cgroup: introduce struct cfent
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
81a6a5cd 82static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 83static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 84
aae8aab4
BB
85/*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
ddbcc7e8 91#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 92static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
93#include <linux/cgroup_subsys.h>
94};
95
c6d57f33
PM
96#define MAX_CGROUP_ROOT_NAMELEN 64
97
ddbcc7e8
PM
98/*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
2c6ab6d2
PM
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
ddbcc7e8
PM
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
e5f6a860 127 /* A list running through the active hierarchies */
ddbcc7e8
PM
128 struct list_head root_list;
129
b0ca5a84
TH
130 /* All cgroups on this root, cgroup_mutex protected */
131 struct list_head allcg_list;
132
ddbcc7e8
PM
133 /* Hierarchy-specific flags */
134 unsigned long flags;
81a6a5cd 135
e788e066 136 /* The path to use for release notifications. */
81a6a5cd 137 char release_agent_path[PATH_MAX];
c6d57f33
PM
138
139 /* The name for this hierarchy - may be empty */
140 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
141};
142
ddbcc7e8
PM
143/*
144 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
145 * subsystems that are otherwise unattached - it never has more than a
146 * single cgroup, and all tasks are part of that cgroup.
147 */
148static struct cgroupfs_root rootnode;
149
05ef1d7c
TH
150/*
151 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
152 */
153struct cfent {
154 struct list_head node;
155 struct dentry *dentry;
156 struct cftype *type;
157};
158
38460b48
KH
159/*
160 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
161 * cgroup_subsys->use_id != 0.
162 */
163#define CSS_ID_MAX (65535)
164struct css_id {
165 /*
166 * The css to which this ID points. This pointer is set to valid value
167 * after cgroup is populated. If cgroup is removed, this will be NULL.
168 * This pointer is expected to be RCU-safe because destroy()
169 * is called after synchronize_rcu(). But for safe use, css_is_removed()
170 * css_tryget() should be used for avoiding race.
171 */
2c392b8c 172 struct cgroup_subsys_state __rcu *css;
38460b48
KH
173 /*
174 * ID of this css.
175 */
176 unsigned short id;
177 /*
178 * Depth in hierarchy which this ID belongs to.
179 */
180 unsigned short depth;
181 /*
182 * ID is freed by RCU. (and lookup routine is RCU safe.)
183 */
184 struct rcu_head rcu_head;
185 /*
186 * Hierarchy of CSS ID belongs to.
187 */
188 unsigned short stack[0]; /* Array of Length (depth+1) */
189};
190
0dea1168 191/*
25985edc 192 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
193 */
194struct cgroup_event {
195 /*
196 * Cgroup which the event belongs to.
197 */
198 struct cgroup *cgrp;
199 /*
200 * Control file which the event associated.
201 */
202 struct cftype *cft;
203 /*
204 * eventfd to signal userspace about the event.
205 */
206 struct eventfd_ctx *eventfd;
207 /*
208 * Each of these stored in a list by the cgroup.
209 */
210 struct list_head list;
211 /*
212 * All fields below needed to unregister event when
213 * userspace closes eventfd.
214 */
215 poll_table pt;
216 wait_queue_head_t *wqh;
217 wait_queue_t wait;
218 struct work_struct remove;
219};
38460b48 220
ddbcc7e8
PM
221/* The list of hierarchy roots */
222
223static LIST_HEAD(roots);
817929ec 224static int root_count;
ddbcc7e8 225
2c6ab6d2
PM
226static DEFINE_IDA(hierarchy_ida);
227static int next_hierarchy_id;
228static DEFINE_SPINLOCK(hierarchy_id_lock);
229
ddbcc7e8
PM
230/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
231#define dummytop (&rootnode.top_cgroup)
232
233/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
234 * check for fork/exit handlers to call. This avoids us having to do
235 * extra work in the fork/exit path if none of the subsystems need to
236 * be called.
ddbcc7e8 237 */
8947f9d5 238static int need_forkexit_callback __read_mostly;
ddbcc7e8 239
d11c563d
PM
240#ifdef CONFIG_PROVE_LOCKING
241int cgroup_lock_is_held(void)
242{
243 return lockdep_is_held(&cgroup_mutex);
244}
245#else /* #ifdef CONFIG_PROVE_LOCKING */
246int cgroup_lock_is_held(void)
247{
248 return mutex_is_locked(&cgroup_mutex);
249}
250#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
251
252EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
253
ddbcc7e8 254/* convenient tests for these bits */
bd89aabc 255inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 256{
bd89aabc 257 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
258}
259
260/* bits in struct cgroupfs_root flags field */
261enum {
262 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
263};
264
e9685a03 265static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
266{
267 const int bits =
bd89aabc
PM
268 (1 << CGRP_RELEASABLE) |
269 (1 << CGRP_NOTIFY_ON_RELEASE);
270 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
271}
272
e9685a03 273static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 274{
bd89aabc 275 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
276}
277
97978e6d
DL
278static int clone_children(const struct cgroup *cgrp)
279{
280 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
281}
282
ddbcc7e8
PM
283/*
284 * for_each_subsys() allows you to iterate on each subsystem attached to
285 * an active hierarchy
286 */
287#define for_each_subsys(_root, _ss) \
288list_for_each_entry(_ss, &_root->subsys_list, sibling)
289
e5f6a860
LZ
290/* for_each_active_root() allows you to iterate across the active hierarchies */
291#define for_each_active_root(_root) \
ddbcc7e8
PM
292list_for_each_entry(_root, &roots, root_list)
293
f6ea9372
TH
294static inline struct cgroup *__d_cgrp(struct dentry *dentry)
295{
296 return dentry->d_fsdata;
297}
298
05ef1d7c 299static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
300{
301 return dentry->d_fsdata;
302}
303
05ef1d7c
TH
304static inline struct cftype *__d_cft(struct dentry *dentry)
305{
306 return __d_cfe(dentry)->type;
307}
308
81a6a5cd
PM
309/* the list of cgroups eligible for automatic release. Protected by
310 * release_list_lock */
311static LIST_HEAD(release_list);
cdcc136f 312static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
313static void cgroup_release_agent(struct work_struct *work);
314static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 315static void check_for_release(struct cgroup *cgrp);
81a6a5cd 316
817929ec
PM
317/* Link structure for associating css_set objects with cgroups */
318struct cg_cgroup_link {
319 /*
320 * List running through cg_cgroup_links associated with a
321 * cgroup, anchored on cgroup->css_sets
322 */
bd89aabc 323 struct list_head cgrp_link_list;
7717f7ba 324 struct cgroup *cgrp;
817929ec
PM
325 /*
326 * List running through cg_cgroup_links pointing at a
327 * single css_set object, anchored on css_set->cg_links
328 */
329 struct list_head cg_link_list;
330 struct css_set *cg;
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
341static struct cg_cgroup_link init_css_set_link;
342
e6a1105b
BB
343static int cgroup_init_idr(struct cgroup_subsys *ss,
344 struct cgroup_subsys_state *css);
38460b48 345
817929ec
PM
346/* css_set_lock protects the list of css_set objects, and the
347 * chain of tasks off each css_set. Nests outside task->alloc_lock
348 * due to cgroup_iter_start() */
349static DEFINE_RWLOCK(css_set_lock);
350static int css_set_count;
351
7717f7ba
PM
352/*
353 * hash table for cgroup groups. This improves the performance to find
354 * an existing css_set. This hash doesn't (currently) take into
355 * account cgroups in empty hierarchies.
356 */
472b1053
LZ
357#define CSS_SET_HASH_BITS 7
358#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
359static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
360
361static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
362{
363 int i;
364 int index;
365 unsigned long tmp = 0UL;
366
367 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
368 tmp += (unsigned long)css[i];
369 tmp = (tmp >> 16) ^ tmp;
370
371 index = hash_long(tmp, CSS_SET_HASH_BITS);
372
373 return &css_set_table[index];
374}
375
817929ec
PM
376/* We don't maintain the lists running through each css_set to its
377 * task until after the first call to cgroup_iter_start(). This
378 * reduces the fork()/exit() overhead for people who have cgroups
379 * compiled into their kernel but not actually in use */
8947f9d5 380static int use_task_css_set_links __read_mostly;
817929ec 381
2c6ab6d2 382static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 383{
71cbb949
KM
384 struct cg_cgroup_link *link;
385 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
386 /*
387 * Ensure that the refcount doesn't hit zero while any readers
388 * can see it. Similar to atomic_dec_and_lock(), but for an
389 * rwlock
390 */
391 if (atomic_add_unless(&cg->refcount, -1, 1))
392 return;
393 write_lock(&css_set_lock);
394 if (!atomic_dec_and_test(&cg->refcount)) {
395 write_unlock(&css_set_lock);
396 return;
397 }
81a6a5cd 398
2c6ab6d2
PM
399 /* This css_set is dead. unlink it and release cgroup refcounts */
400 hlist_del(&cg->hlist);
401 css_set_count--;
402
403 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
404 cg_link_list) {
405 struct cgroup *cgrp = link->cgrp;
406 list_del(&link->cg_link_list);
407 list_del(&link->cgrp_link_list);
bd89aabc
PM
408 if (atomic_dec_and_test(&cgrp->count) &&
409 notify_on_release(cgrp)) {
81a6a5cd 410 if (taskexit)
bd89aabc
PM
411 set_bit(CGRP_RELEASABLE, &cgrp->flags);
412 check_for_release(cgrp);
81a6a5cd 413 }
2c6ab6d2
PM
414
415 kfree(link);
81a6a5cd 416 }
2c6ab6d2
PM
417
418 write_unlock(&css_set_lock);
30088ad8 419 kfree_rcu(cg, rcu_head);
b4f48b63
PM
420}
421
817929ec
PM
422/*
423 * refcounted get/put for css_set objects
424 */
425static inline void get_css_set(struct css_set *cg)
426{
146aa1bd 427 atomic_inc(&cg->refcount);
817929ec
PM
428}
429
430static inline void put_css_set(struct css_set *cg)
431{
146aa1bd 432 __put_css_set(cg, 0);
817929ec
PM
433}
434
81a6a5cd
PM
435static inline void put_css_set_taskexit(struct css_set *cg)
436{
146aa1bd 437 __put_css_set(cg, 1);
81a6a5cd
PM
438}
439
7717f7ba
PM
440/*
441 * compare_css_sets - helper function for find_existing_css_set().
442 * @cg: candidate css_set being tested
443 * @old_cg: existing css_set for a task
444 * @new_cgrp: cgroup that's being entered by the task
445 * @template: desired set of css pointers in css_set (pre-calculated)
446 *
447 * Returns true if "cg" matches "old_cg" except for the hierarchy
448 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
449 */
450static bool compare_css_sets(struct css_set *cg,
451 struct css_set *old_cg,
452 struct cgroup *new_cgrp,
453 struct cgroup_subsys_state *template[])
454{
455 struct list_head *l1, *l2;
456
457 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
458 /* Not all subsystems matched */
459 return false;
460 }
461
462 /*
463 * Compare cgroup pointers in order to distinguish between
464 * different cgroups in heirarchies with no subsystems. We
465 * could get by with just this check alone (and skip the
466 * memcmp above) but on most setups the memcmp check will
467 * avoid the need for this more expensive check on almost all
468 * candidates.
469 */
470
471 l1 = &cg->cg_links;
472 l2 = &old_cg->cg_links;
473 while (1) {
474 struct cg_cgroup_link *cgl1, *cgl2;
475 struct cgroup *cg1, *cg2;
476
477 l1 = l1->next;
478 l2 = l2->next;
479 /* See if we reached the end - both lists are equal length. */
480 if (l1 == &cg->cg_links) {
481 BUG_ON(l2 != &old_cg->cg_links);
482 break;
483 } else {
484 BUG_ON(l2 == &old_cg->cg_links);
485 }
486 /* Locate the cgroups associated with these links. */
487 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
488 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
489 cg1 = cgl1->cgrp;
490 cg2 = cgl2->cgrp;
491 /* Hierarchies should be linked in the same order. */
492 BUG_ON(cg1->root != cg2->root);
493
494 /*
495 * If this hierarchy is the hierarchy of the cgroup
496 * that's changing, then we need to check that this
497 * css_set points to the new cgroup; if it's any other
498 * hierarchy, then this css_set should point to the
499 * same cgroup as the old css_set.
500 */
501 if (cg1->root == new_cgrp->root) {
502 if (cg1 != new_cgrp)
503 return false;
504 } else {
505 if (cg1 != cg2)
506 return false;
507 }
508 }
509 return true;
510}
511
817929ec
PM
512/*
513 * find_existing_css_set() is a helper for
514 * find_css_set(), and checks to see whether an existing
472b1053 515 * css_set is suitable.
817929ec
PM
516 *
517 * oldcg: the cgroup group that we're using before the cgroup
518 * transition
519 *
bd89aabc 520 * cgrp: the cgroup that we're moving into
817929ec
PM
521 *
522 * template: location in which to build the desired set of subsystem
523 * state objects for the new cgroup group
524 */
817929ec
PM
525static struct css_set *find_existing_css_set(
526 struct css_set *oldcg,
bd89aabc 527 struct cgroup *cgrp,
817929ec 528 struct cgroup_subsys_state *template[])
b4f48b63
PM
529{
530 int i;
bd89aabc 531 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
532 struct hlist_head *hhead;
533 struct hlist_node *node;
534 struct css_set *cg;
817929ec 535
aae8aab4
BB
536 /*
537 * Build the set of subsystem state objects that we want to see in the
538 * new css_set. while subsystems can change globally, the entries here
539 * won't change, so no need for locking.
540 */
817929ec 541 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 542 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
543 /* Subsystem is in this hierarchy. So we want
544 * the subsystem state from the new
545 * cgroup */
bd89aabc 546 template[i] = cgrp->subsys[i];
817929ec
PM
547 } else {
548 /* Subsystem is not in this hierarchy, so we
549 * don't want to change the subsystem state */
550 template[i] = oldcg->subsys[i];
551 }
552 }
553
472b1053
LZ
554 hhead = css_set_hash(template);
555 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
556 if (!compare_css_sets(cg, oldcg, cgrp, template))
557 continue;
558
559 /* This css_set matches what we need */
560 return cg;
472b1053 561 }
817929ec
PM
562
563 /* No existing cgroup group matched */
564 return NULL;
565}
566
36553434
LZ
567static void free_cg_links(struct list_head *tmp)
568{
569 struct cg_cgroup_link *link;
570 struct cg_cgroup_link *saved_link;
571
572 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
573 list_del(&link->cgrp_link_list);
574 kfree(link);
575 }
576}
577
817929ec
PM
578/*
579 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 580 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
581 * success or a negative error
582 */
817929ec
PM
583static int allocate_cg_links(int count, struct list_head *tmp)
584{
585 struct cg_cgroup_link *link;
586 int i;
587 INIT_LIST_HEAD(tmp);
588 for (i = 0; i < count; i++) {
589 link = kmalloc(sizeof(*link), GFP_KERNEL);
590 if (!link) {
36553434 591 free_cg_links(tmp);
817929ec
PM
592 return -ENOMEM;
593 }
bd89aabc 594 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
595 }
596 return 0;
597}
598
c12f65d4
LZ
599/**
600 * link_css_set - a helper function to link a css_set to a cgroup
601 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
602 * @cg: the css_set to be linked
603 * @cgrp: the destination cgroup
604 */
605static void link_css_set(struct list_head *tmp_cg_links,
606 struct css_set *cg, struct cgroup *cgrp)
607{
608 struct cg_cgroup_link *link;
609
610 BUG_ON(list_empty(tmp_cg_links));
611 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
612 cgrp_link_list);
613 link->cg = cg;
7717f7ba 614 link->cgrp = cgrp;
2c6ab6d2 615 atomic_inc(&cgrp->count);
c12f65d4 616 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
617 /*
618 * Always add links to the tail of the list so that the list
619 * is sorted by order of hierarchy creation
620 */
621 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
622}
623
817929ec
PM
624/*
625 * find_css_set() takes an existing cgroup group and a
626 * cgroup object, and returns a css_set object that's
627 * equivalent to the old group, but with the given cgroup
628 * substituted into the appropriate hierarchy. Must be called with
629 * cgroup_mutex held
630 */
817929ec 631static struct css_set *find_css_set(
bd89aabc 632 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
633{
634 struct css_set *res;
635 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
636
637 struct list_head tmp_cg_links;
817929ec 638
472b1053 639 struct hlist_head *hhead;
7717f7ba 640 struct cg_cgroup_link *link;
472b1053 641
817929ec
PM
642 /* First see if we already have a cgroup group that matches
643 * the desired set */
7e9abd89 644 read_lock(&css_set_lock);
bd89aabc 645 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
646 if (res)
647 get_css_set(res);
7e9abd89 648 read_unlock(&css_set_lock);
817929ec
PM
649
650 if (res)
651 return res;
652
653 res = kmalloc(sizeof(*res), GFP_KERNEL);
654 if (!res)
655 return NULL;
656
657 /* Allocate all the cg_cgroup_link objects that we'll need */
658 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
659 kfree(res);
660 return NULL;
661 }
662
146aa1bd 663 atomic_set(&res->refcount, 1);
817929ec
PM
664 INIT_LIST_HEAD(&res->cg_links);
665 INIT_LIST_HEAD(&res->tasks);
472b1053 666 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
667
668 /* Copy the set of subsystem state objects generated in
669 * find_existing_css_set() */
670 memcpy(res->subsys, template, sizeof(res->subsys));
671
672 write_lock(&css_set_lock);
673 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
674 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
675 struct cgroup *c = link->cgrp;
676 if (c->root == cgrp->root)
677 c = cgrp;
678 link_css_set(&tmp_cg_links, res, c);
679 }
817929ec
PM
680
681 BUG_ON(!list_empty(&tmp_cg_links));
682
817929ec 683 css_set_count++;
472b1053
LZ
684
685 /* Add this cgroup group to the hash table */
686 hhead = css_set_hash(res->subsys);
687 hlist_add_head(&res->hlist, hhead);
688
817929ec
PM
689 write_unlock(&css_set_lock);
690
691 return res;
b4f48b63
PM
692}
693
7717f7ba
PM
694/*
695 * Return the cgroup for "task" from the given hierarchy. Must be
696 * called with cgroup_mutex held.
697 */
698static struct cgroup *task_cgroup_from_root(struct task_struct *task,
699 struct cgroupfs_root *root)
700{
701 struct css_set *css;
702 struct cgroup *res = NULL;
703
704 BUG_ON(!mutex_is_locked(&cgroup_mutex));
705 read_lock(&css_set_lock);
706 /*
707 * No need to lock the task - since we hold cgroup_mutex the
708 * task can't change groups, so the only thing that can happen
709 * is that it exits and its css is set back to init_css_set.
710 */
711 css = task->cgroups;
712 if (css == &init_css_set) {
713 res = &root->top_cgroup;
714 } else {
715 struct cg_cgroup_link *link;
716 list_for_each_entry(link, &css->cg_links, cg_link_list) {
717 struct cgroup *c = link->cgrp;
718 if (c->root == root) {
719 res = c;
720 break;
721 }
722 }
723 }
724 read_unlock(&css_set_lock);
725 BUG_ON(!res);
726 return res;
727}
728
ddbcc7e8
PM
729/*
730 * There is one global cgroup mutex. We also require taking
731 * task_lock() when dereferencing a task's cgroup subsys pointers.
732 * See "The task_lock() exception", at the end of this comment.
733 *
734 * A task must hold cgroup_mutex to modify cgroups.
735 *
736 * Any task can increment and decrement the count field without lock.
737 * So in general, code holding cgroup_mutex can't rely on the count
738 * field not changing. However, if the count goes to zero, then only
956db3ca 739 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
740 * means that no tasks are currently attached, therefore there is no
741 * way a task attached to that cgroup can fork (the other way to
742 * increment the count). So code holding cgroup_mutex can safely
743 * assume that if the count is zero, it will stay zero. Similarly, if
744 * a task holds cgroup_mutex on a cgroup with zero count, it
745 * knows that the cgroup won't be removed, as cgroup_rmdir()
746 * needs that mutex.
747 *
ddbcc7e8
PM
748 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
749 * (usually) take cgroup_mutex. These are the two most performance
750 * critical pieces of code here. The exception occurs on cgroup_exit(),
751 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
752 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
753 * to the release agent with the name of the cgroup (path relative to
754 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
755 *
756 * A cgroup can only be deleted if both its 'count' of using tasks
757 * is zero, and its list of 'children' cgroups is empty. Since all
758 * tasks in the system use _some_ cgroup, and since there is always at
759 * least one task in the system (init, pid == 1), therefore, top_cgroup
760 * always has either children cgroups and/or using tasks. So we don't
761 * need a special hack to ensure that top_cgroup cannot be deleted.
762 *
763 * The task_lock() exception
764 *
765 * The need for this exception arises from the action of
956db3ca 766 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 767 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
768 * several performance critical places that need to reference
769 * task->cgroup without the expense of grabbing a system global
770 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 771 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
772 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
773 * the task_struct routinely used for such matters.
774 *
775 * P.S. One more locking exception. RCU is used to guard the
956db3ca 776 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
777 */
778
ddbcc7e8
PM
779/**
780 * cgroup_lock - lock out any changes to cgroup structures
781 *
782 */
ddbcc7e8
PM
783void cgroup_lock(void)
784{
785 mutex_lock(&cgroup_mutex);
786}
67523c48 787EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
788
789/**
790 * cgroup_unlock - release lock on cgroup changes
791 *
792 * Undo the lock taken in a previous cgroup_lock() call.
793 */
ddbcc7e8
PM
794void cgroup_unlock(void)
795{
796 mutex_unlock(&cgroup_mutex);
797}
67523c48 798EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
799
800/*
801 * A couple of forward declarations required, due to cyclic reference loop:
802 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
803 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
804 * -> cgroup_mkdir.
805 */
806
18bb1db3 807static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
c72a04e3 808static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 809static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 810static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 811static const struct inode_operations cgroup_dir_inode_operations;
828c0950 812static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
813
814static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 815 .name = "cgroup",
e4ad08fe 816 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 817};
ddbcc7e8 818
38460b48
KH
819static int alloc_css_id(struct cgroup_subsys *ss,
820 struct cgroup *parent, struct cgroup *child);
821
a5e7ed32 822static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
823{
824 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
825
826 if (inode) {
85fe4025 827 inode->i_ino = get_next_ino();
ddbcc7e8 828 inode->i_mode = mode;
76aac0e9
DH
829 inode->i_uid = current_fsuid();
830 inode->i_gid = current_fsgid();
ddbcc7e8
PM
831 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
832 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
833 }
834 return inode;
835}
836
4fca88c8
KH
837/*
838 * Call subsys's pre_destroy handler.
839 * This is called before css refcnt check.
840 */
ec64f515 841static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
842{
843 struct cgroup_subsys *ss;
ec64f515
KH
844 int ret = 0;
845
4fca88c8 846 for_each_subsys(cgrp->root, ss)
ec64f515 847 if (ss->pre_destroy) {
761b3ef5 848 ret = ss->pre_destroy(cgrp);
ec64f515 849 if (ret)
4ab78683 850 break;
ec64f515 851 }
0dea1168 852
ec64f515 853 return ret;
4fca88c8
KH
854}
855
ddbcc7e8
PM
856static void cgroup_diput(struct dentry *dentry, struct inode *inode)
857{
858 /* is dentry a directory ? if so, kfree() associated cgroup */
859 if (S_ISDIR(inode->i_mode)) {
bd89aabc 860 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 861 struct cgroup_subsys *ss;
bd89aabc 862 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
863 /* It's possible for external users to be holding css
864 * reference counts on a cgroup; css_put() needs to
865 * be able to access the cgroup after decrementing
866 * the reference count in order to know if it needs to
867 * queue the cgroup to be handled by the release
868 * agent */
869 synchronize_rcu();
8dc4f3e1
PM
870
871 mutex_lock(&cgroup_mutex);
872 /*
873 * Release the subsystem state objects.
874 */
75139b82 875 for_each_subsys(cgrp->root, ss)
761b3ef5 876 ss->destroy(cgrp);
8dc4f3e1
PM
877
878 cgrp->root->number_of_cgroups--;
879 mutex_unlock(&cgroup_mutex);
880
a47295e6
PM
881 /*
882 * Drop the active superblock reference that we took when we
883 * created the cgroup
884 */
8dc4f3e1
PM
885 deactivate_super(cgrp->root->sb);
886
72a8cb30
BB
887 /*
888 * if we're getting rid of the cgroup, refcount should ensure
889 * that there are no pidlists left.
890 */
891 BUG_ON(!list_empty(&cgrp->pidlists));
892
f2da1c40 893 kfree_rcu(cgrp, rcu_head);
05ef1d7c
TH
894 } else {
895 struct cfent *cfe = __d_cfe(dentry);
896 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
897
898 WARN_ONCE(!list_empty(&cfe->node) &&
899 cgrp != &cgrp->root->top_cgroup,
900 "cfe still linked for %s\n", cfe->type->name);
901 kfree(cfe);
ddbcc7e8
PM
902 }
903 iput(inode);
904}
905
c72a04e3
AV
906static int cgroup_delete(const struct dentry *d)
907{
908 return 1;
909}
910
ddbcc7e8
PM
911static void remove_dir(struct dentry *d)
912{
913 struct dentry *parent = dget(d->d_parent);
914
915 d_delete(d);
916 simple_rmdir(parent->d_inode, d);
917 dput(parent);
918}
919
05ef1d7c
TH
920static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
921{
922 struct cfent *cfe;
923
924 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
925 lockdep_assert_held(&cgroup_mutex);
926
927 list_for_each_entry(cfe, &cgrp->files, node) {
928 struct dentry *d = cfe->dentry;
929
930 if (cft && cfe->type != cft)
931 continue;
932
933 dget(d);
934 d_delete(d);
935 simple_unlink(d->d_inode, d);
936 list_del_init(&cfe->node);
937 dput(d);
938
939 return 0;
ddbcc7e8 940 }
05ef1d7c
TH
941 return -ENOENT;
942}
943
944static void cgroup_clear_directory(struct dentry *dir)
945{
946 struct cgroup *cgrp = __d_cgrp(dir);
947
948 while (!list_empty(&cgrp->files))
949 cgroup_rm_file(cgrp, NULL);
ddbcc7e8
PM
950}
951
952/*
953 * NOTE : the dentry must have been dget()'ed
954 */
955static void cgroup_d_remove_dir(struct dentry *dentry)
956{
2fd6b7f5
NP
957 struct dentry *parent;
958
ddbcc7e8
PM
959 cgroup_clear_directory(dentry);
960
2fd6b7f5
NP
961 parent = dentry->d_parent;
962 spin_lock(&parent->d_lock);
3ec762ad 963 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 964 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
965 spin_unlock(&dentry->d_lock);
966 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
967 remove_dir(dentry);
968}
969
ec64f515
KH
970/*
971 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
972 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
973 * reference to css->refcnt. In general, this refcnt is expected to goes down
974 * to zero, soon.
975 *
88703267 976 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515 977 */
1c6c3fad 978static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
ec64f515 979
88703267 980static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 981{
88703267 982 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
983 wake_up_all(&cgroup_rmdir_waitq);
984}
985
88703267
KH
986void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
987{
988 css_get(css);
989}
990
991void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
992{
993 cgroup_wakeup_rmdir_waiter(css->cgroup);
994 css_put(css);
995}
996
aae8aab4 997/*
cf5d5941
BB
998 * Call with cgroup_mutex held. Drops reference counts on modules, including
999 * any duplicate ones that parse_cgroupfs_options took. If this function
1000 * returns an error, no reference counts are touched.
aae8aab4 1001 */
ddbcc7e8
PM
1002static int rebind_subsystems(struct cgroupfs_root *root,
1003 unsigned long final_bits)
1004{
1005 unsigned long added_bits, removed_bits;
bd89aabc 1006 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1007 int i;
1008
aae8aab4 1009 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1010 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1011
ddbcc7e8
PM
1012 removed_bits = root->actual_subsys_bits & ~final_bits;
1013 added_bits = final_bits & ~root->actual_subsys_bits;
1014 /* Check that any added subsystems are currently free */
1015 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1016 unsigned long bit = 1UL << i;
ddbcc7e8
PM
1017 struct cgroup_subsys *ss = subsys[i];
1018 if (!(bit & added_bits))
1019 continue;
aae8aab4
BB
1020 /*
1021 * Nobody should tell us to do a subsys that doesn't exist:
1022 * parse_cgroupfs_options should catch that case and refcounts
1023 * ensure that subsystems won't disappear once selected.
1024 */
1025 BUG_ON(ss == NULL);
ddbcc7e8
PM
1026 if (ss->root != &rootnode) {
1027 /* Subsystem isn't free */
1028 return -EBUSY;
1029 }
1030 }
1031
1032 /* Currently we don't handle adding/removing subsystems when
1033 * any child cgroups exist. This is theoretically supportable
1034 * but involves complex error handling, so it's being left until
1035 * later */
307257cf 1036 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1037 return -EBUSY;
1038
1039 /* Process each subsystem */
1040 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1041 struct cgroup_subsys *ss = subsys[i];
1042 unsigned long bit = 1UL << i;
1043 if (bit & added_bits) {
1044 /* We're binding this subsystem to this hierarchy */
aae8aab4 1045 BUG_ON(ss == NULL);
bd89aabc 1046 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1047 BUG_ON(!dummytop->subsys[i]);
1048 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1049 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1050 cgrp->subsys[i] = dummytop->subsys[i];
1051 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1052 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1053 ss->root = root;
ddbcc7e8 1054 if (ss->bind)
761b3ef5 1055 ss->bind(cgrp);
999cd8a4 1056 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1057 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1058 } else if (bit & removed_bits) {
1059 /* We're removing this subsystem */
aae8aab4 1060 BUG_ON(ss == NULL);
bd89aabc
PM
1061 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1062 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1063 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8 1064 if (ss->bind)
761b3ef5 1065 ss->bind(dummytop);
ddbcc7e8 1066 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1067 cgrp->subsys[i] = NULL;
b2aa30f7 1068 subsys[i]->root = &rootnode;
33a68ac1 1069 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1070 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1071 /* subsystem is now free - drop reference on module */
1072 module_put(ss->module);
ddbcc7e8
PM
1073 } else if (bit & final_bits) {
1074 /* Subsystem state should already exist */
aae8aab4 1075 BUG_ON(ss == NULL);
bd89aabc 1076 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1077 /*
1078 * a refcount was taken, but we already had one, so
1079 * drop the extra reference.
1080 */
1081 module_put(ss->module);
1082#ifdef CONFIG_MODULE_UNLOAD
1083 BUG_ON(ss->module && !module_refcount(ss->module));
1084#endif
ddbcc7e8
PM
1085 } else {
1086 /* Subsystem state shouldn't exist */
bd89aabc 1087 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1088 }
1089 }
1090 root->subsys_bits = root->actual_subsys_bits = final_bits;
1091 synchronize_rcu();
1092
1093 return 0;
1094}
1095
34c80b1d 1096static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1097{
34c80b1d 1098 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1099 struct cgroup_subsys *ss;
1100
e25e2cbb 1101 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1102 for_each_subsys(root, ss)
1103 seq_printf(seq, ",%s", ss->name);
1104 if (test_bit(ROOT_NOPREFIX, &root->flags))
1105 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1106 if (strlen(root->release_agent_path))
1107 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1108 if (clone_children(&root->top_cgroup))
1109 seq_puts(seq, ",clone_children");
c6d57f33
PM
1110 if (strlen(root->name))
1111 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1112 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1113 return 0;
1114}
1115
1116struct cgroup_sb_opts {
1117 unsigned long subsys_bits;
1118 unsigned long flags;
81a6a5cd 1119 char *release_agent;
97978e6d 1120 bool clone_children;
c6d57f33 1121 char *name;
2c6ab6d2
PM
1122 /* User explicitly requested empty subsystem */
1123 bool none;
c6d57f33
PM
1124
1125 struct cgroupfs_root *new_root;
2c6ab6d2 1126
ddbcc7e8
PM
1127};
1128
aae8aab4
BB
1129/*
1130 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1131 * with cgroup_mutex held to protect the subsys[] array. This function takes
1132 * refcounts on subsystems to be used, unless it returns error, in which case
1133 * no refcounts are taken.
aae8aab4 1134 */
cf5d5941 1135static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1136{
32a8cf23
DL
1137 char *token, *o = data;
1138 bool all_ss = false, one_ss = false;
f9ab5b5b 1139 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1140 int i;
1141 bool module_pin_failed = false;
f9ab5b5b 1142
aae8aab4
BB
1143 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1144
f9ab5b5b
LZ
1145#ifdef CONFIG_CPUSETS
1146 mask = ~(1UL << cpuset_subsys_id);
1147#endif
ddbcc7e8 1148
c6d57f33 1149 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1150
1151 while ((token = strsep(&o, ",")) != NULL) {
1152 if (!*token)
1153 return -EINVAL;
32a8cf23 1154 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1155 /* Explicitly have no subsystems */
1156 opts->none = true;
32a8cf23
DL
1157 continue;
1158 }
1159 if (!strcmp(token, "all")) {
1160 /* Mutually exclusive option 'all' + subsystem name */
1161 if (one_ss)
1162 return -EINVAL;
1163 all_ss = true;
1164 continue;
1165 }
1166 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1167 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1168 continue;
1169 }
1170 if (!strcmp(token, "clone_children")) {
97978e6d 1171 opts->clone_children = true;
32a8cf23
DL
1172 continue;
1173 }
1174 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1175 /* Specifying two release agents is forbidden */
1176 if (opts->release_agent)
1177 return -EINVAL;
c6d57f33 1178 opts->release_agent =
e400c285 1179 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1180 if (!opts->release_agent)
1181 return -ENOMEM;
32a8cf23
DL
1182 continue;
1183 }
1184 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1185 const char *name = token + 5;
1186 /* Can't specify an empty name */
1187 if (!strlen(name))
1188 return -EINVAL;
1189 /* Must match [\w.-]+ */
1190 for (i = 0; i < strlen(name); i++) {
1191 char c = name[i];
1192 if (isalnum(c))
1193 continue;
1194 if ((c == '.') || (c == '-') || (c == '_'))
1195 continue;
1196 return -EINVAL;
1197 }
1198 /* Specifying two names is forbidden */
1199 if (opts->name)
1200 return -EINVAL;
1201 opts->name = kstrndup(name,
e400c285 1202 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1203 GFP_KERNEL);
1204 if (!opts->name)
1205 return -ENOMEM;
32a8cf23
DL
1206
1207 continue;
1208 }
1209
1210 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1211 struct cgroup_subsys *ss = subsys[i];
1212 if (ss == NULL)
1213 continue;
1214 if (strcmp(token, ss->name))
1215 continue;
1216 if (ss->disabled)
1217 continue;
1218
1219 /* Mutually exclusive option 'all' + subsystem name */
1220 if (all_ss)
1221 return -EINVAL;
1222 set_bit(i, &opts->subsys_bits);
1223 one_ss = true;
1224
1225 break;
1226 }
1227 if (i == CGROUP_SUBSYS_COUNT)
1228 return -ENOENT;
1229 }
1230
1231 /*
1232 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1233 * otherwise if 'none', 'name=' and a subsystem name options
1234 * were not specified, let's default to 'all'
32a8cf23 1235 */
0d19ea86 1236 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1237 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1238 struct cgroup_subsys *ss = subsys[i];
1239 if (ss == NULL)
1240 continue;
1241 if (ss->disabled)
1242 continue;
1243 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1244 }
1245 }
1246
2c6ab6d2
PM
1247 /* Consistency checks */
1248
f9ab5b5b
LZ
1249 /*
1250 * Option noprefix was introduced just for backward compatibility
1251 * with the old cpuset, so we allow noprefix only if mounting just
1252 * the cpuset subsystem.
1253 */
1254 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1255 (opts->subsys_bits & mask))
1256 return -EINVAL;
1257
2c6ab6d2
PM
1258
1259 /* Can't specify "none" and some subsystems */
1260 if (opts->subsys_bits && opts->none)
1261 return -EINVAL;
1262
1263 /*
1264 * We either have to specify by name or by subsystems. (So all
1265 * empty hierarchies must have a name).
1266 */
c6d57f33 1267 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1268 return -EINVAL;
1269
cf5d5941
BB
1270 /*
1271 * Grab references on all the modules we'll need, so the subsystems
1272 * don't dance around before rebind_subsystems attaches them. This may
1273 * take duplicate reference counts on a subsystem that's already used,
1274 * but rebind_subsystems handles this case.
1275 */
1276 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1277 unsigned long bit = 1UL << i;
1278
1279 if (!(bit & opts->subsys_bits))
1280 continue;
1281 if (!try_module_get(subsys[i]->module)) {
1282 module_pin_failed = true;
1283 break;
1284 }
1285 }
1286 if (module_pin_failed) {
1287 /*
1288 * oops, one of the modules was going away. this means that we
1289 * raced with a module_delete call, and to the user this is
1290 * essentially a "subsystem doesn't exist" case.
1291 */
1292 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1293 /* drop refcounts only on the ones we took */
1294 unsigned long bit = 1UL << i;
1295
1296 if (!(bit & opts->subsys_bits))
1297 continue;
1298 module_put(subsys[i]->module);
1299 }
1300 return -ENOENT;
1301 }
1302
ddbcc7e8
PM
1303 return 0;
1304}
1305
cf5d5941
BB
1306static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1307{
1308 int i;
1309 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1310 unsigned long bit = 1UL << i;
1311
1312 if (!(bit & subsys_bits))
1313 continue;
1314 module_put(subsys[i]->module);
1315 }
1316}
1317
ddbcc7e8
PM
1318static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1319{
1320 int ret = 0;
1321 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1322 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1323 struct cgroup_sb_opts opts;
1324
bd89aabc 1325 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1326 mutex_lock(&cgroup_mutex);
e25e2cbb 1327 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1328
1329 /* See what subsystems are wanted */
1330 ret = parse_cgroupfs_options(data, &opts);
1331 if (ret)
1332 goto out_unlock;
1333
8b5a5a9d
TH
1334 /* See feature-removal-schedule.txt */
1335 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1336 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1337 task_tgid_nr(current), current->comm);
1338
cf5d5941
BB
1339 /* Don't allow flags or name to change at remount */
1340 if (opts.flags != root->flags ||
1341 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1342 ret = -EINVAL;
cf5d5941 1343 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1344 goto out_unlock;
1345 }
1346
ddbcc7e8 1347 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1348 if (ret) {
1349 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1350 goto out_unlock;
cf5d5941 1351 }
ddbcc7e8 1352
ff4c8d50
TH
1353 /* clear out any existing files and repopulate subsystem files */
1354 cgroup_clear_directory(cgrp->dentry);
0670e08b 1355 cgroup_populate_dir(cgrp);
ddbcc7e8 1356
81a6a5cd
PM
1357 if (opts.release_agent)
1358 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1359 out_unlock:
66bdc9cf 1360 kfree(opts.release_agent);
c6d57f33 1361 kfree(opts.name);
e25e2cbb 1362 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1363 mutex_unlock(&cgroup_mutex);
bd89aabc 1364 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1365 return ret;
1366}
1367
b87221de 1368static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1369 .statfs = simple_statfs,
1370 .drop_inode = generic_delete_inode,
1371 .show_options = cgroup_show_options,
1372 .remount_fs = cgroup_remount,
1373};
1374
cc31edce
PM
1375static void init_cgroup_housekeeping(struct cgroup *cgrp)
1376{
1377 INIT_LIST_HEAD(&cgrp->sibling);
1378 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1379 INIT_LIST_HEAD(&cgrp->files);
cc31edce
PM
1380 INIT_LIST_HEAD(&cgrp->css_sets);
1381 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1382 INIT_LIST_HEAD(&cgrp->pidlists);
1383 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1384 INIT_LIST_HEAD(&cgrp->event_list);
1385 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1386}
c6d57f33 1387
ddbcc7e8
PM
1388static void init_cgroup_root(struct cgroupfs_root *root)
1389{
bd89aabc 1390 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1391
ddbcc7e8
PM
1392 INIT_LIST_HEAD(&root->subsys_list);
1393 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1394 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1395 root->number_of_cgroups = 1;
bd89aabc
PM
1396 cgrp->root = root;
1397 cgrp->top_cgroup = cgrp;
b0ca5a84 1398 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
cc31edce 1399 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1400}
1401
2c6ab6d2
PM
1402static bool init_root_id(struct cgroupfs_root *root)
1403{
1404 int ret = 0;
1405
1406 do {
1407 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1408 return false;
1409 spin_lock(&hierarchy_id_lock);
1410 /* Try to allocate the next unused ID */
1411 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1412 &root->hierarchy_id);
1413 if (ret == -ENOSPC)
1414 /* Try again starting from 0 */
1415 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1416 if (!ret) {
1417 next_hierarchy_id = root->hierarchy_id + 1;
1418 } else if (ret != -EAGAIN) {
1419 /* Can only get here if the 31-bit IDR is full ... */
1420 BUG_ON(ret);
1421 }
1422 spin_unlock(&hierarchy_id_lock);
1423 } while (ret);
1424 return true;
1425}
1426
ddbcc7e8
PM
1427static int cgroup_test_super(struct super_block *sb, void *data)
1428{
c6d57f33 1429 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1430 struct cgroupfs_root *root = sb->s_fs_info;
1431
c6d57f33
PM
1432 /* If we asked for a name then it must match */
1433 if (opts->name && strcmp(opts->name, root->name))
1434 return 0;
ddbcc7e8 1435
2c6ab6d2
PM
1436 /*
1437 * If we asked for subsystems (or explicitly for no
1438 * subsystems) then they must match
1439 */
1440 if ((opts->subsys_bits || opts->none)
1441 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1442 return 0;
1443
1444 return 1;
1445}
1446
c6d57f33
PM
1447static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1448{
1449 struct cgroupfs_root *root;
1450
2c6ab6d2 1451 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1452 return NULL;
1453
1454 root = kzalloc(sizeof(*root), GFP_KERNEL);
1455 if (!root)
1456 return ERR_PTR(-ENOMEM);
1457
2c6ab6d2
PM
1458 if (!init_root_id(root)) {
1459 kfree(root);
1460 return ERR_PTR(-ENOMEM);
1461 }
c6d57f33 1462 init_cgroup_root(root);
2c6ab6d2 1463
c6d57f33
PM
1464 root->subsys_bits = opts->subsys_bits;
1465 root->flags = opts->flags;
1466 if (opts->release_agent)
1467 strcpy(root->release_agent_path, opts->release_agent);
1468 if (opts->name)
1469 strcpy(root->name, opts->name);
97978e6d
DL
1470 if (opts->clone_children)
1471 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1472 return root;
1473}
1474
2c6ab6d2
PM
1475static void cgroup_drop_root(struct cgroupfs_root *root)
1476{
1477 if (!root)
1478 return;
1479
1480 BUG_ON(!root->hierarchy_id);
1481 spin_lock(&hierarchy_id_lock);
1482 ida_remove(&hierarchy_ida, root->hierarchy_id);
1483 spin_unlock(&hierarchy_id_lock);
1484 kfree(root);
1485}
1486
ddbcc7e8
PM
1487static int cgroup_set_super(struct super_block *sb, void *data)
1488{
1489 int ret;
c6d57f33
PM
1490 struct cgroup_sb_opts *opts = data;
1491
1492 /* If we don't have a new root, we can't set up a new sb */
1493 if (!opts->new_root)
1494 return -EINVAL;
1495
2c6ab6d2 1496 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1497
1498 ret = set_anon_super(sb, NULL);
1499 if (ret)
1500 return ret;
1501
c6d57f33
PM
1502 sb->s_fs_info = opts->new_root;
1503 opts->new_root->sb = sb;
ddbcc7e8
PM
1504
1505 sb->s_blocksize = PAGE_CACHE_SIZE;
1506 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1507 sb->s_magic = CGROUP_SUPER_MAGIC;
1508 sb->s_op = &cgroup_ops;
1509
1510 return 0;
1511}
1512
1513static int cgroup_get_rootdir(struct super_block *sb)
1514{
0df6a63f
AV
1515 static const struct dentry_operations cgroup_dops = {
1516 .d_iput = cgroup_diput,
c72a04e3 1517 .d_delete = cgroup_delete,
0df6a63f
AV
1518 };
1519
ddbcc7e8
PM
1520 struct inode *inode =
1521 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1522
1523 if (!inode)
1524 return -ENOMEM;
1525
ddbcc7e8
PM
1526 inode->i_fop = &simple_dir_operations;
1527 inode->i_op = &cgroup_dir_inode_operations;
1528 /* directories start off with i_nlink == 2 (for "." entry) */
1529 inc_nlink(inode);
48fde701
AV
1530 sb->s_root = d_make_root(inode);
1531 if (!sb->s_root)
ddbcc7e8 1532 return -ENOMEM;
0df6a63f
AV
1533 /* for everything else we want ->d_op set */
1534 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1535 return 0;
1536}
1537
f7e83571 1538static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1539 int flags, const char *unused_dev_name,
f7e83571 1540 void *data)
ddbcc7e8
PM
1541{
1542 struct cgroup_sb_opts opts;
c6d57f33 1543 struct cgroupfs_root *root;
ddbcc7e8
PM
1544 int ret = 0;
1545 struct super_block *sb;
c6d57f33 1546 struct cgroupfs_root *new_root;
e25e2cbb 1547 struct inode *inode;
ddbcc7e8
PM
1548
1549 /* First find the desired set of subsystems */
aae8aab4 1550 mutex_lock(&cgroup_mutex);
ddbcc7e8 1551 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1552 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1553 if (ret)
1554 goto out_err;
ddbcc7e8 1555
c6d57f33
PM
1556 /*
1557 * Allocate a new cgroup root. We may not need it if we're
1558 * reusing an existing hierarchy.
1559 */
1560 new_root = cgroup_root_from_opts(&opts);
1561 if (IS_ERR(new_root)) {
1562 ret = PTR_ERR(new_root);
cf5d5941 1563 goto drop_modules;
81a6a5cd 1564 }
c6d57f33 1565 opts.new_root = new_root;
ddbcc7e8 1566
c6d57f33
PM
1567 /* Locate an existing or new sb for this hierarchy */
1568 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1569 if (IS_ERR(sb)) {
c6d57f33 1570 ret = PTR_ERR(sb);
2c6ab6d2 1571 cgroup_drop_root(opts.new_root);
cf5d5941 1572 goto drop_modules;
ddbcc7e8
PM
1573 }
1574
c6d57f33
PM
1575 root = sb->s_fs_info;
1576 BUG_ON(!root);
1577 if (root == opts.new_root) {
1578 /* We used the new root structure, so this is a new hierarchy */
1579 struct list_head tmp_cg_links;
c12f65d4 1580 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1581 struct cgroupfs_root *existing_root;
2ce9738b 1582 const struct cred *cred;
28fd5dfc 1583 int i;
ddbcc7e8
PM
1584
1585 BUG_ON(sb->s_root != NULL);
1586
1587 ret = cgroup_get_rootdir(sb);
1588 if (ret)
1589 goto drop_new_super;
817929ec 1590 inode = sb->s_root->d_inode;
ddbcc7e8 1591
817929ec 1592 mutex_lock(&inode->i_mutex);
ddbcc7e8 1593 mutex_lock(&cgroup_mutex);
e25e2cbb 1594 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1595
e25e2cbb
TH
1596 /* Check for name clashes with existing mounts */
1597 ret = -EBUSY;
1598 if (strlen(root->name))
1599 for_each_active_root(existing_root)
1600 if (!strcmp(existing_root->name, root->name))
1601 goto unlock_drop;
c6d57f33 1602
817929ec
PM
1603 /*
1604 * We're accessing css_set_count without locking
1605 * css_set_lock here, but that's OK - it can only be
1606 * increased by someone holding cgroup_lock, and
1607 * that's us. The worst that can happen is that we
1608 * have some link structures left over
1609 */
1610 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1611 if (ret)
1612 goto unlock_drop;
817929ec 1613
ddbcc7e8
PM
1614 ret = rebind_subsystems(root, root->subsys_bits);
1615 if (ret == -EBUSY) {
c6d57f33 1616 free_cg_links(&tmp_cg_links);
e25e2cbb 1617 goto unlock_drop;
ddbcc7e8 1618 }
cf5d5941
BB
1619 /*
1620 * There must be no failure case after here, since rebinding
1621 * takes care of subsystems' refcounts, which are explicitly
1622 * dropped in the failure exit path.
1623 */
ddbcc7e8
PM
1624
1625 /* EBUSY should be the only error here */
1626 BUG_ON(ret);
1627
1628 list_add(&root->root_list, &roots);
817929ec 1629 root_count++;
ddbcc7e8 1630
c12f65d4 1631 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1632 root->top_cgroup.dentry = sb->s_root;
1633
817929ec
PM
1634 /* Link the top cgroup in this hierarchy into all
1635 * the css_set objects */
1636 write_lock(&css_set_lock);
28fd5dfc
LZ
1637 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1638 struct hlist_head *hhead = &css_set_table[i];
1639 struct hlist_node *node;
817929ec 1640 struct css_set *cg;
28fd5dfc 1641
c12f65d4
LZ
1642 hlist_for_each_entry(cg, node, hhead, hlist)
1643 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1644 }
817929ec
PM
1645 write_unlock(&css_set_lock);
1646
1647 free_cg_links(&tmp_cg_links);
1648
c12f65d4
LZ
1649 BUG_ON(!list_empty(&root_cgrp->sibling));
1650 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1651 BUG_ON(root->number_of_cgroups != 1);
1652
2ce9738b 1653 cred = override_creds(&init_cred);
c12f65d4 1654 cgroup_populate_dir(root_cgrp);
2ce9738b 1655 revert_creds(cred);
e25e2cbb 1656 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1657 mutex_unlock(&cgroup_mutex);
34f77a90 1658 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1659 } else {
1660 /*
1661 * We re-used an existing hierarchy - the new root (if
1662 * any) is not needed
1663 */
2c6ab6d2 1664 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1665 /* no subsys rebinding, so refcounts don't change */
1666 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1667 }
1668
c6d57f33
PM
1669 kfree(opts.release_agent);
1670 kfree(opts.name);
f7e83571 1671 return dget(sb->s_root);
ddbcc7e8 1672
e25e2cbb
TH
1673 unlock_drop:
1674 mutex_unlock(&cgroup_root_mutex);
1675 mutex_unlock(&cgroup_mutex);
1676 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1677 drop_new_super:
6f5bbff9 1678 deactivate_locked_super(sb);
cf5d5941
BB
1679 drop_modules:
1680 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1681 out_err:
1682 kfree(opts.release_agent);
1683 kfree(opts.name);
f7e83571 1684 return ERR_PTR(ret);
ddbcc7e8
PM
1685}
1686
1687static void cgroup_kill_sb(struct super_block *sb) {
1688 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1689 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1690 int ret;
71cbb949
KM
1691 struct cg_cgroup_link *link;
1692 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1693
1694 BUG_ON(!root);
1695
1696 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1697 BUG_ON(!list_empty(&cgrp->children));
1698 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1699
1700 mutex_lock(&cgroup_mutex);
e25e2cbb 1701 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1702
1703 /* Rebind all subsystems back to the default hierarchy */
1704 ret = rebind_subsystems(root, 0);
1705 /* Shouldn't be able to fail ... */
1706 BUG_ON(ret);
1707
817929ec
PM
1708 /*
1709 * Release all the links from css_sets to this hierarchy's
1710 * root cgroup
1711 */
1712 write_lock(&css_set_lock);
71cbb949
KM
1713
1714 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1715 cgrp_link_list) {
817929ec 1716 list_del(&link->cg_link_list);
bd89aabc 1717 list_del(&link->cgrp_link_list);
817929ec
PM
1718 kfree(link);
1719 }
1720 write_unlock(&css_set_lock);
1721
839ec545
PM
1722 if (!list_empty(&root->root_list)) {
1723 list_del(&root->root_list);
1724 root_count--;
1725 }
e5f6a860 1726
e25e2cbb 1727 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1728 mutex_unlock(&cgroup_mutex);
1729
ddbcc7e8 1730 kill_litter_super(sb);
2c6ab6d2 1731 cgroup_drop_root(root);
ddbcc7e8
PM
1732}
1733
1734static struct file_system_type cgroup_fs_type = {
1735 .name = "cgroup",
f7e83571 1736 .mount = cgroup_mount,
ddbcc7e8
PM
1737 .kill_sb = cgroup_kill_sb,
1738};
1739
676db4af
GK
1740static struct kobject *cgroup_kobj;
1741
a043e3b2
LZ
1742/**
1743 * cgroup_path - generate the path of a cgroup
1744 * @cgrp: the cgroup in question
1745 * @buf: the buffer to write the path into
1746 * @buflen: the length of the buffer
1747 *
a47295e6
PM
1748 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1749 * reference. Writes path of cgroup into buf. Returns 0 on success,
1750 * -errno on error.
ddbcc7e8 1751 */
bd89aabc 1752int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1753{
1754 char *start;
9a9686b6 1755 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1756 cgroup_lock_is_held());
ddbcc7e8 1757
a47295e6 1758 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1759 /*
1760 * Inactive subsystems have no dentry for their root
1761 * cgroup
1762 */
1763 strcpy(buf, "/");
1764 return 0;
1765 }
1766
1767 start = buf + buflen;
1768
1769 *--start = '\0';
1770 for (;;) {
a47295e6 1771 int len = dentry->d_name.len;
9a9686b6 1772
ddbcc7e8
PM
1773 if ((start -= len) < buf)
1774 return -ENAMETOOLONG;
9a9686b6 1775 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1776 cgrp = cgrp->parent;
1777 if (!cgrp)
ddbcc7e8 1778 break;
9a9686b6
LZ
1779
1780 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1781 cgroup_lock_is_held());
bd89aabc 1782 if (!cgrp->parent)
ddbcc7e8
PM
1783 continue;
1784 if (--start < buf)
1785 return -ENAMETOOLONG;
1786 *start = '/';
1787 }
1788 memmove(buf, start, buf + buflen - start);
1789 return 0;
1790}
67523c48 1791EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1792
2f7ee569
TH
1793/*
1794 * Control Group taskset
1795 */
134d3373
TH
1796struct task_and_cgroup {
1797 struct task_struct *task;
1798 struct cgroup *cgrp;
61d1d219 1799 struct css_set *cg;
134d3373
TH
1800};
1801
2f7ee569
TH
1802struct cgroup_taskset {
1803 struct task_and_cgroup single;
1804 struct flex_array *tc_array;
1805 int tc_array_len;
1806 int idx;
1807 struct cgroup *cur_cgrp;
1808};
1809
1810/**
1811 * cgroup_taskset_first - reset taskset and return the first task
1812 * @tset: taskset of interest
1813 *
1814 * @tset iteration is initialized and the first task is returned.
1815 */
1816struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1817{
1818 if (tset->tc_array) {
1819 tset->idx = 0;
1820 return cgroup_taskset_next(tset);
1821 } else {
1822 tset->cur_cgrp = tset->single.cgrp;
1823 return tset->single.task;
1824 }
1825}
1826EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1827
1828/**
1829 * cgroup_taskset_next - iterate to the next task in taskset
1830 * @tset: taskset of interest
1831 *
1832 * Return the next task in @tset. Iteration must have been initialized
1833 * with cgroup_taskset_first().
1834 */
1835struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1836{
1837 struct task_and_cgroup *tc;
1838
1839 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1840 return NULL;
1841
1842 tc = flex_array_get(tset->tc_array, tset->idx++);
1843 tset->cur_cgrp = tc->cgrp;
1844 return tc->task;
1845}
1846EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1847
1848/**
1849 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1850 * @tset: taskset of interest
1851 *
1852 * Return the cgroup for the current (last returned) task of @tset. This
1853 * function must be preceded by either cgroup_taskset_first() or
1854 * cgroup_taskset_next().
1855 */
1856struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1857{
1858 return tset->cur_cgrp;
1859}
1860EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1861
1862/**
1863 * cgroup_taskset_size - return the number of tasks in taskset
1864 * @tset: taskset of interest
1865 */
1866int cgroup_taskset_size(struct cgroup_taskset *tset)
1867{
1868 return tset->tc_array ? tset->tc_array_len : 1;
1869}
1870EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1871
1872
74a1166d
BB
1873/*
1874 * cgroup_task_migrate - move a task from one cgroup to another.
1875 *
1876 * 'guarantee' is set if the caller promises that a new css_set for the task
1877 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1878 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1879 */
61d1d219
MSB
1880static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1881 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1882{
1883 struct css_set *oldcg;
74a1166d
BB
1884
1885 /*
026085ef
MSB
1886 * We are synchronized through threadgroup_lock() against PF_EXITING
1887 * setting such that we can't race against cgroup_exit() changing the
1888 * css_set to init_css_set and dropping the old one.
74a1166d 1889 */
c84cdf75 1890 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1891 oldcg = tsk->cgroups;
74a1166d 1892
74a1166d 1893 task_lock(tsk);
74a1166d
BB
1894 rcu_assign_pointer(tsk->cgroups, newcg);
1895 task_unlock(tsk);
1896
1897 /* Update the css_set linked lists if we're using them */
1898 write_lock(&css_set_lock);
1899 if (!list_empty(&tsk->cg_list))
1900 list_move(&tsk->cg_list, &newcg->tasks);
1901 write_unlock(&css_set_lock);
1902
1903 /*
1904 * We just gained a reference on oldcg by taking it from the task. As
1905 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1906 * it here; it will be freed under RCU.
1907 */
1908 put_css_set(oldcg);
1909
1910 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
74a1166d
BB
1911}
1912
a043e3b2
LZ
1913/**
1914 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1915 * @cgrp: the cgroup the task is attaching to
1916 * @tsk: the task to be attached
bbcb81d0 1917 *
cd3d0952
TH
1918 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1919 * @tsk during call.
bbcb81d0 1920 */
956db3ca 1921int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1922{
8f121918 1923 int retval = 0;
2468c723 1924 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1925 struct cgroup *oldcgrp;
bd89aabc 1926 struct cgroupfs_root *root = cgrp->root;
2f7ee569 1927 struct cgroup_taskset tset = { };
61d1d219 1928 struct css_set *newcg;
bbcb81d0 1929
cd3d0952
TH
1930 /* @tsk either already exited or can't exit until the end */
1931 if (tsk->flags & PF_EXITING)
1932 return -ESRCH;
bbcb81d0
PM
1933
1934 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1935 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1936 if (cgrp == oldcgrp)
bbcb81d0
PM
1937 return 0;
1938
2f7ee569
TH
1939 tset.single.task = tsk;
1940 tset.single.cgrp = oldcgrp;
1941
bbcb81d0
PM
1942 for_each_subsys(root, ss) {
1943 if (ss->can_attach) {
761b3ef5 1944 retval = ss->can_attach(cgrp, &tset);
2468c723
DN
1945 if (retval) {
1946 /*
1947 * Remember on which subsystem the can_attach()
1948 * failed, so that we only call cancel_attach()
1949 * against the subsystems whose can_attach()
1950 * succeeded. (See below)
1951 */
1952 failed_ss = ss;
1953 goto out;
1954 }
bbcb81d0
PM
1955 }
1956 }
1957
61d1d219
MSB
1958 newcg = find_css_set(tsk->cgroups, cgrp);
1959 if (!newcg) {
1960 retval = -ENOMEM;
2468c723 1961 goto out;
61d1d219
MSB
1962 }
1963
1964 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
817929ec 1965
bbcb81d0 1966 for_each_subsys(root, ss) {
e18f6318 1967 if (ss->attach)
761b3ef5 1968 ss->attach(cgrp, &tset);
bbcb81d0 1969 }
74a1166d 1970
bbcb81d0 1971 synchronize_rcu();
ec64f515
KH
1972
1973 /*
1974 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1975 * is no longer empty.
1976 */
88703267 1977 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1978out:
1979 if (retval) {
1980 for_each_subsys(root, ss) {
1981 if (ss == failed_ss)
1982 /*
1983 * This subsystem was the one that failed the
1984 * can_attach() check earlier, so we don't need
1985 * to call cancel_attach() against it or any
1986 * remaining subsystems.
1987 */
1988 break;
1989 if (ss->cancel_attach)
761b3ef5 1990 ss->cancel_attach(cgrp, &tset);
2468c723
DN
1991 }
1992 }
1993 return retval;
bbcb81d0
PM
1994}
1995
d7926ee3 1996/**
31583bb0
MT
1997 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1998 * @from: attach to all cgroups of a given task
d7926ee3
SS
1999 * @tsk: the task to be attached
2000 */
31583bb0 2001int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
2002{
2003 struct cgroupfs_root *root;
d7926ee3
SS
2004 int retval = 0;
2005
2006 cgroup_lock();
2007 for_each_active_root(root) {
31583bb0
MT
2008 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2009
2010 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
2011 if (retval)
2012 break;
2013 }
2014 cgroup_unlock();
2015
2016 return retval;
2017}
31583bb0 2018EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 2019
74a1166d
BB
2020/**
2021 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2022 * @cgrp: the cgroup to attach to
2023 * @leader: the threadgroup leader task_struct of the group to be attached
2024 *
257058ae
TH
2025 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2026 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d 2027 */
1c6c3fad 2028static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
74a1166d
BB
2029{
2030 int retval, i, group_size;
2031 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d 2032 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2033 struct cgroupfs_root *root = cgrp->root;
2034 /* threadgroup list cursor and array */
2035 struct task_struct *tsk;
134d3373 2036 struct task_and_cgroup *tc;
d846687d 2037 struct flex_array *group;
2f7ee569 2038 struct cgroup_taskset tset = { };
74a1166d
BB
2039
2040 /*
2041 * step 0: in order to do expensive, possibly blocking operations for
2042 * every thread, we cannot iterate the thread group list, since it needs
2043 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2044 * group - group_rwsem prevents new threads from appearing, and if
2045 * threads exit, this will just be an over-estimate.
74a1166d
BB
2046 */
2047 group_size = get_nr_threads(leader);
d846687d 2048 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2049 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2050 if (!group)
2051 return -ENOMEM;
d846687d
BB
2052 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2053 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2054 if (retval)
2055 goto out_free_group_list;
74a1166d 2056
74a1166d
BB
2057 tsk = leader;
2058 i = 0;
fb5d2b4c
MSB
2059 /*
2060 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2061 * already PF_EXITING could be freed from underneath us unless we
2062 * take an rcu_read_lock.
2063 */
2064 rcu_read_lock();
74a1166d 2065 do {
134d3373
TH
2066 struct task_and_cgroup ent;
2067
cd3d0952
TH
2068 /* @tsk either already exited or can't exit until the end */
2069 if (tsk->flags & PF_EXITING)
2070 continue;
2071
74a1166d
BB
2072 /* as per above, nr_threads may decrease, but not increase. */
2073 BUG_ON(i >= group_size);
134d3373
TH
2074 ent.task = tsk;
2075 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2076 /* nothing to do if this task is already in the cgroup */
2077 if (ent.cgrp == cgrp)
2078 continue;
61d1d219
MSB
2079 /*
2080 * saying GFP_ATOMIC has no effect here because we did prealloc
2081 * earlier, but it's good form to communicate our expectations.
2082 */
134d3373 2083 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2084 BUG_ON(retval != 0);
74a1166d
BB
2085 i++;
2086 } while_each_thread(leader, tsk);
fb5d2b4c 2087 rcu_read_unlock();
74a1166d
BB
2088 /* remember the number of threads in the array for later. */
2089 group_size = i;
2f7ee569
TH
2090 tset.tc_array = group;
2091 tset.tc_array_len = group_size;
74a1166d 2092
134d3373
TH
2093 /* methods shouldn't be called if no task is actually migrating */
2094 retval = 0;
892a2b90 2095 if (!group_size)
b07ef774 2096 goto out_free_group_list;
134d3373 2097
74a1166d
BB
2098 /*
2099 * step 1: check that we can legitimately attach to the cgroup.
2100 */
2101 for_each_subsys(root, ss) {
2102 if (ss->can_attach) {
761b3ef5 2103 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2104 if (retval) {
2105 failed_ss = ss;
2106 goto out_cancel_attach;
2107 }
2108 }
74a1166d
BB
2109 }
2110
2111 /*
2112 * step 2: make sure css_sets exist for all threads to be migrated.
2113 * we use find_css_set, which allocates a new one if necessary.
2114 */
74a1166d 2115 for (i = 0; i < group_size; i++) {
134d3373 2116 tc = flex_array_get(group, i);
61d1d219
MSB
2117 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2118 if (!tc->cg) {
2119 retval = -ENOMEM;
2120 goto out_put_css_set_refs;
74a1166d
BB
2121 }
2122 }
2123
2124 /*
494c167c
TH
2125 * step 3: now that we're guaranteed success wrt the css_sets,
2126 * proceed to move all tasks to the new cgroup. There are no
2127 * failure cases after here, so this is the commit point.
74a1166d 2128 */
74a1166d 2129 for (i = 0; i < group_size; i++) {
134d3373 2130 tc = flex_array_get(group, i);
61d1d219 2131 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2132 }
2133 /* nothing is sensitive to fork() after this point. */
2134
2135 /*
494c167c 2136 * step 4: do subsystem attach callbacks.
74a1166d
BB
2137 */
2138 for_each_subsys(root, ss) {
2139 if (ss->attach)
761b3ef5 2140 ss->attach(cgrp, &tset);
74a1166d
BB
2141 }
2142
2143 /*
2144 * step 5: success! and cleanup
2145 */
2146 synchronize_rcu();
2147 cgroup_wakeup_rmdir_waiter(cgrp);
2148 retval = 0;
61d1d219
MSB
2149out_put_css_set_refs:
2150 if (retval) {
2151 for (i = 0; i < group_size; i++) {
2152 tc = flex_array_get(group, i);
2153 if (!tc->cg)
2154 break;
2155 put_css_set(tc->cg);
2156 }
74a1166d
BB
2157 }
2158out_cancel_attach:
74a1166d
BB
2159 if (retval) {
2160 for_each_subsys(root, ss) {
494c167c 2161 if (ss == failed_ss)
74a1166d 2162 break;
74a1166d 2163 if (ss->cancel_attach)
761b3ef5 2164 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2165 }
2166 }
74a1166d 2167out_free_group_list:
d846687d 2168 flex_array_free(group);
74a1166d
BB
2169 return retval;
2170}
2171
2172/*
2173 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2174 * function to attach either it or all tasks in its threadgroup. Will lock
2175 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2176 */
74a1166d 2177static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2178{
bbcb81d0 2179 struct task_struct *tsk;
c69e8d9c 2180 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2181 int ret;
2182
74a1166d
BB
2183 if (!cgroup_lock_live_group(cgrp))
2184 return -ENODEV;
2185
b78949eb
MSB
2186retry_find_task:
2187 rcu_read_lock();
bbcb81d0 2188 if (pid) {
73507f33 2189 tsk = find_task_by_vpid(pid);
74a1166d
BB
2190 if (!tsk) {
2191 rcu_read_unlock();
b78949eb
MSB
2192 ret= -ESRCH;
2193 goto out_unlock_cgroup;
bbcb81d0 2194 }
74a1166d
BB
2195 /*
2196 * even if we're attaching all tasks in the thread group, we
2197 * only need to check permissions on one of them.
2198 */
c69e8d9c
DH
2199 tcred = __task_cred(tsk);
2200 if (cred->euid &&
2201 cred->euid != tcred->uid &&
2202 cred->euid != tcred->suid) {
2203 rcu_read_unlock();
b78949eb
MSB
2204 ret = -EACCES;
2205 goto out_unlock_cgroup;
bbcb81d0 2206 }
b78949eb
MSB
2207 } else
2208 tsk = current;
cd3d0952
TH
2209
2210 if (threadgroup)
b78949eb
MSB
2211 tsk = tsk->group_leader;
2212 get_task_struct(tsk);
2213 rcu_read_unlock();
2214
2215 threadgroup_lock(tsk);
2216 if (threadgroup) {
2217 if (!thread_group_leader(tsk)) {
2218 /*
2219 * a race with de_thread from another thread's exec()
2220 * may strip us of our leadership, if this happens,
2221 * there is no choice but to throw this task away and
2222 * try again; this is
2223 * "double-double-toil-and-trouble-check locking".
2224 */
2225 threadgroup_unlock(tsk);
2226 put_task_struct(tsk);
2227 goto retry_find_task;
2228 }
74a1166d 2229 ret = cgroup_attach_proc(cgrp, tsk);
b78949eb 2230 } else
74a1166d 2231 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2232 threadgroup_unlock(tsk);
2233
bbcb81d0 2234 put_task_struct(tsk);
b78949eb 2235out_unlock_cgroup:
74a1166d 2236 cgroup_unlock();
bbcb81d0
PM
2237 return ret;
2238}
2239
af351026 2240static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2241{
2242 return attach_task_by_pid(cgrp, pid, false);
2243}
2244
2245static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2246{
b78949eb 2247 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2248}
2249
e788e066
PM
2250/**
2251 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2252 * @cgrp: the cgroup to be checked for liveness
2253 *
84eea842
PM
2254 * On success, returns true; the lock should be later released with
2255 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2256 */
84eea842 2257bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2258{
2259 mutex_lock(&cgroup_mutex);
2260 if (cgroup_is_removed(cgrp)) {
2261 mutex_unlock(&cgroup_mutex);
2262 return false;
2263 }
2264 return true;
2265}
67523c48 2266EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2267
2268static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2269 const char *buffer)
2270{
2271 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2272 if (strlen(buffer) >= PATH_MAX)
2273 return -EINVAL;
e788e066
PM
2274 if (!cgroup_lock_live_group(cgrp))
2275 return -ENODEV;
e25e2cbb 2276 mutex_lock(&cgroup_root_mutex);
e788e066 2277 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2278 mutex_unlock(&cgroup_root_mutex);
84eea842 2279 cgroup_unlock();
e788e066
PM
2280 return 0;
2281}
2282
2283static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2284 struct seq_file *seq)
2285{
2286 if (!cgroup_lock_live_group(cgrp))
2287 return -ENODEV;
2288 seq_puts(seq, cgrp->root->release_agent_path);
2289 seq_putc(seq, '\n');
84eea842 2290 cgroup_unlock();
e788e066
PM
2291 return 0;
2292}
2293
84eea842
PM
2294/* A buffer size big enough for numbers or short strings */
2295#define CGROUP_LOCAL_BUFFER_SIZE 64
2296
e73d2c61 2297static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2298 struct file *file,
2299 const char __user *userbuf,
2300 size_t nbytes, loff_t *unused_ppos)
355e0c48 2301{
84eea842 2302 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2303 int retval = 0;
355e0c48
PM
2304 char *end;
2305
2306 if (!nbytes)
2307 return -EINVAL;
2308 if (nbytes >= sizeof(buffer))
2309 return -E2BIG;
2310 if (copy_from_user(buffer, userbuf, nbytes))
2311 return -EFAULT;
2312
2313 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2314 if (cft->write_u64) {
478988d3 2315 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2316 if (*end)
2317 return -EINVAL;
2318 retval = cft->write_u64(cgrp, cft, val);
2319 } else {
478988d3 2320 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2321 if (*end)
2322 return -EINVAL;
2323 retval = cft->write_s64(cgrp, cft, val);
2324 }
355e0c48
PM
2325 if (!retval)
2326 retval = nbytes;
2327 return retval;
2328}
2329
db3b1497
PM
2330static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2331 struct file *file,
2332 const char __user *userbuf,
2333 size_t nbytes, loff_t *unused_ppos)
2334{
84eea842 2335 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2336 int retval = 0;
2337 size_t max_bytes = cft->max_write_len;
2338 char *buffer = local_buffer;
2339
2340 if (!max_bytes)
2341 max_bytes = sizeof(local_buffer) - 1;
2342 if (nbytes >= max_bytes)
2343 return -E2BIG;
2344 /* Allocate a dynamic buffer if we need one */
2345 if (nbytes >= sizeof(local_buffer)) {
2346 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2347 if (buffer == NULL)
2348 return -ENOMEM;
2349 }
5a3eb9f6
LZ
2350 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2351 retval = -EFAULT;
2352 goto out;
2353 }
db3b1497
PM
2354
2355 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2356 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2357 if (!retval)
2358 retval = nbytes;
5a3eb9f6 2359out:
db3b1497
PM
2360 if (buffer != local_buffer)
2361 kfree(buffer);
2362 return retval;
2363}
2364
ddbcc7e8
PM
2365static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2366 size_t nbytes, loff_t *ppos)
2367{
2368 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2369 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2370
75139b82 2371 if (cgroup_is_removed(cgrp))
ddbcc7e8 2372 return -ENODEV;
355e0c48 2373 if (cft->write)
bd89aabc 2374 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2375 if (cft->write_u64 || cft->write_s64)
2376 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2377 if (cft->write_string)
2378 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2379 if (cft->trigger) {
2380 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2381 return ret ? ret : nbytes;
2382 }
355e0c48 2383 return -EINVAL;
ddbcc7e8
PM
2384}
2385
f4c753b7
PM
2386static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2387 struct file *file,
2388 char __user *buf, size_t nbytes,
2389 loff_t *ppos)
ddbcc7e8 2390{
84eea842 2391 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2392 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2393 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2394
2395 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2396}
2397
e73d2c61
PM
2398static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2399 struct file *file,
2400 char __user *buf, size_t nbytes,
2401 loff_t *ppos)
2402{
84eea842 2403 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2404 s64 val = cft->read_s64(cgrp, cft);
2405 int len = sprintf(tmp, "%lld\n", (long long) val);
2406
2407 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2408}
2409
ddbcc7e8
PM
2410static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2411 size_t nbytes, loff_t *ppos)
2412{
2413 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2414 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2415
75139b82 2416 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2417 return -ENODEV;
2418
2419 if (cft->read)
bd89aabc 2420 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2421 if (cft->read_u64)
2422 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2423 if (cft->read_s64)
2424 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2425 return -EINVAL;
2426}
2427
91796569
PM
2428/*
2429 * seqfile ops/methods for returning structured data. Currently just
2430 * supports string->u64 maps, but can be extended in future.
2431 */
2432
2433struct cgroup_seqfile_state {
2434 struct cftype *cft;
2435 struct cgroup *cgroup;
2436};
2437
2438static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2439{
2440 struct seq_file *sf = cb->state;
2441 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2442}
2443
2444static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2445{
2446 struct cgroup_seqfile_state *state = m->private;
2447 struct cftype *cft = state->cft;
29486df3
SH
2448 if (cft->read_map) {
2449 struct cgroup_map_cb cb = {
2450 .fill = cgroup_map_add,
2451 .state = m,
2452 };
2453 return cft->read_map(state->cgroup, cft, &cb);
2454 }
2455 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2456}
2457
96930a63 2458static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2459{
2460 struct seq_file *seq = file->private_data;
2461 kfree(seq->private);
2462 return single_release(inode, file);
2463}
2464
828c0950 2465static const struct file_operations cgroup_seqfile_operations = {
91796569 2466 .read = seq_read,
e788e066 2467 .write = cgroup_file_write,
91796569
PM
2468 .llseek = seq_lseek,
2469 .release = cgroup_seqfile_release,
2470};
2471
ddbcc7e8
PM
2472static int cgroup_file_open(struct inode *inode, struct file *file)
2473{
2474 int err;
2475 struct cftype *cft;
2476
2477 err = generic_file_open(inode, file);
2478 if (err)
2479 return err;
ddbcc7e8 2480 cft = __d_cft(file->f_dentry);
75139b82 2481
29486df3 2482 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2483 struct cgroup_seqfile_state *state =
2484 kzalloc(sizeof(*state), GFP_USER);
2485 if (!state)
2486 return -ENOMEM;
2487 state->cft = cft;
2488 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2489 file->f_op = &cgroup_seqfile_operations;
2490 err = single_open(file, cgroup_seqfile_show, state);
2491 if (err < 0)
2492 kfree(state);
2493 } else if (cft->open)
ddbcc7e8
PM
2494 err = cft->open(inode, file);
2495 else
2496 err = 0;
2497
2498 return err;
2499}
2500
2501static int cgroup_file_release(struct inode *inode, struct file *file)
2502{
2503 struct cftype *cft = __d_cft(file->f_dentry);
2504 if (cft->release)
2505 return cft->release(inode, file);
2506 return 0;
2507}
2508
2509/*
2510 * cgroup_rename - Only allow simple rename of directories in place.
2511 */
2512static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2513 struct inode *new_dir, struct dentry *new_dentry)
2514{
2515 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2516 return -ENOTDIR;
2517 if (new_dentry->d_inode)
2518 return -EEXIST;
2519 if (old_dir != new_dir)
2520 return -EIO;
2521 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2522}
2523
828c0950 2524static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2525 .read = cgroup_file_read,
2526 .write = cgroup_file_write,
2527 .llseek = generic_file_llseek,
2528 .open = cgroup_file_open,
2529 .release = cgroup_file_release,
2530};
2531
6e1d5dcc 2532static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2533 .lookup = cgroup_lookup,
ddbcc7e8
PM
2534 .mkdir = cgroup_mkdir,
2535 .rmdir = cgroup_rmdir,
2536 .rename = cgroup_rename,
2537};
2538
c72a04e3
AV
2539static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2540{
2541 if (dentry->d_name.len > NAME_MAX)
2542 return ERR_PTR(-ENAMETOOLONG);
2543 d_add(dentry, NULL);
2544 return NULL;
2545}
2546
0dea1168
KS
2547/*
2548 * Check if a file is a control file
2549 */
2550static inline struct cftype *__file_cft(struct file *file)
2551{
2552 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2553 return ERR_PTR(-EINVAL);
2554 return __d_cft(file->f_dentry);
2555}
2556
a5e7ed32 2557static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2558 struct super_block *sb)
2559{
ddbcc7e8
PM
2560 struct inode *inode;
2561
2562 if (!dentry)
2563 return -ENOENT;
2564 if (dentry->d_inode)
2565 return -EEXIST;
2566
2567 inode = cgroup_new_inode(mode, sb);
2568 if (!inode)
2569 return -ENOMEM;
2570
2571 if (S_ISDIR(mode)) {
2572 inode->i_op = &cgroup_dir_inode_operations;
2573 inode->i_fop = &simple_dir_operations;
2574
2575 /* start off with i_nlink == 2 (for "." entry) */
2576 inc_nlink(inode);
2577
2578 /* start with the directory inode held, so that we can
2579 * populate it without racing with another mkdir */
817929ec 2580 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2581 } else if (S_ISREG(mode)) {
2582 inode->i_size = 0;
2583 inode->i_fop = &cgroup_file_operations;
2584 }
ddbcc7e8
PM
2585 d_instantiate(dentry, inode);
2586 dget(dentry); /* Extra count - pin the dentry in core */
2587 return 0;
2588}
2589
2590/*
a043e3b2
LZ
2591 * cgroup_create_dir - create a directory for an object.
2592 * @cgrp: the cgroup we create the directory for. It must have a valid
2593 * ->parent field. And we are going to fill its ->dentry field.
2594 * @dentry: dentry of the new cgroup
2595 * @mode: mode to set on new directory.
ddbcc7e8 2596 */
bd89aabc 2597static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
a5e7ed32 2598 umode_t mode)
ddbcc7e8
PM
2599{
2600 struct dentry *parent;
2601 int error = 0;
2602
bd89aabc
PM
2603 parent = cgrp->parent->dentry;
2604 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2605 if (!error) {
bd89aabc 2606 dentry->d_fsdata = cgrp;
ddbcc7e8 2607 inc_nlink(parent->d_inode);
a47295e6 2608 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2609 dget(dentry);
2610 }
2611 dput(dentry);
2612
2613 return error;
2614}
2615
099fca32
LZ
2616/**
2617 * cgroup_file_mode - deduce file mode of a control file
2618 * @cft: the control file in question
2619 *
2620 * returns cft->mode if ->mode is not 0
2621 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2622 * returns S_IRUGO if it has only a read handler
2623 * returns S_IWUSR if it has only a write hander
2624 */
a5e7ed32 2625static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2626{
a5e7ed32 2627 umode_t mode = 0;
099fca32
LZ
2628
2629 if (cft->mode)
2630 return cft->mode;
2631
2632 if (cft->read || cft->read_u64 || cft->read_s64 ||
2633 cft->read_map || cft->read_seq_string)
2634 mode |= S_IRUGO;
2635
2636 if (cft->write || cft->write_u64 || cft->write_s64 ||
2637 cft->write_string || cft->trigger)
2638 mode |= S_IWUSR;
2639
2640 return mode;
2641}
2642
db0416b6
TH
2643static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2644 const struct cftype *cft)
ddbcc7e8 2645{
bd89aabc 2646 struct dentry *dir = cgrp->dentry;
05ef1d7c 2647 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2648 struct dentry *dentry;
05ef1d7c 2649 struct cfent *cfe;
ddbcc7e8 2650 int error;
a5e7ed32 2651 umode_t mode;
ddbcc7e8 2652 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541
TH
2653
2654 /* does @cft->flags tell us to skip creation on @cgrp? */
2655 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2656 return 0;
2657 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2658 return 0;
2659
bd89aabc 2660 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2661 strcpy(name, subsys->name);
2662 strcat(name, ".");
2663 }
2664 strcat(name, cft->name);
05ef1d7c 2665
ddbcc7e8 2666 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2667
2668 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2669 if (!cfe)
2670 return -ENOMEM;
2671
ddbcc7e8 2672 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2673 if (IS_ERR(dentry)) {
ddbcc7e8 2674 error = PTR_ERR(dentry);
05ef1d7c
TH
2675 goto out;
2676 }
2677
2678 mode = cgroup_file_mode(cft);
2679 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2680 if (!error) {
2681 cfe->type = (void *)cft;
2682 cfe->dentry = dentry;
2683 dentry->d_fsdata = cfe;
2684 list_add_tail(&cfe->node, &parent->files);
2685 cfe = NULL;
2686 }
2687 dput(dentry);
2688out:
2689 kfree(cfe);
ddbcc7e8
PM
2690 return error;
2691}
2692
db0416b6
TH
2693static int cgroup_add_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2694 const struct cftype cfts[])
ddbcc7e8 2695{
db0416b6
TH
2696 const struct cftype *cft;
2697 int err, ret = 0;
2698
2699 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2700 err = cgroup_add_file(cgrp, subsys, cft);
2701 if (err) {
2702 pr_warning("cgroup_add_files: failed to create %s, err=%d\n",
2703 cft->name, err);
2704 ret = err;
2705 }
ddbcc7e8 2706 }
db0416b6 2707 return ret;
ddbcc7e8
PM
2708}
2709
8e3f6541
TH
2710static DEFINE_MUTEX(cgroup_cft_mutex);
2711
2712static void cgroup_cfts_prepare(void)
2713 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2714{
2715 /*
2716 * Thanks to the entanglement with vfs inode locking, we can't walk
2717 * the existing cgroups under cgroup_mutex and create files.
2718 * Instead, we increment reference on all cgroups and build list of
2719 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2720 * exclusive access to the field.
2721 */
2722 mutex_lock(&cgroup_cft_mutex);
2723 mutex_lock(&cgroup_mutex);
2724}
2725
2726static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2727 const struct cftype *cfts)
2728 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2729{
2730 LIST_HEAD(pending);
2731 struct cgroup *cgrp, *n;
8e3f6541
TH
2732
2733 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2734 if (cfts && ss->root != &rootnode) {
2735 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2736 dget(cgrp->dentry);
2737 list_add_tail(&cgrp->cft_q_node, &pending);
2738 }
2739 }
2740
2741 mutex_unlock(&cgroup_mutex);
2742
2743 /*
2744 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2745 * files for all cgroups which were created before.
2746 */
2747 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2748 struct inode *inode = cgrp->dentry->d_inode;
2749
2750 mutex_lock(&inode->i_mutex);
2751 mutex_lock(&cgroup_mutex);
2752 if (!cgroup_is_removed(cgrp))
db0416b6 2753 cgroup_add_files(cgrp, ss, cfts);
8e3f6541
TH
2754 mutex_unlock(&cgroup_mutex);
2755 mutex_unlock(&inode->i_mutex);
2756
2757 list_del_init(&cgrp->cft_q_node);
2758 dput(cgrp->dentry);
2759 }
2760
2761 mutex_unlock(&cgroup_cft_mutex);
2762}
2763
2764/**
2765 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2766 * @ss: target cgroup subsystem
2767 * @cfts: zero-length name terminated array of cftypes
2768 *
2769 * Register @cfts to @ss. Files described by @cfts are created for all
2770 * existing cgroups to which @ss is attached and all future cgroups will
2771 * have them too. This function can be called anytime whether @ss is
2772 * attached or not.
2773 *
2774 * Returns 0 on successful registration, -errno on failure. Note that this
2775 * function currently returns 0 as long as @cfts registration is successful
2776 * even if some file creation attempts on existing cgroups fail.
2777 */
2778int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2779{
2780 struct cftype_set *set;
2781
2782 set = kzalloc(sizeof(*set), GFP_KERNEL);
2783 if (!set)
2784 return -ENOMEM;
2785
2786 cgroup_cfts_prepare();
2787 set->cfts = cfts;
2788 list_add_tail(&set->node, &ss->cftsets);
2789 cgroup_cfts_commit(ss, cfts);
2790
2791 return 0;
2792}
2793EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2794
a043e3b2
LZ
2795/**
2796 * cgroup_task_count - count the number of tasks in a cgroup.
2797 * @cgrp: the cgroup in question
2798 *
2799 * Return the number of tasks in the cgroup.
2800 */
bd89aabc 2801int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2802{
2803 int count = 0;
71cbb949 2804 struct cg_cgroup_link *link;
817929ec
PM
2805
2806 read_lock(&css_set_lock);
71cbb949 2807 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2808 count += atomic_read(&link->cg->refcount);
817929ec
PM
2809 }
2810 read_unlock(&css_set_lock);
bbcb81d0
PM
2811 return count;
2812}
2813
817929ec
PM
2814/*
2815 * Advance a list_head iterator. The iterator should be positioned at
2816 * the start of a css_set
2817 */
bd89aabc 2818static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2819 struct cgroup_iter *it)
817929ec
PM
2820{
2821 struct list_head *l = it->cg_link;
2822 struct cg_cgroup_link *link;
2823 struct css_set *cg;
2824
2825 /* Advance to the next non-empty css_set */
2826 do {
2827 l = l->next;
bd89aabc 2828 if (l == &cgrp->css_sets) {
817929ec
PM
2829 it->cg_link = NULL;
2830 return;
2831 }
bd89aabc 2832 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2833 cg = link->cg;
2834 } while (list_empty(&cg->tasks));
2835 it->cg_link = l;
2836 it->task = cg->tasks.next;
2837}
2838
31a7df01
CW
2839/*
2840 * To reduce the fork() overhead for systems that are not actually
2841 * using their cgroups capability, we don't maintain the lists running
2842 * through each css_set to its tasks until we see the list actually
2843 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2844 */
3df91fe3 2845static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2846{
2847 struct task_struct *p, *g;
2848 write_lock(&css_set_lock);
2849 use_task_css_set_links = 1;
3ce3230a
FW
2850 /*
2851 * We need tasklist_lock because RCU is not safe against
2852 * while_each_thread(). Besides, a forking task that has passed
2853 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2854 * is not guaranteed to have its child immediately visible in the
2855 * tasklist if we walk through it with RCU.
2856 */
2857 read_lock(&tasklist_lock);
31a7df01
CW
2858 do_each_thread(g, p) {
2859 task_lock(p);
0e04388f
LZ
2860 /*
2861 * We should check if the process is exiting, otherwise
2862 * it will race with cgroup_exit() in that the list
2863 * entry won't be deleted though the process has exited.
2864 */
2865 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2866 list_add(&p->cg_list, &p->cgroups->tasks);
2867 task_unlock(p);
2868 } while_each_thread(g, p);
3ce3230a 2869 read_unlock(&tasklist_lock);
31a7df01
CW
2870 write_unlock(&css_set_lock);
2871}
2872
bd89aabc 2873void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2874 __acquires(css_set_lock)
817929ec
PM
2875{
2876 /*
2877 * The first time anyone tries to iterate across a cgroup,
2878 * we need to enable the list linking each css_set to its
2879 * tasks, and fix up all existing tasks.
2880 */
31a7df01
CW
2881 if (!use_task_css_set_links)
2882 cgroup_enable_task_cg_lists();
2883
817929ec 2884 read_lock(&css_set_lock);
bd89aabc
PM
2885 it->cg_link = &cgrp->css_sets;
2886 cgroup_advance_iter(cgrp, it);
817929ec
PM
2887}
2888
bd89aabc 2889struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2890 struct cgroup_iter *it)
2891{
2892 struct task_struct *res;
2893 struct list_head *l = it->task;
2019f634 2894 struct cg_cgroup_link *link;
817929ec
PM
2895
2896 /* If the iterator cg is NULL, we have no tasks */
2897 if (!it->cg_link)
2898 return NULL;
2899 res = list_entry(l, struct task_struct, cg_list);
2900 /* Advance iterator to find next entry */
2901 l = l->next;
2019f634
LJ
2902 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2903 if (l == &link->cg->tasks) {
817929ec
PM
2904 /* We reached the end of this task list - move on to
2905 * the next cg_cgroup_link */
bd89aabc 2906 cgroup_advance_iter(cgrp, it);
817929ec
PM
2907 } else {
2908 it->task = l;
2909 }
2910 return res;
2911}
2912
bd89aabc 2913void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2914 __releases(css_set_lock)
817929ec
PM
2915{
2916 read_unlock(&css_set_lock);
2917}
2918
31a7df01
CW
2919static inline int started_after_time(struct task_struct *t1,
2920 struct timespec *time,
2921 struct task_struct *t2)
2922{
2923 int start_diff = timespec_compare(&t1->start_time, time);
2924 if (start_diff > 0) {
2925 return 1;
2926 } else if (start_diff < 0) {
2927 return 0;
2928 } else {
2929 /*
2930 * Arbitrarily, if two processes started at the same
2931 * time, we'll say that the lower pointer value
2932 * started first. Note that t2 may have exited by now
2933 * so this may not be a valid pointer any longer, but
2934 * that's fine - it still serves to distinguish
2935 * between two tasks started (effectively) simultaneously.
2936 */
2937 return t1 > t2;
2938 }
2939}
2940
2941/*
2942 * This function is a callback from heap_insert() and is used to order
2943 * the heap.
2944 * In this case we order the heap in descending task start time.
2945 */
2946static inline int started_after(void *p1, void *p2)
2947{
2948 struct task_struct *t1 = p1;
2949 struct task_struct *t2 = p2;
2950 return started_after_time(t1, &t2->start_time, t2);
2951}
2952
2953/**
2954 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2955 * @scan: struct cgroup_scanner containing arguments for the scan
2956 *
2957 * Arguments include pointers to callback functions test_task() and
2958 * process_task().
2959 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2960 * and if it returns true, call process_task() for it also.
2961 * The test_task pointer may be NULL, meaning always true (select all tasks).
2962 * Effectively duplicates cgroup_iter_{start,next,end}()
2963 * but does not lock css_set_lock for the call to process_task().
2964 * The struct cgroup_scanner may be embedded in any structure of the caller's
2965 * creation.
2966 * It is guaranteed that process_task() will act on every task that
2967 * is a member of the cgroup for the duration of this call. This
2968 * function may or may not call process_task() for tasks that exit
2969 * or move to a different cgroup during the call, or are forked or
2970 * move into the cgroup during the call.
2971 *
2972 * Note that test_task() may be called with locks held, and may in some
2973 * situations be called multiple times for the same task, so it should
2974 * be cheap.
2975 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2976 * pre-allocated and will be used for heap operations (and its "gt" member will
2977 * be overwritten), else a temporary heap will be used (allocation of which
2978 * may cause this function to fail).
2979 */
2980int cgroup_scan_tasks(struct cgroup_scanner *scan)
2981{
2982 int retval, i;
2983 struct cgroup_iter it;
2984 struct task_struct *p, *dropped;
2985 /* Never dereference latest_task, since it's not refcounted */
2986 struct task_struct *latest_task = NULL;
2987 struct ptr_heap tmp_heap;
2988 struct ptr_heap *heap;
2989 struct timespec latest_time = { 0, 0 };
2990
2991 if (scan->heap) {
2992 /* The caller supplied our heap and pre-allocated its memory */
2993 heap = scan->heap;
2994 heap->gt = &started_after;
2995 } else {
2996 /* We need to allocate our own heap memory */
2997 heap = &tmp_heap;
2998 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2999 if (retval)
3000 /* cannot allocate the heap */
3001 return retval;
3002 }
3003
3004 again:
3005 /*
3006 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3007 * to determine which are of interest, and using the scanner's
3008 * "process_task" callback to process any of them that need an update.
3009 * Since we don't want to hold any locks during the task updates,
3010 * gather tasks to be processed in a heap structure.
3011 * The heap is sorted by descending task start time.
3012 * If the statically-sized heap fills up, we overflow tasks that
3013 * started later, and in future iterations only consider tasks that
3014 * started after the latest task in the previous pass. This
3015 * guarantees forward progress and that we don't miss any tasks.
3016 */
3017 heap->size = 0;
3018 cgroup_iter_start(scan->cg, &it);
3019 while ((p = cgroup_iter_next(scan->cg, &it))) {
3020 /*
3021 * Only affect tasks that qualify per the caller's callback,
3022 * if he provided one
3023 */
3024 if (scan->test_task && !scan->test_task(p, scan))
3025 continue;
3026 /*
3027 * Only process tasks that started after the last task
3028 * we processed
3029 */
3030 if (!started_after_time(p, &latest_time, latest_task))
3031 continue;
3032 dropped = heap_insert(heap, p);
3033 if (dropped == NULL) {
3034 /*
3035 * The new task was inserted; the heap wasn't
3036 * previously full
3037 */
3038 get_task_struct(p);
3039 } else if (dropped != p) {
3040 /*
3041 * The new task was inserted, and pushed out a
3042 * different task
3043 */
3044 get_task_struct(p);
3045 put_task_struct(dropped);
3046 }
3047 /*
3048 * Else the new task was newer than anything already in
3049 * the heap and wasn't inserted
3050 */
3051 }
3052 cgroup_iter_end(scan->cg, &it);
3053
3054 if (heap->size) {
3055 for (i = 0; i < heap->size; i++) {
4fe91d51 3056 struct task_struct *q = heap->ptrs[i];
31a7df01 3057 if (i == 0) {
4fe91d51
PJ
3058 latest_time = q->start_time;
3059 latest_task = q;
31a7df01
CW
3060 }
3061 /* Process the task per the caller's callback */
4fe91d51
PJ
3062 scan->process_task(q, scan);
3063 put_task_struct(q);
31a7df01
CW
3064 }
3065 /*
3066 * If we had to process any tasks at all, scan again
3067 * in case some of them were in the middle of forking
3068 * children that didn't get processed.
3069 * Not the most efficient way to do it, but it avoids
3070 * having to take callback_mutex in the fork path
3071 */
3072 goto again;
3073 }
3074 if (heap == &tmp_heap)
3075 heap_free(&tmp_heap);
3076 return 0;
3077}
3078
bbcb81d0 3079/*
102a775e 3080 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3081 *
3082 * Reading this file can return large amounts of data if a cgroup has
3083 * *lots* of attached tasks. So it may need several calls to read(),
3084 * but we cannot guarantee that the information we produce is correct
3085 * unless we produce it entirely atomically.
3086 *
bbcb81d0 3087 */
bbcb81d0 3088
24528255
LZ
3089/* which pidlist file are we talking about? */
3090enum cgroup_filetype {
3091 CGROUP_FILE_PROCS,
3092 CGROUP_FILE_TASKS,
3093};
3094
3095/*
3096 * A pidlist is a list of pids that virtually represents the contents of one
3097 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3098 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3099 * to the cgroup.
3100 */
3101struct cgroup_pidlist {
3102 /*
3103 * used to find which pidlist is wanted. doesn't change as long as
3104 * this particular list stays in the list.
3105 */
3106 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3107 /* array of xids */
3108 pid_t *list;
3109 /* how many elements the above list has */
3110 int length;
3111 /* how many files are using the current array */
3112 int use_count;
3113 /* each of these stored in a list by its cgroup */
3114 struct list_head links;
3115 /* pointer to the cgroup we belong to, for list removal purposes */
3116 struct cgroup *owner;
3117 /* protects the other fields */
3118 struct rw_semaphore mutex;
3119};
3120
d1d9fd33
BB
3121/*
3122 * The following two functions "fix" the issue where there are more pids
3123 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3124 * TODO: replace with a kernel-wide solution to this problem
3125 */
3126#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3127static void *pidlist_allocate(int count)
3128{
3129 if (PIDLIST_TOO_LARGE(count))
3130 return vmalloc(count * sizeof(pid_t));
3131 else
3132 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3133}
3134static void pidlist_free(void *p)
3135{
3136 if (is_vmalloc_addr(p))
3137 vfree(p);
3138 else
3139 kfree(p);
3140}
3141static void *pidlist_resize(void *p, int newcount)
3142{
3143 void *newlist;
3144 /* note: if new alloc fails, old p will still be valid either way */
3145 if (is_vmalloc_addr(p)) {
3146 newlist = vmalloc(newcount * sizeof(pid_t));
3147 if (!newlist)
3148 return NULL;
3149 memcpy(newlist, p, newcount * sizeof(pid_t));
3150 vfree(p);
3151 } else {
3152 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3153 }
3154 return newlist;
3155}
3156
bbcb81d0 3157/*
102a775e
BB
3158 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3159 * If the new stripped list is sufficiently smaller and there's enough memory
3160 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3161 * number of unique elements.
bbcb81d0 3162 */
102a775e
BB
3163/* is the size difference enough that we should re-allocate the array? */
3164#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3165static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3166{
102a775e
BB
3167 int src, dest = 1;
3168 pid_t *list = *p;
3169 pid_t *newlist;
3170
3171 /*
3172 * we presume the 0th element is unique, so i starts at 1. trivial
3173 * edge cases first; no work needs to be done for either
3174 */
3175 if (length == 0 || length == 1)
3176 return length;
3177 /* src and dest walk down the list; dest counts unique elements */
3178 for (src = 1; src < length; src++) {
3179 /* find next unique element */
3180 while (list[src] == list[src-1]) {
3181 src++;
3182 if (src == length)
3183 goto after;
3184 }
3185 /* dest always points to where the next unique element goes */
3186 list[dest] = list[src];
3187 dest++;
3188 }
3189after:
3190 /*
3191 * if the length difference is large enough, we want to allocate a
3192 * smaller buffer to save memory. if this fails due to out of memory,
3193 * we'll just stay with what we've got.
3194 */
3195 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3196 newlist = pidlist_resize(list, dest);
102a775e
BB
3197 if (newlist)
3198 *p = newlist;
3199 }
3200 return dest;
3201}
3202
3203static int cmppid(const void *a, const void *b)
3204{
3205 return *(pid_t *)a - *(pid_t *)b;
3206}
3207
72a8cb30
BB
3208/*
3209 * find the appropriate pidlist for our purpose (given procs vs tasks)
3210 * returns with the lock on that pidlist already held, and takes care
3211 * of the use count, or returns NULL with no locks held if we're out of
3212 * memory.
3213 */
3214static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3215 enum cgroup_filetype type)
3216{
3217 struct cgroup_pidlist *l;
3218 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3219 struct pid_namespace *ns = current->nsproxy->pid_ns;
3220
72a8cb30
BB
3221 /*
3222 * We can't drop the pidlist_mutex before taking the l->mutex in case
3223 * the last ref-holder is trying to remove l from the list at the same
3224 * time. Holding the pidlist_mutex precludes somebody taking whichever
3225 * list we find out from under us - compare release_pid_array().
3226 */
3227 mutex_lock(&cgrp->pidlist_mutex);
3228 list_for_each_entry(l, &cgrp->pidlists, links) {
3229 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3230 /* make sure l doesn't vanish out from under us */
3231 down_write(&l->mutex);
3232 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3233 return l;
3234 }
3235 }
3236 /* entry not found; create a new one */
3237 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3238 if (!l) {
3239 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3240 return l;
3241 }
3242 init_rwsem(&l->mutex);
3243 down_write(&l->mutex);
3244 l->key.type = type;
b70cc5fd 3245 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3246 l->use_count = 0; /* don't increment here */
3247 l->list = NULL;
3248 l->owner = cgrp;
3249 list_add(&l->links, &cgrp->pidlists);
3250 mutex_unlock(&cgrp->pidlist_mutex);
3251 return l;
3252}
3253
102a775e
BB
3254/*
3255 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3256 */
72a8cb30
BB
3257static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3258 struct cgroup_pidlist **lp)
102a775e
BB
3259{
3260 pid_t *array;
3261 int length;
3262 int pid, n = 0; /* used for populating the array */
817929ec
PM
3263 struct cgroup_iter it;
3264 struct task_struct *tsk;
102a775e
BB
3265 struct cgroup_pidlist *l;
3266
3267 /*
3268 * If cgroup gets more users after we read count, we won't have
3269 * enough space - tough. This race is indistinguishable to the
3270 * caller from the case that the additional cgroup users didn't
3271 * show up until sometime later on.
3272 */
3273 length = cgroup_task_count(cgrp);
d1d9fd33 3274 array = pidlist_allocate(length);
102a775e
BB
3275 if (!array)
3276 return -ENOMEM;
3277 /* now, populate the array */
bd89aabc
PM
3278 cgroup_iter_start(cgrp, &it);
3279 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3280 if (unlikely(n == length))
817929ec 3281 break;
102a775e 3282 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3283 if (type == CGROUP_FILE_PROCS)
3284 pid = task_tgid_vnr(tsk);
3285 else
3286 pid = task_pid_vnr(tsk);
102a775e
BB
3287 if (pid > 0) /* make sure to only use valid results */
3288 array[n++] = pid;
817929ec 3289 }
bd89aabc 3290 cgroup_iter_end(cgrp, &it);
102a775e
BB
3291 length = n;
3292 /* now sort & (if procs) strip out duplicates */
3293 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3294 if (type == CGROUP_FILE_PROCS)
102a775e 3295 length = pidlist_uniq(&array, length);
72a8cb30
BB
3296 l = cgroup_pidlist_find(cgrp, type);
3297 if (!l) {
d1d9fd33 3298 pidlist_free(array);
72a8cb30 3299 return -ENOMEM;
102a775e 3300 }
72a8cb30 3301 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3302 pidlist_free(l->list);
102a775e
BB
3303 l->list = array;
3304 l->length = length;
3305 l->use_count++;
3306 up_write(&l->mutex);
72a8cb30 3307 *lp = l;
102a775e 3308 return 0;
bbcb81d0
PM
3309}
3310
846c7bb0 3311/**
a043e3b2 3312 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3313 * @stats: cgroupstats to fill information into
3314 * @dentry: A dentry entry belonging to the cgroup for which stats have
3315 * been requested.
a043e3b2
LZ
3316 *
3317 * Build and fill cgroupstats so that taskstats can export it to user
3318 * space.
846c7bb0
BS
3319 */
3320int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3321{
3322 int ret = -EINVAL;
bd89aabc 3323 struct cgroup *cgrp;
846c7bb0
BS
3324 struct cgroup_iter it;
3325 struct task_struct *tsk;
33d283be 3326
846c7bb0 3327 /*
33d283be
LZ
3328 * Validate dentry by checking the superblock operations,
3329 * and make sure it's a directory.
846c7bb0 3330 */
33d283be
LZ
3331 if (dentry->d_sb->s_op != &cgroup_ops ||
3332 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3333 goto err;
3334
3335 ret = 0;
bd89aabc 3336 cgrp = dentry->d_fsdata;
846c7bb0 3337
bd89aabc
PM
3338 cgroup_iter_start(cgrp, &it);
3339 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3340 switch (tsk->state) {
3341 case TASK_RUNNING:
3342 stats->nr_running++;
3343 break;
3344 case TASK_INTERRUPTIBLE:
3345 stats->nr_sleeping++;
3346 break;
3347 case TASK_UNINTERRUPTIBLE:
3348 stats->nr_uninterruptible++;
3349 break;
3350 case TASK_STOPPED:
3351 stats->nr_stopped++;
3352 break;
3353 default:
3354 if (delayacct_is_task_waiting_on_io(tsk))
3355 stats->nr_io_wait++;
3356 break;
3357 }
3358 }
bd89aabc 3359 cgroup_iter_end(cgrp, &it);
846c7bb0 3360
846c7bb0
BS
3361err:
3362 return ret;
3363}
3364
8f3ff208 3365
bbcb81d0 3366/*
102a775e 3367 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3368 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3369 * in the cgroup->l->list array.
bbcb81d0 3370 */
cc31edce 3371
102a775e 3372static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3373{
cc31edce
PM
3374 /*
3375 * Initially we receive a position value that corresponds to
3376 * one more than the last pid shown (or 0 on the first call or
3377 * after a seek to the start). Use a binary-search to find the
3378 * next pid to display, if any
3379 */
102a775e 3380 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3381 int index = 0, pid = *pos;
3382 int *iter;
3383
102a775e 3384 down_read(&l->mutex);
cc31edce 3385 if (pid) {
102a775e 3386 int end = l->length;
20777766 3387
cc31edce
PM
3388 while (index < end) {
3389 int mid = (index + end) / 2;
102a775e 3390 if (l->list[mid] == pid) {
cc31edce
PM
3391 index = mid;
3392 break;
102a775e 3393 } else if (l->list[mid] <= pid)
cc31edce
PM
3394 index = mid + 1;
3395 else
3396 end = mid;
3397 }
3398 }
3399 /* If we're off the end of the array, we're done */
102a775e 3400 if (index >= l->length)
cc31edce
PM
3401 return NULL;
3402 /* Update the abstract position to be the actual pid that we found */
102a775e 3403 iter = l->list + index;
cc31edce
PM
3404 *pos = *iter;
3405 return iter;
3406}
3407
102a775e 3408static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3409{
102a775e
BB
3410 struct cgroup_pidlist *l = s->private;
3411 up_read(&l->mutex);
cc31edce
PM
3412}
3413
102a775e 3414static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3415{
102a775e
BB
3416 struct cgroup_pidlist *l = s->private;
3417 pid_t *p = v;
3418 pid_t *end = l->list + l->length;
cc31edce
PM
3419 /*
3420 * Advance to the next pid in the array. If this goes off the
3421 * end, we're done
3422 */
3423 p++;
3424 if (p >= end) {
3425 return NULL;
3426 } else {
3427 *pos = *p;
3428 return p;
3429 }
3430}
3431
102a775e 3432static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3433{
3434 return seq_printf(s, "%d\n", *(int *)v);
3435}
bbcb81d0 3436
102a775e
BB
3437/*
3438 * seq_operations functions for iterating on pidlists through seq_file -
3439 * independent of whether it's tasks or procs
3440 */
3441static const struct seq_operations cgroup_pidlist_seq_operations = {
3442 .start = cgroup_pidlist_start,
3443 .stop = cgroup_pidlist_stop,
3444 .next = cgroup_pidlist_next,
3445 .show = cgroup_pidlist_show,
cc31edce
PM
3446};
3447
102a775e 3448static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3449{
72a8cb30
BB
3450 /*
3451 * the case where we're the last user of this particular pidlist will
3452 * have us remove it from the cgroup's list, which entails taking the
3453 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3454 * pidlist_mutex, we have to take pidlist_mutex first.
3455 */
3456 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3457 down_write(&l->mutex);
3458 BUG_ON(!l->use_count);
3459 if (!--l->use_count) {
72a8cb30
BB
3460 /* we're the last user if refcount is 0; remove and free */
3461 list_del(&l->links);
3462 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3463 pidlist_free(l->list);
72a8cb30
BB
3464 put_pid_ns(l->key.ns);
3465 up_write(&l->mutex);
3466 kfree(l);
3467 return;
cc31edce 3468 }
72a8cb30 3469 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3470 up_write(&l->mutex);
bbcb81d0
PM
3471}
3472
102a775e 3473static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3474{
102a775e 3475 struct cgroup_pidlist *l;
cc31edce
PM
3476 if (!(file->f_mode & FMODE_READ))
3477 return 0;
102a775e
BB
3478 /*
3479 * the seq_file will only be initialized if the file was opened for
3480 * reading; hence we check if it's not null only in that case.
3481 */
3482 l = ((struct seq_file *)file->private_data)->private;
3483 cgroup_release_pid_array(l);
cc31edce
PM
3484 return seq_release(inode, file);
3485}
3486
102a775e 3487static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3488 .read = seq_read,
3489 .llseek = seq_lseek,
3490 .write = cgroup_file_write,
102a775e 3491 .release = cgroup_pidlist_release,
cc31edce
PM
3492};
3493
bbcb81d0 3494/*
102a775e
BB
3495 * The following functions handle opens on a file that displays a pidlist
3496 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3497 * in the cgroup.
bbcb81d0 3498 */
102a775e 3499/* helper function for the two below it */
72a8cb30 3500static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3501{
bd89aabc 3502 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3503 struct cgroup_pidlist *l;
cc31edce 3504 int retval;
bbcb81d0 3505
cc31edce 3506 /* Nothing to do for write-only files */
bbcb81d0
PM
3507 if (!(file->f_mode & FMODE_READ))
3508 return 0;
3509
102a775e 3510 /* have the array populated */
72a8cb30 3511 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3512 if (retval)
3513 return retval;
3514 /* configure file information */
3515 file->f_op = &cgroup_pidlist_operations;
cc31edce 3516
102a775e 3517 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3518 if (retval) {
102a775e 3519 cgroup_release_pid_array(l);
cc31edce 3520 return retval;
bbcb81d0 3521 }
102a775e 3522 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3523 return 0;
3524}
102a775e
BB
3525static int cgroup_tasks_open(struct inode *unused, struct file *file)
3526{
72a8cb30 3527 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3528}
3529static int cgroup_procs_open(struct inode *unused, struct file *file)
3530{
72a8cb30 3531 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3532}
bbcb81d0 3533
bd89aabc 3534static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3535 struct cftype *cft)
3536{
bd89aabc 3537 return notify_on_release(cgrp);
81a6a5cd
PM
3538}
3539
6379c106
PM
3540static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3541 struct cftype *cft,
3542 u64 val)
3543{
3544 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3545 if (val)
3546 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3547 else
3548 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3549 return 0;
3550}
3551
0dea1168
KS
3552/*
3553 * Unregister event and free resources.
3554 *
3555 * Gets called from workqueue.
3556 */
3557static void cgroup_event_remove(struct work_struct *work)
3558{
3559 struct cgroup_event *event = container_of(work, struct cgroup_event,
3560 remove);
3561 struct cgroup *cgrp = event->cgrp;
3562
0dea1168
KS
3563 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3564
3565 eventfd_ctx_put(event->eventfd);
0dea1168 3566 kfree(event);
a0a4db54 3567 dput(cgrp->dentry);
0dea1168
KS
3568}
3569
3570/*
3571 * Gets called on POLLHUP on eventfd when user closes it.
3572 *
3573 * Called with wqh->lock held and interrupts disabled.
3574 */
3575static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3576 int sync, void *key)
3577{
3578 struct cgroup_event *event = container_of(wait,
3579 struct cgroup_event, wait);
3580 struct cgroup *cgrp = event->cgrp;
3581 unsigned long flags = (unsigned long)key;
3582
3583 if (flags & POLLHUP) {
a93d2f17 3584 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3585 spin_lock(&cgrp->event_list_lock);
3586 list_del(&event->list);
3587 spin_unlock(&cgrp->event_list_lock);
3588 /*
3589 * We are in atomic context, but cgroup_event_remove() may
3590 * sleep, so we have to call it in workqueue.
3591 */
3592 schedule_work(&event->remove);
3593 }
3594
3595 return 0;
3596}
3597
3598static void cgroup_event_ptable_queue_proc(struct file *file,
3599 wait_queue_head_t *wqh, poll_table *pt)
3600{
3601 struct cgroup_event *event = container_of(pt,
3602 struct cgroup_event, pt);
3603
3604 event->wqh = wqh;
3605 add_wait_queue(wqh, &event->wait);
3606}
3607
3608/*
3609 * Parse input and register new cgroup event handler.
3610 *
3611 * Input must be in format '<event_fd> <control_fd> <args>'.
3612 * Interpretation of args is defined by control file implementation.
3613 */
3614static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3615 const char *buffer)
3616{
3617 struct cgroup_event *event = NULL;
3618 unsigned int efd, cfd;
3619 struct file *efile = NULL;
3620 struct file *cfile = NULL;
3621 char *endp;
3622 int ret;
3623
3624 efd = simple_strtoul(buffer, &endp, 10);
3625 if (*endp != ' ')
3626 return -EINVAL;
3627 buffer = endp + 1;
3628
3629 cfd = simple_strtoul(buffer, &endp, 10);
3630 if ((*endp != ' ') && (*endp != '\0'))
3631 return -EINVAL;
3632 buffer = endp + 1;
3633
3634 event = kzalloc(sizeof(*event), GFP_KERNEL);
3635 if (!event)
3636 return -ENOMEM;
3637 event->cgrp = cgrp;
3638 INIT_LIST_HEAD(&event->list);
3639 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3640 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3641 INIT_WORK(&event->remove, cgroup_event_remove);
3642
3643 efile = eventfd_fget(efd);
3644 if (IS_ERR(efile)) {
3645 ret = PTR_ERR(efile);
3646 goto fail;
3647 }
3648
3649 event->eventfd = eventfd_ctx_fileget(efile);
3650 if (IS_ERR(event->eventfd)) {
3651 ret = PTR_ERR(event->eventfd);
3652 goto fail;
3653 }
3654
3655 cfile = fget(cfd);
3656 if (!cfile) {
3657 ret = -EBADF;
3658 goto fail;
3659 }
3660
3661 /* the process need read permission on control file */
3bfa784a
AV
3662 /* AV: shouldn't we check that it's been opened for read instead? */
3663 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3664 if (ret < 0)
3665 goto fail;
3666
3667 event->cft = __file_cft(cfile);
3668 if (IS_ERR(event->cft)) {
3669 ret = PTR_ERR(event->cft);
3670 goto fail;
3671 }
3672
3673 if (!event->cft->register_event || !event->cft->unregister_event) {
3674 ret = -EINVAL;
3675 goto fail;
3676 }
3677
3678 ret = event->cft->register_event(cgrp, event->cft,
3679 event->eventfd, buffer);
3680 if (ret)
3681 goto fail;
3682
3683 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3684 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3685 ret = 0;
3686 goto fail;
3687 }
3688
a0a4db54
KS
3689 /*
3690 * Events should be removed after rmdir of cgroup directory, but before
3691 * destroying subsystem state objects. Let's take reference to cgroup
3692 * directory dentry to do that.
3693 */
3694 dget(cgrp->dentry);
3695
0dea1168
KS
3696 spin_lock(&cgrp->event_list_lock);
3697 list_add(&event->list, &cgrp->event_list);
3698 spin_unlock(&cgrp->event_list_lock);
3699
3700 fput(cfile);
3701 fput(efile);
3702
3703 return 0;
3704
3705fail:
3706 if (cfile)
3707 fput(cfile);
3708
3709 if (event && event->eventfd && !IS_ERR(event->eventfd))
3710 eventfd_ctx_put(event->eventfd);
3711
3712 if (!IS_ERR_OR_NULL(efile))
3713 fput(efile);
3714
3715 kfree(event);
3716
3717 return ret;
3718}
3719
97978e6d
DL
3720static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3721 struct cftype *cft)
3722{
3723 return clone_children(cgrp);
3724}
3725
3726static int cgroup_clone_children_write(struct cgroup *cgrp,
3727 struct cftype *cft,
3728 u64 val)
3729{
3730 if (val)
3731 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3732 else
3733 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3734 return 0;
3735}
3736
bbcb81d0
PM
3737/*
3738 * for the common functions, 'private' gives the type of file
3739 */
102a775e
BB
3740/* for hysterical raisins, we can't put this on the older files */
3741#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3742static struct cftype files[] = {
3743 {
3744 .name = "tasks",
3745 .open = cgroup_tasks_open,
af351026 3746 .write_u64 = cgroup_tasks_write,
102a775e 3747 .release = cgroup_pidlist_release,
099fca32 3748 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3749 },
102a775e
BB
3750 {
3751 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3752 .open = cgroup_procs_open,
74a1166d 3753 .write_u64 = cgroup_procs_write,
102a775e 3754 .release = cgroup_pidlist_release,
74a1166d 3755 .mode = S_IRUGO | S_IWUSR,
102a775e 3756 },
81a6a5cd
PM
3757 {
3758 .name = "notify_on_release",
f4c753b7 3759 .read_u64 = cgroup_read_notify_on_release,
6379c106 3760 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3761 },
0dea1168
KS
3762 {
3763 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3764 .write_string = cgroup_write_event_control,
3765 .mode = S_IWUGO,
3766 },
97978e6d
DL
3767 {
3768 .name = "cgroup.clone_children",
3769 .read_u64 = cgroup_clone_children_read,
3770 .write_u64 = cgroup_clone_children_write,
3771 },
6e6ff25b
TH
3772 {
3773 .name = "release_agent",
3774 .flags = CFTYPE_ONLY_ON_ROOT,
3775 .read_seq_string = cgroup_release_agent_show,
3776 .write_string = cgroup_release_agent_write,
3777 .max_write_len = PATH_MAX,
3778 },
db0416b6 3779 { } /* terminate */
bbcb81d0
PM
3780};
3781
bd89aabc 3782static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3783{
3784 int err;
3785 struct cgroup_subsys *ss;
3786
db0416b6 3787 err = cgroup_add_files(cgrp, NULL, files);
bbcb81d0
PM
3788 if (err < 0)
3789 return err;
3790
8e3f6541 3791 /* process cftsets of each subsystem */
bd89aabc 3792 for_each_subsys(cgrp->root, ss) {
8e3f6541
TH
3793 struct cftype_set *set;
3794
bd89aabc 3795 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8 3796 return err;
8e3f6541 3797
db0416b6
TH
3798 list_for_each_entry(set, &ss->cftsets, node)
3799 cgroup_add_files(cgrp, ss, set->cfts);
ddbcc7e8 3800 }
8e3f6541 3801
38460b48
KH
3802 /* This cgroup is ready now */
3803 for_each_subsys(cgrp->root, ss) {
3804 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3805 /*
3806 * Update id->css pointer and make this css visible from
3807 * CSS ID functions. This pointer will be dereferened
3808 * from RCU-read-side without locks.
3809 */
3810 if (css->id)
3811 rcu_assign_pointer(css->id->css, css);
3812 }
ddbcc7e8
PM
3813
3814 return 0;
3815}
3816
3817static void init_cgroup_css(struct cgroup_subsys_state *css,
3818 struct cgroup_subsys *ss,
bd89aabc 3819 struct cgroup *cgrp)
ddbcc7e8 3820{
bd89aabc 3821 css->cgroup = cgrp;
e7c5ec91 3822 atomic_set(&css->refcnt, 1);
ddbcc7e8 3823 css->flags = 0;
38460b48 3824 css->id = NULL;
bd89aabc 3825 if (cgrp == dummytop)
ddbcc7e8 3826 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3827 BUG_ON(cgrp->subsys[ss->subsys_id]);
3828 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3829}
3830
999cd8a4
PM
3831static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3832{
3833 /* We need to take each hierarchy_mutex in a consistent order */
3834 int i;
3835
aae8aab4
BB
3836 /*
3837 * No worry about a race with rebind_subsystems that might mess up the
3838 * locking order, since both parties are under cgroup_mutex.
3839 */
999cd8a4
PM
3840 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3841 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3842 if (ss == NULL)
3843 continue;
999cd8a4 3844 if (ss->root == root)
cfebe563 3845 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3846 }
3847}
3848
3849static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3850{
3851 int i;
3852
3853 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3854 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3855 if (ss == NULL)
3856 continue;
999cd8a4
PM
3857 if (ss->root == root)
3858 mutex_unlock(&ss->hierarchy_mutex);
3859 }
3860}
3861
ddbcc7e8 3862/*
a043e3b2
LZ
3863 * cgroup_create - create a cgroup
3864 * @parent: cgroup that will be parent of the new cgroup
3865 * @dentry: dentry of the new cgroup
3866 * @mode: mode to set on new inode
ddbcc7e8 3867 *
a043e3b2 3868 * Must be called with the mutex on the parent inode held
ddbcc7e8 3869 */
ddbcc7e8 3870static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 3871 umode_t mode)
ddbcc7e8 3872{
bd89aabc 3873 struct cgroup *cgrp;
ddbcc7e8
PM
3874 struct cgroupfs_root *root = parent->root;
3875 int err = 0;
3876 struct cgroup_subsys *ss;
3877 struct super_block *sb = root->sb;
3878
bd89aabc
PM
3879 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3880 if (!cgrp)
ddbcc7e8
PM
3881 return -ENOMEM;
3882
3883 /* Grab a reference on the superblock so the hierarchy doesn't
3884 * get deleted on unmount if there are child cgroups. This
3885 * can be done outside cgroup_mutex, since the sb can't
3886 * disappear while someone has an open control file on the
3887 * fs */
3888 atomic_inc(&sb->s_active);
3889
3890 mutex_lock(&cgroup_mutex);
3891
cc31edce 3892 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3893
bd89aabc
PM
3894 cgrp->parent = parent;
3895 cgrp->root = parent->root;
3896 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3897
b6abdb0e
LZ
3898 if (notify_on_release(parent))
3899 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3900
97978e6d
DL
3901 if (clone_children(parent))
3902 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3903
ddbcc7e8 3904 for_each_subsys(root, ss) {
761b3ef5 3905 struct cgroup_subsys_state *css = ss->create(cgrp);
4528fd05 3906
ddbcc7e8
PM
3907 if (IS_ERR(css)) {
3908 err = PTR_ERR(css);
3909 goto err_destroy;
3910 }
bd89aabc 3911 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3912 if (ss->use_id) {
3913 err = alloc_css_id(ss, parent, cgrp);
3914 if (err)
38460b48 3915 goto err_destroy;
4528fd05 3916 }
38460b48 3917 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d 3918 if (clone_children(parent) && ss->post_clone)
761b3ef5 3919 ss->post_clone(cgrp);
ddbcc7e8
PM
3920 }
3921
999cd8a4 3922 cgroup_lock_hierarchy(root);
bd89aabc 3923 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3924 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3925 root->number_of_cgroups++;
3926
bd89aabc 3927 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3928 if (err < 0)
3929 goto err_remove;
3930
3931 /* The cgroup directory was pre-locked for us */
bd89aabc 3932 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3933
b0ca5a84
TH
3934 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3935
bd89aabc 3936 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3937 /* If err < 0, we have a half-filled directory - oh well ;) */
3938
3939 mutex_unlock(&cgroup_mutex);
bd89aabc 3940 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3941
3942 return 0;
3943
3944 err_remove:
3945
baef99a0 3946 cgroup_lock_hierarchy(root);
bd89aabc 3947 list_del(&cgrp->sibling);
baef99a0 3948 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3949 root->number_of_cgroups--;
3950
3951 err_destroy:
3952
3953 for_each_subsys(root, ss) {
bd89aabc 3954 if (cgrp->subsys[ss->subsys_id])
761b3ef5 3955 ss->destroy(cgrp);
ddbcc7e8
PM
3956 }
3957
3958 mutex_unlock(&cgroup_mutex);
3959
3960 /* Release the reference count that we took on the superblock */
3961 deactivate_super(sb);
3962
bd89aabc 3963 kfree(cgrp);
ddbcc7e8
PM
3964 return err;
3965}
3966
18bb1db3 3967static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
3968{
3969 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3970
3971 /* the vfs holds inode->i_mutex already */
3972 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3973}
3974
55b6fd01 3975static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3976{
3977 /* Check the reference count on each subsystem. Since we
3978 * already established that there are no tasks in the
e7c5ec91 3979 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3980 * be no outstanding references, so the subsystem is safe to
3981 * destroy. We scan across all subsystems rather than using
3982 * the per-hierarchy linked list of mounted subsystems since
3983 * we can be called via check_for_release() with no
3984 * synchronization other than RCU, and the subsystem linked
3985 * list isn't RCU-safe */
3986 int i;
aae8aab4
BB
3987 /*
3988 * We won't need to lock the subsys array, because the subsystems
3989 * we're concerned about aren't going anywhere since our cgroup root
3990 * has a reference on them.
3991 */
81a6a5cd
PM
3992 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3993 struct cgroup_subsys *ss = subsys[i];
3994 struct cgroup_subsys_state *css;
aae8aab4
BB
3995 /* Skip subsystems not present or not in this hierarchy */
3996 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3997 continue;
bd89aabc 3998 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3999 /* When called from check_for_release() it's possible
4000 * that by this point the cgroup has been removed
4001 * and the css deleted. But a false-positive doesn't
4002 * matter, since it can only happen if the cgroup
4003 * has been deleted and hence no longer needs the
4004 * release agent to be called anyway. */
e7c5ec91 4005 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 4006 return 1;
81a6a5cd
PM
4007 }
4008 return 0;
4009}
4010
e7c5ec91
PM
4011/*
4012 * Atomically mark all (or else none) of the cgroup's CSS objects as
4013 * CSS_REMOVED. Return true on success, or false if the cgroup has
4014 * busy subsystems. Call with cgroup_mutex held
4015 */
4016
4017static int cgroup_clear_css_refs(struct cgroup *cgrp)
4018{
4019 struct cgroup_subsys *ss;
4020 unsigned long flags;
4021 bool failed = false;
4022 local_irq_save(flags);
4023 for_each_subsys(cgrp->root, ss) {
4024 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4025 int refcnt;
804b3c28 4026 while (1) {
e7c5ec91
PM
4027 /* We can only remove a CSS with a refcnt==1 */
4028 refcnt = atomic_read(&css->refcnt);
4029 if (refcnt > 1) {
4030 failed = true;
4031 goto done;
4032 }
4033 BUG_ON(!refcnt);
4034 /*
4035 * Drop the refcnt to 0 while we check other
4036 * subsystems. This will cause any racing
4037 * css_tryget() to spin until we set the
4038 * CSS_REMOVED bits or abort
4039 */
804b3c28
PM
4040 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
4041 break;
4042 cpu_relax();
4043 }
e7c5ec91
PM
4044 }
4045 done:
4046 for_each_subsys(cgrp->root, ss) {
4047 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4048 if (failed) {
4049 /*
4050 * Restore old refcnt if we previously managed
4051 * to clear it from 1 to 0
4052 */
4053 if (!atomic_read(&css->refcnt))
4054 atomic_set(&css->refcnt, 1);
4055 } else {
4056 /* Commit the fact that the CSS is removed */
4057 set_bit(CSS_REMOVED, &css->flags);
4058 }
4059 }
4060 local_irq_restore(flags);
4061 return !failed;
4062}
4063
ddbcc7e8
PM
4064static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4065{
bd89aabc 4066 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
4067 struct dentry *d;
4068 struct cgroup *parent;
ec64f515 4069 DEFINE_WAIT(wait);
4ab78683 4070 struct cgroup_event *event, *tmp;
ec64f515 4071 int ret;
ddbcc7e8
PM
4072
4073 /* the vfs holds both inode->i_mutex already */
ec64f515 4074again:
ddbcc7e8 4075 mutex_lock(&cgroup_mutex);
bd89aabc 4076 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
4077 mutex_unlock(&cgroup_mutex);
4078 return -EBUSY;
4079 }
bd89aabc 4080 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
4081 mutex_unlock(&cgroup_mutex);
4082 return -EBUSY;
4083 }
3fa59dfb 4084 mutex_unlock(&cgroup_mutex);
a043e3b2 4085
88703267
KH
4086 /*
4087 * In general, subsystem has no css->refcnt after pre_destroy(). But
4088 * in racy cases, subsystem may have to get css->refcnt after
4089 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4090 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4091 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4092 * and subsystem's reference count handling. Please see css_get/put
4093 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4094 */
4095 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4096
4fca88c8 4097 /*
a043e3b2
LZ
4098 * Call pre_destroy handlers of subsys. Notify subsystems
4099 * that rmdir() request comes.
4fca88c8 4100 */
ec64f515 4101 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
4102 if (ret) {
4103 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 4104 return ret;
88703267 4105 }
ddbcc7e8 4106
3fa59dfb
KH
4107 mutex_lock(&cgroup_mutex);
4108 parent = cgrp->parent;
ec64f515 4109 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 4110 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
4111 mutex_unlock(&cgroup_mutex);
4112 return -EBUSY;
4113 }
ec64f515 4114 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
4115 if (!cgroup_clear_css_refs(cgrp)) {
4116 mutex_unlock(&cgroup_mutex);
88703267
KH
4117 /*
4118 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4119 * prepare_to_wait(), we need to check this flag.
4120 */
4121 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4122 schedule();
ec64f515
KH
4123 finish_wait(&cgroup_rmdir_waitq, &wait);
4124 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4125 if (signal_pending(current))
4126 return -EINTR;
4127 goto again;
4128 }
4129 /* NO css_tryget() can success after here. */
4130 finish_wait(&cgroup_rmdir_waitq, &wait);
4131 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 4132
cdcc136f 4133 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4134 set_bit(CGRP_REMOVED, &cgrp->flags);
4135 if (!list_empty(&cgrp->release_list))
8d258797 4136 list_del_init(&cgrp->release_list);
cdcc136f 4137 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
4138
4139 cgroup_lock_hierarchy(cgrp->root);
4140 /* delete this cgroup from parent->children */
8d258797 4141 list_del_init(&cgrp->sibling);
999cd8a4
PM
4142 cgroup_unlock_hierarchy(cgrp->root);
4143
b0ca5a84
TH
4144 list_del_init(&cgrp->allcg_node);
4145
bd89aabc 4146 d = dget(cgrp->dentry);
ddbcc7e8
PM
4147
4148 cgroup_d_remove_dir(d);
4149 dput(d);
ddbcc7e8 4150
bd89aabc 4151 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4152 check_for_release(parent);
4153
4ab78683
KS
4154 /*
4155 * Unregister events and notify userspace.
4156 * Notify userspace about cgroup removing only after rmdir of cgroup
4157 * directory to avoid race between userspace and kernelspace
4158 */
4159 spin_lock(&cgrp->event_list_lock);
4160 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4161 list_del(&event->list);
4162 remove_wait_queue(event->wqh, &event->wait);
4163 eventfd_signal(event->eventfd, 1);
4164 schedule_work(&event->remove);
4165 }
4166 spin_unlock(&cgrp->event_list_lock);
4167
ddbcc7e8 4168 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4169 return 0;
4170}
4171
8e3f6541
TH
4172static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4173{
4174 INIT_LIST_HEAD(&ss->cftsets);
4175
4176 /*
4177 * base_cftset is embedded in subsys itself, no need to worry about
4178 * deregistration.
4179 */
4180 if (ss->base_cftypes) {
4181 ss->base_cftset.cfts = ss->base_cftypes;
4182 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4183 }
4184}
4185
06a11920 4186static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4187{
ddbcc7e8 4188 struct cgroup_subsys_state *css;
cfe36bde
DC
4189
4190 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4191
8e3f6541
TH
4192 /* init base cftset */
4193 cgroup_init_cftsets(ss);
4194
ddbcc7e8 4195 /* Create the top cgroup state for this subsystem */
33a68ac1 4196 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4197 ss->root = &rootnode;
761b3ef5 4198 css = ss->create(dummytop);
ddbcc7e8
PM
4199 /* We don't handle early failures gracefully */
4200 BUG_ON(IS_ERR(css));
4201 init_cgroup_css(css, ss, dummytop);
4202
e8d55fde 4203 /* Update the init_css_set to contain a subsys
817929ec 4204 * pointer to this state - since the subsystem is
e8d55fde
LZ
4205 * newly registered, all tasks and hence the
4206 * init_css_set is in the subsystem's top cgroup. */
4207 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4208
4209 need_forkexit_callback |= ss->fork || ss->exit;
4210
e8d55fde
LZ
4211 /* At system boot, before all subsystems have been
4212 * registered, no tasks have been forked, so we don't
4213 * need to invoke fork callbacks here. */
4214 BUG_ON(!list_empty(&init_task.tasks));
4215
999cd8a4 4216 mutex_init(&ss->hierarchy_mutex);
cfebe563 4217 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4218 ss->active = 1;
e6a1105b
BB
4219
4220 /* this function shouldn't be used with modular subsystems, since they
4221 * need to register a subsys_id, among other things */
4222 BUG_ON(ss->module);
4223}
4224
4225/**
4226 * cgroup_load_subsys: load and register a modular subsystem at runtime
4227 * @ss: the subsystem to load
4228 *
4229 * This function should be called in a modular subsystem's initcall. If the
88393161 4230 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4231 * up for use. If the subsystem is built-in anyway, work is delegated to the
4232 * simpler cgroup_init_subsys.
4233 */
4234int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4235{
4236 int i;
4237 struct cgroup_subsys_state *css;
4238
4239 /* check name and function validity */
4240 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4241 ss->create == NULL || ss->destroy == NULL)
4242 return -EINVAL;
4243
4244 /*
4245 * we don't support callbacks in modular subsystems. this check is
4246 * before the ss->module check for consistency; a subsystem that could
4247 * be a module should still have no callbacks even if the user isn't
4248 * compiling it as one.
4249 */
4250 if (ss->fork || ss->exit)
4251 return -EINVAL;
4252
4253 /*
4254 * an optionally modular subsystem is built-in: we want to do nothing,
4255 * since cgroup_init_subsys will have already taken care of it.
4256 */
4257 if (ss->module == NULL) {
4258 /* a few sanity checks */
4259 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4260 BUG_ON(subsys[ss->subsys_id] != ss);
4261 return 0;
4262 }
4263
8e3f6541
TH
4264 /* init base cftset */
4265 cgroup_init_cftsets(ss);
4266
e6a1105b
BB
4267 /*
4268 * need to register a subsys id before anything else - for example,
4269 * init_cgroup_css needs it.
4270 */
4271 mutex_lock(&cgroup_mutex);
4272 /* find the first empty slot in the array */
4273 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4274 if (subsys[i] == NULL)
4275 break;
4276 }
4277 if (i == CGROUP_SUBSYS_COUNT) {
4278 /* maximum number of subsystems already registered! */
4279 mutex_unlock(&cgroup_mutex);
4280 return -EBUSY;
4281 }
4282 /* assign ourselves the subsys_id */
4283 ss->subsys_id = i;
4284 subsys[i] = ss;
4285
4286 /*
4287 * no ss->create seems to need anything important in the ss struct, so
4288 * this can happen first (i.e. before the rootnode attachment).
4289 */
761b3ef5 4290 css = ss->create(dummytop);
e6a1105b
BB
4291 if (IS_ERR(css)) {
4292 /* failure case - need to deassign the subsys[] slot. */
4293 subsys[i] = NULL;
4294 mutex_unlock(&cgroup_mutex);
4295 return PTR_ERR(css);
4296 }
4297
4298 list_add(&ss->sibling, &rootnode.subsys_list);
4299 ss->root = &rootnode;
4300
4301 /* our new subsystem will be attached to the dummy hierarchy. */
4302 init_cgroup_css(css, ss, dummytop);
4303 /* init_idr must be after init_cgroup_css because it sets css->id. */
4304 if (ss->use_id) {
4305 int ret = cgroup_init_idr(ss, css);
4306 if (ret) {
4307 dummytop->subsys[ss->subsys_id] = NULL;
761b3ef5 4308 ss->destroy(dummytop);
e6a1105b
BB
4309 subsys[i] = NULL;
4310 mutex_unlock(&cgroup_mutex);
4311 return ret;
4312 }
4313 }
4314
4315 /*
4316 * Now we need to entangle the css into the existing css_sets. unlike
4317 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4318 * will need a new pointer to it; done by iterating the css_set_table.
4319 * furthermore, modifying the existing css_sets will corrupt the hash
4320 * table state, so each changed css_set will need its hash recomputed.
4321 * this is all done under the css_set_lock.
4322 */
4323 write_lock(&css_set_lock);
4324 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4325 struct css_set *cg;
4326 struct hlist_node *node, *tmp;
4327 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4328
4329 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4330 /* skip entries that we already rehashed */
4331 if (cg->subsys[ss->subsys_id])
4332 continue;
4333 /* remove existing entry */
4334 hlist_del(&cg->hlist);
4335 /* set new value */
4336 cg->subsys[ss->subsys_id] = css;
4337 /* recompute hash and restore entry */
4338 new_bucket = css_set_hash(cg->subsys);
4339 hlist_add_head(&cg->hlist, new_bucket);
4340 }
4341 }
4342 write_unlock(&css_set_lock);
4343
4344 mutex_init(&ss->hierarchy_mutex);
4345 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4346 ss->active = 1;
4347
e6a1105b
BB
4348 /* success! */
4349 mutex_unlock(&cgroup_mutex);
4350 return 0;
ddbcc7e8 4351}
e6a1105b 4352EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4353
cf5d5941
BB
4354/**
4355 * cgroup_unload_subsys: unload a modular subsystem
4356 * @ss: the subsystem to unload
4357 *
4358 * This function should be called in a modular subsystem's exitcall. When this
4359 * function is invoked, the refcount on the subsystem's module will be 0, so
4360 * the subsystem will not be attached to any hierarchy.
4361 */
4362void cgroup_unload_subsys(struct cgroup_subsys *ss)
4363{
4364 struct cg_cgroup_link *link;
4365 struct hlist_head *hhead;
4366
4367 BUG_ON(ss->module == NULL);
4368
4369 /*
4370 * we shouldn't be called if the subsystem is in use, and the use of
4371 * try_module_get in parse_cgroupfs_options should ensure that it
4372 * doesn't start being used while we're killing it off.
4373 */
4374 BUG_ON(ss->root != &rootnode);
4375
4376 mutex_lock(&cgroup_mutex);
4377 /* deassign the subsys_id */
4378 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4379 subsys[ss->subsys_id] = NULL;
4380
4381 /* remove subsystem from rootnode's list of subsystems */
8d258797 4382 list_del_init(&ss->sibling);
cf5d5941
BB
4383
4384 /*
4385 * disentangle the css from all css_sets attached to the dummytop. as
4386 * in loading, we need to pay our respects to the hashtable gods.
4387 */
4388 write_lock(&css_set_lock);
4389 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4390 struct css_set *cg = link->cg;
4391
4392 hlist_del(&cg->hlist);
4393 BUG_ON(!cg->subsys[ss->subsys_id]);
4394 cg->subsys[ss->subsys_id] = NULL;
4395 hhead = css_set_hash(cg->subsys);
4396 hlist_add_head(&cg->hlist, hhead);
4397 }
4398 write_unlock(&css_set_lock);
4399
4400 /*
4401 * remove subsystem's css from the dummytop and free it - need to free
4402 * before marking as null because ss->destroy needs the cgrp->subsys
4403 * pointer to find their state. note that this also takes care of
4404 * freeing the css_id.
4405 */
761b3ef5 4406 ss->destroy(dummytop);
cf5d5941
BB
4407 dummytop->subsys[ss->subsys_id] = NULL;
4408
4409 mutex_unlock(&cgroup_mutex);
4410}
4411EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4412
ddbcc7e8 4413/**
a043e3b2
LZ
4414 * cgroup_init_early - cgroup initialization at system boot
4415 *
4416 * Initialize cgroups at system boot, and initialize any
4417 * subsystems that request early init.
ddbcc7e8
PM
4418 */
4419int __init cgroup_init_early(void)
4420{
4421 int i;
146aa1bd 4422 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4423 INIT_LIST_HEAD(&init_css_set.cg_links);
4424 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4425 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4426 css_set_count = 1;
ddbcc7e8 4427 init_cgroup_root(&rootnode);
817929ec
PM
4428 root_count = 1;
4429 init_task.cgroups = &init_css_set;
4430
4431 init_css_set_link.cg = &init_css_set;
7717f7ba 4432 init_css_set_link.cgrp = dummytop;
bd89aabc 4433 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4434 &rootnode.top_cgroup.css_sets);
4435 list_add(&init_css_set_link.cg_link_list,
4436 &init_css_set.cg_links);
ddbcc7e8 4437
472b1053
LZ
4438 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4439 INIT_HLIST_HEAD(&css_set_table[i]);
4440
aae8aab4
BB
4441 /* at bootup time, we don't worry about modular subsystems */
4442 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4443 struct cgroup_subsys *ss = subsys[i];
4444
4445 BUG_ON(!ss->name);
4446 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4447 BUG_ON(!ss->create);
4448 BUG_ON(!ss->destroy);
4449 if (ss->subsys_id != i) {
cfe36bde 4450 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4451 ss->name, ss->subsys_id);
4452 BUG();
4453 }
4454
4455 if (ss->early_init)
4456 cgroup_init_subsys(ss);
4457 }
4458 return 0;
4459}
4460
4461/**
a043e3b2
LZ
4462 * cgroup_init - cgroup initialization
4463 *
4464 * Register cgroup filesystem and /proc file, and initialize
4465 * any subsystems that didn't request early init.
ddbcc7e8
PM
4466 */
4467int __init cgroup_init(void)
4468{
4469 int err;
4470 int i;
472b1053 4471 struct hlist_head *hhead;
a424316c
PM
4472
4473 err = bdi_init(&cgroup_backing_dev_info);
4474 if (err)
4475 return err;
ddbcc7e8 4476
aae8aab4
BB
4477 /* at bootup time, we don't worry about modular subsystems */
4478 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4479 struct cgroup_subsys *ss = subsys[i];
4480 if (!ss->early_init)
4481 cgroup_init_subsys(ss);
38460b48 4482 if (ss->use_id)
e6a1105b 4483 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4484 }
4485
472b1053
LZ
4486 /* Add init_css_set to the hash table */
4487 hhead = css_set_hash(init_css_set.subsys);
4488 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4489 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
4490
4491 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4492 if (!cgroup_kobj) {
4493 err = -ENOMEM;
4494 goto out;
4495 }
4496
ddbcc7e8 4497 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4498 if (err < 0) {
4499 kobject_put(cgroup_kobj);
ddbcc7e8 4500 goto out;
676db4af 4501 }
ddbcc7e8 4502
46ae220b 4503 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4504
ddbcc7e8 4505out:
a424316c
PM
4506 if (err)
4507 bdi_destroy(&cgroup_backing_dev_info);
4508
ddbcc7e8
PM
4509 return err;
4510}
b4f48b63 4511
a424316c
PM
4512/*
4513 * proc_cgroup_show()
4514 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4515 * - Used for /proc/<pid>/cgroup.
4516 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4517 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4518 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4519 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4520 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4521 * cgroup to top_cgroup.
4522 */
4523
4524/* TODO: Use a proper seq_file iterator */
4525static int proc_cgroup_show(struct seq_file *m, void *v)
4526{
4527 struct pid *pid;
4528 struct task_struct *tsk;
4529 char *buf;
4530 int retval;
4531 struct cgroupfs_root *root;
4532
4533 retval = -ENOMEM;
4534 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4535 if (!buf)
4536 goto out;
4537
4538 retval = -ESRCH;
4539 pid = m->private;
4540 tsk = get_pid_task(pid, PIDTYPE_PID);
4541 if (!tsk)
4542 goto out_free;
4543
4544 retval = 0;
4545
4546 mutex_lock(&cgroup_mutex);
4547
e5f6a860 4548 for_each_active_root(root) {
a424316c 4549 struct cgroup_subsys *ss;
bd89aabc 4550 struct cgroup *cgrp;
a424316c
PM
4551 int count = 0;
4552
2c6ab6d2 4553 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4554 for_each_subsys(root, ss)
4555 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4556 if (strlen(root->name))
4557 seq_printf(m, "%sname=%s", count ? "," : "",
4558 root->name);
a424316c 4559 seq_putc(m, ':');
7717f7ba 4560 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4561 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4562 if (retval < 0)
4563 goto out_unlock;
4564 seq_puts(m, buf);
4565 seq_putc(m, '\n');
4566 }
4567
4568out_unlock:
4569 mutex_unlock(&cgroup_mutex);
4570 put_task_struct(tsk);
4571out_free:
4572 kfree(buf);
4573out:
4574 return retval;
4575}
4576
4577static int cgroup_open(struct inode *inode, struct file *file)
4578{
4579 struct pid *pid = PROC_I(inode)->pid;
4580 return single_open(file, proc_cgroup_show, pid);
4581}
4582
828c0950 4583const struct file_operations proc_cgroup_operations = {
a424316c
PM
4584 .open = cgroup_open,
4585 .read = seq_read,
4586 .llseek = seq_lseek,
4587 .release = single_release,
4588};
4589
4590/* Display information about each subsystem and each hierarchy */
4591static int proc_cgroupstats_show(struct seq_file *m, void *v)
4592{
4593 int i;
a424316c 4594
8bab8dde 4595 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4596 /*
4597 * ideally we don't want subsystems moving around while we do this.
4598 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4599 * subsys/hierarchy state.
4600 */
a424316c 4601 mutex_lock(&cgroup_mutex);
a424316c
PM
4602 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4603 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4604 if (ss == NULL)
4605 continue;
2c6ab6d2
PM
4606 seq_printf(m, "%s\t%d\t%d\t%d\n",
4607 ss->name, ss->root->hierarchy_id,
8bab8dde 4608 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4609 }
4610 mutex_unlock(&cgroup_mutex);
4611 return 0;
4612}
4613
4614static int cgroupstats_open(struct inode *inode, struct file *file)
4615{
9dce07f1 4616 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4617}
4618
828c0950 4619static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4620 .open = cgroupstats_open,
4621 .read = seq_read,
4622 .llseek = seq_lseek,
4623 .release = single_release,
4624};
4625
b4f48b63
PM
4626/**
4627 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4628 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4629 *
4630 * Description: A task inherits its parent's cgroup at fork().
4631 *
4632 * A pointer to the shared css_set was automatically copied in
4633 * fork.c by dup_task_struct(). However, we ignore that copy, since
7e381b0e
FW
4634 * it was not made under the protection of RCU, cgroup_mutex or
4635 * threadgroup_change_begin(), so it might no longer be a valid
4636 * cgroup pointer. cgroup_attach_task() might have already changed
4637 * current->cgroups, allowing the previously referenced cgroup
4638 * group to be removed and freed.
4639 *
4640 * Outside the pointer validity we also need to process the css_set
4641 * inheritance between threadgoup_change_begin() and
4642 * threadgoup_change_end(), this way there is no leak in any process
4643 * wide migration performed by cgroup_attach_proc() that could otherwise
4644 * miss a thread because it is too early or too late in the fork stage.
b4f48b63
PM
4645 *
4646 * At the point that cgroup_fork() is called, 'current' is the parent
4647 * task, and the passed argument 'child' points to the child task.
4648 */
4649void cgroup_fork(struct task_struct *child)
4650{
7e381b0e
FW
4651 /*
4652 * We don't need to task_lock() current because current->cgroups
4653 * can't be changed concurrently here. The parent obviously hasn't
4654 * exited and called cgroup_exit(), and we are synchronized against
4655 * cgroup migration through threadgroup_change_begin().
4656 */
817929ec
PM
4657 child->cgroups = current->cgroups;
4658 get_css_set(child->cgroups);
817929ec 4659 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4660}
4661
4662/**
a043e3b2
LZ
4663 * cgroup_fork_callbacks - run fork callbacks
4664 * @child: the new task
4665 *
4666 * Called on a new task very soon before adding it to the
4667 * tasklist. No need to take any locks since no-one can
4668 * be operating on this task.
b4f48b63
PM
4669 */
4670void cgroup_fork_callbacks(struct task_struct *child)
4671{
4672 if (need_forkexit_callback) {
4673 int i;
aae8aab4
BB
4674 /*
4675 * forkexit callbacks are only supported for builtin
4676 * subsystems, and the builtin section of the subsys array is
4677 * immutable, so we don't need to lock the subsys array here.
4678 */
4679 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4680 struct cgroup_subsys *ss = subsys[i];
4681 if (ss->fork)
761b3ef5 4682 ss->fork(child);
b4f48b63
PM
4683 }
4684 }
4685}
4686
817929ec 4687/**
a043e3b2
LZ
4688 * cgroup_post_fork - called on a new task after adding it to the task list
4689 * @child: the task in question
4690 *
4691 * Adds the task to the list running through its css_set if necessary.
4692 * Has to be after the task is visible on the task list in case we race
4693 * with the first call to cgroup_iter_start() - to guarantee that the
4694 * new task ends up on its list.
4695 */
817929ec
PM
4696void cgroup_post_fork(struct task_struct *child)
4697{
3ce3230a
FW
4698 /*
4699 * use_task_css_set_links is set to 1 before we walk the tasklist
4700 * under the tasklist_lock and we read it here after we added the child
4701 * to the tasklist under the tasklist_lock as well. If the child wasn't
4702 * yet in the tasklist when we walked through it from
4703 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4704 * should be visible now due to the paired locking and barriers implied
4705 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4706 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4707 * lock on fork.
4708 */
817929ec
PM
4709 if (use_task_css_set_links) {
4710 write_lock(&css_set_lock);
7e3aa30a
FW
4711 if (list_empty(&child->cg_list)) {
4712 /*
4713 * It's safe to use child->cgroups without task_lock()
4714 * here because we are protected through
4715 * threadgroup_change_begin() against concurrent
4716 * css_set change in cgroup_task_migrate(). Also
4717 * the task can't exit at that point until
4718 * wake_up_new_task() is called, so we are protected
4719 * against cgroup_exit() setting child->cgroup to
4720 * init_css_set.
4721 */
817929ec 4722 list_add(&child->cg_list, &child->cgroups->tasks);
7e3aa30a 4723 }
817929ec
PM
4724 write_unlock(&css_set_lock);
4725 }
4726}
b4f48b63
PM
4727/**
4728 * cgroup_exit - detach cgroup from exiting task
4729 * @tsk: pointer to task_struct of exiting process
a043e3b2 4730 * @run_callback: run exit callbacks?
b4f48b63
PM
4731 *
4732 * Description: Detach cgroup from @tsk and release it.
4733 *
4734 * Note that cgroups marked notify_on_release force every task in
4735 * them to take the global cgroup_mutex mutex when exiting.
4736 * This could impact scaling on very large systems. Be reluctant to
4737 * use notify_on_release cgroups where very high task exit scaling
4738 * is required on large systems.
4739 *
4740 * the_top_cgroup_hack:
4741 *
4742 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4743 *
4744 * We call cgroup_exit() while the task is still competent to
4745 * handle notify_on_release(), then leave the task attached to the
4746 * root cgroup in each hierarchy for the remainder of its exit.
4747 *
4748 * To do this properly, we would increment the reference count on
4749 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4750 * code we would add a second cgroup function call, to drop that
4751 * reference. This would just create an unnecessary hot spot on
4752 * the top_cgroup reference count, to no avail.
4753 *
4754 * Normally, holding a reference to a cgroup without bumping its
4755 * count is unsafe. The cgroup could go away, or someone could
4756 * attach us to a different cgroup, decrementing the count on
4757 * the first cgroup that we never incremented. But in this case,
4758 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4759 * which wards off any cgroup_attach_task() attempts, or task is a failed
4760 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4761 */
4762void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4763{
817929ec 4764 struct css_set *cg;
d41d5a01 4765 int i;
817929ec
PM
4766
4767 /*
4768 * Unlink from the css_set task list if necessary.
4769 * Optimistically check cg_list before taking
4770 * css_set_lock
4771 */
4772 if (!list_empty(&tsk->cg_list)) {
4773 write_lock(&css_set_lock);
4774 if (!list_empty(&tsk->cg_list))
8d258797 4775 list_del_init(&tsk->cg_list);
817929ec
PM
4776 write_unlock(&css_set_lock);
4777 }
4778
b4f48b63
PM
4779 /* Reassign the task to the init_css_set. */
4780 task_lock(tsk);
817929ec
PM
4781 cg = tsk->cgroups;
4782 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4783
4784 if (run_callbacks && need_forkexit_callback) {
4785 /*
4786 * modular subsystems can't use callbacks, so no need to lock
4787 * the subsys array
4788 */
4789 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4790 struct cgroup_subsys *ss = subsys[i];
4791 if (ss->exit) {
4792 struct cgroup *old_cgrp =
4793 rcu_dereference_raw(cg->subsys[i])->cgroup;
4794 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4795 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4796 }
4797 }
4798 }
b4f48b63 4799 task_unlock(tsk);
d41d5a01 4800
817929ec 4801 if (cg)
81a6a5cd 4802 put_css_set_taskexit(cg);
b4f48b63 4803}
697f4161 4804
a043e3b2 4805/**
313e924c 4806 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4807 * @cgrp: the cgroup in question
313e924c 4808 * @task: the task in question
a043e3b2 4809 *
313e924c
GN
4810 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4811 * hierarchy.
697f4161
PM
4812 *
4813 * If we are sending in dummytop, then presumably we are creating
4814 * the top cgroup in the subsystem.
4815 *
4816 * Called only by the ns (nsproxy) cgroup.
4817 */
313e924c 4818int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4819{
4820 int ret;
4821 struct cgroup *target;
697f4161 4822
bd89aabc 4823 if (cgrp == dummytop)
697f4161
PM
4824 return 1;
4825
7717f7ba 4826 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4827 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4828 cgrp = cgrp->parent;
4829 ret = (cgrp == target);
697f4161
PM
4830 return ret;
4831}
81a6a5cd 4832
bd89aabc 4833static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4834{
4835 /* All of these checks rely on RCU to keep the cgroup
4836 * structure alive */
bd89aabc
PM
4837 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4838 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4839 /* Control Group is currently removeable. If it's not
4840 * already queued for a userspace notification, queue
4841 * it now */
4842 int need_schedule_work = 0;
cdcc136f 4843 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4844 if (!cgroup_is_removed(cgrp) &&
4845 list_empty(&cgrp->release_list)) {
4846 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4847 need_schedule_work = 1;
4848 }
cdcc136f 4849 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4850 if (need_schedule_work)
4851 schedule_work(&release_agent_work);
4852 }
4853}
4854
d7b9fff7
DN
4855/* Caller must verify that the css is not for root cgroup */
4856void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4857{
bd89aabc 4858 struct cgroup *cgrp = css->cgroup;
3dece834 4859 int val;
81a6a5cd 4860 rcu_read_lock();
d7b9fff7 4861 val = atomic_sub_return(count, &css->refcnt);
3dece834 4862 if (val == 1) {
ec64f515
KH
4863 if (notify_on_release(cgrp)) {
4864 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4865 check_for_release(cgrp);
4866 }
88703267 4867 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4868 }
4869 rcu_read_unlock();
3dece834 4870 WARN_ON_ONCE(val < 1);
81a6a5cd 4871}
67523c48 4872EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4873
4874/*
4875 * Notify userspace when a cgroup is released, by running the
4876 * configured release agent with the name of the cgroup (path
4877 * relative to the root of cgroup file system) as the argument.
4878 *
4879 * Most likely, this user command will try to rmdir this cgroup.
4880 *
4881 * This races with the possibility that some other task will be
4882 * attached to this cgroup before it is removed, or that some other
4883 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4884 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4885 * unused, and this cgroup will be reprieved from its death sentence,
4886 * to continue to serve a useful existence. Next time it's released,
4887 * we will get notified again, if it still has 'notify_on_release' set.
4888 *
4889 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4890 * means only wait until the task is successfully execve()'d. The
4891 * separate release agent task is forked by call_usermodehelper(),
4892 * then control in this thread returns here, without waiting for the
4893 * release agent task. We don't bother to wait because the caller of
4894 * this routine has no use for the exit status of the release agent
4895 * task, so no sense holding our caller up for that.
81a6a5cd 4896 */
81a6a5cd
PM
4897static void cgroup_release_agent(struct work_struct *work)
4898{
4899 BUG_ON(work != &release_agent_work);
4900 mutex_lock(&cgroup_mutex);
cdcc136f 4901 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4902 while (!list_empty(&release_list)) {
4903 char *argv[3], *envp[3];
4904 int i;
e788e066 4905 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4906 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4907 struct cgroup,
4908 release_list);
bd89aabc 4909 list_del_init(&cgrp->release_list);
cdcc136f 4910 raw_spin_unlock(&release_list_lock);
81a6a5cd 4911 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4912 if (!pathbuf)
4913 goto continue_free;
4914 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4915 goto continue_free;
4916 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4917 if (!agentbuf)
4918 goto continue_free;
81a6a5cd
PM
4919
4920 i = 0;
e788e066
PM
4921 argv[i++] = agentbuf;
4922 argv[i++] = pathbuf;
81a6a5cd
PM
4923 argv[i] = NULL;
4924
4925 i = 0;
4926 /* minimal command environment */
4927 envp[i++] = "HOME=/";
4928 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4929 envp[i] = NULL;
4930
4931 /* Drop the lock while we invoke the usermode helper,
4932 * since the exec could involve hitting disk and hence
4933 * be a slow process */
4934 mutex_unlock(&cgroup_mutex);
4935 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4936 mutex_lock(&cgroup_mutex);
e788e066
PM
4937 continue_free:
4938 kfree(pathbuf);
4939 kfree(agentbuf);
cdcc136f 4940 raw_spin_lock(&release_list_lock);
81a6a5cd 4941 }
cdcc136f 4942 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4943 mutex_unlock(&cgroup_mutex);
4944}
8bab8dde
PM
4945
4946static int __init cgroup_disable(char *str)
4947{
4948 int i;
4949 char *token;
4950
4951 while ((token = strsep(&str, ",")) != NULL) {
4952 if (!*token)
4953 continue;
aae8aab4
BB
4954 /*
4955 * cgroup_disable, being at boot time, can't know about module
4956 * subsystems, so we don't worry about them.
4957 */
4958 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4959 struct cgroup_subsys *ss = subsys[i];
4960
4961 if (!strcmp(token, ss->name)) {
4962 ss->disabled = 1;
4963 printk(KERN_INFO "Disabling %s control group"
4964 " subsystem\n", ss->name);
4965 break;
4966 }
4967 }
4968 }
4969 return 1;
4970}
4971__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4972
4973/*
4974 * Functons for CSS ID.
4975 */
4976
4977/*
4978 *To get ID other than 0, this should be called when !cgroup_is_removed().
4979 */
4980unsigned short css_id(struct cgroup_subsys_state *css)
4981{
7f0f1546
KH
4982 struct css_id *cssid;
4983
4984 /*
4985 * This css_id() can return correct value when somone has refcnt
4986 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4987 * it's unchanged until freed.
4988 */
d8bf4ca9 4989 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4990
4991 if (cssid)
4992 return cssid->id;
4993 return 0;
4994}
67523c48 4995EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4996
4997unsigned short css_depth(struct cgroup_subsys_state *css)
4998{
7f0f1546
KH
4999 struct css_id *cssid;
5000
d8bf4ca9 5001 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
5002
5003 if (cssid)
5004 return cssid->depth;
5005 return 0;
5006}
67523c48 5007EXPORT_SYMBOL_GPL(css_depth);
38460b48 5008
747388d7
KH
5009/**
5010 * css_is_ancestor - test "root" css is an ancestor of "child"
5011 * @child: the css to be tested.
5012 * @root: the css supporsed to be an ancestor of the child.
5013 *
5014 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5015 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
5016 * But, considering usual usage, the csses should be valid objects after test.
5017 * Assuming that the caller will do some action to the child if this returns
5018 * returns true, the caller must take "child";s reference count.
5019 * If "child" is valid object and this returns true, "root" is valid, too.
5020 */
5021
38460b48 5022bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5023 const struct cgroup_subsys_state *root)
38460b48 5024{
747388d7
KH
5025 struct css_id *child_id;
5026 struct css_id *root_id;
5027 bool ret = true;
38460b48 5028
747388d7
KH
5029 rcu_read_lock();
5030 child_id = rcu_dereference(child->id);
5031 root_id = rcu_dereference(root->id);
5032 if (!child_id
5033 || !root_id
5034 || (child_id->depth < root_id->depth)
5035 || (child_id->stack[root_id->depth] != root_id->id))
5036 ret = false;
5037 rcu_read_unlock();
5038 return ret;
38460b48
KH
5039}
5040
38460b48
KH
5041void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5042{
5043 struct css_id *id = css->id;
5044 /* When this is called before css_id initialization, id can be NULL */
5045 if (!id)
5046 return;
5047
5048 BUG_ON(!ss->use_id);
5049
5050 rcu_assign_pointer(id->css, NULL);
5051 rcu_assign_pointer(css->id, NULL);
42aee6c4 5052 spin_lock(&ss->id_lock);
38460b48 5053 idr_remove(&ss->idr, id->id);
42aee6c4 5054 spin_unlock(&ss->id_lock);
025cea99 5055 kfree_rcu(id, rcu_head);
38460b48 5056}
67523c48 5057EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5058
5059/*
5060 * This is called by init or create(). Then, calls to this function are
5061 * always serialized (By cgroup_mutex() at create()).
5062 */
5063
5064static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5065{
5066 struct css_id *newid;
5067 int myid, error, size;
5068
5069 BUG_ON(!ss->use_id);
5070
5071 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5072 newid = kzalloc(size, GFP_KERNEL);
5073 if (!newid)
5074 return ERR_PTR(-ENOMEM);
5075 /* get id */
5076 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5077 error = -ENOMEM;
5078 goto err_out;
5079 }
42aee6c4 5080 spin_lock(&ss->id_lock);
38460b48
KH
5081 /* Don't use 0. allocates an ID of 1-65535 */
5082 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
42aee6c4 5083 spin_unlock(&ss->id_lock);
38460b48
KH
5084
5085 /* Returns error when there are no free spaces for new ID.*/
5086 if (error) {
5087 error = -ENOSPC;
5088 goto err_out;
5089 }
5090 if (myid > CSS_ID_MAX)
5091 goto remove_idr;
5092
5093 newid->id = myid;
5094 newid->depth = depth;
5095 return newid;
5096remove_idr:
5097 error = -ENOSPC;
42aee6c4 5098 spin_lock(&ss->id_lock);
38460b48 5099 idr_remove(&ss->idr, myid);
42aee6c4 5100 spin_unlock(&ss->id_lock);
38460b48
KH
5101err_out:
5102 kfree(newid);
5103 return ERR_PTR(error);
5104
5105}
5106
e6a1105b
BB
5107static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5108 struct cgroup_subsys_state *rootcss)
38460b48
KH
5109{
5110 struct css_id *newid;
38460b48 5111
42aee6c4 5112 spin_lock_init(&ss->id_lock);
38460b48
KH
5113 idr_init(&ss->idr);
5114
38460b48
KH
5115 newid = get_new_cssid(ss, 0);
5116 if (IS_ERR(newid))
5117 return PTR_ERR(newid);
5118
5119 newid->stack[0] = newid->id;
5120 newid->css = rootcss;
5121 rootcss->id = newid;
5122 return 0;
5123}
5124
5125static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5126 struct cgroup *child)
5127{
5128 int subsys_id, i, depth = 0;
5129 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5130 struct css_id *child_id, *parent_id;
38460b48
KH
5131
5132 subsys_id = ss->subsys_id;
5133 parent_css = parent->subsys[subsys_id];
5134 child_css = child->subsys[subsys_id];
38460b48 5135 parent_id = parent_css->id;
94b3dd0f 5136 depth = parent_id->depth + 1;
38460b48
KH
5137
5138 child_id = get_new_cssid(ss, depth);
5139 if (IS_ERR(child_id))
5140 return PTR_ERR(child_id);
5141
5142 for (i = 0; i < depth; i++)
5143 child_id->stack[i] = parent_id->stack[i];
5144 child_id->stack[depth] = child_id->id;
5145 /*
5146 * child_id->css pointer will be set after this cgroup is available
5147 * see cgroup_populate_dir()
5148 */
5149 rcu_assign_pointer(child_css->id, child_id);
5150
5151 return 0;
5152}
5153
5154/**
5155 * css_lookup - lookup css by id
5156 * @ss: cgroup subsys to be looked into.
5157 * @id: the id
5158 *
5159 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5160 * NULL if not. Should be called under rcu_read_lock()
5161 */
5162struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5163{
5164 struct css_id *cssid = NULL;
5165
5166 BUG_ON(!ss->use_id);
5167 cssid = idr_find(&ss->idr, id);
5168
5169 if (unlikely(!cssid))
5170 return NULL;
5171
5172 return rcu_dereference(cssid->css);
5173}
67523c48 5174EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5175
5176/**
5177 * css_get_next - lookup next cgroup under specified hierarchy.
5178 * @ss: pointer to subsystem
5179 * @id: current position of iteration.
5180 * @root: pointer to css. search tree under this.
5181 * @foundid: position of found object.
5182 *
5183 * Search next css under the specified hierarchy of rootid. Calling under
5184 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5185 */
5186struct cgroup_subsys_state *
5187css_get_next(struct cgroup_subsys *ss, int id,
5188 struct cgroup_subsys_state *root, int *foundid)
5189{
5190 struct cgroup_subsys_state *ret = NULL;
5191 struct css_id *tmp;
5192 int tmpid;
5193 int rootid = css_id(root);
5194 int depth = css_depth(root);
5195
5196 if (!rootid)
5197 return NULL;
5198
5199 BUG_ON(!ss->use_id);
ca464d69
HD
5200 WARN_ON_ONCE(!rcu_read_lock_held());
5201
38460b48
KH
5202 /* fill start point for scan */
5203 tmpid = id;
5204 while (1) {
5205 /*
5206 * scan next entry from bitmap(tree), tmpid is updated after
5207 * idr_get_next().
5208 */
38460b48 5209 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5210 if (!tmp)
5211 break;
5212 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5213 ret = rcu_dereference(tmp->css);
5214 if (ret) {
5215 *foundid = tmpid;
5216 break;
5217 }
5218 }
5219 /* continue to scan from next id */
5220 tmpid = tmpid + 1;
5221 }
5222 return ret;
5223}
5224
e5d1367f
SE
5225/*
5226 * get corresponding css from file open on cgroupfs directory
5227 */
5228struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5229{
5230 struct cgroup *cgrp;
5231 struct inode *inode;
5232 struct cgroup_subsys_state *css;
5233
5234 inode = f->f_dentry->d_inode;
5235 /* check in cgroup filesystem dir */
5236 if (inode->i_op != &cgroup_dir_inode_operations)
5237 return ERR_PTR(-EBADF);
5238
5239 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5240 return ERR_PTR(-EINVAL);
5241
5242 /* get cgroup */
5243 cgrp = __d_cgrp(f->f_dentry);
5244 css = cgrp->subsys[id];
5245 return css ? css : ERR_PTR(-ENOENT);
5246}
5247
fe693435 5248#ifdef CONFIG_CGROUP_DEBUG
761b3ef5 5249static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
fe693435
PM
5250{
5251 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5252
5253 if (!css)
5254 return ERR_PTR(-ENOMEM);
5255
5256 return css;
5257}
5258
761b3ef5 5259static void debug_destroy(struct cgroup *cont)
fe693435
PM
5260{
5261 kfree(cont->subsys[debug_subsys_id]);
5262}
5263
5264static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5265{
5266 return atomic_read(&cont->count);
5267}
5268
5269static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5270{
5271 return cgroup_task_count(cont);
5272}
5273
5274static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5275{
5276 return (u64)(unsigned long)current->cgroups;
5277}
5278
5279static u64 current_css_set_refcount_read(struct cgroup *cont,
5280 struct cftype *cft)
5281{
5282 u64 count;
5283
5284 rcu_read_lock();
5285 count = atomic_read(&current->cgroups->refcount);
5286 rcu_read_unlock();
5287 return count;
5288}
5289
7717f7ba
PM
5290static int current_css_set_cg_links_read(struct cgroup *cont,
5291 struct cftype *cft,
5292 struct seq_file *seq)
5293{
5294 struct cg_cgroup_link *link;
5295 struct css_set *cg;
5296
5297 read_lock(&css_set_lock);
5298 rcu_read_lock();
5299 cg = rcu_dereference(current->cgroups);
5300 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5301 struct cgroup *c = link->cgrp;
5302 const char *name;
5303
5304 if (c->dentry)
5305 name = c->dentry->d_name.name;
5306 else
5307 name = "?";
2c6ab6d2
PM
5308 seq_printf(seq, "Root %d group %s\n",
5309 c->root->hierarchy_id, name);
7717f7ba
PM
5310 }
5311 rcu_read_unlock();
5312 read_unlock(&css_set_lock);
5313 return 0;
5314}
5315
5316#define MAX_TASKS_SHOWN_PER_CSS 25
5317static int cgroup_css_links_read(struct cgroup *cont,
5318 struct cftype *cft,
5319 struct seq_file *seq)
5320{
5321 struct cg_cgroup_link *link;
5322
5323 read_lock(&css_set_lock);
5324 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5325 struct css_set *cg = link->cg;
5326 struct task_struct *task;
5327 int count = 0;
5328 seq_printf(seq, "css_set %p\n", cg);
5329 list_for_each_entry(task, &cg->tasks, cg_list) {
5330 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5331 seq_puts(seq, " ...\n");
5332 break;
5333 } else {
5334 seq_printf(seq, " task %d\n",
5335 task_pid_vnr(task));
5336 }
5337 }
5338 }
5339 read_unlock(&css_set_lock);
5340 return 0;
5341}
5342
fe693435
PM
5343static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5344{
5345 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5346}
5347
5348static struct cftype debug_files[] = {
5349 {
5350 .name = "cgroup_refcount",
5351 .read_u64 = cgroup_refcount_read,
5352 },
5353 {
5354 .name = "taskcount",
5355 .read_u64 = debug_taskcount_read,
5356 },
5357
5358 {
5359 .name = "current_css_set",
5360 .read_u64 = current_css_set_read,
5361 },
5362
5363 {
5364 .name = "current_css_set_refcount",
5365 .read_u64 = current_css_set_refcount_read,
5366 },
5367
7717f7ba
PM
5368 {
5369 .name = "current_css_set_cg_links",
5370 .read_seq_string = current_css_set_cg_links_read,
5371 },
5372
5373 {
5374 .name = "cgroup_css_links",
5375 .read_seq_string = cgroup_css_links_read,
5376 },
5377
fe693435
PM
5378 {
5379 .name = "releasable",
5380 .read_u64 = releasable_read,
5381 },
fe693435 5382
4baf6e33
TH
5383 { } /* terminate */
5384};
fe693435
PM
5385
5386struct cgroup_subsys debug_subsys = {
5387 .name = "debug",
5388 .create = debug_create,
5389 .destroy = debug_destroy,
fe693435 5390 .subsys_id = debug_subsys_id,
4baf6e33 5391 .base_cftypes = debug_files,
fe693435
PM
5392};
5393#endif /* CONFIG_CGROUP_DEBUG */