (ret)
9d755d33 1935 goto cancel_ref;
ddbcc7e8 1936
985ed670 1937 ret = cgroup_init_root_id(root);
ddbcc7e8 1938 if (ret)
9d755d33 1939 goto cancel_ref;
ddbcc7e8 1940
2bd59d48
TH
1941 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1942 KERNFS_ROOT_CREATE_DEACTIVATED,
1943 root_cgrp);
1944 if (IS_ERR(root->kf_root)) {
1945 ret = PTR_ERR(root->kf_root);
1946 goto exit_root_id;
1947 }
1948 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1949
4df8dc90 1950 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1951 if (ret)
2bd59d48 1952 goto destroy_root;
ddbcc7e8 1953
5df36032 1954 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1955 if (ret)
2bd59d48 1956 goto destroy_root;
ddbcc7e8 1957
d427dfeb
TH
1958 /*
1959 * There must be no failure case after here, since rebinding takes
1960 * care of subsystems' refcounts, which are explicitly dropped in
1961 * the failure exit path.
1962 */
1963 list_add(&root->root_list, &cgroup_roots);
1964 cgroup_root_count++;
0df6a63f 1965
d427dfeb 1966 /*
3dd06ffa 1967 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1968 * objects.
1969 */
f0d9a5f1 1970 spin_lock_bh(&css_set_lock);
0de0942d 1971 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1972 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1973 if (css_set_populated(cset))
1974 cgroup_update_populated(root_cgrp, true);
1975 }
f0d9a5f1 1976 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1977
d5c419b6 1978 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1979 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1980
2bd59d48 1981 kernfs_activate(root_cgrp->kn);
d427dfeb 1982 ret = 0;
2bd59d48 1983 goto out;
d427dfeb 1984
2bd59d48
TH
1985destroy_root:
1986 kernfs_destroy_root(root->kf_root);
1987 root->kf_root = NULL;
1988exit_root_id:
d427dfeb 1989 cgroup_exit_root_id(root);
9d755d33 1990cancel_ref:
9a1049da 1991 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1992out:
d427dfeb
TH
1993 free_cgrp_cset_links(&tmp_links);
1994 return ret;
ddbcc7e8
PM
1995}
1996
f7e83571 1997static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1998 int flags, const char *unused_dev_name,
f7e83571 1999 void *data)
ddbcc7e8 2000{
3a32bd72 2001 struct super_block *pinned_sb = NULL;
970317aa 2002 struct cgroup_subsys *ss;
3dd06ffa 2003 struct cgroup_root *root;
ddbcc7e8 2004 struct cgroup_sb_opts opts;
2bd59d48 2005 struct dentry *dentry;
8e30e2b8 2006 int ret;
970317aa 2007 int i;
c6b3d5bc 2008 bool new_sb;
ddbcc7e8 2009
56fde9e0
TH
2010 /*
2011 * The first time anyone tries to mount a cgroup, enable the list
2012 * linking each css_set to its tasks and fix up all existing tasks.
2013 */
2014 if (!use_task_css_set_links)
2015 cgroup_enable_task_cg_lists();
e37a06f1 2016
aae8aab4 2017 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2018
2019 /* First find the desired set of subsystems */
ddbcc7e8 2020 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2021 if (ret)
8e30e2b8 2022 goto out_unlock;
a015edd2 2023
2bd59d48 2024 /* look for a matching existing root */
7b9a6ba5 2025 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
2026 cgrp_dfl_root_visible = true;
2027 root = &cgrp_dfl_root;
2028 cgroup_get(&root->cgrp);
2029 ret = 0;
2030 goto out_unlock;
ddbcc7e8
PM
2031 }
2032
970317aa
LZ
2033 /*
2034 * Destruction of cgroup root is asynchronous, so subsystems may
2035 * still be dying after the previous unmount. Let's drain the
2036 * dying subsystems. We just need to ensure that the ones
2037 * unmounted previously finish dying and don't care about new ones
2038 * starting. Testing ref liveliness is good enough.
2039 */
2040 for_each_subsys(ss, i) {
2041 if (!(opts.subsys_mask & (1 << i)) ||
2042 ss->root == &cgrp_dfl_root)
2043 continue;
2044
2045 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2046 mutex_unlock(&cgroup_mutex);
2047 msleep(10);
2048 ret = restart_syscall();
2049 goto out_free;
2050 }
2051 cgroup_put(&ss->root->cgrp);
2052 }
2053
985ed670 2054 for_each_root(root) {
2bd59d48 2055 bool name_match = false;
3126121f 2056
3dd06ffa 2057 if (root == &cgrp_dfl_root)
985ed670 2058 continue;
3126121f 2059
cf5d5941 2060 /*
2bd59d48
TH
2061 * If we asked for a name then it must match. Also, if
2062 * name matches but sybsys_mask doesn't, we should fail.
2063 * Remember whether name matched.
cf5d5941 2064 */
2bd59d48
TH
2065 if (opts.name) {
2066 if (strcmp(opts.name, root->name))
2067 continue;
2068 name_match = true;
2069 }
ddbcc7e8 2070
c6d57f33 2071 /*
2bd59d48
TH
2072 * If we asked for subsystems (or explicitly for no
2073 * subsystems) then they must match.
c6d57f33 2074 */
2bd59d48 2075 if ((opts.subsys_mask || opts.none) &&
f392e51c 2076 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2077 if (!name_match)
2078 continue;
2079 ret = -EBUSY;
2080 goto out_unlock;
2081 }
873fe09e 2082
7b9a6ba5
TH
2083 if (root->flags ^ opts.flags)
2084 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2085
776f02fa 2086 /*
3a32bd72
LZ
2087 * We want to reuse @root whose lifetime is governed by its
2088 * ->cgrp. Let's check whether @root is alive and keep it
2089 * that way. As cgroup_kill_sb() can happen anytime, we
2090 * want to block it by pinning the sb so that @root doesn't
2091 * get killed before mount is complete.
2092 *
2093 * With the sb pinned, tryget_live can reliably indicate
2094 * whether @root can be reused. If it's being killed,
2095 * drain it. We can use wait_queue for the wait but this
2096 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2097 */
3a32bd72
LZ
2098 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2099 if (IS_ERR(pinned_sb) ||
2100 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2101 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2102 if (!IS_ERR_OR_NULL(pinned_sb))
2103 deactivate_super(pinned_sb);
776f02fa 2104 msleep(10);
a015edd2
TH
2105 ret = restart_syscall();
2106 goto out_free;
776f02fa 2107 }
ddbcc7e8 2108
776f02fa 2109 ret = 0;
2bd59d48 2110 goto out_unlock;
ddbcc7e8 2111 }
ddbcc7e8 2112
817929ec 2113 /*
172a2c06
TH
2114 * No such thing, create a new one. name= matching without subsys
2115 * specification is allowed for already existing hierarchies but we
2116 * can't create new one without subsys specification.
817929ec 2117 */
172a2c06
TH
2118 if (!opts.subsys_mask && !opts.none) {
2119 ret = -EINVAL;
2120 goto out_unlock;
817929ec 2121 }
817929ec 2122
172a2c06
TH
2123 root = kzalloc(sizeof(*root), GFP_KERNEL);
2124 if (!root) {
2125 ret = -ENOMEM;
2bd59d48 2126 goto out_unlock;
839ec545 2127 }
e5f6a860 2128
172a2c06
TH
2129 init_cgroup_root(root, &opts);
2130
35585573 2131 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2132 if (ret)
2133 cgroup_free_root(root);
fa3ca07e 2134
8e30e2b8 2135out_unlock:
ddbcc7e8 2136 mutex_unlock(&cgroup_mutex);
a015edd2 2137out_free:
c6d57f33
PM
2138 kfree(opts.release_agent);
2139 kfree(opts.name);
03b1cde6 2140
2bd59d48 2141 if (ret)
8e30e2b8 2142 return ERR_PTR(ret);
2bd59d48 2143
c9482a5b
JZ
2144 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2145 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2146 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2147 cgroup_put(&root->cgrp);
3a32bd72
LZ
2148
2149 /*
2150 * If @pinned_sb, we're reusing an existing root and holding an
2151 * extra ref on its sb. Mount is complete. Put the extra ref.
2152 */
2153 if (pinned_sb) {
2154 WARN_ON(new_sb);
2155 deactivate_super(pinned_sb);
2156 }
2157
2bd59d48
TH
2158 return dentry;
2159}
2160
2161static void cgroup_kill_sb(struct super_block *sb)
2162{
2163 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2164 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2165
9d755d33
TH
2166 /*
2167 * If @root doesn't have any mounts or children, start killing it.
2168 * This prevents new mounts by disabling percpu_ref_tryget_live().
2169 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2170 *
2171 * And don't kill the default root.
9d755d33 2172 */
3c606d35 2173 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2174 root == &cgrp_dfl_root)
9d755d33
TH
2175 cgroup_put(&root->cgrp);
2176 else
2177 percpu_ref_kill(&root->cgrp.self.refcnt);
2178
2bd59d48 2179 kernfs_kill_sb(sb);
ddbcc7e8
PM
2180}
2181
2182static struct file_system_type cgroup_fs_type = {
2183 .name = "cgroup",
f7e83571 2184 .mount = cgroup_mount,
ddbcc7e8
PM
2185 .kill_sb = cgroup_kill_sb,
2186};
2187
857a2beb 2188/**
913ffdb5 2189 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2190 * @task: target task
857a2beb
TH
2191 * @buf: the buffer to write the path into
2192 * @buflen: the length of the buffer
2193 *
913ffdb5
TH
2194 * Determine @task's cgroup on the first (the one with the lowest non-zero
2195 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2196 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2197 * cgroup controller callbacks.
2198 *
e61734c5 2199 * Return value is the same as kernfs_path().
857a2beb 2200 */
e61734c5 2201char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2202{
3dd06ffa 2203 struct cgroup_root *root;
913ffdb5 2204 struct cgroup *cgrp;
e61734c5
TH
2205 int hierarchy_id = 1;
2206 char *path = NULL;
857a2beb
TH
2207
2208 mutex_lock(&cgroup_mutex);
f0d9a5f1 2209 spin_lock_bh(&css_set_lock);
857a2beb 2210
913ffdb5
TH
2211 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2212
857a2beb
TH
2213 if (root) {
2214 cgrp = task_cgroup_from_root(task, root);
e61734c5 2215 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2216 } else {
2217 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2218 if (strlcpy(buf, "/", buflen) < buflen)
2219 path = buf;
857a2beb
TH
2220 }
2221
f0d9a5f1 2222 spin_unlock_bh(&css_set_lock);
857a2beb 2223 mutex_unlock(&cgroup_mutex);
e61734c5 2224 return path;
857a2beb 2225}
913ffdb5 2226EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2227
b3dc094e 2228/* used to track tasks and other necessary states during migration */
2f7ee569 2229struct cgroup_taskset {
b3dc094e
TH
2230 /* the src and dst cset list running through cset->mg_node */
2231 struct list_head src_csets;
2232 struct list_head dst_csets;
2233
2234 /*
2235 * Fields for cgroup_taskset_*() iteration.
2236 *
2237 * Before migration is committed, the target migration tasks are on
2238 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2239 * the csets on ->dst_csets. ->csets point to either ->src_csets
2240 * or ->dst_csets depending on whether migration is committed.
2241 *
2242 * ->cur_csets and ->cur_task point to the current task position
2243 * during iteration.
2244 */
2245 struct list_head *csets;
2246 struct css_set *cur_cset;
2247 struct task_struct *cur_task;
2f7ee569
TH
2248};
2249
adaae5dc
TH
2250#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2251 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2252 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2253 .csets = &tset.src_csets, \
2254}
2255
2256/**
2257 * cgroup_taskset_add - try to add a migration target task to a taskset
2258 * @task: target task
2259 * @tset: target taskset
2260 *
2261 * Add @task, which is a migration target, to @tset. This function becomes
2262 * noop if @task doesn't need to be migrated. @task's css_set should have
2263 * been added as a migration source and @task->cg_list will be moved from
2264 * the css_set's tasks list to mg_tasks one.
2265 */
2266static void cgroup_taskset_add(struct task_struct *task,
2267 struct cgroup_taskset *tset)
2268{
2269 struct css_set *cset;
2270
f0d9a5f1 2271 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2272
2273 /* @task either already exited or can't exit until the end */
2274 if (task->flags & PF_EXITING)
2275 return;
2276
2277 /* leave @task alone if post_fork() hasn't linked it yet */
2278 if (list_empty(&task->cg_list))
2279 return;
2280
2281 cset = task_css_set(task);
2282 if (!cset->mg_src_cgrp)
2283 return;
2284
2285 list_move_tail(&task->cg_list, &cset->mg_tasks);
2286 if (list_empty(&cset->mg_node))
2287 list_add_tail(&cset->mg_node, &tset->src_csets);
2288 if (list_empty(&cset->mg_dst_cset->mg_node))
2289 list_move_tail(&cset->mg_dst_cset->mg_node,
2290 &tset->dst_csets);
2291}
2292
2f7ee569
TH
2293/**
2294 * cgroup_taskset_first - reset taskset and return the first task
2295 * @tset: taskset of interest
2296 *
2297 * @tset iteration is initialized and the first task is returned.
2298 */
2299struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2300{
b3dc094e
TH
2301 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2302 tset->cur_task = NULL;
2303
2304 return cgroup_taskset_next(tset);
2f7ee569 2305}
2f7ee569
TH
2306
2307/**
2308 * cgroup_taskset_next - iterate to the next task in taskset
2309 * @tset: taskset of interest
2310 *
2311 * Return the next task in @tset. Iteration must have been initialized
2312 * with cgroup_taskset_first().
2313 */
2314struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2315{
b3dc094e
TH
2316 struct css_set *cset = tset->cur_cset;
2317 struct task_struct *task = tset->cur_task;
2f7ee569 2318
b3dc094e
TH
2319 while (&cset->mg_node != tset->csets) {
2320 if (!task)
2321 task = list_first_entry(&cset->mg_tasks,
2322 struct task_struct, cg_list);
2323 else
2324 task = list_next_entry(task, cg_list);
2f7ee569 2325
b3dc094e
TH
2326 if (&task->cg_list != &cset->mg_tasks) {
2327 tset->cur_cset = cset;
2328 tset->cur_task = task;
2329 return task;
2330 }
2f7ee569 2331
b3dc094e
TH
2332 cset = list_next_entry(cset, mg_node);
2333 task = NULL;
2334 }
2f7ee569 2335
b3dc094e 2336 return NULL;
2f7ee569 2337}
2f7ee569 2338
adaae5dc
TH
2339/**
2340 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2341 * @tset: taget taskset
2342 * @dst_cgrp: destination cgroup
2343 *
2344 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2345 * ->can_attach callbacks fails and guarantees that either all or none of
2346 * the tasks in @tset are migrated. @tset is consumed regardless of
2347 * success.
2348 */
2349static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2350 struct cgroup *dst_cgrp)
2351{
2352 struct cgroup_subsys_state *css, *failed_css = NULL;
2353 struct task_struct *task, *tmp_task;
2354 struct css_set *cset, *tmp_cset;
2355 int i, ret;
2356
2357 /* methods shouldn't be called if no task is actually migrating */
2358 if (list_empty(&tset->src_csets))
2359 return 0;
2360
2361 /* check that we can legitimately attach to the cgroup */
2362 for_each_e_css(css, i, dst_cgrp) {
2363 if (css->ss->can_attach) {
2364 ret = css->ss->can_attach(css, tset);
2365 if (ret) {
2366 failed_css = css;
2367 goto out_cancel_attach;
2368 }
2369 }
2370 }
2371
2372 /*
2373 * Now that we're guaranteed success, proceed to move all tasks to
2374 * the new cgroup. There are no failure cases after here, so this
2375 * is the commit point.
2376 */
f0d9a5f1 2377 spin_lock_bh(&css_set_lock);
adaae5dc 2378 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2379 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2380 struct css_set *from_cset = task_css_set(task);
2381 struct css_set *to_cset = cset->mg_dst_cset;
2382
2383 get_css_set(to_cset);
2384 css_set_move_task(task, from_cset, to_cset, true);
2385 put_css_set_locked(from_cset);
2386 }
adaae5dc 2387 }
f0d9a5f1 2388 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2389
2390 /*
2391 * Migration is committed, all target tasks are now on dst_csets.
2392 * Nothing is sensitive to fork() after this point. Notify
2393 * controllers that migration is complete.
2394 */
2395 tset->csets = &tset->dst_csets;
2396
2397 for_each_e_css(css, i, dst_cgrp)
2398 if (css->ss->attach)
2399 css->ss->attach(css, tset);
2400
2401 ret = 0;
2402 goto out_release_tset;
2403
2404out_cancel_attach:
2405 for_each_e_css(css, i, dst_cgrp) {
2406 if (css == failed_css)
2407 break;
2408 if (css->ss->cancel_attach)
2409 css->ss->cancel_attach(css, tset);
2410 }
2411out_release_tset:
f0d9a5f1 2412 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2413 list_splice_init(&tset->dst_csets, &tset->src_csets);
2414 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2415 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2416 list_del_init(&cset->mg_node);
2417 }
f0d9a5f1 2418 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2419 return ret;
2420}
2421
a043e3b2 2422/**
1958d2d5
TH
2423 * cgroup_migrate_finish - cleanup after attach
2424 * @preloaded_csets: list of preloaded css_sets
74a1166d 2425 *
1958d2d5
TH
2426 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2427 * those functions for details.
74a1166d 2428 */
1958d2d5 2429static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2430{
1958d2d5 2431 struct css_set *cset, *tmp_cset;
74a1166d 2432
1958d2d5
TH
2433 lockdep_assert_held(&cgroup_mutex);
2434
f0d9a5f1 2435 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2436 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2437 cset->mg_src_cgrp = NULL;
2438 cset->mg_dst_cset = NULL;
2439 list_del_init(&cset->mg_preload_node);
a25eb52e 2440 put_css_set_locked(cset);
1958d2d5 2441 }
f0d9a5f1 2442 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2443}
2444
2445/**
2446 * cgroup_migrate_add_src - add a migration source css_set
2447 * @src_cset: the source css_set to add
2448 * @dst_cgrp: the destination cgroup
2449 * @preloaded_csets: list of preloaded css_sets
2450 *
2451 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2452 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2453 * up by cgroup_migrate_finish().
2454 *
1ed13287
TH
2455 * This function may be called without holding cgroup_threadgroup_rwsem
2456 * even if the target is a process. Threads may be created and destroyed
2457 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2458 * into play and the preloaded css_sets are guaranteed to cover all
2459 * migrations.
1958d2d5
TH
2460 */
2461static void cgroup_migrate_add_src(struct css_set *src_cset,
2462 struct cgroup *dst_cgrp,
2463 struct list_head *preloaded_csets)
2464{
2465 struct cgroup *src_cgrp;
2466
2467 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2468 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2469
2470 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2471
1958d2d5
TH
2472 if (!list_empty(&src_cset->mg_preload_node))
2473 return;
2474
2475 WARN_ON(src_cset->mg_src_cgrp);
2476 WARN_ON(!list_empty(&src_cset->mg_tasks));
2477 WARN_ON(!list_empty(&src_cset->mg_node));
2478
2479 src_cset->mg_src_cgrp = src_cgrp;
2480 get_css_set(src_cset);
2481 list_add(&src_cset->mg_preload_node, preloaded_csets);
2482}
2483
2484/**
2485 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2486 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2487 * @preloaded_csets: list of preloaded source css_sets
2488 *
2489 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2490 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2491 * pins all destination css_sets, links each to its source, and append them
2492 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2493 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2494 *
2495 * This function must be called after cgroup_migrate_add_src() has been
2496 * called on each migration source css_set. After migration is performed
2497 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2498 * @preloaded_csets.
2499 */
2500static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2501 struct list_head *preloaded_csets)
2502{
2503 LIST_HEAD(csets);
f817de98 2504 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2505
2506 lockdep_assert_held(&cgroup_mutex);
2507
f8f22e53
TH
2508 /*
2509 * Except for the root, child_subsys_mask must be zero for a cgroup
2510 * with tasks so that child cgroups don't compete against tasks.
2511 */
d51f39b0 2512 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2513 dst_cgrp->child_subsys_mask)
2514 return -EBUSY;
2515
1958d2d5 2516 /* look up the dst cset for each src cset and link it to src */
f817de98 2517 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2518 struct css_set *dst_cset;
2519
f817de98
TH
2520 dst_cset = find_css_set(src_cset,
2521 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2522 if (!dst_cset)
2523 goto err;
2524
2525 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2526
2527 /*
2528 * If src cset equals dst, it's noop. Drop the src.
2529 * cgroup_migrate() will skip the cset too. Note that we
2530 * can't handle src == dst as some nodes are used by both.
2531 */
2532 if (src_cset == dst_cset) {
2533 src_cset->mg_src_cgrp = NULL;
2534 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2535 put_css_set(src_cset);
2536 put_css_set(dst_cset);
f817de98
TH
2537 continue;
2538 }
2539
1958d2d5
TH
2540 src_cset->mg_dst_cset = dst_cset;
2541
2542 if (list_empty(&dst_cset->mg_preload_node))
2543 list_add(&dst_cset->mg_preload_node, &csets);
2544 else
a25eb52e 2545 put_css_set(dst_cset);
1958d2d5
TH
2546 }
2547
f817de98 2548 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2549 return 0;
2550err:
2551 cgroup_migrate_finish(&csets);
2552 return -ENOMEM;
2553}
2554
2555/**
2556 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2557 * @leader: the leader of the process or the task to migrate
2558 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2559 * @cgrp: the destination cgroup
1958d2d5
TH
2560 *
2561 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2562 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2563 * caller is also responsible for invoking cgroup_migrate_add_src() and
2564 * cgroup_migrate_prepare_dst() on the targets before invoking this
2565 * function and following up with cgroup_migrate_finish().
2566 *
2567 * As long as a controller's ->can_attach() doesn't fail, this function is
2568 * guaranteed to succeed. This means that, excluding ->can_attach()
2569 * failure, when migrating multiple targets, the success or failure can be
2570 * decided for all targets by invoking group_migrate_prepare_dst() before
2571 * actually starting migrating.
2572 */
9af2ec45
TH
2573static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2574 struct cgroup *cgrp)
74a1166d 2575{
adaae5dc
TH
2576 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2577 struct task_struct *task;
74a1166d 2578
fb5d2b4c
MSB
2579 /*
2580 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2581 * already PF_EXITING could be freed from underneath us unless we
2582 * take an rcu_read_lock.
2583 */
f0d9a5f1 2584 spin_lock_bh(&css_set_lock);
fb5d2b4c 2585 rcu_read_lock();
9db8de37 2586 task = leader;
74a1166d 2587 do {
adaae5dc 2588 cgroup_taskset_add(task, &tset);
081aa458
LZ
2589 if (!threadgroup)
2590 break;
9db8de37 2591 } while_each_thread(leader, task);
fb5d2b4c 2592 rcu_read_unlock();
f0d9a5f1 2593 spin_unlock_bh(&css_set_lock);
74a1166d 2594
adaae5dc 2595 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2596}
2597
1958d2d5
TH
2598/**
2599 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2600 * @dst_cgrp: the cgroup to attach to
2601 * @leader: the task or the leader of the threadgroup to be attached
2602 * @threadgroup: attach the whole threadgroup?
2603 *
1ed13287 2604 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2605 */
2606static int cgroup_attach_task(struct cgroup *dst_cgrp,
2607 struct task_struct *leader, bool threadgroup)
2608{
2609 LIST_HEAD(preloaded_csets);
2610 struct task_struct *task;
2611 int ret;
2612
2613 /* look up all src csets */
f0d9a5f1 2614 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2615 rcu_read_lock();
2616 task = leader;
2617 do {
2618 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2619 &preloaded_csets);
2620 if (!threadgroup)
2621 break;
2622 } while_each_thread(leader, task);
2623 rcu_read_unlock();
f0d9a5f1 2624 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2625
2626 /* prepare dst csets and commit */
2627 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2628 if (!ret)
9af2ec45 2629 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2630
2631 cgroup_migrate_finish(&preloaded_csets);
2632 return ret;
74a1166d
BB
2633}
2634
187fe840
TH
2635static int cgroup_procs_write_permission(struct task_struct *task,
2636 struct cgroup *dst_cgrp,
2637 struct kernfs_open_file *of)
dedf22e9
TH
2638{
2639 const struct cred *cred = current_cred();
2640 const struct cred *tcred = get_task_cred(task);
2641 int ret = 0;
2642
2643 /*
2644 * even if we're attaching all tasks in the thread group, we only
2645 * need to check permissions on one of them.
2646 */
2647 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2648 !uid_eq(cred->euid, tcred->uid) &&
2649 !uid_eq(cred->euid, tcred->suid))
2650 ret = -EACCES;
2651
187fe840
TH
2652 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2653 struct super_block *sb = of->file->f_path.dentry->d_sb;
2654 struct cgroup *cgrp;
2655 struct inode *inode;
2656
f0d9a5f1 2657 spin_lock_bh(&css_set_lock);
187fe840 2658 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2659 spin_unlock_bh(&css_set_lock);
187fe840
TH
2660
2661 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2662 cgrp = cgroup_parent(cgrp);
2663
2664 ret = -ENOMEM;
6f60eade 2665 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2666 if (inode) {
2667 ret = inode_permission(inode, MAY_WRITE);
2668 iput(inode);
2669 }
2670 }
2671
dedf22e9
TH
2672 put_cred(tcred);
2673 return ret;
2674}
2675
74a1166d
BB
2676/*
2677 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2678 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2679 * cgroup_mutex and threadgroup.
bbcb81d0 2680 */
acbef755
TH
2681static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2682 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2683{
bbcb81d0 2684 struct task_struct *tsk;
e76ecaee 2685 struct cgroup *cgrp;
acbef755 2686 pid_t pid;
bbcb81d0
PM
2687 int ret;
2688
acbef755
TH
2689 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2690 return -EINVAL;
2691
e76ecaee
TH
2692 cgrp = cgroup_kn_lock_live(of->kn);
2693 if (!cgrp)
74a1166d
BB
2694 return -ENODEV;
2695
3014dde7 2696 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2697 rcu_read_lock();
bbcb81d0 2698 if (pid) {
73507f33 2699 tsk = find_task_by_vpid(pid);
74a1166d 2700 if (!tsk) {
dd4b0a46 2701 ret = -ESRCH;
3014dde7 2702 goto out_unlock_rcu;
bbcb81d0 2703 }
dedf22e9 2704 } else {
b78949eb 2705 tsk = current;
dedf22e9 2706 }
cd3d0952
TH
2707
2708 if (threadgroup)
b78949eb 2709 tsk = tsk->group_leader;
c4c27fbd
MG
2710
2711 /*
14a40ffc 2712 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2713 * trapped in a cpuset, or RT worker may be born in a cgroup
2714 * with no rt_runtime allocated. Just say no.
2715 */
14a40ffc 2716 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2717 ret = -EINVAL;
3014dde7 2718 goto out_unlock_rcu;
c4c27fbd
MG
2719 }
2720
b78949eb
MSB
2721 get_task_struct(tsk);
2722 rcu_read_unlock();
2723
187fe840 2724 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2725 if (!ret)
2726 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2727
f9f9e7b7 2728 put_task_struct(tsk);
3014dde7
TH
2729 goto out_unlock_threadgroup;
2730
2731out_unlock_rcu:
2732 rcu_read_unlock();
2733out_unlock_threadgroup:
2734 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2735 cgroup_kn_unlock(of->kn);
acbef755 2736 return ret ?: nbytes;
bbcb81d0
PM
2737}
2738
7ae1bad9
TH
2739/**
2740 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2741 * @from: attach to all cgroups of a given task
2742 * @tsk: the task to be attached
2743 */
2744int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2745{
3dd06ffa 2746 struct cgroup_root *root;
7ae1bad9
TH
2747 int retval = 0;
2748
47cfcd09 2749 mutex_lock(&cgroup_mutex);
985ed670 2750 for_each_root(root) {
96d365e0
TH
2751 struct cgroup *from_cgrp;
2752
3dd06ffa 2753 if (root == &cgrp_dfl_root)
985ed670
TH
2754 continue;
2755
f0d9a5f1 2756 spin_lock_bh(&css_set_lock);
96d365e0 2757 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2758 spin_unlock_bh(&css_set_lock);
7ae1bad9 2759
6f4b7e63 2760 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2761 if (retval)
2762 break;
2763 }
47cfcd09 2764 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2765
2766 return retval;
2767}
2768EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2769
acbef755
TH
2770static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2771 char *buf, size_t nbytes, loff_t off)
74a1166d 2772{
acbef755 2773 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2774}
2775
acbef755
TH
2776static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2777 char *buf, size_t nbytes, loff_t off)
af351026 2778{
acbef755 2779 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2780}
2781
451af504
TH
2782static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2783 char *buf, size_t nbytes, loff_t off)
e788e066 2784{
e76ecaee 2785 struct cgroup *cgrp;
5f469907 2786
e76ecaee 2787 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2788
e76ecaee
TH
2789 cgrp = cgroup_kn_lock_live(of->kn);
2790 if (!cgrp)
e788e066 2791 return -ENODEV;
69e943b7 2792 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2793 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2794 sizeof(cgrp->root->release_agent_path));
69e943b7 2795 spin_unlock(&release_agent_path_lock);
e76ecaee 2796 cgroup_kn_unlock(of->kn);
451af504 2797 return nbytes;
e788e066
PM
2798}
2799
2da8ca82 2800static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2801{
2da8ca82 2802 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2803
46cfeb04 2804 spin_lock(&release_agent_path_lock);
e788e066 2805 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2806 spin_unlock(&release_agent_path_lock);
e788e066 2807 seq_putc(seq, '\n');
e788e066
PM
2808 return 0;
2809}
2810
2da8ca82 2811static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2812{
c1d5d42e 2813 seq_puts(seq, "0\n");
e788e066
PM
2814 return 0;
2815}
2816
8ab456ac 2817static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2818{
f8f22e53
TH
2819 struct cgroup_subsys *ss;
2820 bool printed = false;
2821 int ssid;
a742c59d 2822
a966a4ed
AS
2823 for_each_subsys_which(ss, ssid, &ss_mask) {
2824 if (printed)
2825 seq_putc(seq, ' ');
2826 seq_printf(seq, "%s", ss->name);
2827 printed = true;
e73d2c61 2828 }
f8f22e53
TH
2829 if (printed)
2830 seq_putc(seq, '\n');
355e0c48
PM
2831}
2832
f8f22e53
TH
2833/* show controllers which are currently attached to the default hierarchy */
2834static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2835{
f8f22e53
TH
2836 struct cgroup *cgrp = seq_css(seq)->cgroup;
2837
5533e011
TH
2838 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2839 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2840 return 0;
db3b1497
PM
2841}
2842
f8f22e53
TH
2843/* show controllers which are enabled from the parent */
2844static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2845{
f8f22e53
TH
2846 struct cgroup *cgrp = seq_css(seq)->cgroup;
2847
667c2491 2848 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2849 return 0;
ddbcc7e8
PM
2850}
2851
f8f22e53
TH
2852/* show controllers which are enabled for a given cgroup's children */
2853static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2854{
f8f22e53
TH
2855 struct cgroup *cgrp = seq_css(seq)->cgroup;
2856
667c2491 2857 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2858 return 0;
2859}
2860
2861/**
2862 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2863 * @cgrp: root of the subtree to update csses for
2864 *
2865 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2866 * css associations need to be updated accordingly. This function looks up
2867 * all css_sets which are attached to the subtree, creates the matching
2868 * updated css_sets and migrates the tasks to the new ones.
2869 */
2870static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2871{
2872 LIST_HEAD(preloaded_csets);
10265075 2873 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2874 struct cgroup_subsys_state *css;
2875 struct css_set *src_cset;
2876 int ret;
2877
f8f22e53
TH
2878 lockdep_assert_held(&cgroup_mutex);
2879
3014dde7
TH
2880 percpu_down_write(&cgroup_threadgroup_rwsem);
2881
f8f22e53 2882 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2883 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2884 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2885 struct cgrp_cset_link *link;
2886
2887 /* self is not affected by child_subsys_mask change */
2888 if (css->cgroup == cgrp)
2889 continue;
2890
2891 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2892 cgroup_migrate_add_src(link->cset, cgrp,
2893 &preloaded_csets);
2894 }
f0d9a5f1 2895 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2896
2897 /* NULL dst indicates self on default hierarchy */
2898 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2899 if (ret)
2900 goto out_finish;
2901
f0d9a5f1 2902 spin_lock_bh(&css_set_lock);
f8f22e53 2903 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2904 struct task_struct *task, *ntask;
f8f22e53
TH
2905
2906 /* src_csets precede dst_csets, break on the first dst_cset */
2907 if (!src_cset->mg_src_cgrp)
2908 break;
2909
10265075
TH
2910 /* all tasks in src_csets need to be migrated */
2911 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2912 cgroup_taskset_add(task, &tset);
f8f22e53 2913 }
f0d9a5f1 2914 spin_unlock_bh(&css_set_lock);
f8f22e53 2915
10265075 2916 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2917out_finish:
2918 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2919 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2920 return ret;
2921}
2922
2923/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2924static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2925 char *buf, size_t nbytes,
2926 loff_t off)
f8f22e53 2927{
8ab456ac
AS
2928 unsigned long enable = 0, disable = 0;
2929 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2930 struct cgroup *cgrp, *child;
f8f22e53 2931 struct cgroup_subsys *ss;
451af504 2932 char *tok;
f8f22e53
TH
2933 int ssid, ret;
2934
2935 /*
d37167ab
TH
2936 * Parse input - space separated list of subsystem names prefixed
2937 * with either + or -.
f8f22e53 2938 */
451af504
TH
2939 buf = strstrip(buf);
2940 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2941 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2942
d37167ab
TH
2943 if (tok[0] == '\0')
2944 continue;
a966a4ed 2945 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2946 if (!cgroup_ssid_enabled(ssid) ||
2947 strcmp(tok + 1, ss->name))
f8f22e53
TH
2948 continue;
2949
2950 if (*tok == '+') {
7d331fa9
TH
2951 enable |= 1 << ssid;
2952 disable &= ~(1 << ssid);
f8f22e53 2953 } else if (*tok == '-') {
7d331fa9
TH
2954 disable |= 1 << ssid;
2955 enable &= ~(1 << ssid);
f8f22e53
TH
2956 } else {
2957 return -EINVAL;
2958 }
2959 break;
2960 }
2961 if (ssid == CGROUP_SUBSYS_COUNT)
2962 return -EINVAL;
2963 }
2964
a9746d8d
TH
2965 cgrp = cgroup_kn_lock_live(of->kn);
2966 if (!cgrp)
2967 return -ENODEV;
f8f22e53
TH
2968
2969 for_each_subsys(ss, ssid) {
2970 if (enable & (1 << ssid)) {
667c2491 2971 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2972 enable &= ~(1 << ssid);
2973 continue;
2974 }
2975
c29adf24
TH
2976 /* unavailable or not enabled on the parent? */
2977 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2978 (cgroup_parent(cgrp) &&
667c2491 2979 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2980 ret = -ENOENT;
2981 goto out_unlock;
2982 }
f8f22e53 2983 } else if (disable & (1 << ssid)) {
667c2491 2984 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2985 disable &= ~(1 << ssid);
2986 continue;
2987 }
2988
2989 /* a child has it enabled? */
2990 cgroup_for_each_live_child(child, cgrp) {
667c2491 2991 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2992 ret = -EBUSY;
ddab2b6e 2993 goto out_unlock;
f8f22e53
TH
2994 }
2995 }
2996 }
2997 }
2998
2999 if (!enable && !disable) {
3000 ret = 0;
ddab2b6e 3001 goto out_unlock;
f8f22e53
TH
3002 }
3003
3004 /*
667c2491 3005 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3006 * with tasks so that child cgroups don't compete against tasks.
3007 */
d51f39b0 3008 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3009 ret = -EBUSY;
3010 goto out_unlock;
3011 }
3012
3013 /*
f63070d3
TH
3014 * Update subsys masks and calculate what needs to be done. More
3015 * subsystems than specified may need to be enabled or disabled
3016 * depending on subsystem dependencies.
3017 */
755bf5ee
TH
3018 old_sc = cgrp->subtree_control;
3019 old_ss = cgrp->child_subsys_mask;
3020 new_sc = (old_sc | enable) & ~disable;
3021 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3022
755bf5ee
TH
3023 css_enable = ~old_ss & new_ss;
3024 css_disable = old_ss & ~new_ss;
f63070d3
TH
3025 enable |= css_enable;
3026 disable |= css_disable;
c29adf24 3027
db6e3053
TH
3028 /*
3029 * Because css offlining is asynchronous, userland might try to
3030 * re-enable the same controller while the previous instance is
3031 * still around. In such cases, wait till it's gone using
3032 * offline_waitq.
3033 */
a966a4ed 3034 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3035 cgroup_for_each_live_child(child, cgrp) {
3036 DEFINE_WAIT(wait);
3037
3038 if (!cgroup_css(child, ss))
3039 continue;
3040
3041 cgroup_get(child);
3042 prepare_to_wait(&child->offline_waitq, &wait,
3043 TASK_UNINTERRUPTIBLE);
3044 cgroup_kn_unlock(of->kn);
3045 schedule();
3046 finish_wait(&child->offline_waitq, &wait);
3047 cgroup_put(child);
3048
3049 return restart_syscall();
3050 }
3051 }
3052
755bf5ee
TH
3053 cgrp->subtree_control = new_sc;
3054 cgrp->child_subsys_mask = new_ss;
3055
f63070d3
TH
3056 /*
3057 * Create new csses or make the existing ones visible. A css is
3058 * created invisible if it's being implicitly enabled through
3059 * dependency. An invisible css is made visible when the userland
3060 * explicitly enables it.
f8f22e53
TH
3061 */
3062 for_each_subsys(ss, ssid) {
3063 if (!(enable & (1 << ssid)))
3064 continue;
3065
3066 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3067 if (css_enable & (1 << ssid))
3068 ret = create_css(child, ss,
3069 cgrp->subtree_control & (1 << ssid));
3070 else
4df8dc90
TH
3071 ret = css_populate_dir(cgroup_css(child, ss),
3072 NULL);
f8f22e53
TH
3073 if (ret)
3074 goto err_undo_css;
3075 }
3076 }
3077
c29adf24
TH
3078 /*
3079 * At this point, cgroup_e_css() results reflect the new csses
3080 * making the following cgroup_update_dfl_csses() properly update
3081 * css associations of all tasks in the subtree.
3082 */
f8f22e53
TH
3083 ret = cgroup_update_dfl_csses(cgrp);
3084 if (ret)
3085 goto err_undo_css;
3086
f63070d3
TH
3087 /*
3088 * All tasks are migrated out of disabled csses. Kill or hide
3089 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3090 * disabled while other subsystems are still depending on it. The
3091 * css must not actively control resources and be in the vanilla
3092 * state if it's made visible again later. Controllers which may
3093 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3094 */
f8f22e53
TH
3095 for_each_subsys(ss, ssid) {
3096 if (!(disable & (1 << ssid)))
3097 continue;
3098
f63070d3 3099 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3100 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3101
3102 if (css_disable & (1 << ssid)) {
3103 kill_css(css);
3104 } else {
4df8dc90 3105 css_clear_dir(css, NULL);
b4536f0c
TH
3106 if (ss->css_reset)
3107 ss->css_reset(css);
3108 }
f63070d3 3109 }
f8f22e53
TH
3110 }
3111
56c807ba
TH
3112 /*
3113 * The effective csses of all the descendants (excluding @cgrp) may
3114 * have changed. Subsystems can optionally subscribe to this event
3115 * by implementing ->css_e_css_changed() which is invoked if any of
3116 * the effective csses seen from the css's cgroup may have changed.
3117 */
3118 for_each_subsys(ss, ssid) {
3119 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3120 struct cgroup_subsys_state *css;
3121
3122 if (!ss->css_e_css_changed || !this_css)
3123 continue;
3124
3125 css_for_each_descendant_pre(css, this_css)
3126 if (css != this_css)
3127 ss->css_e_css_changed(css);
3128 }
3129
f8f22e53
TH
3130 kernfs_activate(cgrp->kn);
3131 ret = 0;
3132out_unlock:
a9746d8d 3133 cgroup_kn_unlock(of->kn);
451af504 3134 return ret ?: nbytes;
f8f22e53
TH
3135
3136err_undo_css:
755bf5ee
TH
3137 cgrp->subtree_control = old_sc;
3138 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3139
3140 for_each_subsys(ss, ssid) {
3141 if (!(enable & (1 << ssid)))
3142 continue;
3143
3144 cgroup_for_each_live_child(child, cgrp) {
3145 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3146
3147 if (!css)
3148 continue;
3149
3150 if (css_enable & (1 << ssid))
f8f22e53 3151 kill_css(css);
f63070d3 3152 else
4df8dc90 3153 css_clear_dir(css, NULL);
f8f22e53
TH
3154 }
3155 }
3156 goto out_unlock;
3157}
3158
4a07c222 3159static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3160{
4a07c222 3161 seq_printf(seq, "populated %d\n",
27bd4dbb 3162 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3163 return 0;
3164}
3165
2bd59d48
TH
3166static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3167 size_t nbytes, loff_t off)
355e0c48 3168{
2bd59d48
TH
3169 struct cgroup *cgrp = of->kn->parent->priv;
3170 struct cftype *cft = of->kn->priv;
3171 struct cgroup_subsys_state *css;
a742c59d 3172 int ret;
355e0c48 3173
b4168640
TH
3174 if (cft->write)
3175 return cft->write(of, buf, nbytes, off);
3176
2bd59d48
TH
3177 /*
3178 * kernfs guarantees that a file isn't deleted with operations in
3179 * flight, which means that the matching css is and stays alive and
3180 * doesn't need to be pinned. The RCU locking is not necessary
3181 * either. It's just for the convenience of using cgroup_css().
3182 */
3183 rcu_read_lock();
3184 css = cgroup_css(cgrp, cft->ss);
3185 rcu_read_unlock();
a742c59d 3186
451af504 3187 if (cft->write_u64) {
a742c59d
TH
3188 unsigned long long v;
3189 ret = kstrtoull(buf, 0, &v);
3190 if (!ret)
3191 ret = cft->write_u64(css, cft, v);
3192 } else if (cft->write_s64) {
3193 long long v;
3194 ret = kstrtoll(buf, 0, &v);
3195 if (!ret)
3196 ret = cft->write_s64(css, cft, v);
e73d2c61 3197 } else {
a742c59d 3198 ret = -EINVAL;
e73d2c61 3199 }
2bd59d48 3200
a742c59d 3201 return ret ?: nbytes;
355e0c48
PM
3202}
3203
6612f05b 3204static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3205{
2bd59d48 3206 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3207}
3208
6612f05b 3209static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3210{
2bd59d48 3211 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3212}
3213
6612f05b 3214static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3215{
2bd59d48 3216 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3217}
3218
91796569 3219static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3220{
7da11279
TH
3221 struct cftype *cft = seq_cft(m);
3222 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3223
2da8ca82
TH
3224 if (cft->seq_show)
3225 return cft->seq_show(m, arg);
e73d2c61 3226
f4c753b7 3227 if (cft->read_u64)
896f5199
TH
3228 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3229 else if (cft->read_s64)
3230 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3231 else
3232 return -EINVAL;
3233 return 0;
91796569
PM
3234}
3235
2bd59d48
TH
3236static struct kernfs_ops cgroup_kf_single_ops = {
3237 .atomic_write_len = PAGE_SIZE,
3238 .write = cgroup_file_write,
3239 .seq_show = cgroup_seqfile_show,
91796569
PM
3240};
3241
2bd59d48
TH
3242static struct kernfs_ops cgroup_kf_ops = {
3243 .atomic_write_len = PAGE_SIZE,
3244 .write = cgroup_file_write,
3245 .seq_start = cgroup_seqfile_start,
3246 .seq_next = cgroup_seqfile_next,
3247 .seq_stop = cgroup_seqfile_stop,
3248 .seq_show = cgroup_seqfile_show,
3249};
ddbcc7e8
PM
3250
3251/*
3252 * cgroup_rename - Only allow simple rename of directories in place.
3253 */
2bd59d48
TH
3254static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3255 const char *new_name_str)
ddbcc7e8 3256{
2bd59d48 3257 struct cgroup *cgrp = kn->priv;
65dff759 3258 int ret;
65dff759 3259
2bd59d48 3260 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3261 return -ENOTDIR;
2bd59d48 3262 if (kn->parent != new_parent)
ddbcc7e8 3263 return -EIO;
65dff759 3264
6db8e85c
TH
3265 /*
3266 * This isn't a proper migration and its usefulness is very
aa6ec29b 3267 * limited. Disallow on the default hierarchy.
6db8e85c 3268 */
aa6ec29b 3269 if (cgroup_on_dfl(cgrp))
6db8e85c 3270 return -EPERM;
099fca32 3271
e1b2dc17 3272 /*
8353da1f 3273 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3274 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3275 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3276 */
3277 kernfs_break_active_protection(new_parent);
3278 kernfs_break_active_protection(kn);
099fca32 3279
2bd59d48 3280 mutex_lock(&cgroup_mutex);
099fca32 3281
2bd59d48 3282 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3283
2bd59d48 3284 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3285
3286 kernfs_unbreak_active_protection(kn);
3287 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3288 return ret;
099fca32
LZ
3289}
3290
49957f8e
TH
3291/* set uid and gid of cgroup dirs and files to that of the creator */
3292static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3293{
3294 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3295 .ia_uid = current_fsuid(),
3296 .ia_gid = current_fsgid(), };
3297
3298 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3299 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3300 return 0;
3301
3302 return kernfs_setattr(kn, &iattr);
3303}
3304
4df8dc90
TH
3305static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3306 struct cftype *cft)
ddbcc7e8 3307{
8d7e6fb0 3308 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3309 struct kernfs_node *kn;
3310 struct lock_class_key *key = NULL;
49957f8e 3311 int ret;
05ef1d7c 3312
2bd59d48
TH
3313#ifdef CONFIG_DEBUG_LOCK_ALLOC
3314 key = &cft->lockdep_key;
3315#endif
3316 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3317 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3318 NULL, key);
49957f8e
TH
3319 if (IS_ERR(kn))
3320 return PTR_ERR(kn);
3321
3322 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3323 if (ret) {
49957f8e 3324 kernfs_remove(kn);
f8f22e53
TH
3325 return ret;
3326 }
3327
6f60eade
TH
3328 if (cft->file_offset) {
3329 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3330
34c06254 3331 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3332 cfile->kn = kn;
34c06254 3333 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3334 }
3335
f8f22e53 3336 return 0;
ddbcc7e8
PM
3337}
3338
b1f28d31
TH
3339/**
3340 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3341 * @css: the target css
3342 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3343 * @cfts: array of cftypes to be added
3344 * @is_add: whether to add or remove
3345 *
3346 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3347 * For removals, this function never fails.
b1f28d31 3348 */
4df8dc90
TH
3349static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3350 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3351 bool is_add)
ddbcc7e8 3352{
6732ed85 3353 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3354 int ret;
3355
01f6474c 3356 lockdep_assert_held(&cgroup_mutex);
db0416b6 3357
6732ed85
TH
3358restart:
3359 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3360 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3361 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3362 continue;
05ebb6e6 3363 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3364 continue;
d51f39b0 3365 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3366 continue;
d51f39b0 3367 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3368 continue;
3369
2739d3cc 3370 if (is_add) {
4df8dc90 3371 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3372 if (ret) {
ed3d261b
JP
3373 pr_warn("%s: failed to add %s, err=%d\n",
3374 __func__, cft->name, ret);
6732ed85
TH
3375 cft_end = cft;
3376 is_add = false;
3377 goto restart;
b1f28d31 3378 }
2739d3cc
LZ
3379 } else {
3380 cgroup_rm_file(cgrp, cft);
db0416b6 3381 }
ddbcc7e8 3382 }
b1f28d31 3383 return 0;
ddbcc7e8
PM
3384}
3385
21a2d343 3386static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3387{
3388 LIST_HEAD(pending);
2bb566cb 3389 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3390 struct cgroup *root = &ss->root->cgrp;
492eb21b 3391 struct cgroup_subsys_state *css;
9ccece80 3392 int ret = 0;
8e3f6541 3393
01f6474c 3394 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3395
e8c82d20 3396 /* add/rm files for all cgroups created before */
ca8bdcaf 3397 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3398 struct cgroup *cgrp = css->cgroup;
3399
e8c82d20
LZ
3400 if (cgroup_is_dead(cgrp))
3401 continue;
3402
4df8dc90 3403 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3404 if (ret)
3405 break;
8e3f6541 3406 }
21a2d343
TH
3407
3408 if (is_add && !ret)
3409 kernfs_activate(root->kn);
9ccece80 3410 return ret;
8e3f6541
TH
3411}
3412
2da440a2 3413static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3414{
2bb566cb 3415 struct cftype *cft;
8e3f6541 3416
2bd59d48
TH
3417 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3418 /* free copy for custom atomic_write_len, see init_cftypes() */
3419 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3420 kfree(cft->kf_ops);
3421 cft->kf_ops = NULL;
2da440a2 3422 cft->ss = NULL;
a8ddc821
TH
3423
3424 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3425 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3426 }
2da440a2
TH
3427}
3428
2bd59d48 3429static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3430{
3431 struct cftype *cft;
3432
2bd59d48
TH
3433 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3434 struct kernfs_ops *kf_ops;
3435
0adb0704
TH
3436 WARN_ON(cft->ss || cft->kf_ops);
3437
2bd59d48
TH
3438 if (cft->seq_start)
3439 kf_ops = &cgroup_kf_ops;
3440 else
3441 kf_ops = &cgroup_kf_single_ops;
3442
3443 /*
3444 * Ugh... if @cft wants a custom max_write_len, we need to
3445 * make a copy of kf_ops to set its atomic_write_len.
3446 */
3447 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3448 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3449 if (!kf_ops) {
3450 cgroup_exit_cftypes(cfts);
3451 return -ENOMEM;
3452 }
3453 kf_ops->atomic_write_len = cft->max_write_len;
3454 }
8e3f6541 3455
2bd59d48 3456 cft->kf_ops = kf_ops;
2bb566cb 3457 cft->ss = ss;
2bd59d48 3458 }
2bb566cb 3459
2bd59d48 3460 return 0;
2da440a2
TH
3461}
3462
21a2d343
TH
3463static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3464{
01f6474c 3465 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3466
3467 if (!cfts || !cfts[0].ss)
3468 return -ENOENT;
3469
3470 list_del(&cfts->node);
3471 cgroup_apply_cftypes(cfts, false);
3472 cgroup_exit_cftypes(cfts);
3473 return 0;
8e3f6541 3474}
8e3f6541 3475
79578621
TH
3476/**
3477 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3478 * @cfts: zero-length name terminated array of cftypes
3479 *
2bb566cb
TH
3480 * Unregister @cfts. Files described by @cfts are removed from all
3481 * existing cgroups and all future cgroups won't have them either. This
3482 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3483 *
3484 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3485 * registered.
79578621 3486 */
2bb566cb 3487int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3488{
21a2d343 3489 int ret;
79578621 3490
01f6474c 3491 mutex_lock(&cgroup_mutex);
21a2d343 3492 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3493 mutex_unlock(&cgroup_mutex);
21a2d343 3494 return ret;
80b13586
TH
3495}
3496
8e3f6541
TH
3497/**
3498 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3499 * @ss: target cgroup subsystem
3500 * @cfts: zero-length name terminated array of cftypes
3501 *
3502 * Register @cfts to @ss. Files described by @cfts are created for all
3503 * existing cgroups to which @ss is attached and all future cgroups will
3504 * have them too. This function can be called anytime whether @ss is
3505 * attached or not.
3506 *
3507 * Returns 0 on successful registration, -errno on failure. Note that this
3508 * function currently returns 0 as long as @cfts registration is successful
3509 * even if some file creation attempts on existing cgroups fail.
3510 */
2cf669a5 3511static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3512{
9ccece80 3513 int ret;
8e3f6541 3514
fc5ed1e9 3515 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3516 return 0;
3517
dc5736ed
LZ
3518 if (!cfts || cfts[0].name[0] == '\0')
3519 return 0;
2bb566cb 3520
2bd59d48
TH
3521 ret = cgroup_init_cftypes(ss, cfts);
3522 if (ret)
3523 return ret;
79578621 3524
01f6474c 3525 mutex_lock(&cgroup_mutex);
21a2d343 3526
0adb0704 3527 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3528 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3529 if (ret)
21a2d343 3530 cgroup_rm_cftypes_locked(cfts);
79578621 3531
01f6474c 3532 mutex_unlock(&cgroup_mutex);
9ccece80 3533 return ret;
79578621
TH
3534}
3535
a8ddc821
TH
3536/**
3537 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3538 * @ss: target cgroup subsystem
3539 * @cfts: zero-length name terminated array of cftypes
3540 *
3541 * Similar to cgroup_add_cftypes() but the added files are only used for
3542 * the default hierarchy.
3543 */
3544int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3545{
3546 struct cftype *cft;
3547
3548 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3549 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3550 return cgroup_add_cftypes(ss, cfts);
3551}
3552
3553/**
3554 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3555 * @ss: target cgroup subsystem
3556 * @cfts: zero-length name terminated array of cftypes
3557 *
3558 * Similar to cgroup_add_cftypes() but the added files are only used for
3559 * the legacy hierarchies.
3560 */
2cf669a5
TH
3561int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3562{
a8ddc821
TH
3563 struct cftype *cft;
3564
e4b7037c
TH
3565 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3566 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3567 return cgroup_add_cftypes(ss, cfts);
3568}
3569
34c06254
TH
3570/**
3571 * cgroup_file_notify - generate a file modified event for a cgroup_file
3572 * @cfile: target cgroup_file
3573 *
3574 * @cfile must have been obtained by setting cftype->file_offset.
3575 */
3576void cgroup_file_notify(struct cgroup_file *cfile)
3577{
3578 unsigned long flags;
3579
3580 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3581 if (cfile->kn)
3582 kernfs_notify(cfile->kn);
3583 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3584}
3585
a043e3b2
LZ
3586/**
3587 * cgroup_task_count - count the number of tasks in a cgroup.
3588 * @cgrp: the cgroup in question
3589 *
3590 * Return the number of tasks in the cgroup.
3591 */
07bc356e 3592static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3593{
3594 int count = 0;
69d0206c 3595 struct cgrp_cset_link *link;
817929ec 3596
f0d9a5f1 3597 spin_lock_bh(&css_set_lock);
69d0206c
TH
3598 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3599 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3600 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3601 return count;
3602}
3603
53fa5261 3604/**
492eb21b 3605 * css_next_child - find the next child of a given css
c2931b70
TH
3606 * @pos: the current position (%NULL to initiate traversal)
3607 * @parent: css whose children to walk
53fa5261 3608 *
c2931b70 3609 * This function returns the next child of @parent and should be called
87fb54f1 3610 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3611 * that @parent and @pos are accessible. The next sibling is guaranteed to
3612 * be returned regardless of their states.
3613 *
3614 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3615 * css which finished ->css_online() is guaranteed to be visible in the
3616 * future iterations and will stay visible until the last reference is put.
3617 * A css which hasn't finished ->css_online() or already finished
3618 * ->css_offline() may show up during traversal. It's each subsystem's
3619 * responsibility to synchronize against on/offlining.
53fa5261 3620 */
c2931b70
TH
3621struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3622 struct cgroup_subsys_state *parent)
53fa5261 3623{
c2931b70 3624 struct cgroup_subsys_state *next;
53fa5261 3625
8353da1f 3626 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3627
3628 /*
de3f0341
TH
3629 * @pos could already have been unlinked from the sibling list.
3630 * Once a cgroup is removed, its ->sibling.next is no longer
3631 * updated when its next sibling changes. CSS_RELEASED is set when
3632 * @pos is taken off list, at which time its next pointer is valid,
3633 * and, as releases are serialized, the one pointed to by the next
3634 * pointer is guaranteed to not have started release yet. This
3635 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3636 * critical section, the one pointed to by its next pointer is
3637 * guaranteed to not have finished its RCU grace period even if we
3638 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3639 *
de3f0341
TH
3640 * If @pos has CSS_RELEASED set, its next pointer can't be
3641 * dereferenced; however, as each css is given a monotonically
3642 * increasing unique serial number and always appended to the
3643 * sibling list, the next one can be found by walking the parent's
3644 * children until the first css with higher serial number than
3645 * @pos's. While this path can be slower, it happens iff iteration
3646 * races against release and the race window is very small.
53fa5261 3647 */
3b287a50 3648 if (!pos) {
c2931b70
TH
3649 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3650 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3651 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3652 } else {
c2931b70 3653 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3654 if (next->serial_nr > pos->serial_nr)
3655 break;
53fa5261
TH
3656 }
3657
3b281afb
TH
3658 /*
3659 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3660 * the next sibling.
3b281afb 3661 */
c2931b70
TH
3662 if (&next->sibling != &parent->children)
3663 return next;
3b281afb 3664 return NULL;
53fa5261 3665}
53fa5261 3666
574bd9f7 3667/**
492eb21b 3668 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3669 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3670 * @root: css whose descendants to walk
574bd9f7 3671 *
492eb21b 3672 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3673 * to visit for pre-order traversal of @root's descendants. @root is
3674 * included in the iteration and the first node to be visited.
75501a6d 3675 *
87fb54f1
TH
3676 * While this function requires cgroup_mutex or RCU read locking, it
3677 * doesn't require the whole traversal to be contained in a single critical
3678 * section. This function will return the correct next descendant as long
3679 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3680 *
3681 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3682 * css which finished ->css_online() is guaranteed to be visible in the
3683 * future iterations and will stay visible until the last reference is put.
3684 * A css which hasn't finished ->css_online() or already finished
3685 * ->css_offline() may show up during traversal. It's each subsystem's
3686 * responsibility to synchronize against on/offlining.
574bd9f7 3687 */
492eb21b
TH
3688struct cgroup_subsys_state *
3689css_next_descendant_pre(struct cgroup_subsys_state *pos,
3690 struct cgroup_subsys_state *root)
574bd9f7 3691{
492eb21b 3692 struct cgroup_subsys_state *next;
574bd9f7 3693
8353da1f 3694 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3695
bd8815a6 3696 /* if first iteration, visit @root */
7805d000 3697 if (!pos)
bd8815a6 3698 return root;
574bd9f7
TH
3699
3700 /* visit the first child if exists */
492eb21b 3701 next = css_next_child(NULL, pos);
574bd9f7
TH
3702 if (next)
3703 return next;
3704
3705 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3706 while (pos != root) {
5c9d535b 3707 next = css_next_child(pos, pos->parent);
75501a6d 3708 if (next)
574bd9f7 3709 return next;
5c9d535b 3710 pos = pos->parent;
7805d000 3711 }
574bd9f7
TH
3712
3713 return NULL;
3714}
574bd9f7 3715
12a9d2fe 3716/**
492eb21b
TH
3717 * css_rightmost_descendant - return the rightmost descendant of a css
3718 * @pos: css of interest
12a9d2fe 3719 *
492eb21b
TH
3720 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3721 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3722 * subtree of @pos.
75501a6d 3723 *
87fb54f1
TH
3724 * While this function requires cgroup_mutex or RCU read locking, it
3725 * doesn't require the whole traversal to be contained in a single critical
3726 * section. This function will return the correct rightmost descendant as
3727 * long as @pos is accessible.
12a9d2fe 3728 */
492eb21b
TH
3729struct cgroup_subsys_state *
3730css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3731{
492eb21b 3732 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3733
8353da1f 3734 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3735
3736 do {
3737 last = pos;
3738 /* ->prev isn't RCU safe, walk ->next till the end */
3739 pos = NULL;
492eb21b 3740 css_for_each_child(tmp, last)
12a9d2fe
TH
3741 pos = tmp;
3742 } while (pos);
3743
3744 return last;
3745}
12a9d2fe 3746
492eb21b
TH
3747static struct cgroup_subsys_state *
3748css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3749{
492eb21b 3750 struct cgroup_subsys_state *last;
574bd9f7
TH
3751
3752 do {
3753 last = pos;
492eb21b 3754 pos = css_next_child(NULL, pos);
574bd9f7
TH
3755 } while (pos);
3756
3757 return last;
3758}
3759
3760/**
492eb21b 3761 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3762 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3763 * @root: css whose descendants to walk
574bd9f7 3764 *
492eb21b 3765 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3766 * to visit for post-order traversal of @root's descendants. @root is
3767 * included in the iteration and the last node to be visited.
75501a6d 3768 *
87fb54f1
TH
3769 * While this function requires cgroup_mutex or RCU read locking, it
3770 * doesn't require the whole traversal to be contained in a single critical
3771 * section. This function will return the correct next descendant as long
3772 * as both @pos and @cgroup are accessible and @pos is a descendant of
3773 * @cgroup.
c2931b70
TH
3774 *
3775 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3776 * css which finished ->css_online() is guaranteed to be visible in the
3777 * future iterations and will stay visible until the last reference is put.
3778 * A css which hasn't finished ->css_online() or already finished
3779 * ->css_offline() may show up during traversal. It's each subsystem's
3780 * responsibility to synchronize against on/offlining.
574bd9f7 3781 */
492eb21b
TH
3782struct cgroup_subsys_state *
3783css_next_descendant_post(struct cgroup_subsys_state *pos,
3784 struct cgroup_subsys_state *root)
574bd9f7 3785{
492eb21b 3786 struct cgroup_subsys_state *next;
574bd9f7 3787
8353da1f 3788 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3789
58b79a91
TH
3790 /* if first iteration, visit leftmost descendant which may be @root */
3791 if (!pos)
3792 return css_leftmost_descendant(root);
574bd9f7 3793
bd8815a6
TH
3794 /* if we visited @root, we're done */
3795 if (pos == root)
3796 return NULL;
3797
574bd9f7 3798 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3799 next = css_next_child(pos, pos->parent);
75501a6d 3800 if (next)
492eb21b 3801 return css_leftmost_descendant(next);
574bd9f7
TH
3802
3803 /* no sibling left, visit parent */
5c9d535b 3804 return pos->parent;
574bd9f7 3805}
574bd9f7 3806
f3d46500
TH
3807/**
3808 * css_has_online_children - does a css have online children
3809 * @css: the target css
3810 *
3811 * Returns %true if @css has any online children; otherwise, %false. This
3812 * function can be called from any context but the caller is responsible
3813 * for synchronizing against on/offlining as necessary.
3814 */
3815bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3816{
f3d46500
TH
3817 struct cgroup_subsys_state *child;
3818 bool ret = false;
cbc125ef
TH
3819
3820 rcu_read_lock();
f3d46500 3821 css_for_each_child(child, css) {
99bae5f9 3822 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3823 ret = true;
3824 break;
cbc125ef
TH
3825 }
3826 }
3827 rcu_read_unlock();
f3d46500 3828 return ret;
574bd9f7 3829}
574bd9f7 3830
0942eeee 3831/**
ecb9d535 3832 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3833 * @it: the iterator to advance
3834 *
3835 * Advance @it to the next css_set to walk.
d515876e 3836 */
ecb9d535 3837static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3838{
0f0a2b4f 3839 struct list_head *l = it->cset_pos;
d515876e
TH
3840 struct cgrp_cset_link *link;
3841 struct css_set *cset;
3842
f0d9a5f1 3843 lockdep_assert_held(&css_set_lock);
ed27b9f7 3844
d515876e
TH
3845 /* Advance to the next non-empty css_set */
3846 do {
3847 l = l->next;
0f0a2b4f
TH
3848 if (l == it->cset_head) {
3849 it->cset_pos = NULL;
ecb9d535 3850 it->task_pos = NULL;
d515876e
TH
3851 return;
3852 }
3ebb2b6e
TH
3853
3854 if (it->ss) {
3855 cset = container_of(l, struct css_set,
3856 e_cset_node[it->ss->id]);
3857 } else {
3858 link = list_entry(l, struct cgrp_cset_link, cset_link);
3859 cset = link->cset;
3860 }
0de0942d 3861 } while (!css_set_populated(cset));
c7561128 3862
0f0a2b4f 3863 it->cset_pos = l;
c7561128
TH
3864
3865 if (!list_empty(&cset->tasks))
0f0a2b4f 3866 it->task_pos = cset->tasks.next;
c7561128 3867 else
0f0a2b4f
TH
3868 it->task_pos = cset->mg_tasks.next;
3869
3870 it->tasks_head = &cset->tasks;
3871 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3872
3873 /*
3874 * We don't keep css_sets locked across iteration steps and thus
3875 * need to take steps to ensure that iteration can be resumed after
3876 * the lock is re-acquired. Iteration is performed at two levels -
3877 * css_sets and tasks in them.
3878 *
3879 * Once created, a css_set never leaves its cgroup lists, so a
3880 * pinned css_set is guaranteed to stay put and we can resume
3881 * iteration afterwards.
3882 *
3883 * Tasks may leave @cset across iteration steps. This is resolved
3884 * by registering each iterator with the css_set currently being
3885 * walked and making css_set_move_task() advance iterators whose
3886 * next task is leaving.
3887 */
3888 if (it->cur_cset) {
3889 list_del(&it->iters_node);
3890 put_css_set_locked(it->cur_cset);
3891 }
3892 get_css_set(cset);
3893 it->cur_cset = cset;
3894 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3895}
3896
ecb9d535
TH
3897static void css_task_iter_advance(struct css_task_iter *it)
3898{
3899 struct list_head *l = it->task_pos;
3900
f0d9a5f1 3901 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3902 WARN_ON_ONCE(!l);
3903
3904 /*
3905 * Advance iterator to find next entry. cset->tasks is consumed
3906 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3907 * next cset.
3908 */
3909 l = l->next;
3910
3911 if (l == it->tasks_head)
3912 l = it->mg_tasks_head->next;
3913
3914 if (l == it->mg_tasks_head)
3915 css_task_iter_advance_css_set(it);
3916 else
3917 it->task_pos = l;
3918}
3919
0942eeee 3920/**
72ec7029
TH
3921 * css_task_iter_start - initiate task iteration
3922 * @css: the css to walk tasks of
0942eeee
TH
3923 * @it: the task iterator to use
3924 *
72ec7029
TH
3925 * Initiate iteration through the tasks of @css. The caller can call
3926 * css_task_iter_next() to walk through the tasks until the function
3927 * returns NULL. On completion of iteration, css_task_iter_end() must be
3928 * called.
0942eeee 3929 */
72ec7029
TH
3930void css_task_iter_start(struct cgroup_subsys_state *css,
3931 struct css_task_iter *it)
817929ec 3932{
56fde9e0
TH
3933 /* no one should try to iterate before mounting cgroups */
3934 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3935
ed27b9f7
TH
3936 memset(it, 0, sizeof(*it));
3937
f0d9a5f1 3938 spin_lock_bh(&css_set_lock);
c59cd3d8 3939
3ebb2b6e
TH
3940 it->ss = css->ss;
3941
3942 if (it->ss)
3943 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3944 else
3945 it->cset_pos = &css->cgroup->cset_links;
3946
0f0a2b4f 3947 it->cset_head = it->cset_pos;
c59cd3d8 3948
ecb9d535 3949 css_task_iter_advance_css_set(it);
ed27b9f7 3950
f0d9a5f1 3951 spin_unlock_bh(&css_set_lock);
817929ec
PM
3952}
3953
0942eeee 3954/**
72ec7029 3955 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3956 * @it: the task iterator being iterated
3957 *
3958 * The "next" function for task iteration. @it should have been
72ec7029
TH
3959 * initialized via css_task_iter_start(). Returns NULL when the iteration
3960 * reaches the end.
0942eeee 3961 */
72ec7029 3962struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3963{
d5745675 3964 if (it->cur_task) {
ed27b9f7 3965 put_task_struct(it->cur_task);
d5745675
TH
3966 it->cur_task = NULL;
3967 }
ed27b9f7 3968
f0d9a5f1 3969 spin_lock_bh(&css_set_lock);
ed27b9f7 3970
d5745675
TH
3971 if (it->task_pos) {
3972 it->cur_task = list_entry(it->task_pos, struct task_struct,
3973 cg_list);
3974 get_task_struct(it->cur_task);
3975 css_task_iter_advance(it);
3976 }
ed27b9f7 3977
f0d9a5f1 3978 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3979
3980 return it->cur_task;
817929ec
PM
3981}
3982
0942eeee 3983/**
72ec7029 3984 * css_task_iter_end - finish task iteration
0942eeee
TH
3985 * @it: the task iterator to finish
3986 *
72ec7029 3987 * Finish task iteration started by css_task_iter_start().
0942eeee 3988 */
72ec7029 3989void css_task_iter_end(struct css_task_iter *it)
31a7df01 3990{
ed27b9f7 3991 if (it->cur_cset) {
f0d9a5f1 3992 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3993 list_del(&it->iters_node);
3994 put_css_set_locked(it->cur_cset);
f0d9a5f1 3995 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3996 }
3997
3998 if (it->cur_task)
3999 put_task_struct(it->cur_task);
31a7df01
CW
4000}
4001
4002/**
8cc99345
TH
4003 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4004 * @to: cgroup to which the tasks will be moved
4005 * @from: cgroup in which the tasks currently reside
31a7df01 4006 *
eaf797ab
TH
4007 * Locking rules between cgroup_post_fork() and the migration path
4008 * guarantee that, if a task is forking while being migrated, the new child
4009 * is guaranteed to be either visible in the source cgroup after the
4010 * parent's migration is complete or put into the target cgroup. No task
4011 * can slip out of migration through forking.
31a7df01 4012 */
8cc99345 4013int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4014{
952aaa12
TH
4015 LIST_HEAD(preloaded_csets);
4016 struct cgrp_cset_link *link;
72ec7029 4017 struct css_task_iter it;
e406d1cf 4018 struct task_struct *task;
952aaa12 4019 int ret;
31a7df01 4020
952aaa12 4021 mutex_lock(&cgroup_mutex);
31a7df01 4022
952aaa12 4023 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4024 spin_lock_bh(&css_set_lock);
952aaa12
TH
4025 list_for_each_entry(link, &from->cset_links, cset_link)
4026 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4027 spin_unlock_bh(&css_set_lock);
31a7df01 4028
952aaa12
TH
4029 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4030 if (ret)
4031 goto out_err;
8cc99345 4032
952aaa12
TH
4033 /*
4034 * Migrate tasks one-by-one until @form is empty. This fails iff
4035 * ->can_attach() fails.
4036 */
e406d1cf 4037 do {
9d800df1 4038 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4039 task = css_task_iter_next(&it);
4040 if (task)
4041 get_task_struct(task);
4042 css_task_iter_end(&it);
4043
4044 if (task) {
9af2ec45 4045 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4046 put_task_struct(task);
4047 }
4048 } while (task && !ret);
952aaa12
TH
4049out_err:
4050 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4051 mutex_unlock(&cgroup_mutex);
e406d1cf 4052 return ret;
8cc99345
TH
4053}
4054
bbcb81d0 4055/*
102a775e 4056 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4057 *
4058 * Reading this file can return large amounts of data if a cgroup has
4059 * *lots* of attached tasks. So it may need several calls to read(),
4060 * but we cannot guarantee that the information we produce is correct
4061 * unless we produce it entirely atomically.
4062 *
bbcb81d0 4063 */
bbcb81d0 4064
24528255
LZ
4065/* which pidlist file are we talking about? */
4066enum cgroup_filetype {
4067 CGROUP_FILE_PROCS,
4068 CGROUP_FILE_TASKS,
4069};
4070
4071/*
4072 * A pidlist is a list of pids that virtually represents the contents of one
4073 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4074 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4075 * to the cgroup.
4076 */
4077struct cgroup_pidlist {
4078 /*
4079 * used to find which pidlist is wanted. doesn't change as long as
4080 * this particular list stays in the list.
4081 */
4082 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4083 /* array of xids */
4084 pid_t *list;
4085 /* how many elements the above list has */
4086 int length;
24528255
LZ
4087 /* each of these stored in a list by its cgroup */
4088 struct list_head links;
4089 /* pointer to the cgroup we belong to, for list removal purposes */
4090 struct cgroup *owner;
b1a21367
TH
4091 /* for delayed destruction */
4092 struct delayed_work destroy_dwork;
24528255
LZ
4093};
4094
d1d9fd33
BB
4095/*
4096 * The following two functions "fix" the issue where there are more pids
4097 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4098 * TODO: replace with a kernel-wide solution to this problem
4099 */
4100#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4101static void *pidlist_allocate(int count)
4102{
4103 if (PIDLIST_TOO_LARGE(count))
4104 return vmalloc(count * sizeof(pid_t));
4105 else
4106 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4107}
b1a21367 4108
d1d9fd33
BB
4109static void pidlist_free(void *p)
4110{
58794514 4111 kvfree(p);
d1d9fd33 4112}
d1d9fd33 4113
b1a21367
TH
4114/*
4115 * Used to destroy all pidlists lingering waiting for destroy timer. None
4116 * should be left afterwards.
4117 */
4118static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4119{
4120 struct cgroup_pidlist *l, *tmp_l;
4121
4122 mutex_lock(&cgrp->pidlist_mutex);
4123 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4124 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4125 mutex_unlock(&cgrp->pidlist_mutex);
4126
4127 flush_workqueue(cgroup_pidlist_destroy_wq);
4128 BUG_ON(!list_empty(&cgrp->pidlists));
4129}
4130
4131static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4132{
4133 struct delayed_work *dwork = to_delayed_work(work);
4134 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4135 destroy_dwork);
4136 struct cgroup_pidlist *tofree = NULL;
4137
4138 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4139
4140 /*
04502365
TH
4141 * Destroy iff we didn't get queued again. The state won't change
4142 * as destroy_dwork can only be queued while locked.
b1a21367 4143 */
04502365 4144 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4145 list_del(&l->links);
4146 pidlist_free(l->list);
4147 put_pid_ns(l->key.ns);
4148 tofree = l;
4149 }
4150
b1a21367
TH
4151 mutex_unlock(&l->owner->pidlist_mutex);
4152 kfree(tofree);
4153}
4154
bbcb81d0 4155/*
102a775e 4156 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4157 * Returns the number of unique elements.
bbcb81d0 4158 */
6ee211ad 4159static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4160{
102a775e 4161 int src, dest = 1;
102a775e
BB
4162
4163 /*
4164 * we presume the 0th element is unique, so i starts at 1. trivial
4165 * edge cases first; no work needs to be done for either
4166 */
4167 if (length == 0 || length == 1)
4168 return length;
4169 /* src and dest walk down the list; dest counts unique elements */
4170 for (src = 1; src < length; src++) {
4171 /* find next unique element */
4172 while (list[src] == list[src-1]) {
4173 src++;
4174 if (src == length)
4175 goto after;
4176 }
4177 /* dest always points to where the next unique element goes */
4178 list[dest] = list[src];
4179 dest++;
4180 }
4181after:
102a775e
BB
4182 return dest;
4183}
4184
afb2bc14
TH
4185/*
4186 * The two pid files - task and cgroup.procs - guaranteed that the result
4187 * is sorted, which forced this whole pidlist fiasco. As pid order is
4188 * different per namespace, each namespace needs differently sorted list,
4189 * making it impossible to use, for example, single rbtree of member tasks
4190 * sorted by task pointer. As pidlists can be fairly large, allocating one
4191 * per open file is dangerous, so cgroup had to implement shared pool of
4192 * pidlists keyed by cgroup and namespace.
4193 *
4194 * All this extra complexity was caused by the original implementation
4195 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4196 * want to do away with it. Explicitly scramble sort order if on the
4197 * default hierarchy so that no such expectation exists in the new
4198 * interface.
afb2bc14
TH
4199 *
4200 * Scrambling is done by swapping every two consecutive bits, which is
4201 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4202 */
4203static pid_t pid_fry(pid_t pid)
4204{
4205 unsigned a = pid & 0x55555555;
4206 unsigned b = pid & 0xAAAAAAAA;
4207
4208 return (a << 1) | (b >> 1);
4209}
4210
4211static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4212{
aa6ec29b 4213 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4214 return pid_fry(pid);
4215 else
4216 return pid;
4217}
4218
102a775e
BB
4219static int cmppid(const void *a, const void *b)
4220{
4221 return *(pid_t *)a - *(pid_t *)b;
4222}
4223
afb2bc14
TH
4224static int fried_cmppid(const void *a, const void *b)
4225{
4226 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4227}
4228
e6b81710
TH
4229static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4230 enum cgroup_filetype type)
4231{
4232 struct cgroup_pidlist *l;
4233 /* don't need task_nsproxy() if we're looking at ourself */
4234 struct pid_namespace *ns = task_active_pid_ns(current);
4235
4236 lockdep_assert_held(&cgrp->pidlist_mutex);
4237
4238 list_for_each_entry(l, &cgrp->pidlists, links)
4239 if (l->key.type == type && l->key.ns == ns)
4240 return l;
4241 return NULL;
4242}
4243
72a8cb30
BB
4244/*
4245 * find the appropriate pidlist for our purpose (given procs vs tasks)
4246 * returns with the lock on that pidlist already held, and takes care
4247 * of the use count, or returns NULL with no locks held if we're out of
4248 * memory.
4249 */
e6b81710
TH
4250static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4251 enum cgroup_filetype type)
72a8cb30
BB
4252{
4253 struct cgroup_pidlist *l;
b70cc5fd 4254
e6b81710
TH
4255 lockdep_assert_held(&cgrp->pidlist_mutex);
4256
4257 l = cgroup_pidlist_find(cgrp, type);
4258 if (l)
4259 return l;
4260
72a8cb30 4261 /* entry not found; create a new one */
f4f4be2b 4262 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4263 if (!l)
72a8cb30 4264 return l;
e6b81710 4265
b1a21367 4266 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4267 l->key.type = type;
e6b81710
TH
4268 /* don't need task_nsproxy() if we're looking at ourself */
4269 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4270 l->owner = cgrp;
4271 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4272 return l;
4273}
4274
102a775e
BB
4275/*
4276 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4277 */
72a8cb30
BB
4278static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4279 struct cgroup_pidlist **lp)
102a775e
BB
4280{
4281 pid_t *array;
4282 int length;
4283 int pid, n = 0; /* used for populating the array */
72ec7029 4284 struct css_task_iter it;
817929ec 4285 struct task_struct *tsk;
102a775e
BB
4286 struct cgroup_pidlist *l;
4287
4bac00d1
TH
4288 lockdep_assert_held(&cgrp->pidlist_mutex);
4289
102a775e
BB
4290 /*
4291 * If cgroup gets more users after we read count, we won't have
4292 * enough space - tough. This race is indistinguishable to the
4293 * caller from the case that the additional cgroup users didn't
4294 * show up until sometime later on.
4295 */
4296 length = cgroup_task_count(cgrp);
d1d9fd33 4297 array = pidlist_allocate(length);
102a775e
BB
4298 if (!array)
4299 return -ENOMEM;
4300 /* now, populate the array */
9d800df1 4301 css_task_iter_start(&cgrp->self, &it);
72ec7029 4302 while ((tsk = css_task_iter_next(&it))) {
102a775e 4303 if (unlikely(n == length))
817929ec 4304 break;
102a775e 4305 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4306 if (type == CGROUP_FILE_PROCS)
4307 pid = task_tgid_vnr(tsk);
4308 else
4309 pid = task_pid_vnr(tsk);
102a775e
BB
4310 if (pid > 0) /* make sure to only use valid results */
4311 array[n++] = pid;
817929ec 4312 }
72ec7029 4313 css_task_iter_end(&it);
102a775e
BB
4314 length = n;
4315 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4316 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4317 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4318 else
4319 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4320 if (type == CGROUP_FILE_PROCS)
6ee211ad 4321 length = pidlist_uniq(array, length);
e6b81710 4322
e6b81710 4323 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4324 if (!l) {
d1d9fd33 4325 pidlist_free(array);
72a8cb30 4326 return -ENOMEM;
102a775e 4327 }
e6b81710
TH
4328
4329 /* store array, freeing old if necessary */
d1d9fd33 4330 pidlist_free(l->list);
102a775e
BB
4331 l->list = array;
4332 l->length = length;
72a8cb30 4333 *lp = l;
102a775e 4334 return 0;
bbcb81d0
PM
4335}
4336
846c7bb0 4337/**
a043e3b2 4338 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4339 * @stats: cgroupstats to fill information into
4340 * @dentry: A dentry entry belonging to the cgroup for which stats have
4341 * been requested.
a043e3b2
LZ
4342 *
4343 * Build and fill cgroupstats so that taskstats can export it to user
4344 * space.
846c7bb0
BS
4345 */
4346int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4347{
2bd59d48 4348 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4349 struct cgroup *cgrp;
72ec7029 4350 struct css_task_iter it;
846c7bb0 4351 struct task_struct *tsk;
33d283be 4352
2bd59d48
TH
4353 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4354 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4355 kernfs_type(kn) != KERNFS_DIR)
4356 return -EINVAL;
4357
bad34660
LZ
4358 mutex_lock(&cgroup_mutex);
4359
846c7bb0 4360 /*
2bd59d48 4361 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4362 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4363 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4364 */
2bd59d48
TH
4365 rcu_read_lock();
4366 cgrp = rcu_dereference(kn->priv);
bad34660 4367 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4368 rcu_read_unlock();
bad34660 4369 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4370 return -ENOENT;
4371 }
bad34660 4372 rcu_read_unlock();
846c7bb0 4373
9d800df1 4374 css_task_iter_start(&cgrp->self, &it);
72ec7029 4375 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4376 switch (tsk->state) {
4377 case TASK_RUNNING:
4378 stats->nr_running++;
4379 break;
4380 case TASK_INTERRUPTIBLE:
4381 stats->nr_sleeping++;
4382 break;
4383 case TASK_UNINTERRUPTIBLE:
4384 stats->nr_uninterruptible++;
4385 break;
4386 case TASK_STOPPED:
4387 stats->nr_stopped++;
4388 break;
4389 default:
4390 if (delayacct_is_task_waiting_on_io(tsk))
4391 stats->nr_io_wait++;
4392 break;
4393 }
4394 }
72ec7029 4395 css_task_iter_end(&it);
846c7bb0 4396
bad34660 4397 mutex_unlock(&cgroup_mutex);
2bd59d48 4398 return 0;
846c7bb0
BS
4399}
4400
8f3ff208 4401
bbcb81d0 4402/*
102a775e 4403 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4404 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4405 * in the cgroup->l->list array.
bbcb81d0 4406 */
cc31edce 4407
102a775e 4408static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4409{
cc31edce
PM
4410 /*
4411 * Initially we receive a position value that corresponds to
4412 * one more than the last pid shown (or 0 on the first call or
4413 * after a seek to the start). Use a binary-search to find the
4414 * next pid to display, if any
4415 */
2bd59d48 4416 struct kernfs_open_file *of = s->private;
7da11279 4417 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4418 struct cgroup_pidlist *l;
7da11279 4419 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4420 int index = 0, pid = *pos;
4bac00d1
TH
4421 int *iter, ret;
4422
4423 mutex_lock(&cgrp->pidlist_mutex);
4424
4425 /*
5d22444f 4426 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4427 * after open. If the matching pidlist is around, we can use that.
5d22444f 4428 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4429 * could already have been destroyed.
4430 */
5d22444f
TH
4431 if (of->priv)
4432 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4433
4434 /*
4435 * Either this is the first start() after open or the matching
4436 * pidlist has been destroyed inbetween. Create a new one.
4437 */
5d22444f
TH
4438 if (!of->priv) {
4439 ret = pidlist_array_load(cgrp, type,
4440 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4441 if (ret)
4442 return ERR_PTR(ret);
4443 }
5d22444f 4444 l = of->priv;
cc31edce 4445
cc31edce 4446 if (pid) {
102a775e 4447 int end = l->length;
20777766 4448
cc31edce
PM
4449 while (index < end) {
4450 int mid = (index + end) / 2;
afb2bc14 4451 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4452 index = mid;
4453 break;
afb2bc14 4454 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4455 index = mid + 1;
4456 else
4457 end = mid;
4458 }
4459 }
4460 /* If we're off the end of the array, we're done */
102a775e 4461 if (index >= l->length)
cc31edce
PM
4462 return NULL;
4463 /* Update the abstract position to be the actual pid that we found */
102a775e 4464 iter = l->list + index;
afb2bc14 4465 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4466 return iter;
4467}
4468
102a775e 4469static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4470{
2bd59d48 4471 struct kernfs_open_file *of = s->private;
5d22444f 4472 struct cgroup_pidlist *l = of->priv;
62236858 4473
5d22444f
TH
4474 if (l)
4475 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4476 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4477 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4478}
4479
102a775e 4480static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4481{
2bd59d48 4482 struct kernfs_open_file *of = s->private;
5d22444f 4483 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4484 pid_t *p = v;
4485 pid_t *end = l->list + l->length;
cc31edce
PM
4486 /*
4487 * Advance to the next pid in the array. If this goes off the
4488 * end, we're done
4489 */
4490 p++;
4491 if (p >= end) {
4492 return NULL;
4493 } else {
7da11279 4494 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4495 return p;
4496 }
4497}
4498
102a775e 4499static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4500{
94ff212d
JP
4501 seq_printf(s, "%d\n", *(int *)v);
4502
4503 return 0;
cc31edce 4504}
bbcb81d0 4505
182446d0
TH
4506static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4507 struct cftype *cft)
81a6a5cd 4508{
182446d0 4509 return notify_on_release(css->cgroup);
81a6a5cd
PM
4510}
4511
182446d0
TH
4512static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4513 struct cftype *cft, u64 val)
6379c106 4514{
6379c106 4515 if (val)
182446d0 4516 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4517 else
182446d0 4518 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4519 return 0;
4520}
4521
182446d0
TH
4522static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4523 struct cftype *cft)
97978e6d 4524{
182446d0 4525 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4526}
4527
182446d0
TH
4528static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4529 struct cftype *cft, u64 val)
97978e6d
DL
4530{
4531 if (val)
182446d0 4532 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4533 else
182446d0 4534 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4535 return 0;
4536}
4537
a14c6874
TH
4538/* cgroup core interface files for the default hierarchy */
4539static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4540 {
d5c56ced 4541 .name = "cgroup.procs",
6f60eade 4542 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4543 .seq_start = cgroup_pidlist_start,
4544 .seq_next = cgroup_pidlist_next,
4545 .seq_stop = cgroup_pidlist_stop,
4546 .seq_show = cgroup_pidlist_show,
5d22444f 4547 .private = CGROUP_FILE_PROCS,
acbef755 4548 .write = cgroup_procs_write,
102a775e 4549 },
f8f22e53
TH
4550 {
4551 .name = "cgroup.controllers",
a14c6874 4552 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4553 .seq_show = cgroup_root_controllers_show,
4554 },
4555 {
4556 .name = "cgroup.controllers",
a14c6874 4557 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4558 .seq_show = cgroup_controllers_show,
4559 },
4560 {
4561 .name = "cgroup.subtree_control",
f8f22e53 4562 .seq_show = cgroup_subtree_control_show,
451af504 4563 .write = cgroup_subtree_control_write,
f8f22e53 4564 },
842b597e 4565 {
4a07c222 4566 .name = "cgroup.events",
a14c6874 4567 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4568 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4569 .seq_show = cgroup_events_show,
842b597e 4570 },
a14c6874
TH
4571 { } /* terminate */
4572};
d5c56ced 4573
a14c6874
TH
4574/* cgroup core interface files for the legacy hierarchies */
4575static struct cftype cgroup_legacy_base_files[] = {
4576 {
4577 .name = "cgroup.procs",
4578 .seq_start = cgroup_pidlist_start,
4579 .seq_next = cgroup_pidlist_next,
4580 .seq_stop = cgroup_pidlist_stop,
4581 .seq_show = cgroup_pidlist_show,
4582 .private = CGROUP_FILE_PROCS,
4583 .write = cgroup_procs_write,
a14c6874
TH
4584 },
4585 {
4586 .name = "cgroup.clone_children",
4587 .read_u64 = cgroup_clone_children_read,
4588 .write_u64 = cgroup_clone_children_write,
4589 },
4590 {
4591 .name = "cgroup.sane_behavior",
4592 .flags = CFTYPE_ONLY_ON_ROOT,
4593 .seq_show = cgroup_sane_behavior_show,
4594 },
d5c56ced
TH
4595 {
4596 .name = "tasks",
6612f05b
TH
4597 .seq_start = cgroup_pidlist_start,
4598 .seq_next = cgroup_pidlist_next,
4599 .seq_stop = cgroup_pidlist_stop,
4600 .seq_show = cgroup_pidlist_show,
5d22444f 4601 .private = CGROUP_FILE_TASKS,
acbef755 4602 .write = cgroup_tasks_write,
d5c56ced
TH
4603 },
4604 {
4605 .name = "notify_on_release",
d5c56ced
TH
4606 .read_u64 = cgroup_read_notify_on_release,
4607 .write_u64 = cgroup_write_notify_on_release,
4608 },
6e6ff25b
TH
4609 {
4610 .name = "release_agent",
a14c6874 4611 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4612 .seq_show = cgroup_release_agent_show,
451af504 4613 .write = cgroup_release_agent_write,
5f469907 4614 .max_write_len = PATH_MAX - 1,
6e6ff25b 4615 },
db0416b6 4616 { } /* terminate */
bbcb81d0
PM
4617};
4618
0c21ead1
TH
4619/*
4620 * css destruction is four-stage process.
4621 *
4622 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4623 * Implemented in kill_css().
4624 *
4625 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4626 * and thus css_tryget_online() is guaranteed to fail, the css can be
4627 * offlined by invoking offline_css(). After offlining, the base ref is
4628 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4629 *
4630 * 3. When the percpu_ref reaches zero, the only possible remaining
4631 * accessors are inside RCU read sections. css_release() schedules the
4632 * RCU callback.
4633 *
4634 * 4. After the grace period, the css can be freed. Implemented in
4635 * css_free_work_fn().
4636 *
4637 * It is actually hairier because both step 2 and 4 require process context
4638 * and thus involve punting to css->destroy_work adding two additional
4639 * steps to the already complex sequence.
4640 */
35ef10da 4641static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4642{
4643 struct cgroup_subsys_state *css =
35ef10da 4644 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4645 struct cgroup_subsys *ss = css->ss;
0c21ead1 4646 struct cgroup *cgrp = css->cgroup;
48ddbe19 4647
9a1049da
TH
4648 percpu_ref_exit(&css->refcnt);
4649
01e58659 4650 if (ss) {
9d755d33 4651 /* css free path */
01e58659
VD
4652 int id = css->id;
4653
9d755d33
TH
4654 if (css->parent)
4655 css_put(css->parent);
0ae78e0b 4656
01e58659
VD
4657 ss->css_free(css);
4658 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4659 cgroup_put(cgrp);
4660 } else {
4661 /* cgroup free path */
4662 atomic_dec(&cgrp->root->nr_cgrps);
4663 cgroup_pidlist_destroy_all(cgrp);
971ff493 4664 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4665
d51f39b0 4666 if (cgroup_parent(cgrp)) {
9d755d33
TH
4667 /*
4668 * We get a ref to the parent, and put the ref when
4669 * this cgroup is being freed, so it's guaranteed
4670 * that the parent won't be destroyed before its
4671 * children.
4672 */
d51f39b0 4673 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4674 kernfs_put(cgrp->kn);
4675 kfree(cgrp);
4676 } else {
4677 /*
4678 * This is root cgroup's refcnt reaching zero,
4679 * which indicates that the root should be
4680 * released.
4681 */
4682 cgroup_destroy_root(cgrp->root);
4683 }
4684 }
48ddbe19
TH
4685}
4686
0c21ead1 4687static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4688{
4689 struct cgroup_subsys_state *css =
0c21ead1 4690 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4691
35ef10da 4692 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4693 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4694}
4695
25e15d83 4696static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4697{
4698 struct cgroup_subsys_state *css =
25e15d83 4699 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4700 struct cgroup_subsys *ss = css->ss;
9d755d33 4701 struct cgroup *cgrp = css->cgroup;
15a4c835 4702
1fed1b2e
TH
4703 mutex_lock(&cgroup_mutex);
4704
de3f0341 4705 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4706 list_del_rcu(&css->sibling);
4707
9d755d33
TH
4708 if (ss) {
4709 /* css release path */
01e58659 4710 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4711 if (ss->css_released)
4712 ss->css_released(css);
9d755d33
TH
4713 } else {
4714 /* cgroup release path */
9d755d33
TH
4715 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4716 cgrp->id = -1;
a4189487
LZ
4717
4718 /*
4719 * There are two control paths which try to determine
4720 * cgroup from dentry without going through kernfs -
4721 * cgroupstats_build() and css_tryget_online_from_dir().
4722 * Those are supported by RCU protecting clearing of
4723 * cgrp->kn->priv backpointer.
4724 */
4725 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4726 }
d3daf28d 4727
1fed1b2e
TH
4728 mutex_unlock(&cgroup_mutex);
4729
0c21ead1 4730 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4731}
4732
d3daf28d
TH
4733static void css_release(struct percpu_ref *ref)
4734{
4735 struct cgroup_subsys_state *css =
4736 container_of(ref, struct cgroup_subsys_state, refcnt);
4737
25e15d83
TH
4738 INIT_WORK(&css->destroy_work, css_release_work_fn);
4739 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4740}
4741
ddfcadab
TH
4742static void init_and_link_css(struct cgroup_subsys_state *css,
4743 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4744{
0cb51d71
TH
4745 lockdep_assert_held(&cgroup_mutex);
4746
ddfcadab
TH
4747 cgroup_get(cgrp);
4748
d5c419b6 4749 memset(css, 0, sizeof(*css));
bd89aabc 4750 css->cgroup = cgrp;
72c97e54 4751 css->ss = ss;
d5c419b6
TH
4752 INIT_LIST_HEAD(&css->sibling);
4753 INIT_LIST_HEAD(&css->children);
0cb51d71 4754 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4755
d51f39b0
TH
4756 if (cgroup_parent(cgrp)) {
4757 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4758 css_get(css->parent);
ddfcadab 4759 }
48ddbe19 4760
ca8bdcaf 4761 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4762}
4763
2a4ac633 4764/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4765static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4766{
623f926b 4767 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4768 int ret = 0;
4769
a31f2d3f
TH
4770 lockdep_assert_held(&cgroup_mutex);
4771
92fb9748 4772 if (ss->css_online)
eb95419b 4773 ret = ss->css_online(css);
ae7f164a 4774 if (!ret) {
eb95419b 4775 css->flags |= CSS_ONLINE;
aec25020 4776 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4777 }
b1929db4 4778 return ret;
a31f2d3f
TH
4779}
4780
2a4ac633 4781/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4782static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4783{
623f926b 4784 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4785
4786 lockdep_assert_held(&cgroup_mutex);
4787
4788 if (!(css->flags & CSS_ONLINE))
4789 return;
4790
d7eeac19 4791 if (ss->css_offline)
eb95419b 4792 ss->css_offline(css);
a31f2d3f 4793
eb95419b 4794 css->flags &= ~CSS_ONLINE;
e3297803 4795 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4796
4797 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4798}
4799
c81c925a
TH
4800/**
4801 * create_css - create a cgroup_subsys_state
4802 * @cgrp: the cgroup new css will be associated with
4803 * @ss: the subsys of new css
f63070d3 4804 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4805 *
4806 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4807 * css is online and installed in @cgrp with all interface files created if
4808 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4809 */
f63070d3
TH
4810static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4811 bool visible)
c81c925a 4812{
d51f39b0 4813 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4814 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4815 struct cgroup_subsys_state *css;
4816 int err;
4817
c81c925a
TH
4818 lockdep_assert_held(&cgroup_mutex);
4819
1fed1b2e 4820 css = ss->css_alloc(parent_css);
c81c925a
TH
4821 if (IS_ERR(css))
4822 return PTR_ERR(css);
4823
ddfcadab 4824 init_and_link_css(css, ss, cgrp);
a2bed820 4825
2aad2a86 4826 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4827 if (err)
3eb59ec6 4828 goto err_free_css;
c81c925a 4829
cf780b7d 4830 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4831 if (err < 0)
4832 goto err_free_percpu_ref;
4833 css->id = err;
c81c925a 4834
f63070d3 4835 if (visible) {
4df8dc90 4836 err = css_populate_dir(css, NULL);
f63070d3
TH
4837 if (err)
4838 goto err_free_id;
4839 }
15a4c835
TH
4840
4841 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4842 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4843 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4844
4845 err = online_css(css);
4846 if (err)
1fed1b2e 4847 goto err_list_del;
94419627 4848
c81c925a 4849 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4850 cgroup_parent(parent)) {
ed3d261b 4851 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4852 current->comm, current->pid, ss->name);
c81c925a 4853 if (!strcmp(ss->name, "memory"))
ed3d261b 4854 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4855 ss->warned_broken_hierarchy = true;
4856 }
4857
4858 return 0;
4859
1fed1b2e
TH
4860err_list_del:
4861 list_del_rcu(&css->sibling);
4df8dc90 4862 css_clear_dir(css, NULL);
15a4c835
TH
4863err_free_id:
4864 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4865err_free_percpu_ref:
9a1049da 4866 percpu_ref_exit(&css->refcnt);
3eb59ec6 4867err_free_css:
a2bed820 4868 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4869 return err;
4870}
4871
b3bfd983
TH
4872static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4873 umode_t mode)
ddbcc7e8 4874{
a9746d8d
TH
4875 struct cgroup *parent, *cgrp;
4876 struct cgroup_root *root;
ddbcc7e8 4877 struct cgroup_subsys *ss;
2bd59d48 4878 struct kernfs_node *kn;
b3bfd983 4879 int ssid, ret;
ddbcc7e8 4880
71b1fb5c
AC
4881 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4882 */
4883 if (strchr(name, '\n'))
4884 return -EINVAL;
4885
a9746d8d
TH
4886 parent = cgroup_kn_lock_live(parent_kn);
4887 if (!parent)
4888 return -ENODEV;
4889 root = parent->root;
ddbcc7e8 4890
0a950f65 4891 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4892 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4893 if (!cgrp) {
4894 ret = -ENOMEM;
4895 goto out_unlock;
0ab02ca8
LZ
4896 }
4897
2aad2a86 4898 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4899 if (ret)
4900 goto out_free_cgrp;
4901
0ab02ca8
LZ
4902 /*
4903 * Temporarily set the pointer to NULL, so idr_find() won't return
4904 * a half-baked cgroup.
4905 */
cf780b7d 4906 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4907 if (cgrp->id < 0) {
ba0f4d76 4908 ret = -ENOMEM;
9d755d33 4909 goto out_cancel_ref;
976c06bc
TH
4910 }
4911
cc31edce 4912 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4913
9d800df1 4914 cgrp->self.parent = &parent->self;
ba0f4d76 4915 cgrp->root = root;
ddbcc7e8 4916
b6abdb0e
LZ
4917 if (notify_on_release(parent))
4918 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4919
2260e7fc
TH
4920 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4921 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4922
2bd59d48 4923 /* create the directory */
e61734c5 4924 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4925 if (IS_ERR(kn)) {
ba0f4d76
TH
4926 ret = PTR_ERR(kn);
4927 goto out_free_id;
2bd59d48
TH
4928 }
4929 cgrp->kn = kn;
ddbcc7e8 4930
4e139afc 4931 /*
6f30558f
TH
4932 * This extra ref will be put in cgroup_free_fn() and guarantees
4933 * that @cgrp->kn is always accessible.
4e139afc 4934 */
6f30558f 4935 kernfs_get(kn);
ddbcc7e8 4936
0cb51d71 4937 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4938
4e139afc 4939 /* allocation complete, commit to creation */
d5c419b6 4940 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4941 atomic_inc(&root->nr_cgrps);
59f5296b 4942 cgroup_get(parent);
415cf07a 4943
0d80255e
TH
4944 /*
4945 * @cgrp is now fully operational. If something fails after this
4946 * point, it'll be released via the normal destruction path.
4947 */
6fa4918d 4948 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4949
ba0f4d76
TH
4950 ret = cgroup_kn_set_ugid(kn);
4951 if (ret)
4952 goto out_destroy;
49957f8e 4953
4df8dc90 4954 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4955 if (ret)
4956 goto out_destroy;
628f7cd4 4957
9d403e99 4958 /* let's create and online css's */
b85d2040 4959 for_each_subsys(ss, ssid) {
f392e51c 4960 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4961 ret = create_css(cgrp, ss,
4962 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4963 if (ret)
4964 goto out_destroy;
b85d2040 4965 }
a8638030 4966 }
ddbcc7e8 4967
bd53d617
TH
4968 /*
4969 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4970 * subtree_control from the parent. Each is configured manually.
bd53d617 4971 */
667c2491
TH
4972 if (!cgroup_on_dfl(cgrp)) {
4973 cgrp->subtree_control = parent->subtree_control;
4974 cgroup_refresh_child_subsys_mask(cgrp);
4975 }
2bd59d48 4976
2bd59d48 4977 kernfs_activate(kn);
ddbcc7e8 4978
ba0f4d76
TH
4979 ret = 0;
4980 goto out_unlock;
ddbcc7e8 4981
ba0f4d76 4982out_free_id:
6fa4918d 4983 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4984out_cancel_ref:
9a1049da 4985 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4986out_free_cgrp:
bd89aabc 4987 kfree(cgrp);
ba0f4d76 4988out_unlock:
a9746d8d 4989 cgroup_kn_unlock(parent_kn);
ba0f4d76 4990 return ret;
4b8b47eb 4991
ba0f4d76 4992out_destroy:
4b8b47eb 4993 cgroup_destroy_locked(cgrp);
ba0f4d76 4994 goto out_unlock;
ddbcc7e8
PM
4995}
4996
223dbc38
TH
4997/*
4998 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4999 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5000 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5001 */
5002static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5003{
223dbc38
TH
5004 struct cgroup_subsys_state *css =
5005 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5006
f20104de 5007 mutex_lock(&cgroup_mutex);
09a503ea 5008 offline_css(css);
f20104de 5009 mutex_unlock(&cgroup_mutex);
09a503ea 5010
09a503ea 5011 css_put(css);
d3daf28d
TH
5012}
5013
223dbc38
TH
5014/* css kill confirmation processing requires process context, bounce */
5015static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5016{
5017 struct cgroup_subsys_state *css =
5018 container_of(ref, struct cgroup_subsys_state, refcnt);
5019
223dbc38 5020 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 5021 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5022}
5023
f392e51c
TH
5024/**
5025 * kill_css - destroy a css
5026 * @css: css to destroy
5027 *
5028 * This function initiates destruction of @css by removing cgroup interface
5029 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5030 * asynchronously once css_tryget_online() is guaranteed to fail and when
5031 * the reference count reaches zero, @css will be released.
f392e51c
TH
5032 */
5033static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5034{
01f6474c 5035 lockdep_assert_held(&cgroup_mutex);
94419627 5036
2bd59d48
TH
5037 /*
5038 * This must happen before css is disassociated with its cgroup.
5039 * See seq_css() for details.
5040 */
4df8dc90 5041 css_clear_dir(css, NULL);
3c14f8b4 5042
edae0c33
TH
5043 /*
5044 * Killing would put the base ref, but we need to keep it alive
5045 * until after ->css_offline().
5046 */
5047 css_get(css);
5048
5049 /*
5050 * cgroup core guarantees that, by the time ->css_offline() is
5051 * invoked, no new css reference will be given out via
ec903c0c 5052 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5053 * proceed to offlining css's because percpu_ref_kill() doesn't
5054 * guarantee that the ref is seen as killed on all CPUs on return.
5055 *
5056 * Use percpu_ref_kill_and_confirm() to get notifications as each
5057 * css is confirmed to be seen as killed on all CPUs.
5058 */
5059 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5060}
5061
5062/**
5063 * cgroup_destroy_locked - the first stage of cgroup destruction
5064 * @cgrp: cgroup to be destroyed
5065 *
5066 * css's make use of percpu refcnts whose killing latency shouldn't be
5067 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5068 * guarantee that css_tryget_online() won't succeed by the time
5069 * ->css_offline() is invoked. To satisfy all the requirements,
5070 * destruction is implemented in the following two steps.
d3daf28d
TH
5071 *
5072 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5073 * userland visible parts and start killing the percpu refcnts of
5074 * css's. Set up so that the next stage will be kicked off once all
5075 * the percpu refcnts are confirmed to be killed.
5076 *
5077 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5078 * rest of destruction. Once all cgroup references are gone, the
5079 * cgroup is RCU-freed.
5080 *
5081 * This function implements s1. After this step, @cgrp is gone as far as
5082 * the userland is concerned and a new cgroup with the same name may be
5083 * created. As cgroup doesn't care about the names internally, this
5084 * doesn't cause any problem.
5085 */
42809dd4
TH
5086static int cgroup_destroy_locked(struct cgroup *cgrp)
5087 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5088{
2bd59d48 5089 struct cgroup_subsys_state *css;
1c6727af 5090 int ssid;
ddbcc7e8 5091
42809dd4
TH
5092 lockdep_assert_held(&cgroup_mutex);
5093
91486f61
TH
5094 /*
5095 * Only migration can raise populated from zero and we're already
5096 * holding cgroup_mutex.
5097 */
5098 if (cgroup_is_populated(cgrp))
ddbcc7e8 5099 return -EBUSY;
a043e3b2 5100
bb78a92f 5101 /*
d5c419b6
TH
5102 * Make sure there's no live children. We can't test emptiness of
5103 * ->self.children as dead children linger on it while being
5104 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5105 */
f3d46500 5106 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5107 return -EBUSY;
5108
455050d2
TH
5109 /*
5110 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5111 * creation by disabling cgroup_lock_live_group().
455050d2 5112 */
184faf32 5113 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5114
249f3468 5115 /* initiate massacre of all css's */
1c6727af
TH
5116 for_each_css(css, ssid, cgrp)
5117 kill_css(css);
455050d2 5118
455050d2 5119 /*
01f6474c
TH
5120 * Remove @cgrp directory along with the base files. @cgrp has an
5121 * extra ref on its kn.
f20104de 5122 */
01f6474c 5123 kernfs_remove(cgrp->kn);
f20104de 5124
d51f39b0 5125 check_for_release(cgroup_parent(cgrp));
2bd59d48 5126
249f3468 5127 /* put the base reference */
9d755d33 5128 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5129
ea15f8cc
TH
5130 return 0;
5131};
5132
2bd59d48 5133static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5134{
a9746d8d 5135 struct cgroup *cgrp;
2bd59d48 5136 int ret = 0;
42809dd4 5137
a9746d8d
TH
5138 cgrp = cgroup_kn_lock_live(kn);
5139 if (!cgrp)
5140 return 0;
42809dd4 5141
a9746d8d 5142 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5143
a9746d8d 5144 cgroup_kn_unlock(kn);
42809dd4 5145 return ret;
8e3f6541
TH
5146}
5147
2bd59d48
TH
5148static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5149 .remount_fs = cgroup_remount,
5150 .show_options = cgroup_show_options,
5151 .mkdir = cgroup_mkdir,
5152 .rmdir = cgroup_rmdir,
5153 .rename = cgroup_rename,
5154};
5155
15a4c835 5156static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5157{
ddbcc7e8 5158 struct cgroup_subsys_state *css;
cfe36bde
DC
5159
5160 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5161
648bb56d
TH
5162 mutex_lock(&cgroup_mutex);
5163
15a4c835 5164 idr_init(&ss->css_idr);
0adb0704 5165 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5166
3dd06ffa
TH
5167 /* Create the root cgroup state for this subsystem */
5168 ss->root = &cgrp_dfl_root;
5169 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5170 /* We don't handle early failures gracefully */
5171 BUG_ON(IS_ERR(css));
ddfcadab 5172 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5173
5174 /*
5175 * Root csses are never destroyed and we can't initialize
5176 * percpu_ref during early init. Disable refcnting.
5177 */
5178 css->flags |= CSS_NO_REF;
5179
15a4c835 5180 if (early) {
9395a450 5181 /* allocation can't be done safely during early init */
15a4c835
TH
5182 css->id = 1;
5183 } else {
5184 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5185 BUG_ON(css->id < 0);
5186 }
ddbcc7e8 5187
e8d55fde 5188 /* Update the init_css_set to contain a subsys
817929ec 5189 * pointer to this state - since the subsystem is
e8d55fde 5190 * newly registered, all tasks and hence the
3dd06ffa 5191 * init_css_set is in the subsystem's root cgroup. */
aec25020 5192 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5193
cb4a3167
AS
5194 have_fork_callback |= (bool)ss->fork << ss->id;
5195 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5196 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5197 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5198
e8d55fde
LZ
5199 /* At system boot, before all subsystems have been
5200 * registered, no tasks have been forked, so we don't
5201 * need to invoke fork callbacks here. */
5202 BUG_ON(!list_empty(&init_task.tasks));
5203
ae7f164a 5204 BUG_ON(online_css(css));
a8638030 5205
cf5d5941
BB
5206 mutex_unlock(&cgroup_mutex);
5207}
cf5d5941 5208
ddbcc7e8 5209/**
a043e3b2
LZ
5210 * cgroup_init_early - cgroup initialization at system boot
5211 *
5212 * Initialize cgroups at system boot, and initialize any
5213 * subsystems that request early init.
ddbcc7e8
PM
5214 */
5215int __init cgroup_init_early(void)
5216{
7b9a6ba5 5217 static struct cgroup_sb_opts __initdata opts;
30159ec7 5218 struct cgroup_subsys *ss;
ddbcc7e8 5219 int i;
30159ec7 5220
3dd06ffa 5221 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5222 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5223
a4ea1cc9 5224 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5225
3ed80a62 5226 for_each_subsys(ss, i) {
aec25020 5227 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5228 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5229 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5230 ss->id, ss->name);
073219e9
TH
5231 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5232 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5233
aec25020 5234 ss->id = i;
073219e9 5235 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5236 if (!ss->legacy_name)
5237 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5238
5239 if (ss->early_init)
15a4c835 5240 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5241 }
5242 return 0;
5243}
5244
a3e72739
TH
5245static unsigned long cgroup_disable_mask __initdata;
5246
ddbcc7e8 5247/**
a043e3b2
LZ
5248 * cgroup_init - cgroup initialization
5249 *
5250 * Register cgroup filesystem and /proc file, and initialize
5251 * any subsystems that didn't request early init.
ddbcc7e8
PM
5252 */
5253int __init cgroup_init(void)
5254{
30159ec7 5255 struct cgroup_subsys *ss;
0ac801fe 5256 unsigned long key;
035f4f51 5257 int ssid;
ddbcc7e8 5258
1ed13287 5259 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5260 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5261 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5262
54e7b4eb 5263 mutex_lock(&cgroup_mutex);
54e7b4eb 5264
82fe9b0d
TH
5265 /* Add init_css_set to the hash table */
5266 key = css_set_hash(init_css_set.subsys);
5267 hash_add(css_set_table, &init_css_set.hlist, key);
5268
3dd06ffa 5269 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5270
54e7b4eb
TH
5271 mutex_unlock(&cgroup_mutex);
5272
172a2c06 5273 for_each_subsys(ss, ssid) {
15a4c835
TH
5274 if (ss->early_init) {
5275 struct cgroup_subsys_state *css =
5276 init_css_set.subsys[ss->id];
5277
5278 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5279 GFP_KERNEL);
5280 BUG_ON(css->id < 0);
5281 } else {
5282 cgroup_init_subsys(ss, false);
5283 }
172a2c06 5284
2d8f243a
TH
5285 list_add_tail(&init_css_set.e_cset_node[ssid],
5286 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5287
5288 /*
c731ae1d
LZ
5289 * Setting dfl_root subsys_mask needs to consider the
5290 * disabled flag and cftype registration needs kmalloc,
5291 * both of which aren't available during early_init.
172a2c06 5292 */
a3e72739
TH
5293 if (cgroup_disable_mask & (1 << ssid)) {
5294 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5295 printk(KERN_INFO "Disabling %s control group subsystem\n",
5296 ss->name);
a8ddc821 5297 continue;
a3e72739 5298 }
a8ddc821
TH
5299
5300 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5301
5de4fa13
TH
5302 if (!ss->dfl_cftypes)
5303 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5304
a8ddc821
TH
5305 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5306 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5307 } else {
5308 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5309 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5310 }
295458e6
VD
5311
5312 if (ss->bind)
5313 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5314 }
5315
035f4f51
TH
5316 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5317 WARN_ON(register_filesystem(&cgroup_fs_type));
5318 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5319
2bd59d48 5320 return 0;
ddbcc7e8 5321}
b4f48b63 5322
e5fca243
TH
5323static int __init cgroup_wq_init(void)
5324{
5325 /*
5326 * There isn't much point in executing destruction path in
5327 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5328 * Use 1 for @max_active.
e5fca243
TH
5329 *
5330 * We would prefer to do this in cgroup_init() above, but that
5331 * is called before init_workqueues(): so leave this until after.
5332 */
1a11533f 5333 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5334 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5335
5336 /*
5337 * Used to destroy pidlists and separate to serve as flush domain.
5338 * Cap @max_active to 1 too.
5339 */
5340 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5341 0, 1);
5342 BUG_ON(!cgroup_pidlist_destroy_wq);
5343
e5fca243
TH
5344 return 0;
5345}
5346core_initcall(cgroup_wq_init);
5347
a424316c
PM
5348/*
5349 * proc_cgroup_show()
5350 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5351 * - Used for /proc/<pid>/cgroup.
a424316c 5352 */
006f4ac4
ZL
5353int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5354 struct pid *pid, struct task_struct *tsk)
a424316c 5355{
e61734c5 5356 char *buf, *path;
a424316c 5357 int retval;
3dd06ffa 5358 struct cgroup_root *root;
a424316c
PM
5359
5360 retval = -ENOMEM;
e61734c5 5361 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5362 if (!buf)
5363 goto out;
5364
a424316c 5365 mutex_lock(&cgroup_mutex);
f0d9a5f1 5366 spin_lock_bh(&css_set_lock);
a424316c 5367
985ed670 5368 for_each_root(root) {
a424316c 5369 struct cgroup_subsys *ss;
bd89aabc 5370 struct cgroup *cgrp;
b85d2040 5371 int ssid, count = 0;
a424316c 5372
a2dd4247 5373 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5374 continue;
5375
2c6ab6d2 5376 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5377 if (root != &cgrp_dfl_root)
5378 for_each_subsys(ss, ssid)
5379 if (root->subsys_mask & (1 << ssid))
5380 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5381 ss->legacy_name);
c6d57f33
PM
5382 if (strlen(root->name))
5383 seq_printf(m, "%sname=%s", count ? "," : "",
5384 root->name);
a424316c 5385 seq_putc(m, ':');
2e91fa7f 5386
7717f7ba 5387 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5388
5389 /*
5390 * On traditional hierarchies, all zombie tasks show up as
5391 * belonging to the root cgroup. On the default hierarchy,
5392 * while a zombie doesn't show up in "cgroup.procs" and
5393 * thus can't be migrated, its /proc/PID/cgroup keeps
5394 * reporting the cgroup it belonged to before exiting. If
5395 * the cgroup is removed before the zombie is reaped,
5396 * " (deleted)" is appended to the cgroup path.
5397 */
5398 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5399 path = cgroup_path(cgrp, buf, PATH_MAX);
5400 if (!path) {
5401 retval = -ENAMETOOLONG;
5402 goto out_unlock;
5403 }
5404 } else {
5405 path = "/";
e61734c5 5406 }
2e91fa7f 5407
e61734c5 5408 seq_puts(m, path);
2e91fa7f
TH
5409
5410 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5411 seq_puts(m, " (deleted)\n");
5412 else
5413 seq_putc(m, '\n');
a424316c
PM
5414 }
5415
006f4ac4 5416 retval = 0;
a424316c 5417out_unlock:
f0d9a5f1 5418 spin_unlock_bh(&css_set_lock);
a424316c 5419 mutex_unlock(&cgroup_mutex);
a424316c
PM
5420 kfree(buf);
5421out:
5422 return retval;
5423}
5424
a424316c
PM
5425/* Display information about each subsystem and each hierarchy */
5426static int proc_cgroupstats_show(struct seq_file *m, void *v)
5427{
30159ec7 5428 struct cgroup_subsys *ss;
a424316c 5429 int i;
a424316c 5430
8bab8dde 5431 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5432 /*
5433 * ideally we don't want subsystems moving around while we do this.
5434 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5435 * subsys/hierarchy state.
5436 */
a424316c 5437 mutex_lock(&cgroup_mutex);
30159ec7
TH
5438
5439 for_each_subsys(ss, i)
2c6ab6d2 5440 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5441 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5442 atomic_read(&ss->root->nr_cgrps),
5443 cgroup_ssid_enabled(i));
30159ec7 5444
a424316c
PM
5445 mutex_unlock(&cgroup_mutex);
5446 return 0;
5447}
5448
5449static int cgroupstats_open(struct inode *inode, struct file *file)
5450{
9dce07f1 5451 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5452}
5453
828c0950 5454static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5455 .open = cgroupstats_open,
5456 .read = seq_read,
5457 .llseek = seq_lseek,
5458 .release = single_release,
5459};
5460
7e47682e
AS
5461static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5462{
5463 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5464 return &ss_priv[i - CGROUP_CANFORK_START];
5465 return NULL;
5466}
5467
5468static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5469{
5470 void **private = subsys_canfork_priv_p(ss_priv, i);
5471 return private ? *private : NULL;
5472}
5473
b4f48b63 5474/**
eaf797ab 5475 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5476 * @child: pointer to task_struct of forking parent process.
b4f48b63 5477 *
eaf797ab
TH
5478 * A task is associated with the init_css_set until cgroup_post_fork()
5479 * attaches it to the parent's css_set. Empty cg_list indicates that
5480 * @child isn't holding reference to its css_set.
b4f48b63
PM
5481 */
5482void cgroup_fork(struct task_struct *child)
5483{
eaf797ab 5484 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5485 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5486}
5487
7e47682e
AS
5488/**
5489 * cgroup_can_fork - called on a new task before the process is exposed
5490 * @child: the task in question.
5491 *
5492 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5493 * returns an error, the fork aborts with that error code. This allows for
5494 * a cgroup subsystem to conditionally allow or deny new forks.
5495 */
5496int cgroup_can_fork(struct task_struct *child,
5497 void *ss_priv[CGROUP_CANFORK_COUNT])
5498{
5499 struct cgroup_subsys *ss;
5500 int i, j, ret;
5501
5502 for_each_subsys_which(ss, i, &have_canfork_callback) {
5503 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5504 if (ret)
5505 goto out_revert;
5506 }
5507
5508 return 0;
5509
5510out_revert:
5511 for_each_subsys(ss, j) {
5512 if (j >= i)
5513 break;
5514 if (ss->cancel_fork)
5515 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5516 }
5517
5518 return ret;
5519}
5520
5521/**
5522 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5523 * @child: the task in question
5524 *
5525 * This calls the cancel_fork() callbacks if a fork failed *after*
5526 * cgroup_can_fork() succeded.
5527 */
5528void cgroup_cancel_fork(struct task_struct *child,
5529 void *ss_priv[CGROUP_CANFORK_COUNT])
5530{
5531 struct cgroup_subsys *ss;
5532 int i;
5533
5534 for_each_subsys(ss, i)
5535 if (ss->cancel_fork)
5536 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5537}
5538
817929ec 5539/**
a043e3b2
LZ
5540 * cgroup_post_fork - called on a new task after adding it to the task list
5541 * @child: the task in question
5542 *
5edee61e
TH
5543 * Adds the task to the list running through its css_set if necessary and
5544 * call the subsystem fork() callbacks. Has to be after the task is
5545 * visible on the task list in case we race with the first call to
0942eeee 5546 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5547 * list.
a043e3b2 5548 */
7e47682e
AS
5549void cgroup_post_fork(struct task_struct *child,
5550 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5551{
30159ec7 5552 struct cgroup_subsys *ss;
5edee61e
TH
5553 int i;
5554
3ce3230a 5555 /*
251f8c03 5556 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5557 * function sets use_task_css_set_links before grabbing
5558 * tasklist_lock and we just went through tasklist_lock to add
5559 * @child, it's guaranteed that either we see the set
5560 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5561 * @child during its iteration.
5562 *
5563 * If we won the race, @child is associated with %current's
f0d9a5f1 5564 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5565 * association is stable, and, on completion of the parent's
5566 * migration, @child is visible in the source of migration or
5567 * already in the destination cgroup. This guarantee is necessary
5568 * when implementing operations which need to migrate all tasks of
5569 * a cgroup to another.
5570 *
251f8c03 5571 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5572 * will remain in init_css_set. This is safe because all tasks are
5573 * in the init_css_set before cg_links is enabled and there's no
5574 * operation which transfers all tasks out of init_css_set.
3ce3230a 5575 */
817929ec 5576 if (use_task_css_set_links) {
eaf797ab
TH
5577 struct css_set *cset;
5578
f0d9a5f1 5579 spin_lock_bh(&css_set_lock);
0e1d768f 5580 cset = task_css_set(current);
eaf797ab 5581 if (list_empty(&child->cg_list)) {
eaf797ab 5582 get_css_set(cset);
f6d7d049 5583 css_set_move_task(child, NULL, cset, false);
eaf797ab 5584 }
f0d9a5f1 5585 spin_unlock_bh(&css_set_lock);
817929ec 5586 }
5edee61e
TH
5587
5588 /*
5589 * Call ss->fork(). This must happen after @child is linked on
5590 * css_set; otherwise, @child might change state between ->fork()
5591 * and addition to css_set.
5592 */
cb4a3167 5593 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5594 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5595}
5edee61e 5596
b4f48b63
PM
5597/**
5598 * cgroup_exit - detach cgroup from exiting task
5599 * @tsk: pointer to task_struct of exiting process
5600 *
5601 * Description: Detach cgroup from @tsk and release it.
5602 *
5603 * Note that cgroups marked notify_on_release force every task in
5604 * them to take the global cgroup_mutex mutex when exiting.
5605 * This could impact scaling on very large systems. Be reluctant to
5606 * use notify_on_release cgroups where very high task exit scaling
5607 * is required on large systems.
5608 *
0e1d768f
TH
5609 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5610 * call cgroup_exit() while the task is still competent to handle
5611 * notify_on_release(), then leave the task attached to the root cgroup in
5612 * each hierarchy for the remainder of its exit. No need to bother with
5613 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5614 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5615 */
1ec41830 5616void cgroup_exit(struct task_struct *tsk)
b4f48b63 5617{
30159ec7 5618 struct cgroup_subsys *ss;
5abb8855 5619 struct css_set *cset;
d41d5a01 5620 int i;
817929ec
PM
5621
5622 /*
0e1d768f 5623 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5624 * with us, we can check css_set and cg_list without synchronization.
817929ec 5625 */
0de0942d
TH
5626 cset = task_css_set(tsk);
5627
817929ec 5628 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5629 spin_lock_bh(&css_set_lock);
f6d7d049 5630 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5631 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5632 } else {
5633 get_css_set(cset);
817929ec
PM
5634 }
5635
cb4a3167 5636 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5637 for_each_subsys_which(ss, i, &have_exit_callback)
5638 ss->exit(tsk);
5639}
30159ec7 5640
2e91fa7f
TH
5641void cgroup_free(struct task_struct *task)
5642{
5643 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5644 struct cgroup_subsys *ss;
5645 int ssid;
5646
5647 for_each_subsys_which(ss, ssid, &have_free_callback)
5648 ss->free(task);
d41d5a01 5649
2e91fa7f 5650 put_css_set(cset);
b4f48b63 5651}
697f4161 5652
bd89aabc 5653static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5654{
27bd4dbb 5655 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5656 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5657 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5658}
5659
81a6a5cd
PM
5660/*
5661 * Notify userspace when a cgroup is released, by running the
5662 * configured release agent with the name of the cgroup (path
5663 * relative to the root of cgroup file system) as the argument.
5664 *
5665 * Most likely, this user command will try to rmdir this cgroup.
5666 *
5667 * This races with the possibility that some other task will be
5668 * attached to this cgroup before it is removed, or that some other
5669 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5670 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5671 * unused, and this cgroup will be reprieved from its death sentence,
5672 * to continue to serve a useful existence. Next time it's released,
5673 * we will get notified again, if it still has 'notify_on_release' set.
5674 *
5675 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5676 * means only wait until the task is successfully execve()'d. The
5677 * separate release agent task is forked by call_usermodehelper(),
5678 * then control in this thread returns here, without waiting for the
5679 * release agent task. We don't bother to wait because the caller of
5680 * this routine has no use for the exit status of the release agent
5681 * task, so no sense holding our caller up for that.
81a6a5cd 5682 */
81a6a5cd
PM
5683static void cgroup_release_agent(struct work_struct *work)
5684{
971ff493
ZL
5685 struct cgroup *cgrp =
5686 container_of(work, struct cgroup, release_agent_work);
5687 char *pathbuf = NULL, *agentbuf = NULL, *path;
5688 char *argv[3], *envp[3];
5689
81a6a5cd 5690 mutex_lock(&cgroup_mutex);
971ff493
ZL
5691
5692 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5693 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5694 if (!pathbuf || !agentbuf)
5695 goto out;
5696
5697 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5698 if (!path)
5699 goto out;
5700
5701 argv[0] = agentbuf;
5702 argv[1] = path;
5703 argv[2] = NULL;
5704
5705 /* minimal command environment */
5706 envp[0] = "HOME=/";
5707 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5708 envp[2] = NULL;
5709
81a6a5cd 5710 mutex_unlock(&cgroup_mutex);
971ff493 5711 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5712 goto out_free;
971ff493 5713out:
81a6a5cd 5714 mutex_unlock(&cgroup_mutex);
3e2cd91a 5715out_free:
971ff493
ZL
5716 kfree(agentbuf);
5717 kfree(pathbuf);
81a6a5cd 5718}
8bab8dde
PM
5719
5720static int __init cgroup_disable(char *str)
5721{
30159ec7 5722 struct cgroup_subsys *ss;
8bab8dde 5723 char *token;
30159ec7 5724 int i;
8bab8dde
PM
5725
5726 while ((token = strsep(&str, ",")) != NULL) {
5727 if (!*token)
5728 continue;
be45c900 5729
3ed80a62 5730 for_each_subsys(ss, i) {
3e1d2eed
TH
5731 if (strcmp(token, ss->name) &&
5732 strcmp(token, ss->legacy_name))
5733 continue;
a3e72739 5734 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5735 }
5736 }
5737 return 1;
5738}
5739__setup("cgroup_disable=", cgroup_disable);
38460b48 5740
b77d7b60 5741/**
ec903c0c 5742 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5743 * @dentry: directory dentry of interest
5744 * @ss: subsystem of interest
b77d7b60 5745 *
5a17f543
TH
5746 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5747 * to get the corresponding css and return it. If such css doesn't exist
5748 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5749 */
ec903c0c
TH
5750struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5751 struct cgroup_subsys *ss)
e5d1367f 5752{
2bd59d48
TH
5753 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5754 struct cgroup_subsys_state *css = NULL;
e5d1367f 5755 struct cgroup *cgrp;
e5d1367f 5756
35cf0836 5757 /* is @dentry a cgroup dir? */
2bd59d48
TH
5758 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5759 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5760 return ERR_PTR(-EBADF);
5761
5a17f543
TH
5762 rcu_read_lock();
5763
2bd59d48
TH
5764 /*
5765 * This path doesn't originate from kernfs and @kn could already
5766 * have been or be removed at any point. @kn->priv is RCU
a4189487 5767 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5768 */
5769 cgrp = rcu_dereference(kn->priv);
5770 if (cgrp)
5771 css = cgroup_css(cgrp, ss);
5a17f543 5772
ec903c0c 5773 if (!css || !css_tryget_online(css))
5a17f543
TH
5774 css = ERR_PTR(-ENOENT);
5775
5776 rcu_read_unlock();
5777 return css;
e5d1367f 5778}
e5d1367f 5779
1cb650b9
LZ
5780/**
5781 * css_from_id - lookup css by id
5782 * @id: the cgroup id
5783 * @ss: cgroup subsys to be looked into
5784 *
5785 * Returns the css if there's valid one with @id, otherwise returns NULL.
5786 * Should be called under rcu_read_lock().
5787 */
5788struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5789{
6fa4918d 5790 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5791 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5792}
5793
fe693435 5794#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5795static struct cgroup_subsys_state *
5796debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5797{
5798 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5799
5800 if (!css)
5801 return ERR_PTR(-ENOMEM);
5802
5803 return css;
5804}
5805
eb95419b 5806static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5807{
eb95419b 5808 kfree(css);
fe693435
PM
5809}
5810
182446d0
TH
5811static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5812 struct cftype *cft)
fe693435 5813{
182446d0 5814 return cgroup_task_count(css->cgroup);
fe693435
PM
5815}
5816
182446d0
TH
5817static u64 current_css_set_read(struct cgroup_subsys_state *css,
5818 struct cftype *cft)
fe693435
PM
5819{
5820 return (u64)(unsigned long)current->cgroups;
5821}
5822
182446d0 5823static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5824 struct cftype *cft)
fe693435
PM
5825{
5826 u64 count;
5827
5828 rcu_read_lock();
a8ad805c 5829 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5830 rcu_read_unlock();
5831 return count;
5832}
5833
2da8ca82 5834static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5835{
69d0206c 5836 struct cgrp_cset_link *link;
5abb8855 5837 struct css_set *cset;
e61734c5
TH
5838 char *name_buf;
5839
5840 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5841 if (!name_buf)
5842 return -ENOMEM;
7717f7ba 5843
f0d9a5f1 5844 spin_lock_bh(&css_set_lock);
7717f7ba 5845 rcu_read_lock();
5abb8855 5846 cset = rcu_dereference(current->cgroups);
69d0206c 5847 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5848 struct cgroup *c = link->cgrp;
7717f7ba 5849
a2dd4247 5850 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5851 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5852 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5853 }
5854 rcu_read_unlock();
f0d9a5f1 5855 spin_unlock_bh(&css_set_lock);
e61734c5 5856 kfree(name_buf);
7717f7ba
PM
5857 return 0;
5858}
5859
5860#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5861static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5862{
2da8ca82 5863 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5864 struct cgrp_cset_link *link;
7717f7ba 5865
f0d9a5f1 5866 spin_lock_bh(&css_set_lock);
182446d0 5867 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5868 struct css_set *cset = link->cset;
7717f7ba
PM
5869 struct task_struct *task;
5870 int count = 0;
c7561128 5871
5abb8855 5872 seq_printf(seq, "css_set %p\n", cset);
c7561128 5873
5abb8855 5874 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5875 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5876 goto overflow;
5877 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5878 }
5879
5880 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5881 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5882 goto overflow;
5883 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5884 }
c7561128
TH
5885 continue;
5886 overflow:
5887 seq_puts(seq, " ...\n");
7717f7ba 5888 }
f0d9a5f1 5889 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5890 return 0;
5891}
5892
182446d0 5893static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5894{
27bd4dbb 5895 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5896 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5897}
5898
5899static struct cftype debug_files[] = {
fe693435
PM
5900 {
5901 .name = "taskcount",
5902 .read_u64 = debug_taskcount_read,
5903 },
5904
5905 {
5906 .name = "current_css_set",
5907 .read_u64 = current_css_set_read,
5908 },
5909
5910 {
5911 .name = "current_css_set_refcount",
5912 .read_u64 = current_css_set_refcount_read,
5913 },
5914
7717f7ba
PM
5915 {
5916 .name = "current_css_set_cg_links",
2da8ca82 5917 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5918 },
5919
5920 {
5921 .name = "cgroup_css_links",
2da8ca82 5922 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5923 },
5924
fe693435
PM
5925 {
5926 .name = "releasable",
5927 .read_u64 = releasable_read,
5928 },
fe693435 5929
4baf6e33
TH
5930 { } /* terminate */
5931};
fe693435 5932
073219e9 5933struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5934 .css_alloc = debug_css_alloc,
5935 .css_free = debug_css_free,
5577964e 5936 .legacy_cftypes = debug_files,
fe693435
PM
5937};
5938#endif /* CONFIG_CGROUP_DEBUG */