cgroup: split process / task migration into four steps
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
8af01f56 86EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 87#else
81a6a5cd 88static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
89#endif
90
69e943b7
TH
91/*
92 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
93 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
94 */
95static DEFINE_SPINLOCK(release_agent_path_lock);
96
ace2bee8 97#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 98 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 99 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 100 lockdep_is_held(&cgroup_mutex), \
ace2bee8 101 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 102
e5fca243
TH
103/*
104 * cgroup destruction makes heavy use of work items and there can be a lot
105 * of concurrent destructions. Use a separate workqueue so that cgroup
106 * destruction work items don't end up filling up max_active of system_wq
107 * which may lead to deadlock.
108 */
109static struct workqueue_struct *cgroup_destroy_wq;
110
b1a21367
TH
111/*
112 * pidlist destructions need to be flushed on cgroup destruction. Use a
113 * separate workqueue as flush domain.
114 */
115static struct workqueue_struct *cgroup_pidlist_destroy_wq;
116
3ed80a62 117/* generate an array of cgroup subsystem pointers */
073219e9 118#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 119static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
120#include <linux/cgroup_subsys.h>
121};
073219e9
TH
122#undef SUBSYS
123
124/* array of cgroup subsystem names */
125#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126static const char *cgroup_subsys_name[] = {
127#include <linux/cgroup_subsys.h>
128};
129#undef SUBSYS
ddbcc7e8 130
ddbcc7e8 131/*
9871bf95
TH
132 * The dummy hierarchy, reserved for the subsystems that are otherwise
133 * unattached - it never has more than a single cgroup, and all tasks are
134 * part of that cgroup.
ddbcc7e8 135 */
9871bf95
TH
136static struct cgroupfs_root cgroup_dummy_root;
137
138/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
139static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
140
141/* The list of hierarchy roots */
142
9871bf95
TH
143static LIST_HEAD(cgroup_roots);
144static int cgroup_root_count;
ddbcc7e8 145
3417ae1f 146/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 147static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 148
794611a1
LZ
149/*
150 * Assign a monotonically increasing serial number to cgroups. It
151 * guarantees cgroups with bigger numbers are newer than those with smaller
152 * numbers. Also, as cgroups are always appended to the parent's
153 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
154 * the ascending serial number order on the list. Protected by
155 * cgroup_mutex.
794611a1 156 */
00356bd5 157static u64 cgroup_serial_nr_next = 1;
794611a1 158
ddbcc7e8 159/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
160 * check for fork/exit handlers to call. This avoids us having to do
161 * extra work in the fork/exit path if none of the subsystems need to
162 * be called.
ddbcc7e8 163 */
8947f9d5 164static int need_forkexit_callback __read_mostly;
ddbcc7e8 165
628f7cd4
TH
166static struct cftype cgroup_base_files[];
167
59f5296b 168static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
169static int rebind_subsystems(struct cgroupfs_root *root,
170 unsigned long added_mask, unsigned removed_mask);
f20104de 171static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 172static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
173static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
174 bool is_add);
b1a21367 175static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 176
95109b62
TH
177/**
178 * cgroup_css - obtain a cgroup's css for the specified subsystem
179 * @cgrp: the cgroup of interest
ca8bdcaf 180 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 181 *
ca8bdcaf
TH
182 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
183 * function must be called either under cgroup_mutex or rcu_read_lock() and
184 * the caller is responsible for pinning the returned css if it wants to
185 * keep accessing it outside the said locks. This function may return
186 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
187 */
188static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 189 struct cgroup_subsys *ss)
95109b62 190{
ca8bdcaf 191 if (ss)
aec25020 192 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
193 lockdep_is_held(&cgroup_tree_mutex) ||
194 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
195 else
196 return &cgrp->dummy_css;
95109b62 197}
42809dd4 198
ddbcc7e8 199/* convenient tests for these bits */
54766d4a 200static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 201{
54766d4a 202 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
203}
204
59f5296b
TH
205struct cgroup_subsys_state *seq_css(struct seq_file *seq)
206{
2bd59d48
TH
207 struct kernfs_open_file *of = seq->private;
208 struct cgroup *cgrp = of->kn->parent->priv;
209 struct cftype *cft = seq_cft(seq);
210
211 /*
212 * This is open and unprotected implementation of cgroup_css().
213 * seq_css() is only called from a kernfs file operation which has
214 * an active reference on the file. Because all the subsystem
215 * files are drained before a css is disassociated with a cgroup,
216 * the matching css from the cgroup's subsys table is guaranteed to
217 * be and stay valid until the enclosing operation is complete.
218 */
219 if (cft->ss)
220 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
221 else
222 return &cgrp->dummy_css;
59f5296b
TH
223}
224EXPORT_SYMBOL_GPL(seq_css);
225
78574cf9
LZ
226/**
227 * cgroup_is_descendant - test ancestry
228 * @cgrp: the cgroup to be tested
229 * @ancestor: possible ancestor of @cgrp
230 *
231 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
232 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
233 * and @ancestor are accessible.
234 */
235bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
236{
237 while (cgrp) {
238 if (cgrp == ancestor)
239 return true;
240 cgrp = cgrp->parent;
241 }
242 return false;
243}
ddbcc7e8 244
e9685a03 245static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
246{
247 const int bits =
bd89aabc
PM
248 (1 << CGRP_RELEASABLE) |
249 (1 << CGRP_NOTIFY_ON_RELEASE);
250 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
251}
252
e9685a03 253static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 254{
bd89aabc 255 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
256}
257
1c6727af
TH
258/**
259 * for_each_css - iterate all css's of a cgroup
260 * @css: the iteration cursor
261 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
262 * @cgrp: the target cgroup to iterate css's of
263 *
264 * Should be called under cgroup_mutex.
265 */
266#define for_each_css(css, ssid, cgrp) \
267 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
268 if (!((css) = rcu_dereference_check( \
269 (cgrp)->subsys[(ssid)], \
ace2bee8 270 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
271 lockdep_is_held(&cgroup_mutex)))) { } \
272 else
273
30159ec7 274/**
3ed80a62 275 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 276 * @ss: the iteration cursor
780cd8b3 277 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 278 */
780cd8b3 279#define for_each_subsys(ss, ssid) \
3ed80a62
TH
280 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
281 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 282
5549c497
TH
283/* iterate across the active hierarchies */
284#define for_each_active_root(root) \
285 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 286
7ae1bad9
TH
287/**
288 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
289 * @cgrp: the cgroup to be checked for liveness
290 *
47cfcd09
TH
291 * On success, returns true; the mutex should be later unlocked. On
292 * failure returns false with no lock held.
7ae1bad9 293 */
b9777cf8 294static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
295{
296 mutex_lock(&cgroup_mutex);
54766d4a 297 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
298 mutex_unlock(&cgroup_mutex);
299 return false;
300 }
301 return true;
302}
7ae1bad9 303
81a6a5cd
PM
304/* the list of cgroups eligible for automatic release. Protected by
305 * release_list_lock */
306static LIST_HEAD(release_list);
cdcc136f 307static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
308static void cgroup_release_agent(struct work_struct *work);
309static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 310static void check_for_release(struct cgroup *cgrp);
81a6a5cd 311
69d0206c
TH
312/*
313 * A cgroup can be associated with multiple css_sets as different tasks may
314 * belong to different cgroups on different hierarchies. In the other
315 * direction, a css_set is naturally associated with multiple cgroups.
316 * This M:N relationship is represented by the following link structure
317 * which exists for each association and allows traversing the associations
318 * from both sides.
319 */
320struct cgrp_cset_link {
321 /* the cgroup and css_set this link associates */
322 struct cgroup *cgrp;
323 struct css_set *cset;
324
325 /* list of cgrp_cset_links anchored at cgrp->cset_links */
326 struct list_head cset_link;
327
328 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
329 struct list_head cgrp_link;
817929ec
PM
330};
331
332/* The default css_set - used by init and its children prior to any
333 * hierarchies being mounted. It contains a pointer to the root state
334 * for each subsystem. Also used to anchor the list of css_sets. Not
335 * reference-counted, to improve performance when child cgroups
336 * haven't been created.
337 */
338
339static struct css_set init_css_set;
69d0206c 340static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 341
0942eeee 342/*
96d365e0
TH
343 * css_set_rwsem protects the list of css_set objects, and the chain of
344 * tasks off each css_set.
0942eeee 345 */
96d365e0 346static DECLARE_RWSEM(css_set_rwsem);
817929ec
PM
347static int css_set_count;
348
7717f7ba
PM
349/*
350 * hash table for cgroup groups. This improves the performance to find
351 * an existing css_set. This hash doesn't (currently) take into
352 * account cgroups in empty hierarchies.
353 */
472b1053 354#define CSS_SET_HASH_BITS 7
0ac801fe 355static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 356
0ac801fe 357static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 358{
0ac801fe 359 unsigned long key = 0UL;
30159ec7
TH
360 struct cgroup_subsys *ss;
361 int i;
472b1053 362
30159ec7 363 for_each_subsys(ss, i)
0ac801fe
LZ
364 key += (unsigned long)css[i];
365 key = (key >> 16) ^ key;
472b1053 366
0ac801fe 367 return key;
472b1053
LZ
368}
369
89c5509b 370static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 371{
69d0206c 372 struct cgrp_cset_link *link, *tmp_link;
5abb8855 373
89c5509b
TH
374 lockdep_assert_held(&css_set_rwsem);
375
376 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 377 return;
81a6a5cd 378
2c6ab6d2 379 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 380 hash_del(&cset->hlist);
2c6ab6d2
PM
381 css_set_count--;
382
69d0206c 383 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 384 struct cgroup *cgrp = link->cgrp;
5abb8855 385
69d0206c
TH
386 list_del(&link->cset_link);
387 list_del(&link->cgrp_link);
71b5707e 388
96d365e0 389 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 390 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 391 if (taskexit)
bd89aabc
PM
392 set_bit(CGRP_RELEASABLE, &cgrp->flags);
393 check_for_release(cgrp);
81a6a5cd 394 }
2c6ab6d2
PM
395
396 kfree(link);
81a6a5cd 397 }
2c6ab6d2 398
5abb8855 399 kfree_rcu(cset, rcu_head);
b4f48b63
PM
400}
401
89c5509b
TH
402static void put_css_set(struct css_set *cset, bool taskexit)
403{
404 /*
405 * Ensure that the refcount doesn't hit zero while any readers
406 * can see it. Similar to atomic_dec_and_lock(), but for an
407 * rwlock
408 */
409 if (atomic_add_unless(&cset->refcount, -1, 1))
410 return;
411
412 down_write(&css_set_rwsem);
413 put_css_set_locked(cset, taskexit);
414 up_write(&css_set_rwsem);
415}
416
817929ec
PM
417/*
418 * refcounted get/put for css_set objects
419 */
5abb8855 420static inline void get_css_set(struct css_set *cset)
817929ec 421{
5abb8855 422 atomic_inc(&cset->refcount);
817929ec
PM
423}
424
b326f9d0 425/**
7717f7ba 426 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
427 * @cset: candidate css_set being tested
428 * @old_cset: existing css_set for a task
7717f7ba
PM
429 * @new_cgrp: cgroup that's being entered by the task
430 * @template: desired set of css pointers in css_set (pre-calculated)
431 *
6f4b7e63 432 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
433 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
434 */
5abb8855
TH
435static bool compare_css_sets(struct css_set *cset,
436 struct css_set *old_cset,
7717f7ba
PM
437 struct cgroup *new_cgrp,
438 struct cgroup_subsys_state *template[])
439{
440 struct list_head *l1, *l2;
441
5abb8855 442 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
443 /* Not all subsystems matched */
444 return false;
445 }
446
447 /*
448 * Compare cgroup pointers in order to distinguish between
449 * different cgroups in heirarchies with no subsystems. We
450 * could get by with just this check alone (and skip the
451 * memcmp above) but on most setups the memcmp check will
452 * avoid the need for this more expensive check on almost all
453 * candidates.
454 */
455
69d0206c
TH
456 l1 = &cset->cgrp_links;
457 l2 = &old_cset->cgrp_links;
7717f7ba 458 while (1) {
69d0206c 459 struct cgrp_cset_link *link1, *link2;
5abb8855 460 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
461
462 l1 = l1->next;
463 l2 = l2->next;
464 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
465 if (l1 == &cset->cgrp_links) {
466 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
467 break;
468 } else {
69d0206c 469 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
470 }
471 /* Locate the cgroups associated with these links. */
69d0206c
TH
472 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
473 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
474 cgrp1 = link1->cgrp;
475 cgrp2 = link2->cgrp;
7717f7ba 476 /* Hierarchies should be linked in the same order. */
5abb8855 477 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
478
479 /*
480 * If this hierarchy is the hierarchy of the cgroup
481 * that's changing, then we need to check that this
482 * css_set points to the new cgroup; if it's any other
483 * hierarchy, then this css_set should point to the
484 * same cgroup as the old css_set.
485 */
5abb8855
TH
486 if (cgrp1->root == new_cgrp->root) {
487 if (cgrp1 != new_cgrp)
7717f7ba
PM
488 return false;
489 } else {
5abb8855 490 if (cgrp1 != cgrp2)
7717f7ba
PM
491 return false;
492 }
493 }
494 return true;
495}
496
b326f9d0
TH
497/**
498 * find_existing_css_set - init css array and find the matching css_set
499 * @old_cset: the css_set that we're using before the cgroup transition
500 * @cgrp: the cgroup that we're moving into
501 * @template: out param for the new set of csses, should be clear on entry
817929ec 502 */
5abb8855
TH
503static struct css_set *find_existing_css_set(struct css_set *old_cset,
504 struct cgroup *cgrp,
505 struct cgroup_subsys_state *template[])
b4f48b63 506{
bd89aabc 507 struct cgroupfs_root *root = cgrp->root;
30159ec7 508 struct cgroup_subsys *ss;
5abb8855 509 struct css_set *cset;
0ac801fe 510 unsigned long key;
b326f9d0 511 int i;
817929ec 512
aae8aab4
BB
513 /*
514 * Build the set of subsystem state objects that we want to see in the
515 * new css_set. while subsystems can change globally, the entries here
516 * won't change, so no need for locking.
517 */
30159ec7 518 for_each_subsys(ss, i) {
a1a71b45 519 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
520 /* Subsystem is in this hierarchy. So we want
521 * the subsystem state from the new
522 * cgroup */
ca8bdcaf 523 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
524 } else {
525 /* Subsystem is not in this hierarchy, so we
526 * don't want to change the subsystem state */
5abb8855 527 template[i] = old_cset->subsys[i];
817929ec
PM
528 }
529 }
530
0ac801fe 531 key = css_set_hash(template);
5abb8855
TH
532 hash_for_each_possible(css_set_table, cset, hlist, key) {
533 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
534 continue;
535
536 /* This css_set matches what we need */
5abb8855 537 return cset;
472b1053 538 }
817929ec
PM
539
540 /* No existing cgroup group matched */
541 return NULL;
542}
543
69d0206c 544static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 545{
69d0206c 546 struct cgrp_cset_link *link, *tmp_link;
36553434 547
69d0206c
TH
548 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
549 list_del(&link->cset_link);
36553434
LZ
550 kfree(link);
551 }
552}
553
69d0206c
TH
554/**
555 * allocate_cgrp_cset_links - allocate cgrp_cset_links
556 * @count: the number of links to allocate
557 * @tmp_links: list_head the allocated links are put on
558 *
559 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
560 * through ->cset_link. Returns 0 on success or -errno.
817929ec 561 */
69d0206c 562static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 563{
69d0206c 564 struct cgrp_cset_link *link;
817929ec 565 int i;
69d0206c
TH
566
567 INIT_LIST_HEAD(tmp_links);
568
817929ec 569 for (i = 0; i < count; i++) {
f4f4be2b 570 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 571 if (!link) {
69d0206c 572 free_cgrp_cset_links(tmp_links);
817929ec
PM
573 return -ENOMEM;
574 }
69d0206c 575 list_add(&link->cset_link, tmp_links);
817929ec
PM
576 }
577 return 0;
578}
579
c12f65d4
LZ
580/**
581 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 582 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 583 * @cset: the css_set to be linked
c12f65d4
LZ
584 * @cgrp: the destination cgroup
585 */
69d0206c
TH
586static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
587 struct cgroup *cgrp)
c12f65d4 588{
69d0206c 589 struct cgrp_cset_link *link;
c12f65d4 590
69d0206c
TH
591 BUG_ON(list_empty(tmp_links));
592 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
593 link->cset = cset;
7717f7ba 594 link->cgrp = cgrp;
69d0206c 595 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
596 /*
597 * Always add links to the tail of the list so that the list
598 * is sorted by order of hierarchy creation
599 */
69d0206c 600 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
601}
602
b326f9d0
TH
603/**
604 * find_css_set - return a new css_set with one cgroup updated
605 * @old_cset: the baseline css_set
606 * @cgrp: the cgroup to be updated
607 *
608 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
609 * substituted into the appropriate hierarchy.
817929ec 610 */
5abb8855
TH
611static struct css_set *find_css_set(struct css_set *old_cset,
612 struct cgroup *cgrp)
817929ec 613{
b326f9d0 614 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 615 struct css_set *cset;
69d0206c
TH
616 struct list_head tmp_links;
617 struct cgrp_cset_link *link;
0ac801fe 618 unsigned long key;
472b1053 619
b326f9d0
TH
620 lockdep_assert_held(&cgroup_mutex);
621
817929ec
PM
622 /* First see if we already have a cgroup group that matches
623 * the desired set */
96d365e0 624 down_read(&css_set_rwsem);
5abb8855
TH
625 cset = find_existing_css_set(old_cset, cgrp, template);
626 if (cset)
627 get_css_set(cset);
96d365e0 628 up_read(&css_set_rwsem);
817929ec 629
5abb8855
TH
630 if (cset)
631 return cset;
817929ec 632
f4f4be2b 633 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 634 if (!cset)
817929ec
PM
635 return NULL;
636
69d0206c 637 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 638 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 639 kfree(cset);
817929ec
PM
640 return NULL;
641 }
642
5abb8855 643 atomic_set(&cset->refcount, 1);
69d0206c 644 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 645 INIT_LIST_HEAD(&cset->tasks);
c7561128 646 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 647 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 648 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 649 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
650
651 /* Copy the set of subsystem state objects generated in
652 * find_existing_css_set() */
5abb8855 653 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 654
96d365e0 655 down_write(&css_set_rwsem);
817929ec 656 /* Add reference counts and links from the new css_set. */
69d0206c 657 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 658 struct cgroup *c = link->cgrp;
69d0206c 659
7717f7ba
PM
660 if (c->root == cgrp->root)
661 c = cgrp;
69d0206c 662 link_css_set(&tmp_links, cset, c);
7717f7ba 663 }
817929ec 664
69d0206c 665 BUG_ON(!list_empty(&tmp_links));
817929ec 666
817929ec 667 css_set_count++;
472b1053
LZ
668
669 /* Add this cgroup group to the hash table */
5abb8855
TH
670 key = css_set_hash(cset->subsys);
671 hash_add(css_set_table, &cset->hlist, key);
472b1053 672
96d365e0 673 up_write(&css_set_rwsem);
817929ec 674
5abb8855 675 return cset;
b4f48b63
PM
676}
677
2bd59d48
TH
678static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
679{
680 struct cgroup *top_cgrp = kf_root->kn->priv;
681
682 return top_cgrp->root;
683}
684
f2e85d57
TH
685static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
686{
687 int id;
688
689 lockdep_assert_held(&cgroup_mutex);
690
691 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
692 GFP_KERNEL);
693 if (id < 0)
694 return id;
695
696 root->hierarchy_id = id;
697 return 0;
698}
699
700static void cgroup_exit_root_id(struct cgroupfs_root *root)
701{
702 lockdep_assert_held(&cgroup_mutex);
703
704 if (root->hierarchy_id) {
705 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
706 root->hierarchy_id = 0;
707 }
708}
709
710static void cgroup_free_root(struct cgroupfs_root *root)
711{
712 if (root) {
713 /* hierarhcy ID shoulid already have been released */
714 WARN_ON_ONCE(root->hierarchy_id);
715
716 idr_destroy(&root->cgroup_idr);
717 kfree(root);
718 }
719}
720
776f02fa 721static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 722{
f2e85d57
TH
723 struct cgroup *cgrp = &root->top_cgroup;
724 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 725
2bd59d48 726 mutex_lock(&cgroup_tree_mutex);
2bd59d48 727 mutex_lock(&cgroup_mutex);
f2e85d57 728
776f02fa 729 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
730 BUG_ON(!list_empty(&cgrp->children));
731
f2e85d57 732 /* Rebind all subsystems back to the default hierarchy */
35585573 733 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
734
735 /*
736 * Release all the links from cset_links to this hierarchy's
737 * root cgroup
738 */
96d365e0 739 down_write(&css_set_rwsem);
f2e85d57
TH
740
741 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
742 list_del(&link->cset_link);
743 list_del(&link->cgrp_link);
744 kfree(link);
745 }
96d365e0 746 up_write(&css_set_rwsem);
f2e85d57
TH
747
748 if (!list_empty(&root->root_list)) {
749 list_del(&root->root_list);
750 cgroup_root_count--;
751 }
752
753 cgroup_exit_root_id(root);
754
755 mutex_unlock(&cgroup_mutex);
756 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 757
2bd59d48 758 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
759 cgroup_free_root(root);
760}
761
ceb6a081
TH
762/* look up cgroup associated with given css_set on the specified hierarchy */
763static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
7717f7ba
PM
764 struct cgroupfs_root *root)
765{
7717f7ba
PM
766 struct cgroup *res = NULL;
767
96d365e0
TH
768 lockdep_assert_held(&cgroup_mutex);
769 lockdep_assert_held(&css_set_rwsem);
770
5abb8855 771 if (cset == &init_css_set) {
7717f7ba
PM
772 res = &root->top_cgroup;
773 } else {
69d0206c
TH
774 struct cgrp_cset_link *link;
775
776 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 777 struct cgroup *c = link->cgrp;
69d0206c 778
7717f7ba
PM
779 if (c->root == root) {
780 res = c;
781 break;
782 }
783 }
784 }
96d365e0 785
7717f7ba
PM
786 BUG_ON(!res);
787 return res;
788}
789
ceb6a081
TH
790/*
791 * Return the cgroup for "task" from the given hierarchy. Must be
792 * called with cgroup_mutex and css_set_rwsem held.
793 */
794static struct cgroup *task_cgroup_from_root(struct task_struct *task,
795 struct cgroupfs_root *root)
796{
797 /*
798 * No need to lock the task - since we hold cgroup_mutex the
799 * task can't change groups, so the only thing that can happen
800 * is that it exits and its css is set back to init_css_set.
801 */
802 return cset_cgroup_from_root(task_css_set(task), root);
803}
804
ddbcc7e8
PM
805/*
806 * There is one global cgroup mutex. We also require taking
807 * task_lock() when dereferencing a task's cgroup subsys pointers.
808 * See "The task_lock() exception", at the end of this comment.
809 *
810 * A task must hold cgroup_mutex to modify cgroups.
811 *
812 * Any task can increment and decrement the count field without lock.
813 * So in general, code holding cgroup_mutex can't rely on the count
814 * field not changing. However, if the count goes to zero, then only
956db3ca 815 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
816 * means that no tasks are currently attached, therefore there is no
817 * way a task attached to that cgroup can fork (the other way to
818 * increment the count). So code holding cgroup_mutex can safely
819 * assume that if the count is zero, it will stay zero. Similarly, if
820 * a task holds cgroup_mutex on a cgroup with zero count, it
821 * knows that the cgroup won't be removed, as cgroup_rmdir()
822 * needs that mutex.
823 *
ddbcc7e8
PM
824 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
825 * (usually) take cgroup_mutex. These are the two most performance
826 * critical pieces of code here. The exception occurs on cgroup_exit(),
827 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
828 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
829 * to the release agent with the name of the cgroup (path relative to
830 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
831 *
832 * A cgroup can only be deleted if both its 'count' of using tasks
833 * is zero, and its list of 'children' cgroups is empty. Since all
834 * tasks in the system use _some_ cgroup, and since there is always at
835 * least one task in the system (init, pid == 1), therefore, top_cgroup
836 * always has either children cgroups and/or using tasks. So we don't
837 * need a special hack to ensure that top_cgroup cannot be deleted.
838 *
839 * The task_lock() exception
840 *
841 * The need for this exception arises from the action of
d0b2fdd2 842 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 843 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
844 * several performance critical places that need to reference
845 * task->cgroup without the expense of grabbing a system global
846 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 847 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
848 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
849 * the task_struct routinely used for such matters.
850 *
851 * P.S. One more locking exception. RCU is used to guard the
956db3ca 852 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
853 */
854
628f7cd4 855static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 856static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 857static const struct file_operations proc_cgroupstats_operations;
a424316c 858
8d7e6fb0
TH
859static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
860 char *buf)
861{
862 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
863 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
864 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
865 cft->ss->name, cft->name);
866 else
867 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
868 return buf;
869}
870
f2e85d57
TH
871/**
872 * cgroup_file_mode - deduce file mode of a control file
873 * @cft: the control file in question
874 *
875 * returns cft->mode if ->mode is not 0
876 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
877 * returns S_IRUGO if it has only a read handler
878 * returns S_IWUSR if it has only a write hander
879 */
880static umode_t cgroup_file_mode(const struct cftype *cft)
881{
882 umode_t mode = 0;
883
884 if (cft->mode)
885 return cft->mode;
886
887 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
888 mode |= S_IRUGO;
889
890 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
891 cft->trigger)
892 mode |= S_IWUSR;
893
894 return mode;
895}
896
be445626
LZ
897static void cgroup_free_fn(struct work_struct *work)
898{
ea15f8cc 899 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 900
3c9c825b 901 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 902 cgroup_pidlist_destroy_all(cgrp);
be445626 903
776f02fa
TH
904 if (cgrp->parent) {
905 /*
906 * We get a ref to the parent, and put the ref when this
907 * cgroup is being freed, so it's guaranteed that the
908 * parent won't be destroyed before its children.
909 */
910 cgroup_put(cgrp->parent);
911 kernfs_put(cgrp->kn);
912 kfree(cgrp);
913 } else {
914 /*
915 * This is top cgroup's refcnt reaching zero, which
916 * indicates that the root should be released.
917 */
918 cgroup_destroy_root(cgrp->root);
919 }
be445626
LZ
920}
921
922static void cgroup_free_rcu(struct rcu_head *head)
923{
924 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
925
ea15f8cc 926 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 927 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
928}
929
59f5296b
TH
930static void cgroup_get(struct cgroup *cgrp)
931{
2bd59d48
TH
932 WARN_ON_ONCE(cgroup_is_dead(cgrp));
933 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
934 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
935}
936
59f5296b
TH
937static void cgroup_put(struct cgroup *cgrp)
938{
2bd59d48
TH
939 if (!atomic_dec_and_test(&cgrp->refcnt))
940 return;
776f02fa 941 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 942 return;
59f5296b 943
2bd59d48
TH
944 /*
945 * XXX: cgrp->id is only used to look up css's. As cgroup and
946 * css's lifetimes will be decoupled, it should be made
947 * per-subsystem and moved to css->id so that lookups are
948 * successful until the target css is released.
949 */
950 mutex_lock(&cgroup_mutex);
951 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
952 mutex_unlock(&cgroup_mutex);
953 cgrp->id = -1;
ddbcc7e8 954
2bd59d48 955 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
956}
957
2739d3cc 958static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 959{
2bd59d48 960 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 961
ace2bee8 962 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 963 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
964}
965
13af07df 966/**
628f7cd4 967 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 968 * @cgrp: target cgroup
13af07df
AR
969 * @subsys_mask: mask of the subsystem ids whose files should be removed
970 */
628f7cd4 971static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 972{
13af07df 973 struct cgroup_subsys *ss;
b420ba7d 974 int i;
05ef1d7c 975
b420ba7d 976 for_each_subsys(ss, i) {
0adb0704 977 struct cftype *cfts;
b420ba7d
TH
978
979 if (!test_bit(i, &subsys_mask))
13af07df 980 continue;
0adb0704
TH
981 list_for_each_entry(cfts, &ss->cfts, node)
982 cgroup_addrm_files(cgrp, cfts, false);
13af07df 983 }
ddbcc7e8
PM
984}
985
ddbcc7e8 986static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 987 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 988{
bd89aabc 989 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 990 struct cgroup_subsys *ss;
3126121f 991 int i, ret;
ddbcc7e8 992
ace2bee8
TH
993 lockdep_assert_held(&cgroup_tree_mutex);
994 lockdep_assert_held(&cgroup_mutex);
aae8aab4 995
ddbcc7e8 996 /* Check that any added subsystems are currently free */
3ed80a62
TH
997 for_each_subsys(ss, i)
998 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
999 return -EBUSY;
ddbcc7e8 1000
3126121f
TH
1001 ret = cgroup_populate_dir(cgrp, added_mask);
1002 if (ret)
3ed80a62 1003 return ret;
3126121f
TH
1004
1005 /*
1006 * Nothing can fail from this point on. Remove files for the
1007 * removed subsystems and rebind each subsystem.
1008 */
4ac06017 1009 mutex_unlock(&cgroup_mutex);
3126121f 1010 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1011 mutex_lock(&cgroup_mutex);
ddbcc7e8 1012
30159ec7 1013 for_each_subsys(ss, i) {
ddbcc7e8 1014 unsigned long bit = 1UL << i;
30159ec7 1015
a1a71b45 1016 if (bit & added_mask) {
ddbcc7e8 1017 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1018 BUG_ON(cgroup_css(cgrp, ss));
1019 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1020 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1021
73e80ed8 1022 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1023 cgroup_css(cgroup_dummy_top, ss));
1024 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1025
b2aa30f7 1026 ss->root = root;
ddbcc7e8 1027 if (ss->bind)
ca8bdcaf 1028 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1029
cf5d5941 1030 /* refcount was already taken, and we're keeping it */
a8a648c4 1031 root->subsys_mask |= bit;
a1a71b45 1032 } else if (bit & removed_mask) {
ddbcc7e8 1033 /* We're removing this subsystem */
ca8bdcaf
TH
1034 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1035 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1036
ddbcc7e8 1037 if (ss->bind)
ca8bdcaf 1038 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1039
ca8bdcaf 1040 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1041 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1042
9871bf95 1043 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1044 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1045 }
1046 }
ddbcc7e8 1047
2bd59d48 1048 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1049 return 0;
1050}
1051
2bd59d48
TH
1052static int cgroup_show_options(struct seq_file *seq,
1053 struct kernfs_root *kf_root)
ddbcc7e8 1054{
2bd59d48 1055 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1056 struct cgroup_subsys *ss;
b85d2040 1057 int ssid;
ddbcc7e8 1058
b85d2040
TH
1059 for_each_subsys(ss, ssid)
1060 if (root->subsys_mask & (1 << ssid))
1061 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1062 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1063 seq_puts(seq, ",sane_behavior");
93438629 1064 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1065 seq_puts(seq, ",noprefix");
93438629 1066 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1067 seq_puts(seq, ",xattr");
69e943b7
TH
1068
1069 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1070 if (strlen(root->release_agent_path))
1071 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1072 spin_unlock(&release_agent_path_lock);
1073
2260e7fc 1074 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1075 seq_puts(seq, ",clone_children");
c6d57f33
PM
1076 if (strlen(root->name))
1077 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1078 return 0;
1079}
1080
1081struct cgroup_sb_opts {
a1a71b45 1082 unsigned long subsys_mask;
ddbcc7e8 1083 unsigned long flags;
81a6a5cd 1084 char *release_agent;
2260e7fc 1085 bool cpuset_clone_children;
c6d57f33 1086 char *name;
2c6ab6d2
PM
1087 /* User explicitly requested empty subsystem */
1088 bool none;
ddbcc7e8
PM
1089};
1090
aae8aab4 1091/*
9871bf95
TH
1092 * Convert a hierarchy specifier into a bitmask of subsystems and
1093 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1094 * array. This function takes refcounts on subsystems to be used, unless it
1095 * returns error, in which case no refcounts are taken.
aae8aab4 1096 */
cf5d5941 1097static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1098{
32a8cf23
DL
1099 char *token, *o = data;
1100 bool all_ss = false, one_ss = false;
f9ab5b5b 1101 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1102 struct cgroup_subsys *ss;
1103 int i;
f9ab5b5b 1104
aae8aab4
BB
1105 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1106
f9ab5b5b 1107#ifdef CONFIG_CPUSETS
073219e9 1108 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1109#endif
ddbcc7e8 1110
c6d57f33 1111 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1112
1113 while ((token = strsep(&o, ",")) != NULL) {
1114 if (!*token)
1115 return -EINVAL;
32a8cf23 1116 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1117 /* Explicitly have no subsystems */
1118 opts->none = true;
32a8cf23
DL
1119 continue;
1120 }
1121 if (!strcmp(token, "all")) {
1122 /* Mutually exclusive option 'all' + subsystem name */
1123 if (one_ss)
1124 return -EINVAL;
1125 all_ss = true;
1126 continue;
1127 }
873fe09e
TH
1128 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1129 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1130 continue;
1131 }
32a8cf23 1132 if (!strcmp(token, "noprefix")) {
93438629 1133 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1134 continue;
1135 }
1136 if (!strcmp(token, "clone_children")) {
2260e7fc 1137 opts->cpuset_clone_children = true;
32a8cf23
DL
1138 continue;
1139 }
03b1cde6 1140 if (!strcmp(token, "xattr")) {
93438629 1141 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1142 continue;
1143 }
32a8cf23 1144 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1145 /* Specifying two release agents is forbidden */
1146 if (opts->release_agent)
1147 return -EINVAL;
c6d57f33 1148 opts->release_agent =
e400c285 1149 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1150 if (!opts->release_agent)
1151 return -ENOMEM;
32a8cf23
DL
1152 continue;
1153 }
1154 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1155 const char *name = token + 5;
1156 /* Can't specify an empty name */
1157 if (!strlen(name))
1158 return -EINVAL;
1159 /* Must match [\w.-]+ */
1160 for (i = 0; i < strlen(name); i++) {
1161 char c = name[i];
1162 if (isalnum(c))
1163 continue;
1164 if ((c == '.') || (c == '-') || (c == '_'))
1165 continue;
1166 return -EINVAL;
1167 }
1168 /* Specifying two names is forbidden */
1169 if (opts->name)
1170 return -EINVAL;
1171 opts->name = kstrndup(name,
e400c285 1172 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1173 GFP_KERNEL);
1174 if (!opts->name)
1175 return -ENOMEM;
32a8cf23
DL
1176
1177 continue;
1178 }
1179
30159ec7 1180 for_each_subsys(ss, i) {
32a8cf23
DL
1181 if (strcmp(token, ss->name))
1182 continue;
1183 if (ss->disabled)
1184 continue;
1185
1186 /* Mutually exclusive option 'all' + subsystem name */
1187 if (all_ss)
1188 return -EINVAL;
a1a71b45 1189 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1190 one_ss = true;
1191
1192 break;
1193 }
1194 if (i == CGROUP_SUBSYS_COUNT)
1195 return -ENOENT;
1196 }
1197
1198 /*
1199 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1200 * otherwise if 'none', 'name=' and a subsystem name options
1201 * were not specified, let's default to 'all'
32a8cf23 1202 */
30159ec7
TH
1203 if (all_ss || (!one_ss && !opts->none && !opts->name))
1204 for_each_subsys(ss, i)
1205 if (!ss->disabled)
1206 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1207
2c6ab6d2
PM
1208 /* Consistency checks */
1209
873fe09e
TH
1210 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1211 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1212
d3ba07c3
TH
1213 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1214 opts->cpuset_clone_children || opts->release_agent ||
1215 opts->name) {
1216 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1217 return -EINVAL;
1218 }
873fe09e
TH
1219 }
1220
f9ab5b5b
LZ
1221 /*
1222 * Option noprefix was introduced just for backward compatibility
1223 * with the old cpuset, so we allow noprefix only if mounting just
1224 * the cpuset subsystem.
1225 */
93438629 1226 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1227 return -EINVAL;
1228
2c6ab6d2
PM
1229
1230 /* Can't specify "none" and some subsystems */
a1a71b45 1231 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1232 return -EINVAL;
1233
1234 /*
1235 * We either have to specify by name or by subsystems. (So all
1236 * empty hierarchies must have a name).
1237 */
a1a71b45 1238 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1239 return -EINVAL;
1240
1241 return 0;
1242}
1243
2bd59d48 1244static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1245{
1246 int ret = 0;
2bd59d48 1247 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1248 struct cgroup_sb_opts opts;
a1a71b45 1249 unsigned long added_mask, removed_mask;
ddbcc7e8 1250
873fe09e
TH
1251 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1252 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1253 return -EINVAL;
1254 }
1255
ace2bee8 1256 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1257 mutex_lock(&cgroup_mutex);
1258
1259 /* See what subsystems are wanted */
1260 ret = parse_cgroupfs_options(data, &opts);
1261 if (ret)
1262 goto out_unlock;
1263
a8a648c4 1264 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1265 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1266 task_tgid_nr(current), current->comm);
1267
a1a71b45
AR
1268 added_mask = opts.subsys_mask & ~root->subsys_mask;
1269 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1270
cf5d5941 1271 /* Don't allow flags or name to change at remount */
0ce6cba3 1272 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1273 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1274 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1275 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1276 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1277 ret = -EINVAL;
1278 goto out_unlock;
1279 }
1280
f172e67c 1281 /* remounting is not allowed for populated hierarchies */
3c9c825b 1282 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1283 ret = -EBUSY;
0670e08b 1284 goto out_unlock;
cf5d5941 1285 }
ddbcc7e8 1286
a8a648c4 1287 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1288 if (ret)
0670e08b 1289 goto out_unlock;
ddbcc7e8 1290
69e943b7
TH
1291 if (opts.release_agent) {
1292 spin_lock(&release_agent_path_lock);
81a6a5cd 1293 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1294 spin_unlock(&release_agent_path_lock);
1295 }
ddbcc7e8 1296 out_unlock:
66bdc9cf 1297 kfree(opts.release_agent);
c6d57f33 1298 kfree(opts.name);
ddbcc7e8 1299 mutex_unlock(&cgroup_mutex);
ace2bee8 1300 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1301 return ret;
1302}
1303
afeb0f9f
TH
1304/*
1305 * To reduce the fork() overhead for systems that are not actually using
1306 * their cgroups capability, we don't maintain the lists running through
1307 * each css_set to its tasks until we see the list actually used - in other
1308 * words after the first mount.
1309 */
1310static bool use_task_css_set_links __read_mostly;
1311
1312static void cgroup_enable_task_cg_lists(void)
1313{
1314 struct task_struct *p, *g;
1315
96d365e0 1316 down_write(&css_set_rwsem);
afeb0f9f
TH
1317
1318 if (use_task_css_set_links)
1319 goto out_unlock;
1320
1321 use_task_css_set_links = true;
1322
1323 /*
1324 * We need tasklist_lock because RCU is not safe against
1325 * while_each_thread(). Besides, a forking task that has passed
1326 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1327 * is not guaranteed to have its child immediately visible in the
1328 * tasklist if we walk through it with RCU.
1329 */
1330 read_lock(&tasklist_lock);
1331 do_each_thread(g, p) {
1332 task_lock(p);
1333
1334 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1335 task_css_set(p) != &init_css_set);
1336
1337 /*
1338 * We should check if the process is exiting, otherwise
1339 * it will race with cgroup_exit() in that the list
1340 * entry won't be deleted though the process has exited.
f153ad11
TH
1341 * Do it while holding siglock so that we don't end up
1342 * racing against cgroup_exit().
afeb0f9f 1343 */
f153ad11 1344 spin_lock_irq(&p->sighand->siglock);
afeb0f9f
TH
1345 if (!(p->flags & PF_EXITING))
1346 list_add(&p->cg_list, &task_css_set(p)->tasks);
f153ad11 1347 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1348
1349 task_unlock(p);
1350 } while_each_thread(g, p);
1351 read_unlock(&tasklist_lock);
1352out_unlock:
96d365e0 1353 up_write(&css_set_rwsem);
afeb0f9f
TH
1354}
1355
cc31edce
PM
1356static void init_cgroup_housekeeping(struct cgroup *cgrp)
1357{
2bd59d48 1358 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1359 INIT_LIST_HEAD(&cgrp->sibling);
1360 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1361 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1362 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1363 INIT_LIST_HEAD(&cgrp->pidlists);
1364 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1365 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1366}
c6d57f33 1367
ddbcc7e8
PM
1368static void init_cgroup_root(struct cgroupfs_root *root)
1369{
bd89aabc 1370 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1371
ddbcc7e8 1372 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1373 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1374 cgrp->root = root;
cc31edce 1375 init_cgroup_housekeeping(cgrp);
4e96ee8e 1376 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1377}
1378
c6d57f33
PM
1379static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1380{
1381 struct cgroupfs_root *root;
1382
a1a71b45 1383 if (!opts->subsys_mask && !opts->none)
2bd59d48 1384 return ERR_PTR(-EINVAL);
c6d57f33
PM
1385
1386 root = kzalloc(sizeof(*root), GFP_KERNEL);
1387 if (!root)
1388 return ERR_PTR(-ENOMEM);
1389
1390 init_cgroup_root(root);
2c6ab6d2 1391
c6d57f33
PM
1392 root->flags = opts->flags;
1393 if (opts->release_agent)
1394 strcpy(root->release_agent_path, opts->release_agent);
1395 if (opts->name)
1396 strcpy(root->name, opts->name);
2260e7fc
TH
1397 if (opts->cpuset_clone_children)
1398 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1399 return root;
1400}
1401
35585573 1402static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1403{
1404 LIST_HEAD(tmp_links);
d427dfeb 1405 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1406 struct css_set *cset;
d427dfeb
TH
1407 int i, ret;
1408
1409 lockdep_assert_held(&cgroup_tree_mutex);
1410 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1411
1412 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1413 if (ret < 0)
2bd59d48 1414 goto out;
d427dfeb
TH
1415 root_cgrp->id = ret;
1416
d427dfeb 1417 /*
96d365e0 1418 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1419 * but that's OK - it can only be increased by someone holding
1420 * cgroup_lock, and that's us. The worst that can happen is that we
1421 * have some link structures left over
1422 */
1423 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1424 if (ret)
2bd59d48 1425 goto out;
d427dfeb
TH
1426
1427 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1428 ret = cgroup_init_root_id(root, 2, 0);
1429 if (ret)
2bd59d48 1430 goto out;
d427dfeb 1431
2bd59d48
TH
1432 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1433 KERNFS_ROOT_CREATE_DEACTIVATED,
1434 root_cgrp);
1435 if (IS_ERR(root->kf_root)) {
1436 ret = PTR_ERR(root->kf_root);
1437 goto exit_root_id;
1438 }
1439 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1440
1441 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1442 if (ret)
2bd59d48 1443 goto destroy_root;
d427dfeb 1444
35585573 1445 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1446 if (ret)
2bd59d48 1447 goto destroy_root;
d427dfeb
TH
1448
1449 /*
1450 * There must be no failure case after here, since rebinding takes
1451 * care of subsystems' refcounts, which are explicitly dropped in
1452 * the failure exit path.
1453 */
1454 list_add(&root->root_list, &cgroup_roots);
1455 cgroup_root_count++;
1456
1457 /*
1458 * Link the top cgroup in this hierarchy into all the css_set
1459 * objects.
1460 */
96d365e0 1461 down_write(&css_set_rwsem);
d427dfeb
TH
1462 hash_for_each(css_set_table, i, cset, hlist)
1463 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1464 up_write(&css_set_rwsem);
d427dfeb
TH
1465
1466 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1467 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1468
2bd59d48 1469 kernfs_activate(root_cgrp->kn);
d427dfeb 1470 ret = 0;
2bd59d48 1471 goto out;
d427dfeb 1472
2bd59d48
TH
1473destroy_root:
1474 kernfs_destroy_root(root->kf_root);
1475 root->kf_root = NULL;
1476exit_root_id:
d427dfeb 1477 cgroup_exit_root_id(root);
2bd59d48 1478out:
d427dfeb
TH
1479 free_cgrp_cset_links(&tmp_links);
1480 return ret;
1481}
1482
f7e83571 1483static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1484 int flags, const char *unused_dev_name,
f7e83571 1485 void *data)
ddbcc7e8 1486{
2bd59d48 1487 struct cgroupfs_root *root;
ddbcc7e8 1488 struct cgroup_sb_opts opts;
2bd59d48 1489 struct dentry *dentry;
8e30e2b8 1490 int ret;
56fde9e0
TH
1491
1492 /*
1493 * The first time anyone tries to mount a cgroup, enable the list
1494 * linking each css_set to its tasks and fix up all existing tasks.
1495 */
1496 if (!use_task_css_set_links)
1497 cgroup_enable_task_cg_lists();
776f02fa 1498retry:
8e30e2b8 1499 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1500 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1501
1502 /* First find the desired set of subsystems */
ddbcc7e8 1503 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1504 if (ret)
8e30e2b8 1505 goto out_unlock;
ddbcc7e8 1506
2bd59d48
TH
1507 /* look for a matching existing root */
1508 for_each_active_root(root) {
1509 bool name_match = false;
ddbcc7e8 1510
2bd59d48
TH
1511 /*
1512 * If we asked for a name then it must match. Also, if
1513 * name matches but sybsys_mask doesn't, we should fail.
1514 * Remember whether name matched.
1515 */
1516 if (opts.name) {
1517 if (strcmp(opts.name, root->name))
1518 continue;
1519 name_match = true;
1520 }
ddbcc7e8 1521
c6d57f33 1522 /*
2bd59d48
TH
1523 * If we asked for subsystems (or explicitly for no
1524 * subsystems) then they must match.
c6d57f33 1525 */
2bd59d48
TH
1526 if ((opts.subsys_mask || opts.none) &&
1527 (opts.subsys_mask != root->subsys_mask)) {
1528 if (!name_match)
1529 continue;
1530 ret = -EBUSY;
1531 goto out_unlock;
1532 }
873fe09e 1533
c7ba8287 1534 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1535 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1536 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1537 ret = -EINVAL;
8e30e2b8 1538 goto out_unlock;
2a0ff3fb
JL
1539 } else {
1540 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1541 }
873fe09e 1542 }
2bd59d48 1543
776f02fa
TH
1544 /*
1545 * A root's lifetime is governed by its top cgroup. Zero
1546 * ref indicate that the root is being destroyed. Wait for
1547 * destruction to complete so that the subsystems are free.
1548 * We can use wait_queue for the wait but this path is
1549 * super cold. Let's just sleep for a bit and retry.
1550 */
1551 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1552 mutex_unlock(&cgroup_mutex);
1553 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1554 kfree(opts.release_agent);
1555 kfree(opts.name);
776f02fa
TH
1556 msleep(10);
1557 goto retry;
1558 }
1559
1560 ret = 0;
2bd59d48 1561 goto out_unlock;
ddbcc7e8
PM
1562 }
1563
2bd59d48
TH
1564 /* no such thing, create a new one */
1565 root = cgroup_root_from_opts(&opts);
1566 if (IS_ERR(root)) {
1567 ret = PTR_ERR(root);
1568 goto out_unlock;
1569 }
1570
35585573 1571 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1572 if (ret)
1573 cgroup_free_root(root);
1574
8e30e2b8 1575out_unlock:
e25e2cbb 1576 mutex_unlock(&cgroup_mutex);
ace2bee8 1577 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1578
c6d57f33
PM
1579 kfree(opts.release_agent);
1580 kfree(opts.name);
8e30e2b8 1581
2bd59d48 1582 if (ret)
8e30e2b8 1583 return ERR_PTR(ret);
2bd59d48
TH
1584
1585 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1586 if (IS_ERR(dentry))
776f02fa 1587 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1588 return dentry;
1589}
1590
1591static void cgroup_kill_sb(struct super_block *sb)
1592{
1593 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1594 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1595
776f02fa 1596 cgroup_put(&root->top_cgroup);
2bd59d48 1597 kernfs_kill_sb(sb);
ddbcc7e8
PM
1598}
1599
ddbcc7e8
PM
1600static struct file_system_type cgroup_fs_type = {
1601 .name = "cgroup",
f7e83571 1602 .mount = cgroup_mount,
ddbcc7e8
PM
1603 .kill_sb = cgroup_kill_sb,
1604};
1605
676db4af
GK
1606static struct kobject *cgroup_kobj;
1607
857a2beb 1608/**
913ffdb5 1609 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1610 * @task: target task
857a2beb
TH
1611 * @buf: the buffer to write the path into
1612 * @buflen: the length of the buffer
1613 *
913ffdb5
TH
1614 * Determine @task's cgroup on the first (the one with the lowest non-zero
1615 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1616 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1617 * cgroup controller callbacks.
1618 *
e61734c5 1619 * Return value is the same as kernfs_path().
857a2beb 1620 */
e61734c5 1621char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1622{
1623 struct cgroupfs_root *root;
913ffdb5 1624 struct cgroup *cgrp;
e61734c5
TH
1625 int hierarchy_id = 1;
1626 char *path = NULL;
857a2beb
TH
1627
1628 mutex_lock(&cgroup_mutex);
96d365e0 1629 down_read(&css_set_rwsem);
857a2beb 1630
913ffdb5
TH
1631 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1632
857a2beb
TH
1633 if (root) {
1634 cgrp = task_cgroup_from_root(task, root);
e61734c5 1635 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1636 } else {
1637 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1638 if (strlcpy(buf, "/", buflen) < buflen)
1639 path = buf;
857a2beb
TH
1640 }
1641
96d365e0 1642 up_read(&css_set_rwsem);
857a2beb 1643 mutex_unlock(&cgroup_mutex);
e61734c5 1644 return path;
857a2beb 1645}
913ffdb5 1646EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1647
b3dc094e 1648/* used to track tasks and other necessary states during migration */
2f7ee569 1649struct cgroup_taskset {
b3dc094e
TH
1650 /* the src and dst cset list running through cset->mg_node */
1651 struct list_head src_csets;
1652 struct list_head dst_csets;
1653
1654 /*
1655 * Fields for cgroup_taskset_*() iteration.
1656 *
1657 * Before migration is committed, the target migration tasks are on
1658 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1659 * the csets on ->dst_csets. ->csets point to either ->src_csets
1660 * or ->dst_csets depending on whether migration is committed.
1661 *
1662 * ->cur_csets and ->cur_task point to the current task position
1663 * during iteration.
1664 */
1665 struct list_head *csets;
1666 struct css_set *cur_cset;
1667 struct task_struct *cur_task;
2f7ee569
TH
1668};
1669
1670/**
1671 * cgroup_taskset_first - reset taskset and return the first task
1672 * @tset: taskset of interest
1673 *
1674 * @tset iteration is initialized and the first task is returned.
1675 */
1676struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1677{
b3dc094e
TH
1678 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1679 tset->cur_task = NULL;
1680
1681 return cgroup_taskset_next(tset);
2f7ee569 1682}
2f7ee569
TH
1683
1684/**
1685 * cgroup_taskset_next - iterate to the next task in taskset
1686 * @tset: taskset of interest
1687 *
1688 * Return the next task in @tset. Iteration must have been initialized
1689 * with cgroup_taskset_first().
1690 */
1691struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1692{
b3dc094e
TH
1693 struct css_set *cset = tset->cur_cset;
1694 struct task_struct *task = tset->cur_task;
2f7ee569 1695
b3dc094e
TH
1696 while (&cset->mg_node != tset->csets) {
1697 if (!task)
1698 task = list_first_entry(&cset->mg_tasks,
1699 struct task_struct, cg_list);
1700 else
1701 task = list_next_entry(task, cg_list);
2f7ee569 1702
b3dc094e
TH
1703 if (&task->cg_list != &cset->mg_tasks) {
1704 tset->cur_cset = cset;
1705 tset->cur_task = task;
1706 return task;
1707 }
1708
1709 cset = list_next_entry(cset, mg_node);
1710 task = NULL;
1711 }
1712
1713 return NULL;
2f7ee569 1714}
2f7ee569 1715
cb0f1fe9 1716/**
74a1166d 1717 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1718 * @old_cgrp; the cgroup @tsk is being migrated from
1719 * @tsk: the task being migrated
1720 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1721 *
cb0f1fe9 1722 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1723 */
5abb8855
TH
1724static void cgroup_task_migrate(struct cgroup *old_cgrp,
1725 struct task_struct *tsk,
1726 struct css_set *new_cset)
74a1166d 1727{
5abb8855 1728 struct css_set *old_cset;
74a1166d 1729
cb0f1fe9
TH
1730 lockdep_assert_held(&cgroup_mutex);
1731 lockdep_assert_held(&css_set_rwsem);
1732
74a1166d 1733 /*
026085ef
MSB
1734 * We are synchronized through threadgroup_lock() against PF_EXITING
1735 * setting such that we can't race against cgroup_exit() changing the
1736 * css_set to init_css_set and dropping the old one.
74a1166d 1737 */
c84cdf75 1738 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1739 old_cset = task_css_set(tsk);
74a1166d 1740
b3dc094e
TH
1741 get_css_set(new_cset);
1742
74a1166d 1743 task_lock(tsk);
5abb8855 1744 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1745 task_unlock(tsk);
1746
b3dc094e 1747 list_move(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1748
1749 /*
5abb8855
TH
1750 * We just gained a reference on old_cset by taking it from the
1751 * task. As trading it for new_cset is protected by cgroup_mutex,
1752 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1753 */
5abb8855 1754 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1755 put_css_set_locked(old_cset, false);
74a1166d
BB
1756}
1757
a043e3b2 1758/**
1958d2d5
TH
1759 * cgroup_migrate_finish - cleanup after attach
1760 * @preloaded_csets: list of preloaded css_sets
74a1166d 1761 *
1958d2d5
TH
1762 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1763 * those functions for details.
74a1166d 1764 */
1958d2d5
TH
1765static void cgroup_migrate_finish(struct list_head *preloaded_csets)
1766{
1767 struct css_set *cset, *tmp_cset;
1768
1769 lockdep_assert_held(&cgroup_mutex);
1770
1771 down_write(&css_set_rwsem);
1772 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1773 cset->mg_src_cgrp = NULL;
1774 cset->mg_dst_cset = NULL;
1775 list_del_init(&cset->mg_preload_node);
1776 put_css_set_locked(cset, false);
1777 }
1778 up_write(&css_set_rwsem);
1779}
1780
1781/**
1782 * cgroup_migrate_add_src - add a migration source css_set
1783 * @src_cset: the source css_set to add
1784 * @dst_cgrp: the destination cgroup
1785 * @preloaded_csets: list of preloaded css_sets
1786 *
1787 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1788 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1789 * up by cgroup_migrate_finish().
1790 *
1791 * This function may be called without holding threadgroup_lock even if the
1792 * target is a process. Threads may be created and destroyed but as long
1793 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1794 * the preloaded css_sets are guaranteed to cover all migrations.
1795 */
1796static void cgroup_migrate_add_src(struct css_set *src_cset,
1797 struct cgroup *dst_cgrp,
1798 struct list_head *preloaded_csets)
1799{
1800 struct cgroup *src_cgrp;
1801
1802 lockdep_assert_held(&cgroup_mutex);
1803 lockdep_assert_held(&css_set_rwsem);
1804
1805 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1806
1807 /* nothing to do if this cset already belongs to the cgroup */
1808 if (src_cgrp == dst_cgrp)
1809 return;
1810
1811 if (!list_empty(&src_cset->mg_preload_node))
1812 return;
1813
1814 WARN_ON(src_cset->mg_src_cgrp);
1815 WARN_ON(!list_empty(&src_cset->mg_tasks));
1816 WARN_ON(!list_empty(&src_cset->mg_node));
1817
1818 src_cset->mg_src_cgrp = src_cgrp;
1819 get_css_set(src_cset);
1820 list_add(&src_cset->mg_preload_node, preloaded_csets);
1821}
1822
1823/**
1824 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1825 * @dst_cgrp: the destination cgroup
1826 * @preloaded_csets: list of preloaded source css_sets
1827 *
1828 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1829 * have been preloaded to @preloaded_csets. This function looks up and
1830 * pins all destination css_sets, links each to its source, and put them on
1831 * @preloaded_csets.
1832 *
1833 * This function must be called after cgroup_migrate_add_src() has been
1834 * called on each migration source css_set. After migration is performed
1835 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1836 * @preloaded_csets.
1837 */
1838static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1839 struct list_head *preloaded_csets)
1840{
1841 LIST_HEAD(csets);
1842 struct css_set *src_cset;
1843
1844 lockdep_assert_held(&cgroup_mutex);
1845
1846 /* look up the dst cset for each src cset and link it to src */
1847 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1848 struct css_set *dst_cset;
1849
1850 dst_cset = find_css_set(src_cset, dst_cgrp);
1851 if (!dst_cset)
1852 goto err;
1853
1854 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1855 src_cset->mg_dst_cset = dst_cset;
1856
1857 if (list_empty(&dst_cset->mg_preload_node))
1858 list_add(&dst_cset->mg_preload_node, &csets);
1859 else
1860 put_css_set(dst_cset, false);
1861 }
1862
1863 list_splice(&csets, preloaded_csets);
1864 return 0;
1865err:
1866 cgroup_migrate_finish(&csets);
1867 return -ENOMEM;
1868}
1869
1870/**
1871 * cgroup_migrate - migrate a process or task to a cgroup
1872 * @cgrp: the destination cgroup
1873 * @leader: the leader of the process or the task to migrate
1874 * @threadgroup: whether @leader points to the whole process or a single task
1875 *
1876 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1877 * process, the caller must be holding threadgroup_lock of @leader. The
1878 * caller is also responsible for invoking cgroup_migrate_add_src() and
1879 * cgroup_migrate_prepare_dst() on the targets before invoking this
1880 * function and following up with cgroup_migrate_finish().
1881 *
1882 * As long as a controller's ->can_attach() doesn't fail, this function is
1883 * guaranteed to succeed. This means that, excluding ->can_attach()
1884 * failure, when migrating multiple targets, the success or failure can be
1885 * decided for all targets by invoking group_migrate_prepare_dst() before
1886 * actually starting migrating.
1887 */
1888static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1889 bool threadgroup)
74a1166d 1890{
b3dc094e
TH
1891 struct cgroup_taskset tset = {
1892 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1893 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1894 .csets = &tset.src_csets,
1895 };
1c6727af 1896 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1897 struct css_set *cset, *tmp_cset;
1898 struct task_struct *task, *tmp_task;
1899 int i, ret;
74a1166d 1900
fb5d2b4c
MSB
1901 /*
1902 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1903 * already PF_EXITING could be freed from underneath us unless we
1904 * take an rcu_read_lock.
1905 */
b3dc094e 1906 down_write(&css_set_rwsem);
fb5d2b4c 1907 rcu_read_lock();
9db8de37 1908 task = leader;
74a1166d 1909 do {
9db8de37
TH
1910 /* @task either already exited or can't exit until the end */
1911 if (task->flags & PF_EXITING)
ea84753c 1912 goto next;
cd3d0952 1913
b3dc094e 1914 cset = task_css_set(task);
1958d2d5 1915 if (!cset->mg_src_cgrp)
ea84753c 1916 goto next;
b3dc094e 1917
b3dc094e 1918 list_move(&task->cg_list, &cset->mg_tasks);
1958d2d5
TH
1919 list_move(&cset->mg_node, &tset.src_csets);
1920 list_move(&cset->mg_dst_cset->mg_node, &tset.dst_csets);
ea84753c 1921 next:
081aa458
LZ
1922 if (!threadgroup)
1923 break;
9db8de37 1924 } while_each_thread(leader, task);
fb5d2b4c 1925 rcu_read_unlock();
b3dc094e 1926 up_write(&css_set_rwsem);
74a1166d 1927
134d3373 1928 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
1929 if (list_empty(&tset.src_csets))
1930 return 0;
134d3373 1931
1958d2d5 1932 /* check that we can legitimately attach to the cgroup */
1c6727af
TH
1933 for_each_css(css, i, cgrp) {
1934 if (css->ss->can_attach) {
9db8de37
TH
1935 ret = css->ss->can_attach(css, &tset);
1936 if (ret) {
1c6727af 1937 failed_css = css;
74a1166d
BB
1938 goto out_cancel_attach;
1939 }
1940 }
74a1166d
BB
1941 }
1942
1943 /*
1958d2d5
TH
1944 * Now that we're guaranteed success, proceed to move all tasks to
1945 * the new cgroup. There are no failure cases after here, so this
1946 * is the commit point.
74a1166d 1947 */
cb0f1fe9 1948 down_write(&css_set_rwsem);
b3dc094e
TH
1949 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1950 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1951 cgroup_task_migrate(cset->mg_src_cgrp, task,
1952 cset->mg_dst_cset);
74a1166d 1953 }
cb0f1fe9 1954 up_write(&css_set_rwsem);
b3dc094e 1955
74a1166d 1956 /*
1958d2d5
TH
1957 * Migration is committed, all target tasks are now on dst_csets.
1958 * Nothing is sensitive to fork() after this point. Notify
1959 * controllers that migration is complete.
74a1166d 1960 */
1958d2d5
TH
1961 tset.csets = &tset.dst_csets;
1962
1c6727af
TH
1963 for_each_css(css, i, cgrp)
1964 if (css->ss->attach)
1965 css->ss->attach(css, &tset);
74a1166d 1966
9db8de37 1967 ret = 0;
b3dc094e
TH
1968 goto out_release_tset;
1969
74a1166d 1970out_cancel_attach:
b3dc094e
TH
1971 for_each_css(css, i, cgrp) {
1972 if (css == failed_css)
1973 break;
1974 if (css->ss->cancel_attach)
1975 css->ss->cancel_attach(css, &tset);
74a1166d 1976 }
b3dc094e
TH
1977out_release_tset:
1978 down_write(&css_set_rwsem);
1979 list_splice_init(&tset.dst_csets, &tset.src_csets);
1980 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1981 list_splice_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 1982 list_del_init(&cset->mg_node);
b3dc094e
TH
1983 }
1984 up_write(&css_set_rwsem);
9db8de37 1985 return ret;
74a1166d
BB
1986}
1987
1958d2d5
TH
1988/**
1989 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1990 * @dst_cgrp: the cgroup to attach to
1991 * @leader: the task or the leader of the threadgroup to be attached
1992 * @threadgroup: attach the whole threadgroup?
1993 *
1994 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1995 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1996 */
1997static int cgroup_attach_task(struct cgroup *dst_cgrp,
1998 struct task_struct *leader, bool threadgroup)
1999{
2000 LIST_HEAD(preloaded_csets);
2001 struct task_struct *task;
2002 int ret;
2003
2004 /* look up all src csets */
2005 down_read(&css_set_rwsem);
2006 rcu_read_lock();
2007 task = leader;
2008 do {
2009 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2010 &preloaded_csets);
2011 if (!threadgroup)
2012 break;
2013 } while_each_thread(leader, task);
2014 rcu_read_unlock();
2015 up_read(&css_set_rwsem);
2016
2017 /* prepare dst csets and commit */
2018 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2019 if (!ret)
2020 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2021
2022 cgroup_migrate_finish(&preloaded_csets);
2023 return ret;
2024}
2025
74a1166d
BB
2026/*
2027 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2028 * function to attach either it or all tasks in its threadgroup. Will lock
2029 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2030 */
74a1166d 2031static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2032{
bbcb81d0 2033 struct task_struct *tsk;
c69e8d9c 2034 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2035 int ret;
2036
74a1166d
BB
2037 if (!cgroup_lock_live_group(cgrp))
2038 return -ENODEV;
2039
b78949eb
MSB
2040retry_find_task:
2041 rcu_read_lock();
bbcb81d0 2042 if (pid) {
73507f33 2043 tsk = find_task_by_vpid(pid);
74a1166d
BB
2044 if (!tsk) {
2045 rcu_read_unlock();
dd4b0a46 2046 ret = -ESRCH;
b78949eb 2047 goto out_unlock_cgroup;
bbcb81d0 2048 }
74a1166d
BB
2049 /*
2050 * even if we're attaching all tasks in the thread group, we
2051 * only need to check permissions on one of them.
2052 */
c69e8d9c 2053 tcred = __task_cred(tsk);
14a590c3
EB
2054 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2055 !uid_eq(cred->euid, tcred->uid) &&
2056 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2057 rcu_read_unlock();
b78949eb
MSB
2058 ret = -EACCES;
2059 goto out_unlock_cgroup;
bbcb81d0 2060 }
b78949eb
MSB
2061 } else
2062 tsk = current;
cd3d0952
TH
2063
2064 if (threadgroup)
b78949eb 2065 tsk = tsk->group_leader;
c4c27fbd
MG
2066
2067 /*
14a40ffc 2068 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2069 * trapped in a cpuset, or RT worker may be born in a cgroup
2070 * with no rt_runtime allocated. Just say no.
2071 */
14a40ffc 2072 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2073 ret = -EINVAL;
2074 rcu_read_unlock();
2075 goto out_unlock_cgroup;
2076 }
2077
b78949eb
MSB
2078 get_task_struct(tsk);
2079 rcu_read_unlock();
2080
2081 threadgroup_lock(tsk);
2082 if (threadgroup) {
2083 if (!thread_group_leader(tsk)) {
2084 /*
2085 * a race with de_thread from another thread's exec()
2086 * may strip us of our leadership, if this happens,
2087 * there is no choice but to throw this task away and
2088 * try again; this is
2089 * "double-double-toil-and-trouble-check locking".
2090 */
2091 threadgroup_unlock(tsk);
2092 put_task_struct(tsk);
2093 goto retry_find_task;
2094 }
081aa458
LZ
2095 }
2096
2097 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2098
cd3d0952
TH
2099 threadgroup_unlock(tsk);
2100
bbcb81d0 2101 put_task_struct(tsk);
b78949eb 2102out_unlock_cgroup:
47cfcd09 2103 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2104 return ret;
2105}
2106
7ae1bad9
TH
2107/**
2108 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2109 * @from: attach to all cgroups of a given task
2110 * @tsk: the task to be attached
2111 */
2112int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2113{
2114 struct cgroupfs_root *root;
2115 int retval = 0;
2116
47cfcd09 2117 mutex_lock(&cgroup_mutex);
7ae1bad9 2118 for_each_active_root(root) {
96d365e0
TH
2119 struct cgroup *from_cgrp;
2120
2121 down_read(&css_set_rwsem);
2122 from_cgrp = task_cgroup_from_root(from, root);
2123 up_read(&css_set_rwsem);
7ae1bad9 2124
6f4b7e63 2125 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2126 if (retval)
2127 break;
2128 }
47cfcd09 2129 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2130
2131 return retval;
2132}
2133EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2134
182446d0
TH
2135static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2136 struct cftype *cft, u64 pid)
74a1166d 2137{
182446d0 2138 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2139}
2140
182446d0
TH
2141static int cgroup_procs_write(struct cgroup_subsys_state *css,
2142 struct cftype *cft, u64 tgid)
af351026 2143{
182446d0 2144 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2145}
2146
182446d0
TH
2147static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2148 struct cftype *cft, const char *buffer)
e788e066 2149{
5f469907
TH
2150 struct cgroupfs_root *root = css->cgroup->root;
2151
2152 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2153 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2154 return -ENODEV;
69e943b7 2155 spin_lock(&release_agent_path_lock);
5f469907
TH
2156 strlcpy(root->release_agent_path, buffer,
2157 sizeof(root->release_agent_path));
69e943b7 2158 spin_unlock(&release_agent_path_lock);
47cfcd09 2159 mutex_unlock(&cgroup_mutex);
e788e066
PM
2160 return 0;
2161}
2162
2da8ca82 2163static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2164{
2da8ca82 2165 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2166
e788e066
PM
2167 if (!cgroup_lock_live_group(cgrp))
2168 return -ENODEV;
2169 seq_puts(seq, cgrp->root->release_agent_path);
2170 seq_putc(seq, '\n');
47cfcd09 2171 mutex_unlock(&cgroup_mutex);
e788e066
PM
2172 return 0;
2173}
2174
2da8ca82 2175static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2176{
2da8ca82
TH
2177 struct cgroup *cgrp = seq_css(seq)->cgroup;
2178
2179 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2180 return 0;
2181}
2182
2bd59d48
TH
2183static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2184 size_t nbytes, loff_t off)
355e0c48 2185{
2bd59d48
TH
2186 struct cgroup *cgrp = of->kn->parent->priv;
2187 struct cftype *cft = of->kn->priv;
2188 struct cgroup_subsys_state *css;
a742c59d 2189 int ret;
355e0c48 2190
2bd59d48
TH
2191 /*
2192 * kernfs guarantees that a file isn't deleted with operations in
2193 * flight, which means that the matching css is and stays alive and
2194 * doesn't need to be pinned. The RCU locking is not necessary
2195 * either. It's just for the convenience of using cgroup_css().
2196 */
2197 rcu_read_lock();
2198 css = cgroup_css(cgrp, cft->ss);
2199 rcu_read_unlock();
a742c59d
TH
2200
2201 if (cft->write_string) {
2202 ret = cft->write_string(css, cft, strstrip(buf));
2203 } else if (cft->write_u64) {
2204 unsigned long long v;
2205 ret = kstrtoull(buf, 0, &v);
2206 if (!ret)
2207 ret = cft->write_u64(css, cft, v);
2208 } else if (cft->write_s64) {
2209 long long v;
2210 ret = kstrtoll(buf, 0, &v);
2211 if (!ret)
2212 ret = cft->write_s64(css, cft, v);
2213 } else if (cft->trigger) {
2214 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2215 } else {
a742c59d 2216 ret = -EINVAL;
e73d2c61 2217 }
2bd59d48 2218
a742c59d 2219 return ret ?: nbytes;
355e0c48
PM
2220}
2221
6612f05b 2222static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2223{
2bd59d48 2224 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2225}
2226
6612f05b 2227static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2228{
2bd59d48 2229 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2230}
2231
6612f05b 2232static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2233{
2bd59d48 2234 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2235}
2236
91796569 2237static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2238{
7da11279
TH
2239 struct cftype *cft = seq_cft(m);
2240 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2241
2da8ca82
TH
2242 if (cft->seq_show)
2243 return cft->seq_show(m, arg);
e73d2c61 2244
f4c753b7 2245 if (cft->read_u64)
896f5199
TH
2246 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2247 else if (cft->read_s64)
2248 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2249 else
2250 return -EINVAL;
2251 return 0;
91796569
PM
2252}
2253
2bd59d48
TH
2254static struct kernfs_ops cgroup_kf_single_ops = {
2255 .atomic_write_len = PAGE_SIZE,
2256 .write = cgroup_file_write,
2257 .seq_show = cgroup_seqfile_show,
91796569
PM
2258};
2259
2bd59d48
TH
2260static struct kernfs_ops cgroup_kf_ops = {
2261 .atomic_write_len = PAGE_SIZE,
2262 .write = cgroup_file_write,
2263 .seq_start = cgroup_seqfile_start,
2264 .seq_next = cgroup_seqfile_next,
2265 .seq_stop = cgroup_seqfile_stop,
2266 .seq_show = cgroup_seqfile_show,
2267};
ddbcc7e8
PM
2268
2269/*
2270 * cgroup_rename - Only allow simple rename of directories in place.
2271 */
2bd59d48
TH
2272static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2273 const char *new_name_str)
ddbcc7e8 2274{
2bd59d48 2275 struct cgroup *cgrp = kn->priv;
2bd59d48 2276 int ret;
65dff759 2277
2bd59d48 2278 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2279 return -ENOTDIR;
2bd59d48 2280 if (kn->parent != new_parent)
ddbcc7e8 2281 return -EIO;
65dff759 2282
6db8e85c
TH
2283 /*
2284 * This isn't a proper migration and its usefulness is very
2285 * limited. Disallow if sane_behavior.
2286 */
2287 if (cgroup_sane_behavior(cgrp))
2288 return -EPERM;
2289
2bd59d48
TH
2290 mutex_lock(&cgroup_tree_mutex);
2291 mutex_lock(&cgroup_mutex);
2292
2293 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2294
2bd59d48
TH
2295 mutex_unlock(&cgroup_mutex);
2296 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2297 return ret;
ddbcc7e8
PM
2298}
2299
2bb566cb 2300static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2301{
8d7e6fb0 2302 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2303 struct kernfs_node *kn;
2304 struct lock_class_key *key = NULL;
05ef1d7c 2305
2bd59d48
TH
2306#ifdef CONFIG_DEBUG_LOCK_ALLOC
2307 key = &cft->lockdep_key;
2308#endif
2309 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2310 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2311 NULL, false, key);
430af8ad 2312 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2313}
2314
b1f28d31
TH
2315/**
2316 * cgroup_addrm_files - add or remove files to a cgroup directory
2317 * @cgrp: the target cgroup
b1f28d31
TH
2318 * @cfts: array of cftypes to be added
2319 * @is_add: whether to add or remove
2320 *
2321 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2322 * For removals, this function never fails. If addition fails, this
2323 * function doesn't remove files already added. The caller is responsible
2324 * for cleaning up.
b1f28d31 2325 */
2bb566cb
TH
2326static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2327 bool is_add)
ddbcc7e8 2328{
03b1cde6 2329 struct cftype *cft;
b1f28d31
TH
2330 int ret;
2331
ace2bee8 2332 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2333
2334 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2335 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2336 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2337 continue;
f33fddc2
G
2338 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2339 continue;
2340 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2341 continue;
2342
2739d3cc 2343 if (is_add) {
2bb566cb 2344 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2345 if (ret) {
2739d3cc 2346 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2347 cft->name, ret);
2348 return ret;
2349 }
2739d3cc
LZ
2350 } else {
2351 cgroup_rm_file(cgrp, cft);
db0416b6 2352 }
ddbcc7e8 2353 }
b1f28d31 2354 return 0;
ddbcc7e8
PM
2355}
2356
21a2d343 2357static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2358{
2359 LIST_HEAD(pending);
2bb566cb 2360 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2361 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2362 struct cgroup_subsys_state *css;
9ccece80 2363 int ret = 0;
8e3f6541 2364
21a2d343 2365 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2366
21a2d343
TH
2367 /* don't bother if @ss isn't attached */
2368 if (ss->root == &cgroup_dummy_root)
9ccece80 2369 return 0;
e8c82d20 2370
e8c82d20 2371 /* add/rm files for all cgroups created before */
ca8bdcaf 2372 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2373 struct cgroup *cgrp = css->cgroup;
2374
e8c82d20
LZ
2375 if (cgroup_is_dead(cgrp))
2376 continue;
2377
21a2d343 2378 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2379 if (ret)
2380 break;
8e3f6541 2381 }
21a2d343
TH
2382
2383 if (is_add && !ret)
2384 kernfs_activate(root->kn);
9ccece80 2385 return ret;
8e3f6541
TH
2386}
2387
2da440a2
TH
2388static void cgroup_exit_cftypes(struct cftype *cfts)
2389{
2390 struct cftype *cft;
2391
2bd59d48
TH
2392 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2393 /* free copy for custom atomic_write_len, see init_cftypes() */
2394 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2395 kfree(cft->kf_ops);
2396 cft->kf_ops = NULL;
2da440a2 2397 cft->ss = NULL;
2bd59d48 2398 }
2da440a2
TH
2399}
2400
2bd59d48 2401static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2402{
2403 struct cftype *cft;
2404
2bd59d48
TH
2405 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2406 struct kernfs_ops *kf_ops;
2407
0adb0704
TH
2408 WARN_ON(cft->ss || cft->kf_ops);
2409
2bd59d48
TH
2410 if (cft->seq_start)
2411 kf_ops = &cgroup_kf_ops;
2412 else
2413 kf_ops = &cgroup_kf_single_ops;
2414
2415 /*
2416 * Ugh... if @cft wants a custom max_write_len, we need to
2417 * make a copy of kf_ops to set its atomic_write_len.
2418 */
2419 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2420 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2421 if (!kf_ops) {
2422 cgroup_exit_cftypes(cfts);
2423 return -ENOMEM;
2424 }
2425 kf_ops->atomic_write_len = cft->max_write_len;
2426 }
2427
2428 cft->kf_ops = kf_ops;
2da440a2 2429 cft->ss = ss;
2bd59d48
TH
2430 }
2431
2432 return 0;
2da440a2
TH
2433}
2434
21a2d343
TH
2435static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2436{
2437 lockdep_assert_held(&cgroup_tree_mutex);
2438
2439 if (!cfts || !cfts[0].ss)
2440 return -ENOENT;
2441
2442 list_del(&cfts->node);
2443 cgroup_apply_cftypes(cfts, false);
2444 cgroup_exit_cftypes(cfts);
2445 return 0;
2446}
2447
80b13586
TH
2448/**
2449 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2450 * @cfts: zero-length name terminated array of cftypes
2451 *
2452 * Unregister @cfts. Files described by @cfts are removed from all
2453 * existing cgroups and all future cgroups won't have them either. This
2454 * function can be called anytime whether @cfts' subsys is attached or not.
2455 *
2456 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2457 * registered.
2458 */
2459int cgroup_rm_cftypes(struct cftype *cfts)
2460{
21a2d343 2461 int ret;
80b13586 2462
21a2d343
TH
2463 mutex_lock(&cgroup_tree_mutex);
2464 ret = cgroup_rm_cftypes_locked(cfts);
2465 mutex_unlock(&cgroup_tree_mutex);
2466 return ret;
80b13586
TH
2467}
2468
8e3f6541
TH
2469/**
2470 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2471 * @ss: target cgroup subsystem
2472 * @cfts: zero-length name terminated array of cftypes
2473 *
2474 * Register @cfts to @ss. Files described by @cfts are created for all
2475 * existing cgroups to which @ss is attached and all future cgroups will
2476 * have them too. This function can be called anytime whether @ss is
2477 * attached or not.
2478 *
2479 * Returns 0 on successful registration, -errno on failure. Note that this
2480 * function currently returns 0 as long as @cfts registration is successful
2481 * even if some file creation attempts on existing cgroups fail.
2482 */
03b1cde6 2483int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2484{
9ccece80 2485 int ret;
8e3f6541 2486
dc5736ed
LZ
2487 if (!cfts || cfts[0].name[0] == '\0')
2488 return 0;
2489
2bd59d48
TH
2490 ret = cgroup_init_cftypes(ss, cfts);
2491 if (ret)
2492 return ret;
2bb566cb 2493
21a2d343
TH
2494 mutex_lock(&cgroup_tree_mutex);
2495
0adb0704 2496 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2497 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2498 if (ret)
21a2d343
TH
2499 cgroup_rm_cftypes_locked(cfts);
2500
2501 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2502 return ret;
8e3f6541 2503}
8e3f6541 2504
a043e3b2
LZ
2505/**
2506 * cgroup_task_count - count the number of tasks in a cgroup.
2507 * @cgrp: the cgroup in question
2508 *
2509 * Return the number of tasks in the cgroup.
2510 */
07bc356e 2511static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2512{
2513 int count = 0;
69d0206c 2514 struct cgrp_cset_link *link;
817929ec 2515
96d365e0 2516 down_read(&css_set_rwsem);
69d0206c
TH
2517 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2518 count += atomic_read(&link->cset->refcount);
96d365e0 2519 up_read(&css_set_rwsem);
bbcb81d0
PM
2520 return count;
2521}
2522
53fa5261 2523/**
492eb21b
TH
2524 * css_next_child - find the next child of a given css
2525 * @pos_css: the current position (%NULL to initiate traversal)
2526 * @parent_css: css whose children to walk
53fa5261 2527 *
492eb21b 2528 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2529 * under either cgroup_mutex or RCU read lock. The only requirement is
2530 * that @parent_css and @pos_css are accessible. The next sibling is
2531 * guaranteed to be returned regardless of their states.
53fa5261 2532 */
492eb21b
TH
2533struct cgroup_subsys_state *
2534css_next_child(struct cgroup_subsys_state *pos_css,
2535 struct cgroup_subsys_state *parent_css)
53fa5261 2536{
492eb21b
TH
2537 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2538 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2539 struct cgroup *next;
2540
ace2bee8 2541 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2542
2543 /*
2544 * @pos could already have been removed. Once a cgroup is removed,
2545 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2546 * changes. As CGRP_DEAD assertion is serialized and happens
2547 * before the cgroup is taken off the ->sibling list, if we see it
2548 * unasserted, it's guaranteed that the next sibling hasn't
2549 * finished its grace period even if it's already removed, and thus
2550 * safe to dereference from this RCU critical section. If
2551 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2552 * to be visible as %true here.
3b287a50
TH
2553 *
2554 * If @pos is dead, its next pointer can't be dereferenced;
2555 * however, as each cgroup is given a monotonically increasing
2556 * unique serial number and always appended to the sibling list,
2557 * the next one can be found by walking the parent's children until
2558 * we see a cgroup with higher serial number than @pos's. While
2559 * this path can be slower, it's taken only when either the current
2560 * cgroup is removed or iteration and removal race.
53fa5261 2561 */
3b287a50
TH
2562 if (!pos) {
2563 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2564 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2565 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2566 } else {
2567 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2568 if (next->serial_nr > pos->serial_nr)
2569 break;
53fa5261
TH
2570 }
2571
492eb21b
TH
2572 if (&next->sibling == &cgrp->children)
2573 return NULL;
2574
ca8bdcaf 2575 return cgroup_css(next, parent_css->ss);
53fa5261 2576}
53fa5261 2577
574bd9f7 2578/**
492eb21b 2579 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2580 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2581 * @root: css whose descendants to walk
574bd9f7 2582 *
492eb21b 2583 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2584 * to visit for pre-order traversal of @root's descendants. @root is
2585 * included in the iteration and the first node to be visited.
75501a6d 2586 *
87fb54f1
TH
2587 * While this function requires cgroup_mutex or RCU read locking, it
2588 * doesn't require the whole traversal to be contained in a single critical
2589 * section. This function will return the correct next descendant as long
2590 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2591 */
492eb21b
TH
2592struct cgroup_subsys_state *
2593css_next_descendant_pre(struct cgroup_subsys_state *pos,
2594 struct cgroup_subsys_state *root)
574bd9f7 2595{
492eb21b 2596 struct cgroup_subsys_state *next;
574bd9f7 2597
ace2bee8 2598 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2599
bd8815a6 2600 /* if first iteration, visit @root */
7805d000 2601 if (!pos)
bd8815a6 2602 return root;
574bd9f7
TH
2603
2604 /* visit the first child if exists */
492eb21b 2605 next = css_next_child(NULL, pos);
574bd9f7
TH
2606 if (next)
2607 return next;
2608
2609 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2610 while (pos != root) {
2611 next = css_next_child(pos, css_parent(pos));
75501a6d 2612 if (next)
574bd9f7 2613 return next;
492eb21b 2614 pos = css_parent(pos);
7805d000 2615 }
574bd9f7
TH
2616
2617 return NULL;
2618}
574bd9f7 2619
12a9d2fe 2620/**
492eb21b
TH
2621 * css_rightmost_descendant - return the rightmost descendant of a css
2622 * @pos: css of interest
12a9d2fe 2623 *
492eb21b
TH
2624 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2625 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2626 * subtree of @pos.
75501a6d 2627 *
87fb54f1
TH
2628 * While this function requires cgroup_mutex or RCU read locking, it
2629 * doesn't require the whole traversal to be contained in a single critical
2630 * section. This function will return the correct rightmost descendant as
2631 * long as @pos is accessible.
12a9d2fe 2632 */
492eb21b
TH
2633struct cgroup_subsys_state *
2634css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2635{
492eb21b 2636 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2637
ace2bee8 2638 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2639
2640 do {
2641 last = pos;
2642 /* ->prev isn't RCU safe, walk ->next till the end */
2643 pos = NULL;
492eb21b 2644 css_for_each_child(tmp, last)
12a9d2fe
TH
2645 pos = tmp;
2646 } while (pos);
2647
2648 return last;
2649}
12a9d2fe 2650
492eb21b
TH
2651static struct cgroup_subsys_state *
2652css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2653{
492eb21b 2654 struct cgroup_subsys_state *last;
574bd9f7
TH
2655
2656 do {
2657 last = pos;
492eb21b 2658 pos = css_next_child(NULL, pos);
574bd9f7
TH
2659 } while (pos);
2660
2661 return last;
2662}
2663
2664/**
492eb21b 2665 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2666 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2667 * @root: css whose descendants to walk
574bd9f7 2668 *
492eb21b 2669 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2670 * to visit for post-order traversal of @root's descendants. @root is
2671 * included in the iteration and the last node to be visited.
75501a6d 2672 *
87fb54f1
TH
2673 * While this function requires cgroup_mutex or RCU read locking, it
2674 * doesn't require the whole traversal to be contained in a single critical
2675 * section. This function will return the correct next descendant as long
2676 * as both @pos and @cgroup are accessible and @pos is a descendant of
2677 * @cgroup.
574bd9f7 2678 */
492eb21b
TH
2679struct cgroup_subsys_state *
2680css_next_descendant_post(struct cgroup_subsys_state *pos,
2681 struct cgroup_subsys_state *root)
574bd9f7 2682{
492eb21b 2683 struct cgroup_subsys_state *next;
574bd9f7 2684
ace2bee8 2685 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2686
58b79a91
TH
2687 /* if first iteration, visit leftmost descendant which may be @root */
2688 if (!pos)
2689 return css_leftmost_descendant(root);
574bd9f7 2690
bd8815a6
TH
2691 /* if we visited @root, we're done */
2692 if (pos == root)
2693 return NULL;
2694
574bd9f7 2695 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2696 next = css_next_child(pos, css_parent(pos));
75501a6d 2697 if (next)
492eb21b 2698 return css_leftmost_descendant(next);
574bd9f7
TH
2699
2700 /* no sibling left, visit parent */
bd8815a6 2701 return css_parent(pos);
574bd9f7 2702}
574bd9f7 2703
0942eeee 2704/**
72ec7029 2705 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2706 * @it: the iterator to advance
2707 *
2708 * Advance @it to the next css_set to walk.
d515876e 2709 */
72ec7029 2710static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2711{
2712 struct list_head *l = it->cset_link;
2713 struct cgrp_cset_link *link;
2714 struct css_set *cset;
2715
2716 /* Advance to the next non-empty css_set */
2717 do {
2718 l = l->next;
72ec7029 2719 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2720 it->cset_link = NULL;
2721 return;
2722 }
2723 link = list_entry(l, struct cgrp_cset_link, cset_link);
2724 cset = link->cset;
c7561128
TH
2725 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2726
d515876e 2727 it->cset_link = l;
c7561128
TH
2728
2729 if (!list_empty(&cset->tasks))
2730 it->task = cset->tasks.next;
2731 else
2732 it->task = cset->mg_tasks.next;
d515876e
TH
2733}
2734
0942eeee 2735/**
72ec7029
TH
2736 * css_task_iter_start - initiate task iteration
2737 * @css: the css to walk tasks of
0942eeee
TH
2738 * @it: the task iterator to use
2739 *
72ec7029
TH
2740 * Initiate iteration through the tasks of @css. The caller can call
2741 * css_task_iter_next() to walk through the tasks until the function
2742 * returns NULL. On completion of iteration, css_task_iter_end() must be
2743 * called.
0942eeee
TH
2744 *
2745 * Note that this function acquires a lock which is released when the
2746 * iteration finishes. The caller can't sleep while iteration is in
2747 * progress.
2748 */
72ec7029
TH
2749void css_task_iter_start(struct cgroup_subsys_state *css,
2750 struct css_task_iter *it)
96d365e0 2751 __acquires(css_set_rwsem)
817929ec 2752{
56fde9e0
TH
2753 /* no one should try to iterate before mounting cgroups */
2754 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2755
96d365e0 2756 down_read(&css_set_rwsem);
c59cd3d8 2757
72ec7029
TH
2758 it->origin_css = css;
2759 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2760
72ec7029 2761 css_advance_task_iter(it);
817929ec
PM
2762}
2763
0942eeee 2764/**
72ec7029 2765 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2766 * @it: the task iterator being iterated
2767 *
2768 * The "next" function for task iteration. @it should have been
72ec7029
TH
2769 * initialized via css_task_iter_start(). Returns NULL when the iteration
2770 * reaches the end.
0942eeee 2771 */
72ec7029 2772struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2773{
2774 struct task_struct *res;
2775 struct list_head *l = it->task;
c7561128
TH
2776 struct cgrp_cset_link *link = list_entry(it->cset_link,
2777 struct cgrp_cset_link, cset_link);
817929ec
PM
2778
2779 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2780 if (!it->cset_link)
817929ec
PM
2781 return NULL;
2782 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2783
2784 /*
2785 * Advance iterator to find next entry. cset->tasks is consumed
2786 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2787 * next cset.
2788 */
817929ec 2789 l = l->next;
c7561128
TH
2790
2791 if (l == &link->cset->tasks)
2792 l = link->cset->mg_tasks.next;
2793
2794 if (l == &link->cset->mg_tasks)
72ec7029 2795 css_advance_task_iter(it);
c7561128 2796 else
817929ec 2797 it->task = l;
c7561128 2798
817929ec
PM
2799 return res;
2800}
2801
0942eeee 2802/**
72ec7029 2803 * css_task_iter_end - finish task iteration
0942eeee
TH
2804 * @it: the task iterator to finish
2805 *
72ec7029 2806 * Finish task iteration started by css_task_iter_start().
0942eeee 2807 */
72ec7029 2808void css_task_iter_end(struct css_task_iter *it)
96d365e0 2809 __releases(css_set_rwsem)
817929ec 2810{
96d365e0 2811 up_read(&css_set_rwsem);
817929ec
PM
2812}
2813
8cc99345
TH
2814/**
2815 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2816 * @to: cgroup to which the tasks will be moved
2817 * @from: cgroup in which the tasks currently reside
2818 */
2819int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2820{
e406d1cf
TH
2821 struct css_task_iter it;
2822 struct task_struct *task;
2823 int ret = 0;
2824
2825 do {
2826 css_task_iter_start(&from->dummy_css, &it);
2827 task = css_task_iter_next(&it);
2828 if (task)
2829 get_task_struct(task);
2830 css_task_iter_end(&it);
2831
2832 if (task) {
2833 mutex_lock(&cgroup_mutex);
2834 ret = cgroup_attach_task(to, task, false);
2835 mutex_unlock(&cgroup_mutex);
2836 put_task_struct(task);
2837 }
2838 } while (task && !ret);
2839
2840 return ret;
8cc99345
TH
2841}
2842
bbcb81d0 2843/*
102a775e 2844 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2845 *
2846 * Reading this file can return large amounts of data if a cgroup has
2847 * *lots* of attached tasks. So it may need several calls to read(),
2848 * but we cannot guarantee that the information we produce is correct
2849 * unless we produce it entirely atomically.
2850 *
bbcb81d0 2851 */
bbcb81d0 2852
24528255
LZ
2853/* which pidlist file are we talking about? */
2854enum cgroup_filetype {
2855 CGROUP_FILE_PROCS,
2856 CGROUP_FILE_TASKS,
2857};
2858
2859/*
2860 * A pidlist is a list of pids that virtually represents the contents of one
2861 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2862 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2863 * to the cgroup.
2864 */
2865struct cgroup_pidlist {
2866 /*
2867 * used to find which pidlist is wanted. doesn't change as long as
2868 * this particular list stays in the list.
2869 */
2870 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2871 /* array of xids */
2872 pid_t *list;
2873 /* how many elements the above list has */
2874 int length;
24528255
LZ
2875 /* each of these stored in a list by its cgroup */
2876 struct list_head links;
2877 /* pointer to the cgroup we belong to, for list removal purposes */
2878 struct cgroup *owner;
b1a21367
TH
2879 /* for delayed destruction */
2880 struct delayed_work destroy_dwork;
24528255
LZ
2881};
2882
d1d9fd33
BB
2883/*
2884 * The following two functions "fix" the issue where there are more pids
2885 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2886 * TODO: replace with a kernel-wide solution to this problem
2887 */
2888#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2889static void *pidlist_allocate(int count)
2890{
2891 if (PIDLIST_TOO_LARGE(count))
2892 return vmalloc(count * sizeof(pid_t));
2893 else
2894 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2895}
b1a21367 2896
d1d9fd33
BB
2897static void pidlist_free(void *p)
2898{
2899 if (is_vmalloc_addr(p))
2900 vfree(p);
2901 else
2902 kfree(p);
2903}
d1d9fd33 2904
b1a21367
TH
2905/*
2906 * Used to destroy all pidlists lingering waiting for destroy timer. None
2907 * should be left afterwards.
2908 */
2909static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2910{
2911 struct cgroup_pidlist *l, *tmp_l;
2912
2913 mutex_lock(&cgrp->pidlist_mutex);
2914 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2915 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2916 mutex_unlock(&cgrp->pidlist_mutex);
2917
2918 flush_workqueue(cgroup_pidlist_destroy_wq);
2919 BUG_ON(!list_empty(&cgrp->pidlists));
2920}
2921
2922static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2923{
2924 struct delayed_work *dwork = to_delayed_work(work);
2925 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2926 destroy_dwork);
2927 struct cgroup_pidlist *tofree = NULL;
2928
2929 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2930
2931 /*
04502365
TH
2932 * Destroy iff we didn't get queued again. The state won't change
2933 * as destroy_dwork can only be queued while locked.
b1a21367 2934 */
04502365 2935 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2936 list_del(&l->links);
2937 pidlist_free(l->list);
2938 put_pid_ns(l->key.ns);
2939 tofree = l;
2940 }
2941
b1a21367
TH
2942 mutex_unlock(&l->owner->pidlist_mutex);
2943 kfree(tofree);
2944}
2945
bbcb81d0 2946/*
102a775e 2947 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2948 * Returns the number of unique elements.
bbcb81d0 2949 */
6ee211ad 2950static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2951{
102a775e 2952 int src, dest = 1;
102a775e
BB
2953
2954 /*
2955 * we presume the 0th element is unique, so i starts at 1. trivial
2956 * edge cases first; no work needs to be done for either
2957 */
2958 if (length == 0 || length == 1)
2959 return length;
2960 /* src and dest walk down the list; dest counts unique elements */
2961 for (src = 1; src < length; src++) {
2962 /* find next unique element */
2963 while (list[src] == list[src-1]) {
2964 src++;
2965 if (src == length)
2966 goto after;
2967 }
2968 /* dest always points to where the next unique element goes */
2969 list[dest] = list[src];
2970 dest++;
2971 }
2972after:
102a775e
BB
2973 return dest;
2974}
2975
afb2bc14
TH
2976/*
2977 * The two pid files - task and cgroup.procs - guaranteed that the result
2978 * is sorted, which forced this whole pidlist fiasco. As pid order is
2979 * different per namespace, each namespace needs differently sorted list,
2980 * making it impossible to use, for example, single rbtree of member tasks
2981 * sorted by task pointer. As pidlists can be fairly large, allocating one
2982 * per open file is dangerous, so cgroup had to implement shared pool of
2983 * pidlists keyed by cgroup and namespace.
2984 *
2985 * All this extra complexity was caused by the original implementation
2986 * committing to an entirely unnecessary property. In the long term, we
2987 * want to do away with it. Explicitly scramble sort order if
2988 * sane_behavior so that no such expectation exists in the new interface.
2989 *
2990 * Scrambling is done by swapping every two consecutive bits, which is
2991 * non-identity one-to-one mapping which disturbs sort order sufficiently.
2992 */
2993static pid_t pid_fry(pid_t pid)
2994{
2995 unsigned a = pid & 0x55555555;
2996 unsigned b = pid & 0xAAAAAAAA;
2997
2998 return (a << 1) | (b >> 1);
2999}
3000
3001static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3002{
3003 if (cgroup_sane_behavior(cgrp))
3004 return pid_fry(pid);
3005 else
3006 return pid;
3007}
3008
102a775e
BB
3009static int cmppid(const void *a, const void *b)
3010{
3011 return *(pid_t *)a - *(pid_t *)b;
3012}
3013
afb2bc14
TH
3014static int fried_cmppid(const void *a, const void *b)
3015{
3016 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3017}
3018
e6b81710
TH
3019static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3020 enum cgroup_filetype type)
3021{
3022 struct cgroup_pidlist *l;
3023 /* don't need task_nsproxy() if we're looking at ourself */
3024 struct pid_namespace *ns = task_active_pid_ns(current);
3025
3026 lockdep_assert_held(&cgrp->pidlist_mutex);
3027
3028 list_for_each_entry(l, &cgrp->pidlists, links)
3029 if (l->key.type == type && l->key.ns == ns)
3030 return l;
3031 return NULL;
3032}
3033
72a8cb30
BB
3034/*
3035 * find the appropriate pidlist for our purpose (given procs vs tasks)
3036 * returns with the lock on that pidlist already held, and takes care
3037 * of the use count, or returns NULL with no locks held if we're out of
3038 * memory.
3039 */
e6b81710
TH
3040static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3041 enum cgroup_filetype type)
72a8cb30
BB
3042{
3043 struct cgroup_pidlist *l;
b70cc5fd 3044
e6b81710
TH
3045 lockdep_assert_held(&cgrp->pidlist_mutex);
3046
3047 l = cgroup_pidlist_find(cgrp, type);
3048 if (l)
3049 return l;
3050
72a8cb30 3051 /* entry not found; create a new one */
f4f4be2b 3052 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3053 if (!l)
72a8cb30 3054 return l;
e6b81710 3055
b1a21367 3056 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3057 l->key.type = type;
e6b81710
TH
3058 /* don't need task_nsproxy() if we're looking at ourself */
3059 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3060 l->owner = cgrp;
3061 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3062 return l;
3063}
3064
102a775e
BB
3065/*
3066 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3067 */
72a8cb30
BB
3068static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3069 struct cgroup_pidlist **lp)
102a775e
BB
3070{
3071 pid_t *array;
3072 int length;
3073 int pid, n = 0; /* used for populating the array */
72ec7029 3074 struct css_task_iter it;
817929ec 3075 struct task_struct *tsk;
102a775e
BB
3076 struct cgroup_pidlist *l;
3077
4bac00d1
TH
3078 lockdep_assert_held(&cgrp->pidlist_mutex);
3079
102a775e
BB
3080 /*
3081 * If cgroup gets more users after we read count, we won't have
3082 * enough space - tough. This race is indistinguishable to the
3083 * caller from the case that the additional cgroup users didn't
3084 * show up until sometime later on.
3085 */
3086 length = cgroup_task_count(cgrp);
d1d9fd33 3087 array = pidlist_allocate(length);
102a775e
BB
3088 if (!array)
3089 return -ENOMEM;
3090 /* now, populate the array */
72ec7029
TH
3091 css_task_iter_start(&cgrp->dummy_css, &it);
3092 while ((tsk = css_task_iter_next(&it))) {
102a775e 3093 if (unlikely(n == length))
817929ec 3094 break;
102a775e 3095 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3096 if (type == CGROUP_FILE_PROCS)
3097 pid = task_tgid_vnr(tsk);
3098 else
3099 pid = task_pid_vnr(tsk);
102a775e
BB
3100 if (pid > 0) /* make sure to only use valid results */
3101 array[n++] = pid;
817929ec 3102 }
72ec7029 3103 css_task_iter_end(&it);
102a775e
BB
3104 length = n;
3105 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3106 if (cgroup_sane_behavior(cgrp))
3107 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3108 else
3109 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3110 if (type == CGROUP_FILE_PROCS)
6ee211ad 3111 length = pidlist_uniq(array, length);
e6b81710 3112
e6b81710 3113 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3114 if (!l) {
e6b81710 3115 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3116 pidlist_free(array);
72a8cb30 3117 return -ENOMEM;
102a775e 3118 }
e6b81710
TH
3119
3120 /* store array, freeing old if necessary */
d1d9fd33 3121 pidlist_free(l->list);
102a775e
BB
3122 l->list = array;
3123 l->length = length;
72a8cb30 3124 *lp = l;
102a775e 3125 return 0;
bbcb81d0
PM
3126}
3127
846c7bb0 3128/**
a043e3b2 3129 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3130 * @stats: cgroupstats to fill information into
3131 * @dentry: A dentry entry belonging to the cgroup for which stats have
3132 * been requested.
a043e3b2
LZ
3133 *
3134 * Build and fill cgroupstats so that taskstats can export it to user
3135 * space.
846c7bb0
BS
3136 */
3137int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3138{
2bd59d48 3139 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3140 struct cgroup *cgrp;
72ec7029 3141 struct css_task_iter it;
846c7bb0 3142 struct task_struct *tsk;
33d283be 3143
2bd59d48
TH
3144 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3145 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3146 kernfs_type(kn) != KERNFS_DIR)
3147 return -EINVAL;
3148
bad34660
LZ
3149 mutex_lock(&cgroup_mutex);
3150
846c7bb0 3151 /*
2bd59d48
TH
3152 * We aren't being called from kernfs and there's no guarantee on
3153 * @kn->priv's validity. For this and css_tryget_from_dir(),
3154 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3155 */
2bd59d48
TH
3156 rcu_read_lock();
3157 cgrp = rcu_dereference(kn->priv);
bad34660 3158 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3159 rcu_read_unlock();
bad34660 3160 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3161 return -ENOENT;
3162 }
bad34660 3163 rcu_read_unlock();
846c7bb0 3164
72ec7029
TH
3165 css_task_iter_start(&cgrp->dummy_css, &it);
3166 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3167 switch (tsk->state) {
3168 case TASK_RUNNING:
3169 stats->nr_running++;
3170 break;
3171 case TASK_INTERRUPTIBLE:
3172 stats->nr_sleeping++;
3173 break;
3174 case TASK_UNINTERRUPTIBLE:
3175 stats->nr_uninterruptible++;
3176 break;
3177 case TASK_STOPPED:
3178 stats->nr_stopped++;
3179 break;
3180 default:
3181 if (delayacct_is_task_waiting_on_io(tsk))
3182 stats->nr_io_wait++;
3183 break;
3184 }
3185 }
72ec7029 3186 css_task_iter_end(&it);
846c7bb0 3187
bad34660 3188 mutex_unlock(&cgroup_mutex);
2bd59d48 3189 return 0;
846c7bb0
BS
3190}
3191
8f3ff208 3192
bbcb81d0 3193/*
102a775e 3194 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3195 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3196 * in the cgroup->l->list array.
bbcb81d0 3197 */
cc31edce 3198
102a775e 3199static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3200{
cc31edce
PM
3201 /*
3202 * Initially we receive a position value that corresponds to
3203 * one more than the last pid shown (or 0 on the first call or
3204 * after a seek to the start). Use a binary-search to find the
3205 * next pid to display, if any
3206 */
2bd59d48 3207 struct kernfs_open_file *of = s->private;
7da11279 3208 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3209 struct cgroup_pidlist *l;
7da11279 3210 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3211 int index = 0, pid = *pos;
4bac00d1
TH
3212 int *iter, ret;
3213
3214 mutex_lock(&cgrp->pidlist_mutex);
3215
3216 /*
5d22444f 3217 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3218 * after open. If the matching pidlist is around, we can use that.
5d22444f 3219 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3220 * could already have been destroyed.
3221 */
5d22444f
TH
3222 if (of->priv)
3223 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3224
3225 /*
3226 * Either this is the first start() after open or the matching
3227 * pidlist has been destroyed inbetween. Create a new one.
3228 */
5d22444f
TH
3229 if (!of->priv) {
3230 ret = pidlist_array_load(cgrp, type,
3231 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3232 if (ret)
3233 return ERR_PTR(ret);
3234 }
5d22444f 3235 l = of->priv;
cc31edce 3236
cc31edce 3237 if (pid) {
102a775e 3238 int end = l->length;
20777766 3239
cc31edce
PM
3240 while (index < end) {
3241 int mid = (index + end) / 2;
afb2bc14 3242 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3243 index = mid;
3244 break;
afb2bc14 3245 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3246 index = mid + 1;
3247 else
3248 end = mid;
3249 }
3250 }
3251 /* If we're off the end of the array, we're done */
102a775e 3252 if (index >= l->length)
cc31edce
PM
3253 return NULL;
3254 /* Update the abstract position to be the actual pid that we found */
102a775e 3255 iter = l->list + index;
afb2bc14 3256 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3257 return iter;
3258}
3259
102a775e 3260static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3261{
2bd59d48 3262 struct kernfs_open_file *of = s->private;
5d22444f 3263 struct cgroup_pidlist *l = of->priv;
62236858 3264
5d22444f
TH
3265 if (l)
3266 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3267 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3268 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3269}
3270
102a775e 3271static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3272{
2bd59d48 3273 struct kernfs_open_file *of = s->private;
5d22444f 3274 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3275 pid_t *p = v;
3276 pid_t *end = l->list + l->length;
cc31edce
PM
3277 /*
3278 * Advance to the next pid in the array. If this goes off the
3279 * end, we're done
3280 */
3281 p++;
3282 if (p >= end) {
3283 return NULL;
3284 } else {
7da11279 3285 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3286 return p;
3287 }
3288}
3289
102a775e 3290static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3291{
3292 return seq_printf(s, "%d\n", *(int *)v);
3293}
bbcb81d0 3294
102a775e
BB
3295/*
3296 * seq_operations functions for iterating on pidlists through seq_file -
3297 * independent of whether it's tasks or procs
3298 */
3299static const struct seq_operations cgroup_pidlist_seq_operations = {
3300 .start = cgroup_pidlist_start,
3301 .stop = cgroup_pidlist_stop,
3302 .next = cgroup_pidlist_next,
3303 .show = cgroup_pidlist_show,
cc31edce
PM
3304};
3305
182446d0
TH
3306static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3307 struct cftype *cft)
81a6a5cd 3308{
182446d0 3309 return notify_on_release(css->cgroup);
81a6a5cd
PM
3310}
3311
182446d0
TH
3312static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3313 struct cftype *cft, u64 val)
6379c106 3314{
182446d0 3315 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3316 if (val)
182446d0 3317 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3318 else
182446d0 3319 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3320 return 0;
3321}
3322
182446d0
TH
3323static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3324 struct cftype *cft)
97978e6d 3325{
182446d0 3326 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3327}
3328
182446d0
TH
3329static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3330 struct cftype *cft, u64 val)
97978e6d
DL
3331{
3332 if (val)
182446d0 3333 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3334 else
182446d0 3335 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3336 return 0;
3337}
3338
d5c56ced 3339static struct cftype cgroup_base_files[] = {
81a6a5cd 3340 {
d5c56ced 3341 .name = "cgroup.procs",
6612f05b
TH
3342 .seq_start = cgroup_pidlist_start,
3343 .seq_next = cgroup_pidlist_next,
3344 .seq_stop = cgroup_pidlist_stop,
3345 .seq_show = cgroup_pidlist_show,
5d22444f 3346 .private = CGROUP_FILE_PROCS,
74a1166d 3347 .write_u64 = cgroup_procs_write,
74a1166d 3348 .mode = S_IRUGO | S_IWUSR,
102a775e 3349 },
97978e6d
DL
3350 {
3351 .name = "cgroup.clone_children",
873fe09e 3352 .flags = CFTYPE_INSANE,
97978e6d
DL
3353 .read_u64 = cgroup_clone_children_read,
3354 .write_u64 = cgroup_clone_children_write,
3355 },
873fe09e
TH
3356 {
3357 .name = "cgroup.sane_behavior",
3358 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3359 .seq_show = cgroup_sane_behavior_show,
873fe09e 3360 },
d5c56ced
TH
3361
3362 /*
3363 * Historical crazy stuff. These don't have "cgroup." prefix and
3364 * don't exist if sane_behavior. If you're depending on these, be
3365 * prepared to be burned.
3366 */
3367 {
3368 .name = "tasks",
3369 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3370 .seq_start = cgroup_pidlist_start,
3371 .seq_next = cgroup_pidlist_next,
3372 .seq_stop = cgroup_pidlist_stop,
3373 .seq_show = cgroup_pidlist_show,
5d22444f 3374 .private = CGROUP_FILE_TASKS,
d5c56ced 3375 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3376 .mode = S_IRUGO | S_IWUSR,
3377 },
3378 {
3379 .name = "notify_on_release",
3380 .flags = CFTYPE_INSANE,
3381 .read_u64 = cgroup_read_notify_on_release,
3382 .write_u64 = cgroup_write_notify_on_release,
3383 },
6e6ff25b
TH
3384 {
3385 .name = "release_agent",
cc5943a7 3386 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3387 .seq_show = cgroup_release_agent_show,
6e6ff25b 3388 .write_string = cgroup_release_agent_write,
5f469907 3389 .max_write_len = PATH_MAX - 1,
6e6ff25b 3390 },
db0416b6 3391 { } /* terminate */
bbcb81d0
PM
3392};
3393
13af07df 3394/**
628f7cd4 3395 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3396 * @cgrp: target cgroup
13af07df 3397 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3398 *
3399 * On failure, no file is added.
13af07df 3400 */
628f7cd4 3401static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3402{
ddbcc7e8 3403 struct cgroup_subsys *ss;
b420ba7d 3404 int i, ret = 0;
bbcb81d0 3405
8e3f6541 3406 /* process cftsets of each subsystem */
b420ba7d 3407 for_each_subsys(ss, i) {
0adb0704 3408 struct cftype *cfts;
b420ba7d
TH
3409
3410 if (!test_bit(i, &subsys_mask))
13af07df 3411 continue;
8e3f6541 3412
0adb0704
TH
3413 list_for_each_entry(cfts, &ss->cfts, node) {
3414 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3415 if (ret < 0)
3416 goto err;
3417 }
ddbcc7e8 3418 }
ddbcc7e8 3419 return 0;
bee55099
TH
3420err:
3421 cgroup_clear_dir(cgrp, subsys_mask);
3422 return ret;
ddbcc7e8
PM
3423}
3424
0c21ead1
TH
3425/*
3426 * css destruction is four-stage process.
3427 *
3428 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3429 * Implemented in kill_css().
3430 *
3431 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3432 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3433 * by invoking offline_css(). After offlining, the base ref is put.
3434 * Implemented in css_killed_work_fn().
3435 *
3436 * 3. When the percpu_ref reaches zero, the only possible remaining
3437 * accessors are inside RCU read sections. css_release() schedules the
3438 * RCU callback.
3439 *
3440 * 4. After the grace period, the css can be freed. Implemented in
3441 * css_free_work_fn().
3442 *
3443 * It is actually hairier because both step 2 and 4 require process context
3444 * and thus involve punting to css->destroy_work adding two additional
3445 * steps to the already complex sequence.
3446 */
35ef10da 3447static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3448{
3449 struct cgroup_subsys_state *css =
35ef10da 3450 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3451 struct cgroup *cgrp = css->cgroup;
48ddbe19 3452
0ae78e0b
TH
3453 if (css->parent)
3454 css_put(css->parent);
3455
0c21ead1 3456 css->ss->css_free(css);
2bd59d48 3457 cgroup_put(cgrp);
48ddbe19
TH
3458}
3459
0c21ead1 3460static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3461{
3462 struct cgroup_subsys_state *css =
0c21ead1 3463 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3464
35ef10da 3465 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3466 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3467}
3468
d3daf28d
TH
3469static void css_release(struct percpu_ref *ref)
3470{
3471 struct cgroup_subsys_state *css =
3472 container_of(ref, struct cgroup_subsys_state, refcnt);
3473
aec25020 3474 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3475 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3476}
3477
623f926b
TH
3478static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3479 struct cgroup *cgrp)
ddbcc7e8 3480{
bd89aabc 3481 css->cgroup = cgrp;
72c97e54 3482 css->ss = ss;
ddbcc7e8 3483 css->flags = 0;
0ae78e0b
TH
3484
3485 if (cgrp->parent)
ca8bdcaf 3486 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3487 else
38b53aba 3488 css->flags |= CSS_ROOT;
48ddbe19 3489
ca8bdcaf 3490 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3491}
3492
2a4ac633 3493/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3494static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3495{
623f926b 3496 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3497 int ret = 0;
3498
ace2bee8 3499 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3500 lockdep_assert_held(&cgroup_mutex);
3501
92fb9748 3502 if (ss->css_online)
eb95419b 3503 ret = ss->css_online(css);
ae7f164a 3504 if (!ret) {
eb95419b 3505 css->flags |= CSS_ONLINE;
f20104de 3506 css->cgroup->nr_css++;
aec25020 3507 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3508 }
b1929db4 3509 return ret;
a31f2d3f
TH
3510}
3511
2a4ac633 3512/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3513static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3514{
623f926b 3515 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3516
ace2bee8 3517 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3518 lockdep_assert_held(&cgroup_mutex);
3519
3520 if (!(css->flags & CSS_ONLINE))
3521 return;
3522
d7eeac19 3523 if (ss->css_offline)
eb95419b 3524 ss->css_offline(css);
a31f2d3f 3525
eb95419b 3526 css->flags &= ~CSS_ONLINE;
09a503ea 3527 css->cgroup->nr_css--;
aec25020 3528 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3529}
3530
c81c925a
TH
3531/**
3532 * create_css - create a cgroup_subsys_state
3533 * @cgrp: the cgroup new css will be associated with
3534 * @ss: the subsys of new css
3535 *
3536 * Create a new css associated with @cgrp - @ss pair. On success, the new
3537 * css is online and installed in @cgrp with all interface files created.
3538 * Returns 0 on success, -errno on failure.
3539 */
3540static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3541{
3542 struct cgroup *parent = cgrp->parent;
3543 struct cgroup_subsys_state *css;
3544 int err;
3545
c81c925a
TH
3546 lockdep_assert_held(&cgroup_mutex);
3547
3548 css = ss->css_alloc(cgroup_css(parent, ss));
3549 if (IS_ERR(css))
3550 return PTR_ERR(css);
3551
3552 err = percpu_ref_init(&css->refcnt, css_release);
3553 if (err)
3554 goto err_free;
3555
3556 init_css(css, ss, cgrp);
3557
aec25020 3558 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3559 if (err)
3560 goto err_free;
3561
3562 err = online_css(css);
3563 if (err)
3564 goto err_free;
3565
59f5296b 3566 cgroup_get(cgrp);
c81c925a
TH
3567 css_get(css->parent);
3568
3569 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3570 parent->parent) {
3571 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3572 current->comm, current->pid, ss->name);
3573 if (!strcmp(ss->name, "memory"))
3574 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3575 ss->warned_broken_hierarchy = true;
3576 }
3577
3578 return 0;
3579
3580err_free:
3581 percpu_ref_cancel_init(&css->refcnt);
3582 ss->css_free(css);
3583 return err;
3584}
3585
2bd59d48 3586/**
a043e3b2
LZ
3587 * cgroup_create - create a cgroup
3588 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3589 * @name: name of the new cgroup
2bd59d48 3590 * @mode: mode to set on new cgroup
ddbcc7e8 3591 */
e61734c5 3592static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3593 umode_t mode)
ddbcc7e8 3594{
bd89aabc 3595 struct cgroup *cgrp;
ddbcc7e8 3596 struct cgroupfs_root *root = parent->root;
b58c8998 3597 int ssid, err;
ddbcc7e8 3598 struct cgroup_subsys *ss;
2bd59d48 3599 struct kernfs_node *kn;
ddbcc7e8 3600
0a950f65 3601 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3602 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3603 if (!cgrp)
ddbcc7e8
PM
3604 return -ENOMEM;
3605
ace2bee8
TH
3606 mutex_lock(&cgroup_tree_mutex);
3607
976c06bc
TH
3608 /*
3609 * Only live parents can have children. Note that the liveliness
3610 * check isn't strictly necessary because cgroup_mkdir() and
3611 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3612 * anyway so that locking is contained inside cgroup proper and we
3613 * don't get nasty surprises if we ever grow another caller.
3614 */
3615 if (!cgroup_lock_live_group(parent)) {
3616 err = -ENODEV;
ace2bee8 3617 goto err_unlock_tree;
0ab02ca8
LZ
3618 }
3619
3620 /*
3621 * Temporarily set the pointer to NULL, so idr_find() won't return
3622 * a half-baked cgroup.
3623 */
3624 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3625 if (cgrp->id < 0) {
3626 err = -ENOMEM;
3627 goto err_unlock;
976c06bc
TH
3628 }
3629
cc31edce 3630 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3631
bd89aabc 3632 cgrp->parent = parent;
0ae78e0b 3633 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3634 cgrp->root = parent->root;
ddbcc7e8 3635
b6abdb0e
LZ
3636 if (notify_on_release(parent))
3637 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3638
2260e7fc
TH
3639 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3640 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3641
2bd59d48 3642 /* create the directory */
e61734c5 3643 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3644 if (IS_ERR(kn)) {
3645 err = PTR_ERR(kn);
0ab02ca8 3646 goto err_free_id;
2bd59d48
TH
3647 }
3648 cgrp->kn = kn;
ddbcc7e8 3649
6f30558f
TH
3650 /*
3651 * This extra ref will be put in cgroup_free_fn() and guarantees
3652 * that @cgrp->kn is always accessible.
3653 */
3654 kernfs_get(kn);
3655
00356bd5 3656 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3657
4e139afc 3658 /* allocation complete, commit to creation */
4e139afc 3659 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3660 atomic_inc(&root->nr_cgrps);
59f5296b 3661 cgroup_get(parent);
415cf07a 3662
0d80255e
TH
3663 /*
3664 * @cgrp is now fully operational. If something fails after this
3665 * point, it'll be released via the normal destruction path.
3666 */
4e96ee8e
LZ
3667 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3668
2bb566cb 3669 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3670 if (err)
3671 goto err_destroy;
3672
9d403e99 3673 /* let's create and online css's */
b85d2040
TH
3674 for_each_subsys(ss, ssid) {
3675 if (root->subsys_mask & (1 << ssid)) {
3676 err = create_css(cgrp, ss);
3677 if (err)
3678 goto err_destroy;
3679 }
a8638030 3680 }
ddbcc7e8 3681
2bd59d48
TH
3682 kernfs_activate(kn);
3683
ddbcc7e8 3684 mutex_unlock(&cgroup_mutex);
ace2bee8 3685 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3686
3687 return 0;
3688
0a950f65 3689err_free_id:
4e96ee8e 3690 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3691err_unlock:
3692 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3693err_unlock_tree:
3694 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3695 kfree(cgrp);
ddbcc7e8 3696 return err;
4b8b47eb
TH
3697
3698err_destroy:
3699 cgroup_destroy_locked(cgrp);
3700 mutex_unlock(&cgroup_mutex);
ace2bee8 3701 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3702 return err;
ddbcc7e8
PM
3703}
3704
2bd59d48
TH
3705static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3706 umode_t mode)
ddbcc7e8 3707{
2bd59d48 3708 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3709
2bd59d48 3710 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3711}
3712
223dbc38
TH
3713/*
3714 * This is called when the refcnt of a css is confirmed to be killed.
3715 * css_tryget() is now guaranteed to fail.
3716 */
3717static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3718{
223dbc38
TH
3719 struct cgroup_subsys_state *css =
3720 container_of(work, struct cgroup_subsys_state, destroy_work);
3721 struct cgroup *cgrp = css->cgroup;
d3daf28d 3722
ace2bee8 3723 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3724 mutex_lock(&cgroup_mutex);
3725
09a503ea
TH
3726 /*
3727 * css_tryget() is guaranteed to fail now. Tell subsystems to
3728 * initate destruction.
3729 */
3730 offline_css(css);
3731
f20104de
TH
3732 /*
3733 * If @cgrp is marked dead, it's waiting for refs of all css's to
3734 * be disabled before proceeding to the second phase of cgroup
3735 * destruction. If we are the last one, kick it off.
3736 */
09a503ea 3737 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3738 cgroup_destroy_css_killed(cgrp);
3739
3740 mutex_unlock(&cgroup_mutex);
ace2bee8 3741 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3742
3743 /*
3744 * Put the css refs from kill_css(). Each css holds an extra
3745 * reference to the cgroup's dentry and cgroup removal proceeds
3746 * regardless of css refs. On the last put of each css, whenever
3747 * that may be, the extra dentry ref is put so that dentry
3748 * destruction happens only after all css's are released.
3749 */
3750 css_put(css);
d3daf28d
TH
3751}
3752
223dbc38
TH
3753/* css kill confirmation processing requires process context, bounce */
3754static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3755{
3756 struct cgroup_subsys_state *css =
3757 container_of(ref, struct cgroup_subsys_state, refcnt);
3758
223dbc38 3759 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3760 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3761}
3762
edae0c33
TH
3763/**
3764 * kill_css - destroy a css
3765 * @css: css to destroy
3766 *
3c14f8b4
TH
3767 * This function initiates destruction of @css by removing cgroup interface
3768 * files and putting its base reference. ->css_offline() will be invoked
3769 * asynchronously once css_tryget() is guaranteed to fail and when the
3770 * reference count reaches zero, @css will be released.
edae0c33
TH
3771 */
3772static void kill_css(struct cgroup_subsys_state *css)
3773{
2bd59d48
TH
3774 /*
3775 * This must happen before css is disassociated with its cgroup.
3776 * See seq_css() for details.
3777 */
aec25020 3778 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3779
edae0c33
TH
3780 /*
3781 * Killing would put the base ref, but we need to keep it alive
3782 * until after ->css_offline().
3783 */
3784 css_get(css);
3785
3786 /*
3787 * cgroup core guarantees that, by the time ->css_offline() is
3788 * invoked, no new css reference will be given out via
3789 * css_tryget(). We can't simply call percpu_ref_kill() and
3790 * proceed to offlining css's because percpu_ref_kill() doesn't
3791 * guarantee that the ref is seen as killed on all CPUs on return.
3792 *
3793 * Use percpu_ref_kill_and_confirm() to get notifications as each
3794 * css is confirmed to be seen as killed on all CPUs.
3795 */
3796 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3797}
3798
3799/**
3800 * cgroup_destroy_locked - the first stage of cgroup destruction
3801 * @cgrp: cgroup to be destroyed
3802 *
3803 * css's make use of percpu refcnts whose killing latency shouldn't be
3804 * exposed to userland and are RCU protected. Also, cgroup core needs to
3805 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3806 * invoked. To satisfy all the requirements, destruction is implemented in
3807 * the following two steps.
3808 *
3809 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3810 * userland visible parts and start killing the percpu refcnts of
3811 * css's. Set up so that the next stage will be kicked off once all
3812 * the percpu refcnts are confirmed to be killed.
3813 *
3814 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3815 * rest of destruction. Once all cgroup references are gone, the
3816 * cgroup is RCU-freed.
3817 *
3818 * This function implements s1. After this step, @cgrp is gone as far as
3819 * the userland is concerned and a new cgroup with the same name may be
3820 * created. As cgroup doesn't care about the names internally, this
3821 * doesn't cause any problem.
3822 */
42809dd4
TH
3823static int cgroup_destroy_locked(struct cgroup *cgrp)
3824 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3825{
bb78a92f 3826 struct cgroup *child;
2bd59d48 3827 struct cgroup_subsys_state *css;
ddd69148 3828 bool empty;
1c6727af 3829 int ssid;
ddbcc7e8 3830
ace2bee8 3831 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3832 lockdep_assert_held(&cgroup_mutex);
3833
ddd69148 3834 /*
96d365e0 3835 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3836 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3837 */
96d365e0 3838 down_read(&css_set_rwsem);
bb78a92f 3839 empty = list_empty(&cgrp->cset_links);
96d365e0 3840 up_read(&css_set_rwsem);
ddd69148 3841 if (!empty)
ddbcc7e8 3842 return -EBUSY;
a043e3b2 3843
bb78a92f
HD
3844 /*
3845 * Make sure there's no live children. We can't test ->children
3846 * emptiness as dead children linger on it while being destroyed;
3847 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3848 */
3849 empty = true;
3850 rcu_read_lock();
3851 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3852 empty = cgroup_is_dead(child);
3853 if (!empty)
3854 break;
3855 }
3856 rcu_read_unlock();
3857 if (!empty)
3858 return -EBUSY;
3859
88703267 3860 /*
edae0c33
TH
3861 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3862 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3863 * percpu refs of all css's are confirmed to be killed. This
3864 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3865 */
4ac06017 3866 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3867 for_each_css(css, ssid, cgrp)
3868 kill_css(css);
4ac06017 3869 mutex_lock(&cgroup_mutex);
455050d2
TH
3870
3871 /*
3872 * Mark @cgrp dead. This prevents further task migration and child
3873 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3874 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3875 * resume iteration after dropping RCU read lock. See
492eb21b 3876 * css_next_child() for details.
455050d2 3877 */
54766d4a 3878 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3879
455050d2
TH
3880 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3881 raw_spin_lock(&release_list_lock);
3882 if (!list_empty(&cgrp->release_list))
3883 list_del_init(&cgrp->release_list);
3884 raw_spin_unlock(&release_list_lock);
3885
3886 /*
f20104de
TH
3887 * If @cgrp has css's attached, the second stage of cgroup
3888 * destruction is kicked off from css_killed_work_fn() after the
3889 * refs of all attached css's are killed. If @cgrp doesn't have
3890 * any css, we kick it off here.
3891 */
3892 if (!cgrp->nr_css)
3893 cgroup_destroy_css_killed(cgrp);
3894
2bd59d48
TH
3895 /* remove @cgrp directory along with the base files */
3896 mutex_unlock(&cgroup_mutex);
3897
455050d2 3898 /*
2bd59d48
TH
3899 * There are two control paths which try to determine cgroup from
3900 * dentry without going through kernfs - cgroupstats_build() and
3901 * css_tryget_from_dir(). Those are supported by RCU protecting
3902 * clearing of cgrp->kn->priv backpointer, which should happen
3903 * after all files under it have been removed.
455050d2 3904 */
6f30558f 3905 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3906 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3907
4ac06017 3908 mutex_lock(&cgroup_mutex);
455050d2 3909
ea15f8cc
TH
3910 return 0;
3911};
3912
d3daf28d 3913/**
f20104de 3914 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3915 * @work: cgroup->destroy_free_work
3916 *
3917 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3918 * destroyed after all css's are offlined and performs the rest of
3919 * destruction. This is the second step of destruction described in the
3920 * comment above cgroup_destroy_locked().
d3daf28d 3921 */
f20104de 3922static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3923{
ea15f8cc 3924 struct cgroup *parent = cgrp->parent;
ea15f8cc 3925
ace2bee8 3926 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3927 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3928
999cd8a4 3929 /* delete this cgroup from parent->children */
eb6fd504 3930 list_del_rcu(&cgrp->sibling);
ed957793 3931
59f5296b 3932 cgroup_put(cgrp);
ddbcc7e8 3933
bd89aabc 3934 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3935 check_for_release(parent);
ddbcc7e8
PM
3936}
3937
2bd59d48 3938static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3939{
2bd59d48
TH
3940 struct cgroup *cgrp = kn->priv;
3941 int ret = 0;
3942
3943 /*
3944 * This is self-destruction but @kn can't be removed while this
3945 * callback is in progress. Let's break active protection. Once
3946 * the protection is broken, @cgrp can be destroyed at any point.
3947 * Pin it so that it stays accessible.
3948 */
3949 cgroup_get(cgrp);
3950 kernfs_break_active_protection(kn);
42809dd4 3951
ace2bee8 3952 mutex_lock(&cgroup_tree_mutex);
42809dd4 3953 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3954
3955 /*
3956 * @cgrp might already have been destroyed while we're trying to
3957 * grab the mutexes.
3958 */
3959 if (!cgroup_is_dead(cgrp))
3960 ret = cgroup_destroy_locked(cgrp);
3961
42809dd4 3962 mutex_unlock(&cgroup_mutex);
ace2bee8 3963 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3964
2bd59d48
TH
3965 kernfs_unbreak_active_protection(kn);
3966 cgroup_put(cgrp);
42809dd4
TH
3967 return ret;
3968}
3969
2bd59d48
TH
3970static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3971 .remount_fs = cgroup_remount,
3972 .show_options = cgroup_show_options,
3973 .mkdir = cgroup_mkdir,
3974 .rmdir = cgroup_rmdir,
3975 .rename = cgroup_rename,
3976};
3977
06a11920 3978static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3979{
ddbcc7e8 3980 struct cgroup_subsys_state *css;
cfe36bde
DC
3981
3982 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 3983
ace2bee8 3984 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
3985 mutex_lock(&cgroup_mutex);
3986
0adb0704 3987 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 3988
ddbcc7e8 3989 /* Create the top cgroup state for this subsystem */
9871bf95 3990 ss->root = &cgroup_dummy_root;
ca8bdcaf 3991 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
3992 /* We don't handle early failures gracefully */
3993 BUG_ON(IS_ERR(css));
623f926b 3994 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 3995
e8d55fde 3996 /* Update the init_css_set to contain a subsys
817929ec 3997 * pointer to this state - since the subsystem is
e8d55fde
LZ
3998 * newly registered, all tasks and hence the
3999 * init_css_set is in the subsystem's top cgroup. */
aec25020 4000 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4001
4002 need_forkexit_callback |= ss->fork || ss->exit;
4003
e8d55fde
LZ
4004 /* At system boot, before all subsystems have been
4005 * registered, no tasks have been forked, so we don't
4006 * need to invoke fork callbacks here. */
4007 BUG_ON(!list_empty(&init_task.tasks));
4008
ae7f164a 4009 BUG_ON(online_css(css));
a8638030 4010
648bb56d 4011 mutex_unlock(&cgroup_mutex);
ace2bee8 4012 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4013}
4014
ddbcc7e8 4015/**
a043e3b2
LZ
4016 * cgroup_init_early - cgroup initialization at system boot
4017 *
4018 * Initialize cgroups at system boot, and initialize any
4019 * subsystems that request early init.
ddbcc7e8
PM
4020 */
4021int __init cgroup_init_early(void)
4022{
30159ec7 4023 struct cgroup_subsys *ss;
ddbcc7e8 4024 int i;
30159ec7 4025
146aa1bd 4026 atomic_set(&init_css_set.refcount, 1);
69d0206c 4027 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4028 INIT_LIST_HEAD(&init_css_set.tasks);
b3dc094e 4029 INIT_LIST_HEAD(&init_css_set.mg_tasks);
1958d2d5 4030 INIT_LIST_HEAD(&init_css_set.mg_preload_node);
b3dc094e 4031 INIT_LIST_HEAD(&init_css_set.mg_node);
472b1053 4032 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4033 css_set_count = 1;
9871bf95
TH
4034 init_cgroup_root(&cgroup_dummy_root);
4035 cgroup_root_count = 1;
a4ea1cc9 4036 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4037
69d0206c 4038 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4039 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4040 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4041 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4042
3ed80a62 4043 for_each_subsys(ss, i) {
aec25020 4044 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4045 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4046 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4047 ss->id, ss->name);
073219e9
TH
4048 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4049 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4050
aec25020 4051 ss->id = i;
073219e9 4052 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4053
4054 if (ss->early_init)
4055 cgroup_init_subsys(ss);
4056 }
4057 return 0;
4058}
4059
4060/**
a043e3b2
LZ
4061 * cgroup_init - cgroup initialization
4062 *
4063 * Register cgroup filesystem and /proc file, and initialize
4064 * any subsystems that didn't request early init.
ddbcc7e8
PM
4065 */
4066int __init cgroup_init(void)
4067{
30159ec7 4068 struct cgroup_subsys *ss;
0ac801fe 4069 unsigned long key;
30159ec7 4070 int i, err;
a424316c 4071
2bd59d48 4072 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4073
3ed80a62 4074 for_each_subsys(ss, i) {
ddbcc7e8
PM
4075 if (!ss->early_init)
4076 cgroup_init_subsys(ss);
de00ffa5
TH
4077
4078 /*
4079 * cftype registration needs kmalloc and can't be done
4080 * during early_init. Register base cftypes separately.
4081 */
4082 if (ss->base_cftypes)
4083 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
4084 }
4085
fa3ca07e 4086 /* allocate id for the dummy hierarchy */
54e7b4eb 4087 mutex_lock(&cgroup_mutex);
54e7b4eb 4088
82fe9b0d
TH
4089 /* Add init_css_set to the hash table */
4090 key = css_set_hash(init_css_set.subsys);
4091 hash_add(css_set_table, &init_css_set.hlist, key);
4092
fc76df70 4093 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4094
4e96ee8e
LZ
4095 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4096 0, 1, GFP_KERNEL);
4097 BUG_ON(err < 0);
4098
54e7b4eb
TH
4099 mutex_unlock(&cgroup_mutex);
4100
676db4af 4101 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4102 if (!cgroup_kobj)
4103 return -ENOMEM;
676db4af 4104
ddbcc7e8 4105 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4106 if (err < 0) {
4107 kobject_put(cgroup_kobj);
2bd59d48 4108 return err;
676db4af 4109 }
ddbcc7e8 4110
46ae220b 4111 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4112 return 0;
ddbcc7e8 4113}
b4f48b63 4114
e5fca243
TH
4115static int __init cgroup_wq_init(void)
4116{
4117 /*
4118 * There isn't much point in executing destruction path in
4119 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4120 * Use 1 for @max_active.
e5fca243
TH
4121 *
4122 * We would prefer to do this in cgroup_init() above, but that
4123 * is called before init_workqueues(): so leave this until after.
4124 */
1a11533f 4125 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4126 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4127
4128 /*
4129 * Used to destroy pidlists and separate to serve as flush domain.
4130 * Cap @max_active to 1 too.
4131 */
4132 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4133 0, 1);
4134 BUG_ON(!cgroup_pidlist_destroy_wq);
4135
e5fca243
TH
4136 return 0;
4137}
4138core_initcall(cgroup_wq_init);
4139
a424316c
PM
4140/*
4141 * proc_cgroup_show()
4142 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4143 * - Used for /proc/<pid>/cgroup.
4144 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4145 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4146 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4147 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4148 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4149 * cgroup to top_cgroup.
4150 */
4151
4152/* TODO: Use a proper seq_file iterator */
8d8b97ba 4153int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4154{
4155 struct pid *pid;
4156 struct task_struct *tsk;
e61734c5 4157 char *buf, *path;
a424316c
PM
4158 int retval;
4159 struct cgroupfs_root *root;
4160
4161 retval = -ENOMEM;
e61734c5 4162 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4163 if (!buf)
4164 goto out;
4165
4166 retval = -ESRCH;
4167 pid = m->private;
4168 tsk = get_pid_task(pid, PIDTYPE_PID);
4169 if (!tsk)
4170 goto out_free;
4171
4172 retval = 0;
4173
4174 mutex_lock(&cgroup_mutex);
96d365e0 4175 down_read(&css_set_rwsem);
a424316c 4176
e5f6a860 4177 for_each_active_root(root) {
a424316c 4178 struct cgroup_subsys *ss;
bd89aabc 4179 struct cgroup *cgrp;
b85d2040 4180 int ssid, count = 0;
a424316c 4181
2c6ab6d2 4182 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4183 for_each_subsys(ss, ssid)
4184 if (root->subsys_mask & (1 << ssid))
4185 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4186 if (strlen(root->name))
4187 seq_printf(m, "%sname=%s", count ? "," : "",
4188 root->name);
a424316c 4189 seq_putc(m, ':');
7717f7ba 4190 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4191 path = cgroup_path(cgrp, buf, PATH_MAX);
4192 if (!path) {
4193 retval = -ENAMETOOLONG;
a424316c 4194 goto out_unlock;
e61734c5
TH
4195 }
4196 seq_puts(m, path);
a424316c
PM
4197 seq_putc(m, '\n');
4198 }
4199
4200out_unlock:
96d365e0 4201 up_read(&css_set_rwsem);
a424316c
PM
4202 mutex_unlock(&cgroup_mutex);
4203 put_task_struct(tsk);
4204out_free:
4205 kfree(buf);
4206out:
4207 return retval;
4208}
4209
a424316c
PM
4210/* Display information about each subsystem and each hierarchy */
4211static int proc_cgroupstats_show(struct seq_file *m, void *v)
4212{
30159ec7 4213 struct cgroup_subsys *ss;
a424316c 4214 int i;
a424316c 4215
8bab8dde 4216 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4217 /*
4218 * ideally we don't want subsystems moving around while we do this.
4219 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4220 * subsys/hierarchy state.
4221 */
a424316c 4222 mutex_lock(&cgroup_mutex);
30159ec7
TH
4223
4224 for_each_subsys(ss, i)
2c6ab6d2
PM
4225 seq_printf(m, "%s\t%d\t%d\t%d\n",
4226 ss->name, ss->root->hierarchy_id,
3c9c825b 4227 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4228
a424316c
PM
4229 mutex_unlock(&cgroup_mutex);
4230 return 0;
4231}
4232
4233static int cgroupstats_open(struct inode *inode, struct file *file)
4234{
9dce07f1 4235 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4236}
4237
828c0950 4238static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4239 .open = cgroupstats_open,
4240 .read = seq_read,
4241 .llseek = seq_lseek,
4242 .release = single_release,
4243};
4244
b4f48b63
PM
4245/**
4246 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4247 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4248 *
4249 * Description: A task inherits its parent's cgroup at fork().
4250 *
4251 * A pointer to the shared css_set was automatically copied in
4252 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4253 * it was not made under the protection of RCU or cgroup_mutex, so
4254 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4255 * have already changed current->cgroups, allowing the previously
4256 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4257 *
4258 * At the point that cgroup_fork() is called, 'current' is the parent
4259 * task, and the passed argument 'child' points to the child task.
4260 */
4261void cgroup_fork(struct task_struct *child)
4262{
9bb71308 4263 task_lock(current);
a8ad805c 4264 get_css_set(task_css_set(current));
817929ec 4265 child->cgroups = current->cgroups;
9bb71308 4266 task_unlock(current);
817929ec 4267 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4268}
4269
817929ec 4270/**
a043e3b2
LZ
4271 * cgroup_post_fork - called on a new task after adding it to the task list
4272 * @child: the task in question
4273 *
5edee61e
TH
4274 * Adds the task to the list running through its css_set if necessary and
4275 * call the subsystem fork() callbacks. Has to be after the task is
4276 * visible on the task list in case we race with the first call to
0942eeee 4277 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4278 * list.
a043e3b2 4279 */
817929ec
PM
4280void cgroup_post_fork(struct task_struct *child)
4281{
30159ec7 4282 struct cgroup_subsys *ss;
5edee61e
TH
4283 int i;
4284
3ce3230a
FW
4285 /*
4286 * use_task_css_set_links is set to 1 before we walk the tasklist
4287 * under the tasklist_lock and we read it here after we added the child
4288 * to the tasklist under the tasklist_lock as well. If the child wasn't
4289 * yet in the tasklist when we walked through it from
4290 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4291 * should be visible now due to the paired locking and barriers implied
4292 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4293 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4294 * lock on fork.
4295 */
817929ec 4296 if (use_task_css_set_links) {
96d365e0 4297 down_write(&css_set_rwsem);
d8783832
TH
4298 task_lock(child);
4299 if (list_empty(&child->cg_list))
a8ad805c 4300 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4301 task_unlock(child);
96d365e0 4302 up_write(&css_set_rwsem);
817929ec 4303 }
5edee61e
TH
4304
4305 /*
4306 * Call ss->fork(). This must happen after @child is linked on
4307 * css_set; otherwise, @child might change state between ->fork()
4308 * and addition to css_set.
4309 */
4310 if (need_forkexit_callback) {
3ed80a62 4311 for_each_subsys(ss, i)
5edee61e
TH
4312 if (ss->fork)
4313 ss->fork(child);
5edee61e 4314 }
817929ec 4315}
5edee61e 4316
b4f48b63
PM
4317/**
4318 * cgroup_exit - detach cgroup from exiting task
4319 * @tsk: pointer to task_struct of exiting process
a043e3b2 4320 * @run_callback: run exit callbacks?
b4f48b63
PM
4321 *
4322 * Description: Detach cgroup from @tsk and release it.
4323 *
4324 * Note that cgroups marked notify_on_release force every task in
4325 * them to take the global cgroup_mutex mutex when exiting.
4326 * This could impact scaling on very large systems. Be reluctant to
4327 * use notify_on_release cgroups where very high task exit scaling
4328 * is required on large systems.
4329 *
4330 * the_top_cgroup_hack:
4331 *
4332 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4333 *
4334 * We call cgroup_exit() while the task is still competent to
4335 * handle notify_on_release(), then leave the task attached to the
4336 * root cgroup in each hierarchy for the remainder of its exit.
4337 *
4338 * To do this properly, we would increment the reference count on
4339 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4340 * code we would add a second cgroup function call, to drop that
4341 * reference. This would just create an unnecessary hot spot on
4342 * the top_cgroup reference count, to no avail.
4343 *
4344 * Normally, holding a reference to a cgroup without bumping its
4345 * count is unsafe. The cgroup could go away, or someone could
4346 * attach us to a different cgroup, decrementing the count on
4347 * the first cgroup that we never incremented. But in this case,
4348 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4349 * which wards off any cgroup_attach_task() attempts, or task is a failed
4350 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4351 */
4352void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4353{
30159ec7 4354 struct cgroup_subsys *ss;
5abb8855 4355 struct css_set *cset;
d41d5a01 4356 int i;
817929ec
PM
4357
4358 /*
96d365e0
TH
4359 * Unlink from the css_set task list if necessary. Optimistically
4360 * check cg_list before taking css_set_rwsem.
817929ec
PM
4361 */
4362 if (!list_empty(&tsk->cg_list)) {
96d365e0 4363 down_write(&css_set_rwsem);
817929ec 4364 if (!list_empty(&tsk->cg_list))
8d258797 4365 list_del_init(&tsk->cg_list);
96d365e0 4366 up_write(&css_set_rwsem);
817929ec
PM
4367 }
4368
b4f48b63
PM
4369 /* Reassign the task to the init_css_set. */
4370 task_lock(tsk);
a8ad805c
TH
4371 cset = task_css_set(tsk);
4372 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4373
4374 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4375 /* see cgroup_post_fork() for details */
4376 for_each_subsys(ss, i) {
d41d5a01 4377 if (ss->exit) {
eb95419b
TH
4378 struct cgroup_subsys_state *old_css = cset->subsys[i];
4379 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4380
eb95419b 4381 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4382 }
4383 }
4384 }
b4f48b63 4385 task_unlock(tsk);
d41d5a01 4386
89c5509b 4387 put_css_set(cset, true);
b4f48b63 4388}
697f4161 4389
bd89aabc 4390static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4391{
f50daa70 4392 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4393 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4394 /*
4395 * Control Group is currently removeable. If it's not
81a6a5cd 4396 * already queued for a userspace notification, queue
f50daa70
LZ
4397 * it now
4398 */
81a6a5cd 4399 int need_schedule_work = 0;
f50daa70 4400
cdcc136f 4401 raw_spin_lock(&release_list_lock);
54766d4a 4402 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4403 list_empty(&cgrp->release_list)) {
4404 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4405 need_schedule_work = 1;
4406 }
cdcc136f 4407 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4408 if (need_schedule_work)
4409 schedule_work(&release_agent_work);
4410 }
4411}
4412
81a6a5cd
PM
4413/*
4414 * Notify userspace when a cgroup is released, by running the
4415 * configured release agent with the name of the cgroup (path
4416 * relative to the root of cgroup file system) as the argument.
4417 *
4418 * Most likely, this user command will try to rmdir this cgroup.
4419 *
4420 * This races with the possibility that some other task will be
4421 * attached to this cgroup before it is removed, or that some other
4422 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4423 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4424 * unused, and this cgroup will be reprieved from its death sentence,
4425 * to continue to serve a useful existence. Next time it's released,
4426 * we will get notified again, if it still has 'notify_on_release' set.
4427 *
4428 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4429 * means only wait until the task is successfully execve()'d. The
4430 * separate release agent task is forked by call_usermodehelper(),
4431 * then control in this thread returns here, without waiting for the
4432 * release agent task. We don't bother to wait because the caller of
4433 * this routine has no use for the exit status of the release agent
4434 * task, so no sense holding our caller up for that.
81a6a5cd 4435 */
81a6a5cd
PM
4436static void cgroup_release_agent(struct work_struct *work)
4437{
4438 BUG_ON(work != &release_agent_work);
4439 mutex_lock(&cgroup_mutex);
cdcc136f 4440 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4441 while (!list_empty(&release_list)) {
4442 char *argv[3], *envp[3];
4443 int i;
e61734c5 4444 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4445 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4446 struct cgroup,
4447 release_list);
bd89aabc 4448 list_del_init(&cgrp->release_list);
cdcc136f 4449 raw_spin_unlock(&release_list_lock);
e61734c5 4450 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4451 if (!pathbuf)
4452 goto continue_free;
e61734c5
TH
4453 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4454 if (!path)
e788e066
PM
4455 goto continue_free;
4456 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4457 if (!agentbuf)
4458 goto continue_free;
81a6a5cd
PM
4459
4460 i = 0;
e788e066 4461 argv[i++] = agentbuf;
e61734c5 4462 argv[i++] = path;
81a6a5cd
PM
4463 argv[i] = NULL;
4464
4465 i = 0;
4466 /* minimal command environment */
4467 envp[i++] = "HOME=/";
4468 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4469 envp[i] = NULL;
4470
4471 /* Drop the lock while we invoke the usermode helper,
4472 * since the exec could involve hitting disk and hence
4473 * be a slow process */
4474 mutex_unlock(&cgroup_mutex);
4475 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4476 mutex_lock(&cgroup_mutex);
e788e066
PM
4477 continue_free:
4478 kfree(pathbuf);
4479 kfree(agentbuf);
cdcc136f 4480 raw_spin_lock(&release_list_lock);
81a6a5cd 4481 }
cdcc136f 4482 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4483 mutex_unlock(&cgroup_mutex);
4484}
8bab8dde
PM
4485
4486static int __init cgroup_disable(char *str)
4487{
30159ec7 4488 struct cgroup_subsys *ss;
8bab8dde 4489 char *token;
30159ec7 4490 int i;
8bab8dde
PM
4491
4492 while ((token = strsep(&str, ",")) != NULL) {
4493 if (!*token)
4494 continue;
be45c900 4495
3ed80a62 4496 for_each_subsys(ss, i) {
8bab8dde
PM
4497 if (!strcmp(token, ss->name)) {
4498 ss->disabled = 1;
4499 printk(KERN_INFO "Disabling %s control group"
4500 " subsystem\n", ss->name);
4501 break;
4502 }
4503 }
4504 }
4505 return 1;
4506}
4507__setup("cgroup_disable=", cgroup_disable);
38460b48 4508
b77d7b60 4509/**
5a17f543 4510 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4511 * @dentry: directory dentry of interest
4512 * @ss: subsystem of interest
b77d7b60 4513 *
5a17f543
TH
4514 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4515 * to get the corresponding css and return it. If such css doesn't exist
4516 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4517 */
5a17f543
TH
4518struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4519 struct cgroup_subsys *ss)
e5d1367f 4520{
2bd59d48
TH
4521 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4522 struct cgroup_subsys_state *css = NULL;
e5d1367f 4523 struct cgroup *cgrp;
b77d7b60 4524
35cf0836 4525 /* is @dentry a cgroup dir? */
2bd59d48
TH
4526 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4527 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4528 return ERR_PTR(-EBADF);
4529
5a17f543
TH
4530 rcu_read_lock();
4531
2bd59d48
TH
4532 /*
4533 * This path doesn't originate from kernfs and @kn could already
4534 * have been or be removed at any point. @kn->priv is RCU
4535 * protected for this access. See destroy_locked() for details.
4536 */
4537 cgrp = rcu_dereference(kn->priv);
4538 if (cgrp)
4539 css = cgroup_css(cgrp, ss);
5a17f543
TH
4540
4541 if (!css || !css_tryget(css))
4542 css = ERR_PTR(-ENOENT);
4543
4544 rcu_read_unlock();
4545 return css;
e5d1367f 4546}
e5d1367f 4547
1cb650b9
LZ
4548/**
4549 * css_from_id - lookup css by id
4550 * @id: the cgroup id
4551 * @ss: cgroup subsys to be looked into
4552 *
4553 * Returns the css if there's valid one with @id, otherwise returns NULL.
4554 * Should be called under rcu_read_lock().
4555 */
4556struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4557{
4558 struct cgroup *cgrp;
4559
ace2bee8 4560 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4561
4562 cgrp = idr_find(&ss->root->cgroup_idr, id);
4563 if (cgrp)
d1625964 4564 return cgroup_css(cgrp, ss);
1cb650b9 4565 return NULL;
e5d1367f
SE
4566}
4567
fe693435 4568#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4569static struct cgroup_subsys_state *
4570debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4571{
4572 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4573
4574 if (!css)
4575 return ERR_PTR(-ENOMEM);
4576
4577 return css;
4578}
4579
eb95419b 4580static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4581{
eb95419b 4582 kfree(css);
fe693435
PM
4583}
4584
182446d0
TH
4585static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4586 struct cftype *cft)
fe693435 4587{
182446d0 4588 return cgroup_task_count(css->cgroup);
fe693435
PM
4589}
4590
182446d0
TH
4591static u64 current_css_set_read(struct cgroup_subsys_state *css,
4592 struct cftype *cft)
fe693435
PM
4593{
4594 return (u64)(unsigned long)current->cgroups;
4595}
4596
182446d0 4597static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4598 struct cftype *cft)
fe693435
PM
4599{
4600 u64 count;
4601
4602 rcu_read_lock();
a8ad805c 4603 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4604 rcu_read_unlock();
4605 return count;
4606}
4607
2da8ca82 4608static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4609{
69d0206c 4610 struct cgrp_cset_link *link;
5abb8855 4611 struct css_set *cset;
e61734c5
TH
4612 char *name_buf;
4613
4614 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4615 if (!name_buf)
4616 return -ENOMEM;
7717f7ba 4617
96d365e0 4618 down_read(&css_set_rwsem);
7717f7ba 4619 rcu_read_lock();
5abb8855 4620 cset = rcu_dereference(current->cgroups);
69d0206c 4621 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4622 struct cgroup *c = link->cgrp;
59f5296b
TH
4623 const char *name = "?";
4624
e61734c5
TH
4625 if (c != cgroup_dummy_top) {
4626 cgroup_name(c, name_buf, NAME_MAX + 1);
4627 name = name_buf;
4628 }
7717f7ba 4629
2c6ab6d2
PM
4630 seq_printf(seq, "Root %d group %s\n",
4631 c->root->hierarchy_id, name);
7717f7ba
PM
4632 }
4633 rcu_read_unlock();
96d365e0 4634 up_read(&css_set_rwsem);
e61734c5 4635 kfree(name_buf);
7717f7ba
PM
4636 return 0;
4637}
4638
4639#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4640static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4641{
2da8ca82 4642 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4643 struct cgrp_cset_link *link;
7717f7ba 4644
96d365e0 4645 down_read(&css_set_rwsem);
182446d0 4646 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4647 struct css_set *cset = link->cset;
7717f7ba
PM
4648 struct task_struct *task;
4649 int count = 0;
c7561128 4650
5abb8855 4651 seq_printf(seq, "css_set %p\n", cset);
c7561128 4652
5abb8855 4653 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4654 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4655 goto overflow;
4656 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4657 }
4658
4659 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4660 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4661 goto overflow;
4662 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4663 }
c7561128
TH
4664 continue;
4665 overflow:
4666 seq_puts(seq, " ...\n");
7717f7ba 4667 }
96d365e0 4668 up_read(&css_set_rwsem);
7717f7ba
PM
4669 return 0;
4670}
4671
182446d0 4672static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4673{
182446d0 4674 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4675}
4676
4677static struct cftype debug_files[] = {
fe693435
PM
4678 {
4679 .name = "taskcount",
4680 .read_u64 = debug_taskcount_read,
4681 },
4682
4683 {
4684 .name = "current_css_set",
4685 .read_u64 = current_css_set_read,
4686 },
4687
4688 {
4689 .name = "current_css_set_refcount",
4690 .read_u64 = current_css_set_refcount_read,
4691 },
4692
7717f7ba
PM
4693 {
4694 .name = "current_css_set_cg_links",
2da8ca82 4695 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4696 },
4697
4698 {
4699 .name = "cgroup_css_links",
2da8ca82 4700 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4701 },
4702
fe693435
PM
4703 {
4704 .name = "releasable",
4705 .read_u64 = releasable_read,
4706 },
fe693435 4707
4baf6e33
TH
4708 { } /* terminate */
4709};
fe693435 4710
073219e9 4711struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4712 .css_alloc = debug_css_alloc,
4713 .css_free = debug_css_free,
4baf6e33 4714 .base_cftypes = debug_files,
fe693435
PM
4715};
4716#endif /* CONFIG_CGROUP_DEBUG */