cgroup: make cgroup_file_open() rcu_read_lock() around cgroup_css() and add cfent...
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
8af01f56 84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
105347ba 120 struct cgroup_subsys_state *css;
712317ad
LZ
121
122 /* file xattrs */
123 struct simple_xattrs xattrs;
05ef1d7c
TH
124};
125
38460b48
KH
126/*
127 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
128 * cgroup_subsys->use_id != 0.
129 */
130#define CSS_ID_MAX (65535)
131struct css_id {
132 /*
133 * The css to which this ID points. This pointer is set to valid value
134 * after cgroup is populated. If cgroup is removed, this will be NULL.
135 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
136 * is called after synchronize_rcu(). But for safe use, css_tryget()
137 * should be used for avoiding race.
38460b48 138 */
2c392b8c 139 struct cgroup_subsys_state __rcu *css;
38460b48
KH
140 /*
141 * ID of this css.
142 */
143 unsigned short id;
144 /*
145 * Depth in hierarchy which this ID belongs to.
146 */
147 unsigned short depth;
148 /*
149 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 */
151 struct rcu_head rcu_head;
152 /*
153 * Hierarchy of CSS ID belongs to.
154 */
155 unsigned short stack[0]; /* Array of Length (depth+1) */
156};
157
0dea1168 158/*
25985edc 159 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
160 */
161struct cgroup_event {
162 /*
81eeaf04 163 * css which the event belongs to.
0dea1168 164 */
81eeaf04 165 struct cgroup_subsys_state *css;
0dea1168
KS
166 /*
167 * Control file which the event associated.
168 */
169 struct cftype *cft;
170 /*
171 * eventfd to signal userspace about the event.
172 */
173 struct eventfd_ctx *eventfd;
174 /*
175 * Each of these stored in a list by the cgroup.
176 */
177 struct list_head list;
178 /*
179 * All fields below needed to unregister event when
180 * userspace closes eventfd.
181 */
182 poll_table pt;
183 wait_queue_head_t *wqh;
184 wait_queue_t wait;
185 struct work_struct remove;
186};
38460b48 187
ddbcc7e8
PM
188/* The list of hierarchy roots */
189
9871bf95
TH
190static LIST_HEAD(cgroup_roots);
191static int cgroup_root_count;
ddbcc7e8 192
54e7b4eb
TH
193/*
194 * Hierarchy ID allocation and mapping. It follows the same exclusion
195 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
196 * writes, either for reads.
197 */
1a574231 198static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 199
65dff759
LZ
200static struct cgroup_name root_cgroup_name = { .name = "/" };
201
794611a1
LZ
202/*
203 * Assign a monotonically increasing serial number to cgroups. It
204 * guarantees cgroups with bigger numbers are newer than those with smaller
205 * numbers. Also, as cgroups are always appended to the parent's
206 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
207 * the ascending serial number order on the list. Protected by
208 * cgroup_mutex.
794611a1 209 */
00356bd5 210static u64 cgroup_serial_nr_next = 1;
794611a1 211
ddbcc7e8 212/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
213 * check for fork/exit handlers to call. This avoids us having to do
214 * extra work in the fork/exit path if none of the subsystems need to
215 * be called.
ddbcc7e8 216 */
8947f9d5 217static int need_forkexit_callback __read_mostly;
ddbcc7e8 218
628f7cd4
TH
219static struct cftype cgroup_base_files[];
220
ea15f8cc 221static void cgroup_offline_fn(struct work_struct *work);
42809dd4 222static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
223static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
42809dd4 225
95109b62
TH
226/**
227 * cgroup_css - obtain a cgroup's css for the specified subsystem
228 * @cgrp: the cgroup of interest
229 * @subsys_id: the subsystem of interest
230 *
231 * Return @cgrp's css (cgroup_subsys_state) associated with @subsys_id.
232 */
233static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
234 int subsys_id)
235{
236 return cgrp->subsys[subsys_id];
237}
238
ddbcc7e8 239/* convenient tests for these bits */
54766d4a 240static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 241{
54766d4a 242 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
243}
244
78574cf9
LZ
245/**
246 * cgroup_is_descendant - test ancestry
247 * @cgrp: the cgroup to be tested
248 * @ancestor: possible ancestor of @cgrp
249 *
250 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
251 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
252 * and @ancestor are accessible.
253 */
254bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
255{
256 while (cgrp) {
257 if (cgrp == ancestor)
258 return true;
259 cgrp = cgrp->parent;
260 }
261 return false;
262}
263EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 264
e9685a03 265static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
266{
267 const int bits =
bd89aabc
PM
268 (1 << CGRP_RELEASABLE) |
269 (1 << CGRP_NOTIFY_ON_RELEASE);
270 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
271}
272
e9685a03 273static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 274{
bd89aabc 275 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
276}
277
30159ec7
TH
278/**
279 * for_each_subsys - iterate all loaded cgroup subsystems
280 * @ss: the iteration cursor
281 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
282 *
283 * Should be called under cgroup_mutex.
284 */
285#define for_each_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
287 if (({ lockdep_assert_held(&cgroup_mutex); \
288 !((ss) = cgroup_subsys[i]); })) { } \
289 else
290
291/**
292 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
293 * @ss: the iteration cursor
294 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
295 *
296 * Bulit-in subsystems are always present and iteration itself doesn't
297 * require any synchronization.
298 */
299#define for_each_builtin_subsys(ss, i) \
300 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
301 (((ss) = cgroup_subsys[i]) || true); (i)++)
302
5549c497
TH
303/* iterate each subsystem attached to a hierarchy */
304#define for_each_root_subsys(root, ss) \
305 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 306
5549c497
TH
307/* iterate across the active hierarchies */
308#define for_each_active_root(root) \
309 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 310
f6ea9372
TH
311static inline struct cgroup *__d_cgrp(struct dentry *dentry)
312{
313 return dentry->d_fsdata;
314}
315
05ef1d7c 316static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
317{
318 return dentry->d_fsdata;
319}
320
05ef1d7c
TH
321static inline struct cftype *__d_cft(struct dentry *dentry)
322{
323 return __d_cfe(dentry)->type;
324}
325
7ae1bad9
TH
326/**
327 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
328 * @cgrp: the cgroup to be checked for liveness
329 *
47cfcd09
TH
330 * On success, returns true; the mutex should be later unlocked. On
331 * failure returns false with no lock held.
7ae1bad9 332 */
b9777cf8 333static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
334{
335 mutex_lock(&cgroup_mutex);
54766d4a 336 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
337 mutex_unlock(&cgroup_mutex);
338 return false;
339 }
340 return true;
341}
7ae1bad9 342
81a6a5cd
PM
343/* the list of cgroups eligible for automatic release. Protected by
344 * release_list_lock */
345static LIST_HEAD(release_list);
cdcc136f 346static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
347static void cgroup_release_agent(struct work_struct *work);
348static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 349static void check_for_release(struct cgroup *cgrp);
81a6a5cd 350
69d0206c
TH
351/*
352 * A cgroup can be associated with multiple css_sets as different tasks may
353 * belong to different cgroups on different hierarchies. In the other
354 * direction, a css_set is naturally associated with multiple cgroups.
355 * This M:N relationship is represented by the following link structure
356 * which exists for each association and allows traversing the associations
357 * from both sides.
358 */
359struct cgrp_cset_link {
360 /* the cgroup and css_set this link associates */
361 struct cgroup *cgrp;
362 struct css_set *cset;
363
364 /* list of cgrp_cset_links anchored at cgrp->cset_links */
365 struct list_head cset_link;
366
367 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
368 struct list_head cgrp_link;
817929ec
PM
369};
370
371/* The default css_set - used by init and its children prior to any
372 * hierarchies being mounted. It contains a pointer to the root state
373 * for each subsystem. Also used to anchor the list of css_sets. Not
374 * reference-counted, to improve performance when child cgroups
375 * haven't been created.
376 */
377
378static struct css_set init_css_set;
69d0206c 379static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 380
e6a1105b
BB
381static int cgroup_init_idr(struct cgroup_subsys *ss,
382 struct cgroup_subsys_state *css);
38460b48 383
0942eeee
TH
384/*
385 * css_set_lock protects the list of css_set objects, and the chain of
386 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 387 * css_task_iter_start().
0942eeee 388 */
817929ec
PM
389static DEFINE_RWLOCK(css_set_lock);
390static int css_set_count;
391
7717f7ba
PM
392/*
393 * hash table for cgroup groups. This improves the performance to find
394 * an existing css_set. This hash doesn't (currently) take into
395 * account cgroups in empty hierarchies.
396 */
472b1053 397#define CSS_SET_HASH_BITS 7
0ac801fe 398static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 399
0ac801fe 400static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 401{
0ac801fe 402 unsigned long key = 0UL;
30159ec7
TH
403 struct cgroup_subsys *ss;
404 int i;
472b1053 405
30159ec7 406 for_each_subsys(ss, i)
0ac801fe
LZ
407 key += (unsigned long)css[i];
408 key = (key >> 16) ^ key;
472b1053 409
0ac801fe 410 return key;
472b1053
LZ
411}
412
0942eeee
TH
413/*
414 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
415 * until after the first call to css_task_iter_start(). This reduces the
416 * fork()/exit() overhead for people who have cgroups compiled into their
417 * kernel but not actually in use.
0942eeee 418 */
8947f9d5 419static int use_task_css_set_links __read_mostly;
817929ec 420
5abb8855 421static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 422{
69d0206c 423 struct cgrp_cset_link *link, *tmp_link;
5abb8855 424
146aa1bd
LJ
425 /*
426 * Ensure that the refcount doesn't hit zero while any readers
427 * can see it. Similar to atomic_dec_and_lock(), but for an
428 * rwlock
429 */
5abb8855 430 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
431 return;
432 write_lock(&css_set_lock);
5abb8855 433 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
434 write_unlock(&css_set_lock);
435 return;
436 }
81a6a5cd 437
2c6ab6d2 438 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 439 hash_del(&cset->hlist);
2c6ab6d2
PM
440 css_set_count--;
441
69d0206c 442 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 443 struct cgroup *cgrp = link->cgrp;
5abb8855 444
69d0206c
TH
445 list_del(&link->cset_link);
446 list_del(&link->cgrp_link);
71b5707e 447
ddd69148 448 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 449 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 450 if (taskexit)
bd89aabc
PM
451 set_bit(CGRP_RELEASABLE, &cgrp->flags);
452 check_for_release(cgrp);
81a6a5cd 453 }
2c6ab6d2
PM
454
455 kfree(link);
81a6a5cd 456 }
2c6ab6d2
PM
457
458 write_unlock(&css_set_lock);
5abb8855 459 kfree_rcu(cset, rcu_head);
b4f48b63
PM
460}
461
817929ec
PM
462/*
463 * refcounted get/put for css_set objects
464 */
5abb8855 465static inline void get_css_set(struct css_set *cset)
817929ec 466{
5abb8855 467 atomic_inc(&cset->refcount);
817929ec
PM
468}
469
5abb8855 470static inline void put_css_set(struct css_set *cset)
817929ec 471{
5abb8855 472 __put_css_set(cset, 0);
817929ec
PM
473}
474
5abb8855 475static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 476{
5abb8855 477 __put_css_set(cset, 1);
81a6a5cd
PM
478}
479
b326f9d0 480/**
7717f7ba 481 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
482 * @cset: candidate css_set being tested
483 * @old_cset: existing css_set for a task
7717f7ba
PM
484 * @new_cgrp: cgroup that's being entered by the task
485 * @template: desired set of css pointers in css_set (pre-calculated)
486 *
6f4b7e63 487 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
488 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
489 */
5abb8855
TH
490static bool compare_css_sets(struct css_set *cset,
491 struct css_set *old_cset,
7717f7ba
PM
492 struct cgroup *new_cgrp,
493 struct cgroup_subsys_state *template[])
494{
495 struct list_head *l1, *l2;
496
5abb8855 497 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
498 /* Not all subsystems matched */
499 return false;
500 }
501
502 /*
503 * Compare cgroup pointers in order to distinguish between
504 * different cgroups in heirarchies with no subsystems. We
505 * could get by with just this check alone (and skip the
506 * memcmp above) but on most setups the memcmp check will
507 * avoid the need for this more expensive check on almost all
508 * candidates.
509 */
510
69d0206c
TH
511 l1 = &cset->cgrp_links;
512 l2 = &old_cset->cgrp_links;
7717f7ba 513 while (1) {
69d0206c 514 struct cgrp_cset_link *link1, *link2;
5abb8855 515 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
516
517 l1 = l1->next;
518 l2 = l2->next;
519 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
520 if (l1 == &cset->cgrp_links) {
521 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
522 break;
523 } else {
69d0206c 524 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
525 }
526 /* Locate the cgroups associated with these links. */
69d0206c
TH
527 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
528 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
529 cgrp1 = link1->cgrp;
530 cgrp2 = link2->cgrp;
7717f7ba 531 /* Hierarchies should be linked in the same order. */
5abb8855 532 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
533
534 /*
535 * If this hierarchy is the hierarchy of the cgroup
536 * that's changing, then we need to check that this
537 * css_set points to the new cgroup; if it's any other
538 * hierarchy, then this css_set should point to the
539 * same cgroup as the old css_set.
540 */
5abb8855
TH
541 if (cgrp1->root == new_cgrp->root) {
542 if (cgrp1 != new_cgrp)
7717f7ba
PM
543 return false;
544 } else {
5abb8855 545 if (cgrp1 != cgrp2)
7717f7ba
PM
546 return false;
547 }
548 }
549 return true;
550}
551
b326f9d0
TH
552/**
553 * find_existing_css_set - init css array and find the matching css_set
554 * @old_cset: the css_set that we're using before the cgroup transition
555 * @cgrp: the cgroup that we're moving into
556 * @template: out param for the new set of csses, should be clear on entry
817929ec 557 */
5abb8855
TH
558static struct css_set *find_existing_css_set(struct css_set *old_cset,
559 struct cgroup *cgrp,
560 struct cgroup_subsys_state *template[])
b4f48b63 561{
bd89aabc 562 struct cgroupfs_root *root = cgrp->root;
30159ec7 563 struct cgroup_subsys *ss;
5abb8855 564 struct css_set *cset;
0ac801fe 565 unsigned long key;
b326f9d0 566 int i;
817929ec 567
aae8aab4
BB
568 /*
569 * Build the set of subsystem state objects that we want to see in the
570 * new css_set. while subsystems can change globally, the entries here
571 * won't change, so no need for locking.
572 */
30159ec7 573 for_each_subsys(ss, i) {
a1a71b45 574 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
575 /* Subsystem is in this hierarchy. So we want
576 * the subsystem state from the new
577 * cgroup */
40e93b39 578 template[i] = cgroup_css(cgrp, i);
817929ec
PM
579 } else {
580 /* Subsystem is not in this hierarchy, so we
581 * don't want to change the subsystem state */
5abb8855 582 template[i] = old_cset->subsys[i];
817929ec
PM
583 }
584 }
585
0ac801fe 586 key = css_set_hash(template);
5abb8855
TH
587 hash_for_each_possible(css_set_table, cset, hlist, key) {
588 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
589 continue;
590
591 /* This css_set matches what we need */
5abb8855 592 return cset;
472b1053 593 }
817929ec
PM
594
595 /* No existing cgroup group matched */
596 return NULL;
597}
598
69d0206c 599static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 600{
69d0206c 601 struct cgrp_cset_link *link, *tmp_link;
36553434 602
69d0206c
TH
603 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
604 list_del(&link->cset_link);
36553434
LZ
605 kfree(link);
606 }
607}
608
69d0206c
TH
609/**
610 * allocate_cgrp_cset_links - allocate cgrp_cset_links
611 * @count: the number of links to allocate
612 * @tmp_links: list_head the allocated links are put on
613 *
614 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
615 * through ->cset_link. Returns 0 on success or -errno.
817929ec 616 */
69d0206c 617static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 618{
69d0206c 619 struct cgrp_cset_link *link;
817929ec 620 int i;
69d0206c
TH
621
622 INIT_LIST_HEAD(tmp_links);
623
817929ec 624 for (i = 0; i < count; i++) {
f4f4be2b 625 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 626 if (!link) {
69d0206c 627 free_cgrp_cset_links(tmp_links);
817929ec
PM
628 return -ENOMEM;
629 }
69d0206c 630 list_add(&link->cset_link, tmp_links);
817929ec
PM
631 }
632 return 0;
633}
634
c12f65d4
LZ
635/**
636 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 637 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 638 * @cset: the css_set to be linked
c12f65d4
LZ
639 * @cgrp: the destination cgroup
640 */
69d0206c
TH
641static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
642 struct cgroup *cgrp)
c12f65d4 643{
69d0206c 644 struct cgrp_cset_link *link;
c12f65d4 645
69d0206c
TH
646 BUG_ON(list_empty(tmp_links));
647 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
648 link->cset = cset;
7717f7ba 649 link->cgrp = cgrp;
69d0206c 650 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
651 /*
652 * Always add links to the tail of the list so that the list
653 * is sorted by order of hierarchy creation
654 */
69d0206c 655 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
656}
657
b326f9d0
TH
658/**
659 * find_css_set - return a new css_set with one cgroup updated
660 * @old_cset: the baseline css_set
661 * @cgrp: the cgroup to be updated
662 *
663 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
664 * substituted into the appropriate hierarchy.
817929ec 665 */
5abb8855
TH
666static struct css_set *find_css_set(struct css_set *old_cset,
667 struct cgroup *cgrp)
817929ec 668{
b326f9d0 669 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 670 struct css_set *cset;
69d0206c
TH
671 struct list_head tmp_links;
672 struct cgrp_cset_link *link;
0ac801fe 673 unsigned long key;
472b1053 674
b326f9d0
TH
675 lockdep_assert_held(&cgroup_mutex);
676
817929ec
PM
677 /* First see if we already have a cgroup group that matches
678 * the desired set */
7e9abd89 679 read_lock(&css_set_lock);
5abb8855
TH
680 cset = find_existing_css_set(old_cset, cgrp, template);
681 if (cset)
682 get_css_set(cset);
7e9abd89 683 read_unlock(&css_set_lock);
817929ec 684
5abb8855
TH
685 if (cset)
686 return cset;
817929ec 687
f4f4be2b 688 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 689 if (!cset)
817929ec
PM
690 return NULL;
691
69d0206c 692 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 693 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 694 kfree(cset);
817929ec
PM
695 return NULL;
696 }
697
5abb8855 698 atomic_set(&cset->refcount, 1);
69d0206c 699 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
700 INIT_LIST_HEAD(&cset->tasks);
701 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
702
703 /* Copy the set of subsystem state objects generated in
704 * find_existing_css_set() */
5abb8855 705 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
706
707 write_lock(&css_set_lock);
708 /* Add reference counts and links from the new css_set. */
69d0206c 709 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 710 struct cgroup *c = link->cgrp;
69d0206c 711
7717f7ba
PM
712 if (c->root == cgrp->root)
713 c = cgrp;
69d0206c 714 link_css_set(&tmp_links, cset, c);
7717f7ba 715 }
817929ec 716
69d0206c 717 BUG_ON(!list_empty(&tmp_links));
817929ec 718
817929ec 719 css_set_count++;
472b1053
LZ
720
721 /* Add this cgroup group to the hash table */
5abb8855
TH
722 key = css_set_hash(cset->subsys);
723 hash_add(css_set_table, &cset->hlist, key);
472b1053 724
817929ec
PM
725 write_unlock(&css_set_lock);
726
5abb8855 727 return cset;
b4f48b63
PM
728}
729
7717f7ba
PM
730/*
731 * Return the cgroup for "task" from the given hierarchy. Must be
732 * called with cgroup_mutex held.
733 */
734static struct cgroup *task_cgroup_from_root(struct task_struct *task,
735 struct cgroupfs_root *root)
736{
5abb8855 737 struct css_set *cset;
7717f7ba
PM
738 struct cgroup *res = NULL;
739
740 BUG_ON(!mutex_is_locked(&cgroup_mutex));
741 read_lock(&css_set_lock);
742 /*
743 * No need to lock the task - since we hold cgroup_mutex the
744 * task can't change groups, so the only thing that can happen
745 * is that it exits and its css is set back to init_css_set.
746 */
a8ad805c 747 cset = task_css_set(task);
5abb8855 748 if (cset == &init_css_set) {
7717f7ba
PM
749 res = &root->top_cgroup;
750 } else {
69d0206c
TH
751 struct cgrp_cset_link *link;
752
753 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 754 struct cgroup *c = link->cgrp;
69d0206c 755
7717f7ba
PM
756 if (c->root == root) {
757 res = c;
758 break;
759 }
760 }
761 }
762 read_unlock(&css_set_lock);
763 BUG_ON(!res);
764 return res;
765}
766
ddbcc7e8
PM
767/*
768 * There is one global cgroup mutex. We also require taking
769 * task_lock() when dereferencing a task's cgroup subsys pointers.
770 * See "The task_lock() exception", at the end of this comment.
771 *
772 * A task must hold cgroup_mutex to modify cgroups.
773 *
774 * Any task can increment and decrement the count field without lock.
775 * So in general, code holding cgroup_mutex can't rely on the count
776 * field not changing. However, if the count goes to zero, then only
956db3ca 777 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
778 * means that no tasks are currently attached, therefore there is no
779 * way a task attached to that cgroup can fork (the other way to
780 * increment the count). So code holding cgroup_mutex can safely
781 * assume that if the count is zero, it will stay zero. Similarly, if
782 * a task holds cgroup_mutex on a cgroup with zero count, it
783 * knows that the cgroup won't be removed, as cgroup_rmdir()
784 * needs that mutex.
785 *
ddbcc7e8
PM
786 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
787 * (usually) take cgroup_mutex. These are the two most performance
788 * critical pieces of code here. The exception occurs on cgroup_exit(),
789 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
790 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
791 * to the release agent with the name of the cgroup (path relative to
792 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
793 *
794 * A cgroup can only be deleted if both its 'count' of using tasks
795 * is zero, and its list of 'children' cgroups is empty. Since all
796 * tasks in the system use _some_ cgroup, and since there is always at
797 * least one task in the system (init, pid == 1), therefore, top_cgroup
798 * always has either children cgroups and/or using tasks. So we don't
799 * need a special hack to ensure that top_cgroup cannot be deleted.
800 *
801 * The task_lock() exception
802 *
803 * The need for this exception arises from the action of
d0b2fdd2 804 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 805 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
806 * several performance critical places that need to reference
807 * task->cgroup without the expense of grabbing a system global
808 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 809 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
810 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
811 * the task_struct routinely used for such matters.
812 *
813 * P.S. One more locking exception. RCU is used to guard the
956db3ca 814 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
815 */
816
ddbcc7e8
PM
817/*
818 * A couple of forward declarations required, due to cyclic reference loop:
819 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
820 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
821 * -> cgroup_mkdir.
822 */
823
18bb1db3 824static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 825static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 826static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 827static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 828static const struct inode_operations cgroup_dir_inode_operations;
828c0950 829static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
830
831static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 832 .name = "cgroup",
e4ad08fe 833 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 834};
ddbcc7e8 835
38460b48
KH
836static int alloc_css_id(struct cgroup_subsys *ss,
837 struct cgroup *parent, struct cgroup *child);
838
a5e7ed32 839static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
840{
841 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
842
843 if (inode) {
85fe4025 844 inode->i_ino = get_next_ino();
ddbcc7e8 845 inode->i_mode = mode;
76aac0e9
DH
846 inode->i_uid = current_fsuid();
847 inode->i_gid = current_fsgid();
ddbcc7e8
PM
848 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
849 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
850 }
851 return inode;
852}
853
65dff759
LZ
854static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
855{
856 struct cgroup_name *name;
857
858 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
859 if (!name)
860 return NULL;
861 strcpy(name->name, dentry->d_name.name);
862 return name;
863}
864
be445626
LZ
865static void cgroup_free_fn(struct work_struct *work)
866{
ea15f8cc 867 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
868 struct cgroup_subsys *ss;
869
870 mutex_lock(&cgroup_mutex);
871 /*
872 * Release the subsystem state objects.
873 */
eb95419b 874 for_each_root_subsys(cgrp->root, ss) {
40e93b39 875 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b
TH
876
877 ss->css_free(css);
878 }
be445626
LZ
879
880 cgrp->root->number_of_cgroups--;
881 mutex_unlock(&cgroup_mutex);
882
415cf07a
LZ
883 /*
884 * We get a ref to the parent's dentry, and put the ref when
885 * this cgroup is being freed, so it's guaranteed that the
886 * parent won't be destroyed before its children.
887 */
888 dput(cgrp->parent->dentry);
889
be445626
LZ
890 /*
891 * Drop the active superblock reference that we took when we
cc20e01c
LZ
892 * created the cgroup. This will free cgrp->root, if we are
893 * holding the last reference to @sb.
be445626
LZ
894 */
895 deactivate_super(cgrp->root->sb);
896
897 /*
898 * if we're getting rid of the cgroup, refcount should ensure
899 * that there are no pidlists left.
900 */
901 BUG_ON(!list_empty(&cgrp->pidlists));
902
903 simple_xattrs_free(&cgrp->xattrs);
904
65dff759 905 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
906 kfree(cgrp);
907}
908
909static void cgroup_free_rcu(struct rcu_head *head)
910{
911 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
912
ea15f8cc
TH
913 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
914 schedule_work(&cgrp->destroy_work);
be445626
LZ
915}
916
ddbcc7e8
PM
917static void cgroup_diput(struct dentry *dentry, struct inode *inode)
918{
919 /* is dentry a directory ? if so, kfree() associated cgroup */
920 if (S_ISDIR(inode->i_mode)) {
bd89aabc 921 struct cgroup *cgrp = dentry->d_fsdata;
be445626 922
54766d4a 923 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 924 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
925 } else {
926 struct cfent *cfe = __d_cfe(dentry);
927 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
928
929 WARN_ONCE(!list_empty(&cfe->node) &&
930 cgrp != &cgrp->root->top_cgroup,
931 "cfe still linked for %s\n", cfe->type->name);
712317ad 932 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 933 kfree(cfe);
ddbcc7e8
PM
934 }
935 iput(inode);
936}
937
c72a04e3
AV
938static int cgroup_delete(const struct dentry *d)
939{
940 return 1;
941}
942
ddbcc7e8
PM
943static void remove_dir(struct dentry *d)
944{
945 struct dentry *parent = dget(d->d_parent);
946
947 d_delete(d);
948 simple_rmdir(parent->d_inode, d);
949 dput(parent);
950}
951
2739d3cc 952static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
953{
954 struct cfent *cfe;
955
956 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
957 lockdep_assert_held(&cgroup_mutex);
958
2739d3cc
LZ
959 /*
960 * If we're doing cleanup due to failure of cgroup_create(),
961 * the corresponding @cfe may not exist.
962 */
05ef1d7c
TH
963 list_for_each_entry(cfe, &cgrp->files, node) {
964 struct dentry *d = cfe->dentry;
965
966 if (cft && cfe->type != cft)
967 continue;
968
969 dget(d);
970 d_delete(d);
ce27e317 971 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
972 list_del_init(&cfe->node);
973 dput(d);
974
2739d3cc 975 break;
ddbcc7e8 976 }
05ef1d7c
TH
977}
978
13af07df 979/**
628f7cd4 980 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 981 * @cgrp: target cgroup
13af07df
AR
982 * @subsys_mask: mask of the subsystem ids whose files should be removed
983 */
628f7cd4 984static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 985{
13af07df 986 struct cgroup_subsys *ss;
b420ba7d 987 int i;
05ef1d7c 988
b420ba7d 989 for_each_subsys(ss, i) {
13af07df 990 struct cftype_set *set;
b420ba7d
TH
991
992 if (!test_bit(i, &subsys_mask))
13af07df
AR
993 continue;
994 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 995 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 996 }
ddbcc7e8
PM
997}
998
999/*
1000 * NOTE : the dentry must have been dget()'ed
1001 */
1002static void cgroup_d_remove_dir(struct dentry *dentry)
1003{
2fd6b7f5 1004 struct dentry *parent;
ddbcc7e8 1005
2fd6b7f5
NP
1006 parent = dentry->d_parent;
1007 spin_lock(&parent->d_lock);
3ec762ad 1008 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1009 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1010 spin_unlock(&dentry->d_lock);
1011 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1012 remove_dir(dentry);
1013}
1014
aae8aab4 1015/*
cf5d5941
BB
1016 * Call with cgroup_mutex held. Drops reference counts on modules, including
1017 * any duplicate ones that parse_cgroupfs_options took. If this function
1018 * returns an error, no reference counts are touched.
aae8aab4 1019 */
ddbcc7e8 1020static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1021 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1022{
bd89aabc 1023 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1024 struct cgroup_subsys *ss;
1d5be6b2 1025 unsigned long pinned = 0;
3126121f 1026 int i, ret;
ddbcc7e8 1027
aae8aab4 1028 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1029 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1030
ddbcc7e8 1031 /* Check that any added subsystems are currently free */
30159ec7 1032 for_each_subsys(ss, i) {
1d5be6b2 1033 if (!(added_mask & (1 << i)))
ddbcc7e8 1034 continue;
30159ec7 1035
1d5be6b2 1036 /* is the subsystem mounted elsewhere? */
9871bf95 1037 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
1038 ret = -EBUSY;
1039 goto out_put;
1040 }
1041
1042 /* pin the module */
1043 if (!try_module_get(ss->module)) {
1044 ret = -ENOENT;
1045 goto out_put;
ddbcc7e8 1046 }
1d5be6b2
TH
1047 pinned |= 1 << i;
1048 }
1049
1050 /* subsys could be missing if unloaded between parsing and here */
1051 if (added_mask != pinned) {
1052 ret = -ENOENT;
1053 goto out_put;
ddbcc7e8
PM
1054 }
1055
3126121f
TH
1056 ret = cgroup_populate_dir(cgrp, added_mask);
1057 if (ret)
1d5be6b2 1058 goto out_put;
3126121f
TH
1059
1060 /*
1061 * Nothing can fail from this point on. Remove files for the
1062 * removed subsystems and rebind each subsystem.
1063 */
1064 cgroup_clear_dir(cgrp, removed_mask);
1065
30159ec7 1066 for_each_subsys(ss, i) {
ddbcc7e8 1067 unsigned long bit = 1UL << i;
30159ec7 1068
a1a71b45 1069 if (bit & added_mask) {
ddbcc7e8 1070 /* We're binding this subsystem to this hierarchy */
40e93b39
TH
1071 BUG_ON(cgroup_css(cgrp, i));
1072 BUG_ON(!cgroup_css(cgroup_dummy_top, i));
1073 BUG_ON(cgroup_css(cgroup_dummy_top, i)->cgroup != cgroup_dummy_top);
a8a648c4 1074
9871bf95 1075 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
40e93b39 1076 cgroup_css(cgrp, i)->cgroup = cgrp;
33a68ac1 1077 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1078 ss->root = root;
ddbcc7e8 1079 if (ss->bind)
40e93b39 1080 ss->bind(cgroup_css(cgrp, i));
a8a648c4 1081
cf5d5941 1082 /* refcount was already taken, and we're keeping it */
a8a648c4 1083 root->subsys_mask |= bit;
a1a71b45 1084 } else if (bit & removed_mask) {
ddbcc7e8 1085 /* We're removing this subsystem */
40e93b39
TH
1086 BUG_ON(cgroup_css(cgrp, i) != cgroup_css(cgroup_dummy_top, i));
1087 BUG_ON(cgroup_css(cgrp, i)->cgroup != cgrp);
a8a648c4 1088
ddbcc7e8 1089 if (ss->bind)
40e93b39
TH
1090 ss->bind(cgroup_css(cgroup_dummy_top, i));
1091 cgroup_css(cgroup_dummy_top, i)->cgroup = cgroup_dummy_top;
bd89aabc 1092 cgrp->subsys[i] = NULL;
9871bf95
TH
1093 cgroup_subsys[i]->root = &cgroup_dummy_root;
1094 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1095
cf5d5941
BB
1096 /* subsystem is now free - drop reference on module */
1097 module_put(ss->module);
a8a648c4 1098 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1099 }
1100 }
ddbcc7e8 1101
1672d040
TH
1102 /*
1103 * Mark @root has finished binding subsystems. @root->subsys_mask
1104 * now matches the bound subsystems.
1105 */
1106 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1107
ddbcc7e8 1108 return 0;
1d5be6b2
TH
1109
1110out_put:
1111 for_each_subsys(ss, i)
1112 if (pinned & (1 << i))
1113 module_put(ss->module);
1114 return ret;
ddbcc7e8
PM
1115}
1116
34c80b1d 1117static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1118{
34c80b1d 1119 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1120 struct cgroup_subsys *ss;
1121
e25e2cbb 1122 mutex_lock(&cgroup_root_mutex);
5549c497 1123 for_each_root_subsys(root, ss)
ddbcc7e8 1124 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1125 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1126 seq_puts(seq, ",sane_behavior");
93438629 1127 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1128 seq_puts(seq, ",noprefix");
93438629 1129 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1130 seq_puts(seq, ",xattr");
81a6a5cd
PM
1131 if (strlen(root->release_agent_path))
1132 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1133 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1134 seq_puts(seq, ",clone_children");
c6d57f33
PM
1135 if (strlen(root->name))
1136 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1137 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1138 return 0;
1139}
1140
1141struct cgroup_sb_opts {
a1a71b45 1142 unsigned long subsys_mask;
ddbcc7e8 1143 unsigned long flags;
81a6a5cd 1144 char *release_agent;
2260e7fc 1145 bool cpuset_clone_children;
c6d57f33 1146 char *name;
2c6ab6d2
PM
1147 /* User explicitly requested empty subsystem */
1148 bool none;
c6d57f33
PM
1149
1150 struct cgroupfs_root *new_root;
2c6ab6d2 1151
ddbcc7e8
PM
1152};
1153
aae8aab4 1154/*
9871bf95
TH
1155 * Convert a hierarchy specifier into a bitmask of subsystems and
1156 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1157 * array. This function takes refcounts on subsystems to be used, unless it
1158 * returns error, in which case no refcounts are taken.
aae8aab4 1159 */
cf5d5941 1160static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1161{
32a8cf23
DL
1162 char *token, *o = data;
1163 bool all_ss = false, one_ss = false;
f9ab5b5b 1164 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1165 struct cgroup_subsys *ss;
1166 int i;
f9ab5b5b 1167
aae8aab4
BB
1168 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1169
f9ab5b5b
LZ
1170#ifdef CONFIG_CPUSETS
1171 mask = ~(1UL << cpuset_subsys_id);
1172#endif
ddbcc7e8 1173
c6d57f33 1174 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1175
1176 while ((token = strsep(&o, ",")) != NULL) {
1177 if (!*token)
1178 return -EINVAL;
32a8cf23 1179 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1180 /* Explicitly have no subsystems */
1181 opts->none = true;
32a8cf23
DL
1182 continue;
1183 }
1184 if (!strcmp(token, "all")) {
1185 /* Mutually exclusive option 'all' + subsystem name */
1186 if (one_ss)
1187 return -EINVAL;
1188 all_ss = true;
1189 continue;
1190 }
873fe09e
TH
1191 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1192 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1193 continue;
1194 }
32a8cf23 1195 if (!strcmp(token, "noprefix")) {
93438629 1196 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1197 continue;
1198 }
1199 if (!strcmp(token, "clone_children")) {
2260e7fc 1200 opts->cpuset_clone_children = true;
32a8cf23
DL
1201 continue;
1202 }
03b1cde6 1203 if (!strcmp(token, "xattr")) {
93438629 1204 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1205 continue;
1206 }
32a8cf23 1207 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1208 /* Specifying two release agents is forbidden */
1209 if (opts->release_agent)
1210 return -EINVAL;
c6d57f33 1211 opts->release_agent =
e400c285 1212 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1213 if (!opts->release_agent)
1214 return -ENOMEM;
32a8cf23
DL
1215 continue;
1216 }
1217 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1218 const char *name = token + 5;
1219 /* Can't specify an empty name */
1220 if (!strlen(name))
1221 return -EINVAL;
1222 /* Must match [\w.-]+ */
1223 for (i = 0; i < strlen(name); i++) {
1224 char c = name[i];
1225 if (isalnum(c))
1226 continue;
1227 if ((c == '.') || (c == '-') || (c == '_'))
1228 continue;
1229 return -EINVAL;
1230 }
1231 /* Specifying two names is forbidden */
1232 if (opts->name)
1233 return -EINVAL;
1234 opts->name = kstrndup(name,
e400c285 1235 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1236 GFP_KERNEL);
1237 if (!opts->name)
1238 return -ENOMEM;
32a8cf23
DL
1239
1240 continue;
1241 }
1242
30159ec7 1243 for_each_subsys(ss, i) {
32a8cf23
DL
1244 if (strcmp(token, ss->name))
1245 continue;
1246 if (ss->disabled)
1247 continue;
1248
1249 /* Mutually exclusive option 'all' + subsystem name */
1250 if (all_ss)
1251 return -EINVAL;
a1a71b45 1252 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1253 one_ss = true;
1254
1255 break;
1256 }
1257 if (i == CGROUP_SUBSYS_COUNT)
1258 return -ENOENT;
1259 }
1260
1261 /*
1262 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1263 * otherwise if 'none', 'name=' and a subsystem name options
1264 * were not specified, let's default to 'all'
32a8cf23 1265 */
30159ec7
TH
1266 if (all_ss || (!one_ss && !opts->none && !opts->name))
1267 for_each_subsys(ss, i)
1268 if (!ss->disabled)
1269 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1270
2c6ab6d2
PM
1271 /* Consistency checks */
1272
873fe09e
TH
1273 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1274 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1275
1276 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1277 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1278 return -EINVAL;
1279 }
1280
1281 if (opts->cpuset_clone_children) {
1282 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1283 return -EINVAL;
1284 }
1285 }
1286
f9ab5b5b
LZ
1287 /*
1288 * Option noprefix was introduced just for backward compatibility
1289 * with the old cpuset, so we allow noprefix only if mounting just
1290 * the cpuset subsystem.
1291 */
93438629 1292 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1293 return -EINVAL;
1294
2c6ab6d2
PM
1295
1296 /* Can't specify "none" and some subsystems */
a1a71b45 1297 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1298 return -EINVAL;
1299
1300 /*
1301 * We either have to specify by name or by subsystems. (So all
1302 * empty hierarchies must have a name).
1303 */
a1a71b45 1304 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1305 return -EINVAL;
1306
1307 return 0;
1308}
1309
1310static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1311{
1312 int ret = 0;
1313 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1314 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1315 struct cgroup_sb_opts opts;
a1a71b45 1316 unsigned long added_mask, removed_mask;
ddbcc7e8 1317
873fe09e
TH
1318 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1319 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1320 return -EINVAL;
1321 }
1322
bd89aabc 1323 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1324 mutex_lock(&cgroup_mutex);
e25e2cbb 1325 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1326
1327 /* See what subsystems are wanted */
1328 ret = parse_cgroupfs_options(data, &opts);
1329 if (ret)
1330 goto out_unlock;
1331
a8a648c4 1332 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1333 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1334 task_tgid_nr(current), current->comm);
1335
a1a71b45
AR
1336 added_mask = opts.subsys_mask & ~root->subsys_mask;
1337 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1338
cf5d5941 1339 /* Don't allow flags or name to change at remount */
0ce6cba3 1340 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1341 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1342 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1343 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1344 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1345 ret = -EINVAL;
1346 goto out_unlock;
1347 }
1348
f172e67c
TH
1349 /* remounting is not allowed for populated hierarchies */
1350 if (root->number_of_cgroups > 1) {
1351 ret = -EBUSY;
1352 goto out_unlock;
1353 }
1354
a8a648c4 1355 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1356 if (ret)
0670e08b 1357 goto out_unlock;
ddbcc7e8 1358
81a6a5cd
PM
1359 if (opts.release_agent)
1360 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1361 out_unlock:
66bdc9cf 1362 kfree(opts.release_agent);
c6d57f33 1363 kfree(opts.name);
e25e2cbb 1364 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1365 mutex_unlock(&cgroup_mutex);
bd89aabc 1366 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1367 return ret;
1368}
1369
b87221de 1370static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1371 .statfs = simple_statfs,
1372 .drop_inode = generic_delete_inode,
1373 .show_options = cgroup_show_options,
1374 .remount_fs = cgroup_remount,
1375};
1376
cc31edce
PM
1377static void init_cgroup_housekeeping(struct cgroup *cgrp)
1378{
1379 INIT_LIST_HEAD(&cgrp->sibling);
1380 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1381 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1382 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1383 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1384 INIT_LIST_HEAD(&cgrp->pidlists);
1385 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1386 cgrp->dummy_css.cgroup = cgrp;
0dea1168
KS
1387 INIT_LIST_HEAD(&cgrp->event_list);
1388 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1389 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1390}
c6d57f33 1391
ddbcc7e8
PM
1392static void init_cgroup_root(struct cgroupfs_root *root)
1393{
bd89aabc 1394 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1395
ddbcc7e8
PM
1396 INIT_LIST_HEAD(&root->subsys_list);
1397 INIT_LIST_HEAD(&root->root_list);
1398 root->number_of_cgroups = 1;
bd89aabc 1399 cgrp->root = root;
a4ea1cc9 1400 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1401 init_cgroup_housekeeping(cgrp);
4e96ee8e 1402 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1403}
1404
fc76df70 1405static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1406{
1a574231 1407 int id;
2c6ab6d2 1408
54e7b4eb
TH
1409 lockdep_assert_held(&cgroup_mutex);
1410 lockdep_assert_held(&cgroup_root_mutex);
1411
fc76df70
TH
1412 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1413 GFP_KERNEL);
1a574231
TH
1414 if (id < 0)
1415 return id;
1416
1417 root->hierarchy_id = id;
fa3ca07e
TH
1418 return 0;
1419}
1420
1421static void cgroup_exit_root_id(struct cgroupfs_root *root)
1422{
54e7b4eb
TH
1423 lockdep_assert_held(&cgroup_mutex);
1424 lockdep_assert_held(&cgroup_root_mutex);
1425
fa3ca07e 1426 if (root->hierarchy_id) {
1a574231 1427 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1428 root->hierarchy_id = 0;
1429 }
2c6ab6d2
PM
1430}
1431
ddbcc7e8
PM
1432static int cgroup_test_super(struct super_block *sb, void *data)
1433{
c6d57f33 1434 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1435 struct cgroupfs_root *root = sb->s_fs_info;
1436
c6d57f33
PM
1437 /* If we asked for a name then it must match */
1438 if (opts->name && strcmp(opts->name, root->name))
1439 return 0;
ddbcc7e8 1440
2c6ab6d2
PM
1441 /*
1442 * If we asked for subsystems (or explicitly for no
1443 * subsystems) then they must match
1444 */
a1a71b45
AR
1445 if ((opts->subsys_mask || opts->none)
1446 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1447 return 0;
1448
1449 return 1;
1450}
1451
c6d57f33
PM
1452static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1453{
1454 struct cgroupfs_root *root;
1455
a1a71b45 1456 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1457 return NULL;
1458
1459 root = kzalloc(sizeof(*root), GFP_KERNEL);
1460 if (!root)
1461 return ERR_PTR(-ENOMEM);
1462
1463 init_cgroup_root(root);
2c6ab6d2 1464
1672d040
TH
1465 /*
1466 * We need to set @root->subsys_mask now so that @root can be
1467 * matched by cgroup_test_super() before it finishes
1468 * initialization; otherwise, competing mounts with the same
1469 * options may try to bind the same subsystems instead of waiting
1470 * for the first one leading to unexpected mount errors.
1471 * SUBSYS_BOUND will be set once actual binding is complete.
1472 */
a1a71b45 1473 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1474 root->flags = opts->flags;
1475 if (opts->release_agent)
1476 strcpy(root->release_agent_path, opts->release_agent);
1477 if (opts->name)
1478 strcpy(root->name, opts->name);
2260e7fc
TH
1479 if (opts->cpuset_clone_children)
1480 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1481 return root;
1482}
1483
fa3ca07e 1484static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1485{
fa3ca07e
TH
1486 if (root) {
1487 /* hierarhcy ID shoulid already have been released */
1488 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1489
4e96ee8e 1490 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1491 kfree(root);
1492 }
2c6ab6d2
PM
1493}
1494
ddbcc7e8
PM
1495static int cgroup_set_super(struct super_block *sb, void *data)
1496{
1497 int ret;
c6d57f33
PM
1498 struct cgroup_sb_opts *opts = data;
1499
1500 /* If we don't have a new root, we can't set up a new sb */
1501 if (!opts->new_root)
1502 return -EINVAL;
1503
a1a71b45 1504 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1505
1506 ret = set_anon_super(sb, NULL);
1507 if (ret)
1508 return ret;
1509
c6d57f33
PM
1510 sb->s_fs_info = opts->new_root;
1511 opts->new_root->sb = sb;
ddbcc7e8
PM
1512
1513 sb->s_blocksize = PAGE_CACHE_SIZE;
1514 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1515 sb->s_magic = CGROUP_SUPER_MAGIC;
1516 sb->s_op = &cgroup_ops;
1517
1518 return 0;
1519}
1520
1521static int cgroup_get_rootdir(struct super_block *sb)
1522{
0df6a63f
AV
1523 static const struct dentry_operations cgroup_dops = {
1524 .d_iput = cgroup_diput,
c72a04e3 1525 .d_delete = cgroup_delete,
0df6a63f
AV
1526 };
1527
ddbcc7e8
PM
1528 struct inode *inode =
1529 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1530
1531 if (!inode)
1532 return -ENOMEM;
1533
ddbcc7e8
PM
1534 inode->i_fop = &simple_dir_operations;
1535 inode->i_op = &cgroup_dir_inode_operations;
1536 /* directories start off with i_nlink == 2 (for "." entry) */
1537 inc_nlink(inode);
48fde701
AV
1538 sb->s_root = d_make_root(inode);
1539 if (!sb->s_root)
ddbcc7e8 1540 return -ENOMEM;
0df6a63f
AV
1541 /* for everything else we want ->d_op set */
1542 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1543 return 0;
1544}
1545
f7e83571 1546static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1547 int flags, const char *unused_dev_name,
f7e83571 1548 void *data)
ddbcc7e8
PM
1549{
1550 struct cgroup_sb_opts opts;
c6d57f33 1551 struct cgroupfs_root *root;
ddbcc7e8
PM
1552 int ret = 0;
1553 struct super_block *sb;
c6d57f33 1554 struct cgroupfs_root *new_root;
3126121f 1555 struct list_head tmp_links;
e25e2cbb 1556 struct inode *inode;
3126121f 1557 const struct cred *cred;
ddbcc7e8
PM
1558
1559 /* First find the desired set of subsystems */
aae8aab4 1560 mutex_lock(&cgroup_mutex);
ddbcc7e8 1561 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1562 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1563 if (ret)
1564 goto out_err;
ddbcc7e8 1565
c6d57f33
PM
1566 /*
1567 * Allocate a new cgroup root. We may not need it if we're
1568 * reusing an existing hierarchy.
1569 */
1570 new_root = cgroup_root_from_opts(&opts);
1571 if (IS_ERR(new_root)) {
1572 ret = PTR_ERR(new_root);
1d5be6b2 1573 goto out_err;
81a6a5cd 1574 }
c6d57f33 1575 opts.new_root = new_root;
ddbcc7e8 1576
c6d57f33 1577 /* Locate an existing or new sb for this hierarchy */
9249e17f 1578 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1579 if (IS_ERR(sb)) {
c6d57f33 1580 ret = PTR_ERR(sb);
fa3ca07e 1581 cgroup_free_root(opts.new_root);
1d5be6b2 1582 goto out_err;
ddbcc7e8
PM
1583 }
1584
c6d57f33
PM
1585 root = sb->s_fs_info;
1586 BUG_ON(!root);
1587 if (root == opts.new_root) {
1588 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1589 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1590 struct cgroupfs_root *existing_root;
28fd5dfc 1591 int i;
5abb8855 1592 struct css_set *cset;
ddbcc7e8
PM
1593
1594 BUG_ON(sb->s_root != NULL);
1595
1596 ret = cgroup_get_rootdir(sb);
1597 if (ret)
1598 goto drop_new_super;
817929ec 1599 inode = sb->s_root->d_inode;
ddbcc7e8 1600
817929ec 1601 mutex_lock(&inode->i_mutex);
ddbcc7e8 1602 mutex_lock(&cgroup_mutex);
e25e2cbb 1603 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1604
4e96ee8e
LZ
1605 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1606 0, 1, GFP_KERNEL);
1607 if (root_cgrp->id < 0)
1608 goto unlock_drop;
1609
e25e2cbb
TH
1610 /* Check for name clashes with existing mounts */
1611 ret = -EBUSY;
1612 if (strlen(root->name))
1613 for_each_active_root(existing_root)
1614 if (!strcmp(existing_root->name, root->name))
1615 goto unlock_drop;
c6d57f33 1616
817929ec
PM
1617 /*
1618 * We're accessing css_set_count without locking
1619 * css_set_lock here, but that's OK - it can only be
1620 * increased by someone holding cgroup_lock, and
1621 * that's us. The worst that can happen is that we
1622 * have some link structures left over
1623 */
69d0206c 1624 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1625 if (ret)
1626 goto unlock_drop;
817929ec 1627
fc76df70
TH
1628 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1629 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1630 if (ret)
1631 goto unlock_drop;
1632
3126121f
TH
1633 sb->s_root->d_fsdata = root_cgrp;
1634 root_cgrp->dentry = sb->s_root;
1635
1636 /*
1637 * We're inside get_sb() and will call lookup_one_len() to
1638 * create the root files, which doesn't work if SELinux is
1639 * in use. The following cred dancing somehow works around
1640 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1641 * populating new cgroupfs mount") for more details.
1642 */
1643 cred = override_creds(&init_cred);
1644
2bb566cb 1645 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1646 if (ret)
1647 goto rm_base_files;
1648
a8a648c4 1649 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1650 if (ret)
1651 goto rm_base_files;
1652
1653 revert_creds(cred);
1654
cf5d5941
BB
1655 /*
1656 * There must be no failure case after here, since rebinding
1657 * takes care of subsystems' refcounts, which are explicitly
1658 * dropped in the failure exit path.
1659 */
ddbcc7e8 1660
9871bf95
TH
1661 list_add(&root->root_list, &cgroup_roots);
1662 cgroup_root_count++;
ddbcc7e8 1663
817929ec
PM
1664 /* Link the top cgroup in this hierarchy into all
1665 * the css_set objects */
1666 write_lock(&css_set_lock);
5abb8855 1667 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1668 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1669 write_unlock(&css_set_lock);
1670
69d0206c 1671 free_cgrp_cset_links(&tmp_links);
817929ec 1672
c12f65d4 1673 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1674 BUG_ON(root->number_of_cgroups != 1);
1675
e25e2cbb 1676 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1677 mutex_unlock(&cgroup_mutex);
34f77a90 1678 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1679 } else {
1680 /*
1681 * We re-used an existing hierarchy - the new root (if
1682 * any) is not needed
1683 */
fa3ca07e 1684 cgroup_free_root(opts.new_root);
873fe09e 1685
c7ba8287 1686 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1687 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1688 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1689 ret = -EINVAL;
1690 goto drop_new_super;
1691 } else {
1692 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1693 }
873fe09e 1694 }
ddbcc7e8
PM
1695 }
1696
c6d57f33
PM
1697 kfree(opts.release_agent);
1698 kfree(opts.name);
f7e83571 1699 return dget(sb->s_root);
ddbcc7e8 1700
3126121f
TH
1701 rm_base_files:
1702 free_cgrp_cset_links(&tmp_links);
2bb566cb 1703 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1704 revert_creds(cred);
e25e2cbb 1705 unlock_drop:
fa3ca07e 1706 cgroup_exit_root_id(root);
e25e2cbb
TH
1707 mutex_unlock(&cgroup_root_mutex);
1708 mutex_unlock(&cgroup_mutex);
1709 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1710 drop_new_super:
6f5bbff9 1711 deactivate_locked_super(sb);
c6d57f33
PM
1712 out_err:
1713 kfree(opts.release_agent);
1714 kfree(opts.name);
f7e83571 1715 return ERR_PTR(ret);
ddbcc7e8
PM
1716}
1717
1718static void cgroup_kill_sb(struct super_block *sb) {
1719 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1720 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1721 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1722 int ret;
1723
1724 BUG_ON(!root);
1725
1726 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1727 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1728
3126121f 1729 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1730 mutex_lock(&cgroup_mutex);
e25e2cbb 1731 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1732
1733 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1734 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1735 ret = rebind_subsystems(root, 0, root->subsys_mask);
1736 /* Shouldn't be able to fail ... */
1737 BUG_ON(ret);
1738 }
ddbcc7e8 1739
817929ec 1740 /*
69d0206c 1741 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1742 * root cgroup
1743 */
1744 write_lock(&css_set_lock);
71cbb949 1745
69d0206c
TH
1746 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1747 list_del(&link->cset_link);
1748 list_del(&link->cgrp_link);
817929ec
PM
1749 kfree(link);
1750 }
1751 write_unlock(&css_set_lock);
1752
839ec545
PM
1753 if (!list_empty(&root->root_list)) {
1754 list_del(&root->root_list);
9871bf95 1755 cgroup_root_count--;
839ec545 1756 }
e5f6a860 1757
fa3ca07e
TH
1758 cgroup_exit_root_id(root);
1759
e25e2cbb 1760 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1761 mutex_unlock(&cgroup_mutex);
3126121f 1762 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1763
03b1cde6
AR
1764 simple_xattrs_free(&cgrp->xattrs);
1765
ddbcc7e8 1766 kill_litter_super(sb);
fa3ca07e 1767 cgroup_free_root(root);
ddbcc7e8
PM
1768}
1769
1770static struct file_system_type cgroup_fs_type = {
1771 .name = "cgroup",
f7e83571 1772 .mount = cgroup_mount,
ddbcc7e8
PM
1773 .kill_sb = cgroup_kill_sb,
1774};
1775
676db4af
GK
1776static struct kobject *cgroup_kobj;
1777
a043e3b2
LZ
1778/**
1779 * cgroup_path - generate the path of a cgroup
1780 * @cgrp: the cgroup in question
1781 * @buf: the buffer to write the path into
1782 * @buflen: the length of the buffer
1783 *
65dff759
LZ
1784 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1785 *
1786 * We can't generate cgroup path using dentry->d_name, as accessing
1787 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1788 * inode's i_mutex, while on the other hand cgroup_path() can be called
1789 * with some irq-safe spinlocks held.
ddbcc7e8 1790 */
bd89aabc 1791int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1792{
65dff759 1793 int ret = -ENAMETOOLONG;
ddbcc7e8 1794 char *start;
febfcef6 1795
da1f296f
TH
1796 if (!cgrp->parent) {
1797 if (strlcpy(buf, "/", buflen) >= buflen)
1798 return -ENAMETOOLONG;
ddbcc7e8
PM
1799 return 0;
1800 }
1801
316eb661 1802 start = buf + buflen - 1;
316eb661 1803 *start = '\0';
9a9686b6 1804
65dff759 1805 rcu_read_lock();
da1f296f 1806 do {
65dff759
LZ
1807 const char *name = cgroup_name(cgrp);
1808 int len;
1809
1810 len = strlen(name);
ddbcc7e8 1811 if ((start -= len) < buf)
65dff759
LZ
1812 goto out;
1813 memcpy(start, name, len);
9a9686b6 1814
ddbcc7e8 1815 if (--start < buf)
65dff759 1816 goto out;
ddbcc7e8 1817 *start = '/';
65dff759
LZ
1818
1819 cgrp = cgrp->parent;
da1f296f 1820 } while (cgrp->parent);
65dff759 1821 ret = 0;
ddbcc7e8 1822 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1823out:
1824 rcu_read_unlock();
1825 return ret;
ddbcc7e8 1826}
67523c48 1827EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1828
857a2beb 1829/**
913ffdb5 1830 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1831 * @task: target task
857a2beb
TH
1832 * @buf: the buffer to write the path into
1833 * @buflen: the length of the buffer
1834 *
913ffdb5
TH
1835 * Determine @task's cgroup on the first (the one with the lowest non-zero
1836 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1837 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1838 * cgroup controller callbacks.
1839 *
1840 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1841 */
913ffdb5 1842int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1843{
1844 struct cgroupfs_root *root;
913ffdb5
TH
1845 struct cgroup *cgrp;
1846 int hierarchy_id = 1, ret = 0;
1847
1848 if (buflen < 2)
1849 return -ENAMETOOLONG;
857a2beb
TH
1850
1851 mutex_lock(&cgroup_mutex);
1852
913ffdb5
TH
1853 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1854
857a2beb
TH
1855 if (root) {
1856 cgrp = task_cgroup_from_root(task, root);
1857 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1858 } else {
1859 /* if no hierarchy exists, everyone is in "/" */
1860 memcpy(buf, "/", 2);
857a2beb
TH
1861 }
1862
1863 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1864 return ret;
1865}
913ffdb5 1866EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1867
2f7ee569
TH
1868/*
1869 * Control Group taskset
1870 */
134d3373
TH
1871struct task_and_cgroup {
1872 struct task_struct *task;
1873 struct cgroup *cgrp;
6f4b7e63 1874 struct css_set *cset;
134d3373
TH
1875};
1876
2f7ee569
TH
1877struct cgroup_taskset {
1878 struct task_and_cgroup single;
1879 struct flex_array *tc_array;
1880 int tc_array_len;
1881 int idx;
1882 struct cgroup *cur_cgrp;
1883};
1884
1885/**
1886 * cgroup_taskset_first - reset taskset and return the first task
1887 * @tset: taskset of interest
1888 *
1889 * @tset iteration is initialized and the first task is returned.
1890 */
1891struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1892{
1893 if (tset->tc_array) {
1894 tset->idx = 0;
1895 return cgroup_taskset_next(tset);
1896 } else {
1897 tset->cur_cgrp = tset->single.cgrp;
1898 return tset->single.task;
1899 }
1900}
1901EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1902
1903/**
1904 * cgroup_taskset_next - iterate to the next task in taskset
1905 * @tset: taskset of interest
1906 *
1907 * Return the next task in @tset. Iteration must have been initialized
1908 * with cgroup_taskset_first().
1909 */
1910struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1911{
1912 struct task_and_cgroup *tc;
1913
1914 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1915 return NULL;
1916
1917 tc = flex_array_get(tset->tc_array, tset->idx++);
1918 tset->cur_cgrp = tc->cgrp;
1919 return tc->task;
1920}
1921EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1922
1923/**
d99c8727 1924 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1925 * @tset: taskset of interest
d99c8727 1926 * @subsys_id: the ID of the target subsystem
2f7ee569 1927 *
d99c8727
TH
1928 * Return the css for the current (last returned) task of @tset for
1929 * subsystem specified by @subsys_id. This function must be preceded by
1930 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1931 */
d99c8727
TH
1932struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1933 int subsys_id)
2f7ee569 1934{
d99c8727 1935 return cgroup_css(tset->cur_cgrp, subsys_id);
2f7ee569 1936}
d99c8727 1937EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1938
1939/**
1940 * cgroup_taskset_size - return the number of tasks in taskset
1941 * @tset: taskset of interest
1942 */
1943int cgroup_taskset_size(struct cgroup_taskset *tset)
1944{
1945 return tset->tc_array ? tset->tc_array_len : 1;
1946}
1947EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1948
1949
74a1166d
BB
1950/*
1951 * cgroup_task_migrate - move a task from one cgroup to another.
1952 *
d0b2fdd2 1953 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1954 */
5abb8855
TH
1955static void cgroup_task_migrate(struct cgroup *old_cgrp,
1956 struct task_struct *tsk,
1957 struct css_set *new_cset)
74a1166d 1958{
5abb8855 1959 struct css_set *old_cset;
74a1166d
BB
1960
1961 /*
026085ef
MSB
1962 * We are synchronized through threadgroup_lock() against PF_EXITING
1963 * setting such that we can't race against cgroup_exit() changing the
1964 * css_set to init_css_set and dropping the old one.
74a1166d 1965 */
c84cdf75 1966 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1967 old_cset = task_css_set(tsk);
74a1166d 1968
74a1166d 1969 task_lock(tsk);
5abb8855 1970 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1971 task_unlock(tsk);
1972
1973 /* Update the css_set linked lists if we're using them */
1974 write_lock(&css_set_lock);
1975 if (!list_empty(&tsk->cg_list))
5abb8855 1976 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1977 write_unlock(&css_set_lock);
1978
1979 /*
5abb8855
TH
1980 * We just gained a reference on old_cset by taking it from the
1981 * task. As trading it for new_cset is protected by cgroup_mutex,
1982 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1983 */
5abb8855
TH
1984 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1985 put_css_set(old_cset);
74a1166d
BB
1986}
1987
a043e3b2 1988/**
081aa458 1989 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1990 * @cgrp: the cgroup to attach to
081aa458
LZ
1991 * @tsk: the task or the leader of the threadgroup to be attached
1992 * @threadgroup: attach the whole threadgroup?
74a1166d 1993 *
257058ae 1994 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1995 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1996 */
47cfcd09
TH
1997static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1998 bool threadgroup)
74a1166d
BB
1999{
2000 int retval, i, group_size;
2001 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
2002 struct cgroupfs_root *root = cgrp->root;
2003 /* threadgroup list cursor and array */
081aa458 2004 struct task_struct *leader = tsk;
134d3373 2005 struct task_and_cgroup *tc;
d846687d 2006 struct flex_array *group;
2f7ee569 2007 struct cgroup_taskset tset = { };
74a1166d
BB
2008
2009 /*
2010 * step 0: in order to do expensive, possibly blocking operations for
2011 * every thread, we cannot iterate the thread group list, since it needs
2012 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2013 * group - group_rwsem prevents new threads from appearing, and if
2014 * threads exit, this will just be an over-estimate.
74a1166d 2015 */
081aa458
LZ
2016 if (threadgroup)
2017 group_size = get_nr_threads(tsk);
2018 else
2019 group_size = 1;
d846687d 2020 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2021 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2022 if (!group)
2023 return -ENOMEM;
d846687d 2024 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2025 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2026 if (retval)
2027 goto out_free_group_list;
74a1166d 2028
74a1166d 2029 i = 0;
fb5d2b4c
MSB
2030 /*
2031 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2032 * already PF_EXITING could be freed from underneath us unless we
2033 * take an rcu_read_lock.
2034 */
2035 rcu_read_lock();
74a1166d 2036 do {
134d3373
TH
2037 struct task_and_cgroup ent;
2038
cd3d0952
TH
2039 /* @tsk either already exited or can't exit until the end */
2040 if (tsk->flags & PF_EXITING)
2041 continue;
2042
74a1166d
BB
2043 /* as per above, nr_threads may decrease, but not increase. */
2044 BUG_ON(i >= group_size);
134d3373
TH
2045 ent.task = tsk;
2046 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2047 /* nothing to do if this task is already in the cgroup */
2048 if (ent.cgrp == cgrp)
2049 continue;
61d1d219
MSB
2050 /*
2051 * saying GFP_ATOMIC has no effect here because we did prealloc
2052 * earlier, but it's good form to communicate our expectations.
2053 */
134d3373 2054 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2055 BUG_ON(retval != 0);
74a1166d 2056 i++;
081aa458
LZ
2057
2058 if (!threadgroup)
2059 break;
74a1166d 2060 } while_each_thread(leader, tsk);
fb5d2b4c 2061 rcu_read_unlock();
74a1166d
BB
2062 /* remember the number of threads in the array for later. */
2063 group_size = i;
2f7ee569
TH
2064 tset.tc_array = group;
2065 tset.tc_array_len = group_size;
74a1166d 2066
134d3373
TH
2067 /* methods shouldn't be called if no task is actually migrating */
2068 retval = 0;
892a2b90 2069 if (!group_size)
b07ef774 2070 goto out_free_group_list;
134d3373 2071
74a1166d
BB
2072 /*
2073 * step 1: check that we can legitimately attach to the cgroup.
2074 */
5549c497 2075 for_each_root_subsys(root, ss) {
40e93b39 2076 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2077
74a1166d 2078 if (ss->can_attach) {
eb95419b 2079 retval = ss->can_attach(css, &tset);
74a1166d
BB
2080 if (retval) {
2081 failed_ss = ss;
2082 goto out_cancel_attach;
2083 }
2084 }
74a1166d
BB
2085 }
2086
2087 /*
2088 * step 2: make sure css_sets exist for all threads to be migrated.
2089 * we use find_css_set, which allocates a new one if necessary.
2090 */
74a1166d 2091 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2092 struct css_set *old_cset;
2093
134d3373 2094 tc = flex_array_get(group, i);
a8ad805c 2095 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2096 tc->cset = find_css_set(old_cset, cgrp);
2097 if (!tc->cset) {
61d1d219
MSB
2098 retval = -ENOMEM;
2099 goto out_put_css_set_refs;
74a1166d
BB
2100 }
2101 }
2102
2103 /*
494c167c
TH
2104 * step 3: now that we're guaranteed success wrt the css_sets,
2105 * proceed to move all tasks to the new cgroup. There are no
2106 * failure cases after here, so this is the commit point.
74a1166d 2107 */
74a1166d 2108 for (i = 0; i < group_size; i++) {
134d3373 2109 tc = flex_array_get(group, i);
6f4b7e63 2110 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2111 }
2112 /* nothing is sensitive to fork() after this point. */
2113
2114 /*
494c167c 2115 * step 4: do subsystem attach callbacks.
74a1166d 2116 */
5549c497 2117 for_each_root_subsys(root, ss) {
40e93b39 2118 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2119
74a1166d 2120 if (ss->attach)
eb95419b 2121 ss->attach(css, &tset);
74a1166d
BB
2122 }
2123
2124 /*
2125 * step 5: success! and cleanup
2126 */
74a1166d 2127 retval = 0;
61d1d219
MSB
2128out_put_css_set_refs:
2129 if (retval) {
2130 for (i = 0; i < group_size; i++) {
2131 tc = flex_array_get(group, i);
6f4b7e63 2132 if (!tc->cset)
61d1d219 2133 break;
6f4b7e63 2134 put_css_set(tc->cset);
61d1d219 2135 }
74a1166d
BB
2136 }
2137out_cancel_attach:
74a1166d 2138 if (retval) {
5549c497 2139 for_each_root_subsys(root, ss) {
40e93b39 2140 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2141
494c167c 2142 if (ss == failed_ss)
74a1166d 2143 break;
74a1166d 2144 if (ss->cancel_attach)
eb95419b 2145 ss->cancel_attach(css, &tset);
74a1166d
BB
2146 }
2147 }
74a1166d 2148out_free_group_list:
d846687d 2149 flex_array_free(group);
74a1166d
BB
2150 return retval;
2151}
2152
2153/*
2154 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2155 * function to attach either it or all tasks in its threadgroup. Will lock
2156 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2157 */
74a1166d 2158static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2159{
bbcb81d0 2160 struct task_struct *tsk;
c69e8d9c 2161 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2162 int ret;
2163
74a1166d
BB
2164 if (!cgroup_lock_live_group(cgrp))
2165 return -ENODEV;
2166
b78949eb
MSB
2167retry_find_task:
2168 rcu_read_lock();
bbcb81d0 2169 if (pid) {
73507f33 2170 tsk = find_task_by_vpid(pid);
74a1166d
BB
2171 if (!tsk) {
2172 rcu_read_unlock();
b78949eb
MSB
2173 ret= -ESRCH;
2174 goto out_unlock_cgroup;
bbcb81d0 2175 }
74a1166d
BB
2176 /*
2177 * even if we're attaching all tasks in the thread group, we
2178 * only need to check permissions on one of them.
2179 */
c69e8d9c 2180 tcred = __task_cred(tsk);
14a590c3
EB
2181 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2182 !uid_eq(cred->euid, tcred->uid) &&
2183 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2184 rcu_read_unlock();
b78949eb
MSB
2185 ret = -EACCES;
2186 goto out_unlock_cgroup;
bbcb81d0 2187 }
b78949eb
MSB
2188 } else
2189 tsk = current;
cd3d0952
TH
2190
2191 if (threadgroup)
b78949eb 2192 tsk = tsk->group_leader;
c4c27fbd
MG
2193
2194 /*
14a40ffc 2195 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2196 * trapped in a cpuset, or RT worker may be born in a cgroup
2197 * with no rt_runtime allocated. Just say no.
2198 */
14a40ffc 2199 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2200 ret = -EINVAL;
2201 rcu_read_unlock();
2202 goto out_unlock_cgroup;
2203 }
2204
b78949eb
MSB
2205 get_task_struct(tsk);
2206 rcu_read_unlock();
2207
2208 threadgroup_lock(tsk);
2209 if (threadgroup) {
2210 if (!thread_group_leader(tsk)) {
2211 /*
2212 * a race with de_thread from another thread's exec()
2213 * may strip us of our leadership, if this happens,
2214 * there is no choice but to throw this task away and
2215 * try again; this is
2216 * "double-double-toil-and-trouble-check locking".
2217 */
2218 threadgroup_unlock(tsk);
2219 put_task_struct(tsk);
2220 goto retry_find_task;
2221 }
081aa458
LZ
2222 }
2223
2224 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2225
cd3d0952
TH
2226 threadgroup_unlock(tsk);
2227
bbcb81d0 2228 put_task_struct(tsk);
b78949eb 2229out_unlock_cgroup:
47cfcd09 2230 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2231 return ret;
2232}
2233
7ae1bad9
TH
2234/**
2235 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2236 * @from: attach to all cgroups of a given task
2237 * @tsk: the task to be attached
2238 */
2239int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2240{
2241 struct cgroupfs_root *root;
2242 int retval = 0;
2243
47cfcd09 2244 mutex_lock(&cgroup_mutex);
7ae1bad9 2245 for_each_active_root(root) {
6f4b7e63 2246 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2247
6f4b7e63 2248 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2249 if (retval)
2250 break;
2251 }
47cfcd09 2252 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2253
2254 return retval;
2255}
2256EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2257
182446d0
TH
2258static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2259 struct cftype *cft, u64 pid)
74a1166d 2260{
182446d0 2261 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2262}
2263
182446d0
TH
2264static int cgroup_procs_write(struct cgroup_subsys_state *css,
2265 struct cftype *cft, u64 tgid)
af351026 2266{
182446d0 2267 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2268}
2269
182446d0
TH
2270static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2271 struct cftype *cft, const char *buffer)
e788e066 2272{
182446d0 2273 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2274 if (strlen(buffer) >= PATH_MAX)
2275 return -EINVAL;
182446d0 2276 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2277 return -ENODEV;
e25e2cbb 2278 mutex_lock(&cgroup_root_mutex);
182446d0 2279 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2280 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2281 mutex_unlock(&cgroup_mutex);
e788e066
PM
2282 return 0;
2283}
2284
182446d0
TH
2285static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2286 struct cftype *cft, struct seq_file *seq)
e788e066 2287{
182446d0
TH
2288 struct cgroup *cgrp = css->cgroup;
2289
e788e066
PM
2290 if (!cgroup_lock_live_group(cgrp))
2291 return -ENODEV;
2292 seq_puts(seq, cgrp->root->release_agent_path);
2293 seq_putc(seq, '\n');
47cfcd09 2294 mutex_unlock(&cgroup_mutex);
e788e066
PM
2295 return 0;
2296}
2297
182446d0
TH
2298static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2299 struct cftype *cft, struct seq_file *seq)
873fe09e 2300{
182446d0 2301 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
e788e066
PM
2302 return 0;
2303}
2304
84eea842
PM
2305/* A buffer size big enough for numbers or short strings */
2306#define CGROUP_LOCAL_BUFFER_SIZE 64
2307
182446d0
TH
2308static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2309 struct cftype *cft, struct file *file,
2310 const char __user *userbuf, size_t nbytes,
2311 loff_t *unused_ppos)
355e0c48 2312{
84eea842 2313 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2314 int retval = 0;
355e0c48
PM
2315 char *end;
2316
2317 if (!nbytes)
2318 return -EINVAL;
2319 if (nbytes >= sizeof(buffer))
2320 return -E2BIG;
2321 if (copy_from_user(buffer, userbuf, nbytes))
2322 return -EFAULT;
2323
2324 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2325 if (cft->write_u64) {
478988d3 2326 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2327 if (*end)
2328 return -EINVAL;
182446d0 2329 retval = cft->write_u64(css, cft, val);
e73d2c61 2330 } else {
478988d3 2331 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2332 if (*end)
2333 return -EINVAL;
182446d0 2334 retval = cft->write_s64(css, cft, val);
e73d2c61 2335 }
355e0c48
PM
2336 if (!retval)
2337 retval = nbytes;
2338 return retval;
2339}
2340
182446d0
TH
2341static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2342 struct cftype *cft, struct file *file,
2343 const char __user *userbuf, size_t nbytes,
2344 loff_t *unused_ppos)
db3b1497 2345{
84eea842 2346 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2347 int retval = 0;
2348 size_t max_bytes = cft->max_write_len;
2349 char *buffer = local_buffer;
2350
2351 if (!max_bytes)
2352 max_bytes = sizeof(local_buffer) - 1;
2353 if (nbytes >= max_bytes)
2354 return -E2BIG;
2355 /* Allocate a dynamic buffer if we need one */
2356 if (nbytes >= sizeof(local_buffer)) {
2357 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2358 if (buffer == NULL)
2359 return -ENOMEM;
2360 }
5a3eb9f6
LZ
2361 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2362 retval = -EFAULT;
2363 goto out;
2364 }
db3b1497
PM
2365
2366 buffer[nbytes] = 0; /* nul-terminate */
182446d0 2367 retval = cft->write_string(css, cft, strstrip(buffer));
db3b1497
PM
2368 if (!retval)
2369 retval = nbytes;
5a3eb9f6 2370out:
db3b1497
PM
2371 if (buffer != local_buffer)
2372 kfree(buffer);
2373 return retval;
2374}
2375
ddbcc7e8 2376static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
182446d0 2377 size_t nbytes, loff_t *ppos)
ddbcc7e8 2378{
182446d0 2379 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2380 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2381 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2382
355e0c48 2383 if (cft->write)
182446d0 2384 return cft->write(css, cft, file, buf, nbytes, ppos);
e73d2c61 2385 if (cft->write_u64 || cft->write_s64)
182446d0 2386 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
db3b1497 2387 if (cft->write_string)
182446d0 2388 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
d447ea2f 2389 if (cft->trigger) {
182446d0 2390 int ret = cft->trigger(css, (unsigned int)cft->private);
d447ea2f
PE
2391 return ret ? ret : nbytes;
2392 }
355e0c48 2393 return -EINVAL;
ddbcc7e8
PM
2394}
2395
182446d0
TH
2396static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2397 struct cftype *cft, struct file *file,
2398 char __user *buf, size_t nbytes, loff_t *ppos)
ddbcc7e8 2399{
84eea842 2400 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2401 u64 val = cft->read_u64(css, cft);
ddbcc7e8
PM
2402 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2403
2404 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2405}
2406
182446d0
TH
2407static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2408 struct cftype *cft, struct file *file,
2409 char __user *buf, size_t nbytes, loff_t *ppos)
e73d2c61 2410{
84eea842 2411 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2412 s64 val = cft->read_s64(css, cft);
e73d2c61
PM
2413 int len = sprintf(tmp, "%lld\n", (long long) val);
2414
2415 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2416}
2417
ddbcc7e8 2418static ssize_t cgroup_file_read(struct file *file, char __user *buf,
182446d0 2419 size_t nbytes, loff_t *ppos)
ddbcc7e8 2420{
182446d0 2421 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2422 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2423 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2424
ddbcc7e8 2425 if (cft->read)
182446d0 2426 return cft->read(css, cft, file, buf, nbytes, ppos);
f4c753b7 2427 if (cft->read_u64)
182446d0 2428 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
e73d2c61 2429 if (cft->read_s64)
182446d0 2430 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2431 return -EINVAL;
2432}
2433
91796569
PM
2434/*
2435 * seqfile ops/methods for returning structured data. Currently just
2436 * supports string->u64 maps, but can be extended in future.
2437 */
2438
91796569
PM
2439static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2440{
2441 struct seq_file *sf = cb->state;
2442 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2443}
2444
2445static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2446{
e0798ce2
LZ
2447 struct cfent *cfe = m->private;
2448 struct cftype *cft = cfe->type;
105347ba 2449 struct cgroup_subsys_state *css = cfe->css;
e0798ce2 2450
29486df3
SH
2451 if (cft->read_map) {
2452 struct cgroup_map_cb cb = {
2453 .fill = cgroup_map_add,
2454 .state = m,
2455 };
182446d0 2456 return cft->read_map(css, cft, &cb);
29486df3 2457 }
182446d0 2458 return cft->read_seq_string(css, cft, m);
91796569
PM
2459}
2460
828c0950 2461static const struct file_operations cgroup_seqfile_operations = {
91796569 2462 .read = seq_read,
e788e066 2463 .write = cgroup_file_write,
91796569 2464 .llseek = seq_lseek,
e0798ce2 2465 .release = single_release,
91796569
PM
2466};
2467
ddbcc7e8
PM
2468static int cgroup_file_open(struct inode *inode, struct file *file)
2469{
f7d58818
TH
2470 struct cfent *cfe = __d_cfe(file->f_dentry);
2471 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2472 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2473 struct cgroup_subsys_state *css;
ddbcc7e8 2474 int err;
ddbcc7e8
PM
2475
2476 err = generic_file_open(inode, file);
2477 if (err)
2478 return err;
f7d58818
TH
2479
2480 /*
2481 * If the file belongs to a subsystem, pin the css. Will be
2482 * unpinned either on open failure or release. This ensures that
2483 * @css stays alive for all file operations.
2484 */
105347ba
TH
2485 rcu_read_lock();
2486 if (cft->ss) {
2487 css = cgroup_css(cgrp, cft->ss->subsys_id);
2488 if (!css_tryget(css))
2489 css = NULL;
2490 } else {
2491 css = &cgrp->dummy_css;
2492 }
2493 rcu_read_unlock();
2494
2495 /* css should match @cfe->css, see cgroup_add_file() for details */
2496 if (!css || WARN_ON_ONCE(css != cfe->css))
f7d58818 2497 return -ENODEV;
75139b82 2498
29486df3 2499 if (cft->read_map || cft->read_seq_string) {
91796569 2500 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2501 err = single_open(file, cgroup_seqfile_show, cfe);
2502 } else if (cft->open) {
ddbcc7e8 2503 err = cft->open(inode, file);
e0798ce2 2504 }
ddbcc7e8 2505
67f4c36f 2506 if (css->ss && err)
f7d58818 2507 css_put(css);
ddbcc7e8
PM
2508 return err;
2509}
2510
2511static int cgroup_file_release(struct inode *inode, struct file *file)
2512{
f7d58818 2513 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2514 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2515 struct cgroup_subsys_state *css = cfe->css;
f7d58818
TH
2516 int ret = 0;
2517
ddbcc7e8 2518 if (cft->release)
f7d58818 2519 ret = cft->release(inode, file);
67f4c36f 2520 if (css->ss)
f7d58818
TH
2521 css_put(css);
2522 return ret;
ddbcc7e8
PM
2523}
2524
2525/*
2526 * cgroup_rename - Only allow simple rename of directories in place.
2527 */
2528static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2529 struct inode *new_dir, struct dentry *new_dentry)
2530{
65dff759
LZ
2531 int ret;
2532 struct cgroup_name *name, *old_name;
2533 struct cgroup *cgrp;
2534
2535 /*
2536 * It's convinient to use parent dir's i_mutex to protected
2537 * cgrp->name.
2538 */
2539 lockdep_assert_held(&old_dir->i_mutex);
2540
ddbcc7e8
PM
2541 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2542 return -ENOTDIR;
2543 if (new_dentry->d_inode)
2544 return -EEXIST;
2545 if (old_dir != new_dir)
2546 return -EIO;
65dff759
LZ
2547
2548 cgrp = __d_cgrp(old_dentry);
2549
6db8e85c
TH
2550 /*
2551 * This isn't a proper migration and its usefulness is very
2552 * limited. Disallow if sane_behavior.
2553 */
2554 if (cgroup_sane_behavior(cgrp))
2555 return -EPERM;
2556
65dff759
LZ
2557 name = cgroup_alloc_name(new_dentry);
2558 if (!name)
2559 return -ENOMEM;
2560
2561 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2562 if (ret) {
2563 kfree(name);
2564 return ret;
2565 }
2566
a4ea1cc9 2567 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2568 rcu_assign_pointer(cgrp->name, name);
2569
2570 kfree_rcu(old_name, rcu_head);
2571 return 0;
ddbcc7e8
PM
2572}
2573
03b1cde6
AR
2574static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2575{
2576 if (S_ISDIR(dentry->d_inode->i_mode))
2577 return &__d_cgrp(dentry)->xattrs;
2578 else
712317ad 2579 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2580}
2581
2582static inline int xattr_enabled(struct dentry *dentry)
2583{
2584 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2585 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2586}
2587
2588static bool is_valid_xattr(const char *name)
2589{
2590 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2591 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2592 return true;
2593 return false;
2594}
2595
2596static int cgroup_setxattr(struct dentry *dentry, const char *name,
2597 const void *val, size_t size, int flags)
2598{
2599 if (!xattr_enabled(dentry))
2600 return -EOPNOTSUPP;
2601 if (!is_valid_xattr(name))
2602 return -EINVAL;
2603 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2604}
2605
2606static int cgroup_removexattr(struct dentry *dentry, const char *name)
2607{
2608 if (!xattr_enabled(dentry))
2609 return -EOPNOTSUPP;
2610 if (!is_valid_xattr(name))
2611 return -EINVAL;
2612 return simple_xattr_remove(__d_xattrs(dentry), name);
2613}
2614
2615static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2616 void *buf, size_t size)
2617{
2618 if (!xattr_enabled(dentry))
2619 return -EOPNOTSUPP;
2620 if (!is_valid_xattr(name))
2621 return -EINVAL;
2622 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2623}
2624
2625static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2626{
2627 if (!xattr_enabled(dentry))
2628 return -EOPNOTSUPP;
2629 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2630}
2631
828c0950 2632static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2633 .read = cgroup_file_read,
2634 .write = cgroup_file_write,
2635 .llseek = generic_file_llseek,
2636 .open = cgroup_file_open,
2637 .release = cgroup_file_release,
2638};
2639
03b1cde6
AR
2640static const struct inode_operations cgroup_file_inode_operations = {
2641 .setxattr = cgroup_setxattr,
2642 .getxattr = cgroup_getxattr,
2643 .listxattr = cgroup_listxattr,
2644 .removexattr = cgroup_removexattr,
2645};
2646
6e1d5dcc 2647static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2648 .lookup = cgroup_lookup,
ddbcc7e8
PM
2649 .mkdir = cgroup_mkdir,
2650 .rmdir = cgroup_rmdir,
2651 .rename = cgroup_rename,
03b1cde6
AR
2652 .setxattr = cgroup_setxattr,
2653 .getxattr = cgroup_getxattr,
2654 .listxattr = cgroup_listxattr,
2655 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2656};
2657
00cd8dd3 2658static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2659{
2660 if (dentry->d_name.len > NAME_MAX)
2661 return ERR_PTR(-ENAMETOOLONG);
2662 d_add(dentry, NULL);
2663 return NULL;
2664}
2665
0dea1168
KS
2666/*
2667 * Check if a file is a control file
2668 */
2669static inline struct cftype *__file_cft(struct file *file)
2670{
496ad9aa 2671 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2672 return ERR_PTR(-EINVAL);
2673 return __d_cft(file->f_dentry);
2674}
2675
a5e7ed32 2676static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2677 struct super_block *sb)
2678{
ddbcc7e8
PM
2679 struct inode *inode;
2680
2681 if (!dentry)
2682 return -ENOENT;
2683 if (dentry->d_inode)
2684 return -EEXIST;
2685
2686 inode = cgroup_new_inode(mode, sb);
2687 if (!inode)
2688 return -ENOMEM;
2689
2690 if (S_ISDIR(mode)) {
2691 inode->i_op = &cgroup_dir_inode_operations;
2692 inode->i_fop = &simple_dir_operations;
2693
2694 /* start off with i_nlink == 2 (for "." entry) */
2695 inc_nlink(inode);
28fd6f30 2696 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2697
b8a2df6a
TH
2698 /*
2699 * Control reaches here with cgroup_mutex held.
2700 * @inode->i_mutex should nest outside cgroup_mutex but we
2701 * want to populate it immediately without releasing
2702 * cgroup_mutex. As @inode isn't visible to anyone else
2703 * yet, trylock will always succeed without affecting
2704 * lockdep checks.
2705 */
2706 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2707 } else if (S_ISREG(mode)) {
2708 inode->i_size = 0;
2709 inode->i_fop = &cgroup_file_operations;
03b1cde6 2710 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2711 }
ddbcc7e8
PM
2712 d_instantiate(dentry, inode);
2713 dget(dentry); /* Extra count - pin the dentry in core */
2714 return 0;
2715}
2716
099fca32
LZ
2717/**
2718 * cgroup_file_mode - deduce file mode of a control file
2719 * @cft: the control file in question
2720 *
2721 * returns cft->mode if ->mode is not 0
2722 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2723 * returns S_IRUGO if it has only a read handler
2724 * returns S_IWUSR if it has only a write hander
2725 */
a5e7ed32 2726static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2727{
a5e7ed32 2728 umode_t mode = 0;
099fca32
LZ
2729
2730 if (cft->mode)
2731 return cft->mode;
2732
2733 if (cft->read || cft->read_u64 || cft->read_s64 ||
2734 cft->read_map || cft->read_seq_string)
2735 mode |= S_IRUGO;
2736
2737 if (cft->write || cft->write_u64 || cft->write_s64 ||
2738 cft->write_string || cft->trigger)
2739 mode |= S_IWUSR;
2740
2741 return mode;
2742}
2743
2bb566cb 2744static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2745{
bd89aabc 2746 struct dentry *dir = cgrp->dentry;
05ef1d7c 2747 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2748 struct dentry *dentry;
05ef1d7c 2749 struct cfent *cfe;
ddbcc7e8 2750 int error;
a5e7ed32 2751 umode_t mode;
ddbcc7e8 2752 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2753
2bb566cb
TH
2754 if (cft->ss && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2755 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2756 strcat(name, ".");
2757 }
2758 strcat(name, cft->name);
05ef1d7c 2759
ddbcc7e8 2760 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2761
2762 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2763 if (!cfe)
2764 return -ENOMEM;
2765
ddbcc7e8 2766 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2767 if (IS_ERR(dentry)) {
ddbcc7e8 2768 error = PTR_ERR(dentry);
05ef1d7c
TH
2769 goto out;
2770 }
2771
d6cbf35d
LZ
2772 cfe->type = (void *)cft;
2773 cfe->dentry = dentry;
2774 dentry->d_fsdata = cfe;
2775 simple_xattrs_init(&cfe->xattrs);
2776
105347ba
TH
2777 /*
2778 * cfe->css is used by read/write/close to determine the associated
2779 * css. file->private_data would be a better place but that's
2780 * already used by seqfile. Note that open will use the usual
2781 * cgroup_css() and css_tryget() to acquire the css and this
2782 * caching doesn't affect css lifetime management.
2783 */
2784 if (cft->ss)
2785 cfe->css = cgroup_css(cgrp, cft->ss->subsys_id);
2786 else
2787 cfe->css = &cgrp->dummy_css;
2788
05ef1d7c
TH
2789 mode = cgroup_file_mode(cft);
2790 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2791 if (!error) {
05ef1d7c
TH
2792 list_add_tail(&cfe->node, &parent->files);
2793 cfe = NULL;
2794 }
2795 dput(dentry);
2796out:
2797 kfree(cfe);
ddbcc7e8
PM
2798 return error;
2799}
2800
b1f28d31
TH
2801/**
2802 * cgroup_addrm_files - add or remove files to a cgroup directory
2803 * @cgrp: the target cgroup
b1f28d31
TH
2804 * @cfts: array of cftypes to be added
2805 * @is_add: whether to add or remove
2806 *
2807 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2808 * For removals, this function never fails. If addition fails, this
2809 * function doesn't remove files already added. The caller is responsible
2810 * for cleaning up.
b1f28d31 2811 */
2bb566cb
TH
2812static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2813 bool is_add)
ddbcc7e8 2814{
03b1cde6 2815 struct cftype *cft;
b1f28d31
TH
2816 int ret;
2817
2818 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2819 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2820
2821 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2822 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2823 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2824 continue;
f33fddc2
G
2825 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2826 continue;
2827 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2828 continue;
2829
2739d3cc 2830 if (is_add) {
2bb566cb 2831 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2832 if (ret) {
2739d3cc 2833 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2834 cft->name, ret);
2835 return ret;
2836 }
2739d3cc
LZ
2837 } else {
2838 cgroup_rm_file(cgrp, cft);
db0416b6 2839 }
ddbcc7e8 2840 }
b1f28d31 2841 return 0;
ddbcc7e8
PM
2842}
2843
8e3f6541 2844static void cgroup_cfts_prepare(void)
e8c82d20 2845 __acquires(&cgroup_mutex)
8e3f6541
TH
2846{
2847 /*
2848 * Thanks to the entanglement with vfs inode locking, we can't walk
2849 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2850 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2851 * lock before calling cgroup_addrm_files().
8e3f6541 2852 */
8e3f6541
TH
2853 mutex_lock(&cgroup_mutex);
2854}
2855
2bb566cb 2856static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2857 __releases(&cgroup_mutex)
8e3f6541
TH
2858{
2859 LIST_HEAD(pending);
2bb566cb 2860 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2861 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2862 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2863 struct dentry *prev = NULL;
2864 struct inode *inode;
492eb21b 2865 struct cgroup_subsys_state *css;
00356bd5 2866 u64 update_before;
9ccece80 2867 int ret = 0;
8e3f6541
TH
2868
2869 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2870 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2871 !atomic_inc_not_zero(&sb->s_active)) {
2872 mutex_unlock(&cgroup_mutex);
9ccece80 2873 return 0;
8e3f6541
TH
2874 }
2875
8e3f6541 2876 /*
e8c82d20
LZ
2877 * All cgroups which are created after we drop cgroup_mutex will
2878 * have the updated set of files, so we only need to update the
00356bd5 2879 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2880 */
00356bd5 2881 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2882
2883 mutex_unlock(&cgroup_mutex);
2884
e8c82d20
LZ
2885 /* add/rm files for all cgroups created before */
2886 rcu_read_lock();
492eb21b
TH
2887 css_for_each_descendant_pre(css, cgroup_css(root, ss->subsys_id)) {
2888 struct cgroup *cgrp = css->cgroup;
2889
e8c82d20
LZ
2890 if (cgroup_is_dead(cgrp))
2891 continue;
2892
2893 inode = cgrp->dentry->d_inode;
2894 dget(cgrp->dentry);
2895 rcu_read_unlock();
2896
2897 dput(prev);
2898 prev = cgrp->dentry;
8e3f6541
TH
2899
2900 mutex_lock(&inode->i_mutex);
2901 mutex_lock(&cgroup_mutex);
00356bd5 2902 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2903 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2904 mutex_unlock(&cgroup_mutex);
2905 mutex_unlock(&inode->i_mutex);
2906
e8c82d20 2907 rcu_read_lock();
9ccece80
TH
2908 if (ret)
2909 break;
8e3f6541 2910 }
e8c82d20
LZ
2911 rcu_read_unlock();
2912 dput(prev);
2913 deactivate_super(sb);
9ccece80 2914 return ret;
8e3f6541
TH
2915}
2916
2917/**
2918 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2919 * @ss: target cgroup subsystem
2920 * @cfts: zero-length name terminated array of cftypes
2921 *
2922 * Register @cfts to @ss. Files described by @cfts are created for all
2923 * existing cgroups to which @ss is attached and all future cgroups will
2924 * have them too. This function can be called anytime whether @ss is
2925 * attached or not.
2926 *
2927 * Returns 0 on successful registration, -errno on failure. Note that this
2928 * function currently returns 0 as long as @cfts registration is successful
2929 * even if some file creation attempts on existing cgroups fail.
2930 */
03b1cde6 2931int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2932{
2933 struct cftype_set *set;
2bb566cb 2934 struct cftype *cft;
9ccece80 2935 int ret;
8e3f6541
TH
2936
2937 set = kzalloc(sizeof(*set), GFP_KERNEL);
2938 if (!set)
2939 return -ENOMEM;
2940
2bb566cb
TH
2941 for (cft = cfts; cft->name[0] != '\0'; cft++)
2942 cft->ss = ss;
2943
8e3f6541
TH
2944 cgroup_cfts_prepare();
2945 set->cfts = cfts;
2946 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2947 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2948 if (ret)
2bb566cb 2949 cgroup_rm_cftypes(cfts);
9ccece80 2950 return ret;
8e3f6541
TH
2951}
2952EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2953
79578621
TH
2954/**
2955 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2956 * @cfts: zero-length name terminated array of cftypes
2957 *
2bb566cb
TH
2958 * Unregister @cfts. Files described by @cfts are removed from all
2959 * existing cgroups and all future cgroups won't have them either. This
2960 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2961 *
2962 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2963 * registered.
79578621 2964 */
2bb566cb 2965int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2966{
2967 struct cftype_set *set;
2968
2bb566cb
TH
2969 if (!cfts || !cfts[0].ss)
2970 return -ENOENT;
2971
79578621
TH
2972 cgroup_cfts_prepare();
2973
2bb566cb 2974 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2975 if (set->cfts == cfts) {
f57947d2
LZ
2976 list_del(&set->node);
2977 kfree(set);
2bb566cb 2978 cgroup_cfts_commit(cfts, false);
79578621
TH
2979 return 0;
2980 }
2981 }
2982
2bb566cb 2983 cgroup_cfts_commit(NULL, false);
79578621
TH
2984 return -ENOENT;
2985}
2986
a043e3b2
LZ
2987/**
2988 * cgroup_task_count - count the number of tasks in a cgroup.
2989 * @cgrp: the cgroup in question
2990 *
2991 * Return the number of tasks in the cgroup.
2992 */
bd89aabc 2993int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2994{
2995 int count = 0;
69d0206c 2996 struct cgrp_cset_link *link;
817929ec
PM
2997
2998 read_lock(&css_set_lock);
69d0206c
TH
2999 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3000 count += atomic_read(&link->cset->refcount);
817929ec 3001 read_unlock(&css_set_lock);
bbcb81d0
PM
3002 return count;
3003}
3004
31a7df01 3005/*
0942eeee
TH
3006 * To reduce the fork() overhead for systems that are not actually using
3007 * their cgroups capability, we don't maintain the lists running through
3008 * each css_set to its tasks until we see the list actually used - in other
72ec7029 3009 * words after the first call to css_task_iter_start().
31a7df01 3010 */
3df91fe3 3011static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
3012{
3013 struct task_struct *p, *g;
3014 write_lock(&css_set_lock);
3015 use_task_css_set_links = 1;
3ce3230a
FW
3016 /*
3017 * We need tasklist_lock because RCU is not safe against
3018 * while_each_thread(). Besides, a forking task that has passed
3019 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3020 * is not guaranteed to have its child immediately visible in the
3021 * tasklist if we walk through it with RCU.
3022 */
3023 read_lock(&tasklist_lock);
31a7df01
CW
3024 do_each_thread(g, p) {
3025 task_lock(p);
0e04388f
LZ
3026 /*
3027 * We should check if the process is exiting, otherwise
3028 * it will race with cgroup_exit() in that the list
3029 * entry won't be deleted though the process has exited.
3030 */
3031 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 3032 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
3033 task_unlock(p);
3034 } while_each_thread(g, p);
3ce3230a 3035 read_unlock(&tasklist_lock);
31a7df01
CW
3036 write_unlock(&css_set_lock);
3037}
3038
53fa5261 3039/**
492eb21b
TH
3040 * css_next_child - find the next child of a given css
3041 * @pos_css: the current position (%NULL to initiate traversal)
3042 * @parent_css: css whose children to walk
53fa5261 3043 *
492eb21b
TH
3044 * This function returns the next child of @parent_css and should be called
3045 * under RCU read lock. The only requirement is that @parent_css and
3046 * @pos_css are accessible. The next sibling is guaranteed to be returned
3047 * regardless of their states.
53fa5261 3048 */
492eb21b
TH
3049struct cgroup_subsys_state *
3050css_next_child(struct cgroup_subsys_state *pos_css,
3051 struct cgroup_subsys_state *parent_css)
53fa5261 3052{
492eb21b
TH
3053 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3054 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3055 struct cgroup *next;
3056
3057 WARN_ON_ONCE(!rcu_read_lock_held());
3058
3059 /*
3060 * @pos could already have been removed. Once a cgroup is removed,
3061 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3062 * changes. As CGRP_DEAD assertion is serialized and happens
3063 * before the cgroup is taken off the ->sibling list, if we see it
3064 * unasserted, it's guaranteed that the next sibling hasn't
3065 * finished its grace period even if it's already removed, and thus
3066 * safe to dereference from this RCU critical section. If
3067 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3068 * to be visible as %true here.
3b287a50
TH
3069 *
3070 * If @pos is dead, its next pointer can't be dereferenced;
3071 * however, as each cgroup is given a monotonically increasing
3072 * unique serial number and always appended to the sibling list,
3073 * the next one can be found by walking the parent's children until
3074 * we see a cgroup with higher serial number than @pos's. While
3075 * this path can be slower, it's taken only when either the current
3076 * cgroup is removed or iteration and removal race.
53fa5261 3077 */
3b287a50
TH
3078 if (!pos) {
3079 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3080 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3081 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3082 } else {
3083 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3084 if (next->serial_nr > pos->serial_nr)
3085 break;
53fa5261
TH
3086 }
3087
492eb21b
TH
3088 if (&next->sibling == &cgrp->children)
3089 return NULL;
3090
3091 if (parent_css->ss)
3092 return cgroup_css(next, parent_css->ss->subsys_id);
3093 else
3094 return &next->dummy_css;
53fa5261 3095}
492eb21b 3096EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 3097
574bd9f7 3098/**
492eb21b 3099 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3100 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3101 * @root: css whose descendants to walk
574bd9f7 3102 *
492eb21b 3103 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3104 * to visit for pre-order traversal of @root's descendants. @root is
3105 * included in the iteration and the first node to be visited.
75501a6d
TH
3106 *
3107 * While this function requires RCU read locking, it doesn't require the
3108 * whole traversal to be contained in a single RCU critical section. This
3109 * function will return the correct next descendant as long as both @pos
492eb21b 3110 * and @root are accessible and @pos is a descendant of @root.
574bd9f7 3111 */
492eb21b
TH
3112struct cgroup_subsys_state *
3113css_next_descendant_pre(struct cgroup_subsys_state *pos,
3114 struct cgroup_subsys_state *root)
574bd9f7 3115{
492eb21b 3116 struct cgroup_subsys_state *next;
574bd9f7
TH
3117
3118 WARN_ON_ONCE(!rcu_read_lock_held());
3119
bd8815a6 3120 /* if first iteration, visit @root */
7805d000 3121 if (!pos)
bd8815a6 3122 return root;
574bd9f7
TH
3123
3124 /* visit the first child if exists */
492eb21b 3125 next = css_next_child(NULL, pos);
574bd9f7
TH
3126 if (next)
3127 return next;
3128
3129 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3130 while (pos != root) {
3131 next = css_next_child(pos, css_parent(pos));
75501a6d 3132 if (next)
574bd9f7 3133 return next;
492eb21b 3134 pos = css_parent(pos);
7805d000 3135 }
574bd9f7
TH
3136
3137 return NULL;
3138}
492eb21b 3139EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 3140
12a9d2fe 3141/**
492eb21b
TH
3142 * css_rightmost_descendant - return the rightmost descendant of a css
3143 * @pos: css of interest
12a9d2fe 3144 *
492eb21b
TH
3145 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3146 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3147 * subtree of @pos.
75501a6d
TH
3148 *
3149 * While this function requires RCU read locking, it doesn't require the
3150 * whole traversal to be contained in a single RCU critical section. This
3151 * function will return the correct rightmost descendant as long as @pos is
3152 * accessible.
12a9d2fe 3153 */
492eb21b
TH
3154struct cgroup_subsys_state *
3155css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3156{
492eb21b 3157 struct cgroup_subsys_state *last, *tmp;
12a9d2fe
TH
3158
3159 WARN_ON_ONCE(!rcu_read_lock_held());
3160
3161 do {
3162 last = pos;
3163 /* ->prev isn't RCU safe, walk ->next till the end */
3164 pos = NULL;
492eb21b 3165 css_for_each_child(tmp, last)
12a9d2fe
TH
3166 pos = tmp;
3167 } while (pos);
3168
3169 return last;
3170}
492eb21b 3171EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3172
492eb21b
TH
3173static struct cgroup_subsys_state *
3174css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3175{
492eb21b 3176 struct cgroup_subsys_state *last;
574bd9f7
TH
3177
3178 do {
3179 last = pos;
492eb21b 3180 pos = css_next_child(NULL, pos);
574bd9f7
TH
3181 } while (pos);
3182
3183 return last;
3184}
3185
3186/**
492eb21b 3187 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3188 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3189 * @root: css whose descendants to walk
574bd9f7 3190 *
492eb21b 3191 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3192 * to visit for post-order traversal of @root's descendants. @root is
3193 * included in the iteration and the last node to be visited.
75501a6d
TH
3194 *
3195 * While this function requires RCU read locking, it doesn't require the
3196 * whole traversal to be contained in a single RCU critical section. This
3197 * function will return the correct next descendant as long as both @pos
3198 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7 3199 */
492eb21b
TH
3200struct cgroup_subsys_state *
3201css_next_descendant_post(struct cgroup_subsys_state *pos,
3202 struct cgroup_subsys_state *root)
574bd9f7 3203{
492eb21b 3204 struct cgroup_subsys_state *next;
574bd9f7
TH
3205
3206 WARN_ON_ONCE(!rcu_read_lock_held());
3207
3208 /* if first iteration, visit the leftmost descendant */
3209 if (!pos) {
492eb21b
TH
3210 next = css_leftmost_descendant(root);
3211 return next != root ? next : NULL;
574bd9f7
TH
3212 }
3213
bd8815a6
TH
3214 /* if we visited @root, we're done */
3215 if (pos == root)
3216 return NULL;
3217
574bd9f7 3218 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3219 next = css_next_child(pos, css_parent(pos));
75501a6d 3220 if (next)
492eb21b 3221 return css_leftmost_descendant(next);
574bd9f7
TH
3222
3223 /* no sibling left, visit parent */
bd8815a6 3224 return css_parent(pos);
574bd9f7 3225}
492eb21b 3226EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3227
0942eeee 3228/**
72ec7029 3229 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3230 * @it: the iterator to advance
3231 *
3232 * Advance @it to the next css_set to walk.
d515876e 3233 */
72ec7029 3234static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3235{
3236 struct list_head *l = it->cset_link;
3237 struct cgrp_cset_link *link;
3238 struct css_set *cset;
3239
3240 /* Advance to the next non-empty css_set */
3241 do {
3242 l = l->next;
72ec7029 3243 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3244 it->cset_link = NULL;
3245 return;
3246 }
3247 link = list_entry(l, struct cgrp_cset_link, cset_link);
3248 cset = link->cset;
3249 } while (list_empty(&cset->tasks));
3250 it->cset_link = l;
3251 it->task = cset->tasks.next;
3252}
3253
0942eeee 3254/**
72ec7029
TH
3255 * css_task_iter_start - initiate task iteration
3256 * @css: the css to walk tasks of
0942eeee
TH
3257 * @it: the task iterator to use
3258 *
72ec7029
TH
3259 * Initiate iteration through the tasks of @css. The caller can call
3260 * css_task_iter_next() to walk through the tasks until the function
3261 * returns NULL. On completion of iteration, css_task_iter_end() must be
3262 * called.
0942eeee
TH
3263 *
3264 * Note that this function acquires a lock which is released when the
3265 * iteration finishes. The caller can't sleep while iteration is in
3266 * progress.
3267 */
72ec7029
TH
3268void css_task_iter_start(struct cgroup_subsys_state *css,
3269 struct css_task_iter *it)
c6ca5750 3270 __acquires(css_set_lock)
817929ec
PM
3271{
3272 /*
72ec7029
TH
3273 * The first time anyone tries to iterate across a css, we need to
3274 * enable the list linking each css_set to its tasks, and fix up
3275 * all existing tasks.
817929ec 3276 */
31a7df01
CW
3277 if (!use_task_css_set_links)
3278 cgroup_enable_task_cg_lists();
3279
817929ec 3280 read_lock(&css_set_lock);
c59cd3d8 3281
72ec7029
TH
3282 it->origin_css = css;
3283 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3284
72ec7029 3285 css_advance_task_iter(it);
817929ec
PM
3286}
3287
0942eeee 3288/**
72ec7029 3289 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3290 * @it: the task iterator being iterated
3291 *
3292 * The "next" function for task iteration. @it should have been
72ec7029
TH
3293 * initialized via css_task_iter_start(). Returns NULL when the iteration
3294 * reaches the end.
0942eeee 3295 */
72ec7029 3296struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3297{
3298 struct task_struct *res;
3299 struct list_head *l = it->task;
69d0206c 3300 struct cgrp_cset_link *link;
817929ec
PM
3301
3302 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3303 if (!it->cset_link)
817929ec
PM
3304 return NULL;
3305 res = list_entry(l, struct task_struct, cg_list);
3306 /* Advance iterator to find next entry */
3307 l = l->next;
69d0206c
TH
3308 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3309 if (l == &link->cset->tasks) {
0942eeee
TH
3310 /*
3311 * We reached the end of this task list - move on to the
3312 * next cgrp_cset_link.
3313 */
72ec7029 3314 css_advance_task_iter(it);
817929ec
PM
3315 } else {
3316 it->task = l;
3317 }
3318 return res;
3319}
3320
0942eeee 3321/**
72ec7029 3322 * css_task_iter_end - finish task iteration
0942eeee
TH
3323 * @it: the task iterator to finish
3324 *
72ec7029 3325 * Finish task iteration started by css_task_iter_start().
0942eeee 3326 */
72ec7029 3327void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3328 __releases(css_set_lock)
817929ec
PM
3329{
3330 read_unlock(&css_set_lock);
3331}
3332
31a7df01
CW
3333static inline int started_after_time(struct task_struct *t1,
3334 struct timespec *time,
3335 struct task_struct *t2)
3336{
3337 int start_diff = timespec_compare(&t1->start_time, time);
3338 if (start_diff > 0) {
3339 return 1;
3340 } else if (start_diff < 0) {
3341 return 0;
3342 } else {
3343 /*
3344 * Arbitrarily, if two processes started at the same
3345 * time, we'll say that the lower pointer value
3346 * started first. Note that t2 may have exited by now
3347 * so this may not be a valid pointer any longer, but
3348 * that's fine - it still serves to distinguish
3349 * between two tasks started (effectively) simultaneously.
3350 */
3351 return t1 > t2;
3352 }
3353}
3354
3355/*
3356 * This function is a callback from heap_insert() and is used to order
3357 * the heap.
3358 * In this case we order the heap in descending task start time.
3359 */
3360static inline int started_after(void *p1, void *p2)
3361{
3362 struct task_struct *t1 = p1;
3363 struct task_struct *t2 = p2;
3364 return started_after_time(t1, &t2->start_time, t2);
3365}
3366
3367/**
72ec7029
TH
3368 * css_scan_tasks - iterate though all the tasks in a css
3369 * @css: the css to iterate tasks of
e535837b
TH
3370 * @test: optional test callback
3371 * @process: process callback
3372 * @data: data passed to @test and @process
3373 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3374 *
72ec7029
TH
3375 * Iterate through all the tasks in @css, calling @test for each, and if it
3376 * returns %true, call @process for it also.
31a7df01 3377 *
e535837b 3378 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3379 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3380 * lock css_set_lock for the call to @process.
3381 *
3382 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3383 * of @css for the duration of this call. This function may or may not
3384 * call @process for tasks that exit or move to a different css during the
3385 * call, or are forked or move into the css during the call.
e535837b
TH
3386 *
3387 * Note that @test may be called with locks held, and may in some
3388 * situations be called multiple times for the same task, so it should be
3389 * cheap.
3390 *
3391 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3392 * heap operations (and its "gt" member will be overwritten), else a
3393 * temporary heap will be used (allocation of which may cause this function
3394 * to fail).
31a7df01 3395 */
72ec7029
TH
3396int css_scan_tasks(struct cgroup_subsys_state *css,
3397 bool (*test)(struct task_struct *, void *),
3398 void (*process)(struct task_struct *, void *),
3399 void *data, struct ptr_heap *heap)
31a7df01
CW
3400{
3401 int retval, i;
72ec7029 3402 struct css_task_iter it;
31a7df01
CW
3403 struct task_struct *p, *dropped;
3404 /* Never dereference latest_task, since it's not refcounted */
3405 struct task_struct *latest_task = NULL;
3406 struct ptr_heap tmp_heap;
31a7df01
CW
3407 struct timespec latest_time = { 0, 0 };
3408
e535837b 3409 if (heap) {
31a7df01 3410 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3411 heap->gt = &started_after;
3412 } else {
3413 /* We need to allocate our own heap memory */
3414 heap = &tmp_heap;
3415 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3416 if (retval)
3417 /* cannot allocate the heap */
3418 return retval;
3419 }
3420
3421 again:
3422 /*
72ec7029 3423 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3424 * which are of interest, and invoking @process callback on the
3425 * ones which need an update. Since we don't want to hold any
3426 * locks during the task updates, gather tasks to be processed in a
3427 * heap structure. The heap is sorted by descending task start
3428 * time. If the statically-sized heap fills up, we overflow tasks
3429 * that started later, and in future iterations only consider tasks
3430 * that started after the latest task in the previous pass. This
31a7df01
CW
3431 * guarantees forward progress and that we don't miss any tasks.
3432 */
3433 heap->size = 0;
72ec7029
TH
3434 css_task_iter_start(css, &it);
3435 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3436 /*
3437 * Only affect tasks that qualify per the caller's callback,
3438 * if he provided one
3439 */
e535837b 3440 if (test && !test(p, data))
31a7df01
CW
3441 continue;
3442 /*
3443 * Only process tasks that started after the last task
3444 * we processed
3445 */
3446 if (!started_after_time(p, &latest_time, latest_task))
3447 continue;
3448 dropped = heap_insert(heap, p);
3449 if (dropped == NULL) {
3450 /*
3451 * The new task was inserted; the heap wasn't
3452 * previously full
3453 */
3454 get_task_struct(p);
3455 } else if (dropped != p) {
3456 /*
3457 * The new task was inserted, and pushed out a
3458 * different task
3459 */
3460 get_task_struct(p);
3461 put_task_struct(dropped);
3462 }
3463 /*
3464 * Else the new task was newer than anything already in
3465 * the heap and wasn't inserted
3466 */
3467 }
72ec7029 3468 css_task_iter_end(&it);
31a7df01
CW
3469
3470 if (heap->size) {
3471 for (i = 0; i < heap->size; i++) {
4fe91d51 3472 struct task_struct *q = heap->ptrs[i];
31a7df01 3473 if (i == 0) {
4fe91d51
PJ
3474 latest_time = q->start_time;
3475 latest_task = q;
31a7df01
CW
3476 }
3477 /* Process the task per the caller's callback */
e535837b 3478 process(q, data);
4fe91d51 3479 put_task_struct(q);
31a7df01
CW
3480 }
3481 /*
3482 * If we had to process any tasks at all, scan again
3483 * in case some of them were in the middle of forking
3484 * children that didn't get processed.
3485 * Not the most efficient way to do it, but it avoids
3486 * having to take callback_mutex in the fork path
3487 */
3488 goto again;
3489 }
3490 if (heap == &tmp_heap)
3491 heap_free(&tmp_heap);
3492 return 0;
3493}
3494
e535837b 3495static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3496{
e535837b 3497 struct cgroup *new_cgroup = data;
8cc99345 3498
47cfcd09 3499 mutex_lock(&cgroup_mutex);
8cc99345 3500 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3501 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3502}
3503
3504/**
3505 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3506 * @to: cgroup to which the tasks will be moved
3507 * @from: cgroup in which the tasks currently reside
3508 */
3509int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3510{
72ec7029
TH
3511 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3512 to, NULL);
8cc99345
TH
3513}
3514
bbcb81d0 3515/*
102a775e 3516 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3517 *
3518 * Reading this file can return large amounts of data if a cgroup has
3519 * *lots* of attached tasks. So it may need several calls to read(),
3520 * but we cannot guarantee that the information we produce is correct
3521 * unless we produce it entirely atomically.
3522 *
bbcb81d0 3523 */
bbcb81d0 3524
24528255
LZ
3525/* which pidlist file are we talking about? */
3526enum cgroup_filetype {
3527 CGROUP_FILE_PROCS,
3528 CGROUP_FILE_TASKS,
3529};
3530
3531/*
3532 * A pidlist is a list of pids that virtually represents the contents of one
3533 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3534 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3535 * to the cgroup.
3536 */
3537struct cgroup_pidlist {
3538 /*
3539 * used to find which pidlist is wanted. doesn't change as long as
3540 * this particular list stays in the list.
3541 */
3542 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3543 /* array of xids */
3544 pid_t *list;
3545 /* how many elements the above list has */
3546 int length;
3547 /* how many files are using the current array */
3548 int use_count;
3549 /* each of these stored in a list by its cgroup */
3550 struct list_head links;
3551 /* pointer to the cgroup we belong to, for list removal purposes */
3552 struct cgroup *owner;
3553 /* protects the other fields */
b395890a 3554 struct rw_semaphore rwsem;
24528255
LZ
3555};
3556
d1d9fd33
BB
3557/*
3558 * The following two functions "fix" the issue where there are more pids
3559 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3560 * TODO: replace with a kernel-wide solution to this problem
3561 */
3562#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3563static void *pidlist_allocate(int count)
3564{
3565 if (PIDLIST_TOO_LARGE(count))
3566 return vmalloc(count * sizeof(pid_t));
3567 else
3568 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3569}
3570static void pidlist_free(void *p)
3571{
3572 if (is_vmalloc_addr(p))
3573 vfree(p);
3574 else
3575 kfree(p);
3576}
d1d9fd33 3577
bbcb81d0 3578/*
102a775e 3579 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3580 * Returns the number of unique elements.
bbcb81d0 3581 */
6ee211ad 3582static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3583{
102a775e 3584 int src, dest = 1;
102a775e
BB
3585
3586 /*
3587 * we presume the 0th element is unique, so i starts at 1. trivial
3588 * edge cases first; no work needs to be done for either
3589 */
3590 if (length == 0 || length == 1)
3591 return length;
3592 /* src and dest walk down the list; dest counts unique elements */
3593 for (src = 1; src < length; src++) {
3594 /* find next unique element */
3595 while (list[src] == list[src-1]) {
3596 src++;
3597 if (src == length)
3598 goto after;
3599 }
3600 /* dest always points to where the next unique element goes */
3601 list[dest] = list[src];
3602 dest++;
3603 }
3604after:
102a775e
BB
3605 return dest;
3606}
3607
3608static int cmppid(const void *a, const void *b)
3609{
3610 return *(pid_t *)a - *(pid_t *)b;
3611}
3612
72a8cb30
BB
3613/*
3614 * find the appropriate pidlist for our purpose (given procs vs tasks)
3615 * returns with the lock on that pidlist already held, and takes care
3616 * of the use count, or returns NULL with no locks held if we're out of
3617 * memory.
3618 */
3619static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3620 enum cgroup_filetype type)
3621{
3622 struct cgroup_pidlist *l;
3623 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3624 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3625
72a8cb30 3626 /*
b395890a 3627 * We can't drop the pidlist_mutex before taking the l->rwsem in case
72a8cb30
BB
3628 * the last ref-holder is trying to remove l from the list at the same
3629 * time. Holding the pidlist_mutex precludes somebody taking whichever
3630 * list we find out from under us - compare release_pid_array().
3631 */
3632 mutex_lock(&cgrp->pidlist_mutex);
3633 list_for_each_entry(l, &cgrp->pidlists, links) {
3634 if (l->key.type == type && l->key.ns == ns) {
72a8cb30 3635 /* make sure l doesn't vanish out from under us */
b395890a 3636 down_write(&l->rwsem);
72a8cb30 3637 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3638 return l;
3639 }
3640 }
3641 /* entry not found; create a new one */
f4f4be2b 3642 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3643 if (!l) {
3644 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3645 return l;
3646 }
b395890a
LZ
3647 init_rwsem(&l->rwsem);
3648 down_write(&l->rwsem);
72a8cb30 3649 l->key.type = type;
b70cc5fd 3650 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3651 l->owner = cgrp;
3652 list_add(&l->links, &cgrp->pidlists);
3653 mutex_unlock(&cgrp->pidlist_mutex);
3654 return l;
3655}
3656
102a775e
BB
3657/*
3658 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3659 */
72a8cb30
BB
3660static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3661 struct cgroup_pidlist **lp)
102a775e
BB
3662{
3663 pid_t *array;
3664 int length;
3665 int pid, n = 0; /* used for populating the array */
72ec7029 3666 struct css_task_iter it;
817929ec 3667 struct task_struct *tsk;
102a775e
BB
3668 struct cgroup_pidlist *l;
3669
3670 /*
3671 * If cgroup gets more users after we read count, we won't have
3672 * enough space - tough. This race is indistinguishable to the
3673 * caller from the case that the additional cgroup users didn't
3674 * show up until sometime later on.
3675 */
3676 length = cgroup_task_count(cgrp);
d1d9fd33 3677 array = pidlist_allocate(length);
102a775e
BB
3678 if (!array)
3679 return -ENOMEM;
3680 /* now, populate the array */
72ec7029
TH
3681 css_task_iter_start(&cgrp->dummy_css, &it);
3682 while ((tsk = css_task_iter_next(&it))) {
102a775e 3683 if (unlikely(n == length))
817929ec 3684 break;
102a775e 3685 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3686 if (type == CGROUP_FILE_PROCS)
3687 pid = task_tgid_vnr(tsk);
3688 else
3689 pid = task_pid_vnr(tsk);
102a775e
BB
3690 if (pid > 0) /* make sure to only use valid results */
3691 array[n++] = pid;
817929ec 3692 }
72ec7029 3693 css_task_iter_end(&it);
102a775e
BB
3694 length = n;
3695 /* now sort & (if procs) strip out duplicates */
3696 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3697 if (type == CGROUP_FILE_PROCS)
6ee211ad 3698 length = pidlist_uniq(array, length);
72a8cb30
BB
3699 l = cgroup_pidlist_find(cgrp, type);
3700 if (!l) {
d1d9fd33 3701 pidlist_free(array);
72a8cb30 3702 return -ENOMEM;
102a775e 3703 }
72a8cb30 3704 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3705 pidlist_free(l->list);
102a775e
BB
3706 l->list = array;
3707 l->length = length;
3708 l->use_count++;
b395890a 3709 up_write(&l->rwsem);
72a8cb30 3710 *lp = l;
102a775e 3711 return 0;
bbcb81d0
PM
3712}
3713
846c7bb0 3714/**
a043e3b2 3715 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3716 * @stats: cgroupstats to fill information into
3717 * @dentry: A dentry entry belonging to the cgroup for which stats have
3718 * been requested.
a043e3b2
LZ
3719 *
3720 * Build and fill cgroupstats so that taskstats can export it to user
3721 * space.
846c7bb0
BS
3722 */
3723int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3724{
3725 int ret = -EINVAL;
bd89aabc 3726 struct cgroup *cgrp;
72ec7029 3727 struct css_task_iter it;
846c7bb0 3728 struct task_struct *tsk;
33d283be 3729
846c7bb0 3730 /*
33d283be
LZ
3731 * Validate dentry by checking the superblock operations,
3732 * and make sure it's a directory.
846c7bb0 3733 */
33d283be
LZ
3734 if (dentry->d_sb->s_op != &cgroup_ops ||
3735 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3736 goto err;
3737
3738 ret = 0;
bd89aabc 3739 cgrp = dentry->d_fsdata;
846c7bb0 3740
72ec7029
TH
3741 css_task_iter_start(&cgrp->dummy_css, &it);
3742 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3743 switch (tsk->state) {
3744 case TASK_RUNNING:
3745 stats->nr_running++;
3746 break;
3747 case TASK_INTERRUPTIBLE:
3748 stats->nr_sleeping++;
3749 break;
3750 case TASK_UNINTERRUPTIBLE:
3751 stats->nr_uninterruptible++;
3752 break;
3753 case TASK_STOPPED:
3754 stats->nr_stopped++;
3755 break;
3756 default:
3757 if (delayacct_is_task_waiting_on_io(tsk))
3758 stats->nr_io_wait++;
3759 break;
3760 }
3761 }
72ec7029 3762 css_task_iter_end(&it);
846c7bb0 3763
846c7bb0
BS
3764err:
3765 return ret;
3766}
3767
8f3ff208 3768
bbcb81d0 3769/*
102a775e 3770 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3771 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3772 * in the cgroup->l->list array.
bbcb81d0 3773 */
cc31edce 3774
102a775e 3775static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3776{
cc31edce
PM
3777 /*
3778 * Initially we receive a position value that corresponds to
3779 * one more than the last pid shown (or 0 on the first call or
3780 * after a seek to the start). Use a binary-search to find the
3781 * next pid to display, if any
3782 */
102a775e 3783 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3784 int index = 0, pid = *pos;
3785 int *iter;
3786
b395890a 3787 down_read(&l->rwsem);
cc31edce 3788 if (pid) {
102a775e 3789 int end = l->length;
20777766 3790
cc31edce
PM
3791 while (index < end) {
3792 int mid = (index + end) / 2;
102a775e 3793 if (l->list[mid] == pid) {
cc31edce
PM
3794 index = mid;
3795 break;
102a775e 3796 } else if (l->list[mid] <= pid)
cc31edce
PM
3797 index = mid + 1;
3798 else
3799 end = mid;
3800 }
3801 }
3802 /* If we're off the end of the array, we're done */
102a775e 3803 if (index >= l->length)
cc31edce
PM
3804 return NULL;
3805 /* Update the abstract position to be the actual pid that we found */
102a775e 3806 iter = l->list + index;
cc31edce
PM
3807 *pos = *iter;
3808 return iter;
3809}
3810
102a775e 3811static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3812{
102a775e 3813 struct cgroup_pidlist *l = s->private;
b395890a 3814 up_read(&l->rwsem);
cc31edce
PM
3815}
3816
102a775e 3817static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3818{
102a775e
BB
3819 struct cgroup_pidlist *l = s->private;
3820 pid_t *p = v;
3821 pid_t *end = l->list + l->length;
cc31edce
PM
3822 /*
3823 * Advance to the next pid in the array. If this goes off the
3824 * end, we're done
3825 */
3826 p++;
3827 if (p >= end) {
3828 return NULL;
3829 } else {
3830 *pos = *p;
3831 return p;
3832 }
3833}
3834
102a775e 3835static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3836{
3837 return seq_printf(s, "%d\n", *(int *)v);
3838}
bbcb81d0 3839
102a775e
BB
3840/*
3841 * seq_operations functions for iterating on pidlists through seq_file -
3842 * independent of whether it's tasks or procs
3843 */
3844static const struct seq_operations cgroup_pidlist_seq_operations = {
3845 .start = cgroup_pidlist_start,
3846 .stop = cgroup_pidlist_stop,
3847 .next = cgroup_pidlist_next,
3848 .show = cgroup_pidlist_show,
cc31edce
PM
3849};
3850
102a775e 3851static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3852{
72a8cb30
BB
3853 /*
3854 * the case where we're the last user of this particular pidlist will
3855 * have us remove it from the cgroup's list, which entails taking the
3856 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3857 * pidlist_mutex, we have to take pidlist_mutex first.
3858 */
3859 mutex_lock(&l->owner->pidlist_mutex);
b395890a 3860 down_write(&l->rwsem);
102a775e
BB
3861 BUG_ON(!l->use_count);
3862 if (!--l->use_count) {
72a8cb30
BB
3863 /* we're the last user if refcount is 0; remove and free */
3864 list_del(&l->links);
3865 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3866 pidlist_free(l->list);
72a8cb30 3867 put_pid_ns(l->key.ns);
b395890a 3868 up_write(&l->rwsem);
72a8cb30
BB
3869 kfree(l);
3870 return;
cc31edce 3871 }
72a8cb30 3872 mutex_unlock(&l->owner->pidlist_mutex);
b395890a 3873 up_write(&l->rwsem);
bbcb81d0
PM
3874}
3875
102a775e 3876static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3877{
102a775e 3878 struct cgroup_pidlist *l;
cc31edce
PM
3879 if (!(file->f_mode & FMODE_READ))
3880 return 0;
102a775e
BB
3881 /*
3882 * the seq_file will only be initialized if the file was opened for
3883 * reading; hence we check if it's not null only in that case.
3884 */
3885 l = ((struct seq_file *)file->private_data)->private;
3886 cgroup_release_pid_array(l);
cc31edce
PM
3887 return seq_release(inode, file);
3888}
3889
102a775e 3890static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3891 .read = seq_read,
3892 .llseek = seq_lseek,
3893 .write = cgroup_file_write,
102a775e 3894 .release = cgroup_pidlist_release,
cc31edce
PM
3895};
3896
bbcb81d0 3897/*
102a775e
BB
3898 * The following functions handle opens on a file that displays a pidlist
3899 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3900 * in the cgroup.
bbcb81d0 3901 */
102a775e 3902/* helper function for the two below it */
72a8cb30 3903static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3904{
bd89aabc 3905 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3906 struct cgroup_pidlist *l;
cc31edce 3907 int retval;
bbcb81d0 3908
cc31edce 3909 /* Nothing to do for write-only files */
bbcb81d0
PM
3910 if (!(file->f_mode & FMODE_READ))
3911 return 0;
3912
102a775e 3913 /* have the array populated */
72a8cb30 3914 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3915 if (retval)
3916 return retval;
3917 /* configure file information */
3918 file->f_op = &cgroup_pidlist_operations;
cc31edce 3919
102a775e 3920 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3921 if (retval) {
102a775e 3922 cgroup_release_pid_array(l);
cc31edce 3923 return retval;
bbcb81d0 3924 }
102a775e 3925 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3926 return 0;
3927}
102a775e
BB
3928static int cgroup_tasks_open(struct inode *unused, struct file *file)
3929{
72a8cb30 3930 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3931}
3932static int cgroup_procs_open(struct inode *unused, struct file *file)
3933{
72a8cb30 3934 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3935}
bbcb81d0 3936
182446d0
TH
3937static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3938 struct cftype *cft)
81a6a5cd 3939{
182446d0 3940 return notify_on_release(css->cgroup);
81a6a5cd
PM
3941}
3942
182446d0
TH
3943static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3944 struct cftype *cft, u64 val)
6379c106 3945{
182446d0 3946 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3947 if (val)
182446d0 3948 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3949 else
182446d0 3950 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3951 return 0;
3952}
3953
1c8158ee
LZ
3954/*
3955 * When dput() is called asynchronously, if umount has been done and
3956 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3957 * there's a small window that vfs will see the root dentry with non-zero
3958 * refcnt and trigger BUG().
3959 *
3960 * That's why we hold a reference before dput() and drop it right after.
3961 */
3962static void cgroup_dput(struct cgroup *cgrp)
3963{
3964 struct super_block *sb = cgrp->root->sb;
3965
3966 atomic_inc(&sb->s_active);
3967 dput(cgrp->dentry);
3968 deactivate_super(sb);
3969}
3970
0dea1168
KS
3971/*
3972 * Unregister event and free resources.
3973 *
3974 * Gets called from workqueue.
3975 */
3976static void cgroup_event_remove(struct work_struct *work)
3977{
3978 struct cgroup_event *event = container_of(work, struct cgroup_event,
3979 remove);
81eeaf04
TH
3980 struct cgroup_subsys_state *css = event->css;
3981 struct cgroup *cgrp = css->cgroup;
0dea1168 3982
810cbee4
LZ
3983 remove_wait_queue(event->wqh, &event->wait);
3984
81eeaf04 3985 event->cft->unregister_event(css, event->cft, event->eventfd);
0dea1168 3986
810cbee4
LZ
3987 /* Notify userspace the event is going away. */
3988 eventfd_signal(event->eventfd, 1);
3989
0dea1168 3990 eventfd_ctx_put(event->eventfd);
0dea1168 3991 kfree(event);
1c8158ee 3992 cgroup_dput(cgrp);
0dea1168
KS
3993}
3994
3995/*
3996 * Gets called on POLLHUP on eventfd when user closes it.
3997 *
3998 * Called with wqh->lock held and interrupts disabled.
3999 */
4000static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
4001 int sync, void *key)
4002{
4003 struct cgroup_event *event = container_of(wait,
4004 struct cgroup_event, wait);
81eeaf04 4005 struct cgroup *cgrp = event->css->cgroup;
0dea1168
KS
4006 unsigned long flags = (unsigned long)key;
4007
4008 if (flags & POLLHUP) {
0dea1168 4009 /*
810cbee4
LZ
4010 * If the event has been detached at cgroup removal, we
4011 * can simply return knowing the other side will cleanup
4012 * for us.
4013 *
4014 * We can't race against event freeing since the other
4015 * side will require wqh->lock via remove_wait_queue(),
4016 * which we hold.
0dea1168 4017 */
810cbee4
LZ
4018 spin_lock(&cgrp->event_list_lock);
4019 if (!list_empty(&event->list)) {
4020 list_del_init(&event->list);
4021 /*
4022 * We are in atomic context, but cgroup_event_remove()
4023 * may sleep, so we have to call it in workqueue.
4024 */
4025 schedule_work(&event->remove);
4026 }
4027 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
4028 }
4029
4030 return 0;
4031}
4032
4033static void cgroup_event_ptable_queue_proc(struct file *file,
4034 wait_queue_head_t *wqh, poll_table *pt)
4035{
4036 struct cgroup_event *event = container_of(pt,
4037 struct cgroup_event, pt);
4038
4039 event->wqh = wqh;
4040 add_wait_queue(wqh, &event->wait);
4041}
4042
4043/*
4044 * Parse input and register new cgroup event handler.
4045 *
4046 * Input must be in format '<event_fd> <control_fd> <args>'.
4047 * Interpretation of args is defined by control file implementation.
4048 */
182446d0
TH
4049static int cgroup_write_event_control(struct cgroup_subsys_state *css,
4050 struct cftype *cft, const char *buffer)
0dea1168 4051{
182446d0 4052 struct cgroup *cgrp = css->cgroup;
876ede8b 4053 struct cgroup_event *event;
f169007b 4054 struct cgroup *cgrp_cfile;
0dea1168 4055 unsigned int efd, cfd;
876ede8b
LZ
4056 struct file *efile;
4057 struct file *cfile;
0dea1168
KS
4058 char *endp;
4059 int ret;
4060
4061 efd = simple_strtoul(buffer, &endp, 10);
4062 if (*endp != ' ')
4063 return -EINVAL;
4064 buffer = endp + 1;
4065
4066 cfd = simple_strtoul(buffer, &endp, 10);
4067 if ((*endp != ' ') && (*endp != '\0'))
4068 return -EINVAL;
4069 buffer = endp + 1;
4070
4071 event = kzalloc(sizeof(*event), GFP_KERNEL);
4072 if (!event)
4073 return -ENOMEM;
81eeaf04 4074 event->css = css;
0dea1168
KS
4075 INIT_LIST_HEAD(&event->list);
4076 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4077 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4078 INIT_WORK(&event->remove, cgroup_event_remove);
4079
4080 efile = eventfd_fget(efd);
4081 if (IS_ERR(efile)) {
4082 ret = PTR_ERR(efile);
876ede8b 4083 goto out_kfree;
0dea1168
KS
4084 }
4085
4086 event->eventfd = eventfd_ctx_fileget(efile);
4087 if (IS_ERR(event->eventfd)) {
4088 ret = PTR_ERR(event->eventfd);
876ede8b 4089 goto out_put_efile;
0dea1168
KS
4090 }
4091
4092 cfile = fget(cfd);
4093 if (!cfile) {
4094 ret = -EBADF;
876ede8b 4095 goto out_put_eventfd;
0dea1168
KS
4096 }
4097
4098 /* the process need read permission on control file */
3bfa784a 4099 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 4100 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168 4101 if (ret < 0)
876ede8b 4102 goto out_put_cfile;
0dea1168
KS
4103
4104 event->cft = __file_cft(cfile);
4105 if (IS_ERR(event->cft)) {
4106 ret = PTR_ERR(event->cft);
876ede8b 4107 goto out_put_cfile;
0dea1168
KS
4108 }
4109
f169007b
LZ
4110 /*
4111 * The file to be monitored must be in the same cgroup as
4112 * cgroup.event_control is.
4113 */
4114 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4115 if (cgrp_cfile != cgrp) {
4116 ret = -EINVAL;
876ede8b 4117 goto out_put_cfile;
f169007b
LZ
4118 }
4119
0dea1168
KS
4120 if (!event->cft->register_event || !event->cft->unregister_event) {
4121 ret = -EINVAL;
876ede8b 4122 goto out_put_cfile;
0dea1168
KS
4123 }
4124
81eeaf04 4125 ret = event->cft->register_event(css, event->cft,
0dea1168
KS
4126 event->eventfd, buffer);
4127 if (ret)
876ede8b 4128 goto out_put_cfile;
0dea1168 4129
7ef70e48 4130 efile->f_op->poll(efile, &event->pt);
0dea1168 4131
a0a4db54
KS
4132 /*
4133 * Events should be removed after rmdir of cgroup directory, but before
4134 * destroying subsystem state objects. Let's take reference to cgroup
4135 * directory dentry to do that.
4136 */
4137 dget(cgrp->dentry);
4138
0dea1168
KS
4139 spin_lock(&cgrp->event_list_lock);
4140 list_add(&event->list, &cgrp->event_list);
4141 spin_unlock(&cgrp->event_list_lock);
4142
4143 fput(cfile);
4144 fput(efile);
4145
4146 return 0;
4147
876ede8b
LZ
4148out_put_cfile:
4149 fput(cfile);
4150out_put_eventfd:
4151 eventfd_ctx_put(event->eventfd);
4152out_put_efile:
4153 fput(efile);
4154out_kfree:
0dea1168
KS
4155 kfree(event);
4156
4157 return ret;
4158}
4159
182446d0
TH
4160static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4161 struct cftype *cft)
97978e6d 4162{
182446d0 4163 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4164}
4165
182446d0
TH
4166static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4167 struct cftype *cft, u64 val)
97978e6d
DL
4168{
4169 if (val)
182446d0 4170 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4171 else
182446d0 4172 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4173 return 0;
4174}
4175
d5c56ced 4176static struct cftype cgroup_base_files[] = {
81a6a5cd 4177 {
d5c56ced 4178 .name = "cgroup.procs",
102a775e 4179 .open = cgroup_procs_open,
74a1166d 4180 .write_u64 = cgroup_procs_write,
102a775e 4181 .release = cgroup_pidlist_release,
74a1166d 4182 .mode = S_IRUGO | S_IWUSR,
102a775e 4183 },
81a6a5cd 4184 {
d5c56ced 4185 .name = "cgroup.event_control",
0dea1168
KS
4186 .write_string = cgroup_write_event_control,
4187 .mode = S_IWUGO,
4188 },
97978e6d
DL
4189 {
4190 .name = "cgroup.clone_children",
873fe09e 4191 .flags = CFTYPE_INSANE,
97978e6d
DL
4192 .read_u64 = cgroup_clone_children_read,
4193 .write_u64 = cgroup_clone_children_write,
4194 },
873fe09e
TH
4195 {
4196 .name = "cgroup.sane_behavior",
4197 .flags = CFTYPE_ONLY_ON_ROOT,
4198 .read_seq_string = cgroup_sane_behavior_show,
4199 },
d5c56ced
TH
4200
4201 /*
4202 * Historical crazy stuff. These don't have "cgroup." prefix and
4203 * don't exist if sane_behavior. If you're depending on these, be
4204 * prepared to be burned.
4205 */
4206 {
4207 .name = "tasks",
4208 .flags = CFTYPE_INSANE, /* use "procs" instead */
4209 .open = cgroup_tasks_open,
4210 .write_u64 = cgroup_tasks_write,
4211 .release = cgroup_pidlist_release,
4212 .mode = S_IRUGO | S_IWUSR,
4213 },
4214 {
4215 .name = "notify_on_release",
4216 .flags = CFTYPE_INSANE,
4217 .read_u64 = cgroup_read_notify_on_release,
4218 .write_u64 = cgroup_write_notify_on_release,
4219 },
6e6ff25b
TH
4220 {
4221 .name = "release_agent",
cc5943a7 4222 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4223 .read_seq_string = cgroup_release_agent_show,
4224 .write_string = cgroup_release_agent_write,
4225 .max_write_len = PATH_MAX,
4226 },
db0416b6 4227 { } /* terminate */
bbcb81d0
PM
4228};
4229
13af07df 4230/**
628f7cd4 4231 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4232 * @cgrp: target cgroup
13af07df 4233 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4234 *
4235 * On failure, no file is added.
13af07df 4236 */
628f7cd4 4237static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4238{
ddbcc7e8 4239 struct cgroup_subsys *ss;
b420ba7d 4240 int i, ret = 0;
ddbcc7e8 4241
8e3f6541 4242 /* process cftsets of each subsystem */
b420ba7d 4243 for_each_subsys(ss, i) {
8e3f6541 4244 struct cftype_set *set;
b420ba7d
TH
4245
4246 if (!test_bit(i, &subsys_mask))
13af07df 4247 continue;
8e3f6541 4248
bee55099 4249 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 4250 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
4251 if (ret < 0)
4252 goto err;
4253 }
ddbcc7e8 4254 }
8e3f6541 4255
38460b48 4256 /* This cgroup is ready now */
5549c497 4257 for_each_root_subsys(cgrp->root, ss) {
40e93b39 4258 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
a4ea1cc9
TH
4259 struct css_id *id = rcu_dereference_protected(css->id, true);
4260
38460b48
KH
4261 /*
4262 * Update id->css pointer and make this css visible from
4263 * CSS ID functions. This pointer will be dereferened
4264 * from RCU-read-side without locks.
4265 */
a4ea1cc9
TH
4266 if (id)
4267 rcu_assign_pointer(id->css, css);
38460b48 4268 }
ddbcc7e8
PM
4269
4270 return 0;
bee55099
TH
4271err:
4272 cgroup_clear_dir(cgrp, subsys_mask);
4273 return ret;
ddbcc7e8
PM
4274}
4275
35ef10da 4276static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4277{
4278 struct cgroup_subsys_state *css =
35ef10da 4279 container_of(work, struct cgroup_subsys_state, destroy_work);
48ddbe19 4280
0ae78e0b
TH
4281 if (css->parent)
4282 css_put(css->parent);
4283
1c8158ee 4284 cgroup_dput(css->cgroup);
48ddbe19
TH
4285}
4286
d3daf28d
TH
4287static void css_release(struct percpu_ref *ref)
4288{
4289 struct cgroup_subsys_state *css =
4290 container_of(ref, struct cgroup_subsys_state, refcnt);
4291
35ef10da
TH
4292 /*
4293 * css holds an extra ref to @cgrp->dentry which is put on the last
4294 * css_put(). dput() requires process context, which css_put() may
4295 * be called without. @css->destroy_work will be used to invoke
4296 * dput() asynchronously from css_put().
4297 */
4298 INIT_WORK(&css->destroy_work, css_free_work_fn);
4299 schedule_work(&css->destroy_work);
d3daf28d
TH
4300}
4301
ddbcc7e8
PM
4302static void init_cgroup_css(struct cgroup_subsys_state *css,
4303 struct cgroup_subsys *ss,
bd89aabc 4304 struct cgroup *cgrp)
ddbcc7e8 4305{
bd89aabc 4306 css->cgroup = cgrp;
72c97e54 4307 css->ss = ss;
ddbcc7e8 4308 css->flags = 0;
38460b48 4309 css->id = NULL;
0ae78e0b
TH
4310
4311 if (cgrp->parent)
4312 css->parent = cgroup_css(cgrp->parent, ss->subsys_id);
4313 else
38b53aba 4314 css->flags |= CSS_ROOT;
0ae78e0b 4315
40e93b39 4316 BUG_ON(cgroup_css(cgrp, ss->subsys_id));
bd89aabc 4317 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4318}
4319
2a4ac633 4320/* invoke ->css_online() on a new CSS and mark it online if successful */
b1929db4 4321static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4322{
40e93b39 4323 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
b1929db4
TH
4324 int ret = 0;
4325
a31f2d3f
TH
4326 lockdep_assert_held(&cgroup_mutex);
4327
92fb9748 4328 if (ss->css_online)
eb95419b 4329 ret = ss->css_online(css);
b1929db4 4330 if (!ret)
eb95419b 4331 css->flags |= CSS_ONLINE;
b1929db4 4332 return ret;
a31f2d3f
TH
4333}
4334
2a4ac633 4335/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
a31f2d3f 4336static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4337{
40e93b39 4338 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
a31f2d3f
TH
4339
4340 lockdep_assert_held(&cgroup_mutex);
4341
4342 if (!(css->flags & CSS_ONLINE))
4343 return;
4344
d7eeac19 4345 if (ss->css_offline)
eb95419b 4346 ss->css_offline(css);
a31f2d3f 4347
eb95419b 4348 css->flags &= ~CSS_ONLINE;
a31f2d3f
TH
4349}
4350
ddbcc7e8 4351/*
a043e3b2
LZ
4352 * cgroup_create - create a cgroup
4353 * @parent: cgroup that will be parent of the new cgroup
4354 * @dentry: dentry of the new cgroup
4355 * @mode: mode to set on new inode
ddbcc7e8 4356 *
a043e3b2 4357 * Must be called with the mutex on the parent inode held
ddbcc7e8 4358 */
ddbcc7e8 4359static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4360 umode_t mode)
ddbcc7e8 4361{
bd89aabc 4362 struct cgroup *cgrp;
65dff759 4363 struct cgroup_name *name;
ddbcc7e8
PM
4364 struct cgroupfs_root *root = parent->root;
4365 int err = 0;
4366 struct cgroup_subsys *ss;
4367 struct super_block *sb = root->sb;
4368
0a950f65 4369 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4370 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4371 if (!cgrp)
ddbcc7e8
PM
4372 return -ENOMEM;
4373
65dff759
LZ
4374 name = cgroup_alloc_name(dentry);
4375 if (!name)
4376 goto err_free_cgrp;
4377 rcu_assign_pointer(cgrp->name, name);
4378
4e96ee8e
LZ
4379 /*
4380 * Temporarily set the pointer to NULL, so idr_find() won't return
4381 * a half-baked cgroup.
4382 */
4383 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4384 if (cgrp->id < 0)
65dff759 4385 goto err_free_name;
0a950f65 4386
976c06bc
TH
4387 /*
4388 * Only live parents can have children. Note that the liveliness
4389 * check isn't strictly necessary because cgroup_mkdir() and
4390 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4391 * anyway so that locking is contained inside cgroup proper and we
4392 * don't get nasty surprises if we ever grow another caller.
4393 */
4394 if (!cgroup_lock_live_group(parent)) {
4395 err = -ENODEV;
0a950f65 4396 goto err_free_id;
976c06bc
TH
4397 }
4398
ddbcc7e8
PM
4399 /* Grab a reference on the superblock so the hierarchy doesn't
4400 * get deleted on unmount if there are child cgroups. This
4401 * can be done outside cgroup_mutex, since the sb can't
4402 * disappear while someone has an open control file on the
4403 * fs */
4404 atomic_inc(&sb->s_active);
4405
cc31edce 4406 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4407
fe1c06ca
LZ
4408 dentry->d_fsdata = cgrp;
4409 cgrp->dentry = dentry;
4410
bd89aabc 4411 cgrp->parent = parent;
0ae78e0b 4412 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4413 cgrp->root = parent->root;
ddbcc7e8 4414
b6abdb0e
LZ
4415 if (notify_on_release(parent))
4416 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4417
2260e7fc
TH
4418 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4419 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4420
5549c497 4421 for_each_root_subsys(root, ss) {
8c7f6edb 4422 struct cgroup_subsys_state *css;
4528fd05 4423
40e93b39 4424 css = ss->css_alloc(cgroup_css(parent, ss->subsys_id));
ddbcc7e8
PM
4425 if (IS_ERR(css)) {
4426 err = PTR_ERR(css);
4b8b47eb 4427 goto err_free_all;
ddbcc7e8 4428 }
d3daf28d
TH
4429
4430 err = percpu_ref_init(&css->refcnt, css_release);
da0a12ca 4431 if (err) {
eb95419b 4432 ss->css_free(css);
d3daf28d 4433 goto err_free_all;
da0a12ca 4434 }
d3daf28d 4435
bd89aabc 4436 init_cgroup_css(css, ss, cgrp);
d3daf28d 4437
4528fd05
LZ
4438 if (ss->use_id) {
4439 err = alloc_css_id(ss, parent, cgrp);
4440 if (err)
4b8b47eb 4441 goto err_free_all;
4528fd05 4442 }
ddbcc7e8
PM
4443 }
4444
4e139afc
TH
4445 /*
4446 * Create directory. cgroup_create_file() returns with the new
4447 * directory locked on success so that it can be populated without
4448 * dropping cgroup_mutex.
4449 */
28fd6f30 4450 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4451 if (err < 0)
4b8b47eb 4452 goto err_free_all;
4e139afc 4453 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4454
00356bd5 4455 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4456
4e139afc 4457 /* allocation complete, commit to creation */
4e139afc
TH
4458 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4459 root->number_of_cgroups++;
28fd6f30 4460
0ae78e0b
TH
4461 /* each css holds a ref to the cgroup's dentry and the parent css */
4462 for_each_root_subsys(root, ss) {
4463 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
4464
ed957793 4465 dget(dentry);
0ae78e0b
TH
4466 percpu_ref_get(&css->parent->refcnt);
4467 }
48ddbe19 4468
415cf07a
LZ
4469 /* hold a ref to the parent's dentry */
4470 dget(parent->dentry);
4471
b1929db4 4472 /* creation succeeded, notify subsystems */
5549c497 4473 for_each_root_subsys(root, ss) {
b1929db4
TH
4474 err = online_css(ss, cgrp);
4475 if (err)
4476 goto err_destroy;
1f869e87
GC
4477
4478 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4479 parent->parent) {
4480 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4481 current->comm, current->pid, ss->name);
4482 if (!strcmp(ss->name, "memory"))
4483 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4484 ss->warned_broken_hierarchy = true;
4485 }
a8638030
TH
4486 }
4487
4e96ee8e
LZ
4488 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4489
2bb566cb 4490 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4491 if (err)
4492 goto err_destroy;
4493
4494 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4495 if (err)
4496 goto err_destroy;
ddbcc7e8
PM
4497
4498 mutex_unlock(&cgroup_mutex);
bd89aabc 4499 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4500
4501 return 0;
4502
4b8b47eb 4503err_free_all:
5549c497 4504 for_each_root_subsys(root, ss) {
40e93b39 4505 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
d3daf28d
TH
4506
4507 if (css) {
4508 percpu_ref_cancel_init(&css->refcnt);
eb95419b 4509 ss->css_free(css);
d3daf28d 4510 }
ddbcc7e8 4511 }
ddbcc7e8 4512 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4513 /* Release the reference count that we took on the superblock */
4514 deactivate_super(sb);
0a950f65 4515err_free_id:
4e96ee8e 4516 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4517err_free_name:
4518 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4519err_free_cgrp:
bd89aabc 4520 kfree(cgrp);
ddbcc7e8 4521 return err;
4b8b47eb
TH
4522
4523err_destroy:
4524 cgroup_destroy_locked(cgrp);
4525 mutex_unlock(&cgroup_mutex);
4526 mutex_unlock(&dentry->d_inode->i_mutex);
4527 return err;
ddbcc7e8
PM
4528}
4529
18bb1db3 4530static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4531{
4532 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4533
4534 /* the vfs holds inode->i_mutex already */
4535 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4536}
4537
d3daf28d
TH
4538static void cgroup_css_killed(struct cgroup *cgrp)
4539{
4540 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4541 return;
4542
4543 /* percpu ref's of all css's are killed, kick off the next step */
4544 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4545 schedule_work(&cgrp->destroy_work);
4546}
4547
4548static void css_ref_killed_fn(struct percpu_ref *ref)
4549{
4550 struct cgroup_subsys_state *css =
4551 container_of(ref, struct cgroup_subsys_state, refcnt);
4552
4553 cgroup_css_killed(css->cgroup);
4554}
4555
4556/**
4557 * cgroup_destroy_locked - the first stage of cgroup destruction
4558 * @cgrp: cgroup to be destroyed
4559 *
4560 * css's make use of percpu refcnts whose killing latency shouldn't be
4561 * exposed to userland and are RCU protected. Also, cgroup core needs to
4562 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4563 * invoked. To satisfy all the requirements, destruction is implemented in
4564 * the following two steps.
4565 *
4566 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4567 * userland visible parts and start killing the percpu refcnts of
4568 * css's. Set up so that the next stage will be kicked off once all
4569 * the percpu refcnts are confirmed to be killed.
4570 *
4571 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4572 * rest of destruction. Once all cgroup references are gone, the
4573 * cgroup is RCU-freed.
4574 *
4575 * This function implements s1. After this step, @cgrp is gone as far as
4576 * the userland is concerned and a new cgroup with the same name may be
4577 * created. As cgroup doesn't care about the names internally, this
4578 * doesn't cause any problem.
4579 */
42809dd4
TH
4580static int cgroup_destroy_locked(struct cgroup *cgrp)
4581 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4582{
42809dd4 4583 struct dentry *d = cgrp->dentry;
4ab78683 4584 struct cgroup_event *event, *tmp;
ed957793 4585 struct cgroup_subsys *ss;
ddd69148 4586 bool empty;
ddbcc7e8 4587
42809dd4
TH
4588 lockdep_assert_held(&d->d_inode->i_mutex);
4589 lockdep_assert_held(&cgroup_mutex);
4590
ddd69148 4591 /*
6f3d828f
TH
4592 * css_set_lock synchronizes access to ->cset_links and prevents
4593 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4594 */
4595 read_lock(&css_set_lock);
6f3d828f 4596 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4597 read_unlock(&css_set_lock);
4598 if (!empty)
ddbcc7e8 4599 return -EBUSY;
a043e3b2 4600
88703267 4601 /*
d3daf28d
TH
4602 * Block new css_tryget() by killing css refcnts. cgroup core
4603 * guarantees that, by the time ->css_offline() is invoked, no new
4604 * css reference will be given out via css_tryget(). We can't
4605 * simply call percpu_ref_kill() and proceed to offlining css's
4606 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4607 * as killed on all CPUs on return.
4608 *
4609 * Use percpu_ref_kill_and_confirm() to get notifications as each
4610 * css is confirmed to be seen as killed on all CPUs. The
4611 * notification callback keeps track of the number of css's to be
4612 * killed and schedules cgroup_offline_fn() to perform the rest of
4613 * destruction once the percpu refs of all css's are confirmed to
4614 * be killed.
88703267 4615 */
d3daf28d 4616 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4617 for_each_root_subsys(cgrp->root, ss) {
40e93b39 4618 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
88703267 4619
d3daf28d
TH
4620 /*
4621 * Killing would put the base ref, but we need to keep it
4622 * alive until after ->css_offline.
4623 */
4624 percpu_ref_get(&css->refcnt);
4625
4626 atomic_inc(&cgrp->css_kill_cnt);
4627 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4628 }
d3daf28d 4629 cgroup_css_killed(cgrp);
455050d2
TH
4630
4631 /*
4632 * Mark @cgrp dead. This prevents further task migration and child
4633 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4634 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4635 * resume iteration after dropping RCU read lock. See
492eb21b 4636 * css_next_child() for details.
455050d2 4637 */
54766d4a 4638 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4639
455050d2
TH
4640 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4641 raw_spin_lock(&release_list_lock);
4642 if (!list_empty(&cgrp->release_list))
4643 list_del_init(&cgrp->release_list);
4644 raw_spin_unlock(&release_list_lock);
4645
4646 /*
8f89140a
TH
4647 * Clear and remove @cgrp directory. The removal puts the base ref
4648 * but we aren't quite done with @cgrp yet, so hold onto it.
455050d2 4649 */
628f7cd4 4650 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
2bb566cb 4651 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4652 dget(d);
4653 cgroup_d_remove_dir(d);
4654
4655 /*
4656 * Unregister events and notify userspace.
4657 * Notify userspace about cgroup removing only after rmdir of cgroup
4658 * directory to avoid race between userspace and kernelspace.
4659 */
4660 spin_lock(&cgrp->event_list_lock);
4661 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4662 list_del_init(&event->list);
4663 schedule_work(&event->remove);
4664 }
4665 spin_unlock(&cgrp->event_list_lock);
4666
ea15f8cc
TH
4667 return 0;
4668};
4669
d3daf28d
TH
4670/**
4671 * cgroup_offline_fn - the second step of cgroup destruction
4672 * @work: cgroup->destroy_free_work
4673 *
4674 * This function is invoked from a work item for a cgroup which is being
4675 * destroyed after the percpu refcnts of all css's are guaranteed to be
4676 * seen as killed on all CPUs, and performs the rest of destruction. This
4677 * is the second step of destruction described in the comment above
4678 * cgroup_destroy_locked().
4679 */
ea15f8cc
TH
4680static void cgroup_offline_fn(struct work_struct *work)
4681{
4682 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4683 struct cgroup *parent = cgrp->parent;
4684 struct dentry *d = cgrp->dentry;
4685 struct cgroup_subsys *ss;
4686
4687 mutex_lock(&cgroup_mutex);
4688
d3daf28d
TH
4689 /*
4690 * css_tryget() is guaranteed to fail now. Tell subsystems to
4691 * initate destruction.
4692 */
5549c497 4693 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4694 offline_css(ss, cgrp);
ed957793
TH
4695
4696 /*
d3daf28d
TH
4697 * Put the css refs from cgroup_destroy_locked(). Each css holds
4698 * an extra reference to the cgroup's dentry and cgroup removal
4699 * proceeds regardless of css refs. On the last put of each css,
4700 * whenever that may be, the extra dentry ref is put so that dentry
4701 * destruction happens only after all css's are released.
ed957793 4702 */
5549c497 4703 for_each_root_subsys(cgrp->root, ss)
40e93b39 4704 css_put(cgroup_css(cgrp, ss->subsys_id));
ddbcc7e8 4705
999cd8a4 4706 /* delete this cgroup from parent->children */
eb6fd504 4707 list_del_rcu(&cgrp->sibling);
b0ca5a84 4708
4e96ee8e
LZ
4709 /*
4710 * We should remove the cgroup object from idr before its grace
4711 * period starts, so we won't be looking up a cgroup while the
4712 * cgroup is being freed.
4713 */
4714 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4715 cgrp->id = -1;
4716
ddbcc7e8 4717 dput(d);
ddbcc7e8 4718
bd89aabc 4719 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4720 check_for_release(parent);
4721
ea15f8cc 4722 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4723}
4724
42809dd4
TH
4725static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4726{
4727 int ret;
4728
4729 mutex_lock(&cgroup_mutex);
4730 ret = cgroup_destroy_locked(dentry->d_fsdata);
4731 mutex_unlock(&cgroup_mutex);
4732
4733 return ret;
4734}
4735
8e3f6541
TH
4736static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4737{
4738 INIT_LIST_HEAD(&ss->cftsets);
4739
4740 /*
4741 * base_cftset is embedded in subsys itself, no need to worry about
4742 * deregistration.
4743 */
4744 if (ss->base_cftypes) {
2bb566cb
TH
4745 struct cftype *cft;
4746
4747 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4748 cft->ss = ss;
4749
8e3f6541
TH
4750 ss->base_cftset.cfts = ss->base_cftypes;
4751 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4752 }
4753}
4754
06a11920 4755static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4756{
ddbcc7e8 4757 struct cgroup_subsys_state *css;
cfe36bde
DC
4758
4759 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4760
648bb56d
TH
4761 mutex_lock(&cgroup_mutex);
4762
8e3f6541
TH
4763 /* init base cftset */
4764 cgroup_init_cftsets(ss);
4765
ddbcc7e8 4766 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4767 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4768 ss->root = &cgroup_dummy_root;
40e93b39 4769 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
ddbcc7e8
PM
4770 /* We don't handle early failures gracefully */
4771 BUG_ON(IS_ERR(css));
9871bf95 4772 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4773
e8d55fde 4774 /* Update the init_css_set to contain a subsys
817929ec 4775 * pointer to this state - since the subsystem is
e8d55fde
LZ
4776 * newly registered, all tasks and hence the
4777 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4778 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4779
4780 need_forkexit_callback |= ss->fork || ss->exit;
4781
e8d55fde
LZ
4782 /* At system boot, before all subsystems have been
4783 * registered, no tasks have been forked, so we don't
4784 * need to invoke fork callbacks here. */
4785 BUG_ON(!list_empty(&init_task.tasks));
4786
9871bf95 4787 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4788
648bb56d
TH
4789 mutex_unlock(&cgroup_mutex);
4790
e6a1105b
BB
4791 /* this function shouldn't be used with modular subsystems, since they
4792 * need to register a subsys_id, among other things */
4793 BUG_ON(ss->module);
4794}
4795
4796/**
4797 * cgroup_load_subsys: load and register a modular subsystem at runtime
4798 * @ss: the subsystem to load
4799 *
4800 * This function should be called in a modular subsystem's initcall. If the
88393161 4801 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4802 * up for use. If the subsystem is built-in anyway, work is delegated to the
4803 * simpler cgroup_init_subsys.
4804 */
4805int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4806{
e6a1105b 4807 struct cgroup_subsys_state *css;
d19e19de 4808 int i, ret;
b67bfe0d 4809 struct hlist_node *tmp;
5abb8855 4810 struct css_set *cset;
0ac801fe 4811 unsigned long key;
e6a1105b
BB
4812
4813 /* check name and function validity */
4814 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4815 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4816 return -EINVAL;
4817
4818 /*
4819 * we don't support callbacks in modular subsystems. this check is
4820 * before the ss->module check for consistency; a subsystem that could
4821 * be a module should still have no callbacks even if the user isn't
4822 * compiling it as one.
4823 */
4824 if (ss->fork || ss->exit)
4825 return -EINVAL;
4826
4827 /*
4828 * an optionally modular subsystem is built-in: we want to do nothing,
4829 * since cgroup_init_subsys will have already taken care of it.
4830 */
4831 if (ss->module == NULL) {
be45c900 4832 /* a sanity check */
9871bf95 4833 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4834 return 0;
4835 }
4836
8e3f6541
TH
4837 /* init base cftset */
4838 cgroup_init_cftsets(ss);
4839
e6a1105b 4840 mutex_lock(&cgroup_mutex);
9871bf95 4841 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4842
4843 /*
92fb9748 4844 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4845 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4846 * attachment).
e6a1105b 4847 */
40e93b39 4848 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
e6a1105b 4849 if (IS_ERR(css)) {
9871bf95
TH
4850 /* failure case - need to deassign the cgroup_subsys[] slot. */
4851 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4852 mutex_unlock(&cgroup_mutex);
4853 return PTR_ERR(css);
4854 }
4855
9871bf95
TH
4856 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4857 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4858
4859 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4860 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4861 /* init_idr must be after init_cgroup_css because it sets css->id. */
4862 if (ss->use_id) {
d19e19de
TH
4863 ret = cgroup_init_idr(ss, css);
4864 if (ret)
4865 goto err_unload;
e6a1105b
BB
4866 }
4867
4868 /*
4869 * Now we need to entangle the css into the existing css_sets. unlike
4870 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4871 * will need a new pointer to it; done by iterating the css_set_table.
4872 * furthermore, modifying the existing css_sets will corrupt the hash
4873 * table state, so each changed css_set will need its hash recomputed.
4874 * this is all done under the css_set_lock.
4875 */
4876 write_lock(&css_set_lock);
5abb8855 4877 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4878 /* skip entries that we already rehashed */
5abb8855 4879 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4880 continue;
4881 /* remove existing entry */
5abb8855 4882 hash_del(&cset->hlist);
0ac801fe 4883 /* set new value */
5abb8855 4884 cset->subsys[ss->subsys_id] = css;
0ac801fe 4885 /* recompute hash and restore entry */
5abb8855
TH
4886 key = css_set_hash(cset->subsys);
4887 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4888 }
4889 write_unlock(&css_set_lock);
4890
9871bf95 4891 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4892 if (ret)
4893 goto err_unload;
a8638030 4894
e6a1105b
BB
4895 /* success! */
4896 mutex_unlock(&cgroup_mutex);
4897 return 0;
d19e19de
TH
4898
4899err_unload:
4900 mutex_unlock(&cgroup_mutex);
4901 /* @ss can't be mounted here as try_module_get() would fail */
4902 cgroup_unload_subsys(ss);
4903 return ret;
ddbcc7e8 4904}
e6a1105b 4905EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4906
cf5d5941
BB
4907/**
4908 * cgroup_unload_subsys: unload a modular subsystem
4909 * @ss: the subsystem to unload
4910 *
4911 * This function should be called in a modular subsystem's exitcall. When this
4912 * function is invoked, the refcount on the subsystem's module will be 0, so
4913 * the subsystem will not be attached to any hierarchy.
4914 */
4915void cgroup_unload_subsys(struct cgroup_subsys *ss)
4916{
69d0206c 4917 struct cgrp_cset_link *link;
cf5d5941
BB
4918
4919 BUG_ON(ss->module == NULL);
4920
4921 /*
4922 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4923 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4924 * doesn't start being used while we're killing it off.
4925 */
9871bf95 4926 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4927
4928 mutex_lock(&cgroup_mutex);
02ae7486 4929
9871bf95 4930 offline_css(ss, cgroup_dummy_top);
02ae7486 4931
c897ff68 4932 if (ss->use_id)
02ae7486 4933 idr_destroy(&ss->idr);
02ae7486 4934
cf5d5941 4935 /* deassign the subsys_id */
9871bf95 4936 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4937
9871bf95 4938 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4939 list_del_init(&ss->sibling);
cf5d5941
BB
4940
4941 /*
9871bf95
TH
4942 * disentangle the css from all css_sets attached to the dummy
4943 * top. as in loading, we need to pay our respects to the hashtable
4944 * gods.
cf5d5941
BB
4945 */
4946 write_lock(&css_set_lock);
9871bf95 4947 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4948 struct css_set *cset = link->cset;
0ac801fe 4949 unsigned long key;
cf5d5941 4950
5abb8855
TH
4951 hash_del(&cset->hlist);
4952 cset->subsys[ss->subsys_id] = NULL;
4953 key = css_set_hash(cset->subsys);
4954 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4955 }
4956 write_unlock(&css_set_lock);
4957
4958 /*
9871bf95
TH
4959 * remove subsystem's css from the cgroup_dummy_top and free it -
4960 * need to free before marking as null because ss->css_free needs
4961 * the cgrp->subsys pointer to find their state. note that this
4962 * also takes care of freeing the css_id.
cf5d5941 4963 */
40e93b39 4964 ss->css_free(cgroup_css(cgroup_dummy_top, ss->subsys_id));
9871bf95 4965 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4966
4967 mutex_unlock(&cgroup_mutex);
4968}
4969EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4970
ddbcc7e8 4971/**
a043e3b2
LZ
4972 * cgroup_init_early - cgroup initialization at system boot
4973 *
4974 * Initialize cgroups at system boot, and initialize any
4975 * subsystems that request early init.
ddbcc7e8
PM
4976 */
4977int __init cgroup_init_early(void)
4978{
30159ec7 4979 struct cgroup_subsys *ss;
ddbcc7e8 4980 int i;
30159ec7 4981
146aa1bd 4982 atomic_set(&init_css_set.refcount, 1);
69d0206c 4983 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4984 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4985 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4986 css_set_count = 1;
9871bf95
TH
4987 init_cgroup_root(&cgroup_dummy_root);
4988 cgroup_root_count = 1;
a4ea1cc9 4989 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4990
69d0206c 4991 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4992 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4993 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4994 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4995
30159ec7
TH
4996 /* at bootup time, we don't worry about modular subsystems */
4997 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4998 BUG_ON(!ss->name);
4999 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
5000 BUG_ON(!ss->css_alloc);
5001 BUG_ON(!ss->css_free);
ddbcc7e8 5002 if (ss->subsys_id != i) {
cfe36bde 5003 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
5004 ss->name, ss->subsys_id);
5005 BUG();
5006 }
5007
5008 if (ss->early_init)
5009 cgroup_init_subsys(ss);
5010 }
5011 return 0;
5012}
5013
5014/**
a043e3b2
LZ
5015 * cgroup_init - cgroup initialization
5016 *
5017 * Register cgroup filesystem and /proc file, and initialize
5018 * any subsystems that didn't request early init.
ddbcc7e8
PM
5019 */
5020int __init cgroup_init(void)
5021{
30159ec7 5022 struct cgroup_subsys *ss;
0ac801fe 5023 unsigned long key;
30159ec7 5024 int i, err;
a424316c
PM
5025
5026 err = bdi_init(&cgroup_backing_dev_info);
5027 if (err)
5028 return err;
ddbcc7e8 5029
30159ec7 5030 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5031 if (!ss->early_init)
5032 cgroup_init_subsys(ss);
38460b48 5033 if (ss->use_id)
e6a1105b 5034 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
5035 }
5036
fa3ca07e 5037 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
5038 mutex_lock(&cgroup_mutex);
5039 mutex_lock(&cgroup_root_mutex);
5040
82fe9b0d
TH
5041 /* Add init_css_set to the hash table */
5042 key = css_set_hash(init_css_set.subsys);
5043 hash_add(css_set_table, &init_css_set.hlist, key);
5044
fc76df70 5045 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 5046
4e96ee8e
LZ
5047 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5048 0, 1, GFP_KERNEL);
5049 BUG_ON(err < 0);
5050
54e7b4eb
TH
5051 mutex_unlock(&cgroup_root_mutex);
5052 mutex_unlock(&cgroup_mutex);
5053
676db4af
GK
5054 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5055 if (!cgroup_kobj) {
5056 err = -ENOMEM;
5057 goto out;
5058 }
5059
ddbcc7e8 5060 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
5061 if (err < 0) {
5062 kobject_put(cgroup_kobj);
ddbcc7e8 5063 goto out;
676db4af 5064 }
ddbcc7e8 5065
46ae220b 5066 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 5067
ddbcc7e8 5068out:
a424316c
PM
5069 if (err)
5070 bdi_destroy(&cgroup_backing_dev_info);
5071
ddbcc7e8
PM
5072 return err;
5073}
b4f48b63 5074
a424316c
PM
5075/*
5076 * proc_cgroup_show()
5077 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5078 * - Used for /proc/<pid>/cgroup.
5079 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5080 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 5081 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
5082 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5083 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5084 * cgroup to top_cgroup.
5085 */
5086
5087/* TODO: Use a proper seq_file iterator */
8d8b97ba 5088int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
5089{
5090 struct pid *pid;
5091 struct task_struct *tsk;
5092 char *buf;
5093 int retval;
5094 struct cgroupfs_root *root;
5095
5096 retval = -ENOMEM;
5097 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5098 if (!buf)
5099 goto out;
5100
5101 retval = -ESRCH;
5102 pid = m->private;
5103 tsk = get_pid_task(pid, PIDTYPE_PID);
5104 if (!tsk)
5105 goto out_free;
5106
5107 retval = 0;
5108
5109 mutex_lock(&cgroup_mutex);
5110
e5f6a860 5111 for_each_active_root(root) {
a424316c 5112 struct cgroup_subsys *ss;
bd89aabc 5113 struct cgroup *cgrp;
a424316c
PM
5114 int count = 0;
5115
2c6ab6d2 5116 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 5117 for_each_root_subsys(root, ss)
a424316c 5118 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5119 if (strlen(root->name))
5120 seq_printf(m, "%sname=%s", count ? "," : "",
5121 root->name);
a424316c 5122 seq_putc(m, ':');
7717f7ba 5123 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 5124 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
5125 if (retval < 0)
5126 goto out_unlock;
5127 seq_puts(m, buf);
5128 seq_putc(m, '\n');
5129 }
5130
5131out_unlock:
5132 mutex_unlock(&cgroup_mutex);
5133 put_task_struct(tsk);
5134out_free:
5135 kfree(buf);
5136out:
5137 return retval;
5138}
5139
a424316c
PM
5140/* Display information about each subsystem and each hierarchy */
5141static int proc_cgroupstats_show(struct seq_file *m, void *v)
5142{
30159ec7 5143 struct cgroup_subsys *ss;
a424316c 5144 int i;
a424316c 5145
8bab8dde 5146 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5147 /*
5148 * ideally we don't want subsystems moving around while we do this.
5149 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5150 * subsys/hierarchy state.
5151 */
a424316c 5152 mutex_lock(&cgroup_mutex);
30159ec7
TH
5153
5154 for_each_subsys(ss, i)
2c6ab6d2
PM
5155 seq_printf(m, "%s\t%d\t%d\t%d\n",
5156 ss->name, ss->root->hierarchy_id,
8bab8dde 5157 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5158
a424316c
PM
5159 mutex_unlock(&cgroup_mutex);
5160 return 0;
5161}
5162
5163static int cgroupstats_open(struct inode *inode, struct file *file)
5164{
9dce07f1 5165 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5166}
5167
828c0950 5168static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5169 .open = cgroupstats_open,
5170 .read = seq_read,
5171 .llseek = seq_lseek,
5172 .release = single_release,
5173};
5174
b4f48b63
PM
5175/**
5176 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5177 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5178 *
5179 * Description: A task inherits its parent's cgroup at fork().
5180 *
5181 * A pointer to the shared css_set was automatically copied in
5182 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5183 * it was not made under the protection of RCU or cgroup_mutex, so
5184 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5185 * have already changed current->cgroups, allowing the previously
5186 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5187 *
5188 * At the point that cgroup_fork() is called, 'current' is the parent
5189 * task, and the passed argument 'child' points to the child task.
5190 */
5191void cgroup_fork(struct task_struct *child)
5192{
9bb71308 5193 task_lock(current);
a8ad805c 5194 get_css_set(task_css_set(current));
817929ec 5195 child->cgroups = current->cgroups;
9bb71308 5196 task_unlock(current);
817929ec 5197 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5198}
5199
817929ec 5200/**
a043e3b2
LZ
5201 * cgroup_post_fork - called on a new task after adding it to the task list
5202 * @child: the task in question
5203 *
5edee61e
TH
5204 * Adds the task to the list running through its css_set if necessary and
5205 * call the subsystem fork() callbacks. Has to be after the task is
5206 * visible on the task list in case we race with the first call to
0942eeee 5207 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5208 * list.
a043e3b2 5209 */
817929ec
PM
5210void cgroup_post_fork(struct task_struct *child)
5211{
30159ec7 5212 struct cgroup_subsys *ss;
5edee61e
TH
5213 int i;
5214
3ce3230a
FW
5215 /*
5216 * use_task_css_set_links is set to 1 before we walk the tasklist
5217 * under the tasklist_lock and we read it here after we added the child
5218 * to the tasklist under the tasklist_lock as well. If the child wasn't
5219 * yet in the tasklist when we walked through it from
5220 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5221 * should be visible now due to the paired locking and barriers implied
5222 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5223 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5224 * lock on fork.
5225 */
817929ec
PM
5226 if (use_task_css_set_links) {
5227 write_lock(&css_set_lock);
d8783832
TH
5228 task_lock(child);
5229 if (list_empty(&child->cg_list))
a8ad805c 5230 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5231 task_unlock(child);
817929ec
PM
5232 write_unlock(&css_set_lock);
5233 }
5edee61e
TH
5234
5235 /*
5236 * Call ss->fork(). This must happen after @child is linked on
5237 * css_set; otherwise, @child might change state between ->fork()
5238 * and addition to css_set.
5239 */
5240 if (need_forkexit_callback) {
7d8e0bf5
LZ
5241 /*
5242 * fork/exit callbacks are supported only for builtin
5243 * subsystems, and the builtin section of the subsys
5244 * array is immutable, so we don't need to lock the
5245 * subsys array here. On the other hand, modular section
5246 * of the array can be freed at module unload, so we
5247 * can't touch that.
5248 */
30159ec7 5249 for_each_builtin_subsys(ss, i)
5edee61e
TH
5250 if (ss->fork)
5251 ss->fork(child);
5edee61e 5252 }
817929ec 5253}
5edee61e 5254
b4f48b63
PM
5255/**
5256 * cgroup_exit - detach cgroup from exiting task
5257 * @tsk: pointer to task_struct of exiting process
a043e3b2 5258 * @run_callback: run exit callbacks?
b4f48b63
PM
5259 *
5260 * Description: Detach cgroup from @tsk and release it.
5261 *
5262 * Note that cgroups marked notify_on_release force every task in
5263 * them to take the global cgroup_mutex mutex when exiting.
5264 * This could impact scaling on very large systems. Be reluctant to
5265 * use notify_on_release cgroups where very high task exit scaling
5266 * is required on large systems.
5267 *
5268 * the_top_cgroup_hack:
5269 *
5270 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5271 *
5272 * We call cgroup_exit() while the task is still competent to
5273 * handle notify_on_release(), then leave the task attached to the
5274 * root cgroup in each hierarchy for the remainder of its exit.
5275 *
5276 * To do this properly, we would increment the reference count on
5277 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5278 * code we would add a second cgroup function call, to drop that
5279 * reference. This would just create an unnecessary hot spot on
5280 * the top_cgroup reference count, to no avail.
5281 *
5282 * Normally, holding a reference to a cgroup without bumping its
5283 * count is unsafe. The cgroup could go away, or someone could
5284 * attach us to a different cgroup, decrementing the count on
5285 * the first cgroup that we never incremented. But in this case,
5286 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5287 * which wards off any cgroup_attach_task() attempts, or task is a failed
5288 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5289 */
5290void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5291{
30159ec7 5292 struct cgroup_subsys *ss;
5abb8855 5293 struct css_set *cset;
d41d5a01 5294 int i;
817929ec
PM
5295
5296 /*
5297 * Unlink from the css_set task list if necessary.
5298 * Optimistically check cg_list before taking
5299 * css_set_lock
5300 */
5301 if (!list_empty(&tsk->cg_list)) {
5302 write_lock(&css_set_lock);
5303 if (!list_empty(&tsk->cg_list))
8d258797 5304 list_del_init(&tsk->cg_list);
817929ec
PM
5305 write_unlock(&css_set_lock);
5306 }
5307
b4f48b63
PM
5308 /* Reassign the task to the init_css_set. */
5309 task_lock(tsk);
a8ad805c
TH
5310 cset = task_css_set(tsk);
5311 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5312
5313 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5314 /*
5315 * fork/exit callbacks are supported only for builtin
5316 * subsystems, see cgroup_post_fork() for details.
5317 */
30159ec7 5318 for_each_builtin_subsys(ss, i) {
d41d5a01 5319 if (ss->exit) {
eb95419b
TH
5320 struct cgroup_subsys_state *old_css = cset->subsys[i];
5321 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5322
eb95419b 5323 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5324 }
5325 }
5326 }
b4f48b63 5327 task_unlock(tsk);
d41d5a01 5328
5abb8855 5329 put_css_set_taskexit(cset);
b4f48b63 5330}
697f4161 5331
bd89aabc 5332static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5333{
f50daa70 5334 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5335 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5336 /*
5337 * Control Group is currently removeable. If it's not
81a6a5cd 5338 * already queued for a userspace notification, queue
f50daa70
LZ
5339 * it now
5340 */
81a6a5cd 5341 int need_schedule_work = 0;
f50daa70 5342
cdcc136f 5343 raw_spin_lock(&release_list_lock);
54766d4a 5344 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5345 list_empty(&cgrp->release_list)) {
5346 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5347 need_schedule_work = 1;
5348 }
cdcc136f 5349 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5350 if (need_schedule_work)
5351 schedule_work(&release_agent_work);
5352 }
5353}
5354
81a6a5cd
PM
5355/*
5356 * Notify userspace when a cgroup is released, by running the
5357 * configured release agent with the name of the cgroup (path
5358 * relative to the root of cgroup file system) as the argument.
5359 *
5360 * Most likely, this user command will try to rmdir this cgroup.
5361 *
5362 * This races with the possibility that some other task will be
5363 * attached to this cgroup before it is removed, or that some other
5364 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5365 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5366 * unused, and this cgroup will be reprieved from its death sentence,
5367 * to continue to serve a useful existence. Next time it's released,
5368 * we will get notified again, if it still has 'notify_on_release' set.
5369 *
5370 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5371 * means only wait until the task is successfully execve()'d. The
5372 * separate release agent task is forked by call_usermodehelper(),
5373 * then control in this thread returns here, without waiting for the
5374 * release agent task. We don't bother to wait because the caller of
5375 * this routine has no use for the exit status of the release agent
5376 * task, so no sense holding our caller up for that.
81a6a5cd 5377 */
81a6a5cd
PM
5378static void cgroup_release_agent(struct work_struct *work)
5379{
5380 BUG_ON(work != &release_agent_work);
5381 mutex_lock(&cgroup_mutex);
cdcc136f 5382 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5383 while (!list_empty(&release_list)) {
5384 char *argv[3], *envp[3];
5385 int i;
e788e066 5386 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5387 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5388 struct cgroup,
5389 release_list);
bd89aabc 5390 list_del_init(&cgrp->release_list);
cdcc136f 5391 raw_spin_unlock(&release_list_lock);
81a6a5cd 5392 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5393 if (!pathbuf)
5394 goto continue_free;
5395 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5396 goto continue_free;
5397 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5398 if (!agentbuf)
5399 goto continue_free;
81a6a5cd
PM
5400
5401 i = 0;
e788e066
PM
5402 argv[i++] = agentbuf;
5403 argv[i++] = pathbuf;
81a6a5cd
PM
5404 argv[i] = NULL;
5405
5406 i = 0;
5407 /* minimal command environment */
5408 envp[i++] = "HOME=/";
5409 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5410 envp[i] = NULL;
5411
5412 /* Drop the lock while we invoke the usermode helper,
5413 * since the exec could involve hitting disk and hence
5414 * be a slow process */
5415 mutex_unlock(&cgroup_mutex);
5416 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5417 mutex_lock(&cgroup_mutex);
e788e066
PM
5418 continue_free:
5419 kfree(pathbuf);
5420 kfree(agentbuf);
cdcc136f 5421 raw_spin_lock(&release_list_lock);
81a6a5cd 5422 }
cdcc136f 5423 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5424 mutex_unlock(&cgroup_mutex);
5425}
8bab8dde
PM
5426
5427static int __init cgroup_disable(char *str)
5428{
30159ec7 5429 struct cgroup_subsys *ss;
8bab8dde 5430 char *token;
30159ec7 5431 int i;
8bab8dde
PM
5432
5433 while ((token = strsep(&str, ",")) != NULL) {
5434 if (!*token)
5435 continue;
be45c900 5436
30159ec7
TH
5437 /*
5438 * cgroup_disable, being at boot time, can't know about
5439 * module subsystems, so we don't worry about them.
5440 */
5441 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5442 if (!strcmp(token, ss->name)) {
5443 ss->disabled = 1;
5444 printk(KERN_INFO "Disabling %s control group"
5445 " subsystem\n", ss->name);
5446 break;
5447 }
5448 }
5449 }
5450 return 1;
5451}
5452__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5453
5454/*
5455 * Functons for CSS ID.
5456 */
5457
54766d4a 5458/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5459unsigned short css_id(struct cgroup_subsys_state *css)
5460{
7f0f1546
KH
5461 struct css_id *cssid;
5462
5463 /*
5464 * This css_id() can return correct value when somone has refcnt
5465 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5466 * it's unchanged until freed.
5467 */
d3daf28d 5468 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5469
5470 if (cssid)
5471 return cssid->id;
5472 return 0;
5473}
67523c48 5474EXPORT_SYMBOL_GPL(css_id);
38460b48 5475
747388d7
KH
5476/**
5477 * css_is_ancestor - test "root" css is an ancestor of "child"
5478 * @child: the css to be tested.
5479 * @root: the css supporsed to be an ancestor of the child.
5480 *
5481 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5482 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5483 * But, considering usual usage, the csses should be valid objects after test.
5484 * Assuming that the caller will do some action to the child if this returns
5485 * returns true, the caller must take "child";s reference count.
5486 * If "child" is valid object and this returns true, "root" is valid, too.
5487 */
5488
38460b48 5489bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5490 const struct cgroup_subsys_state *root)
38460b48 5491{
747388d7
KH
5492 struct css_id *child_id;
5493 struct css_id *root_id;
38460b48 5494
747388d7 5495 child_id = rcu_dereference(child->id);
91c63734
JW
5496 if (!child_id)
5497 return false;
747388d7 5498 root_id = rcu_dereference(root->id);
91c63734
JW
5499 if (!root_id)
5500 return false;
5501 if (child_id->depth < root_id->depth)
5502 return false;
5503 if (child_id->stack[root_id->depth] != root_id->id)
5504 return false;
5505 return true;
38460b48
KH
5506}
5507
38460b48
KH
5508void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5509{
a4ea1cc9
TH
5510 struct css_id *id = rcu_dereference_protected(css->id, true);
5511
38460b48
KH
5512 /* When this is called before css_id initialization, id can be NULL */
5513 if (!id)
5514 return;
5515
5516 BUG_ON(!ss->use_id);
5517
5518 rcu_assign_pointer(id->css, NULL);
5519 rcu_assign_pointer(css->id, NULL);
42aee6c4 5520 spin_lock(&ss->id_lock);
38460b48 5521 idr_remove(&ss->idr, id->id);
42aee6c4 5522 spin_unlock(&ss->id_lock);
025cea99 5523 kfree_rcu(id, rcu_head);
38460b48 5524}
67523c48 5525EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5526
5527/*
5528 * This is called by init or create(). Then, calls to this function are
5529 * always serialized (By cgroup_mutex() at create()).
5530 */
5531
5532static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5533{
5534 struct css_id *newid;
d228d9ec 5535 int ret, size;
38460b48
KH
5536
5537 BUG_ON(!ss->use_id);
5538
5539 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5540 newid = kzalloc(size, GFP_KERNEL);
5541 if (!newid)
5542 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5543
5544 idr_preload(GFP_KERNEL);
42aee6c4 5545 spin_lock(&ss->id_lock);
38460b48 5546 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5547 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5548 spin_unlock(&ss->id_lock);
d228d9ec 5549 idr_preload_end();
38460b48
KH
5550
5551 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5552 if (ret < 0)
38460b48 5553 goto err_out;
38460b48 5554
d228d9ec 5555 newid->id = ret;
38460b48
KH
5556 newid->depth = depth;
5557 return newid;
38460b48
KH
5558err_out:
5559 kfree(newid);
d228d9ec 5560 return ERR_PTR(ret);
38460b48
KH
5561
5562}
5563
e6a1105b
BB
5564static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5565 struct cgroup_subsys_state *rootcss)
38460b48
KH
5566{
5567 struct css_id *newid;
38460b48 5568
42aee6c4 5569 spin_lock_init(&ss->id_lock);
38460b48
KH
5570 idr_init(&ss->idr);
5571
38460b48
KH
5572 newid = get_new_cssid(ss, 0);
5573 if (IS_ERR(newid))
5574 return PTR_ERR(newid);
5575
5576 newid->stack[0] = newid->id;
a4ea1cc9
TH
5577 RCU_INIT_POINTER(newid->css, rootcss);
5578 RCU_INIT_POINTER(rootcss->id, newid);
38460b48
KH
5579 return 0;
5580}
5581
5582static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5583 struct cgroup *child)
5584{
5585 int subsys_id, i, depth = 0;
5586 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5587 struct css_id *child_id, *parent_id;
38460b48
KH
5588
5589 subsys_id = ss->subsys_id;
40e93b39
TH
5590 parent_css = cgroup_css(parent, subsys_id);
5591 child_css = cgroup_css(child, subsys_id);
a4ea1cc9 5592 parent_id = rcu_dereference_protected(parent_css->id, true);
94b3dd0f 5593 depth = parent_id->depth + 1;
38460b48
KH
5594
5595 child_id = get_new_cssid(ss, depth);
5596 if (IS_ERR(child_id))
5597 return PTR_ERR(child_id);
5598
5599 for (i = 0; i < depth; i++)
5600 child_id->stack[i] = parent_id->stack[i];
5601 child_id->stack[depth] = child_id->id;
5602 /*
5603 * child_id->css pointer will be set after this cgroup is available
5604 * see cgroup_populate_dir()
5605 */
5606 rcu_assign_pointer(child_css->id, child_id);
5607
5608 return 0;
5609}
5610
5611/**
5612 * css_lookup - lookup css by id
5613 * @ss: cgroup subsys to be looked into.
5614 * @id: the id
5615 *
5616 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5617 * NULL if not. Should be called under rcu_read_lock()
5618 */
5619struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5620{
5621 struct css_id *cssid = NULL;
5622
5623 BUG_ON(!ss->use_id);
5624 cssid = idr_find(&ss->idr, id);
5625
5626 if (unlikely(!cssid))
5627 return NULL;
5628
5629 return rcu_dereference(cssid->css);
5630}
67523c48 5631EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5632
b77d7b60
TH
5633/**
5634 * cgroup_css_from_dir - get corresponding css from file open on cgroup dir
5635 * @f: directory file of interest
5636 * @id: subsystem id of interest
5637 *
5638 * Must be called under RCU read lock. The caller is responsible for
5639 * pinning the returned css if it needs to be accessed outside the RCU
5640 * critical section.
e5d1367f
SE
5641 */
5642struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5643{
5644 struct cgroup *cgrp;
5645 struct inode *inode;
5646 struct cgroup_subsys_state *css;
5647
b77d7b60
TH
5648 WARN_ON_ONCE(!rcu_read_lock_held());
5649
496ad9aa 5650 inode = file_inode(f);
e5d1367f
SE
5651 /* check in cgroup filesystem dir */
5652 if (inode->i_op != &cgroup_dir_inode_operations)
5653 return ERR_PTR(-EBADF);
5654
5655 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5656 return ERR_PTR(-EINVAL);
5657
5658 /* get cgroup */
5659 cgrp = __d_cgrp(f->f_dentry);
40e93b39 5660 css = cgroup_css(cgrp, id);
e5d1367f
SE
5661 return css ? css : ERR_PTR(-ENOENT);
5662}
5663
fe693435 5664#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5665static struct cgroup_subsys_state *
5666debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5667{
5668 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5669
5670 if (!css)
5671 return ERR_PTR(-ENOMEM);
5672
5673 return css;
5674}
5675
eb95419b 5676static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5677{
eb95419b 5678 kfree(css);
fe693435
PM
5679}
5680
182446d0
TH
5681static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5682 struct cftype *cft)
fe693435 5683{
182446d0 5684 return cgroup_task_count(css->cgroup);
fe693435
PM
5685}
5686
182446d0
TH
5687static u64 current_css_set_read(struct cgroup_subsys_state *css,
5688 struct cftype *cft)
fe693435
PM
5689{
5690 return (u64)(unsigned long)current->cgroups;
5691}
5692
182446d0 5693static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5694 struct cftype *cft)
fe693435
PM
5695{
5696 u64 count;
5697
5698 rcu_read_lock();
a8ad805c 5699 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5700 rcu_read_unlock();
5701 return count;
5702}
5703
182446d0 5704static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
7717f7ba
PM
5705 struct cftype *cft,
5706 struct seq_file *seq)
5707{
69d0206c 5708 struct cgrp_cset_link *link;
5abb8855 5709 struct css_set *cset;
7717f7ba
PM
5710
5711 read_lock(&css_set_lock);
5712 rcu_read_lock();
5abb8855 5713 cset = rcu_dereference(current->cgroups);
69d0206c 5714 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5715 struct cgroup *c = link->cgrp;
5716 const char *name;
5717
5718 if (c->dentry)
5719 name = c->dentry->d_name.name;
5720 else
5721 name = "?";
2c6ab6d2
PM
5722 seq_printf(seq, "Root %d group %s\n",
5723 c->root->hierarchy_id, name);
7717f7ba
PM
5724 }
5725 rcu_read_unlock();
5726 read_unlock(&css_set_lock);
5727 return 0;
5728}
5729
5730#define MAX_TASKS_SHOWN_PER_CSS 25
182446d0
TH
5731static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5732 struct cftype *cft, struct seq_file *seq)
7717f7ba 5733{
69d0206c 5734 struct cgrp_cset_link *link;
7717f7ba
PM
5735
5736 read_lock(&css_set_lock);
182446d0 5737 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5738 struct css_set *cset = link->cset;
7717f7ba
PM
5739 struct task_struct *task;
5740 int count = 0;
5abb8855
TH
5741 seq_printf(seq, "css_set %p\n", cset);
5742 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5743 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5744 seq_puts(seq, " ...\n");
5745 break;
5746 } else {
5747 seq_printf(seq, " task %d\n",
5748 task_pid_vnr(task));
5749 }
5750 }
5751 }
5752 read_unlock(&css_set_lock);
5753 return 0;
5754}
5755
182446d0 5756static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5757{
182446d0 5758 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5759}
5760
5761static struct cftype debug_files[] = {
fe693435
PM
5762 {
5763 .name = "taskcount",
5764 .read_u64 = debug_taskcount_read,
5765 },
5766
5767 {
5768 .name = "current_css_set",
5769 .read_u64 = current_css_set_read,
5770 },
5771
5772 {
5773 .name = "current_css_set_refcount",
5774 .read_u64 = current_css_set_refcount_read,
5775 },
5776
7717f7ba
PM
5777 {
5778 .name = "current_css_set_cg_links",
5779 .read_seq_string = current_css_set_cg_links_read,
5780 },
5781
5782 {
5783 .name = "cgroup_css_links",
5784 .read_seq_string = cgroup_css_links_read,
5785 },
5786
fe693435
PM
5787 {
5788 .name = "releasable",
5789 .read_u64 = releasable_read,
5790 },
fe693435 5791
4baf6e33
TH
5792 { } /* terminate */
5793};
fe693435
PM
5794
5795struct cgroup_subsys debug_subsys = {
5796 .name = "debug",
92fb9748
TH
5797 .css_alloc = debug_css_alloc,
5798 .css_free = debug_css_free,
fe693435 5799 .subsys_id = debug_subsys_id,
4baf6e33 5800 .base_cftypes = debug_files,
fe693435
PM
5801};
5802#endif /* CONFIG_CGROUP_DEBUG */