cgroup: implement for_each_css()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
bbcb81d0 48#include <linux/sort.h>
81a6a5cd 49#include <linux/kmod.h>
e6a1105b 50#include <linux/module.h>
846c7bb0
BS
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
0ac801fe 53#include <linux/hashtable.h>
3f8206d4 54#include <linux/namei.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 58#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 59#include <linux/kthread.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
e25e2cbb
TH
71/*
72 * cgroup_mutex is the master lock. Any modification to cgroup or its
73 * hierarchy must be performed while holding it.
74 *
75 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
76 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
77 * release_agent_path and so on. Modifying requires both cgroup_mutex and
78 * cgroup_root_mutex. Readers can acquire either of the two. This is to
79 * break the following locking order cycle.
80 *
81 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
82 * B. namespace_sem -> cgroup_mutex
83 *
84 * B happens only through cgroup_show_options() and using cgroup_root_mutex
85 * breaks it.
86 */
2219449a
TH
87#ifdef CONFIG_PROVE_RCU
88DEFINE_MUTEX(cgroup_mutex);
8af01f56 89EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
92#endif
93
e25e2cbb 94static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 95
87fb54f1
TH
96#define cgroup_assert_mutex_or_rcu_locked() \
97 rcu_lockdep_assert(rcu_read_lock_held() || \
98 lockdep_is_held(&cgroup_mutex), \
99 "cgroup_mutex or RCU read lock required");
100
780cd8b3
TH
101#ifdef CONFIG_LOCKDEP
102#define cgroup_assert_mutex_or_root_locked() \
103 WARN_ON_ONCE(debug_locks && (!lockdep_is_held(&cgroup_mutex) && \
104 !lockdep_is_held(&cgroup_root_mutex)))
105#else
106#define cgroup_assert_mutex_or_root_locked() do { } while (0)
107#endif
108
e5fca243
TH
109/*
110 * cgroup destruction makes heavy use of work items and there can be a lot
111 * of concurrent destructions. Use a separate workqueue so that cgroup
112 * destruction work items don't end up filling up max_active of system_wq
113 * which may lead to deadlock.
114 */
115static struct workqueue_struct *cgroup_destroy_wq;
116
b1a21367
TH
117/*
118 * pidlist destructions need to be flushed on cgroup destruction. Use a
119 * separate workqueue as flush domain.
120 */
121static struct workqueue_struct *cgroup_pidlist_destroy_wq;
122
aae8aab4
BB
123/*
124 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 125 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
126 * registered after that. The mutable section of this array is protected by
127 * cgroup_mutex.
128 */
80f4c877 129#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 130#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 131static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
132#include <linux/cgroup_subsys.h>
133};
134
ddbcc7e8 135/*
9871bf95
TH
136 * The dummy hierarchy, reserved for the subsystems that are otherwise
137 * unattached - it never has more than a single cgroup, and all tasks are
138 * part of that cgroup.
ddbcc7e8 139 */
9871bf95
TH
140static struct cgroupfs_root cgroup_dummy_root;
141
142/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
143static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
144
145/* The list of hierarchy roots */
146
9871bf95
TH
147static LIST_HEAD(cgroup_roots);
148static int cgroup_root_count;
ddbcc7e8 149
54e7b4eb
TH
150/*
151 * Hierarchy ID allocation and mapping. It follows the same exclusion
152 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
153 * writes, either for reads.
154 */
1a574231 155static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 156
65dff759
LZ
157static struct cgroup_name root_cgroup_name = { .name = "/" };
158
794611a1
LZ
159/*
160 * Assign a monotonically increasing serial number to cgroups. It
161 * guarantees cgroups with bigger numbers are newer than those with smaller
162 * numbers. Also, as cgroups are always appended to the parent's
163 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
164 * the ascending serial number order on the list. Protected by
165 * cgroup_mutex.
794611a1 166 */
00356bd5 167static u64 cgroup_serial_nr_next = 1;
794611a1 168
ddbcc7e8 169/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
170 * check for fork/exit handlers to call. This avoids us having to do
171 * extra work in the fork/exit path if none of the subsystems need to
172 * be called.
ddbcc7e8 173 */
8947f9d5 174static int need_forkexit_callback __read_mostly;
ddbcc7e8 175
628f7cd4
TH
176static struct cftype cgroup_base_files[];
177
f20104de 178static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 179static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
180static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
181 bool is_add);
e605b365 182static int cgroup_file_release(struct inode *inode, struct file *file);
b1a21367 183static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 184
95109b62
TH
185/**
186 * cgroup_css - obtain a cgroup's css for the specified subsystem
187 * @cgrp: the cgroup of interest
ca8bdcaf 188 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 189 *
ca8bdcaf
TH
190 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
191 * function must be called either under cgroup_mutex or rcu_read_lock() and
192 * the caller is responsible for pinning the returned css if it wants to
193 * keep accessing it outside the said locks. This function may return
194 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
195 */
196static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 197 struct cgroup_subsys *ss)
95109b62 198{
ca8bdcaf
TH
199 if (ss)
200 return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
201 lockdep_is_held(&cgroup_mutex));
202 else
203 return &cgrp->dummy_css;
95109b62 204}
42809dd4 205
ddbcc7e8 206/* convenient tests for these bits */
54766d4a 207static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 208{
54766d4a 209 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
210}
211
78574cf9
LZ
212/**
213 * cgroup_is_descendant - test ancestry
214 * @cgrp: the cgroup to be tested
215 * @ancestor: possible ancestor of @cgrp
216 *
217 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
218 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
219 * and @ancestor are accessible.
220 */
221bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
222{
223 while (cgrp) {
224 if (cgrp == ancestor)
225 return true;
226 cgrp = cgrp->parent;
227 }
228 return false;
229}
230EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 231
e9685a03 232static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
233{
234 const int bits =
bd89aabc
PM
235 (1 << CGRP_RELEASABLE) |
236 (1 << CGRP_NOTIFY_ON_RELEASE);
237 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
238}
239
e9685a03 240static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 241{
bd89aabc 242 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
243}
244
1c6727af
TH
245/**
246 * for_each_css - iterate all css's of a cgroup
247 * @css: the iteration cursor
248 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
249 * @cgrp: the target cgroup to iterate css's of
250 *
251 * Should be called under cgroup_mutex.
252 */
253#define for_each_css(css, ssid, cgrp) \
254 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
255 if (!((css) = rcu_dereference_check( \
256 (cgrp)->subsys[(ssid)], \
257 lockdep_is_held(&cgroup_mutex)))) { } \
258 else
259
30159ec7
TH
260/**
261 * for_each_subsys - iterate all loaded cgroup subsystems
262 * @ss: the iteration cursor
780cd8b3 263 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 264 *
780cd8b3
TH
265 * Iterates through all loaded subsystems. Should be called under
266 * cgroup_mutex or cgroup_root_mutex.
30159ec7 267 */
780cd8b3
TH
268#define for_each_subsys(ss, ssid) \
269 for (({ cgroup_assert_mutex_or_root_locked(); (ssid) = 0; }); \
270 (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
271 if (!((ss) = cgroup_subsys[(ssid)])) { } \
30159ec7
TH
272 else
273
274/**
275 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
276 * @ss: the iteration cursor
277 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
278 *
279 * Bulit-in subsystems are always present and iteration itself doesn't
280 * require any synchronization.
281 */
282#define for_each_builtin_subsys(ss, i) \
283 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
284 (((ss) = cgroup_subsys[i]) || true); (i)++)
285
5549c497
TH
286/* iterate each subsystem attached to a hierarchy */
287#define for_each_root_subsys(root, ss) \
288 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 289
5549c497
TH
290/* iterate across the active hierarchies */
291#define for_each_active_root(root) \
292 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 293
f6ea9372
TH
294static inline struct cgroup *__d_cgrp(struct dentry *dentry)
295{
296 return dentry->d_fsdata;
297}
298
05ef1d7c 299static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
300{
301 return dentry->d_fsdata;
302}
303
05ef1d7c
TH
304static inline struct cftype *__d_cft(struct dentry *dentry)
305{
306 return __d_cfe(dentry)->type;
307}
308
7ae1bad9
TH
309/**
310 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
311 * @cgrp: the cgroup to be checked for liveness
312 *
47cfcd09
TH
313 * On success, returns true; the mutex should be later unlocked. On
314 * failure returns false with no lock held.
7ae1bad9 315 */
b9777cf8 316static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
317{
318 mutex_lock(&cgroup_mutex);
54766d4a 319 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
320 mutex_unlock(&cgroup_mutex);
321 return false;
322 }
323 return true;
324}
7ae1bad9 325
81a6a5cd
PM
326/* the list of cgroups eligible for automatic release. Protected by
327 * release_list_lock */
328static LIST_HEAD(release_list);
cdcc136f 329static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
330static void cgroup_release_agent(struct work_struct *work);
331static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 332static void check_for_release(struct cgroup *cgrp);
81a6a5cd 333
69d0206c
TH
334/*
335 * A cgroup can be associated with multiple css_sets as different tasks may
336 * belong to different cgroups on different hierarchies. In the other
337 * direction, a css_set is naturally associated with multiple cgroups.
338 * This M:N relationship is represented by the following link structure
339 * which exists for each association and allows traversing the associations
340 * from both sides.
341 */
342struct cgrp_cset_link {
343 /* the cgroup and css_set this link associates */
344 struct cgroup *cgrp;
345 struct css_set *cset;
346
347 /* list of cgrp_cset_links anchored at cgrp->cset_links */
348 struct list_head cset_link;
349
350 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
351 struct list_head cgrp_link;
817929ec
PM
352};
353
354/* The default css_set - used by init and its children prior to any
355 * hierarchies being mounted. It contains a pointer to the root state
356 * for each subsystem. Also used to anchor the list of css_sets. Not
357 * reference-counted, to improve performance when child cgroups
358 * haven't been created.
359 */
360
361static struct css_set init_css_set;
69d0206c 362static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 363
0942eeee
TH
364/*
365 * css_set_lock protects the list of css_set objects, and the chain of
366 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 367 * css_task_iter_start().
0942eeee 368 */
817929ec
PM
369static DEFINE_RWLOCK(css_set_lock);
370static int css_set_count;
371
7717f7ba
PM
372/*
373 * hash table for cgroup groups. This improves the performance to find
374 * an existing css_set. This hash doesn't (currently) take into
375 * account cgroups in empty hierarchies.
376 */
472b1053 377#define CSS_SET_HASH_BITS 7
0ac801fe 378static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 379
0ac801fe 380static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 381{
0ac801fe 382 unsigned long key = 0UL;
30159ec7
TH
383 struct cgroup_subsys *ss;
384 int i;
472b1053 385
30159ec7 386 for_each_subsys(ss, i)
0ac801fe
LZ
387 key += (unsigned long)css[i];
388 key = (key >> 16) ^ key;
472b1053 389
0ac801fe 390 return key;
472b1053
LZ
391}
392
0942eeee
TH
393/*
394 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
395 * until after the first call to css_task_iter_start(). This reduces the
396 * fork()/exit() overhead for people who have cgroups compiled into their
397 * kernel but not actually in use.
0942eeee 398 */
8947f9d5 399static int use_task_css_set_links __read_mostly;
817929ec 400
5abb8855 401static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 402{
69d0206c 403 struct cgrp_cset_link *link, *tmp_link;
5abb8855 404
146aa1bd
LJ
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
5abb8855 410 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
411 return;
412 write_lock(&css_set_lock);
5abb8855 413 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
414 write_unlock(&css_set_lock);
415 return;
416 }
81a6a5cd 417
2c6ab6d2 418 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 419 hash_del(&cset->hlist);
2c6ab6d2
PM
420 css_set_count--;
421
69d0206c 422 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 423 struct cgroup *cgrp = link->cgrp;
5abb8855 424
69d0206c
TH
425 list_del(&link->cset_link);
426 list_del(&link->cgrp_link);
71b5707e 427
ddd69148 428 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 429 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 430 if (taskexit)
bd89aabc
PM
431 set_bit(CGRP_RELEASABLE, &cgrp->flags);
432 check_for_release(cgrp);
81a6a5cd 433 }
2c6ab6d2
PM
434
435 kfree(link);
81a6a5cd 436 }
2c6ab6d2
PM
437
438 write_unlock(&css_set_lock);
5abb8855 439 kfree_rcu(cset, rcu_head);
b4f48b63
PM
440}
441
817929ec
PM
442/*
443 * refcounted get/put for css_set objects
444 */
5abb8855 445static inline void get_css_set(struct css_set *cset)
817929ec 446{
5abb8855 447 atomic_inc(&cset->refcount);
817929ec
PM
448}
449
5abb8855 450static inline void put_css_set(struct css_set *cset)
817929ec 451{
5abb8855 452 __put_css_set(cset, 0);
817929ec
PM
453}
454
5abb8855 455static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 456{
5abb8855 457 __put_css_set(cset, 1);
81a6a5cd
PM
458}
459
b326f9d0 460/**
7717f7ba 461 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
462 * @cset: candidate css_set being tested
463 * @old_cset: existing css_set for a task
7717f7ba
PM
464 * @new_cgrp: cgroup that's being entered by the task
465 * @template: desired set of css pointers in css_set (pre-calculated)
466 *
6f4b7e63 467 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
468 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 */
5abb8855
TH
470static bool compare_css_sets(struct css_set *cset,
471 struct css_set *old_cset,
7717f7ba
PM
472 struct cgroup *new_cgrp,
473 struct cgroup_subsys_state *template[])
474{
475 struct list_head *l1, *l2;
476
5abb8855 477 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
478 /* Not all subsystems matched */
479 return false;
480 }
481
482 /*
483 * Compare cgroup pointers in order to distinguish between
484 * different cgroups in heirarchies with no subsystems. We
485 * could get by with just this check alone (and skip the
486 * memcmp above) but on most setups the memcmp check will
487 * avoid the need for this more expensive check on almost all
488 * candidates.
489 */
490
69d0206c
TH
491 l1 = &cset->cgrp_links;
492 l2 = &old_cset->cgrp_links;
7717f7ba 493 while (1) {
69d0206c 494 struct cgrp_cset_link *link1, *link2;
5abb8855 495 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
496
497 l1 = l1->next;
498 l2 = l2->next;
499 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
500 if (l1 == &cset->cgrp_links) {
501 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
502 break;
503 } else {
69d0206c 504 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
505 }
506 /* Locate the cgroups associated with these links. */
69d0206c
TH
507 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
508 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
509 cgrp1 = link1->cgrp;
510 cgrp2 = link2->cgrp;
7717f7ba 511 /* Hierarchies should be linked in the same order. */
5abb8855 512 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
513
514 /*
515 * If this hierarchy is the hierarchy of the cgroup
516 * that's changing, then we need to check that this
517 * css_set points to the new cgroup; if it's any other
518 * hierarchy, then this css_set should point to the
519 * same cgroup as the old css_set.
520 */
5abb8855
TH
521 if (cgrp1->root == new_cgrp->root) {
522 if (cgrp1 != new_cgrp)
7717f7ba
PM
523 return false;
524 } else {
5abb8855 525 if (cgrp1 != cgrp2)
7717f7ba
PM
526 return false;
527 }
528 }
529 return true;
530}
531
b326f9d0
TH
532/**
533 * find_existing_css_set - init css array and find the matching css_set
534 * @old_cset: the css_set that we're using before the cgroup transition
535 * @cgrp: the cgroup that we're moving into
536 * @template: out param for the new set of csses, should be clear on entry
817929ec 537 */
5abb8855
TH
538static struct css_set *find_existing_css_set(struct css_set *old_cset,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
b4f48b63 541{
bd89aabc 542 struct cgroupfs_root *root = cgrp->root;
30159ec7 543 struct cgroup_subsys *ss;
5abb8855 544 struct css_set *cset;
0ac801fe 545 unsigned long key;
b326f9d0 546 int i;
817929ec 547
aae8aab4
BB
548 /*
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
552 */
30159ec7 553 for_each_subsys(ss, i) {
a1a71b45 554 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
ca8bdcaf 558 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
5abb8855 562 template[i] = old_cset->subsys[i];
817929ec
PM
563 }
564 }
565
0ac801fe 566 key = css_set_hash(template);
5abb8855
TH
567 hash_for_each_possible(css_set_table, cset, hlist, key) {
568 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
569 continue;
570
571 /* This css_set matches what we need */
5abb8855 572 return cset;
472b1053 573 }
817929ec
PM
574
575 /* No existing cgroup group matched */
576 return NULL;
577}
578
69d0206c 579static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 580{
69d0206c 581 struct cgrp_cset_link *link, *tmp_link;
36553434 582
69d0206c
TH
583 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
584 list_del(&link->cset_link);
36553434
LZ
585 kfree(link);
586 }
587}
588
69d0206c
TH
589/**
590 * allocate_cgrp_cset_links - allocate cgrp_cset_links
591 * @count: the number of links to allocate
592 * @tmp_links: list_head the allocated links are put on
593 *
594 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
595 * through ->cset_link. Returns 0 on success or -errno.
817929ec 596 */
69d0206c 597static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 598{
69d0206c 599 struct cgrp_cset_link *link;
817929ec 600 int i;
69d0206c
TH
601
602 INIT_LIST_HEAD(tmp_links);
603
817929ec 604 for (i = 0; i < count; i++) {
f4f4be2b 605 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 606 if (!link) {
69d0206c 607 free_cgrp_cset_links(tmp_links);
817929ec
PM
608 return -ENOMEM;
609 }
69d0206c 610 list_add(&link->cset_link, tmp_links);
817929ec
PM
611 }
612 return 0;
613}
614
c12f65d4
LZ
615/**
616 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 617 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 618 * @cset: the css_set to be linked
c12f65d4
LZ
619 * @cgrp: the destination cgroup
620 */
69d0206c
TH
621static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
622 struct cgroup *cgrp)
c12f65d4 623{
69d0206c 624 struct cgrp_cset_link *link;
c12f65d4 625
69d0206c
TH
626 BUG_ON(list_empty(tmp_links));
627 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
628 link->cset = cset;
7717f7ba 629 link->cgrp = cgrp;
69d0206c 630 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
631 /*
632 * Always add links to the tail of the list so that the list
633 * is sorted by order of hierarchy creation
634 */
69d0206c 635 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
636}
637
b326f9d0
TH
638/**
639 * find_css_set - return a new css_set with one cgroup updated
640 * @old_cset: the baseline css_set
641 * @cgrp: the cgroup to be updated
642 *
643 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
644 * substituted into the appropriate hierarchy.
817929ec 645 */
5abb8855
TH
646static struct css_set *find_css_set(struct css_set *old_cset,
647 struct cgroup *cgrp)
817929ec 648{
b326f9d0 649 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 650 struct css_set *cset;
69d0206c
TH
651 struct list_head tmp_links;
652 struct cgrp_cset_link *link;
0ac801fe 653 unsigned long key;
472b1053 654
b326f9d0
TH
655 lockdep_assert_held(&cgroup_mutex);
656
817929ec
PM
657 /* First see if we already have a cgroup group that matches
658 * the desired set */
7e9abd89 659 read_lock(&css_set_lock);
5abb8855
TH
660 cset = find_existing_css_set(old_cset, cgrp, template);
661 if (cset)
662 get_css_set(cset);
7e9abd89 663 read_unlock(&css_set_lock);
817929ec 664
5abb8855
TH
665 if (cset)
666 return cset;
817929ec 667
f4f4be2b 668 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 669 if (!cset)
817929ec
PM
670 return NULL;
671
69d0206c 672 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 673 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 674 kfree(cset);
817929ec
PM
675 return NULL;
676 }
677
5abb8855 678 atomic_set(&cset->refcount, 1);
69d0206c 679 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
680 INIT_LIST_HEAD(&cset->tasks);
681 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
682
683 /* Copy the set of subsystem state objects generated in
684 * find_existing_css_set() */
5abb8855 685 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
686
687 write_lock(&css_set_lock);
688 /* Add reference counts and links from the new css_set. */
69d0206c 689 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 690 struct cgroup *c = link->cgrp;
69d0206c 691
7717f7ba
PM
692 if (c->root == cgrp->root)
693 c = cgrp;
69d0206c 694 link_css_set(&tmp_links, cset, c);
7717f7ba 695 }
817929ec 696
69d0206c 697 BUG_ON(!list_empty(&tmp_links));
817929ec 698
817929ec 699 css_set_count++;
472b1053
LZ
700
701 /* Add this cgroup group to the hash table */
5abb8855
TH
702 key = css_set_hash(cset->subsys);
703 hash_add(css_set_table, &cset->hlist, key);
472b1053 704
817929ec
PM
705 write_unlock(&css_set_lock);
706
5abb8855 707 return cset;
b4f48b63
PM
708}
709
7717f7ba
PM
710/*
711 * Return the cgroup for "task" from the given hierarchy. Must be
712 * called with cgroup_mutex held.
713 */
714static struct cgroup *task_cgroup_from_root(struct task_struct *task,
715 struct cgroupfs_root *root)
716{
5abb8855 717 struct css_set *cset;
7717f7ba
PM
718 struct cgroup *res = NULL;
719
720 BUG_ON(!mutex_is_locked(&cgroup_mutex));
721 read_lock(&css_set_lock);
722 /*
723 * No need to lock the task - since we hold cgroup_mutex the
724 * task can't change groups, so the only thing that can happen
725 * is that it exits and its css is set back to init_css_set.
726 */
a8ad805c 727 cset = task_css_set(task);
5abb8855 728 if (cset == &init_css_set) {
7717f7ba
PM
729 res = &root->top_cgroup;
730 } else {
69d0206c
TH
731 struct cgrp_cset_link *link;
732
733 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 734 struct cgroup *c = link->cgrp;
69d0206c 735
7717f7ba
PM
736 if (c->root == root) {
737 res = c;
738 break;
739 }
740 }
741 }
742 read_unlock(&css_set_lock);
743 BUG_ON(!res);
744 return res;
745}
746
ddbcc7e8
PM
747/*
748 * There is one global cgroup mutex. We also require taking
749 * task_lock() when dereferencing a task's cgroup subsys pointers.
750 * See "The task_lock() exception", at the end of this comment.
751 *
752 * A task must hold cgroup_mutex to modify cgroups.
753 *
754 * Any task can increment and decrement the count field without lock.
755 * So in general, code holding cgroup_mutex can't rely on the count
756 * field not changing. However, if the count goes to zero, then only
956db3ca 757 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
758 * means that no tasks are currently attached, therefore there is no
759 * way a task attached to that cgroup can fork (the other way to
760 * increment the count). So code holding cgroup_mutex can safely
761 * assume that if the count is zero, it will stay zero. Similarly, if
762 * a task holds cgroup_mutex on a cgroup with zero count, it
763 * knows that the cgroup won't be removed, as cgroup_rmdir()
764 * needs that mutex.
765 *
ddbcc7e8
PM
766 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
767 * (usually) take cgroup_mutex. These are the two most performance
768 * critical pieces of code here. The exception occurs on cgroup_exit(),
769 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
770 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
771 * to the release agent with the name of the cgroup (path relative to
772 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
773 *
774 * A cgroup can only be deleted if both its 'count' of using tasks
775 * is zero, and its list of 'children' cgroups is empty. Since all
776 * tasks in the system use _some_ cgroup, and since there is always at
777 * least one task in the system (init, pid == 1), therefore, top_cgroup
778 * always has either children cgroups and/or using tasks. So we don't
779 * need a special hack to ensure that top_cgroup cannot be deleted.
780 *
781 * The task_lock() exception
782 *
783 * The need for this exception arises from the action of
d0b2fdd2 784 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 785 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
786 * several performance critical places that need to reference
787 * task->cgroup without the expense of grabbing a system global
788 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 789 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
790 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
791 * the task_struct routinely used for such matters.
792 *
793 * P.S. One more locking exception. RCU is used to guard the
956db3ca 794 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
795 */
796
ddbcc7e8
PM
797/*
798 * A couple of forward declarations required, due to cyclic reference loop:
799 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
800 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
801 * -> cgroup_mkdir.
802 */
803
18bb1db3 804static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
ddbcc7e8 805static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 806static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 807static const struct inode_operations cgroup_dir_inode_operations;
828c0950 808static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
809
810static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 811 .name = "cgroup",
e4ad08fe 812 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 813};
ddbcc7e8 814
a5e7ed32 815static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
816{
817 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
818
819 if (inode) {
85fe4025 820 inode->i_ino = get_next_ino();
ddbcc7e8 821 inode->i_mode = mode;
76aac0e9
DH
822 inode->i_uid = current_fsuid();
823 inode->i_gid = current_fsgid();
ddbcc7e8
PM
824 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
825 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
826 }
827 return inode;
828}
829
65dff759
LZ
830static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
831{
832 struct cgroup_name *name;
833
834 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
835 if (!name)
836 return NULL;
837 strcpy(name->name, dentry->d_name.name);
838 return name;
839}
840
be445626
LZ
841static void cgroup_free_fn(struct work_struct *work)
842{
ea15f8cc 843 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
844
845 mutex_lock(&cgroup_mutex);
be445626
LZ
846 cgrp->root->number_of_cgroups--;
847 mutex_unlock(&cgroup_mutex);
848
415cf07a
LZ
849 /*
850 * We get a ref to the parent's dentry, and put the ref when
851 * this cgroup is being freed, so it's guaranteed that the
852 * parent won't be destroyed before its children.
853 */
854 dput(cgrp->parent->dentry);
855
be445626
LZ
856 /*
857 * Drop the active superblock reference that we took when we
cc20e01c
LZ
858 * created the cgroup. This will free cgrp->root, if we are
859 * holding the last reference to @sb.
be445626
LZ
860 */
861 deactivate_super(cgrp->root->sb);
862
b1a21367 863 cgroup_pidlist_destroy_all(cgrp);
be445626
LZ
864
865 simple_xattrs_free(&cgrp->xattrs);
866
65dff759 867 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
868 kfree(cgrp);
869}
870
871static void cgroup_free_rcu(struct rcu_head *head)
872{
873 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
874
ea15f8cc 875 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 876 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
877}
878
ddbcc7e8
PM
879static void cgroup_diput(struct dentry *dentry, struct inode *inode)
880{
881 /* is dentry a directory ? if so, kfree() associated cgroup */
882 if (S_ISDIR(inode->i_mode)) {
bd89aabc 883 struct cgroup *cgrp = dentry->d_fsdata;
be445626 884
54766d4a 885 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 886 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
887 } else {
888 struct cfent *cfe = __d_cfe(dentry);
889 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
890
891 WARN_ONCE(!list_empty(&cfe->node) &&
892 cgrp != &cgrp->root->top_cgroup,
893 "cfe still linked for %s\n", cfe->type->name);
712317ad 894 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 895 kfree(cfe);
ddbcc7e8
PM
896 }
897 iput(inode);
898}
899
900static void remove_dir(struct dentry *d)
901{
902 struct dentry *parent = dget(d->d_parent);
903
904 d_delete(d);
905 simple_rmdir(parent->d_inode, d);
906 dput(parent);
907}
908
2739d3cc 909static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
910{
911 struct cfent *cfe;
912
913 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
914 lockdep_assert_held(&cgroup_mutex);
915
2739d3cc
LZ
916 /*
917 * If we're doing cleanup due to failure of cgroup_create(),
918 * the corresponding @cfe may not exist.
919 */
05ef1d7c
TH
920 list_for_each_entry(cfe, &cgrp->files, node) {
921 struct dentry *d = cfe->dentry;
922
923 if (cft && cfe->type != cft)
924 continue;
925
926 dget(d);
927 d_delete(d);
ce27e317 928 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
929 list_del_init(&cfe->node);
930 dput(d);
931
2739d3cc 932 break;
ddbcc7e8 933 }
05ef1d7c
TH
934}
935
13af07df 936/**
628f7cd4 937 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 938 * @cgrp: target cgroup
13af07df
AR
939 * @subsys_mask: mask of the subsystem ids whose files should be removed
940 */
628f7cd4 941static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 942{
13af07df 943 struct cgroup_subsys *ss;
b420ba7d 944 int i;
05ef1d7c 945
b420ba7d 946 for_each_subsys(ss, i) {
13af07df 947 struct cftype_set *set;
b420ba7d
TH
948
949 if (!test_bit(i, &subsys_mask))
13af07df
AR
950 continue;
951 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 952 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 953 }
ddbcc7e8
PM
954}
955
956/*
957 * NOTE : the dentry must have been dget()'ed
958 */
959static void cgroup_d_remove_dir(struct dentry *dentry)
960{
2fd6b7f5 961 struct dentry *parent;
ddbcc7e8 962
2fd6b7f5
NP
963 parent = dentry->d_parent;
964 spin_lock(&parent->d_lock);
3ec762ad 965 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 966 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
967 spin_unlock(&dentry->d_lock);
968 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
969 remove_dir(dentry);
970}
971
aae8aab4 972/*
cf5d5941
BB
973 * Call with cgroup_mutex held. Drops reference counts on modules, including
974 * any duplicate ones that parse_cgroupfs_options took. If this function
975 * returns an error, no reference counts are touched.
aae8aab4 976 */
ddbcc7e8 977static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 978 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 979{
bd89aabc 980 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 981 struct cgroup_subsys *ss;
1d5be6b2 982 unsigned long pinned = 0;
3126121f 983 int i, ret;
ddbcc7e8 984
aae8aab4 985 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 986 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 987
ddbcc7e8 988 /* Check that any added subsystems are currently free */
30159ec7 989 for_each_subsys(ss, i) {
1d5be6b2 990 if (!(added_mask & (1 << i)))
ddbcc7e8 991 continue;
30159ec7 992
1d5be6b2 993 /* is the subsystem mounted elsewhere? */
9871bf95 994 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
995 ret = -EBUSY;
996 goto out_put;
997 }
998
999 /* pin the module */
1000 if (!try_module_get(ss->module)) {
1001 ret = -ENOENT;
1002 goto out_put;
ddbcc7e8 1003 }
1d5be6b2 1004 pinned |= 1 << i;
ddbcc7e8
PM
1005 }
1006
1d5be6b2
TH
1007 /* subsys could be missing if unloaded between parsing and here */
1008 if (added_mask != pinned) {
1009 ret = -ENOENT;
1010 goto out_put;
ddbcc7e8
PM
1011 }
1012
3126121f
TH
1013 ret = cgroup_populate_dir(cgrp, added_mask);
1014 if (ret)
1d5be6b2 1015 goto out_put;
3126121f
TH
1016
1017 /*
1018 * Nothing can fail from this point on. Remove files for the
1019 * removed subsystems and rebind each subsystem.
1020 */
1021 cgroup_clear_dir(cgrp, removed_mask);
ddbcc7e8 1022
30159ec7 1023 for_each_subsys(ss, i) {
ddbcc7e8 1024 unsigned long bit = 1UL << i;
30159ec7 1025
a1a71b45 1026 if (bit & added_mask) {
ddbcc7e8 1027 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1028 BUG_ON(cgroup_css(cgrp, ss));
1029 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1030 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1031
73e80ed8 1032 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1033 cgroup_css(cgroup_dummy_top, ss));
1034 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1035
33a68ac1 1036 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1037 ss->root = root;
ddbcc7e8 1038 if (ss->bind)
ca8bdcaf 1039 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1040
cf5d5941 1041 /* refcount was already taken, and we're keeping it */
a8a648c4 1042 root->subsys_mask |= bit;
a1a71b45 1043 } else if (bit & removed_mask) {
ddbcc7e8 1044 /* We're removing this subsystem */
ca8bdcaf
TH
1045 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1046 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1047
ddbcc7e8 1048 if (ss->bind)
ca8bdcaf 1049 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1050
ca8bdcaf 1051 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1052 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1053
9871bf95
TH
1054 cgroup_subsys[i]->root = &cgroup_dummy_root;
1055 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1056
cf5d5941
BB
1057 /* subsystem is now free - drop reference on module */
1058 module_put(ss->module);
a8a648c4 1059 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1060 }
1061 }
ddbcc7e8 1062
1672d040
TH
1063 /*
1064 * Mark @root has finished binding subsystems. @root->subsys_mask
1065 * now matches the bound subsystems.
1066 */
1067 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1068
ddbcc7e8 1069 return 0;
1d5be6b2
TH
1070
1071out_put:
1072 for_each_subsys(ss, i)
1073 if (pinned & (1 << i))
1074 module_put(ss->module);
1075 return ret;
ddbcc7e8
PM
1076}
1077
34c80b1d 1078static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1079{
34c80b1d 1080 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1081 struct cgroup_subsys *ss;
1082
e25e2cbb 1083 mutex_lock(&cgroup_root_mutex);
5549c497 1084 for_each_root_subsys(root, ss)
ddbcc7e8 1085 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1086 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1087 seq_puts(seq, ",sane_behavior");
93438629 1088 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1089 seq_puts(seq, ",noprefix");
93438629 1090 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1091 seq_puts(seq, ",xattr");
81a6a5cd
PM
1092 if (strlen(root->release_agent_path))
1093 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1094 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1095 seq_puts(seq, ",clone_children");
c6d57f33
PM
1096 if (strlen(root->name))
1097 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1098 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1099 return 0;
1100}
1101
1102struct cgroup_sb_opts {
a1a71b45 1103 unsigned long subsys_mask;
ddbcc7e8 1104 unsigned long flags;
81a6a5cd 1105 char *release_agent;
2260e7fc 1106 bool cpuset_clone_children;
c6d57f33 1107 char *name;
2c6ab6d2
PM
1108 /* User explicitly requested empty subsystem */
1109 bool none;
c6d57f33
PM
1110
1111 struct cgroupfs_root *new_root;
2c6ab6d2 1112
ddbcc7e8
PM
1113};
1114
aae8aab4 1115/*
9871bf95
TH
1116 * Convert a hierarchy specifier into a bitmask of subsystems and
1117 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1118 * array. This function takes refcounts on subsystems to be used, unless it
1119 * returns error, in which case no refcounts are taken.
aae8aab4 1120 */
cf5d5941 1121static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1122{
32a8cf23
DL
1123 char *token, *o = data;
1124 bool all_ss = false, one_ss = false;
f9ab5b5b 1125 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1126 struct cgroup_subsys *ss;
1127 int i;
f9ab5b5b 1128
aae8aab4
BB
1129 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1130
f9ab5b5b
LZ
1131#ifdef CONFIG_CPUSETS
1132 mask = ~(1UL << cpuset_subsys_id);
1133#endif
ddbcc7e8 1134
c6d57f33 1135 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1136
1137 while ((token = strsep(&o, ",")) != NULL) {
1138 if (!*token)
1139 return -EINVAL;
32a8cf23 1140 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1141 /* Explicitly have no subsystems */
1142 opts->none = true;
32a8cf23
DL
1143 continue;
1144 }
1145 if (!strcmp(token, "all")) {
1146 /* Mutually exclusive option 'all' + subsystem name */
1147 if (one_ss)
1148 return -EINVAL;
1149 all_ss = true;
1150 continue;
1151 }
873fe09e
TH
1152 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1153 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1154 continue;
1155 }
32a8cf23 1156 if (!strcmp(token, "noprefix")) {
93438629 1157 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1158 continue;
1159 }
1160 if (!strcmp(token, "clone_children")) {
2260e7fc 1161 opts->cpuset_clone_children = true;
32a8cf23
DL
1162 continue;
1163 }
03b1cde6 1164 if (!strcmp(token, "xattr")) {
93438629 1165 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1166 continue;
1167 }
32a8cf23 1168 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1169 /* Specifying two release agents is forbidden */
1170 if (opts->release_agent)
1171 return -EINVAL;
c6d57f33 1172 opts->release_agent =
e400c285 1173 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1174 if (!opts->release_agent)
1175 return -ENOMEM;
32a8cf23
DL
1176 continue;
1177 }
1178 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1179 const char *name = token + 5;
1180 /* Can't specify an empty name */
1181 if (!strlen(name))
1182 return -EINVAL;
1183 /* Must match [\w.-]+ */
1184 for (i = 0; i < strlen(name); i++) {
1185 char c = name[i];
1186 if (isalnum(c))
1187 continue;
1188 if ((c == '.') || (c == '-') || (c == '_'))
1189 continue;
1190 return -EINVAL;
1191 }
1192 /* Specifying two names is forbidden */
1193 if (opts->name)
1194 return -EINVAL;
1195 opts->name = kstrndup(name,
e400c285 1196 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1197 GFP_KERNEL);
1198 if (!opts->name)
1199 return -ENOMEM;
32a8cf23
DL
1200
1201 continue;
1202 }
1203
30159ec7 1204 for_each_subsys(ss, i) {
32a8cf23
DL
1205 if (strcmp(token, ss->name))
1206 continue;
1207 if (ss->disabled)
1208 continue;
1209
1210 /* Mutually exclusive option 'all' + subsystem name */
1211 if (all_ss)
1212 return -EINVAL;
a1a71b45 1213 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1214 one_ss = true;
1215
1216 break;
1217 }
1218 if (i == CGROUP_SUBSYS_COUNT)
1219 return -ENOENT;
1220 }
1221
1222 /*
1223 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1224 * otherwise if 'none', 'name=' and a subsystem name options
1225 * were not specified, let's default to 'all'
32a8cf23 1226 */
30159ec7
TH
1227 if (all_ss || (!one_ss && !opts->none && !opts->name))
1228 for_each_subsys(ss, i)
1229 if (!ss->disabled)
1230 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1231
2c6ab6d2
PM
1232 /* Consistency checks */
1233
873fe09e
TH
1234 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1235 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1236
1237 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1238 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1239 return -EINVAL;
1240 }
1241
1242 if (opts->cpuset_clone_children) {
1243 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1244 return -EINVAL;
1245 }
1246 }
1247
f9ab5b5b
LZ
1248 /*
1249 * Option noprefix was introduced just for backward compatibility
1250 * with the old cpuset, so we allow noprefix only if mounting just
1251 * the cpuset subsystem.
1252 */
93438629 1253 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1254 return -EINVAL;
1255
2c6ab6d2
PM
1256
1257 /* Can't specify "none" and some subsystems */
a1a71b45 1258 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1259 return -EINVAL;
1260
1261 /*
1262 * We either have to specify by name or by subsystems. (So all
1263 * empty hierarchies must have a name).
1264 */
a1a71b45 1265 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1266 return -EINVAL;
1267
1268 return 0;
1269}
1270
1271static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1272{
1273 int ret = 0;
1274 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1275 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1276 struct cgroup_sb_opts opts;
a1a71b45 1277 unsigned long added_mask, removed_mask;
ddbcc7e8 1278
873fe09e
TH
1279 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1280 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1281 return -EINVAL;
1282 }
1283
bd89aabc 1284 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1285 mutex_lock(&cgroup_mutex);
e25e2cbb 1286 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1287
1288 /* See what subsystems are wanted */
1289 ret = parse_cgroupfs_options(data, &opts);
1290 if (ret)
1291 goto out_unlock;
1292
a8a648c4 1293 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1294 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1295 task_tgid_nr(current), current->comm);
1296
a1a71b45
AR
1297 added_mask = opts.subsys_mask & ~root->subsys_mask;
1298 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1299
cf5d5941 1300 /* Don't allow flags or name to change at remount */
0ce6cba3 1301 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1302 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1303 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1304 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1305 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1306 ret = -EINVAL;
1307 goto out_unlock;
1308 }
1309
f172e67c
TH
1310 /* remounting is not allowed for populated hierarchies */
1311 if (root->number_of_cgroups > 1) {
1312 ret = -EBUSY;
0670e08b 1313 goto out_unlock;
cf5d5941 1314 }
ddbcc7e8 1315
a8a648c4 1316 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1317 if (ret)
0670e08b 1318 goto out_unlock;
ddbcc7e8 1319
81a6a5cd
PM
1320 if (opts.release_agent)
1321 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1322 out_unlock:
66bdc9cf 1323 kfree(opts.release_agent);
c6d57f33 1324 kfree(opts.name);
e25e2cbb 1325 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1326 mutex_unlock(&cgroup_mutex);
bd89aabc 1327 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1328 return ret;
1329}
1330
b87221de 1331static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1332 .statfs = simple_statfs,
1333 .drop_inode = generic_delete_inode,
1334 .show_options = cgroup_show_options,
1335 .remount_fs = cgroup_remount,
1336};
1337
cc31edce
PM
1338static void init_cgroup_housekeeping(struct cgroup *cgrp)
1339{
1340 INIT_LIST_HEAD(&cgrp->sibling);
1341 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1342 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1343 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1344 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1345 INIT_LIST_HEAD(&cgrp->pidlists);
1346 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1347 cgrp->dummy_css.cgroup = cgrp;
03b1cde6 1348 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1349}
c6d57f33 1350
ddbcc7e8
PM
1351static void init_cgroup_root(struct cgroupfs_root *root)
1352{
bd89aabc 1353 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1354
ddbcc7e8
PM
1355 INIT_LIST_HEAD(&root->subsys_list);
1356 INIT_LIST_HEAD(&root->root_list);
1357 root->number_of_cgroups = 1;
bd89aabc 1358 cgrp->root = root;
a4ea1cc9 1359 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1360 init_cgroup_housekeeping(cgrp);
4e96ee8e 1361 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1362}
1363
fc76df70 1364static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1365{
1a574231 1366 int id;
2c6ab6d2 1367
54e7b4eb
TH
1368 lockdep_assert_held(&cgroup_mutex);
1369 lockdep_assert_held(&cgroup_root_mutex);
1370
fc76df70
TH
1371 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1372 GFP_KERNEL);
1a574231
TH
1373 if (id < 0)
1374 return id;
1375
1376 root->hierarchy_id = id;
fa3ca07e
TH
1377 return 0;
1378}
1379
1380static void cgroup_exit_root_id(struct cgroupfs_root *root)
1381{
54e7b4eb
TH
1382 lockdep_assert_held(&cgroup_mutex);
1383 lockdep_assert_held(&cgroup_root_mutex);
1384
fa3ca07e 1385 if (root->hierarchy_id) {
1a574231 1386 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1387 root->hierarchy_id = 0;
1388 }
2c6ab6d2
PM
1389}
1390
ddbcc7e8
PM
1391static int cgroup_test_super(struct super_block *sb, void *data)
1392{
c6d57f33 1393 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1394 struct cgroupfs_root *root = sb->s_fs_info;
1395
c6d57f33
PM
1396 /* If we asked for a name then it must match */
1397 if (opts->name && strcmp(opts->name, root->name))
1398 return 0;
ddbcc7e8 1399
2c6ab6d2
PM
1400 /*
1401 * If we asked for subsystems (or explicitly for no
1402 * subsystems) then they must match
1403 */
a1a71b45
AR
1404 if ((opts->subsys_mask || opts->none)
1405 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1406 return 0;
1407
1408 return 1;
1409}
1410
c6d57f33
PM
1411static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1412{
1413 struct cgroupfs_root *root;
1414
a1a71b45 1415 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1416 return NULL;
1417
1418 root = kzalloc(sizeof(*root), GFP_KERNEL);
1419 if (!root)
1420 return ERR_PTR(-ENOMEM);
1421
1422 init_cgroup_root(root);
2c6ab6d2 1423
1672d040
TH
1424 /*
1425 * We need to set @root->subsys_mask now so that @root can be
1426 * matched by cgroup_test_super() before it finishes
1427 * initialization; otherwise, competing mounts with the same
1428 * options may try to bind the same subsystems instead of waiting
1429 * for the first one leading to unexpected mount errors.
1430 * SUBSYS_BOUND will be set once actual binding is complete.
1431 */
a1a71b45 1432 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1433 root->flags = opts->flags;
1434 if (opts->release_agent)
1435 strcpy(root->release_agent_path, opts->release_agent);
1436 if (opts->name)
1437 strcpy(root->name, opts->name);
2260e7fc
TH
1438 if (opts->cpuset_clone_children)
1439 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1440 return root;
1441}
1442
fa3ca07e 1443static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1444{
fa3ca07e
TH
1445 if (root) {
1446 /* hierarhcy ID shoulid already have been released */
1447 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1448
4e96ee8e 1449 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1450 kfree(root);
1451 }
2c6ab6d2
PM
1452}
1453
ddbcc7e8
PM
1454static int cgroup_set_super(struct super_block *sb, void *data)
1455{
1456 int ret;
c6d57f33
PM
1457 struct cgroup_sb_opts *opts = data;
1458
1459 /* If we don't have a new root, we can't set up a new sb */
1460 if (!opts->new_root)
1461 return -EINVAL;
1462
a1a71b45 1463 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1464
1465 ret = set_anon_super(sb, NULL);
1466 if (ret)
1467 return ret;
1468
c6d57f33
PM
1469 sb->s_fs_info = opts->new_root;
1470 opts->new_root->sb = sb;
ddbcc7e8
PM
1471
1472 sb->s_blocksize = PAGE_CACHE_SIZE;
1473 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1474 sb->s_magic = CGROUP_SUPER_MAGIC;
1475 sb->s_op = &cgroup_ops;
1476
1477 return 0;
1478}
1479
1480static int cgroup_get_rootdir(struct super_block *sb)
1481{
0df6a63f
AV
1482 static const struct dentry_operations cgroup_dops = {
1483 .d_iput = cgroup_diput,
b26d4cd3 1484 .d_delete = always_delete_dentry,
0df6a63f
AV
1485 };
1486
ddbcc7e8
PM
1487 struct inode *inode =
1488 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1489
1490 if (!inode)
1491 return -ENOMEM;
1492
ddbcc7e8
PM
1493 inode->i_fop = &simple_dir_operations;
1494 inode->i_op = &cgroup_dir_inode_operations;
1495 /* directories start off with i_nlink == 2 (for "." entry) */
1496 inc_nlink(inode);
48fde701
AV
1497 sb->s_root = d_make_root(inode);
1498 if (!sb->s_root)
ddbcc7e8 1499 return -ENOMEM;
0df6a63f
AV
1500 /* for everything else we want ->d_op set */
1501 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1502 return 0;
1503}
1504
f7e83571 1505static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1506 int flags, const char *unused_dev_name,
f7e83571 1507 void *data)
ddbcc7e8
PM
1508{
1509 struct cgroup_sb_opts opts;
c6d57f33 1510 struct cgroupfs_root *root;
ddbcc7e8
PM
1511 int ret = 0;
1512 struct super_block *sb;
c6d57f33 1513 struct cgroupfs_root *new_root;
3126121f 1514 struct list_head tmp_links;
e25e2cbb 1515 struct inode *inode;
3126121f 1516 const struct cred *cred;
ddbcc7e8
PM
1517
1518 /* First find the desired set of subsystems */
aae8aab4 1519 mutex_lock(&cgroup_mutex);
ddbcc7e8 1520 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1521 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1522 if (ret)
1523 goto out_err;
ddbcc7e8 1524
c6d57f33
PM
1525 /*
1526 * Allocate a new cgroup root. We may not need it if we're
1527 * reusing an existing hierarchy.
1528 */
1529 new_root = cgroup_root_from_opts(&opts);
1530 if (IS_ERR(new_root)) {
1531 ret = PTR_ERR(new_root);
1d5be6b2 1532 goto out_err;
81a6a5cd 1533 }
c6d57f33 1534 opts.new_root = new_root;
ddbcc7e8 1535
c6d57f33 1536 /* Locate an existing or new sb for this hierarchy */
9249e17f 1537 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1538 if (IS_ERR(sb)) {
c6d57f33 1539 ret = PTR_ERR(sb);
fa3ca07e 1540 cgroup_free_root(opts.new_root);
1d5be6b2 1541 goto out_err;
ddbcc7e8
PM
1542 }
1543
c6d57f33
PM
1544 root = sb->s_fs_info;
1545 BUG_ON(!root);
1546 if (root == opts.new_root) {
1547 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1548 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1549 struct cgroupfs_root *existing_root;
28fd5dfc 1550 int i;
5abb8855 1551 struct css_set *cset;
ddbcc7e8
PM
1552
1553 BUG_ON(sb->s_root != NULL);
1554
1555 ret = cgroup_get_rootdir(sb);
1556 if (ret)
1557 goto drop_new_super;
817929ec 1558 inode = sb->s_root->d_inode;
ddbcc7e8 1559
817929ec 1560 mutex_lock(&inode->i_mutex);
ddbcc7e8 1561 mutex_lock(&cgroup_mutex);
e25e2cbb 1562 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1563
4e96ee8e
LZ
1564 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1565 0, 1, GFP_KERNEL);
1566 if (root_cgrp->id < 0)
1567 goto unlock_drop;
1568
e25e2cbb
TH
1569 /* Check for name clashes with existing mounts */
1570 ret = -EBUSY;
1571 if (strlen(root->name))
1572 for_each_active_root(existing_root)
1573 if (!strcmp(existing_root->name, root->name))
1574 goto unlock_drop;
c6d57f33 1575
817929ec
PM
1576 /*
1577 * We're accessing css_set_count without locking
1578 * css_set_lock here, but that's OK - it can only be
1579 * increased by someone holding cgroup_lock, and
1580 * that's us. The worst that can happen is that we
1581 * have some link structures left over
1582 */
69d0206c 1583 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1584 if (ret)
1585 goto unlock_drop;
817929ec 1586
fc76df70
TH
1587 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1588 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1589 if (ret)
1590 goto unlock_drop;
1591
3126121f
TH
1592 sb->s_root->d_fsdata = root_cgrp;
1593 root_cgrp->dentry = sb->s_root;
1594
1595 /*
1596 * We're inside get_sb() and will call lookup_one_len() to
1597 * create the root files, which doesn't work if SELinux is
1598 * in use. The following cred dancing somehow works around
1599 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1600 * populating new cgroupfs mount") for more details.
1601 */
1602 cred = override_creds(&init_cred);
1603
2bb566cb 1604 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1605 if (ret)
1606 goto rm_base_files;
1607
a8a648c4 1608 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1609 if (ret)
1610 goto rm_base_files;
1611
1612 revert_creds(cred);
1613
cf5d5941
BB
1614 /*
1615 * There must be no failure case after here, since rebinding
1616 * takes care of subsystems' refcounts, which are explicitly
1617 * dropped in the failure exit path.
1618 */
ddbcc7e8 1619
9871bf95
TH
1620 list_add(&root->root_list, &cgroup_roots);
1621 cgroup_root_count++;
ddbcc7e8 1622
817929ec
PM
1623 /* Link the top cgroup in this hierarchy into all
1624 * the css_set objects */
1625 write_lock(&css_set_lock);
5abb8855 1626 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1627 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1628 write_unlock(&css_set_lock);
1629
69d0206c 1630 free_cgrp_cset_links(&tmp_links);
817929ec 1631
c12f65d4 1632 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1633 BUG_ON(root->number_of_cgroups != 1);
1634
e25e2cbb 1635 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1636 mutex_unlock(&cgroup_mutex);
34f77a90 1637 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1638 } else {
1639 /*
1640 * We re-used an existing hierarchy - the new root (if
1641 * any) is not needed
1642 */
fa3ca07e 1643 cgroup_free_root(opts.new_root);
873fe09e 1644
c7ba8287 1645 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1646 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1647 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1648 ret = -EINVAL;
1649 goto drop_new_super;
1650 } else {
1651 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1652 }
873fe09e 1653 }
ddbcc7e8
PM
1654 }
1655
c6d57f33
PM
1656 kfree(opts.release_agent);
1657 kfree(opts.name);
f7e83571 1658 return dget(sb->s_root);
ddbcc7e8 1659
3126121f
TH
1660 rm_base_files:
1661 free_cgrp_cset_links(&tmp_links);
2bb566cb 1662 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1663 revert_creds(cred);
e25e2cbb 1664 unlock_drop:
fa3ca07e 1665 cgroup_exit_root_id(root);
e25e2cbb
TH
1666 mutex_unlock(&cgroup_root_mutex);
1667 mutex_unlock(&cgroup_mutex);
1668 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1669 drop_new_super:
6f5bbff9 1670 deactivate_locked_super(sb);
c6d57f33
PM
1671 out_err:
1672 kfree(opts.release_agent);
1673 kfree(opts.name);
f7e83571 1674 return ERR_PTR(ret);
ddbcc7e8
PM
1675}
1676
1677static void cgroup_kill_sb(struct super_block *sb) {
1678 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1679 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1680 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1681 int ret;
1682
1683 BUG_ON(!root);
1684
1685 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1686 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1687
3126121f 1688 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1689 mutex_lock(&cgroup_mutex);
e25e2cbb 1690 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1691
1692 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1693 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1694 ret = rebind_subsystems(root, 0, root->subsys_mask);
1695 /* Shouldn't be able to fail ... */
1696 BUG_ON(ret);
1697 }
ddbcc7e8 1698
817929ec 1699 /*
69d0206c 1700 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1701 * root cgroup
1702 */
1703 write_lock(&css_set_lock);
71cbb949 1704
69d0206c
TH
1705 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1706 list_del(&link->cset_link);
1707 list_del(&link->cgrp_link);
817929ec
PM
1708 kfree(link);
1709 }
1710 write_unlock(&css_set_lock);
1711
839ec545
PM
1712 if (!list_empty(&root->root_list)) {
1713 list_del(&root->root_list);
9871bf95 1714 cgroup_root_count--;
839ec545 1715 }
e5f6a860 1716
fa3ca07e
TH
1717 cgroup_exit_root_id(root);
1718
e25e2cbb 1719 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1720 mutex_unlock(&cgroup_mutex);
3126121f 1721 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1722
03b1cde6
AR
1723 simple_xattrs_free(&cgrp->xattrs);
1724
ddbcc7e8 1725 kill_litter_super(sb);
fa3ca07e 1726 cgroup_free_root(root);
ddbcc7e8
PM
1727}
1728
1729static struct file_system_type cgroup_fs_type = {
1730 .name = "cgroup",
f7e83571 1731 .mount = cgroup_mount,
ddbcc7e8
PM
1732 .kill_sb = cgroup_kill_sb,
1733};
1734
676db4af
GK
1735static struct kobject *cgroup_kobj;
1736
a043e3b2
LZ
1737/**
1738 * cgroup_path - generate the path of a cgroup
1739 * @cgrp: the cgroup in question
1740 * @buf: the buffer to write the path into
1741 * @buflen: the length of the buffer
1742 *
65dff759
LZ
1743 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1744 *
1745 * We can't generate cgroup path using dentry->d_name, as accessing
1746 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1747 * inode's i_mutex, while on the other hand cgroup_path() can be called
1748 * with some irq-safe spinlocks held.
ddbcc7e8 1749 */
bd89aabc 1750int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1751{
65dff759 1752 int ret = -ENAMETOOLONG;
ddbcc7e8 1753 char *start;
febfcef6 1754
da1f296f
TH
1755 if (!cgrp->parent) {
1756 if (strlcpy(buf, "/", buflen) >= buflen)
1757 return -ENAMETOOLONG;
ddbcc7e8
PM
1758 return 0;
1759 }
1760
316eb661 1761 start = buf + buflen - 1;
316eb661 1762 *start = '\0';
9a9686b6 1763
65dff759 1764 rcu_read_lock();
da1f296f 1765 do {
65dff759
LZ
1766 const char *name = cgroup_name(cgrp);
1767 int len;
1768
1769 len = strlen(name);
ddbcc7e8 1770 if ((start -= len) < buf)
65dff759
LZ
1771 goto out;
1772 memcpy(start, name, len);
9a9686b6 1773
ddbcc7e8 1774 if (--start < buf)
65dff759 1775 goto out;
ddbcc7e8 1776 *start = '/';
65dff759
LZ
1777
1778 cgrp = cgrp->parent;
da1f296f 1779 } while (cgrp->parent);
65dff759 1780 ret = 0;
ddbcc7e8 1781 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1782out:
1783 rcu_read_unlock();
1784 return ret;
ddbcc7e8 1785}
67523c48 1786EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1787
857a2beb 1788/**
913ffdb5 1789 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1790 * @task: target task
857a2beb
TH
1791 * @buf: the buffer to write the path into
1792 * @buflen: the length of the buffer
1793 *
913ffdb5
TH
1794 * Determine @task's cgroup on the first (the one with the lowest non-zero
1795 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1796 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1797 * cgroup controller callbacks.
1798 *
1799 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1800 */
913ffdb5 1801int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1802{
1803 struct cgroupfs_root *root;
913ffdb5
TH
1804 struct cgroup *cgrp;
1805 int hierarchy_id = 1, ret = 0;
1806
1807 if (buflen < 2)
1808 return -ENAMETOOLONG;
857a2beb
TH
1809
1810 mutex_lock(&cgroup_mutex);
1811
913ffdb5
TH
1812 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1813
857a2beb
TH
1814 if (root) {
1815 cgrp = task_cgroup_from_root(task, root);
1816 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1817 } else {
1818 /* if no hierarchy exists, everyone is in "/" */
1819 memcpy(buf, "/", 2);
857a2beb
TH
1820 }
1821
1822 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1823 return ret;
1824}
913ffdb5 1825EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1826
2f7ee569
TH
1827/*
1828 * Control Group taskset
1829 */
134d3373
TH
1830struct task_and_cgroup {
1831 struct task_struct *task;
1832 struct cgroup *cgrp;
6f4b7e63 1833 struct css_set *cset;
134d3373
TH
1834};
1835
2f7ee569
TH
1836struct cgroup_taskset {
1837 struct task_and_cgroup single;
1838 struct flex_array *tc_array;
1839 int tc_array_len;
1840 int idx;
1841 struct cgroup *cur_cgrp;
1842};
1843
1844/**
1845 * cgroup_taskset_first - reset taskset and return the first task
1846 * @tset: taskset of interest
1847 *
1848 * @tset iteration is initialized and the first task is returned.
1849 */
1850struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1851{
1852 if (tset->tc_array) {
1853 tset->idx = 0;
1854 return cgroup_taskset_next(tset);
1855 } else {
1856 tset->cur_cgrp = tset->single.cgrp;
1857 return tset->single.task;
1858 }
1859}
1860EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1861
1862/**
1863 * cgroup_taskset_next - iterate to the next task in taskset
1864 * @tset: taskset of interest
1865 *
1866 * Return the next task in @tset. Iteration must have been initialized
1867 * with cgroup_taskset_first().
1868 */
1869struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1870{
1871 struct task_and_cgroup *tc;
1872
1873 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1874 return NULL;
1875
1876 tc = flex_array_get(tset->tc_array, tset->idx++);
1877 tset->cur_cgrp = tc->cgrp;
1878 return tc->task;
1879}
1880EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1881
1882/**
d99c8727 1883 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1884 * @tset: taskset of interest
d99c8727 1885 * @subsys_id: the ID of the target subsystem
2f7ee569 1886 *
d99c8727
TH
1887 * Return the css for the current (last returned) task of @tset for
1888 * subsystem specified by @subsys_id. This function must be preceded by
1889 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1890 */
d99c8727
TH
1891struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1892 int subsys_id)
2f7ee569 1893{
ca8bdcaf 1894 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1895}
d99c8727 1896EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1897
1898/**
1899 * cgroup_taskset_size - return the number of tasks in taskset
1900 * @tset: taskset of interest
1901 */
1902int cgroup_taskset_size(struct cgroup_taskset *tset)
1903{
1904 return tset->tc_array ? tset->tc_array_len : 1;
1905}
1906EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1907
1908
74a1166d
BB
1909/*
1910 * cgroup_task_migrate - move a task from one cgroup to another.
1911 *
d0b2fdd2 1912 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1913 */
5abb8855
TH
1914static void cgroup_task_migrate(struct cgroup *old_cgrp,
1915 struct task_struct *tsk,
1916 struct css_set *new_cset)
74a1166d 1917{
5abb8855 1918 struct css_set *old_cset;
74a1166d
BB
1919
1920 /*
026085ef
MSB
1921 * We are synchronized through threadgroup_lock() against PF_EXITING
1922 * setting such that we can't race against cgroup_exit() changing the
1923 * css_set to init_css_set and dropping the old one.
74a1166d 1924 */
c84cdf75 1925 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1926 old_cset = task_css_set(tsk);
74a1166d 1927
74a1166d 1928 task_lock(tsk);
5abb8855 1929 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1930 task_unlock(tsk);
1931
1932 /* Update the css_set linked lists if we're using them */
1933 write_lock(&css_set_lock);
1934 if (!list_empty(&tsk->cg_list))
5abb8855 1935 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1936 write_unlock(&css_set_lock);
1937
1938 /*
5abb8855
TH
1939 * We just gained a reference on old_cset by taking it from the
1940 * task. As trading it for new_cset is protected by cgroup_mutex,
1941 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1942 */
5abb8855
TH
1943 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1944 put_css_set(old_cset);
74a1166d
BB
1945}
1946
a043e3b2 1947/**
081aa458 1948 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1949 * @cgrp: the cgroup to attach to
081aa458
LZ
1950 * @tsk: the task or the leader of the threadgroup to be attached
1951 * @threadgroup: attach the whole threadgroup?
74a1166d 1952 *
257058ae 1953 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1954 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1955 */
47cfcd09
TH
1956static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1957 bool threadgroup)
74a1166d
BB
1958{
1959 int retval, i, group_size;
74a1166d 1960 struct cgroupfs_root *root = cgrp->root;
1c6727af 1961 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1962 /* threadgroup list cursor and array */
081aa458 1963 struct task_struct *leader = tsk;
134d3373 1964 struct task_and_cgroup *tc;
d846687d 1965 struct flex_array *group;
2f7ee569 1966 struct cgroup_taskset tset = { };
74a1166d
BB
1967
1968 /*
1969 * step 0: in order to do expensive, possibly blocking operations for
1970 * every thread, we cannot iterate the thread group list, since it needs
1971 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1972 * group - group_rwsem prevents new threads from appearing, and if
1973 * threads exit, this will just be an over-estimate.
74a1166d 1974 */
081aa458
LZ
1975 if (threadgroup)
1976 group_size = get_nr_threads(tsk);
1977 else
1978 group_size = 1;
d846687d 1979 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1980 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1981 if (!group)
1982 return -ENOMEM;
d846687d 1983 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1984 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1985 if (retval)
1986 goto out_free_group_list;
74a1166d 1987
74a1166d 1988 i = 0;
fb5d2b4c
MSB
1989 /*
1990 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1991 * already PF_EXITING could be freed from underneath us unless we
1992 * take an rcu_read_lock.
1993 */
1994 rcu_read_lock();
74a1166d 1995 do {
134d3373
TH
1996 struct task_and_cgroup ent;
1997
cd3d0952
TH
1998 /* @tsk either already exited or can't exit until the end */
1999 if (tsk->flags & PF_EXITING)
ea84753c 2000 goto next;
cd3d0952 2001
74a1166d
BB
2002 /* as per above, nr_threads may decrease, but not increase. */
2003 BUG_ON(i >= group_size);
134d3373
TH
2004 ent.task = tsk;
2005 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2006 /* nothing to do if this task is already in the cgroup */
2007 if (ent.cgrp == cgrp)
ea84753c 2008 goto next;
61d1d219
MSB
2009 /*
2010 * saying GFP_ATOMIC has no effect here because we did prealloc
2011 * earlier, but it's good form to communicate our expectations.
2012 */
134d3373 2013 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2014 BUG_ON(retval != 0);
74a1166d 2015 i++;
ea84753c 2016 next:
081aa458
LZ
2017 if (!threadgroup)
2018 break;
74a1166d 2019 } while_each_thread(leader, tsk);
fb5d2b4c 2020 rcu_read_unlock();
74a1166d
BB
2021 /* remember the number of threads in the array for later. */
2022 group_size = i;
2f7ee569
TH
2023 tset.tc_array = group;
2024 tset.tc_array_len = group_size;
74a1166d 2025
134d3373
TH
2026 /* methods shouldn't be called if no task is actually migrating */
2027 retval = 0;
892a2b90 2028 if (!group_size)
b07ef774 2029 goto out_free_group_list;
134d3373 2030
74a1166d
BB
2031 /*
2032 * step 1: check that we can legitimately attach to the cgroup.
2033 */
1c6727af
TH
2034 for_each_css(css, i, cgrp) {
2035 if (css->ss->can_attach) {
2036 retval = css->ss->can_attach(css, &tset);
74a1166d 2037 if (retval) {
1c6727af 2038 failed_css = css;
74a1166d
BB
2039 goto out_cancel_attach;
2040 }
2041 }
74a1166d
BB
2042 }
2043
2044 /*
2045 * step 2: make sure css_sets exist for all threads to be migrated.
2046 * we use find_css_set, which allocates a new one if necessary.
2047 */
74a1166d 2048 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2049 struct css_set *old_cset;
2050
134d3373 2051 tc = flex_array_get(group, i);
a8ad805c 2052 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2053 tc->cset = find_css_set(old_cset, cgrp);
2054 if (!tc->cset) {
61d1d219
MSB
2055 retval = -ENOMEM;
2056 goto out_put_css_set_refs;
74a1166d
BB
2057 }
2058 }
2059
2060 /*
494c167c
TH
2061 * step 3: now that we're guaranteed success wrt the css_sets,
2062 * proceed to move all tasks to the new cgroup. There are no
2063 * failure cases after here, so this is the commit point.
74a1166d 2064 */
74a1166d 2065 for (i = 0; i < group_size; i++) {
134d3373 2066 tc = flex_array_get(group, i);
6f4b7e63 2067 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2068 }
2069 /* nothing is sensitive to fork() after this point. */
2070
2071 /*
494c167c 2072 * step 4: do subsystem attach callbacks.
74a1166d 2073 */
1c6727af
TH
2074 for_each_css(css, i, cgrp)
2075 if (css->ss->attach)
2076 css->ss->attach(css, &tset);
74a1166d
BB
2077
2078 /*
2079 * step 5: success! and cleanup
2080 */
74a1166d 2081 retval = 0;
61d1d219
MSB
2082out_put_css_set_refs:
2083 if (retval) {
2084 for (i = 0; i < group_size; i++) {
2085 tc = flex_array_get(group, i);
6f4b7e63 2086 if (!tc->cset)
61d1d219 2087 break;
6f4b7e63 2088 put_css_set(tc->cset);
61d1d219 2089 }
74a1166d
BB
2090 }
2091out_cancel_attach:
74a1166d 2092 if (retval) {
1c6727af
TH
2093 for_each_css(css, i, cgrp) {
2094 if (css == failed_css)
74a1166d 2095 break;
1c6727af
TH
2096 if (css->ss->cancel_attach)
2097 css->ss->cancel_attach(css, &tset);
74a1166d
BB
2098 }
2099 }
74a1166d 2100out_free_group_list:
d846687d 2101 flex_array_free(group);
74a1166d
BB
2102 return retval;
2103}
2104
2105/*
2106 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2107 * function to attach either it or all tasks in its threadgroup. Will lock
2108 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2109 */
74a1166d 2110static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2111{
bbcb81d0 2112 struct task_struct *tsk;
c69e8d9c 2113 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2114 int ret;
2115
74a1166d
BB
2116 if (!cgroup_lock_live_group(cgrp))
2117 return -ENODEV;
2118
b78949eb
MSB
2119retry_find_task:
2120 rcu_read_lock();
bbcb81d0 2121 if (pid) {
73507f33 2122 tsk = find_task_by_vpid(pid);
74a1166d
BB
2123 if (!tsk) {
2124 rcu_read_unlock();
b78949eb
MSB
2125 ret= -ESRCH;
2126 goto out_unlock_cgroup;
bbcb81d0 2127 }
74a1166d
BB
2128 /*
2129 * even if we're attaching all tasks in the thread group, we
2130 * only need to check permissions on one of them.
2131 */
c69e8d9c 2132 tcred = __task_cred(tsk);
14a590c3
EB
2133 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2134 !uid_eq(cred->euid, tcred->uid) &&
2135 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2136 rcu_read_unlock();
b78949eb
MSB
2137 ret = -EACCES;
2138 goto out_unlock_cgroup;
bbcb81d0 2139 }
b78949eb
MSB
2140 } else
2141 tsk = current;
cd3d0952
TH
2142
2143 if (threadgroup)
b78949eb 2144 tsk = tsk->group_leader;
c4c27fbd
MG
2145
2146 /*
14a40ffc 2147 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2148 * trapped in a cpuset, or RT worker may be born in a cgroup
2149 * with no rt_runtime allocated. Just say no.
2150 */
14a40ffc 2151 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2152 ret = -EINVAL;
2153 rcu_read_unlock();
2154 goto out_unlock_cgroup;
2155 }
2156
b78949eb
MSB
2157 get_task_struct(tsk);
2158 rcu_read_unlock();
2159
2160 threadgroup_lock(tsk);
2161 if (threadgroup) {
2162 if (!thread_group_leader(tsk)) {
2163 /*
2164 * a race with de_thread from another thread's exec()
2165 * may strip us of our leadership, if this happens,
2166 * there is no choice but to throw this task away and
2167 * try again; this is
2168 * "double-double-toil-and-trouble-check locking".
2169 */
2170 threadgroup_unlock(tsk);
2171 put_task_struct(tsk);
2172 goto retry_find_task;
2173 }
081aa458
LZ
2174 }
2175
2176 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2177
cd3d0952
TH
2178 threadgroup_unlock(tsk);
2179
bbcb81d0 2180 put_task_struct(tsk);
b78949eb 2181out_unlock_cgroup:
47cfcd09 2182 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2183 return ret;
2184}
2185
7ae1bad9
TH
2186/**
2187 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2188 * @from: attach to all cgroups of a given task
2189 * @tsk: the task to be attached
2190 */
2191int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2192{
2193 struct cgroupfs_root *root;
2194 int retval = 0;
2195
47cfcd09 2196 mutex_lock(&cgroup_mutex);
7ae1bad9 2197 for_each_active_root(root) {
6f4b7e63 2198 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2199
6f4b7e63 2200 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2201 if (retval)
2202 break;
2203 }
47cfcd09 2204 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2205
2206 return retval;
2207}
2208EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2209
182446d0
TH
2210static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2211 struct cftype *cft, u64 pid)
74a1166d 2212{
182446d0 2213 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2214}
2215
182446d0
TH
2216static int cgroup_procs_write(struct cgroup_subsys_state *css,
2217 struct cftype *cft, u64 tgid)
af351026 2218{
182446d0 2219 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2220}
2221
182446d0
TH
2222static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2223 struct cftype *cft, const char *buffer)
e788e066 2224{
182446d0 2225 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2226 if (strlen(buffer) >= PATH_MAX)
2227 return -EINVAL;
182446d0 2228 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2229 return -ENODEV;
e25e2cbb 2230 mutex_lock(&cgroup_root_mutex);
182446d0 2231 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2232 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2233 mutex_unlock(&cgroup_mutex);
e788e066
PM
2234 return 0;
2235}
2236
2da8ca82 2237static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2238{
2da8ca82 2239 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2240
e788e066
PM
2241 if (!cgroup_lock_live_group(cgrp))
2242 return -ENODEV;
2243 seq_puts(seq, cgrp->root->release_agent_path);
2244 seq_putc(seq, '\n');
47cfcd09 2245 mutex_unlock(&cgroup_mutex);
e788e066
PM
2246 return 0;
2247}
2248
2da8ca82 2249static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2250{
2da8ca82
TH
2251 struct cgroup *cgrp = seq_css(seq)->cgroup;
2252
2253 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2254 return 0;
2255}
2256
84eea842
PM
2257/* A buffer size big enough for numbers or short strings */
2258#define CGROUP_LOCAL_BUFFER_SIZE 64
2259
a742c59d
TH
2260static ssize_t cgroup_file_write(struct file *file, const char __user *userbuf,
2261 size_t nbytes, loff_t *ppos)
db3b1497 2262{
a742c59d
TH
2263 struct cfent *cfe = __d_cfe(file->f_dentry);
2264 struct cftype *cft = __d_cft(file->f_dentry);
2265 struct cgroup_subsys_state *css = cfe->css;
2266 size_t max_bytes = cft->max_write_len ?: CGROUP_LOCAL_BUFFER_SIZE - 1;
2267 char *buf;
2268 int ret;
db3b1497 2269
db3b1497
PM
2270 if (nbytes >= max_bytes)
2271 return -E2BIG;
db3b1497 2272
a742c59d
TH
2273 buf = kmalloc(nbytes + 1, GFP_KERNEL);
2274 if (!buf)
2275 return -ENOMEM;
db3b1497 2276
a742c59d
TH
2277 if (copy_from_user(buf, userbuf, nbytes)) {
2278 ret = -EFAULT;
2279 goto out_free;
2280 }
ddbcc7e8 2281
a742c59d
TH
2282 buf[nbytes] = '\0';
2283
2284 if (cft->write_string) {
2285 ret = cft->write_string(css, cft, strstrip(buf));
2286 } else if (cft->write_u64) {
2287 unsigned long long v;
2288 ret = kstrtoull(buf, 0, &v);
2289 if (!ret)
2290 ret = cft->write_u64(css, cft, v);
2291 } else if (cft->write_s64) {
2292 long long v;
2293 ret = kstrtoll(buf, 0, &v);
2294 if (!ret)
2295 ret = cft->write_s64(css, cft, v);
2296 } else if (cft->trigger) {
2297 ret = cft->trigger(css, (unsigned int)cft->private);
2298 } else {
2299 ret = -EINVAL;
d447ea2f 2300 }
a742c59d
TH
2301out_free:
2302 kfree(buf);
2303 return ret ?: nbytes;
ddbcc7e8
PM
2304}
2305
91796569
PM
2306/*
2307 * seqfile ops/methods for returning structured data. Currently just
2308 * supports string->u64 maps, but can be extended in future.
2309 */
2310
6612f05b
TH
2311static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2312{
2313 struct cftype *cft = seq_cft(seq);
2314
2315 if (cft->seq_start) {
2316 return cft->seq_start(seq, ppos);
2317 } else {
2318 /*
2319 * The same behavior and code as single_open(). Returns
2320 * !NULL if pos is at the beginning; otherwise, NULL.
2321 */
2322 return NULL + !*ppos;
2323 }
2324}
2325
2326static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2327{
2328 struct cftype *cft = seq_cft(seq);
2329
2330 if (cft->seq_next) {
2331 return cft->seq_next(seq, v, ppos);
2332 } else {
2333 /*
2334 * The same behavior and code as single_open(), always
2335 * terminate after the initial read.
2336 */
2337 ++*ppos;
2338 return NULL;
2339 }
2340}
2341
2342static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2343{
2344 struct cftype *cft = seq_cft(seq);
2345
2346 if (cft->seq_stop)
2347 cft->seq_stop(seq, v);
2348}
2349
91796569
PM
2350static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2351{
7da11279
TH
2352 struct cftype *cft = seq_cft(m);
2353 struct cgroup_subsys_state *css = seq_css(m);
e0798ce2 2354
2da8ca82
TH
2355 if (cft->seq_show)
2356 return cft->seq_show(m, arg);
91796569 2357
896f5199
TH
2358 if (cft->read_u64)
2359 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2360 else if (cft->read_s64)
2361 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2362 else
2363 return -EINVAL;
2364 return 0;
2365}
91796569 2366
6612f05b
TH
2367static struct seq_operations cgroup_seq_operations = {
2368 .start = cgroup_seqfile_start,
2369 .next = cgroup_seqfile_next,
2370 .stop = cgroup_seqfile_stop,
2371 .show = cgroup_seqfile_show,
2372};
2373
ddbcc7e8
PM
2374static int cgroup_file_open(struct inode *inode, struct file *file)
2375{
f7d58818
TH
2376 struct cfent *cfe = __d_cfe(file->f_dentry);
2377 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2378 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2379 struct cgroup_subsys_state *css;
6612f05b 2380 struct cgroup_open_file *of;
ddbcc7e8 2381 int err;
ddbcc7e8
PM
2382
2383 err = generic_file_open(inode, file);
2384 if (err)
2385 return err;
75139b82 2386
f7d58818
TH
2387 /*
2388 * If the file belongs to a subsystem, pin the css. Will be
2389 * unpinned either on open failure or release. This ensures that
2390 * @css stays alive for all file operations.
2391 */
105347ba 2392 rcu_read_lock();
ca8bdcaf
TH
2393 css = cgroup_css(cgrp, cft->ss);
2394 if (cft->ss && !css_tryget(css))
2395 css = NULL;
105347ba 2396 rcu_read_unlock();
f4f4be2b 2397
0bfb4aa6 2398 if (!css)
f7d58818 2399 return -ENODEV;
75139b82 2400
0bfb4aa6
TH
2401 /*
2402 * @cfe->css is used by read/write/close to determine the
2403 * associated css. @file->private_data would be a better place but
2404 * that's already used by seqfile. Multiple accessors may use it
2405 * simultaneously which is okay as the association never changes.
2406 */
2407 WARN_ON_ONCE(cfe->css && cfe->css != css);
2408 cfe->css = css;
f4f4be2b 2409
6612f05b
TH
2410 of = __seq_open_private(file, &cgroup_seq_operations,
2411 sizeof(struct cgroup_open_file));
2412 if (of) {
2413 of->cfe = cfe;
2414 return 0;
7da11279 2415 }
ddbcc7e8 2416
6612f05b 2417 if (css->ss)
f7d58818 2418 css_put(css);
6612f05b 2419 return -ENOMEM;
ddbcc7e8
PM
2420}
2421
2422static int cgroup_file_release(struct inode *inode, struct file *file)
2423{
f7d58818 2424 struct cfent *cfe = __d_cfe(file->f_dentry);
105347ba 2425 struct cgroup_subsys_state *css = cfe->css;
f7d58818 2426
67f4c36f 2427 if (css->ss)
f7d58818 2428 css_put(css);
6612f05b 2429 return seq_release_private(inode, file);
ddbcc7e8
PM
2430}
2431
2432/*
2433 * cgroup_rename - Only allow simple rename of directories in place.
2434 */
2435static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2436 struct inode *new_dir, struct dentry *new_dentry)
2437{
65dff759
LZ
2438 int ret;
2439 struct cgroup_name *name, *old_name;
2440 struct cgroup *cgrp;
2441
2442 /*
2443 * It's convinient to use parent dir's i_mutex to protected
2444 * cgrp->name.
2445 */
2446 lockdep_assert_held(&old_dir->i_mutex);
2447
ddbcc7e8
PM
2448 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2449 return -ENOTDIR;
2450 if (new_dentry->d_inode)
2451 return -EEXIST;
2452 if (old_dir != new_dir)
2453 return -EIO;
65dff759
LZ
2454
2455 cgrp = __d_cgrp(old_dentry);
2456
6db8e85c
TH
2457 /*
2458 * This isn't a proper migration and its usefulness is very
2459 * limited. Disallow if sane_behavior.
2460 */
2461 if (cgroup_sane_behavior(cgrp))
2462 return -EPERM;
2463
65dff759
LZ
2464 name = cgroup_alloc_name(new_dentry);
2465 if (!name)
2466 return -ENOMEM;
2467
2468 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2469 if (ret) {
2470 kfree(name);
2471 return ret;
2472 }
2473
a4ea1cc9 2474 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2475 rcu_assign_pointer(cgrp->name, name);
2476
2477 kfree_rcu(old_name, rcu_head);
2478 return 0;
ddbcc7e8
PM
2479}
2480
03b1cde6
AR
2481static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2482{
2483 if (S_ISDIR(dentry->d_inode->i_mode))
2484 return &__d_cgrp(dentry)->xattrs;
2485 else
712317ad 2486 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2487}
2488
2489static inline int xattr_enabled(struct dentry *dentry)
2490{
2491 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2492 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2493}
2494
2495static bool is_valid_xattr(const char *name)
2496{
2497 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2498 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2499 return true;
2500 return false;
2501}
2502
2503static int cgroup_setxattr(struct dentry *dentry, const char *name,
2504 const void *val, size_t size, int flags)
2505{
2506 if (!xattr_enabled(dentry))
2507 return -EOPNOTSUPP;
2508 if (!is_valid_xattr(name))
2509 return -EINVAL;
2510 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2511}
2512
2513static int cgroup_removexattr(struct dentry *dentry, const char *name)
2514{
2515 if (!xattr_enabled(dentry))
2516 return -EOPNOTSUPP;
2517 if (!is_valid_xattr(name))
2518 return -EINVAL;
2519 return simple_xattr_remove(__d_xattrs(dentry), name);
2520}
2521
2522static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2523 void *buf, size_t size)
2524{
2525 if (!xattr_enabled(dentry))
2526 return -EOPNOTSUPP;
2527 if (!is_valid_xattr(name))
2528 return -EINVAL;
2529 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2530}
2531
2532static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2533{
2534 if (!xattr_enabled(dentry))
2535 return -EOPNOTSUPP;
2536 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2537}
2538
828c0950 2539static const struct file_operations cgroup_file_operations = {
896f5199 2540 .read = seq_read,
ddbcc7e8
PM
2541 .write = cgroup_file_write,
2542 .llseek = generic_file_llseek,
2543 .open = cgroup_file_open,
2544 .release = cgroup_file_release,
2545};
2546
03b1cde6
AR
2547static const struct inode_operations cgroup_file_inode_operations = {
2548 .setxattr = cgroup_setxattr,
2549 .getxattr = cgroup_getxattr,
2550 .listxattr = cgroup_listxattr,
2551 .removexattr = cgroup_removexattr,
2552};
2553
6e1d5dcc 2554static const struct inode_operations cgroup_dir_inode_operations = {
786e1448 2555 .lookup = simple_lookup,
ddbcc7e8
PM
2556 .mkdir = cgroup_mkdir,
2557 .rmdir = cgroup_rmdir,
2558 .rename = cgroup_rename,
03b1cde6
AR
2559 .setxattr = cgroup_setxattr,
2560 .getxattr = cgroup_getxattr,
2561 .listxattr = cgroup_listxattr,
2562 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2563};
2564
a5e7ed32 2565static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2566 struct super_block *sb)
2567{
ddbcc7e8
PM
2568 struct inode *inode;
2569
2570 if (!dentry)
2571 return -ENOENT;
2572 if (dentry->d_inode)
2573 return -EEXIST;
2574
2575 inode = cgroup_new_inode(mode, sb);
2576 if (!inode)
2577 return -ENOMEM;
2578
2579 if (S_ISDIR(mode)) {
2580 inode->i_op = &cgroup_dir_inode_operations;
2581 inode->i_fop = &simple_dir_operations;
2582
2583 /* start off with i_nlink == 2 (for "." entry) */
2584 inc_nlink(inode);
28fd6f30 2585 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2586
b8a2df6a
TH
2587 /*
2588 * Control reaches here with cgroup_mutex held.
2589 * @inode->i_mutex should nest outside cgroup_mutex but we
2590 * want to populate it immediately without releasing
2591 * cgroup_mutex. As @inode isn't visible to anyone else
2592 * yet, trylock will always succeed without affecting
2593 * lockdep checks.
2594 */
2595 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2596 } else if (S_ISREG(mode)) {
2597 inode->i_size = 0;
2598 inode->i_fop = &cgroup_file_operations;
03b1cde6 2599 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2600 }
ddbcc7e8
PM
2601 d_instantiate(dentry, inode);
2602 dget(dentry); /* Extra count - pin the dentry in core */
2603 return 0;
2604}
2605
099fca32
LZ
2606/**
2607 * cgroup_file_mode - deduce file mode of a control file
2608 * @cft: the control file in question
2609 *
2610 * returns cft->mode if ->mode is not 0
2611 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2612 * returns S_IRUGO if it has only a read handler
2613 * returns S_IWUSR if it has only a write hander
2614 */
a5e7ed32 2615static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2616{
a5e7ed32 2617 umode_t mode = 0;
099fca32
LZ
2618
2619 if (cft->mode)
2620 return cft->mode;
2621
2da8ca82 2622 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
099fca32
LZ
2623 mode |= S_IRUGO;
2624
6e0755b0
TH
2625 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
2626 cft->trigger)
099fca32
LZ
2627 mode |= S_IWUSR;
2628
2629 return mode;
2630}
2631
2bb566cb 2632static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2633{
bd89aabc 2634 struct dentry *dir = cgrp->dentry;
05ef1d7c 2635 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2636 struct dentry *dentry;
05ef1d7c 2637 struct cfent *cfe;
ddbcc7e8 2638 int error;
a5e7ed32 2639 umode_t mode;
ddbcc7e8 2640 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2641
9fa4db33
TH
2642 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2643 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2bb566cb 2644 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2645 strcat(name, ".");
2646 }
2647 strcat(name, cft->name);
05ef1d7c 2648
ddbcc7e8 2649 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2650
2651 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2652 if (!cfe)
2653 return -ENOMEM;
2654
ddbcc7e8 2655 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2656 if (IS_ERR(dentry)) {
ddbcc7e8 2657 error = PTR_ERR(dentry);
05ef1d7c
TH
2658 goto out;
2659 }
2660
d6cbf35d
LZ
2661 cfe->type = (void *)cft;
2662 cfe->dentry = dentry;
2663 dentry->d_fsdata = cfe;
2664 simple_xattrs_init(&cfe->xattrs);
2665
05ef1d7c
TH
2666 mode = cgroup_file_mode(cft);
2667 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2668 if (!error) {
05ef1d7c
TH
2669 list_add_tail(&cfe->node, &parent->files);
2670 cfe = NULL;
2671 }
2672 dput(dentry);
2673out:
2674 kfree(cfe);
ddbcc7e8
PM
2675 return error;
2676}
2677
b1f28d31
TH
2678/**
2679 * cgroup_addrm_files - add or remove files to a cgroup directory
2680 * @cgrp: the target cgroup
b1f28d31
TH
2681 * @cfts: array of cftypes to be added
2682 * @is_add: whether to add or remove
2683 *
2684 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2685 * For removals, this function never fails. If addition fails, this
2686 * function doesn't remove files already added. The caller is responsible
2687 * for cleaning up.
b1f28d31 2688 */
2bb566cb
TH
2689static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2690 bool is_add)
ddbcc7e8 2691{
03b1cde6 2692 struct cftype *cft;
b1f28d31
TH
2693 int ret;
2694
2695 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2696 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2697
2698 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2699 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2700 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2701 continue;
f33fddc2
G
2702 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2703 continue;
2704 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2705 continue;
2706
2739d3cc 2707 if (is_add) {
2bb566cb 2708 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2709 if (ret) {
2739d3cc 2710 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2711 cft->name, ret);
2712 return ret;
2713 }
2739d3cc
LZ
2714 } else {
2715 cgroup_rm_file(cgrp, cft);
db0416b6 2716 }
ddbcc7e8 2717 }
b1f28d31 2718 return 0;
ddbcc7e8
PM
2719}
2720
8e3f6541 2721static void cgroup_cfts_prepare(void)
e8c82d20 2722 __acquires(&cgroup_mutex)
8e3f6541
TH
2723{
2724 /*
2725 * Thanks to the entanglement with vfs inode locking, we can't walk
2726 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2727 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2728 * lock before calling cgroup_addrm_files().
8e3f6541 2729 */
8e3f6541
TH
2730 mutex_lock(&cgroup_mutex);
2731}
2732
2bb566cb 2733static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2734 __releases(&cgroup_mutex)
8e3f6541
TH
2735{
2736 LIST_HEAD(pending);
2bb566cb 2737 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2738 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2739 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2740 struct dentry *prev = NULL;
2741 struct inode *inode;
492eb21b 2742 struct cgroup_subsys_state *css;
00356bd5 2743 u64 update_before;
9ccece80 2744 int ret = 0;
8e3f6541
TH
2745
2746 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2747 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2748 !atomic_inc_not_zero(&sb->s_active)) {
2749 mutex_unlock(&cgroup_mutex);
9ccece80 2750 return 0;
8e3f6541
TH
2751 }
2752
8e3f6541 2753 /*
e8c82d20
LZ
2754 * All cgroups which are created after we drop cgroup_mutex will
2755 * have the updated set of files, so we only need to update the
00356bd5 2756 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2757 */
00356bd5 2758 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2759
2760 mutex_unlock(&cgroup_mutex);
2761
e8c82d20
LZ
2762 /* add/rm files for all cgroups created before */
2763 rcu_read_lock();
ca8bdcaf 2764 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2765 struct cgroup *cgrp = css->cgroup;
2766
e8c82d20
LZ
2767 if (cgroup_is_dead(cgrp))
2768 continue;
2769
2770 inode = cgrp->dentry->d_inode;
2771 dget(cgrp->dentry);
2772 rcu_read_unlock();
2773
2774 dput(prev);
2775 prev = cgrp->dentry;
8e3f6541
TH
2776
2777 mutex_lock(&inode->i_mutex);
2778 mutex_lock(&cgroup_mutex);
00356bd5 2779 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2780 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2781 mutex_unlock(&cgroup_mutex);
2782 mutex_unlock(&inode->i_mutex);
2783
e8c82d20 2784 rcu_read_lock();
9ccece80
TH
2785 if (ret)
2786 break;
8e3f6541 2787 }
e8c82d20
LZ
2788 rcu_read_unlock();
2789 dput(prev);
2790 deactivate_super(sb);
9ccece80 2791 return ret;
8e3f6541
TH
2792}
2793
2794/**
2795 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2796 * @ss: target cgroup subsystem
2797 * @cfts: zero-length name terminated array of cftypes
2798 *
2799 * Register @cfts to @ss. Files described by @cfts are created for all
2800 * existing cgroups to which @ss is attached and all future cgroups will
2801 * have them too. This function can be called anytime whether @ss is
2802 * attached or not.
2803 *
2804 * Returns 0 on successful registration, -errno on failure. Note that this
2805 * function currently returns 0 as long as @cfts registration is successful
2806 * even if some file creation attempts on existing cgroups fail.
2807 */
03b1cde6 2808int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2809{
2810 struct cftype_set *set;
2bb566cb 2811 struct cftype *cft;
9ccece80 2812 int ret;
8e3f6541
TH
2813
2814 set = kzalloc(sizeof(*set), GFP_KERNEL);
2815 if (!set)
2816 return -ENOMEM;
2817
2bb566cb
TH
2818 for (cft = cfts; cft->name[0] != '\0'; cft++)
2819 cft->ss = ss;
2820
8e3f6541
TH
2821 cgroup_cfts_prepare();
2822 set->cfts = cfts;
2823 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2824 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2825 if (ret)
2bb566cb 2826 cgroup_rm_cftypes(cfts);
9ccece80 2827 return ret;
8e3f6541
TH
2828}
2829EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2830
79578621
TH
2831/**
2832 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2833 * @cfts: zero-length name terminated array of cftypes
2834 *
2bb566cb
TH
2835 * Unregister @cfts. Files described by @cfts are removed from all
2836 * existing cgroups and all future cgroups won't have them either. This
2837 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2838 *
2839 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2840 * registered.
79578621 2841 */
2bb566cb 2842int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2843{
2844 struct cftype_set *set;
2845
2bb566cb
TH
2846 if (!cfts || !cfts[0].ss)
2847 return -ENOENT;
2848
79578621
TH
2849 cgroup_cfts_prepare();
2850
2bb566cb 2851 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2852 if (set->cfts == cfts) {
f57947d2
LZ
2853 list_del(&set->node);
2854 kfree(set);
2bb566cb 2855 cgroup_cfts_commit(cfts, false);
79578621
TH
2856 return 0;
2857 }
2858 }
2859
2bb566cb 2860 cgroup_cfts_commit(NULL, false);
79578621
TH
2861 return -ENOENT;
2862}
2863
a043e3b2
LZ
2864/**
2865 * cgroup_task_count - count the number of tasks in a cgroup.
2866 * @cgrp: the cgroup in question
2867 *
2868 * Return the number of tasks in the cgroup.
2869 */
bd89aabc 2870int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2871{
2872 int count = 0;
69d0206c 2873 struct cgrp_cset_link *link;
817929ec
PM
2874
2875 read_lock(&css_set_lock);
69d0206c
TH
2876 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2877 count += atomic_read(&link->cset->refcount);
817929ec 2878 read_unlock(&css_set_lock);
bbcb81d0
PM
2879 return count;
2880}
2881
817929ec 2882/*
0942eeee
TH
2883 * To reduce the fork() overhead for systems that are not actually using
2884 * their cgroups capability, we don't maintain the lists running through
2885 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2886 * words after the first call to css_task_iter_start().
31a7df01 2887 */
3df91fe3 2888static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2889{
2890 struct task_struct *p, *g;
2891 write_lock(&css_set_lock);
2892 use_task_css_set_links = 1;
3ce3230a
FW
2893 /*
2894 * We need tasklist_lock because RCU is not safe against
2895 * while_each_thread(). Besides, a forking task that has passed
2896 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2897 * is not guaranteed to have its child immediately visible in the
2898 * tasklist if we walk through it with RCU.
2899 */
2900 read_lock(&tasklist_lock);
31a7df01
CW
2901 do_each_thread(g, p) {
2902 task_lock(p);
0e04388f
LZ
2903 /*
2904 * We should check if the process is exiting, otherwise
2905 * it will race with cgroup_exit() in that the list
2906 * entry won't be deleted though the process has exited.
2907 */
2908 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2909 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2910 task_unlock(p);
2911 } while_each_thread(g, p);
3ce3230a 2912 read_unlock(&tasklist_lock);
31a7df01
CW
2913 write_unlock(&css_set_lock);
2914}
2915
53fa5261 2916/**
492eb21b
TH
2917 * css_next_child - find the next child of a given css
2918 * @pos_css: the current position (%NULL to initiate traversal)
2919 * @parent_css: css whose children to walk
53fa5261 2920 *
492eb21b 2921 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2922 * under either cgroup_mutex or RCU read lock. The only requirement is
2923 * that @parent_css and @pos_css are accessible. The next sibling is
2924 * guaranteed to be returned regardless of their states.
53fa5261 2925 */
492eb21b
TH
2926struct cgroup_subsys_state *
2927css_next_child(struct cgroup_subsys_state *pos_css,
2928 struct cgroup_subsys_state *parent_css)
53fa5261 2929{
492eb21b
TH
2930 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2931 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2932 struct cgroup *next;
2933
87fb54f1 2934 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
2935
2936 /*
2937 * @pos could already have been removed. Once a cgroup is removed,
2938 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2939 * changes. As CGRP_DEAD assertion is serialized and happens
2940 * before the cgroup is taken off the ->sibling list, if we see it
2941 * unasserted, it's guaranteed that the next sibling hasn't
2942 * finished its grace period even if it's already removed, and thus
2943 * safe to dereference from this RCU critical section. If
2944 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2945 * to be visible as %true here.
3b287a50
TH
2946 *
2947 * If @pos is dead, its next pointer can't be dereferenced;
2948 * however, as each cgroup is given a monotonically increasing
2949 * unique serial number and always appended to the sibling list,
2950 * the next one can be found by walking the parent's children until
2951 * we see a cgroup with higher serial number than @pos's. While
2952 * this path can be slower, it's taken only when either the current
2953 * cgroup is removed or iteration and removal race.
53fa5261 2954 */
3b287a50
TH
2955 if (!pos) {
2956 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2957 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2958 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2959 } else {
2960 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2961 if (next->serial_nr > pos->serial_nr)
2962 break;
53fa5261
TH
2963 }
2964
492eb21b
TH
2965 if (&next->sibling == &cgrp->children)
2966 return NULL;
2967
ca8bdcaf 2968 return cgroup_css(next, parent_css->ss);
53fa5261 2969}
492eb21b 2970EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2971
574bd9f7 2972/**
492eb21b 2973 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2974 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2975 * @root: css whose descendants to walk
574bd9f7 2976 *
492eb21b 2977 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2978 * to visit for pre-order traversal of @root's descendants. @root is
2979 * included in the iteration and the first node to be visited.
75501a6d 2980 *
87fb54f1
TH
2981 * While this function requires cgroup_mutex or RCU read locking, it
2982 * doesn't require the whole traversal to be contained in a single critical
2983 * section. This function will return the correct next descendant as long
2984 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2985 */
492eb21b
TH
2986struct cgroup_subsys_state *
2987css_next_descendant_pre(struct cgroup_subsys_state *pos,
2988 struct cgroup_subsys_state *root)
574bd9f7 2989{
492eb21b 2990 struct cgroup_subsys_state *next;
574bd9f7 2991
87fb54f1 2992 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 2993
bd8815a6 2994 /* if first iteration, visit @root */
7805d000 2995 if (!pos)
bd8815a6 2996 return root;
574bd9f7
TH
2997
2998 /* visit the first child if exists */
492eb21b 2999 next = css_next_child(NULL, pos);
574bd9f7
TH
3000 if (next)
3001 return next;
3002
3003 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3004 while (pos != root) {
3005 next = css_next_child(pos, css_parent(pos));
75501a6d 3006 if (next)
574bd9f7 3007 return next;
492eb21b 3008 pos = css_parent(pos);
7805d000 3009 }
574bd9f7
TH
3010
3011 return NULL;
3012}
492eb21b 3013EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 3014
12a9d2fe 3015/**
492eb21b
TH
3016 * css_rightmost_descendant - return the rightmost descendant of a css
3017 * @pos: css of interest
12a9d2fe 3018 *
492eb21b
TH
3019 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3020 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3021 * subtree of @pos.
75501a6d 3022 *
87fb54f1
TH
3023 * While this function requires cgroup_mutex or RCU read locking, it
3024 * doesn't require the whole traversal to be contained in a single critical
3025 * section. This function will return the correct rightmost descendant as
3026 * long as @pos is accessible.
12a9d2fe 3027 */
492eb21b
TH
3028struct cgroup_subsys_state *
3029css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3030{
492eb21b 3031 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3032
87fb54f1 3033 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3034
3035 do {
3036 last = pos;
3037 /* ->prev isn't RCU safe, walk ->next till the end */
3038 pos = NULL;
492eb21b 3039 css_for_each_child(tmp, last)
12a9d2fe
TH
3040 pos = tmp;
3041 } while (pos);
3042
3043 return last;
3044}
492eb21b 3045EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3046
492eb21b
TH
3047static struct cgroup_subsys_state *
3048css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3049{
492eb21b 3050 struct cgroup_subsys_state *last;
574bd9f7
TH
3051
3052 do {
3053 last = pos;
492eb21b 3054 pos = css_next_child(NULL, pos);
574bd9f7
TH
3055 } while (pos);
3056
3057 return last;
3058}
3059
3060/**
492eb21b 3061 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3062 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3063 * @root: css whose descendants to walk
574bd9f7 3064 *
492eb21b 3065 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3066 * to visit for post-order traversal of @root's descendants. @root is
3067 * included in the iteration and the last node to be visited.
75501a6d 3068 *
87fb54f1
TH
3069 * While this function requires cgroup_mutex or RCU read locking, it
3070 * doesn't require the whole traversal to be contained in a single critical
3071 * section. This function will return the correct next descendant as long
3072 * as both @pos and @cgroup are accessible and @pos is a descendant of
3073 * @cgroup.
574bd9f7 3074 */
492eb21b
TH
3075struct cgroup_subsys_state *
3076css_next_descendant_post(struct cgroup_subsys_state *pos,
3077 struct cgroup_subsys_state *root)
574bd9f7 3078{
492eb21b 3079 struct cgroup_subsys_state *next;
574bd9f7 3080
87fb54f1 3081 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3082
58b79a91
TH
3083 /* if first iteration, visit leftmost descendant which may be @root */
3084 if (!pos)
3085 return css_leftmost_descendant(root);
574bd9f7 3086
bd8815a6
TH
3087 /* if we visited @root, we're done */
3088 if (pos == root)
3089 return NULL;
3090
574bd9f7 3091 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3092 next = css_next_child(pos, css_parent(pos));
75501a6d 3093 if (next)
492eb21b 3094 return css_leftmost_descendant(next);
574bd9f7
TH
3095
3096 /* no sibling left, visit parent */
bd8815a6 3097 return css_parent(pos);
574bd9f7 3098}
492eb21b 3099EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3100
0942eeee 3101/**
72ec7029 3102 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3103 * @it: the iterator to advance
3104 *
3105 * Advance @it to the next css_set to walk.
d515876e 3106 */
72ec7029 3107static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3108{
3109 struct list_head *l = it->cset_link;
3110 struct cgrp_cset_link *link;
3111 struct css_set *cset;
3112
3113 /* Advance to the next non-empty css_set */
3114 do {
3115 l = l->next;
72ec7029 3116 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3117 it->cset_link = NULL;
3118 return;
3119 }
3120 link = list_entry(l, struct cgrp_cset_link, cset_link);
3121 cset = link->cset;
3122 } while (list_empty(&cset->tasks));
3123 it->cset_link = l;
3124 it->task = cset->tasks.next;
3125}
3126
0942eeee 3127/**
72ec7029
TH
3128 * css_task_iter_start - initiate task iteration
3129 * @css: the css to walk tasks of
0942eeee
TH
3130 * @it: the task iterator to use
3131 *
72ec7029
TH
3132 * Initiate iteration through the tasks of @css. The caller can call
3133 * css_task_iter_next() to walk through the tasks until the function
3134 * returns NULL. On completion of iteration, css_task_iter_end() must be
3135 * called.
0942eeee
TH
3136 *
3137 * Note that this function acquires a lock which is released when the
3138 * iteration finishes. The caller can't sleep while iteration is in
3139 * progress.
3140 */
72ec7029
TH
3141void css_task_iter_start(struct cgroup_subsys_state *css,
3142 struct css_task_iter *it)
c6ca5750 3143 __acquires(css_set_lock)
817929ec
PM
3144{
3145 /*
72ec7029
TH
3146 * The first time anyone tries to iterate across a css, we need to
3147 * enable the list linking each css_set to its tasks, and fix up
3148 * all existing tasks.
817929ec 3149 */
31a7df01
CW
3150 if (!use_task_css_set_links)
3151 cgroup_enable_task_cg_lists();
3152
817929ec 3153 read_lock(&css_set_lock);
c59cd3d8 3154
72ec7029
TH
3155 it->origin_css = css;
3156 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3157
72ec7029 3158 css_advance_task_iter(it);
817929ec
PM
3159}
3160
0942eeee 3161/**
72ec7029 3162 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3163 * @it: the task iterator being iterated
3164 *
3165 * The "next" function for task iteration. @it should have been
72ec7029
TH
3166 * initialized via css_task_iter_start(). Returns NULL when the iteration
3167 * reaches the end.
0942eeee 3168 */
72ec7029 3169struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3170{
3171 struct task_struct *res;
3172 struct list_head *l = it->task;
69d0206c 3173 struct cgrp_cset_link *link;
817929ec
PM
3174
3175 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3176 if (!it->cset_link)
817929ec
PM
3177 return NULL;
3178 res = list_entry(l, struct task_struct, cg_list);
3179 /* Advance iterator to find next entry */
3180 l = l->next;
69d0206c
TH
3181 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3182 if (l == &link->cset->tasks) {
0942eeee
TH
3183 /*
3184 * We reached the end of this task list - move on to the
3185 * next cgrp_cset_link.
3186 */
72ec7029 3187 css_advance_task_iter(it);
817929ec
PM
3188 } else {
3189 it->task = l;
3190 }
3191 return res;
3192}
3193
0942eeee 3194/**
72ec7029 3195 * css_task_iter_end - finish task iteration
0942eeee
TH
3196 * @it: the task iterator to finish
3197 *
72ec7029 3198 * Finish task iteration started by css_task_iter_start().
0942eeee 3199 */
72ec7029 3200void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3201 __releases(css_set_lock)
817929ec
PM
3202{
3203 read_unlock(&css_set_lock);
3204}
3205
31a7df01
CW
3206static inline int started_after_time(struct task_struct *t1,
3207 struct timespec *time,
3208 struct task_struct *t2)
3209{
3210 int start_diff = timespec_compare(&t1->start_time, time);
3211 if (start_diff > 0) {
3212 return 1;
3213 } else if (start_diff < 0) {
3214 return 0;
3215 } else {
3216 /*
3217 * Arbitrarily, if two processes started at the same
3218 * time, we'll say that the lower pointer value
3219 * started first. Note that t2 may have exited by now
3220 * so this may not be a valid pointer any longer, but
3221 * that's fine - it still serves to distinguish
3222 * between two tasks started (effectively) simultaneously.
3223 */
3224 return t1 > t2;
3225 }
3226}
3227
3228/*
3229 * This function is a callback from heap_insert() and is used to order
3230 * the heap.
3231 * In this case we order the heap in descending task start time.
3232 */
3233static inline int started_after(void *p1, void *p2)
3234{
3235 struct task_struct *t1 = p1;
3236 struct task_struct *t2 = p2;
3237 return started_after_time(t1, &t2->start_time, t2);
3238}
3239
3240/**
72ec7029
TH
3241 * css_scan_tasks - iterate though all the tasks in a css
3242 * @css: the css to iterate tasks of
e535837b
TH
3243 * @test: optional test callback
3244 * @process: process callback
3245 * @data: data passed to @test and @process
3246 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3247 *
72ec7029
TH
3248 * Iterate through all the tasks in @css, calling @test for each, and if it
3249 * returns %true, call @process for it also.
31a7df01 3250 *
e535837b 3251 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3252 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3253 * lock css_set_lock for the call to @process.
3254 *
3255 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3256 * of @css for the duration of this call. This function may or may not
3257 * call @process for tasks that exit or move to a different css during the
3258 * call, or are forked or move into the css during the call.
31a7df01 3259 *
e535837b
TH
3260 * Note that @test may be called with locks held, and may in some
3261 * situations be called multiple times for the same task, so it should be
3262 * cheap.
31a7df01 3263 *
e535837b
TH
3264 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3265 * heap operations (and its "gt" member will be overwritten), else a
3266 * temporary heap will be used (allocation of which may cause this function
3267 * to fail).
31a7df01 3268 */
72ec7029
TH
3269int css_scan_tasks(struct cgroup_subsys_state *css,
3270 bool (*test)(struct task_struct *, void *),
3271 void (*process)(struct task_struct *, void *),
3272 void *data, struct ptr_heap *heap)
31a7df01
CW
3273{
3274 int retval, i;
72ec7029 3275 struct css_task_iter it;
31a7df01
CW
3276 struct task_struct *p, *dropped;
3277 /* Never dereference latest_task, since it's not refcounted */
3278 struct task_struct *latest_task = NULL;
3279 struct ptr_heap tmp_heap;
31a7df01
CW
3280 struct timespec latest_time = { 0, 0 };
3281
e535837b 3282 if (heap) {
31a7df01 3283 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3284 heap->gt = &started_after;
3285 } else {
3286 /* We need to allocate our own heap memory */
3287 heap = &tmp_heap;
3288 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3289 if (retval)
3290 /* cannot allocate the heap */
3291 return retval;
3292 }
3293
3294 again:
3295 /*
72ec7029 3296 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3297 * which are of interest, and invoking @process callback on the
3298 * ones which need an update. Since we don't want to hold any
3299 * locks during the task updates, gather tasks to be processed in a
3300 * heap structure. The heap is sorted by descending task start
3301 * time. If the statically-sized heap fills up, we overflow tasks
3302 * that started later, and in future iterations only consider tasks
3303 * that started after the latest task in the previous pass. This
31a7df01
CW
3304 * guarantees forward progress and that we don't miss any tasks.
3305 */
3306 heap->size = 0;
72ec7029
TH
3307 css_task_iter_start(css, &it);
3308 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3309 /*
3310 * Only affect tasks that qualify per the caller's callback,
3311 * if he provided one
3312 */
e535837b 3313 if (test && !test(p, data))
31a7df01
CW
3314 continue;
3315 /*
3316 * Only process tasks that started after the last task
3317 * we processed
3318 */
3319 if (!started_after_time(p, &latest_time, latest_task))
3320 continue;
3321 dropped = heap_insert(heap, p);
3322 if (dropped == NULL) {
3323 /*
3324 * The new task was inserted; the heap wasn't
3325 * previously full
3326 */
3327 get_task_struct(p);
3328 } else if (dropped != p) {
3329 /*
3330 * The new task was inserted, and pushed out a
3331 * different task
3332 */
3333 get_task_struct(p);
3334 put_task_struct(dropped);
3335 }
3336 /*
3337 * Else the new task was newer than anything already in
3338 * the heap and wasn't inserted
3339 */
3340 }
72ec7029 3341 css_task_iter_end(&it);
31a7df01
CW
3342
3343 if (heap->size) {
3344 for (i = 0; i < heap->size; i++) {
4fe91d51 3345 struct task_struct *q = heap->ptrs[i];
31a7df01 3346 if (i == 0) {
4fe91d51
PJ
3347 latest_time = q->start_time;
3348 latest_task = q;
31a7df01
CW
3349 }
3350 /* Process the task per the caller's callback */
e535837b 3351 process(q, data);
4fe91d51 3352 put_task_struct(q);
31a7df01
CW
3353 }
3354 /*
3355 * If we had to process any tasks at all, scan again
3356 * in case some of them were in the middle of forking
3357 * children that didn't get processed.
3358 * Not the most efficient way to do it, but it avoids
3359 * having to take callback_mutex in the fork path
3360 */
3361 goto again;
3362 }
3363 if (heap == &tmp_heap)
3364 heap_free(&tmp_heap);
3365 return 0;
3366}
3367
e535837b 3368static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3369{
e535837b 3370 struct cgroup *new_cgroup = data;
8cc99345 3371
47cfcd09 3372 mutex_lock(&cgroup_mutex);
8cc99345 3373 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3374 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3375}
3376
3377/**
3378 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3379 * @to: cgroup to which the tasks will be moved
3380 * @from: cgroup in which the tasks currently reside
3381 */
3382int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3383{
72ec7029
TH
3384 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3385 to, NULL);
8cc99345
TH
3386}
3387
bbcb81d0 3388/*
102a775e 3389 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3390 *
3391 * Reading this file can return large amounts of data if a cgroup has
3392 * *lots* of attached tasks. So it may need several calls to read(),
3393 * but we cannot guarantee that the information we produce is correct
3394 * unless we produce it entirely atomically.
3395 *
bbcb81d0 3396 */
bbcb81d0 3397
24528255
LZ
3398/* which pidlist file are we talking about? */
3399enum cgroup_filetype {
3400 CGROUP_FILE_PROCS,
3401 CGROUP_FILE_TASKS,
3402};
3403
3404/*
3405 * A pidlist is a list of pids that virtually represents the contents of one
3406 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3407 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3408 * to the cgroup.
3409 */
3410struct cgroup_pidlist {
3411 /*
3412 * used to find which pidlist is wanted. doesn't change as long as
3413 * this particular list stays in the list.
3414 */
3415 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3416 /* array of xids */
3417 pid_t *list;
3418 /* how many elements the above list has */
3419 int length;
24528255
LZ
3420 /* each of these stored in a list by its cgroup */
3421 struct list_head links;
3422 /* pointer to the cgroup we belong to, for list removal purposes */
3423 struct cgroup *owner;
b1a21367
TH
3424 /* for delayed destruction */
3425 struct delayed_work destroy_dwork;
24528255
LZ
3426};
3427
d1d9fd33
BB
3428/*
3429 * The following two functions "fix" the issue where there are more pids
3430 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3431 * TODO: replace with a kernel-wide solution to this problem
3432 */
3433#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3434static void *pidlist_allocate(int count)
3435{
3436 if (PIDLIST_TOO_LARGE(count))
3437 return vmalloc(count * sizeof(pid_t));
3438 else
3439 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3440}
b1a21367 3441
d1d9fd33
BB
3442static void pidlist_free(void *p)
3443{
3444 if (is_vmalloc_addr(p))
3445 vfree(p);
3446 else
3447 kfree(p);
3448}
d1d9fd33 3449
b1a21367
TH
3450/*
3451 * Used to destroy all pidlists lingering waiting for destroy timer. None
3452 * should be left afterwards.
3453 */
3454static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3455{
3456 struct cgroup_pidlist *l, *tmp_l;
3457
3458 mutex_lock(&cgrp->pidlist_mutex);
3459 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3460 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3461 mutex_unlock(&cgrp->pidlist_mutex);
3462
3463 flush_workqueue(cgroup_pidlist_destroy_wq);
3464 BUG_ON(!list_empty(&cgrp->pidlists));
3465}
3466
3467static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3468{
3469 struct delayed_work *dwork = to_delayed_work(work);
3470 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3471 destroy_dwork);
3472 struct cgroup_pidlist *tofree = NULL;
3473
3474 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3475
3476 /*
04502365
TH
3477 * Destroy iff we didn't get queued again. The state won't change
3478 * as destroy_dwork can only be queued while locked.
b1a21367 3479 */
04502365 3480 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3481 list_del(&l->links);
3482 pidlist_free(l->list);
3483 put_pid_ns(l->key.ns);
3484 tofree = l;
3485 }
3486
b1a21367
TH
3487 mutex_unlock(&l->owner->pidlist_mutex);
3488 kfree(tofree);
3489}
3490
bbcb81d0 3491/*
102a775e 3492 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3493 * Returns the number of unique elements.
bbcb81d0 3494 */
6ee211ad 3495static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3496{
102a775e 3497 int src, dest = 1;
102a775e
BB
3498
3499 /*
3500 * we presume the 0th element is unique, so i starts at 1. trivial
3501 * edge cases first; no work needs to be done for either
3502 */
3503 if (length == 0 || length == 1)
3504 return length;
3505 /* src and dest walk down the list; dest counts unique elements */
3506 for (src = 1; src < length; src++) {
3507 /* find next unique element */
3508 while (list[src] == list[src-1]) {
3509 src++;
3510 if (src == length)
3511 goto after;
3512 }
3513 /* dest always points to where the next unique element goes */
3514 list[dest] = list[src];
3515 dest++;
3516 }
3517after:
102a775e
BB
3518 return dest;
3519}
3520
afb2bc14
TH
3521/*
3522 * The two pid files - task and cgroup.procs - guaranteed that the result
3523 * is sorted, which forced this whole pidlist fiasco. As pid order is
3524 * different per namespace, each namespace needs differently sorted list,
3525 * making it impossible to use, for example, single rbtree of member tasks
3526 * sorted by task pointer. As pidlists can be fairly large, allocating one
3527 * per open file is dangerous, so cgroup had to implement shared pool of
3528 * pidlists keyed by cgroup and namespace.
3529 *
3530 * All this extra complexity was caused by the original implementation
3531 * committing to an entirely unnecessary property. In the long term, we
3532 * want to do away with it. Explicitly scramble sort order if
3533 * sane_behavior so that no such expectation exists in the new interface.
3534 *
3535 * Scrambling is done by swapping every two consecutive bits, which is
3536 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3537 */
3538static pid_t pid_fry(pid_t pid)
3539{
3540 unsigned a = pid & 0x55555555;
3541 unsigned b = pid & 0xAAAAAAAA;
3542
3543 return (a << 1) | (b >> 1);
3544}
3545
3546static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3547{
3548 if (cgroup_sane_behavior(cgrp))
3549 return pid_fry(pid);
3550 else
3551 return pid;
3552}
3553
102a775e
BB
3554static int cmppid(const void *a, const void *b)
3555{
3556 return *(pid_t *)a - *(pid_t *)b;
3557}
3558
afb2bc14
TH
3559static int fried_cmppid(const void *a, const void *b)
3560{
3561 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3562}
3563
e6b81710
TH
3564static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3565 enum cgroup_filetype type)
3566{
3567 struct cgroup_pidlist *l;
3568 /* don't need task_nsproxy() if we're looking at ourself */
3569 struct pid_namespace *ns = task_active_pid_ns(current);
3570
3571 lockdep_assert_held(&cgrp->pidlist_mutex);
3572
3573 list_for_each_entry(l, &cgrp->pidlists, links)
3574 if (l->key.type == type && l->key.ns == ns)
3575 return l;
3576 return NULL;
3577}
3578
72a8cb30
BB
3579/*
3580 * find the appropriate pidlist for our purpose (given procs vs tasks)
3581 * returns with the lock on that pidlist already held, and takes care
3582 * of the use count, or returns NULL with no locks held if we're out of
3583 * memory.
3584 */
e6b81710
TH
3585static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3586 enum cgroup_filetype type)
72a8cb30
BB
3587{
3588 struct cgroup_pidlist *l;
b70cc5fd 3589
e6b81710
TH
3590 lockdep_assert_held(&cgrp->pidlist_mutex);
3591
3592 l = cgroup_pidlist_find(cgrp, type);
3593 if (l)
3594 return l;
3595
72a8cb30 3596 /* entry not found; create a new one */
f4f4be2b 3597 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3598 if (!l)
72a8cb30 3599 return l;
e6b81710 3600
b1a21367 3601 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3602 l->key.type = type;
e6b81710
TH
3603 /* don't need task_nsproxy() if we're looking at ourself */
3604 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3605 l->owner = cgrp;
3606 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3607 return l;
3608}
3609
102a775e
BB
3610/*
3611 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3612 */
72a8cb30
BB
3613static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3614 struct cgroup_pidlist **lp)
102a775e
BB
3615{
3616 pid_t *array;
3617 int length;
3618 int pid, n = 0; /* used for populating the array */
72ec7029 3619 struct css_task_iter it;
817929ec 3620 struct task_struct *tsk;
102a775e
BB
3621 struct cgroup_pidlist *l;
3622
4bac00d1
TH
3623 lockdep_assert_held(&cgrp->pidlist_mutex);
3624
102a775e
BB
3625 /*
3626 * If cgroup gets more users after we read count, we won't have
3627 * enough space - tough. This race is indistinguishable to the
3628 * caller from the case that the additional cgroup users didn't
3629 * show up until sometime later on.
3630 */
3631 length = cgroup_task_count(cgrp);
d1d9fd33 3632 array = pidlist_allocate(length);
102a775e
BB
3633 if (!array)
3634 return -ENOMEM;
3635 /* now, populate the array */
72ec7029
TH
3636 css_task_iter_start(&cgrp->dummy_css, &it);
3637 while ((tsk = css_task_iter_next(&it))) {
102a775e 3638 if (unlikely(n == length))
817929ec 3639 break;
102a775e 3640 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3641 if (type == CGROUP_FILE_PROCS)
3642 pid = task_tgid_vnr(tsk);
3643 else
3644 pid = task_pid_vnr(tsk);
102a775e
BB
3645 if (pid > 0) /* make sure to only use valid results */
3646 array[n++] = pid;
817929ec 3647 }
72ec7029 3648 css_task_iter_end(&it);
102a775e
BB
3649 length = n;
3650 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3651 if (cgroup_sane_behavior(cgrp))
3652 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3653 else
3654 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3655 if (type == CGROUP_FILE_PROCS)
6ee211ad 3656 length = pidlist_uniq(array, length);
e6b81710 3657
e6b81710 3658 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3659 if (!l) {
e6b81710 3660 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3661 pidlist_free(array);
72a8cb30 3662 return -ENOMEM;
102a775e 3663 }
e6b81710
TH
3664
3665 /* store array, freeing old if necessary */
d1d9fd33 3666 pidlist_free(l->list);
102a775e
BB
3667 l->list = array;
3668 l->length = length;
72a8cb30 3669 *lp = l;
102a775e 3670 return 0;
bbcb81d0
PM
3671}
3672
846c7bb0 3673/**
a043e3b2 3674 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3675 * @stats: cgroupstats to fill information into
3676 * @dentry: A dentry entry belonging to the cgroup for which stats have
3677 * been requested.
a043e3b2
LZ
3678 *
3679 * Build and fill cgroupstats so that taskstats can export it to user
3680 * space.
846c7bb0
BS
3681 */
3682int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3683{
3684 int ret = -EINVAL;
bd89aabc 3685 struct cgroup *cgrp;
72ec7029 3686 struct css_task_iter it;
846c7bb0 3687 struct task_struct *tsk;
33d283be 3688
846c7bb0 3689 /*
33d283be
LZ
3690 * Validate dentry by checking the superblock operations,
3691 * and make sure it's a directory.
846c7bb0 3692 */
33d283be
LZ
3693 if (dentry->d_sb->s_op != &cgroup_ops ||
3694 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3695 goto err;
3696
3697 ret = 0;
bd89aabc 3698 cgrp = dentry->d_fsdata;
846c7bb0 3699
72ec7029
TH
3700 css_task_iter_start(&cgrp->dummy_css, &it);
3701 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3702 switch (tsk->state) {
3703 case TASK_RUNNING:
3704 stats->nr_running++;
3705 break;
3706 case TASK_INTERRUPTIBLE:
3707 stats->nr_sleeping++;
3708 break;
3709 case TASK_UNINTERRUPTIBLE:
3710 stats->nr_uninterruptible++;
3711 break;
3712 case TASK_STOPPED:
3713 stats->nr_stopped++;
3714 break;
3715 default:
3716 if (delayacct_is_task_waiting_on_io(tsk))
3717 stats->nr_io_wait++;
3718 break;
3719 }
3720 }
72ec7029 3721 css_task_iter_end(&it);
846c7bb0 3722
846c7bb0
BS
3723err:
3724 return ret;
3725}
3726
8f3ff208 3727
bbcb81d0 3728/*
102a775e 3729 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3730 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3731 * in the cgroup->l->list array.
bbcb81d0 3732 */
cc31edce 3733
102a775e 3734static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3735{
cc31edce
PM
3736 /*
3737 * Initially we receive a position value that corresponds to
3738 * one more than the last pid shown (or 0 on the first call or
3739 * after a seek to the start). Use a binary-search to find the
3740 * next pid to display, if any
3741 */
5d22444f 3742 struct cgroup_open_file *of = s->private;
7da11279 3743 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3744 struct cgroup_pidlist *l;
7da11279 3745 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3746 int index = 0, pid = *pos;
4bac00d1
TH
3747 int *iter, ret;
3748
3749 mutex_lock(&cgrp->pidlist_mutex);
3750
3751 /*
5d22444f 3752 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3753 * after open. If the matching pidlist is around, we can use that.
5d22444f 3754 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3755 * could already have been destroyed.
3756 */
5d22444f
TH
3757 if (of->priv)
3758 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3759
3760 /*
3761 * Either this is the first start() after open or the matching
3762 * pidlist has been destroyed inbetween. Create a new one.
3763 */
5d22444f
TH
3764 if (!of->priv) {
3765 ret = pidlist_array_load(cgrp, type,
3766 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3767 if (ret)
3768 return ERR_PTR(ret);
3769 }
5d22444f 3770 l = of->priv;
cc31edce 3771
cc31edce 3772 if (pid) {
102a775e 3773 int end = l->length;
20777766 3774
cc31edce
PM
3775 while (index < end) {
3776 int mid = (index + end) / 2;
afb2bc14 3777 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3778 index = mid;
3779 break;
afb2bc14 3780 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3781 index = mid + 1;
3782 else
3783 end = mid;
3784 }
3785 }
3786 /* If we're off the end of the array, we're done */
102a775e 3787 if (index >= l->length)
cc31edce
PM
3788 return NULL;
3789 /* Update the abstract position to be the actual pid that we found */
102a775e 3790 iter = l->list + index;
afb2bc14 3791 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3792 return iter;
3793}
3794
102a775e 3795static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3796{
5d22444f
TH
3797 struct cgroup_open_file *of = s->private;
3798 struct cgroup_pidlist *l = of->priv;
62236858 3799
5d22444f
TH
3800 if (l)
3801 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3802 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3803 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3804}
3805
102a775e 3806static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3807{
5d22444f
TH
3808 struct cgroup_open_file *of = s->private;
3809 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3810 pid_t *p = v;
3811 pid_t *end = l->list + l->length;
cc31edce
PM
3812 /*
3813 * Advance to the next pid in the array. If this goes off the
3814 * end, we're done
3815 */
3816 p++;
3817 if (p >= end) {
3818 return NULL;
3819 } else {
7da11279 3820 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3821 return p;
3822 }
3823}
3824
102a775e 3825static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3826{
3827 return seq_printf(s, "%d\n", *(int *)v);
3828}
bbcb81d0 3829
102a775e
BB
3830/*
3831 * seq_operations functions for iterating on pidlists through seq_file -
3832 * independent of whether it's tasks or procs
3833 */
3834static const struct seq_operations cgroup_pidlist_seq_operations = {
3835 .start = cgroup_pidlist_start,
3836 .stop = cgroup_pidlist_stop,
3837 .next = cgroup_pidlist_next,
3838 .show = cgroup_pidlist_show,
cc31edce
PM
3839};
3840
182446d0
TH
3841static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3842 struct cftype *cft)
81a6a5cd 3843{
182446d0 3844 return notify_on_release(css->cgroup);
81a6a5cd
PM
3845}
3846
182446d0
TH
3847static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3848 struct cftype *cft, u64 val)
6379c106 3849{
182446d0 3850 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3851 if (val)
182446d0 3852 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3853 else
182446d0 3854 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3855 return 0;
3856}
3857
1c8158ee
LZ
3858/*
3859 * When dput() is called asynchronously, if umount has been done and
3860 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3861 * there's a small window that vfs will see the root dentry with non-zero
3862 * refcnt and trigger BUG().
3863 *
3864 * That's why we hold a reference before dput() and drop it right after.
3865 */
3866static void cgroup_dput(struct cgroup *cgrp)
3867{
3868 struct super_block *sb = cgrp->root->sb;
3869
3870 atomic_inc(&sb->s_active);
3871 dput(cgrp->dentry);
3872 deactivate_super(sb);
3873}
3874
182446d0
TH
3875static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3876 struct cftype *cft)
97978e6d 3877{
182446d0 3878 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3879}
3880
182446d0
TH
3881static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3882 struct cftype *cft, u64 val)
97978e6d
DL
3883{
3884 if (val)
182446d0 3885 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3886 else
182446d0 3887 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3888 return 0;
3889}
3890
d5c56ced 3891static struct cftype cgroup_base_files[] = {
81a6a5cd 3892 {
d5c56ced 3893 .name = "cgroup.procs",
6612f05b
TH
3894 .seq_start = cgroup_pidlist_start,
3895 .seq_next = cgroup_pidlist_next,
3896 .seq_stop = cgroup_pidlist_stop,
3897 .seq_show = cgroup_pidlist_show,
5d22444f 3898 .private = CGROUP_FILE_PROCS,
74a1166d 3899 .write_u64 = cgroup_procs_write,
74a1166d 3900 .mode = S_IRUGO | S_IWUSR,
102a775e 3901 },
97978e6d
DL
3902 {
3903 .name = "cgroup.clone_children",
873fe09e 3904 .flags = CFTYPE_INSANE,
97978e6d
DL
3905 .read_u64 = cgroup_clone_children_read,
3906 .write_u64 = cgroup_clone_children_write,
3907 },
873fe09e
TH
3908 {
3909 .name = "cgroup.sane_behavior",
3910 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3911 .seq_show = cgroup_sane_behavior_show,
873fe09e 3912 },
d5c56ced
TH
3913
3914 /*
3915 * Historical crazy stuff. These don't have "cgroup." prefix and
3916 * don't exist if sane_behavior. If you're depending on these, be
3917 * prepared to be burned.
3918 */
3919 {
3920 .name = "tasks",
3921 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3922 .seq_start = cgroup_pidlist_start,
3923 .seq_next = cgroup_pidlist_next,
3924 .seq_stop = cgroup_pidlist_stop,
3925 .seq_show = cgroup_pidlist_show,
5d22444f 3926 .private = CGROUP_FILE_TASKS,
d5c56ced 3927 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3928 .mode = S_IRUGO | S_IWUSR,
3929 },
3930 {
3931 .name = "notify_on_release",
3932 .flags = CFTYPE_INSANE,
3933 .read_u64 = cgroup_read_notify_on_release,
3934 .write_u64 = cgroup_write_notify_on_release,
3935 },
6e6ff25b
TH
3936 {
3937 .name = "release_agent",
cc5943a7 3938 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3939 .seq_show = cgroup_release_agent_show,
6e6ff25b
TH
3940 .write_string = cgroup_release_agent_write,
3941 .max_write_len = PATH_MAX,
3942 },
db0416b6 3943 { } /* terminate */
bbcb81d0
PM
3944};
3945
13af07df 3946/**
628f7cd4 3947 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3948 * @cgrp: target cgroup
13af07df 3949 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3950 *
3951 * On failure, no file is added.
13af07df 3952 */
628f7cd4 3953static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3954{
ddbcc7e8 3955 struct cgroup_subsys *ss;
b420ba7d 3956 int i, ret = 0;
bbcb81d0 3957
8e3f6541 3958 /* process cftsets of each subsystem */
b420ba7d 3959 for_each_subsys(ss, i) {
8e3f6541 3960 struct cftype_set *set;
b420ba7d
TH
3961
3962 if (!test_bit(i, &subsys_mask))
13af07df 3963 continue;
8e3f6541 3964
bee55099 3965 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 3966 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
3967 if (ret < 0)
3968 goto err;
3969 }
ddbcc7e8 3970 }
ddbcc7e8 3971 return 0;
bee55099
TH
3972err:
3973 cgroup_clear_dir(cgrp, subsys_mask);
3974 return ret;
ddbcc7e8
PM
3975}
3976
0c21ead1
TH
3977/*
3978 * css destruction is four-stage process.
3979 *
3980 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3981 * Implemented in kill_css().
3982 *
3983 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3984 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3985 * by invoking offline_css(). After offlining, the base ref is put.
3986 * Implemented in css_killed_work_fn().
3987 *
3988 * 3. When the percpu_ref reaches zero, the only possible remaining
3989 * accessors are inside RCU read sections. css_release() schedules the
3990 * RCU callback.
3991 *
3992 * 4. After the grace period, the css can be freed. Implemented in
3993 * css_free_work_fn().
3994 *
3995 * It is actually hairier because both step 2 and 4 require process context
3996 * and thus involve punting to css->destroy_work adding two additional
3997 * steps to the already complex sequence.
3998 */
35ef10da 3999static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4000{
4001 struct cgroup_subsys_state *css =
35ef10da 4002 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4003 struct cgroup *cgrp = css->cgroup;
48ddbe19 4004
0ae78e0b
TH
4005 if (css->parent)
4006 css_put(css->parent);
4007
0c21ead1
TH
4008 css->ss->css_free(css);
4009 cgroup_dput(cgrp);
48ddbe19
TH
4010}
4011
0c21ead1 4012static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4013{
4014 struct cgroup_subsys_state *css =
0c21ead1 4015 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4016
35ef10da
TH
4017 /*
4018 * css holds an extra ref to @cgrp->dentry which is put on the last
0c21ead1 4019 * css_put(). dput() requires process context which we don't have.
35ef10da
TH
4020 */
4021 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4022 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4023}
4024
d3daf28d
TH
4025static void css_release(struct percpu_ref *ref)
4026{
4027 struct cgroup_subsys_state *css =
4028 container_of(ref, struct cgroup_subsys_state, refcnt);
4029
0c21ead1 4030 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4031}
4032
623f926b
TH
4033static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4034 struct cgroup *cgrp)
ddbcc7e8 4035{
bd89aabc 4036 css->cgroup = cgrp;
72c97e54 4037 css->ss = ss;
ddbcc7e8 4038 css->flags = 0;
0ae78e0b
TH
4039
4040 if (cgrp->parent)
ca8bdcaf 4041 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 4042 else
38b53aba 4043 css->flags |= CSS_ROOT;
48ddbe19 4044
ca8bdcaf 4045 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4046}
4047
2a4ac633 4048/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4049static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4050{
623f926b 4051 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4052 int ret = 0;
4053
a31f2d3f
TH
4054 lockdep_assert_held(&cgroup_mutex);
4055
92fb9748 4056 if (ss->css_online)
eb95419b 4057 ret = ss->css_online(css);
ae7f164a 4058 if (!ret) {
eb95419b 4059 css->flags |= CSS_ONLINE;
f20104de 4060 css->cgroup->nr_css++;
ae7f164a
TH
4061 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4062 }
b1929db4 4063 return ret;
a31f2d3f
TH
4064}
4065
2a4ac633 4066/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4067static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4068{
623f926b 4069 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4070
4071 lockdep_assert_held(&cgroup_mutex);
4072
4073 if (!(css->flags & CSS_ONLINE))
4074 return;
4075
d7eeac19 4076 if (ss->css_offline)
eb95419b 4077 ss->css_offline(css);
a31f2d3f 4078
eb95419b 4079 css->flags &= ~CSS_ONLINE;
09a503ea 4080 css->cgroup->nr_css--;
0c21ead1 4081 RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
a31f2d3f
TH
4082}
4083
c81c925a
TH
4084/**
4085 * create_css - create a cgroup_subsys_state
4086 * @cgrp: the cgroup new css will be associated with
4087 * @ss: the subsys of new css
4088 *
4089 * Create a new css associated with @cgrp - @ss pair. On success, the new
4090 * css is online and installed in @cgrp with all interface files created.
4091 * Returns 0 on success, -errno on failure.
4092 */
4093static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4094{
4095 struct cgroup *parent = cgrp->parent;
4096 struct cgroup_subsys_state *css;
4097 int err;
4098
4099 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
4100 lockdep_assert_held(&cgroup_mutex);
4101
4102 css = ss->css_alloc(cgroup_css(parent, ss));
4103 if (IS_ERR(css))
4104 return PTR_ERR(css);
4105
4106 err = percpu_ref_init(&css->refcnt, css_release);
4107 if (err)
4108 goto err_free;
4109
4110 init_css(css, ss, cgrp);
4111
4112 err = cgroup_populate_dir(cgrp, 1 << ss->subsys_id);
4113 if (err)
4114 goto err_free;
4115
4116 err = online_css(css);
4117 if (err)
4118 goto err_free;
4119
4120 dget(cgrp->dentry);
4121 css_get(css->parent);
4122
4123 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4124 parent->parent) {
4125 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4126 current->comm, current->pid, ss->name);
4127 if (!strcmp(ss->name, "memory"))
4128 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4129 ss->warned_broken_hierarchy = true;
4130 }
4131
4132 return 0;
4133
4134err_free:
4135 percpu_ref_cancel_init(&css->refcnt);
4136 ss->css_free(css);
4137 return err;
4138}
4139
ddbcc7e8 4140/*
a043e3b2
LZ
4141 * cgroup_create - create a cgroup
4142 * @parent: cgroup that will be parent of the new cgroup
4143 * @dentry: dentry of the new cgroup
4144 * @mode: mode to set on new inode
ddbcc7e8 4145 *
a043e3b2 4146 * Must be called with the mutex on the parent inode held
ddbcc7e8 4147 */
ddbcc7e8 4148static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4149 umode_t mode)
ddbcc7e8 4150{
bd89aabc 4151 struct cgroup *cgrp;
65dff759 4152 struct cgroup_name *name;
ddbcc7e8
PM
4153 struct cgroupfs_root *root = parent->root;
4154 int err = 0;
4155 struct cgroup_subsys *ss;
4156 struct super_block *sb = root->sb;
4157
0a950f65 4158 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4159 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4160 if (!cgrp)
ddbcc7e8
PM
4161 return -ENOMEM;
4162
65dff759
LZ
4163 name = cgroup_alloc_name(dentry);
4164 if (!name)
4165 goto err_free_cgrp;
4166 rcu_assign_pointer(cgrp->name, name);
4167
4e96ee8e
LZ
4168 /*
4169 * Temporarily set the pointer to NULL, so idr_find() won't return
4170 * a half-baked cgroup.
4171 */
4172 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4173 if (cgrp->id < 0)
65dff759 4174 goto err_free_name;
0a950f65 4175
976c06bc
TH
4176 /*
4177 * Only live parents can have children. Note that the liveliness
4178 * check isn't strictly necessary because cgroup_mkdir() and
4179 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4180 * anyway so that locking is contained inside cgroup proper and we
4181 * don't get nasty surprises if we ever grow another caller.
4182 */
4183 if (!cgroup_lock_live_group(parent)) {
4184 err = -ENODEV;
0a950f65 4185 goto err_free_id;
976c06bc
TH
4186 }
4187
ddbcc7e8
PM
4188 /* Grab a reference on the superblock so the hierarchy doesn't
4189 * get deleted on unmount if there are child cgroups. This
4190 * can be done outside cgroup_mutex, since the sb can't
4191 * disappear while someone has an open control file on the
4192 * fs */
4193 atomic_inc(&sb->s_active);
4194
cc31edce 4195 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4196
fe1c06ca
LZ
4197 dentry->d_fsdata = cgrp;
4198 cgrp->dentry = dentry;
4199
bd89aabc 4200 cgrp->parent = parent;
0ae78e0b 4201 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4202 cgrp->root = parent->root;
ddbcc7e8 4203
b6abdb0e
LZ
4204 if (notify_on_release(parent))
4205 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4206
2260e7fc
TH
4207 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4208 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4209
4e139afc
TH
4210 /*
4211 * Create directory. cgroup_create_file() returns with the new
4212 * directory locked on success so that it can be populated without
4213 * dropping cgroup_mutex.
4214 */
28fd6f30 4215 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4216 if (err < 0)
0d80255e 4217 goto err_unlock;
4e139afc 4218 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4219
00356bd5 4220 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4221
4e139afc 4222 /* allocation complete, commit to creation */
4e139afc
TH
4223 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4224 root->number_of_cgroups++;
28fd6f30 4225
415cf07a
LZ
4226 /* hold a ref to the parent's dentry */
4227 dget(parent->dentry);
4228
0d80255e
TH
4229 /*
4230 * @cgrp is now fully operational. If something fails after this
4231 * point, it'll be released via the normal destruction path.
4232 */
4233 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4234
4235 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4236 if (err)
4237 goto err_destroy;
4238
9d403e99 4239 /* let's create and online css's */
0d80255e 4240 for_each_root_subsys(root, ss) {
c81c925a 4241 err = create_css(cgrp, ss);
0d80255e
TH
4242 if (err)
4243 goto err_destroy;
a8638030
TH
4244 }
4245
ddbcc7e8 4246 mutex_unlock(&cgroup_mutex);
bd89aabc 4247 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4248
4249 return 0;
4250
0d80255e 4251err_unlock:
ddbcc7e8 4252 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4253 /* Release the reference count that we took on the superblock */
4254 deactivate_super(sb);
0a950f65 4255err_free_id:
4e96ee8e 4256 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4257err_free_name:
4258 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4259err_free_cgrp:
bd89aabc 4260 kfree(cgrp);
ddbcc7e8 4261 return err;
4b8b47eb
TH
4262
4263err_destroy:
4264 cgroup_destroy_locked(cgrp);
4265 mutex_unlock(&cgroup_mutex);
4266 mutex_unlock(&dentry->d_inode->i_mutex);
4267 return err;
ddbcc7e8
PM
4268}
4269
18bb1db3 4270static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4271{
4272 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4273
4274 /* the vfs holds inode->i_mutex already */
4275 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4276}
4277
223dbc38
TH
4278/*
4279 * This is called when the refcnt of a css is confirmed to be killed.
4280 * css_tryget() is now guaranteed to fail.
4281 */
4282static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4283{
223dbc38
TH
4284 struct cgroup_subsys_state *css =
4285 container_of(work, struct cgroup_subsys_state, destroy_work);
4286 struct cgroup *cgrp = css->cgroup;
d3daf28d 4287
f20104de
TH
4288 mutex_lock(&cgroup_mutex);
4289
09a503ea
TH
4290 /*
4291 * css_tryget() is guaranteed to fail now. Tell subsystems to
4292 * initate destruction.
4293 */
4294 offline_css(css);
4295
f20104de
TH
4296 /*
4297 * If @cgrp is marked dead, it's waiting for refs of all css's to
4298 * be disabled before proceeding to the second phase of cgroup
4299 * destruction. If we are the last one, kick it off.
4300 */
09a503ea 4301 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
4302 cgroup_destroy_css_killed(cgrp);
4303
4304 mutex_unlock(&cgroup_mutex);
09a503ea
TH
4305
4306 /*
4307 * Put the css refs from kill_css(). Each css holds an extra
4308 * reference to the cgroup's dentry and cgroup removal proceeds
4309 * regardless of css refs. On the last put of each css, whenever
4310 * that may be, the extra dentry ref is put so that dentry
4311 * destruction happens only after all css's are released.
4312 */
4313 css_put(css);
d3daf28d
TH
4314}
4315
223dbc38
TH
4316/* css kill confirmation processing requires process context, bounce */
4317static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4318{
4319 struct cgroup_subsys_state *css =
4320 container_of(ref, struct cgroup_subsys_state, refcnt);
4321
223dbc38 4322 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4323 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4324}
4325
edae0c33
TH
4326/**
4327 * kill_css - destroy a css
4328 * @css: css to destroy
4329 *
3c14f8b4
TH
4330 * This function initiates destruction of @css by removing cgroup interface
4331 * files and putting its base reference. ->css_offline() will be invoked
4332 * asynchronously once css_tryget() is guaranteed to fail and when the
4333 * reference count reaches zero, @css will be released.
edae0c33
TH
4334 */
4335static void kill_css(struct cgroup_subsys_state *css)
4336{
3c14f8b4
TH
4337 cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
4338
edae0c33
TH
4339 /*
4340 * Killing would put the base ref, but we need to keep it alive
4341 * until after ->css_offline().
4342 */
4343 css_get(css);
4344
4345 /*
4346 * cgroup core guarantees that, by the time ->css_offline() is
4347 * invoked, no new css reference will be given out via
4348 * css_tryget(). We can't simply call percpu_ref_kill() and
4349 * proceed to offlining css's because percpu_ref_kill() doesn't
4350 * guarantee that the ref is seen as killed on all CPUs on return.
4351 *
4352 * Use percpu_ref_kill_and_confirm() to get notifications as each
4353 * css is confirmed to be seen as killed on all CPUs.
4354 */
4355 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4356}
4357
4358/**
4359 * cgroup_destroy_locked - the first stage of cgroup destruction
4360 * @cgrp: cgroup to be destroyed
4361 *
4362 * css's make use of percpu refcnts whose killing latency shouldn't be
4363 * exposed to userland and are RCU protected. Also, cgroup core needs to
4364 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4365 * invoked. To satisfy all the requirements, destruction is implemented in
4366 * the following two steps.
4367 *
4368 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4369 * userland visible parts and start killing the percpu refcnts of
4370 * css's. Set up so that the next stage will be kicked off once all
4371 * the percpu refcnts are confirmed to be killed.
4372 *
4373 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4374 * rest of destruction. Once all cgroup references are gone, the
4375 * cgroup is RCU-freed.
4376 *
4377 * This function implements s1. After this step, @cgrp is gone as far as
4378 * the userland is concerned and a new cgroup with the same name may be
4379 * created. As cgroup doesn't care about the names internally, this
4380 * doesn't cause any problem.
4381 */
42809dd4
TH
4382static int cgroup_destroy_locked(struct cgroup *cgrp)
4383 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4384{
42809dd4 4385 struct dentry *d = cgrp->dentry;
1c6727af 4386 struct cgroup_subsys_state *css;
bb78a92f 4387 struct cgroup *child;
ddd69148 4388 bool empty;
1c6727af 4389 int ssid;
ddbcc7e8 4390
42809dd4
TH
4391 lockdep_assert_held(&d->d_inode->i_mutex);
4392 lockdep_assert_held(&cgroup_mutex);
4393
ddd69148 4394 /*
6f3d828f
TH
4395 * css_set_lock synchronizes access to ->cset_links and prevents
4396 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4397 */
4398 read_lock(&css_set_lock);
bb78a92f 4399 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
4400 read_unlock(&css_set_lock);
4401 if (!empty)
ddbcc7e8 4402 return -EBUSY;
a043e3b2 4403
bb78a92f
HD
4404 /*
4405 * Make sure there's no live children. We can't test ->children
4406 * emptiness as dead children linger on it while being destroyed;
4407 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4408 */
4409 empty = true;
4410 rcu_read_lock();
4411 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4412 empty = cgroup_is_dead(child);
4413 if (!empty)
4414 break;
4415 }
4416 rcu_read_unlock();
4417 if (!empty)
4418 return -EBUSY;
4419
88703267 4420 /*
edae0c33
TH
4421 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4422 * will be invoked to perform the rest of destruction once the
4423 * percpu refs of all css's are confirmed to be killed.
88703267 4424 */
1c6727af
TH
4425 for_each_css(css, ssid, cgrp)
4426 kill_css(css);
455050d2
TH
4427
4428 /*
4429 * Mark @cgrp dead. This prevents further task migration and child
4430 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4431 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4432 * resume iteration after dropping RCU read lock. See
492eb21b 4433 * css_next_child() for details.
455050d2 4434 */
54766d4a 4435 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4436
455050d2
TH
4437 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4438 raw_spin_lock(&release_list_lock);
4439 if (!list_empty(&cgrp->release_list))
4440 list_del_init(&cgrp->release_list);
4441 raw_spin_unlock(&release_list_lock);
4442
4443 /*
f20104de
TH
4444 * If @cgrp has css's attached, the second stage of cgroup
4445 * destruction is kicked off from css_killed_work_fn() after the
4446 * refs of all attached css's are killed. If @cgrp doesn't have
4447 * any css, we kick it off here.
4448 */
4449 if (!cgrp->nr_css)
4450 cgroup_destroy_css_killed(cgrp);
4451
455050d2 4452 /*
3c14f8b4
TH
4453 * Clear the base files and remove @cgrp directory. The removal
4454 * puts the base ref but we aren't quite done with @cgrp yet, so
4455 * hold onto it.
455050d2 4456 */
2bb566cb 4457 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4458 dget(d);
4459 cgroup_d_remove_dir(d);
4460
ea15f8cc
TH
4461 return 0;
4462};
4463
d3daf28d 4464/**
f20104de 4465 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4466 * @work: cgroup->destroy_free_work
4467 *
4468 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4469 * destroyed after all css's are offlined and performs the rest of
4470 * destruction. This is the second step of destruction described in the
4471 * comment above cgroup_destroy_locked().
d3daf28d 4472 */
f20104de 4473static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4474{
ea15f8cc
TH
4475 struct cgroup *parent = cgrp->parent;
4476 struct dentry *d = cgrp->dentry;
ea15f8cc 4477
f20104de 4478 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4479
999cd8a4 4480 /* delete this cgroup from parent->children */
eb6fd504 4481 list_del_rcu(&cgrp->sibling);
ed957793
TH
4482
4483 /*
4e96ee8e
LZ
4484 * We should remove the cgroup object from idr before its grace
4485 * period starts, so we won't be looking up a cgroup while the
4486 * cgroup is being freed.
ed957793 4487 */
4e96ee8e
LZ
4488 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4489 cgrp->id = -1;
b0ca5a84 4490
ddbcc7e8 4491 dput(d);
ddbcc7e8 4492
bd89aabc 4493 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4494 check_for_release(parent);
ddbcc7e8
PM
4495}
4496
42809dd4
TH
4497static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4498{
4499 int ret;
4500
4501 mutex_lock(&cgroup_mutex);
4502 ret = cgroup_destroy_locked(dentry->d_fsdata);
4503 mutex_unlock(&cgroup_mutex);
4504
4505 return ret;
4506}
4507
8e3f6541
TH
4508static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4509{
4510 INIT_LIST_HEAD(&ss->cftsets);
4511
4512 /*
4513 * base_cftset is embedded in subsys itself, no need to worry about
4514 * deregistration.
4515 */
4516 if (ss->base_cftypes) {
2bb566cb
TH
4517 struct cftype *cft;
4518
4519 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4520 cft->ss = ss;
4521
8e3f6541
TH
4522 ss->base_cftset.cfts = ss->base_cftypes;
4523 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4524 }
4525}
4526
06a11920 4527static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4528{
ddbcc7e8 4529 struct cgroup_subsys_state *css;
cfe36bde
DC
4530
4531 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4532
648bb56d
TH
4533 mutex_lock(&cgroup_mutex);
4534
8e3f6541
TH
4535 /* init base cftset */
4536 cgroup_init_cftsets(ss);
4537
ddbcc7e8 4538 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4539 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4540 ss->root = &cgroup_dummy_root;
ca8bdcaf 4541 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4542 /* We don't handle early failures gracefully */
4543 BUG_ON(IS_ERR(css));
623f926b 4544 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4545
e8d55fde 4546 /* Update the init_css_set to contain a subsys
817929ec 4547 * pointer to this state - since the subsystem is
e8d55fde
LZ
4548 * newly registered, all tasks and hence the
4549 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4550 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4551
4552 need_forkexit_callback |= ss->fork || ss->exit;
4553
e8d55fde
LZ
4554 /* At system boot, before all subsystems have been
4555 * registered, no tasks have been forked, so we don't
4556 * need to invoke fork callbacks here. */
4557 BUG_ON(!list_empty(&init_task.tasks));
4558
ae7f164a 4559 BUG_ON(online_css(css));
a8638030 4560
648bb56d
TH
4561 mutex_unlock(&cgroup_mutex);
4562
e6a1105b
BB
4563 /* this function shouldn't be used with modular subsystems, since they
4564 * need to register a subsys_id, among other things */
4565 BUG_ON(ss->module);
4566}
4567
4568/**
4569 * cgroup_load_subsys: load and register a modular subsystem at runtime
4570 * @ss: the subsystem to load
4571 *
4572 * This function should be called in a modular subsystem's initcall. If the
88393161 4573 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4574 * up for use. If the subsystem is built-in anyway, work is delegated to the
4575 * simpler cgroup_init_subsys.
4576 */
4577int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4578{
e6a1105b 4579 struct cgroup_subsys_state *css;
d19e19de 4580 int i, ret;
b67bfe0d 4581 struct hlist_node *tmp;
5abb8855 4582 struct css_set *cset;
0ac801fe 4583 unsigned long key;
e6a1105b
BB
4584
4585 /* check name and function validity */
4586 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4587 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4588 return -EINVAL;
4589
4590 /*
4591 * we don't support callbacks in modular subsystems. this check is
4592 * before the ss->module check for consistency; a subsystem that could
4593 * be a module should still have no callbacks even if the user isn't
4594 * compiling it as one.
4595 */
4596 if (ss->fork || ss->exit)
4597 return -EINVAL;
4598
4599 /*
4600 * an optionally modular subsystem is built-in: we want to do nothing,
4601 * since cgroup_init_subsys will have already taken care of it.
4602 */
4603 if (ss->module == NULL) {
be45c900 4604 /* a sanity check */
9871bf95 4605 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4606 return 0;
4607 }
4608
8e3f6541
TH
4609 /* init base cftset */
4610 cgroup_init_cftsets(ss);
4611
e6a1105b 4612 mutex_lock(&cgroup_mutex);
780cd8b3 4613 mutex_lock(&cgroup_root_mutex);
9871bf95 4614 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4615
4616 /*
92fb9748 4617 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4618 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4619 * attachment).
e6a1105b 4620 */
ca8bdcaf 4621 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
e6a1105b 4622 if (IS_ERR(css)) {
9871bf95
TH
4623 /* failure case - need to deassign the cgroup_subsys[] slot. */
4624 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4625 mutex_unlock(&cgroup_mutex);
4626 return PTR_ERR(css);
4627 }
4628
9871bf95
TH
4629 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4630 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4631
4632 /* our new subsystem will be attached to the dummy hierarchy. */
623f926b 4633 init_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4634
4635 /*
4636 * Now we need to entangle the css into the existing css_sets. unlike
4637 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4638 * will need a new pointer to it; done by iterating the css_set_table.
4639 * furthermore, modifying the existing css_sets will corrupt the hash
4640 * table state, so each changed css_set will need its hash recomputed.
4641 * this is all done under the css_set_lock.
4642 */
4643 write_lock(&css_set_lock);
5abb8855 4644 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4645 /* skip entries that we already rehashed */
5abb8855 4646 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4647 continue;
4648 /* remove existing entry */
5abb8855 4649 hash_del(&cset->hlist);
0ac801fe 4650 /* set new value */
5abb8855 4651 cset->subsys[ss->subsys_id] = css;
0ac801fe 4652 /* recompute hash and restore entry */
5abb8855
TH
4653 key = css_set_hash(cset->subsys);
4654 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4655 }
4656 write_unlock(&css_set_lock);
4657
ae7f164a 4658 ret = online_css(css);
b1929db4
TH
4659 if (ret)
4660 goto err_unload;
a8638030 4661
e6a1105b 4662 /* success! */
780cd8b3 4663 mutex_unlock(&cgroup_root_mutex);
e6a1105b
BB
4664 mutex_unlock(&cgroup_mutex);
4665 return 0;
d19e19de
TH
4666
4667err_unload:
780cd8b3 4668 mutex_unlock(&cgroup_root_mutex);
d19e19de
TH
4669 mutex_unlock(&cgroup_mutex);
4670 /* @ss can't be mounted here as try_module_get() would fail */
4671 cgroup_unload_subsys(ss);
4672 return ret;
ddbcc7e8 4673}
e6a1105b 4674EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4675
cf5d5941
BB
4676/**
4677 * cgroup_unload_subsys: unload a modular subsystem
4678 * @ss: the subsystem to unload
4679 *
4680 * This function should be called in a modular subsystem's exitcall. When this
4681 * function is invoked, the refcount on the subsystem's module will be 0, so
4682 * the subsystem will not be attached to any hierarchy.
4683 */
4684void cgroup_unload_subsys(struct cgroup_subsys *ss)
4685{
69d0206c 4686 struct cgrp_cset_link *link;
cf5d5941
BB
4687
4688 BUG_ON(ss->module == NULL);
4689
4690 /*
4691 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4692 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4693 * doesn't start being used while we're killing it off.
4694 */
9871bf95 4695 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4696
4697 mutex_lock(&cgroup_mutex);
780cd8b3 4698 mutex_lock(&cgroup_root_mutex);
02ae7486 4699
ca8bdcaf 4700 offline_css(cgroup_css(cgroup_dummy_top, ss));
02ae7486 4701
cf5d5941 4702 /* deassign the subsys_id */
9871bf95 4703 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4704
9871bf95 4705 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4706 list_del_init(&ss->sibling);
cf5d5941
BB
4707
4708 /*
9871bf95
TH
4709 * disentangle the css from all css_sets attached to the dummy
4710 * top. as in loading, we need to pay our respects to the hashtable
4711 * gods.
cf5d5941
BB
4712 */
4713 write_lock(&css_set_lock);
9871bf95 4714 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4715 struct css_set *cset = link->cset;
0ac801fe 4716 unsigned long key;
cf5d5941 4717
5abb8855
TH
4718 hash_del(&cset->hlist);
4719 cset->subsys[ss->subsys_id] = NULL;
4720 key = css_set_hash(cset->subsys);
4721 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4722 }
4723 write_unlock(&css_set_lock);
4724
4725 /*
9871bf95
TH
4726 * remove subsystem's css from the cgroup_dummy_top and free it -
4727 * need to free before marking as null because ss->css_free needs
2ff2a7d0 4728 * the cgrp->subsys pointer to find their state.
cf5d5941 4729 */
ca8bdcaf 4730 ss->css_free(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 4731 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
cf5d5941 4732
780cd8b3 4733 mutex_unlock(&cgroup_root_mutex);
cf5d5941
BB
4734 mutex_unlock(&cgroup_mutex);
4735}
4736EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4737
ddbcc7e8 4738/**
a043e3b2
LZ
4739 * cgroup_init_early - cgroup initialization at system boot
4740 *
4741 * Initialize cgroups at system boot, and initialize any
4742 * subsystems that request early init.
ddbcc7e8
PM
4743 */
4744int __init cgroup_init_early(void)
4745{
30159ec7 4746 struct cgroup_subsys *ss;
ddbcc7e8 4747 int i;
30159ec7 4748
146aa1bd 4749 atomic_set(&init_css_set.refcount, 1);
69d0206c 4750 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4751 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4752 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4753 css_set_count = 1;
9871bf95
TH
4754 init_cgroup_root(&cgroup_dummy_root);
4755 cgroup_root_count = 1;
a4ea1cc9 4756 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4757
69d0206c 4758 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4759 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4760 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4761 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4762
30159ec7
TH
4763 /* at bootup time, we don't worry about modular subsystems */
4764 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4765 BUG_ON(!ss->name);
4766 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4767 BUG_ON(!ss->css_alloc);
4768 BUG_ON(!ss->css_free);
ddbcc7e8 4769 if (ss->subsys_id != i) {
cfe36bde 4770 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4771 ss->name, ss->subsys_id);
4772 BUG();
4773 }
4774
4775 if (ss->early_init)
4776 cgroup_init_subsys(ss);
4777 }
4778 return 0;
4779}
4780
4781/**
a043e3b2
LZ
4782 * cgroup_init - cgroup initialization
4783 *
4784 * Register cgroup filesystem and /proc file, and initialize
4785 * any subsystems that didn't request early init.
ddbcc7e8
PM
4786 */
4787int __init cgroup_init(void)
4788{
30159ec7 4789 struct cgroup_subsys *ss;
0ac801fe 4790 unsigned long key;
30159ec7 4791 int i, err;
a424316c
PM
4792
4793 err = bdi_init(&cgroup_backing_dev_info);
4794 if (err)
4795 return err;
ddbcc7e8 4796
30159ec7 4797 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4798 if (!ss->early_init)
4799 cgroup_init_subsys(ss);
4800 }
4801
fa3ca07e 4802 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4803 mutex_lock(&cgroup_mutex);
4804 mutex_lock(&cgroup_root_mutex);
4805
82fe9b0d
TH
4806 /* Add init_css_set to the hash table */
4807 key = css_set_hash(init_css_set.subsys);
4808 hash_add(css_set_table, &init_css_set.hlist, key);
4809
fc76df70 4810 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4811
4e96ee8e
LZ
4812 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4813 0, 1, GFP_KERNEL);
4814 BUG_ON(err < 0);
4815
54e7b4eb
TH
4816 mutex_unlock(&cgroup_root_mutex);
4817 mutex_unlock(&cgroup_mutex);
4818
676db4af
GK
4819 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4820 if (!cgroup_kobj) {
4821 err = -ENOMEM;
4822 goto out;
4823 }
4824
ddbcc7e8 4825 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4826 if (err < 0) {
4827 kobject_put(cgroup_kobj);
ddbcc7e8 4828 goto out;
676db4af 4829 }
ddbcc7e8 4830
46ae220b 4831 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4832
ddbcc7e8 4833out:
a424316c
PM
4834 if (err)
4835 bdi_destroy(&cgroup_backing_dev_info);
4836
ddbcc7e8
PM
4837 return err;
4838}
b4f48b63 4839
e5fca243
TH
4840static int __init cgroup_wq_init(void)
4841{
4842 /*
4843 * There isn't much point in executing destruction path in
4844 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4845 * Use 1 for @max_active.
4846 *
4847 * We would prefer to do this in cgroup_init() above, but that
4848 * is called before init_workqueues(): so leave this until after.
4849 */
4850 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4851 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4852
4853 /*
4854 * Used to destroy pidlists and separate to serve as flush domain.
4855 * Cap @max_active to 1 too.
4856 */
4857 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4858 0, 1);
4859 BUG_ON(!cgroup_pidlist_destroy_wq);
4860
e5fca243
TH
4861 return 0;
4862}
4863core_initcall(cgroup_wq_init);
4864
a424316c
PM
4865/*
4866 * proc_cgroup_show()
4867 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4868 * - Used for /proc/<pid>/cgroup.
4869 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4870 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4871 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4872 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4873 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4874 * cgroup to top_cgroup.
4875 */
4876
4877/* TODO: Use a proper seq_file iterator */
8d8b97ba 4878int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4879{
4880 struct pid *pid;
4881 struct task_struct *tsk;
4882 char *buf;
4883 int retval;
4884 struct cgroupfs_root *root;
4885
4886 retval = -ENOMEM;
4887 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4888 if (!buf)
4889 goto out;
4890
4891 retval = -ESRCH;
4892 pid = m->private;
4893 tsk = get_pid_task(pid, PIDTYPE_PID);
4894 if (!tsk)
4895 goto out_free;
4896
4897 retval = 0;
4898
4899 mutex_lock(&cgroup_mutex);
4900
e5f6a860 4901 for_each_active_root(root) {
a424316c 4902 struct cgroup_subsys *ss;
bd89aabc 4903 struct cgroup *cgrp;
a424316c
PM
4904 int count = 0;
4905
2c6ab6d2 4906 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 4907 for_each_root_subsys(root, ss)
a424316c 4908 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4909 if (strlen(root->name))
4910 seq_printf(m, "%sname=%s", count ? "," : "",
4911 root->name);
a424316c 4912 seq_putc(m, ':');
7717f7ba 4913 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4914 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4915 if (retval < 0)
4916 goto out_unlock;
4917 seq_puts(m, buf);
4918 seq_putc(m, '\n');
4919 }
4920
4921out_unlock:
4922 mutex_unlock(&cgroup_mutex);
4923 put_task_struct(tsk);
4924out_free:
4925 kfree(buf);
4926out:
4927 return retval;
4928}
4929
a424316c
PM
4930/* Display information about each subsystem and each hierarchy */
4931static int proc_cgroupstats_show(struct seq_file *m, void *v)
4932{
30159ec7 4933 struct cgroup_subsys *ss;
a424316c 4934 int i;
a424316c 4935
8bab8dde 4936 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4937 /*
4938 * ideally we don't want subsystems moving around while we do this.
4939 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4940 * subsys/hierarchy state.
4941 */
a424316c 4942 mutex_lock(&cgroup_mutex);
30159ec7
TH
4943
4944 for_each_subsys(ss, i)
2c6ab6d2
PM
4945 seq_printf(m, "%s\t%d\t%d\t%d\n",
4946 ss->name, ss->root->hierarchy_id,
8bab8dde 4947 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 4948
a424316c
PM
4949 mutex_unlock(&cgroup_mutex);
4950 return 0;
4951}
4952
4953static int cgroupstats_open(struct inode *inode, struct file *file)
4954{
9dce07f1 4955 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4956}
4957
828c0950 4958static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4959 .open = cgroupstats_open,
4960 .read = seq_read,
4961 .llseek = seq_lseek,
4962 .release = single_release,
4963};
4964
b4f48b63
PM
4965/**
4966 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4967 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4968 *
4969 * Description: A task inherits its parent's cgroup at fork().
4970 *
4971 * A pointer to the shared css_set was automatically copied in
4972 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4973 * it was not made under the protection of RCU or cgroup_mutex, so
4974 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4975 * have already changed current->cgroups, allowing the previously
4976 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4977 *
4978 * At the point that cgroup_fork() is called, 'current' is the parent
4979 * task, and the passed argument 'child' points to the child task.
4980 */
4981void cgroup_fork(struct task_struct *child)
4982{
9bb71308 4983 task_lock(current);
a8ad805c 4984 get_css_set(task_css_set(current));
817929ec 4985 child->cgroups = current->cgroups;
9bb71308 4986 task_unlock(current);
817929ec 4987 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4988}
4989
817929ec 4990/**
a043e3b2
LZ
4991 * cgroup_post_fork - called on a new task after adding it to the task list
4992 * @child: the task in question
4993 *
5edee61e
TH
4994 * Adds the task to the list running through its css_set if necessary and
4995 * call the subsystem fork() callbacks. Has to be after the task is
4996 * visible on the task list in case we race with the first call to
0942eeee 4997 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4998 * list.
a043e3b2 4999 */
817929ec
PM
5000void cgroup_post_fork(struct task_struct *child)
5001{
30159ec7 5002 struct cgroup_subsys *ss;
5edee61e
TH
5003 int i;
5004
3ce3230a
FW
5005 /*
5006 * use_task_css_set_links is set to 1 before we walk the tasklist
5007 * under the tasklist_lock and we read it here after we added the child
5008 * to the tasklist under the tasklist_lock as well. If the child wasn't
5009 * yet in the tasklist when we walked through it from
5010 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5011 * should be visible now due to the paired locking and barriers implied
5012 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5013 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5014 * lock on fork.
5015 */
817929ec
PM
5016 if (use_task_css_set_links) {
5017 write_lock(&css_set_lock);
d8783832
TH
5018 task_lock(child);
5019 if (list_empty(&child->cg_list))
a8ad805c 5020 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5021 task_unlock(child);
817929ec
PM
5022 write_unlock(&css_set_lock);
5023 }
5edee61e
TH
5024
5025 /*
5026 * Call ss->fork(). This must happen after @child is linked on
5027 * css_set; otherwise, @child might change state between ->fork()
5028 * and addition to css_set.
5029 */
5030 if (need_forkexit_callback) {
7d8e0bf5
LZ
5031 /*
5032 * fork/exit callbacks are supported only for builtin
5033 * subsystems, and the builtin section of the subsys
5034 * array is immutable, so we don't need to lock the
5035 * subsys array here. On the other hand, modular section
5036 * of the array can be freed at module unload, so we
5037 * can't touch that.
5038 */
30159ec7 5039 for_each_builtin_subsys(ss, i)
5edee61e
TH
5040 if (ss->fork)
5041 ss->fork(child);
5edee61e 5042 }
817929ec 5043}
5edee61e 5044
b4f48b63
PM
5045/**
5046 * cgroup_exit - detach cgroup from exiting task
5047 * @tsk: pointer to task_struct of exiting process
a043e3b2 5048 * @run_callback: run exit callbacks?
b4f48b63
PM
5049 *
5050 * Description: Detach cgroup from @tsk and release it.
5051 *
5052 * Note that cgroups marked notify_on_release force every task in
5053 * them to take the global cgroup_mutex mutex when exiting.
5054 * This could impact scaling on very large systems. Be reluctant to
5055 * use notify_on_release cgroups where very high task exit scaling
5056 * is required on large systems.
5057 *
5058 * the_top_cgroup_hack:
5059 *
5060 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5061 *
5062 * We call cgroup_exit() while the task is still competent to
5063 * handle notify_on_release(), then leave the task attached to the
5064 * root cgroup in each hierarchy for the remainder of its exit.
5065 *
5066 * To do this properly, we would increment the reference count on
5067 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5068 * code we would add a second cgroup function call, to drop that
5069 * reference. This would just create an unnecessary hot spot on
5070 * the top_cgroup reference count, to no avail.
5071 *
5072 * Normally, holding a reference to a cgroup without bumping its
5073 * count is unsafe. The cgroup could go away, or someone could
5074 * attach us to a different cgroup, decrementing the count on
5075 * the first cgroup that we never incremented. But in this case,
5076 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5077 * which wards off any cgroup_attach_task() attempts, or task is a failed
5078 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5079 */
5080void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5081{
30159ec7 5082 struct cgroup_subsys *ss;
5abb8855 5083 struct css_set *cset;
d41d5a01 5084 int i;
817929ec
PM
5085
5086 /*
5087 * Unlink from the css_set task list if necessary.
5088 * Optimistically check cg_list before taking
5089 * css_set_lock
5090 */
5091 if (!list_empty(&tsk->cg_list)) {
5092 write_lock(&css_set_lock);
5093 if (!list_empty(&tsk->cg_list))
8d258797 5094 list_del_init(&tsk->cg_list);
817929ec
PM
5095 write_unlock(&css_set_lock);
5096 }
5097
b4f48b63
PM
5098 /* Reassign the task to the init_css_set. */
5099 task_lock(tsk);
a8ad805c
TH
5100 cset = task_css_set(tsk);
5101 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5102
5103 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5104 /*
5105 * fork/exit callbacks are supported only for builtin
5106 * subsystems, see cgroup_post_fork() for details.
5107 */
30159ec7 5108 for_each_builtin_subsys(ss, i) {
d41d5a01 5109 if (ss->exit) {
eb95419b
TH
5110 struct cgroup_subsys_state *old_css = cset->subsys[i];
5111 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5112
eb95419b 5113 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5114 }
5115 }
5116 }
b4f48b63 5117 task_unlock(tsk);
d41d5a01 5118
5abb8855 5119 put_css_set_taskexit(cset);
b4f48b63 5120}
697f4161 5121
bd89aabc 5122static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5123{
f50daa70 5124 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5125 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5126 /*
5127 * Control Group is currently removeable. If it's not
81a6a5cd 5128 * already queued for a userspace notification, queue
f50daa70
LZ
5129 * it now
5130 */
81a6a5cd 5131 int need_schedule_work = 0;
f50daa70 5132
cdcc136f 5133 raw_spin_lock(&release_list_lock);
54766d4a 5134 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5135 list_empty(&cgrp->release_list)) {
5136 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5137 need_schedule_work = 1;
5138 }
cdcc136f 5139 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5140 if (need_schedule_work)
5141 schedule_work(&release_agent_work);
5142 }
5143}
5144
81a6a5cd
PM
5145/*
5146 * Notify userspace when a cgroup is released, by running the
5147 * configured release agent with the name of the cgroup (path
5148 * relative to the root of cgroup file system) as the argument.
5149 *
5150 * Most likely, this user command will try to rmdir this cgroup.
5151 *
5152 * This races with the possibility that some other task will be
5153 * attached to this cgroup before it is removed, or that some other
5154 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5155 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5156 * unused, and this cgroup will be reprieved from its death sentence,
5157 * to continue to serve a useful existence. Next time it's released,
5158 * we will get notified again, if it still has 'notify_on_release' set.
5159 *
5160 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5161 * means only wait until the task is successfully execve()'d. The
5162 * separate release agent task is forked by call_usermodehelper(),
5163 * then control in this thread returns here, without waiting for the
5164 * release agent task. We don't bother to wait because the caller of
5165 * this routine has no use for the exit status of the release agent
5166 * task, so no sense holding our caller up for that.
81a6a5cd 5167 */
81a6a5cd
PM
5168static void cgroup_release_agent(struct work_struct *work)
5169{
5170 BUG_ON(work != &release_agent_work);
5171 mutex_lock(&cgroup_mutex);
cdcc136f 5172 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5173 while (!list_empty(&release_list)) {
5174 char *argv[3], *envp[3];
5175 int i;
e788e066 5176 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5177 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5178 struct cgroup,
5179 release_list);
bd89aabc 5180 list_del_init(&cgrp->release_list);
cdcc136f 5181 raw_spin_unlock(&release_list_lock);
81a6a5cd 5182 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5183 if (!pathbuf)
5184 goto continue_free;
5185 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5186 goto continue_free;
5187 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5188 if (!agentbuf)
5189 goto continue_free;
81a6a5cd
PM
5190
5191 i = 0;
e788e066
PM
5192 argv[i++] = agentbuf;
5193 argv[i++] = pathbuf;
81a6a5cd
PM
5194 argv[i] = NULL;
5195
5196 i = 0;
5197 /* minimal command environment */
5198 envp[i++] = "HOME=/";
5199 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5200 envp[i] = NULL;
5201
5202 /* Drop the lock while we invoke the usermode helper,
5203 * since the exec could involve hitting disk and hence
5204 * be a slow process */
5205 mutex_unlock(&cgroup_mutex);
5206 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5207 mutex_lock(&cgroup_mutex);
e788e066
PM
5208 continue_free:
5209 kfree(pathbuf);
5210 kfree(agentbuf);
cdcc136f 5211 raw_spin_lock(&release_list_lock);
81a6a5cd 5212 }
cdcc136f 5213 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5214 mutex_unlock(&cgroup_mutex);
5215}
8bab8dde
PM
5216
5217static int __init cgroup_disable(char *str)
5218{
30159ec7 5219 struct cgroup_subsys *ss;
8bab8dde 5220 char *token;
30159ec7 5221 int i;
8bab8dde
PM
5222
5223 while ((token = strsep(&str, ",")) != NULL) {
5224 if (!*token)
5225 continue;
be45c900 5226
30159ec7
TH
5227 /*
5228 * cgroup_disable, being at boot time, can't know about
5229 * module subsystems, so we don't worry about them.
5230 */
5231 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5232 if (!strcmp(token, ss->name)) {
5233 ss->disabled = 1;
5234 printk(KERN_INFO "Disabling %s control group"
5235 " subsystem\n", ss->name);
5236 break;
5237 }
5238 }
5239 }
5240 return 1;
5241}
5242__setup("cgroup_disable=", cgroup_disable);
38460b48 5243
b77d7b60 5244/**
35cf0836
TH
5245 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5246 * @dentry: directory dentry of interest
5247 * @ss: subsystem of interest
b77d7b60 5248 *
87fb54f1
TH
5249 * Must be called under cgroup_mutex or RCU read lock. The caller is
5250 * responsible for pinning the returned css if it needs to be accessed
5251 * outside the critical section.
e5d1367f 5252 */
35cf0836
TH
5253struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
5254 struct cgroup_subsys *ss)
e5d1367f
SE
5255{
5256 struct cgroup *cgrp;
e5d1367f 5257
87fb54f1 5258 cgroup_assert_mutex_or_rcu_locked();
b77d7b60 5259
35cf0836
TH
5260 /* is @dentry a cgroup dir? */
5261 if (!dentry->d_inode ||
5262 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
e5d1367f
SE
5263 return ERR_PTR(-EBADF);
5264
35cf0836 5265 cgrp = __d_cgrp(dentry);
ca8bdcaf 5266 return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
e5d1367f 5267}
e5d1367f 5268
1cb650b9
LZ
5269/**
5270 * css_from_id - lookup css by id
5271 * @id: the cgroup id
5272 * @ss: cgroup subsys to be looked into
5273 *
5274 * Returns the css if there's valid one with @id, otherwise returns NULL.
5275 * Should be called under rcu_read_lock().
5276 */
5277struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5278{
5279 struct cgroup *cgrp;
5280
87fb54f1 5281 cgroup_assert_mutex_or_rcu_locked();
1cb650b9
LZ
5282
5283 cgrp = idr_find(&ss->root->cgroup_idr, id);
5284 if (cgrp)
d1625964 5285 return cgroup_css(cgrp, ss);
1cb650b9 5286 return NULL;
e5d1367f
SE
5287}
5288
fe693435 5289#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5290static struct cgroup_subsys_state *
5291debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5292{
5293 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5294
5295 if (!css)
5296 return ERR_PTR(-ENOMEM);
5297
5298 return css;
5299}
5300
eb95419b 5301static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5302{
eb95419b 5303 kfree(css);
fe693435
PM
5304}
5305
182446d0
TH
5306static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5307 struct cftype *cft)
fe693435 5308{
182446d0 5309 return cgroup_task_count(css->cgroup);
fe693435
PM
5310}
5311
182446d0
TH
5312static u64 current_css_set_read(struct cgroup_subsys_state *css,
5313 struct cftype *cft)
fe693435
PM
5314{
5315 return (u64)(unsigned long)current->cgroups;
5316}
5317
182446d0 5318static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5319 struct cftype *cft)
fe693435
PM
5320{
5321 u64 count;
5322
5323 rcu_read_lock();
a8ad805c 5324 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5325 rcu_read_unlock();
5326 return count;
5327}
5328
2da8ca82 5329static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5330{
69d0206c 5331 struct cgrp_cset_link *link;
5abb8855 5332 struct css_set *cset;
7717f7ba
PM
5333
5334 read_lock(&css_set_lock);
5335 rcu_read_lock();
5abb8855 5336 cset = rcu_dereference(current->cgroups);
69d0206c 5337 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5338 struct cgroup *c = link->cgrp;
5339 const char *name;
5340
5341 if (c->dentry)
5342 name = c->dentry->d_name.name;
5343 else
5344 name = "?";
2c6ab6d2
PM
5345 seq_printf(seq, "Root %d group %s\n",
5346 c->root->hierarchy_id, name);
7717f7ba
PM
5347 }
5348 rcu_read_unlock();
5349 read_unlock(&css_set_lock);
5350 return 0;
5351}
5352
5353#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5354static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5355{
2da8ca82 5356 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5357 struct cgrp_cset_link *link;
7717f7ba
PM
5358
5359 read_lock(&css_set_lock);
182446d0 5360 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5361 struct css_set *cset = link->cset;
7717f7ba
PM
5362 struct task_struct *task;
5363 int count = 0;
5abb8855
TH
5364 seq_printf(seq, "css_set %p\n", cset);
5365 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5366 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5367 seq_puts(seq, " ...\n");
5368 break;
5369 } else {
5370 seq_printf(seq, " task %d\n",
5371 task_pid_vnr(task));
5372 }
5373 }
5374 }
5375 read_unlock(&css_set_lock);
5376 return 0;
5377}
5378
182446d0 5379static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5380{
182446d0 5381 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5382}
5383
5384static struct cftype debug_files[] = {
fe693435
PM
5385 {
5386 .name = "taskcount",
5387 .read_u64 = debug_taskcount_read,
5388 },
5389
5390 {
5391 .name = "current_css_set",
5392 .read_u64 = current_css_set_read,
5393 },
5394
5395 {
5396 .name = "current_css_set_refcount",
5397 .read_u64 = current_css_set_refcount_read,
5398 },
5399
7717f7ba
PM
5400 {
5401 .name = "current_css_set_cg_links",
2da8ca82 5402 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5403 },
5404
5405 {
5406 .name = "cgroup_css_links",
2da8ca82 5407 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5408 },
5409
fe693435
PM
5410 {
5411 .name = "releasable",
5412 .read_u64 = releasable_read,
5413 },
fe693435 5414
4baf6e33
TH
5415 { } /* terminate */
5416};
fe693435
PM
5417
5418struct cgroup_subsys debug_subsys = {
5419 .name = "debug",
92fb9748
TH
5420 .css_alloc = debug_css_alloc,
5421 .css_free = debug_css_free,
fe693435 5422 .subsys_id = debug_subsys_id,
4baf6e33 5423 .base_cftypes = debug_files,
fe693435
PM
5424};
5425#endif /* CONFIG_CGROUP_DEBUG */