cgroup: factor out cgroup_apply_control_disable() from cgroup_subtree_control_write()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
a7165264 181static bool cgrp_dfl_visible;
ddbcc7e8 182
223ffb29 183/* Controllers blocked by the commandline in v1 */
6e5c8307 184static u16 cgroup_no_v1_mask;
223ffb29 185
5533e011 186/* some controllers are not supported in the default hierarchy */
a7165264 187static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
9871bf95
TH
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
ddbcc7e8 193
3417ae1f 194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 195static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 196
794611a1 197/*
0cb51d71
TH
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
794611a1 203 */
0cb51d71 204static u64 css_serial_nr_next = 1;
794611a1 205
cb4a3167
AS
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 210 */
6e5c8307
TH
211static u16 have_fork_callback __read_mostly;
212static u16 have_exit_callback __read_mostly;
213static u16 have_free_callback __read_mostly;
ddbcc7e8 214
7e47682e 215/* Ditto for the can_fork callback. */
6e5c8307 216static u16 have_canfork_callback __read_mostly;
7e47682e 217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
a14c6874
TH
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
628f7cd4 221
6e5c8307 222static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
ed27b9f7 223static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 224static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
225static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
226 struct cgroup_subsys *ss);
9d755d33 227static void css_release(struct percpu_ref *ref);
f8f22e53 228static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
229static int cgroup_addrm_files(struct cgroup_subsys_state *css,
230 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 231 bool is_add);
42809dd4 232
fc5ed1e9
TH
233/**
234 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
235 * @ssid: subsys ID of interest
236 *
237 * cgroup_subsys_enabled() can only be used with literal subsys names which
238 * is fine for individual subsystems but unsuitable for cgroup core. This
239 * is slower static_key_enabled() based test indexed by @ssid.
240 */
241static bool cgroup_ssid_enabled(int ssid)
242{
243 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
244}
245
223ffb29
JW
246static bool cgroup_ssid_no_v1(int ssid)
247{
248 return cgroup_no_v1_mask & (1 << ssid);
249}
250
9e10a130
TH
251/**
252 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
253 * @cgrp: the cgroup of interest
254 *
255 * The default hierarchy is the v2 interface of cgroup and this function
256 * can be used to test whether a cgroup is on the default hierarchy for
257 * cases where a subsystem should behave differnetly depending on the
258 * interface version.
259 *
260 * The set of behaviors which change on the default hierarchy are still
261 * being determined and the mount option is prefixed with __DEVEL__.
262 *
263 * List of changed behaviors:
264 *
265 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
266 * and "name" are disallowed.
267 *
268 * - When mounting an existing superblock, mount options should match.
269 *
270 * - Remount is disallowed.
271 *
272 * - rename(2) is disallowed.
273 *
274 * - "tasks" is removed. Everything should be at process granularity. Use
275 * "cgroup.procs" instead.
276 *
277 * - "cgroup.procs" is not sorted. pids will be unique unless they got
278 * recycled inbetween reads.
279 *
280 * - "release_agent" and "notify_on_release" are removed. Replacement
281 * notification mechanism will be implemented.
282 *
283 * - "cgroup.clone_children" is removed.
284 *
285 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
286 * and its descendants contain no task; otherwise, 1. The file also
287 * generates kernfs notification which can be monitored through poll and
288 * [di]notify when the value of the file changes.
289 *
290 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
291 * take masks of ancestors with non-empty cpus/mems, instead of being
292 * moved to an ancestor.
293 *
294 * - cpuset: a task can be moved into an empty cpuset, and again it takes
295 * masks of ancestors.
296 *
297 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
298 * is not created.
299 *
300 * - blkcg: blk-throttle becomes properly hierarchical.
301 *
302 * - debug: disallowed on the default hierarchy.
303 */
304static bool cgroup_on_dfl(const struct cgroup *cgrp)
305{
306 return cgrp->root == &cgrp_dfl_root;
307}
308
6fa4918d
TH
309/* IDR wrappers which synchronize using cgroup_idr_lock */
310static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
311 gfp_t gfp_mask)
312{
313 int ret;
314
315 idr_preload(gfp_mask);
54504e97 316 spin_lock_bh(&cgroup_idr_lock);
d0164adc 317 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 318 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
319 idr_preload_end();
320 return ret;
321}
322
323static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
324{
325 void *ret;
326
54504e97 327 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 328 ret = idr_replace(idr, ptr, id);
54504e97 329 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
330 return ret;
331}
332
333static void cgroup_idr_remove(struct idr *idr, int id)
334{
54504e97 335 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 336 idr_remove(idr, id);
54504e97 337 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
338}
339
d51f39b0
TH
340static struct cgroup *cgroup_parent(struct cgroup *cgrp)
341{
342 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
343
344 if (parent_css)
345 return container_of(parent_css, struct cgroup, self);
346 return NULL;
347}
348
5531dc91
TH
349/* subsystems visibly enabled on a cgroup */
350static u16 cgroup_control(struct cgroup *cgrp)
351{
352 struct cgroup *parent = cgroup_parent(cgrp);
353 u16 root_ss_mask = cgrp->root->subsys_mask;
354
355 if (parent)
356 return parent->subtree_control;
357
358 if (cgroup_on_dfl(cgrp))
359 root_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
360
361 return root_ss_mask;
362}
363
364/* subsystems enabled on a cgroup */
365static u16 cgroup_ss_mask(struct cgroup *cgrp)
366{
367 struct cgroup *parent = cgroup_parent(cgrp);
368
369 if (parent)
370 return parent->subtree_ss_mask;
371
372 return cgrp->root->subsys_mask;
373}
374
95109b62
TH
375/**
376 * cgroup_css - obtain a cgroup's css for the specified subsystem
377 * @cgrp: the cgroup of interest
9d800df1 378 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 379 *
ca8bdcaf
TH
380 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
381 * function must be called either under cgroup_mutex or rcu_read_lock() and
382 * the caller is responsible for pinning the returned css if it wants to
383 * keep accessing it outside the said locks. This function may return
384 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
385 */
386static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 387 struct cgroup_subsys *ss)
95109b62 388{
ca8bdcaf 389 if (ss)
aec25020 390 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 391 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 392 else
9d800df1 393 return &cgrp->self;
95109b62 394}
42809dd4 395
aec3dfcb
TH
396/**
397 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
398 * @cgrp: the cgroup of interest
9d800df1 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 400 *
d0f702e6 401 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
402 * as the matching css of the nearest ancestor including self which has @ss
403 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
404 * function is guaranteed to return non-NULL css.
405 */
406static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
407 struct cgroup_subsys *ss)
408{
409 lockdep_assert_held(&cgroup_mutex);
410
411 if (!ss)
9d800df1 412 return &cgrp->self;
aec3dfcb 413
eeecbd19
TH
414 /*
415 * This function is used while updating css associations and thus
5531dc91 416 * can't test the csses directly. Test ss_mask.
eeecbd19 417 */
5531dc91 418 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 419 cgrp = cgroup_parent(cgrp);
5531dc91
TH
420 if (!cgrp)
421 return NULL;
422 }
aec3dfcb
TH
423
424 return cgroup_css(cgrp, ss);
95109b62 425}
42809dd4 426
eeecbd19
TH
427/**
428 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
429 * @cgrp: the cgroup of interest
430 * @ss: the subsystem of interest
431 *
432 * Find and get the effective css of @cgrp for @ss. The effective css is
433 * defined as the matching css of the nearest ancestor including self which
434 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
435 * the root css is returned, so this function always returns a valid css.
436 * The returned css must be put using css_put().
437 */
438struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
439 struct cgroup_subsys *ss)
440{
441 struct cgroup_subsys_state *css;
442
443 rcu_read_lock();
444
445 do {
446 css = cgroup_css(cgrp, ss);
447
448 if (css && css_tryget_online(css))
449 goto out_unlock;
450 cgrp = cgroup_parent(cgrp);
451 } while (cgrp);
452
453 css = init_css_set.subsys[ss->id];
454 css_get(css);
455out_unlock:
456 rcu_read_unlock();
457 return css;
458}
459
ddbcc7e8 460/* convenient tests for these bits */
54766d4a 461static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 462{
184faf32 463 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
464}
465
052c3f3a
TH
466static void cgroup_get(struct cgroup *cgrp)
467{
468 WARN_ON_ONCE(cgroup_is_dead(cgrp));
469 css_get(&cgrp->self);
470}
471
472static bool cgroup_tryget(struct cgroup *cgrp)
473{
474 return css_tryget(&cgrp->self);
475}
476
b4168640 477struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 478{
2bd59d48 479 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 480 struct cftype *cft = of_cft(of);
2bd59d48
TH
481
482 /*
483 * This is open and unprotected implementation of cgroup_css().
484 * seq_css() is only called from a kernfs file operation which has
485 * an active reference on the file. Because all the subsystem
486 * files are drained before a css is disassociated with a cgroup,
487 * the matching css from the cgroup's subsys table is guaranteed to
488 * be and stay valid until the enclosing operation is complete.
489 */
490 if (cft->ss)
491 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
492 else
9d800df1 493 return &cgrp->self;
59f5296b 494}
b4168640 495EXPORT_SYMBOL_GPL(of_css);
59f5296b 496
e9685a03 497static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 498{
bd89aabc 499 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
500}
501
1c6727af
TH
502/**
503 * for_each_css - iterate all css's of a cgroup
504 * @css: the iteration cursor
505 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
506 * @cgrp: the target cgroup to iterate css's of
507 *
aec3dfcb 508 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
509 */
510#define for_each_css(css, ssid, cgrp) \
511 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
512 if (!((css) = rcu_dereference_check( \
513 (cgrp)->subsys[(ssid)], \
514 lockdep_is_held(&cgroup_mutex)))) { } \
515 else
516
aec3dfcb
TH
517/**
518 * for_each_e_css - iterate all effective css's of a cgroup
519 * @css: the iteration cursor
520 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
521 * @cgrp: the target cgroup to iterate css's of
522 *
523 * Should be called under cgroup_[tree_]mutex.
524 */
525#define for_each_e_css(css, ssid, cgrp) \
526 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
527 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
528 ; \
529 else
530
30159ec7 531/**
3ed80a62 532 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 533 * @ss: the iteration cursor
780cd8b3 534 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 535 */
780cd8b3 536#define for_each_subsys(ss, ssid) \
3ed80a62
TH
537 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
538 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 539
cb4a3167 540/**
b4e0eeaf 541 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
542 * @ss: the iteration cursor
543 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 544 * @ss_mask: the bitmask
cb4a3167
AS
545 *
546 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 547 * @ss_mask is set.
cb4a3167 548 */
b4e0eeaf
TH
549#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
550 unsigned long __ss_mask = (ss_mask); \
551 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 552 (ssid) = 0; \
b4e0eeaf
TH
553 break; \
554 } \
555 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
556 (ss) = cgroup_subsys[ssid]; \
557 {
558
559#define while_each_subsys_mask() \
560 } \
561 } \
562} while (false)
cb4a3167 563
985ed670
TH
564/* iterate across the hierarchies */
565#define for_each_root(root) \
5549c497 566 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 567
f8f22e53
TH
568/* iterate over child cgrps, lock should be held throughout iteration */
569#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 570 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 571 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
572 cgroup_is_dead(child); })) \
573 ; \
574 else
7ae1bad9 575
81a6a5cd 576static void cgroup_release_agent(struct work_struct *work);
bd89aabc 577static void check_for_release(struct cgroup *cgrp);
81a6a5cd 578
69d0206c
TH
579/*
580 * A cgroup can be associated with multiple css_sets as different tasks may
581 * belong to different cgroups on different hierarchies. In the other
582 * direction, a css_set is naturally associated with multiple cgroups.
583 * This M:N relationship is represented by the following link structure
584 * which exists for each association and allows traversing the associations
585 * from both sides.
586 */
587struct cgrp_cset_link {
588 /* the cgroup and css_set this link associates */
589 struct cgroup *cgrp;
590 struct css_set *cset;
591
592 /* list of cgrp_cset_links anchored at cgrp->cset_links */
593 struct list_head cset_link;
594
595 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
596 struct list_head cgrp_link;
817929ec
PM
597};
598
172a2c06
TH
599/*
600 * The default css_set - used by init and its children prior to any
817929ec
PM
601 * hierarchies being mounted. It contains a pointer to the root state
602 * for each subsystem. Also used to anchor the list of css_sets. Not
603 * reference-counted, to improve performance when child cgroups
604 * haven't been created.
605 */
5024ae29 606struct css_set init_css_set = {
172a2c06
TH
607 .refcount = ATOMIC_INIT(1),
608 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
609 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
610 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
611 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
612 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 613 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 614};
817929ec 615
172a2c06 616static int css_set_count = 1; /* 1 for init_css_set */
817929ec 617
0de0942d
TH
618/**
619 * css_set_populated - does a css_set contain any tasks?
620 * @cset: target css_set
621 */
622static bool css_set_populated(struct css_set *cset)
623{
f0d9a5f1 624 lockdep_assert_held(&css_set_lock);
0de0942d
TH
625
626 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
627}
628
842b597e
TH
629/**
630 * cgroup_update_populated - updated populated count of a cgroup
631 * @cgrp: the target cgroup
632 * @populated: inc or dec populated count
633 *
0de0942d
TH
634 * One of the css_sets associated with @cgrp is either getting its first
635 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
636 * count is propagated towards root so that a given cgroup's populated_cnt
637 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
638 *
639 * @cgrp's interface file "cgroup.populated" is zero if
640 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
641 * changes from or to zero, userland is notified that the content of the
642 * interface file has changed. This can be used to detect when @cgrp and
643 * its descendants become populated or empty.
644 */
645static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
646{
f0d9a5f1 647 lockdep_assert_held(&css_set_lock);
842b597e
TH
648
649 do {
650 bool trigger;
651
652 if (populated)
653 trigger = !cgrp->populated_cnt++;
654 else
655 trigger = !--cgrp->populated_cnt;
656
657 if (!trigger)
658 break;
659
ad2ed2b3 660 check_for_release(cgrp);
6f60eade
TH
661 cgroup_file_notify(&cgrp->events_file);
662
d51f39b0 663 cgrp = cgroup_parent(cgrp);
842b597e
TH
664 } while (cgrp);
665}
666
0de0942d
TH
667/**
668 * css_set_update_populated - update populated state of a css_set
669 * @cset: target css_set
670 * @populated: whether @cset is populated or depopulated
671 *
672 * @cset is either getting the first task or losing the last. Update the
673 * ->populated_cnt of all associated cgroups accordingly.
674 */
675static void css_set_update_populated(struct css_set *cset, bool populated)
676{
677 struct cgrp_cset_link *link;
678
f0d9a5f1 679 lockdep_assert_held(&css_set_lock);
0de0942d
TH
680
681 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
682 cgroup_update_populated(link->cgrp, populated);
683}
684
f6d7d049
TH
685/**
686 * css_set_move_task - move a task from one css_set to another
687 * @task: task being moved
688 * @from_cset: css_set @task currently belongs to (may be NULL)
689 * @to_cset: new css_set @task is being moved to (may be NULL)
690 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
691 *
692 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
693 * css_set, @from_cset can be NULL. If @task is being disassociated
694 * instead of moved, @to_cset can be NULL.
695 *
ed27b9f7
TH
696 * This function automatically handles populated_cnt updates and
697 * css_task_iter adjustments but the caller is responsible for managing
698 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
699 */
700static void css_set_move_task(struct task_struct *task,
701 struct css_set *from_cset, struct css_set *to_cset,
702 bool use_mg_tasks)
703{
f0d9a5f1 704 lockdep_assert_held(&css_set_lock);
f6d7d049 705
20b454a6
TH
706 if (to_cset && !css_set_populated(to_cset))
707 css_set_update_populated(to_cset, true);
708
f6d7d049 709 if (from_cset) {
ed27b9f7
TH
710 struct css_task_iter *it, *pos;
711
f6d7d049 712 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
713
714 /*
715 * @task is leaving, advance task iterators which are
716 * pointing to it so that they can resume at the next
717 * position. Advancing an iterator might remove it from
718 * the list, use safe walk. See css_task_iter_advance*()
719 * for details.
720 */
721 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
722 iters_node)
723 if (it->task_pos == &task->cg_list)
724 css_task_iter_advance(it);
725
f6d7d049
TH
726 list_del_init(&task->cg_list);
727 if (!css_set_populated(from_cset))
728 css_set_update_populated(from_cset, false);
729 } else {
730 WARN_ON_ONCE(!list_empty(&task->cg_list));
731 }
732
733 if (to_cset) {
734 /*
735 * We are synchronized through cgroup_threadgroup_rwsem
736 * against PF_EXITING setting such that we can't race
737 * against cgroup_exit() changing the css_set to
738 * init_css_set and dropping the old one.
739 */
740 WARN_ON_ONCE(task->flags & PF_EXITING);
741
f6d7d049
TH
742 rcu_assign_pointer(task->cgroups, to_cset);
743 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
744 &to_cset->tasks);
745 }
746}
747
7717f7ba
PM
748/*
749 * hash table for cgroup groups. This improves the performance to find
750 * an existing css_set. This hash doesn't (currently) take into
751 * account cgroups in empty hierarchies.
752 */
472b1053 753#define CSS_SET_HASH_BITS 7
0ac801fe 754static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 755
0ac801fe 756static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 757{
0ac801fe 758 unsigned long key = 0UL;
30159ec7
TH
759 struct cgroup_subsys *ss;
760 int i;
472b1053 761
30159ec7 762 for_each_subsys(ss, i)
0ac801fe
LZ
763 key += (unsigned long)css[i];
764 key = (key >> 16) ^ key;
472b1053 765
0ac801fe 766 return key;
472b1053
LZ
767}
768
a25eb52e 769static void put_css_set_locked(struct css_set *cset)
b4f48b63 770{
69d0206c 771 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
772 struct cgroup_subsys *ss;
773 int ssid;
5abb8855 774
f0d9a5f1 775 lockdep_assert_held(&css_set_lock);
89c5509b
TH
776
777 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 778 return;
81a6a5cd 779
53254f90
TH
780 /* This css_set is dead. unlink it and release cgroup and css refs */
781 for_each_subsys(ss, ssid) {
2d8f243a 782 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
783 css_put(cset->subsys[ssid]);
784 }
5abb8855 785 hash_del(&cset->hlist);
2c6ab6d2
PM
786 css_set_count--;
787
69d0206c 788 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
789 list_del(&link->cset_link);
790 list_del(&link->cgrp_link);
2ceb231b
TH
791 if (cgroup_parent(link->cgrp))
792 cgroup_put(link->cgrp);
2c6ab6d2 793 kfree(link);
81a6a5cd 794 }
2c6ab6d2 795
5abb8855 796 kfree_rcu(cset, rcu_head);
b4f48b63
PM
797}
798
a25eb52e 799static void put_css_set(struct css_set *cset)
89c5509b
TH
800{
801 /*
802 * Ensure that the refcount doesn't hit zero while any readers
803 * can see it. Similar to atomic_dec_and_lock(), but for an
804 * rwlock
805 */
806 if (atomic_add_unless(&cset->refcount, -1, 1))
807 return;
808
f0d9a5f1 809 spin_lock_bh(&css_set_lock);
a25eb52e 810 put_css_set_locked(cset);
f0d9a5f1 811 spin_unlock_bh(&css_set_lock);
89c5509b
TH
812}
813
817929ec
PM
814/*
815 * refcounted get/put for css_set objects
816 */
5abb8855 817static inline void get_css_set(struct css_set *cset)
817929ec 818{
5abb8855 819 atomic_inc(&cset->refcount);
817929ec
PM
820}
821
b326f9d0 822/**
7717f7ba 823 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
824 * @cset: candidate css_set being tested
825 * @old_cset: existing css_set for a task
7717f7ba
PM
826 * @new_cgrp: cgroup that's being entered by the task
827 * @template: desired set of css pointers in css_set (pre-calculated)
828 *
6f4b7e63 829 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
830 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
831 */
5abb8855
TH
832static bool compare_css_sets(struct css_set *cset,
833 struct css_set *old_cset,
7717f7ba
PM
834 struct cgroup *new_cgrp,
835 struct cgroup_subsys_state *template[])
836{
837 struct list_head *l1, *l2;
838
aec3dfcb
TH
839 /*
840 * On the default hierarchy, there can be csets which are
841 * associated with the same set of cgroups but different csses.
842 * Let's first ensure that csses match.
843 */
844 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 845 return false;
7717f7ba
PM
846
847 /*
848 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
849 * different cgroups in hierarchies. As different cgroups may
850 * share the same effective css, this comparison is always
851 * necessary.
7717f7ba 852 */
69d0206c
TH
853 l1 = &cset->cgrp_links;
854 l2 = &old_cset->cgrp_links;
7717f7ba 855 while (1) {
69d0206c 856 struct cgrp_cset_link *link1, *link2;
5abb8855 857 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
858
859 l1 = l1->next;
860 l2 = l2->next;
861 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
862 if (l1 == &cset->cgrp_links) {
863 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
864 break;
865 } else {
69d0206c 866 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
867 }
868 /* Locate the cgroups associated with these links. */
69d0206c
TH
869 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
870 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
871 cgrp1 = link1->cgrp;
872 cgrp2 = link2->cgrp;
7717f7ba 873 /* Hierarchies should be linked in the same order. */
5abb8855 874 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
875
876 /*
877 * If this hierarchy is the hierarchy of the cgroup
878 * that's changing, then we need to check that this
879 * css_set points to the new cgroup; if it's any other
880 * hierarchy, then this css_set should point to the
881 * same cgroup as the old css_set.
882 */
5abb8855
TH
883 if (cgrp1->root == new_cgrp->root) {
884 if (cgrp1 != new_cgrp)
7717f7ba
PM
885 return false;
886 } else {
5abb8855 887 if (cgrp1 != cgrp2)
7717f7ba
PM
888 return false;
889 }
890 }
891 return true;
892}
893
b326f9d0
TH
894/**
895 * find_existing_css_set - init css array and find the matching css_set
896 * @old_cset: the css_set that we're using before the cgroup transition
897 * @cgrp: the cgroup that we're moving into
898 * @template: out param for the new set of csses, should be clear on entry
817929ec 899 */
5abb8855
TH
900static struct css_set *find_existing_css_set(struct css_set *old_cset,
901 struct cgroup *cgrp,
902 struct cgroup_subsys_state *template[])
b4f48b63 903{
3dd06ffa 904 struct cgroup_root *root = cgrp->root;
30159ec7 905 struct cgroup_subsys *ss;
5abb8855 906 struct css_set *cset;
0ac801fe 907 unsigned long key;
b326f9d0 908 int i;
817929ec 909
aae8aab4
BB
910 /*
911 * Build the set of subsystem state objects that we want to see in the
912 * new css_set. while subsystems can change globally, the entries here
913 * won't change, so no need for locking.
914 */
30159ec7 915 for_each_subsys(ss, i) {
f392e51c 916 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
917 /*
918 * @ss is in this hierarchy, so we want the
919 * effective css from @cgrp.
920 */
921 template[i] = cgroup_e_css(cgrp, ss);
817929ec 922 } else {
aec3dfcb
TH
923 /*
924 * @ss is not in this hierarchy, so we don't want
925 * to change the css.
926 */
5abb8855 927 template[i] = old_cset->subsys[i];
817929ec
PM
928 }
929 }
930
0ac801fe 931 key = css_set_hash(template);
5abb8855
TH
932 hash_for_each_possible(css_set_table, cset, hlist, key) {
933 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
934 continue;
935
936 /* This css_set matches what we need */
5abb8855 937 return cset;
472b1053 938 }
817929ec
PM
939
940 /* No existing cgroup group matched */
941 return NULL;
942}
943
69d0206c 944static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 945{
69d0206c 946 struct cgrp_cset_link *link, *tmp_link;
36553434 947
69d0206c
TH
948 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
949 list_del(&link->cset_link);
36553434
LZ
950 kfree(link);
951 }
952}
953
69d0206c
TH
954/**
955 * allocate_cgrp_cset_links - allocate cgrp_cset_links
956 * @count: the number of links to allocate
957 * @tmp_links: list_head the allocated links are put on
958 *
959 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
960 * through ->cset_link. Returns 0 on success or -errno.
817929ec 961 */
69d0206c 962static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 963{
69d0206c 964 struct cgrp_cset_link *link;
817929ec 965 int i;
69d0206c
TH
966
967 INIT_LIST_HEAD(tmp_links);
968
817929ec 969 for (i = 0; i < count; i++) {
f4f4be2b 970 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 971 if (!link) {
69d0206c 972 free_cgrp_cset_links(tmp_links);
817929ec
PM
973 return -ENOMEM;
974 }
69d0206c 975 list_add(&link->cset_link, tmp_links);
817929ec
PM
976 }
977 return 0;
978}
979
c12f65d4
LZ
980/**
981 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 982 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 983 * @cset: the css_set to be linked
c12f65d4
LZ
984 * @cgrp: the destination cgroup
985 */
69d0206c
TH
986static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
987 struct cgroup *cgrp)
c12f65d4 988{
69d0206c 989 struct cgrp_cset_link *link;
c12f65d4 990
69d0206c 991 BUG_ON(list_empty(tmp_links));
6803c006
TH
992
993 if (cgroup_on_dfl(cgrp))
994 cset->dfl_cgrp = cgrp;
995
69d0206c
TH
996 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
997 link->cset = cset;
7717f7ba 998 link->cgrp = cgrp;
842b597e 999
7717f7ba 1000 /*
389b9c1b
TH
1001 * Always add links to the tail of the lists so that the lists are
1002 * in choronological order.
7717f7ba 1003 */
389b9c1b 1004 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1005 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1006
1007 if (cgroup_parent(cgrp))
1008 cgroup_get(cgrp);
c12f65d4
LZ
1009}
1010
b326f9d0
TH
1011/**
1012 * find_css_set - return a new css_set with one cgroup updated
1013 * @old_cset: the baseline css_set
1014 * @cgrp: the cgroup to be updated
1015 *
1016 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1017 * substituted into the appropriate hierarchy.
817929ec 1018 */
5abb8855
TH
1019static struct css_set *find_css_set(struct css_set *old_cset,
1020 struct cgroup *cgrp)
817929ec 1021{
b326f9d0 1022 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1023 struct css_set *cset;
69d0206c
TH
1024 struct list_head tmp_links;
1025 struct cgrp_cset_link *link;
2d8f243a 1026 struct cgroup_subsys *ss;
0ac801fe 1027 unsigned long key;
2d8f243a 1028 int ssid;
472b1053 1029
b326f9d0
TH
1030 lockdep_assert_held(&cgroup_mutex);
1031
817929ec
PM
1032 /* First see if we already have a cgroup group that matches
1033 * the desired set */
f0d9a5f1 1034 spin_lock_bh(&css_set_lock);
5abb8855
TH
1035 cset = find_existing_css_set(old_cset, cgrp, template);
1036 if (cset)
1037 get_css_set(cset);
f0d9a5f1 1038 spin_unlock_bh(&css_set_lock);
817929ec 1039
5abb8855
TH
1040 if (cset)
1041 return cset;
817929ec 1042
f4f4be2b 1043 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1044 if (!cset)
817929ec
PM
1045 return NULL;
1046
69d0206c 1047 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1048 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1049 kfree(cset);
817929ec
PM
1050 return NULL;
1051 }
1052
5abb8855 1053 atomic_set(&cset->refcount, 1);
69d0206c 1054 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1055 INIT_LIST_HEAD(&cset->tasks);
c7561128 1056 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1057 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1058 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1059 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1060 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1061
1062 /* Copy the set of subsystem state objects generated in
1063 * find_existing_css_set() */
5abb8855 1064 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1065
f0d9a5f1 1066 spin_lock_bh(&css_set_lock);
817929ec 1067 /* Add reference counts and links from the new css_set. */
69d0206c 1068 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1069 struct cgroup *c = link->cgrp;
69d0206c 1070
7717f7ba
PM
1071 if (c->root == cgrp->root)
1072 c = cgrp;
69d0206c 1073 link_css_set(&tmp_links, cset, c);
7717f7ba 1074 }
817929ec 1075
69d0206c 1076 BUG_ON(!list_empty(&tmp_links));
817929ec 1077
817929ec 1078 css_set_count++;
472b1053 1079
2d8f243a 1080 /* Add @cset to the hash table */
5abb8855
TH
1081 key = css_set_hash(cset->subsys);
1082 hash_add(css_set_table, &cset->hlist, key);
472b1053 1083
53254f90
TH
1084 for_each_subsys(ss, ssid) {
1085 struct cgroup_subsys_state *css = cset->subsys[ssid];
1086
2d8f243a 1087 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1088 &css->cgroup->e_csets[ssid]);
1089 css_get(css);
1090 }
2d8f243a 1091
f0d9a5f1 1092 spin_unlock_bh(&css_set_lock);
817929ec 1093
5abb8855 1094 return cset;
b4f48b63
PM
1095}
1096
3dd06ffa 1097static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1098{
3dd06ffa 1099 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1100
3dd06ffa 1101 return root_cgrp->root;
2bd59d48
TH
1102}
1103
3dd06ffa 1104static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1105{
1106 int id;
1107
1108 lockdep_assert_held(&cgroup_mutex);
1109
985ed670 1110 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1111 if (id < 0)
1112 return id;
1113
1114 root->hierarchy_id = id;
1115 return 0;
1116}
1117
3dd06ffa 1118static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1119{
1120 lockdep_assert_held(&cgroup_mutex);
1121
1122 if (root->hierarchy_id) {
1123 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1124 root->hierarchy_id = 0;
1125 }
1126}
1127
3dd06ffa 1128static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1129{
1130 if (root) {
d0f702e6 1131 /* hierarchy ID should already have been released */
f2e85d57
TH
1132 WARN_ON_ONCE(root->hierarchy_id);
1133
1134 idr_destroy(&root->cgroup_idr);
1135 kfree(root);
1136 }
1137}
1138
3dd06ffa 1139static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1140{
3dd06ffa 1141 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1142 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1143
2bd59d48 1144 mutex_lock(&cgroup_mutex);
f2e85d57 1145
776f02fa 1146 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1147 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1148
f2e85d57 1149 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1150 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1151
7717f7ba 1152 /*
f2e85d57
TH
1153 * Release all the links from cset_links to this hierarchy's
1154 * root cgroup
7717f7ba 1155 */
f0d9a5f1 1156 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1157
1158 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1159 list_del(&link->cset_link);
1160 list_del(&link->cgrp_link);
1161 kfree(link);
1162 }
f0d9a5f1
TH
1163
1164 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1165
1166 if (!list_empty(&root->root_list)) {
1167 list_del(&root->root_list);
1168 cgroup_root_count--;
1169 }
1170
1171 cgroup_exit_root_id(root);
1172
1173 mutex_unlock(&cgroup_mutex);
f2e85d57 1174
2bd59d48 1175 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1176 cgroup_free_root(root);
1177}
1178
ceb6a081
TH
1179/* look up cgroup associated with given css_set on the specified hierarchy */
1180static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1181 struct cgroup_root *root)
7717f7ba 1182{
7717f7ba
PM
1183 struct cgroup *res = NULL;
1184
96d365e0 1185 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1186 lockdep_assert_held(&css_set_lock);
96d365e0 1187
5abb8855 1188 if (cset == &init_css_set) {
3dd06ffa 1189 res = &root->cgrp;
7717f7ba 1190 } else {
69d0206c
TH
1191 struct cgrp_cset_link *link;
1192
1193 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1194 struct cgroup *c = link->cgrp;
69d0206c 1195
7717f7ba
PM
1196 if (c->root == root) {
1197 res = c;
1198 break;
1199 }
1200 }
1201 }
96d365e0 1202
7717f7ba
PM
1203 BUG_ON(!res);
1204 return res;
1205}
1206
ddbcc7e8 1207/*
ceb6a081 1208 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1209 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1210 */
1211static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1212 struct cgroup_root *root)
ceb6a081
TH
1213{
1214 /*
1215 * No need to lock the task - since we hold cgroup_mutex the
1216 * task can't change groups, so the only thing that can happen
1217 * is that it exits and its css is set back to init_css_set.
1218 */
1219 return cset_cgroup_from_root(task_css_set(task), root);
1220}
1221
ddbcc7e8 1222/*
ddbcc7e8
PM
1223 * A task must hold cgroup_mutex to modify cgroups.
1224 *
1225 * Any task can increment and decrement the count field without lock.
1226 * So in general, code holding cgroup_mutex can't rely on the count
1227 * field not changing. However, if the count goes to zero, then only
956db3ca 1228 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1229 * means that no tasks are currently attached, therefore there is no
1230 * way a task attached to that cgroup can fork (the other way to
1231 * increment the count). So code holding cgroup_mutex can safely
1232 * assume that if the count is zero, it will stay zero. Similarly, if
1233 * a task holds cgroup_mutex on a cgroup with zero count, it
1234 * knows that the cgroup won't be removed, as cgroup_rmdir()
1235 * needs that mutex.
1236 *
ddbcc7e8
PM
1237 * A cgroup can only be deleted if both its 'count' of using tasks
1238 * is zero, and its list of 'children' cgroups is empty. Since all
1239 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1240 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1241 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1242 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1243 *
1244 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1245 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1246 */
1247
2bd59d48 1248static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1249static const struct file_operations proc_cgroupstats_operations;
a424316c 1250
8d7e6fb0
TH
1251static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1252 char *buf)
ddbcc7e8 1253{
3e1d2eed
TH
1254 struct cgroup_subsys *ss = cft->ss;
1255
8d7e6fb0
TH
1256 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1257 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1258 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1259 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1260 cft->name);
8d7e6fb0
TH
1261 else
1262 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1263 return buf;
ddbcc7e8
PM
1264}
1265
f2e85d57
TH
1266/**
1267 * cgroup_file_mode - deduce file mode of a control file
1268 * @cft: the control file in question
1269 *
7dbdb199 1270 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1271 */
1272static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1273{
f2e85d57 1274 umode_t mode = 0;
65dff759 1275
f2e85d57
TH
1276 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1277 mode |= S_IRUGO;
1278
7dbdb199
TH
1279 if (cft->write_u64 || cft->write_s64 || cft->write) {
1280 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1281 mode |= S_IWUGO;
1282 else
1283 mode |= S_IWUSR;
1284 }
f2e85d57
TH
1285
1286 return mode;
65dff759
LZ
1287}
1288
af0ba678 1289/**
8699b776 1290 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
af0ba678 1291 * @cgrp: the target cgroup
0f060deb 1292 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1293 *
1294 * On the default hierarchy, a subsystem may request other subsystems to be
1295 * enabled together through its ->depends_on mask. In such cases, more
1296 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1297 *
0f060deb
TH
1298 * This function calculates which subsystems need to be enabled if
1299 * @subtree_control is to be applied to @cgrp. The returned mask is always
1300 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1301 */
6e5c8307 1302static u16 cgroup_calc_subtree_ss_mask(struct cgroup *cgrp, u16 subtree_control)
667c2491 1303{
6e5c8307 1304 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1305 struct cgroup_subsys *ss;
1306 int ssid;
1307
1308 lockdep_assert_held(&cgroup_mutex);
1309
0f060deb
TH
1310 if (!cgroup_on_dfl(cgrp))
1311 return cur_ss_mask;
af0ba678
TH
1312
1313 while (true) {
6e5c8307 1314 u16 new_ss_mask = cur_ss_mask;
af0ba678 1315
b4e0eeaf 1316 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1317 new_ss_mask |= ss->depends_on;
b4e0eeaf 1318 } while_each_subsys_mask();
af0ba678
TH
1319
1320 /*
1321 * Mask out subsystems which aren't available. This can
1322 * happen only if some depended-upon subsystems were bound
1323 * to non-default hierarchies.
1324 */
5531dc91 1325 new_ss_mask &= cgroup_ss_mask(cgrp);
af0ba678
TH
1326
1327 if (new_ss_mask == cur_ss_mask)
1328 break;
1329 cur_ss_mask = new_ss_mask;
1330 }
1331
0f060deb
TH
1332 return cur_ss_mask;
1333}
1334
1335/**
8699b776 1336 * cgroup_refresh_subtree_ss_mask - update subtree_ss_mask
0f060deb
TH
1337 * @cgrp: the target cgroup
1338 *
8699b776
TH
1339 * Update @cgrp->subtree_ss_mask according to the current
1340 * @cgrp->subtree_control using cgroup_calc_subtree_ss_mask().
0f060deb 1341 */
8699b776 1342static void cgroup_refresh_subtree_ss_mask(struct cgroup *cgrp)
0f060deb 1343{
8699b776
TH
1344 cgrp->subtree_ss_mask =
1345 cgroup_calc_subtree_ss_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1346}
1347
a9746d8d
TH
1348/**
1349 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1350 * @kn: the kernfs_node being serviced
1351 *
1352 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1353 * the method finishes if locking succeeded. Note that once this function
1354 * returns the cgroup returned by cgroup_kn_lock_live() may become
1355 * inaccessible any time. If the caller intends to continue to access the
1356 * cgroup, it should pin it before invoking this function.
1357 */
1358static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1359{
a9746d8d
TH
1360 struct cgroup *cgrp;
1361
1362 if (kernfs_type(kn) == KERNFS_DIR)
1363 cgrp = kn->priv;
1364 else
1365 cgrp = kn->parent->priv;
1366
1367 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1368
1369 kernfs_unbreak_active_protection(kn);
1370 cgroup_put(cgrp);
ddbcc7e8
PM
1371}
1372
a9746d8d
TH
1373/**
1374 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1375 * @kn: the kernfs_node being serviced
1376 *
1377 * This helper is to be used by a cgroup kernfs method currently servicing
1378 * @kn. It breaks the active protection, performs cgroup locking and
1379 * verifies that the associated cgroup is alive. Returns the cgroup if
1380 * alive; otherwise, %NULL. A successful return should be undone by a
1381 * matching cgroup_kn_unlock() invocation.
1382 *
1383 * Any cgroup kernfs method implementation which requires locking the
1384 * associated cgroup should use this helper. It avoids nesting cgroup
1385 * locking under kernfs active protection and allows all kernfs operations
1386 * including self-removal.
1387 */
1388static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1389{
a9746d8d
TH
1390 struct cgroup *cgrp;
1391
1392 if (kernfs_type(kn) == KERNFS_DIR)
1393 cgrp = kn->priv;
1394 else
1395 cgrp = kn->parent->priv;
05ef1d7c 1396
2739d3cc 1397 /*
01f6474c 1398 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1399 * active_ref. cgroup liveliness check alone provides enough
1400 * protection against removal. Ensure @cgrp stays accessible and
1401 * break the active_ref protection.
2739d3cc 1402 */
aa32362f
LZ
1403 if (!cgroup_tryget(cgrp))
1404 return NULL;
a9746d8d
TH
1405 kernfs_break_active_protection(kn);
1406
2bd59d48 1407 mutex_lock(&cgroup_mutex);
05ef1d7c 1408
a9746d8d
TH
1409 if (!cgroup_is_dead(cgrp))
1410 return cgrp;
1411
1412 cgroup_kn_unlock(kn);
1413 return NULL;
ddbcc7e8 1414}
05ef1d7c 1415
2739d3cc 1416static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1417{
2bd59d48 1418 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1419
01f6474c 1420 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1421
1422 if (cft->file_offset) {
1423 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1424 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1425
1426 spin_lock_irq(&cgroup_file_kn_lock);
1427 cfile->kn = NULL;
1428 spin_unlock_irq(&cgroup_file_kn_lock);
1429 }
1430
2bd59d48 1431 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1432}
1433
13af07df 1434/**
4df8dc90
TH
1435 * css_clear_dir - remove subsys files in a cgroup directory
1436 * @css: taget css
1437 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1438 */
4df8dc90
TH
1439static void css_clear_dir(struct cgroup_subsys_state *css,
1440 struct cgroup *cgrp_override)
05ef1d7c 1441{
4df8dc90
TH
1442 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1443 struct cftype *cfts;
05ef1d7c 1444
88cb04b9
TH
1445 if (!(css->flags & CSS_VISIBLE))
1446 return;
1447
1448 css->flags &= ~CSS_VISIBLE;
1449
4df8dc90
TH
1450 list_for_each_entry(cfts, &css->ss->cfts, node)
1451 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1452}
1453
ccdca218 1454/**
4df8dc90
TH
1455 * css_populate_dir - create subsys files in a cgroup directory
1456 * @css: target css
1457 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1458 *
1459 * On failure, no file is added.
1460 */
4df8dc90
TH
1461static int css_populate_dir(struct cgroup_subsys_state *css,
1462 struct cgroup *cgrp_override)
ccdca218 1463{
4df8dc90
TH
1464 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1465 struct cftype *cfts, *failed_cfts;
1466 int ret;
ccdca218 1467
88cb04b9
TH
1468 if (css->flags & CSS_VISIBLE)
1469 return 0;
1470
4df8dc90
TH
1471 if (!css->ss) {
1472 if (cgroup_on_dfl(cgrp))
1473 cfts = cgroup_dfl_base_files;
1474 else
1475 cfts = cgroup_legacy_base_files;
ccdca218 1476
4df8dc90
TH
1477 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1478 }
ccdca218 1479
4df8dc90
TH
1480 list_for_each_entry(cfts, &css->ss->cfts, node) {
1481 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1482 if (ret < 0) {
1483 failed_cfts = cfts;
1484 goto err;
ccdca218
TH
1485 }
1486 }
88cb04b9
TH
1487
1488 css->flags |= CSS_VISIBLE;
1489
ccdca218
TH
1490 return 0;
1491err:
4df8dc90
TH
1492 list_for_each_entry(cfts, &css->ss->cfts, node) {
1493 if (cfts == failed_cfts)
1494 break;
1495 cgroup_addrm_files(css, cgrp, cfts, false);
1496 }
ccdca218
TH
1497 return ret;
1498}
1499
6e5c8307 1500static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1501{
1ada4838 1502 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1503 struct cgroup_subsys *ss;
6e5c8307 1504 u16 tmp_ss_mask;
2d8f243a 1505 int ssid, i, ret;
ddbcc7e8 1506
ace2bee8 1507 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1508
b4e0eeaf 1509 do_each_subsys_mask(ss, ssid, ss_mask) {
7fd8c565
TH
1510 /* if @ss has non-root csses attached to it, can't move */
1511 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1512 return -EBUSY;
1d5be6b2 1513
5df36032 1514 /* can't move between two non-dummy roots either */
7fd8c565 1515 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1516 return -EBUSY;
b4e0eeaf 1517 } while_each_subsys_mask();
ddbcc7e8 1518
5533e011
TH
1519 /* skip creating root files on dfl_root for inhibited subsystems */
1520 tmp_ss_mask = ss_mask;
1521 if (dst_root == &cgrp_dfl_root)
a7165264 1522 tmp_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
5533e011 1523
b4e0eeaf 1524 do_each_subsys_mask(ss, ssid, tmp_ss_mask) {
4df8dc90
TH
1525 struct cgroup *scgrp = &ss->root->cgrp;
1526 int tssid;
1527
1528 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1529 if (!ret)
1530 continue;
ddbcc7e8 1531
a2dd4247
TH
1532 /*
1533 * Rebinding back to the default root is not allowed to
1534 * fail. Using both default and non-default roots should
1535 * be rare. Moving subsystems back and forth even more so.
1536 * Just warn about it and continue.
1537 */
4df8dc90 1538 if (dst_root == &cgrp_dfl_root) {
a7165264 1539 if (cgrp_dfl_visible) {
6e5c8307 1540 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
4df8dc90
TH
1541 ret, ss_mask);
1542 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1543 }
1544 continue;
a2dd4247 1545 }
4df8dc90 1546
b4e0eeaf 1547 do_each_subsys_mask(ss, tssid, tmp_ss_mask) {
4df8dc90
TH
1548 if (tssid == ssid)
1549 break;
1550 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
b4e0eeaf 1551 } while_each_subsys_mask();
4df8dc90 1552 return ret;
b4e0eeaf 1553 } while_each_subsys_mask();
3126121f
TH
1554
1555 /*
1556 * Nothing can fail from this point on. Remove files for the
1557 * removed subsystems and rebind each subsystem.
1558 */
b4e0eeaf 1559 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1560 struct cgroup_root *src_root = ss->root;
1561 struct cgroup *scgrp = &src_root->cgrp;
1562 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1563 struct css_set *cset;
a8a648c4 1564
1ada4838 1565 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1566
4df8dc90
TH
1567 css_clear_dir(css, NULL);
1568
1ada4838
TH
1569 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1570 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1571 ss->root = dst_root;
1ada4838 1572 css->cgroup = dcgrp;
73e80ed8 1573
f0d9a5f1 1574 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1575 hash_for_each(css_set_table, i, cset, hlist)
1576 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1577 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1578 spin_unlock_bh(&css_set_lock);
2d8f243a 1579
f392e51c 1580 src_root->subsys_mask &= ~(1 << ssid);
1ada4838 1581 scgrp->subtree_control &= ~(1 << ssid);
8699b776 1582 cgroup_refresh_subtree_ss_mask(scgrp);
f392e51c 1583
bd53d617 1584 /* default hierarchy doesn't enable controllers by default */
f392e51c 1585 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1586 if (dst_root == &cgrp_dfl_root) {
1587 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1588 } else {
1ada4838 1589 dcgrp->subtree_control |= 1 << ssid;
8699b776 1590 cgroup_refresh_subtree_ss_mask(dcgrp);
49d1dc4b 1591 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1592 }
a8a648c4 1593
5df36032
TH
1594 if (ss->bind)
1595 ss->bind(css);
b4e0eeaf 1596 } while_each_subsys_mask();
ddbcc7e8 1597
1ada4838 1598 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1599 return 0;
1600}
1601
2bd59d48
TH
1602static int cgroup_show_options(struct seq_file *seq,
1603 struct kernfs_root *kf_root)
ddbcc7e8 1604{
3dd06ffa 1605 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1606 struct cgroup_subsys *ss;
b85d2040 1607 int ssid;
ddbcc7e8 1608
d98817d4
TH
1609 if (root != &cgrp_dfl_root)
1610 for_each_subsys(ss, ssid)
1611 if (root->subsys_mask & (1 << ssid))
61e57c0c 1612 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1613 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1614 seq_puts(seq, ",noprefix");
93438629 1615 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1616 seq_puts(seq, ",xattr");
69e943b7
TH
1617
1618 spin_lock(&release_agent_path_lock);
81a6a5cd 1619 if (strlen(root->release_agent_path))
a068acf2
KC
1620 seq_show_option(seq, "release_agent",
1621 root->release_agent_path);
69e943b7
TH
1622 spin_unlock(&release_agent_path_lock);
1623
3dd06ffa 1624 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1625 seq_puts(seq, ",clone_children");
c6d57f33 1626 if (strlen(root->name))
a068acf2 1627 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1628 return 0;
1629}
1630
1631struct cgroup_sb_opts {
6e5c8307 1632 u16 subsys_mask;
69dfa00c 1633 unsigned int flags;
81a6a5cd 1634 char *release_agent;
2260e7fc 1635 bool cpuset_clone_children;
c6d57f33 1636 char *name;
2c6ab6d2
PM
1637 /* User explicitly requested empty subsystem */
1638 bool none;
ddbcc7e8
PM
1639};
1640
cf5d5941 1641static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1642{
32a8cf23
DL
1643 char *token, *o = data;
1644 bool all_ss = false, one_ss = false;
6e5c8307 1645 u16 mask = U16_MAX;
30159ec7 1646 struct cgroup_subsys *ss;
7b9a6ba5 1647 int nr_opts = 0;
30159ec7 1648 int i;
f9ab5b5b
LZ
1649
1650#ifdef CONFIG_CPUSETS
6e5c8307 1651 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1652#endif
ddbcc7e8 1653
c6d57f33 1654 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1655
1656 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1657 nr_opts++;
1658
ddbcc7e8
PM
1659 if (!*token)
1660 return -EINVAL;
32a8cf23 1661 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1662 /* Explicitly have no subsystems */
1663 opts->none = true;
32a8cf23
DL
1664 continue;
1665 }
1666 if (!strcmp(token, "all")) {
1667 /* Mutually exclusive option 'all' + subsystem name */
1668 if (one_ss)
1669 return -EINVAL;
1670 all_ss = true;
1671 continue;
1672 }
1673 if (!strcmp(token, "noprefix")) {
93438629 1674 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1675 continue;
1676 }
1677 if (!strcmp(token, "clone_children")) {
2260e7fc 1678 opts->cpuset_clone_children = true;
32a8cf23
DL
1679 continue;
1680 }
03b1cde6 1681 if (!strcmp(token, "xattr")) {
93438629 1682 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1683 continue;
1684 }
32a8cf23 1685 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1686 /* Specifying two release agents is forbidden */
1687 if (opts->release_agent)
1688 return -EINVAL;
c6d57f33 1689 opts->release_agent =
e400c285 1690 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1691 if (!opts->release_agent)
1692 return -ENOMEM;
32a8cf23
DL
1693 continue;
1694 }
1695 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1696 const char *name = token + 5;
1697 /* Can't specify an empty name */
1698 if (!strlen(name))
1699 return -EINVAL;
1700 /* Must match [\w.-]+ */
1701 for (i = 0; i < strlen(name); i++) {
1702 char c = name[i];
1703 if (isalnum(c))
1704 continue;
1705 if ((c == '.') || (c == '-') || (c == '_'))
1706 continue;
1707 return -EINVAL;
1708 }
1709 /* Specifying two names is forbidden */
1710 if (opts->name)
1711 return -EINVAL;
1712 opts->name = kstrndup(name,
e400c285 1713 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1714 GFP_KERNEL);
1715 if (!opts->name)
1716 return -ENOMEM;
32a8cf23
DL
1717
1718 continue;
1719 }
1720
30159ec7 1721 for_each_subsys(ss, i) {
3e1d2eed 1722 if (strcmp(token, ss->legacy_name))
32a8cf23 1723 continue;
fc5ed1e9 1724 if (!cgroup_ssid_enabled(i))
32a8cf23 1725 continue;
223ffb29
JW
1726 if (cgroup_ssid_no_v1(i))
1727 continue;
32a8cf23
DL
1728
1729 /* Mutually exclusive option 'all' + subsystem name */
1730 if (all_ss)
1731 return -EINVAL;
69dfa00c 1732 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1733 one_ss = true;
1734
1735 break;
1736 }
1737 if (i == CGROUP_SUBSYS_COUNT)
1738 return -ENOENT;
1739 }
1740
7b9a6ba5
TH
1741 /*
1742 * If the 'all' option was specified select all the subsystems,
1743 * otherwise if 'none', 'name=' and a subsystem name options were
1744 * not specified, let's default to 'all'
1745 */
1746 if (all_ss || (!one_ss && !opts->none && !opts->name))
1747 for_each_subsys(ss, i)
223ffb29 1748 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1749 opts->subsys_mask |= (1 << i);
1750
1751 /*
1752 * We either have to specify by name or by subsystems. (So all
1753 * empty hierarchies must have a name).
1754 */
1755 if (!opts->subsys_mask && !opts->name)
1756 return -EINVAL;
1757
f9ab5b5b
LZ
1758 /*
1759 * Option noprefix was introduced just for backward compatibility
1760 * with the old cpuset, so we allow noprefix only if mounting just
1761 * the cpuset subsystem.
1762 */
93438629 1763 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1764 return -EINVAL;
1765
2c6ab6d2 1766 /* Can't specify "none" and some subsystems */
a1a71b45 1767 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1768 return -EINVAL;
1769
ddbcc7e8
PM
1770 return 0;
1771}
1772
2bd59d48 1773static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1774{
1775 int ret = 0;
3dd06ffa 1776 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1777 struct cgroup_sb_opts opts;
6e5c8307 1778 u16 added_mask, removed_mask;
ddbcc7e8 1779
aa6ec29b
TH
1780 if (root == &cgrp_dfl_root) {
1781 pr_err("remount is not allowed\n");
873fe09e
TH
1782 return -EINVAL;
1783 }
1784
ddbcc7e8
PM
1785 mutex_lock(&cgroup_mutex);
1786
1787 /* See what subsystems are wanted */
1788 ret = parse_cgroupfs_options(data, &opts);
1789 if (ret)
1790 goto out_unlock;
1791
f392e51c 1792 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1793 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1794 task_tgid_nr(current), current->comm);
8b5a5a9d 1795
f392e51c
TH
1796 added_mask = opts.subsys_mask & ~root->subsys_mask;
1797 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1798
cf5d5941 1799 /* Don't allow flags or name to change at remount */
7450e90b 1800 if ((opts.flags ^ root->flags) ||
cf5d5941 1801 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1802 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1803 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1804 ret = -EINVAL;
1805 goto out_unlock;
1806 }
1807
f172e67c 1808 /* remounting is not allowed for populated hierarchies */
d5c419b6 1809 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1810 ret = -EBUSY;
0670e08b 1811 goto out_unlock;
cf5d5941 1812 }
ddbcc7e8 1813
5df36032 1814 ret = rebind_subsystems(root, added_mask);
3126121f 1815 if (ret)
0670e08b 1816 goto out_unlock;
ddbcc7e8 1817
3dd06ffa 1818 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1819
69e943b7
TH
1820 if (opts.release_agent) {
1821 spin_lock(&release_agent_path_lock);
81a6a5cd 1822 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1823 spin_unlock(&release_agent_path_lock);
1824 }
ddbcc7e8 1825 out_unlock:
66bdc9cf 1826 kfree(opts.release_agent);
c6d57f33 1827 kfree(opts.name);
ddbcc7e8 1828 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1829 return ret;
1830}
1831
afeb0f9f
TH
1832/*
1833 * To reduce the fork() overhead for systems that are not actually using
1834 * their cgroups capability, we don't maintain the lists running through
1835 * each css_set to its tasks until we see the list actually used - in other
1836 * words after the first mount.
1837 */
1838static bool use_task_css_set_links __read_mostly;
1839
1840static void cgroup_enable_task_cg_lists(void)
1841{
1842 struct task_struct *p, *g;
1843
f0d9a5f1 1844 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1845
1846 if (use_task_css_set_links)
1847 goto out_unlock;
1848
1849 use_task_css_set_links = true;
1850
1851 /*
1852 * We need tasklist_lock because RCU is not safe against
1853 * while_each_thread(). Besides, a forking task that has passed
1854 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1855 * is not guaranteed to have its child immediately visible in the
1856 * tasklist if we walk through it with RCU.
1857 */
1858 read_lock(&tasklist_lock);
1859 do_each_thread(g, p) {
afeb0f9f
TH
1860 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1861 task_css_set(p) != &init_css_set);
1862
1863 /*
1864 * We should check if the process is exiting, otherwise
1865 * it will race with cgroup_exit() in that the list
1866 * entry won't be deleted though the process has exited.
f153ad11
TH
1867 * Do it while holding siglock so that we don't end up
1868 * racing against cgroup_exit().
afeb0f9f 1869 */
f153ad11 1870 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1871 if (!(p->flags & PF_EXITING)) {
1872 struct css_set *cset = task_css_set(p);
1873
0de0942d
TH
1874 if (!css_set_populated(cset))
1875 css_set_update_populated(cset, true);
389b9c1b 1876 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1877 get_css_set(cset);
1878 }
f153ad11 1879 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1880 } while_each_thread(g, p);
1881 read_unlock(&tasklist_lock);
1882out_unlock:
f0d9a5f1 1883 spin_unlock_bh(&css_set_lock);
afeb0f9f 1884}
ddbcc7e8 1885
cc31edce
PM
1886static void init_cgroup_housekeeping(struct cgroup *cgrp)
1887{
2d8f243a
TH
1888 struct cgroup_subsys *ss;
1889 int ssid;
1890
d5c419b6
TH
1891 INIT_LIST_HEAD(&cgrp->self.sibling);
1892 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1893 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1894 INIT_LIST_HEAD(&cgrp->pidlists);
1895 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1896 cgrp->self.cgroup = cgrp;
184faf32 1897 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1898
1899 for_each_subsys(ss, ssid)
1900 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1901
1902 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1903 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1904}
c6d57f33 1905
3dd06ffa 1906static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1907 struct cgroup_sb_opts *opts)
ddbcc7e8 1908{
3dd06ffa 1909 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1910
ddbcc7e8 1911 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1912 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1913 cgrp->root = root;
cc31edce 1914 init_cgroup_housekeeping(cgrp);
4e96ee8e 1915 idr_init(&root->cgroup_idr);
c6d57f33 1916
c6d57f33
PM
1917 root->flags = opts->flags;
1918 if (opts->release_agent)
1919 strcpy(root->release_agent_path, opts->release_agent);
1920 if (opts->name)
1921 strcpy(root->name, opts->name);
2260e7fc 1922 if (opts->cpuset_clone_children)
3dd06ffa 1923 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1924}
1925
6e5c8307 1926static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1927{
d427dfeb 1928 LIST_HEAD(tmp_links);
3dd06ffa 1929 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1930 struct css_set *cset;
d427dfeb 1931 int i, ret;
2c6ab6d2 1932
d427dfeb 1933 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1934
cf780b7d 1935 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1936 if (ret < 0)
2bd59d48 1937 goto out;
d427dfeb 1938 root_cgrp->id = ret;
b11cfb58 1939 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1940
2aad2a86
TH
1941 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1942 GFP_KERNEL);
9d755d33
TH
1943 if (ret)
1944 goto out;
1945
d427dfeb 1946 /*
f0d9a5f1 1947 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1948 * but that's OK - it can only be increased by someone holding
1949 * cgroup_lock, and that's us. The worst that can happen is that we
1950 * have some link structures left over
1951 */
1952 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1953 if (ret)
9d755d33 1954 goto cancel_ref;
ddbcc7e8 1955
985ed670 1956 ret = cgroup_init_root_id(root);
ddbcc7e8 1957 if (ret)
9d755d33 1958 goto cancel_ref;
ddbcc7e8 1959
2bd59d48
TH
1960 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1961 KERNFS_ROOT_CREATE_DEACTIVATED,
1962 root_cgrp);
1963 if (IS_ERR(root->kf_root)) {
1964 ret = PTR_ERR(root->kf_root);
1965 goto exit_root_id;
1966 }
1967 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1968
4df8dc90 1969 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1970 if (ret)
2bd59d48 1971 goto destroy_root;
ddbcc7e8 1972
5df36032 1973 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1974 if (ret)
2bd59d48 1975 goto destroy_root;
ddbcc7e8 1976
d427dfeb
TH
1977 /*
1978 * There must be no failure case after here, since rebinding takes
1979 * care of subsystems' refcounts, which are explicitly dropped in
1980 * the failure exit path.
1981 */
1982 list_add(&root->root_list, &cgroup_roots);
1983 cgroup_root_count++;
0df6a63f 1984
d427dfeb 1985 /*
3dd06ffa 1986 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1987 * objects.
1988 */
f0d9a5f1 1989 spin_lock_bh(&css_set_lock);
0de0942d 1990 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1991 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1992 if (css_set_populated(cset))
1993 cgroup_update_populated(root_cgrp, true);
1994 }
f0d9a5f1 1995 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1996
d5c419b6 1997 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1998 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1999
2bd59d48 2000 kernfs_activate(root_cgrp->kn);
d427dfeb 2001 ret = 0;
2bd59d48 2002 goto out;
d427dfeb 2003
2bd59d48
TH
2004destroy_root:
2005 kernfs_destroy_root(root->kf_root);
2006 root->kf_root = NULL;
2007exit_root_id:
d427dfeb 2008 cgroup_exit_root_id(root);
9d755d33 2009cancel_ref:
9a1049da 2010 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2011out:
d427dfeb
TH
2012 free_cgrp_cset_links(&tmp_links);
2013 return ret;
ddbcc7e8
PM
2014}
2015
f7e83571 2016static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2017 int flags, const char *unused_dev_name,
f7e83571 2018 void *data)
ddbcc7e8 2019{
67e9c74b 2020 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2021 struct super_block *pinned_sb = NULL;
970317aa 2022 struct cgroup_subsys *ss;
3dd06ffa 2023 struct cgroup_root *root;
ddbcc7e8 2024 struct cgroup_sb_opts opts;
2bd59d48 2025 struct dentry *dentry;
8e30e2b8 2026 int ret;
970317aa 2027 int i;
c6b3d5bc 2028 bool new_sb;
ddbcc7e8 2029
56fde9e0
TH
2030 /*
2031 * The first time anyone tries to mount a cgroup, enable the list
2032 * linking each css_set to its tasks and fix up all existing tasks.
2033 */
2034 if (!use_task_css_set_links)
2035 cgroup_enable_task_cg_lists();
e37a06f1 2036
67e9c74b
TH
2037 if (is_v2) {
2038 if (data) {
2039 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2040 return ERR_PTR(-EINVAL);
2041 }
a7165264 2042 cgrp_dfl_visible = true;
67e9c74b
TH
2043 root = &cgrp_dfl_root;
2044 cgroup_get(&root->cgrp);
2045 goto out_mount;
2046 }
2047
aae8aab4 2048 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2049
2050 /* First find the desired set of subsystems */
ddbcc7e8 2051 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2052 if (ret)
8e30e2b8 2053 goto out_unlock;
a015edd2 2054
970317aa
LZ
2055 /*
2056 * Destruction of cgroup root is asynchronous, so subsystems may
2057 * still be dying after the previous unmount. Let's drain the
2058 * dying subsystems. We just need to ensure that the ones
2059 * unmounted previously finish dying and don't care about new ones
2060 * starting. Testing ref liveliness is good enough.
2061 */
2062 for_each_subsys(ss, i) {
2063 if (!(opts.subsys_mask & (1 << i)) ||
2064 ss->root == &cgrp_dfl_root)
2065 continue;
2066
2067 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2068 mutex_unlock(&cgroup_mutex);
2069 msleep(10);
2070 ret = restart_syscall();
2071 goto out_free;
2072 }
2073 cgroup_put(&ss->root->cgrp);
2074 }
2075
985ed670 2076 for_each_root(root) {
2bd59d48 2077 bool name_match = false;
3126121f 2078
3dd06ffa 2079 if (root == &cgrp_dfl_root)
985ed670 2080 continue;
3126121f 2081
cf5d5941 2082 /*
2bd59d48
TH
2083 * If we asked for a name then it must match. Also, if
2084 * name matches but sybsys_mask doesn't, we should fail.
2085 * Remember whether name matched.
cf5d5941 2086 */
2bd59d48
TH
2087 if (opts.name) {
2088 if (strcmp(opts.name, root->name))
2089 continue;
2090 name_match = true;
2091 }
ddbcc7e8 2092
c6d57f33 2093 /*
2bd59d48
TH
2094 * If we asked for subsystems (or explicitly for no
2095 * subsystems) then they must match.
c6d57f33 2096 */
2bd59d48 2097 if ((opts.subsys_mask || opts.none) &&
f392e51c 2098 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2099 if (!name_match)
2100 continue;
2101 ret = -EBUSY;
2102 goto out_unlock;
2103 }
873fe09e 2104
7b9a6ba5
TH
2105 if (root->flags ^ opts.flags)
2106 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2107
776f02fa 2108 /*
3a32bd72
LZ
2109 * We want to reuse @root whose lifetime is governed by its
2110 * ->cgrp. Let's check whether @root is alive and keep it
2111 * that way. As cgroup_kill_sb() can happen anytime, we
2112 * want to block it by pinning the sb so that @root doesn't
2113 * get killed before mount is complete.
2114 *
2115 * With the sb pinned, tryget_live can reliably indicate
2116 * whether @root can be reused. If it's being killed,
2117 * drain it. We can use wait_queue for the wait but this
2118 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2119 */
3a32bd72
LZ
2120 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2121 if (IS_ERR(pinned_sb) ||
2122 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2123 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2124 if (!IS_ERR_OR_NULL(pinned_sb))
2125 deactivate_super(pinned_sb);
776f02fa 2126 msleep(10);
a015edd2
TH
2127 ret = restart_syscall();
2128 goto out_free;
776f02fa 2129 }
ddbcc7e8 2130
776f02fa 2131 ret = 0;
2bd59d48 2132 goto out_unlock;
ddbcc7e8 2133 }
ddbcc7e8 2134
817929ec 2135 /*
172a2c06
TH
2136 * No such thing, create a new one. name= matching without subsys
2137 * specification is allowed for already existing hierarchies but we
2138 * can't create new one without subsys specification.
817929ec 2139 */
172a2c06
TH
2140 if (!opts.subsys_mask && !opts.none) {
2141 ret = -EINVAL;
2142 goto out_unlock;
817929ec 2143 }
817929ec 2144
172a2c06
TH
2145 root = kzalloc(sizeof(*root), GFP_KERNEL);
2146 if (!root) {
2147 ret = -ENOMEM;
2bd59d48 2148 goto out_unlock;
839ec545 2149 }
e5f6a860 2150
172a2c06
TH
2151 init_cgroup_root(root, &opts);
2152
35585573 2153 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2154 if (ret)
2155 cgroup_free_root(root);
fa3ca07e 2156
8e30e2b8 2157out_unlock:
ddbcc7e8 2158 mutex_unlock(&cgroup_mutex);
a015edd2 2159out_free:
c6d57f33
PM
2160 kfree(opts.release_agent);
2161 kfree(opts.name);
03b1cde6 2162
2bd59d48 2163 if (ret)
8e30e2b8 2164 return ERR_PTR(ret);
67e9c74b 2165out_mount:
c9482a5b 2166 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2167 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2168 &new_sb);
c6b3d5bc 2169 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2170 cgroup_put(&root->cgrp);
3a32bd72
LZ
2171
2172 /*
2173 * If @pinned_sb, we're reusing an existing root and holding an
2174 * extra ref on its sb. Mount is complete. Put the extra ref.
2175 */
2176 if (pinned_sb) {
2177 WARN_ON(new_sb);
2178 deactivate_super(pinned_sb);
2179 }
2180
2bd59d48
TH
2181 return dentry;
2182}
2183
2184static void cgroup_kill_sb(struct super_block *sb)
2185{
2186 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2187 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2188
9d755d33
TH
2189 /*
2190 * If @root doesn't have any mounts or children, start killing it.
2191 * This prevents new mounts by disabling percpu_ref_tryget_live().
2192 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2193 *
2194 * And don't kill the default root.
9d755d33 2195 */
3c606d35 2196 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2197 root == &cgrp_dfl_root)
9d755d33
TH
2198 cgroup_put(&root->cgrp);
2199 else
2200 percpu_ref_kill(&root->cgrp.self.refcnt);
2201
2bd59d48 2202 kernfs_kill_sb(sb);
ddbcc7e8
PM
2203}
2204
2205static struct file_system_type cgroup_fs_type = {
2206 .name = "cgroup",
f7e83571 2207 .mount = cgroup_mount,
ddbcc7e8
PM
2208 .kill_sb = cgroup_kill_sb,
2209};
2210
67e9c74b
TH
2211static struct file_system_type cgroup2_fs_type = {
2212 .name = "cgroup2",
2213 .mount = cgroup_mount,
2214 .kill_sb = cgroup_kill_sb,
2215};
2216
857a2beb 2217/**
913ffdb5 2218 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2219 * @task: target task
857a2beb
TH
2220 * @buf: the buffer to write the path into
2221 * @buflen: the length of the buffer
2222 *
913ffdb5
TH
2223 * Determine @task's cgroup on the first (the one with the lowest non-zero
2224 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2225 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2226 * cgroup controller callbacks.
2227 *
e61734c5 2228 * Return value is the same as kernfs_path().
857a2beb 2229 */
e61734c5 2230char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2231{
3dd06ffa 2232 struct cgroup_root *root;
913ffdb5 2233 struct cgroup *cgrp;
e61734c5
TH
2234 int hierarchy_id = 1;
2235 char *path = NULL;
857a2beb
TH
2236
2237 mutex_lock(&cgroup_mutex);
f0d9a5f1 2238 spin_lock_bh(&css_set_lock);
857a2beb 2239
913ffdb5
TH
2240 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2241
857a2beb
TH
2242 if (root) {
2243 cgrp = task_cgroup_from_root(task, root);
e61734c5 2244 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2245 } else {
2246 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2247 if (strlcpy(buf, "/", buflen) < buflen)
2248 path = buf;
857a2beb
TH
2249 }
2250
f0d9a5f1 2251 spin_unlock_bh(&css_set_lock);
857a2beb 2252 mutex_unlock(&cgroup_mutex);
e61734c5 2253 return path;
857a2beb 2254}
913ffdb5 2255EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2256
b3dc094e 2257/* used to track tasks and other necessary states during migration */
2f7ee569 2258struct cgroup_taskset {
b3dc094e
TH
2259 /* the src and dst cset list running through cset->mg_node */
2260 struct list_head src_csets;
2261 struct list_head dst_csets;
2262
1f7dd3e5
TH
2263 /* the subsys currently being processed */
2264 int ssid;
2265
b3dc094e
TH
2266 /*
2267 * Fields for cgroup_taskset_*() iteration.
2268 *
2269 * Before migration is committed, the target migration tasks are on
2270 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2271 * the csets on ->dst_csets. ->csets point to either ->src_csets
2272 * or ->dst_csets depending on whether migration is committed.
2273 *
2274 * ->cur_csets and ->cur_task point to the current task position
2275 * during iteration.
2276 */
2277 struct list_head *csets;
2278 struct css_set *cur_cset;
2279 struct task_struct *cur_task;
2f7ee569
TH
2280};
2281
adaae5dc
TH
2282#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2283 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2284 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2285 .csets = &tset.src_csets, \
2286}
2287
2288/**
2289 * cgroup_taskset_add - try to add a migration target task to a taskset
2290 * @task: target task
2291 * @tset: target taskset
2292 *
2293 * Add @task, which is a migration target, to @tset. This function becomes
2294 * noop if @task doesn't need to be migrated. @task's css_set should have
2295 * been added as a migration source and @task->cg_list will be moved from
2296 * the css_set's tasks list to mg_tasks one.
2297 */
2298static void cgroup_taskset_add(struct task_struct *task,
2299 struct cgroup_taskset *tset)
2300{
2301 struct css_set *cset;
2302
f0d9a5f1 2303 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2304
2305 /* @task either already exited or can't exit until the end */
2306 if (task->flags & PF_EXITING)
2307 return;
2308
2309 /* leave @task alone if post_fork() hasn't linked it yet */
2310 if (list_empty(&task->cg_list))
2311 return;
2312
2313 cset = task_css_set(task);
2314 if (!cset->mg_src_cgrp)
2315 return;
2316
2317 list_move_tail(&task->cg_list, &cset->mg_tasks);
2318 if (list_empty(&cset->mg_node))
2319 list_add_tail(&cset->mg_node, &tset->src_csets);
2320 if (list_empty(&cset->mg_dst_cset->mg_node))
2321 list_move_tail(&cset->mg_dst_cset->mg_node,
2322 &tset->dst_csets);
2323}
2324
2f7ee569
TH
2325/**
2326 * cgroup_taskset_first - reset taskset and return the first task
2327 * @tset: taskset of interest
1f7dd3e5 2328 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2329 *
2330 * @tset iteration is initialized and the first task is returned.
2331 */
1f7dd3e5
TH
2332struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2333 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2334{
b3dc094e
TH
2335 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2336 tset->cur_task = NULL;
2337
1f7dd3e5 2338 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2339}
2f7ee569
TH
2340
2341/**
2342 * cgroup_taskset_next - iterate to the next task in taskset
2343 * @tset: taskset of interest
1f7dd3e5 2344 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2345 *
2346 * Return the next task in @tset. Iteration must have been initialized
2347 * with cgroup_taskset_first().
2348 */
1f7dd3e5
TH
2349struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2350 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2351{
b3dc094e
TH
2352 struct css_set *cset = tset->cur_cset;
2353 struct task_struct *task = tset->cur_task;
2f7ee569 2354
b3dc094e
TH
2355 while (&cset->mg_node != tset->csets) {
2356 if (!task)
2357 task = list_first_entry(&cset->mg_tasks,
2358 struct task_struct, cg_list);
2359 else
2360 task = list_next_entry(task, cg_list);
2f7ee569 2361
b3dc094e
TH
2362 if (&task->cg_list != &cset->mg_tasks) {
2363 tset->cur_cset = cset;
2364 tset->cur_task = task;
1f7dd3e5
TH
2365
2366 /*
2367 * This function may be called both before and
2368 * after cgroup_taskset_migrate(). The two cases
2369 * can be distinguished by looking at whether @cset
2370 * has its ->mg_dst_cset set.
2371 */
2372 if (cset->mg_dst_cset)
2373 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2374 else
2375 *dst_cssp = cset->subsys[tset->ssid];
2376
b3dc094e
TH
2377 return task;
2378 }
2f7ee569 2379
b3dc094e
TH
2380 cset = list_next_entry(cset, mg_node);
2381 task = NULL;
2382 }
2f7ee569 2383
b3dc094e 2384 return NULL;
2f7ee569 2385}
2f7ee569 2386
adaae5dc
TH
2387/**
2388 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2389 * @tset: taget taskset
2390 * @dst_cgrp: destination cgroup
2391 *
2392 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2393 * ->can_attach callbacks fails and guarantees that either all or none of
2394 * the tasks in @tset are migrated. @tset is consumed regardless of
2395 * success.
2396 */
2397static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2398 struct cgroup *dst_cgrp)
2399{
2400 struct cgroup_subsys_state *css, *failed_css = NULL;
2401 struct task_struct *task, *tmp_task;
2402 struct css_set *cset, *tmp_cset;
2403 int i, ret;
2404
2405 /* methods shouldn't be called if no task is actually migrating */
2406 if (list_empty(&tset->src_csets))
2407 return 0;
2408
2409 /* check that we can legitimately attach to the cgroup */
2410 for_each_e_css(css, i, dst_cgrp) {
2411 if (css->ss->can_attach) {
1f7dd3e5
TH
2412 tset->ssid = i;
2413 ret = css->ss->can_attach(tset);
adaae5dc
TH
2414 if (ret) {
2415 failed_css = css;
2416 goto out_cancel_attach;
2417 }
2418 }
2419 }
2420
2421 /*
2422 * Now that we're guaranteed success, proceed to move all tasks to
2423 * the new cgroup. There are no failure cases after here, so this
2424 * is the commit point.
2425 */
f0d9a5f1 2426 spin_lock_bh(&css_set_lock);
adaae5dc 2427 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2428 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2429 struct css_set *from_cset = task_css_set(task);
2430 struct css_set *to_cset = cset->mg_dst_cset;
2431
2432 get_css_set(to_cset);
2433 css_set_move_task(task, from_cset, to_cset, true);
2434 put_css_set_locked(from_cset);
2435 }
adaae5dc 2436 }
f0d9a5f1 2437 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2438
2439 /*
2440 * Migration is committed, all target tasks are now on dst_csets.
2441 * Nothing is sensitive to fork() after this point. Notify
2442 * controllers that migration is complete.
2443 */
2444 tset->csets = &tset->dst_csets;
2445
1f7dd3e5
TH
2446 for_each_e_css(css, i, dst_cgrp) {
2447 if (css->ss->attach) {
2448 tset->ssid = i;
2449 css->ss->attach(tset);
2450 }
2451 }
adaae5dc
TH
2452
2453 ret = 0;
2454 goto out_release_tset;
2455
2456out_cancel_attach:
2457 for_each_e_css(css, i, dst_cgrp) {
2458 if (css == failed_css)
2459 break;
1f7dd3e5
TH
2460 if (css->ss->cancel_attach) {
2461 tset->ssid = i;
2462 css->ss->cancel_attach(tset);
2463 }
adaae5dc
TH
2464 }
2465out_release_tset:
f0d9a5f1 2466 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2467 list_splice_init(&tset->dst_csets, &tset->src_csets);
2468 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2469 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2470 list_del_init(&cset->mg_node);
2471 }
f0d9a5f1 2472 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2473 return ret;
2474}
2475
a043e3b2 2476/**
1958d2d5
TH
2477 * cgroup_migrate_finish - cleanup after attach
2478 * @preloaded_csets: list of preloaded css_sets
74a1166d 2479 *
1958d2d5
TH
2480 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2481 * those functions for details.
74a1166d 2482 */
1958d2d5 2483static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2484{
1958d2d5 2485 struct css_set *cset, *tmp_cset;
74a1166d 2486
1958d2d5
TH
2487 lockdep_assert_held(&cgroup_mutex);
2488
f0d9a5f1 2489 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2490 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2491 cset->mg_src_cgrp = NULL;
2492 cset->mg_dst_cset = NULL;
2493 list_del_init(&cset->mg_preload_node);
a25eb52e 2494 put_css_set_locked(cset);
1958d2d5 2495 }
f0d9a5f1 2496 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2497}
2498
2499/**
2500 * cgroup_migrate_add_src - add a migration source css_set
2501 * @src_cset: the source css_set to add
2502 * @dst_cgrp: the destination cgroup
2503 * @preloaded_csets: list of preloaded css_sets
2504 *
2505 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2506 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2507 * up by cgroup_migrate_finish().
2508 *
1ed13287
TH
2509 * This function may be called without holding cgroup_threadgroup_rwsem
2510 * even if the target is a process. Threads may be created and destroyed
2511 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2512 * into play and the preloaded css_sets are guaranteed to cover all
2513 * migrations.
1958d2d5
TH
2514 */
2515static void cgroup_migrate_add_src(struct css_set *src_cset,
2516 struct cgroup *dst_cgrp,
2517 struct list_head *preloaded_csets)
2518{
2519 struct cgroup *src_cgrp;
2520
2521 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2522 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2523
2524 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2525
1958d2d5
TH
2526 if (!list_empty(&src_cset->mg_preload_node))
2527 return;
2528
2529 WARN_ON(src_cset->mg_src_cgrp);
2530 WARN_ON(!list_empty(&src_cset->mg_tasks));
2531 WARN_ON(!list_empty(&src_cset->mg_node));
2532
2533 src_cset->mg_src_cgrp = src_cgrp;
2534 get_css_set(src_cset);
2535 list_add(&src_cset->mg_preload_node, preloaded_csets);
2536}
2537
2538/**
2539 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2540 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2541 * @preloaded_csets: list of preloaded source css_sets
2542 *
2543 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2544 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2545 * pins all destination css_sets, links each to its source, and append them
2546 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2547 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2548 *
2549 * This function must be called after cgroup_migrate_add_src() has been
2550 * called on each migration source css_set. After migration is performed
2551 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2552 * @preloaded_csets.
2553 */
2554static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2555 struct list_head *preloaded_csets)
2556{
2557 LIST_HEAD(csets);
f817de98 2558 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2559
2560 lockdep_assert_held(&cgroup_mutex);
2561
f8f22e53 2562 /*
62716ea0 2563 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2564 * with tasks so that child cgroups don't compete against tasks.
2565 */
d51f39b0 2566 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
62716ea0 2567 dst_cgrp->subtree_control)
f8f22e53
TH
2568 return -EBUSY;
2569
1958d2d5 2570 /* look up the dst cset for each src cset and link it to src */
f817de98 2571 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2572 struct css_set *dst_cset;
2573
f817de98
TH
2574 dst_cset = find_css_set(src_cset,
2575 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2576 if (!dst_cset)
2577 goto err;
2578
2579 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2580
2581 /*
2582 * If src cset equals dst, it's noop. Drop the src.
2583 * cgroup_migrate() will skip the cset too. Note that we
2584 * can't handle src == dst as some nodes are used by both.
2585 */
2586 if (src_cset == dst_cset) {
2587 src_cset->mg_src_cgrp = NULL;
2588 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2589 put_css_set(src_cset);
2590 put_css_set(dst_cset);
f817de98
TH
2591 continue;
2592 }
2593
1958d2d5
TH
2594 src_cset->mg_dst_cset = dst_cset;
2595
2596 if (list_empty(&dst_cset->mg_preload_node))
2597 list_add(&dst_cset->mg_preload_node, &csets);
2598 else
a25eb52e 2599 put_css_set(dst_cset);
1958d2d5
TH
2600 }
2601
f817de98 2602 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2603 return 0;
2604err:
2605 cgroup_migrate_finish(&csets);
2606 return -ENOMEM;
2607}
2608
2609/**
2610 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2611 * @leader: the leader of the process or the task to migrate
2612 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2613 * @cgrp: the destination cgroup
1958d2d5
TH
2614 *
2615 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2616 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2617 * caller is also responsible for invoking cgroup_migrate_add_src() and
2618 * cgroup_migrate_prepare_dst() on the targets before invoking this
2619 * function and following up with cgroup_migrate_finish().
2620 *
2621 * As long as a controller's ->can_attach() doesn't fail, this function is
2622 * guaranteed to succeed. This means that, excluding ->can_attach()
2623 * failure, when migrating multiple targets, the success or failure can be
2624 * decided for all targets by invoking group_migrate_prepare_dst() before
2625 * actually starting migrating.
2626 */
9af2ec45
TH
2627static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2628 struct cgroup *cgrp)
74a1166d 2629{
adaae5dc
TH
2630 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2631 struct task_struct *task;
74a1166d 2632
fb5d2b4c
MSB
2633 /*
2634 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2635 * already PF_EXITING could be freed from underneath us unless we
2636 * take an rcu_read_lock.
2637 */
f0d9a5f1 2638 spin_lock_bh(&css_set_lock);
fb5d2b4c 2639 rcu_read_lock();
9db8de37 2640 task = leader;
74a1166d 2641 do {
adaae5dc 2642 cgroup_taskset_add(task, &tset);
081aa458
LZ
2643 if (!threadgroup)
2644 break;
9db8de37 2645 } while_each_thread(leader, task);
fb5d2b4c 2646 rcu_read_unlock();
f0d9a5f1 2647 spin_unlock_bh(&css_set_lock);
74a1166d 2648
adaae5dc 2649 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2650}
2651
1958d2d5
TH
2652/**
2653 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2654 * @dst_cgrp: the cgroup to attach to
2655 * @leader: the task or the leader of the threadgroup to be attached
2656 * @threadgroup: attach the whole threadgroup?
2657 *
1ed13287 2658 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2659 */
2660static int cgroup_attach_task(struct cgroup *dst_cgrp,
2661 struct task_struct *leader, bool threadgroup)
2662{
2663 LIST_HEAD(preloaded_csets);
2664 struct task_struct *task;
2665 int ret;
2666
2667 /* look up all src csets */
f0d9a5f1 2668 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2669 rcu_read_lock();
2670 task = leader;
2671 do {
2672 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2673 &preloaded_csets);
2674 if (!threadgroup)
2675 break;
2676 } while_each_thread(leader, task);
2677 rcu_read_unlock();
f0d9a5f1 2678 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2679
2680 /* prepare dst csets and commit */
2681 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2682 if (!ret)
9af2ec45 2683 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2684
2685 cgroup_migrate_finish(&preloaded_csets);
2686 return ret;
74a1166d
BB
2687}
2688
187fe840
TH
2689static int cgroup_procs_write_permission(struct task_struct *task,
2690 struct cgroup *dst_cgrp,
2691 struct kernfs_open_file *of)
dedf22e9
TH
2692{
2693 const struct cred *cred = current_cred();
2694 const struct cred *tcred = get_task_cred(task);
2695 int ret = 0;
2696
2697 /*
2698 * even if we're attaching all tasks in the thread group, we only
2699 * need to check permissions on one of them.
2700 */
2701 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2702 !uid_eq(cred->euid, tcred->uid) &&
2703 !uid_eq(cred->euid, tcred->suid))
2704 ret = -EACCES;
2705
187fe840
TH
2706 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2707 struct super_block *sb = of->file->f_path.dentry->d_sb;
2708 struct cgroup *cgrp;
2709 struct inode *inode;
2710
f0d9a5f1 2711 spin_lock_bh(&css_set_lock);
187fe840 2712 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2713 spin_unlock_bh(&css_set_lock);
187fe840
TH
2714
2715 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2716 cgrp = cgroup_parent(cgrp);
2717
2718 ret = -ENOMEM;
6f60eade 2719 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2720 if (inode) {
2721 ret = inode_permission(inode, MAY_WRITE);
2722 iput(inode);
2723 }
2724 }
2725
dedf22e9
TH
2726 put_cred(tcred);
2727 return ret;
2728}
2729
74a1166d
BB
2730/*
2731 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2732 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2733 * cgroup_mutex and threadgroup.
bbcb81d0 2734 */
acbef755
TH
2735static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2736 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2737{
bbcb81d0 2738 struct task_struct *tsk;
e76ecaee 2739 struct cgroup *cgrp;
acbef755 2740 pid_t pid;
bbcb81d0
PM
2741 int ret;
2742
acbef755
TH
2743 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2744 return -EINVAL;
2745
e76ecaee
TH
2746 cgrp = cgroup_kn_lock_live(of->kn);
2747 if (!cgrp)
74a1166d
BB
2748 return -ENODEV;
2749
3014dde7 2750 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2751 rcu_read_lock();
bbcb81d0 2752 if (pid) {
73507f33 2753 tsk = find_task_by_vpid(pid);
74a1166d 2754 if (!tsk) {
dd4b0a46 2755 ret = -ESRCH;
3014dde7 2756 goto out_unlock_rcu;
bbcb81d0 2757 }
dedf22e9 2758 } else {
b78949eb 2759 tsk = current;
dedf22e9 2760 }
cd3d0952
TH
2761
2762 if (threadgroup)
b78949eb 2763 tsk = tsk->group_leader;
c4c27fbd
MG
2764
2765 /*
14a40ffc 2766 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2767 * trapped in a cpuset, or RT worker may be born in a cgroup
2768 * with no rt_runtime allocated. Just say no.
2769 */
14a40ffc 2770 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2771 ret = -EINVAL;
3014dde7 2772 goto out_unlock_rcu;
c4c27fbd
MG
2773 }
2774
b78949eb
MSB
2775 get_task_struct(tsk);
2776 rcu_read_unlock();
2777
187fe840 2778 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2779 if (!ret)
2780 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2781
f9f9e7b7 2782 put_task_struct(tsk);
3014dde7
TH
2783 goto out_unlock_threadgroup;
2784
2785out_unlock_rcu:
2786 rcu_read_unlock();
2787out_unlock_threadgroup:
2788 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2789 cgroup_kn_unlock(of->kn);
e93ad19d 2790 cpuset_post_attach_flush();
acbef755 2791 return ret ?: nbytes;
bbcb81d0
PM
2792}
2793
7ae1bad9
TH
2794/**
2795 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2796 * @from: attach to all cgroups of a given task
2797 * @tsk: the task to be attached
2798 */
2799int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2800{
3dd06ffa 2801 struct cgroup_root *root;
7ae1bad9
TH
2802 int retval = 0;
2803
47cfcd09 2804 mutex_lock(&cgroup_mutex);
985ed670 2805 for_each_root(root) {
96d365e0
TH
2806 struct cgroup *from_cgrp;
2807
3dd06ffa 2808 if (root == &cgrp_dfl_root)
985ed670
TH
2809 continue;
2810
f0d9a5f1 2811 spin_lock_bh(&css_set_lock);
96d365e0 2812 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2813 spin_unlock_bh(&css_set_lock);
7ae1bad9 2814
6f4b7e63 2815 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2816 if (retval)
2817 break;
2818 }
47cfcd09 2819 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2820
2821 return retval;
2822}
2823EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2824
acbef755
TH
2825static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2826 char *buf, size_t nbytes, loff_t off)
74a1166d 2827{
acbef755 2828 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2829}
2830
acbef755
TH
2831static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2832 char *buf, size_t nbytes, loff_t off)
af351026 2833{
acbef755 2834 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2835}
2836
451af504
TH
2837static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2838 char *buf, size_t nbytes, loff_t off)
e788e066 2839{
e76ecaee 2840 struct cgroup *cgrp;
5f469907 2841
e76ecaee 2842 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2843
e76ecaee
TH
2844 cgrp = cgroup_kn_lock_live(of->kn);
2845 if (!cgrp)
e788e066 2846 return -ENODEV;
69e943b7 2847 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2848 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2849 sizeof(cgrp->root->release_agent_path));
69e943b7 2850 spin_unlock(&release_agent_path_lock);
e76ecaee 2851 cgroup_kn_unlock(of->kn);
451af504 2852 return nbytes;
e788e066
PM
2853}
2854
2da8ca82 2855static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2856{
2da8ca82 2857 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2858
46cfeb04 2859 spin_lock(&release_agent_path_lock);
e788e066 2860 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2861 spin_unlock(&release_agent_path_lock);
e788e066 2862 seq_putc(seq, '\n');
e788e066
PM
2863 return 0;
2864}
2865
2da8ca82 2866static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2867{
c1d5d42e 2868 seq_puts(seq, "0\n");
e788e066
PM
2869 return 0;
2870}
2871
6e5c8307 2872static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2873{
f8f22e53
TH
2874 struct cgroup_subsys *ss;
2875 bool printed = false;
2876 int ssid;
a742c59d 2877
b4e0eeaf 2878 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2879 if (printed)
2880 seq_putc(seq, ' ');
2881 seq_printf(seq, "%s", ss->name);
2882 printed = true;
b4e0eeaf 2883 } while_each_subsys_mask();
f8f22e53
TH
2884 if (printed)
2885 seq_putc(seq, '\n');
355e0c48
PM
2886}
2887
f8f22e53
TH
2888/* show controllers which are enabled from the parent */
2889static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2890{
f8f22e53
TH
2891 struct cgroup *cgrp = seq_css(seq)->cgroup;
2892
5531dc91 2893 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2894 return 0;
ddbcc7e8
PM
2895}
2896
f8f22e53
TH
2897/* show controllers which are enabled for a given cgroup's children */
2898static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2899{
f8f22e53
TH
2900 struct cgroup *cgrp = seq_css(seq)->cgroup;
2901
667c2491 2902 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2903 return 0;
2904}
2905
2906/**
2907 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2908 * @cgrp: root of the subtree to update csses for
2909 *
8699b776 2910 * @cgrp's subtree_ss_mask has changed and its subtree's (self excluded)
f8f22e53
TH
2911 * css associations need to be updated accordingly. This function looks up
2912 * all css_sets which are attached to the subtree, creates the matching
2913 * updated css_sets and migrates the tasks to the new ones.
2914 */
2915static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2916{
2917 LIST_HEAD(preloaded_csets);
10265075 2918 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2919 struct cgroup_subsys_state *css;
2920 struct css_set *src_cset;
2921 int ret;
2922
f8f22e53
TH
2923 lockdep_assert_held(&cgroup_mutex);
2924
3014dde7
TH
2925 percpu_down_write(&cgroup_threadgroup_rwsem);
2926
f8f22e53 2927 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2928 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2929 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2930 struct cgrp_cset_link *link;
2931
8699b776 2932 /* self is not affected by subtree_ss_mask change */
f8f22e53
TH
2933 if (css->cgroup == cgrp)
2934 continue;
2935
2936 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2937 cgroup_migrate_add_src(link->cset, cgrp,
2938 &preloaded_csets);
2939 }
f0d9a5f1 2940 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2941
2942 /* NULL dst indicates self on default hierarchy */
2943 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2944 if (ret)
2945 goto out_finish;
2946
f0d9a5f1 2947 spin_lock_bh(&css_set_lock);
f8f22e53 2948 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2949 struct task_struct *task, *ntask;
f8f22e53
TH
2950
2951 /* src_csets precede dst_csets, break on the first dst_cset */
2952 if (!src_cset->mg_src_cgrp)
2953 break;
2954
10265075
TH
2955 /* all tasks in src_csets need to be migrated */
2956 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2957 cgroup_taskset_add(task, &tset);
f8f22e53 2958 }
f0d9a5f1 2959 spin_unlock_bh(&css_set_lock);
f8f22e53 2960
10265075 2961 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2962out_finish:
2963 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2964 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2965 return ret;
2966}
2967
1b9b96a1
TH
2968/**
2969 * cgroup_drain_offline - wait for previously offlined csses to go away
2970 * @cgrp: parent of the target cgroups
2971 *
2972 * Because css offlining is asynchronous, userland may try to re-enable a
2973 * controller while the previous css is still around. This function drains
2974 * the previous css instances of @cgrp's children.
2975 *
2976 * Must be called with cgroup_mutex held. Returns %false if there were no
2977 * dying css instances. Returns %true if there were one or more and this
2978 * function waited. On %true return, cgroup_mutex has been dropped and
2979 * re-acquired inbetween which anything could have happened. The caller
2980 * typically would have to start over.
2981 */
2982static bool cgroup_drain_offline(struct cgroup *cgrp)
2983{
2984 struct cgroup *dsct;
2985 struct cgroup_subsys *ss;
2986 int ssid;
2987
2988 lockdep_assert_held(&cgroup_mutex);
2989
2990 cgroup_for_each_live_child(dsct, cgrp) {
2991 for_each_subsys(ss, ssid) {
2992 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2993 DEFINE_WAIT(wait);
2994
2995 if (!css)
2996 continue;
2997
2998 cgroup_get(dsct);
2999 prepare_to_wait(&dsct->offline_waitq, &wait,
3000 TASK_UNINTERRUPTIBLE);
3001
3002 mutex_unlock(&cgroup_mutex);
3003 schedule();
3004 finish_wait(&dsct->offline_waitq, &wait);
3005 mutex_lock(&cgroup_mutex);
3006
3007 cgroup_put(dsct);
3008 return true;
3009 }
3010 }
3011
3012 return false;
3013}
3014
12b3bb6a
TH
3015/**
3016 * cgroup_apply_control_disable - kill or hide csses according to control
3017 * @cgrp: parent of the target cgroups
3018 *
3019 * Walk @cgrp's children and kill and hide csses so that they match
3020 * cgroup_ss_mask() and cgroup_visible_mask().
3021 *
3022 * A css is hidden when the userland requests it to be disabled while other
3023 * subsystems are still depending on it. The css must not actively control
3024 * resources and be in the vanilla state if it's made visible again later.
3025 * Controllers which may be depended upon should provide ->css_reset() for
3026 * this purpose.
3027 */
3028static void cgroup_apply_control_disable(struct cgroup *cgrp)
3029{
3030 struct cgroup *dsct;
3031 struct cgroup_subsys *ss;
3032 int ssid;
3033
3034 cgroup_for_each_live_child(dsct, cgrp) {
3035 for_each_subsys(ss, ssid) {
3036 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3037
3038 if (!css)
3039 continue;
3040
3041 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3042 kill_css(css);
3043 } else if (!(cgroup_control(dsct) & (1 << ss->id))) {
3044 css_clear_dir(css, NULL);
3045 if (ss->css_reset)
3046 ss->css_reset(css);
3047 }
3048 }
3049 }
3050}
3051
f8f22e53 3052/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3053static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3054 char *buf, size_t nbytes,
3055 loff_t off)
f8f22e53 3056{
6e5c8307
TH
3057 u16 enable = 0, disable = 0;
3058 u16 css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 3059 struct cgroup *cgrp, *child;
f8f22e53 3060 struct cgroup_subsys *ss;
451af504 3061 char *tok;
f8f22e53
TH
3062 int ssid, ret;
3063
3064 /*
d37167ab
TH
3065 * Parse input - space separated list of subsystem names prefixed
3066 * with either + or -.
f8f22e53 3067 */
451af504
TH
3068 buf = strstrip(buf);
3069 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3070 if (tok[0] == '\0')
3071 continue;
a7165264 3072 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3073 if (!cgroup_ssid_enabled(ssid) ||
3074 strcmp(tok + 1, ss->name))
f8f22e53
TH
3075 continue;
3076
3077 if (*tok == '+') {
7d331fa9
TH
3078 enable |= 1 << ssid;
3079 disable &= ~(1 << ssid);
f8f22e53 3080 } else if (*tok == '-') {
7d331fa9
TH
3081 disable |= 1 << ssid;
3082 enable &= ~(1 << ssid);
f8f22e53
TH
3083 } else {
3084 return -EINVAL;
3085 }
3086 break;
b4e0eeaf 3087 } while_each_subsys_mask();
f8f22e53
TH
3088 if (ssid == CGROUP_SUBSYS_COUNT)
3089 return -EINVAL;
3090 }
3091
a9746d8d
TH
3092 cgrp = cgroup_kn_lock_live(of->kn);
3093 if (!cgrp)
3094 return -ENODEV;
f8f22e53
TH
3095
3096 for_each_subsys(ss, ssid) {
3097 if (enable & (1 << ssid)) {
667c2491 3098 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3099 enable &= ~(1 << ssid);
3100 continue;
3101 }
3102
5531dc91 3103 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3104 ret = -ENOENT;
3105 goto out_unlock;
3106 }
f8f22e53 3107 } else if (disable & (1 << ssid)) {
667c2491 3108 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3109 disable &= ~(1 << ssid);
3110 continue;
3111 }
3112
3113 /* a child has it enabled? */
3114 cgroup_for_each_live_child(child, cgrp) {
667c2491 3115 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3116 ret = -EBUSY;
ddab2b6e 3117 goto out_unlock;
f8f22e53
TH
3118 }
3119 }
3120 }
3121 }
3122
3123 if (!enable && !disable) {
3124 ret = 0;
ddab2b6e 3125 goto out_unlock;
f8f22e53
TH
3126 }
3127
3128 /*
667c2491 3129 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3130 * with tasks so that child cgroups don't compete against tasks.
3131 */
d51f39b0 3132 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3133 ret = -EBUSY;
3134 goto out_unlock;
3135 }
3136
1b9b96a1
TH
3137 if (cgroup_drain_offline(cgrp)) {
3138 cgroup_kn_unlock(of->kn);
3139 return restart_syscall();
3140 }
3141
f8f22e53 3142 /*
f63070d3
TH
3143 * Update subsys masks and calculate what needs to be done. More
3144 * subsystems than specified may need to be enabled or disabled
3145 * depending on subsystem dependencies.
3146 */
755bf5ee 3147 old_sc = cgrp->subtree_control;
8699b776 3148 old_ss = cgrp->subtree_ss_mask;
755bf5ee 3149 new_sc = (old_sc | enable) & ~disable;
8699b776 3150 new_ss = cgroup_calc_subtree_ss_mask(cgrp, new_sc);
f63070d3 3151
755bf5ee
TH
3152 css_enable = ~old_ss & new_ss;
3153 css_disable = old_ss & ~new_ss;
f63070d3
TH
3154 enable |= css_enable;
3155 disable |= css_disable;
c29adf24 3156
755bf5ee 3157 cgrp->subtree_control = new_sc;
8699b776 3158 cgrp->subtree_ss_mask = new_ss;
755bf5ee 3159
f63070d3
TH
3160 /*
3161 * Create new csses or make the existing ones visible. A css is
3162 * created invisible if it's being implicitly enabled through
3163 * dependency. An invisible css is made visible when the userland
3164 * explicitly enables it.
f8f22e53 3165 */
996cd1fb 3166 do_each_subsys_mask(ss, ssid, enable) {
f8f22e53 3167 cgroup_for_each_live_child(child, cgrp) {
6cd0f5bb
TH
3168 if (css_enable & (1 << ssid)) {
3169 struct cgroup_subsys_state *css;
3170
3171 css = css_create(child, ss);
3172 if (IS_ERR(css)) {
3173 ret = PTR_ERR(css);
3174 goto err_undo_css;
3175 }
3176
3177 if (cgrp->subtree_control & (1 << ssid)) {
3178 ret = css_populate_dir(css, NULL);
3179 if (ret)
3180 goto err_undo_css;
3181 }
3182 } else {
4df8dc90
TH
3183 ret = css_populate_dir(cgroup_css(child, ss),
3184 NULL);
6cd0f5bb
TH
3185 if (ret)
3186 goto err_undo_css;
3187 }
f8f22e53 3188 }
996cd1fb 3189 } while_each_subsys_mask();
f8f22e53 3190
c29adf24
TH
3191 /*
3192 * At this point, cgroup_e_css() results reflect the new csses
3193 * making the following cgroup_update_dfl_csses() properly update
3194 * css associations of all tasks in the subtree.
3195 */
f8f22e53
TH
3196 ret = cgroup_update_dfl_csses(cgrp);
3197 if (ret)
3198 goto err_undo_css;
3199
12b3bb6a
TH
3200 /* all tasks are migrated out of disabled csses, commit disable */
3201 cgroup_apply_control_disable(cgrp);
f8f22e53
TH
3202
3203 kernfs_activate(cgrp->kn);
3204 ret = 0;
3205out_unlock:
a9746d8d 3206 cgroup_kn_unlock(of->kn);
451af504 3207 return ret ?: nbytes;
f8f22e53
TH
3208
3209err_undo_css:
12b3bb6a 3210 /* restore masks and shoot down new csses */
755bf5ee 3211 cgrp->subtree_control = old_sc;
8699b776 3212 cgrp->subtree_ss_mask = old_ss;
f8f22e53 3213
12b3bb6a 3214 cgroup_apply_control_disable(cgrp);
f63070d3 3215
f8f22e53
TH
3216 goto out_unlock;
3217}
3218
4a07c222 3219static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3220{
4a07c222 3221 seq_printf(seq, "populated %d\n",
27bd4dbb 3222 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3223 return 0;
3224}
3225
2bd59d48
TH
3226static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3227 size_t nbytes, loff_t off)
355e0c48 3228{
2bd59d48
TH
3229 struct cgroup *cgrp = of->kn->parent->priv;
3230 struct cftype *cft = of->kn->priv;
3231 struct cgroup_subsys_state *css;
a742c59d 3232 int ret;
355e0c48 3233
b4168640
TH
3234 if (cft->write)
3235 return cft->write(of, buf, nbytes, off);
3236
2bd59d48
TH
3237 /*
3238 * kernfs guarantees that a file isn't deleted with operations in
3239 * flight, which means that the matching css is and stays alive and
3240 * doesn't need to be pinned. The RCU locking is not necessary
3241 * either. It's just for the convenience of using cgroup_css().
3242 */
3243 rcu_read_lock();
3244 css = cgroup_css(cgrp, cft->ss);
3245 rcu_read_unlock();
a742c59d 3246
451af504 3247 if (cft->write_u64) {
a742c59d
TH
3248 unsigned long long v;
3249 ret = kstrtoull(buf, 0, &v);
3250 if (!ret)
3251 ret = cft->write_u64(css, cft, v);
3252 } else if (cft->write_s64) {
3253 long long v;
3254 ret = kstrtoll(buf, 0, &v);
3255 if (!ret)
3256 ret = cft->write_s64(css, cft, v);
e73d2c61 3257 } else {
a742c59d 3258 ret = -EINVAL;
e73d2c61 3259 }
2bd59d48 3260
a742c59d 3261 return ret ?: nbytes;
355e0c48
PM
3262}
3263
6612f05b 3264static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3265{
2bd59d48 3266 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3267}
3268
6612f05b 3269static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3270{
2bd59d48 3271 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3272}
3273
6612f05b 3274static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3275{
2bd59d48 3276 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3277}
3278
91796569 3279static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3280{
7da11279
TH
3281 struct cftype *cft = seq_cft(m);
3282 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3283
2da8ca82
TH
3284 if (cft->seq_show)
3285 return cft->seq_show(m, arg);
e73d2c61 3286
f4c753b7 3287 if (cft->read_u64)
896f5199
TH
3288 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3289 else if (cft->read_s64)
3290 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3291 else
3292 return -EINVAL;
3293 return 0;
91796569
PM
3294}
3295
2bd59d48
TH
3296static struct kernfs_ops cgroup_kf_single_ops = {
3297 .atomic_write_len = PAGE_SIZE,
3298 .write = cgroup_file_write,
3299 .seq_show = cgroup_seqfile_show,
91796569
PM
3300};
3301
2bd59d48
TH
3302static struct kernfs_ops cgroup_kf_ops = {
3303 .atomic_write_len = PAGE_SIZE,
3304 .write = cgroup_file_write,
3305 .seq_start = cgroup_seqfile_start,
3306 .seq_next = cgroup_seqfile_next,
3307 .seq_stop = cgroup_seqfile_stop,
3308 .seq_show = cgroup_seqfile_show,
3309};
ddbcc7e8
PM
3310
3311/*
3312 * cgroup_rename - Only allow simple rename of directories in place.
3313 */
2bd59d48
TH
3314static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3315 const char *new_name_str)
ddbcc7e8 3316{
2bd59d48 3317 struct cgroup *cgrp = kn->priv;
65dff759 3318 int ret;
65dff759 3319
2bd59d48 3320 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3321 return -ENOTDIR;
2bd59d48 3322 if (kn->parent != new_parent)
ddbcc7e8 3323 return -EIO;
65dff759 3324
6db8e85c
TH
3325 /*
3326 * This isn't a proper migration and its usefulness is very
aa6ec29b 3327 * limited. Disallow on the default hierarchy.
6db8e85c 3328 */
aa6ec29b 3329 if (cgroup_on_dfl(cgrp))
6db8e85c 3330 return -EPERM;
099fca32 3331
e1b2dc17 3332 /*
8353da1f 3333 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3334 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3335 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3336 */
3337 kernfs_break_active_protection(new_parent);
3338 kernfs_break_active_protection(kn);
099fca32 3339
2bd59d48 3340 mutex_lock(&cgroup_mutex);
099fca32 3341
2bd59d48 3342 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3343
2bd59d48 3344 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3345
3346 kernfs_unbreak_active_protection(kn);
3347 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3348 return ret;
099fca32
LZ
3349}
3350
49957f8e
TH
3351/* set uid and gid of cgroup dirs and files to that of the creator */
3352static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3353{
3354 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3355 .ia_uid = current_fsuid(),
3356 .ia_gid = current_fsgid(), };
3357
3358 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3359 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3360 return 0;
3361
3362 return kernfs_setattr(kn, &iattr);
3363}
3364
4df8dc90
TH
3365static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3366 struct cftype *cft)
ddbcc7e8 3367{
8d7e6fb0 3368 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3369 struct kernfs_node *kn;
3370 struct lock_class_key *key = NULL;
49957f8e 3371 int ret;
05ef1d7c 3372
2bd59d48
TH
3373#ifdef CONFIG_DEBUG_LOCK_ALLOC
3374 key = &cft->lockdep_key;
3375#endif
3376 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3377 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3378 NULL, key);
49957f8e
TH
3379 if (IS_ERR(kn))
3380 return PTR_ERR(kn);
3381
3382 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3383 if (ret) {
49957f8e 3384 kernfs_remove(kn);
f8f22e53
TH
3385 return ret;
3386 }
3387
6f60eade
TH
3388 if (cft->file_offset) {
3389 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3390
34c06254 3391 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3392 cfile->kn = kn;
34c06254 3393 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3394 }
3395
f8f22e53 3396 return 0;
ddbcc7e8
PM
3397}
3398
b1f28d31
TH
3399/**
3400 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3401 * @css: the target css
3402 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3403 * @cfts: array of cftypes to be added
3404 * @is_add: whether to add or remove
3405 *
3406 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3407 * For removals, this function never fails.
b1f28d31 3408 */
4df8dc90
TH
3409static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3410 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3411 bool is_add)
ddbcc7e8 3412{
6732ed85 3413 struct cftype *cft, *cft_end = NULL;
b598dde3 3414 int ret = 0;
b1f28d31 3415
01f6474c 3416 lockdep_assert_held(&cgroup_mutex);
db0416b6 3417
6732ed85
TH
3418restart:
3419 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3420 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3421 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3422 continue;
05ebb6e6 3423 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3424 continue;
d51f39b0 3425 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3426 continue;
d51f39b0 3427 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3428 continue;
3429
2739d3cc 3430 if (is_add) {
4df8dc90 3431 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3432 if (ret) {
ed3d261b
JP
3433 pr_warn("%s: failed to add %s, err=%d\n",
3434 __func__, cft->name, ret);
6732ed85
TH
3435 cft_end = cft;
3436 is_add = false;
3437 goto restart;
b1f28d31 3438 }
2739d3cc
LZ
3439 } else {
3440 cgroup_rm_file(cgrp, cft);
db0416b6 3441 }
ddbcc7e8 3442 }
b598dde3 3443 return ret;
ddbcc7e8
PM
3444}
3445
21a2d343 3446static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3447{
3448 LIST_HEAD(pending);
2bb566cb 3449 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3450 struct cgroup *root = &ss->root->cgrp;
492eb21b 3451 struct cgroup_subsys_state *css;
9ccece80 3452 int ret = 0;
8e3f6541 3453
01f6474c 3454 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3455
e8c82d20 3456 /* add/rm files for all cgroups created before */
ca8bdcaf 3457 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3458 struct cgroup *cgrp = css->cgroup;
3459
88cb04b9 3460 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3461 continue;
3462
4df8dc90 3463 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3464 if (ret)
3465 break;
8e3f6541 3466 }
21a2d343
TH
3467
3468 if (is_add && !ret)
3469 kernfs_activate(root->kn);
9ccece80 3470 return ret;
8e3f6541
TH
3471}
3472
2da440a2 3473static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3474{
2bb566cb 3475 struct cftype *cft;
8e3f6541 3476
2bd59d48
TH
3477 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3478 /* free copy for custom atomic_write_len, see init_cftypes() */
3479 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3480 kfree(cft->kf_ops);
3481 cft->kf_ops = NULL;
2da440a2 3482 cft->ss = NULL;
a8ddc821
TH
3483
3484 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3485 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3486 }
2da440a2
TH
3487}
3488
2bd59d48 3489static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3490{
3491 struct cftype *cft;
3492
2bd59d48
TH
3493 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3494 struct kernfs_ops *kf_ops;
3495
0adb0704
TH
3496 WARN_ON(cft->ss || cft->kf_ops);
3497
2bd59d48
TH
3498 if (cft->seq_start)
3499 kf_ops = &cgroup_kf_ops;
3500 else
3501 kf_ops = &cgroup_kf_single_ops;
3502
3503 /*
3504 * Ugh... if @cft wants a custom max_write_len, we need to
3505 * make a copy of kf_ops to set its atomic_write_len.
3506 */
3507 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3508 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3509 if (!kf_ops) {
3510 cgroup_exit_cftypes(cfts);
3511 return -ENOMEM;
3512 }
3513 kf_ops->atomic_write_len = cft->max_write_len;
3514 }
8e3f6541 3515
2bd59d48 3516 cft->kf_ops = kf_ops;
2bb566cb 3517 cft->ss = ss;
2bd59d48 3518 }
2bb566cb 3519
2bd59d48 3520 return 0;
2da440a2
TH
3521}
3522
21a2d343
TH
3523static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3524{
01f6474c 3525 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3526
3527 if (!cfts || !cfts[0].ss)
3528 return -ENOENT;
3529
3530 list_del(&cfts->node);
3531 cgroup_apply_cftypes(cfts, false);
3532 cgroup_exit_cftypes(cfts);
3533 return 0;
8e3f6541 3534}
8e3f6541 3535
79578621
TH
3536/**
3537 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3538 * @cfts: zero-length name terminated array of cftypes
3539 *
2bb566cb
TH
3540 * Unregister @cfts. Files described by @cfts are removed from all
3541 * existing cgroups and all future cgroups won't have them either. This
3542 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3543 *
3544 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3545 * registered.
79578621 3546 */
2bb566cb 3547int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3548{
21a2d343 3549 int ret;
79578621 3550
01f6474c 3551 mutex_lock(&cgroup_mutex);
21a2d343 3552 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3553 mutex_unlock(&cgroup_mutex);
21a2d343 3554 return ret;
80b13586
TH
3555}
3556
8e3f6541
TH
3557/**
3558 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3559 * @ss: target cgroup subsystem
3560 * @cfts: zero-length name terminated array of cftypes
3561 *
3562 * Register @cfts to @ss. Files described by @cfts are created for all
3563 * existing cgroups to which @ss is attached and all future cgroups will
3564 * have them too. This function can be called anytime whether @ss is
3565 * attached or not.
3566 *
3567 * Returns 0 on successful registration, -errno on failure. Note that this
3568 * function currently returns 0 as long as @cfts registration is successful
3569 * even if some file creation attempts on existing cgroups fail.
3570 */
2cf669a5 3571static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3572{
9ccece80 3573 int ret;
8e3f6541 3574
fc5ed1e9 3575 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3576 return 0;
3577
dc5736ed
LZ
3578 if (!cfts || cfts[0].name[0] == '\0')
3579 return 0;
2bb566cb 3580
2bd59d48
TH
3581 ret = cgroup_init_cftypes(ss, cfts);
3582 if (ret)
3583 return ret;
79578621 3584
01f6474c 3585 mutex_lock(&cgroup_mutex);
21a2d343 3586
0adb0704 3587 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3588 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3589 if (ret)
21a2d343 3590 cgroup_rm_cftypes_locked(cfts);
79578621 3591
01f6474c 3592 mutex_unlock(&cgroup_mutex);
9ccece80 3593 return ret;
79578621
TH
3594}
3595
a8ddc821
TH
3596/**
3597 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3598 * @ss: target cgroup subsystem
3599 * @cfts: zero-length name terminated array of cftypes
3600 *
3601 * Similar to cgroup_add_cftypes() but the added files are only used for
3602 * the default hierarchy.
3603 */
3604int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3605{
3606 struct cftype *cft;
3607
3608 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3609 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3610 return cgroup_add_cftypes(ss, cfts);
3611}
3612
3613/**
3614 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3615 * @ss: target cgroup subsystem
3616 * @cfts: zero-length name terminated array of cftypes
3617 *
3618 * Similar to cgroup_add_cftypes() but the added files are only used for
3619 * the legacy hierarchies.
3620 */
2cf669a5
TH
3621int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3622{
a8ddc821
TH
3623 struct cftype *cft;
3624
e4b7037c
TH
3625 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3626 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3627 return cgroup_add_cftypes(ss, cfts);
3628}
3629
34c06254
TH
3630/**
3631 * cgroup_file_notify - generate a file modified event for a cgroup_file
3632 * @cfile: target cgroup_file
3633 *
3634 * @cfile must have been obtained by setting cftype->file_offset.
3635 */
3636void cgroup_file_notify(struct cgroup_file *cfile)
3637{
3638 unsigned long flags;
3639
3640 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3641 if (cfile->kn)
3642 kernfs_notify(cfile->kn);
3643 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3644}
3645
a043e3b2
LZ
3646/**
3647 * cgroup_task_count - count the number of tasks in a cgroup.
3648 * @cgrp: the cgroup in question
3649 *
3650 * Return the number of tasks in the cgroup.
3651 */
07bc356e 3652static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3653{
3654 int count = 0;
69d0206c 3655 struct cgrp_cset_link *link;
817929ec 3656
f0d9a5f1 3657 spin_lock_bh(&css_set_lock);
69d0206c
TH
3658 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3659 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3660 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3661 return count;
3662}
3663
53fa5261 3664/**
492eb21b 3665 * css_next_child - find the next child of a given css
c2931b70
TH
3666 * @pos: the current position (%NULL to initiate traversal)
3667 * @parent: css whose children to walk
53fa5261 3668 *
c2931b70 3669 * This function returns the next child of @parent and should be called
87fb54f1 3670 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3671 * that @parent and @pos are accessible. The next sibling is guaranteed to
3672 * be returned regardless of their states.
3673 *
3674 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3675 * css which finished ->css_online() is guaranteed to be visible in the
3676 * future iterations and will stay visible until the last reference is put.
3677 * A css which hasn't finished ->css_online() or already finished
3678 * ->css_offline() may show up during traversal. It's each subsystem's
3679 * responsibility to synchronize against on/offlining.
53fa5261 3680 */
c2931b70
TH
3681struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3682 struct cgroup_subsys_state *parent)
53fa5261 3683{
c2931b70 3684 struct cgroup_subsys_state *next;
53fa5261 3685
8353da1f 3686 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3687
3688 /*
de3f0341
TH
3689 * @pos could already have been unlinked from the sibling list.
3690 * Once a cgroup is removed, its ->sibling.next is no longer
3691 * updated when its next sibling changes. CSS_RELEASED is set when
3692 * @pos is taken off list, at which time its next pointer is valid,
3693 * and, as releases are serialized, the one pointed to by the next
3694 * pointer is guaranteed to not have started release yet. This
3695 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3696 * critical section, the one pointed to by its next pointer is
3697 * guaranteed to not have finished its RCU grace period even if we
3698 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3699 *
de3f0341
TH
3700 * If @pos has CSS_RELEASED set, its next pointer can't be
3701 * dereferenced; however, as each css is given a monotonically
3702 * increasing unique serial number and always appended to the
3703 * sibling list, the next one can be found by walking the parent's
3704 * children until the first css with higher serial number than
3705 * @pos's. While this path can be slower, it happens iff iteration
3706 * races against release and the race window is very small.
53fa5261 3707 */
3b287a50 3708 if (!pos) {
c2931b70
TH
3709 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3710 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3711 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3712 } else {
c2931b70 3713 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3714 if (next->serial_nr > pos->serial_nr)
3715 break;
53fa5261
TH
3716 }
3717
3b281afb
TH
3718 /*
3719 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3720 * the next sibling.
3b281afb 3721 */
c2931b70
TH
3722 if (&next->sibling != &parent->children)
3723 return next;
3b281afb 3724 return NULL;
53fa5261 3725}
53fa5261 3726
574bd9f7 3727/**
492eb21b 3728 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3729 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3730 * @root: css whose descendants to walk
574bd9f7 3731 *
492eb21b 3732 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3733 * to visit for pre-order traversal of @root's descendants. @root is
3734 * included in the iteration and the first node to be visited.
75501a6d 3735 *
87fb54f1
TH
3736 * While this function requires cgroup_mutex or RCU read locking, it
3737 * doesn't require the whole traversal to be contained in a single critical
3738 * section. This function will return the correct next descendant as long
3739 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3740 *
3741 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3742 * css which finished ->css_online() is guaranteed to be visible in the
3743 * future iterations and will stay visible until the last reference is put.
3744 * A css which hasn't finished ->css_online() or already finished
3745 * ->css_offline() may show up during traversal. It's each subsystem's
3746 * responsibility to synchronize against on/offlining.
574bd9f7 3747 */
492eb21b
TH
3748struct cgroup_subsys_state *
3749css_next_descendant_pre(struct cgroup_subsys_state *pos,
3750 struct cgroup_subsys_state *root)
574bd9f7 3751{
492eb21b 3752 struct cgroup_subsys_state *next;
574bd9f7 3753
8353da1f 3754 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3755
bd8815a6 3756 /* if first iteration, visit @root */
7805d000 3757 if (!pos)
bd8815a6 3758 return root;
574bd9f7
TH
3759
3760 /* visit the first child if exists */
492eb21b 3761 next = css_next_child(NULL, pos);
574bd9f7
TH
3762 if (next)
3763 return next;
3764
3765 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3766 while (pos != root) {
5c9d535b 3767 next = css_next_child(pos, pos->parent);
75501a6d 3768 if (next)
574bd9f7 3769 return next;
5c9d535b 3770 pos = pos->parent;
7805d000 3771 }
574bd9f7
TH
3772
3773 return NULL;
3774}
574bd9f7 3775
12a9d2fe 3776/**
492eb21b
TH
3777 * css_rightmost_descendant - return the rightmost descendant of a css
3778 * @pos: css of interest
12a9d2fe 3779 *
492eb21b
TH
3780 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3781 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3782 * subtree of @pos.
75501a6d 3783 *
87fb54f1
TH
3784 * While this function requires cgroup_mutex or RCU read locking, it
3785 * doesn't require the whole traversal to be contained in a single critical
3786 * section. This function will return the correct rightmost descendant as
3787 * long as @pos is accessible.
12a9d2fe 3788 */
492eb21b
TH
3789struct cgroup_subsys_state *
3790css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3791{
492eb21b 3792 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3793
8353da1f 3794 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3795
3796 do {
3797 last = pos;
3798 /* ->prev isn't RCU safe, walk ->next till the end */
3799 pos = NULL;
492eb21b 3800 css_for_each_child(tmp, last)
12a9d2fe
TH
3801 pos = tmp;
3802 } while (pos);
3803
3804 return last;
3805}
12a9d2fe 3806
492eb21b
TH
3807static struct cgroup_subsys_state *
3808css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3809{
492eb21b 3810 struct cgroup_subsys_state *last;
574bd9f7
TH
3811
3812 do {
3813 last = pos;
492eb21b 3814 pos = css_next_child(NULL, pos);
574bd9f7
TH
3815 } while (pos);
3816
3817 return last;
3818}
3819
3820/**
492eb21b 3821 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3822 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3823 * @root: css whose descendants to walk
574bd9f7 3824 *
492eb21b 3825 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3826 * to visit for post-order traversal of @root's descendants. @root is
3827 * included in the iteration and the last node to be visited.
75501a6d 3828 *
87fb54f1
TH
3829 * While this function requires cgroup_mutex or RCU read locking, it
3830 * doesn't require the whole traversal to be contained in a single critical
3831 * section. This function will return the correct next descendant as long
3832 * as both @pos and @cgroup are accessible and @pos is a descendant of
3833 * @cgroup.
c2931b70
TH
3834 *
3835 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3836 * css which finished ->css_online() is guaranteed to be visible in the
3837 * future iterations and will stay visible until the last reference is put.
3838 * A css which hasn't finished ->css_online() or already finished
3839 * ->css_offline() may show up during traversal. It's each subsystem's
3840 * responsibility to synchronize against on/offlining.
574bd9f7 3841 */
492eb21b
TH
3842struct cgroup_subsys_state *
3843css_next_descendant_post(struct cgroup_subsys_state *pos,
3844 struct cgroup_subsys_state *root)
574bd9f7 3845{
492eb21b 3846 struct cgroup_subsys_state *next;
574bd9f7 3847
8353da1f 3848 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3849
58b79a91
TH
3850 /* if first iteration, visit leftmost descendant which may be @root */
3851 if (!pos)
3852 return css_leftmost_descendant(root);
574bd9f7 3853
bd8815a6
TH
3854 /* if we visited @root, we're done */
3855 if (pos == root)
3856 return NULL;
3857
574bd9f7 3858 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3859 next = css_next_child(pos, pos->parent);
75501a6d 3860 if (next)
492eb21b 3861 return css_leftmost_descendant(next);
574bd9f7
TH
3862
3863 /* no sibling left, visit parent */
5c9d535b 3864 return pos->parent;
574bd9f7 3865}
574bd9f7 3866
f3d46500
TH
3867/**
3868 * css_has_online_children - does a css have online children
3869 * @css: the target css
3870 *
3871 * Returns %true if @css has any online children; otherwise, %false. This
3872 * function can be called from any context but the caller is responsible
3873 * for synchronizing against on/offlining as necessary.
3874 */
3875bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3876{
f3d46500
TH
3877 struct cgroup_subsys_state *child;
3878 bool ret = false;
cbc125ef
TH
3879
3880 rcu_read_lock();
f3d46500 3881 css_for_each_child(child, css) {
99bae5f9 3882 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3883 ret = true;
3884 break;
cbc125ef
TH
3885 }
3886 }
3887 rcu_read_unlock();
f3d46500 3888 return ret;
574bd9f7 3889}
574bd9f7 3890
0942eeee 3891/**
ecb9d535 3892 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3893 * @it: the iterator to advance
3894 *
3895 * Advance @it to the next css_set to walk.
d515876e 3896 */
ecb9d535 3897static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3898{
0f0a2b4f 3899 struct list_head *l = it->cset_pos;
d515876e
TH
3900 struct cgrp_cset_link *link;
3901 struct css_set *cset;
3902
f0d9a5f1 3903 lockdep_assert_held(&css_set_lock);
ed27b9f7 3904
d515876e
TH
3905 /* Advance to the next non-empty css_set */
3906 do {
3907 l = l->next;
0f0a2b4f
TH
3908 if (l == it->cset_head) {
3909 it->cset_pos = NULL;
ecb9d535 3910 it->task_pos = NULL;
d515876e
TH
3911 return;
3912 }
3ebb2b6e
TH
3913
3914 if (it->ss) {
3915 cset = container_of(l, struct css_set,
3916 e_cset_node[it->ss->id]);
3917 } else {
3918 link = list_entry(l, struct cgrp_cset_link, cset_link);
3919 cset = link->cset;
3920 }
0de0942d 3921 } while (!css_set_populated(cset));
c7561128 3922
0f0a2b4f 3923 it->cset_pos = l;
c7561128
TH
3924
3925 if (!list_empty(&cset->tasks))
0f0a2b4f 3926 it->task_pos = cset->tasks.next;
c7561128 3927 else
0f0a2b4f
TH
3928 it->task_pos = cset->mg_tasks.next;
3929
3930 it->tasks_head = &cset->tasks;
3931 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3932
3933 /*
3934 * We don't keep css_sets locked across iteration steps and thus
3935 * need to take steps to ensure that iteration can be resumed after
3936 * the lock is re-acquired. Iteration is performed at two levels -
3937 * css_sets and tasks in them.
3938 *
3939 * Once created, a css_set never leaves its cgroup lists, so a
3940 * pinned css_set is guaranteed to stay put and we can resume
3941 * iteration afterwards.
3942 *
3943 * Tasks may leave @cset across iteration steps. This is resolved
3944 * by registering each iterator with the css_set currently being
3945 * walked and making css_set_move_task() advance iterators whose
3946 * next task is leaving.
3947 */
3948 if (it->cur_cset) {
3949 list_del(&it->iters_node);
3950 put_css_set_locked(it->cur_cset);
3951 }
3952 get_css_set(cset);
3953 it->cur_cset = cset;
3954 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3955}
3956
ecb9d535
TH
3957static void css_task_iter_advance(struct css_task_iter *it)
3958{
3959 struct list_head *l = it->task_pos;
3960
f0d9a5f1 3961 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3962 WARN_ON_ONCE(!l);
3963
3964 /*
3965 * Advance iterator to find next entry. cset->tasks is consumed
3966 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3967 * next cset.
3968 */
3969 l = l->next;
3970
3971 if (l == it->tasks_head)
3972 l = it->mg_tasks_head->next;
3973
3974 if (l == it->mg_tasks_head)
3975 css_task_iter_advance_css_set(it);
3976 else
3977 it->task_pos = l;
3978}
3979
0942eeee 3980/**
72ec7029
TH
3981 * css_task_iter_start - initiate task iteration
3982 * @css: the css to walk tasks of
0942eeee
TH
3983 * @it: the task iterator to use
3984 *
72ec7029
TH
3985 * Initiate iteration through the tasks of @css. The caller can call
3986 * css_task_iter_next() to walk through the tasks until the function
3987 * returns NULL. On completion of iteration, css_task_iter_end() must be
3988 * called.
0942eeee 3989 */
72ec7029
TH
3990void css_task_iter_start(struct cgroup_subsys_state *css,
3991 struct css_task_iter *it)
817929ec 3992{
56fde9e0
TH
3993 /* no one should try to iterate before mounting cgroups */
3994 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3995
ed27b9f7
TH
3996 memset(it, 0, sizeof(*it));
3997
f0d9a5f1 3998 spin_lock_bh(&css_set_lock);
c59cd3d8 3999
3ebb2b6e
TH
4000 it->ss = css->ss;
4001
4002 if (it->ss)
4003 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4004 else
4005 it->cset_pos = &css->cgroup->cset_links;
4006
0f0a2b4f 4007 it->cset_head = it->cset_pos;
c59cd3d8 4008
ecb9d535 4009 css_task_iter_advance_css_set(it);
ed27b9f7 4010
f0d9a5f1 4011 spin_unlock_bh(&css_set_lock);
817929ec
PM
4012}
4013
0942eeee 4014/**
72ec7029 4015 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4016 * @it: the task iterator being iterated
4017 *
4018 * The "next" function for task iteration. @it should have been
72ec7029
TH
4019 * initialized via css_task_iter_start(). Returns NULL when the iteration
4020 * reaches the end.
0942eeee 4021 */
72ec7029 4022struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4023{
d5745675 4024 if (it->cur_task) {
ed27b9f7 4025 put_task_struct(it->cur_task);
d5745675
TH
4026 it->cur_task = NULL;
4027 }
ed27b9f7 4028
f0d9a5f1 4029 spin_lock_bh(&css_set_lock);
ed27b9f7 4030
d5745675
TH
4031 if (it->task_pos) {
4032 it->cur_task = list_entry(it->task_pos, struct task_struct,
4033 cg_list);
4034 get_task_struct(it->cur_task);
4035 css_task_iter_advance(it);
4036 }
ed27b9f7 4037
f0d9a5f1 4038 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4039
4040 return it->cur_task;
817929ec
PM
4041}
4042
0942eeee 4043/**
72ec7029 4044 * css_task_iter_end - finish task iteration
0942eeee
TH
4045 * @it: the task iterator to finish
4046 *
72ec7029 4047 * Finish task iteration started by css_task_iter_start().
0942eeee 4048 */
72ec7029 4049void css_task_iter_end(struct css_task_iter *it)
31a7df01 4050{
ed27b9f7 4051 if (it->cur_cset) {
f0d9a5f1 4052 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4053 list_del(&it->iters_node);
4054 put_css_set_locked(it->cur_cset);
f0d9a5f1 4055 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4056 }
4057
4058 if (it->cur_task)
4059 put_task_struct(it->cur_task);
31a7df01
CW
4060}
4061
4062/**
8cc99345
TH
4063 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4064 * @to: cgroup to which the tasks will be moved
4065 * @from: cgroup in which the tasks currently reside
31a7df01 4066 *
eaf797ab
TH
4067 * Locking rules between cgroup_post_fork() and the migration path
4068 * guarantee that, if a task is forking while being migrated, the new child
4069 * is guaranteed to be either visible in the source cgroup after the
4070 * parent's migration is complete or put into the target cgroup. No task
4071 * can slip out of migration through forking.
31a7df01 4072 */
8cc99345 4073int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4074{
952aaa12
TH
4075 LIST_HEAD(preloaded_csets);
4076 struct cgrp_cset_link *link;
72ec7029 4077 struct css_task_iter it;
e406d1cf 4078 struct task_struct *task;
952aaa12 4079 int ret;
31a7df01 4080
952aaa12 4081 mutex_lock(&cgroup_mutex);
31a7df01 4082
952aaa12 4083 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4084 spin_lock_bh(&css_set_lock);
952aaa12
TH
4085 list_for_each_entry(link, &from->cset_links, cset_link)
4086 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4087 spin_unlock_bh(&css_set_lock);
31a7df01 4088
952aaa12
TH
4089 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4090 if (ret)
4091 goto out_err;
8cc99345 4092
952aaa12 4093 /*
2cfa2b19 4094 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4095 * ->can_attach() fails.
4096 */
e406d1cf 4097 do {
9d800df1 4098 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4099 task = css_task_iter_next(&it);
4100 if (task)
4101 get_task_struct(task);
4102 css_task_iter_end(&it);
4103
4104 if (task) {
9af2ec45 4105 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4106 put_task_struct(task);
4107 }
4108 } while (task && !ret);
952aaa12
TH
4109out_err:
4110 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4111 mutex_unlock(&cgroup_mutex);
e406d1cf 4112 return ret;
8cc99345
TH
4113}
4114
bbcb81d0 4115/*
102a775e 4116 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4117 *
4118 * Reading this file can return large amounts of data if a cgroup has
4119 * *lots* of attached tasks. So it may need several calls to read(),
4120 * but we cannot guarantee that the information we produce is correct
4121 * unless we produce it entirely atomically.
4122 *
bbcb81d0 4123 */
bbcb81d0 4124
24528255
LZ
4125/* which pidlist file are we talking about? */
4126enum cgroup_filetype {
4127 CGROUP_FILE_PROCS,
4128 CGROUP_FILE_TASKS,
4129};
4130
4131/*
4132 * A pidlist is a list of pids that virtually represents the contents of one
4133 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4134 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4135 * to the cgroup.
4136 */
4137struct cgroup_pidlist {
4138 /*
4139 * used to find which pidlist is wanted. doesn't change as long as
4140 * this particular list stays in the list.
4141 */
4142 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4143 /* array of xids */
4144 pid_t *list;
4145 /* how many elements the above list has */
4146 int length;
24528255
LZ
4147 /* each of these stored in a list by its cgroup */
4148 struct list_head links;
4149 /* pointer to the cgroup we belong to, for list removal purposes */
4150 struct cgroup *owner;
b1a21367
TH
4151 /* for delayed destruction */
4152 struct delayed_work destroy_dwork;
24528255
LZ
4153};
4154
d1d9fd33
BB
4155/*
4156 * The following two functions "fix" the issue where there are more pids
4157 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4158 * TODO: replace with a kernel-wide solution to this problem
4159 */
4160#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4161static void *pidlist_allocate(int count)
4162{
4163 if (PIDLIST_TOO_LARGE(count))
4164 return vmalloc(count * sizeof(pid_t));
4165 else
4166 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4167}
b1a21367 4168
d1d9fd33
BB
4169static void pidlist_free(void *p)
4170{
58794514 4171 kvfree(p);
d1d9fd33 4172}
d1d9fd33 4173
b1a21367
TH
4174/*
4175 * Used to destroy all pidlists lingering waiting for destroy timer. None
4176 * should be left afterwards.
4177 */
4178static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4179{
4180 struct cgroup_pidlist *l, *tmp_l;
4181
4182 mutex_lock(&cgrp->pidlist_mutex);
4183 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4184 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4185 mutex_unlock(&cgrp->pidlist_mutex);
4186
4187 flush_workqueue(cgroup_pidlist_destroy_wq);
4188 BUG_ON(!list_empty(&cgrp->pidlists));
4189}
4190
4191static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4192{
4193 struct delayed_work *dwork = to_delayed_work(work);
4194 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4195 destroy_dwork);
4196 struct cgroup_pidlist *tofree = NULL;
4197
4198 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4199
4200 /*
04502365
TH
4201 * Destroy iff we didn't get queued again. The state won't change
4202 * as destroy_dwork can only be queued while locked.
b1a21367 4203 */
04502365 4204 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4205 list_del(&l->links);
4206 pidlist_free(l->list);
4207 put_pid_ns(l->key.ns);
4208 tofree = l;
4209 }
4210
b1a21367
TH
4211 mutex_unlock(&l->owner->pidlist_mutex);
4212 kfree(tofree);
4213}
4214
bbcb81d0 4215/*
102a775e 4216 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4217 * Returns the number of unique elements.
bbcb81d0 4218 */
6ee211ad 4219static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4220{
102a775e 4221 int src, dest = 1;
102a775e
BB
4222
4223 /*
4224 * we presume the 0th element is unique, so i starts at 1. trivial
4225 * edge cases first; no work needs to be done for either
4226 */
4227 if (length == 0 || length == 1)
4228 return length;
4229 /* src and dest walk down the list; dest counts unique elements */
4230 for (src = 1; src < length; src++) {
4231 /* find next unique element */
4232 while (list[src] == list[src-1]) {
4233 src++;
4234 if (src == length)
4235 goto after;
4236 }
4237 /* dest always points to where the next unique element goes */
4238 list[dest] = list[src];
4239 dest++;
4240 }
4241after:
102a775e
BB
4242 return dest;
4243}
4244
afb2bc14
TH
4245/*
4246 * The two pid files - task and cgroup.procs - guaranteed that the result
4247 * is sorted, which forced this whole pidlist fiasco. As pid order is
4248 * different per namespace, each namespace needs differently sorted list,
4249 * making it impossible to use, for example, single rbtree of member tasks
4250 * sorted by task pointer. As pidlists can be fairly large, allocating one
4251 * per open file is dangerous, so cgroup had to implement shared pool of
4252 * pidlists keyed by cgroup and namespace.
4253 *
4254 * All this extra complexity was caused by the original implementation
4255 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4256 * want to do away with it. Explicitly scramble sort order if on the
4257 * default hierarchy so that no such expectation exists in the new
4258 * interface.
afb2bc14
TH
4259 *
4260 * Scrambling is done by swapping every two consecutive bits, which is
4261 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4262 */
4263static pid_t pid_fry(pid_t pid)
4264{
4265 unsigned a = pid & 0x55555555;
4266 unsigned b = pid & 0xAAAAAAAA;
4267
4268 return (a << 1) | (b >> 1);
4269}
4270
4271static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4272{
aa6ec29b 4273 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4274 return pid_fry(pid);
4275 else
4276 return pid;
4277}
4278
102a775e
BB
4279static int cmppid(const void *a, const void *b)
4280{
4281 return *(pid_t *)a - *(pid_t *)b;
4282}
4283
afb2bc14
TH
4284static int fried_cmppid(const void *a, const void *b)
4285{
4286 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4287}
4288
e6b81710
TH
4289static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4290 enum cgroup_filetype type)
4291{
4292 struct cgroup_pidlist *l;
4293 /* don't need task_nsproxy() if we're looking at ourself */
4294 struct pid_namespace *ns = task_active_pid_ns(current);
4295
4296 lockdep_assert_held(&cgrp->pidlist_mutex);
4297
4298 list_for_each_entry(l, &cgrp->pidlists, links)
4299 if (l->key.type == type && l->key.ns == ns)
4300 return l;
4301 return NULL;
4302}
4303
72a8cb30
BB
4304/*
4305 * find the appropriate pidlist for our purpose (given procs vs tasks)
4306 * returns with the lock on that pidlist already held, and takes care
4307 * of the use count, or returns NULL with no locks held if we're out of
4308 * memory.
4309 */
e6b81710
TH
4310static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4311 enum cgroup_filetype type)
72a8cb30
BB
4312{
4313 struct cgroup_pidlist *l;
b70cc5fd 4314
e6b81710
TH
4315 lockdep_assert_held(&cgrp->pidlist_mutex);
4316
4317 l = cgroup_pidlist_find(cgrp, type);
4318 if (l)
4319 return l;
4320
72a8cb30 4321 /* entry not found; create a new one */
f4f4be2b 4322 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4323 if (!l)
72a8cb30 4324 return l;
e6b81710 4325
b1a21367 4326 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4327 l->key.type = type;
e6b81710
TH
4328 /* don't need task_nsproxy() if we're looking at ourself */
4329 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4330 l->owner = cgrp;
4331 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4332 return l;
4333}
4334
102a775e
BB
4335/*
4336 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4337 */
72a8cb30
BB
4338static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4339 struct cgroup_pidlist **lp)
102a775e
BB
4340{
4341 pid_t *array;
4342 int length;
4343 int pid, n = 0; /* used for populating the array */
72ec7029 4344 struct css_task_iter it;
817929ec 4345 struct task_struct *tsk;
102a775e
BB
4346 struct cgroup_pidlist *l;
4347
4bac00d1
TH
4348 lockdep_assert_held(&cgrp->pidlist_mutex);
4349
102a775e
BB
4350 /*
4351 * If cgroup gets more users after we read count, we won't have
4352 * enough space - tough. This race is indistinguishable to the
4353 * caller from the case that the additional cgroup users didn't
4354 * show up until sometime later on.
4355 */
4356 length = cgroup_task_count(cgrp);
d1d9fd33 4357 array = pidlist_allocate(length);
102a775e
BB
4358 if (!array)
4359 return -ENOMEM;
4360 /* now, populate the array */
9d800df1 4361 css_task_iter_start(&cgrp->self, &it);
72ec7029 4362 while ((tsk = css_task_iter_next(&it))) {
102a775e 4363 if (unlikely(n == length))
817929ec 4364 break;
102a775e 4365 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4366 if (type == CGROUP_FILE_PROCS)
4367 pid = task_tgid_vnr(tsk);
4368 else
4369 pid = task_pid_vnr(tsk);
102a775e
BB
4370 if (pid > 0) /* make sure to only use valid results */
4371 array[n++] = pid;
817929ec 4372 }
72ec7029 4373 css_task_iter_end(&it);
102a775e
BB
4374 length = n;
4375 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4376 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4377 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4378 else
4379 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4380 if (type == CGROUP_FILE_PROCS)
6ee211ad 4381 length = pidlist_uniq(array, length);
e6b81710 4382
e6b81710 4383 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4384 if (!l) {
d1d9fd33 4385 pidlist_free(array);
72a8cb30 4386 return -ENOMEM;
102a775e 4387 }
e6b81710
TH
4388
4389 /* store array, freeing old if necessary */
d1d9fd33 4390 pidlist_free(l->list);
102a775e
BB
4391 l->list = array;
4392 l->length = length;
72a8cb30 4393 *lp = l;
102a775e 4394 return 0;
bbcb81d0
PM
4395}
4396
846c7bb0 4397/**
a043e3b2 4398 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4399 * @stats: cgroupstats to fill information into
4400 * @dentry: A dentry entry belonging to the cgroup for which stats have
4401 * been requested.
a043e3b2
LZ
4402 *
4403 * Build and fill cgroupstats so that taskstats can export it to user
4404 * space.
846c7bb0
BS
4405 */
4406int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4407{
2bd59d48 4408 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4409 struct cgroup *cgrp;
72ec7029 4410 struct css_task_iter it;
846c7bb0 4411 struct task_struct *tsk;
33d283be 4412
2bd59d48
TH
4413 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4414 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4415 kernfs_type(kn) != KERNFS_DIR)
4416 return -EINVAL;
4417
bad34660
LZ
4418 mutex_lock(&cgroup_mutex);
4419
846c7bb0 4420 /*
2bd59d48 4421 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4422 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4423 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4424 */
2bd59d48
TH
4425 rcu_read_lock();
4426 cgrp = rcu_dereference(kn->priv);
bad34660 4427 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4428 rcu_read_unlock();
bad34660 4429 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4430 return -ENOENT;
4431 }
bad34660 4432 rcu_read_unlock();
846c7bb0 4433
9d800df1 4434 css_task_iter_start(&cgrp->self, &it);
72ec7029 4435 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4436 switch (tsk->state) {
4437 case TASK_RUNNING:
4438 stats->nr_running++;
4439 break;
4440 case TASK_INTERRUPTIBLE:
4441 stats->nr_sleeping++;
4442 break;
4443 case TASK_UNINTERRUPTIBLE:
4444 stats->nr_uninterruptible++;
4445 break;
4446 case TASK_STOPPED:
4447 stats->nr_stopped++;
4448 break;
4449 default:
4450 if (delayacct_is_task_waiting_on_io(tsk))
4451 stats->nr_io_wait++;
4452 break;
4453 }
4454 }
72ec7029 4455 css_task_iter_end(&it);
846c7bb0 4456
bad34660 4457 mutex_unlock(&cgroup_mutex);
2bd59d48 4458 return 0;
846c7bb0
BS
4459}
4460
8f3ff208 4461
bbcb81d0 4462/*
102a775e 4463 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4464 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4465 * in the cgroup->l->list array.
bbcb81d0 4466 */
cc31edce 4467
102a775e 4468static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4469{
cc31edce
PM
4470 /*
4471 * Initially we receive a position value that corresponds to
4472 * one more than the last pid shown (or 0 on the first call or
4473 * after a seek to the start). Use a binary-search to find the
4474 * next pid to display, if any
4475 */
2bd59d48 4476 struct kernfs_open_file *of = s->private;
7da11279 4477 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4478 struct cgroup_pidlist *l;
7da11279 4479 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4480 int index = 0, pid = *pos;
4bac00d1
TH
4481 int *iter, ret;
4482
4483 mutex_lock(&cgrp->pidlist_mutex);
4484
4485 /*
5d22444f 4486 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4487 * after open. If the matching pidlist is around, we can use that.
5d22444f 4488 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4489 * could already have been destroyed.
4490 */
5d22444f
TH
4491 if (of->priv)
4492 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4493
4494 /*
4495 * Either this is the first start() after open or the matching
4496 * pidlist has been destroyed inbetween. Create a new one.
4497 */
5d22444f
TH
4498 if (!of->priv) {
4499 ret = pidlist_array_load(cgrp, type,
4500 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4501 if (ret)
4502 return ERR_PTR(ret);
4503 }
5d22444f 4504 l = of->priv;
cc31edce 4505
cc31edce 4506 if (pid) {
102a775e 4507 int end = l->length;
20777766 4508
cc31edce
PM
4509 while (index < end) {
4510 int mid = (index + end) / 2;
afb2bc14 4511 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4512 index = mid;
4513 break;
afb2bc14 4514 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4515 index = mid + 1;
4516 else
4517 end = mid;
4518 }
4519 }
4520 /* If we're off the end of the array, we're done */
102a775e 4521 if (index >= l->length)
cc31edce
PM
4522 return NULL;
4523 /* Update the abstract position to be the actual pid that we found */
102a775e 4524 iter = l->list + index;
afb2bc14 4525 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4526 return iter;
4527}
4528
102a775e 4529static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4530{
2bd59d48 4531 struct kernfs_open_file *of = s->private;
5d22444f 4532 struct cgroup_pidlist *l = of->priv;
62236858 4533
5d22444f
TH
4534 if (l)
4535 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4536 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4537 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4538}
4539
102a775e 4540static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4541{
2bd59d48 4542 struct kernfs_open_file *of = s->private;
5d22444f 4543 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4544 pid_t *p = v;
4545 pid_t *end = l->list + l->length;
cc31edce
PM
4546 /*
4547 * Advance to the next pid in the array. If this goes off the
4548 * end, we're done
4549 */
4550 p++;
4551 if (p >= end) {
4552 return NULL;
4553 } else {
7da11279 4554 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4555 return p;
4556 }
4557}
4558
102a775e 4559static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4560{
94ff212d
JP
4561 seq_printf(s, "%d\n", *(int *)v);
4562
4563 return 0;
cc31edce 4564}
bbcb81d0 4565
182446d0
TH
4566static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4567 struct cftype *cft)
81a6a5cd 4568{
182446d0 4569 return notify_on_release(css->cgroup);
81a6a5cd
PM
4570}
4571
182446d0
TH
4572static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4573 struct cftype *cft, u64 val)
6379c106 4574{
6379c106 4575 if (val)
182446d0 4576 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4577 else
182446d0 4578 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4579 return 0;
4580}
4581
182446d0
TH
4582static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4583 struct cftype *cft)
97978e6d 4584{
182446d0 4585 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4586}
4587
182446d0
TH
4588static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4589 struct cftype *cft, u64 val)
97978e6d
DL
4590{
4591 if (val)
182446d0 4592 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4593 else
182446d0 4594 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4595 return 0;
4596}
4597
a14c6874
TH
4598/* cgroup core interface files for the default hierarchy */
4599static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4600 {
d5c56ced 4601 .name = "cgroup.procs",
6f60eade 4602 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4603 .seq_start = cgroup_pidlist_start,
4604 .seq_next = cgroup_pidlist_next,
4605 .seq_stop = cgroup_pidlist_stop,
4606 .seq_show = cgroup_pidlist_show,
5d22444f 4607 .private = CGROUP_FILE_PROCS,
acbef755 4608 .write = cgroup_procs_write,
102a775e 4609 },
f8f22e53
TH
4610 {
4611 .name = "cgroup.controllers",
f8f22e53
TH
4612 .seq_show = cgroup_controllers_show,
4613 },
4614 {
4615 .name = "cgroup.subtree_control",
f8f22e53 4616 .seq_show = cgroup_subtree_control_show,
451af504 4617 .write = cgroup_subtree_control_write,
f8f22e53 4618 },
842b597e 4619 {
4a07c222 4620 .name = "cgroup.events",
a14c6874 4621 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4622 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4623 .seq_show = cgroup_events_show,
842b597e 4624 },
a14c6874
TH
4625 { } /* terminate */
4626};
d5c56ced 4627
a14c6874
TH
4628/* cgroup core interface files for the legacy hierarchies */
4629static struct cftype cgroup_legacy_base_files[] = {
4630 {
4631 .name = "cgroup.procs",
4632 .seq_start = cgroup_pidlist_start,
4633 .seq_next = cgroup_pidlist_next,
4634 .seq_stop = cgroup_pidlist_stop,
4635 .seq_show = cgroup_pidlist_show,
4636 .private = CGROUP_FILE_PROCS,
4637 .write = cgroup_procs_write,
a14c6874
TH
4638 },
4639 {
4640 .name = "cgroup.clone_children",
4641 .read_u64 = cgroup_clone_children_read,
4642 .write_u64 = cgroup_clone_children_write,
4643 },
4644 {
4645 .name = "cgroup.sane_behavior",
4646 .flags = CFTYPE_ONLY_ON_ROOT,
4647 .seq_show = cgroup_sane_behavior_show,
4648 },
d5c56ced
TH
4649 {
4650 .name = "tasks",
6612f05b
TH
4651 .seq_start = cgroup_pidlist_start,
4652 .seq_next = cgroup_pidlist_next,
4653 .seq_stop = cgroup_pidlist_stop,
4654 .seq_show = cgroup_pidlist_show,
5d22444f 4655 .private = CGROUP_FILE_TASKS,
acbef755 4656 .write = cgroup_tasks_write,
d5c56ced
TH
4657 },
4658 {
4659 .name = "notify_on_release",
d5c56ced
TH
4660 .read_u64 = cgroup_read_notify_on_release,
4661 .write_u64 = cgroup_write_notify_on_release,
4662 },
6e6ff25b
TH
4663 {
4664 .name = "release_agent",
a14c6874 4665 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4666 .seq_show = cgroup_release_agent_show,
451af504 4667 .write = cgroup_release_agent_write,
5f469907 4668 .max_write_len = PATH_MAX - 1,
6e6ff25b 4669 },
db0416b6 4670 { } /* terminate */
bbcb81d0
PM
4671};
4672
0c21ead1
TH
4673/*
4674 * css destruction is four-stage process.
4675 *
4676 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4677 * Implemented in kill_css().
4678 *
4679 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4680 * and thus css_tryget_online() is guaranteed to fail, the css can be
4681 * offlined by invoking offline_css(). After offlining, the base ref is
4682 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4683 *
4684 * 3. When the percpu_ref reaches zero, the only possible remaining
4685 * accessors are inside RCU read sections. css_release() schedules the
4686 * RCU callback.
4687 *
4688 * 4. After the grace period, the css can be freed. Implemented in
4689 * css_free_work_fn().
4690 *
4691 * It is actually hairier because both step 2 and 4 require process context
4692 * and thus involve punting to css->destroy_work adding two additional
4693 * steps to the already complex sequence.
4694 */
35ef10da 4695static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4696{
4697 struct cgroup_subsys_state *css =
35ef10da 4698 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4699 struct cgroup_subsys *ss = css->ss;
0c21ead1 4700 struct cgroup *cgrp = css->cgroup;
48ddbe19 4701
9a1049da
TH
4702 percpu_ref_exit(&css->refcnt);
4703
01e58659 4704 if (ss) {
9d755d33 4705 /* css free path */
8bb5ef79 4706 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4707 int id = css->id;
4708
01e58659
VD
4709 ss->css_free(css);
4710 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4711 cgroup_put(cgrp);
8bb5ef79
TH
4712
4713 if (parent)
4714 css_put(parent);
9d755d33
TH
4715 } else {
4716 /* cgroup free path */
4717 atomic_dec(&cgrp->root->nr_cgrps);
4718 cgroup_pidlist_destroy_all(cgrp);
971ff493 4719 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4720
d51f39b0 4721 if (cgroup_parent(cgrp)) {
9d755d33
TH
4722 /*
4723 * We get a ref to the parent, and put the ref when
4724 * this cgroup is being freed, so it's guaranteed
4725 * that the parent won't be destroyed before its
4726 * children.
4727 */
d51f39b0 4728 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4729 kernfs_put(cgrp->kn);
4730 kfree(cgrp);
4731 } else {
4732 /*
4733 * This is root cgroup's refcnt reaching zero,
4734 * which indicates that the root should be
4735 * released.
4736 */
4737 cgroup_destroy_root(cgrp->root);
4738 }
4739 }
48ddbe19
TH
4740}
4741
0c21ead1 4742static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4743{
4744 struct cgroup_subsys_state *css =
0c21ead1 4745 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4746
35ef10da 4747 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4748 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4749}
4750
25e15d83 4751static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4752{
4753 struct cgroup_subsys_state *css =
25e15d83 4754 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4755 struct cgroup_subsys *ss = css->ss;
9d755d33 4756 struct cgroup *cgrp = css->cgroup;
15a4c835 4757
1fed1b2e
TH
4758 mutex_lock(&cgroup_mutex);
4759
de3f0341 4760 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4761 list_del_rcu(&css->sibling);
4762
9d755d33
TH
4763 if (ss) {
4764 /* css release path */
01e58659 4765 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4766 if (ss->css_released)
4767 ss->css_released(css);
9d755d33
TH
4768 } else {
4769 /* cgroup release path */
9d755d33
TH
4770 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4771 cgrp->id = -1;
a4189487
LZ
4772
4773 /*
4774 * There are two control paths which try to determine
4775 * cgroup from dentry without going through kernfs -
4776 * cgroupstats_build() and css_tryget_online_from_dir().
4777 * Those are supported by RCU protecting clearing of
4778 * cgrp->kn->priv backpointer.
4779 */
6cd0f5bb
TH
4780 if (cgrp->kn)
4781 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4782 NULL);
9d755d33 4783 }
d3daf28d 4784
1fed1b2e
TH
4785 mutex_unlock(&cgroup_mutex);
4786
0c21ead1 4787 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4788}
4789
d3daf28d
TH
4790static void css_release(struct percpu_ref *ref)
4791{
4792 struct cgroup_subsys_state *css =
4793 container_of(ref, struct cgroup_subsys_state, refcnt);
4794
25e15d83
TH
4795 INIT_WORK(&css->destroy_work, css_release_work_fn);
4796 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4797}
4798
ddfcadab
TH
4799static void init_and_link_css(struct cgroup_subsys_state *css,
4800 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4801{
0cb51d71
TH
4802 lockdep_assert_held(&cgroup_mutex);
4803
ddfcadab
TH
4804 cgroup_get(cgrp);
4805
d5c419b6 4806 memset(css, 0, sizeof(*css));
bd89aabc 4807 css->cgroup = cgrp;
72c97e54 4808 css->ss = ss;
d5c419b6
TH
4809 INIT_LIST_HEAD(&css->sibling);
4810 INIT_LIST_HEAD(&css->children);
0cb51d71 4811 css->serial_nr = css_serial_nr_next++;
aa226ff4 4812 atomic_set(&css->online_cnt, 0);
0ae78e0b 4813
d51f39b0
TH
4814 if (cgroup_parent(cgrp)) {
4815 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4816 css_get(css->parent);
ddfcadab 4817 }
48ddbe19 4818
ca8bdcaf 4819 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4820}
4821
2a4ac633 4822/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4823static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4824{
623f926b 4825 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4826 int ret = 0;
4827
a31f2d3f
TH
4828 lockdep_assert_held(&cgroup_mutex);
4829
92fb9748 4830 if (ss->css_online)
eb95419b 4831 ret = ss->css_online(css);
ae7f164a 4832 if (!ret) {
eb95419b 4833 css->flags |= CSS_ONLINE;
aec25020 4834 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4835
4836 atomic_inc(&css->online_cnt);
4837 if (css->parent)
4838 atomic_inc(&css->parent->online_cnt);
ae7f164a 4839 }
b1929db4 4840 return ret;
a31f2d3f
TH
4841}
4842
2a4ac633 4843/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4844static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4845{
623f926b 4846 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4847
4848 lockdep_assert_held(&cgroup_mutex);
4849
4850 if (!(css->flags & CSS_ONLINE))
4851 return;
4852
fa06235b
VD
4853 if (ss->css_reset)
4854 ss->css_reset(css);
4855
d7eeac19 4856 if (ss->css_offline)
eb95419b 4857 ss->css_offline(css);
a31f2d3f 4858
eb95419b 4859 css->flags &= ~CSS_ONLINE;
e3297803 4860 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4861
4862 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4863}
4864
c81c925a 4865/**
6cd0f5bb 4866 * css_create - create a cgroup_subsys_state
c81c925a
TH
4867 * @cgrp: the cgroup new css will be associated with
4868 * @ss: the subsys of new css
4869 *
4870 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
4871 * css is online and installed in @cgrp. This function doesn't create the
4872 * interface files. Returns 0 on success, -errno on failure.
c81c925a 4873 */
6cd0f5bb
TH
4874static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4875 struct cgroup_subsys *ss)
c81c925a 4876{
d51f39b0 4877 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4878 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4879 struct cgroup_subsys_state *css;
4880 int err;
4881
c81c925a
TH
4882 lockdep_assert_held(&cgroup_mutex);
4883
1fed1b2e 4884 css = ss->css_alloc(parent_css);
c81c925a 4885 if (IS_ERR(css))
6cd0f5bb 4886 return css;
c81c925a 4887
ddfcadab 4888 init_and_link_css(css, ss, cgrp);
a2bed820 4889
2aad2a86 4890 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4891 if (err)
3eb59ec6 4892 goto err_free_css;
c81c925a 4893
cf780b7d 4894 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4895 if (err < 0)
4896 goto err_free_percpu_ref;
4897 css->id = err;
c81c925a 4898
15a4c835 4899 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4900 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4901 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4902
4903 err = online_css(css);
4904 if (err)
1fed1b2e 4905 goto err_list_del;
94419627 4906
c81c925a 4907 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4908 cgroup_parent(parent)) {
ed3d261b 4909 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4910 current->comm, current->pid, ss->name);
c81c925a 4911 if (!strcmp(ss->name, "memory"))
ed3d261b 4912 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4913 ss->warned_broken_hierarchy = true;
4914 }
4915
6cd0f5bb 4916 return css;
c81c925a 4917
1fed1b2e
TH
4918err_list_del:
4919 list_del_rcu(&css->sibling);
15a4c835 4920 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4921err_free_percpu_ref:
9a1049da 4922 percpu_ref_exit(&css->refcnt);
3eb59ec6 4923err_free_css:
a2bed820 4924 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 4925 return ERR_PTR(err);
c81c925a
TH
4926}
4927
a5bca215 4928static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 4929{
a5bca215 4930 struct cgroup_root *root = parent->root;
ddbcc7e8 4931 struct cgroup_subsys *ss;
a5bca215
TH
4932 struct cgroup *cgrp, *tcgrp;
4933 int level = parent->level + 1;
4934 int ssid, ret;
ddbcc7e8 4935
0a950f65 4936 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4937 cgrp = kzalloc(sizeof(*cgrp) +
4938 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
4939 if (!cgrp)
4940 return ERR_PTR(-ENOMEM);
0ab02ca8 4941
2aad2a86 4942 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4943 if (ret)
4944 goto out_free_cgrp;
4945
0ab02ca8
LZ
4946 /*
4947 * Temporarily set the pointer to NULL, so idr_find() won't return
4948 * a half-baked cgroup.
4949 */
cf780b7d 4950 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4951 if (cgrp->id < 0) {
ba0f4d76 4952 ret = -ENOMEM;
9d755d33 4953 goto out_cancel_ref;
976c06bc
TH
4954 }
4955
cc31edce 4956 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4957
9d800df1 4958 cgrp->self.parent = &parent->self;
ba0f4d76 4959 cgrp->root = root;
b11cfb58
TH
4960 cgrp->level = level;
4961
4962 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4963 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4964
b6abdb0e
LZ
4965 if (notify_on_release(parent))
4966 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4967
2260e7fc
TH
4968 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4969 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4970
0cb51d71 4971 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4972
4e139afc 4973 /* allocation complete, commit to creation */
d5c419b6 4974 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4975 atomic_inc(&root->nr_cgrps);
59f5296b 4976 cgroup_get(parent);
415cf07a 4977
0d80255e
TH
4978 /*
4979 * @cgrp is now fully operational. If something fails after this
4980 * point, it'll be released via the normal destruction path.
4981 */
6fa4918d 4982 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4983
195e9b6c 4984 /* create the csses */
5531dc91 4985 do_each_subsys_mask(ss, ssid, cgroup_ss_mask(cgrp)) {
6cd0f5bb
TH
4986 struct cgroup_subsys_state *css;
4987
4988 css = css_create(cgrp, ss);
4989 if (IS_ERR(css)) {
4990 ret = PTR_ERR(css);
996cd1fb 4991 goto out_destroy;
6cd0f5bb 4992 }
996cd1fb 4993 } while_each_subsys_mask();
ddbcc7e8 4994
bd53d617
TH
4995 /*
4996 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4997 * subtree_control from the parent. Each is configured manually.
bd53d617 4998 */
667c2491 4999 if (!cgroup_on_dfl(cgrp)) {
5531dc91 5000 cgrp->subtree_control = cgroup_control(cgrp);
8699b776 5001 cgroup_refresh_subtree_ss_mask(cgrp);
667c2491 5002 }
2bd59d48 5003
a5bca215
TH
5004 return cgrp;
5005
5006out_cancel_ref:
5007 percpu_ref_exit(&cgrp->self.refcnt);
5008out_free_cgrp:
5009 kfree(cgrp);
5010 return ERR_PTR(ret);
5011out_destroy:
5012 cgroup_destroy_locked(cgrp);
5013 return ERR_PTR(ret);
5014}
5015
5016static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5017 umode_t mode)
5018{
5019 struct cgroup *parent, *cgrp;
5020 struct cgroup_subsys *ss;
5021 struct kernfs_node *kn;
5022 int ssid, ret;
5023
5024 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5025 if (strchr(name, '\n'))
5026 return -EINVAL;
5027
5028 parent = cgroup_kn_lock_live(parent_kn);
5029 if (!parent)
5030 return -ENODEV;
5031
5032 cgrp = cgroup_create(parent);
5033 if (IS_ERR(cgrp)) {
5034 ret = PTR_ERR(cgrp);
5035 goto out_unlock;
5036 }
5037
195e9b6c
TH
5038 /* create the directory */
5039 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5040 if (IS_ERR(kn)) {
5041 ret = PTR_ERR(kn);
5042 goto out_destroy;
5043 }
5044 cgrp->kn = kn;
5045
5046 /*
5047 * This extra ref will be put in cgroup_free_fn() and guarantees
5048 * that @cgrp->kn is always accessible.
5049 */
5050 kernfs_get(kn);
5051
5052 ret = cgroup_kn_set_ugid(kn);
5053 if (ret)
5054 goto out_destroy;
5055
5056 ret = css_populate_dir(&cgrp->self, NULL);
5057 if (ret)
5058 goto out_destroy;
5059
5531dc91 5060 do_each_subsys_mask(ss, ssid, cgroup_control(cgrp)) {
195e9b6c
TH
5061 ret = css_populate_dir(cgroup_css(cgrp, ss), NULL);
5062 if (ret)
5063 goto out_destroy;
5064 } while_each_subsys_mask();
5065
5066 /* let's create and online css's */
2bd59d48 5067 kernfs_activate(kn);
ddbcc7e8 5068
ba0f4d76
TH
5069 ret = 0;
5070 goto out_unlock;
ddbcc7e8 5071
a5bca215
TH
5072out_destroy:
5073 cgroup_destroy_locked(cgrp);
ba0f4d76 5074out_unlock:
a9746d8d 5075 cgroup_kn_unlock(parent_kn);
ba0f4d76 5076 return ret;
ddbcc7e8
PM
5077}
5078
223dbc38
TH
5079/*
5080 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5081 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5082 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5083 */
5084static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5085{
223dbc38
TH
5086 struct cgroup_subsys_state *css =
5087 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5088
f20104de 5089 mutex_lock(&cgroup_mutex);
09a503ea 5090
aa226ff4
TH
5091 do {
5092 offline_css(css);
5093 css_put(css);
5094 /* @css can't go away while we're holding cgroup_mutex */
5095 css = css->parent;
5096 } while (css && atomic_dec_and_test(&css->online_cnt));
5097
5098 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5099}
5100
223dbc38
TH
5101/* css kill confirmation processing requires process context, bounce */
5102static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5103{
5104 struct cgroup_subsys_state *css =
5105 container_of(ref, struct cgroup_subsys_state, refcnt);
5106
aa226ff4
TH
5107 if (atomic_dec_and_test(&css->online_cnt)) {
5108 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5109 queue_work(cgroup_destroy_wq, &css->destroy_work);
5110 }
d3daf28d
TH
5111}
5112
f392e51c
TH
5113/**
5114 * kill_css - destroy a css
5115 * @css: css to destroy
5116 *
5117 * This function initiates destruction of @css by removing cgroup interface
5118 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5119 * asynchronously once css_tryget_online() is guaranteed to fail and when
5120 * the reference count reaches zero, @css will be released.
f392e51c
TH
5121 */
5122static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5123{
01f6474c 5124 lockdep_assert_held(&cgroup_mutex);
94419627 5125
2bd59d48
TH
5126 /*
5127 * This must happen before css is disassociated with its cgroup.
5128 * See seq_css() for details.
5129 */
4df8dc90 5130 css_clear_dir(css, NULL);
3c14f8b4 5131
edae0c33
TH
5132 /*
5133 * Killing would put the base ref, but we need to keep it alive
5134 * until after ->css_offline().
5135 */
5136 css_get(css);
5137
5138 /*
5139 * cgroup core guarantees that, by the time ->css_offline() is
5140 * invoked, no new css reference will be given out via
ec903c0c 5141 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5142 * proceed to offlining css's because percpu_ref_kill() doesn't
5143 * guarantee that the ref is seen as killed on all CPUs on return.
5144 *
5145 * Use percpu_ref_kill_and_confirm() to get notifications as each
5146 * css is confirmed to be seen as killed on all CPUs.
5147 */
5148 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5149}
5150
5151/**
5152 * cgroup_destroy_locked - the first stage of cgroup destruction
5153 * @cgrp: cgroup to be destroyed
5154 *
5155 * css's make use of percpu refcnts whose killing latency shouldn't be
5156 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5157 * guarantee that css_tryget_online() won't succeed by the time
5158 * ->css_offline() is invoked. To satisfy all the requirements,
5159 * destruction is implemented in the following two steps.
d3daf28d
TH
5160 *
5161 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5162 * userland visible parts and start killing the percpu refcnts of
5163 * css's. Set up so that the next stage will be kicked off once all
5164 * the percpu refcnts are confirmed to be killed.
5165 *
5166 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5167 * rest of destruction. Once all cgroup references are gone, the
5168 * cgroup is RCU-freed.
5169 *
5170 * This function implements s1. After this step, @cgrp is gone as far as
5171 * the userland is concerned and a new cgroup with the same name may be
5172 * created. As cgroup doesn't care about the names internally, this
5173 * doesn't cause any problem.
5174 */
42809dd4
TH
5175static int cgroup_destroy_locked(struct cgroup *cgrp)
5176 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5177{
2bd59d48 5178 struct cgroup_subsys_state *css;
1c6727af 5179 int ssid;
ddbcc7e8 5180
42809dd4
TH
5181 lockdep_assert_held(&cgroup_mutex);
5182
91486f61
TH
5183 /*
5184 * Only migration can raise populated from zero and we're already
5185 * holding cgroup_mutex.
5186 */
5187 if (cgroup_is_populated(cgrp))
ddbcc7e8 5188 return -EBUSY;
a043e3b2 5189
bb78a92f 5190 /*
d5c419b6
TH
5191 * Make sure there's no live children. We can't test emptiness of
5192 * ->self.children as dead children linger on it while being
5193 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5194 */
f3d46500 5195 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5196 return -EBUSY;
5197
455050d2
TH
5198 /*
5199 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5200 * creation by disabling cgroup_lock_live_group().
455050d2 5201 */
184faf32 5202 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5203
249f3468 5204 /* initiate massacre of all css's */
1c6727af
TH
5205 for_each_css(css, ssid, cgrp)
5206 kill_css(css);
455050d2 5207
455050d2 5208 /*
01f6474c
TH
5209 * Remove @cgrp directory along with the base files. @cgrp has an
5210 * extra ref on its kn.
f20104de 5211 */
01f6474c 5212 kernfs_remove(cgrp->kn);
f20104de 5213
d51f39b0 5214 check_for_release(cgroup_parent(cgrp));
2bd59d48 5215
249f3468 5216 /* put the base reference */
9d755d33 5217 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5218
ea15f8cc
TH
5219 return 0;
5220};
5221
2bd59d48 5222static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5223{
a9746d8d 5224 struct cgroup *cgrp;
2bd59d48 5225 int ret = 0;
42809dd4 5226
a9746d8d
TH
5227 cgrp = cgroup_kn_lock_live(kn);
5228 if (!cgrp)
5229 return 0;
42809dd4 5230
a9746d8d 5231 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5232
a9746d8d 5233 cgroup_kn_unlock(kn);
42809dd4 5234 return ret;
8e3f6541
TH
5235}
5236
2bd59d48
TH
5237static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5238 .remount_fs = cgroup_remount,
5239 .show_options = cgroup_show_options,
5240 .mkdir = cgroup_mkdir,
5241 .rmdir = cgroup_rmdir,
5242 .rename = cgroup_rename,
5243};
5244
15a4c835 5245static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5246{
ddbcc7e8 5247 struct cgroup_subsys_state *css;
cfe36bde 5248
a5ae9899 5249 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5250
648bb56d
TH
5251 mutex_lock(&cgroup_mutex);
5252
15a4c835 5253 idr_init(&ss->css_idr);
0adb0704 5254 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5255
3dd06ffa
TH
5256 /* Create the root cgroup state for this subsystem */
5257 ss->root = &cgrp_dfl_root;
5258 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5259 /* We don't handle early failures gracefully */
5260 BUG_ON(IS_ERR(css));
ddfcadab 5261 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5262
5263 /*
5264 * Root csses are never destroyed and we can't initialize
5265 * percpu_ref during early init. Disable refcnting.
5266 */
5267 css->flags |= CSS_NO_REF;
5268
15a4c835 5269 if (early) {
9395a450 5270 /* allocation can't be done safely during early init */
15a4c835
TH
5271 css->id = 1;
5272 } else {
5273 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5274 BUG_ON(css->id < 0);
5275 }
ddbcc7e8 5276
e8d55fde 5277 /* Update the init_css_set to contain a subsys
817929ec 5278 * pointer to this state - since the subsystem is
e8d55fde 5279 * newly registered, all tasks and hence the
3dd06ffa 5280 * init_css_set is in the subsystem's root cgroup. */
aec25020 5281 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5282
cb4a3167
AS
5283 have_fork_callback |= (bool)ss->fork << ss->id;
5284 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5285 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5286 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5287
e8d55fde
LZ
5288 /* At system boot, before all subsystems have been
5289 * registered, no tasks have been forked, so we don't
5290 * need to invoke fork callbacks here. */
5291 BUG_ON(!list_empty(&init_task.tasks));
5292
ae7f164a 5293 BUG_ON(online_css(css));
a8638030 5294
cf5d5941
BB
5295 mutex_unlock(&cgroup_mutex);
5296}
cf5d5941 5297
ddbcc7e8 5298/**
a043e3b2
LZ
5299 * cgroup_init_early - cgroup initialization at system boot
5300 *
5301 * Initialize cgroups at system boot, and initialize any
5302 * subsystems that request early init.
ddbcc7e8
PM
5303 */
5304int __init cgroup_init_early(void)
5305{
7b9a6ba5 5306 static struct cgroup_sb_opts __initdata opts;
30159ec7 5307 struct cgroup_subsys *ss;
ddbcc7e8 5308 int i;
30159ec7 5309
3dd06ffa 5310 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5311 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5312
a4ea1cc9 5313 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5314
3ed80a62 5315 for_each_subsys(ss, i) {
aec25020 5316 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5317 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5318 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5319 ss->id, ss->name);
073219e9
TH
5320 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5321 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5322
aec25020 5323 ss->id = i;
073219e9 5324 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5325 if (!ss->legacy_name)
5326 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5327
5328 if (ss->early_init)
15a4c835 5329 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5330 }
5331 return 0;
5332}
5333
6e5c8307 5334static u16 cgroup_disable_mask __initdata;
a3e72739 5335
ddbcc7e8 5336/**
a043e3b2
LZ
5337 * cgroup_init - cgroup initialization
5338 *
5339 * Register cgroup filesystem and /proc file, and initialize
5340 * any subsystems that didn't request early init.
ddbcc7e8
PM
5341 */
5342int __init cgroup_init(void)
5343{
30159ec7 5344 struct cgroup_subsys *ss;
035f4f51 5345 int ssid;
ddbcc7e8 5346
6e5c8307 5347 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5348 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5349 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5350 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5351
54e7b4eb 5352 mutex_lock(&cgroup_mutex);
54e7b4eb 5353
2378d8b8
TH
5354 /*
5355 * Add init_css_set to the hash table so that dfl_root can link to
5356 * it during init.
5357 */
5358 hash_add(css_set_table, &init_css_set.hlist,
5359 css_set_hash(init_css_set.subsys));
82fe9b0d 5360
3dd06ffa 5361 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5362
54e7b4eb
TH
5363 mutex_unlock(&cgroup_mutex);
5364
172a2c06 5365 for_each_subsys(ss, ssid) {
15a4c835
TH
5366 if (ss->early_init) {
5367 struct cgroup_subsys_state *css =
5368 init_css_set.subsys[ss->id];
5369
5370 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5371 GFP_KERNEL);
5372 BUG_ON(css->id < 0);
5373 } else {
5374 cgroup_init_subsys(ss, false);
5375 }
172a2c06 5376
2d8f243a
TH
5377 list_add_tail(&init_css_set.e_cset_node[ssid],
5378 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5379
5380 /*
c731ae1d
LZ
5381 * Setting dfl_root subsys_mask needs to consider the
5382 * disabled flag and cftype registration needs kmalloc,
5383 * both of which aren't available during early_init.
172a2c06 5384 */
a3e72739
TH
5385 if (cgroup_disable_mask & (1 << ssid)) {
5386 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5387 printk(KERN_INFO "Disabling %s control group subsystem\n",
5388 ss->name);
a8ddc821 5389 continue;
a3e72739 5390 }
a8ddc821 5391
223ffb29
JW
5392 if (cgroup_ssid_no_v1(ssid))
5393 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5394 ss->name);
5395
a8ddc821
TH
5396 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5397
5de4fa13 5398 if (!ss->dfl_cftypes)
a7165264 5399 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5400
a8ddc821
TH
5401 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5402 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5403 } else {
5404 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5405 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5406 }
295458e6
VD
5407
5408 if (ss->bind)
5409 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5410 }
5411
2378d8b8
TH
5412 /* init_css_set.subsys[] has been updated, re-hash */
5413 hash_del(&init_css_set.hlist);
5414 hash_add(css_set_table, &init_css_set.hlist,
5415 css_set_hash(init_css_set.subsys));
5416
035f4f51
TH
5417 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5418 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5419 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5420 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5421
2bd59d48 5422 return 0;
ddbcc7e8 5423}
b4f48b63 5424
e5fca243
TH
5425static int __init cgroup_wq_init(void)
5426{
5427 /*
5428 * There isn't much point in executing destruction path in
5429 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5430 * Use 1 for @max_active.
e5fca243
TH
5431 *
5432 * We would prefer to do this in cgroup_init() above, but that
5433 * is called before init_workqueues(): so leave this until after.
5434 */
1a11533f 5435 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5436 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5437
5438 /*
5439 * Used to destroy pidlists and separate to serve as flush domain.
5440 * Cap @max_active to 1 too.
5441 */
5442 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5443 0, 1);
5444 BUG_ON(!cgroup_pidlist_destroy_wq);
5445
e5fca243
TH
5446 return 0;
5447}
5448core_initcall(cgroup_wq_init);
5449
a424316c
PM
5450/*
5451 * proc_cgroup_show()
5452 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5453 * - Used for /proc/<pid>/cgroup.
a424316c 5454 */
006f4ac4
ZL
5455int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5456 struct pid *pid, struct task_struct *tsk)
a424316c 5457{
e61734c5 5458 char *buf, *path;
a424316c 5459 int retval;
3dd06ffa 5460 struct cgroup_root *root;
a424316c
PM
5461
5462 retval = -ENOMEM;
e61734c5 5463 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5464 if (!buf)
5465 goto out;
5466
a424316c 5467 mutex_lock(&cgroup_mutex);
f0d9a5f1 5468 spin_lock_bh(&css_set_lock);
a424316c 5469
985ed670 5470 for_each_root(root) {
a424316c 5471 struct cgroup_subsys *ss;
bd89aabc 5472 struct cgroup *cgrp;
b85d2040 5473 int ssid, count = 0;
a424316c 5474
a7165264 5475 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5476 continue;
5477
2c6ab6d2 5478 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5479 if (root != &cgrp_dfl_root)
5480 for_each_subsys(ss, ssid)
5481 if (root->subsys_mask & (1 << ssid))
5482 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5483 ss->legacy_name);
c6d57f33
PM
5484 if (strlen(root->name))
5485 seq_printf(m, "%sname=%s", count ? "," : "",
5486 root->name);
a424316c 5487 seq_putc(m, ':');
2e91fa7f 5488
7717f7ba 5489 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5490
5491 /*
5492 * On traditional hierarchies, all zombie tasks show up as
5493 * belonging to the root cgroup. On the default hierarchy,
5494 * while a zombie doesn't show up in "cgroup.procs" and
5495 * thus can't be migrated, its /proc/PID/cgroup keeps
5496 * reporting the cgroup it belonged to before exiting. If
5497 * the cgroup is removed before the zombie is reaped,
5498 * " (deleted)" is appended to the cgroup path.
5499 */
5500 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5501 path = cgroup_path(cgrp, buf, PATH_MAX);
5502 if (!path) {
5503 retval = -ENAMETOOLONG;
5504 goto out_unlock;
5505 }
5506 } else {
5507 path = "/";
e61734c5 5508 }
2e91fa7f 5509
e61734c5 5510 seq_puts(m, path);
2e91fa7f
TH
5511
5512 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5513 seq_puts(m, " (deleted)\n");
5514 else
5515 seq_putc(m, '\n');
a424316c
PM
5516 }
5517
006f4ac4 5518 retval = 0;
a424316c 5519out_unlock:
f0d9a5f1 5520 spin_unlock_bh(&css_set_lock);
a424316c 5521 mutex_unlock(&cgroup_mutex);
a424316c
PM
5522 kfree(buf);
5523out:
5524 return retval;
5525}
5526
a424316c
PM
5527/* Display information about each subsystem and each hierarchy */
5528static int proc_cgroupstats_show(struct seq_file *m, void *v)
5529{
30159ec7 5530 struct cgroup_subsys *ss;
a424316c 5531 int i;
a424316c 5532
8bab8dde 5533 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5534 /*
5535 * ideally we don't want subsystems moving around while we do this.
5536 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5537 * subsys/hierarchy state.
5538 */
a424316c 5539 mutex_lock(&cgroup_mutex);
30159ec7
TH
5540
5541 for_each_subsys(ss, i)
2c6ab6d2 5542 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5543 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5544 atomic_read(&ss->root->nr_cgrps),
5545 cgroup_ssid_enabled(i));
30159ec7 5546
a424316c
PM
5547 mutex_unlock(&cgroup_mutex);
5548 return 0;
5549}
5550
5551static int cgroupstats_open(struct inode *inode, struct file *file)
5552{
9dce07f1 5553 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5554}
5555
828c0950 5556static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5557 .open = cgroupstats_open,
5558 .read = seq_read,
5559 .llseek = seq_lseek,
5560 .release = single_release,
5561};
5562
b4f48b63 5563/**
eaf797ab 5564 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5565 * @child: pointer to task_struct of forking parent process.
b4f48b63 5566 *
eaf797ab
TH
5567 * A task is associated with the init_css_set until cgroup_post_fork()
5568 * attaches it to the parent's css_set. Empty cg_list indicates that
5569 * @child isn't holding reference to its css_set.
b4f48b63
PM
5570 */
5571void cgroup_fork(struct task_struct *child)
5572{
eaf797ab 5573 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5574 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5575}
5576
7e47682e
AS
5577/**
5578 * cgroup_can_fork - called on a new task before the process is exposed
5579 * @child: the task in question.
5580 *
5581 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5582 * returns an error, the fork aborts with that error code. This allows for
5583 * a cgroup subsystem to conditionally allow or deny new forks.
5584 */
b53202e6 5585int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5586{
5587 struct cgroup_subsys *ss;
5588 int i, j, ret;
5589
b4e0eeaf 5590 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5591 ret = ss->can_fork(child);
7e47682e
AS
5592 if (ret)
5593 goto out_revert;
b4e0eeaf 5594 } while_each_subsys_mask();
7e47682e
AS
5595
5596 return 0;
5597
5598out_revert:
5599 for_each_subsys(ss, j) {
5600 if (j >= i)
5601 break;
5602 if (ss->cancel_fork)
b53202e6 5603 ss->cancel_fork(child);
7e47682e
AS
5604 }
5605
5606 return ret;
5607}
5608
5609/**
5610 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5611 * @child: the task in question
5612 *
5613 * This calls the cancel_fork() callbacks if a fork failed *after*
5614 * cgroup_can_fork() succeded.
5615 */
b53202e6 5616void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5617{
5618 struct cgroup_subsys *ss;
5619 int i;
5620
5621 for_each_subsys(ss, i)
5622 if (ss->cancel_fork)
b53202e6 5623 ss->cancel_fork(child);
7e47682e
AS
5624}
5625
817929ec 5626/**
a043e3b2
LZ
5627 * cgroup_post_fork - called on a new task after adding it to the task list
5628 * @child: the task in question
5629 *
5edee61e
TH
5630 * Adds the task to the list running through its css_set if necessary and
5631 * call the subsystem fork() callbacks. Has to be after the task is
5632 * visible on the task list in case we race with the first call to
0942eeee 5633 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5634 * list.
a043e3b2 5635 */
b53202e6 5636void cgroup_post_fork(struct task_struct *child)
817929ec 5637{
30159ec7 5638 struct cgroup_subsys *ss;
5edee61e
TH
5639 int i;
5640
3ce3230a 5641 /*
251f8c03 5642 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5643 * function sets use_task_css_set_links before grabbing
5644 * tasklist_lock and we just went through tasklist_lock to add
5645 * @child, it's guaranteed that either we see the set
5646 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5647 * @child during its iteration.
5648 *
5649 * If we won the race, @child is associated with %current's
f0d9a5f1 5650 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5651 * association is stable, and, on completion of the parent's
5652 * migration, @child is visible in the source of migration or
5653 * already in the destination cgroup. This guarantee is necessary
5654 * when implementing operations which need to migrate all tasks of
5655 * a cgroup to another.
5656 *
251f8c03 5657 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5658 * will remain in init_css_set. This is safe because all tasks are
5659 * in the init_css_set before cg_links is enabled and there's no
5660 * operation which transfers all tasks out of init_css_set.
3ce3230a 5661 */
817929ec 5662 if (use_task_css_set_links) {
eaf797ab
TH
5663 struct css_set *cset;
5664
f0d9a5f1 5665 spin_lock_bh(&css_set_lock);
0e1d768f 5666 cset = task_css_set(current);
eaf797ab 5667 if (list_empty(&child->cg_list)) {
eaf797ab 5668 get_css_set(cset);
f6d7d049 5669 css_set_move_task(child, NULL, cset, false);
eaf797ab 5670 }
f0d9a5f1 5671 spin_unlock_bh(&css_set_lock);
817929ec 5672 }
5edee61e
TH
5673
5674 /*
5675 * Call ss->fork(). This must happen after @child is linked on
5676 * css_set; otherwise, @child might change state between ->fork()
5677 * and addition to css_set.
5678 */
b4e0eeaf 5679 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5680 ss->fork(child);
b4e0eeaf 5681 } while_each_subsys_mask();
817929ec 5682}
5edee61e 5683
b4f48b63
PM
5684/**
5685 * cgroup_exit - detach cgroup from exiting task
5686 * @tsk: pointer to task_struct of exiting process
5687 *
5688 * Description: Detach cgroup from @tsk and release it.
5689 *
5690 * Note that cgroups marked notify_on_release force every task in
5691 * them to take the global cgroup_mutex mutex when exiting.
5692 * This could impact scaling on very large systems. Be reluctant to
5693 * use notify_on_release cgroups where very high task exit scaling
5694 * is required on large systems.
5695 *
0e1d768f
TH
5696 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5697 * call cgroup_exit() while the task is still competent to handle
5698 * notify_on_release(), then leave the task attached to the root cgroup in
5699 * each hierarchy for the remainder of its exit. No need to bother with
5700 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5701 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5702 */
1ec41830 5703void cgroup_exit(struct task_struct *tsk)
b4f48b63 5704{
30159ec7 5705 struct cgroup_subsys *ss;
5abb8855 5706 struct css_set *cset;
d41d5a01 5707 int i;
817929ec
PM
5708
5709 /*
0e1d768f 5710 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5711 * with us, we can check css_set and cg_list without synchronization.
817929ec 5712 */
0de0942d
TH
5713 cset = task_css_set(tsk);
5714
817929ec 5715 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5716 spin_lock_bh(&css_set_lock);
f6d7d049 5717 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5718 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5719 } else {
5720 get_css_set(cset);
817929ec
PM
5721 }
5722
cb4a3167 5723 /* see cgroup_post_fork() for details */
b4e0eeaf 5724 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5725 ss->exit(tsk);
b4e0eeaf 5726 } while_each_subsys_mask();
2e91fa7f 5727}
30159ec7 5728
2e91fa7f
TH
5729void cgroup_free(struct task_struct *task)
5730{
5731 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5732 struct cgroup_subsys *ss;
5733 int ssid;
5734
b4e0eeaf 5735 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5736 ss->free(task);
b4e0eeaf 5737 } while_each_subsys_mask();
d41d5a01 5738
2e91fa7f 5739 put_css_set(cset);
b4f48b63 5740}
697f4161 5741
bd89aabc 5742static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5743{
27bd4dbb 5744 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5745 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5746 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5747}
5748
81a6a5cd
PM
5749/*
5750 * Notify userspace when a cgroup is released, by running the
5751 * configured release agent with the name of the cgroup (path
5752 * relative to the root of cgroup file system) as the argument.
5753 *
5754 * Most likely, this user command will try to rmdir this cgroup.
5755 *
5756 * This races with the possibility that some other task will be
5757 * attached to this cgroup before it is removed, or that some other
5758 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5759 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5760 * unused, and this cgroup will be reprieved from its death sentence,
5761 * to continue to serve a useful existence. Next time it's released,
5762 * we will get notified again, if it still has 'notify_on_release' set.
5763 *
5764 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5765 * means only wait until the task is successfully execve()'d. The
5766 * separate release agent task is forked by call_usermodehelper(),
5767 * then control in this thread returns here, without waiting for the
5768 * release agent task. We don't bother to wait because the caller of
5769 * this routine has no use for the exit status of the release agent
5770 * task, so no sense holding our caller up for that.
81a6a5cd 5771 */
81a6a5cd
PM
5772static void cgroup_release_agent(struct work_struct *work)
5773{
971ff493
ZL
5774 struct cgroup *cgrp =
5775 container_of(work, struct cgroup, release_agent_work);
5776 char *pathbuf = NULL, *agentbuf = NULL, *path;
5777 char *argv[3], *envp[3];
5778
81a6a5cd 5779 mutex_lock(&cgroup_mutex);
971ff493
ZL
5780
5781 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5782 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5783 if (!pathbuf || !agentbuf)
5784 goto out;
5785
5786 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5787 if (!path)
5788 goto out;
5789
5790 argv[0] = agentbuf;
5791 argv[1] = path;
5792 argv[2] = NULL;
5793
5794 /* minimal command environment */
5795 envp[0] = "HOME=/";
5796 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5797 envp[2] = NULL;
5798
81a6a5cd 5799 mutex_unlock(&cgroup_mutex);
971ff493 5800 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5801 goto out_free;
971ff493 5802out:
81a6a5cd 5803 mutex_unlock(&cgroup_mutex);
3e2cd91a 5804out_free:
971ff493
ZL
5805 kfree(agentbuf);
5806 kfree(pathbuf);
81a6a5cd 5807}
8bab8dde
PM
5808
5809static int __init cgroup_disable(char *str)
5810{
30159ec7 5811 struct cgroup_subsys *ss;
8bab8dde 5812 char *token;
30159ec7 5813 int i;
8bab8dde
PM
5814
5815 while ((token = strsep(&str, ",")) != NULL) {
5816 if (!*token)
5817 continue;
be45c900 5818
3ed80a62 5819 for_each_subsys(ss, i) {
3e1d2eed
TH
5820 if (strcmp(token, ss->name) &&
5821 strcmp(token, ss->legacy_name))
5822 continue;
a3e72739 5823 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5824 }
5825 }
5826 return 1;
5827}
5828__setup("cgroup_disable=", cgroup_disable);
38460b48 5829
223ffb29
JW
5830static int __init cgroup_no_v1(char *str)
5831{
5832 struct cgroup_subsys *ss;
5833 char *token;
5834 int i;
5835
5836 while ((token = strsep(&str, ",")) != NULL) {
5837 if (!*token)
5838 continue;
5839
5840 if (!strcmp(token, "all")) {
6e5c8307 5841 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
5842 break;
5843 }
5844
5845 for_each_subsys(ss, i) {
5846 if (strcmp(token, ss->name) &&
5847 strcmp(token, ss->legacy_name))
5848 continue;
5849
5850 cgroup_no_v1_mask |= 1 << i;
5851 }
5852 }
5853 return 1;
5854}
5855__setup("cgroup_no_v1=", cgroup_no_v1);
5856
b77d7b60 5857/**
ec903c0c 5858 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5859 * @dentry: directory dentry of interest
5860 * @ss: subsystem of interest
b77d7b60 5861 *
5a17f543
TH
5862 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5863 * to get the corresponding css and return it. If such css doesn't exist
5864 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5865 */
ec903c0c
TH
5866struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5867 struct cgroup_subsys *ss)
e5d1367f 5868{
2bd59d48 5869 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 5870 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 5871 struct cgroup_subsys_state *css = NULL;
e5d1367f 5872 struct cgroup *cgrp;
e5d1367f 5873
35cf0836 5874 /* is @dentry a cgroup dir? */
f17fc25f
TH
5875 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5876 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5877 return ERR_PTR(-EBADF);
5878
5a17f543
TH
5879 rcu_read_lock();
5880
2bd59d48
TH
5881 /*
5882 * This path doesn't originate from kernfs and @kn could already
5883 * have been or be removed at any point. @kn->priv is RCU
a4189487 5884 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5885 */
5886 cgrp = rcu_dereference(kn->priv);
5887 if (cgrp)
5888 css = cgroup_css(cgrp, ss);
5a17f543 5889
ec903c0c 5890 if (!css || !css_tryget_online(css))
5a17f543
TH
5891 css = ERR_PTR(-ENOENT);
5892
5893 rcu_read_unlock();
5894 return css;
e5d1367f 5895}
e5d1367f 5896
1cb650b9
LZ
5897/**
5898 * css_from_id - lookup css by id
5899 * @id: the cgroup id
5900 * @ss: cgroup subsys to be looked into
5901 *
5902 * Returns the css if there's valid one with @id, otherwise returns NULL.
5903 * Should be called under rcu_read_lock().
5904 */
5905struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5906{
6fa4918d 5907 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5908 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5909}
5910
16af4396
TH
5911/**
5912 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5913 * @path: path on the default hierarchy
5914 *
5915 * Find the cgroup at @path on the default hierarchy, increment its
5916 * reference count and return it. Returns pointer to the found cgroup on
5917 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5918 * if @path points to a non-directory.
5919 */
5920struct cgroup *cgroup_get_from_path(const char *path)
5921{
5922 struct kernfs_node *kn;
5923 struct cgroup *cgrp;
5924
5925 mutex_lock(&cgroup_mutex);
5926
5927 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5928 if (kn) {
5929 if (kernfs_type(kn) == KERNFS_DIR) {
5930 cgrp = kn->priv;
5931 cgroup_get(cgrp);
5932 } else {
5933 cgrp = ERR_PTR(-ENOTDIR);
5934 }
5935 kernfs_put(kn);
5936 } else {
5937 cgrp = ERR_PTR(-ENOENT);
5938 }
5939
5940 mutex_unlock(&cgroup_mutex);
5941 return cgrp;
5942}
5943EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5944
bd1060a1
TH
5945/*
5946 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5947 * definition in cgroup-defs.h.
5948 */
5949#ifdef CONFIG_SOCK_CGROUP_DATA
5950
5951#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5952
3fa4cc9c 5953DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
5954static bool cgroup_sk_alloc_disabled __read_mostly;
5955
5956void cgroup_sk_alloc_disable(void)
5957{
5958 if (cgroup_sk_alloc_disabled)
5959 return;
5960 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5961 cgroup_sk_alloc_disabled = true;
5962}
5963
5964#else
5965
5966#define cgroup_sk_alloc_disabled false
5967
5968#endif
5969
5970void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5971{
5972 if (cgroup_sk_alloc_disabled)
5973 return;
5974
5975 rcu_read_lock();
5976
5977 while (true) {
5978 struct css_set *cset;
5979
5980 cset = task_css_set(current);
5981 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5982 skcd->val = (unsigned long)cset->dfl_cgrp;
5983 break;
5984 }
5985 cpu_relax();
5986 }
5987
5988 rcu_read_unlock();
5989}
5990
5991void cgroup_sk_free(struct sock_cgroup_data *skcd)
5992{
5993 cgroup_put(sock_cgroup_ptr(skcd));
5994}
5995
5996#endif /* CONFIG_SOCK_CGROUP_DATA */
5997
fe693435 5998#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5999static struct cgroup_subsys_state *
6000debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6001{
6002 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6003
6004 if (!css)
6005 return ERR_PTR(-ENOMEM);
6006
6007 return css;
6008}
6009
eb95419b 6010static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6011{
eb95419b 6012 kfree(css);
fe693435
PM
6013}
6014
182446d0
TH
6015static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6016 struct cftype *cft)
fe693435 6017{
182446d0 6018 return cgroup_task_count(css->cgroup);
fe693435
PM
6019}
6020
182446d0
TH
6021static u64 current_css_set_read(struct cgroup_subsys_state *css,
6022 struct cftype *cft)
fe693435
PM
6023{
6024 return (u64)(unsigned long)current->cgroups;
6025}
6026
182446d0 6027static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6028 struct cftype *cft)
fe693435
PM
6029{
6030 u64 count;
6031
6032 rcu_read_lock();
a8ad805c 6033 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6034 rcu_read_unlock();
6035 return count;
6036}
6037
2da8ca82 6038static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6039{
69d0206c 6040 struct cgrp_cset_link *link;
5abb8855 6041 struct css_set *cset;
e61734c5
TH
6042 char *name_buf;
6043
6044 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6045 if (!name_buf)
6046 return -ENOMEM;
7717f7ba 6047
f0d9a5f1 6048 spin_lock_bh(&css_set_lock);
7717f7ba 6049 rcu_read_lock();
5abb8855 6050 cset = rcu_dereference(current->cgroups);
69d0206c 6051 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6052 struct cgroup *c = link->cgrp;
7717f7ba 6053
a2dd4247 6054 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6055 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6056 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6057 }
6058 rcu_read_unlock();
f0d9a5f1 6059 spin_unlock_bh(&css_set_lock);
e61734c5 6060 kfree(name_buf);
7717f7ba
PM
6061 return 0;
6062}
6063
6064#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6065static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6066{
2da8ca82 6067 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6068 struct cgrp_cset_link *link;
7717f7ba 6069
f0d9a5f1 6070 spin_lock_bh(&css_set_lock);
182446d0 6071 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6072 struct css_set *cset = link->cset;
7717f7ba
PM
6073 struct task_struct *task;
6074 int count = 0;
c7561128 6075
5abb8855 6076 seq_printf(seq, "css_set %p\n", cset);
c7561128 6077
5abb8855 6078 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6079 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6080 goto overflow;
6081 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6082 }
6083
6084 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6085 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6086 goto overflow;
6087 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6088 }
c7561128
TH
6089 continue;
6090 overflow:
6091 seq_puts(seq, " ...\n");
7717f7ba 6092 }
f0d9a5f1 6093 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6094 return 0;
6095}
6096
182446d0 6097static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6098{
27bd4dbb 6099 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6100 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6101}
6102
6103static struct cftype debug_files[] = {
fe693435
PM
6104 {
6105 .name = "taskcount",
6106 .read_u64 = debug_taskcount_read,
6107 },
6108
6109 {
6110 .name = "current_css_set",
6111 .read_u64 = current_css_set_read,
6112 },
6113
6114 {
6115 .name = "current_css_set_refcount",
6116 .read_u64 = current_css_set_refcount_read,
6117 },
6118
7717f7ba
PM
6119 {
6120 .name = "current_css_set_cg_links",
2da8ca82 6121 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6122 },
6123
6124 {
6125 .name = "cgroup_css_links",
2da8ca82 6126 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6127 },
6128
fe693435
PM
6129 {
6130 .name = "releasable",
6131 .read_u64 = releasable_read,
6132 },
fe693435 6133
4baf6e33
TH
6134 { } /* terminate */
6135};
fe693435 6136
073219e9 6137struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6138 .css_alloc = debug_css_alloc,
6139 .css_free = debug_css_free,
5577964e 6140 .legacy_cftypes = debug_files,
fe693435
PM
6141};
6142#endif /* CONFIG_CGROUP_DEBUG */