cgroup: fix umount vs cgroup_cfts_commit() race
[linux-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 99static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8
PM
103/*
104 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
105 * subsystems that are otherwise unattached - it never has more than a
106 * single cgroup, and all tasks are part of that cgroup.
107 */
108static struct cgroupfs_root rootnode;
109
05ef1d7c
TH
110/*
111 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
112 */
113struct cfent {
114 struct list_head node;
115 struct dentry *dentry;
116 struct cftype *type;
712317ad
LZ
117
118 /* file xattrs */
119 struct simple_xattrs xattrs;
05ef1d7c
TH
120};
121
38460b48
KH
122/*
123 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
124 * cgroup_subsys->use_id != 0.
125 */
126#define CSS_ID_MAX (65535)
127struct css_id {
128 /*
129 * The css to which this ID points. This pointer is set to valid value
130 * after cgroup is populated. If cgroup is removed, this will be NULL.
131 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
132 * is called after synchronize_rcu(). But for safe use, css_tryget()
133 * should be used for avoiding race.
38460b48 134 */
2c392b8c 135 struct cgroup_subsys_state __rcu *css;
38460b48
KH
136 /*
137 * ID of this css.
138 */
139 unsigned short id;
140 /*
141 * Depth in hierarchy which this ID belongs to.
142 */
143 unsigned short depth;
144 /*
145 * ID is freed by RCU. (and lookup routine is RCU safe.)
146 */
147 struct rcu_head rcu_head;
148 /*
149 * Hierarchy of CSS ID belongs to.
150 */
151 unsigned short stack[0]; /* Array of Length (depth+1) */
152};
153
0dea1168 154/*
25985edc 155 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
156 */
157struct cgroup_event {
158 /*
159 * Cgroup which the event belongs to.
160 */
161 struct cgroup *cgrp;
162 /*
163 * Control file which the event associated.
164 */
165 struct cftype *cft;
166 /*
167 * eventfd to signal userspace about the event.
168 */
169 struct eventfd_ctx *eventfd;
170 /*
171 * Each of these stored in a list by the cgroup.
172 */
173 struct list_head list;
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182};
38460b48 183
ddbcc7e8
PM
184/* The list of hierarchy roots */
185
186static LIST_HEAD(roots);
817929ec 187static int root_count;
ddbcc7e8 188
54e7b4eb
TH
189/*
190 * Hierarchy ID allocation and mapping. It follows the same exclusion
191 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
192 * writes, either for reads.
193 */
1a574231 194static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 195
ddbcc7e8
PM
196/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
197#define dummytop (&rootnode.top_cgroup)
198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
ddbcc7e8 201/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
ddbcc7e8 205 */
8947f9d5 206static int need_forkexit_callback __read_mostly;
ddbcc7e8 207
ea15f8cc 208static void cgroup_offline_fn(struct work_struct *work);
42809dd4 209static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
210static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
211 struct cftype cfts[], bool is_add);
42809dd4 212
ddbcc7e8 213/* convenient tests for these bits */
54766d4a 214static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 215{
54766d4a 216 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
217}
218
78574cf9
LZ
219/**
220 * cgroup_is_descendant - test ancestry
221 * @cgrp: the cgroup to be tested
222 * @ancestor: possible ancestor of @cgrp
223 *
224 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
225 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
226 * and @ancestor are accessible.
227 */
228bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
229{
230 while (cgrp) {
231 if (cgrp == ancestor)
232 return true;
233 cgrp = cgrp->parent;
234 }
235 return false;
236}
237EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 238
e9685a03 239static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
240{
241 const int bits =
bd89aabc
PM
242 (1 << CGRP_RELEASABLE) |
243 (1 << CGRP_NOTIFY_ON_RELEASE);
244 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
245}
246
e9685a03 247static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 248{
bd89aabc 249 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
250}
251
ddbcc7e8
PM
252/*
253 * for_each_subsys() allows you to iterate on each subsystem attached to
254 * an active hierarchy
255 */
256#define for_each_subsys(_root, _ss) \
257list_for_each_entry(_ss, &_root->subsys_list, sibling)
258
e5f6a860
LZ
259/* for_each_active_root() allows you to iterate across the active hierarchies */
260#define for_each_active_root(_root) \
ddbcc7e8
PM
261list_for_each_entry(_root, &roots, root_list)
262
f6ea9372
TH
263static inline struct cgroup *__d_cgrp(struct dentry *dentry)
264{
265 return dentry->d_fsdata;
266}
267
05ef1d7c 268static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
269{
270 return dentry->d_fsdata;
271}
272
05ef1d7c
TH
273static inline struct cftype *__d_cft(struct dentry *dentry)
274{
275 return __d_cfe(dentry)->type;
276}
277
7ae1bad9
TH
278/**
279 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
280 * @cgrp: the cgroup to be checked for liveness
281 *
47cfcd09
TH
282 * On success, returns true; the mutex should be later unlocked. On
283 * failure returns false with no lock held.
7ae1bad9 284 */
b9777cf8 285static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
286{
287 mutex_lock(&cgroup_mutex);
54766d4a 288 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
289 mutex_unlock(&cgroup_mutex);
290 return false;
291 }
292 return true;
293}
7ae1bad9 294
81a6a5cd
PM
295/* the list of cgroups eligible for automatic release. Protected by
296 * release_list_lock */
297static LIST_HEAD(release_list);
cdcc136f 298static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
299static void cgroup_release_agent(struct work_struct *work);
300static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 301static void check_for_release(struct cgroup *cgrp);
81a6a5cd 302
69d0206c
TH
303/*
304 * A cgroup can be associated with multiple css_sets as different tasks may
305 * belong to different cgroups on different hierarchies. In the other
306 * direction, a css_set is naturally associated with multiple cgroups.
307 * This M:N relationship is represented by the following link structure
308 * which exists for each association and allows traversing the associations
309 * from both sides.
310 */
311struct cgrp_cset_link {
312 /* the cgroup and css_set this link associates */
313 struct cgroup *cgrp;
314 struct css_set *cset;
315
316 /* list of cgrp_cset_links anchored at cgrp->cset_links */
317 struct list_head cset_link;
318
319 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
320 struct list_head cgrp_link;
817929ec
PM
321};
322
323/* The default css_set - used by init and its children prior to any
324 * hierarchies being mounted. It contains a pointer to the root state
325 * for each subsystem. Also used to anchor the list of css_sets. Not
326 * reference-counted, to improve performance when child cgroups
327 * haven't been created.
328 */
329
330static struct css_set init_css_set;
69d0206c 331static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 332
e6a1105b
BB
333static int cgroup_init_idr(struct cgroup_subsys *ss,
334 struct cgroup_subsys_state *css);
38460b48 335
817929ec
PM
336/* css_set_lock protects the list of css_set objects, and the
337 * chain of tasks off each css_set. Nests outside task->alloc_lock
338 * due to cgroup_iter_start() */
339static DEFINE_RWLOCK(css_set_lock);
340static int css_set_count;
341
7717f7ba
PM
342/*
343 * hash table for cgroup groups. This improves the performance to find
344 * an existing css_set. This hash doesn't (currently) take into
345 * account cgroups in empty hierarchies.
346 */
472b1053 347#define CSS_SET_HASH_BITS 7
0ac801fe 348static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 349
0ac801fe 350static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
351{
352 int i;
0ac801fe 353 unsigned long key = 0UL;
472b1053
LZ
354
355 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
356 key += (unsigned long)css[i];
357 key = (key >> 16) ^ key;
472b1053 358
0ac801fe 359 return key;
472b1053
LZ
360}
361
817929ec
PM
362/* We don't maintain the lists running through each css_set to its
363 * task until after the first call to cgroup_iter_start(). This
364 * reduces the fork()/exit() overhead for people who have cgroups
365 * compiled into their kernel but not actually in use */
8947f9d5 366static int use_task_css_set_links __read_mostly;
817929ec 367
5abb8855 368static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 369{
69d0206c 370 struct cgrp_cset_link *link, *tmp_link;
5abb8855 371
146aa1bd
LJ
372 /*
373 * Ensure that the refcount doesn't hit zero while any readers
374 * can see it. Similar to atomic_dec_and_lock(), but for an
375 * rwlock
376 */
5abb8855 377 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
378 return;
379 write_lock(&css_set_lock);
5abb8855 380 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
381 write_unlock(&css_set_lock);
382 return;
383 }
81a6a5cd 384
2c6ab6d2 385 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 386 hash_del(&cset->hlist);
2c6ab6d2
PM
387 css_set_count--;
388
69d0206c 389 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 390 struct cgroup *cgrp = link->cgrp;
5abb8855 391
69d0206c
TH
392 list_del(&link->cset_link);
393 list_del(&link->cgrp_link);
71b5707e 394
ddd69148 395 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 396 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 397 if (taskexit)
bd89aabc
PM
398 set_bit(CGRP_RELEASABLE, &cgrp->flags);
399 check_for_release(cgrp);
81a6a5cd 400 }
2c6ab6d2
PM
401
402 kfree(link);
81a6a5cd 403 }
2c6ab6d2
PM
404
405 write_unlock(&css_set_lock);
5abb8855 406 kfree_rcu(cset, rcu_head);
b4f48b63
PM
407}
408
817929ec
PM
409/*
410 * refcounted get/put for css_set objects
411 */
5abb8855 412static inline void get_css_set(struct css_set *cset)
817929ec 413{
5abb8855 414 atomic_inc(&cset->refcount);
817929ec
PM
415}
416
5abb8855 417static inline void put_css_set(struct css_set *cset)
817929ec 418{
5abb8855 419 __put_css_set(cset, 0);
817929ec
PM
420}
421
5abb8855 422static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 423{
5abb8855 424 __put_css_set(cset, 1);
81a6a5cd
PM
425}
426
7717f7ba
PM
427/*
428 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
429 * @cset: candidate css_set being tested
430 * @old_cset: existing css_set for a task
7717f7ba
PM
431 * @new_cgrp: cgroup that's being entered by the task
432 * @template: desired set of css pointers in css_set (pre-calculated)
433 *
434 * Returns true if "cg" matches "old_cg" except for the hierarchy
435 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
436 */
5abb8855
TH
437static bool compare_css_sets(struct css_set *cset,
438 struct css_set *old_cset,
7717f7ba
PM
439 struct cgroup *new_cgrp,
440 struct cgroup_subsys_state *template[])
441{
442 struct list_head *l1, *l2;
443
5abb8855 444 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
445 /* Not all subsystems matched */
446 return false;
447 }
448
449 /*
450 * Compare cgroup pointers in order to distinguish between
451 * different cgroups in heirarchies with no subsystems. We
452 * could get by with just this check alone (and skip the
453 * memcmp above) but on most setups the memcmp check will
454 * avoid the need for this more expensive check on almost all
455 * candidates.
456 */
457
69d0206c
TH
458 l1 = &cset->cgrp_links;
459 l2 = &old_cset->cgrp_links;
7717f7ba 460 while (1) {
69d0206c 461 struct cgrp_cset_link *link1, *link2;
5abb8855 462 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
463
464 l1 = l1->next;
465 l2 = l2->next;
466 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
467 if (l1 == &cset->cgrp_links) {
468 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
469 break;
470 } else {
69d0206c 471 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
472 }
473 /* Locate the cgroups associated with these links. */
69d0206c
TH
474 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
475 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
476 cgrp1 = link1->cgrp;
477 cgrp2 = link2->cgrp;
7717f7ba 478 /* Hierarchies should be linked in the same order. */
5abb8855 479 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
480
481 /*
482 * If this hierarchy is the hierarchy of the cgroup
483 * that's changing, then we need to check that this
484 * css_set points to the new cgroup; if it's any other
485 * hierarchy, then this css_set should point to the
486 * same cgroup as the old css_set.
487 */
5abb8855
TH
488 if (cgrp1->root == new_cgrp->root) {
489 if (cgrp1 != new_cgrp)
7717f7ba
PM
490 return false;
491 } else {
5abb8855 492 if (cgrp1 != cgrp2)
7717f7ba
PM
493 return false;
494 }
495 }
496 return true;
497}
498
817929ec
PM
499/*
500 * find_existing_css_set() is a helper for
501 * find_css_set(), and checks to see whether an existing
472b1053 502 * css_set is suitable.
817929ec
PM
503 *
504 * oldcg: the cgroup group that we're using before the cgroup
505 * transition
506 *
bd89aabc 507 * cgrp: the cgroup that we're moving into
817929ec
PM
508 *
509 * template: location in which to build the desired set of subsystem
510 * state objects for the new cgroup group
511 */
5abb8855
TH
512static struct css_set *find_existing_css_set(struct css_set *old_cset,
513 struct cgroup *cgrp,
514 struct cgroup_subsys_state *template[])
b4f48b63
PM
515{
516 int i;
bd89aabc 517 struct cgroupfs_root *root = cgrp->root;
5abb8855 518 struct css_set *cset;
0ac801fe 519 unsigned long key;
817929ec 520
aae8aab4
BB
521 /*
522 * Build the set of subsystem state objects that we want to see in the
523 * new css_set. while subsystems can change globally, the entries here
524 * won't change, so no need for locking.
525 */
817929ec 526 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 527 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
528 /* Subsystem is in this hierarchy. So we want
529 * the subsystem state from the new
530 * cgroup */
bd89aabc 531 template[i] = cgrp->subsys[i];
817929ec
PM
532 } else {
533 /* Subsystem is not in this hierarchy, so we
534 * don't want to change the subsystem state */
5abb8855 535 template[i] = old_cset->subsys[i];
817929ec
PM
536 }
537 }
538
0ac801fe 539 key = css_set_hash(template);
5abb8855
TH
540 hash_for_each_possible(css_set_table, cset, hlist, key) {
541 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
542 continue;
543
544 /* This css_set matches what we need */
5abb8855 545 return cset;
472b1053 546 }
817929ec
PM
547
548 /* No existing cgroup group matched */
549 return NULL;
550}
551
69d0206c 552static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 553{
69d0206c 554 struct cgrp_cset_link *link, *tmp_link;
36553434 555
69d0206c
TH
556 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
557 list_del(&link->cset_link);
36553434
LZ
558 kfree(link);
559 }
560}
561
69d0206c
TH
562/**
563 * allocate_cgrp_cset_links - allocate cgrp_cset_links
564 * @count: the number of links to allocate
565 * @tmp_links: list_head the allocated links are put on
566 *
567 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
568 * through ->cset_link. Returns 0 on success or -errno.
817929ec 569 */
69d0206c 570static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 571{
69d0206c 572 struct cgrp_cset_link *link;
817929ec 573 int i;
69d0206c
TH
574
575 INIT_LIST_HEAD(tmp_links);
576
817929ec 577 for (i = 0; i < count; i++) {
f4f4be2b 578 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 579 if (!link) {
69d0206c 580 free_cgrp_cset_links(tmp_links);
817929ec
PM
581 return -ENOMEM;
582 }
69d0206c 583 list_add(&link->cset_link, tmp_links);
817929ec
PM
584 }
585 return 0;
586}
587
c12f65d4
LZ
588/**
589 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 590 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 591 * @cset: the css_set to be linked
c12f65d4
LZ
592 * @cgrp: the destination cgroup
593 */
69d0206c
TH
594static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
595 struct cgroup *cgrp)
c12f65d4 596{
69d0206c 597 struct cgrp_cset_link *link;
c12f65d4 598
69d0206c
TH
599 BUG_ON(list_empty(tmp_links));
600 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
601 link->cset = cset;
7717f7ba 602 link->cgrp = cgrp;
69d0206c 603 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
604 /*
605 * Always add links to the tail of the list so that the list
606 * is sorted by order of hierarchy creation
607 */
69d0206c 608 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
609}
610
817929ec
PM
611/*
612 * find_css_set() takes an existing cgroup group and a
613 * cgroup object, and returns a css_set object that's
614 * equivalent to the old group, but with the given cgroup
615 * substituted into the appropriate hierarchy. Must be called with
616 * cgroup_mutex held
617 */
5abb8855
TH
618static struct css_set *find_css_set(struct css_set *old_cset,
619 struct cgroup *cgrp)
817929ec 620{
5abb8855 621 struct css_set *cset;
817929ec 622 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
69d0206c
TH
623 struct list_head tmp_links;
624 struct cgrp_cset_link *link;
0ac801fe 625 unsigned long key;
472b1053 626
817929ec
PM
627 /* First see if we already have a cgroup group that matches
628 * the desired set */
7e9abd89 629 read_lock(&css_set_lock);
5abb8855
TH
630 cset = find_existing_css_set(old_cset, cgrp, template);
631 if (cset)
632 get_css_set(cset);
7e9abd89 633 read_unlock(&css_set_lock);
817929ec 634
5abb8855
TH
635 if (cset)
636 return cset;
817929ec 637
f4f4be2b 638 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 639 if (!cset)
817929ec
PM
640 return NULL;
641
69d0206c
TH
642 /* Allocate all the cgrp_cset_link objects that we'll need */
643 if (allocate_cgrp_cset_links(root_count, &tmp_links) < 0) {
5abb8855 644 kfree(cset);
817929ec
PM
645 return NULL;
646 }
647
5abb8855 648 atomic_set(&cset->refcount, 1);
69d0206c 649 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
650 INIT_LIST_HEAD(&cset->tasks);
651 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
652
653 /* Copy the set of subsystem state objects generated in
654 * find_existing_css_set() */
5abb8855 655 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
656
657 write_lock(&css_set_lock);
658 /* Add reference counts and links from the new css_set. */
69d0206c 659 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 660 struct cgroup *c = link->cgrp;
69d0206c 661
7717f7ba
PM
662 if (c->root == cgrp->root)
663 c = cgrp;
69d0206c 664 link_css_set(&tmp_links, cset, c);
7717f7ba 665 }
817929ec 666
69d0206c 667 BUG_ON(!list_empty(&tmp_links));
817929ec 668
817929ec 669 css_set_count++;
472b1053
LZ
670
671 /* Add this cgroup group to the hash table */
5abb8855
TH
672 key = css_set_hash(cset->subsys);
673 hash_add(css_set_table, &cset->hlist, key);
472b1053 674
817929ec
PM
675 write_unlock(&css_set_lock);
676
5abb8855 677 return cset;
b4f48b63
PM
678}
679
7717f7ba
PM
680/*
681 * Return the cgroup for "task" from the given hierarchy. Must be
682 * called with cgroup_mutex held.
683 */
684static struct cgroup *task_cgroup_from_root(struct task_struct *task,
685 struct cgroupfs_root *root)
686{
5abb8855 687 struct css_set *cset;
7717f7ba
PM
688 struct cgroup *res = NULL;
689
690 BUG_ON(!mutex_is_locked(&cgroup_mutex));
691 read_lock(&css_set_lock);
692 /*
693 * No need to lock the task - since we hold cgroup_mutex the
694 * task can't change groups, so the only thing that can happen
695 * is that it exits and its css is set back to init_css_set.
696 */
5abb8855
TH
697 cset = task->cgroups;
698 if (cset == &init_css_set) {
7717f7ba
PM
699 res = &root->top_cgroup;
700 } else {
69d0206c
TH
701 struct cgrp_cset_link *link;
702
703 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 704 struct cgroup *c = link->cgrp;
69d0206c 705
7717f7ba
PM
706 if (c->root == root) {
707 res = c;
708 break;
709 }
710 }
711 }
712 read_unlock(&css_set_lock);
713 BUG_ON(!res);
714 return res;
715}
716
ddbcc7e8
PM
717/*
718 * There is one global cgroup mutex. We also require taking
719 * task_lock() when dereferencing a task's cgroup subsys pointers.
720 * See "The task_lock() exception", at the end of this comment.
721 *
722 * A task must hold cgroup_mutex to modify cgroups.
723 *
724 * Any task can increment and decrement the count field without lock.
725 * So in general, code holding cgroup_mutex can't rely on the count
726 * field not changing. However, if the count goes to zero, then only
956db3ca 727 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
728 * means that no tasks are currently attached, therefore there is no
729 * way a task attached to that cgroup can fork (the other way to
730 * increment the count). So code holding cgroup_mutex can safely
731 * assume that if the count is zero, it will stay zero. Similarly, if
732 * a task holds cgroup_mutex on a cgroup with zero count, it
733 * knows that the cgroup won't be removed, as cgroup_rmdir()
734 * needs that mutex.
735 *
ddbcc7e8
PM
736 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
737 * (usually) take cgroup_mutex. These are the two most performance
738 * critical pieces of code here. The exception occurs on cgroup_exit(),
739 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
740 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
741 * to the release agent with the name of the cgroup (path relative to
742 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
743 *
744 * A cgroup can only be deleted if both its 'count' of using tasks
745 * is zero, and its list of 'children' cgroups is empty. Since all
746 * tasks in the system use _some_ cgroup, and since there is always at
747 * least one task in the system (init, pid == 1), therefore, top_cgroup
748 * always has either children cgroups and/or using tasks. So we don't
749 * need a special hack to ensure that top_cgroup cannot be deleted.
750 *
751 * The task_lock() exception
752 *
753 * The need for this exception arises from the action of
d0b2fdd2 754 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 755 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
756 * several performance critical places that need to reference
757 * task->cgroup without the expense of grabbing a system global
758 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 759 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
760 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
761 * the task_struct routinely used for such matters.
762 *
763 * P.S. One more locking exception. RCU is used to guard the
956db3ca 764 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
765 */
766
ddbcc7e8
PM
767/*
768 * A couple of forward declarations required, due to cyclic reference loop:
769 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
770 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
771 * -> cgroup_mkdir.
772 */
773
18bb1db3 774static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 775static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 776static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
777static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
778 unsigned long subsys_mask);
6e1d5dcc 779static const struct inode_operations cgroup_dir_inode_operations;
828c0950 780static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
781
782static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 783 .name = "cgroup",
e4ad08fe 784 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 785};
ddbcc7e8 786
38460b48
KH
787static int alloc_css_id(struct cgroup_subsys *ss,
788 struct cgroup *parent, struct cgroup *child);
789
a5e7ed32 790static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
791{
792 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
793
794 if (inode) {
85fe4025 795 inode->i_ino = get_next_ino();
ddbcc7e8 796 inode->i_mode = mode;
76aac0e9
DH
797 inode->i_uid = current_fsuid();
798 inode->i_gid = current_fsgid();
ddbcc7e8
PM
799 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
800 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
801 }
802 return inode;
803}
804
65dff759
LZ
805static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
806{
807 struct cgroup_name *name;
808
809 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
810 if (!name)
811 return NULL;
812 strcpy(name->name, dentry->d_name.name);
813 return name;
814}
815
be445626
LZ
816static void cgroup_free_fn(struct work_struct *work)
817{
ea15f8cc 818 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
819 struct cgroup_subsys *ss;
820
821 mutex_lock(&cgroup_mutex);
822 /*
823 * Release the subsystem state objects.
824 */
825 for_each_subsys(cgrp->root, ss)
826 ss->css_free(cgrp);
827
828 cgrp->root->number_of_cgroups--;
829 mutex_unlock(&cgroup_mutex);
830
415cf07a
LZ
831 /*
832 * We get a ref to the parent's dentry, and put the ref when
833 * this cgroup is being freed, so it's guaranteed that the
834 * parent won't be destroyed before its children.
835 */
836 dput(cgrp->parent->dentry);
837
cc20e01c
LZ
838 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
839
be445626
LZ
840 /*
841 * Drop the active superblock reference that we took when we
cc20e01c
LZ
842 * created the cgroup. This will free cgrp->root, if we are
843 * holding the last reference to @sb.
be445626
LZ
844 */
845 deactivate_super(cgrp->root->sb);
846
847 /*
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
850 */
851 BUG_ON(!list_empty(&cgrp->pidlists));
852
853 simple_xattrs_free(&cgrp->xattrs);
854
65dff759 855 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
856 kfree(cgrp);
857}
858
859static void cgroup_free_rcu(struct rcu_head *head)
860{
861 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
862
ea15f8cc
TH
863 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
864 schedule_work(&cgrp->destroy_work);
be445626
LZ
865}
866
ddbcc7e8
PM
867static void cgroup_diput(struct dentry *dentry, struct inode *inode)
868{
869 /* is dentry a directory ? if so, kfree() associated cgroup */
870 if (S_ISDIR(inode->i_mode)) {
bd89aabc 871 struct cgroup *cgrp = dentry->d_fsdata;
be445626 872
54766d4a 873 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 874 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
875 } else {
876 struct cfent *cfe = __d_cfe(dentry);
877 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
878
879 WARN_ONCE(!list_empty(&cfe->node) &&
880 cgrp != &cgrp->root->top_cgroup,
881 "cfe still linked for %s\n", cfe->type->name);
712317ad 882 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 883 kfree(cfe);
ddbcc7e8
PM
884 }
885 iput(inode);
886}
887
c72a04e3
AV
888static int cgroup_delete(const struct dentry *d)
889{
890 return 1;
891}
892
ddbcc7e8
PM
893static void remove_dir(struct dentry *d)
894{
895 struct dentry *parent = dget(d->d_parent);
896
897 d_delete(d);
898 simple_rmdir(parent->d_inode, d);
899 dput(parent);
900}
901
2739d3cc 902static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
903{
904 struct cfent *cfe;
905
906 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
907 lockdep_assert_held(&cgroup_mutex);
908
2739d3cc
LZ
909 /*
910 * If we're doing cleanup due to failure of cgroup_create(),
911 * the corresponding @cfe may not exist.
912 */
05ef1d7c
TH
913 list_for_each_entry(cfe, &cgrp->files, node) {
914 struct dentry *d = cfe->dentry;
915
916 if (cft && cfe->type != cft)
917 continue;
918
919 dget(d);
920 d_delete(d);
ce27e317 921 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
922 list_del_init(&cfe->node);
923 dput(d);
924
2739d3cc 925 break;
ddbcc7e8 926 }
05ef1d7c
TH
927}
928
13af07df
AR
929/**
930 * cgroup_clear_directory - selective removal of base and subsystem files
931 * @dir: directory containing the files
932 * @base_files: true if the base files should be removed
933 * @subsys_mask: mask of the subsystem ids whose files should be removed
934 */
935static void cgroup_clear_directory(struct dentry *dir, bool base_files,
936 unsigned long subsys_mask)
05ef1d7c
TH
937{
938 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 939 struct cgroup_subsys *ss;
05ef1d7c 940
13af07df
AR
941 for_each_subsys(cgrp->root, ss) {
942 struct cftype_set *set;
943 if (!test_bit(ss->subsys_id, &subsys_mask))
944 continue;
945 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 946 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
947 }
948 if (base_files) {
949 while (!list_empty(&cgrp->files))
950 cgroup_rm_file(cgrp, NULL);
951 }
ddbcc7e8
PM
952}
953
954/*
955 * NOTE : the dentry must have been dget()'ed
956 */
957static void cgroup_d_remove_dir(struct dentry *dentry)
958{
2fd6b7f5 959 struct dentry *parent;
13af07df 960 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 961
a1a71b45 962 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 963
2fd6b7f5
NP
964 parent = dentry->d_parent;
965 spin_lock(&parent->d_lock);
3ec762ad 966 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 967 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
968 spin_unlock(&dentry->d_lock);
969 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
970 remove_dir(dentry);
971}
972
aae8aab4 973/*
cf5d5941
BB
974 * Call with cgroup_mutex held. Drops reference counts on modules, including
975 * any duplicate ones that parse_cgroupfs_options took. If this function
976 * returns an error, no reference counts are touched.
aae8aab4 977 */
ddbcc7e8 978static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 979 unsigned long final_subsys_mask)
ddbcc7e8 980{
a1a71b45 981 unsigned long added_mask, removed_mask;
bd89aabc 982 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
983 int i;
984
aae8aab4 985 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 986 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 987
a1a71b45
AR
988 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
989 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
990 /* Check that any added subsystems are currently free */
991 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 992 unsigned long bit = 1UL << i;
ddbcc7e8 993 struct cgroup_subsys *ss = subsys[i];
a1a71b45 994 if (!(bit & added_mask))
ddbcc7e8 995 continue;
aae8aab4
BB
996 /*
997 * Nobody should tell us to do a subsys that doesn't exist:
998 * parse_cgroupfs_options should catch that case and refcounts
999 * ensure that subsystems won't disappear once selected.
1000 */
1001 BUG_ON(ss == NULL);
ddbcc7e8
PM
1002 if (ss->root != &rootnode) {
1003 /* Subsystem isn't free */
1004 return -EBUSY;
1005 }
1006 }
1007
1008 /* Currently we don't handle adding/removing subsystems when
1009 * any child cgroups exist. This is theoretically supportable
1010 * but involves complex error handling, so it's being left until
1011 * later */
307257cf 1012 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1013 return -EBUSY;
1014
1015 /* Process each subsystem */
1016 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1017 struct cgroup_subsys *ss = subsys[i];
1018 unsigned long bit = 1UL << i;
a1a71b45 1019 if (bit & added_mask) {
ddbcc7e8 1020 /* We're binding this subsystem to this hierarchy */
aae8aab4 1021 BUG_ON(ss == NULL);
bd89aabc 1022 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1023 BUG_ON(!dummytop->subsys[i]);
1024 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1025 cgrp->subsys[i] = dummytop->subsys[i];
1026 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1027 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1028 ss->root = root;
ddbcc7e8 1029 if (ss->bind)
761b3ef5 1030 ss->bind(cgrp);
cf5d5941 1031 /* refcount was already taken, and we're keeping it */
a1a71b45 1032 } else if (bit & removed_mask) {
ddbcc7e8 1033 /* We're removing this subsystem */
aae8aab4 1034 BUG_ON(ss == NULL);
bd89aabc
PM
1035 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1036 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1037 if (ss->bind)
761b3ef5 1038 ss->bind(dummytop);
ddbcc7e8 1039 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1040 cgrp->subsys[i] = NULL;
b2aa30f7 1041 subsys[i]->root = &rootnode;
33a68ac1 1042 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1043 /* subsystem is now free - drop reference on module */
1044 module_put(ss->module);
a1a71b45 1045 } else if (bit & final_subsys_mask) {
ddbcc7e8 1046 /* Subsystem state should already exist */
aae8aab4 1047 BUG_ON(ss == NULL);
bd89aabc 1048 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1049 /*
1050 * a refcount was taken, but we already had one, so
1051 * drop the extra reference.
1052 */
1053 module_put(ss->module);
1054#ifdef CONFIG_MODULE_UNLOAD
1055 BUG_ON(ss->module && !module_refcount(ss->module));
1056#endif
ddbcc7e8
PM
1057 } else {
1058 /* Subsystem state shouldn't exist */
bd89aabc 1059 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1060 }
1061 }
a1a71b45 1062 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1063
1064 return 0;
1065}
1066
34c80b1d 1067static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1068{
34c80b1d 1069 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1070 struct cgroup_subsys *ss;
1071
e25e2cbb 1072 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1073 for_each_subsys(root, ss)
1074 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1075 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1076 seq_puts(seq, ",sane_behavior");
93438629 1077 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1078 seq_puts(seq, ",noprefix");
93438629 1079 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1080 seq_puts(seq, ",xattr");
81a6a5cd
PM
1081 if (strlen(root->release_agent_path))
1082 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1083 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1084 seq_puts(seq, ",clone_children");
c6d57f33
PM
1085 if (strlen(root->name))
1086 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1087 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1088 return 0;
1089}
1090
1091struct cgroup_sb_opts {
a1a71b45 1092 unsigned long subsys_mask;
ddbcc7e8 1093 unsigned long flags;
81a6a5cd 1094 char *release_agent;
2260e7fc 1095 bool cpuset_clone_children;
c6d57f33 1096 char *name;
2c6ab6d2
PM
1097 /* User explicitly requested empty subsystem */
1098 bool none;
c6d57f33
PM
1099
1100 struct cgroupfs_root *new_root;
2c6ab6d2 1101
ddbcc7e8
PM
1102};
1103
aae8aab4
BB
1104/*
1105 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1106 * with cgroup_mutex held to protect the subsys[] array. This function takes
1107 * refcounts on subsystems to be used, unless it returns error, in which case
1108 * no refcounts are taken.
aae8aab4 1109 */
cf5d5941 1110static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1111{
32a8cf23
DL
1112 char *token, *o = data;
1113 bool all_ss = false, one_ss = false;
f9ab5b5b 1114 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1115 int i;
1116 bool module_pin_failed = false;
f9ab5b5b 1117
aae8aab4
BB
1118 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1119
f9ab5b5b
LZ
1120#ifdef CONFIG_CPUSETS
1121 mask = ~(1UL << cpuset_subsys_id);
1122#endif
ddbcc7e8 1123
c6d57f33 1124 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1125
1126 while ((token = strsep(&o, ",")) != NULL) {
1127 if (!*token)
1128 return -EINVAL;
32a8cf23 1129 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1130 /* Explicitly have no subsystems */
1131 opts->none = true;
32a8cf23
DL
1132 continue;
1133 }
1134 if (!strcmp(token, "all")) {
1135 /* Mutually exclusive option 'all' + subsystem name */
1136 if (one_ss)
1137 return -EINVAL;
1138 all_ss = true;
1139 continue;
1140 }
873fe09e
TH
1141 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1142 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1143 continue;
1144 }
32a8cf23 1145 if (!strcmp(token, "noprefix")) {
93438629 1146 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1147 continue;
1148 }
1149 if (!strcmp(token, "clone_children")) {
2260e7fc 1150 opts->cpuset_clone_children = true;
32a8cf23
DL
1151 continue;
1152 }
03b1cde6 1153 if (!strcmp(token, "xattr")) {
93438629 1154 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1155 continue;
1156 }
32a8cf23 1157 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1158 /* Specifying two release agents is forbidden */
1159 if (opts->release_agent)
1160 return -EINVAL;
c6d57f33 1161 opts->release_agent =
e400c285 1162 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1163 if (!opts->release_agent)
1164 return -ENOMEM;
32a8cf23
DL
1165 continue;
1166 }
1167 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1168 const char *name = token + 5;
1169 /* Can't specify an empty name */
1170 if (!strlen(name))
1171 return -EINVAL;
1172 /* Must match [\w.-]+ */
1173 for (i = 0; i < strlen(name); i++) {
1174 char c = name[i];
1175 if (isalnum(c))
1176 continue;
1177 if ((c == '.') || (c == '-') || (c == '_'))
1178 continue;
1179 return -EINVAL;
1180 }
1181 /* Specifying two names is forbidden */
1182 if (opts->name)
1183 return -EINVAL;
1184 opts->name = kstrndup(name,
e400c285 1185 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1186 GFP_KERNEL);
1187 if (!opts->name)
1188 return -ENOMEM;
32a8cf23
DL
1189
1190 continue;
1191 }
1192
1193 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1194 struct cgroup_subsys *ss = subsys[i];
1195 if (ss == NULL)
1196 continue;
1197 if (strcmp(token, ss->name))
1198 continue;
1199 if (ss->disabled)
1200 continue;
1201
1202 /* Mutually exclusive option 'all' + subsystem name */
1203 if (all_ss)
1204 return -EINVAL;
a1a71b45 1205 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1206 one_ss = true;
1207
1208 break;
1209 }
1210 if (i == CGROUP_SUBSYS_COUNT)
1211 return -ENOENT;
1212 }
1213
1214 /*
1215 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1216 * otherwise if 'none', 'name=' and a subsystem name options
1217 * were not specified, let's default to 'all'
32a8cf23 1218 */
0d19ea86 1219 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1220 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1221 struct cgroup_subsys *ss = subsys[i];
1222 if (ss == NULL)
1223 continue;
1224 if (ss->disabled)
1225 continue;
a1a71b45 1226 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1227 }
1228 }
1229
2c6ab6d2
PM
1230 /* Consistency checks */
1231
873fe09e
TH
1232 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1233 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1234
1235 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1236 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1237 return -EINVAL;
1238 }
1239
1240 if (opts->cpuset_clone_children) {
1241 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1242 return -EINVAL;
1243 }
1244 }
1245
f9ab5b5b
LZ
1246 /*
1247 * Option noprefix was introduced just for backward compatibility
1248 * with the old cpuset, so we allow noprefix only if mounting just
1249 * the cpuset subsystem.
1250 */
93438629 1251 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1252 return -EINVAL;
1253
2c6ab6d2
PM
1254
1255 /* Can't specify "none" and some subsystems */
a1a71b45 1256 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1257 return -EINVAL;
1258
1259 /*
1260 * We either have to specify by name or by subsystems. (So all
1261 * empty hierarchies must have a name).
1262 */
a1a71b45 1263 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1264 return -EINVAL;
1265
cf5d5941
BB
1266 /*
1267 * Grab references on all the modules we'll need, so the subsystems
1268 * don't dance around before rebind_subsystems attaches them. This may
1269 * take duplicate reference counts on a subsystem that's already used,
1270 * but rebind_subsystems handles this case.
1271 */
be45c900 1272 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1273 unsigned long bit = 1UL << i;
1274
a1a71b45 1275 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1276 continue;
1277 if (!try_module_get(subsys[i]->module)) {
1278 module_pin_failed = true;
1279 break;
1280 }
1281 }
1282 if (module_pin_failed) {
1283 /*
1284 * oops, one of the modules was going away. this means that we
1285 * raced with a module_delete call, and to the user this is
1286 * essentially a "subsystem doesn't exist" case.
1287 */
be45c900 1288 for (i--; i >= 0; i--) {
cf5d5941
BB
1289 /* drop refcounts only on the ones we took */
1290 unsigned long bit = 1UL << i;
1291
a1a71b45 1292 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1293 continue;
1294 module_put(subsys[i]->module);
1295 }
1296 return -ENOENT;
1297 }
1298
ddbcc7e8
PM
1299 return 0;
1300}
1301
a1a71b45 1302static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1303{
1304 int i;
be45c900 1305 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1306 unsigned long bit = 1UL << i;
1307
a1a71b45 1308 if (!(bit & subsys_mask))
cf5d5941
BB
1309 continue;
1310 module_put(subsys[i]->module);
1311 }
1312}
1313
ddbcc7e8
PM
1314static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1315{
1316 int ret = 0;
1317 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1318 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1319 struct cgroup_sb_opts opts;
a1a71b45 1320 unsigned long added_mask, removed_mask;
ddbcc7e8 1321
873fe09e
TH
1322 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1323 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1324 return -EINVAL;
1325 }
1326
bd89aabc 1327 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1328 mutex_lock(&cgroup_mutex);
e25e2cbb 1329 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1330
1331 /* See what subsystems are wanted */
1332 ret = parse_cgroupfs_options(data, &opts);
1333 if (ret)
1334 goto out_unlock;
1335
a1a71b45 1336 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1337 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1338 task_tgid_nr(current), current->comm);
1339
a1a71b45
AR
1340 added_mask = opts.subsys_mask & ~root->subsys_mask;
1341 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1342
cf5d5941
BB
1343 /* Don't allow flags or name to change at remount */
1344 if (opts.flags != root->flags ||
1345 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1346 ret = -EINVAL;
a1a71b45 1347 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1348 goto out_unlock;
1349 }
1350
7083d037
G
1351 /*
1352 * Clear out the files of subsystems that should be removed, do
1353 * this before rebind_subsystems, since rebind_subsystems may
1354 * change this hierarchy's subsys_list.
1355 */
1356 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1357
a1a71b45 1358 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1359 if (ret) {
7083d037
G
1360 /* rebind_subsystems failed, re-populate the removed files */
1361 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1362 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1363 goto out_unlock;
cf5d5941 1364 }
ddbcc7e8 1365
13af07df 1366 /* re-populate subsystem files */
a1a71b45 1367 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1368
81a6a5cd
PM
1369 if (opts.release_agent)
1370 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1371 out_unlock:
66bdc9cf 1372 kfree(opts.release_agent);
c6d57f33 1373 kfree(opts.name);
e25e2cbb 1374 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1375 mutex_unlock(&cgroup_mutex);
bd89aabc 1376 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1377 return ret;
1378}
1379
b87221de 1380static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1381 .statfs = simple_statfs,
1382 .drop_inode = generic_delete_inode,
1383 .show_options = cgroup_show_options,
1384 .remount_fs = cgroup_remount,
1385};
1386
cc31edce
PM
1387static void init_cgroup_housekeeping(struct cgroup *cgrp)
1388{
1389 INIT_LIST_HEAD(&cgrp->sibling);
1390 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1391 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1392 INIT_LIST_HEAD(&cgrp->cset_links);
2243076a 1393 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1394 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1395 INIT_LIST_HEAD(&cgrp->pidlists);
1396 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1397 INIT_LIST_HEAD(&cgrp->event_list);
1398 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1399 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1400}
c6d57f33 1401
ddbcc7e8
PM
1402static void init_cgroup_root(struct cgroupfs_root *root)
1403{
bd89aabc 1404 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1405
ddbcc7e8
PM
1406 INIT_LIST_HEAD(&root->subsys_list);
1407 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1408 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1409 root->number_of_cgroups = 1;
bd89aabc 1410 cgrp->root = root;
65dff759 1411 cgrp->name = &root_cgroup_name;
cc31edce 1412 init_cgroup_housekeeping(cgrp);
fddfb02a 1413 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1414}
1415
fa3ca07e 1416static int cgroup_init_root_id(struct cgroupfs_root *root)
2c6ab6d2 1417{
1a574231 1418 int id;
2c6ab6d2 1419
54e7b4eb
TH
1420 lockdep_assert_held(&cgroup_mutex);
1421 lockdep_assert_held(&cgroup_root_mutex);
1422
1a574231
TH
1423 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
1424 if (id < 0)
1425 return id;
1426
1427 root->hierarchy_id = id;
fa3ca07e
TH
1428 return 0;
1429}
1430
1431static void cgroup_exit_root_id(struct cgroupfs_root *root)
1432{
54e7b4eb
TH
1433 lockdep_assert_held(&cgroup_mutex);
1434 lockdep_assert_held(&cgroup_root_mutex);
1435
fa3ca07e 1436 if (root->hierarchy_id) {
1a574231 1437 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1438 root->hierarchy_id = 0;
1439 }
2c6ab6d2
PM
1440}
1441
ddbcc7e8
PM
1442static int cgroup_test_super(struct super_block *sb, void *data)
1443{
c6d57f33 1444 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1445 struct cgroupfs_root *root = sb->s_fs_info;
1446
c6d57f33
PM
1447 /* If we asked for a name then it must match */
1448 if (opts->name && strcmp(opts->name, root->name))
1449 return 0;
ddbcc7e8 1450
2c6ab6d2
PM
1451 /*
1452 * If we asked for subsystems (or explicitly for no
1453 * subsystems) then they must match
1454 */
a1a71b45
AR
1455 if ((opts->subsys_mask || opts->none)
1456 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1457 return 0;
1458
1459 return 1;
1460}
1461
c6d57f33
PM
1462static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1463{
1464 struct cgroupfs_root *root;
1465
a1a71b45 1466 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1467 return NULL;
1468
1469 root = kzalloc(sizeof(*root), GFP_KERNEL);
1470 if (!root)
1471 return ERR_PTR(-ENOMEM);
1472
1473 init_cgroup_root(root);
2c6ab6d2 1474
a1a71b45 1475 root->subsys_mask = opts->subsys_mask;
c6d57f33 1476 root->flags = opts->flags;
0a950f65 1477 ida_init(&root->cgroup_ida);
c6d57f33
PM
1478 if (opts->release_agent)
1479 strcpy(root->release_agent_path, opts->release_agent);
1480 if (opts->name)
1481 strcpy(root->name, opts->name);
2260e7fc
TH
1482 if (opts->cpuset_clone_children)
1483 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1484 return root;
1485}
1486
fa3ca07e 1487static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1488{
fa3ca07e
TH
1489 if (root) {
1490 /* hierarhcy ID shoulid already have been released */
1491 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1492
fa3ca07e
TH
1493 ida_destroy(&root->cgroup_ida);
1494 kfree(root);
1495 }
2c6ab6d2
PM
1496}
1497
ddbcc7e8
PM
1498static int cgroup_set_super(struct super_block *sb, void *data)
1499{
1500 int ret;
c6d57f33
PM
1501 struct cgroup_sb_opts *opts = data;
1502
1503 /* If we don't have a new root, we can't set up a new sb */
1504 if (!opts->new_root)
1505 return -EINVAL;
1506
a1a71b45 1507 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1508
1509 ret = set_anon_super(sb, NULL);
1510 if (ret)
1511 return ret;
1512
c6d57f33
PM
1513 sb->s_fs_info = opts->new_root;
1514 opts->new_root->sb = sb;
ddbcc7e8
PM
1515
1516 sb->s_blocksize = PAGE_CACHE_SIZE;
1517 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1518 sb->s_magic = CGROUP_SUPER_MAGIC;
1519 sb->s_op = &cgroup_ops;
1520
1521 return 0;
1522}
1523
1524static int cgroup_get_rootdir(struct super_block *sb)
1525{
0df6a63f
AV
1526 static const struct dentry_operations cgroup_dops = {
1527 .d_iput = cgroup_diput,
c72a04e3 1528 .d_delete = cgroup_delete,
0df6a63f
AV
1529 };
1530
ddbcc7e8
PM
1531 struct inode *inode =
1532 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1533
1534 if (!inode)
1535 return -ENOMEM;
1536
ddbcc7e8
PM
1537 inode->i_fop = &simple_dir_operations;
1538 inode->i_op = &cgroup_dir_inode_operations;
1539 /* directories start off with i_nlink == 2 (for "." entry) */
1540 inc_nlink(inode);
48fde701
AV
1541 sb->s_root = d_make_root(inode);
1542 if (!sb->s_root)
ddbcc7e8 1543 return -ENOMEM;
0df6a63f
AV
1544 /* for everything else we want ->d_op set */
1545 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1546 return 0;
1547}
1548
f7e83571 1549static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1550 int flags, const char *unused_dev_name,
f7e83571 1551 void *data)
ddbcc7e8
PM
1552{
1553 struct cgroup_sb_opts opts;
c6d57f33 1554 struct cgroupfs_root *root;
ddbcc7e8
PM
1555 int ret = 0;
1556 struct super_block *sb;
c6d57f33 1557 struct cgroupfs_root *new_root;
e25e2cbb 1558 struct inode *inode;
ddbcc7e8
PM
1559
1560 /* First find the desired set of subsystems */
aae8aab4 1561 mutex_lock(&cgroup_mutex);
ddbcc7e8 1562 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1563 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1564 if (ret)
1565 goto out_err;
ddbcc7e8 1566
c6d57f33
PM
1567 /*
1568 * Allocate a new cgroup root. We may not need it if we're
1569 * reusing an existing hierarchy.
1570 */
1571 new_root = cgroup_root_from_opts(&opts);
1572 if (IS_ERR(new_root)) {
1573 ret = PTR_ERR(new_root);
cf5d5941 1574 goto drop_modules;
81a6a5cd 1575 }
c6d57f33 1576 opts.new_root = new_root;
ddbcc7e8 1577
c6d57f33 1578 /* Locate an existing or new sb for this hierarchy */
9249e17f 1579 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1580 if (IS_ERR(sb)) {
c6d57f33 1581 ret = PTR_ERR(sb);
fa3ca07e 1582 cgroup_free_root(opts.new_root);
cf5d5941 1583 goto drop_modules;
ddbcc7e8
PM
1584 }
1585
c6d57f33
PM
1586 root = sb->s_fs_info;
1587 BUG_ON(!root);
1588 if (root == opts.new_root) {
1589 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1590 struct list_head tmp_links;
c12f65d4 1591 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1592 struct cgroupfs_root *existing_root;
2ce9738b 1593 const struct cred *cred;
28fd5dfc 1594 int i;
5abb8855 1595 struct css_set *cset;
ddbcc7e8
PM
1596
1597 BUG_ON(sb->s_root != NULL);
1598
1599 ret = cgroup_get_rootdir(sb);
1600 if (ret)
1601 goto drop_new_super;
817929ec 1602 inode = sb->s_root->d_inode;
ddbcc7e8 1603
817929ec 1604 mutex_lock(&inode->i_mutex);
ddbcc7e8 1605 mutex_lock(&cgroup_mutex);
e25e2cbb 1606 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1607
e25e2cbb
TH
1608 /* Check for name clashes with existing mounts */
1609 ret = -EBUSY;
1610 if (strlen(root->name))
1611 for_each_active_root(existing_root)
1612 if (!strcmp(existing_root->name, root->name))
1613 goto unlock_drop;
c6d57f33 1614
817929ec
PM
1615 /*
1616 * We're accessing css_set_count without locking
1617 * css_set_lock here, but that's OK - it can only be
1618 * increased by someone holding cgroup_lock, and
1619 * that's us. The worst that can happen is that we
1620 * have some link structures left over
1621 */
69d0206c 1622 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1623 if (ret)
1624 goto unlock_drop;
817929ec 1625
fa3ca07e
TH
1626 ret = cgroup_init_root_id(root);
1627 if (ret)
1628 goto unlock_drop;
1629
a1a71b45 1630 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1631 if (ret == -EBUSY) {
69d0206c 1632 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1633 goto unlock_drop;
ddbcc7e8 1634 }
cf5d5941
BB
1635 /*
1636 * There must be no failure case after here, since rebinding
1637 * takes care of subsystems' refcounts, which are explicitly
1638 * dropped in the failure exit path.
1639 */
ddbcc7e8
PM
1640
1641 /* EBUSY should be the only error here */
1642 BUG_ON(ret);
1643
1644 list_add(&root->root_list, &roots);
817929ec 1645 root_count++;
ddbcc7e8 1646
c12f65d4 1647 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1648 root->top_cgroup.dentry = sb->s_root;
1649
817929ec
PM
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
5abb8855 1653 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1654 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1655 write_unlock(&css_set_lock);
1656
69d0206c 1657 free_cgrp_cset_links(&tmp_links);
817929ec 1658
c12f65d4 1659 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1660 BUG_ON(root->number_of_cgroups != 1);
1661
2ce9738b 1662 cred = override_creds(&init_cred);
a1a71b45 1663 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1664 revert_creds(cred);
e25e2cbb 1665 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1666 mutex_unlock(&cgroup_mutex);
34f77a90 1667 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1668 } else {
1669 /*
1670 * We re-used an existing hierarchy - the new root (if
1671 * any) is not needed
1672 */
fa3ca07e 1673 cgroup_free_root(opts.new_root);
873fe09e 1674
2a0ff3fb
JL
1675 if (root->flags != opts.flags) {
1676 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1677 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1678 ret = -EINVAL;
1679 goto drop_new_super;
1680 } else {
1681 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1682 }
873fe09e
TH
1683 }
1684
cf5d5941 1685 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1686 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1687 }
1688
c6d57f33
PM
1689 kfree(opts.release_agent);
1690 kfree(opts.name);
f7e83571 1691 return dget(sb->s_root);
ddbcc7e8 1692
e25e2cbb 1693 unlock_drop:
fa3ca07e 1694 cgroup_exit_root_id(root);
e25e2cbb
TH
1695 mutex_unlock(&cgroup_root_mutex);
1696 mutex_unlock(&cgroup_mutex);
1697 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1698 drop_new_super:
6f5bbff9 1699 deactivate_locked_super(sb);
cf5d5941 1700 drop_modules:
a1a71b45 1701 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1702 out_err:
1703 kfree(opts.release_agent);
1704 kfree(opts.name);
f7e83571 1705 return ERR_PTR(ret);
ddbcc7e8
PM
1706}
1707
1708static void cgroup_kill_sb(struct super_block *sb) {
1709 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1710 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1711 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1712 int ret;
1713
1714 BUG_ON(!root);
1715
1716 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1717 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1718
1719 mutex_lock(&cgroup_mutex);
e25e2cbb 1720 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1721
1722 /* Rebind all subsystems back to the default hierarchy */
1723 ret = rebind_subsystems(root, 0);
1724 /* Shouldn't be able to fail ... */
1725 BUG_ON(ret);
1726
817929ec 1727 /*
69d0206c 1728 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1729 * root cgroup
1730 */
1731 write_lock(&css_set_lock);
71cbb949 1732
69d0206c
TH
1733 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1734 list_del(&link->cset_link);
1735 list_del(&link->cgrp_link);
817929ec
PM
1736 kfree(link);
1737 }
1738 write_unlock(&css_set_lock);
1739
839ec545
PM
1740 if (!list_empty(&root->root_list)) {
1741 list_del(&root->root_list);
1742 root_count--;
1743 }
e5f6a860 1744
fa3ca07e
TH
1745 cgroup_exit_root_id(root);
1746
e25e2cbb 1747 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1748 mutex_unlock(&cgroup_mutex);
1749
03b1cde6
AR
1750 simple_xattrs_free(&cgrp->xattrs);
1751
ddbcc7e8 1752 kill_litter_super(sb);
fa3ca07e 1753 cgroup_free_root(root);
ddbcc7e8
PM
1754}
1755
1756static struct file_system_type cgroup_fs_type = {
1757 .name = "cgroup",
f7e83571 1758 .mount = cgroup_mount,
ddbcc7e8
PM
1759 .kill_sb = cgroup_kill_sb,
1760};
1761
676db4af
GK
1762static struct kobject *cgroup_kobj;
1763
a043e3b2
LZ
1764/**
1765 * cgroup_path - generate the path of a cgroup
1766 * @cgrp: the cgroup in question
1767 * @buf: the buffer to write the path into
1768 * @buflen: the length of the buffer
1769 *
65dff759
LZ
1770 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1771 *
1772 * We can't generate cgroup path using dentry->d_name, as accessing
1773 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1774 * inode's i_mutex, while on the other hand cgroup_path() can be called
1775 * with some irq-safe spinlocks held.
ddbcc7e8 1776 */
bd89aabc 1777int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1778{
65dff759 1779 int ret = -ENAMETOOLONG;
ddbcc7e8 1780 char *start;
febfcef6 1781
da1f296f
TH
1782 if (!cgrp->parent) {
1783 if (strlcpy(buf, "/", buflen) >= buflen)
1784 return -ENAMETOOLONG;
ddbcc7e8
PM
1785 return 0;
1786 }
1787
316eb661 1788 start = buf + buflen - 1;
316eb661 1789 *start = '\0';
9a9686b6 1790
65dff759 1791 rcu_read_lock();
da1f296f 1792 do {
65dff759
LZ
1793 const char *name = cgroup_name(cgrp);
1794 int len;
1795
1796 len = strlen(name);
ddbcc7e8 1797 if ((start -= len) < buf)
65dff759
LZ
1798 goto out;
1799 memcpy(start, name, len);
9a9686b6 1800
ddbcc7e8 1801 if (--start < buf)
65dff759 1802 goto out;
ddbcc7e8 1803 *start = '/';
65dff759
LZ
1804
1805 cgrp = cgrp->parent;
da1f296f 1806 } while (cgrp->parent);
65dff759 1807 ret = 0;
ddbcc7e8 1808 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1809out:
1810 rcu_read_unlock();
1811 return ret;
ddbcc7e8 1812}
67523c48 1813EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1814
857a2beb
TH
1815/**
1816 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1817 * @task: target task
1818 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1819 * @buf: the buffer to write the path into
1820 * @buflen: the length of the buffer
1821 *
1822 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1823 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1824 * be used inside locks used by cgroup controller callbacks.
1825 */
1826int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1827 char *buf, size_t buflen)
1828{
1829 struct cgroupfs_root *root;
1830 struct cgroup *cgrp = NULL;
1831 int ret = -ENOENT;
1832
1833 mutex_lock(&cgroup_mutex);
1834
1835 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1836 if (root) {
1837 cgrp = task_cgroup_from_root(task, root);
1838 ret = cgroup_path(cgrp, buf, buflen);
1839 }
1840
1841 mutex_unlock(&cgroup_mutex);
1842
1843 return ret;
1844}
1845EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1846
2f7ee569
TH
1847/*
1848 * Control Group taskset
1849 */
134d3373
TH
1850struct task_and_cgroup {
1851 struct task_struct *task;
1852 struct cgroup *cgrp;
61d1d219 1853 struct css_set *cg;
134d3373
TH
1854};
1855
2f7ee569
TH
1856struct cgroup_taskset {
1857 struct task_and_cgroup single;
1858 struct flex_array *tc_array;
1859 int tc_array_len;
1860 int idx;
1861 struct cgroup *cur_cgrp;
1862};
1863
1864/**
1865 * cgroup_taskset_first - reset taskset and return the first task
1866 * @tset: taskset of interest
1867 *
1868 * @tset iteration is initialized and the first task is returned.
1869 */
1870struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1871{
1872 if (tset->tc_array) {
1873 tset->idx = 0;
1874 return cgroup_taskset_next(tset);
1875 } else {
1876 tset->cur_cgrp = tset->single.cgrp;
1877 return tset->single.task;
1878 }
1879}
1880EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1881
1882/**
1883 * cgroup_taskset_next - iterate to the next task in taskset
1884 * @tset: taskset of interest
1885 *
1886 * Return the next task in @tset. Iteration must have been initialized
1887 * with cgroup_taskset_first().
1888 */
1889struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1890{
1891 struct task_and_cgroup *tc;
1892
1893 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1894 return NULL;
1895
1896 tc = flex_array_get(tset->tc_array, tset->idx++);
1897 tset->cur_cgrp = tc->cgrp;
1898 return tc->task;
1899}
1900EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1901
1902/**
1903 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1904 * @tset: taskset of interest
1905 *
1906 * Return the cgroup for the current (last returned) task of @tset. This
1907 * function must be preceded by either cgroup_taskset_first() or
1908 * cgroup_taskset_next().
1909 */
1910struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1911{
1912 return tset->cur_cgrp;
1913}
1914EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1915
1916/**
1917 * cgroup_taskset_size - return the number of tasks in taskset
1918 * @tset: taskset of interest
1919 */
1920int cgroup_taskset_size(struct cgroup_taskset *tset)
1921{
1922 return tset->tc_array ? tset->tc_array_len : 1;
1923}
1924EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1925
1926
74a1166d
BB
1927/*
1928 * cgroup_task_migrate - move a task from one cgroup to another.
1929 *
d0b2fdd2 1930 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1931 */
5abb8855
TH
1932static void cgroup_task_migrate(struct cgroup *old_cgrp,
1933 struct task_struct *tsk,
1934 struct css_set *new_cset)
74a1166d 1935{
5abb8855 1936 struct css_set *old_cset;
74a1166d
BB
1937
1938 /*
026085ef
MSB
1939 * We are synchronized through threadgroup_lock() against PF_EXITING
1940 * setting such that we can't race against cgroup_exit() changing the
1941 * css_set to init_css_set and dropping the old one.
74a1166d 1942 */
c84cdf75 1943 WARN_ON_ONCE(tsk->flags & PF_EXITING);
5abb8855 1944 old_cset = tsk->cgroups;
74a1166d 1945
74a1166d 1946 task_lock(tsk);
5abb8855 1947 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1948 task_unlock(tsk);
1949
1950 /* Update the css_set linked lists if we're using them */
1951 write_lock(&css_set_lock);
1952 if (!list_empty(&tsk->cg_list))
5abb8855 1953 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1954 write_unlock(&css_set_lock);
1955
1956 /*
5abb8855
TH
1957 * We just gained a reference on old_cset by taking it from the
1958 * task. As trading it for new_cset is protected by cgroup_mutex,
1959 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1960 */
5abb8855
TH
1961 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1962 put_css_set(old_cset);
74a1166d
BB
1963}
1964
a043e3b2 1965/**
081aa458 1966 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1967 * @cgrp: the cgroup to attach to
081aa458
LZ
1968 * @tsk: the task or the leader of the threadgroup to be attached
1969 * @threadgroup: attach the whole threadgroup?
74a1166d 1970 *
257058ae 1971 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1972 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1973 */
47cfcd09
TH
1974static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1975 bool threadgroup)
74a1166d
BB
1976{
1977 int retval, i, group_size;
1978 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1979 struct cgroupfs_root *root = cgrp->root;
1980 /* threadgroup list cursor and array */
081aa458 1981 struct task_struct *leader = tsk;
134d3373 1982 struct task_and_cgroup *tc;
d846687d 1983 struct flex_array *group;
2f7ee569 1984 struct cgroup_taskset tset = { };
74a1166d
BB
1985
1986 /*
1987 * step 0: in order to do expensive, possibly blocking operations for
1988 * every thread, we cannot iterate the thread group list, since it needs
1989 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1990 * group - group_rwsem prevents new threads from appearing, and if
1991 * threads exit, this will just be an over-estimate.
74a1166d 1992 */
081aa458
LZ
1993 if (threadgroup)
1994 group_size = get_nr_threads(tsk);
1995 else
1996 group_size = 1;
d846687d 1997 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1998 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1999 if (!group)
2000 return -ENOMEM;
d846687d 2001 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2002 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2003 if (retval)
2004 goto out_free_group_list;
74a1166d 2005
74a1166d 2006 i = 0;
fb5d2b4c
MSB
2007 /*
2008 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2009 * already PF_EXITING could be freed from underneath us unless we
2010 * take an rcu_read_lock.
2011 */
2012 rcu_read_lock();
74a1166d 2013 do {
134d3373
TH
2014 struct task_and_cgroup ent;
2015
cd3d0952
TH
2016 /* @tsk either already exited or can't exit until the end */
2017 if (tsk->flags & PF_EXITING)
2018 continue;
2019
74a1166d
BB
2020 /* as per above, nr_threads may decrease, but not increase. */
2021 BUG_ON(i >= group_size);
134d3373
TH
2022 ent.task = tsk;
2023 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2024 /* nothing to do if this task is already in the cgroup */
2025 if (ent.cgrp == cgrp)
2026 continue;
61d1d219
MSB
2027 /*
2028 * saying GFP_ATOMIC has no effect here because we did prealloc
2029 * earlier, but it's good form to communicate our expectations.
2030 */
134d3373 2031 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2032 BUG_ON(retval != 0);
74a1166d 2033 i++;
081aa458
LZ
2034
2035 if (!threadgroup)
2036 break;
74a1166d 2037 } while_each_thread(leader, tsk);
fb5d2b4c 2038 rcu_read_unlock();
74a1166d
BB
2039 /* remember the number of threads in the array for later. */
2040 group_size = i;
2f7ee569
TH
2041 tset.tc_array = group;
2042 tset.tc_array_len = group_size;
74a1166d 2043
134d3373
TH
2044 /* methods shouldn't be called if no task is actually migrating */
2045 retval = 0;
892a2b90 2046 if (!group_size)
b07ef774 2047 goto out_free_group_list;
134d3373 2048
74a1166d
BB
2049 /*
2050 * step 1: check that we can legitimately attach to the cgroup.
2051 */
2052 for_each_subsys(root, ss) {
2053 if (ss->can_attach) {
761b3ef5 2054 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2055 if (retval) {
2056 failed_ss = ss;
2057 goto out_cancel_attach;
2058 }
2059 }
74a1166d
BB
2060 }
2061
2062 /*
2063 * step 2: make sure css_sets exist for all threads to be migrated.
2064 * we use find_css_set, which allocates a new one if necessary.
2065 */
74a1166d 2066 for (i = 0; i < group_size; i++) {
134d3373 2067 tc = flex_array_get(group, i);
61d1d219
MSB
2068 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2069 if (!tc->cg) {
2070 retval = -ENOMEM;
2071 goto out_put_css_set_refs;
74a1166d
BB
2072 }
2073 }
2074
2075 /*
494c167c
TH
2076 * step 3: now that we're guaranteed success wrt the css_sets,
2077 * proceed to move all tasks to the new cgroup. There are no
2078 * failure cases after here, so this is the commit point.
74a1166d 2079 */
74a1166d 2080 for (i = 0; i < group_size; i++) {
134d3373 2081 tc = flex_array_get(group, i);
1e2ccd1c 2082 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2083 }
2084 /* nothing is sensitive to fork() after this point. */
2085
2086 /*
494c167c 2087 * step 4: do subsystem attach callbacks.
74a1166d
BB
2088 */
2089 for_each_subsys(root, ss) {
2090 if (ss->attach)
761b3ef5 2091 ss->attach(cgrp, &tset);
74a1166d
BB
2092 }
2093
2094 /*
2095 * step 5: success! and cleanup
2096 */
74a1166d 2097 retval = 0;
61d1d219
MSB
2098out_put_css_set_refs:
2099 if (retval) {
2100 for (i = 0; i < group_size; i++) {
2101 tc = flex_array_get(group, i);
2102 if (!tc->cg)
2103 break;
2104 put_css_set(tc->cg);
2105 }
74a1166d
BB
2106 }
2107out_cancel_attach:
74a1166d
BB
2108 if (retval) {
2109 for_each_subsys(root, ss) {
494c167c 2110 if (ss == failed_ss)
74a1166d 2111 break;
74a1166d 2112 if (ss->cancel_attach)
761b3ef5 2113 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2114 }
2115 }
74a1166d 2116out_free_group_list:
d846687d 2117 flex_array_free(group);
74a1166d
BB
2118 return retval;
2119}
2120
2121/*
2122 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2123 * function to attach either it or all tasks in its threadgroup. Will lock
2124 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2125 */
74a1166d 2126static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2127{
bbcb81d0 2128 struct task_struct *tsk;
c69e8d9c 2129 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2130 int ret;
2131
74a1166d
BB
2132 if (!cgroup_lock_live_group(cgrp))
2133 return -ENODEV;
2134
b78949eb
MSB
2135retry_find_task:
2136 rcu_read_lock();
bbcb81d0 2137 if (pid) {
73507f33 2138 tsk = find_task_by_vpid(pid);
74a1166d
BB
2139 if (!tsk) {
2140 rcu_read_unlock();
b78949eb
MSB
2141 ret= -ESRCH;
2142 goto out_unlock_cgroup;
bbcb81d0 2143 }
74a1166d
BB
2144 /*
2145 * even if we're attaching all tasks in the thread group, we
2146 * only need to check permissions on one of them.
2147 */
c69e8d9c 2148 tcred = __task_cred(tsk);
14a590c3
EB
2149 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2150 !uid_eq(cred->euid, tcred->uid) &&
2151 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2152 rcu_read_unlock();
b78949eb
MSB
2153 ret = -EACCES;
2154 goto out_unlock_cgroup;
bbcb81d0 2155 }
b78949eb
MSB
2156 } else
2157 tsk = current;
cd3d0952
TH
2158
2159 if (threadgroup)
b78949eb 2160 tsk = tsk->group_leader;
c4c27fbd
MG
2161
2162 /*
14a40ffc 2163 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2164 * trapped in a cpuset, or RT worker may be born in a cgroup
2165 * with no rt_runtime allocated. Just say no.
2166 */
14a40ffc 2167 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2168 ret = -EINVAL;
2169 rcu_read_unlock();
2170 goto out_unlock_cgroup;
2171 }
2172
b78949eb
MSB
2173 get_task_struct(tsk);
2174 rcu_read_unlock();
2175
2176 threadgroup_lock(tsk);
2177 if (threadgroup) {
2178 if (!thread_group_leader(tsk)) {
2179 /*
2180 * a race with de_thread from another thread's exec()
2181 * may strip us of our leadership, if this happens,
2182 * there is no choice but to throw this task away and
2183 * try again; this is
2184 * "double-double-toil-and-trouble-check locking".
2185 */
2186 threadgroup_unlock(tsk);
2187 put_task_struct(tsk);
2188 goto retry_find_task;
2189 }
081aa458
LZ
2190 }
2191
2192 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2193
cd3d0952
TH
2194 threadgroup_unlock(tsk);
2195
bbcb81d0 2196 put_task_struct(tsk);
b78949eb 2197out_unlock_cgroup:
47cfcd09 2198 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2199 return ret;
2200}
2201
7ae1bad9
TH
2202/**
2203 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2204 * @from: attach to all cgroups of a given task
2205 * @tsk: the task to be attached
2206 */
2207int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2208{
2209 struct cgroupfs_root *root;
2210 int retval = 0;
2211
47cfcd09 2212 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2213 for_each_active_root(root) {
2214 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2215
2216 retval = cgroup_attach_task(from_cg, tsk, false);
2217 if (retval)
2218 break;
2219 }
47cfcd09 2220 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2221
2222 return retval;
2223}
2224EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2225
af351026 2226static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2227{
2228 return attach_task_by_pid(cgrp, pid, false);
2229}
2230
2231static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2232{
b78949eb 2233 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2234}
2235
e788e066
PM
2236static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2237 const char *buffer)
2238{
2239 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2240 if (strlen(buffer) >= PATH_MAX)
2241 return -EINVAL;
e788e066
PM
2242 if (!cgroup_lock_live_group(cgrp))
2243 return -ENODEV;
e25e2cbb 2244 mutex_lock(&cgroup_root_mutex);
e788e066 2245 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2246 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2247 mutex_unlock(&cgroup_mutex);
e788e066
PM
2248 return 0;
2249}
2250
2251static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2252 struct seq_file *seq)
2253{
2254 if (!cgroup_lock_live_group(cgrp))
2255 return -ENODEV;
2256 seq_puts(seq, cgrp->root->release_agent_path);
2257 seq_putc(seq, '\n');
47cfcd09 2258 mutex_unlock(&cgroup_mutex);
e788e066
PM
2259 return 0;
2260}
2261
873fe09e
TH
2262static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2263 struct seq_file *seq)
2264{
2265 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2266 return 0;
2267}
2268
84eea842
PM
2269/* A buffer size big enough for numbers or short strings */
2270#define CGROUP_LOCAL_BUFFER_SIZE 64
2271
e73d2c61 2272static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2273 struct file *file,
2274 const char __user *userbuf,
2275 size_t nbytes, loff_t *unused_ppos)
355e0c48 2276{
84eea842 2277 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2278 int retval = 0;
355e0c48
PM
2279 char *end;
2280
2281 if (!nbytes)
2282 return -EINVAL;
2283 if (nbytes >= sizeof(buffer))
2284 return -E2BIG;
2285 if (copy_from_user(buffer, userbuf, nbytes))
2286 return -EFAULT;
2287
2288 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2289 if (cft->write_u64) {
478988d3 2290 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2291 if (*end)
2292 return -EINVAL;
2293 retval = cft->write_u64(cgrp, cft, val);
2294 } else {
478988d3 2295 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2296 if (*end)
2297 return -EINVAL;
2298 retval = cft->write_s64(cgrp, cft, val);
2299 }
355e0c48
PM
2300 if (!retval)
2301 retval = nbytes;
2302 return retval;
2303}
2304
db3b1497
PM
2305static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2306 struct file *file,
2307 const char __user *userbuf,
2308 size_t nbytes, loff_t *unused_ppos)
2309{
84eea842 2310 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2311 int retval = 0;
2312 size_t max_bytes = cft->max_write_len;
2313 char *buffer = local_buffer;
2314
2315 if (!max_bytes)
2316 max_bytes = sizeof(local_buffer) - 1;
2317 if (nbytes >= max_bytes)
2318 return -E2BIG;
2319 /* Allocate a dynamic buffer if we need one */
2320 if (nbytes >= sizeof(local_buffer)) {
2321 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2322 if (buffer == NULL)
2323 return -ENOMEM;
2324 }
5a3eb9f6
LZ
2325 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2326 retval = -EFAULT;
2327 goto out;
2328 }
db3b1497
PM
2329
2330 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2331 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2332 if (!retval)
2333 retval = nbytes;
5a3eb9f6 2334out:
db3b1497
PM
2335 if (buffer != local_buffer)
2336 kfree(buffer);
2337 return retval;
2338}
2339
ddbcc7e8
PM
2340static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2341 size_t nbytes, loff_t *ppos)
2342{
2343 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2344 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2345
54766d4a 2346 if (cgroup_is_dead(cgrp))
ddbcc7e8 2347 return -ENODEV;
355e0c48 2348 if (cft->write)
bd89aabc 2349 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2350 if (cft->write_u64 || cft->write_s64)
2351 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2352 if (cft->write_string)
2353 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2354 if (cft->trigger) {
2355 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2356 return ret ? ret : nbytes;
2357 }
355e0c48 2358 return -EINVAL;
ddbcc7e8
PM
2359}
2360
f4c753b7
PM
2361static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2362 struct file *file,
2363 char __user *buf, size_t nbytes,
2364 loff_t *ppos)
ddbcc7e8 2365{
84eea842 2366 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2367 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2368 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2369
2370 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2371}
2372
e73d2c61
PM
2373static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2374 struct file *file,
2375 char __user *buf, size_t nbytes,
2376 loff_t *ppos)
2377{
84eea842 2378 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2379 s64 val = cft->read_s64(cgrp, cft);
2380 int len = sprintf(tmp, "%lld\n", (long long) val);
2381
2382 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2383}
2384
ddbcc7e8
PM
2385static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2386 size_t nbytes, loff_t *ppos)
2387{
2388 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2389 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2390
54766d4a 2391 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2392 return -ENODEV;
2393
2394 if (cft->read)
bd89aabc 2395 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2396 if (cft->read_u64)
2397 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2398 if (cft->read_s64)
2399 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2400 return -EINVAL;
2401}
2402
91796569
PM
2403/*
2404 * seqfile ops/methods for returning structured data. Currently just
2405 * supports string->u64 maps, but can be extended in future.
2406 */
2407
2408struct cgroup_seqfile_state {
2409 struct cftype *cft;
2410 struct cgroup *cgroup;
2411};
2412
2413static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2414{
2415 struct seq_file *sf = cb->state;
2416 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2417}
2418
2419static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2420{
2421 struct cgroup_seqfile_state *state = m->private;
2422 struct cftype *cft = state->cft;
29486df3
SH
2423 if (cft->read_map) {
2424 struct cgroup_map_cb cb = {
2425 .fill = cgroup_map_add,
2426 .state = m,
2427 };
2428 return cft->read_map(state->cgroup, cft, &cb);
2429 }
2430 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2431}
2432
96930a63 2433static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2434{
2435 struct seq_file *seq = file->private_data;
2436 kfree(seq->private);
2437 return single_release(inode, file);
2438}
2439
828c0950 2440static const struct file_operations cgroup_seqfile_operations = {
91796569 2441 .read = seq_read,
e788e066 2442 .write = cgroup_file_write,
91796569
PM
2443 .llseek = seq_lseek,
2444 .release = cgroup_seqfile_release,
2445};
2446
ddbcc7e8
PM
2447static int cgroup_file_open(struct inode *inode, struct file *file)
2448{
2449 int err;
2450 struct cftype *cft;
2451
2452 err = generic_file_open(inode, file);
2453 if (err)
2454 return err;
ddbcc7e8 2455 cft = __d_cft(file->f_dentry);
75139b82 2456
29486df3 2457 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2458 struct cgroup_seqfile_state *state;
2459
2460 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2461 if (!state)
2462 return -ENOMEM;
f4f4be2b 2463
91796569
PM
2464 state->cft = cft;
2465 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2466 file->f_op = &cgroup_seqfile_operations;
2467 err = single_open(file, cgroup_seqfile_show, state);
2468 if (err < 0)
2469 kfree(state);
2470 } else if (cft->open)
ddbcc7e8
PM
2471 err = cft->open(inode, file);
2472 else
2473 err = 0;
2474
2475 return err;
2476}
2477
2478static int cgroup_file_release(struct inode *inode, struct file *file)
2479{
2480 struct cftype *cft = __d_cft(file->f_dentry);
2481 if (cft->release)
2482 return cft->release(inode, file);
2483 return 0;
2484}
2485
2486/*
2487 * cgroup_rename - Only allow simple rename of directories in place.
2488 */
2489static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2490 struct inode *new_dir, struct dentry *new_dentry)
2491{
65dff759
LZ
2492 int ret;
2493 struct cgroup_name *name, *old_name;
2494 struct cgroup *cgrp;
2495
2496 /*
2497 * It's convinient to use parent dir's i_mutex to protected
2498 * cgrp->name.
2499 */
2500 lockdep_assert_held(&old_dir->i_mutex);
2501
ddbcc7e8
PM
2502 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2503 return -ENOTDIR;
2504 if (new_dentry->d_inode)
2505 return -EEXIST;
2506 if (old_dir != new_dir)
2507 return -EIO;
65dff759
LZ
2508
2509 cgrp = __d_cgrp(old_dentry);
2510
6db8e85c
TH
2511 /*
2512 * This isn't a proper migration and its usefulness is very
2513 * limited. Disallow if sane_behavior.
2514 */
2515 if (cgroup_sane_behavior(cgrp))
2516 return -EPERM;
2517
65dff759
LZ
2518 name = cgroup_alloc_name(new_dentry);
2519 if (!name)
2520 return -ENOMEM;
2521
2522 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2523 if (ret) {
2524 kfree(name);
2525 return ret;
2526 }
2527
2528 old_name = cgrp->name;
2529 rcu_assign_pointer(cgrp->name, name);
2530
2531 kfree_rcu(old_name, rcu_head);
2532 return 0;
ddbcc7e8
PM
2533}
2534
03b1cde6
AR
2535static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2536{
2537 if (S_ISDIR(dentry->d_inode->i_mode))
2538 return &__d_cgrp(dentry)->xattrs;
2539 else
712317ad 2540 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2541}
2542
2543static inline int xattr_enabled(struct dentry *dentry)
2544{
2545 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2546 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2547}
2548
2549static bool is_valid_xattr(const char *name)
2550{
2551 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2552 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2553 return true;
2554 return false;
2555}
2556
2557static int cgroup_setxattr(struct dentry *dentry, const char *name,
2558 const void *val, size_t size, int flags)
2559{
2560 if (!xattr_enabled(dentry))
2561 return -EOPNOTSUPP;
2562 if (!is_valid_xattr(name))
2563 return -EINVAL;
2564 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2565}
2566
2567static int cgroup_removexattr(struct dentry *dentry, const char *name)
2568{
2569 if (!xattr_enabled(dentry))
2570 return -EOPNOTSUPP;
2571 if (!is_valid_xattr(name))
2572 return -EINVAL;
2573 return simple_xattr_remove(__d_xattrs(dentry), name);
2574}
2575
2576static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2577 void *buf, size_t size)
2578{
2579 if (!xattr_enabled(dentry))
2580 return -EOPNOTSUPP;
2581 if (!is_valid_xattr(name))
2582 return -EINVAL;
2583 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2584}
2585
2586static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2587{
2588 if (!xattr_enabled(dentry))
2589 return -EOPNOTSUPP;
2590 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2591}
2592
828c0950 2593static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2594 .read = cgroup_file_read,
2595 .write = cgroup_file_write,
2596 .llseek = generic_file_llseek,
2597 .open = cgroup_file_open,
2598 .release = cgroup_file_release,
2599};
2600
03b1cde6
AR
2601static const struct inode_operations cgroup_file_inode_operations = {
2602 .setxattr = cgroup_setxattr,
2603 .getxattr = cgroup_getxattr,
2604 .listxattr = cgroup_listxattr,
2605 .removexattr = cgroup_removexattr,
2606};
2607
6e1d5dcc 2608static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2609 .lookup = cgroup_lookup,
ddbcc7e8
PM
2610 .mkdir = cgroup_mkdir,
2611 .rmdir = cgroup_rmdir,
2612 .rename = cgroup_rename,
03b1cde6
AR
2613 .setxattr = cgroup_setxattr,
2614 .getxattr = cgroup_getxattr,
2615 .listxattr = cgroup_listxattr,
2616 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2617};
2618
00cd8dd3 2619static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2620{
2621 if (dentry->d_name.len > NAME_MAX)
2622 return ERR_PTR(-ENAMETOOLONG);
2623 d_add(dentry, NULL);
2624 return NULL;
2625}
2626
0dea1168
KS
2627/*
2628 * Check if a file is a control file
2629 */
2630static inline struct cftype *__file_cft(struct file *file)
2631{
496ad9aa 2632 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2633 return ERR_PTR(-EINVAL);
2634 return __d_cft(file->f_dentry);
2635}
2636
a5e7ed32 2637static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2638 struct super_block *sb)
2639{
ddbcc7e8
PM
2640 struct inode *inode;
2641
2642 if (!dentry)
2643 return -ENOENT;
2644 if (dentry->d_inode)
2645 return -EEXIST;
2646
2647 inode = cgroup_new_inode(mode, sb);
2648 if (!inode)
2649 return -ENOMEM;
2650
2651 if (S_ISDIR(mode)) {
2652 inode->i_op = &cgroup_dir_inode_operations;
2653 inode->i_fop = &simple_dir_operations;
2654
2655 /* start off with i_nlink == 2 (for "." entry) */
2656 inc_nlink(inode);
28fd6f30 2657 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2658
b8a2df6a
TH
2659 /*
2660 * Control reaches here with cgroup_mutex held.
2661 * @inode->i_mutex should nest outside cgroup_mutex but we
2662 * want to populate it immediately without releasing
2663 * cgroup_mutex. As @inode isn't visible to anyone else
2664 * yet, trylock will always succeed without affecting
2665 * lockdep checks.
2666 */
2667 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2668 } else if (S_ISREG(mode)) {
2669 inode->i_size = 0;
2670 inode->i_fop = &cgroup_file_operations;
03b1cde6 2671 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2672 }
ddbcc7e8
PM
2673 d_instantiate(dentry, inode);
2674 dget(dentry); /* Extra count - pin the dentry in core */
2675 return 0;
2676}
2677
099fca32
LZ
2678/**
2679 * cgroup_file_mode - deduce file mode of a control file
2680 * @cft: the control file in question
2681 *
2682 * returns cft->mode if ->mode is not 0
2683 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2684 * returns S_IRUGO if it has only a read handler
2685 * returns S_IWUSR if it has only a write hander
2686 */
a5e7ed32 2687static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2688{
a5e7ed32 2689 umode_t mode = 0;
099fca32
LZ
2690
2691 if (cft->mode)
2692 return cft->mode;
2693
2694 if (cft->read || cft->read_u64 || cft->read_s64 ||
2695 cft->read_map || cft->read_seq_string)
2696 mode |= S_IRUGO;
2697
2698 if (cft->write || cft->write_u64 || cft->write_s64 ||
2699 cft->write_string || cft->trigger)
2700 mode |= S_IWUSR;
2701
2702 return mode;
2703}
2704
db0416b6 2705static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2706 struct cftype *cft)
ddbcc7e8 2707{
bd89aabc 2708 struct dentry *dir = cgrp->dentry;
05ef1d7c 2709 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2710 struct dentry *dentry;
05ef1d7c 2711 struct cfent *cfe;
ddbcc7e8 2712 int error;
a5e7ed32 2713 umode_t mode;
ddbcc7e8 2714 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2715
93438629 2716 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2717 strcpy(name, subsys->name);
2718 strcat(name, ".");
2719 }
2720 strcat(name, cft->name);
05ef1d7c 2721
ddbcc7e8 2722 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2723
2724 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2725 if (!cfe)
2726 return -ENOMEM;
2727
ddbcc7e8 2728 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2729 if (IS_ERR(dentry)) {
ddbcc7e8 2730 error = PTR_ERR(dentry);
05ef1d7c
TH
2731 goto out;
2732 }
2733
d6cbf35d
LZ
2734 cfe->type = (void *)cft;
2735 cfe->dentry = dentry;
2736 dentry->d_fsdata = cfe;
2737 simple_xattrs_init(&cfe->xattrs);
2738
05ef1d7c
TH
2739 mode = cgroup_file_mode(cft);
2740 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2741 if (!error) {
05ef1d7c
TH
2742 list_add_tail(&cfe->node, &parent->files);
2743 cfe = NULL;
2744 }
2745 dput(dentry);
2746out:
2747 kfree(cfe);
ddbcc7e8
PM
2748 return error;
2749}
2750
79578621 2751static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2752 struct cftype cfts[], bool is_add)
ddbcc7e8 2753{
03b1cde6 2754 struct cftype *cft;
db0416b6
TH
2755 int err, ret = 0;
2756
2757 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2758 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2759 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2760 continue;
f33fddc2
G
2761 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2762 continue;
2763 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2764 continue;
2765
2739d3cc 2766 if (is_add) {
79578621 2767 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2768 if (err)
2769 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2770 cft->name, err);
db0416b6 2771 ret = err;
2739d3cc
LZ
2772 } else {
2773 cgroup_rm_file(cgrp, cft);
db0416b6 2774 }
ddbcc7e8 2775 }
db0416b6 2776 return ret;
ddbcc7e8
PM
2777}
2778
8e3f6541
TH
2779static DEFINE_MUTEX(cgroup_cft_mutex);
2780
2781static void cgroup_cfts_prepare(void)
2782 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2783{
2784 /*
2785 * Thanks to the entanglement with vfs inode locking, we can't walk
2786 * the existing cgroups under cgroup_mutex and create files.
2787 * Instead, we increment reference on all cgroups and build list of
2788 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2789 * exclusive access to the field.
2790 */
2791 mutex_lock(&cgroup_cft_mutex);
2792 mutex_lock(&cgroup_mutex);
2793}
2794
2795static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2796 struct cftype *cfts, bool is_add)
8e3f6541
TH
2797 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2798{
2799 LIST_HEAD(pending);
2800 struct cgroup *cgrp, *n;
084457f2 2801 struct super_block *sb = ss->root->sb;
8e3f6541
TH
2802
2803 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
084457f2
LZ
2804 if (cfts && ss->root != &rootnode &&
2805 atomic_inc_not_zero(sb->s_active)) {
8e3f6541
TH
2806 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2807 dget(cgrp->dentry);
2808 list_add_tail(&cgrp->cft_q_node, &pending);
2809 }
084457f2
LZ
2810 } else {
2811 sb = NULL;
8e3f6541
TH
2812 }
2813
2814 mutex_unlock(&cgroup_mutex);
2815
2816 /*
2817 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2818 * files for all cgroups which were created before.
2819 */
2820 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2821 struct inode *inode = cgrp->dentry->d_inode;
2822
2823 mutex_lock(&inode->i_mutex);
2824 mutex_lock(&cgroup_mutex);
54766d4a 2825 if (!cgroup_is_dead(cgrp))
79578621 2826 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2827 mutex_unlock(&cgroup_mutex);
2828 mutex_unlock(&inode->i_mutex);
2829
2830 list_del_init(&cgrp->cft_q_node);
2831 dput(cgrp->dentry);
2832 }
2833
084457f2
LZ
2834 if (sb)
2835 deactivate_super(sb);
2836
8e3f6541
TH
2837 mutex_unlock(&cgroup_cft_mutex);
2838}
2839
2840/**
2841 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2842 * @ss: target cgroup subsystem
2843 * @cfts: zero-length name terminated array of cftypes
2844 *
2845 * Register @cfts to @ss. Files described by @cfts are created for all
2846 * existing cgroups to which @ss is attached and all future cgroups will
2847 * have them too. This function can be called anytime whether @ss is
2848 * attached or not.
2849 *
2850 * Returns 0 on successful registration, -errno on failure. Note that this
2851 * function currently returns 0 as long as @cfts registration is successful
2852 * even if some file creation attempts on existing cgroups fail.
2853 */
03b1cde6 2854int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2855{
2856 struct cftype_set *set;
2857
2858 set = kzalloc(sizeof(*set), GFP_KERNEL);
2859 if (!set)
2860 return -ENOMEM;
2861
2862 cgroup_cfts_prepare();
2863 set->cfts = cfts;
2864 list_add_tail(&set->node, &ss->cftsets);
79578621 2865 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2866
2867 return 0;
2868}
2869EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2870
79578621
TH
2871/**
2872 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2873 * @ss: target cgroup subsystem
2874 * @cfts: zero-length name terminated array of cftypes
2875 *
2876 * Unregister @cfts from @ss. Files described by @cfts are removed from
2877 * all existing cgroups to which @ss is attached and all future cgroups
2878 * won't have them either. This function can be called anytime whether @ss
2879 * is attached or not.
2880 *
2881 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2882 * registered with @ss.
2883 */
03b1cde6 2884int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2885{
2886 struct cftype_set *set;
2887
2888 cgroup_cfts_prepare();
2889
2890 list_for_each_entry(set, &ss->cftsets, node) {
2891 if (set->cfts == cfts) {
2892 list_del_init(&set->node);
2893 cgroup_cfts_commit(ss, cfts, false);
2894 return 0;
2895 }
2896 }
2897
2898 cgroup_cfts_commit(ss, NULL, false);
2899 return -ENOENT;
2900}
2901
a043e3b2
LZ
2902/**
2903 * cgroup_task_count - count the number of tasks in a cgroup.
2904 * @cgrp: the cgroup in question
2905 *
2906 * Return the number of tasks in the cgroup.
2907 */
bd89aabc 2908int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2909{
2910 int count = 0;
69d0206c 2911 struct cgrp_cset_link *link;
817929ec
PM
2912
2913 read_lock(&css_set_lock);
69d0206c
TH
2914 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2915 count += atomic_read(&link->cset->refcount);
817929ec 2916 read_unlock(&css_set_lock);
bbcb81d0
PM
2917 return count;
2918}
2919
817929ec
PM
2920/*
2921 * Advance a list_head iterator. The iterator should be positioned at
2922 * the start of a css_set
2923 */
69d0206c 2924static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2925{
69d0206c
TH
2926 struct list_head *l = it->cset_link;
2927 struct cgrp_cset_link *link;
5abb8855 2928 struct css_set *cset;
817929ec
PM
2929
2930 /* Advance to the next non-empty css_set */
2931 do {
2932 l = l->next;
69d0206c
TH
2933 if (l == &cgrp->cset_links) {
2934 it->cset_link = NULL;
817929ec
PM
2935 return;
2936 }
69d0206c
TH
2937 link = list_entry(l, struct cgrp_cset_link, cset_link);
2938 cset = link->cset;
5abb8855 2939 } while (list_empty(&cset->tasks));
69d0206c 2940 it->cset_link = l;
5abb8855 2941 it->task = cset->tasks.next;
817929ec
PM
2942}
2943
31a7df01
CW
2944/*
2945 * To reduce the fork() overhead for systems that are not actually
2946 * using their cgroups capability, we don't maintain the lists running
2947 * through each css_set to its tasks until we see the list actually
2948 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2949 */
3df91fe3 2950static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2951{
2952 struct task_struct *p, *g;
2953 write_lock(&css_set_lock);
2954 use_task_css_set_links = 1;
3ce3230a
FW
2955 /*
2956 * We need tasklist_lock because RCU is not safe against
2957 * while_each_thread(). Besides, a forking task that has passed
2958 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2959 * is not guaranteed to have its child immediately visible in the
2960 * tasklist if we walk through it with RCU.
2961 */
2962 read_lock(&tasklist_lock);
31a7df01
CW
2963 do_each_thread(g, p) {
2964 task_lock(p);
0e04388f
LZ
2965 /*
2966 * We should check if the process is exiting, otherwise
2967 * it will race with cgroup_exit() in that the list
2968 * entry won't be deleted though the process has exited.
2969 */
2970 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2971 list_add(&p->cg_list, &p->cgroups->tasks);
2972 task_unlock(p);
2973 } while_each_thread(g, p);
3ce3230a 2974 read_unlock(&tasklist_lock);
31a7df01
CW
2975 write_unlock(&css_set_lock);
2976}
2977
53fa5261
TH
2978/**
2979 * cgroup_next_sibling - find the next sibling of a given cgroup
2980 * @pos: the current cgroup
2981 *
2982 * This function returns the next sibling of @pos and should be called
2983 * under RCU read lock. The only requirement is that @pos is accessible.
2984 * The next sibling is guaranteed to be returned regardless of @pos's
2985 * state.
2986 */
2987struct cgroup *cgroup_next_sibling(struct cgroup *pos)
2988{
2989 struct cgroup *next;
2990
2991 WARN_ON_ONCE(!rcu_read_lock_held());
2992
2993 /*
2994 * @pos could already have been removed. Once a cgroup is removed,
2995 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2996 * changes. As CGRP_DEAD assertion is serialized and happens
2997 * before the cgroup is taken off the ->sibling list, if we see it
2998 * unasserted, it's guaranteed that the next sibling hasn't
2999 * finished its grace period even if it's already removed, and thus
3000 * safe to dereference from this RCU critical section. If
3001 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3002 * to be visible as %true here.
53fa5261 3003 */
54766d4a 3004 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3005 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3006 if (&next->sibling != &pos->parent->children)
3007 return next;
3008 return NULL;
3009 }
3010
3011 /*
3012 * Can't dereference the next pointer. Each cgroup is given a
3013 * monotonically increasing unique serial number and always
3014 * appended to the sibling list, so the next one can be found by
3015 * walking the parent's children until we see a cgroup with higher
3016 * serial number than @pos's.
3017 *
3018 * While this path can be slow, it's taken only when either the
3019 * current cgroup is removed or iteration and removal race.
3020 */
3021 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3022 if (next->serial_nr > pos->serial_nr)
3023 return next;
3024 return NULL;
3025}
3026EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3027
574bd9f7
TH
3028/**
3029 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3030 * @pos: the current position (%NULL to initiate traversal)
3031 * @cgroup: cgroup whose descendants to walk
3032 *
3033 * To be used by cgroup_for_each_descendant_pre(). Find the next
3034 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3035 *
3036 * While this function requires RCU read locking, it doesn't require the
3037 * whole traversal to be contained in a single RCU critical section. This
3038 * function will return the correct next descendant as long as both @pos
3039 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3040 */
3041struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3042 struct cgroup *cgroup)
3043{
3044 struct cgroup *next;
3045
3046 WARN_ON_ONCE(!rcu_read_lock_held());
3047
3048 /* if first iteration, pretend we just visited @cgroup */
7805d000 3049 if (!pos)
574bd9f7 3050 pos = cgroup;
574bd9f7
TH
3051
3052 /* visit the first child if exists */
3053 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3054 if (next)
3055 return next;
3056
3057 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3058 while (pos != cgroup) {
75501a6d
TH
3059 next = cgroup_next_sibling(pos);
3060 if (next)
574bd9f7 3061 return next;
574bd9f7 3062 pos = pos->parent;
7805d000 3063 }
574bd9f7
TH
3064
3065 return NULL;
3066}
3067EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3068
12a9d2fe
TH
3069/**
3070 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3071 * @pos: cgroup of interest
3072 *
3073 * Return the rightmost descendant of @pos. If there's no descendant,
3074 * @pos is returned. This can be used during pre-order traversal to skip
3075 * subtree of @pos.
75501a6d
TH
3076 *
3077 * While this function requires RCU read locking, it doesn't require the
3078 * whole traversal to be contained in a single RCU critical section. This
3079 * function will return the correct rightmost descendant as long as @pos is
3080 * accessible.
12a9d2fe
TH
3081 */
3082struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3083{
3084 struct cgroup *last, *tmp;
3085
3086 WARN_ON_ONCE(!rcu_read_lock_held());
3087
3088 do {
3089 last = pos;
3090 /* ->prev isn't RCU safe, walk ->next till the end */
3091 pos = NULL;
3092 list_for_each_entry_rcu(tmp, &last->children, sibling)
3093 pos = tmp;
3094 } while (pos);
3095
3096 return last;
3097}
3098EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3099
574bd9f7
TH
3100static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3101{
3102 struct cgroup *last;
3103
3104 do {
3105 last = pos;
3106 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3107 sibling);
3108 } while (pos);
3109
3110 return last;
3111}
3112
3113/**
3114 * cgroup_next_descendant_post - find the next descendant for post-order walk
3115 * @pos: the current position (%NULL to initiate traversal)
3116 * @cgroup: cgroup whose descendants to walk
3117 *
3118 * To be used by cgroup_for_each_descendant_post(). Find the next
3119 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3120 *
3121 * While this function requires RCU read locking, it doesn't require the
3122 * whole traversal to be contained in a single RCU critical section. This
3123 * function will return the correct next descendant as long as both @pos
3124 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3125 */
3126struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3127 struct cgroup *cgroup)
3128{
3129 struct cgroup *next;
3130
3131 WARN_ON_ONCE(!rcu_read_lock_held());
3132
3133 /* if first iteration, visit the leftmost descendant */
3134 if (!pos) {
3135 next = cgroup_leftmost_descendant(cgroup);
3136 return next != cgroup ? next : NULL;
3137 }
3138
3139 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3140 next = cgroup_next_sibling(pos);
3141 if (next)
574bd9f7
TH
3142 return cgroup_leftmost_descendant(next);
3143
3144 /* no sibling left, visit parent */
3145 next = pos->parent;
3146 return next != cgroup ? next : NULL;
3147}
3148EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3149
bd89aabc 3150void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3151 __acquires(css_set_lock)
817929ec
PM
3152{
3153 /*
3154 * The first time anyone tries to iterate across a cgroup,
3155 * we need to enable the list linking each css_set to its
3156 * tasks, and fix up all existing tasks.
3157 */
31a7df01
CW
3158 if (!use_task_css_set_links)
3159 cgroup_enable_task_cg_lists();
3160
817929ec 3161 read_lock(&css_set_lock);
69d0206c 3162 it->cset_link = &cgrp->cset_links;
bd89aabc 3163 cgroup_advance_iter(cgrp, it);
817929ec
PM
3164}
3165
bd89aabc 3166struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3167 struct cgroup_iter *it)
3168{
3169 struct task_struct *res;
3170 struct list_head *l = it->task;
69d0206c 3171 struct cgrp_cset_link *link;
817929ec
PM
3172
3173 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3174 if (!it->cset_link)
817929ec
PM
3175 return NULL;
3176 res = list_entry(l, struct task_struct, cg_list);
3177 /* Advance iterator to find next entry */
3178 l = l->next;
69d0206c
TH
3179 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3180 if (l == &link->cset->tasks) {
817929ec
PM
3181 /* We reached the end of this task list - move on to
3182 * the next cg_cgroup_link */
bd89aabc 3183 cgroup_advance_iter(cgrp, it);
817929ec
PM
3184 } else {
3185 it->task = l;
3186 }
3187 return res;
3188}
3189
bd89aabc 3190void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3191 __releases(css_set_lock)
817929ec
PM
3192{
3193 read_unlock(&css_set_lock);
3194}
3195
31a7df01
CW
3196static inline int started_after_time(struct task_struct *t1,
3197 struct timespec *time,
3198 struct task_struct *t2)
3199{
3200 int start_diff = timespec_compare(&t1->start_time, time);
3201 if (start_diff > 0) {
3202 return 1;
3203 } else if (start_diff < 0) {
3204 return 0;
3205 } else {
3206 /*
3207 * Arbitrarily, if two processes started at the same
3208 * time, we'll say that the lower pointer value
3209 * started first. Note that t2 may have exited by now
3210 * so this may not be a valid pointer any longer, but
3211 * that's fine - it still serves to distinguish
3212 * between two tasks started (effectively) simultaneously.
3213 */
3214 return t1 > t2;
3215 }
3216}
3217
3218/*
3219 * This function is a callback from heap_insert() and is used to order
3220 * the heap.
3221 * In this case we order the heap in descending task start time.
3222 */
3223static inline int started_after(void *p1, void *p2)
3224{
3225 struct task_struct *t1 = p1;
3226 struct task_struct *t2 = p2;
3227 return started_after_time(t1, &t2->start_time, t2);
3228}
3229
3230/**
3231 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3232 * @scan: struct cgroup_scanner containing arguments for the scan
3233 *
3234 * Arguments include pointers to callback functions test_task() and
3235 * process_task().
3236 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3237 * and if it returns true, call process_task() for it also.
3238 * The test_task pointer may be NULL, meaning always true (select all tasks).
3239 * Effectively duplicates cgroup_iter_{start,next,end}()
3240 * but does not lock css_set_lock for the call to process_task().
3241 * The struct cgroup_scanner may be embedded in any structure of the caller's
3242 * creation.
3243 * It is guaranteed that process_task() will act on every task that
3244 * is a member of the cgroup for the duration of this call. This
3245 * function may or may not call process_task() for tasks that exit
3246 * or move to a different cgroup during the call, or are forked or
3247 * move into the cgroup during the call.
3248 *
3249 * Note that test_task() may be called with locks held, and may in some
3250 * situations be called multiple times for the same task, so it should
3251 * be cheap.
3252 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3253 * pre-allocated and will be used for heap operations (and its "gt" member will
3254 * be overwritten), else a temporary heap will be used (allocation of which
3255 * may cause this function to fail).
3256 */
3257int cgroup_scan_tasks(struct cgroup_scanner *scan)
3258{
3259 int retval, i;
3260 struct cgroup_iter it;
3261 struct task_struct *p, *dropped;
3262 /* Never dereference latest_task, since it's not refcounted */
3263 struct task_struct *latest_task = NULL;
3264 struct ptr_heap tmp_heap;
3265 struct ptr_heap *heap;
3266 struct timespec latest_time = { 0, 0 };
3267
3268 if (scan->heap) {
3269 /* The caller supplied our heap and pre-allocated its memory */
3270 heap = scan->heap;
3271 heap->gt = &started_after;
3272 } else {
3273 /* We need to allocate our own heap memory */
3274 heap = &tmp_heap;
3275 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3276 if (retval)
3277 /* cannot allocate the heap */
3278 return retval;
3279 }
3280
3281 again:
3282 /*
3283 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3284 * to determine which are of interest, and using the scanner's
3285 * "process_task" callback to process any of them that need an update.
3286 * Since we don't want to hold any locks during the task updates,
3287 * gather tasks to be processed in a heap structure.
3288 * The heap is sorted by descending task start time.
3289 * If the statically-sized heap fills up, we overflow tasks that
3290 * started later, and in future iterations only consider tasks that
3291 * started after the latest task in the previous pass. This
3292 * guarantees forward progress and that we don't miss any tasks.
3293 */
3294 heap->size = 0;
3295 cgroup_iter_start(scan->cg, &it);
3296 while ((p = cgroup_iter_next(scan->cg, &it))) {
3297 /*
3298 * Only affect tasks that qualify per the caller's callback,
3299 * if he provided one
3300 */
3301 if (scan->test_task && !scan->test_task(p, scan))
3302 continue;
3303 /*
3304 * Only process tasks that started after the last task
3305 * we processed
3306 */
3307 if (!started_after_time(p, &latest_time, latest_task))
3308 continue;
3309 dropped = heap_insert(heap, p);
3310 if (dropped == NULL) {
3311 /*
3312 * The new task was inserted; the heap wasn't
3313 * previously full
3314 */
3315 get_task_struct(p);
3316 } else if (dropped != p) {
3317 /*
3318 * The new task was inserted, and pushed out a
3319 * different task
3320 */
3321 get_task_struct(p);
3322 put_task_struct(dropped);
3323 }
3324 /*
3325 * Else the new task was newer than anything already in
3326 * the heap and wasn't inserted
3327 */
3328 }
3329 cgroup_iter_end(scan->cg, &it);
3330
3331 if (heap->size) {
3332 for (i = 0; i < heap->size; i++) {
4fe91d51 3333 struct task_struct *q = heap->ptrs[i];
31a7df01 3334 if (i == 0) {
4fe91d51
PJ
3335 latest_time = q->start_time;
3336 latest_task = q;
31a7df01
CW
3337 }
3338 /* Process the task per the caller's callback */
4fe91d51
PJ
3339 scan->process_task(q, scan);
3340 put_task_struct(q);
31a7df01
CW
3341 }
3342 /*
3343 * If we had to process any tasks at all, scan again
3344 * in case some of them were in the middle of forking
3345 * children that didn't get processed.
3346 * Not the most efficient way to do it, but it avoids
3347 * having to take callback_mutex in the fork path
3348 */
3349 goto again;
3350 }
3351 if (heap == &tmp_heap)
3352 heap_free(&tmp_heap);
3353 return 0;
3354}
3355
8cc99345
TH
3356static void cgroup_transfer_one_task(struct task_struct *task,
3357 struct cgroup_scanner *scan)
3358{
3359 struct cgroup *new_cgroup = scan->data;
3360
47cfcd09 3361 mutex_lock(&cgroup_mutex);
8cc99345 3362 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3363 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3364}
3365
3366/**
3367 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3368 * @to: cgroup to which the tasks will be moved
3369 * @from: cgroup in which the tasks currently reside
3370 */
3371int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3372{
3373 struct cgroup_scanner scan;
3374
3375 scan.cg = from;
3376 scan.test_task = NULL; /* select all tasks in cgroup */
3377 scan.process_task = cgroup_transfer_one_task;
3378 scan.heap = NULL;
3379 scan.data = to;
3380
3381 return cgroup_scan_tasks(&scan);
3382}
3383
bbcb81d0 3384/*
102a775e 3385 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3386 *
3387 * Reading this file can return large amounts of data if a cgroup has
3388 * *lots* of attached tasks. So it may need several calls to read(),
3389 * but we cannot guarantee that the information we produce is correct
3390 * unless we produce it entirely atomically.
3391 *
bbcb81d0 3392 */
bbcb81d0 3393
24528255
LZ
3394/* which pidlist file are we talking about? */
3395enum cgroup_filetype {
3396 CGROUP_FILE_PROCS,
3397 CGROUP_FILE_TASKS,
3398};
3399
3400/*
3401 * A pidlist is a list of pids that virtually represents the contents of one
3402 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3403 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3404 * to the cgroup.
3405 */
3406struct cgroup_pidlist {
3407 /*
3408 * used to find which pidlist is wanted. doesn't change as long as
3409 * this particular list stays in the list.
3410 */
3411 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3412 /* array of xids */
3413 pid_t *list;
3414 /* how many elements the above list has */
3415 int length;
3416 /* how many files are using the current array */
3417 int use_count;
3418 /* each of these stored in a list by its cgroup */
3419 struct list_head links;
3420 /* pointer to the cgroup we belong to, for list removal purposes */
3421 struct cgroup *owner;
3422 /* protects the other fields */
3423 struct rw_semaphore mutex;
3424};
3425
d1d9fd33
BB
3426/*
3427 * The following two functions "fix" the issue where there are more pids
3428 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3429 * TODO: replace with a kernel-wide solution to this problem
3430 */
3431#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3432static void *pidlist_allocate(int count)
3433{
3434 if (PIDLIST_TOO_LARGE(count))
3435 return vmalloc(count * sizeof(pid_t));
3436 else
3437 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3438}
3439static void pidlist_free(void *p)
3440{
3441 if (is_vmalloc_addr(p))
3442 vfree(p);
3443 else
3444 kfree(p);
3445}
d1d9fd33 3446
bbcb81d0 3447/*
102a775e 3448 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3449 * Returns the number of unique elements.
bbcb81d0 3450 */
6ee211ad 3451static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3452{
102a775e 3453 int src, dest = 1;
102a775e
BB
3454
3455 /*
3456 * we presume the 0th element is unique, so i starts at 1. trivial
3457 * edge cases first; no work needs to be done for either
3458 */
3459 if (length == 0 || length == 1)
3460 return length;
3461 /* src and dest walk down the list; dest counts unique elements */
3462 for (src = 1; src < length; src++) {
3463 /* find next unique element */
3464 while (list[src] == list[src-1]) {
3465 src++;
3466 if (src == length)
3467 goto after;
3468 }
3469 /* dest always points to where the next unique element goes */
3470 list[dest] = list[src];
3471 dest++;
3472 }
3473after:
102a775e
BB
3474 return dest;
3475}
3476
3477static int cmppid(const void *a, const void *b)
3478{
3479 return *(pid_t *)a - *(pid_t *)b;
3480}
3481
72a8cb30
BB
3482/*
3483 * find the appropriate pidlist for our purpose (given procs vs tasks)
3484 * returns with the lock on that pidlist already held, and takes care
3485 * of the use count, or returns NULL with no locks held if we're out of
3486 * memory.
3487 */
3488static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3489 enum cgroup_filetype type)
3490{
3491 struct cgroup_pidlist *l;
3492 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3493 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3494
72a8cb30
BB
3495 /*
3496 * We can't drop the pidlist_mutex before taking the l->mutex in case
3497 * the last ref-holder is trying to remove l from the list at the same
3498 * time. Holding the pidlist_mutex precludes somebody taking whichever
3499 * list we find out from under us - compare release_pid_array().
3500 */
3501 mutex_lock(&cgrp->pidlist_mutex);
3502 list_for_each_entry(l, &cgrp->pidlists, links) {
3503 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3504 /* make sure l doesn't vanish out from under us */
3505 down_write(&l->mutex);
3506 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3507 return l;
3508 }
3509 }
3510 /* entry not found; create a new one */
f4f4be2b 3511 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3512 if (!l) {
3513 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3514 return l;
3515 }
3516 init_rwsem(&l->mutex);
3517 down_write(&l->mutex);
3518 l->key.type = type;
b70cc5fd 3519 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3520 l->owner = cgrp;
3521 list_add(&l->links, &cgrp->pidlists);
3522 mutex_unlock(&cgrp->pidlist_mutex);
3523 return l;
3524}
3525
102a775e
BB
3526/*
3527 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3528 */
72a8cb30
BB
3529static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3530 struct cgroup_pidlist **lp)
102a775e
BB
3531{
3532 pid_t *array;
3533 int length;
3534 int pid, n = 0; /* used for populating the array */
817929ec
PM
3535 struct cgroup_iter it;
3536 struct task_struct *tsk;
102a775e
BB
3537 struct cgroup_pidlist *l;
3538
3539 /*
3540 * If cgroup gets more users after we read count, we won't have
3541 * enough space - tough. This race is indistinguishable to the
3542 * caller from the case that the additional cgroup users didn't
3543 * show up until sometime later on.
3544 */
3545 length = cgroup_task_count(cgrp);
d1d9fd33 3546 array = pidlist_allocate(length);
102a775e
BB
3547 if (!array)
3548 return -ENOMEM;
3549 /* now, populate the array */
bd89aabc
PM
3550 cgroup_iter_start(cgrp, &it);
3551 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3552 if (unlikely(n == length))
817929ec 3553 break;
102a775e 3554 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3555 if (type == CGROUP_FILE_PROCS)
3556 pid = task_tgid_vnr(tsk);
3557 else
3558 pid = task_pid_vnr(tsk);
102a775e
BB
3559 if (pid > 0) /* make sure to only use valid results */
3560 array[n++] = pid;
817929ec 3561 }
bd89aabc 3562 cgroup_iter_end(cgrp, &it);
102a775e
BB
3563 length = n;
3564 /* now sort & (if procs) strip out duplicates */
3565 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3566 if (type == CGROUP_FILE_PROCS)
6ee211ad 3567 length = pidlist_uniq(array, length);
72a8cb30
BB
3568 l = cgroup_pidlist_find(cgrp, type);
3569 if (!l) {
d1d9fd33 3570 pidlist_free(array);
72a8cb30 3571 return -ENOMEM;
102a775e 3572 }
72a8cb30 3573 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3574 pidlist_free(l->list);
102a775e
BB
3575 l->list = array;
3576 l->length = length;
3577 l->use_count++;
3578 up_write(&l->mutex);
72a8cb30 3579 *lp = l;
102a775e 3580 return 0;
bbcb81d0
PM
3581}
3582
846c7bb0 3583/**
a043e3b2 3584 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3585 * @stats: cgroupstats to fill information into
3586 * @dentry: A dentry entry belonging to the cgroup for which stats have
3587 * been requested.
a043e3b2
LZ
3588 *
3589 * Build and fill cgroupstats so that taskstats can export it to user
3590 * space.
846c7bb0
BS
3591 */
3592int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3593{
3594 int ret = -EINVAL;
bd89aabc 3595 struct cgroup *cgrp;
846c7bb0
BS
3596 struct cgroup_iter it;
3597 struct task_struct *tsk;
33d283be 3598
846c7bb0 3599 /*
33d283be
LZ
3600 * Validate dentry by checking the superblock operations,
3601 * and make sure it's a directory.
846c7bb0 3602 */
33d283be
LZ
3603 if (dentry->d_sb->s_op != &cgroup_ops ||
3604 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3605 goto err;
3606
3607 ret = 0;
bd89aabc 3608 cgrp = dentry->d_fsdata;
846c7bb0 3609
bd89aabc
PM
3610 cgroup_iter_start(cgrp, &it);
3611 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3612 switch (tsk->state) {
3613 case TASK_RUNNING:
3614 stats->nr_running++;
3615 break;
3616 case TASK_INTERRUPTIBLE:
3617 stats->nr_sleeping++;
3618 break;
3619 case TASK_UNINTERRUPTIBLE:
3620 stats->nr_uninterruptible++;
3621 break;
3622 case TASK_STOPPED:
3623 stats->nr_stopped++;
3624 break;
3625 default:
3626 if (delayacct_is_task_waiting_on_io(tsk))
3627 stats->nr_io_wait++;
3628 break;
3629 }
3630 }
bd89aabc 3631 cgroup_iter_end(cgrp, &it);
846c7bb0 3632
846c7bb0
BS
3633err:
3634 return ret;
3635}
3636
8f3ff208 3637
bbcb81d0 3638/*
102a775e 3639 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3640 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3641 * in the cgroup->l->list array.
bbcb81d0 3642 */
cc31edce 3643
102a775e 3644static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3645{
cc31edce
PM
3646 /*
3647 * Initially we receive a position value that corresponds to
3648 * one more than the last pid shown (or 0 on the first call or
3649 * after a seek to the start). Use a binary-search to find the
3650 * next pid to display, if any
3651 */
102a775e 3652 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3653 int index = 0, pid = *pos;
3654 int *iter;
3655
102a775e 3656 down_read(&l->mutex);
cc31edce 3657 if (pid) {
102a775e 3658 int end = l->length;
20777766 3659
cc31edce
PM
3660 while (index < end) {
3661 int mid = (index + end) / 2;
102a775e 3662 if (l->list[mid] == pid) {
cc31edce
PM
3663 index = mid;
3664 break;
102a775e 3665 } else if (l->list[mid] <= pid)
cc31edce
PM
3666 index = mid + 1;
3667 else
3668 end = mid;
3669 }
3670 }
3671 /* If we're off the end of the array, we're done */
102a775e 3672 if (index >= l->length)
cc31edce
PM
3673 return NULL;
3674 /* Update the abstract position to be the actual pid that we found */
102a775e 3675 iter = l->list + index;
cc31edce
PM
3676 *pos = *iter;
3677 return iter;
3678}
3679
102a775e 3680static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3681{
102a775e
BB
3682 struct cgroup_pidlist *l = s->private;
3683 up_read(&l->mutex);
cc31edce
PM
3684}
3685
102a775e 3686static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3687{
102a775e
BB
3688 struct cgroup_pidlist *l = s->private;
3689 pid_t *p = v;
3690 pid_t *end = l->list + l->length;
cc31edce
PM
3691 /*
3692 * Advance to the next pid in the array. If this goes off the
3693 * end, we're done
3694 */
3695 p++;
3696 if (p >= end) {
3697 return NULL;
3698 } else {
3699 *pos = *p;
3700 return p;
3701 }
3702}
3703
102a775e 3704static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3705{
3706 return seq_printf(s, "%d\n", *(int *)v);
3707}
bbcb81d0 3708
102a775e
BB
3709/*
3710 * seq_operations functions for iterating on pidlists through seq_file -
3711 * independent of whether it's tasks or procs
3712 */
3713static const struct seq_operations cgroup_pidlist_seq_operations = {
3714 .start = cgroup_pidlist_start,
3715 .stop = cgroup_pidlist_stop,
3716 .next = cgroup_pidlist_next,
3717 .show = cgroup_pidlist_show,
cc31edce
PM
3718};
3719
102a775e 3720static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3721{
72a8cb30
BB
3722 /*
3723 * the case where we're the last user of this particular pidlist will
3724 * have us remove it from the cgroup's list, which entails taking the
3725 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3726 * pidlist_mutex, we have to take pidlist_mutex first.
3727 */
3728 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3729 down_write(&l->mutex);
3730 BUG_ON(!l->use_count);
3731 if (!--l->use_count) {
72a8cb30
BB
3732 /* we're the last user if refcount is 0; remove and free */
3733 list_del(&l->links);
3734 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3735 pidlist_free(l->list);
72a8cb30
BB
3736 put_pid_ns(l->key.ns);
3737 up_write(&l->mutex);
3738 kfree(l);
3739 return;
cc31edce 3740 }
72a8cb30 3741 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3742 up_write(&l->mutex);
bbcb81d0
PM
3743}
3744
102a775e 3745static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3746{
102a775e 3747 struct cgroup_pidlist *l;
cc31edce
PM
3748 if (!(file->f_mode & FMODE_READ))
3749 return 0;
102a775e
BB
3750 /*
3751 * the seq_file will only be initialized if the file was opened for
3752 * reading; hence we check if it's not null only in that case.
3753 */
3754 l = ((struct seq_file *)file->private_data)->private;
3755 cgroup_release_pid_array(l);
cc31edce
PM
3756 return seq_release(inode, file);
3757}
3758
102a775e 3759static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3760 .read = seq_read,
3761 .llseek = seq_lseek,
3762 .write = cgroup_file_write,
102a775e 3763 .release = cgroup_pidlist_release,
cc31edce
PM
3764};
3765
bbcb81d0 3766/*
102a775e
BB
3767 * The following functions handle opens on a file that displays a pidlist
3768 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3769 * in the cgroup.
bbcb81d0 3770 */
102a775e 3771/* helper function for the two below it */
72a8cb30 3772static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3773{
bd89aabc 3774 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3775 struct cgroup_pidlist *l;
cc31edce 3776 int retval;
bbcb81d0 3777
cc31edce 3778 /* Nothing to do for write-only files */
bbcb81d0
PM
3779 if (!(file->f_mode & FMODE_READ))
3780 return 0;
3781
102a775e 3782 /* have the array populated */
72a8cb30 3783 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3784 if (retval)
3785 return retval;
3786 /* configure file information */
3787 file->f_op = &cgroup_pidlist_operations;
cc31edce 3788
102a775e 3789 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3790 if (retval) {
102a775e 3791 cgroup_release_pid_array(l);
cc31edce 3792 return retval;
bbcb81d0 3793 }
102a775e 3794 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3795 return 0;
3796}
102a775e
BB
3797static int cgroup_tasks_open(struct inode *unused, struct file *file)
3798{
72a8cb30 3799 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3800}
3801static int cgroup_procs_open(struct inode *unused, struct file *file)
3802{
72a8cb30 3803 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3804}
bbcb81d0 3805
bd89aabc 3806static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3807 struct cftype *cft)
3808{
bd89aabc 3809 return notify_on_release(cgrp);
81a6a5cd
PM
3810}
3811
6379c106
PM
3812static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3813 struct cftype *cft,
3814 u64 val)
3815{
3816 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3817 if (val)
3818 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3819 else
3820 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3821 return 0;
3822}
3823
0dea1168
KS
3824/*
3825 * Unregister event and free resources.
3826 *
3827 * Gets called from workqueue.
3828 */
3829static void cgroup_event_remove(struct work_struct *work)
3830{
3831 struct cgroup_event *event = container_of(work, struct cgroup_event,
3832 remove);
3833 struct cgroup *cgrp = event->cgrp;
3834
810cbee4
LZ
3835 remove_wait_queue(event->wqh, &event->wait);
3836
0dea1168
KS
3837 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3838
810cbee4
LZ
3839 /* Notify userspace the event is going away. */
3840 eventfd_signal(event->eventfd, 1);
3841
0dea1168 3842 eventfd_ctx_put(event->eventfd);
0dea1168 3843 kfree(event);
a0a4db54 3844 dput(cgrp->dentry);
0dea1168
KS
3845}
3846
3847/*
3848 * Gets called on POLLHUP on eventfd when user closes it.
3849 *
3850 * Called with wqh->lock held and interrupts disabled.
3851 */
3852static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3853 int sync, void *key)
3854{
3855 struct cgroup_event *event = container_of(wait,
3856 struct cgroup_event, wait);
3857 struct cgroup *cgrp = event->cgrp;
3858 unsigned long flags = (unsigned long)key;
3859
3860 if (flags & POLLHUP) {
0dea1168 3861 /*
810cbee4
LZ
3862 * If the event has been detached at cgroup removal, we
3863 * can simply return knowing the other side will cleanup
3864 * for us.
3865 *
3866 * We can't race against event freeing since the other
3867 * side will require wqh->lock via remove_wait_queue(),
3868 * which we hold.
0dea1168 3869 */
810cbee4
LZ
3870 spin_lock(&cgrp->event_list_lock);
3871 if (!list_empty(&event->list)) {
3872 list_del_init(&event->list);
3873 /*
3874 * We are in atomic context, but cgroup_event_remove()
3875 * may sleep, so we have to call it in workqueue.
3876 */
3877 schedule_work(&event->remove);
3878 }
3879 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3880 }
3881
3882 return 0;
3883}
3884
3885static void cgroup_event_ptable_queue_proc(struct file *file,
3886 wait_queue_head_t *wqh, poll_table *pt)
3887{
3888 struct cgroup_event *event = container_of(pt,
3889 struct cgroup_event, pt);
3890
3891 event->wqh = wqh;
3892 add_wait_queue(wqh, &event->wait);
3893}
3894
3895/*
3896 * Parse input and register new cgroup event handler.
3897 *
3898 * Input must be in format '<event_fd> <control_fd> <args>'.
3899 * Interpretation of args is defined by control file implementation.
3900 */
3901static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3902 const char *buffer)
3903{
3904 struct cgroup_event *event = NULL;
f169007b 3905 struct cgroup *cgrp_cfile;
0dea1168
KS
3906 unsigned int efd, cfd;
3907 struct file *efile = NULL;
3908 struct file *cfile = NULL;
3909 char *endp;
3910 int ret;
3911
3912 efd = simple_strtoul(buffer, &endp, 10);
3913 if (*endp != ' ')
3914 return -EINVAL;
3915 buffer = endp + 1;
3916
3917 cfd = simple_strtoul(buffer, &endp, 10);
3918 if ((*endp != ' ') && (*endp != '\0'))
3919 return -EINVAL;
3920 buffer = endp + 1;
3921
3922 event = kzalloc(sizeof(*event), GFP_KERNEL);
3923 if (!event)
3924 return -ENOMEM;
3925 event->cgrp = cgrp;
3926 INIT_LIST_HEAD(&event->list);
3927 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3928 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3929 INIT_WORK(&event->remove, cgroup_event_remove);
3930
3931 efile = eventfd_fget(efd);
3932 if (IS_ERR(efile)) {
3933 ret = PTR_ERR(efile);
3934 goto fail;
3935 }
3936
3937 event->eventfd = eventfd_ctx_fileget(efile);
3938 if (IS_ERR(event->eventfd)) {
3939 ret = PTR_ERR(event->eventfd);
3940 goto fail;
3941 }
3942
3943 cfile = fget(cfd);
3944 if (!cfile) {
3945 ret = -EBADF;
3946 goto fail;
3947 }
3948
3949 /* the process need read permission on control file */
3bfa784a 3950 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3951 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3952 if (ret < 0)
3953 goto fail;
3954
3955 event->cft = __file_cft(cfile);
3956 if (IS_ERR(event->cft)) {
3957 ret = PTR_ERR(event->cft);
3958 goto fail;
3959 }
3960
f169007b
LZ
3961 /*
3962 * The file to be monitored must be in the same cgroup as
3963 * cgroup.event_control is.
3964 */
3965 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3966 if (cgrp_cfile != cgrp) {
3967 ret = -EINVAL;
3968 goto fail;
3969 }
3970
0dea1168
KS
3971 if (!event->cft->register_event || !event->cft->unregister_event) {
3972 ret = -EINVAL;
3973 goto fail;
3974 }
3975
3976 ret = event->cft->register_event(cgrp, event->cft,
3977 event->eventfd, buffer);
3978 if (ret)
3979 goto fail;
3980
7ef70e48 3981 efile->f_op->poll(efile, &event->pt);
0dea1168 3982
a0a4db54
KS
3983 /*
3984 * Events should be removed after rmdir of cgroup directory, but before
3985 * destroying subsystem state objects. Let's take reference to cgroup
3986 * directory dentry to do that.
3987 */
3988 dget(cgrp->dentry);
3989
0dea1168
KS
3990 spin_lock(&cgrp->event_list_lock);
3991 list_add(&event->list, &cgrp->event_list);
3992 spin_unlock(&cgrp->event_list_lock);
3993
3994 fput(cfile);
3995 fput(efile);
3996
3997 return 0;
3998
3999fail:
4000 if (cfile)
4001 fput(cfile);
4002
4003 if (event && event->eventfd && !IS_ERR(event->eventfd))
4004 eventfd_ctx_put(event->eventfd);
4005
4006 if (!IS_ERR_OR_NULL(efile))
4007 fput(efile);
4008
4009 kfree(event);
4010
4011 return ret;
4012}
4013
97978e6d
DL
4014static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4015 struct cftype *cft)
4016{
2260e7fc 4017 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4018}
4019
4020static int cgroup_clone_children_write(struct cgroup *cgrp,
4021 struct cftype *cft,
4022 u64 val)
4023{
4024 if (val)
2260e7fc 4025 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4026 else
2260e7fc 4027 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4028 return 0;
4029}
4030
d5c56ced 4031static struct cftype cgroup_base_files[] = {
81a6a5cd 4032 {
d5c56ced 4033 .name = "cgroup.procs",
102a775e 4034 .open = cgroup_procs_open,
74a1166d 4035 .write_u64 = cgroup_procs_write,
102a775e 4036 .release = cgroup_pidlist_release,
74a1166d 4037 .mode = S_IRUGO | S_IWUSR,
102a775e 4038 },
81a6a5cd 4039 {
d5c56ced 4040 .name = "cgroup.event_control",
0dea1168
KS
4041 .write_string = cgroup_write_event_control,
4042 .mode = S_IWUGO,
4043 },
97978e6d
DL
4044 {
4045 .name = "cgroup.clone_children",
873fe09e 4046 .flags = CFTYPE_INSANE,
97978e6d
DL
4047 .read_u64 = cgroup_clone_children_read,
4048 .write_u64 = cgroup_clone_children_write,
4049 },
873fe09e
TH
4050 {
4051 .name = "cgroup.sane_behavior",
4052 .flags = CFTYPE_ONLY_ON_ROOT,
4053 .read_seq_string = cgroup_sane_behavior_show,
4054 },
d5c56ced
TH
4055
4056 /*
4057 * Historical crazy stuff. These don't have "cgroup." prefix and
4058 * don't exist if sane_behavior. If you're depending on these, be
4059 * prepared to be burned.
4060 */
4061 {
4062 .name = "tasks",
4063 .flags = CFTYPE_INSANE, /* use "procs" instead */
4064 .open = cgroup_tasks_open,
4065 .write_u64 = cgroup_tasks_write,
4066 .release = cgroup_pidlist_release,
4067 .mode = S_IRUGO | S_IWUSR,
4068 },
4069 {
4070 .name = "notify_on_release",
4071 .flags = CFTYPE_INSANE,
4072 .read_u64 = cgroup_read_notify_on_release,
4073 .write_u64 = cgroup_write_notify_on_release,
4074 },
6e6ff25b
TH
4075 {
4076 .name = "release_agent",
cc5943a7 4077 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4078 .read_seq_string = cgroup_release_agent_show,
4079 .write_string = cgroup_release_agent_write,
4080 .max_write_len = PATH_MAX,
4081 },
db0416b6 4082 { } /* terminate */
bbcb81d0
PM
4083};
4084
13af07df
AR
4085/**
4086 * cgroup_populate_dir - selectively creation of files in a directory
4087 * @cgrp: target cgroup
4088 * @base_files: true if the base files should be added
4089 * @subsys_mask: mask of the subsystem ids whose files should be added
4090 */
4091static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4092 unsigned long subsys_mask)
ddbcc7e8
PM
4093{
4094 int err;
4095 struct cgroup_subsys *ss;
4096
13af07df 4097 if (base_files) {
d5c56ced 4098 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4099 if (err < 0)
4100 return err;
4101 }
bbcb81d0 4102
8e3f6541 4103 /* process cftsets of each subsystem */
bd89aabc 4104 for_each_subsys(cgrp->root, ss) {
8e3f6541 4105 struct cftype_set *set;
13af07df
AR
4106 if (!test_bit(ss->subsys_id, &subsys_mask))
4107 continue;
8e3f6541 4108
db0416b6 4109 list_for_each_entry(set, &ss->cftsets, node)
79578621 4110 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4111 }
8e3f6541 4112
38460b48
KH
4113 /* This cgroup is ready now */
4114 for_each_subsys(cgrp->root, ss) {
4115 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4116 /*
4117 * Update id->css pointer and make this css visible from
4118 * CSS ID functions. This pointer will be dereferened
4119 * from RCU-read-side without locks.
4120 */
4121 if (css->id)
4122 rcu_assign_pointer(css->id->css, css);
4123 }
ddbcc7e8
PM
4124
4125 return 0;
4126}
4127
48ddbe19
TH
4128static void css_dput_fn(struct work_struct *work)
4129{
4130 struct cgroup_subsys_state *css =
4131 container_of(work, struct cgroup_subsys_state, dput_work);
5db9a4d9
TH
4132 struct dentry *dentry = css->cgroup->dentry;
4133 struct super_block *sb = dentry->d_sb;
48ddbe19 4134
5db9a4d9
TH
4135 atomic_inc(&sb->s_active);
4136 dput(dentry);
4137 deactivate_super(sb);
48ddbe19
TH
4138}
4139
d3daf28d
TH
4140static void css_release(struct percpu_ref *ref)
4141{
4142 struct cgroup_subsys_state *css =
4143 container_of(ref, struct cgroup_subsys_state, refcnt);
4144
4145 schedule_work(&css->dput_work);
4146}
4147
ddbcc7e8
PM
4148static void init_cgroup_css(struct cgroup_subsys_state *css,
4149 struct cgroup_subsys *ss,
bd89aabc 4150 struct cgroup *cgrp)
ddbcc7e8 4151{
bd89aabc 4152 css->cgroup = cgrp;
ddbcc7e8 4153 css->flags = 0;
38460b48 4154 css->id = NULL;
bd89aabc 4155 if (cgrp == dummytop)
38b53aba 4156 css->flags |= CSS_ROOT;
bd89aabc
PM
4157 BUG_ON(cgrp->subsys[ss->subsys_id]);
4158 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4159
4160 /*
ed957793
TH
4161 * css holds an extra ref to @cgrp->dentry which is put on the last
4162 * css_put(). dput() requires process context, which css_put() may
4163 * be called without. @css->dput_work will be used to invoke
4164 * dput() asynchronously from css_put().
48ddbe19
TH
4165 */
4166 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4167}
4168
b1929db4
TH
4169/* invoke ->post_create() on a new CSS and mark it online if successful */
4170static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4171{
b1929db4
TH
4172 int ret = 0;
4173
a31f2d3f
TH
4174 lockdep_assert_held(&cgroup_mutex);
4175
92fb9748
TH
4176 if (ss->css_online)
4177 ret = ss->css_online(cgrp);
b1929db4
TH
4178 if (!ret)
4179 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4180 return ret;
a31f2d3f
TH
4181}
4182
4183/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4184static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4185 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4186{
4187 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4188
4189 lockdep_assert_held(&cgroup_mutex);
4190
4191 if (!(css->flags & CSS_ONLINE))
4192 return;
4193
d7eeac19 4194 if (ss->css_offline)
92fb9748 4195 ss->css_offline(cgrp);
a31f2d3f
TH
4196
4197 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4198}
4199
ddbcc7e8 4200/*
a043e3b2
LZ
4201 * cgroup_create - create a cgroup
4202 * @parent: cgroup that will be parent of the new cgroup
4203 * @dentry: dentry of the new cgroup
4204 * @mode: mode to set on new inode
ddbcc7e8 4205 *
a043e3b2 4206 * Must be called with the mutex on the parent inode held
ddbcc7e8 4207 */
ddbcc7e8 4208static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4209 umode_t mode)
ddbcc7e8 4210{
53fa5261 4211 static atomic64_t serial_nr_cursor = ATOMIC64_INIT(0);
bd89aabc 4212 struct cgroup *cgrp;
65dff759 4213 struct cgroup_name *name;
ddbcc7e8
PM
4214 struct cgroupfs_root *root = parent->root;
4215 int err = 0;
4216 struct cgroup_subsys *ss;
4217 struct super_block *sb = root->sb;
4218
0a950f65 4219 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4220 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4221 if (!cgrp)
ddbcc7e8
PM
4222 return -ENOMEM;
4223
65dff759
LZ
4224 name = cgroup_alloc_name(dentry);
4225 if (!name)
4226 goto err_free_cgrp;
4227 rcu_assign_pointer(cgrp->name, name);
4228
0a950f65
TH
4229 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4230 if (cgrp->id < 0)
65dff759 4231 goto err_free_name;
0a950f65 4232
976c06bc
TH
4233 /*
4234 * Only live parents can have children. Note that the liveliness
4235 * check isn't strictly necessary because cgroup_mkdir() and
4236 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4237 * anyway so that locking is contained inside cgroup proper and we
4238 * don't get nasty surprises if we ever grow another caller.
4239 */
4240 if (!cgroup_lock_live_group(parent)) {
4241 err = -ENODEV;
0a950f65 4242 goto err_free_id;
976c06bc
TH
4243 }
4244
ddbcc7e8
PM
4245 /* Grab a reference on the superblock so the hierarchy doesn't
4246 * get deleted on unmount if there are child cgroups. This
4247 * can be done outside cgroup_mutex, since the sb can't
4248 * disappear while someone has an open control file on the
4249 * fs */
4250 atomic_inc(&sb->s_active);
4251
cc31edce 4252 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4253
fe1c06ca
LZ
4254 dentry->d_fsdata = cgrp;
4255 cgrp->dentry = dentry;
4256
bd89aabc
PM
4257 cgrp->parent = parent;
4258 cgrp->root = parent->root;
ddbcc7e8 4259
b6abdb0e
LZ
4260 if (notify_on_release(parent))
4261 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4262
2260e7fc
TH
4263 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4264 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4265
ddbcc7e8 4266 for_each_subsys(root, ss) {
8c7f6edb 4267 struct cgroup_subsys_state *css;
4528fd05 4268
92fb9748 4269 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4270 if (IS_ERR(css)) {
4271 err = PTR_ERR(css);
4b8b47eb 4272 goto err_free_all;
ddbcc7e8 4273 }
d3daf28d
TH
4274
4275 err = percpu_ref_init(&css->refcnt, css_release);
4276 if (err)
4277 goto err_free_all;
4278
bd89aabc 4279 init_cgroup_css(css, ss, cgrp);
d3daf28d 4280
4528fd05
LZ
4281 if (ss->use_id) {
4282 err = alloc_css_id(ss, parent, cgrp);
4283 if (err)
4b8b47eb 4284 goto err_free_all;
4528fd05 4285 }
ddbcc7e8
PM
4286 }
4287
4e139afc
TH
4288 /*
4289 * Create directory. cgroup_create_file() returns with the new
4290 * directory locked on success so that it can be populated without
4291 * dropping cgroup_mutex.
4292 */
28fd6f30 4293 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4294 if (err < 0)
4b8b47eb 4295 goto err_free_all;
4e139afc 4296 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4297
53fa5261
TH
4298 /*
4299 * Assign a monotonically increasing serial number. With the list
4300 * appending below, it guarantees that sibling cgroups are always
4301 * sorted in the ascending serial number order on the parent's
4302 * ->children.
4303 */
4304 cgrp->serial_nr = atomic64_inc_return(&serial_nr_cursor);
4305
4e139afc 4306 /* allocation complete, commit to creation */
4e139afc
TH
4307 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4308 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4309 root->number_of_cgroups++;
28fd6f30 4310
b1929db4
TH
4311 /* each css holds a ref to the cgroup's dentry */
4312 for_each_subsys(root, ss)
ed957793 4313 dget(dentry);
48ddbe19 4314
415cf07a
LZ
4315 /* hold a ref to the parent's dentry */
4316 dget(parent->dentry);
4317
b1929db4
TH
4318 /* creation succeeded, notify subsystems */
4319 for_each_subsys(root, ss) {
4320 err = online_css(ss, cgrp);
4321 if (err)
4322 goto err_destroy;
1f869e87
GC
4323
4324 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4325 parent->parent) {
4326 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4327 current->comm, current->pid, ss->name);
4328 if (!strcmp(ss->name, "memory"))
4329 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4330 ss->warned_broken_hierarchy = true;
4331 }
a8638030
TH
4332 }
4333
a1a71b45 4334 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4335 if (err)
4336 goto err_destroy;
ddbcc7e8
PM
4337
4338 mutex_unlock(&cgroup_mutex);
bd89aabc 4339 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4340
4341 return 0;
4342
4b8b47eb 4343err_free_all:
ddbcc7e8 4344 for_each_subsys(root, ss) {
d3daf28d
TH
4345 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4346
4347 if (css) {
4348 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4349 ss->css_free(cgrp);
d3daf28d 4350 }
ddbcc7e8 4351 }
ddbcc7e8 4352 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4353 /* Release the reference count that we took on the superblock */
4354 deactivate_super(sb);
0a950f65
TH
4355err_free_id:
4356 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4357err_free_name:
4358 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4359err_free_cgrp:
bd89aabc 4360 kfree(cgrp);
ddbcc7e8 4361 return err;
4b8b47eb
TH
4362
4363err_destroy:
4364 cgroup_destroy_locked(cgrp);
4365 mutex_unlock(&cgroup_mutex);
4366 mutex_unlock(&dentry->d_inode->i_mutex);
4367 return err;
ddbcc7e8
PM
4368}
4369
18bb1db3 4370static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4371{
4372 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4373
4374 /* the vfs holds inode->i_mutex already */
4375 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4376}
4377
d3daf28d
TH
4378static void cgroup_css_killed(struct cgroup *cgrp)
4379{
4380 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4381 return;
4382
4383 /* percpu ref's of all css's are killed, kick off the next step */
4384 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4385 schedule_work(&cgrp->destroy_work);
4386}
4387
4388static void css_ref_killed_fn(struct percpu_ref *ref)
4389{
4390 struct cgroup_subsys_state *css =
4391 container_of(ref, struct cgroup_subsys_state, refcnt);
4392
4393 cgroup_css_killed(css->cgroup);
4394}
4395
4396/**
4397 * cgroup_destroy_locked - the first stage of cgroup destruction
4398 * @cgrp: cgroup to be destroyed
4399 *
4400 * css's make use of percpu refcnts whose killing latency shouldn't be
4401 * exposed to userland and are RCU protected. Also, cgroup core needs to
4402 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4403 * invoked. To satisfy all the requirements, destruction is implemented in
4404 * the following two steps.
4405 *
4406 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4407 * userland visible parts and start killing the percpu refcnts of
4408 * css's. Set up so that the next stage will be kicked off once all
4409 * the percpu refcnts are confirmed to be killed.
4410 *
4411 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4412 * rest of destruction. Once all cgroup references are gone, the
4413 * cgroup is RCU-freed.
4414 *
4415 * This function implements s1. After this step, @cgrp is gone as far as
4416 * the userland is concerned and a new cgroup with the same name may be
4417 * created. As cgroup doesn't care about the names internally, this
4418 * doesn't cause any problem.
4419 */
42809dd4
TH
4420static int cgroup_destroy_locked(struct cgroup *cgrp)
4421 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4422{
42809dd4 4423 struct dentry *d = cgrp->dentry;
4ab78683 4424 struct cgroup_event *event, *tmp;
ed957793 4425 struct cgroup_subsys *ss;
ddd69148 4426 bool empty;
ddbcc7e8 4427
42809dd4
TH
4428 lockdep_assert_held(&d->d_inode->i_mutex);
4429 lockdep_assert_held(&cgroup_mutex);
4430
ddd69148 4431 /*
6f3d828f
TH
4432 * css_set_lock synchronizes access to ->cset_links and prevents
4433 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4434 */
4435 read_lock(&css_set_lock);
6f3d828f 4436 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4437 read_unlock(&css_set_lock);
4438 if (!empty)
ddbcc7e8 4439 return -EBUSY;
a043e3b2 4440
88703267 4441 /*
d3daf28d
TH
4442 * Block new css_tryget() by killing css refcnts. cgroup core
4443 * guarantees that, by the time ->css_offline() is invoked, no new
4444 * css reference will be given out via css_tryget(). We can't
4445 * simply call percpu_ref_kill() and proceed to offlining css's
4446 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4447 * as killed on all CPUs on return.
4448 *
4449 * Use percpu_ref_kill_and_confirm() to get notifications as each
4450 * css is confirmed to be seen as killed on all CPUs. The
4451 * notification callback keeps track of the number of css's to be
4452 * killed and schedules cgroup_offline_fn() to perform the rest of
4453 * destruction once the percpu refs of all css's are confirmed to
4454 * be killed.
88703267 4455 */
d3daf28d 4456 atomic_set(&cgrp->css_kill_cnt, 1);
ed957793
TH
4457 for_each_subsys(cgrp->root, ss) {
4458 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4459
d3daf28d
TH
4460 /*
4461 * Killing would put the base ref, but we need to keep it
4462 * alive until after ->css_offline.
4463 */
4464 percpu_ref_get(&css->refcnt);
4465
4466 atomic_inc(&cgrp->css_kill_cnt);
4467 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4468 }
d3daf28d 4469 cgroup_css_killed(cgrp);
455050d2
TH
4470
4471 /*
4472 * Mark @cgrp dead. This prevents further task migration and child
4473 * creation by disabling cgroup_lock_live_group(). Note that
4474 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4475 * resume iteration after dropping RCU read lock. See
4476 * cgroup_next_sibling() for details.
4477 */
54766d4a 4478 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4479
455050d2
TH
4480 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4481 raw_spin_lock(&release_list_lock);
4482 if (!list_empty(&cgrp->release_list))
4483 list_del_init(&cgrp->release_list);
4484 raw_spin_unlock(&release_list_lock);
4485
4486 /*
4487 * Remove @cgrp directory. The removal puts the base ref but we
4488 * aren't quite done with @cgrp yet, so hold onto it.
4489 */
4490 dget(d);
4491 cgroup_d_remove_dir(d);
4492
4493 /*
4494 * Unregister events and notify userspace.
4495 * Notify userspace about cgroup removing only after rmdir of cgroup
4496 * directory to avoid race between userspace and kernelspace.
4497 */
4498 spin_lock(&cgrp->event_list_lock);
4499 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4500 list_del_init(&event->list);
4501 schedule_work(&event->remove);
4502 }
4503 spin_unlock(&cgrp->event_list_lock);
4504
ea15f8cc
TH
4505 return 0;
4506};
4507
d3daf28d
TH
4508/**
4509 * cgroup_offline_fn - the second step of cgroup destruction
4510 * @work: cgroup->destroy_free_work
4511 *
4512 * This function is invoked from a work item for a cgroup which is being
4513 * destroyed after the percpu refcnts of all css's are guaranteed to be
4514 * seen as killed on all CPUs, and performs the rest of destruction. This
4515 * is the second step of destruction described in the comment above
4516 * cgroup_destroy_locked().
4517 */
ea15f8cc
TH
4518static void cgroup_offline_fn(struct work_struct *work)
4519{
4520 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4521 struct cgroup *parent = cgrp->parent;
4522 struct dentry *d = cgrp->dentry;
4523 struct cgroup_subsys *ss;
4524
4525 mutex_lock(&cgroup_mutex);
4526
d3daf28d
TH
4527 /*
4528 * css_tryget() is guaranteed to fail now. Tell subsystems to
4529 * initate destruction.
4530 */
1a90dd50 4531 for_each_subsys(cgrp->root, ss)
a31f2d3f 4532 offline_css(ss, cgrp);
ed957793
TH
4533
4534 /*
d3daf28d
TH
4535 * Put the css refs from cgroup_destroy_locked(). Each css holds
4536 * an extra reference to the cgroup's dentry and cgroup removal
4537 * proceeds regardless of css refs. On the last put of each css,
4538 * whenever that may be, the extra dentry ref is put so that dentry
4539 * destruction happens only after all css's are released.
ed957793 4540 */
e9316080
TH
4541 for_each_subsys(cgrp->root, ss)
4542 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4543
999cd8a4 4544 /* delete this cgroup from parent->children */
eb6fd504 4545 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4546 list_del_init(&cgrp->allcg_node);
4547
ddbcc7e8 4548 dput(d);
ddbcc7e8 4549
bd89aabc 4550 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4551 check_for_release(parent);
4552
ea15f8cc 4553 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4554}
4555
42809dd4
TH
4556static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4557{
4558 int ret;
4559
4560 mutex_lock(&cgroup_mutex);
4561 ret = cgroup_destroy_locked(dentry->d_fsdata);
4562 mutex_unlock(&cgroup_mutex);
4563
4564 return ret;
4565}
4566
8e3f6541
TH
4567static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4568{
4569 INIT_LIST_HEAD(&ss->cftsets);
4570
4571 /*
4572 * base_cftset is embedded in subsys itself, no need to worry about
4573 * deregistration.
4574 */
4575 if (ss->base_cftypes) {
4576 ss->base_cftset.cfts = ss->base_cftypes;
4577 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4578 }
4579}
4580
06a11920 4581static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4582{
ddbcc7e8 4583 struct cgroup_subsys_state *css;
cfe36bde
DC
4584
4585 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4586
648bb56d
TH
4587 mutex_lock(&cgroup_mutex);
4588
8e3f6541
TH
4589 /* init base cftset */
4590 cgroup_init_cftsets(ss);
4591
ddbcc7e8 4592 /* Create the top cgroup state for this subsystem */
33a68ac1 4593 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4594 ss->root = &rootnode;
92fb9748 4595 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4596 /* We don't handle early failures gracefully */
4597 BUG_ON(IS_ERR(css));
4598 init_cgroup_css(css, ss, dummytop);
4599
e8d55fde 4600 /* Update the init_css_set to contain a subsys
817929ec 4601 * pointer to this state - since the subsystem is
e8d55fde
LZ
4602 * newly registered, all tasks and hence the
4603 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4604 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4605
4606 need_forkexit_callback |= ss->fork || ss->exit;
4607
e8d55fde
LZ
4608 /* At system boot, before all subsystems have been
4609 * registered, no tasks have been forked, so we don't
4610 * need to invoke fork callbacks here. */
4611 BUG_ON(!list_empty(&init_task.tasks));
4612
b1929db4 4613 BUG_ON(online_css(ss, dummytop));
a8638030 4614
648bb56d
TH
4615 mutex_unlock(&cgroup_mutex);
4616
e6a1105b
BB
4617 /* this function shouldn't be used with modular subsystems, since they
4618 * need to register a subsys_id, among other things */
4619 BUG_ON(ss->module);
4620}
4621
4622/**
4623 * cgroup_load_subsys: load and register a modular subsystem at runtime
4624 * @ss: the subsystem to load
4625 *
4626 * This function should be called in a modular subsystem's initcall. If the
88393161 4627 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4628 * up for use. If the subsystem is built-in anyway, work is delegated to the
4629 * simpler cgroup_init_subsys.
4630 */
4631int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4632{
e6a1105b 4633 struct cgroup_subsys_state *css;
d19e19de 4634 int i, ret;
b67bfe0d 4635 struct hlist_node *tmp;
5abb8855 4636 struct css_set *cset;
0ac801fe 4637 unsigned long key;
e6a1105b
BB
4638
4639 /* check name and function validity */
4640 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4641 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4642 return -EINVAL;
4643
4644 /*
4645 * we don't support callbacks in modular subsystems. this check is
4646 * before the ss->module check for consistency; a subsystem that could
4647 * be a module should still have no callbacks even if the user isn't
4648 * compiling it as one.
4649 */
4650 if (ss->fork || ss->exit)
4651 return -EINVAL;
4652
4653 /*
4654 * an optionally modular subsystem is built-in: we want to do nothing,
4655 * since cgroup_init_subsys will have already taken care of it.
4656 */
4657 if (ss->module == NULL) {
be45c900 4658 /* a sanity check */
e6a1105b
BB
4659 BUG_ON(subsys[ss->subsys_id] != ss);
4660 return 0;
4661 }
4662
8e3f6541
TH
4663 /* init base cftset */
4664 cgroup_init_cftsets(ss);
4665
e6a1105b 4666 mutex_lock(&cgroup_mutex);
8a8e04df 4667 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4668
4669 /*
92fb9748
TH
4670 * no ss->css_alloc seems to need anything important in the ss
4671 * struct, so this can happen first (i.e. before the rootnode
4672 * attachment).
e6a1105b 4673 */
92fb9748 4674 css = ss->css_alloc(dummytop);
e6a1105b
BB
4675 if (IS_ERR(css)) {
4676 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4677 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4678 mutex_unlock(&cgroup_mutex);
4679 return PTR_ERR(css);
4680 }
4681
4682 list_add(&ss->sibling, &rootnode.subsys_list);
4683 ss->root = &rootnode;
4684
4685 /* our new subsystem will be attached to the dummy hierarchy. */
4686 init_cgroup_css(css, ss, dummytop);
4687 /* init_idr must be after init_cgroup_css because it sets css->id. */
4688 if (ss->use_id) {
d19e19de
TH
4689 ret = cgroup_init_idr(ss, css);
4690 if (ret)
4691 goto err_unload;
e6a1105b
BB
4692 }
4693
4694 /*
4695 * Now we need to entangle the css into the existing css_sets. unlike
4696 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4697 * will need a new pointer to it; done by iterating the css_set_table.
4698 * furthermore, modifying the existing css_sets will corrupt the hash
4699 * table state, so each changed css_set will need its hash recomputed.
4700 * this is all done under the css_set_lock.
4701 */
4702 write_lock(&css_set_lock);
5abb8855 4703 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4704 /* skip entries that we already rehashed */
5abb8855 4705 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4706 continue;
4707 /* remove existing entry */
5abb8855 4708 hash_del(&cset->hlist);
0ac801fe 4709 /* set new value */
5abb8855 4710 cset->subsys[ss->subsys_id] = css;
0ac801fe 4711 /* recompute hash and restore entry */
5abb8855
TH
4712 key = css_set_hash(cset->subsys);
4713 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4714 }
4715 write_unlock(&css_set_lock);
4716
b1929db4
TH
4717 ret = online_css(ss, dummytop);
4718 if (ret)
4719 goto err_unload;
a8638030 4720
e6a1105b
BB
4721 /* success! */
4722 mutex_unlock(&cgroup_mutex);
4723 return 0;
d19e19de
TH
4724
4725err_unload:
4726 mutex_unlock(&cgroup_mutex);
4727 /* @ss can't be mounted here as try_module_get() would fail */
4728 cgroup_unload_subsys(ss);
4729 return ret;
ddbcc7e8 4730}
e6a1105b 4731EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4732
cf5d5941
BB
4733/**
4734 * cgroup_unload_subsys: unload a modular subsystem
4735 * @ss: the subsystem to unload
4736 *
4737 * This function should be called in a modular subsystem's exitcall. When this
4738 * function is invoked, the refcount on the subsystem's module will be 0, so
4739 * the subsystem will not be attached to any hierarchy.
4740 */
4741void cgroup_unload_subsys(struct cgroup_subsys *ss)
4742{
69d0206c 4743 struct cgrp_cset_link *link;
cf5d5941
BB
4744
4745 BUG_ON(ss->module == NULL);
4746
4747 /*
4748 * we shouldn't be called if the subsystem is in use, and the use of
4749 * try_module_get in parse_cgroupfs_options should ensure that it
4750 * doesn't start being used while we're killing it off.
4751 */
4752 BUG_ON(ss->root != &rootnode);
4753
4754 mutex_lock(&cgroup_mutex);
02ae7486 4755
a31f2d3f 4756 offline_css(ss, dummytop);
02ae7486 4757
c897ff68 4758 if (ss->use_id)
02ae7486 4759 idr_destroy(&ss->idr);
02ae7486 4760
cf5d5941 4761 /* deassign the subsys_id */
cf5d5941
BB
4762 subsys[ss->subsys_id] = NULL;
4763
4764 /* remove subsystem from rootnode's list of subsystems */
8d258797 4765 list_del_init(&ss->sibling);
cf5d5941
BB
4766
4767 /*
4768 * disentangle the css from all css_sets attached to the dummytop. as
4769 * in loading, we need to pay our respects to the hashtable gods.
4770 */
4771 write_lock(&css_set_lock);
69d0206c
TH
4772 list_for_each_entry(link, &dummytop->cset_links, cset_link) {
4773 struct css_set *cset = link->cset;
0ac801fe 4774 unsigned long key;
cf5d5941 4775
5abb8855
TH
4776 hash_del(&cset->hlist);
4777 cset->subsys[ss->subsys_id] = NULL;
4778 key = css_set_hash(cset->subsys);
4779 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4780 }
4781 write_unlock(&css_set_lock);
4782
4783 /*
92fb9748
TH
4784 * remove subsystem's css from the dummytop and free it - need to
4785 * free before marking as null because ss->css_free needs the
4786 * cgrp->subsys pointer to find their state. note that this also
4787 * takes care of freeing the css_id.
cf5d5941 4788 */
92fb9748 4789 ss->css_free(dummytop);
cf5d5941
BB
4790 dummytop->subsys[ss->subsys_id] = NULL;
4791
4792 mutex_unlock(&cgroup_mutex);
4793}
4794EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4795
ddbcc7e8 4796/**
a043e3b2
LZ
4797 * cgroup_init_early - cgroup initialization at system boot
4798 *
4799 * Initialize cgroups at system boot, and initialize any
4800 * subsystems that request early init.
ddbcc7e8
PM
4801 */
4802int __init cgroup_init_early(void)
4803{
4804 int i;
146aa1bd 4805 atomic_set(&init_css_set.refcount, 1);
69d0206c 4806 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4807 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4808 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4809 css_set_count = 1;
ddbcc7e8 4810 init_cgroup_root(&rootnode);
817929ec
PM
4811 root_count = 1;
4812 init_task.cgroups = &init_css_set;
4813
69d0206c
TH
4814 init_cgrp_cset_link.cset = &init_css_set;
4815 init_cgrp_cset_link.cgrp = dummytop;
4816 list_add(&init_cgrp_cset_link.cset_link, &rootnode.top_cgroup.cset_links);
4817 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4818
be45c900 4819 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4820 struct cgroup_subsys *ss = subsys[i];
4821
be45c900
DW
4822 /* at bootup time, we don't worry about modular subsystems */
4823 if (!ss || ss->module)
4824 continue;
4825
ddbcc7e8
PM
4826 BUG_ON(!ss->name);
4827 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4828 BUG_ON(!ss->css_alloc);
4829 BUG_ON(!ss->css_free);
ddbcc7e8 4830 if (ss->subsys_id != i) {
cfe36bde 4831 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4832 ss->name, ss->subsys_id);
4833 BUG();
4834 }
4835
4836 if (ss->early_init)
4837 cgroup_init_subsys(ss);
4838 }
4839 return 0;
4840}
4841
4842/**
a043e3b2
LZ
4843 * cgroup_init - cgroup initialization
4844 *
4845 * Register cgroup filesystem and /proc file, and initialize
4846 * any subsystems that didn't request early init.
ddbcc7e8
PM
4847 */
4848int __init cgroup_init(void)
4849{
4850 int err;
4851 int i;
0ac801fe 4852 unsigned long key;
a424316c
PM
4853
4854 err = bdi_init(&cgroup_backing_dev_info);
4855 if (err)
4856 return err;
ddbcc7e8 4857
be45c900 4858 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4859 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4860
4861 /* at bootup time, we don't worry about modular subsystems */
4862 if (!ss || ss->module)
4863 continue;
ddbcc7e8
PM
4864 if (!ss->early_init)
4865 cgroup_init_subsys(ss);
38460b48 4866 if (ss->use_id)
e6a1105b 4867 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4868 }
4869
472b1053 4870 /* Add init_css_set to the hash table */
0ac801fe
LZ
4871 key = css_set_hash(init_css_set.subsys);
4872 hash_add(css_set_table, &init_css_set.hlist, key);
fa3ca07e
TH
4873
4874 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4875 mutex_lock(&cgroup_mutex);
4876 mutex_lock(&cgroup_root_mutex);
4877
fa3ca07e 4878 BUG_ON(cgroup_init_root_id(&rootnode));
676db4af 4879
54e7b4eb
TH
4880 mutex_unlock(&cgroup_root_mutex);
4881 mutex_unlock(&cgroup_mutex);
4882
676db4af
GK
4883 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4884 if (!cgroup_kobj) {
4885 err = -ENOMEM;
4886 goto out;
4887 }
4888
ddbcc7e8 4889 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4890 if (err < 0) {
4891 kobject_put(cgroup_kobj);
ddbcc7e8 4892 goto out;
676db4af 4893 }
ddbcc7e8 4894
46ae220b 4895 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4896
ddbcc7e8 4897out:
a424316c
PM
4898 if (err)
4899 bdi_destroy(&cgroup_backing_dev_info);
4900
ddbcc7e8
PM
4901 return err;
4902}
b4f48b63 4903
a424316c
PM
4904/*
4905 * proc_cgroup_show()
4906 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4907 * - Used for /proc/<pid>/cgroup.
4908 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4909 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4910 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4911 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4912 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4913 * cgroup to top_cgroup.
4914 */
4915
4916/* TODO: Use a proper seq_file iterator */
8d8b97ba 4917int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4918{
4919 struct pid *pid;
4920 struct task_struct *tsk;
4921 char *buf;
4922 int retval;
4923 struct cgroupfs_root *root;
4924
4925 retval = -ENOMEM;
4926 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4927 if (!buf)
4928 goto out;
4929
4930 retval = -ESRCH;
4931 pid = m->private;
4932 tsk = get_pid_task(pid, PIDTYPE_PID);
4933 if (!tsk)
4934 goto out_free;
4935
4936 retval = 0;
4937
4938 mutex_lock(&cgroup_mutex);
4939
e5f6a860 4940 for_each_active_root(root) {
a424316c 4941 struct cgroup_subsys *ss;
bd89aabc 4942 struct cgroup *cgrp;
a424316c
PM
4943 int count = 0;
4944
2c6ab6d2 4945 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4946 for_each_subsys(root, ss)
4947 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4948 if (strlen(root->name))
4949 seq_printf(m, "%sname=%s", count ? "," : "",
4950 root->name);
a424316c 4951 seq_putc(m, ':');
7717f7ba 4952 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4953 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4954 if (retval < 0)
4955 goto out_unlock;
4956 seq_puts(m, buf);
4957 seq_putc(m, '\n');
4958 }
4959
4960out_unlock:
4961 mutex_unlock(&cgroup_mutex);
4962 put_task_struct(tsk);
4963out_free:
4964 kfree(buf);
4965out:
4966 return retval;
4967}
4968
a424316c
PM
4969/* Display information about each subsystem and each hierarchy */
4970static int proc_cgroupstats_show(struct seq_file *m, void *v)
4971{
4972 int i;
a424316c 4973
8bab8dde 4974 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4975 /*
4976 * ideally we don't want subsystems moving around while we do this.
4977 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4978 * subsys/hierarchy state.
4979 */
a424316c 4980 mutex_lock(&cgroup_mutex);
a424316c
PM
4981 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4982 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4983 if (ss == NULL)
4984 continue;
2c6ab6d2
PM
4985 seq_printf(m, "%s\t%d\t%d\t%d\n",
4986 ss->name, ss->root->hierarchy_id,
8bab8dde 4987 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4988 }
4989 mutex_unlock(&cgroup_mutex);
4990 return 0;
4991}
4992
4993static int cgroupstats_open(struct inode *inode, struct file *file)
4994{
9dce07f1 4995 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4996}
4997
828c0950 4998static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4999 .open = cgroupstats_open,
5000 .read = seq_read,
5001 .llseek = seq_lseek,
5002 .release = single_release,
5003};
5004
b4f48b63
PM
5005/**
5006 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5007 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5008 *
5009 * Description: A task inherits its parent's cgroup at fork().
5010 *
5011 * A pointer to the shared css_set was automatically copied in
5012 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5013 * it was not made under the protection of RCU or cgroup_mutex, so
5014 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5015 * have already changed current->cgroups, allowing the previously
5016 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5017 *
5018 * At the point that cgroup_fork() is called, 'current' is the parent
5019 * task, and the passed argument 'child' points to the child task.
5020 */
5021void cgroup_fork(struct task_struct *child)
5022{
9bb71308 5023 task_lock(current);
817929ec
PM
5024 child->cgroups = current->cgroups;
5025 get_css_set(child->cgroups);
9bb71308 5026 task_unlock(current);
817929ec 5027 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5028}
5029
817929ec 5030/**
a043e3b2
LZ
5031 * cgroup_post_fork - called on a new task after adding it to the task list
5032 * @child: the task in question
5033 *
5edee61e
TH
5034 * Adds the task to the list running through its css_set if necessary and
5035 * call the subsystem fork() callbacks. Has to be after the task is
5036 * visible on the task list in case we race with the first call to
5037 * cgroup_iter_start() - to guarantee that the new task ends up on its
5038 * list.
a043e3b2 5039 */
817929ec
PM
5040void cgroup_post_fork(struct task_struct *child)
5041{
5edee61e
TH
5042 int i;
5043
3ce3230a
FW
5044 /*
5045 * use_task_css_set_links is set to 1 before we walk the tasklist
5046 * under the tasklist_lock and we read it here after we added the child
5047 * to the tasklist under the tasklist_lock as well. If the child wasn't
5048 * yet in the tasklist when we walked through it from
5049 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5050 * should be visible now due to the paired locking and barriers implied
5051 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5052 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5053 * lock on fork.
5054 */
817929ec
PM
5055 if (use_task_css_set_links) {
5056 write_lock(&css_set_lock);
d8783832
TH
5057 task_lock(child);
5058 if (list_empty(&child->cg_list))
817929ec 5059 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 5060 task_unlock(child);
817929ec
PM
5061 write_unlock(&css_set_lock);
5062 }
5edee61e
TH
5063
5064 /*
5065 * Call ss->fork(). This must happen after @child is linked on
5066 * css_set; otherwise, @child might change state between ->fork()
5067 * and addition to css_set.
5068 */
5069 if (need_forkexit_callback) {
7d8e0bf5
LZ
5070 /*
5071 * fork/exit callbacks are supported only for builtin
5072 * subsystems, and the builtin section of the subsys
5073 * array is immutable, so we don't need to lock the
5074 * subsys array here. On the other hand, modular section
5075 * of the array can be freed at module unload, so we
5076 * can't touch that.
5077 */
5078 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
5079 struct cgroup_subsys *ss = subsys[i];
5080
5edee61e
TH
5081 if (ss->fork)
5082 ss->fork(child);
5083 }
5084 }
817929ec 5085}
5edee61e 5086
b4f48b63
PM
5087/**
5088 * cgroup_exit - detach cgroup from exiting task
5089 * @tsk: pointer to task_struct of exiting process
a043e3b2 5090 * @run_callback: run exit callbacks?
b4f48b63
PM
5091 *
5092 * Description: Detach cgroup from @tsk and release it.
5093 *
5094 * Note that cgroups marked notify_on_release force every task in
5095 * them to take the global cgroup_mutex mutex when exiting.
5096 * This could impact scaling on very large systems. Be reluctant to
5097 * use notify_on_release cgroups where very high task exit scaling
5098 * is required on large systems.
5099 *
5100 * the_top_cgroup_hack:
5101 *
5102 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5103 *
5104 * We call cgroup_exit() while the task is still competent to
5105 * handle notify_on_release(), then leave the task attached to the
5106 * root cgroup in each hierarchy for the remainder of its exit.
5107 *
5108 * To do this properly, we would increment the reference count on
5109 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5110 * code we would add a second cgroup function call, to drop that
5111 * reference. This would just create an unnecessary hot spot on
5112 * the top_cgroup reference count, to no avail.
5113 *
5114 * Normally, holding a reference to a cgroup without bumping its
5115 * count is unsafe. The cgroup could go away, or someone could
5116 * attach us to a different cgroup, decrementing the count on
5117 * the first cgroup that we never incremented. But in this case,
5118 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5119 * which wards off any cgroup_attach_task() attempts, or task is a failed
5120 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5121 */
5122void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5123{
5abb8855 5124 struct css_set *cset;
d41d5a01 5125 int i;
817929ec
PM
5126
5127 /*
5128 * Unlink from the css_set task list if necessary.
5129 * Optimistically check cg_list before taking
5130 * css_set_lock
5131 */
5132 if (!list_empty(&tsk->cg_list)) {
5133 write_lock(&css_set_lock);
5134 if (!list_empty(&tsk->cg_list))
8d258797 5135 list_del_init(&tsk->cg_list);
817929ec
PM
5136 write_unlock(&css_set_lock);
5137 }
5138
b4f48b63
PM
5139 /* Reassign the task to the init_css_set. */
5140 task_lock(tsk);
5abb8855 5141 cset = tsk->cgroups;
817929ec 5142 tsk->cgroups = &init_css_set;
d41d5a01
PZ
5143
5144 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5145 /*
5146 * fork/exit callbacks are supported only for builtin
5147 * subsystems, see cgroup_post_fork() for details.
5148 */
5149 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 5150 struct cgroup_subsys *ss = subsys[i];
be45c900 5151
d41d5a01
PZ
5152 if (ss->exit) {
5153 struct cgroup *old_cgrp =
5abb8855 5154 rcu_dereference_raw(cset->subsys[i])->cgroup;
d41d5a01 5155 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 5156 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5157 }
5158 }
5159 }
b4f48b63 5160 task_unlock(tsk);
d41d5a01 5161
5abb8855 5162 put_css_set_taskexit(cset);
b4f48b63 5163}
697f4161 5164
bd89aabc 5165static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5166{
f50daa70 5167 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5168 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5169 /*
5170 * Control Group is currently removeable. If it's not
81a6a5cd 5171 * already queued for a userspace notification, queue
f50daa70
LZ
5172 * it now
5173 */
81a6a5cd 5174 int need_schedule_work = 0;
f50daa70 5175
cdcc136f 5176 raw_spin_lock(&release_list_lock);
54766d4a 5177 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5178 list_empty(&cgrp->release_list)) {
5179 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5180 need_schedule_work = 1;
5181 }
cdcc136f 5182 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5183 if (need_schedule_work)
5184 schedule_work(&release_agent_work);
5185 }
5186}
5187
81a6a5cd
PM
5188/*
5189 * Notify userspace when a cgroup is released, by running the
5190 * configured release agent with the name of the cgroup (path
5191 * relative to the root of cgroup file system) as the argument.
5192 *
5193 * Most likely, this user command will try to rmdir this cgroup.
5194 *
5195 * This races with the possibility that some other task will be
5196 * attached to this cgroup before it is removed, or that some other
5197 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5198 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5199 * unused, and this cgroup will be reprieved from its death sentence,
5200 * to continue to serve a useful existence. Next time it's released,
5201 * we will get notified again, if it still has 'notify_on_release' set.
5202 *
5203 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5204 * means only wait until the task is successfully execve()'d. The
5205 * separate release agent task is forked by call_usermodehelper(),
5206 * then control in this thread returns here, without waiting for the
5207 * release agent task. We don't bother to wait because the caller of
5208 * this routine has no use for the exit status of the release agent
5209 * task, so no sense holding our caller up for that.
81a6a5cd 5210 */
81a6a5cd
PM
5211static void cgroup_release_agent(struct work_struct *work)
5212{
5213 BUG_ON(work != &release_agent_work);
5214 mutex_lock(&cgroup_mutex);
cdcc136f 5215 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5216 while (!list_empty(&release_list)) {
5217 char *argv[3], *envp[3];
5218 int i;
e788e066 5219 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5220 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5221 struct cgroup,
5222 release_list);
bd89aabc 5223 list_del_init(&cgrp->release_list);
cdcc136f 5224 raw_spin_unlock(&release_list_lock);
81a6a5cd 5225 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5226 if (!pathbuf)
5227 goto continue_free;
5228 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5229 goto continue_free;
5230 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5231 if (!agentbuf)
5232 goto continue_free;
81a6a5cd
PM
5233
5234 i = 0;
e788e066
PM
5235 argv[i++] = agentbuf;
5236 argv[i++] = pathbuf;
81a6a5cd
PM
5237 argv[i] = NULL;
5238
5239 i = 0;
5240 /* minimal command environment */
5241 envp[i++] = "HOME=/";
5242 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5243 envp[i] = NULL;
5244
5245 /* Drop the lock while we invoke the usermode helper,
5246 * since the exec could involve hitting disk and hence
5247 * be a slow process */
5248 mutex_unlock(&cgroup_mutex);
5249 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5250 mutex_lock(&cgroup_mutex);
e788e066
PM
5251 continue_free:
5252 kfree(pathbuf);
5253 kfree(agentbuf);
cdcc136f 5254 raw_spin_lock(&release_list_lock);
81a6a5cd 5255 }
cdcc136f 5256 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5257 mutex_unlock(&cgroup_mutex);
5258}
8bab8dde
PM
5259
5260static int __init cgroup_disable(char *str)
5261{
5262 int i;
5263 char *token;
5264
5265 while ((token = strsep(&str, ",")) != NULL) {
5266 if (!*token)
5267 continue;
be45c900 5268 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5269 struct cgroup_subsys *ss = subsys[i];
5270
be45c900
DW
5271 /*
5272 * cgroup_disable, being at boot time, can't
5273 * know about module subsystems, so we don't
5274 * worry about them.
5275 */
5276 if (!ss || ss->module)
5277 continue;
5278
8bab8dde
PM
5279 if (!strcmp(token, ss->name)) {
5280 ss->disabled = 1;
5281 printk(KERN_INFO "Disabling %s control group"
5282 " subsystem\n", ss->name);
5283 break;
5284 }
5285 }
5286 }
5287 return 1;
5288}
5289__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5290
5291/*
5292 * Functons for CSS ID.
5293 */
5294
54766d4a 5295/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5296unsigned short css_id(struct cgroup_subsys_state *css)
5297{
7f0f1546
KH
5298 struct css_id *cssid;
5299
5300 /*
5301 * This css_id() can return correct value when somone has refcnt
5302 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5303 * it's unchanged until freed.
5304 */
d3daf28d 5305 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5306
5307 if (cssid)
5308 return cssid->id;
5309 return 0;
5310}
67523c48 5311EXPORT_SYMBOL_GPL(css_id);
38460b48 5312
747388d7
KH
5313/**
5314 * css_is_ancestor - test "root" css is an ancestor of "child"
5315 * @child: the css to be tested.
5316 * @root: the css supporsed to be an ancestor of the child.
5317 *
5318 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5319 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5320 * But, considering usual usage, the csses should be valid objects after test.
5321 * Assuming that the caller will do some action to the child if this returns
5322 * returns true, the caller must take "child";s reference count.
5323 * If "child" is valid object and this returns true, "root" is valid, too.
5324 */
5325
38460b48 5326bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5327 const struct cgroup_subsys_state *root)
38460b48 5328{
747388d7
KH
5329 struct css_id *child_id;
5330 struct css_id *root_id;
38460b48 5331
747388d7 5332 child_id = rcu_dereference(child->id);
91c63734
JW
5333 if (!child_id)
5334 return false;
747388d7 5335 root_id = rcu_dereference(root->id);
91c63734
JW
5336 if (!root_id)
5337 return false;
5338 if (child_id->depth < root_id->depth)
5339 return false;
5340 if (child_id->stack[root_id->depth] != root_id->id)
5341 return false;
5342 return true;
38460b48
KH
5343}
5344
38460b48
KH
5345void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5346{
5347 struct css_id *id = css->id;
5348 /* When this is called before css_id initialization, id can be NULL */
5349 if (!id)
5350 return;
5351
5352 BUG_ON(!ss->use_id);
5353
5354 rcu_assign_pointer(id->css, NULL);
5355 rcu_assign_pointer(css->id, NULL);
42aee6c4 5356 spin_lock(&ss->id_lock);
38460b48 5357 idr_remove(&ss->idr, id->id);
42aee6c4 5358 spin_unlock(&ss->id_lock);
025cea99 5359 kfree_rcu(id, rcu_head);
38460b48 5360}
67523c48 5361EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5362
5363/*
5364 * This is called by init or create(). Then, calls to this function are
5365 * always serialized (By cgroup_mutex() at create()).
5366 */
5367
5368static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5369{
5370 struct css_id *newid;
d228d9ec 5371 int ret, size;
38460b48
KH
5372
5373 BUG_ON(!ss->use_id);
5374
5375 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5376 newid = kzalloc(size, GFP_KERNEL);
5377 if (!newid)
5378 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5379
5380 idr_preload(GFP_KERNEL);
42aee6c4 5381 spin_lock(&ss->id_lock);
38460b48 5382 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5383 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5384 spin_unlock(&ss->id_lock);
d228d9ec 5385 idr_preload_end();
38460b48
KH
5386
5387 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5388 if (ret < 0)
38460b48 5389 goto err_out;
38460b48 5390
d228d9ec 5391 newid->id = ret;
38460b48
KH
5392 newid->depth = depth;
5393 return newid;
38460b48
KH
5394err_out:
5395 kfree(newid);
d228d9ec 5396 return ERR_PTR(ret);
38460b48
KH
5397
5398}
5399
e6a1105b
BB
5400static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5401 struct cgroup_subsys_state *rootcss)
38460b48
KH
5402{
5403 struct css_id *newid;
38460b48 5404
42aee6c4 5405 spin_lock_init(&ss->id_lock);
38460b48
KH
5406 idr_init(&ss->idr);
5407
38460b48
KH
5408 newid = get_new_cssid(ss, 0);
5409 if (IS_ERR(newid))
5410 return PTR_ERR(newid);
5411
5412 newid->stack[0] = newid->id;
5413 newid->css = rootcss;
5414 rootcss->id = newid;
5415 return 0;
5416}
5417
5418static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5419 struct cgroup *child)
5420{
5421 int subsys_id, i, depth = 0;
5422 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5423 struct css_id *child_id, *parent_id;
38460b48
KH
5424
5425 subsys_id = ss->subsys_id;
5426 parent_css = parent->subsys[subsys_id];
5427 child_css = child->subsys[subsys_id];
38460b48 5428 parent_id = parent_css->id;
94b3dd0f 5429 depth = parent_id->depth + 1;
38460b48
KH
5430
5431 child_id = get_new_cssid(ss, depth);
5432 if (IS_ERR(child_id))
5433 return PTR_ERR(child_id);
5434
5435 for (i = 0; i < depth; i++)
5436 child_id->stack[i] = parent_id->stack[i];
5437 child_id->stack[depth] = child_id->id;
5438 /*
5439 * child_id->css pointer will be set after this cgroup is available
5440 * see cgroup_populate_dir()
5441 */
5442 rcu_assign_pointer(child_css->id, child_id);
5443
5444 return 0;
5445}
5446
5447/**
5448 * css_lookup - lookup css by id
5449 * @ss: cgroup subsys to be looked into.
5450 * @id: the id
5451 *
5452 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5453 * NULL if not. Should be called under rcu_read_lock()
5454 */
5455struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5456{
5457 struct css_id *cssid = NULL;
5458
5459 BUG_ON(!ss->use_id);
5460 cssid = idr_find(&ss->idr, id);
5461
5462 if (unlikely(!cssid))
5463 return NULL;
5464
5465 return rcu_dereference(cssid->css);
5466}
67523c48 5467EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5468
e5d1367f
SE
5469/*
5470 * get corresponding css from file open on cgroupfs directory
5471 */
5472struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5473{
5474 struct cgroup *cgrp;
5475 struct inode *inode;
5476 struct cgroup_subsys_state *css;
5477
496ad9aa 5478 inode = file_inode(f);
e5d1367f
SE
5479 /* check in cgroup filesystem dir */
5480 if (inode->i_op != &cgroup_dir_inode_operations)
5481 return ERR_PTR(-EBADF);
5482
5483 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5484 return ERR_PTR(-EINVAL);
5485
5486 /* get cgroup */
5487 cgrp = __d_cgrp(f->f_dentry);
5488 css = cgrp->subsys[id];
5489 return css ? css : ERR_PTR(-ENOENT);
5490}
5491
fe693435 5492#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5493static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5494{
5495 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5496
5497 if (!css)
5498 return ERR_PTR(-ENOMEM);
5499
5500 return css;
5501}
5502
92fb9748 5503static void debug_css_free(struct cgroup *cont)
fe693435
PM
5504{
5505 kfree(cont->subsys[debug_subsys_id]);
5506}
5507
fe693435
PM
5508static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5509{
5510 return cgroup_task_count(cont);
5511}
5512
5513static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5514{
5515 return (u64)(unsigned long)current->cgroups;
5516}
5517
5518static u64 current_css_set_refcount_read(struct cgroup *cont,
5519 struct cftype *cft)
5520{
5521 u64 count;
5522
5523 rcu_read_lock();
5524 count = atomic_read(&current->cgroups->refcount);
5525 rcu_read_unlock();
5526 return count;
5527}
5528
7717f7ba
PM
5529static int current_css_set_cg_links_read(struct cgroup *cont,
5530 struct cftype *cft,
5531 struct seq_file *seq)
5532{
69d0206c 5533 struct cgrp_cset_link *link;
5abb8855 5534 struct css_set *cset;
7717f7ba
PM
5535
5536 read_lock(&css_set_lock);
5537 rcu_read_lock();
5abb8855 5538 cset = rcu_dereference(current->cgroups);
69d0206c 5539 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5540 struct cgroup *c = link->cgrp;
5541 const char *name;
5542
5543 if (c->dentry)
5544 name = c->dentry->d_name.name;
5545 else
5546 name = "?";
2c6ab6d2
PM
5547 seq_printf(seq, "Root %d group %s\n",
5548 c->root->hierarchy_id, name);
7717f7ba
PM
5549 }
5550 rcu_read_unlock();
5551 read_unlock(&css_set_lock);
5552 return 0;
5553}
5554
5555#define MAX_TASKS_SHOWN_PER_CSS 25
5556static int cgroup_css_links_read(struct cgroup *cont,
5557 struct cftype *cft,
5558 struct seq_file *seq)
5559{
69d0206c 5560 struct cgrp_cset_link *link;
7717f7ba
PM
5561
5562 read_lock(&css_set_lock);
69d0206c
TH
5563 list_for_each_entry(link, &cont->cset_links, cset_link) {
5564 struct css_set *cset = link->cset;
7717f7ba
PM
5565 struct task_struct *task;
5566 int count = 0;
5abb8855
TH
5567 seq_printf(seq, "css_set %p\n", cset);
5568 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5569 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5570 seq_puts(seq, " ...\n");
5571 break;
5572 } else {
5573 seq_printf(seq, " task %d\n",
5574 task_pid_vnr(task));
5575 }
5576 }
5577 }
5578 read_unlock(&css_set_lock);
5579 return 0;
5580}
5581
fe693435
PM
5582static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5583{
5584 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5585}
5586
5587static struct cftype debug_files[] = {
fe693435
PM
5588 {
5589 .name = "taskcount",
5590 .read_u64 = debug_taskcount_read,
5591 },
5592
5593 {
5594 .name = "current_css_set",
5595 .read_u64 = current_css_set_read,
5596 },
5597
5598 {
5599 .name = "current_css_set_refcount",
5600 .read_u64 = current_css_set_refcount_read,
5601 },
5602
7717f7ba
PM
5603 {
5604 .name = "current_css_set_cg_links",
5605 .read_seq_string = current_css_set_cg_links_read,
5606 },
5607
5608 {
5609 .name = "cgroup_css_links",
5610 .read_seq_string = cgroup_css_links_read,
5611 },
5612
fe693435
PM
5613 {
5614 .name = "releasable",
5615 .read_u64 = releasable_read,
5616 },
fe693435 5617
4baf6e33
TH
5618 { } /* terminate */
5619};
fe693435
PM
5620
5621struct cgroup_subsys debug_subsys = {
5622 .name = "debug",
92fb9748
TH
5623 .css_alloc = debug_css_alloc,
5624 .css_free = debug_css_free,
fe693435 5625 .subsys_id = debug_subsys_id,
4baf6e33 5626 .base_cftypes = debug_files,
fe693435
PM
5627};
5628#endif /* CONFIG_CGROUP_DEBUG */