cgroup: rename cgroup_iter to cgroup_task_iter
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
8af01f56 84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
9871bf95
TH
189static LIST_HEAD(cgroup_roots);
190static int cgroup_root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
628f7cd4
TH
218static struct cftype cgroup_base_files[];
219
ea15f8cc 220static void cgroup_offline_fn(struct work_struct *work);
42809dd4 221static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
222static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
42809dd4 224
ddbcc7e8 225/* convenient tests for these bits */
54766d4a 226static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 227{
54766d4a 228 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
229}
230
78574cf9
LZ
231/**
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
235 *
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
239 */
240bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241{
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
246 }
247 return false;
248}
249EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 250
e9685a03 251static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
252{
253 const int bits =
bd89aabc
PM
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
257}
258
e9685a03 259static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 260{
bd89aabc 261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
262}
263
30159ec7
TH
264/**
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
268 *
269 * Should be called under cgroup_mutex.
270 */
271#define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
276
277/**
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
281 *
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
284 */
285#define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
288
5549c497
TH
289/* iterate each subsystem attached to a hierarchy */
290#define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 292
5549c497
TH
293/* iterate across the active hierarchies */
294#define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 296
f6ea9372
TH
297static inline struct cgroup *__d_cgrp(struct dentry *dentry)
298{
299 return dentry->d_fsdata;
300}
301
05ef1d7c 302static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
303{
304 return dentry->d_fsdata;
305}
306
05ef1d7c
TH
307static inline struct cftype *__d_cft(struct dentry *dentry)
308{
309 return __d_cfe(dentry)->type;
310}
311
7ae1bad9
TH
312/**
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
315 *
47cfcd09
TH
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
7ae1bad9 318 */
b9777cf8 319static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
320{
321 mutex_lock(&cgroup_mutex);
54766d4a 322 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
323 mutex_unlock(&cgroup_mutex);
324 return false;
325 }
326 return true;
327}
7ae1bad9 328
81a6a5cd
PM
329/* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331static LIST_HEAD(release_list);
cdcc136f 332static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
333static void cgroup_release_agent(struct work_struct *work);
334static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 335static void check_for_release(struct cgroup *cgrp);
81a6a5cd 336
69d0206c
TH
337/*
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
344 */
345struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
349
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
352
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
817929ec
PM
355};
356
357/* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
362 */
363
364static struct css_set init_css_set;
69d0206c 365static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 366
e6a1105b
BB
367static int cgroup_init_idr(struct cgroup_subsys *ss,
368 struct cgroup_subsys_state *css);
38460b48 369
0942eeee
TH
370/*
371 * css_set_lock protects the list of css_set objects, and the chain of
372 * tasks off each css_set. Nests outside task->alloc_lock due to
373 * cgroup_task_iter_start().
374 */
817929ec
PM
375static DEFINE_RWLOCK(css_set_lock);
376static int css_set_count;
377
7717f7ba
PM
378/*
379 * hash table for cgroup groups. This improves the performance to find
380 * an existing css_set. This hash doesn't (currently) take into
381 * account cgroups in empty hierarchies.
382 */
472b1053 383#define CSS_SET_HASH_BITS 7
0ac801fe 384static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 385
0ac801fe 386static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 387{
0ac801fe 388 unsigned long key = 0UL;
30159ec7
TH
389 struct cgroup_subsys *ss;
390 int i;
472b1053 391
30159ec7 392 for_each_subsys(ss, i)
0ac801fe
LZ
393 key += (unsigned long)css[i];
394 key = (key >> 16) ^ key;
472b1053 395
0ac801fe 396 return key;
472b1053
LZ
397}
398
0942eeee
TH
399/*
400 * We don't maintain the lists running through each css_set to its task
401 * until after the first call to cgroup_task_iter_start(). This reduces
402 * the fork()/exit() overhead for people who have cgroups compiled into
403 * their kernel but not actually in use.
404 */
8947f9d5 405static int use_task_css_set_links __read_mostly;
817929ec 406
5abb8855 407static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 408{
69d0206c 409 struct cgrp_cset_link *link, *tmp_link;
5abb8855 410
146aa1bd
LJ
411 /*
412 * Ensure that the refcount doesn't hit zero while any readers
413 * can see it. Similar to atomic_dec_and_lock(), but for an
414 * rwlock
415 */
5abb8855 416 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
417 return;
418 write_lock(&css_set_lock);
5abb8855 419 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
420 write_unlock(&css_set_lock);
421 return;
422 }
81a6a5cd 423
2c6ab6d2 424 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 425 hash_del(&cset->hlist);
2c6ab6d2
PM
426 css_set_count--;
427
69d0206c 428 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 429 struct cgroup *cgrp = link->cgrp;
5abb8855 430
69d0206c
TH
431 list_del(&link->cset_link);
432 list_del(&link->cgrp_link);
71b5707e 433
ddd69148 434 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 435 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 436 if (taskexit)
bd89aabc
PM
437 set_bit(CGRP_RELEASABLE, &cgrp->flags);
438 check_for_release(cgrp);
81a6a5cd 439 }
2c6ab6d2
PM
440
441 kfree(link);
81a6a5cd 442 }
2c6ab6d2
PM
443
444 write_unlock(&css_set_lock);
5abb8855 445 kfree_rcu(cset, rcu_head);
b4f48b63
PM
446}
447
817929ec
PM
448/*
449 * refcounted get/put for css_set objects
450 */
5abb8855 451static inline void get_css_set(struct css_set *cset)
817929ec 452{
5abb8855 453 atomic_inc(&cset->refcount);
817929ec
PM
454}
455
5abb8855 456static inline void put_css_set(struct css_set *cset)
817929ec 457{
5abb8855 458 __put_css_set(cset, 0);
817929ec
PM
459}
460
5abb8855 461static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 462{
5abb8855 463 __put_css_set(cset, 1);
81a6a5cd
PM
464}
465
b326f9d0 466/**
7717f7ba 467 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
468 * @cset: candidate css_set being tested
469 * @old_cset: existing css_set for a task
7717f7ba
PM
470 * @new_cgrp: cgroup that's being entered by the task
471 * @template: desired set of css pointers in css_set (pre-calculated)
472 *
6f4b7e63 473 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
474 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
475 */
5abb8855
TH
476static bool compare_css_sets(struct css_set *cset,
477 struct css_set *old_cset,
7717f7ba
PM
478 struct cgroup *new_cgrp,
479 struct cgroup_subsys_state *template[])
480{
481 struct list_head *l1, *l2;
482
5abb8855 483 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
484 /* Not all subsystems matched */
485 return false;
486 }
487
488 /*
489 * Compare cgroup pointers in order to distinguish between
490 * different cgroups in heirarchies with no subsystems. We
491 * could get by with just this check alone (and skip the
492 * memcmp above) but on most setups the memcmp check will
493 * avoid the need for this more expensive check on almost all
494 * candidates.
495 */
496
69d0206c
TH
497 l1 = &cset->cgrp_links;
498 l2 = &old_cset->cgrp_links;
7717f7ba 499 while (1) {
69d0206c 500 struct cgrp_cset_link *link1, *link2;
5abb8855 501 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
502
503 l1 = l1->next;
504 l2 = l2->next;
505 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
506 if (l1 == &cset->cgrp_links) {
507 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
508 break;
509 } else {
69d0206c 510 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
511 }
512 /* Locate the cgroups associated with these links. */
69d0206c
TH
513 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
514 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
515 cgrp1 = link1->cgrp;
516 cgrp2 = link2->cgrp;
7717f7ba 517 /* Hierarchies should be linked in the same order. */
5abb8855 518 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
519
520 /*
521 * If this hierarchy is the hierarchy of the cgroup
522 * that's changing, then we need to check that this
523 * css_set points to the new cgroup; if it's any other
524 * hierarchy, then this css_set should point to the
525 * same cgroup as the old css_set.
526 */
5abb8855
TH
527 if (cgrp1->root == new_cgrp->root) {
528 if (cgrp1 != new_cgrp)
7717f7ba
PM
529 return false;
530 } else {
5abb8855 531 if (cgrp1 != cgrp2)
7717f7ba
PM
532 return false;
533 }
534 }
535 return true;
536}
537
b326f9d0
TH
538/**
539 * find_existing_css_set - init css array and find the matching css_set
540 * @old_cset: the css_set that we're using before the cgroup transition
541 * @cgrp: the cgroup that we're moving into
542 * @template: out param for the new set of csses, should be clear on entry
817929ec 543 */
5abb8855
TH
544static struct css_set *find_existing_css_set(struct css_set *old_cset,
545 struct cgroup *cgrp,
546 struct cgroup_subsys_state *template[])
b4f48b63 547{
bd89aabc 548 struct cgroupfs_root *root = cgrp->root;
30159ec7 549 struct cgroup_subsys *ss;
5abb8855 550 struct css_set *cset;
0ac801fe 551 unsigned long key;
b326f9d0 552 int i;
817929ec 553
aae8aab4
BB
554 /*
555 * Build the set of subsystem state objects that we want to see in the
556 * new css_set. while subsystems can change globally, the entries here
557 * won't change, so no need for locking.
558 */
30159ec7 559 for_each_subsys(ss, i) {
a1a71b45 560 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
561 /* Subsystem is in this hierarchy. So we want
562 * the subsystem state from the new
563 * cgroup */
bd89aabc 564 template[i] = cgrp->subsys[i];
817929ec
PM
565 } else {
566 /* Subsystem is not in this hierarchy, so we
567 * don't want to change the subsystem state */
5abb8855 568 template[i] = old_cset->subsys[i];
817929ec
PM
569 }
570 }
571
0ac801fe 572 key = css_set_hash(template);
5abb8855
TH
573 hash_for_each_possible(css_set_table, cset, hlist, key) {
574 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
575 continue;
576
577 /* This css_set matches what we need */
5abb8855 578 return cset;
472b1053 579 }
817929ec
PM
580
581 /* No existing cgroup group matched */
582 return NULL;
583}
584
69d0206c 585static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 586{
69d0206c 587 struct cgrp_cset_link *link, *tmp_link;
36553434 588
69d0206c
TH
589 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
590 list_del(&link->cset_link);
36553434
LZ
591 kfree(link);
592 }
593}
594
69d0206c
TH
595/**
596 * allocate_cgrp_cset_links - allocate cgrp_cset_links
597 * @count: the number of links to allocate
598 * @tmp_links: list_head the allocated links are put on
599 *
600 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
601 * through ->cset_link. Returns 0 on success or -errno.
817929ec 602 */
69d0206c 603static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 604{
69d0206c 605 struct cgrp_cset_link *link;
817929ec 606 int i;
69d0206c
TH
607
608 INIT_LIST_HEAD(tmp_links);
609
817929ec 610 for (i = 0; i < count; i++) {
f4f4be2b 611 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 612 if (!link) {
69d0206c 613 free_cgrp_cset_links(tmp_links);
817929ec
PM
614 return -ENOMEM;
615 }
69d0206c 616 list_add(&link->cset_link, tmp_links);
817929ec
PM
617 }
618 return 0;
619}
620
c12f65d4
LZ
621/**
622 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 623 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 624 * @cset: the css_set to be linked
c12f65d4
LZ
625 * @cgrp: the destination cgroup
626 */
69d0206c
TH
627static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
628 struct cgroup *cgrp)
c12f65d4 629{
69d0206c 630 struct cgrp_cset_link *link;
c12f65d4 631
69d0206c
TH
632 BUG_ON(list_empty(tmp_links));
633 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
634 link->cset = cset;
7717f7ba 635 link->cgrp = cgrp;
69d0206c 636 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
637 /*
638 * Always add links to the tail of the list so that the list
639 * is sorted by order of hierarchy creation
640 */
69d0206c 641 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
642}
643
b326f9d0
TH
644/**
645 * find_css_set - return a new css_set with one cgroup updated
646 * @old_cset: the baseline css_set
647 * @cgrp: the cgroup to be updated
648 *
649 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
650 * substituted into the appropriate hierarchy.
817929ec 651 */
5abb8855
TH
652static struct css_set *find_css_set(struct css_set *old_cset,
653 struct cgroup *cgrp)
817929ec 654{
b326f9d0 655 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 656 struct css_set *cset;
69d0206c
TH
657 struct list_head tmp_links;
658 struct cgrp_cset_link *link;
0ac801fe 659 unsigned long key;
472b1053 660
b326f9d0
TH
661 lockdep_assert_held(&cgroup_mutex);
662
817929ec
PM
663 /* First see if we already have a cgroup group that matches
664 * the desired set */
7e9abd89 665 read_lock(&css_set_lock);
5abb8855
TH
666 cset = find_existing_css_set(old_cset, cgrp, template);
667 if (cset)
668 get_css_set(cset);
7e9abd89 669 read_unlock(&css_set_lock);
817929ec 670
5abb8855
TH
671 if (cset)
672 return cset;
817929ec 673
f4f4be2b 674 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 675 if (!cset)
817929ec
PM
676 return NULL;
677
69d0206c 678 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 679 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 680 kfree(cset);
817929ec
PM
681 return NULL;
682 }
683
5abb8855 684 atomic_set(&cset->refcount, 1);
69d0206c 685 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
686 INIT_LIST_HEAD(&cset->tasks);
687 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
688
689 /* Copy the set of subsystem state objects generated in
690 * find_existing_css_set() */
5abb8855 691 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
692
693 write_lock(&css_set_lock);
694 /* Add reference counts and links from the new css_set. */
69d0206c 695 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 696 struct cgroup *c = link->cgrp;
69d0206c 697
7717f7ba
PM
698 if (c->root == cgrp->root)
699 c = cgrp;
69d0206c 700 link_css_set(&tmp_links, cset, c);
7717f7ba 701 }
817929ec 702
69d0206c 703 BUG_ON(!list_empty(&tmp_links));
817929ec 704
817929ec 705 css_set_count++;
472b1053
LZ
706
707 /* Add this cgroup group to the hash table */
5abb8855
TH
708 key = css_set_hash(cset->subsys);
709 hash_add(css_set_table, &cset->hlist, key);
472b1053 710
817929ec
PM
711 write_unlock(&css_set_lock);
712
5abb8855 713 return cset;
b4f48b63
PM
714}
715
7717f7ba
PM
716/*
717 * Return the cgroup for "task" from the given hierarchy. Must be
718 * called with cgroup_mutex held.
719 */
720static struct cgroup *task_cgroup_from_root(struct task_struct *task,
721 struct cgroupfs_root *root)
722{
5abb8855 723 struct css_set *cset;
7717f7ba
PM
724 struct cgroup *res = NULL;
725
726 BUG_ON(!mutex_is_locked(&cgroup_mutex));
727 read_lock(&css_set_lock);
728 /*
729 * No need to lock the task - since we hold cgroup_mutex the
730 * task can't change groups, so the only thing that can happen
731 * is that it exits and its css is set back to init_css_set.
732 */
a8ad805c 733 cset = task_css_set(task);
5abb8855 734 if (cset == &init_css_set) {
7717f7ba
PM
735 res = &root->top_cgroup;
736 } else {
69d0206c
TH
737 struct cgrp_cset_link *link;
738
739 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 740 struct cgroup *c = link->cgrp;
69d0206c 741
7717f7ba
PM
742 if (c->root == root) {
743 res = c;
744 break;
745 }
746 }
747 }
748 read_unlock(&css_set_lock);
749 BUG_ON(!res);
750 return res;
751}
752
ddbcc7e8
PM
753/*
754 * There is one global cgroup mutex. We also require taking
755 * task_lock() when dereferencing a task's cgroup subsys pointers.
756 * See "The task_lock() exception", at the end of this comment.
757 *
758 * A task must hold cgroup_mutex to modify cgroups.
759 *
760 * Any task can increment and decrement the count field without lock.
761 * So in general, code holding cgroup_mutex can't rely on the count
762 * field not changing. However, if the count goes to zero, then only
956db3ca 763 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
764 * means that no tasks are currently attached, therefore there is no
765 * way a task attached to that cgroup can fork (the other way to
766 * increment the count). So code holding cgroup_mutex can safely
767 * assume that if the count is zero, it will stay zero. Similarly, if
768 * a task holds cgroup_mutex on a cgroup with zero count, it
769 * knows that the cgroup won't be removed, as cgroup_rmdir()
770 * needs that mutex.
771 *
ddbcc7e8
PM
772 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
773 * (usually) take cgroup_mutex. These are the two most performance
774 * critical pieces of code here. The exception occurs on cgroup_exit(),
775 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
776 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
777 * to the release agent with the name of the cgroup (path relative to
778 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
779 *
780 * A cgroup can only be deleted if both its 'count' of using tasks
781 * is zero, and its list of 'children' cgroups is empty. Since all
782 * tasks in the system use _some_ cgroup, and since there is always at
783 * least one task in the system (init, pid == 1), therefore, top_cgroup
784 * always has either children cgroups and/or using tasks. So we don't
785 * need a special hack to ensure that top_cgroup cannot be deleted.
786 *
787 * The task_lock() exception
788 *
789 * The need for this exception arises from the action of
d0b2fdd2 790 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 791 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
792 * several performance critical places that need to reference
793 * task->cgroup without the expense of grabbing a system global
794 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 795 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
796 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
797 * the task_struct routinely used for such matters.
798 *
799 * P.S. One more locking exception. RCU is used to guard the
956db3ca 800 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
801 */
802
ddbcc7e8
PM
803/*
804 * A couple of forward declarations required, due to cyclic reference loop:
805 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
806 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
807 * -> cgroup_mkdir.
808 */
809
18bb1db3 810static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 811static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 812static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 813static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 814static const struct inode_operations cgroup_dir_inode_operations;
828c0950 815static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
816
817static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 818 .name = "cgroup",
e4ad08fe 819 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 820};
ddbcc7e8 821
38460b48
KH
822static int alloc_css_id(struct cgroup_subsys *ss,
823 struct cgroup *parent, struct cgroup *child);
824
a5e7ed32 825static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
826{
827 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
828
829 if (inode) {
85fe4025 830 inode->i_ino = get_next_ino();
ddbcc7e8 831 inode->i_mode = mode;
76aac0e9
DH
832 inode->i_uid = current_fsuid();
833 inode->i_gid = current_fsgid();
ddbcc7e8
PM
834 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
835 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
836 }
837 return inode;
838}
839
65dff759
LZ
840static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
841{
842 struct cgroup_name *name;
843
844 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
845 if (!name)
846 return NULL;
847 strcpy(name->name, dentry->d_name.name);
848 return name;
849}
850
be445626
LZ
851static void cgroup_free_fn(struct work_struct *work)
852{
ea15f8cc 853 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
854 struct cgroup_subsys *ss;
855
856 mutex_lock(&cgroup_mutex);
857 /*
858 * Release the subsystem state objects.
859 */
eb95419b
TH
860 for_each_root_subsys(cgrp->root, ss) {
861 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
862
863 ss->css_free(css);
864 }
be445626
LZ
865
866 cgrp->root->number_of_cgroups--;
867 mutex_unlock(&cgroup_mutex);
868
415cf07a
LZ
869 /*
870 * We get a ref to the parent's dentry, and put the ref when
871 * this cgroup is being freed, so it's guaranteed that the
872 * parent won't be destroyed before its children.
873 */
874 dput(cgrp->parent->dentry);
875
be445626
LZ
876 /*
877 * Drop the active superblock reference that we took when we
cc20e01c
LZ
878 * created the cgroup. This will free cgrp->root, if we are
879 * holding the last reference to @sb.
be445626
LZ
880 */
881 deactivate_super(cgrp->root->sb);
882
883 /*
884 * if we're getting rid of the cgroup, refcount should ensure
885 * that there are no pidlists left.
886 */
887 BUG_ON(!list_empty(&cgrp->pidlists));
888
889 simple_xattrs_free(&cgrp->xattrs);
890
65dff759 891 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
892 kfree(cgrp);
893}
894
895static void cgroup_free_rcu(struct rcu_head *head)
896{
897 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
898
ea15f8cc
TH
899 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
900 schedule_work(&cgrp->destroy_work);
be445626
LZ
901}
902
ddbcc7e8
PM
903static void cgroup_diput(struct dentry *dentry, struct inode *inode)
904{
905 /* is dentry a directory ? if so, kfree() associated cgroup */
906 if (S_ISDIR(inode->i_mode)) {
bd89aabc 907 struct cgroup *cgrp = dentry->d_fsdata;
be445626 908
54766d4a 909 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 910 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
911 } else {
912 struct cfent *cfe = __d_cfe(dentry);
913 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
914
915 WARN_ONCE(!list_empty(&cfe->node) &&
916 cgrp != &cgrp->root->top_cgroup,
917 "cfe still linked for %s\n", cfe->type->name);
712317ad 918 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 919 kfree(cfe);
ddbcc7e8
PM
920 }
921 iput(inode);
922}
923
c72a04e3
AV
924static int cgroup_delete(const struct dentry *d)
925{
926 return 1;
927}
928
ddbcc7e8
PM
929static void remove_dir(struct dentry *d)
930{
931 struct dentry *parent = dget(d->d_parent);
932
933 d_delete(d);
934 simple_rmdir(parent->d_inode, d);
935 dput(parent);
936}
937
2739d3cc 938static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
939{
940 struct cfent *cfe;
941
942 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
943 lockdep_assert_held(&cgroup_mutex);
944
2739d3cc
LZ
945 /*
946 * If we're doing cleanup due to failure of cgroup_create(),
947 * the corresponding @cfe may not exist.
948 */
05ef1d7c
TH
949 list_for_each_entry(cfe, &cgrp->files, node) {
950 struct dentry *d = cfe->dentry;
951
952 if (cft && cfe->type != cft)
953 continue;
954
955 dget(d);
956 d_delete(d);
ce27e317 957 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
958 list_del_init(&cfe->node);
959 dput(d);
960
2739d3cc 961 break;
ddbcc7e8 962 }
05ef1d7c
TH
963}
964
13af07df 965/**
628f7cd4 966 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 967 * @cgrp: target cgroup
13af07df
AR
968 * @subsys_mask: mask of the subsystem ids whose files should be removed
969 */
628f7cd4 970static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 971{
13af07df 972 struct cgroup_subsys *ss;
b420ba7d 973 int i;
05ef1d7c 974
b420ba7d 975 for_each_subsys(ss, i) {
13af07df 976 struct cftype_set *set;
b420ba7d
TH
977
978 if (!test_bit(i, &subsys_mask))
13af07df
AR
979 continue;
980 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 981 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 982 }
ddbcc7e8
PM
983}
984
985/*
986 * NOTE : the dentry must have been dget()'ed
987 */
988static void cgroup_d_remove_dir(struct dentry *dentry)
989{
2fd6b7f5 990 struct dentry *parent;
ddbcc7e8 991
2fd6b7f5
NP
992 parent = dentry->d_parent;
993 spin_lock(&parent->d_lock);
3ec762ad 994 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 995 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
996 spin_unlock(&dentry->d_lock);
997 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
998 remove_dir(dentry);
999}
1000
aae8aab4 1001/*
cf5d5941
BB
1002 * Call with cgroup_mutex held. Drops reference counts on modules, including
1003 * any duplicate ones that parse_cgroupfs_options took. If this function
1004 * returns an error, no reference counts are touched.
aae8aab4 1005 */
ddbcc7e8 1006static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1007 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1008{
bd89aabc 1009 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1010 struct cgroup_subsys *ss;
1d5be6b2 1011 unsigned long pinned = 0;
3126121f 1012 int i, ret;
ddbcc7e8 1013
aae8aab4 1014 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1015 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1016
ddbcc7e8 1017 /* Check that any added subsystems are currently free */
30159ec7 1018 for_each_subsys(ss, i) {
1d5be6b2 1019 if (!(added_mask & (1 << i)))
ddbcc7e8 1020 continue;
30159ec7 1021
1d5be6b2 1022 /* is the subsystem mounted elsewhere? */
9871bf95 1023 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
1024 ret = -EBUSY;
1025 goto out_put;
1026 }
1027
1028 /* pin the module */
1029 if (!try_module_get(ss->module)) {
1030 ret = -ENOENT;
1031 goto out_put;
ddbcc7e8 1032 }
1d5be6b2
TH
1033 pinned |= 1 << i;
1034 }
1035
1036 /* subsys could be missing if unloaded between parsing and here */
1037 if (added_mask != pinned) {
1038 ret = -ENOENT;
1039 goto out_put;
ddbcc7e8
PM
1040 }
1041
3126121f
TH
1042 ret = cgroup_populate_dir(cgrp, added_mask);
1043 if (ret)
1d5be6b2 1044 goto out_put;
3126121f
TH
1045
1046 /*
1047 * Nothing can fail from this point on. Remove files for the
1048 * removed subsystems and rebind each subsystem.
1049 */
1050 cgroup_clear_dir(cgrp, removed_mask);
1051
30159ec7 1052 for_each_subsys(ss, i) {
ddbcc7e8 1053 unsigned long bit = 1UL << i;
30159ec7 1054
a1a71b45 1055 if (bit & added_mask) {
ddbcc7e8 1056 /* We're binding this subsystem to this hierarchy */
bd89aabc 1057 BUG_ON(cgrp->subsys[i]);
9871bf95
TH
1058 BUG_ON(!cgroup_dummy_top->subsys[i]);
1059 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
a8a648c4 1060
9871bf95 1061 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
bd89aabc 1062 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1063 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1064 ss->root = root;
ddbcc7e8 1065 if (ss->bind)
eb95419b 1066 ss->bind(cgrp->subsys[i]);
a8a648c4 1067
cf5d5941 1068 /* refcount was already taken, and we're keeping it */
a8a648c4 1069 root->subsys_mask |= bit;
a1a71b45 1070 } else if (bit & removed_mask) {
ddbcc7e8 1071 /* We're removing this subsystem */
9871bf95 1072 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
bd89aabc 1073 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
a8a648c4 1074
ddbcc7e8 1075 if (ss->bind)
eb95419b 1076 ss->bind(cgroup_dummy_top->subsys[i]);
9871bf95 1077 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
bd89aabc 1078 cgrp->subsys[i] = NULL;
9871bf95
TH
1079 cgroup_subsys[i]->root = &cgroup_dummy_root;
1080 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1081
cf5d5941
BB
1082 /* subsystem is now free - drop reference on module */
1083 module_put(ss->module);
a8a648c4 1084 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1085 }
1086 }
ddbcc7e8 1087
1672d040
TH
1088 /*
1089 * Mark @root has finished binding subsystems. @root->subsys_mask
1090 * now matches the bound subsystems.
1091 */
1092 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1093
ddbcc7e8 1094 return 0;
1d5be6b2
TH
1095
1096out_put:
1097 for_each_subsys(ss, i)
1098 if (pinned & (1 << i))
1099 module_put(ss->module);
1100 return ret;
ddbcc7e8
PM
1101}
1102
34c80b1d 1103static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1104{
34c80b1d 1105 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1106 struct cgroup_subsys *ss;
1107
e25e2cbb 1108 mutex_lock(&cgroup_root_mutex);
5549c497 1109 for_each_root_subsys(root, ss)
ddbcc7e8 1110 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1111 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1112 seq_puts(seq, ",sane_behavior");
93438629 1113 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1114 seq_puts(seq, ",noprefix");
93438629 1115 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1116 seq_puts(seq, ",xattr");
81a6a5cd
PM
1117 if (strlen(root->release_agent_path))
1118 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1119 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1120 seq_puts(seq, ",clone_children");
c6d57f33
PM
1121 if (strlen(root->name))
1122 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1123 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1124 return 0;
1125}
1126
1127struct cgroup_sb_opts {
a1a71b45 1128 unsigned long subsys_mask;
ddbcc7e8 1129 unsigned long flags;
81a6a5cd 1130 char *release_agent;
2260e7fc 1131 bool cpuset_clone_children;
c6d57f33 1132 char *name;
2c6ab6d2
PM
1133 /* User explicitly requested empty subsystem */
1134 bool none;
c6d57f33
PM
1135
1136 struct cgroupfs_root *new_root;
2c6ab6d2 1137
ddbcc7e8
PM
1138};
1139
aae8aab4 1140/*
9871bf95
TH
1141 * Convert a hierarchy specifier into a bitmask of subsystems and
1142 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1143 * array. This function takes refcounts on subsystems to be used, unless it
1144 * returns error, in which case no refcounts are taken.
aae8aab4 1145 */
cf5d5941 1146static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1147{
32a8cf23
DL
1148 char *token, *o = data;
1149 bool all_ss = false, one_ss = false;
f9ab5b5b 1150 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1151 struct cgroup_subsys *ss;
1152 int i;
f9ab5b5b 1153
aae8aab4
BB
1154 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1155
f9ab5b5b
LZ
1156#ifdef CONFIG_CPUSETS
1157 mask = ~(1UL << cpuset_subsys_id);
1158#endif
ddbcc7e8 1159
c6d57f33 1160 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1161
1162 while ((token = strsep(&o, ",")) != NULL) {
1163 if (!*token)
1164 return -EINVAL;
32a8cf23 1165 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1166 /* Explicitly have no subsystems */
1167 opts->none = true;
32a8cf23
DL
1168 continue;
1169 }
1170 if (!strcmp(token, "all")) {
1171 /* Mutually exclusive option 'all' + subsystem name */
1172 if (one_ss)
1173 return -EINVAL;
1174 all_ss = true;
1175 continue;
1176 }
873fe09e
TH
1177 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1178 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1179 continue;
1180 }
32a8cf23 1181 if (!strcmp(token, "noprefix")) {
93438629 1182 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1183 continue;
1184 }
1185 if (!strcmp(token, "clone_children")) {
2260e7fc 1186 opts->cpuset_clone_children = true;
32a8cf23
DL
1187 continue;
1188 }
03b1cde6 1189 if (!strcmp(token, "xattr")) {
93438629 1190 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1191 continue;
1192 }
32a8cf23 1193 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1194 /* Specifying two release agents is forbidden */
1195 if (opts->release_agent)
1196 return -EINVAL;
c6d57f33 1197 opts->release_agent =
e400c285 1198 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1199 if (!opts->release_agent)
1200 return -ENOMEM;
32a8cf23
DL
1201 continue;
1202 }
1203 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1204 const char *name = token + 5;
1205 /* Can't specify an empty name */
1206 if (!strlen(name))
1207 return -EINVAL;
1208 /* Must match [\w.-]+ */
1209 for (i = 0; i < strlen(name); i++) {
1210 char c = name[i];
1211 if (isalnum(c))
1212 continue;
1213 if ((c == '.') || (c == '-') || (c == '_'))
1214 continue;
1215 return -EINVAL;
1216 }
1217 /* Specifying two names is forbidden */
1218 if (opts->name)
1219 return -EINVAL;
1220 opts->name = kstrndup(name,
e400c285 1221 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1222 GFP_KERNEL);
1223 if (!opts->name)
1224 return -ENOMEM;
32a8cf23
DL
1225
1226 continue;
1227 }
1228
30159ec7 1229 for_each_subsys(ss, i) {
32a8cf23
DL
1230 if (strcmp(token, ss->name))
1231 continue;
1232 if (ss->disabled)
1233 continue;
1234
1235 /* Mutually exclusive option 'all' + subsystem name */
1236 if (all_ss)
1237 return -EINVAL;
a1a71b45 1238 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1239 one_ss = true;
1240
1241 break;
1242 }
1243 if (i == CGROUP_SUBSYS_COUNT)
1244 return -ENOENT;
1245 }
1246
1247 /*
1248 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1249 * otherwise if 'none', 'name=' and a subsystem name options
1250 * were not specified, let's default to 'all'
32a8cf23 1251 */
30159ec7
TH
1252 if (all_ss || (!one_ss && !opts->none && !opts->name))
1253 for_each_subsys(ss, i)
1254 if (!ss->disabled)
1255 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1256
2c6ab6d2
PM
1257 /* Consistency checks */
1258
873fe09e
TH
1259 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1260 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1261
1262 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1263 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1264 return -EINVAL;
1265 }
1266
1267 if (opts->cpuset_clone_children) {
1268 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1269 return -EINVAL;
1270 }
1271 }
1272
f9ab5b5b
LZ
1273 /*
1274 * Option noprefix was introduced just for backward compatibility
1275 * with the old cpuset, so we allow noprefix only if mounting just
1276 * the cpuset subsystem.
1277 */
93438629 1278 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1279 return -EINVAL;
1280
2c6ab6d2
PM
1281
1282 /* Can't specify "none" and some subsystems */
a1a71b45 1283 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1284 return -EINVAL;
1285
1286 /*
1287 * We either have to specify by name or by subsystems. (So all
1288 * empty hierarchies must have a name).
1289 */
a1a71b45 1290 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1291 return -EINVAL;
1292
1293 return 0;
1294}
1295
1296static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1297{
1298 int ret = 0;
1299 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1300 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1301 struct cgroup_sb_opts opts;
a1a71b45 1302 unsigned long added_mask, removed_mask;
ddbcc7e8 1303
873fe09e
TH
1304 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1305 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1306 return -EINVAL;
1307 }
1308
bd89aabc 1309 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1310 mutex_lock(&cgroup_mutex);
e25e2cbb 1311 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1312
1313 /* See what subsystems are wanted */
1314 ret = parse_cgroupfs_options(data, &opts);
1315 if (ret)
1316 goto out_unlock;
1317
a8a648c4 1318 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1319 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1320 task_tgid_nr(current), current->comm);
1321
a1a71b45
AR
1322 added_mask = opts.subsys_mask & ~root->subsys_mask;
1323 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1324
cf5d5941 1325 /* Don't allow flags or name to change at remount */
0ce6cba3 1326 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1327 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1328 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1329 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1330 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1331 ret = -EINVAL;
1332 goto out_unlock;
1333 }
1334
f172e67c
TH
1335 /* remounting is not allowed for populated hierarchies */
1336 if (root->number_of_cgroups > 1) {
1337 ret = -EBUSY;
1338 goto out_unlock;
1339 }
1340
a8a648c4 1341 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1342 if (ret)
0670e08b 1343 goto out_unlock;
ddbcc7e8 1344
81a6a5cd
PM
1345 if (opts.release_agent)
1346 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1347 out_unlock:
66bdc9cf 1348 kfree(opts.release_agent);
c6d57f33 1349 kfree(opts.name);
e25e2cbb 1350 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1351 mutex_unlock(&cgroup_mutex);
bd89aabc 1352 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1353 return ret;
1354}
1355
b87221de 1356static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1357 .statfs = simple_statfs,
1358 .drop_inode = generic_delete_inode,
1359 .show_options = cgroup_show_options,
1360 .remount_fs = cgroup_remount,
1361};
1362
cc31edce
PM
1363static void init_cgroup_housekeeping(struct cgroup *cgrp)
1364{
1365 INIT_LIST_HEAD(&cgrp->sibling);
1366 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1367 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1368 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1369 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1370 INIT_LIST_HEAD(&cgrp->pidlists);
1371 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1372 cgrp->dummy_css.cgroup = cgrp;
0dea1168
KS
1373 INIT_LIST_HEAD(&cgrp->event_list);
1374 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1375 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1376}
c6d57f33 1377
ddbcc7e8
PM
1378static void init_cgroup_root(struct cgroupfs_root *root)
1379{
bd89aabc 1380 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1381
ddbcc7e8
PM
1382 INIT_LIST_HEAD(&root->subsys_list);
1383 INIT_LIST_HEAD(&root->root_list);
1384 root->number_of_cgroups = 1;
bd89aabc 1385 cgrp->root = root;
a4ea1cc9 1386 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1387 init_cgroup_housekeeping(cgrp);
4e96ee8e 1388 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1389}
1390
fc76df70 1391static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1392{
1a574231 1393 int id;
2c6ab6d2 1394
54e7b4eb
TH
1395 lockdep_assert_held(&cgroup_mutex);
1396 lockdep_assert_held(&cgroup_root_mutex);
1397
fc76df70
TH
1398 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1399 GFP_KERNEL);
1a574231
TH
1400 if (id < 0)
1401 return id;
1402
1403 root->hierarchy_id = id;
fa3ca07e
TH
1404 return 0;
1405}
1406
1407static void cgroup_exit_root_id(struct cgroupfs_root *root)
1408{
54e7b4eb
TH
1409 lockdep_assert_held(&cgroup_mutex);
1410 lockdep_assert_held(&cgroup_root_mutex);
1411
fa3ca07e 1412 if (root->hierarchy_id) {
1a574231 1413 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1414 root->hierarchy_id = 0;
1415 }
2c6ab6d2
PM
1416}
1417
ddbcc7e8
PM
1418static int cgroup_test_super(struct super_block *sb, void *data)
1419{
c6d57f33 1420 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1421 struct cgroupfs_root *root = sb->s_fs_info;
1422
c6d57f33
PM
1423 /* If we asked for a name then it must match */
1424 if (opts->name && strcmp(opts->name, root->name))
1425 return 0;
ddbcc7e8 1426
2c6ab6d2
PM
1427 /*
1428 * If we asked for subsystems (or explicitly for no
1429 * subsystems) then they must match
1430 */
a1a71b45
AR
1431 if ((opts->subsys_mask || opts->none)
1432 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1433 return 0;
1434
1435 return 1;
1436}
1437
c6d57f33
PM
1438static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1439{
1440 struct cgroupfs_root *root;
1441
a1a71b45 1442 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1443 return NULL;
1444
1445 root = kzalloc(sizeof(*root), GFP_KERNEL);
1446 if (!root)
1447 return ERR_PTR(-ENOMEM);
1448
1449 init_cgroup_root(root);
2c6ab6d2 1450
1672d040
TH
1451 /*
1452 * We need to set @root->subsys_mask now so that @root can be
1453 * matched by cgroup_test_super() before it finishes
1454 * initialization; otherwise, competing mounts with the same
1455 * options may try to bind the same subsystems instead of waiting
1456 * for the first one leading to unexpected mount errors.
1457 * SUBSYS_BOUND will be set once actual binding is complete.
1458 */
a1a71b45 1459 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1460 root->flags = opts->flags;
1461 if (opts->release_agent)
1462 strcpy(root->release_agent_path, opts->release_agent);
1463 if (opts->name)
1464 strcpy(root->name, opts->name);
2260e7fc
TH
1465 if (opts->cpuset_clone_children)
1466 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1467 return root;
1468}
1469
fa3ca07e 1470static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1471{
fa3ca07e
TH
1472 if (root) {
1473 /* hierarhcy ID shoulid already have been released */
1474 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1475
4e96ee8e 1476 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1477 kfree(root);
1478 }
2c6ab6d2
PM
1479}
1480
ddbcc7e8
PM
1481static int cgroup_set_super(struct super_block *sb, void *data)
1482{
1483 int ret;
c6d57f33
PM
1484 struct cgroup_sb_opts *opts = data;
1485
1486 /* If we don't have a new root, we can't set up a new sb */
1487 if (!opts->new_root)
1488 return -EINVAL;
1489
a1a71b45 1490 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1491
1492 ret = set_anon_super(sb, NULL);
1493 if (ret)
1494 return ret;
1495
c6d57f33
PM
1496 sb->s_fs_info = opts->new_root;
1497 opts->new_root->sb = sb;
ddbcc7e8
PM
1498
1499 sb->s_blocksize = PAGE_CACHE_SIZE;
1500 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1501 sb->s_magic = CGROUP_SUPER_MAGIC;
1502 sb->s_op = &cgroup_ops;
1503
1504 return 0;
1505}
1506
1507static int cgroup_get_rootdir(struct super_block *sb)
1508{
0df6a63f
AV
1509 static const struct dentry_operations cgroup_dops = {
1510 .d_iput = cgroup_diput,
c72a04e3 1511 .d_delete = cgroup_delete,
0df6a63f
AV
1512 };
1513
ddbcc7e8
PM
1514 struct inode *inode =
1515 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1516
1517 if (!inode)
1518 return -ENOMEM;
1519
ddbcc7e8
PM
1520 inode->i_fop = &simple_dir_operations;
1521 inode->i_op = &cgroup_dir_inode_operations;
1522 /* directories start off with i_nlink == 2 (for "." entry) */
1523 inc_nlink(inode);
48fde701
AV
1524 sb->s_root = d_make_root(inode);
1525 if (!sb->s_root)
ddbcc7e8 1526 return -ENOMEM;
0df6a63f
AV
1527 /* for everything else we want ->d_op set */
1528 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1529 return 0;
1530}
1531
f7e83571 1532static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1533 int flags, const char *unused_dev_name,
f7e83571 1534 void *data)
ddbcc7e8
PM
1535{
1536 struct cgroup_sb_opts opts;
c6d57f33 1537 struct cgroupfs_root *root;
ddbcc7e8
PM
1538 int ret = 0;
1539 struct super_block *sb;
c6d57f33 1540 struct cgroupfs_root *new_root;
3126121f 1541 struct list_head tmp_links;
e25e2cbb 1542 struct inode *inode;
3126121f 1543 const struct cred *cred;
ddbcc7e8
PM
1544
1545 /* First find the desired set of subsystems */
aae8aab4 1546 mutex_lock(&cgroup_mutex);
ddbcc7e8 1547 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1548 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1549 if (ret)
1550 goto out_err;
ddbcc7e8 1551
c6d57f33
PM
1552 /*
1553 * Allocate a new cgroup root. We may not need it if we're
1554 * reusing an existing hierarchy.
1555 */
1556 new_root = cgroup_root_from_opts(&opts);
1557 if (IS_ERR(new_root)) {
1558 ret = PTR_ERR(new_root);
1d5be6b2 1559 goto out_err;
81a6a5cd 1560 }
c6d57f33 1561 opts.new_root = new_root;
ddbcc7e8 1562
c6d57f33 1563 /* Locate an existing or new sb for this hierarchy */
9249e17f 1564 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1565 if (IS_ERR(sb)) {
c6d57f33 1566 ret = PTR_ERR(sb);
fa3ca07e 1567 cgroup_free_root(opts.new_root);
1d5be6b2 1568 goto out_err;
ddbcc7e8
PM
1569 }
1570
c6d57f33
PM
1571 root = sb->s_fs_info;
1572 BUG_ON(!root);
1573 if (root == opts.new_root) {
1574 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1575 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1576 struct cgroupfs_root *existing_root;
28fd5dfc 1577 int i;
5abb8855 1578 struct css_set *cset;
ddbcc7e8
PM
1579
1580 BUG_ON(sb->s_root != NULL);
1581
1582 ret = cgroup_get_rootdir(sb);
1583 if (ret)
1584 goto drop_new_super;
817929ec 1585 inode = sb->s_root->d_inode;
ddbcc7e8 1586
817929ec 1587 mutex_lock(&inode->i_mutex);
ddbcc7e8 1588 mutex_lock(&cgroup_mutex);
e25e2cbb 1589 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1590
4e96ee8e
LZ
1591 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1592 0, 1, GFP_KERNEL);
1593 if (root_cgrp->id < 0)
1594 goto unlock_drop;
1595
e25e2cbb
TH
1596 /* Check for name clashes with existing mounts */
1597 ret = -EBUSY;
1598 if (strlen(root->name))
1599 for_each_active_root(existing_root)
1600 if (!strcmp(existing_root->name, root->name))
1601 goto unlock_drop;
c6d57f33 1602
817929ec
PM
1603 /*
1604 * We're accessing css_set_count without locking
1605 * css_set_lock here, but that's OK - it can only be
1606 * increased by someone holding cgroup_lock, and
1607 * that's us. The worst that can happen is that we
1608 * have some link structures left over
1609 */
69d0206c 1610 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1611 if (ret)
1612 goto unlock_drop;
817929ec 1613
fc76df70
TH
1614 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1615 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1616 if (ret)
1617 goto unlock_drop;
1618
3126121f
TH
1619 sb->s_root->d_fsdata = root_cgrp;
1620 root_cgrp->dentry = sb->s_root;
1621
1622 /*
1623 * We're inside get_sb() and will call lookup_one_len() to
1624 * create the root files, which doesn't work if SELinux is
1625 * in use. The following cred dancing somehow works around
1626 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1627 * populating new cgroupfs mount") for more details.
1628 */
1629 cred = override_creds(&init_cred);
1630
2bb566cb 1631 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1632 if (ret)
1633 goto rm_base_files;
1634
a8a648c4 1635 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1636 if (ret)
1637 goto rm_base_files;
1638
1639 revert_creds(cred);
1640
cf5d5941
BB
1641 /*
1642 * There must be no failure case after here, since rebinding
1643 * takes care of subsystems' refcounts, which are explicitly
1644 * dropped in the failure exit path.
1645 */
ddbcc7e8 1646
9871bf95
TH
1647 list_add(&root->root_list, &cgroup_roots);
1648 cgroup_root_count++;
ddbcc7e8 1649
817929ec
PM
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
5abb8855 1653 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1654 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1655 write_unlock(&css_set_lock);
1656
69d0206c 1657 free_cgrp_cset_links(&tmp_links);
817929ec 1658
c12f65d4 1659 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1660 BUG_ON(root->number_of_cgroups != 1);
1661
e25e2cbb 1662 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1663 mutex_unlock(&cgroup_mutex);
34f77a90 1664 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1665 } else {
1666 /*
1667 * We re-used an existing hierarchy - the new root (if
1668 * any) is not needed
1669 */
fa3ca07e 1670 cgroup_free_root(opts.new_root);
873fe09e 1671
c7ba8287 1672 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1673 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1674 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1675 ret = -EINVAL;
1676 goto drop_new_super;
1677 } else {
1678 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1679 }
873fe09e 1680 }
ddbcc7e8
PM
1681 }
1682
c6d57f33
PM
1683 kfree(opts.release_agent);
1684 kfree(opts.name);
f7e83571 1685 return dget(sb->s_root);
ddbcc7e8 1686
3126121f
TH
1687 rm_base_files:
1688 free_cgrp_cset_links(&tmp_links);
2bb566cb 1689 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1690 revert_creds(cred);
e25e2cbb 1691 unlock_drop:
fa3ca07e 1692 cgroup_exit_root_id(root);
e25e2cbb
TH
1693 mutex_unlock(&cgroup_root_mutex);
1694 mutex_unlock(&cgroup_mutex);
1695 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1696 drop_new_super:
6f5bbff9 1697 deactivate_locked_super(sb);
c6d57f33
PM
1698 out_err:
1699 kfree(opts.release_agent);
1700 kfree(opts.name);
f7e83571 1701 return ERR_PTR(ret);
ddbcc7e8
PM
1702}
1703
1704static void cgroup_kill_sb(struct super_block *sb) {
1705 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1706 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1707 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1708 int ret;
1709
1710 BUG_ON(!root);
1711
1712 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1713 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1714
3126121f 1715 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1716 mutex_lock(&cgroup_mutex);
e25e2cbb 1717 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1718
1719 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1720 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1721 ret = rebind_subsystems(root, 0, root->subsys_mask);
1722 /* Shouldn't be able to fail ... */
1723 BUG_ON(ret);
1724 }
ddbcc7e8 1725
817929ec 1726 /*
69d0206c 1727 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1728 * root cgroup
1729 */
1730 write_lock(&css_set_lock);
71cbb949 1731
69d0206c
TH
1732 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1733 list_del(&link->cset_link);
1734 list_del(&link->cgrp_link);
817929ec
PM
1735 kfree(link);
1736 }
1737 write_unlock(&css_set_lock);
1738
839ec545
PM
1739 if (!list_empty(&root->root_list)) {
1740 list_del(&root->root_list);
9871bf95 1741 cgroup_root_count--;
839ec545 1742 }
e5f6a860 1743
fa3ca07e
TH
1744 cgroup_exit_root_id(root);
1745
e25e2cbb 1746 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1747 mutex_unlock(&cgroup_mutex);
3126121f 1748 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1749
03b1cde6
AR
1750 simple_xattrs_free(&cgrp->xattrs);
1751
ddbcc7e8 1752 kill_litter_super(sb);
fa3ca07e 1753 cgroup_free_root(root);
ddbcc7e8
PM
1754}
1755
1756static struct file_system_type cgroup_fs_type = {
1757 .name = "cgroup",
f7e83571 1758 .mount = cgroup_mount,
ddbcc7e8
PM
1759 .kill_sb = cgroup_kill_sb,
1760};
1761
676db4af
GK
1762static struct kobject *cgroup_kobj;
1763
a043e3b2
LZ
1764/**
1765 * cgroup_path - generate the path of a cgroup
1766 * @cgrp: the cgroup in question
1767 * @buf: the buffer to write the path into
1768 * @buflen: the length of the buffer
1769 *
65dff759
LZ
1770 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1771 *
1772 * We can't generate cgroup path using dentry->d_name, as accessing
1773 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1774 * inode's i_mutex, while on the other hand cgroup_path() can be called
1775 * with some irq-safe spinlocks held.
ddbcc7e8 1776 */
bd89aabc 1777int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1778{
65dff759 1779 int ret = -ENAMETOOLONG;
ddbcc7e8 1780 char *start;
febfcef6 1781
da1f296f
TH
1782 if (!cgrp->parent) {
1783 if (strlcpy(buf, "/", buflen) >= buflen)
1784 return -ENAMETOOLONG;
ddbcc7e8
PM
1785 return 0;
1786 }
1787
316eb661 1788 start = buf + buflen - 1;
316eb661 1789 *start = '\0';
9a9686b6 1790
65dff759 1791 rcu_read_lock();
da1f296f 1792 do {
65dff759
LZ
1793 const char *name = cgroup_name(cgrp);
1794 int len;
1795
1796 len = strlen(name);
ddbcc7e8 1797 if ((start -= len) < buf)
65dff759
LZ
1798 goto out;
1799 memcpy(start, name, len);
9a9686b6 1800
ddbcc7e8 1801 if (--start < buf)
65dff759 1802 goto out;
ddbcc7e8 1803 *start = '/';
65dff759
LZ
1804
1805 cgrp = cgrp->parent;
da1f296f 1806 } while (cgrp->parent);
65dff759 1807 ret = 0;
ddbcc7e8 1808 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1809out:
1810 rcu_read_unlock();
1811 return ret;
ddbcc7e8 1812}
67523c48 1813EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1814
857a2beb 1815/**
913ffdb5 1816 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1817 * @task: target task
857a2beb
TH
1818 * @buf: the buffer to write the path into
1819 * @buflen: the length of the buffer
1820 *
913ffdb5
TH
1821 * Determine @task's cgroup on the first (the one with the lowest non-zero
1822 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1823 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1824 * cgroup controller callbacks.
1825 *
1826 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1827 */
913ffdb5 1828int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1829{
1830 struct cgroupfs_root *root;
913ffdb5
TH
1831 struct cgroup *cgrp;
1832 int hierarchy_id = 1, ret = 0;
1833
1834 if (buflen < 2)
1835 return -ENAMETOOLONG;
857a2beb
TH
1836
1837 mutex_lock(&cgroup_mutex);
1838
913ffdb5
TH
1839 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1840
857a2beb
TH
1841 if (root) {
1842 cgrp = task_cgroup_from_root(task, root);
1843 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1844 } else {
1845 /* if no hierarchy exists, everyone is in "/" */
1846 memcpy(buf, "/", 2);
857a2beb
TH
1847 }
1848
1849 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1850 return ret;
1851}
913ffdb5 1852EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1853
2f7ee569
TH
1854/*
1855 * Control Group taskset
1856 */
134d3373
TH
1857struct task_and_cgroup {
1858 struct task_struct *task;
1859 struct cgroup *cgrp;
6f4b7e63 1860 struct css_set *cset;
134d3373
TH
1861};
1862
2f7ee569
TH
1863struct cgroup_taskset {
1864 struct task_and_cgroup single;
1865 struct flex_array *tc_array;
1866 int tc_array_len;
1867 int idx;
1868 struct cgroup *cur_cgrp;
1869};
1870
1871/**
1872 * cgroup_taskset_first - reset taskset and return the first task
1873 * @tset: taskset of interest
1874 *
1875 * @tset iteration is initialized and the first task is returned.
1876 */
1877struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1878{
1879 if (tset->tc_array) {
1880 tset->idx = 0;
1881 return cgroup_taskset_next(tset);
1882 } else {
1883 tset->cur_cgrp = tset->single.cgrp;
1884 return tset->single.task;
1885 }
1886}
1887EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1888
1889/**
1890 * cgroup_taskset_next - iterate to the next task in taskset
1891 * @tset: taskset of interest
1892 *
1893 * Return the next task in @tset. Iteration must have been initialized
1894 * with cgroup_taskset_first().
1895 */
1896struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1897{
1898 struct task_and_cgroup *tc;
1899
1900 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1901 return NULL;
1902
1903 tc = flex_array_get(tset->tc_array, tset->idx++);
1904 tset->cur_cgrp = tc->cgrp;
1905 return tc->task;
1906}
1907EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1908
1909/**
1910 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1911 * @tset: taskset of interest
1912 *
1913 * Return the cgroup for the current (last returned) task of @tset. This
1914 * function must be preceded by either cgroup_taskset_first() or
1915 * cgroup_taskset_next().
1916 */
1917struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1918{
1919 return tset->cur_cgrp;
1920}
1921EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1922
1923/**
1924 * cgroup_taskset_size - return the number of tasks in taskset
1925 * @tset: taskset of interest
1926 */
1927int cgroup_taskset_size(struct cgroup_taskset *tset)
1928{
1929 return tset->tc_array ? tset->tc_array_len : 1;
1930}
1931EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1932
1933
74a1166d
BB
1934/*
1935 * cgroup_task_migrate - move a task from one cgroup to another.
1936 *
d0b2fdd2 1937 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1938 */
5abb8855
TH
1939static void cgroup_task_migrate(struct cgroup *old_cgrp,
1940 struct task_struct *tsk,
1941 struct css_set *new_cset)
74a1166d 1942{
5abb8855 1943 struct css_set *old_cset;
74a1166d
BB
1944
1945 /*
026085ef
MSB
1946 * We are synchronized through threadgroup_lock() against PF_EXITING
1947 * setting such that we can't race against cgroup_exit() changing the
1948 * css_set to init_css_set and dropping the old one.
74a1166d 1949 */
c84cdf75 1950 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1951 old_cset = task_css_set(tsk);
74a1166d 1952
74a1166d 1953 task_lock(tsk);
5abb8855 1954 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1955 task_unlock(tsk);
1956
1957 /* Update the css_set linked lists if we're using them */
1958 write_lock(&css_set_lock);
1959 if (!list_empty(&tsk->cg_list))
5abb8855 1960 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1961 write_unlock(&css_set_lock);
1962
1963 /*
5abb8855
TH
1964 * We just gained a reference on old_cset by taking it from the
1965 * task. As trading it for new_cset is protected by cgroup_mutex,
1966 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1967 */
5abb8855
TH
1968 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1969 put_css_set(old_cset);
74a1166d
BB
1970}
1971
a043e3b2 1972/**
081aa458 1973 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1974 * @cgrp: the cgroup to attach to
081aa458
LZ
1975 * @tsk: the task or the leader of the threadgroup to be attached
1976 * @threadgroup: attach the whole threadgroup?
74a1166d 1977 *
257058ae 1978 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1979 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1980 */
47cfcd09
TH
1981static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1982 bool threadgroup)
74a1166d
BB
1983{
1984 int retval, i, group_size;
1985 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1986 struct cgroupfs_root *root = cgrp->root;
1987 /* threadgroup list cursor and array */
081aa458 1988 struct task_struct *leader = tsk;
134d3373 1989 struct task_and_cgroup *tc;
d846687d 1990 struct flex_array *group;
2f7ee569 1991 struct cgroup_taskset tset = { };
74a1166d
BB
1992
1993 /*
1994 * step 0: in order to do expensive, possibly blocking operations for
1995 * every thread, we cannot iterate the thread group list, since it needs
1996 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1997 * group - group_rwsem prevents new threads from appearing, and if
1998 * threads exit, this will just be an over-estimate.
74a1166d 1999 */
081aa458
LZ
2000 if (threadgroup)
2001 group_size = get_nr_threads(tsk);
2002 else
2003 group_size = 1;
d846687d 2004 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2005 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2006 if (!group)
2007 return -ENOMEM;
d846687d 2008 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2009 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2010 if (retval)
2011 goto out_free_group_list;
74a1166d 2012
74a1166d 2013 i = 0;
fb5d2b4c
MSB
2014 /*
2015 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2016 * already PF_EXITING could be freed from underneath us unless we
2017 * take an rcu_read_lock.
2018 */
2019 rcu_read_lock();
74a1166d 2020 do {
134d3373
TH
2021 struct task_and_cgroup ent;
2022
cd3d0952
TH
2023 /* @tsk either already exited or can't exit until the end */
2024 if (tsk->flags & PF_EXITING)
2025 continue;
2026
74a1166d
BB
2027 /* as per above, nr_threads may decrease, but not increase. */
2028 BUG_ON(i >= group_size);
134d3373
TH
2029 ent.task = tsk;
2030 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2031 /* nothing to do if this task is already in the cgroup */
2032 if (ent.cgrp == cgrp)
2033 continue;
61d1d219
MSB
2034 /*
2035 * saying GFP_ATOMIC has no effect here because we did prealloc
2036 * earlier, but it's good form to communicate our expectations.
2037 */
134d3373 2038 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2039 BUG_ON(retval != 0);
74a1166d 2040 i++;
081aa458
LZ
2041
2042 if (!threadgroup)
2043 break;
74a1166d 2044 } while_each_thread(leader, tsk);
fb5d2b4c 2045 rcu_read_unlock();
74a1166d
BB
2046 /* remember the number of threads in the array for later. */
2047 group_size = i;
2f7ee569
TH
2048 tset.tc_array = group;
2049 tset.tc_array_len = group_size;
74a1166d 2050
134d3373
TH
2051 /* methods shouldn't be called if no task is actually migrating */
2052 retval = 0;
892a2b90 2053 if (!group_size)
b07ef774 2054 goto out_free_group_list;
134d3373 2055
74a1166d
BB
2056 /*
2057 * step 1: check that we can legitimately attach to the cgroup.
2058 */
5549c497 2059 for_each_root_subsys(root, ss) {
eb95419b
TH
2060 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2061
74a1166d 2062 if (ss->can_attach) {
eb95419b 2063 retval = ss->can_attach(css, &tset);
74a1166d
BB
2064 if (retval) {
2065 failed_ss = ss;
2066 goto out_cancel_attach;
2067 }
2068 }
74a1166d
BB
2069 }
2070
2071 /*
2072 * step 2: make sure css_sets exist for all threads to be migrated.
2073 * we use find_css_set, which allocates a new one if necessary.
2074 */
74a1166d 2075 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2076 struct css_set *old_cset;
2077
134d3373 2078 tc = flex_array_get(group, i);
a8ad805c 2079 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2080 tc->cset = find_css_set(old_cset, cgrp);
2081 if (!tc->cset) {
61d1d219
MSB
2082 retval = -ENOMEM;
2083 goto out_put_css_set_refs;
74a1166d
BB
2084 }
2085 }
2086
2087 /*
494c167c
TH
2088 * step 3: now that we're guaranteed success wrt the css_sets,
2089 * proceed to move all tasks to the new cgroup. There are no
2090 * failure cases after here, so this is the commit point.
74a1166d 2091 */
74a1166d 2092 for (i = 0; i < group_size; i++) {
134d3373 2093 tc = flex_array_get(group, i);
6f4b7e63 2094 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2095 }
2096 /* nothing is sensitive to fork() after this point. */
2097
2098 /*
494c167c 2099 * step 4: do subsystem attach callbacks.
74a1166d 2100 */
5549c497 2101 for_each_root_subsys(root, ss) {
eb95419b
TH
2102 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2103
74a1166d 2104 if (ss->attach)
eb95419b 2105 ss->attach(css, &tset);
74a1166d
BB
2106 }
2107
2108 /*
2109 * step 5: success! and cleanup
2110 */
74a1166d 2111 retval = 0;
61d1d219
MSB
2112out_put_css_set_refs:
2113 if (retval) {
2114 for (i = 0; i < group_size; i++) {
2115 tc = flex_array_get(group, i);
6f4b7e63 2116 if (!tc->cset)
61d1d219 2117 break;
6f4b7e63 2118 put_css_set(tc->cset);
61d1d219 2119 }
74a1166d
BB
2120 }
2121out_cancel_attach:
74a1166d 2122 if (retval) {
5549c497 2123 for_each_root_subsys(root, ss) {
eb95419b
TH
2124 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2125
494c167c 2126 if (ss == failed_ss)
74a1166d 2127 break;
74a1166d 2128 if (ss->cancel_attach)
eb95419b 2129 ss->cancel_attach(css, &tset);
74a1166d
BB
2130 }
2131 }
74a1166d 2132out_free_group_list:
d846687d 2133 flex_array_free(group);
74a1166d
BB
2134 return retval;
2135}
2136
2137/*
2138 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2139 * function to attach either it or all tasks in its threadgroup. Will lock
2140 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2141 */
74a1166d 2142static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2143{
bbcb81d0 2144 struct task_struct *tsk;
c69e8d9c 2145 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2146 int ret;
2147
74a1166d
BB
2148 if (!cgroup_lock_live_group(cgrp))
2149 return -ENODEV;
2150
b78949eb
MSB
2151retry_find_task:
2152 rcu_read_lock();
bbcb81d0 2153 if (pid) {
73507f33 2154 tsk = find_task_by_vpid(pid);
74a1166d
BB
2155 if (!tsk) {
2156 rcu_read_unlock();
b78949eb
MSB
2157 ret= -ESRCH;
2158 goto out_unlock_cgroup;
bbcb81d0 2159 }
74a1166d
BB
2160 /*
2161 * even if we're attaching all tasks in the thread group, we
2162 * only need to check permissions on one of them.
2163 */
c69e8d9c 2164 tcred = __task_cred(tsk);
14a590c3
EB
2165 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2166 !uid_eq(cred->euid, tcred->uid) &&
2167 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2168 rcu_read_unlock();
b78949eb
MSB
2169 ret = -EACCES;
2170 goto out_unlock_cgroup;
bbcb81d0 2171 }
b78949eb
MSB
2172 } else
2173 tsk = current;
cd3d0952
TH
2174
2175 if (threadgroup)
b78949eb 2176 tsk = tsk->group_leader;
c4c27fbd
MG
2177
2178 /*
14a40ffc 2179 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2180 * trapped in a cpuset, or RT worker may be born in a cgroup
2181 * with no rt_runtime allocated. Just say no.
2182 */
14a40ffc 2183 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2184 ret = -EINVAL;
2185 rcu_read_unlock();
2186 goto out_unlock_cgroup;
2187 }
2188
b78949eb
MSB
2189 get_task_struct(tsk);
2190 rcu_read_unlock();
2191
2192 threadgroup_lock(tsk);
2193 if (threadgroup) {
2194 if (!thread_group_leader(tsk)) {
2195 /*
2196 * a race with de_thread from another thread's exec()
2197 * may strip us of our leadership, if this happens,
2198 * there is no choice but to throw this task away and
2199 * try again; this is
2200 * "double-double-toil-and-trouble-check locking".
2201 */
2202 threadgroup_unlock(tsk);
2203 put_task_struct(tsk);
2204 goto retry_find_task;
2205 }
081aa458
LZ
2206 }
2207
2208 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2209
cd3d0952
TH
2210 threadgroup_unlock(tsk);
2211
bbcb81d0 2212 put_task_struct(tsk);
b78949eb 2213out_unlock_cgroup:
47cfcd09 2214 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2215 return ret;
2216}
2217
7ae1bad9
TH
2218/**
2219 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2220 * @from: attach to all cgroups of a given task
2221 * @tsk: the task to be attached
2222 */
2223int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2224{
2225 struct cgroupfs_root *root;
2226 int retval = 0;
2227
47cfcd09 2228 mutex_lock(&cgroup_mutex);
7ae1bad9 2229 for_each_active_root(root) {
6f4b7e63 2230 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2231
6f4b7e63 2232 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2233 if (retval)
2234 break;
2235 }
47cfcd09 2236 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2237
2238 return retval;
2239}
2240EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2241
182446d0
TH
2242static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2243 struct cftype *cft, u64 pid)
74a1166d 2244{
182446d0 2245 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2246}
2247
182446d0
TH
2248static int cgroup_procs_write(struct cgroup_subsys_state *css,
2249 struct cftype *cft, u64 tgid)
af351026 2250{
182446d0 2251 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2252}
2253
182446d0
TH
2254static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2255 struct cftype *cft, const char *buffer)
e788e066 2256{
182446d0 2257 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2258 if (strlen(buffer) >= PATH_MAX)
2259 return -EINVAL;
182446d0 2260 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2261 return -ENODEV;
e25e2cbb 2262 mutex_lock(&cgroup_root_mutex);
182446d0 2263 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2264 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2265 mutex_unlock(&cgroup_mutex);
e788e066
PM
2266 return 0;
2267}
2268
182446d0
TH
2269static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2270 struct cftype *cft, struct seq_file *seq)
e788e066 2271{
182446d0
TH
2272 struct cgroup *cgrp = css->cgroup;
2273
e788e066
PM
2274 if (!cgroup_lock_live_group(cgrp))
2275 return -ENODEV;
2276 seq_puts(seq, cgrp->root->release_agent_path);
2277 seq_putc(seq, '\n');
47cfcd09 2278 mutex_unlock(&cgroup_mutex);
e788e066
PM
2279 return 0;
2280}
2281
182446d0
TH
2282static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2283 struct cftype *cft, struct seq_file *seq)
873fe09e 2284{
182446d0 2285 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
e788e066
PM
2286 return 0;
2287}
2288
f7d58818
TH
2289/* return the css for the given cgroup file */
2290static struct cgroup_subsys_state *cgroup_file_css(struct cfent *cfe)
2291{
2292 struct cftype *cft = cfe->type;
2293 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2294
2295 if (cft->ss)
2296 return cgrp->subsys[cft->ss->subsys_id];
67f4c36f 2297 return &cgrp->dummy_css;
f7d58818
TH
2298}
2299
84eea842
PM
2300/* A buffer size big enough for numbers or short strings */
2301#define CGROUP_LOCAL_BUFFER_SIZE 64
2302
182446d0
TH
2303static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2304 struct cftype *cft, struct file *file,
2305 const char __user *userbuf, size_t nbytes,
2306 loff_t *unused_ppos)
355e0c48 2307{
84eea842 2308 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2309 int retval = 0;
355e0c48
PM
2310 char *end;
2311
2312 if (!nbytes)
2313 return -EINVAL;
2314 if (nbytes >= sizeof(buffer))
2315 return -E2BIG;
2316 if (copy_from_user(buffer, userbuf, nbytes))
2317 return -EFAULT;
2318
2319 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2320 if (cft->write_u64) {
478988d3 2321 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2322 if (*end)
2323 return -EINVAL;
182446d0 2324 retval = cft->write_u64(css, cft, val);
e73d2c61 2325 } else {
478988d3 2326 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2327 if (*end)
2328 return -EINVAL;
182446d0 2329 retval = cft->write_s64(css, cft, val);
e73d2c61 2330 }
355e0c48
PM
2331 if (!retval)
2332 retval = nbytes;
2333 return retval;
2334}
2335
182446d0
TH
2336static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2337 struct cftype *cft, struct file *file,
2338 const char __user *userbuf, size_t nbytes,
2339 loff_t *unused_ppos)
db3b1497 2340{
84eea842 2341 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2342 int retval = 0;
2343 size_t max_bytes = cft->max_write_len;
2344 char *buffer = local_buffer;
2345
2346 if (!max_bytes)
2347 max_bytes = sizeof(local_buffer) - 1;
2348 if (nbytes >= max_bytes)
2349 return -E2BIG;
2350 /* Allocate a dynamic buffer if we need one */
2351 if (nbytes >= sizeof(local_buffer)) {
2352 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2353 if (buffer == NULL)
2354 return -ENOMEM;
2355 }
5a3eb9f6
LZ
2356 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2357 retval = -EFAULT;
2358 goto out;
2359 }
db3b1497
PM
2360
2361 buffer[nbytes] = 0; /* nul-terminate */
182446d0 2362 retval = cft->write_string(css, cft, strstrip(buffer));
db3b1497
PM
2363 if (!retval)
2364 retval = nbytes;
5a3eb9f6 2365out:
db3b1497
PM
2366 if (buffer != local_buffer)
2367 kfree(buffer);
2368 return retval;
2369}
2370
ddbcc7e8 2371static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
182446d0 2372 size_t nbytes, loff_t *ppos)
ddbcc7e8 2373{
182446d0 2374 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2375 struct cftype *cft = __d_cft(file->f_dentry);
182446d0 2376 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
ddbcc7e8 2377
355e0c48 2378 if (cft->write)
182446d0 2379 return cft->write(css, cft, file, buf, nbytes, ppos);
e73d2c61 2380 if (cft->write_u64 || cft->write_s64)
182446d0 2381 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
db3b1497 2382 if (cft->write_string)
182446d0 2383 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
d447ea2f 2384 if (cft->trigger) {
182446d0 2385 int ret = cft->trigger(css, (unsigned int)cft->private);
d447ea2f
PE
2386 return ret ? ret : nbytes;
2387 }
355e0c48 2388 return -EINVAL;
ddbcc7e8
PM
2389}
2390
182446d0
TH
2391static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2392 struct cftype *cft, struct file *file,
2393 char __user *buf, size_t nbytes, loff_t *ppos)
ddbcc7e8 2394{
84eea842 2395 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2396 u64 val = cft->read_u64(css, cft);
ddbcc7e8
PM
2397 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2398
2399 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2400}
2401
182446d0
TH
2402static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2403 struct cftype *cft, struct file *file,
2404 char __user *buf, size_t nbytes, loff_t *ppos)
e73d2c61 2405{
84eea842 2406 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2407 s64 val = cft->read_s64(css, cft);
e73d2c61
PM
2408 int len = sprintf(tmp, "%lld\n", (long long) val);
2409
2410 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2411}
2412
ddbcc7e8 2413static ssize_t cgroup_file_read(struct file *file, char __user *buf,
182446d0 2414 size_t nbytes, loff_t *ppos)
ddbcc7e8 2415{
182446d0 2416 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2417 struct cftype *cft = __d_cft(file->f_dentry);
182446d0 2418 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
ddbcc7e8 2419
ddbcc7e8 2420 if (cft->read)
182446d0 2421 return cft->read(css, cft, file, buf, nbytes, ppos);
f4c753b7 2422 if (cft->read_u64)
182446d0 2423 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
e73d2c61 2424 if (cft->read_s64)
182446d0 2425 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2426 return -EINVAL;
2427}
2428
91796569
PM
2429/*
2430 * seqfile ops/methods for returning structured data. Currently just
2431 * supports string->u64 maps, but can be extended in future.
2432 */
2433
91796569
PM
2434static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2435{
2436 struct seq_file *sf = cb->state;
2437 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2438}
2439
2440static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2441{
e0798ce2
LZ
2442 struct cfent *cfe = m->private;
2443 struct cftype *cft = cfe->type;
182446d0 2444 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
e0798ce2 2445
29486df3
SH
2446 if (cft->read_map) {
2447 struct cgroup_map_cb cb = {
2448 .fill = cgroup_map_add,
2449 .state = m,
2450 };
182446d0 2451 return cft->read_map(css, cft, &cb);
29486df3 2452 }
182446d0 2453 return cft->read_seq_string(css, cft, m);
91796569
PM
2454}
2455
828c0950 2456static const struct file_operations cgroup_seqfile_operations = {
91796569 2457 .read = seq_read,
e788e066 2458 .write = cgroup_file_write,
91796569 2459 .llseek = seq_lseek,
e0798ce2 2460 .release = single_release,
91796569
PM
2461};
2462
ddbcc7e8
PM
2463static int cgroup_file_open(struct inode *inode, struct file *file)
2464{
f7d58818
TH
2465 struct cfent *cfe = __d_cfe(file->f_dentry);
2466 struct cftype *cft = __d_cft(file->f_dentry);
2467 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
ddbcc7e8 2468 int err;
ddbcc7e8
PM
2469
2470 err = generic_file_open(inode, file);
2471 if (err)
2472 return err;
f7d58818
TH
2473
2474 /*
2475 * If the file belongs to a subsystem, pin the css. Will be
2476 * unpinned either on open failure or release. This ensures that
2477 * @css stays alive for all file operations.
2478 */
67f4c36f 2479 if (css->ss && !css_tryget(css))
f7d58818 2480 return -ENODEV;
75139b82 2481
29486df3 2482 if (cft->read_map || cft->read_seq_string) {
91796569 2483 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2484 err = single_open(file, cgroup_seqfile_show, cfe);
2485 } else if (cft->open) {
ddbcc7e8 2486 err = cft->open(inode, file);
e0798ce2 2487 }
ddbcc7e8 2488
67f4c36f 2489 if (css->ss && err)
f7d58818 2490 css_put(css);
ddbcc7e8
PM
2491 return err;
2492}
2493
2494static int cgroup_file_release(struct inode *inode, struct file *file)
2495{
f7d58818 2496 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2497 struct cftype *cft = __d_cft(file->f_dentry);
f7d58818
TH
2498 struct cgroup_subsys_state *css = cgroup_file_css(cfe);
2499 int ret = 0;
2500
ddbcc7e8 2501 if (cft->release)
f7d58818 2502 ret = cft->release(inode, file);
67f4c36f 2503 if (css->ss)
f7d58818
TH
2504 css_put(css);
2505 return ret;
ddbcc7e8
PM
2506}
2507
2508/*
2509 * cgroup_rename - Only allow simple rename of directories in place.
2510 */
2511static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2512 struct inode *new_dir, struct dentry *new_dentry)
2513{
65dff759
LZ
2514 int ret;
2515 struct cgroup_name *name, *old_name;
2516 struct cgroup *cgrp;
2517
2518 /*
2519 * It's convinient to use parent dir's i_mutex to protected
2520 * cgrp->name.
2521 */
2522 lockdep_assert_held(&old_dir->i_mutex);
2523
ddbcc7e8
PM
2524 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2525 return -ENOTDIR;
2526 if (new_dentry->d_inode)
2527 return -EEXIST;
2528 if (old_dir != new_dir)
2529 return -EIO;
65dff759
LZ
2530
2531 cgrp = __d_cgrp(old_dentry);
2532
6db8e85c
TH
2533 /*
2534 * This isn't a proper migration and its usefulness is very
2535 * limited. Disallow if sane_behavior.
2536 */
2537 if (cgroup_sane_behavior(cgrp))
2538 return -EPERM;
2539
65dff759
LZ
2540 name = cgroup_alloc_name(new_dentry);
2541 if (!name)
2542 return -ENOMEM;
2543
2544 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2545 if (ret) {
2546 kfree(name);
2547 return ret;
2548 }
2549
a4ea1cc9 2550 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2551 rcu_assign_pointer(cgrp->name, name);
2552
2553 kfree_rcu(old_name, rcu_head);
2554 return 0;
ddbcc7e8
PM
2555}
2556
03b1cde6
AR
2557static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2558{
2559 if (S_ISDIR(dentry->d_inode->i_mode))
2560 return &__d_cgrp(dentry)->xattrs;
2561 else
712317ad 2562 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2563}
2564
2565static inline int xattr_enabled(struct dentry *dentry)
2566{
2567 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2568 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2569}
2570
2571static bool is_valid_xattr(const char *name)
2572{
2573 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2574 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2575 return true;
2576 return false;
2577}
2578
2579static int cgroup_setxattr(struct dentry *dentry, const char *name,
2580 const void *val, size_t size, int flags)
2581{
2582 if (!xattr_enabled(dentry))
2583 return -EOPNOTSUPP;
2584 if (!is_valid_xattr(name))
2585 return -EINVAL;
2586 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2587}
2588
2589static int cgroup_removexattr(struct dentry *dentry, const char *name)
2590{
2591 if (!xattr_enabled(dentry))
2592 return -EOPNOTSUPP;
2593 if (!is_valid_xattr(name))
2594 return -EINVAL;
2595 return simple_xattr_remove(__d_xattrs(dentry), name);
2596}
2597
2598static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2599 void *buf, size_t size)
2600{
2601 if (!xattr_enabled(dentry))
2602 return -EOPNOTSUPP;
2603 if (!is_valid_xattr(name))
2604 return -EINVAL;
2605 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2606}
2607
2608static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2609{
2610 if (!xattr_enabled(dentry))
2611 return -EOPNOTSUPP;
2612 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2613}
2614
828c0950 2615static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2616 .read = cgroup_file_read,
2617 .write = cgroup_file_write,
2618 .llseek = generic_file_llseek,
2619 .open = cgroup_file_open,
2620 .release = cgroup_file_release,
2621};
2622
03b1cde6
AR
2623static const struct inode_operations cgroup_file_inode_operations = {
2624 .setxattr = cgroup_setxattr,
2625 .getxattr = cgroup_getxattr,
2626 .listxattr = cgroup_listxattr,
2627 .removexattr = cgroup_removexattr,
2628};
2629
6e1d5dcc 2630static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2631 .lookup = cgroup_lookup,
ddbcc7e8
PM
2632 .mkdir = cgroup_mkdir,
2633 .rmdir = cgroup_rmdir,
2634 .rename = cgroup_rename,
03b1cde6
AR
2635 .setxattr = cgroup_setxattr,
2636 .getxattr = cgroup_getxattr,
2637 .listxattr = cgroup_listxattr,
2638 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2639};
2640
00cd8dd3 2641static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2642{
2643 if (dentry->d_name.len > NAME_MAX)
2644 return ERR_PTR(-ENAMETOOLONG);
2645 d_add(dentry, NULL);
2646 return NULL;
2647}
2648
0dea1168
KS
2649/*
2650 * Check if a file is a control file
2651 */
2652static inline struct cftype *__file_cft(struct file *file)
2653{
496ad9aa 2654 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2655 return ERR_PTR(-EINVAL);
2656 return __d_cft(file->f_dentry);
2657}
2658
a5e7ed32 2659static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2660 struct super_block *sb)
2661{
ddbcc7e8
PM
2662 struct inode *inode;
2663
2664 if (!dentry)
2665 return -ENOENT;
2666 if (dentry->d_inode)
2667 return -EEXIST;
2668
2669 inode = cgroup_new_inode(mode, sb);
2670 if (!inode)
2671 return -ENOMEM;
2672
2673 if (S_ISDIR(mode)) {
2674 inode->i_op = &cgroup_dir_inode_operations;
2675 inode->i_fop = &simple_dir_operations;
2676
2677 /* start off with i_nlink == 2 (for "." entry) */
2678 inc_nlink(inode);
28fd6f30 2679 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2680
b8a2df6a
TH
2681 /*
2682 * Control reaches here with cgroup_mutex held.
2683 * @inode->i_mutex should nest outside cgroup_mutex but we
2684 * want to populate it immediately without releasing
2685 * cgroup_mutex. As @inode isn't visible to anyone else
2686 * yet, trylock will always succeed without affecting
2687 * lockdep checks.
2688 */
2689 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2690 } else if (S_ISREG(mode)) {
2691 inode->i_size = 0;
2692 inode->i_fop = &cgroup_file_operations;
03b1cde6 2693 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2694 }
ddbcc7e8
PM
2695 d_instantiate(dentry, inode);
2696 dget(dentry); /* Extra count - pin the dentry in core */
2697 return 0;
2698}
2699
099fca32
LZ
2700/**
2701 * cgroup_file_mode - deduce file mode of a control file
2702 * @cft: the control file in question
2703 *
2704 * returns cft->mode if ->mode is not 0
2705 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2706 * returns S_IRUGO if it has only a read handler
2707 * returns S_IWUSR if it has only a write hander
2708 */
a5e7ed32 2709static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2710{
a5e7ed32 2711 umode_t mode = 0;
099fca32
LZ
2712
2713 if (cft->mode)
2714 return cft->mode;
2715
2716 if (cft->read || cft->read_u64 || cft->read_s64 ||
2717 cft->read_map || cft->read_seq_string)
2718 mode |= S_IRUGO;
2719
2720 if (cft->write || cft->write_u64 || cft->write_s64 ||
2721 cft->write_string || cft->trigger)
2722 mode |= S_IWUSR;
2723
2724 return mode;
2725}
2726
2bb566cb 2727static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2728{
bd89aabc 2729 struct dentry *dir = cgrp->dentry;
05ef1d7c 2730 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2731 struct dentry *dentry;
05ef1d7c 2732 struct cfent *cfe;
ddbcc7e8 2733 int error;
a5e7ed32 2734 umode_t mode;
ddbcc7e8 2735 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2736
2bb566cb
TH
2737 if (cft->ss && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2738 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2739 strcat(name, ".");
2740 }
2741 strcat(name, cft->name);
05ef1d7c 2742
ddbcc7e8 2743 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2744
2745 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2746 if (!cfe)
2747 return -ENOMEM;
2748
ddbcc7e8 2749 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2750 if (IS_ERR(dentry)) {
ddbcc7e8 2751 error = PTR_ERR(dentry);
05ef1d7c
TH
2752 goto out;
2753 }
2754
d6cbf35d
LZ
2755 cfe->type = (void *)cft;
2756 cfe->dentry = dentry;
2757 dentry->d_fsdata = cfe;
2758 simple_xattrs_init(&cfe->xattrs);
2759
05ef1d7c
TH
2760 mode = cgroup_file_mode(cft);
2761 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2762 if (!error) {
05ef1d7c
TH
2763 list_add_tail(&cfe->node, &parent->files);
2764 cfe = NULL;
2765 }
2766 dput(dentry);
2767out:
2768 kfree(cfe);
ddbcc7e8
PM
2769 return error;
2770}
2771
b1f28d31
TH
2772/**
2773 * cgroup_addrm_files - add or remove files to a cgroup directory
2774 * @cgrp: the target cgroup
b1f28d31
TH
2775 * @cfts: array of cftypes to be added
2776 * @is_add: whether to add or remove
2777 *
2778 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2779 * For removals, this function never fails. If addition fails, this
2780 * function doesn't remove files already added. The caller is responsible
2781 * for cleaning up.
b1f28d31 2782 */
2bb566cb
TH
2783static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2784 bool is_add)
ddbcc7e8 2785{
03b1cde6 2786 struct cftype *cft;
b1f28d31
TH
2787 int ret;
2788
2789 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2790 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2791
2792 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2793 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2794 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2795 continue;
f33fddc2
G
2796 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2797 continue;
2798 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2799 continue;
2800
2739d3cc 2801 if (is_add) {
2bb566cb 2802 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2803 if (ret) {
2739d3cc 2804 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2805 cft->name, ret);
2806 return ret;
2807 }
2739d3cc
LZ
2808 } else {
2809 cgroup_rm_file(cgrp, cft);
db0416b6 2810 }
ddbcc7e8 2811 }
b1f28d31 2812 return 0;
ddbcc7e8
PM
2813}
2814
8e3f6541 2815static void cgroup_cfts_prepare(void)
e8c82d20 2816 __acquires(&cgroup_mutex)
8e3f6541
TH
2817{
2818 /*
2819 * Thanks to the entanglement with vfs inode locking, we can't walk
2820 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2821 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2822 * lock before calling cgroup_addrm_files().
8e3f6541 2823 */
8e3f6541
TH
2824 mutex_lock(&cgroup_mutex);
2825}
2826
2bb566cb 2827static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2828 __releases(&cgroup_mutex)
8e3f6541
TH
2829{
2830 LIST_HEAD(pending);
2bb566cb 2831 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2832 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2833 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2834 struct dentry *prev = NULL;
2835 struct inode *inode;
492eb21b 2836 struct cgroup_subsys_state *css;
00356bd5 2837 u64 update_before;
9ccece80 2838 int ret = 0;
8e3f6541
TH
2839
2840 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2841 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2842 !atomic_inc_not_zero(&sb->s_active)) {
2843 mutex_unlock(&cgroup_mutex);
9ccece80 2844 return 0;
8e3f6541
TH
2845 }
2846
8e3f6541 2847 /*
e8c82d20
LZ
2848 * All cgroups which are created after we drop cgroup_mutex will
2849 * have the updated set of files, so we only need to update the
00356bd5 2850 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2851 */
00356bd5 2852 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2853
2854 mutex_unlock(&cgroup_mutex);
2855
2856 /* @root always needs to be updated */
2857 inode = root->dentry->d_inode;
2858 mutex_lock(&inode->i_mutex);
2859 mutex_lock(&cgroup_mutex);
2bb566cb 2860 ret = cgroup_addrm_files(root, cfts, is_add);
e8c82d20
LZ
2861 mutex_unlock(&cgroup_mutex);
2862 mutex_unlock(&inode->i_mutex);
2863
9ccece80
TH
2864 if (ret)
2865 goto out_deact;
2866
e8c82d20
LZ
2867 /* add/rm files for all cgroups created before */
2868 rcu_read_lock();
492eb21b
TH
2869 css_for_each_descendant_pre(css, cgroup_css(root, ss->subsys_id)) {
2870 struct cgroup *cgrp = css->cgroup;
2871
e8c82d20
LZ
2872 if (cgroup_is_dead(cgrp))
2873 continue;
2874
2875 inode = cgrp->dentry->d_inode;
2876 dget(cgrp->dentry);
2877 rcu_read_unlock();
2878
2879 dput(prev);
2880 prev = cgrp->dentry;
8e3f6541
TH
2881
2882 mutex_lock(&inode->i_mutex);
2883 mutex_lock(&cgroup_mutex);
00356bd5 2884 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2885 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2886 mutex_unlock(&cgroup_mutex);
2887 mutex_unlock(&inode->i_mutex);
2888
e8c82d20 2889 rcu_read_lock();
9ccece80
TH
2890 if (ret)
2891 break;
8e3f6541 2892 }
e8c82d20
LZ
2893 rcu_read_unlock();
2894 dput(prev);
9ccece80 2895out_deact:
e8c82d20 2896 deactivate_super(sb);
9ccece80 2897 return ret;
8e3f6541
TH
2898}
2899
2900/**
2901 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2902 * @ss: target cgroup subsystem
2903 * @cfts: zero-length name terminated array of cftypes
2904 *
2905 * Register @cfts to @ss. Files described by @cfts are created for all
2906 * existing cgroups to which @ss is attached and all future cgroups will
2907 * have them too. This function can be called anytime whether @ss is
2908 * attached or not.
2909 *
2910 * Returns 0 on successful registration, -errno on failure. Note that this
2911 * function currently returns 0 as long as @cfts registration is successful
2912 * even if some file creation attempts on existing cgroups fail.
2913 */
03b1cde6 2914int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2915{
2916 struct cftype_set *set;
2bb566cb 2917 struct cftype *cft;
9ccece80 2918 int ret;
8e3f6541
TH
2919
2920 set = kzalloc(sizeof(*set), GFP_KERNEL);
2921 if (!set)
2922 return -ENOMEM;
2923
2bb566cb
TH
2924 for (cft = cfts; cft->name[0] != '\0'; cft++)
2925 cft->ss = ss;
2926
8e3f6541
TH
2927 cgroup_cfts_prepare();
2928 set->cfts = cfts;
2929 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2930 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2931 if (ret)
2bb566cb 2932 cgroup_rm_cftypes(cfts);
9ccece80 2933 return ret;
8e3f6541
TH
2934}
2935EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2936
79578621
TH
2937/**
2938 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2939 * @cfts: zero-length name terminated array of cftypes
2940 *
2bb566cb
TH
2941 * Unregister @cfts. Files described by @cfts are removed from all
2942 * existing cgroups and all future cgroups won't have them either. This
2943 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2944 *
2945 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2946 * registered.
79578621 2947 */
2bb566cb 2948int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2949{
2950 struct cftype_set *set;
2951
2bb566cb
TH
2952 if (!cfts || !cfts[0].ss)
2953 return -ENOENT;
2954
79578621
TH
2955 cgroup_cfts_prepare();
2956
2bb566cb 2957 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2958 if (set->cfts == cfts) {
f57947d2
LZ
2959 list_del(&set->node);
2960 kfree(set);
2bb566cb 2961 cgroup_cfts_commit(cfts, false);
79578621
TH
2962 return 0;
2963 }
2964 }
2965
2bb566cb 2966 cgroup_cfts_commit(NULL, false);
79578621
TH
2967 return -ENOENT;
2968}
2969
a043e3b2
LZ
2970/**
2971 * cgroup_task_count - count the number of tasks in a cgroup.
2972 * @cgrp: the cgroup in question
2973 *
2974 * Return the number of tasks in the cgroup.
2975 */
bd89aabc 2976int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2977{
2978 int count = 0;
69d0206c 2979 struct cgrp_cset_link *link;
817929ec
PM
2980
2981 read_lock(&css_set_lock);
69d0206c
TH
2982 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2983 count += atomic_read(&link->cset->refcount);
817929ec 2984 read_unlock(&css_set_lock);
bbcb81d0
PM
2985 return count;
2986}
2987
31a7df01 2988/*
0942eeee
TH
2989 * To reduce the fork() overhead for systems that are not actually using
2990 * their cgroups capability, we don't maintain the lists running through
2991 * each css_set to its tasks until we see the list actually used - in other
2992 * words after the first call to cgroup_task_iter_start().
31a7df01 2993 */
3df91fe3 2994static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2995{
2996 struct task_struct *p, *g;
2997 write_lock(&css_set_lock);
2998 use_task_css_set_links = 1;
3ce3230a
FW
2999 /*
3000 * We need tasklist_lock because RCU is not safe against
3001 * while_each_thread(). Besides, a forking task that has passed
3002 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3003 * is not guaranteed to have its child immediately visible in the
3004 * tasklist if we walk through it with RCU.
3005 */
3006 read_lock(&tasklist_lock);
31a7df01
CW
3007 do_each_thread(g, p) {
3008 task_lock(p);
0e04388f
LZ
3009 /*
3010 * We should check if the process is exiting, otherwise
3011 * it will race with cgroup_exit() in that the list
3012 * entry won't be deleted though the process has exited.
3013 */
3014 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 3015 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
3016 task_unlock(p);
3017 } while_each_thread(g, p);
3ce3230a 3018 read_unlock(&tasklist_lock);
31a7df01
CW
3019 write_unlock(&css_set_lock);
3020}
3021
53fa5261 3022/**
492eb21b
TH
3023 * css_next_child - find the next child of a given css
3024 * @pos_css: the current position (%NULL to initiate traversal)
3025 * @parent_css: css whose children to walk
53fa5261 3026 *
492eb21b
TH
3027 * This function returns the next child of @parent_css and should be called
3028 * under RCU read lock. The only requirement is that @parent_css and
3029 * @pos_css are accessible. The next sibling is guaranteed to be returned
3030 * regardless of their states.
53fa5261 3031 */
492eb21b
TH
3032struct cgroup_subsys_state *
3033css_next_child(struct cgroup_subsys_state *pos_css,
3034 struct cgroup_subsys_state *parent_css)
53fa5261 3035{
492eb21b
TH
3036 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3037 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3038 struct cgroup *next;
3039
3040 WARN_ON_ONCE(!rcu_read_lock_held());
3041
3042 /*
3043 * @pos could already have been removed. Once a cgroup is removed,
3044 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3045 * changes. As CGRP_DEAD assertion is serialized and happens
3046 * before the cgroup is taken off the ->sibling list, if we see it
3047 * unasserted, it's guaranteed that the next sibling hasn't
3048 * finished its grace period even if it's already removed, and thus
3049 * safe to dereference from this RCU critical section. If
3050 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3051 * to be visible as %true here.
3b287a50
TH
3052 *
3053 * If @pos is dead, its next pointer can't be dereferenced;
3054 * however, as each cgroup is given a monotonically increasing
3055 * unique serial number and always appended to the sibling list,
3056 * the next one can be found by walking the parent's children until
3057 * we see a cgroup with higher serial number than @pos's. While
3058 * this path can be slower, it's taken only when either the current
3059 * cgroup is removed or iteration and removal race.
53fa5261 3060 */
3b287a50
TH
3061 if (!pos) {
3062 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3063 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3064 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3065 } else {
3066 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3067 if (next->serial_nr > pos->serial_nr)
3068 break;
53fa5261
TH
3069 }
3070
492eb21b
TH
3071 if (&next->sibling == &cgrp->children)
3072 return NULL;
3073
3074 if (parent_css->ss)
3075 return cgroup_css(next, parent_css->ss->subsys_id);
3076 else
3077 return &next->dummy_css;
53fa5261 3078}
492eb21b 3079EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 3080
574bd9f7 3081/**
492eb21b 3082 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3083 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3084 * @root: css whose descendants to walk
574bd9f7 3085 *
492eb21b
TH
3086 * To be used by css_for_each_descendant_pre(). Find the next descendant
3087 * to visit for pre-order traversal of @root's descendants.
75501a6d
TH
3088 *
3089 * While this function requires RCU read locking, it doesn't require the
3090 * whole traversal to be contained in a single RCU critical section. This
3091 * function will return the correct next descendant as long as both @pos
492eb21b 3092 * and @root are accessible and @pos is a descendant of @root.
574bd9f7 3093 */
492eb21b
TH
3094struct cgroup_subsys_state *
3095css_next_descendant_pre(struct cgroup_subsys_state *pos,
3096 struct cgroup_subsys_state *root)
574bd9f7 3097{
492eb21b 3098 struct cgroup_subsys_state *next;
574bd9f7
TH
3099
3100 WARN_ON_ONCE(!rcu_read_lock_held());
3101
492eb21b 3102 /* if first iteration, pretend we just visited @root */
7805d000 3103 if (!pos)
492eb21b 3104 pos = root;
574bd9f7
TH
3105
3106 /* visit the first child if exists */
492eb21b 3107 next = css_next_child(NULL, pos);
574bd9f7
TH
3108 if (next)
3109 return next;
3110
3111 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3112 while (pos != root) {
3113 next = css_next_child(pos, css_parent(pos));
75501a6d 3114 if (next)
574bd9f7 3115 return next;
492eb21b 3116 pos = css_parent(pos);
7805d000 3117 }
574bd9f7
TH
3118
3119 return NULL;
3120}
492eb21b 3121EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 3122
12a9d2fe 3123/**
492eb21b
TH
3124 * css_rightmost_descendant - return the rightmost descendant of a css
3125 * @pos: css of interest
12a9d2fe 3126 *
492eb21b
TH
3127 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3128 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3129 * subtree of @pos.
75501a6d
TH
3130 *
3131 * While this function requires RCU read locking, it doesn't require the
3132 * whole traversal to be contained in a single RCU critical section. This
3133 * function will return the correct rightmost descendant as long as @pos is
3134 * accessible.
12a9d2fe 3135 */
492eb21b
TH
3136struct cgroup_subsys_state *
3137css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3138{
492eb21b 3139 struct cgroup_subsys_state *last, *tmp;
12a9d2fe
TH
3140
3141 WARN_ON_ONCE(!rcu_read_lock_held());
3142
3143 do {
3144 last = pos;
3145 /* ->prev isn't RCU safe, walk ->next till the end */
3146 pos = NULL;
492eb21b 3147 css_for_each_child(tmp, last)
12a9d2fe
TH
3148 pos = tmp;
3149 } while (pos);
3150
3151 return last;
3152}
492eb21b 3153EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3154
492eb21b
TH
3155static struct cgroup_subsys_state *
3156css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3157{
492eb21b 3158 struct cgroup_subsys_state *last;
574bd9f7
TH
3159
3160 do {
3161 last = pos;
492eb21b 3162 pos = css_next_child(NULL, pos);
574bd9f7
TH
3163 } while (pos);
3164
3165 return last;
3166}
3167
3168/**
492eb21b 3169 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3170 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3171 * @root: css whose descendants to walk
574bd9f7 3172 *
492eb21b
TH
3173 * To be used by css_for_each_descendant_post(). Find the next descendant
3174 * to visit for post-order traversal of @root's descendants.
75501a6d
TH
3175 *
3176 * While this function requires RCU read locking, it doesn't require the
3177 * whole traversal to be contained in a single RCU critical section. This
3178 * function will return the correct next descendant as long as both @pos
3179 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7 3180 */
492eb21b
TH
3181struct cgroup_subsys_state *
3182css_next_descendant_post(struct cgroup_subsys_state *pos,
3183 struct cgroup_subsys_state *root)
574bd9f7 3184{
492eb21b 3185 struct cgroup_subsys_state *next;
574bd9f7
TH
3186
3187 WARN_ON_ONCE(!rcu_read_lock_held());
3188
3189 /* if first iteration, visit the leftmost descendant */
3190 if (!pos) {
492eb21b
TH
3191 next = css_leftmost_descendant(root);
3192 return next != root ? next : NULL;
574bd9f7
TH
3193 }
3194
3195 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3196 next = css_next_child(pos, css_parent(pos));
75501a6d 3197 if (next)
492eb21b 3198 return css_leftmost_descendant(next);
574bd9f7
TH
3199
3200 /* no sibling left, visit parent */
492eb21b
TH
3201 next = css_parent(pos);
3202 return next != root ? next : NULL;
574bd9f7 3203}
492eb21b 3204EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3205
0942eeee
TH
3206/**
3207 * cgroup_advance_task_iter - advance a task itererator to the next css_set
3208 * @cgrp: the cgroup to walk tasks of
3209 * @it: the iterator to advance
3210 *
3211 * Advance @it to the next css_set to walk.
d515876e 3212 */
0942eeee
TH
3213static void cgroup_advance_task_iter(struct cgroup *cgrp,
3214 struct cgroup_task_iter *it)
d515876e
TH
3215{
3216 struct list_head *l = it->cset_link;
3217 struct cgrp_cset_link *link;
3218 struct css_set *cset;
3219
3220 /* Advance to the next non-empty css_set */
3221 do {
3222 l = l->next;
3223 if (l == &cgrp->cset_links) {
3224 it->cset_link = NULL;
3225 return;
3226 }
3227 link = list_entry(l, struct cgrp_cset_link, cset_link);
3228 cset = link->cset;
3229 } while (list_empty(&cset->tasks));
3230 it->cset_link = l;
3231 it->task = cset->tasks.next;
3232}
3233
0942eeee
TH
3234/**
3235 * cgroup_task_iter_start - initiate task iteration
3236 * @cgrp: the cgroup to walk tasks of
3237 * @it: the task iterator to use
3238 *
3239 * Initiate iteration through the tasks of @cgrp. The caller can call
3240 * cgroup_task_iter_next() to walk through the tasks until the function
3241 * returns NULL. On completion of iteration, cgroup_task_iter_end() must
3242 * be called.
3243 *
3244 * Note that this function acquires a lock which is released when the
3245 * iteration finishes. The caller can't sleep while iteration is in
3246 * progress.
3247 */
3248void cgroup_task_iter_start(struct cgroup *cgrp, struct cgroup_task_iter *it)
c6ca5750 3249 __acquires(css_set_lock)
817929ec
PM
3250{
3251 /*
3252 * The first time anyone tries to iterate across a cgroup,
3253 * we need to enable the list linking each css_set to its
3254 * tasks, and fix up all existing tasks.
3255 */
31a7df01
CW
3256 if (!use_task_css_set_links)
3257 cgroup_enable_task_cg_lists();
3258
817929ec 3259 read_lock(&css_set_lock);
69d0206c 3260 it->cset_link = &cgrp->cset_links;
0942eeee 3261 cgroup_advance_task_iter(cgrp, it);
817929ec
PM
3262}
3263
0942eeee
TH
3264/**
3265 * cgroup_task_iter_next - return the next task for the iterator
3266 * @cgrp: the cgroup to walk tasks of
3267 * @it: the task iterator being iterated
3268 *
3269 * The "next" function for task iteration. @it should have been
3270 * initialized via cgroup_task_iter_start(). Returns NULL when the
3271 * iteration reaches the end.
3272 */
3273struct task_struct *cgroup_task_iter_next(struct cgroup *cgrp,
3274 struct cgroup_task_iter *it)
817929ec
PM
3275{
3276 struct task_struct *res;
3277 struct list_head *l = it->task;
69d0206c 3278 struct cgrp_cset_link *link;
817929ec
PM
3279
3280 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3281 if (!it->cset_link)
817929ec
PM
3282 return NULL;
3283 res = list_entry(l, struct task_struct, cg_list);
3284 /* Advance iterator to find next entry */
3285 l = l->next;
69d0206c
TH
3286 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3287 if (l == &link->cset->tasks) {
0942eeee
TH
3288 /*
3289 * We reached the end of this task list - move on to the
3290 * next cgrp_cset_link.
3291 */
3292 cgroup_advance_task_iter(cgrp, it);
817929ec
PM
3293 } else {
3294 it->task = l;
3295 }
3296 return res;
3297}
3298
0942eeee
TH
3299/**
3300 * cgroup_task_iter_end - finish task iteration
3301 * @cgrp: the cgroup to walk tasks of
3302 * @it: the task iterator to finish
3303 *
3304 * Finish task iteration started by cgroup_task_iter_start().
3305 */
3306void cgroup_task_iter_end(struct cgroup *cgrp, struct cgroup_task_iter *it)
c6ca5750 3307 __releases(css_set_lock)
817929ec
PM
3308{
3309 read_unlock(&css_set_lock);
3310}
3311
31a7df01
CW
3312static inline int started_after_time(struct task_struct *t1,
3313 struct timespec *time,
3314 struct task_struct *t2)
3315{
3316 int start_diff = timespec_compare(&t1->start_time, time);
3317 if (start_diff > 0) {
3318 return 1;
3319 } else if (start_diff < 0) {
3320 return 0;
3321 } else {
3322 /*
3323 * Arbitrarily, if two processes started at the same
3324 * time, we'll say that the lower pointer value
3325 * started first. Note that t2 may have exited by now
3326 * so this may not be a valid pointer any longer, but
3327 * that's fine - it still serves to distinguish
3328 * between two tasks started (effectively) simultaneously.
3329 */
3330 return t1 > t2;
3331 }
3332}
3333
3334/*
3335 * This function is a callback from heap_insert() and is used to order
3336 * the heap.
3337 * In this case we order the heap in descending task start time.
3338 */
3339static inline int started_after(void *p1, void *p2)
3340{
3341 struct task_struct *t1 = p1;
3342 struct task_struct *t2 = p2;
3343 return started_after_time(t1, &t2->start_time, t2);
3344}
3345
3346/**
3347 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3348 * @scan: struct cgroup_scanner containing arguments for the scan
3349 *
3350 * Arguments include pointers to callback functions test_task() and
3351 * process_task().
3352 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3353 * and if it returns true, call process_task() for it also.
3354 * The test_task pointer may be NULL, meaning always true (select all tasks).
0942eeee 3355 * Effectively duplicates cgroup_task_iter_{start,next,end}()
31a7df01
CW
3356 * but does not lock css_set_lock for the call to process_task().
3357 * The struct cgroup_scanner may be embedded in any structure of the caller's
3358 * creation.
3359 * It is guaranteed that process_task() will act on every task that
3360 * is a member of the cgroup for the duration of this call. This
3361 * function may or may not call process_task() for tasks that exit
3362 * or move to a different cgroup during the call, or are forked or
3363 * move into the cgroup during the call.
3364 *
3365 * Note that test_task() may be called with locks held, and may in some
3366 * situations be called multiple times for the same task, so it should
3367 * be cheap.
3368 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3369 * pre-allocated and will be used for heap operations (and its "gt" member will
3370 * be overwritten), else a temporary heap will be used (allocation of which
3371 * may cause this function to fail).
3372 */
3373int cgroup_scan_tasks(struct cgroup_scanner *scan)
3374{
3375 int retval, i;
0942eeee 3376 struct cgroup_task_iter it;
31a7df01
CW
3377 struct task_struct *p, *dropped;
3378 /* Never dereference latest_task, since it's not refcounted */
3379 struct task_struct *latest_task = NULL;
3380 struct ptr_heap tmp_heap;
3381 struct ptr_heap *heap;
3382 struct timespec latest_time = { 0, 0 };
3383
3384 if (scan->heap) {
3385 /* The caller supplied our heap and pre-allocated its memory */
3386 heap = scan->heap;
3387 heap->gt = &started_after;
3388 } else {
3389 /* We need to allocate our own heap memory */
3390 heap = &tmp_heap;
3391 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3392 if (retval)
3393 /* cannot allocate the heap */
3394 return retval;
3395 }
3396
3397 again:
3398 /*
3399 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3400 * to determine which are of interest, and using the scanner's
3401 * "process_task" callback to process any of them that need an update.
3402 * Since we don't want to hold any locks during the task updates,
3403 * gather tasks to be processed in a heap structure.
3404 * The heap is sorted by descending task start time.
3405 * If the statically-sized heap fills up, we overflow tasks that
3406 * started later, and in future iterations only consider tasks that
3407 * started after the latest task in the previous pass. This
3408 * guarantees forward progress and that we don't miss any tasks.
3409 */
3410 heap->size = 0;
0942eeee
TH
3411 cgroup_task_iter_start(scan->cgrp, &it);
3412 while ((p = cgroup_task_iter_next(scan->cgrp, &it))) {
31a7df01
CW
3413 /*
3414 * Only affect tasks that qualify per the caller's callback,
3415 * if he provided one
3416 */
3417 if (scan->test_task && !scan->test_task(p, scan))
3418 continue;
3419 /*
3420 * Only process tasks that started after the last task
3421 * we processed
3422 */
3423 if (!started_after_time(p, &latest_time, latest_task))
3424 continue;
3425 dropped = heap_insert(heap, p);
3426 if (dropped == NULL) {
3427 /*
3428 * The new task was inserted; the heap wasn't
3429 * previously full
3430 */
3431 get_task_struct(p);
3432 } else if (dropped != p) {
3433 /*
3434 * The new task was inserted, and pushed out a
3435 * different task
3436 */
3437 get_task_struct(p);
3438 put_task_struct(dropped);
3439 }
3440 /*
3441 * Else the new task was newer than anything already in
3442 * the heap and wasn't inserted
3443 */
3444 }
0942eeee 3445 cgroup_task_iter_end(scan->cgrp, &it);
31a7df01
CW
3446
3447 if (heap->size) {
3448 for (i = 0; i < heap->size; i++) {
4fe91d51 3449 struct task_struct *q = heap->ptrs[i];
31a7df01 3450 if (i == 0) {
4fe91d51
PJ
3451 latest_time = q->start_time;
3452 latest_task = q;
31a7df01
CW
3453 }
3454 /* Process the task per the caller's callback */
4fe91d51
PJ
3455 scan->process_task(q, scan);
3456 put_task_struct(q);
31a7df01
CW
3457 }
3458 /*
3459 * If we had to process any tasks at all, scan again
3460 * in case some of them were in the middle of forking
3461 * children that didn't get processed.
3462 * Not the most efficient way to do it, but it avoids
3463 * having to take callback_mutex in the fork path
3464 */
3465 goto again;
3466 }
3467 if (heap == &tmp_heap)
3468 heap_free(&tmp_heap);
3469 return 0;
3470}
3471
8cc99345
TH
3472static void cgroup_transfer_one_task(struct task_struct *task,
3473 struct cgroup_scanner *scan)
3474{
3475 struct cgroup *new_cgroup = scan->data;
3476
47cfcd09 3477 mutex_lock(&cgroup_mutex);
8cc99345 3478 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3479 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3480}
3481
3482/**
3483 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3484 * @to: cgroup to which the tasks will be moved
3485 * @from: cgroup in which the tasks currently reside
3486 */
3487int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3488{
3489 struct cgroup_scanner scan;
3490
6f4b7e63 3491 scan.cgrp = from;
8cc99345
TH
3492 scan.test_task = NULL; /* select all tasks in cgroup */
3493 scan.process_task = cgroup_transfer_one_task;
3494 scan.heap = NULL;
3495 scan.data = to;
3496
3497 return cgroup_scan_tasks(&scan);
3498}
3499
bbcb81d0 3500/*
102a775e 3501 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3502 *
3503 * Reading this file can return large amounts of data if a cgroup has
3504 * *lots* of attached tasks. So it may need several calls to read(),
3505 * but we cannot guarantee that the information we produce is correct
3506 * unless we produce it entirely atomically.
3507 *
bbcb81d0 3508 */
bbcb81d0 3509
24528255
LZ
3510/* which pidlist file are we talking about? */
3511enum cgroup_filetype {
3512 CGROUP_FILE_PROCS,
3513 CGROUP_FILE_TASKS,
3514};
3515
3516/*
3517 * A pidlist is a list of pids that virtually represents the contents of one
3518 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3519 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3520 * to the cgroup.
3521 */
3522struct cgroup_pidlist {
3523 /*
3524 * used to find which pidlist is wanted. doesn't change as long as
3525 * this particular list stays in the list.
3526 */
3527 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3528 /* array of xids */
3529 pid_t *list;
3530 /* how many elements the above list has */
3531 int length;
3532 /* how many files are using the current array */
3533 int use_count;
3534 /* each of these stored in a list by its cgroup */
3535 struct list_head links;
3536 /* pointer to the cgroup we belong to, for list removal purposes */
3537 struct cgroup *owner;
3538 /* protects the other fields */
b395890a 3539 struct rw_semaphore rwsem;
24528255
LZ
3540};
3541
d1d9fd33
BB
3542/*
3543 * The following two functions "fix" the issue where there are more pids
3544 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3545 * TODO: replace with a kernel-wide solution to this problem
3546 */
3547#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3548static void *pidlist_allocate(int count)
3549{
3550 if (PIDLIST_TOO_LARGE(count))
3551 return vmalloc(count * sizeof(pid_t));
3552 else
3553 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3554}
3555static void pidlist_free(void *p)
3556{
3557 if (is_vmalloc_addr(p))
3558 vfree(p);
3559 else
3560 kfree(p);
3561}
d1d9fd33 3562
bbcb81d0 3563/*
102a775e 3564 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3565 * Returns the number of unique elements.
bbcb81d0 3566 */
6ee211ad 3567static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3568{
102a775e 3569 int src, dest = 1;
102a775e
BB
3570
3571 /*
3572 * we presume the 0th element is unique, so i starts at 1. trivial
3573 * edge cases first; no work needs to be done for either
3574 */
3575 if (length == 0 || length == 1)
3576 return length;
3577 /* src and dest walk down the list; dest counts unique elements */
3578 for (src = 1; src < length; src++) {
3579 /* find next unique element */
3580 while (list[src] == list[src-1]) {
3581 src++;
3582 if (src == length)
3583 goto after;
3584 }
3585 /* dest always points to where the next unique element goes */
3586 list[dest] = list[src];
3587 dest++;
3588 }
3589after:
102a775e
BB
3590 return dest;
3591}
3592
3593static int cmppid(const void *a, const void *b)
3594{
3595 return *(pid_t *)a - *(pid_t *)b;
3596}
3597
72a8cb30
BB
3598/*
3599 * find the appropriate pidlist for our purpose (given procs vs tasks)
3600 * returns with the lock on that pidlist already held, and takes care
3601 * of the use count, or returns NULL with no locks held if we're out of
3602 * memory.
3603 */
3604static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3605 enum cgroup_filetype type)
3606{
3607 struct cgroup_pidlist *l;
3608 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3609 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3610
72a8cb30 3611 /*
b395890a 3612 * We can't drop the pidlist_mutex before taking the l->rwsem in case
72a8cb30
BB
3613 * the last ref-holder is trying to remove l from the list at the same
3614 * time. Holding the pidlist_mutex precludes somebody taking whichever
3615 * list we find out from under us - compare release_pid_array().
3616 */
3617 mutex_lock(&cgrp->pidlist_mutex);
3618 list_for_each_entry(l, &cgrp->pidlists, links) {
3619 if (l->key.type == type && l->key.ns == ns) {
72a8cb30 3620 /* make sure l doesn't vanish out from under us */
b395890a 3621 down_write(&l->rwsem);
72a8cb30 3622 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3623 return l;
3624 }
3625 }
3626 /* entry not found; create a new one */
f4f4be2b 3627 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3628 if (!l) {
3629 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3630 return l;
3631 }
b395890a
LZ
3632 init_rwsem(&l->rwsem);
3633 down_write(&l->rwsem);
72a8cb30 3634 l->key.type = type;
b70cc5fd 3635 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3636 l->owner = cgrp;
3637 list_add(&l->links, &cgrp->pidlists);
3638 mutex_unlock(&cgrp->pidlist_mutex);
3639 return l;
3640}
3641
102a775e
BB
3642/*
3643 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3644 */
72a8cb30
BB
3645static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3646 struct cgroup_pidlist **lp)
102a775e
BB
3647{
3648 pid_t *array;
3649 int length;
3650 int pid, n = 0; /* used for populating the array */
0942eeee 3651 struct cgroup_task_iter it;
817929ec 3652 struct task_struct *tsk;
102a775e
BB
3653 struct cgroup_pidlist *l;
3654
3655 /*
3656 * If cgroup gets more users after we read count, we won't have
3657 * enough space - tough. This race is indistinguishable to the
3658 * caller from the case that the additional cgroup users didn't
3659 * show up until sometime later on.
3660 */
3661 length = cgroup_task_count(cgrp);
d1d9fd33 3662 array = pidlist_allocate(length);
102a775e
BB
3663 if (!array)
3664 return -ENOMEM;
3665 /* now, populate the array */
0942eeee
TH
3666 cgroup_task_iter_start(cgrp, &it);
3667 while ((tsk = cgroup_task_iter_next(cgrp, &it))) {
102a775e 3668 if (unlikely(n == length))
817929ec 3669 break;
102a775e 3670 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3671 if (type == CGROUP_FILE_PROCS)
3672 pid = task_tgid_vnr(tsk);
3673 else
3674 pid = task_pid_vnr(tsk);
102a775e
BB
3675 if (pid > 0) /* make sure to only use valid results */
3676 array[n++] = pid;
817929ec 3677 }
0942eeee 3678 cgroup_task_iter_end(cgrp, &it);
102a775e
BB
3679 length = n;
3680 /* now sort & (if procs) strip out duplicates */
3681 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3682 if (type == CGROUP_FILE_PROCS)
6ee211ad 3683 length = pidlist_uniq(array, length);
72a8cb30
BB
3684 l = cgroup_pidlist_find(cgrp, type);
3685 if (!l) {
d1d9fd33 3686 pidlist_free(array);
72a8cb30 3687 return -ENOMEM;
102a775e 3688 }
72a8cb30 3689 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3690 pidlist_free(l->list);
102a775e
BB
3691 l->list = array;
3692 l->length = length;
3693 l->use_count++;
b395890a 3694 up_write(&l->rwsem);
72a8cb30 3695 *lp = l;
102a775e 3696 return 0;
bbcb81d0
PM
3697}
3698
846c7bb0 3699/**
a043e3b2 3700 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3701 * @stats: cgroupstats to fill information into
3702 * @dentry: A dentry entry belonging to the cgroup for which stats have
3703 * been requested.
a043e3b2
LZ
3704 *
3705 * Build and fill cgroupstats so that taskstats can export it to user
3706 * space.
846c7bb0
BS
3707 */
3708int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3709{
3710 int ret = -EINVAL;
bd89aabc 3711 struct cgroup *cgrp;
0942eeee 3712 struct cgroup_task_iter it;
846c7bb0 3713 struct task_struct *tsk;
33d283be 3714
846c7bb0 3715 /*
33d283be
LZ
3716 * Validate dentry by checking the superblock operations,
3717 * and make sure it's a directory.
846c7bb0 3718 */
33d283be
LZ
3719 if (dentry->d_sb->s_op != &cgroup_ops ||
3720 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3721 goto err;
3722
3723 ret = 0;
bd89aabc 3724 cgrp = dentry->d_fsdata;
846c7bb0 3725
0942eeee
TH
3726 cgroup_task_iter_start(cgrp, &it);
3727 while ((tsk = cgroup_task_iter_next(cgrp, &it))) {
846c7bb0
BS
3728 switch (tsk->state) {
3729 case TASK_RUNNING:
3730 stats->nr_running++;
3731 break;
3732 case TASK_INTERRUPTIBLE:
3733 stats->nr_sleeping++;
3734 break;
3735 case TASK_UNINTERRUPTIBLE:
3736 stats->nr_uninterruptible++;
3737 break;
3738 case TASK_STOPPED:
3739 stats->nr_stopped++;
3740 break;
3741 default:
3742 if (delayacct_is_task_waiting_on_io(tsk))
3743 stats->nr_io_wait++;
3744 break;
3745 }
3746 }
0942eeee 3747 cgroup_task_iter_end(cgrp, &it);
846c7bb0 3748
846c7bb0
BS
3749err:
3750 return ret;
3751}
3752
8f3ff208 3753
bbcb81d0 3754/*
102a775e 3755 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3756 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3757 * in the cgroup->l->list array.
bbcb81d0 3758 */
cc31edce 3759
102a775e 3760static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3761{
cc31edce
PM
3762 /*
3763 * Initially we receive a position value that corresponds to
3764 * one more than the last pid shown (or 0 on the first call or
3765 * after a seek to the start). Use a binary-search to find the
3766 * next pid to display, if any
3767 */
102a775e 3768 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3769 int index = 0, pid = *pos;
3770 int *iter;
3771
b395890a 3772 down_read(&l->rwsem);
cc31edce 3773 if (pid) {
102a775e 3774 int end = l->length;
20777766 3775
cc31edce
PM
3776 while (index < end) {
3777 int mid = (index + end) / 2;
102a775e 3778 if (l->list[mid] == pid) {
cc31edce
PM
3779 index = mid;
3780 break;
102a775e 3781 } else if (l->list[mid] <= pid)
cc31edce
PM
3782 index = mid + 1;
3783 else
3784 end = mid;
3785 }
3786 }
3787 /* If we're off the end of the array, we're done */
102a775e 3788 if (index >= l->length)
cc31edce
PM
3789 return NULL;
3790 /* Update the abstract position to be the actual pid that we found */
102a775e 3791 iter = l->list + index;
cc31edce
PM
3792 *pos = *iter;
3793 return iter;
3794}
3795
102a775e 3796static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3797{
102a775e 3798 struct cgroup_pidlist *l = s->private;
b395890a 3799 up_read(&l->rwsem);
cc31edce
PM
3800}
3801
102a775e 3802static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3803{
102a775e
BB
3804 struct cgroup_pidlist *l = s->private;
3805 pid_t *p = v;
3806 pid_t *end = l->list + l->length;
cc31edce
PM
3807 /*
3808 * Advance to the next pid in the array. If this goes off the
3809 * end, we're done
3810 */
3811 p++;
3812 if (p >= end) {
3813 return NULL;
3814 } else {
3815 *pos = *p;
3816 return p;
3817 }
3818}
3819
102a775e 3820static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3821{
3822 return seq_printf(s, "%d\n", *(int *)v);
3823}
bbcb81d0 3824
102a775e
BB
3825/*
3826 * seq_operations functions for iterating on pidlists through seq_file -
3827 * independent of whether it's tasks or procs
3828 */
3829static const struct seq_operations cgroup_pidlist_seq_operations = {
3830 .start = cgroup_pidlist_start,
3831 .stop = cgroup_pidlist_stop,
3832 .next = cgroup_pidlist_next,
3833 .show = cgroup_pidlist_show,
cc31edce
PM
3834};
3835
102a775e 3836static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3837{
72a8cb30
BB
3838 /*
3839 * the case where we're the last user of this particular pidlist will
3840 * have us remove it from the cgroup's list, which entails taking the
3841 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3842 * pidlist_mutex, we have to take pidlist_mutex first.
3843 */
3844 mutex_lock(&l->owner->pidlist_mutex);
b395890a 3845 down_write(&l->rwsem);
102a775e
BB
3846 BUG_ON(!l->use_count);
3847 if (!--l->use_count) {
72a8cb30
BB
3848 /* we're the last user if refcount is 0; remove and free */
3849 list_del(&l->links);
3850 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3851 pidlist_free(l->list);
72a8cb30 3852 put_pid_ns(l->key.ns);
b395890a 3853 up_write(&l->rwsem);
72a8cb30
BB
3854 kfree(l);
3855 return;
cc31edce 3856 }
72a8cb30 3857 mutex_unlock(&l->owner->pidlist_mutex);
b395890a 3858 up_write(&l->rwsem);
bbcb81d0
PM
3859}
3860
102a775e 3861static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3862{
102a775e 3863 struct cgroup_pidlist *l;
cc31edce
PM
3864 if (!(file->f_mode & FMODE_READ))
3865 return 0;
102a775e
BB
3866 /*
3867 * the seq_file will only be initialized if the file was opened for
3868 * reading; hence we check if it's not null only in that case.
3869 */
3870 l = ((struct seq_file *)file->private_data)->private;
3871 cgroup_release_pid_array(l);
cc31edce
PM
3872 return seq_release(inode, file);
3873}
3874
102a775e 3875static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3876 .read = seq_read,
3877 .llseek = seq_lseek,
3878 .write = cgroup_file_write,
102a775e 3879 .release = cgroup_pidlist_release,
cc31edce
PM
3880};
3881
bbcb81d0 3882/*
102a775e
BB
3883 * The following functions handle opens on a file that displays a pidlist
3884 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3885 * in the cgroup.
bbcb81d0 3886 */
102a775e 3887/* helper function for the two below it */
72a8cb30 3888static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3889{
bd89aabc 3890 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3891 struct cgroup_pidlist *l;
cc31edce 3892 int retval;
bbcb81d0 3893
cc31edce 3894 /* Nothing to do for write-only files */
bbcb81d0
PM
3895 if (!(file->f_mode & FMODE_READ))
3896 return 0;
3897
102a775e 3898 /* have the array populated */
72a8cb30 3899 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3900 if (retval)
3901 return retval;
3902 /* configure file information */
3903 file->f_op = &cgroup_pidlist_operations;
cc31edce 3904
102a775e 3905 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3906 if (retval) {
102a775e 3907 cgroup_release_pid_array(l);
cc31edce 3908 return retval;
bbcb81d0 3909 }
102a775e 3910 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3911 return 0;
3912}
102a775e
BB
3913static int cgroup_tasks_open(struct inode *unused, struct file *file)
3914{
72a8cb30 3915 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3916}
3917static int cgroup_procs_open(struct inode *unused, struct file *file)
3918{
72a8cb30 3919 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3920}
bbcb81d0 3921
182446d0
TH
3922static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3923 struct cftype *cft)
81a6a5cd 3924{
182446d0 3925 return notify_on_release(css->cgroup);
81a6a5cd
PM
3926}
3927
182446d0
TH
3928static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3929 struct cftype *cft, u64 val)
6379c106 3930{
182446d0 3931 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3932 if (val)
182446d0 3933 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3934 else
182446d0 3935 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3936 return 0;
3937}
3938
1c8158ee
LZ
3939/*
3940 * When dput() is called asynchronously, if umount has been done and
3941 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3942 * there's a small window that vfs will see the root dentry with non-zero
3943 * refcnt and trigger BUG().
3944 *
3945 * That's why we hold a reference before dput() and drop it right after.
3946 */
3947static void cgroup_dput(struct cgroup *cgrp)
3948{
3949 struct super_block *sb = cgrp->root->sb;
3950
3951 atomic_inc(&sb->s_active);
3952 dput(cgrp->dentry);
3953 deactivate_super(sb);
3954}
3955
0dea1168
KS
3956/*
3957 * Unregister event and free resources.
3958 *
3959 * Gets called from workqueue.
3960 */
3961static void cgroup_event_remove(struct work_struct *work)
3962{
3963 struct cgroup_event *event = container_of(work, struct cgroup_event,
3964 remove);
3965 struct cgroup *cgrp = event->cgrp;
3966
810cbee4
LZ
3967 remove_wait_queue(event->wqh, &event->wait);
3968
0dea1168
KS
3969 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3970
810cbee4
LZ
3971 /* Notify userspace the event is going away. */
3972 eventfd_signal(event->eventfd, 1);
3973
0dea1168 3974 eventfd_ctx_put(event->eventfd);
0dea1168 3975 kfree(event);
1c8158ee 3976 cgroup_dput(cgrp);
0dea1168
KS
3977}
3978
3979/*
3980 * Gets called on POLLHUP on eventfd when user closes it.
3981 *
3982 * Called with wqh->lock held and interrupts disabled.
3983 */
3984static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3985 int sync, void *key)
3986{
3987 struct cgroup_event *event = container_of(wait,
3988 struct cgroup_event, wait);
3989 struct cgroup *cgrp = event->cgrp;
3990 unsigned long flags = (unsigned long)key;
3991
3992 if (flags & POLLHUP) {
0dea1168 3993 /*
810cbee4
LZ
3994 * If the event has been detached at cgroup removal, we
3995 * can simply return knowing the other side will cleanup
3996 * for us.
3997 *
3998 * We can't race against event freeing since the other
3999 * side will require wqh->lock via remove_wait_queue(),
4000 * which we hold.
0dea1168 4001 */
810cbee4
LZ
4002 spin_lock(&cgrp->event_list_lock);
4003 if (!list_empty(&event->list)) {
4004 list_del_init(&event->list);
4005 /*
4006 * We are in atomic context, but cgroup_event_remove()
4007 * may sleep, so we have to call it in workqueue.
4008 */
4009 schedule_work(&event->remove);
4010 }
4011 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
4012 }
4013
4014 return 0;
4015}
4016
4017static void cgroup_event_ptable_queue_proc(struct file *file,
4018 wait_queue_head_t *wqh, poll_table *pt)
4019{
4020 struct cgroup_event *event = container_of(pt,
4021 struct cgroup_event, pt);
4022
4023 event->wqh = wqh;
4024 add_wait_queue(wqh, &event->wait);
4025}
4026
4027/*
4028 * Parse input and register new cgroup event handler.
4029 *
4030 * Input must be in format '<event_fd> <control_fd> <args>'.
4031 * Interpretation of args is defined by control file implementation.
4032 */
182446d0
TH
4033static int cgroup_write_event_control(struct cgroup_subsys_state *css,
4034 struct cftype *cft, const char *buffer)
0dea1168 4035{
182446d0 4036 struct cgroup *cgrp = css->cgroup;
876ede8b 4037 struct cgroup_event *event;
f169007b 4038 struct cgroup *cgrp_cfile;
0dea1168 4039 unsigned int efd, cfd;
876ede8b
LZ
4040 struct file *efile;
4041 struct file *cfile;
0dea1168
KS
4042 char *endp;
4043 int ret;
4044
4045 efd = simple_strtoul(buffer, &endp, 10);
4046 if (*endp != ' ')
4047 return -EINVAL;
4048 buffer = endp + 1;
4049
4050 cfd = simple_strtoul(buffer, &endp, 10);
4051 if ((*endp != ' ') && (*endp != '\0'))
4052 return -EINVAL;
4053 buffer = endp + 1;
4054
4055 event = kzalloc(sizeof(*event), GFP_KERNEL);
4056 if (!event)
4057 return -ENOMEM;
4058 event->cgrp = cgrp;
4059 INIT_LIST_HEAD(&event->list);
4060 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4061 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4062 INIT_WORK(&event->remove, cgroup_event_remove);
4063
4064 efile = eventfd_fget(efd);
4065 if (IS_ERR(efile)) {
4066 ret = PTR_ERR(efile);
876ede8b 4067 goto out_kfree;
0dea1168
KS
4068 }
4069
4070 event->eventfd = eventfd_ctx_fileget(efile);
4071 if (IS_ERR(event->eventfd)) {
4072 ret = PTR_ERR(event->eventfd);
876ede8b 4073 goto out_put_efile;
0dea1168
KS
4074 }
4075
4076 cfile = fget(cfd);
4077 if (!cfile) {
4078 ret = -EBADF;
876ede8b 4079 goto out_put_eventfd;
0dea1168
KS
4080 }
4081
4082 /* the process need read permission on control file */
3bfa784a 4083 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 4084 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168 4085 if (ret < 0)
876ede8b 4086 goto out_put_cfile;
0dea1168
KS
4087
4088 event->cft = __file_cft(cfile);
4089 if (IS_ERR(event->cft)) {
4090 ret = PTR_ERR(event->cft);
876ede8b 4091 goto out_put_cfile;
0dea1168
KS
4092 }
4093
f169007b
LZ
4094 /*
4095 * The file to be monitored must be in the same cgroup as
4096 * cgroup.event_control is.
4097 */
4098 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4099 if (cgrp_cfile != cgrp) {
4100 ret = -EINVAL;
876ede8b 4101 goto out_put_cfile;
f169007b
LZ
4102 }
4103
0dea1168
KS
4104 if (!event->cft->register_event || !event->cft->unregister_event) {
4105 ret = -EINVAL;
876ede8b 4106 goto out_put_cfile;
0dea1168
KS
4107 }
4108
4109 ret = event->cft->register_event(cgrp, event->cft,
4110 event->eventfd, buffer);
4111 if (ret)
876ede8b 4112 goto out_put_cfile;
0dea1168 4113
7ef70e48 4114 efile->f_op->poll(efile, &event->pt);
0dea1168 4115
a0a4db54
KS
4116 /*
4117 * Events should be removed after rmdir of cgroup directory, but before
4118 * destroying subsystem state objects. Let's take reference to cgroup
4119 * directory dentry to do that.
4120 */
4121 dget(cgrp->dentry);
4122
0dea1168
KS
4123 spin_lock(&cgrp->event_list_lock);
4124 list_add(&event->list, &cgrp->event_list);
4125 spin_unlock(&cgrp->event_list_lock);
4126
4127 fput(cfile);
4128 fput(efile);
4129
4130 return 0;
4131
876ede8b
LZ
4132out_put_cfile:
4133 fput(cfile);
4134out_put_eventfd:
4135 eventfd_ctx_put(event->eventfd);
4136out_put_efile:
4137 fput(efile);
4138out_kfree:
0dea1168
KS
4139 kfree(event);
4140
4141 return ret;
4142}
4143
182446d0
TH
4144static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4145 struct cftype *cft)
97978e6d 4146{
182446d0 4147 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4148}
4149
182446d0
TH
4150static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4151 struct cftype *cft, u64 val)
97978e6d
DL
4152{
4153 if (val)
182446d0 4154 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4155 else
182446d0 4156 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4157 return 0;
4158}
4159
d5c56ced 4160static struct cftype cgroup_base_files[] = {
81a6a5cd 4161 {
d5c56ced 4162 .name = "cgroup.procs",
102a775e 4163 .open = cgroup_procs_open,
74a1166d 4164 .write_u64 = cgroup_procs_write,
102a775e 4165 .release = cgroup_pidlist_release,
74a1166d 4166 .mode = S_IRUGO | S_IWUSR,
102a775e 4167 },
81a6a5cd 4168 {
d5c56ced 4169 .name = "cgroup.event_control",
0dea1168
KS
4170 .write_string = cgroup_write_event_control,
4171 .mode = S_IWUGO,
4172 },
97978e6d
DL
4173 {
4174 .name = "cgroup.clone_children",
873fe09e 4175 .flags = CFTYPE_INSANE,
97978e6d
DL
4176 .read_u64 = cgroup_clone_children_read,
4177 .write_u64 = cgroup_clone_children_write,
4178 },
873fe09e
TH
4179 {
4180 .name = "cgroup.sane_behavior",
4181 .flags = CFTYPE_ONLY_ON_ROOT,
4182 .read_seq_string = cgroup_sane_behavior_show,
4183 },
d5c56ced
TH
4184
4185 /*
4186 * Historical crazy stuff. These don't have "cgroup." prefix and
4187 * don't exist if sane_behavior. If you're depending on these, be
4188 * prepared to be burned.
4189 */
4190 {
4191 .name = "tasks",
4192 .flags = CFTYPE_INSANE, /* use "procs" instead */
4193 .open = cgroup_tasks_open,
4194 .write_u64 = cgroup_tasks_write,
4195 .release = cgroup_pidlist_release,
4196 .mode = S_IRUGO | S_IWUSR,
4197 },
4198 {
4199 .name = "notify_on_release",
4200 .flags = CFTYPE_INSANE,
4201 .read_u64 = cgroup_read_notify_on_release,
4202 .write_u64 = cgroup_write_notify_on_release,
4203 },
6e6ff25b
TH
4204 {
4205 .name = "release_agent",
cc5943a7 4206 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4207 .read_seq_string = cgroup_release_agent_show,
4208 .write_string = cgroup_release_agent_write,
4209 .max_write_len = PATH_MAX,
4210 },
db0416b6 4211 { } /* terminate */
bbcb81d0
PM
4212};
4213
13af07df 4214/**
628f7cd4 4215 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4216 * @cgrp: target cgroup
13af07df 4217 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4218 *
4219 * On failure, no file is added.
13af07df 4220 */
628f7cd4 4221static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4222{
ddbcc7e8 4223 struct cgroup_subsys *ss;
b420ba7d 4224 int i, ret = 0;
ddbcc7e8 4225
8e3f6541 4226 /* process cftsets of each subsystem */
b420ba7d 4227 for_each_subsys(ss, i) {
8e3f6541 4228 struct cftype_set *set;
b420ba7d
TH
4229
4230 if (!test_bit(i, &subsys_mask))
13af07df 4231 continue;
8e3f6541 4232
bee55099 4233 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 4234 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
4235 if (ret < 0)
4236 goto err;
4237 }
ddbcc7e8 4238 }
8e3f6541 4239
38460b48 4240 /* This cgroup is ready now */
5549c497 4241 for_each_root_subsys(cgrp->root, ss) {
38460b48 4242 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
a4ea1cc9
TH
4243 struct css_id *id = rcu_dereference_protected(css->id, true);
4244
38460b48
KH
4245 /*
4246 * Update id->css pointer and make this css visible from
4247 * CSS ID functions. This pointer will be dereferened
4248 * from RCU-read-side without locks.
4249 */
a4ea1cc9
TH
4250 if (id)
4251 rcu_assign_pointer(id->css, css);
38460b48 4252 }
ddbcc7e8
PM
4253
4254 return 0;
bee55099
TH
4255err:
4256 cgroup_clear_dir(cgrp, subsys_mask);
4257 return ret;
ddbcc7e8
PM
4258}
4259
48ddbe19
TH
4260static void css_dput_fn(struct work_struct *work)
4261{
4262 struct cgroup_subsys_state *css =
4263 container_of(work, struct cgroup_subsys_state, dput_work);
4264
1c8158ee 4265 cgroup_dput(css->cgroup);
48ddbe19
TH
4266}
4267
d3daf28d
TH
4268static void css_release(struct percpu_ref *ref)
4269{
4270 struct cgroup_subsys_state *css =
4271 container_of(ref, struct cgroup_subsys_state, refcnt);
4272
4273 schedule_work(&css->dput_work);
4274}
4275
ddbcc7e8
PM
4276static void init_cgroup_css(struct cgroup_subsys_state *css,
4277 struct cgroup_subsys *ss,
bd89aabc 4278 struct cgroup *cgrp)
ddbcc7e8 4279{
bd89aabc 4280 css->cgroup = cgrp;
72c97e54 4281 css->ss = ss;
ddbcc7e8 4282 css->flags = 0;
38460b48 4283 css->id = NULL;
9871bf95 4284 if (cgrp == cgroup_dummy_top)
38b53aba 4285 css->flags |= CSS_ROOT;
bd89aabc
PM
4286 BUG_ON(cgrp->subsys[ss->subsys_id]);
4287 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4288
4289 /*
ed957793
TH
4290 * css holds an extra ref to @cgrp->dentry which is put on the last
4291 * css_put(). dput() requires process context, which css_put() may
4292 * be called without. @css->dput_work will be used to invoke
4293 * dput() asynchronously from css_put().
48ddbe19
TH
4294 */
4295 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4296}
4297
2a4ac633 4298/* invoke ->css_online() on a new CSS and mark it online if successful */
b1929db4 4299static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4300{
eb95419b 4301 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
b1929db4
TH
4302 int ret = 0;
4303
a31f2d3f
TH
4304 lockdep_assert_held(&cgroup_mutex);
4305
92fb9748 4306 if (ss->css_online)
eb95419b 4307 ret = ss->css_online(css);
b1929db4 4308 if (!ret)
eb95419b 4309 css->flags |= CSS_ONLINE;
b1929db4 4310 return ret;
a31f2d3f
TH
4311}
4312
2a4ac633 4313/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
a31f2d3f 4314static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f
TH
4315{
4316 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4317
4318 lockdep_assert_held(&cgroup_mutex);
4319
4320 if (!(css->flags & CSS_ONLINE))
4321 return;
4322
d7eeac19 4323 if (ss->css_offline)
eb95419b 4324 ss->css_offline(css);
a31f2d3f 4325
eb95419b 4326 css->flags &= ~CSS_ONLINE;
a31f2d3f
TH
4327}
4328
ddbcc7e8 4329/*
a043e3b2
LZ
4330 * cgroup_create - create a cgroup
4331 * @parent: cgroup that will be parent of the new cgroup
4332 * @dentry: dentry of the new cgroup
4333 * @mode: mode to set on new inode
ddbcc7e8 4334 *
a043e3b2 4335 * Must be called with the mutex on the parent inode held
ddbcc7e8 4336 */
ddbcc7e8 4337static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4338 umode_t mode)
ddbcc7e8 4339{
bd89aabc 4340 struct cgroup *cgrp;
65dff759 4341 struct cgroup_name *name;
ddbcc7e8
PM
4342 struct cgroupfs_root *root = parent->root;
4343 int err = 0;
4344 struct cgroup_subsys *ss;
4345 struct super_block *sb = root->sb;
4346
0a950f65 4347 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4348 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4349 if (!cgrp)
ddbcc7e8
PM
4350 return -ENOMEM;
4351
65dff759
LZ
4352 name = cgroup_alloc_name(dentry);
4353 if (!name)
4354 goto err_free_cgrp;
4355 rcu_assign_pointer(cgrp->name, name);
4356
4e96ee8e
LZ
4357 /*
4358 * Temporarily set the pointer to NULL, so idr_find() won't return
4359 * a half-baked cgroup.
4360 */
4361 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4362 if (cgrp->id < 0)
65dff759 4363 goto err_free_name;
0a950f65 4364
976c06bc
TH
4365 /*
4366 * Only live parents can have children. Note that the liveliness
4367 * check isn't strictly necessary because cgroup_mkdir() and
4368 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4369 * anyway so that locking is contained inside cgroup proper and we
4370 * don't get nasty surprises if we ever grow another caller.
4371 */
4372 if (!cgroup_lock_live_group(parent)) {
4373 err = -ENODEV;
0a950f65 4374 goto err_free_id;
976c06bc
TH
4375 }
4376
ddbcc7e8
PM
4377 /* Grab a reference on the superblock so the hierarchy doesn't
4378 * get deleted on unmount if there are child cgroups. This
4379 * can be done outside cgroup_mutex, since the sb can't
4380 * disappear while someone has an open control file on the
4381 * fs */
4382 atomic_inc(&sb->s_active);
4383
cc31edce 4384 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4385
fe1c06ca
LZ
4386 dentry->d_fsdata = cgrp;
4387 cgrp->dentry = dentry;
4388
bd89aabc
PM
4389 cgrp->parent = parent;
4390 cgrp->root = parent->root;
ddbcc7e8 4391
b6abdb0e
LZ
4392 if (notify_on_release(parent))
4393 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4394
2260e7fc
TH
4395 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4396 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4397
5549c497 4398 for_each_root_subsys(root, ss) {
8c7f6edb 4399 struct cgroup_subsys_state *css;
4528fd05 4400
eb95419b 4401 css = ss->css_alloc(parent->subsys[ss->subsys_id]);
ddbcc7e8
PM
4402 if (IS_ERR(css)) {
4403 err = PTR_ERR(css);
4b8b47eb 4404 goto err_free_all;
ddbcc7e8 4405 }
d3daf28d
TH
4406
4407 err = percpu_ref_init(&css->refcnt, css_release);
da0a12ca 4408 if (err) {
eb95419b 4409 ss->css_free(css);
d3daf28d 4410 goto err_free_all;
da0a12ca 4411 }
d3daf28d 4412
bd89aabc 4413 init_cgroup_css(css, ss, cgrp);
d3daf28d 4414
4528fd05
LZ
4415 if (ss->use_id) {
4416 err = alloc_css_id(ss, parent, cgrp);
4417 if (err)
4b8b47eb 4418 goto err_free_all;
4528fd05 4419 }
ddbcc7e8
PM
4420 }
4421
4e139afc
TH
4422 /*
4423 * Create directory. cgroup_create_file() returns with the new
4424 * directory locked on success so that it can be populated without
4425 * dropping cgroup_mutex.
4426 */
28fd6f30 4427 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4428 if (err < 0)
4b8b47eb 4429 goto err_free_all;
4e139afc 4430 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4431
00356bd5 4432 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4433
4e139afc 4434 /* allocation complete, commit to creation */
4e139afc
TH
4435 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4436 root->number_of_cgroups++;
28fd6f30 4437
b1929db4 4438 /* each css holds a ref to the cgroup's dentry */
5549c497 4439 for_each_root_subsys(root, ss)
ed957793 4440 dget(dentry);
48ddbe19 4441
415cf07a
LZ
4442 /* hold a ref to the parent's dentry */
4443 dget(parent->dentry);
4444
b1929db4 4445 /* creation succeeded, notify subsystems */
5549c497 4446 for_each_root_subsys(root, ss) {
b1929db4
TH
4447 err = online_css(ss, cgrp);
4448 if (err)
4449 goto err_destroy;
1f869e87
GC
4450
4451 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4452 parent->parent) {
4453 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4454 current->comm, current->pid, ss->name);
4455 if (!strcmp(ss->name, "memory"))
4456 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4457 ss->warned_broken_hierarchy = true;
4458 }
a8638030
TH
4459 }
4460
4e96ee8e
LZ
4461 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4462
2bb566cb 4463 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4464 if (err)
4465 goto err_destroy;
4466
4467 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4468 if (err)
4469 goto err_destroy;
ddbcc7e8
PM
4470
4471 mutex_unlock(&cgroup_mutex);
bd89aabc 4472 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4473
4474 return 0;
4475
4b8b47eb 4476err_free_all:
5549c497 4477 for_each_root_subsys(root, ss) {
d3daf28d
TH
4478 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4479
4480 if (css) {
4481 percpu_ref_cancel_init(&css->refcnt);
eb95419b 4482 ss->css_free(css);
d3daf28d 4483 }
ddbcc7e8 4484 }
ddbcc7e8 4485 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4486 /* Release the reference count that we took on the superblock */
4487 deactivate_super(sb);
0a950f65 4488err_free_id:
4e96ee8e 4489 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4490err_free_name:
4491 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4492err_free_cgrp:
bd89aabc 4493 kfree(cgrp);
ddbcc7e8 4494 return err;
4b8b47eb
TH
4495
4496err_destroy:
4497 cgroup_destroy_locked(cgrp);
4498 mutex_unlock(&cgroup_mutex);
4499 mutex_unlock(&dentry->d_inode->i_mutex);
4500 return err;
ddbcc7e8
PM
4501}
4502
18bb1db3 4503static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4504{
4505 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4506
4507 /* the vfs holds inode->i_mutex already */
4508 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4509}
4510
d3daf28d
TH
4511static void cgroup_css_killed(struct cgroup *cgrp)
4512{
4513 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4514 return;
4515
4516 /* percpu ref's of all css's are killed, kick off the next step */
4517 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4518 schedule_work(&cgrp->destroy_work);
4519}
4520
4521static void css_ref_killed_fn(struct percpu_ref *ref)
4522{
4523 struct cgroup_subsys_state *css =
4524 container_of(ref, struct cgroup_subsys_state, refcnt);
4525
4526 cgroup_css_killed(css->cgroup);
4527}
4528
4529/**
4530 * cgroup_destroy_locked - the first stage of cgroup destruction
4531 * @cgrp: cgroup to be destroyed
4532 *
4533 * css's make use of percpu refcnts whose killing latency shouldn't be
4534 * exposed to userland and are RCU protected. Also, cgroup core needs to
4535 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4536 * invoked. To satisfy all the requirements, destruction is implemented in
4537 * the following two steps.
4538 *
4539 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4540 * userland visible parts and start killing the percpu refcnts of
4541 * css's. Set up so that the next stage will be kicked off once all
4542 * the percpu refcnts are confirmed to be killed.
4543 *
4544 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4545 * rest of destruction. Once all cgroup references are gone, the
4546 * cgroup is RCU-freed.
4547 *
4548 * This function implements s1. After this step, @cgrp is gone as far as
4549 * the userland is concerned and a new cgroup with the same name may be
4550 * created. As cgroup doesn't care about the names internally, this
4551 * doesn't cause any problem.
4552 */
42809dd4
TH
4553static int cgroup_destroy_locked(struct cgroup *cgrp)
4554 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4555{
42809dd4 4556 struct dentry *d = cgrp->dentry;
4ab78683 4557 struct cgroup_event *event, *tmp;
ed957793 4558 struct cgroup_subsys *ss;
ddd69148 4559 bool empty;
ddbcc7e8 4560
42809dd4
TH
4561 lockdep_assert_held(&d->d_inode->i_mutex);
4562 lockdep_assert_held(&cgroup_mutex);
4563
ddd69148 4564 /*
6f3d828f
TH
4565 * css_set_lock synchronizes access to ->cset_links and prevents
4566 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4567 */
4568 read_lock(&css_set_lock);
6f3d828f 4569 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4570 read_unlock(&css_set_lock);
4571 if (!empty)
ddbcc7e8 4572 return -EBUSY;
a043e3b2 4573
88703267 4574 /*
d3daf28d
TH
4575 * Block new css_tryget() by killing css refcnts. cgroup core
4576 * guarantees that, by the time ->css_offline() is invoked, no new
4577 * css reference will be given out via css_tryget(). We can't
4578 * simply call percpu_ref_kill() and proceed to offlining css's
4579 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4580 * as killed on all CPUs on return.
4581 *
4582 * Use percpu_ref_kill_and_confirm() to get notifications as each
4583 * css is confirmed to be seen as killed on all CPUs. The
4584 * notification callback keeps track of the number of css's to be
4585 * killed and schedules cgroup_offline_fn() to perform the rest of
4586 * destruction once the percpu refs of all css's are confirmed to
4587 * be killed.
88703267 4588 */
d3daf28d 4589 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4590 for_each_root_subsys(cgrp->root, ss) {
ed957793 4591 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4592
d3daf28d
TH
4593 /*
4594 * Killing would put the base ref, but we need to keep it
4595 * alive until after ->css_offline.
4596 */
4597 percpu_ref_get(&css->refcnt);
4598
4599 atomic_inc(&cgrp->css_kill_cnt);
4600 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4601 }
d3daf28d 4602 cgroup_css_killed(cgrp);
455050d2
TH
4603
4604 /*
4605 * Mark @cgrp dead. This prevents further task migration and child
4606 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4607 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4608 * resume iteration after dropping RCU read lock. See
492eb21b 4609 * css_next_child() for details.
455050d2 4610 */
54766d4a 4611 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4612
455050d2
TH
4613 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4614 raw_spin_lock(&release_list_lock);
4615 if (!list_empty(&cgrp->release_list))
4616 list_del_init(&cgrp->release_list);
4617 raw_spin_unlock(&release_list_lock);
4618
4619 /*
8f89140a
TH
4620 * Clear and remove @cgrp directory. The removal puts the base ref
4621 * but we aren't quite done with @cgrp yet, so hold onto it.
455050d2 4622 */
628f7cd4 4623 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
2bb566cb 4624 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4625 dget(d);
4626 cgroup_d_remove_dir(d);
4627
4628 /*
4629 * Unregister events and notify userspace.
4630 * Notify userspace about cgroup removing only after rmdir of cgroup
4631 * directory to avoid race between userspace and kernelspace.
4632 */
4633 spin_lock(&cgrp->event_list_lock);
4634 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4635 list_del_init(&event->list);
4636 schedule_work(&event->remove);
4637 }
4638 spin_unlock(&cgrp->event_list_lock);
4639
ea15f8cc
TH
4640 return 0;
4641};
4642
d3daf28d
TH
4643/**
4644 * cgroup_offline_fn - the second step of cgroup destruction
4645 * @work: cgroup->destroy_free_work
4646 *
4647 * This function is invoked from a work item for a cgroup which is being
4648 * destroyed after the percpu refcnts of all css's are guaranteed to be
4649 * seen as killed on all CPUs, and performs the rest of destruction. This
4650 * is the second step of destruction described in the comment above
4651 * cgroup_destroy_locked().
4652 */
ea15f8cc
TH
4653static void cgroup_offline_fn(struct work_struct *work)
4654{
4655 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4656 struct cgroup *parent = cgrp->parent;
4657 struct dentry *d = cgrp->dentry;
4658 struct cgroup_subsys *ss;
4659
4660 mutex_lock(&cgroup_mutex);
4661
d3daf28d
TH
4662 /*
4663 * css_tryget() is guaranteed to fail now. Tell subsystems to
4664 * initate destruction.
4665 */
5549c497 4666 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4667 offline_css(ss, cgrp);
ed957793
TH
4668
4669 /*
d3daf28d
TH
4670 * Put the css refs from cgroup_destroy_locked(). Each css holds
4671 * an extra reference to the cgroup's dentry and cgroup removal
4672 * proceeds regardless of css refs. On the last put of each css,
4673 * whenever that may be, the extra dentry ref is put so that dentry
4674 * destruction happens only after all css's are released.
ed957793 4675 */
5549c497 4676 for_each_root_subsys(cgrp->root, ss)
e9316080 4677 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4678
999cd8a4 4679 /* delete this cgroup from parent->children */
eb6fd504 4680 list_del_rcu(&cgrp->sibling);
b0ca5a84 4681
4e96ee8e
LZ
4682 /*
4683 * We should remove the cgroup object from idr before its grace
4684 * period starts, so we won't be looking up a cgroup while the
4685 * cgroup is being freed.
4686 */
4687 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4688 cgrp->id = -1;
4689
ddbcc7e8 4690 dput(d);
ddbcc7e8 4691
bd89aabc 4692 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4693 check_for_release(parent);
4694
ea15f8cc 4695 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4696}
4697
42809dd4
TH
4698static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4699{
4700 int ret;
4701
4702 mutex_lock(&cgroup_mutex);
4703 ret = cgroup_destroy_locked(dentry->d_fsdata);
4704 mutex_unlock(&cgroup_mutex);
4705
4706 return ret;
4707}
4708
8e3f6541
TH
4709static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4710{
4711 INIT_LIST_HEAD(&ss->cftsets);
4712
4713 /*
4714 * base_cftset is embedded in subsys itself, no need to worry about
4715 * deregistration.
4716 */
4717 if (ss->base_cftypes) {
2bb566cb
TH
4718 struct cftype *cft;
4719
4720 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4721 cft->ss = ss;
4722
8e3f6541
TH
4723 ss->base_cftset.cfts = ss->base_cftypes;
4724 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4725 }
4726}
4727
06a11920 4728static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4729{
ddbcc7e8 4730 struct cgroup_subsys_state *css;
cfe36bde
DC
4731
4732 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4733
648bb56d
TH
4734 mutex_lock(&cgroup_mutex);
4735
8e3f6541
TH
4736 /* init base cftset */
4737 cgroup_init_cftsets(ss);
4738
ddbcc7e8 4739 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4740 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4741 ss->root = &cgroup_dummy_root;
eb95419b 4742 css = ss->css_alloc(cgroup_dummy_top->subsys[ss->subsys_id]);
ddbcc7e8
PM
4743 /* We don't handle early failures gracefully */
4744 BUG_ON(IS_ERR(css));
9871bf95 4745 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4746
e8d55fde 4747 /* Update the init_css_set to contain a subsys
817929ec 4748 * pointer to this state - since the subsystem is
e8d55fde
LZ
4749 * newly registered, all tasks and hence the
4750 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4751 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4752
4753 need_forkexit_callback |= ss->fork || ss->exit;
4754
e8d55fde
LZ
4755 /* At system boot, before all subsystems have been
4756 * registered, no tasks have been forked, so we don't
4757 * need to invoke fork callbacks here. */
4758 BUG_ON(!list_empty(&init_task.tasks));
4759
9871bf95 4760 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4761
648bb56d
TH
4762 mutex_unlock(&cgroup_mutex);
4763
e6a1105b
BB
4764 /* this function shouldn't be used with modular subsystems, since they
4765 * need to register a subsys_id, among other things */
4766 BUG_ON(ss->module);
4767}
4768
4769/**
4770 * cgroup_load_subsys: load and register a modular subsystem at runtime
4771 * @ss: the subsystem to load
4772 *
4773 * This function should be called in a modular subsystem's initcall. If the
88393161 4774 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4775 * up for use. If the subsystem is built-in anyway, work is delegated to the
4776 * simpler cgroup_init_subsys.
4777 */
4778int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4779{
e6a1105b 4780 struct cgroup_subsys_state *css;
d19e19de 4781 int i, ret;
b67bfe0d 4782 struct hlist_node *tmp;
5abb8855 4783 struct css_set *cset;
0ac801fe 4784 unsigned long key;
e6a1105b
BB
4785
4786 /* check name and function validity */
4787 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4788 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4789 return -EINVAL;
4790
4791 /*
4792 * we don't support callbacks in modular subsystems. this check is
4793 * before the ss->module check for consistency; a subsystem that could
4794 * be a module should still have no callbacks even if the user isn't
4795 * compiling it as one.
4796 */
4797 if (ss->fork || ss->exit)
4798 return -EINVAL;
4799
4800 /*
4801 * an optionally modular subsystem is built-in: we want to do nothing,
4802 * since cgroup_init_subsys will have already taken care of it.
4803 */
4804 if (ss->module == NULL) {
be45c900 4805 /* a sanity check */
9871bf95 4806 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4807 return 0;
4808 }
4809
8e3f6541
TH
4810 /* init base cftset */
4811 cgroup_init_cftsets(ss);
4812
e6a1105b 4813 mutex_lock(&cgroup_mutex);
9871bf95 4814 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4815
4816 /*
92fb9748 4817 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4818 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4819 * attachment).
e6a1105b 4820 */
eb95419b 4821 css = ss->css_alloc(cgroup_dummy_top->subsys[ss->subsys_id]);
e6a1105b 4822 if (IS_ERR(css)) {
9871bf95
TH
4823 /* failure case - need to deassign the cgroup_subsys[] slot. */
4824 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4825 mutex_unlock(&cgroup_mutex);
4826 return PTR_ERR(css);
4827 }
4828
9871bf95
TH
4829 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4830 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4831
4832 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4833 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4834 /* init_idr must be after init_cgroup_css because it sets css->id. */
4835 if (ss->use_id) {
d19e19de
TH
4836 ret = cgroup_init_idr(ss, css);
4837 if (ret)
4838 goto err_unload;
e6a1105b
BB
4839 }
4840
4841 /*
4842 * Now we need to entangle the css into the existing css_sets. unlike
4843 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4844 * will need a new pointer to it; done by iterating the css_set_table.
4845 * furthermore, modifying the existing css_sets will corrupt the hash
4846 * table state, so each changed css_set will need its hash recomputed.
4847 * this is all done under the css_set_lock.
4848 */
4849 write_lock(&css_set_lock);
5abb8855 4850 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4851 /* skip entries that we already rehashed */
5abb8855 4852 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4853 continue;
4854 /* remove existing entry */
5abb8855 4855 hash_del(&cset->hlist);
0ac801fe 4856 /* set new value */
5abb8855 4857 cset->subsys[ss->subsys_id] = css;
0ac801fe 4858 /* recompute hash and restore entry */
5abb8855
TH
4859 key = css_set_hash(cset->subsys);
4860 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4861 }
4862 write_unlock(&css_set_lock);
4863
9871bf95 4864 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4865 if (ret)
4866 goto err_unload;
a8638030 4867
e6a1105b
BB
4868 /* success! */
4869 mutex_unlock(&cgroup_mutex);
4870 return 0;
d19e19de
TH
4871
4872err_unload:
4873 mutex_unlock(&cgroup_mutex);
4874 /* @ss can't be mounted here as try_module_get() would fail */
4875 cgroup_unload_subsys(ss);
4876 return ret;
ddbcc7e8 4877}
e6a1105b 4878EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4879
cf5d5941
BB
4880/**
4881 * cgroup_unload_subsys: unload a modular subsystem
4882 * @ss: the subsystem to unload
4883 *
4884 * This function should be called in a modular subsystem's exitcall. When this
4885 * function is invoked, the refcount on the subsystem's module will be 0, so
4886 * the subsystem will not be attached to any hierarchy.
4887 */
4888void cgroup_unload_subsys(struct cgroup_subsys *ss)
4889{
69d0206c 4890 struct cgrp_cset_link *link;
cf5d5941
BB
4891
4892 BUG_ON(ss->module == NULL);
4893
4894 /*
4895 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4896 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4897 * doesn't start being used while we're killing it off.
4898 */
9871bf95 4899 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4900
4901 mutex_lock(&cgroup_mutex);
02ae7486 4902
9871bf95 4903 offline_css(ss, cgroup_dummy_top);
02ae7486 4904
c897ff68 4905 if (ss->use_id)
02ae7486 4906 idr_destroy(&ss->idr);
02ae7486 4907
cf5d5941 4908 /* deassign the subsys_id */
9871bf95 4909 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4910
9871bf95 4911 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4912 list_del_init(&ss->sibling);
cf5d5941
BB
4913
4914 /*
9871bf95
TH
4915 * disentangle the css from all css_sets attached to the dummy
4916 * top. as in loading, we need to pay our respects to the hashtable
4917 * gods.
cf5d5941
BB
4918 */
4919 write_lock(&css_set_lock);
9871bf95 4920 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4921 struct css_set *cset = link->cset;
0ac801fe 4922 unsigned long key;
cf5d5941 4923
5abb8855
TH
4924 hash_del(&cset->hlist);
4925 cset->subsys[ss->subsys_id] = NULL;
4926 key = css_set_hash(cset->subsys);
4927 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4928 }
4929 write_unlock(&css_set_lock);
4930
4931 /*
9871bf95
TH
4932 * remove subsystem's css from the cgroup_dummy_top and free it -
4933 * need to free before marking as null because ss->css_free needs
4934 * the cgrp->subsys pointer to find their state. note that this
4935 * also takes care of freeing the css_id.
cf5d5941 4936 */
eb95419b 4937 ss->css_free(cgroup_dummy_top->subsys[ss->subsys_id]);
9871bf95 4938 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4939
4940 mutex_unlock(&cgroup_mutex);
4941}
4942EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4943
ddbcc7e8 4944/**
a043e3b2
LZ
4945 * cgroup_init_early - cgroup initialization at system boot
4946 *
4947 * Initialize cgroups at system boot, and initialize any
4948 * subsystems that request early init.
ddbcc7e8
PM
4949 */
4950int __init cgroup_init_early(void)
4951{
30159ec7 4952 struct cgroup_subsys *ss;
ddbcc7e8 4953 int i;
30159ec7 4954
146aa1bd 4955 atomic_set(&init_css_set.refcount, 1);
69d0206c 4956 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4957 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4958 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4959 css_set_count = 1;
9871bf95
TH
4960 init_cgroup_root(&cgroup_dummy_root);
4961 cgroup_root_count = 1;
a4ea1cc9 4962 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4963
69d0206c 4964 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4965 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4966 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4967 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4968
30159ec7
TH
4969 /* at bootup time, we don't worry about modular subsystems */
4970 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4971 BUG_ON(!ss->name);
4972 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4973 BUG_ON(!ss->css_alloc);
4974 BUG_ON(!ss->css_free);
ddbcc7e8 4975 if (ss->subsys_id != i) {
cfe36bde 4976 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4977 ss->name, ss->subsys_id);
4978 BUG();
4979 }
4980
4981 if (ss->early_init)
4982 cgroup_init_subsys(ss);
4983 }
4984 return 0;
4985}
4986
4987/**
a043e3b2
LZ
4988 * cgroup_init - cgroup initialization
4989 *
4990 * Register cgroup filesystem and /proc file, and initialize
4991 * any subsystems that didn't request early init.
ddbcc7e8
PM
4992 */
4993int __init cgroup_init(void)
4994{
30159ec7 4995 struct cgroup_subsys *ss;
0ac801fe 4996 unsigned long key;
30159ec7 4997 int i, err;
a424316c
PM
4998
4999 err = bdi_init(&cgroup_backing_dev_info);
5000 if (err)
5001 return err;
ddbcc7e8 5002
30159ec7 5003 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5004 if (!ss->early_init)
5005 cgroup_init_subsys(ss);
38460b48 5006 if (ss->use_id)
e6a1105b 5007 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
5008 }
5009
fa3ca07e 5010 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
5011 mutex_lock(&cgroup_mutex);
5012 mutex_lock(&cgroup_root_mutex);
5013
82fe9b0d
TH
5014 /* Add init_css_set to the hash table */
5015 key = css_set_hash(init_css_set.subsys);
5016 hash_add(css_set_table, &init_css_set.hlist, key);
5017
fc76df70 5018 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 5019
4e96ee8e
LZ
5020 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5021 0, 1, GFP_KERNEL);
5022 BUG_ON(err < 0);
5023
54e7b4eb
TH
5024 mutex_unlock(&cgroup_root_mutex);
5025 mutex_unlock(&cgroup_mutex);
5026
676db4af
GK
5027 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5028 if (!cgroup_kobj) {
5029 err = -ENOMEM;
5030 goto out;
5031 }
5032
ddbcc7e8 5033 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
5034 if (err < 0) {
5035 kobject_put(cgroup_kobj);
ddbcc7e8 5036 goto out;
676db4af 5037 }
ddbcc7e8 5038
46ae220b 5039 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 5040
ddbcc7e8 5041out:
a424316c
PM
5042 if (err)
5043 bdi_destroy(&cgroup_backing_dev_info);
5044
ddbcc7e8
PM
5045 return err;
5046}
b4f48b63 5047
a424316c
PM
5048/*
5049 * proc_cgroup_show()
5050 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5051 * - Used for /proc/<pid>/cgroup.
5052 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5053 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 5054 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
5055 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5056 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5057 * cgroup to top_cgroup.
5058 */
5059
5060/* TODO: Use a proper seq_file iterator */
8d8b97ba 5061int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
5062{
5063 struct pid *pid;
5064 struct task_struct *tsk;
5065 char *buf;
5066 int retval;
5067 struct cgroupfs_root *root;
5068
5069 retval = -ENOMEM;
5070 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5071 if (!buf)
5072 goto out;
5073
5074 retval = -ESRCH;
5075 pid = m->private;
5076 tsk = get_pid_task(pid, PIDTYPE_PID);
5077 if (!tsk)
5078 goto out_free;
5079
5080 retval = 0;
5081
5082 mutex_lock(&cgroup_mutex);
5083
e5f6a860 5084 for_each_active_root(root) {
a424316c 5085 struct cgroup_subsys *ss;
bd89aabc 5086 struct cgroup *cgrp;
a424316c
PM
5087 int count = 0;
5088
2c6ab6d2 5089 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 5090 for_each_root_subsys(root, ss)
a424316c 5091 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5092 if (strlen(root->name))
5093 seq_printf(m, "%sname=%s", count ? "," : "",
5094 root->name);
a424316c 5095 seq_putc(m, ':');
7717f7ba 5096 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 5097 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
5098 if (retval < 0)
5099 goto out_unlock;
5100 seq_puts(m, buf);
5101 seq_putc(m, '\n');
5102 }
5103
5104out_unlock:
5105 mutex_unlock(&cgroup_mutex);
5106 put_task_struct(tsk);
5107out_free:
5108 kfree(buf);
5109out:
5110 return retval;
5111}
5112
a424316c
PM
5113/* Display information about each subsystem and each hierarchy */
5114static int proc_cgroupstats_show(struct seq_file *m, void *v)
5115{
30159ec7 5116 struct cgroup_subsys *ss;
a424316c 5117 int i;
a424316c 5118
8bab8dde 5119 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5120 /*
5121 * ideally we don't want subsystems moving around while we do this.
5122 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5123 * subsys/hierarchy state.
5124 */
a424316c 5125 mutex_lock(&cgroup_mutex);
30159ec7
TH
5126
5127 for_each_subsys(ss, i)
2c6ab6d2
PM
5128 seq_printf(m, "%s\t%d\t%d\t%d\n",
5129 ss->name, ss->root->hierarchy_id,
8bab8dde 5130 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5131
a424316c
PM
5132 mutex_unlock(&cgroup_mutex);
5133 return 0;
5134}
5135
5136static int cgroupstats_open(struct inode *inode, struct file *file)
5137{
9dce07f1 5138 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5139}
5140
828c0950 5141static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5142 .open = cgroupstats_open,
5143 .read = seq_read,
5144 .llseek = seq_lseek,
5145 .release = single_release,
5146};
5147
b4f48b63
PM
5148/**
5149 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5150 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5151 *
5152 * Description: A task inherits its parent's cgroup at fork().
5153 *
5154 * A pointer to the shared css_set was automatically copied in
5155 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5156 * it was not made under the protection of RCU or cgroup_mutex, so
5157 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5158 * have already changed current->cgroups, allowing the previously
5159 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5160 *
5161 * At the point that cgroup_fork() is called, 'current' is the parent
5162 * task, and the passed argument 'child' points to the child task.
5163 */
5164void cgroup_fork(struct task_struct *child)
5165{
9bb71308 5166 task_lock(current);
a8ad805c 5167 get_css_set(task_css_set(current));
817929ec 5168 child->cgroups = current->cgroups;
9bb71308 5169 task_unlock(current);
817929ec 5170 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5171}
5172
817929ec 5173/**
a043e3b2
LZ
5174 * cgroup_post_fork - called on a new task after adding it to the task list
5175 * @child: the task in question
5176 *
5edee61e
TH
5177 * Adds the task to the list running through its css_set if necessary and
5178 * call the subsystem fork() callbacks. Has to be after the task is
5179 * visible on the task list in case we race with the first call to
0942eeee 5180 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5181 * list.
a043e3b2 5182 */
817929ec
PM
5183void cgroup_post_fork(struct task_struct *child)
5184{
30159ec7 5185 struct cgroup_subsys *ss;
5edee61e
TH
5186 int i;
5187
3ce3230a
FW
5188 /*
5189 * use_task_css_set_links is set to 1 before we walk the tasklist
5190 * under the tasklist_lock and we read it here after we added the child
5191 * to the tasklist under the tasklist_lock as well. If the child wasn't
5192 * yet in the tasklist when we walked through it from
5193 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5194 * should be visible now due to the paired locking and barriers implied
5195 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5196 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5197 * lock on fork.
5198 */
817929ec
PM
5199 if (use_task_css_set_links) {
5200 write_lock(&css_set_lock);
d8783832
TH
5201 task_lock(child);
5202 if (list_empty(&child->cg_list))
a8ad805c 5203 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5204 task_unlock(child);
817929ec
PM
5205 write_unlock(&css_set_lock);
5206 }
5edee61e
TH
5207
5208 /*
5209 * Call ss->fork(). This must happen after @child is linked on
5210 * css_set; otherwise, @child might change state between ->fork()
5211 * and addition to css_set.
5212 */
5213 if (need_forkexit_callback) {
7d8e0bf5
LZ
5214 /*
5215 * fork/exit callbacks are supported only for builtin
5216 * subsystems, and the builtin section of the subsys
5217 * array is immutable, so we don't need to lock the
5218 * subsys array here. On the other hand, modular section
5219 * of the array can be freed at module unload, so we
5220 * can't touch that.
5221 */
30159ec7 5222 for_each_builtin_subsys(ss, i)
5edee61e
TH
5223 if (ss->fork)
5224 ss->fork(child);
5edee61e 5225 }
817929ec 5226}
5edee61e 5227
b4f48b63
PM
5228/**
5229 * cgroup_exit - detach cgroup from exiting task
5230 * @tsk: pointer to task_struct of exiting process
a043e3b2 5231 * @run_callback: run exit callbacks?
b4f48b63
PM
5232 *
5233 * Description: Detach cgroup from @tsk and release it.
5234 *
5235 * Note that cgroups marked notify_on_release force every task in
5236 * them to take the global cgroup_mutex mutex when exiting.
5237 * This could impact scaling on very large systems. Be reluctant to
5238 * use notify_on_release cgroups where very high task exit scaling
5239 * is required on large systems.
5240 *
5241 * the_top_cgroup_hack:
5242 *
5243 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5244 *
5245 * We call cgroup_exit() while the task is still competent to
5246 * handle notify_on_release(), then leave the task attached to the
5247 * root cgroup in each hierarchy for the remainder of its exit.
5248 *
5249 * To do this properly, we would increment the reference count on
5250 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5251 * code we would add a second cgroup function call, to drop that
5252 * reference. This would just create an unnecessary hot spot on
5253 * the top_cgroup reference count, to no avail.
5254 *
5255 * Normally, holding a reference to a cgroup without bumping its
5256 * count is unsafe. The cgroup could go away, or someone could
5257 * attach us to a different cgroup, decrementing the count on
5258 * the first cgroup that we never incremented. But in this case,
5259 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5260 * which wards off any cgroup_attach_task() attempts, or task is a failed
5261 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5262 */
5263void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5264{
30159ec7 5265 struct cgroup_subsys *ss;
5abb8855 5266 struct css_set *cset;
d41d5a01 5267 int i;
817929ec
PM
5268
5269 /*
5270 * Unlink from the css_set task list if necessary.
5271 * Optimistically check cg_list before taking
5272 * css_set_lock
5273 */
5274 if (!list_empty(&tsk->cg_list)) {
5275 write_lock(&css_set_lock);
5276 if (!list_empty(&tsk->cg_list))
8d258797 5277 list_del_init(&tsk->cg_list);
817929ec
PM
5278 write_unlock(&css_set_lock);
5279 }
5280
b4f48b63
PM
5281 /* Reassign the task to the init_css_set. */
5282 task_lock(tsk);
a8ad805c
TH
5283 cset = task_css_set(tsk);
5284 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5285
5286 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5287 /*
5288 * fork/exit callbacks are supported only for builtin
5289 * subsystems, see cgroup_post_fork() for details.
5290 */
30159ec7 5291 for_each_builtin_subsys(ss, i) {
d41d5a01 5292 if (ss->exit) {
eb95419b
TH
5293 struct cgroup_subsys_state *old_css = cset->subsys[i];
5294 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5295
eb95419b 5296 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5297 }
5298 }
5299 }
b4f48b63 5300 task_unlock(tsk);
d41d5a01 5301
5abb8855 5302 put_css_set_taskexit(cset);
b4f48b63 5303}
697f4161 5304
bd89aabc 5305static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5306{
f50daa70 5307 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5308 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5309 /*
5310 * Control Group is currently removeable. If it's not
81a6a5cd 5311 * already queued for a userspace notification, queue
f50daa70
LZ
5312 * it now
5313 */
81a6a5cd 5314 int need_schedule_work = 0;
f50daa70 5315
cdcc136f 5316 raw_spin_lock(&release_list_lock);
54766d4a 5317 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5318 list_empty(&cgrp->release_list)) {
5319 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5320 need_schedule_work = 1;
5321 }
cdcc136f 5322 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5323 if (need_schedule_work)
5324 schedule_work(&release_agent_work);
5325 }
5326}
5327
81a6a5cd
PM
5328/*
5329 * Notify userspace when a cgroup is released, by running the
5330 * configured release agent with the name of the cgroup (path
5331 * relative to the root of cgroup file system) as the argument.
5332 *
5333 * Most likely, this user command will try to rmdir this cgroup.
5334 *
5335 * This races with the possibility that some other task will be
5336 * attached to this cgroup before it is removed, or that some other
5337 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5338 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5339 * unused, and this cgroup will be reprieved from its death sentence,
5340 * to continue to serve a useful existence. Next time it's released,
5341 * we will get notified again, if it still has 'notify_on_release' set.
5342 *
5343 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5344 * means only wait until the task is successfully execve()'d. The
5345 * separate release agent task is forked by call_usermodehelper(),
5346 * then control in this thread returns here, without waiting for the
5347 * release agent task. We don't bother to wait because the caller of
5348 * this routine has no use for the exit status of the release agent
5349 * task, so no sense holding our caller up for that.
81a6a5cd 5350 */
81a6a5cd
PM
5351static void cgroup_release_agent(struct work_struct *work)
5352{
5353 BUG_ON(work != &release_agent_work);
5354 mutex_lock(&cgroup_mutex);
cdcc136f 5355 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5356 while (!list_empty(&release_list)) {
5357 char *argv[3], *envp[3];
5358 int i;
e788e066 5359 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5360 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5361 struct cgroup,
5362 release_list);
bd89aabc 5363 list_del_init(&cgrp->release_list);
cdcc136f 5364 raw_spin_unlock(&release_list_lock);
81a6a5cd 5365 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5366 if (!pathbuf)
5367 goto continue_free;
5368 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5369 goto continue_free;
5370 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5371 if (!agentbuf)
5372 goto continue_free;
81a6a5cd
PM
5373
5374 i = 0;
e788e066
PM
5375 argv[i++] = agentbuf;
5376 argv[i++] = pathbuf;
81a6a5cd
PM
5377 argv[i] = NULL;
5378
5379 i = 0;
5380 /* minimal command environment */
5381 envp[i++] = "HOME=/";
5382 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5383 envp[i] = NULL;
5384
5385 /* Drop the lock while we invoke the usermode helper,
5386 * since the exec could involve hitting disk and hence
5387 * be a slow process */
5388 mutex_unlock(&cgroup_mutex);
5389 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5390 mutex_lock(&cgroup_mutex);
e788e066
PM
5391 continue_free:
5392 kfree(pathbuf);
5393 kfree(agentbuf);
cdcc136f 5394 raw_spin_lock(&release_list_lock);
81a6a5cd 5395 }
cdcc136f 5396 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5397 mutex_unlock(&cgroup_mutex);
5398}
8bab8dde
PM
5399
5400static int __init cgroup_disable(char *str)
5401{
30159ec7 5402 struct cgroup_subsys *ss;
8bab8dde 5403 char *token;
30159ec7 5404 int i;
8bab8dde
PM
5405
5406 while ((token = strsep(&str, ",")) != NULL) {
5407 if (!*token)
5408 continue;
be45c900 5409
30159ec7
TH
5410 /*
5411 * cgroup_disable, being at boot time, can't know about
5412 * module subsystems, so we don't worry about them.
5413 */
5414 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5415 if (!strcmp(token, ss->name)) {
5416 ss->disabled = 1;
5417 printk(KERN_INFO "Disabling %s control group"
5418 " subsystem\n", ss->name);
5419 break;
5420 }
5421 }
5422 }
5423 return 1;
5424}
5425__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5426
5427/*
5428 * Functons for CSS ID.
5429 */
5430
54766d4a 5431/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5432unsigned short css_id(struct cgroup_subsys_state *css)
5433{
7f0f1546
KH
5434 struct css_id *cssid;
5435
5436 /*
5437 * This css_id() can return correct value when somone has refcnt
5438 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5439 * it's unchanged until freed.
5440 */
d3daf28d 5441 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5442
5443 if (cssid)
5444 return cssid->id;
5445 return 0;
5446}
67523c48 5447EXPORT_SYMBOL_GPL(css_id);
38460b48 5448
747388d7
KH
5449/**
5450 * css_is_ancestor - test "root" css is an ancestor of "child"
5451 * @child: the css to be tested.
5452 * @root: the css supporsed to be an ancestor of the child.
5453 *
5454 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5455 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5456 * But, considering usual usage, the csses should be valid objects after test.
5457 * Assuming that the caller will do some action to the child if this returns
5458 * returns true, the caller must take "child";s reference count.
5459 * If "child" is valid object and this returns true, "root" is valid, too.
5460 */
5461
38460b48 5462bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5463 const struct cgroup_subsys_state *root)
38460b48 5464{
747388d7
KH
5465 struct css_id *child_id;
5466 struct css_id *root_id;
38460b48 5467
747388d7 5468 child_id = rcu_dereference(child->id);
91c63734
JW
5469 if (!child_id)
5470 return false;
747388d7 5471 root_id = rcu_dereference(root->id);
91c63734
JW
5472 if (!root_id)
5473 return false;
5474 if (child_id->depth < root_id->depth)
5475 return false;
5476 if (child_id->stack[root_id->depth] != root_id->id)
5477 return false;
5478 return true;
38460b48
KH
5479}
5480
38460b48
KH
5481void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5482{
a4ea1cc9
TH
5483 struct css_id *id = rcu_dereference_protected(css->id, true);
5484
38460b48
KH
5485 /* When this is called before css_id initialization, id can be NULL */
5486 if (!id)
5487 return;
5488
5489 BUG_ON(!ss->use_id);
5490
5491 rcu_assign_pointer(id->css, NULL);
5492 rcu_assign_pointer(css->id, NULL);
42aee6c4 5493 spin_lock(&ss->id_lock);
38460b48 5494 idr_remove(&ss->idr, id->id);
42aee6c4 5495 spin_unlock(&ss->id_lock);
025cea99 5496 kfree_rcu(id, rcu_head);
38460b48 5497}
67523c48 5498EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5499
5500/*
5501 * This is called by init or create(). Then, calls to this function are
5502 * always serialized (By cgroup_mutex() at create()).
5503 */
5504
5505static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5506{
5507 struct css_id *newid;
d228d9ec 5508 int ret, size;
38460b48
KH
5509
5510 BUG_ON(!ss->use_id);
5511
5512 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5513 newid = kzalloc(size, GFP_KERNEL);
5514 if (!newid)
5515 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5516
5517 idr_preload(GFP_KERNEL);
42aee6c4 5518 spin_lock(&ss->id_lock);
38460b48 5519 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5520 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5521 spin_unlock(&ss->id_lock);
d228d9ec 5522 idr_preload_end();
38460b48
KH
5523
5524 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5525 if (ret < 0)
38460b48 5526 goto err_out;
38460b48 5527
d228d9ec 5528 newid->id = ret;
38460b48
KH
5529 newid->depth = depth;
5530 return newid;
38460b48
KH
5531err_out:
5532 kfree(newid);
d228d9ec 5533 return ERR_PTR(ret);
38460b48
KH
5534
5535}
5536
e6a1105b
BB
5537static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5538 struct cgroup_subsys_state *rootcss)
38460b48
KH
5539{
5540 struct css_id *newid;
38460b48 5541
42aee6c4 5542 spin_lock_init(&ss->id_lock);
38460b48
KH
5543 idr_init(&ss->idr);
5544
38460b48
KH
5545 newid = get_new_cssid(ss, 0);
5546 if (IS_ERR(newid))
5547 return PTR_ERR(newid);
5548
5549 newid->stack[0] = newid->id;
a4ea1cc9
TH
5550 RCU_INIT_POINTER(newid->css, rootcss);
5551 RCU_INIT_POINTER(rootcss->id, newid);
38460b48
KH
5552 return 0;
5553}
5554
5555static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5556 struct cgroup *child)
5557{
5558 int subsys_id, i, depth = 0;
5559 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5560 struct css_id *child_id, *parent_id;
38460b48
KH
5561
5562 subsys_id = ss->subsys_id;
5563 parent_css = parent->subsys[subsys_id];
5564 child_css = child->subsys[subsys_id];
a4ea1cc9 5565 parent_id = rcu_dereference_protected(parent_css->id, true);
94b3dd0f 5566 depth = parent_id->depth + 1;
38460b48
KH
5567
5568 child_id = get_new_cssid(ss, depth);
5569 if (IS_ERR(child_id))
5570 return PTR_ERR(child_id);
5571
5572 for (i = 0; i < depth; i++)
5573 child_id->stack[i] = parent_id->stack[i];
5574 child_id->stack[depth] = child_id->id;
5575 /*
5576 * child_id->css pointer will be set after this cgroup is available
5577 * see cgroup_populate_dir()
5578 */
5579 rcu_assign_pointer(child_css->id, child_id);
5580
5581 return 0;
5582}
5583
5584/**
5585 * css_lookup - lookup css by id
5586 * @ss: cgroup subsys to be looked into.
5587 * @id: the id
5588 *
5589 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5590 * NULL if not. Should be called under rcu_read_lock()
5591 */
5592struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5593{
5594 struct css_id *cssid = NULL;
5595
5596 BUG_ON(!ss->use_id);
5597 cssid = idr_find(&ss->idr, id);
5598
5599 if (unlikely(!cssid))
5600 return NULL;
5601
5602 return rcu_dereference(cssid->css);
5603}
67523c48 5604EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5605
e5d1367f
SE
5606/*
5607 * get corresponding css from file open on cgroupfs directory
5608 */
5609struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5610{
5611 struct cgroup *cgrp;
5612 struct inode *inode;
5613 struct cgroup_subsys_state *css;
5614
496ad9aa 5615 inode = file_inode(f);
e5d1367f
SE
5616 /* check in cgroup filesystem dir */
5617 if (inode->i_op != &cgroup_dir_inode_operations)
5618 return ERR_PTR(-EBADF);
5619
5620 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5621 return ERR_PTR(-EINVAL);
5622
5623 /* get cgroup */
5624 cgrp = __d_cgrp(f->f_dentry);
5625 css = cgrp->subsys[id];
5626 return css ? css : ERR_PTR(-ENOENT);
5627}
5628
fe693435 5629#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5630static struct cgroup_subsys_state *
5631debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5632{
5633 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5634
5635 if (!css)
5636 return ERR_PTR(-ENOMEM);
5637
5638 return css;
5639}
5640
eb95419b 5641static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5642{
eb95419b 5643 kfree(css);
fe693435
PM
5644}
5645
182446d0
TH
5646static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5647 struct cftype *cft)
fe693435 5648{
182446d0 5649 return cgroup_task_count(css->cgroup);
fe693435
PM
5650}
5651
182446d0
TH
5652static u64 current_css_set_read(struct cgroup_subsys_state *css,
5653 struct cftype *cft)
fe693435
PM
5654{
5655 return (u64)(unsigned long)current->cgroups;
5656}
5657
182446d0 5658static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5659 struct cftype *cft)
fe693435
PM
5660{
5661 u64 count;
5662
5663 rcu_read_lock();
a8ad805c 5664 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5665 rcu_read_unlock();
5666 return count;
5667}
5668
182446d0 5669static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
7717f7ba
PM
5670 struct cftype *cft,
5671 struct seq_file *seq)
5672{
69d0206c 5673 struct cgrp_cset_link *link;
5abb8855 5674 struct css_set *cset;
7717f7ba
PM
5675
5676 read_lock(&css_set_lock);
5677 rcu_read_lock();
5abb8855 5678 cset = rcu_dereference(current->cgroups);
69d0206c 5679 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5680 struct cgroup *c = link->cgrp;
5681 const char *name;
5682
5683 if (c->dentry)
5684 name = c->dentry->d_name.name;
5685 else
5686 name = "?";
2c6ab6d2
PM
5687 seq_printf(seq, "Root %d group %s\n",
5688 c->root->hierarchy_id, name);
7717f7ba
PM
5689 }
5690 rcu_read_unlock();
5691 read_unlock(&css_set_lock);
5692 return 0;
5693}
5694
5695#define MAX_TASKS_SHOWN_PER_CSS 25
182446d0
TH
5696static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5697 struct cftype *cft, struct seq_file *seq)
7717f7ba 5698{
69d0206c 5699 struct cgrp_cset_link *link;
7717f7ba
PM
5700
5701 read_lock(&css_set_lock);
182446d0 5702 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5703 struct css_set *cset = link->cset;
7717f7ba
PM
5704 struct task_struct *task;
5705 int count = 0;
5abb8855
TH
5706 seq_printf(seq, "css_set %p\n", cset);
5707 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5708 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5709 seq_puts(seq, " ...\n");
5710 break;
5711 } else {
5712 seq_printf(seq, " task %d\n",
5713 task_pid_vnr(task));
5714 }
5715 }
5716 }
5717 read_unlock(&css_set_lock);
5718 return 0;
5719}
5720
182446d0 5721static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5722{
182446d0 5723 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5724}
5725
5726static struct cftype debug_files[] = {
fe693435
PM
5727 {
5728 .name = "taskcount",
5729 .read_u64 = debug_taskcount_read,
5730 },
5731
5732 {
5733 .name = "current_css_set",
5734 .read_u64 = current_css_set_read,
5735 },
5736
5737 {
5738 .name = "current_css_set_refcount",
5739 .read_u64 = current_css_set_refcount_read,
5740 },
5741
7717f7ba
PM
5742 {
5743 .name = "current_css_set_cg_links",
5744 .read_seq_string = current_css_set_cg_links_read,
5745 },
5746
5747 {
5748 .name = "cgroup_css_links",
5749 .read_seq_string = cgroup_css_links_read,
5750 },
5751
fe693435
PM
5752 {
5753 .name = "releasable",
5754 .read_u64 = releasable_read,
5755 },
fe693435 5756
4baf6e33
TH
5757 { } /* terminate */
5758};
fe693435
PM
5759
5760struct cgroup_subsys debug_subsys = {
5761 .name = "debug",
92fb9748
TH
5762 .css_alloc = debug_css_alloc,
5763 .css_free = debug_css_free,
fe693435 5764 .subsys_id = debug_subsys_id,
4baf6e33 5765 .base_cftypes = debug_files,
fe693435
PM
5766};
5767#endif /* CONFIG_CGROUP_DEBUG */