cgroup: make cgroup->nr_populated count the number of populated css_sets
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
b4168640 431struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 432{
2bd59d48 433 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 434 struct cftype *cft = of_cft(of);
2bd59d48
TH
435
436 /*
437 * This is open and unprotected implementation of cgroup_css().
438 * seq_css() is only called from a kernfs file operation which has
439 * an active reference on the file. Because all the subsystem
440 * files are drained before a css is disassociated with a cgroup,
441 * the matching css from the cgroup's subsys table is guaranteed to
442 * be and stay valid until the enclosing operation is complete.
443 */
444 if (cft->ss)
445 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
446 else
9d800df1 447 return &cgrp->self;
59f5296b 448}
b4168640 449EXPORT_SYMBOL_GPL(of_css);
59f5296b 450
78574cf9
LZ
451/**
452 * cgroup_is_descendant - test ancestry
453 * @cgrp: the cgroup to be tested
454 * @ancestor: possible ancestor of @cgrp
455 *
456 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
457 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
458 * and @ancestor are accessible.
459 */
460bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
461{
462 while (cgrp) {
463 if (cgrp == ancestor)
464 return true;
d51f39b0 465 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
466 }
467 return false;
468}
ddbcc7e8 469
e9685a03 470static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 471{
bd89aabc 472 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
473}
474
1c6727af
TH
475/**
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
480 *
aec3dfcb 481 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
482 */
483#define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
489
aec3dfcb
TH
490/**
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
496 * Should be called under cgroup_[tree_]mutex.
497 */
498#define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
501 ; \
502 else
503
30159ec7 504/**
3ed80a62 505 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 506 * @ss: the iteration cursor
780cd8b3 507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 508 */
780cd8b3 509#define for_each_subsys(ss, ssid) \
3ed80a62
TH
510 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
511 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 512
cb4a3167
AS
513/**
514 * for_each_subsys_which - filter for_each_subsys with a bitmask
515 * @ss: the iteration cursor
516 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
517 * @ss_maskp: a pointer to the bitmask
518 *
519 * The block will only run for cases where the ssid-th bit (1 << ssid) of
520 * mask is set to 1.
521 */
522#define for_each_subsys_which(ss, ssid, ss_maskp) \
523 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 524 (ssid) = 0; \
cb4a3167
AS
525 else \
526 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
527 if (((ss) = cgroup_subsys[ssid]) && false) \
528 break; \
529 else
530
985ed670
TH
531/* iterate across the hierarchies */
532#define for_each_root(root) \
5549c497 533 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 534
f8f22e53
TH
535/* iterate over child cgrps, lock should be held throughout iteration */
536#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 537 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 538 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
539 cgroup_is_dead(child); })) \
540 ; \
541 else
7ae1bad9 542
81a6a5cd 543static void cgroup_release_agent(struct work_struct *work);
bd89aabc 544static void check_for_release(struct cgroup *cgrp);
81a6a5cd 545
69d0206c
TH
546/*
547 * A cgroup can be associated with multiple css_sets as different tasks may
548 * belong to different cgroups on different hierarchies. In the other
549 * direction, a css_set is naturally associated with multiple cgroups.
550 * This M:N relationship is represented by the following link structure
551 * which exists for each association and allows traversing the associations
552 * from both sides.
553 */
554struct cgrp_cset_link {
555 /* the cgroup and css_set this link associates */
556 struct cgroup *cgrp;
557 struct css_set *cset;
558
559 /* list of cgrp_cset_links anchored at cgrp->cset_links */
560 struct list_head cset_link;
561
562 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
563 struct list_head cgrp_link;
817929ec
PM
564};
565
172a2c06
TH
566/*
567 * The default css_set - used by init and its children prior to any
817929ec
PM
568 * hierarchies being mounted. It contains a pointer to the root state
569 * for each subsystem. Also used to anchor the list of css_sets. Not
570 * reference-counted, to improve performance when child cgroups
571 * haven't been created.
572 */
5024ae29 573struct css_set init_css_set = {
172a2c06
TH
574 .refcount = ATOMIC_INIT(1),
575 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
576 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
577 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
578 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
579 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
580};
817929ec 581
172a2c06 582static int css_set_count = 1; /* 1 for init_css_set */
817929ec 583
0de0942d
TH
584/**
585 * css_set_populated - does a css_set contain any tasks?
586 * @cset: target css_set
587 */
588static bool css_set_populated(struct css_set *cset)
589{
590 lockdep_assert_held(&css_set_rwsem);
591
592 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
593}
594
842b597e
TH
595/**
596 * cgroup_update_populated - updated populated count of a cgroup
597 * @cgrp: the target cgroup
598 * @populated: inc or dec populated count
599 *
0de0942d
TH
600 * One of the css_sets associated with @cgrp is either getting its first
601 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
602 * count is propagated towards root so that a given cgroup's populated_cnt
603 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
604 *
605 * @cgrp's interface file "cgroup.populated" is zero if
606 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
607 * changes from or to zero, userland is notified that the content of the
608 * interface file has changed. This can be used to detect when @cgrp and
609 * its descendants become populated or empty.
610 */
611static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
612{
613 lockdep_assert_held(&css_set_rwsem);
614
615 do {
616 bool trigger;
617
618 if (populated)
619 trigger = !cgrp->populated_cnt++;
620 else
621 trigger = !--cgrp->populated_cnt;
622
623 if (!trigger)
624 break;
625
6f60eade
TH
626 cgroup_file_notify(&cgrp->events_file);
627
d51f39b0 628 cgrp = cgroup_parent(cgrp);
842b597e
TH
629 } while (cgrp);
630}
631
0de0942d
TH
632/**
633 * css_set_update_populated - update populated state of a css_set
634 * @cset: target css_set
635 * @populated: whether @cset is populated or depopulated
636 *
637 * @cset is either getting the first task or losing the last. Update the
638 * ->populated_cnt of all associated cgroups accordingly.
639 */
640static void css_set_update_populated(struct css_set *cset, bool populated)
641{
642 struct cgrp_cset_link *link;
643
644 lockdep_assert_held(&css_set_rwsem);
645
646 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
647 cgroup_update_populated(link->cgrp, populated);
648}
649
7717f7ba
PM
650/*
651 * hash table for cgroup groups. This improves the performance to find
652 * an existing css_set. This hash doesn't (currently) take into
653 * account cgroups in empty hierarchies.
654 */
472b1053 655#define CSS_SET_HASH_BITS 7
0ac801fe 656static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 657
0ac801fe 658static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 659{
0ac801fe 660 unsigned long key = 0UL;
30159ec7
TH
661 struct cgroup_subsys *ss;
662 int i;
472b1053 663
30159ec7 664 for_each_subsys(ss, i)
0ac801fe
LZ
665 key += (unsigned long)css[i];
666 key = (key >> 16) ^ key;
472b1053 667
0ac801fe 668 return key;
472b1053
LZ
669}
670
a25eb52e 671static void put_css_set_locked(struct css_set *cset)
b4f48b63 672{
69d0206c 673 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
674 struct cgroup_subsys *ss;
675 int ssid;
5abb8855 676
89c5509b
TH
677 lockdep_assert_held(&css_set_rwsem);
678
679 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 680 return;
81a6a5cd 681
2c6ab6d2 682 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
683 for_each_subsys(ss, ssid)
684 list_del(&cset->e_cset_node[ssid]);
5abb8855 685 hash_del(&cset->hlist);
2c6ab6d2
PM
686 css_set_count--;
687
69d0206c 688 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 689 struct cgroup *cgrp = link->cgrp;
5abb8855 690
69d0206c
TH
691 list_del(&link->cset_link);
692 list_del(&link->cgrp_link);
71b5707e 693
96d365e0 694 /* @cgrp can't go away while we're holding css_set_rwsem */
0de0942d 695 if (list_empty(&cgrp->cset_links))
a25eb52e 696 check_for_release(cgrp);
2c6ab6d2
PM
697
698 kfree(link);
81a6a5cd 699 }
2c6ab6d2 700
5abb8855 701 kfree_rcu(cset, rcu_head);
b4f48b63
PM
702}
703
a25eb52e 704static void put_css_set(struct css_set *cset)
89c5509b
TH
705{
706 /*
707 * Ensure that the refcount doesn't hit zero while any readers
708 * can see it. Similar to atomic_dec_and_lock(), but for an
709 * rwlock
710 */
711 if (atomic_add_unless(&cset->refcount, -1, 1))
712 return;
713
714 down_write(&css_set_rwsem);
a25eb52e 715 put_css_set_locked(cset);
89c5509b
TH
716 up_write(&css_set_rwsem);
717}
718
817929ec
PM
719/*
720 * refcounted get/put for css_set objects
721 */
5abb8855 722static inline void get_css_set(struct css_set *cset)
817929ec 723{
5abb8855 724 atomic_inc(&cset->refcount);
817929ec
PM
725}
726
b326f9d0 727/**
7717f7ba 728 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
729 * @cset: candidate css_set being tested
730 * @old_cset: existing css_set for a task
7717f7ba
PM
731 * @new_cgrp: cgroup that's being entered by the task
732 * @template: desired set of css pointers in css_set (pre-calculated)
733 *
6f4b7e63 734 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
735 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
736 */
5abb8855
TH
737static bool compare_css_sets(struct css_set *cset,
738 struct css_set *old_cset,
7717f7ba
PM
739 struct cgroup *new_cgrp,
740 struct cgroup_subsys_state *template[])
741{
742 struct list_head *l1, *l2;
743
aec3dfcb
TH
744 /*
745 * On the default hierarchy, there can be csets which are
746 * associated with the same set of cgroups but different csses.
747 * Let's first ensure that csses match.
748 */
749 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 750 return false;
7717f7ba
PM
751
752 /*
753 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
754 * different cgroups in hierarchies. As different cgroups may
755 * share the same effective css, this comparison is always
756 * necessary.
7717f7ba 757 */
69d0206c
TH
758 l1 = &cset->cgrp_links;
759 l2 = &old_cset->cgrp_links;
7717f7ba 760 while (1) {
69d0206c 761 struct cgrp_cset_link *link1, *link2;
5abb8855 762 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
763
764 l1 = l1->next;
765 l2 = l2->next;
766 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
767 if (l1 == &cset->cgrp_links) {
768 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
769 break;
770 } else {
69d0206c 771 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
772 }
773 /* Locate the cgroups associated with these links. */
69d0206c
TH
774 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
775 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
776 cgrp1 = link1->cgrp;
777 cgrp2 = link2->cgrp;
7717f7ba 778 /* Hierarchies should be linked in the same order. */
5abb8855 779 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
780
781 /*
782 * If this hierarchy is the hierarchy of the cgroup
783 * that's changing, then we need to check that this
784 * css_set points to the new cgroup; if it's any other
785 * hierarchy, then this css_set should point to the
786 * same cgroup as the old css_set.
787 */
5abb8855
TH
788 if (cgrp1->root == new_cgrp->root) {
789 if (cgrp1 != new_cgrp)
7717f7ba
PM
790 return false;
791 } else {
5abb8855 792 if (cgrp1 != cgrp2)
7717f7ba
PM
793 return false;
794 }
795 }
796 return true;
797}
798
b326f9d0
TH
799/**
800 * find_existing_css_set - init css array and find the matching css_set
801 * @old_cset: the css_set that we're using before the cgroup transition
802 * @cgrp: the cgroup that we're moving into
803 * @template: out param for the new set of csses, should be clear on entry
817929ec 804 */
5abb8855
TH
805static struct css_set *find_existing_css_set(struct css_set *old_cset,
806 struct cgroup *cgrp,
807 struct cgroup_subsys_state *template[])
b4f48b63 808{
3dd06ffa 809 struct cgroup_root *root = cgrp->root;
30159ec7 810 struct cgroup_subsys *ss;
5abb8855 811 struct css_set *cset;
0ac801fe 812 unsigned long key;
b326f9d0 813 int i;
817929ec 814
aae8aab4
BB
815 /*
816 * Build the set of subsystem state objects that we want to see in the
817 * new css_set. while subsystems can change globally, the entries here
818 * won't change, so no need for locking.
819 */
30159ec7 820 for_each_subsys(ss, i) {
f392e51c 821 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
822 /*
823 * @ss is in this hierarchy, so we want the
824 * effective css from @cgrp.
825 */
826 template[i] = cgroup_e_css(cgrp, ss);
817929ec 827 } else {
aec3dfcb
TH
828 /*
829 * @ss is not in this hierarchy, so we don't want
830 * to change the css.
831 */
5abb8855 832 template[i] = old_cset->subsys[i];
817929ec
PM
833 }
834 }
835
0ac801fe 836 key = css_set_hash(template);
5abb8855
TH
837 hash_for_each_possible(css_set_table, cset, hlist, key) {
838 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
839 continue;
840
841 /* This css_set matches what we need */
5abb8855 842 return cset;
472b1053 843 }
817929ec
PM
844
845 /* No existing cgroup group matched */
846 return NULL;
847}
848
69d0206c 849static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 850{
69d0206c 851 struct cgrp_cset_link *link, *tmp_link;
36553434 852
69d0206c
TH
853 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
854 list_del(&link->cset_link);
36553434
LZ
855 kfree(link);
856 }
857}
858
69d0206c
TH
859/**
860 * allocate_cgrp_cset_links - allocate cgrp_cset_links
861 * @count: the number of links to allocate
862 * @tmp_links: list_head the allocated links are put on
863 *
864 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
865 * through ->cset_link. Returns 0 on success or -errno.
817929ec 866 */
69d0206c 867static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 868{
69d0206c 869 struct cgrp_cset_link *link;
817929ec 870 int i;
69d0206c
TH
871
872 INIT_LIST_HEAD(tmp_links);
873
817929ec 874 for (i = 0; i < count; i++) {
f4f4be2b 875 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 876 if (!link) {
69d0206c 877 free_cgrp_cset_links(tmp_links);
817929ec
PM
878 return -ENOMEM;
879 }
69d0206c 880 list_add(&link->cset_link, tmp_links);
817929ec
PM
881 }
882 return 0;
883}
884
c12f65d4
LZ
885/**
886 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 887 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 888 * @cset: the css_set to be linked
c12f65d4
LZ
889 * @cgrp: the destination cgroup
890 */
69d0206c
TH
891static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
892 struct cgroup *cgrp)
c12f65d4 893{
69d0206c 894 struct cgrp_cset_link *link;
c12f65d4 895
69d0206c 896 BUG_ON(list_empty(tmp_links));
6803c006
TH
897
898 if (cgroup_on_dfl(cgrp))
899 cset->dfl_cgrp = cgrp;
900
69d0206c
TH
901 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
902 link->cset = cset;
7717f7ba 903 link->cgrp = cgrp;
842b597e 904
69d0206c 905 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 906
7717f7ba
PM
907 /*
908 * Always add links to the tail of the list so that the list
909 * is sorted by order of hierarchy creation
910 */
69d0206c 911 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
912}
913
b326f9d0
TH
914/**
915 * find_css_set - return a new css_set with one cgroup updated
916 * @old_cset: the baseline css_set
917 * @cgrp: the cgroup to be updated
918 *
919 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
920 * substituted into the appropriate hierarchy.
817929ec 921 */
5abb8855
TH
922static struct css_set *find_css_set(struct css_set *old_cset,
923 struct cgroup *cgrp)
817929ec 924{
b326f9d0 925 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 926 struct css_set *cset;
69d0206c
TH
927 struct list_head tmp_links;
928 struct cgrp_cset_link *link;
2d8f243a 929 struct cgroup_subsys *ss;
0ac801fe 930 unsigned long key;
2d8f243a 931 int ssid;
472b1053 932
b326f9d0
TH
933 lockdep_assert_held(&cgroup_mutex);
934
817929ec
PM
935 /* First see if we already have a cgroup group that matches
936 * the desired set */
96d365e0 937 down_read(&css_set_rwsem);
5abb8855
TH
938 cset = find_existing_css_set(old_cset, cgrp, template);
939 if (cset)
940 get_css_set(cset);
96d365e0 941 up_read(&css_set_rwsem);
817929ec 942
5abb8855
TH
943 if (cset)
944 return cset;
817929ec 945
f4f4be2b 946 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 947 if (!cset)
817929ec
PM
948 return NULL;
949
69d0206c 950 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 951 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 952 kfree(cset);
817929ec
PM
953 return NULL;
954 }
955
5abb8855 956 atomic_set(&cset->refcount, 1);
69d0206c 957 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 958 INIT_LIST_HEAD(&cset->tasks);
c7561128 959 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 960 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 961 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 962 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
963
964 /* Copy the set of subsystem state objects generated in
965 * find_existing_css_set() */
5abb8855 966 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 967
96d365e0 968 down_write(&css_set_rwsem);
817929ec 969 /* Add reference counts and links from the new css_set. */
69d0206c 970 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 971 struct cgroup *c = link->cgrp;
69d0206c 972
7717f7ba
PM
973 if (c->root == cgrp->root)
974 c = cgrp;
69d0206c 975 link_css_set(&tmp_links, cset, c);
7717f7ba 976 }
817929ec 977
69d0206c 978 BUG_ON(!list_empty(&tmp_links));
817929ec 979
817929ec 980 css_set_count++;
472b1053 981
2d8f243a 982 /* Add @cset to the hash table */
5abb8855
TH
983 key = css_set_hash(cset->subsys);
984 hash_add(css_set_table, &cset->hlist, key);
472b1053 985
2d8f243a
TH
986 for_each_subsys(ss, ssid)
987 list_add_tail(&cset->e_cset_node[ssid],
988 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
989
96d365e0 990 up_write(&css_set_rwsem);
817929ec 991
5abb8855 992 return cset;
b4f48b63
PM
993}
994
3dd06ffa 995static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 996{
3dd06ffa 997 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 998
3dd06ffa 999 return root_cgrp->root;
2bd59d48
TH
1000}
1001
3dd06ffa 1002static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1003{
1004 int id;
1005
1006 lockdep_assert_held(&cgroup_mutex);
1007
985ed670 1008 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1009 if (id < 0)
1010 return id;
1011
1012 root->hierarchy_id = id;
1013 return 0;
1014}
1015
3dd06ffa 1016static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1017{
1018 lockdep_assert_held(&cgroup_mutex);
1019
1020 if (root->hierarchy_id) {
1021 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1022 root->hierarchy_id = 0;
1023 }
1024}
1025
3dd06ffa 1026static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1027{
1028 if (root) {
d0f702e6 1029 /* hierarchy ID should already have been released */
f2e85d57
TH
1030 WARN_ON_ONCE(root->hierarchy_id);
1031
1032 idr_destroy(&root->cgroup_idr);
1033 kfree(root);
1034 }
1035}
1036
3dd06ffa 1037static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1038{
3dd06ffa 1039 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1040 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1041
2bd59d48 1042 mutex_lock(&cgroup_mutex);
f2e85d57 1043
776f02fa 1044 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1045 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1046
f2e85d57 1047 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1048 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1049
7717f7ba 1050 /*
f2e85d57
TH
1051 * Release all the links from cset_links to this hierarchy's
1052 * root cgroup
7717f7ba 1053 */
96d365e0 1054 down_write(&css_set_rwsem);
f2e85d57
TH
1055
1056 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1057 list_del(&link->cset_link);
1058 list_del(&link->cgrp_link);
1059 kfree(link);
1060 }
96d365e0 1061 up_write(&css_set_rwsem);
f2e85d57
TH
1062
1063 if (!list_empty(&root->root_list)) {
1064 list_del(&root->root_list);
1065 cgroup_root_count--;
1066 }
1067
1068 cgroup_exit_root_id(root);
1069
1070 mutex_unlock(&cgroup_mutex);
f2e85d57 1071
2bd59d48 1072 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1073 cgroup_free_root(root);
1074}
1075
ceb6a081
TH
1076/* look up cgroup associated with given css_set on the specified hierarchy */
1077static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1078 struct cgroup_root *root)
7717f7ba 1079{
7717f7ba
PM
1080 struct cgroup *res = NULL;
1081
96d365e0
TH
1082 lockdep_assert_held(&cgroup_mutex);
1083 lockdep_assert_held(&css_set_rwsem);
1084
5abb8855 1085 if (cset == &init_css_set) {
3dd06ffa 1086 res = &root->cgrp;
7717f7ba 1087 } else {
69d0206c
TH
1088 struct cgrp_cset_link *link;
1089
1090 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1091 struct cgroup *c = link->cgrp;
69d0206c 1092
7717f7ba
PM
1093 if (c->root == root) {
1094 res = c;
1095 break;
1096 }
1097 }
1098 }
96d365e0 1099
7717f7ba
PM
1100 BUG_ON(!res);
1101 return res;
1102}
1103
ddbcc7e8 1104/*
ceb6a081
TH
1105 * Return the cgroup for "task" from the given hierarchy. Must be
1106 * called with cgroup_mutex and css_set_rwsem held.
1107 */
1108static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1109 struct cgroup_root *root)
ceb6a081
TH
1110{
1111 /*
1112 * No need to lock the task - since we hold cgroup_mutex the
1113 * task can't change groups, so the only thing that can happen
1114 * is that it exits and its css is set back to init_css_set.
1115 */
1116 return cset_cgroup_from_root(task_css_set(task), root);
1117}
1118
ddbcc7e8 1119/*
ddbcc7e8
PM
1120 * A task must hold cgroup_mutex to modify cgroups.
1121 *
1122 * Any task can increment and decrement the count field without lock.
1123 * So in general, code holding cgroup_mutex can't rely on the count
1124 * field not changing. However, if the count goes to zero, then only
956db3ca 1125 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1126 * means that no tasks are currently attached, therefore there is no
1127 * way a task attached to that cgroup can fork (the other way to
1128 * increment the count). So code holding cgroup_mutex can safely
1129 * assume that if the count is zero, it will stay zero. Similarly, if
1130 * a task holds cgroup_mutex on a cgroup with zero count, it
1131 * knows that the cgroup won't be removed, as cgroup_rmdir()
1132 * needs that mutex.
1133 *
ddbcc7e8
PM
1134 * A cgroup can only be deleted if both its 'count' of using tasks
1135 * is zero, and its list of 'children' cgroups is empty. Since all
1136 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1137 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1138 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1139 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1140 *
1141 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1142 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1143 */
1144
2bd59d48 1145static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1146static const struct file_operations proc_cgroupstats_operations;
a424316c 1147
8d7e6fb0
TH
1148static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1149 char *buf)
ddbcc7e8 1150{
3e1d2eed
TH
1151 struct cgroup_subsys *ss = cft->ss;
1152
8d7e6fb0
TH
1153 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1154 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1155 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1156 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1157 cft->name);
8d7e6fb0
TH
1158 else
1159 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1160 return buf;
ddbcc7e8
PM
1161}
1162
f2e85d57
TH
1163/**
1164 * cgroup_file_mode - deduce file mode of a control file
1165 * @cft: the control file in question
1166 *
7dbdb199 1167 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1168 */
1169static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1170{
f2e85d57 1171 umode_t mode = 0;
65dff759 1172
f2e85d57
TH
1173 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1174 mode |= S_IRUGO;
1175
7dbdb199
TH
1176 if (cft->write_u64 || cft->write_s64 || cft->write) {
1177 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1178 mode |= S_IWUGO;
1179 else
1180 mode |= S_IWUSR;
1181 }
f2e85d57
TH
1182
1183 return mode;
65dff759
LZ
1184}
1185
59f5296b 1186static void cgroup_get(struct cgroup *cgrp)
be445626 1187{
2bd59d48 1188 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1189 css_get(&cgrp->self);
be445626
LZ
1190}
1191
aa32362f
LZ
1192static bool cgroup_tryget(struct cgroup *cgrp)
1193{
1194 return css_tryget(&cgrp->self);
1195}
1196
59f5296b 1197static void cgroup_put(struct cgroup *cgrp)
be445626 1198{
9d755d33 1199 css_put(&cgrp->self);
be445626
LZ
1200}
1201
af0ba678 1202/**
0f060deb 1203 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1204 * @cgrp: the target cgroup
0f060deb 1205 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1206 *
1207 * On the default hierarchy, a subsystem may request other subsystems to be
1208 * enabled together through its ->depends_on mask. In such cases, more
1209 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1210 *
0f060deb
TH
1211 * This function calculates which subsystems need to be enabled if
1212 * @subtree_control is to be applied to @cgrp. The returned mask is always
1213 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1214 */
8ab456ac
AS
1215static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1216 unsigned long subtree_control)
667c2491 1217{
af0ba678 1218 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1219 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1220 struct cgroup_subsys *ss;
1221 int ssid;
1222
1223 lockdep_assert_held(&cgroup_mutex);
1224
0f060deb
TH
1225 if (!cgroup_on_dfl(cgrp))
1226 return cur_ss_mask;
af0ba678
TH
1227
1228 while (true) {
8ab456ac 1229 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1230
a966a4ed
AS
1231 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1232 new_ss_mask |= ss->depends_on;
af0ba678
TH
1233
1234 /*
1235 * Mask out subsystems which aren't available. This can
1236 * happen only if some depended-upon subsystems were bound
1237 * to non-default hierarchies.
1238 */
1239 if (parent)
1240 new_ss_mask &= parent->child_subsys_mask;
1241 else
1242 new_ss_mask &= cgrp->root->subsys_mask;
1243
1244 if (new_ss_mask == cur_ss_mask)
1245 break;
1246 cur_ss_mask = new_ss_mask;
1247 }
1248
0f060deb
TH
1249 return cur_ss_mask;
1250}
1251
1252/**
1253 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1254 * @cgrp: the target cgroup
1255 *
1256 * Update @cgrp->child_subsys_mask according to the current
1257 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1258 */
1259static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1260{
1261 cgrp->child_subsys_mask =
1262 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1263}
1264
a9746d8d
TH
1265/**
1266 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1267 * @kn: the kernfs_node being serviced
1268 *
1269 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1270 * the method finishes if locking succeeded. Note that once this function
1271 * returns the cgroup returned by cgroup_kn_lock_live() may become
1272 * inaccessible any time. If the caller intends to continue to access the
1273 * cgroup, it should pin it before invoking this function.
1274 */
1275static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1276{
a9746d8d
TH
1277 struct cgroup *cgrp;
1278
1279 if (kernfs_type(kn) == KERNFS_DIR)
1280 cgrp = kn->priv;
1281 else
1282 cgrp = kn->parent->priv;
1283
1284 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1285
1286 kernfs_unbreak_active_protection(kn);
1287 cgroup_put(cgrp);
ddbcc7e8
PM
1288}
1289
a9746d8d
TH
1290/**
1291 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1292 * @kn: the kernfs_node being serviced
1293 *
1294 * This helper is to be used by a cgroup kernfs method currently servicing
1295 * @kn. It breaks the active protection, performs cgroup locking and
1296 * verifies that the associated cgroup is alive. Returns the cgroup if
1297 * alive; otherwise, %NULL. A successful return should be undone by a
1298 * matching cgroup_kn_unlock() invocation.
1299 *
1300 * Any cgroup kernfs method implementation which requires locking the
1301 * associated cgroup should use this helper. It avoids nesting cgroup
1302 * locking under kernfs active protection and allows all kernfs operations
1303 * including self-removal.
1304 */
1305static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1306{
a9746d8d
TH
1307 struct cgroup *cgrp;
1308
1309 if (kernfs_type(kn) == KERNFS_DIR)
1310 cgrp = kn->priv;
1311 else
1312 cgrp = kn->parent->priv;
05ef1d7c 1313
2739d3cc 1314 /*
01f6474c 1315 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1316 * active_ref. cgroup liveliness check alone provides enough
1317 * protection against removal. Ensure @cgrp stays accessible and
1318 * break the active_ref protection.
2739d3cc 1319 */
aa32362f
LZ
1320 if (!cgroup_tryget(cgrp))
1321 return NULL;
a9746d8d
TH
1322 kernfs_break_active_protection(kn);
1323
2bd59d48 1324 mutex_lock(&cgroup_mutex);
05ef1d7c 1325
a9746d8d
TH
1326 if (!cgroup_is_dead(cgrp))
1327 return cgrp;
1328
1329 cgroup_kn_unlock(kn);
1330 return NULL;
ddbcc7e8 1331}
05ef1d7c 1332
2739d3cc 1333static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1334{
2bd59d48 1335 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1336
01f6474c 1337 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1338 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1339}
1340
13af07df 1341/**
4df8dc90
TH
1342 * css_clear_dir - remove subsys files in a cgroup directory
1343 * @css: taget css
1344 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1345 */
4df8dc90
TH
1346static void css_clear_dir(struct cgroup_subsys_state *css,
1347 struct cgroup *cgrp_override)
05ef1d7c 1348{
4df8dc90
TH
1349 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1350 struct cftype *cfts;
05ef1d7c 1351
4df8dc90
TH
1352 list_for_each_entry(cfts, &css->ss->cfts, node)
1353 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1354}
1355
ccdca218 1356/**
4df8dc90
TH
1357 * css_populate_dir - create subsys files in a cgroup directory
1358 * @css: target css
1359 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1360 *
1361 * On failure, no file is added.
1362 */
4df8dc90
TH
1363static int css_populate_dir(struct cgroup_subsys_state *css,
1364 struct cgroup *cgrp_override)
ccdca218 1365{
4df8dc90
TH
1366 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1367 struct cftype *cfts, *failed_cfts;
1368 int ret;
ccdca218 1369
4df8dc90
TH
1370 if (!css->ss) {
1371 if (cgroup_on_dfl(cgrp))
1372 cfts = cgroup_dfl_base_files;
1373 else
1374 cfts = cgroup_legacy_base_files;
ccdca218 1375
4df8dc90
TH
1376 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1377 }
ccdca218 1378
4df8dc90
TH
1379 list_for_each_entry(cfts, &css->ss->cfts, node) {
1380 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1381 if (ret < 0) {
1382 failed_cfts = cfts;
1383 goto err;
ccdca218
TH
1384 }
1385 }
1386 return 0;
1387err:
4df8dc90
TH
1388 list_for_each_entry(cfts, &css->ss->cfts, node) {
1389 if (cfts == failed_cfts)
1390 break;
1391 cgroup_addrm_files(css, cgrp, cfts, false);
1392 }
ccdca218
TH
1393 return ret;
1394}
1395
8ab456ac
AS
1396static int rebind_subsystems(struct cgroup_root *dst_root,
1397 unsigned long ss_mask)
ddbcc7e8 1398{
1ada4838 1399 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1400 struct cgroup_subsys *ss;
8ab456ac 1401 unsigned long tmp_ss_mask;
2d8f243a 1402 int ssid, i, ret;
ddbcc7e8 1403
ace2bee8 1404 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1405
a966a4ed 1406 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1407 /* if @ss has non-root csses attached to it, can't move */
1408 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1409 return -EBUSY;
1d5be6b2 1410
5df36032 1411 /* can't move between two non-dummy roots either */
7fd8c565 1412 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1413 return -EBUSY;
ddbcc7e8
PM
1414 }
1415
5533e011
TH
1416 /* skip creating root files on dfl_root for inhibited subsystems */
1417 tmp_ss_mask = ss_mask;
1418 if (dst_root == &cgrp_dfl_root)
1419 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1420
4df8dc90
TH
1421 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1422 struct cgroup *scgrp = &ss->root->cgrp;
1423 int tssid;
1424
1425 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1426 if (!ret)
1427 continue;
ddbcc7e8 1428
a2dd4247
TH
1429 /*
1430 * Rebinding back to the default root is not allowed to
1431 * fail. Using both default and non-default roots should
1432 * be rare. Moving subsystems back and forth even more so.
1433 * Just warn about it and continue.
1434 */
4df8dc90
TH
1435 if (dst_root == &cgrp_dfl_root) {
1436 if (cgrp_dfl_root_visible) {
1437 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1438 ret, ss_mask);
1439 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1440 }
1441 continue;
a2dd4247 1442 }
4df8dc90
TH
1443
1444 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1445 if (tssid == ssid)
1446 break;
1447 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1448 }
1449 return ret;
5df36032 1450 }
3126121f
TH
1451
1452 /*
1453 * Nothing can fail from this point on. Remove files for the
1454 * removed subsystems and rebind each subsystem.
1455 */
a966a4ed 1456 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1457 struct cgroup_root *src_root = ss->root;
1458 struct cgroup *scgrp = &src_root->cgrp;
1459 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1460 struct css_set *cset;
a8a648c4 1461
1ada4838 1462 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1463
4df8dc90
TH
1464 css_clear_dir(css, NULL);
1465
1ada4838
TH
1466 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1467 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1468 ss->root = dst_root;
1ada4838 1469 css->cgroup = dcgrp;
73e80ed8 1470
2d8f243a
TH
1471 down_write(&css_set_rwsem);
1472 hash_for_each(css_set_table, i, cset, hlist)
1473 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1474 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1475 up_write(&css_set_rwsem);
1476
f392e51c 1477 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1478 scgrp->subtree_control &= ~(1 << ssid);
1479 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1480
bd53d617 1481 /* default hierarchy doesn't enable controllers by default */
f392e51c 1482 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1483 if (dst_root == &cgrp_dfl_root) {
1484 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1485 } else {
1ada4838
TH
1486 dcgrp->subtree_control |= 1 << ssid;
1487 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1488 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1489 }
a8a648c4 1490
5df36032
TH
1491 if (ss->bind)
1492 ss->bind(css);
ddbcc7e8 1493 }
ddbcc7e8 1494
1ada4838 1495 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1496 return 0;
1497}
1498
2bd59d48
TH
1499static int cgroup_show_options(struct seq_file *seq,
1500 struct kernfs_root *kf_root)
ddbcc7e8 1501{
3dd06ffa 1502 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1503 struct cgroup_subsys *ss;
b85d2040 1504 int ssid;
ddbcc7e8 1505
d98817d4
TH
1506 if (root != &cgrp_dfl_root)
1507 for_each_subsys(ss, ssid)
1508 if (root->subsys_mask & (1 << ssid))
61e57c0c 1509 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1510 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1511 seq_puts(seq, ",noprefix");
93438629 1512 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1513 seq_puts(seq, ",xattr");
69e943b7
TH
1514
1515 spin_lock(&release_agent_path_lock);
81a6a5cd 1516 if (strlen(root->release_agent_path))
a068acf2
KC
1517 seq_show_option(seq, "release_agent",
1518 root->release_agent_path);
69e943b7
TH
1519 spin_unlock(&release_agent_path_lock);
1520
3dd06ffa 1521 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1522 seq_puts(seq, ",clone_children");
c6d57f33 1523 if (strlen(root->name))
a068acf2 1524 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1525 return 0;
1526}
1527
1528struct cgroup_sb_opts {
8ab456ac 1529 unsigned long subsys_mask;
69dfa00c 1530 unsigned int flags;
81a6a5cd 1531 char *release_agent;
2260e7fc 1532 bool cpuset_clone_children;
c6d57f33 1533 char *name;
2c6ab6d2
PM
1534 /* User explicitly requested empty subsystem */
1535 bool none;
ddbcc7e8
PM
1536};
1537
cf5d5941 1538static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1539{
32a8cf23
DL
1540 char *token, *o = data;
1541 bool all_ss = false, one_ss = false;
8ab456ac 1542 unsigned long mask = -1UL;
30159ec7 1543 struct cgroup_subsys *ss;
7b9a6ba5 1544 int nr_opts = 0;
30159ec7 1545 int i;
f9ab5b5b
LZ
1546
1547#ifdef CONFIG_CPUSETS
69dfa00c 1548 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1549#endif
ddbcc7e8 1550
c6d57f33 1551 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1552
1553 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1554 nr_opts++;
1555
ddbcc7e8
PM
1556 if (!*token)
1557 return -EINVAL;
32a8cf23 1558 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1559 /* Explicitly have no subsystems */
1560 opts->none = true;
32a8cf23
DL
1561 continue;
1562 }
1563 if (!strcmp(token, "all")) {
1564 /* Mutually exclusive option 'all' + subsystem name */
1565 if (one_ss)
1566 return -EINVAL;
1567 all_ss = true;
1568 continue;
1569 }
873fe09e
TH
1570 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1571 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1572 continue;
1573 }
32a8cf23 1574 if (!strcmp(token, "noprefix")) {
93438629 1575 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1576 continue;
1577 }
1578 if (!strcmp(token, "clone_children")) {
2260e7fc 1579 opts->cpuset_clone_children = true;
32a8cf23
DL
1580 continue;
1581 }
03b1cde6 1582 if (!strcmp(token, "xattr")) {
93438629 1583 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1584 continue;
1585 }
32a8cf23 1586 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1587 /* Specifying two release agents is forbidden */
1588 if (opts->release_agent)
1589 return -EINVAL;
c6d57f33 1590 opts->release_agent =
e400c285 1591 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1592 if (!opts->release_agent)
1593 return -ENOMEM;
32a8cf23
DL
1594 continue;
1595 }
1596 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1597 const char *name = token + 5;
1598 /* Can't specify an empty name */
1599 if (!strlen(name))
1600 return -EINVAL;
1601 /* Must match [\w.-]+ */
1602 for (i = 0; i < strlen(name); i++) {
1603 char c = name[i];
1604 if (isalnum(c))
1605 continue;
1606 if ((c == '.') || (c == '-') || (c == '_'))
1607 continue;
1608 return -EINVAL;
1609 }
1610 /* Specifying two names is forbidden */
1611 if (opts->name)
1612 return -EINVAL;
1613 opts->name = kstrndup(name,
e400c285 1614 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1615 GFP_KERNEL);
1616 if (!opts->name)
1617 return -ENOMEM;
32a8cf23
DL
1618
1619 continue;
1620 }
1621
30159ec7 1622 for_each_subsys(ss, i) {
3e1d2eed 1623 if (strcmp(token, ss->legacy_name))
32a8cf23 1624 continue;
fc5ed1e9 1625 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1626 continue;
1627
1628 /* Mutually exclusive option 'all' + subsystem name */
1629 if (all_ss)
1630 return -EINVAL;
69dfa00c 1631 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1632 one_ss = true;
1633
1634 break;
1635 }
1636 if (i == CGROUP_SUBSYS_COUNT)
1637 return -ENOENT;
1638 }
1639
873fe09e 1640 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1641 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1642 if (nr_opts != 1) {
1643 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1644 return -EINVAL;
1645 }
7b9a6ba5 1646 return 0;
873fe09e
TH
1647 }
1648
7b9a6ba5
TH
1649 /*
1650 * If the 'all' option was specified select all the subsystems,
1651 * otherwise if 'none', 'name=' and a subsystem name options were
1652 * not specified, let's default to 'all'
1653 */
1654 if (all_ss || (!one_ss && !opts->none && !opts->name))
1655 for_each_subsys(ss, i)
fc5ed1e9 1656 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1657 opts->subsys_mask |= (1 << i);
1658
1659 /*
1660 * We either have to specify by name or by subsystems. (So all
1661 * empty hierarchies must have a name).
1662 */
1663 if (!opts->subsys_mask && !opts->name)
1664 return -EINVAL;
1665
f9ab5b5b
LZ
1666 /*
1667 * Option noprefix was introduced just for backward compatibility
1668 * with the old cpuset, so we allow noprefix only if mounting just
1669 * the cpuset subsystem.
1670 */
93438629 1671 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1672 return -EINVAL;
1673
2c6ab6d2 1674 /* Can't specify "none" and some subsystems */
a1a71b45 1675 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1676 return -EINVAL;
1677
ddbcc7e8
PM
1678 return 0;
1679}
1680
2bd59d48 1681static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1682{
1683 int ret = 0;
3dd06ffa 1684 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1685 struct cgroup_sb_opts opts;
8ab456ac 1686 unsigned long added_mask, removed_mask;
ddbcc7e8 1687
aa6ec29b
TH
1688 if (root == &cgrp_dfl_root) {
1689 pr_err("remount is not allowed\n");
873fe09e
TH
1690 return -EINVAL;
1691 }
1692
ddbcc7e8
PM
1693 mutex_lock(&cgroup_mutex);
1694
1695 /* See what subsystems are wanted */
1696 ret = parse_cgroupfs_options(data, &opts);
1697 if (ret)
1698 goto out_unlock;
1699
f392e51c 1700 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1701 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1702 task_tgid_nr(current), current->comm);
8b5a5a9d 1703
f392e51c
TH
1704 added_mask = opts.subsys_mask & ~root->subsys_mask;
1705 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1706
cf5d5941 1707 /* Don't allow flags or name to change at remount */
7450e90b 1708 if ((opts.flags ^ root->flags) ||
cf5d5941 1709 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1710 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1711 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1712 ret = -EINVAL;
1713 goto out_unlock;
1714 }
1715
f172e67c 1716 /* remounting is not allowed for populated hierarchies */
d5c419b6 1717 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1718 ret = -EBUSY;
0670e08b 1719 goto out_unlock;
cf5d5941 1720 }
ddbcc7e8 1721
5df36032 1722 ret = rebind_subsystems(root, added_mask);
3126121f 1723 if (ret)
0670e08b 1724 goto out_unlock;
ddbcc7e8 1725
3dd06ffa 1726 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1727
69e943b7
TH
1728 if (opts.release_agent) {
1729 spin_lock(&release_agent_path_lock);
81a6a5cd 1730 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1731 spin_unlock(&release_agent_path_lock);
1732 }
ddbcc7e8 1733 out_unlock:
66bdc9cf 1734 kfree(opts.release_agent);
c6d57f33 1735 kfree(opts.name);
ddbcc7e8 1736 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1737 return ret;
1738}
1739
afeb0f9f
TH
1740/*
1741 * To reduce the fork() overhead for systems that are not actually using
1742 * their cgroups capability, we don't maintain the lists running through
1743 * each css_set to its tasks until we see the list actually used - in other
1744 * words after the first mount.
1745 */
1746static bool use_task_css_set_links __read_mostly;
1747
1748static void cgroup_enable_task_cg_lists(void)
1749{
1750 struct task_struct *p, *g;
1751
96d365e0 1752 down_write(&css_set_rwsem);
afeb0f9f
TH
1753
1754 if (use_task_css_set_links)
1755 goto out_unlock;
1756
1757 use_task_css_set_links = true;
1758
1759 /*
1760 * We need tasklist_lock because RCU is not safe against
1761 * while_each_thread(). Besides, a forking task that has passed
1762 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1763 * is not guaranteed to have its child immediately visible in the
1764 * tasklist if we walk through it with RCU.
1765 */
1766 read_lock(&tasklist_lock);
1767 do_each_thread(g, p) {
afeb0f9f
TH
1768 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1769 task_css_set(p) != &init_css_set);
1770
1771 /*
1772 * We should check if the process is exiting, otherwise
1773 * it will race with cgroup_exit() in that the list
1774 * entry won't be deleted though the process has exited.
f153ad11
TH
1775 * Do it while holding siglock so that we don't end up
1776 * racing against cgroup_exit().
afeb0f9f 1777 */
f153ad11 1778 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1779 if (!(p->flags & PF_EXITING)) {
1780 struct css_set *cset = task_css_set(p);
1781
0de0942d
TH
1782 if (!css_set_populated(cset))
1783 css_set_update_populated(cset, true);
eaf797ab
TH
1784 list_add(&p->cg_list, &cset->tasks);
1785 get_css_set(cset);
1786 }
f153ad11 1787 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1788 } while_each_thread(g, p);
1789 read_unlock(&tasklist_lock);
1790out_unlock:
96d365e0 1791 up_write(&css_set_rwsem);
afeb0f9f 1792}
ddbcc7e8 1793
cc31edce
PM
1794static void init_cgroup_housekeeping(struct cgroup *cgrp)
1795{
2d8f243a
TH
1796 struct cgroup_subsys *ss;
1797 int ssid;
1798
d5c419b6
TH
1799 INIT_LIST_HEAD(&cgrp->self.sibling);
1800 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1801 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1802 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1803 INIT_LIST_HEAD(&cgrp->pidlists);
1804 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1805 cgrp->self.cgroup = cgrp;
184faf32 1806 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1807
1808 for_each_subsys(ss, ssid)
1809 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1810
1811 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1812 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1813}
c6d57f33 1814
3dd06ffa 1815static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1816 struct cgroup_sb_opts *opts)
ddbcc7e8 1817{
3dd06ffa 1818 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1819
ddbcc7e8 1820 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1821 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1822 cgrp->root = root;
cc31edce 1823 init_cgroup_housekeeping(cgrp);
4e96ee8e 1824 idr_init(&root->cgroup_idr);
c6d57f33 1825
c6d57f33
PM
1826 root->flags = opts->flags;
1827 if (opts->release_agent)
1828 strcpy(root->release_agent_path, opts->release_agent);
1829 if (opts->name)
1830 strcpy(root->name, opts->name);
2260e7fc 1831 if (opts->cpuset_clone_children)
3dd06ffa 1832 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1833}
1834
8ab456ac 1835static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1836{
d427dfeb 1837 LIST_HEAD(tmp_links);
3dd06ffa 1838 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1839 struct css_set *cset;
d427dfeb 1840 int i, ret;
2c6ab6d2 1841
d427dfeb 1842 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1843
cf780b7d 1844 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1845 if (ret < 0)
2bd59d48 1846 goto out;
d427dfeb 1847 root_cgrp->id = ret;
c6d57f33 1848
2aad2a86
TH
1849 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1850 GFP_KERNEL);
9d755d33
TH
1851 if (ret)
1852 goto out;
1853
d427dfeb 1854 /*
96d365e0 1855 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1856 * but that's OK - it can only be increased by someone holding
1857 * cgroup_lock, and that's us. The worst that can happen is that we
1858 * have some link structures left over
1859 */
1860 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1861 if (ret)
9d755d33 1862 goto cancel_ref;
ddbcc7e8 1863
985ed670 1864 ret = cgroup_init_root_id(root);
ddbcc7e8 1865 if (ret)
9d755d33 1866 goto cancel_ref;
ddbcc7e8 1867
2bd59d48
TH
1868 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1869 KERNFS_ROOT_CREATE_DEACTIVATED,
1870 root_cgrp);
1871 if (IS_ERR(root->kf_root)) {
1872 ret = PTR_ERR(root->kf_root);
1873 goto exit_root_id;
1874 }
1875 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1876
4df8dc90 1877 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1878 if (ret)
2bd59d48 1879 goto destroy_root;
ddbcc7e8 1880
5df36032 1881 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1882 if (ret)
2bd59d48 1883 goto destroy_root;
ddbcc7e8 1884
d427dfeb
TH
1885 /*
1886 * There must be no failure case after here, since rebinding takes
1887 * care of subsystems' refcounts, which are explicitly dropped in
1888 * the failure exit path.
1889 */
1890 list_add(&root->root_list, &cgroup_roots);
1891 cgroup_root_count++;
0df6a63f 1892
d427dfeb 1893 /*
3dd06ffa 1894 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1895 * objects.
1896 */
96d365e0 1897 down_write(&css_set_rwsem);
0de0942d 1898 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1899 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1900 if (css_set_populated(cset))
1901 cgroup_update_populated(root_cgrp, true);
1902 }
96d365e0 1903 up_write(&css_set_rwsem);
ddbcc7e8 1904
d5c419b6 1905 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1906 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1907
2bd59d48 1908 kernfs_activate(root_cgrp->kn);
d427dfeb 1909 ret = 0;
2bd59d48 1910 goto out;
d427dfeb 1911
2bd59d48
TH
1912destroy_root:
1913 kernfs_destroy_root(root->kf_root);
1914 root->kf_root = NULL;
1915exit_root_id:
d427dfeb 1916 cgroup_exit_root_id(root);
9d755d33 1917cancel_ref:
9a1049da 1918 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1919out:
d427dfeb
TH
1920 free_cgrp_cset_links(&tmp_links);
1921 return ret;
ddbcc7e8
PM
1922}
1923
f7e83571 1924static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1925 int flags, const char *unused_dev_name,
f7e83571 1926 void *data)
ddbcc7e8 1927{
3a32bd72 1928 struct super_block *pinned_sb = NULL;
970317aa 1929 struct cgroup_subsys *ss;
3dd06ffa 1930 struct cgroup_root *root;
ddbcc7e8 1931 struct cgroup_sb_opts opts;
2bd59d48 1932 struct dentry *dentry;
8e30e2b8 1933 int ret;
970317aa 1934 int i;
c6b3d5bc 1935 bool new_sb;
ddbcc7e8 1936
56fde9e0
TH
1937 /*
1938 * The first time anyone tries to mount a cgroup, enable the list
1939 * linking each css_set to its tasks and fix up all existing tasks.
1940 */
1941 if (!use_task_css_set_links)
1942 cgroup_enable_task_cg_lists();
e37a06f1 1943
aae8aab4 1944 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1945
1946 /* First find the desired set of subsystems */
ddbcc7e8 1947 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1948 if (ret)
8e30e2b8 1949 goto out_unlock;
a015edd2 1950
2bd59d48 1951 /* look for a matching existing root */
7b9a6ba5 1952 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1953 cgrp_dfl_root_visible = true;
1954 root = &cgrp_dfl_root;
1955 cgroup_get(&root->cgrp);
1956 ret = 0;
1957 goto out_unlock;
ddbcc7e8
PM
1958 }
1959
970317aa
LZ
1960 /*
1961 * Destruction of cgroup root is asynchronous, so subsystems may
1962 * still be dying after the previous unmount. Let's drain the
1963 * dying subsystems. We just need to ensure that the ones
1964 * unmounted previously finish dying and don't care about new ones
1965 * starting. Testing ref liveliness is good enough.
1966 */
1967 for_each_subsys(ss, i) {
1968 if (!(opts.subsys_mask & (1 << i)) ||
1969 ss->root == &cgrp_dfl_root)
1970 continue;
1971
1972 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1973 mutex_unlock(&cgroup_mutex);
1974 msleep(10);
1975 ret = restart_syscall();
1976 goto out_free;
1977 }
1978 cgroup_put(&ss->root->cgrp);
1979 }
1980
985ed670 1981 for_each_root(root) {
2bd59d48 1982 bool name_match = false;
3126121f 1983
3dd06ffa 1984 if (root == &cgrp_dfl_root)
985ed670 1985 continue;
3126121f 1986
cf5d5941 1987 /*
2bd59d48
TH
1988 * If we asked for a name then it must match. Also, if
1989 * name matches but sybsys_mask doesn't, we should fail.
1990 * Remember whether name matched.
cf5d5941 1991 */
2bd59d48
TH
1992 if (opts.name) {
1993 if (strcmp(opts.name, root->name))
1994 continue;
1995 name_match = true;
1996 }
ddbcc7e8 1997
c6d57f33 1998 /*
2bd59d48
TH
1999 * If we asked for subsystems (or explicitly for no
2000 * subsystems) then they must match.
c6d57f33 2001 */
2bd59d48 2002 if ((opts.subsys_mask || opts.none) &&
f392e51c 2003 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2004 if (!name_match)
2005 continue;
2006 ret = -EBUSY;
2007 goto out_unlock;
2008 }
873fe09e 2009
7b9a6ba5
TH
2010 if (root->flags ^ opts.flags)
2011 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2012
776f02fa 2013 /*
3a32bd72
LZ
2014 * We want to reuse @root whose lifetime is governed by its
2015 * ->cgrp. Let's check whether @root is alive and keep it
2016 * that way. As cgroup_kill_sb() can happen anytime, we
2017 * want to block it by pinning the sb so that @root doesn't
2018 * get killed before mount is complete.
2019 *
2020 * With the sb pinned, tryget_live can reliably indicate
2021 * whether @root can be reused. If it's being killed,
2022 * drain it. We can use wait_queue for the wait but this
2023 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2024 */
3a32bd72
LZ
2025 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2026 if (IS_ERR(pinned_sb) ||
2027 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2028 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2029 if (!IS_ERR_OR_NULL(pinned_sb))
2030 deactivate_super(pinned_sb);
776f02fa 2031 msleep(10);
a015edd2
TH
2032 ret = restart_syscall();
2033 goto out_free;
776f02fa 2034 }
ddbcc7e8 2035
776f02fa 2036 ret = 0;
2bd59d48 2037 goto out_unlock;
ddbcc7e8 2038 }
ddbcc7e8 2039
817929ec 2040 /*
172a2c06
TH
2041 * No such thing, create a new one. name= matching without subsys
2042 * specification is allowed for already existing hierarchies but we
2043 * can't create new one without subsys specification.
817929ec 2044 */
172a2c06
TH
2045 if (!opts.subsys_mask && !opts.none) {
2046 ret = -EINVAL;
2047 goto out_unlock;
817929ec 2048 }
817929ec 2049
172a2c06
TH
2050 root = kzalloc(sizeof(*root), GFP_KERNEL);
2051 if (!root) {
2052 ret = -ENOMEM;
2bd59d48 2053 goto out_unlock;
839ec545 2054 }
e5f6a860 2055
172a2c06
TH
2056 init_cgroup_root(root, &opts);
2057
35585573 2058 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2059 if (ret)
2060 cgroup_free_root(root);
fa3ca07e 2061
8e30e2b8 2062out_unlock:
ddbcc7e8 2063 mutex_unlock(&cgroup_mutex);
a015edd2 2064out_free:
c6d57f33
PM
2065 kfree(opts.release_agent);
2066 kfree(opts.name);
03b1cde6 2067
2bd59d48 2068 if (ret)
8e30e2b8 2069 return ERR_PTR(ret);
2bd59d48 2070
c9482a5b
JZ
2071 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2072 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2073 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2074 cgroup_put(&root->cgrp);
3a32bd72
LZ
2075
2076 /*
2077 * If @pinned_sb, we're reusing an existing root and holding an
2078 * extra ref on its sb. Mount is complete. Put the extra ref.
2079 */
2080 if (pinned_sb) {
2081 WARN_ON(new_sb);
2082 deactivate_super(pinned_sb);
2083 }
2084
2bd59d48
TH
2085 return dentry;
2086}
2087
2088static void cgroup_kill_sb(struct super_block *sb)
2089{
2090 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2091 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2092
9d755d33
TH
2093 /*
2094 * If @root doesn't have any mounts or children, start killing it.
2095 * This prevents new mounts by disabling percpu_ref_tryget_live().
2096 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2097 *
2098 * And don't kill the default root.
9d755d33 2099 */
3c606d35 2100 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2101 root == &cgrp_dfl_root)
9d755d33
TH
2102 cgroup_put(&root->cgrp);
2103 else
2104 percpu_ref_kill(&root->cgrp.self.refcnt);
2105
2bd59d48 2106 kernfs_kill_sb(sb);
ddbcc7e8
PM
2107}
2108
2109static struct file_system_type cgroup_fs_type = {
2110 .name = "cgroup",
f7e83571 2111 .mount = cgroup_mount,
ddbcc7e8
PM
2112 .kill_sb = cgroup_kill_sb,
2113};
2114
857a2beb 2115/**
913ffdb5 2116 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2117 * @task: target task
857a2beb
TH
2118 * @buf: the buffer to write the path into
2119 * @buflen: the length of the buffer
2120 *
913ffdb5
TH
2121 * Determine @task's cgroup on the first (the one with the lowest non-zero
2122 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2123 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2124 * cgroup controller callbacks.
2125 *
e61734c5 2126 * Return value is the same as kernfs_path().
857a2beb 2127 */
e61734c5 2128char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2129{
3dd06ffa 2130 struct cgroup_root *root;
913ffdb5 2131 struct cgroup *cgrp;
e61734c5
TH
2132 int hierarchy_id = 1;
2133 char *path = NULL;
857a2beb
TH
2134
2135 mutex_lock(&cgroup_mutex);
96d365e0 2136 down_read(&css_set_rwsem);
857a2beb 2137
913ffdb5
TH
2138 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2139
857a2beb
TH
2140 if (root) {
2141 cgrp = task_cgroup_from_root(task, root);
e61734c5 2142 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2143 } else {
2144 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2145 if (strlcpy(buf, "/", buflen) < buflen)
2146 path = buf;
857a2beb
TH
2147 }
2148
96d365e0 2149 up_read(&css_set_rwsem);
857a2beb 2150 mutex_unlock(&cgroup_mutex);
e61734c5 2151 return path;
857a2beb 2152}
913ffdb5 2153EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2154
b3dc094e 2155/* used to track tasks and other necessary states during migration */
2f7ee569 2156struct cgroup_taskset {
b3dc094e
TH
2157 /* the src and dst cset list running through cset->mg_node */
2158 struct list_head src_csets;
2159 struct list_head dst_csets;
2160
2161 /*
2162 * Fields for cgroup_taskset_*() iteration.
2163 *
2164 * Before migration is committed, the target migration tasks are on
2165 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2166 * the csets on ->dst_csets. ->csets point to either ->src_csets
2167 * or ->dst_csets depending on whether migration is committed.
2168 *
2169 * ->cur_csets and ->cur_task point to the current task position
2170 * during iteration.
2171 */
2172 struct list_head *csets;
2173 struct css_set *cur_cset;
2174 struct task_struct *cur_task;
2f7ee569
TH
2175};
2176
adaae5dc
TH
2177#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2178 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2179 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2180 .csets = &tset.src_csets, \
2181}
2182
2183/**
2184 * cgroup_taskset_add - try to add a migration target task to a taskset
2185 * @task: target task
2186 * @tset: target taskset
2187 *
2188 * Add @task, which is a migration target, to @tset. This function becomes
2189 * noop if @task doesn't need to be migrated. @task's css_set should have
2190 * been added as a migration source and @task->cg_list will be moved from
2191 * the css_set's tasks list to mg_tasks one.
2192 */
2193static void cgroup_taskset_add(struct task_struct *task,
2194 struct cgroup_taskset *tset)
2195{
2196 struct css_set *cset;
2197
2198 lockdep_assert_held(&css_set_rwsem);
2199
2200 /* @task either already exited or can't exit until the end */
2201 if (task->flags & PF_EXITING)
2202 return;
2203
2204 /* leave @task alone if post_fork() hasn't linked it yet */
2205 if (list_empty(&task->cg_list))
2206 return;
2207
2208 cset = task_css_set(task);
2209 if (!cset->mg_src_cgrp)
2210 return;
2211
2212 list_move_tail(&task->cg_list, &cset->mg_tasks);
2213 if (list_empty(&cset->mg_node))
2214 list_add_tail(&cset->mg_node, &tset->src_csets);
2215 if (list_empty(&cset->mg_dst_cset->mg_node))
2216 list_move_tail(&cset->mg_dst_cset->mg_node,
2217 &tset->dst_csets);
2218}
2219
2f7ee569
TH
2220/**
2221 * cgroup_taskset_first - reset taskset and return the first task
2222 * @tset: taskset of interest
2223 *
2224 * @tset iteration is initialized and the first task is returned.
2225 */
2226struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2227{
b3dc094e
TH
2228 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2229 tset->cur_task = NULL;
2230
2231 return cgroup_taskset_next(tset);
2f7ee569 2232}
2f7ee569
TH
2233
2234/**
2235 * cgroup_taskset_next - iterate to the next task in taskset
2236 * @tset: taskset of interest
2237 *
2238 * Return the next task in @tset. Iteration must have been initialized
2239 * with cgroup_taskset_first().
2240 */
2241struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2242{
b3dc094e
TH
2243 struct css_set *cset = tset->cur_cset;
2244 struct task_struct *task = tset->cur_task;
2f7ee569 2245
b3dc094e
TH
2246 while (&cset->mg_node != tset->csets) {
2247 if (!task)
2248 task = list_first_entry(&cset->mg_tasks,
2249 struct task_struct, cg_list);
2250 else
2251 task = list_next_entry(task, cg_list);
2f7ee569 2252
b3dc094e
TH
2253 if (&task->cg_list != &cset->mg_tasks) {
2254 tset->cur_cset = cset;
2255 tset->cur_task = task;
2256 return task;
2257 }
2f7ee569 2258
b3dc094e
TH
2259 cset = list_next_entry(cset, mg_node);
2260 task = NULL;
2261 }
2f7ee569 2262
b3dc094e 2263 return NULL;
2f7ee569 2264}
2f7ee569 2265
cb0f1fe9 2266/**
74a1166d 2267 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
2268 * @tsk: the task being migrated
2269 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2270 *
cb0f1fe9 2271 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2272 */
b309e5b7 2273static void cgroup_task_migrate(struct task_struct *tsk,
5abb8855 2274 struct css_set *new_cset)
74a1166d 2275{
5abb8855 2276 struct css_set *old_cset;
74a1166d 2277
cb0f1fe9
TH
2278 lockdep_assert_held(&cgroup_mutex);
2279 lockdep_assert_held(&css_set_rwsem);
2280
74a1166d 2281 /*
1ed13287
TH
2282 * We are synchronized through cgroup_threadgroup_rwsem against
2283 * PF_EXITING setting such that we can't race against cgroup_exit()
2284 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2285 */
c84cdf75 2286 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2287 old_cset = task_css_set(tsk);
74a1166d 2288
0de0942d
TH
2289 if (!css_set_populated(new_cset))
2290 css_set_update_populated(new_cset, true);
2291
b3dc094e 2292 get_css_set(new_cset);
5abb8855 2293 rcu_assign_pointer(tsk->cgroups, new_cset);
1b9aba49 2294 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d 2295
0de0942d
TH
2296 if (!css_set_populated(old_cset))
2297 css_set_update_populated(old_cset, false);
2298
74a1166d 2299 /*
5abb8855
TH
2300 * We just gained a reference on old_cset by taking it from the
2301 * task. As trading it for new_cset is protected by cgroup_mutex,
2302 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2303 */
a25eb52e 2304 put_css_set_locked(old_cset);
74a1166d
BB
2305}
2306
adaae5dc
TH
2307/**
2308 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2309 * @tset: taget taskset
2310 * @dst_cgrp: destination cgroup
2311 *
2312 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2313 * ->can_attach callbacks fails and guarantees that either all or none of
2314 * the tasks in @tset are migrated. @tset is consumed regardless of
2315 * success.
2316 */
2317static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2318 struct cgroup *dst_cgrp)
2319{
2320 struct cgroup_subsys_state *css, *failed_css = NULL;
2321 struct task_struct *task, *tmp_task;
2322 struct css_set *cset, *tmp_cset;
2323 int i, ret;
2324
2325 /* methods shouldn't be called if no task is actually migrating */
2326 if (list_empty(&tset->src_csets))
2327 return 0;
2328
2329 /* check that we can legitimately attach to the cgroup */
2330 for_each_e_css(css, i, dst_cgrp) {
2331 if (css->ss->can_attach) {
2332 ret = css->ss->can_attach(css, tset);
2333 if (ret) {
2334 failed_css = css;
2335 goto out_cancel_attach;
2336 }
2337 }
2338 }
2339
2340 /*
2341 * Now that we're guaranteed success, proceed to move all tasks to
2342 * the new cgroup. There are no failure cases after here, so this
2343 * is the commit point.
2344 */
2345 down_write(&css_set_rwsem);
2346 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2347 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
b309e5b7 2348 cgroup_task_migrate(task, cset->mg_dst_cset);
adaae5dc
TH
2349 }
2350 up_write(&css_set_rwsem);
2351
2352 /*
2353 * Migration is committed, all target tasks are now on dst_csets.
2354 * Nothing is sensitive to fork() after this point. Notify
2355 * controllers that migration is complete.
2356 */
2357 tset->csets = &tset->dst_csets;
2358
2359 for_each_e_css(css, i, dst_cgrp)
2360 if (css->ss->attach)
2361 css->ss->attach(css, tset);
2362
2363 ret = 0;
2364 goto out_release_tset;
2365
2366out_cancel_attach:
2367 for_each_e_css(css, i, dst_cgrp) {
2368 if (css == failed_css)
2369 break;
2370 if (css->ss->cancel_attach)
2371 css->ss->cancel_attach(css, tset);
2372 }
2373out_release_tset:
2374 down_write(&css_set_rwsem);
2375 list_splice_init(&tset->dst_csets, &tset->src_csets);
2376 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2377 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2378 list_del_init(&cset->mg_node);
2379 }
2380 up_write(&css_set_rwsem);
2381 return ret;
2382}
2383
a043e3b2 2384/**
1958d2d5
TH
2385 * cgroup_migrate_finish - cleanup after attach
2386 * @preloaded_csets: list of preloaded css_sets
74a1166d 2387 *
1958d2d5
TH
2388 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2389 * those functions for details.
74a1166d 2390 */
1958d2d5 2391static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2392{
1958d2d5 2393 struct css_set *cset, *tmp_cset;
74a1166d 2394
1958d2d5
TH
2395 lockdep_assert_held(&cgroup_mutex);
2396
2397 down_write(&css_set_rwsem);
2398 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2399 cset->mg_src_cgrp = NULL;
2400 cset->mg_dst_cset = NULL;
2401 list_del_init(&cset->mg_preload_node);
a25eb52e 2402 put_css_set_locked(cset);
1958d2d5
TH
2403 }
2404 up_write(&css_set_rwsem);
2405}
2406
2407/**
2408 * cgroup_migrate_add_src - add a migration source css_set
2409 * @src_cset: the source css_set to add
2410 * @dst_cgrp: the destination cgroup
2411 * @preloaded_csets: list of preloaded css_sets
2412 *
2413 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2414 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2415 * up by cgroup_migrate_finish().
2416 *
1ed13287
TH
2417 * This function may be called without holding cgroup_threadgroup_rwsem
2418 * even if the target is a process. Threads may be created and destroyed
2419 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2420 * into play and the preloaded css_sets are guaranteed to cover all
2421 * migrations.
1958d2d5
TH
2422 */
2423static void cgroup_migrate_add_src(struct css_set *src_cset,
2424 struct cgroup *dst_cgrp,
2425 struct list_head *preloaded_csets)
2426{
2427 struct cgroup *src_cgrp;
2428
2429 lockdep_assert_held(&cgroup_mutex);
2430 lockdep_assert_held(&css_set_rwsem);
2431
2432 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2433
1958d2d5
TH
2434 if (!list_empty(&src_cset->mg_preload_node))
2435 return;
2436
2437 WARN_ON(src_cset->mg_src_cgrp);
2438 WARN_ON(!list_empty(&src_cset->mg_tasks));
2439 WARN_ON(!list_empty(&src_cset->mg_node));
2440
2441 src_cset->mg_src_cgrp = src_cgrp;
2442 get_css_set(src_cset);
2443 list_add(&src_cset->mg_preload_node, preloaded_csets);
2444}
2445
2446/**
2447 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2448 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2449 * @preloaded_csets: list of preloaded source css_sets
2450 *
2451 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2452 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2453 * pins all destination css_sets, links each to its source, and append them
2454 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2455 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2456 *
2457 * This function must be called after cgroup_migrate_add_src() has been
2458 * called on each migration source css_set. After migration is performed
2459 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2460 * @preloaded_csets.
2461 */
2462static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2463 struct list_head *preloaded_csets)
2464{
2465 LIST_HEAD(csets);
f817de98 2466 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2467
2468 lockdep_assert_held(&cgroup_mutex);
2469
f8f22e53
TH
2470 /*
2471 * Except for the root, child_subsys_mask must be zero for a cgroup
2472 * with tasks so that child cgroups don't compete against tasks.
2473 */
d51f39b0 2474 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2475 dst_cgrp->child_subsys_mask)
2476 return -EBUSY;
2477
1958d2d5 2478 /* look up the dst cset for each src cset and link it to src */
f817de98 2479 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2480 struct css_set *dst_cset;
2481
f817de98
TH
2482 dst_cset = find_css_set(src_cset,
2483 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2484 if (!dst_cset)
2485 goto err;
2486
2487 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2488
2489 /*
2490 * If src cset equals dst, it's noop. Drop the src.
2491 * cgroup_migrate() will skip the cset too. Note that we
2492 * can't handle src == dst as some nodes are used by both.
2493 */
2494 if (src_cset == dst_cset) {
2495 src_cset->mg_src_cgrp = NULL;
2496 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2497 put_css_set(src_cset);
2498 put_css_set(dst_cset);
f817de98
TH
2499 continue;
2500 }
2501
1958d2d5
TH
2502 src_cset->mg_dst_cset = dst_cset;
2503
2504 if (list_empty(&dst_cset->mg_preload_node))
2505 list_add(&dst_cset->mg_preload_node, &csets);
2506 else
a25eb52e 2507 put_css_set(dst_cset);
1958d2d5
TH
2508 }
2509
f817de98 2510 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2511 return 0;
2512err:
2513 cgroup_migrate_finish(&csets);
2514 return -ENOMEM;
2515}
2516
2517/**
2518 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2519 * @leader: the leader of the process or the task to migrate
2520 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2521 * @cgrp: the destination cgroup
1958d2d5
TH
2522 *
2523 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2524 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2525 * caller is also responsible for invoking cgroup_migrate_add_src() and
2526 * cgroup_migrate_prepare_dst() on the targets before invoking this
2527 * function and following up with cgroup_migrate_finish().
2528 *
2529 * As long as a controller's ->can_attach() doesn't fail, this function is
2530 * guaranteed to succeed. This means that, excluding ->can_attach()
2531 * failure, when migrating multiple targets, the success or failure can be
2532 * decided for all targets by invoking group_migrate_prepare_dst() before
2533 * actually starting migrating.
2534 */
9af2ec45
TH
2535static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2536 struct cgroup *cgrp)
74a1166d 2537{
adaae5dc
TH
2538 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2539 struct task_struct *task;
74a1166d 2540
fb5d2b4c
MSB
2541 /*
2542 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2543 * already PF_EXITING could be freed from underneath us unless we
2544 * take an rcu_read_lock.
2545 */
b3dc094e 2546 down_write(&css_set_rwsem);
fb5d2b4c 2547 rcu_read_lock();
9db8de37 2548 task = leader;
74a1166d 2549 do {
adaae5dc 2550 cgroup_taskset_add(task, &tset);
081aa458
LZ
2551 if (!threadgroup)
2552 break;
9db8de37 2553 } while_each_thread(leader, task);
fb5d2b4c 2554 rcu_read_unlock();
b3dc094e 2555 up_write(&css_set_rwsem);
74a1166d 2556
adaae5dc 2557 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2558}
2559
1958d2d5
TH
2560/**
2561 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2562 * @dst_cgrp: the cgroup to attach to
2563 * @leader: the task or the leader of the threadgroup to be attached
2564 * @threadgroup: attach the whole threadgroup?
2565 *
1ed13287 2566 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2567 */
2568static int cgroup_attach_task(struct cgroup *dst_cgrp,
2569 struct task_struct *leader, bool threadgroup)
2570{
2571 LIST_HEAD(preloaded_csets);
2572 struct task_struct *task;
2573 int ret;
2574
2575 /* look up all src csets */
2576 down_read(&css_set_rwsem);
2577 rcu_read_lock();
2578 task = leader;
2579 do {
2580 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2581 &preloaded_csets);
2582 if (!threadgroup)
2583 break;
2584 } while_each_thread(leader, task);
2585 rcu_read_unlock();
2586 up_read(&css_set_rwsem);
2587
2588 /* prepare dst csets and commit */
2589 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2590 if (!ret)
9af2ec45 2591 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2592
2593 cgroup_migrate_finish(&preloaded_csets);
2594 return ret;
74a1166d
BB
2595}
2596
187fe840
TH
2597static int cgroup_procs_write_permission(struct task_struct *task,
2598 struct cgroup *dst_cgrp,
2599 struct kernfs_open_file *of)
dedf22e9
TH
2600{
2601 const struct cred *cred = current_cred();
2602 const struct cred *tcred = get_task_cred(task);
2603 int ret = 0;
2604
2605 /*
2606 * even if we're attaching all tasks in the thread group, we only
2607 * need to check permissions on one of them.
2608 */
2609 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2610 !uid_eq(cred->euid, tcred->uid) &&
2611 !uid_eq(cred->euid, tcred->suid))
2612 ret = -EACCES;
2613
187fe840
TH
2614 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2615 struct super_block *sb = of->file->f_path.dentry->d_sb;
2616 struct cgroup *cgrp;
2617 struct inode *inode;
2618
2619 down_read(&css_set_rwsem);
2620 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2621 up_read(&css_set_rwsem);
2622
2623 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2624 cgrp = cgroup_parent(cgrp);
2625
2626 ret = -ENOMEM;
6f60eade 2627 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2628 if (inode) {
2629 ret = inode_permission(inode, MAY_WRITE);
2630 iput(inode);
2631 }
2632 }
2633
dedf22e9
TH
2634 put_cred(tcred);
2635 return ret;
2636}
2637
74a1166d
BB
2638/*
2639 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2640 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2641 * cgroup_mutex and threadgroup.
bbcb81d0 2642 */
acbef755
TH
2643static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2644 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2645{
bbcb81d0 2646 struct task_struct *tsk;
e76ecaee 2647 struct cgroup *cgrp;
acbef755 2648 pid_t pid;
bbcb81d0
PM
2649 int ret;
2650
acbef755
TH
2651 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2652 return -EINVAL;
2653
e76ecaee
TH
2654 cgrp = cgroup_kn_lock_live(of->kn);
2655 if (!cgrp)
74a1166d
BB
2656 return -ENODEV;
2657
3014dde7 2658 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2659 rcu_read_lock();
bbcb81d0 2660 if (pid) {
73507f33 2661 tsk = find_task_by_vpid(pid);
74a1166d 2662 if (!tsk) {
dd4b0a46 2663 ret = -ESRCH;
3014dde7 2664 goto out_unlock_rcu;
bbcb81d0 2665 }
dedf22e9 2666 } else {
b78949eb 2667 tsk = current;
dedf22e9 2668 }
cd3d0952
TH
2669
2670 if (threadgroup)
b78949eb 2671 tsk = tsk->group_leader;
c4c27fbd
MG
2672
2673 /*
14a40ffc 2674 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2675 * trapped in a cpuset, or RT worker may be born in a cgroup
2676 * with no rt_runtime allocated. Just say no.
2677 */
14a40ffc 2678 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2679 ret = -EINVAL;
3014dde7 2680 goto out_unlock_rcu;
c4c27fbd
MG
2681 }
2682
b78949eb
MSB
2683 get_task_struct(tsk);
2684 rcu_read_unlock();
2685
187fe840 2686 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2687 if (!ret)
2688 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2689
f9f9e7b7 2690 put_task_struct(tsk);
3014dde7
TH
2691 goto out_unlock_threadgroup;
2692
2693out_unlock_rcu:
2694 rcu_read_unlock();
2695out_unlock_threadgroup:
2696 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2697 cgroup_kn_unlock(of->kn);
acbef755 2698 return ret ?: nbytes;
bbcb81d0
PM
2699}
2700
7ae1bad9
TH
2701/**
2702 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2703 * @from: attach to all cgroups of a given task
2704 * @tsk: the task to be attached
2705 */
2706int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2707{
3dd06ffa 2708 struct cgroup_root *root;
7ae1bad9
TH
2709 int retval = 0;
2710
47cfcd09 2711 mutex_lock(&cgroup_mutex);
985ed670 2712 for_each_root(root) {
96d365e0
TH
2713 struct cgroup *from_cgrp;
2714
3dd06ffa 2715 if (root == &cgrp_dfl_root)
985ed670
TH
2716 continue;
2717
96d365e0
TH
2718 down_read(&css_set_rwsem);
2719 from_cgrp = task_cgroup_from_root(from, root);
2720 up_read(&css_set_rwsem);
7ae1bad9 2721
6f4b7e63 2722 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2723 if (retval)
2724 break;
2725 }
47cfcd09 2726 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2727
2728 return retval;
2729}
2730EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2731
acbef755
TH
2732static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2733 char *buf, size_t nbytes, loff_t off)
74a1166d 2734{
acbef755 2735 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2736}
2737
acbef755
TH
2738static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2739 char *buf, size_t nbytes, loff_t off)
af351026 2740{
acbef755 2741 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2742}
2743
451af504
TH
2744static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2745 char *buf, size_t nbytes, loff_t off)
e788e066 2746{
e76ecaee 2747 struct cgroup *cgrp;
5f469907 2748
e76ecaee 2749 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2750
e76ecaee
TH
2751 cgrp = cgroup_kn_lock_live(of->kn);
2752 if (!cgrp)
e788e066 2753 return -ENODEV;
69e943b7 2754 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2755 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2756 sizeof(cgrp->root->release_agent_path));
69e943b7 2757 spin_unlock(&release_agent_path_lock);
e76ecaee 2758 cgroup_kn_unlock(of->kn);
451af504 2759 return nbytes;
e788e066
PM
2760}
2761
2da8ca82 2762static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2763{
2da8ca82 2764 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2765
46cfeb04 2766 spin_lock(&release_agent_path_lock);
e788e066 2767 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2768 spin_unlock(&release_agent_path_lock);
e788e066 2769 seq_putc(seq, '\n');
e788e066
PM
2770 return 0;
2771}
2772
2da8ca82 2773static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2774{
c1d5d42e 2775 seq_puts(seq, "0\n");
e788e066
PM
2776 return 0;
2777}
2778
8ab456ac 2779static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2780{
f8f22e53
TH
2781 struct cgroup_subsys *ss;
2782 bool printed = false;
2783 int ssid;
a742c59d 2784
a966a4ed
AS
2785 for_each_subsys_which(ss, ssid, &ss_mask) {
2786 if (printed)
2787 seq_putc(seq, ' ');
2788 seq_printf(seq, "%s", ss->name);
2789 printed = true;
e73d2c61 2790 }
f8f22e53
TH
2791 if (printed)
2792 seq_putc(seq, '\n');
355e0c48
PM
2793}
2794
f8f22e53
TH
2795/* show controllers which are currently attached to the default hierarchy */
2796static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2797{
f8f22e53
TH
2798 struct cgroup *cgrp = seq_css(seq)->cgroup;
2799
5533e011
TH
2800 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2801 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2802 return 0;
db3b1497
PM
2803}
2804
f8f22e53
TH
2805/* show controllers which are enabled from the parent */
2806static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2807{
f8f22e53
TH
2808 struct cgroup *cgrp = seq_css(seq)->cgroup;
2809
667c2491 2810 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2811 return 0;
ddbcc7e8
PM
2812}
2813
f8f22e53
TH
2814/* show controllers which are enabled for a given cgroup's children */
2815static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2816{
f8f22e53
TH
2817 struct cgroup *cgrp = seq_css(seq)->cgroup;
2818
667c2491 2819 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2820 return 0;
2821}
2822
2823/**
2824 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2825 * @cgrp: root of the subtree to update csses for
2826 *
2827 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2828 * css associations need to be updated accordingly. This function looks up
2829 * all css_sets which are attached to the subtree, creates the matching
2830 * updated css_sets and migrates the tasks to the new ones.
2831 */
2832static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2833{
2834 LIST_HEAD(preloaded_csets);
10265075 2835 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2836 struct cgroup_subsys_state *css;
2837 struct css_set *src_cset;
2838 int ret;
2839
f8f22e53
TH
2840 lockdep_assert_held(&cgroup_mutex);
2841
3014dde7
TH
2842 percpu_down_write(&cgroup_threadgroup_rwsem);
2843
f8f22e53
TH
2844 /* look up all csses currently attached to @cgrp's subtree */
2845 down_read(&css_set_rwsem);
2846 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2847 struct cgrp_cset_link *link;
2848
2849 /* self is not affected by child_subsys_mask change */
2850 if (css->cgroup == cgrp)
2851 continue;
2852
2853 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2854 cgroup_migrate_add_src(link->cset, cgrp,
2855 &preloaded_csets);
2856 }
2857 up_read(&css_set_rwsem);
2858
2859 /* NULL dst indicates self on default hierarchy */
2860 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2861 if (ret)
2862 goto out_finish;
2863
10265075 2864 down_write(&css_set_rwsem);
f8f22e53 2865 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2866 struct task_struct *task, *ntask;
f8f22e53
TH
2867
2868 /* src_csets precede dst_csets, break on the first dst_cset */
2869 if (!src_cset->mg_src_cgrp)
2870 break;
2871
10265075
TH
2872 /* all tasks in src_csets need to be migrated */
2873 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2874 cgroup_taskset_add(task, &tset);
f8f22e53 2875 }
10265075 2876 up_write(&css_set_rwsem);
f8f22e53 2877
10265075 2878 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2879out_finish:
2880 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2881 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2882 return ret;
2883}
2884
2885/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2886static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2887 char *buf, size_t nbytes,
2888 loff_t off)
f8f22e53 2889{
8ab456ac
AS
2890 unsigned long enable = 0, disable = 0;
2891 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2892 struct cgroup *cgrp, *child;
f8f22e53 2893 struct cgroup_subsys *ss;
451af504 2894 char *tok;
f8f22e53
TH
2895 int ssid, ret;
2896
2897 /*
d37167ab
TH
2898 * Parse input - space separated list of subsystem names prefixed
2899 * with either + or -.
f8f22e53 2900 */
451af504
TH
2901 buf = strstrip(buf);
2902 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2903 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2904
d37167ab
TH
2905 if (tok[0] == '\0')
2906 continue;
a966a4ed 2907 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2908 if (!cgroup_ssid_enabled(ssid) ||
2909 strcmp(tok + 1, ss->name))
f8f22e53
TH
2910 continue;
2911
2912 if (*tok == '+') {
7d331fa9
TH
2913 enable |= 1 << ssid;
2914 disable &= ~(1 << ssid);
f8f22e53 2915 } else if (*tok == '-') {
7d331fa9
TH
2916 disable |= 1 << ssid;
2917 enable &= ~(1 << ssid);
f8f22e53
TH
2918 } else {
2919 return -EINVAL;
2920 }
2921 break;
2922 }
2923 if (ssid == CGROUP_SUBSYS_COUNT)
2924 return -EINVAL;
2925 }
2926
a9746d8d
TH
2927 cgrp = cgroup_kn_lock_live(of->kn);
2928 if (!cgrp)
2929 return -ENODEV;
f8f22e53
TH
2930
2931 for_each_subsys(ss, ssid) {
2932 if (enable & (1 << ssid)) {
667c2491 2933 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2934 enable &= ~(1 << ssid);
2935 continue;
2936 }
2937
c29adf24
TH
2938 /* unavailable or not enabled on the parent? */
2939 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2940 (cgroup_parent(cgrp) &&
667c2491 2941 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2942 ret = -ENOENT;
2943 goto out_unlock;
2944 }
f8f22e53 2945 } else if (disable & (1 << ssid)) {
667c2491 2946 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2947 disable &= ~(1 << ssid);
2948 continue;
2949 }
2950
2951 /* a child has it enabled? */
2952 cgroup_for_each_live_child(child, cgrp) {
667c2491 2953 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2954 ret = -EBUSY;
ddab2b6e 2955 goto out_unlock;
f8f22e53
TH
2956 }
2957 }
2958 }
2959 }
2960
2961 if (!enable && !disable) {
2962 ret = 0;
ddab2b6e 2963 goto out_unlock;
f8f22e53
TH
2964 }
2965
2966 /*
667c2491 2967 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2968 * with tasks so that child cgroups don't compete against tasks.
2969 */
d51f39b0 2970 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2971 ret = -EBUSY;
2972 goto out_unlock;
2973 }
2974
2975 /*
f63070d3
TH
2976 * Update subsys masks and calculate what needs to be done. More
2977 * subsystems than specified may need to be enabled or disabled
2978 * depending on subsystem dependencies.
2979 */
755bf5ee
TH
2980 old_sc = cgrp->subtree_control;
2981 old_ss = cgrp->child_subsys_mask;
2982 new_sc = (old_sc | enable) & ~disable;
2983 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2984
755bf5ee
TH
2985 css_enable = ~old_ss & new_ss;
2986 css_disable = old_ss & ~new_ss;
f63070d3
TH
2987 enable |= css_enable;
2988 disable |= css_disable;
c29adf24 2989
db6e3053
TH
2990 /*
2991 * Because css offlining is asynchronous, userland might try to
2992 * re-enable the same controller while the previous instance is
2993 * still around. In such cases, wait till it's gone using
2994 * offline_waitq.
2995 */
a966a4ed 2996 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2997 cgroup_for_each_live_child(child, cgrp) {
2998 DEFINE_WAIT(wait);
2999
3000 if (!cgroup_css(child, ss))
3001 continue;
3002
3003 cgroup_get(child);
3004 prepare_to_wait(&child->offline_waitq, &wait,
3005 TASK_UNINTERRUPTIBLE);
3006 cgroup_kn_unlock(of->kn);
3007 schedule();
3008 finish_wait(&child->offline_waitq, &wait);
3009 cgroup_put(child);
3010
3011 return restart_syscall();
3012 }
3013 }
3014
755bf5ee
TH
3015 cgrp->subtree_control = new_sc;
3016 cgrp->child_subsys_mask = new_ss;
3017
f63070d3
TH
3018 /*
3019 * Create new csses or make the existing ones visible. A css is
3020 * created invisible if it's being implicitly enabled through
3021 * dependency. An invisible css is made visible when the userland
3022 * explicitly enables it.
f8f22e53
TH
3023 */
3024 for_each_subsys(ss, ssid) {
3025 if (!(enable & (1 << ssid)))
3026 continue;
3027
3028 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3029 if (css_enable & (1 << ssid))
3030 ret = create_css(child, ss,
3031 cgrp->subtree_control & (1 << ssid));
3032 else
4df8dc90
TH
3033 ret = css_populate_dir(cgroup_css(child, ss),
3034 NULL);
f8f22e53
TH
3035 if (ret)
3036 goto err_undo_css;
3037 }
3038 }
3039
c29adf24
TH
3040 /*
3041 * At this point, cgroup_e_css() results reflect the new csses
3042 * making the following cgroup_update_dfl_csses() properly update
3043 * css associations of all tasks in the subtree.
3044 */
f8f22e53
TH
3045 ret = cgroup_update_dfl_csses(cgrp);
3046 if (ret)
3047 goto err_undo_css;
3048
f63070d3
TH
3049 /*
3050 * All tasks are migrated out of disabled csses. Kill or hide
3051 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3052 * disabled while other subsystems are still depending on it. The
3053 * css must not actively control resources and be in the vanilla
3054 * state if it's made visible again later. Controllers which may
3055 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3056 */
f8f22e53
TH
3057 for_each_subsys(ss, ssid) {
3058 if (!(disable & (1 << ssid)))
3059 continue;
3060
f63070d3 3061 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3062 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3063
3064 if (css_disable & (1 << ssid)) {
3065 kill_css(css);
3066 } else {
4df8dc90 3067 css_clear_dir(css, NULL);
b4536f0c
TH
3068 if (ss->css_reset)
3069 ss->css_reset(css);
3070 }
f63070d3 3071 }
f8f22e53
TH
3072 }
3073
56c807ba
TH
3074 /*
3075 * The effective csses of all the descendants (excluding @cgrp) may
3076 * have changed. Subsystems can optionally subscribe to this event
3077 * by implementing ->css_e_css_changed() which is invoked if any of
3078 * the effective csses seen from the css's cgroup may have changed.
3079 */
3080 for_each_subsys(ss, ssid) {
3081 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3082 struct cgroup_subsys_state *css;
3083
3084 if (!ss->css_e_css_changed || !this_css)
3085 continue;
3086
3087 css_for_each_descendant_pre(css, this_css)
3088 if (css != this_css)
3089 ss->css_e_css_changed(css);
3090 }
3091
f8f22e53
TH
3092 kernfs_activate(cgrp->kn);
3093 ret = 0;
3094out_unlock:
a9746d8d 3095 cgroup_kn_unlock(of->kn);
451af504 3096 return ret ?: nbytes;
f8f22e53
TH
3097
3098err_undo_css:
755bf5ee
TH
3099 cgrp->subtree_control = old_sc;
3100 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3101
3102 for_each_subsys(ss, ssid) {
3103 if (!(enable & (1 << ssid)))
3104 continue;
3105
3106 cgroup_for_each_live_child(child, cgrp) {
3107 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3108
3109 if (!css)
3110 continue;
3111
3112 if (css_enable & (1 << ssid))
f8f22e53 3113 kill_css(css);
f63070d3 3114 else
4df8dc90 3115 css_clear_dir(css, NULL);
f8f22e53
TH
3116 }
3117 }
3118 goto out_unlock;
3119}
3120
4a07c222 3121static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3122{
4a07c222
TH
3123 seq_printf(seq, "populated %d\n",
3124 (bool)seq_css(seq)->cgroup->populated_cnt);
842b597e
TH
3125 return 0;
3126}
3127
2bd59d48
TH
3128static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3129 size_t nbytes, loff_t off)
355e0c48 3130{
2bd59d48
TH
3131 struct cgroup *cgrp = of->kn->parent->priv;
3132 struct cftype *cft = of->kn->priv;
3133 struct cgroup_subsys_state *css;
a742c59d 3134 int ret;
355e0c48 3135
b4168640
TH
3136 if (cft->write)
3137 return cft->write(of, buf, nbytes, off);
3138
2bd59d48
TH
3139 /*
3140 * kernfs guarantees that a file isn't deleted with operations in
3141 * flight, which means that the matching css is and stays alive and
3142 * doesn't need to be pinned. The RCU locking is not necessary
3143 * either. It's just for the convenience of using cgroup_css().
3144 */
3145 rcu_read_lock();
3146 css = cgroup_css(cgrp, cft->ss);
3147 rcu_read_unlock();
a742c59d 3148
451af504 3149 if (cft->write_u64) {
a742c59d
TH
3150 unsigned long long v;
3151 ret = kstrtoull(buf, 0, &v);
3152 if (!ret)
3153 ret = cft->write_u64(css, cft, v);
3154 } else if (cft->write_s64) {
3155 long long v;
3156 ret = kstrtoll(buf, 0, &v);
3157 if (!ret)
3158 ret = cft->write_s64(css, cft, v);
e73d2c61 3159 } else {
a742c59d 3160 ret = -EINVAL;
e73d2c61 3161 }
2bd59d48 3162
a742c59d 3163 return ret ?: nbytes;
355e0c48
PM
3164}
3165
6612f05b 3166static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3167{
2bd59d48 3168 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3169}
3170
6612f05b 3171static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3172{
2bd59d48 3173 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3174}
3175
6612f05b 3176static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3177{
2bd59d48 3178 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3179}
3180
91796569 3181static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3182{
7da11279
TH
3183 struct cftype *cft = seq_cft(m);
3184 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3185
2da8ca82
TH
3186 if (cft->seq_show)
3187 return cft->seq_show(m, arg);
e73d2c61 3188
f4c753b7 3189 if (cft->read_u64)
896f5199
TH
3190 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3191 else if (cft->read_s64)
3192 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3193 else
3194 return -EINVAL;
3195 return 0;
91796569
PM
3196}
3197
2bd59d48
TH
3198static struct kernfs_ops cgroup_kf_single_ops = {
3199 .atomic_write_len = PAGE_SIZE,
3200 .write = cgroup_file_write,
3201 .seq_show = cgroup_seqfile_show,
91796569
PM
3202};
3203
2bd59d48
TH
3204static struct kernfs_ops cgroup_kf_ops = {
3205 .atomic_write_len = PAGE_SIZE,
3206 .write = cgroup_file_write,
3207 .seq_start = cgroup_seqfile_start,
3208 .seq_next = cgroup_seqfile_next,
3209 .seq_stop = cgroup_seqfile_stop,
3210 .seq_show = cgroup_seqfile_show,
3211};
ddbcc7e8
PM
3212
3213/*
3214 * cgroup_rename - Only allow simple rename of directories in place.
3215 */
2bd59d48
TH
3216static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3217 const char *new_name_str)
ddbcc7e8 3218{
2bd59d48 3219 struct cgroup *cgrp = kn->priv;
65dff759 3220 int ret;
65dff759 3221
2bd59d48 3222 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3223 return -ENOTDIR;
2bd59d48 3224 if (kn->parent != new_parent)
ddbcc7e8 3225 return -EIO;
65dff759 3226
6db8e85c
TH
3227 /*
3228 * This isn't a proper migration and its usefulness is very
aa6ec29b 3229 * limited. Disallow on the default hierarchy.
6db8e85c 3230 */
aa6ec29b 3231 if (cgroup_on_dfl(cgrp))
6db8e85c 3232 return -EPERM;
099fca32 3233
e1b2dc17 3234 /*
8353da1f 3235 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3236 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3237 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3238 */
3239 kernfs_break_active_protection(new_parent);
3240 kernfs_break_active_protection(kn);
099fca32 3241
2bd59d48 3242 mutex_lock(&cgroup_mutex);
099fca32 3243
2bd59d48 3244 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3245
2bd59d48 3246 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3247
3248 kernfs_unbreak_active_protection(kn);
3249 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3250 return ret;
099fca32
LZ
3251}
3252
49957f8e
TH
3253/* set uid and gid of cgroup dirs and files to that of the creator */
3254static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3255{
3256 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3257 .ia_uid = current_fsuid(),
3258 .ia_gid = current_fsgid(), };
3259
3260 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3261 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3262 return 0;
3263
3264 return kernfs_setattr(kn, &iattr);
3265}
3266
4df8dc90
TH
3267static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3268 struct cftype *cft)
ddbcc7e8 3269{
8d7e6fb0 3270 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3271 struct kernfs_node *kn;
3272 struct lock_class_key *key = NULL;
49957f8e 3273 int ret;
05ef1d7c 3274
2bd59d48
TH
3275#ifdef CONFIG_DEBUG_LOCK_ALLOC
3276 key = &cft->lockdep_key;
3277#endif
3278 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3279 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3280 NULL, key);
49957f8e
TH
3281 if (IS_ERR(kn))
3282 return PTR_ERR(kn);
3283
3284 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3285 if (ret) {
49957f8e 3286 kernfs_remove(kn);
f8f22e53
TH
3287 return ret;
3288 }
3289
6f60eade
TH
3290 if (cft->file_offset) {
3291 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3292
3293 kernfs_get(kn);
3294 cfile->kn = kn;
3295 list_add(&cfile->node, &css->files);
3296 }
3297
f8f22e53 3298 return 0;
ddbcc7e8
PM
3299}
3300
b1f28d31
TH
3301/**
3302 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3303 * @css: the target css
3304 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3305 * @cfts: array of cftypes to be added
3306 * @is_add: whether to add or remove
3307 *
3308 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3309 * For removals, this function never fails.
b1f28d31 3310 */
4df8dc90
TH
3311static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3312 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3313 bool is_add)
ddbcc7e8 3314{
6732ed85 3315 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3316 int ret;
3317
01f6474c 3318 lockdep_assert_held(&cgroup_mutex);
db0416b6 3319
6732ed85
TH
3320restart:
3321 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3322 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3323 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3324 continue;
05ebb6e6 3325 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3326 continue;
d51f39b0 3327 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3328 continue;
d51f39b0 3329 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3330 continue;
3331
2739d3cc 3332 if (is_add) {
4df8dc90 3333 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3334 if (ret) {
ed3d261b
JP
3335 pr_warn("%s: failed to add %s, err=%d\n",
3336 __func__, cft->name, ret);
6732ed85
TH
3337 cft_end = cft;
3338 is_add = false;
3339 goto restart;
b1f28d31 3340 }
2739d3cc
LZ
3341 } else {
3342 cgroup_rm_file(cgrp, cft);
db0416b6 3343 }
ddbcc7e8 3344 }
b1f28d31 3345 return 0;
ddbcc7e8
PM
3346}
3347
21a2d343 3348static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3349{
3350 LIST_HEAD(pending);
2bb566cb 3351 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3352 struct cgroup *root = &ss->root->cgrp;
492eb21b 3353 struct cgroup_subsys_state *css;
9ccece80 3354 int ret = 0;
8e3f6541 3355
01f6474c 3356 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3357
e8c82d20 3358 /* add/rm files for all cgroups created before */
ca8bdcaf 3359 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3360 struct cgroup *cgrp = css->cgroup;
3361
e8c82d20
LZ
3362 if (cgroup_is_dead(cgrp))
3363 continue;
3364
4df8dc90 3365 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3366 if (ret)
3367 break;
8e3f6541 3368 }
21a2d343
TH
3369
3370 if (is_add && !ret)
3371 kernfs_activate(root->kn);
9ccece80 3372 return ret;
8e3f6541
TH
3373}
3374
2da440a2 3375static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3376{
2bb566cb 3377 struct cftype *cft;
8e3f6541 3378
2bd59d48
TH
3379 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3380 /* free copy for custom atomic_write_len, see init_cftypes() */
3381 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3382 kfree(cft->kf_ops);
3383 cft->kf_ops = NULL;
2da440a2 3384 cft->ss = NULL;
a8ddc821
TH
3385
3386 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3387 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3388 }
2da440a2
TH
3389}
3390
2bd59d48 3391static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3392{
3393 struct cftype *cft;
3394
2bd59d48
TH
3395 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3396 struct kernfs_ops *kf_ops;
3397
0adb0704
TH
3398 WARN_ON(cft->ss || cft->kf_ops);
3399
2bd59d48
TH
3400 if (cft->seq_start)
3401 kf_ops = &cgroup_kf_ops;
3402 else
3403 kf_ops = &cgroup_kf_single_ops;
3404
3405 /*
3406 * Ugh... if @cft wants a custom max_write_len, we need to
3407 * make a copy of kf_ops to set its atomic_write_len.
3408 */
3409 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3410 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3411 if (!kf_ops) {
3412 cgroup_exit_cftypes(cfts);
3413 return -ENOMEM;
3414 }
3415 kf_ops->atomic_write_len = cft->max_write_len;
3416 }
8e3f6541 3417
2bd59d48 3418 cft->kf_ops = kf_ops;
2bb566cb 3419 cft->ss = ss;
2bd59d48 3420 }
2bb566cb 3421
2bd59d48 3422 return 0;
2da440a2
TH
3423}
3424
21a2d343
TH
3425static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3426{
01f6474c 3427 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3428
3429 if (!cfts || !cfts[0].ss)
3430 return -ENOENT;
3431
3432 list_del(&cfts->node);
3433 cgroup_apply_cftypes(cfts, false);
3434 cgroup_exit_cftypes(cfts);
3435 return 0;
8e3f6541 3436}
8e3f6541 3437
79578621
TH
3438/**
3439 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3440 * @cfts: zero-length name terminated array of cftypes
3441 *
2bb566cb
TH
3442 * Unregister @cfts. Files described by @cfts are removed from all
3443 * existing cgroups and all future cgroups won't have them either. This
3444 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3445 *
3446 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3447 * registered.
79578621 3448 */
2bb566cb 3449int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3450{
21a2d343 3451 int ret;
79578621 3452
01f6474c 3453 mutex_lock(&cgroup_mutex);
21a2d343 3454 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3455 mutex_unlock(&cgroup_mutex);
21a2d343 3456 return ret;
80b13586
TH
3457}
3458
8e3f6541
TH
3459/**
3460 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3461 * @ss: target cgroup subsystem
3462 * @cfts: zero-length name terminated array of cftypes
3463 *
3464 * Register @cfts to @ss. Files described by @cfts are created for all
3465 * existing cgroups to which @ss is attached and all future cgroups will
3466 * have them too. This function can be called anytime whether @ss is
3467 * attached or not.
3468 *
3469 * Returns 0 on successful registration, -errno on failure. Note that this
3470 * function currently returns 0 as long as @cfts registration is successful
3471 * even if some file creation attempts on existing cgroups fail.
3472 */
2cf669a5 3473static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3474{
9ccece80 3475 int ret;
8e3f6541 3476
fc5ed1e9 3477 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3478 return 0;
3479
dc5736ed
LZ
3480 if (!cfts || cfts[0].name[0] == '\0')
3481 return 0;
2bb566cb 3482
2bd59d48
TH
3483 ret = cgroup_init_cftypes(ss, cfts);
3484 if (ret)
3485 return ret;
79578621 3486
01f6474c 3487 mutex_lock(&cgroup_mutex);
21a2d343 3488
0adb0704 3489 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3490 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3491 if (ret)
21a2d343 3492 cgroup_rm_cftypes_locked(cfts);
79578621 3493
01f6474c 3494 mutex_unlock(&cgroup_mutex);
9ccece80 3495 return ret;
79578621
TH
3496}
3497
a8ddc821
TH
3498/**
3499 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3500 * @ss: target cgroup subsystem
3501 * @cfts: zero-length name terminated array of cftypes
3502 *
3503 * Similar to cgroup_add_cftypes() but the added files are only used for
3504 * the default hierarchy.
3505 */
3506int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3507{
3508 struct cftype *cft;
3509
3510 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3511 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3512 return cgroup_add_cftypes(ss, cfts);
3513}
3514
3515/**
3516 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3517 * @ss: target cgroup subsystem
3518 * @cfts: zero-length name terminated array of cftypes
3519 *
3520 * Similar to cgroup_add_cftypes() but the added files are only used for
3521 * the legacy hierarchies.
3522 */
2cf669a5
TH
3523int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3524{
a8ddc821
TH
3525 struct cftype *cft;
3526
fa8137be
VG
3527 /*
3528 * If legacy_flies_on_dfl, we want to show the legacy files on the
3529 * dfl hierarchy but iff the target subsystem hasn't been updated
3530 * for the dfl hierarchy yet.
3531 */
3532 if (!cgroup_legacy_files_on_dfl ||
3533 ss->dfl_cftypes != ss->legacy_cftypes) {
3534 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3535 cft->flags |= __CFTYPE_NOT_ON_DFL;
3536 }
3537
2cf669a5
TH
3538 return cgroup_add_cftypes(ss, cfts);
3539}
3540
a043e3b2
LZ
3541/**
3542 * cgroup_task_count - count the number of tasks in a cgroup.
3543 * @cgrp: the cgroup in question
3544 *
3545 * Return the number of tasks in the cgroup.
3546 */
07bc356e 3547static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3548{
3549 int count = 0;
69d0206c 3550 struct cgrp_cset_link *link;
817929ec 3551
96d365e0 3552 down_read(&css_set_rwsem);
69d0206c
TH
3553 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3554 count += atomic_read(&link->cset->refcount);
96d365e0 3555 up_read(&css_set_rwsem);
bbcb81d0
PM
3556 return count;
3557}
3558
53fa5261 3559/**
492eb21b 3560 * css_next_child - find the next child of a given css
c2931b70
TH
3561 * @pos: the current position (%NULL to initiate traversal)
3562 * @parent: css whose children to walk
53fa5261 3563 *
c2931b70 3564 * This function returns the next child of @parent and should be called
87fb54f1 3565 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3566 * that @parent and @pos are accessible. The next sibling is guaranteed to
3567 * be returned regardless of their states.
3568 *
3569 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3570 * css which finished ->css_online() is guaranteed to be visible in the
3571 * future iterations and will stay visible until the last reference is put.
3572 * A css which hasn't finished ->css_online() or already finished
3573 * ->css_offline() may show up during traversal. It's each subsystem's
3574 * responsibility to synchronize against on/offlining.
53fa5261 3575 */
c2931b70
TH
3576struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3577 struct cgroup_subsys_state *parent)
53fa5261 3578{
c2931b70 3579 struct cgroup_subsys_state *next;
53fa5261 3580
8353da1f 3581 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3582
3583 /*
de3f0341
TH
3584 * @pos could already have been unlinked from the sibling list.
3585 * Once a cgroup is removed, its ->sibling.next is no longer
3586 * updated when its next sibling changes. CSS_RELEASED is set when
3587 * @pos is taken off list, at which time its next pointer is valid,
3588 * and, as releases are serialized, the one pointed to by the next
3589 * pointer is guaranteed to not have started release yet. This
3590 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3591 * critical section, the one pointed to by its next pointer is
3592 * guaranteed to not have finished its RCU grace period even if we
3593 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3594 *
de3f0341
TH
3595 * If @pos has CSS_RELEASED set, its next pointer can't be
3596 * dereferenced; however, as each css is given a monotonically
3597 * increasing unique serial number and always appended to the
3598 * sibling list, the next one can be found by walking the parent's
3599 * children until the first css with higher serial number than
3600 * @pos's. While this path can be slower, it happens iff iteration
3601 * races against release and the race window is very small.
53fa5261 3602 */
3b287a50 3603 if (!pos) {
c2931b70
TH
3604 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3605 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3606 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3607 } else {
c2931b70 3608 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3609 if (next->serial_nr > pos->serial_nr)
3610 break;
53fa5261
TH
3611 }
3612
3b281afb
TH
3613 /*
3614 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3615 * the next sibling.
3b281afb 3616 */
c2931b70
TH
3617 if (&next->sibling != &parent->children)
3618 return next;
3b281afb 3619 return NULL;
53fa5261 3620}
53fa5261 3621
574bd9f7 3622/**
492eb21b 3623 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3624 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3625 * @root: css whose descendants to walk
574bd9f7 3626 *
492eb21b 3627 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3628 * to visit for pre-order traversal of @root's descendants. @root is
3629 * included in the iteration and the first node to be visited.
75501a6d 3630 *
87fb54f1
TH
3631 * While this function requires cgroup_mutex or RCU read locking, it
3632 * doesn't require the whole traversal to be contained in a single critical
3633 * section. This function will return the correct next descendant as long
3634 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3635 *
3636 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3637 * css which finished ->css_online() is guaranteed to be visible in the
3638 * future iterations and will stay visible until the last reference is put.
3639 * A css which hasn't finished ->css_online() or already finished
3640 * ->css_offline() may show up during traversal. It's each subsystem's
3641 * responsibility to synchronize against on/offlining.
574bd9f7 3642 */
492eb21b
TH
3643struct cgroup_subsys_state *
3644css_next_descendant_pre(struct cgroup_subsys_state *pos,
3645 struct cgroup_subsys_state *root)
574bd9f7 3646{
492eb21b 3647 struct cgroup_subsys_state *next;
574bd9f7 3648
8353da1f 3649 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3650
bd8815a6 3651 /* if first iteration, visit @root */
7805d000 3652 if (!pos)
bd8815a6 3653 return root;
574bd9f7
TH
3654
3655 /* visit the first child if exists */
492eb21b 3656 next = css_next_child(NULL, pos);
574bd9f7
TH
3657 if (next)
3658 return next;
3659
3660 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3661 while (pos != root) {
5c9d535b 3662 next = css_next_child(pos, pos->parent);
75501a6d 3663 if (next)
574bd9f7 3664 return next;
5c9d535b 3665 pos = pos->parent;
7805d000 3666 }
574bd9f7
TH
3667
3668 return NULL;
3669}
574bd9f7 3670
12a9d2fe 3671/**
492eb21b
TH
3672 * css_rightmost_descendant - return the rightmost descendant of a css
3673 * @pos: css of interest
12a9d2fe 3674 *
492eb21b
TH
3675 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3676 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3677 * subtree of @pos.
75501a6d 3678 *
87fb54f1
TH
3679 * While this function requires cgroup_mutex or RCU read locking, it
3680 * doesn't require the whole traversal to be contained in a single critical
3681 * section. This function will return the correct rightmost descendant as
3682 * long as @pos is accessible.
12a9d2fe 3683 */
492eb21b
TH
3684struct cgroup_subsys_state *
3685css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3686{
492eb21b 3687 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3688
8353da1f 3689 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3690
3691 do {
3692 last = pos;
3693 /* ->prev isn't RCU safe, walk ->next till the end */
3694 pos = NULL;
492eb21b 3695 css_for_each_child(tmp, last)
12a9d2fe
TH
3696 pos = tmp;
3697 } while (pos);
3698
3699 return last;
3700}
12a9d2fe 3701
492eb21b
TH
3702static struct cgroup_subsys_state *
3703css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3704{
492eb21b 3705 struct cgroup_subsys_state *last;
574bd9f7
TH
3706
3707 do {
3708 last = pos;
492eb21b 3709 pos = css_next_child(NULL, pos);
574bd9f7
TH
3710 } while (pos);
3711
3712 return last;
3713}
3714
3715/**
492eb21b 3716 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3717 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3718 * @root: css whose descendants to walk
574bd9f7 3719 *
492eb21b 3720 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3721 * to visit for post-order traversal of @root's descendants. @root is
3722 * included in the iteration and the last node to be visited.
75501a6d 3723 *
87fb54f1
TH
3724 * While this function requires cgroup_mutex or RCU read locking, it
3725 * doesn't require the whole traversal to be contained in a single critical
3726 * section. This function will return the correct next descendant as long
3727 * as both @pos and @cgroup are accessible and @pos is a descendant of
3728 * @cgroup.
c2931b70
TH
3729 *
3730 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3731 * css which finished ->css_online() is guaranteed to be visible in the
3732 * future iterations and will stay visible until the last reference is put.
3733 * A css which hasn't finished ->css_online() or already finished
3734 * ->css_offline() may show up during traversal. It's each subsystem's
3735 * responsibility to synchronize against on/offlining.
574bd9f7 3736 */
492eb21b
TH
3737struct cgroup_subsys_state *
3738css_next_descendant_post(struct cgroup_subsys_state *pos,
3739 struct cgroup_subsys_state *root)
574bd9f7 3740{
492eb21b 3741 struct cgroup_subsys_state *next;
574bd9f7 3742
8353da1f 3743 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3744
58b79a91
TH
3745 /* if first iteration, visit leftmost descendant which may be @root */
3746 if (!pos)
3747 return css_leftmost_descendant(root);
574bd9f7 3748
bd8815a6
TH
3749 /* if we visited @root, we're done */
3750 if (pos == root)
3751 return NULL;
3752
574bd9f7 3753 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3754 next = css_next_child(pos, pos->parent);
75501a6d 3755 if (next)
492eb21b 3756 return css_leftmost_descendant(next);
574bd9f7
TH
3757
3758 /* no sibling left, visit parent */
5c9d535b 3759 return pos->parent;
574bd9f7 3760}
574bd9f7 3761
f3d46500
TH
3762/**
3763 * css_has_online_children - does a css have online children
3764 * @css: the target css
3765 *
3766 * Returns %true if @css has any online children; otherwise, %false. This
3767 * function can be called from any context but the caller is responsible
3768 * for synchronizing against on/offlining as necessary.
3769 */
3770bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3771{
f3d46500
TH
3772 struct cgroup_subsys_state *child;
3773 bool ret = false;
cbc125ef
TH
3774
3775 rcu_read_lock();
f3d46500 3776 css_for_each_child(child, css) {
99bae5f9 3777 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3778 ret = true;
3779 break;
cbc125ef
TH
3780 }
3781 }
3782 rcu_read_unlock();
f3d46500 3783 return ret;
574bd9f7 3784}
574bd9f7 3785
0942eeee 3786/**
72ec7029 3787 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3788 * @it: the iterator to advance
3789 *
3790 * Advance @it to the next css_set to walk.
d515876e 3791 */
72ec7029 3792static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3793{
0f0a2b4f 3794 struct list_head *l = it->cset_pos;
d515876e
TH
3795 struct cgrp_cset_link *link;
3796 struct css_set *cset;
3797
3798 /* Advance to the next non-empty css_set */
3799 do {
3800 l = l->next;
0f0a2b4f
TH
3801 if (l == it->cset_head) {
3802 it->cset_pos = NULL;
d515876e
TH
3803 return;
3804 }
3ebb2b6e
TH
3805
3806 if (it->ss) {
3807 cset = container_of(l, struct css_set,
3808 e_cset_node[it->ss->id]);
3809 } else {
3810 link = list_entry(l, struct cgrp_cset_link, cset_link);
3811 cset = link->cset;
3812 }
0de0942d 3813 } while (!css_set_populated(cset));
c7561128 3814
0f0a2b4f 3815 it->cset_pos = l;
c7561128
TH
3816
3817 if (!list_empty(&cset->tasks))
0f0a2b4f 3818 it->task_pos = cset->tasks.next;
c7561128 3819 else
0f0a2b4f
TH
3820 it->task_pos = cset->mg_tasks.next;
3821
3822 it->tasks_head = &cset->tasks;
3823 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3824}
3825
0942eeee 3826/**
72ec7029
TH
3827 * css_task_iter_start - initiate task iteration
3828 * @css: the css to walk tasks of
0942eeee
TH
3829 * @it: the task iterator to use
3830 *
72ec7029
TH
3831 * Initiate iteration through the tasks of @css. The caller can call
3832 * css_task_iter_next() to walk through the tasks until the function
3833 * returns NULL. On completion of iteration, css_task_iter_end() must be
3834 * called.
0942eeee
TH
3835 *
3836 * Note that this function acquires a lock which is released when the
3837 * iteration finishes. The caller can't sleep while iteration is in
3838 * progress.
3839 */
72ec7029
TH
3840void css_task_iter_start(struct cgroup_subsys_state *css,
3841 struct css_task_iter *it)
96d365e0 3842 __acquires(css_set_rwsem)
817929ec 3843{
56fde9e0
TH
3844 /* no one should try to iterate before mounting cgroups */
3845 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3846
96d365e0 3847 down_read(&css_set_rwsem);
c59cd3d8 3848
3ebb2b6e
TH
3849 it->ss = css->ss;
3850
3851 if (it->ss)
3852 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3853 else
3854 it->cset_pos = &css->cgroup->cset_links;
3855
0f0a2b4f 3856 it->cset_head = it->cset_pos;
c59cd3d8 3857
72ec7029 3858 css_advance_task_iter(it);
817929ec
PM
3859}
3860
0942eeee 3861/**
72ec7029 3862 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3863 * @it: the task iterator being iterated
3864 *
3865 * The "next" function for task iteration. @it should have been
72ec7029
TH
3866 * initialized via css_task_iter_start(). Returns NULL when the iteration
3867 * reaches the end.
0942eeee 3868 */
72ec7029 3869struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3870{
3871 struct task_struct *res;
0f0a2b4f 3872 struct list_head *l = it->task_pos;
817929ec
PM
3873
3874 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3875 if (!it->cset_pos)
817929ec
PM
3876 return NULL;
3877 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3878
3879 /*
3880 * Advance iterator to find next entry. cset->tasks is consumed
3881 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3882 * next cset.
3883 */
817929ec 3884 l = l->next;
c7561128 3885
0f0a2b4f
TH
3886 if (l == it->tasks_head)
3887 l = it->mg_tasks_head->next;
c7561128 3888
0f0a2b4f 3889 if (l == it->mg_tasks_head)
72ec7029 3890 css_advance_task_iter(it);
c7561128 3891 else
0f0a2b4f 3892 it->task_pos = l;
c7561128 3893
817929ec
PM
3894 return res;
3895}
3896
0942eeee 3897/**
72ec7029 3898 * css_task_iter_end - finish task iteration
0942eeee
TH
3899 * @it: the task iterator to finish
3900 *
72ec7029 3901 * Finish task iteration started by css_task_iter_start().
0942eeee 3902 */
72ec7029 3903void css_task_iter_end(struct css_task_iter *it)
96d365e0 3904 __releases(css_set_rwsem)
31a7df01 3905{
96d365e0 3906 up_read(&css_set_rwsem);
31a7df01
CW
3907}
3908
3909/**
8cc99345
TH
3910 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3911 * @to: cgroup to which the tasks will be moved
3912 * @from: cgroup in which the tasks currently reside
31a7df01 3913 *
eaf797ab
TH
3914 * Locking rules between cgroup_post_fork() and the migration path
3915 * guarantee that, if a task is forking while being migrated, the new child
3916 * is guaranteed to be either visible in the source cgroup after the
3917 * parent's migration is complete or put into the target cgroup. No task
3918 * can slip out of migration through forking.
31a7df01 3919 */
8cc99345 3920int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3921{
952aaa12
TH
3922 LIST_HEAD(preloaded_csets);
3923 struct cgrp_cset_link *link;
72ec7029 3924 struct css_task_iter it;
e406d1cf 3925 struct task_struct *task;
952aaa12 3926 int ret;
31a7df01 3927
952aaa12 3928 mutex_lock(&cgroup_mutex);
31a7df01 3929
952aaa12
TH
3930 /* all tasks in @from are being moved, all csets are source */
3931 down_read(&css_set_rwsem);
3932 list_for_each_entry(link, &from->cset_links, cset_link)
3933 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3934 up_read(&css_set_rwsem);
31a7df01 3935
952aaa12
TH
3936 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3937 if (ret)
3938 goto out_err;
8cc99345 3939
952aaa12
TH
3940 /*
3941 * Migrate tasks one-by-one until @form is empty. This fails iff
3942 * ->can_attach() fails.
3943 */
e406d1cf 3944 do {
9d800df1 3945 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3946 task = css_task_iter_next(&it);
3947 if (task)
3948 get_task_struct(task);
3949 css_task_iter_end(&it);
3950
3951 if (task) {
9af2ec45 3952 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3953 put_task_struct(task);
3954 }
3955 } while (task && !ret);
952aaa12
TH
3956out_err:
3957 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3958 mutex_unlock(&cgroup_mutex);
e406d1cf 3959 return ret;
8cc99345
TH
3960}
3961
bbcb81d0 3962/*
102a775e 3963 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3964 *
3965 * Reading this file can return large amounts of data if a cgroup has
3966 * *lots* of attached tasks. So it may need several calls to read(),
3967 * but we cannot guarantee that the information we produce is correct
3968 * unless we produce it entirely atomically.
3969 *
bbcb81d0 3970 */
bbcb81d0 3971
24528255
LZ
3972/* which pidlist file are we talking about? */
3973enum cgroup_filetype {
3974 CGROUP_FILE_PROCS,
3975 CGROUP_FILE_TASKS,
3976};
3977
3978/*
3979 * A pidlist is a list of pids that virtually represents the contents of one
3980 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3981 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3982 * to the cgroup.
3983 */
3984struct cgroup_pidlist {
3985 /*
3986 * used to find which pidlist is wanted. doesn't change as long as
3987 * this particular list stays in the list.
3988 */
3989 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3990 /* array of xids */
3991 pid_t *list;
3992 /* how many elements the above list has */
3993 int length;
24528255
LZ
3994 /* each of these stored in a list by its cgroup */
3995 struct list_head links;
3996 /* pointer to the cgroup we belong to, for list removal purposes */
3997 struct cgroup *owner;
b1a21367
TH
3998 /* for delayed destruction */
3999 struct delayed_work destroy_dwork;
24528255
LZ
4000};
4001
d1d9fd33
BB
4002/*
4003 * The following two functions "fix" the issue where there are more pids
4004 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4005 * TODO: replace with a kernel-wide solution to this problem
4006 */
4007#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4008static void *pidlist_allocate(int count)
4009{
4010 if (PIDLIST_TOO_LARGE(count))
4011 return vmalloc(count * sizeof(pid_t));
4012 else
4013 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4014}
b1a21367 4015
d1d9fd33
BB
4016static void pidlist_free(void *p)
4017{
58794514 4018 kvfree(p);
d1d9fd33 4019}
d1d9fd33 4020
b1a21367
TH
4021/*
4022 * Used to destroy all pidlists lingering waiting for destroy timer. None
4023 * should be left afterwards.
4024 */
4025static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4026{
4027 struct cgroup_pidlist *l, *tmp_l;
4028
4029 mutex_lock(&cgrp->pidlist_mutex);
4030 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4031 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4032 mutex_unlock(&cgrp->pidlist_mutex);
4033
4034 flush_workqueue(cgroup_pidlist_destroy_wq);
4035 BUG_ON(!list_empty(&cgrp->pidlists));
4036}
4037
4038static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4039{
4040 struct delayed_work *dwork = to_delayed_work(work);
4041 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4042 destroy_dwork);
4043 struct cgroup_pidlist *tofree = NULL;
4044
4045 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4046
4047 /*
04502365
TH
4048 * Destroy iff we didn't get queued again. The state won't change
4049 * as destroy_dwork can only be queued while locked.
b1a21367 4050 */
04502365 4051 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4052 list_del(&l->links);
4053 pidlist_free(l->list);
4054 put_pid_ns(l->key.ns);
4055 tofree = l;
4056 }
4057
b1a21367
TH
4058 mutex_unlock(&l->owner->pidlist_mutex);
4059 kfree(tofree);
4060}
4061
bbcb81d0 4062/*
102a775e 4063 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4064 * Returns the number of unique elements.
bbcb81d0 4065 */
6ee211ad 4066static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4067{
102a775e 4068 int src, dest = 1;
102a775e
BB
4069
4070 /*
4071 * we presume the 0th element is unique, so i starts at 1. trivial
4072 * edge cases first; no work needs to be done for either
4073 */
4074 if (length == 0 || length == 1)
4075 return length;
4076 /* src and dest walk down the list; dest counts unique elements */
4077 for (src = 1; src < length; src++) {
4078 /* find next unique element */
4079 while (list[src] == list[src-1]) {
4080 src++;
4081 if (src == length)
4082 goto after;
4083 }
4084 /* dest always points to where the next unique element goes */
4085 list[dest] = list[src];
4086 dest++;
4087 }
4088after:
102a775e
BB
4089 return dest;
4090}
4091
afb2bc14
TH
4092/*
4093 * The two pid files - task and cgroup.procs - guaranteed that the result
4094 * is sorted, which forced this whole pidlist fiasco. As pid order is
4095 * different per namespace, each namespace needs differently sorted list,
4096 * making it impossible to use, for example, single rbtree of member tasks
4097 * sorted by task pointer. As pidlists can be fairly large, allocating one
4098 * per open file is dangerous, so cgroup had to implement shared pool of
4099 * pidlists keyed by cgroup and namespace.
4100 *
4101 * All this extra complexity was caused by the original implementation
4102 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4103 * want to do away with it. Explicitly scramble sort order if on the
4104 * default hierarchy so that no such expectation exists in the new
4105 * interface.
afb2bc14
TH
4106 *
4107 * Scrambling is done by swapping every two consecutive bits, which is
4108 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4109 */
4110static pid_t pid_fry(pid_t pid)
4111{
4112 unsigned a = pid & 0x55555555;
4113 unsigned b = pid & 0xAAAAAAAA;
4114
4115 return (a << 1) | (b >> 1);
4116}
4117
4118static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4119{
aa6ec29b 4120 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4121 return pid_fry(pid);
4122 else
4123 return pid;
4124}
4125
102a775e
BB
4126static int cmppid(const void *a, const void *b)
4127{
4128 return *(pid_t *)a - *(pid_t *)b;
4129}
4130
afb2bc14
TH
4131static int fried_cmppid(const void *a, const void *b)
4132{
4133 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4134}
4135
e6b81710
TH
4136static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4137 enum cgroup_filetype type)
4138{
4139 struct cgroup_pidlist *l;
4140 /* don't need task_nsproxy() if we're looking at ourself */
4141 struct pid_namespace *ns = task_active_pid_ns(current);
4142
4143 lockdep_assert_held(&cgrp->pidlist_mutex);
4144
4145 list_for_each_entry(l, &cgrp->pidlists, links)
4146 if (l->key.type == type && l->key.ns == ns)
4147 return l;
4148 return NULL;
4149}
4150
72a8cb30
BB
4151/*
4152 * find the appropriate pidlist for our purpose (given procs vs tasks)
4153 * returns with the lock on that pidlist already held, and takes care
4154 * of the use count, or returns NULL with no locks held if we're out of
4155 * memory.
4156 */
e6b81710
TH
4157static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4158 enum cgroup_filetype type)
72a8cb30
BB
4159{
4160 struct cgroup_pidlist *l;
b70cc5fd 4161
e6b81710
TH
4162 lockdep_assert_held(&cgrp->pidlist_mutex);
4163
4164 l = cgroup_pidlist_find(cgrp, type);
4165 if (l)
4166 return l;
4167
72a8cb30 4168 /* entry not found; create a new one */
f4f4be2b 4169 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4170 if (!l)
72a8cb30 4171 return l;
e6b81710 4172
b1a21367 4173 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4174 l->key.type = type;
e6b81710
TH
4175 /* don't need task_nsproxy() if we're looking at ourself */
4176 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4177 l->owner = cgrp;
4178 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4179 return l;
4180}
4181
102a775e
BB
4182/*
4183 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4184 */
72a8cb30
BB
4185static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4186 struct cgroup_pidlist **lp)
102a775e
BB
4187{
4188 pid_t *array;
4189 int length;
4190 int pid, n = 0; /* used for populating the array */
72ec7029 4191 struct css_task_iter it;
817929ec 4192 struct task_struct *tsk;
102a775e
BB
4193 struct cgroup_pidlist *l;
4194
4bac00d1
TH
4195 lockdep_assert_held(&cgrp->pidlist_mutex);
4196
102a775e
BB
4197 /*
4198 * If cgroup gets more users after we read count, we won't have
4199 * enough space - tough. This race is indistinguishable to the
4200 * caller from the case that the additional cgroup users didn't
4201 * show up until sometime later on.
4202 */
4203 length = cgroup_task_count(cgrp);
d1d9fd33 4204 array = pidlist_allocate(length);
102a775e
BB
4205 if (!array)
4206 return -ENOMEM;
4207 /* now, populate the array */
9d800df1 4208 css_task_iter_start(&cgrp->self, &it);
72ec7029 4209 while ((tsk = css_task_iter_next(&it))) {
102a775e 4210 if (unlikely(n == length))
817929ec 4211 break;
102a775e 4212 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4213 if (type == CGROUP_FILE_PROCS)
4214 pid = task_tgid_vnr(tsk);
4215 else
4216 pid = task_pid_vnr(tsk);
102a775e
BB
4217 if (pid > 0) /* make sure to only use valid results */
4218 array[n++] = pid;
817929ec 4219 }
72ec7029 4220 css_task_iter_end(&it);
102a775e
BB
4221 length = n;
4222 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4223 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4224 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4225 else
4226 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4227 if (type == CGROUP_FILE_PROCS)
6ee211ad 4228 length = pidlist_uniq(array, length);
e6b81710 4229
e6b81710 4230 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4231 if (!l) {
d1d9fd33 4232 pidlist_free(array);
72a8cb30 4233 return -ENOMEM;
102a775e 4234 }
e6b81710
TH
4235
4236 /* store array, freeing old if necessary */
d1d9fd33 4237 pidlist_free(l->list);
102a775e
BB
4238 l->list = array;
4239 l->length = length;
72a8cb30 4240 *lp = l;
102a775e 4241 return 0;
bbcb81d0
PM
4242}
4243
846c7bb0 4244/**
a043e3b2 4245 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4246 * @stats: cgroupstats to fill information into
4247 * @dentry: A dentry entry belonging to the cgroup for which stats have
4248 * been requested.
a043e3b2
LZ
4249 *
4250 * Build and fill cgroupstats so that taskstats can export it to user
4251 * space.
846c7bb0
BS
4252 */
4253int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4254{
2bd59d48 4255 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4256 struct cgroup *cgrp;
72ec7029 4257 struct css_task_iter it;
846c7bb0 4258 struct task_struct *tsk;
33d283be 4259
2bd59d48
TH
4260 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4261 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4262 kernfs_type(kn) != KERNFS_DIR)
4263 return -EINVAL;
4264
bad34660
LZ
4265 mutex_lock(&cgroup_mutex);
4266
846c7bb0 4267 /*
2bd59d48 4268 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4269 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4270 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4271 */
2bd59d48
TH
4272 rcu_read_lock();
4273 cgrp = rcu_dereference(kn->priv);
bad34660 4274 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4275 rcu_read_unlock();
bad34660 4276 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4277 return -ENOENT;
4278 }
bad34660 4279 rcu_read_unlock();
846c7bb0 4280
9d800df1 4281 css_task_iter_start(&cgrp->self, &it);
72ec7029 4282 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4283 switch (tsk->state) {
4284 case TASK_RUNNING:
4285 stats->nr_running++;
4286 break;
4287 case TASK_INTERRUPTIBLE:
4288 stats->nr_sleeping++;
4289 break;
4290 case TASK_UNINTERRUPTIBLE:
4291 stats->nr_uninterruptible++;
4292 break;
4293 case TASK_STOPPED:
4294 stats->nr_stopped++;
4295 break;
4296 default:
4297 if (delayacct_is_task_waiting_on_io(tsk))
4298 stats->nr_io_wait++;
4299 break;
4300 }
4301 }
72ec7029 4302 css_task_iter_end(&it);
846c7bb0 4303
bad34660 4304 mutex_unlock(&cgroup_mutex);
2bd59d48 4305 return 0;
846c7bb0
BS
4306}
4307
8f3ff208 4308
bbcb81d0 4309/*
102a775e 4310 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4311 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4312 * in the cgroup->l->list array.
bbcb81d0 4313 */
cc31edce 4314
102a775e 4315static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4316{
cc31edce
PM
4317 /*
4318 * Initially we receive a position value that corresponds to
4319 * one more than the last pid shown (or 0 on the first call or
4320 * after a seek to the start). Use a binary-search to find the
4321 * next pid to display, if any
4322 */
2bd59d48 4323 struct kernfs_open_file *of = s->private;
7da11279 4324 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4325 struct cgroup_pidlist *l;
7da11279 4326 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4327 int index = 0, pid = *pos;
4bac00d1
TH
4328 int *iter, ret;
4329
4330 mutex_lock(&cgrp->pidlist_mutex);
4331
4332 /*
5d22444f 4333 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4334 * after open. If the matching pidlist is around, we can use that.
5d22444f 4335 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4336 * could already have been destroyed.
4337 */
5d22444f
TH
4338 if (of->priv)
4339 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4340
4341 /*
4342 * Either this is the first start() after open or the matching
4343 * pidlist has been destroyed inbetween. Create a new one.
4344 */
5d22444f
TH
4345 if (!of->priv) {
4346 ret = pidlist_array_load(cgrp, type,
4347 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4348 if (ret)
4349 return ERR_PTR(ret);
4350 }
5d22444f 4351 l = of->priv;
cc31edce 4352
cc31edce 4353 if (pid) {
102a775e 4354 int end = l->length;
20777766 4355
cc31edce
PM
4356 while (index < end) {
4357 int mid = (index + end) / 2;
afb2bc14 4358 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4359 index = mid;
4360 break;
afb2bc14 4361 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4362 index = mid + 1;
4363 else
4364 end = mid;
4365 }
4366 }
4367 /* If we're off the end of the array, we're done */
102a775e 4368 if (index >= l->length)
cc31edce
PM
4369 return NULL;
4370 /* Update the abstract position to be the actual pid that we found */
102a775e 4371 iter = l->list + index;
afb2bc14 4372 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4373 return iter;
4374}
4375
102a775e 4376static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4377{
2bd59d48 4378 struct kernfs_open_file *of = s->private;
5d22444f 4379 struct cgroup_pidlist *l = of->priv;
62236858 4380
5d22444f
TH
4381 if (l)
4382 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4383 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4384 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4385}
4386
102a775e 4387static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4388{
2bd59d48 4389 struct kernfs_open_file *of = s->private;
5d22444f 4390 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4391 pid_t *p = v;
4392 pid_t *end = l->list + l->length;
cc31edce
PM
4393 /*
4394 * Advance to the next pid in the array. If this goes off the
4395 * end, we're done
4396 */
4397 p++;
4398 if (p >= end) {
4399 return NULL;
4400 } else {
7da11279 4401 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4402 return p;
4403 }
4404}
4405
102a775e 4406static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4407{
94ff212d
JP
4408 seq_printf(s, "%d\n", *(int *)v);
4409
4410 return 0;
cc31edce 4411}
bbcb81d0 4412
182446d0
TH
4413static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4414 struct cftype *cft)
81a6a5cd 4415{
182446d0 4416 return notify_on_release(css->cgroup);
81a6a5cd
PM
4417}
4418
182446d0
TH
4419static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4420 struct cftype *cft, u64 val)
6379c106 4421{
6379c106 4422 if (val)
182446d0 4423 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4424 else
182446d0 4425 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4426 return 0;
4427}
4428
182446d0
TH
4429static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4430 struct cftype *cft)
97978e6d 4431{
182446d0 4432 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4433}
4434
182446d0
TH
4435static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4436 struct cftype *cft, u64 val)
97978e6d
DL
4437{
4438 if (val)
182446d0 4439 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4440 else
182446d0 4441 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4442 return 0;
4443}
4444
a14c6874
TH
4445/* cgroup core interface files for the default hierarchy */
4446static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4447 {
d5c56ced 4448 .name = "cgroup.procs",
6f60eade 4449 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4450 .seq_start = cgroup_pidlist_start,
4451 .seq_next = cgroup_pidlist_next,
4452 .seq_stop = cgroup_pidlist_stop,
4453 .seq_show = cgroup_pidlist_show,
5d22444f 4454 .private = CGROUP_FILE_PROCS,
acbef755 4455 .write = cgroup_procs_write,
102a775e 4456 },
f8f22e53
TH
4457 {
4458 .name = "cgroup.controllers",
a14c6874 4459 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4460 .seq_show = cgroup_root_controllers_show,
4461 },
4462 {
4463 .name = "cgroup.controllers",
a14c6874 4464 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4465 .seq_show = cgroup_controllers_show,
4466 },
4467 {
4468 .name = "cgroup.subtree_control",
f8f22e53 4469 .seq_show = cgroup_subtree_control_show,
451af504 4470 .write = cgroup_subtree_control_write,
f8f22e53 4471 },
842b597e 4472 {
4a07c222 4473 .name = "cgroup.events",
a14c6874 4474 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4475 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4476 .seq_show = cgroup_events_show,
842b597e 4477 },
a14c6874
TH
4478 { } /* terminate */
4479};
d5c56ced 4480
a14c6874
TH
4481/* cgroup core interface files for the legacy hierarchies */
4482static struct cftype cgroup_legacy_base_files[] = {
4483 {
4484 .name = "cgroup.procs",
4485 .seq_start = cgroup_pidlist_start,
4486 .seq_next = cgroup_pidlist_next,
4487 .seq_stop = cgroup_pidlist_stop,
4488 .seq_show = cgroup_pidlist_show,
4489 .private = CGROUP_FILE_PROCS,
4490 .write = cgroup_procs_write,
a14c6874
TH
4491 },
4492 {
4493 .name = "cgroup.clone_children",
4494 .read_u64 = cgroup_clone_children_read,
4495 .write_u64 = cgroup_clone_children_write,
4496 },
4497 {
4498 .name = "cgroup.sane_behavior",
4499 .flags = CFTYPE_ONLY_ON_ROOT,
4500 .seq_show = cgroup_sane_behavior_show,
4501 },
d5c56ced
TH
4502 {
4503 .name = "tasks",
6612f05b
TH
4504 .seq_start = cgroup_pidlist_start,
4505 .seq_next = cgroup_pidlist_next,
4506 .seq_stop = cgroup_pidlist_stop,
4507 .seq_show = cgroup_pidlist_show,
5d22444f 4508 .private = CGROUP_FILE_TASKS,
acbef755 4509 .write = cgroup_tasks_write,
d5c56ced
TH
4510 },
4511 {
4512 .name = "notify_on_release",
d5c56ced
TH
4513 .read_u64 = cgroup_read_notify_on_release,
4514 .write_u64 = cgroup_write_notify_on_release,
4515 },
6e6ff25b
TH
4516 {
4517 .name = "release_agent",
a14c6874 4518 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4519 .seq_show = cgroup_release_agent_show,
451af504 4520 .write = cgroup_release_agent_write,
5f469907 4521 .max_write_len = PATH_MAX - 1,
6e6ff25b 4522 },
db0416b6 4523 { } /* terminate */
bbcb81d0
PM
4524};
4525
0c21ead1
TH
4526/*
4527 * css destruction is four-stage process.
4528 *
4529 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4530 * Implemented in kill_css().
4531 *
4532 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4533 * and thus css_tryget_online() is guaranteed to fail, the css can be
4534 * offlined by invoking offline_css(). After offlining, the base ref is
4535 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4536 *
4537 * 3. When the percpu_ref reaches zero, the only possible remaining
4538 * accessors are inside RCU read sections. css_release() schedules the
4539 * RCU callback.
4540 *
4541 * 4. After the grace period, the css can be freed. Implemented in
4542 * css_free_work_fn().
4543 *
4544 * It is actually hairier because both step 2 and 4 require process context
4545 * and thus involve punting to css->destroy_work adding two additional
4546 * steps to the already complex sequence.
4547 */
35ef10da 4548static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4549{
4550 struct cgroup_subsys_state *css =
35ef10da 4551 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4552 struct cgroup_subsys *ss = css->ss;
0c21ead1 4553 struct cgroup *cgrp = css->cgroup;
6f60eade 4554 struct cgroup_file *cfile;
48ddbe19 4555
9a1049da
TH
4556 percpu_ref_exit(&css->refcnt);
4557
6f60eade
TH
4558 list_for_each_entry(cfile, &css->files, node)
4559 kernfs_put(cfile->kn);
4560
01e58659 4561 if (ss) {
9d755d33 4562 /* css free path */
01e58659
VD
4563 int id = css->id;
4564
9d755d33
TH
4565 if (css->parent)
4566 css_put(css->parent);
0ae78e0b 4567
01e58659
VD
4568 ss->css_free(css);
4569 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4570 cgroup_put(cgrp);
4571 } else {
4572 /* cgroup free path */
4573 atomic_dec(&cgrp->root->nr_cgrps);
4574 cgroup_pidlist_destroy_all(cgrp);
971ff493 4575 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4576
d51f39b0 4577 if (cgroup_parent(cgrp)) {
9d755d33
TH
4578 /*
4579 * We get a ref to the parent, and put the ref when
4580 * this cgroup is being freed, so it's guaranteed
4581 * that the parent won't be destroyed before its
4582 * children.
4583 */
d51f39b0 4584 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4585 kernfs_put(cgrp->kn);
4586 kfree(cgrp);
4587 } else {
4588 /*
4589 * This is root cgroup's refcnt reaching zero,
4590 * which indicates that the root should be
4591 * released.
4592 */
4593 cgroup_destroy_root(cgrp->root);
4594 }
4595 }
48ddbe19
TH
4596}
4597
0c21ead1 4598static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4599{
4600 struct cgroup_subsys_state *css =
0c21ead1 4601 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4602
35ef10da 4603 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4604 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4605}
4606
25e15d83 4607static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4608{
4609 struct cgroup_subsys_state *css =
25e15d83 4610 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4611 struct cgroup_subsys *ss = css->ss;
9d755d33 4612 struct cgroup *cgrp = css->cgroup;
15a4c835 4613
1fed1b2e
TH
4614 mutex_lock(&cgroup_mutex);
4615
de3f0341 4616 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4617 list_del_rcu(&css->sibling);
4618
9d755d33
TH
4619 if (ss) {
4620 /* css release path */
01e58659 4621 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4622 if (ss->css_released)
4623 ss->css_released(css);
9d755d33
TH
4624 } else {
4625 /* cgroup release path */
9d755d33
TH
4626 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4627 cgrp->id = -1;
a4189487
LZ
4628
4629 /*
4630 * There are two control paths which try to determine
4631 * cgroup from dentry without going through kernfs -
4632 * cgroupstats_build() and css_tryget_online_from_dir().
4633 * Those are supported by RCU protecting clearing of
4634 * cgrp->kn->priv backpointer.
4635 */
4636 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4637 }
d3daf28d 4638
1fed1b2e
TH
4639 mutex_unlock(&cgroup_mutex);
4640
0c21ead1 4641 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4642}
4643
d3daf28d
TH
4644static void css_release(struct percpu_ref *ref)
4645{
4646 struct cgroup_subsys_state *css =
4647 container_of(ref, struct cgroup_subsys_state, refcnt);
4648
25e15d83
TH
4649 INIT_WORK(&css->destroy_work, css_release_work_fn);
4650 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4651}
4652
ddfcadab
TH
4653static void init_and_link_css(struct cgroup_subsys_state *css,
4654 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4655{
0cb51d71
TH
4656 lockdep_assert_held(&cgroup_mutex);
4657
ddfcadab
TH
4658 cgroup_get(cgrp);
4659
d5c419b6 4660 memset(css, 0, sizeof(*css));
bd89aabc 4661 css->cgroup = cgrp;
72c97e54 4662 css->ss = ss;
d5c419b6
TH
4663 INIT_LIST_HEAD(&css->sibling);
4664 INIT_LIST_HEAD(&css->children);
6f60eade 4665 INIT_LIST_HEAD(&css->files);
0cb51d71 4666 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4667
d51f39b0
TH
4668 if (cgroup_parent(cgrp)) {
4669 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4670 css_get(css->parent);
ddfcadab 4671 }
48ddbe19 4672
ca8bdcaf 4673 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4674}
4675
2a4ac633 4676/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4677static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4678{
623f926b 4679 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4680 int ret = 0;
4681
a31f2d3f
TH
4682 lockdep_assert_held(&cgroup_mutex);
4683
92fb9748 4684 if (ss->css_online)
eb95419b 4685 ret = ss->css_online(css);
ae7f164a 4686 if (!ret) {
eb95419b 4687 css->flags |= CSS_ONLINE;
aec25020 4688 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4689 }
b1929db4 4690 return ret;
a31f2d3f
TH
4691}
4692
2a4ac633 4693/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4694static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4695{
623f926b 4696 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4697
4698 lockdep_assert_held(&cgroup_mutex);
4699
4700 if (!(css->flags & CSS_ONLINE))
4701 return;
4702
d7eeac19 4703 if (ss->css_offline)
eb95419b 4704 ss->css_offline(css);
a31f2d3f 4705
eb95419b 4706 css->flags &= ~CSS_ONLINE;
e3297803 4707 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4708
4709 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4710}
4711
c81c925a
TH
4712/**
4713 * create_css - create a cgroup_subsys_state
4714 * @cgrp: the cgroup new css will be associated with
4715 * @ss: the subsys of new css
f63070d3 4716 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4717 *
4718 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4719 * css is online and installed in @cgrp with all interface files created if
4720 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4721 */
f63070d3
TH
4722static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4723 bool visible)
c81c925a 4724{
d51f39b0 4725 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4726 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4727 struct cgroup_subsys_state *css;
4728 int err;
4729
c81c925a
TH
4730 lockdep_assert_held(&cgroup_mutex);
4731
1fed1b2e 4732 css = ss->css_alloc(parent_css);
c81c925a
TH
4733 if (IS_ERR(css))
4734 return PTR_ERR(css);
4735
ddfcadab 4736 init_and_link_css(css, ss, cgrp);
a2bed820 4737
2aad2a86 4738 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4739 if (err)
3eb59ec6 4740 goto err_free_css;
c81c925a 4741
cf780b7d 4742 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4743 if (err < 0)
4744 goto err_free_percpu_ref;
4745 css->id = err;
c81c925a 4746
f63070d3 4747 if (visible) {
4df8dc90 4748 err = css_populate_dir(css, NULL);
f63070d3
TH
4749 if (err)
4750 goto err_free_id;
4751 }
15a4c835
TH
4752
4753 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4754 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4755 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4756
4757 err = online_css(css);
4758 if (err)
1fed1b2e 4759 goto err_list_del;
94419627 4760
c81c925a 4761 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4762 cgroup_parent(parent)) {
ed3d261b 4763 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4764 current->comm, current->pid, ss->name);
c81c925a 4765 if (!strcmp(ss->name, "memory"))
ed3d261b 4766 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4767 ss->warned_broken_hierarchy = true;
4768 }
4769
4770 return 0;
4771
1fed1b2e
TH
4772err_list_del:
4773 list_del_rcu(&css->sibling);
4df8dc90 4774 css_clear_dir(css, NULL);
15a4c835
TH
4775err_free_id:
4776 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4777err_free_percpu_ref:
9a1049da 4778 percpu_ref_exit(&css->refcnt);
3eb59ec6 4779err_free_css:
a2bed820 4780 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4781 return err;
4782}
4783
b3bfd983
TH
4784static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4785 umode_t mode)
ddbcc7e8 4786{
a9746d8d
TH
4787 struct cgroup *parent, *cgrp;
4788 struct cgroup_root *root;
ddbcc7e8 4789 struct cgroup_subsys *ss;
2bd59d48 4790 struct kernfs_node *kn;
b3bfd983 4791 int ssid, ret;
ddbcc7e8 4792
71b1fb5c
AC
4793 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4794 */
4795 if (strchr(name, '\n'))
4796 return -EINVAL;
4797
a9746d8d
TH
4798 parent = cgroup_kn_lock_live(parent_kn);
4799 if (!parent)
4800 return -ENODEV;
4801 root = parent->root;
ddbcc7e8 4802
0a950f65 4803 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4804 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4805 if (!cgrp) {
4806 ret = -ENOMEM;
4807 goto out_unlock;
0ab02ca8
LZ
4808 }
4809
2aad2a86 4810 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4811 if (ret)
4812 goto out_free_cgrp;
4813
0ab02ca8
LZ
4814 /*
4815 * Temporarily set the pointer to NULL, so idr_find() won't return
4816 * a half-baked cgroup.
4817 */
cf780b7d 4818 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4819 if (cgrp->id < 0) {
ba0f4d76 4820 ret = -ENOMEM;
9d755d33 4821 goto out_cancel_ref;
976c06bc
TH
4822 }
4823
cc31edce 4824 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4825
9d800df1 4826 cgrp->self.parent = &parent->self;
ba0f4d76 4827 cgrp->root = root;
ddbcc7e8 4828
b6abdb0e
LZ
4829 if (notify_on_release(parent))
4830 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4831
2260e7fc
TH
4832 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4833 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4834
2bd59d48 4835 /* create the directory */
e61734c5 4836 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4837 if (IS_ERR(kn)) {
ba0f4d76
TH
4838 ret = PTR_ERR(kn);
4839 goto out_free_id;
2bd59d48
TH
4840 }
4841 cgrp->kn = kn;
ddbcc7e8 4842
4e139afc 4843 /*
6f30558f
TH
4844 * This extra ref will be put in cgroup_free_fn() and guarantees
4845 * that @cgrp->kn is always accessible.
4e139afc 4846 */
6f30558f 4847 kernfs_get(kn);
ddbcc7e8 4848
0cb51d71 4849 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4850
4e139afc 4851 /* allocation complete, commit to creation */
d5c419b6 4852 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4853 atomic_inc(&root->nr_cgrps);
59f5296b 4854 cgroup_get(parent);
415cf07a 4855
0d80255e
TH
4856 /*
4857 * @cgrp is now fully operational. If something fails after this
4858 * point, it'll be released via the normal destruction path.
4859 */
6fa4918d 4860 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4861
ba0f4d76
TH
4862 ret = cgroup_kn_set_ugid(kn);
4863 if (ret)
4864 goto out_destroy;
49957f8e 4865
4df8dc90 4866 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4867 if (ret)
4868 goto out_destroy;
628f7cd4 4869
9d403e99 4870 /* let's create and online css's */
b85d2040 4871 for_each_subsys(ss, ssid) {
f392e51c 4872 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4873 ret = create_css(cgrp, ss,
4874 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4875 if (ret)
4876 goto out_destroy;
b85d2040 4877 }
a8638030 4878 }
ddbcc7e8 4879
bd53d617
TH
4880 /*
4881 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4882 * subtree_control from the parent. Each is configured manually.
bd53d617 4883 */
667c2491
TH
4884 if (!cgroup_on_dfl(cgrp)) {
4885 cgrp->subtree_control = parent->subtree_control;
4886 cgroup_refresh_child_subsys_mask(cgrp);
4887 }
2bd59d48 4888
2bd59d48 4889 kernfs_activate(kn);
ddbcc7e8 4890
ba0f4d76
TH
4891 ret = 0;
4892 goto out_unlock;
ddbcc7e8 4893
ba0f4d76 4894out_free_id:
6fa4918d 4895 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4896out_cancel_ref:
9a1049da 4897 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4898out_free_cgrp:
bd89aabc 4899 kfree(cgrp);
ba0f4d76 4900out_unlock:
a9746d8d 4901 cgroup_kn_unlock(parent_kn);
ba0f4d76 4902 return ret;
4b8b47eb 4903
ba0f4d76 4904out_destroy:
4b8b47eb 4905 cgroup_destroy_locked(cgrp);
ba0f4d76 4906 goto out_unlock;
ddbcc7e8
PM
4907}
4908
223dbc38
TH
4909/*
4910 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4911 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4912 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4913 */
4914static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4915{
223dbc38
TH
4916 struct cgroup_subsys_state *css =
4917 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4918
f20104de 4919 mutex_lock(&cgroup_mutex);
09a503ea 4920 offline_css(css);
f20104de 4921 mutex_unlock(&cgroup_mutex);
09a503ea 4922
09a503ea 4923 css_put(css);
d3daf28d
TH
4924}
4925
223dbc38
TH
4926/* css kill confirmation processing requires process context, bounce */
4927static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4928{
4929 struct cgroup_subsys_state *css =
4930 container_of(ref, struct cgroup_subsys_state, refcnt);
4931
223dbc38 4932 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4933 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4934}
4935
f392e51c
TH
4936/**
4937 * kill_css - destroy a css
4938 * @css: css to destroy
4939 *
4940 * This function initiates destruction of @css by removing cgroup interface
4941 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4942 * asynchronously once css_tryget_online() is guaranteed to fail and when
4943 * the reference count reaches zero, @css will be released.
f392e51c
TH
4944 */
4945static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4946{
01f6474c 4947 lockdep_assert_held(&cgroup_mutex);
94419627 4948
2bd59d48
TH
4949 /*
4950 * This must happen before css is disassociated with its cgroup.
4951 * See seq_css() for details.
4952 */
4df8dc90 4953 css_clear_dir(css, NULL);
3c14f8b4 4954
edae0c33
TH
4955 /*
4956 * Killing would put the base ref, but we need to keep it alive
4957 * until after ->css_offline().
4958 */
4959 css_get(css);
4960
4961 /*
4962 * cgroup core guarantees that, by the time ->css_offline() is
4963 * invoked, no new css reference will be given out via
ec903c0c 4964 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4965 * proceed to offlining css's because percpu_ref_kill() doesn't
4966 * guarantee that the ref is seen as killed on all CPUs on return.
4967 *
4968 * Use percpu_ref_kill_and_confirm() to get notifications as each
4969 * css is confirmed to be seen as killed on all CPUs.
4970 */
4971 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4972}
4973
4974/**
4975 * cgroup_destroy_locked - the first stage of cgroup destruction
4976 * @cgrp: cgroup to be destroyed
4977 *
4978 * css's make use of percpu refcnts whose killing latency shouldn't be
4979 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4980 * guarantee that css_tryget_online() won't succeed by the time
4981 * ->css_offline() is invoked. To satisfy all the requirements,
4982 * destruction is implemented in the following two steps.
d3daf28d
TH
4983 *
4984 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4985 * userland visible parts and start killing the percpu refcnts of
4986 * css's. Set up so that the next stage will be kicked off once all
4987 * the percpu refcnts are confirmed to be killed.
4988 *
4989 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4990 * rest of destruction. Once all cgroup references are gone, the
4991 * cgroup is RCU-freed.
4992 *
4993 * This function implements s1. After this step, @cgrp is gone as far as
4994 * the userland is concerned and a new cgroup with the same name may be
4995 * created. As cgroup doesn't care about the names internally, this
4996 * doesn't cause any problem.
4997 */
42809dd4
TH
4998static int cgroup_destroy_locked(struct cgroup *cgrp)
4999 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5000{
2bd59d48 5001 struct cgroup_subsys_state *css;
ddd69148 5002 bool empty;
1c6727af 5003 int ssid;
ddbcc7e8 5004
42809dd4
TH
5005 lockdep_assert_held(&cgroup_mutex);
5006
ddd69148 5007 /*
96d365e0 5008 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 5009 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 5010 */
96d365e0 5011 down_read(&css_set_rwsem);
bb78a92f 5012 empty = list_empty(&cgrp->cset_links);
96d365e0 5013 up_read(&css_set_rwsem);
ddd69148 5014 if (!empty)
ddbcc7e8 5015 return -EBUSY;
a043e3b2 5016
bb78a92f 5017 /*
d5c419b6
TH
5018 * Make sure there's no live children. We can't test emptiness of
5019 * ->self.children as dead children linger on it while being
5020 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5021 */
f3d46500 5022 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5023 return -EBUSY;
5024
455050d2
TH
5025 /*
5026 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5027 * creation by disabling cgroup_lock_live_group().
455050d2 5028 */
184faf32 5029 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5030
249f3468 5031 /* initiate massacre of all css's */
1c6727af
TH
5032 for_each_css(css, ssid, cgrp)
5033 kill_css(css);
455050d2 5034
455050d2 5035 /*
01f6474c
TH
5036 * Remove @cgrp directory along with the base files. @cgrp has an
5037 * extra ref on its kn.
f20104de 5038 */
01f6474c 5039 kernfs_remove(cgrp->kn);
f20104de 5040
d51f39b0 5041 check_for_release(cgroup_parent(cgrp));
2bd59d48 5042
249f3468 5043 /* put the base reference */
9d755d33 5044 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5045
ea15f8cc
TH
5046 return 0;
5047};
5048
2bd59d48 5049static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5050{
a9746d8d 5051 struct cgroup *cgrp;
2bd59d48 5052 int ret = 0;
42809dd4 5053
a9746d8d
TH
5054 cgrp = cgroup_kn_lock_live(kn);
5055 if (!cgrp)
5056 return 0;
42809dd4 5057
a9746d8d 5058 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5059
a9746d8d 5060 cgroup_kn_unlock(kn);
42809dd4 5061 return ret;
8e3f6541
TH
5062}
5063
2bd59d48
TH
5064static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5065 .remount_fs = cgroup_remount,
5066 .show_options = cgroup_show_options,
5067 .mkdir = cgroup_mkdir,
5068 .rmdir = cgroup_rmdir,
5069 .rename = cgroup_rename,
5070};
5071
15a4c835 5072static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5073{
ddbcc7e8 5074 struct cgroup_subsys_state *css;
cfe36bde
DC
5075
5076 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5077
648bb56d
TH
5078 mutex_lock(&cgroup_mutex);
5079
15a4c835 5080 idr_init(&ss->css_idr);
0adb0704 5081 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5082
3dd06ffa
TH
5083 /* Create the root cgroup state for this subsystem */
5084 ss->root = &cgrp_dfl_root;
5085 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5086 /* We don't handle early failures gracefully */
5087 BUG_ON(IS_ERR(css));
ddfcadab 5088 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5089
5090 /*
5091 * Root csses are never destroyed and we can't initialize
5092 * percpu_ref during early init. Disable refcnting.
5093 */
5094 css->flags |= CSS_NO_REF;
5095
15a4c835 5096 if (early) {
9395a450 5097 /* allocation can't be done safely during early init */
15a4c835
TH
5098 css->id = 1;
5099 } else {
5100 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5101 BUG_ON(css->id < 0);
5102 }
ddbcc7e8 5103
e8d55fde 5104 /* Update the init_css_set to contain a subsys
817929ec 5105 * pointer to this state - since the subsystem is
e8d55fde 5106 * newly registered, all tasks and hence the
3dd06ffa 5107 * init_css_set is in the subsystem's root cgroup. */
aec25020 5108 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5109
cb4a3167
AS
5110 have_fork_callback |= (bool)ss->fork << ss->id;
5111 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5112 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5113
e8d55fde
LZ
5114 /* At system boot, before all subsystems have been
5115 * registered, no tasks have been forked, so we don't
5116 * need to invoke fork callbacks here. */
5117 BUG_ON(!list_empty(&init_task.tasks));
5118
ae7f164a 5119 BUG_ON(online_css(css));
a8638030 5120
cf5d5941
BB
5121 mutex_unlock(&cgroup_mutex);
5122}
cf5d5941 5123
ddbcc7e8 5124/**
a043e3b2
LZ
5125 * cgroup_init_early - cgroup initialization at system boot
5126 *
5127 * Initialize cgroups at system boot, and initialize any
5128 * subsystems that request early init.
ddbcc7e8
PM
5129 */
5130int __init cgroup_init_early(void)
5131{
7b9a6ba5 5132 static struct cgroup_sb_opts __initdata opts;
30159ec7 5133 struct cgroup_subsys *ss;
ddbcc7e8 5134 int i;
30159ec7 5135
3dd06ffa 5136 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5137 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5138
a4ea1cc9 5139 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5140
3ed80a62 5141 for_each_subsys(ss, i) {
aec25020 5142 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5143 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5144 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5145 ss->id, ss->name);
073219e9
TH
5146 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5147 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5148
aec25020 5149 ss->id = i;
073219e9 5150 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5151 if (!ss->legacy_name)
5152 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5153
5154 if (ss->early_init)
15a4c835 5155 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5156 }
5157 return 0;
5158}
5159
a3e72739
TH
5160static unsigned long cgroup_disable_mask __initdata;
5161
ddbcc7e8 5162/**
a043e3b2
LZ
5163 * cgroup_init - cgroup initialization
5164 *
5165 * Register cgroup filesystem and /proc file, and initialize
5166 * any subsystems that didn't request early init.
ddbcc7e8
PM
5167 */
5168int __init cgroup_init(void)
5169{
30159ec7 5170 struct cgroup_subsys *ss;
0ac801fe 5171 unsigned long key;
172a2c06 5172 int ssid, err;
ddbcc7e8 5173
1ed13287 5174 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5175 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5176 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5177
54e7b4eb 5178 mutex_lock(&cgroup_mutex);
54e7b4eb 5179
82fe9b0d
TH
5180 /* Add init_css_set to the hash table */
5181 key = css_set_hash(init_css_set.subsys);
5182 hash_add(css_set_table, &init_css_set.hlist, key);
5183
3dd06ffa 5184 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5185
54e7b4eb
TH
5186 mutex_unlock(&cgroup_mutex);
5187
172a2c06 5188 for_each_subsys(ss, ssid) {
15a4c835
TH
5189 if (ss->early_init) {
5190 struct cgroup_subsys_state *css =
5191 init_css_set.subsys[ss->id];
5192
5193 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5194 GFP_KERNEL);
5195 BUG_ON(css->id < 0);
5196 } else {
5197 cgroup_init_subsys(ss, false);
5198 }
172a2c06 5199
2d8f243a
TH
5200 list_add_tail(&init_css_set.e_cset_node[ssid],
5201 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5202
5203 /*
c731ae1d
LZ
5204 * Setting dfl_root subsys_mask needs to consider the
5205 * disabled flag and cftype registration needs kmalloc,
5206 * both of which aren't available during early_init.
172a2c06 5207 */
a3e72739
TH
5208 if (cgroup_disable_mask & (1 << ssid)) {
5209 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5210 printk(KERN_INFO "Disabling %s control group subsystem\n",
5211 ss->name);
a8ddc821 5212 continue;
a3e72739 5213 }
a8ddc821
TH
5214
5215 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5216
5217 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5218 ss->dfl_cftypes = ss->legacy_cftypes;
5219
5de4fa13
TH
5220 if (!ss->dfl_cftypes)
5221 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5222
a8ddc821
TH
5223 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5224 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5225 } else {
5226 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5227 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5228 }
295458e6
VD
5229
5230 if (ss->bind)
5231 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5232 }
5233
f9bb4882
EB
5234 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5235 if (err)
5236 return err;
676db4af 5237
ddbcc7e8 5238 err = register_filesystem(&cgroup_fs_type);
676db4af 5239 if (err < 0) {
f9bb4882 5240 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5241 return err;
676db4af 5242 }
ddbcc7e8 5243
46ae220b 5244 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5245 return 0;
ddbcc7e8 5246}
b4f48b63 5247
e5fca243
TH
5248static int __init cgroup_wq_init(void)
5249{
5250 /*
5251 * There isn't much point in executing destruction path in
5252 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5253 * Use 1 for @max_active.
e5fca243
TH
5254 *
5255 * We would prefer to do this in cgroup_init() above, but that
5256 * is called before init_workqueues(): so leave this until after.
5257 */
1a11533f 5258 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5259 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5260
5261 /*
5262 * Used to destroy pidlists and separate to serve as flush domain.
5263 * Cap @max_active to 1 too.
5264 */
5265 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5266 0, 1);
5267 BUG_ON(!cgroup_pidlist_destroy_wq);
5268
e5fca243
TH
5269 return 0;
5270}
5271core_initcall(cgroup_wq_init);
5272
a424316c
PM
5273/*
5274 * proc_cgroup_show()
5275 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5276 * - Used for /proc/<pid>/cgroup.
a424316c 5277 */
006f4ac4
ZL
5278int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5279 struct pid *pid, struct task_struct *tsk)
a424316c 5280{
e61734c5 5281 char *buf, *path;
a424316c 5282 int retval;
3dd06ffa 5283 struct cgroup_root *root;
a424316c
PM
5284
5285 retval = -ENOMEM;
e61734c5 5286 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5287 if (!buf)
5288 goto out;
5289
a424316c 5290 mutex_lock(&cgroup_mutex);
96d365e0 5291 down_read(&css_set_rwsem);
a424316c 5292
985ed670 5293 for_each_root(root) {
a424316c 5294 struct cgroup_subsys *ss;
bd89aabc 5295 struct cgroup *cgrp;
b85d2040 5296 int ssid, count = 0;
a424316c 5297
a2dd4247 5298 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5299 continue;
5300
2c6ab6d2 5301 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5302 if (root != &cgrp_dfl_root)
5303 for_each_subsys(ss, ssid)
5304 if (root->subsys_mask & (1 << ssid))
5305 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5306 ss->legacy_name);
c6d57f33
PM
5307 if (strlen(root->name))
5308 seq_printf(m, "%sname=%s", count ? "," : "",
5309 root->name);
a424316c 5310 seq_putc(m, ':');
7717f7ba 5311 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5312 path = cgroup_path(cgrp, buf, PATH_MAX);
5313 if (!path) {
5314 retval = -ENAMETOOLONG;
a424316c 5315 goto out_unlock;
e61734c5
TH
5316 }
5317 seq_puts(m, path);
a424316c
PM
5318 seq_putc(m, '\n');
5319 }
5320
006f4ac4 5321 retval = 0;
a424316c 5322out_unlock:
96d365e0 5323 up_read(&css_set_rwsem);
a424316c 5324 mutex_unlock(&cgroup_mutex);
a424316c
PM
5325 kfree(buf);
5326out:
5327 return retval;
5328}
5329
a424316c
PM
5330/* Display information about each subsystem and each hierarchy */
5331static int proc_cgroupstats_show(struct seq_file *m, void *v)
5332{
30159ec7 5333 struct cgroup_subsys *ss;
a424316c 5334 int i;
a424316c 5335
8bab8dde 5336 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5337 /*
5338 * ideally we don't want subsystems moving around while we do this.
5339 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5340 * subsys/hierarchy state.
5341 */
a424316c 5342 mutex_lock(&cgroup_mutex);
30159ec7
TH
5343
5344 for_each_subsys(ss, i)
2c6ab6d2 5345 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5346 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5347 atomic_read(&ss->root->nr_cgrps),
5348 cgroup_ssid_enabled(i));
30159ec7 5349
a424316c
PM
5350 mutex_unlock(&cgroup_mutex);
5351 return 0;
5352}
5353
5354static int cgroupstats_open(struct inode *inode, struct file *file)
5355{
9dce07f1 5356 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5357}
5358
828c0950 5359static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5360 .open = cgroupstats_open,
5361 .read = seq_read,
5362 .llseek = seq_lseek,
5363 .release = single_release,
5364};
5365
7e47682e
AS
5366static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5367{
5368 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5369 return &ss_priv[i - CGROUP_CANFORK_START];
5370 return NULL;
5371}
5372
5373static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5374{
5375 void **private = subsys_canfork_priv_p(ss_priv, i);
5376 return private ? *private : NULL;
5377}
5378
b4f48b63 5379/**
eaf797ab 5380 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5381 * @child: pointer to task_struct of forking parent process.
b4f48b63 5382 *
eaf797ab
TH
5383 * A task is associated with the init_css_set until cgroup_post_fork()
5384 * attaches it to the parent's css_set. Empty cg_list indicates that
5385 * @child isn't holding reference to its css_set.
b4f48b63
PM
5386 */
5387void cgroup_fork(struct task_struct *child)
5388{
eaf797ab 5389 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5390 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5391}
5392
7e47682e
AS
5393/**
5394 * cgroup_can_fork - called on a new task before the process is exposed
5395 * @child: the task in question.
5396 *
5397 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5398 * returns an error, the fork aborts with that error code. This allows for
5399 * a cgroup subsystem to conditionally allow or deny new forks.
5400 */
5401int cgroup_can_fork(struct task_struct *child,
5402 void *ss_priv[CGROUP_CANFORK_COUNT])
5403{
5404 struct cgroup_subsys *ss;
5405 int i, j, ret;
5406
5407 for_each_subsys_which(ss, i, &have_canfork_callback) {
5408 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5409 if (ret)
5410 goto out_revert;
5411 }
5412
5413 return 0;
5414
5415out_revert:
5416 for_each_subsys(ss, j) {
5417 if (j >= i)
5418 break;
5419 if (ss->cancel_fork)
5420 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5421 }
5422
5423 return ret;
5424}
5425
5426/**
5427 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5428 * @child: the task in question
5429 *
5430 * This calls the cancel_fork() callbacks if a fork failed *after*
5431 * cgroup_can_fork() succeded.
5432 */
5433void cgroup_cancel_fork(struct task_struct *child,
5434 void *ss_priv[CGROUP_CANFORK_COUNT])
5435{
5436 struct cgroup_subsys *ss;
5437 int i;
5438
5439 for_each_subsys(ss, i)
5440 if (ss->cancel_fork)
5441 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5442}
5443
817929ec 5444/**
a043e3b2
LZ
5445 * cgroup_post_fork - called on a new task after adding it to the task list
5446 * @child: the task in question
5447 *
5edee61e
TH
5448 * Adds the task to the list running through its css_set if necessary and
5449 * call the subsystem fork() callbacks. Has to be after the task is
5450 * visible on the task list in case we race with the first call to
0942eeee 5451 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5452 * list.
a043e3b2 5453 */
7e47682e
AS
5454void cgroup_post_fork(struct task_struct *child,
5455 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5456{
30159ec7 5457 struct cgroup_subsys *ss;
5edee61e
TH
5458 int i;
5459
3ce3230a 5460 /*
251f8c03 5461 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5462 * function sets use_task_css_set_links before grabbing
5463 * tasklist_lock and we just went through tasklist_lock to add
5464 * @child, it's guaranteed that either we see the set
5465 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5466 * @child during its iteration.
5467 *
5468 * If we won the race, @child is associated with %current's
5469 * css_set. Grabbing css_set_rwsem guarantees both that the
5470 * association is stable, and, on completion of the parent's
5471 * migration, @child is visible in the source of migration or
5472 * already in the destination cgroup. This guarantee is necessary
5473 * when implementing operations which need to migrate all tasks of
5474 * a cgroup to another.
5475 *
251f8c03 5476 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5477 * will remain in init_css_set. This is safe because all tasks are
5478 * in the init_css_set before cg_links is enabled and there's no
5479 * operation which transfers all tasks out of init_css_set.
3ce3230a 5480 */
817929ec 5481 if (use_task_css_set_links) {
eaf797ab
TH
5482 struct css_set *cset;
5483
96d365e0 5484 down_write(&css_set_rwsem);
0e1d768f 5485 cset = task_css_set(current);
eaf797ab
TH
5486 if (list_empty(&child->cg_list)) {
5487 rcu_assign_pointer(child->cgroups, cset);
5488 list_add(&child->cg_list, &cset->tasks);
5489 get_css_set(cset);
5490 }
96d365e0 5491 up_write(&css_set_rwsem);
817929ec 5492 }
5edee61e
TH
5493
5494 /*
5495 * Call ss->fork(). This must happen after @child is linked on
5496 * css_set; otherwise, @child might change state between ->fork()
5497 * and addition to css_set.
5498 */
cb4a3167 5499 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5500 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5501}
5edee61e 5502
b4f48b63
PM
5503/**
5504 * cgroup_exit - detach cgroup from exiting task
5505 * @tsk: pointer to task_struct of exiting process
5506 *
5507 * Description: Detach cgroup from @tsk and release it.
5508 *
5509 * Note that cgroups marked notify_on_release force every task in
5510 * them to take the global cgroup_mutex mutex when exiting.
5511 * This could impact scaling on very large systems. Be reluctant to
5512 * use notify_on_release cgroups where very high task exit scaling
5513 * is required on large systems.
5514 *
0e1d768f
TH
5515 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5516 * call cgroup_exit() while the task is still competent to handle
5517 * notify_on_release(), then leave the task attached to the root cgroup in
5518 * each hierarchy for the remainder of its exit. No need to bother with
5519 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5520 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5521 */
1ec41830 5522void cgroup_exit(struct task_struct *tsk)
b4f48b63 5523{
30159ec7 5524 struct cgroup_subsys *ss;
5abb8855 5525 struct css_set *cset;
eaf797ab 5526 bool put_cset = false;
d41d5a01 5527 int i;
817929ec
PM
5528
5529 /*
0e1d768f 5530 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5531 * with us, we can check css_set and cg_list without synchronization.
817929ec 5532 */
0de0942d
TH
5533 cset = task_css_set(tsk);
5534
817929ec 5535 if (!list_empty(&tsk->cg_list)) {
96d365e0 5536 down_write(&css_set_rwsem);
0e1d768f 5537 list_del_init(&tsk->cg_list);
0de0942d
TH
5538 if (!css_set_populated(cset))
5539 css_set_update_populated(cset, false);
96d365e0 5540 up_write(&css_set_rwsem);
0e1d768f 5541 put_cset = true;
817929ec
PM
5542 }
5543
b4f48b63 5544 /* Reassign the task to the init_css_set. */
a8ad805c 5545 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5546
cb4a3167
AS
5547 /* see cgroup_post_fork() for details */
5548 for_each_subsys_which(ss, i, &have_exit_callback) {
5549 struct cgroup_subsys_state *old_css = cset->subsys[i];
5550 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5551
cb4a3167 5552 ss->exit(css, old_css, tsk);
d41d5a01 5553 }
d41d5a01 5554
eaf797ab 5555 if (put_cset)
a25eb52e 5556 put_css_set(cset);
b4f48b63 5557}
697f4161 5558
bd89aabc 5559static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5560{
a25eb52e 5561 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5562 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5563 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5564}
5565
81a6a5cd
PM
5566/*
5567 * Notify userspace when a cgroup is released, by running the
5568 * configured release agent with the name of the cgroup (path
5569 * relative to the root of cgroup file system) as the argument.
5570 *
5571 * Most likely, this user command will try to rmdir this cgroup.
5572 *
5573 * This races with the possibility that some other task will be
5574 * attached to this cgroup before it is removed, or that some other
5575 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5576 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5577 * unused, and this cgroup will be reprieved from its death sentence,
5578 * to continue to serve a useful existence. Next time it's released,
5579 * we will get notified again, if it still has 'notify_on_release' set.
5580 *
5581 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5582 * means only wait until the task is successfully execve()'d. The
5583 * separate release agent task is forked by call_usermodehelper(),
5584 * then control in this thread returns here, without waiting for the
5585 * release agent task. We don't bother to wait because the caller of
5586 * this routine has no use for the exit status of the release agent
5587 * task, so no sense holding our caller up for that.
81a6a5cd 5588 */
81a6a5cd
PM
5589static void cgroup_release_agent(struct work_struct *work)
5590{
971ff493
ZL
5591 struct cgroup *cgrp =
5592 container_of(work, struct cgroup, release_agent_work);
5593 char *pathbuf = NULL, *agentbuf = NULL, *path;
5594 char *argv[3], *envp[3];
5595
81a6a5cd 5596 mutex_lock(&cgroup_mutex);
971ff493
ZL
5597
5598 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5599 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5600 if (!pathbuf || !agentbuf)
5601 goto out;
5602
5603 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5604 if (!path)
5605 goto out;
5606
5607 argv[0] = agentbuf;
5608 argv[1] = path;
5609 argv[2] = NULL;
5610
5611 /* minimal command environment */
5612 envp[0] = "HOME=/";
5613 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5614 envp[2] = NULL;
5615
81a6a5cd 5616 mutex_unlock(&cgroup_mutex);
971ff493 5617 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5618 goto out_free;
971ff493 5619out:
81a6a5cd 5620 mutex_unlock(&cgroup_mutex);
3e2cd91a 5621out_free:
971ff493
ZL
5622 kfree(agentbuf);
5623 kfree(pathbuf);
81a6a5cd 5624}
8bab8dde
PM
5625
5626static int __init cgroup_disable(char *str)
5627{
30159ec7 5628 struct cgroup_subsys *ss;
8bab8dde 5629 char *token;
30159ec7 5630 int i;
8bab8dde
PM
5631
5632 while ((token = strsep(&str, ",")) != NULL) {
5633 if (!*token)
5634 continue;
be45c900 5635
3ed80a62 5636 for_each_subsys(ss, i) {
3e1d2eed
TH
5637 if (strcmp(token, ss->name) &&
5638 strcmp(token, ss->legacy_name))
5639 continue;
a3e72739 5640 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5641 }
5642 }
5643 return 1;
5644}
5645__setup("cgroup_disable=", cgroup_disable);
38460b48 5646
a8ddc821
TH
5647static int __init cgroup_set_legacy_files_on_dfl(char *str)
5648{
5649 printk("cgroup: using legacy files on the default hierarchy\n");
5650 cgroup_legacy_files_on_dfl = true;
5651 return 0;
5652}
5653__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5654
b77d7b60 5655/**
ec903c0c 5656 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5657 * @dentry: directory dentry of interest
5658 * @ss: subsystem of interest
b77d7b60 5659 *
5a17f543
TH
5660 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5661 * to get the corresponding css and return it. If such css doesn't exist
5662 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5663 */
ec903c0c
TH
5664struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5665 struct cgroup_subsys *ss)
e5d1367f 5666{
2bd59d48
TH
5667 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5668 struct cgroup_subsys_state *css = NULL;
e5d1367f 5669 struct cgroup *cgrp;
e5d1367f 5670
35cf0836 5671 /* is @dentry a cgroup dir? */
2bd59d48
TH
5672 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5673 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5674 return ERR_PTR(-EBADF);
5675
5a17f543
TH
5676 rcu_read_lock();
5677
2bd59d48
TH
5678 /*
5679 * This path doesn't originate from kernfs and @kn could already
5680 * have been or be removed at any point. @kn->priv is RCU
a4189487 5681 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5682 */
5683 cgrp = rcu_dereference(kn->priv);
5684 if (cgrp)
5685 css = cgroup_css(cgrp, ss);
5a17f543 5686
ec903c0c 5687 if (!css || !css_tryget_online(css))
5a17f543
TH
5688 css = ERR_PTR(-ENOENT);
5689
5690 rcu_read_unlock();
5691 return css;
e5d1367f 5692}
e5d1367f 5693
1cb650b9
LZ
5694/**
5695 * css_from_id - lookup css by id
5696 * @id: the cgroup id
5697 * @ss: cgroup subsys to be looked into
5698 *
5699 * Returns the css if there's valid one with @id, otherwise returns NULL.
5700 * Should be called under rcu_read_lock().
5701 */
5702struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5703{
6fa4918d 5704 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5705 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5706}
5707
fe693435 5708#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5709static struct cgroup_subsys_state *
5710debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5711{
5712 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5713
5714 if (!css)
5715 return ERR_PTR(-ENOMEM);
5716
5717 return css;
5718}
5719
eb95419b 5720static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5721{
eb95419b 5722 kfree(css);
fe693435
PM
5723}
5724
182446d0
TH
5725static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5726 struct cftype *cft)
fe693435 5727{
182446d0 5728 return cgroup_task_count(css->cgroup);
fe693435
PM
5729}
5730
182446d0
TH
5731static u64 current_css_set_read(struct cgroup_subsys_state *css,
5732 struct cftype *cft)
fe693435
PM
5733{
5734 return (u64)(unsigned long)current->cgroups;
5735}
5736
182446d0 5737static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5738 struct cftype *cft)
fe693435
PM
5739{
5740 u64 count;
5741
5742 rcu_read_lock();
a8ad805c 5743 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5744 rcu_read_unlock();
5745 return count;
5746}
5747
2da8ca82 5748static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5749{
69d0206c 5750 struct cgrp_cset_link *link;
5abb8855 5751 struct css_set *cset;
e61734c5
TH
5752 char *name_buf;
5753
5754 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5755 if (!name_buf)
5756 return -ENOMEM;
7717f7ba 5757
96d365e0 5758 down_read(&css_set_rwsem);
7717f7ba 5759 rcu_read_lock();
5abb8855 5760 cset = rcu_dereference(current->cgroups);
69d0206c 5761 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5762 struct cgroup *c = link->cgrp;
7717f7ba 5763
a2dd4247 5764 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5765 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5766 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5767 }
5768 rcu_read_unlock();
96d365e0 5769 up_read(&css_set_rwsem);
e61734c5 5770 kfree(name_buf);
7717f7ba
PM
5771 return 0;
5772}
5773
5774#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5775static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5776{
2da8ca82 5777 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5778 struct cgrp_cset_link *link;
7717f7ba 5779
96d365e0 5780 down_read(&css_set_rwsem);
182446d0 5781 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5782 struct css_set *cset = link->cset;
7717f7ba
PM
5783 struct task_struct *task;
5784 int count = 0;
c7561128 5785
5abb8855 5786 seq_printf(seq, "css_set %p\n", cset);
c7561128 5787
5abb8855 5788 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5789 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5790 goto overflow;
5791 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5792 }
5793
5794 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5795 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5796 goto overflow;
5797 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5798 }
c7561128
TH
5799 continue;
5800 overflow:
5801 seq_puts(seq, " ...\n");
7717f7ba 5802 }
96d365e0 5803 up_read(&css_set_rwsem);
7717f7ba
PM
5804 return 0;
5805}
5806
182446d0 5807static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5808{
a25eb52e
ZL
5809 return (!cgroup_has_tasks(css->cgroup) &&
5810 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5811}
5812
5813static struct cftype debug_files[] = {
fe693435
PM
5814 {
5815 .name = "taskcount",
5816 .read_u64 = debug_taskcount_read,
5817 },
5818
5819 {
5820 .name = "current_css_set",
5821 .read_u64 = current_css_set_read,
5822 },
5823
5824 {
5825 .name = "current_css_set_refcount",
5826 .read_u64 = current_css_set_refcount_read,
5827 },
5828
7717f7ba
PM
5829 {
5830 .name = "current_css_set_cg_links",
2da8ca82 5831 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5832 },
5833
5834 {
5835 .name = "cgroup_css_links",
2da8ca82 5836 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5837 },
5838
fe693435
PM
5839 {
5840 .name = "releasable",
5841 .read_u64 = releasable_read,
5842 },
fe693435 5843
4baf6e33
TH
5844 { } /* terminate */
5845};
fe693435 5846
073219e9 5847struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5848 .css_alloc = debug_css_alloc,
5849 .css_free = debug_css_free,
5577964e 5850 .legacy_cftypes = debug_files,
fe693435
PM
5851};
5852#endif /* CONFIG_CGROUP_DEBUG */