cgroup: use cgroup_apply_enable_control() in cgroup creation path
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
a7165264 181static bool cgrp_dfl_visible;
ddbcc7e8 182
223ffb29 183/* Controllers blocked by the commandline in v1 */
6e5c8307 184static u16 cgroup_no_v1_mask;
223ffb29 185
5533e011 186/* some controllers are not supported in the default hierarchy */
a7165264 187static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
9871bf95
TH
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
ddbcc7e8 193
3417ae1f 194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 195static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 196
794611a1 197/*
0cb51d71
TH
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
794611a1 203 */
0cb51d71 204static u64 css_serial_nr_next = 1;
794611a1 205
cb4a3167
AS
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 210 */
6e5c8307
TH
211static u16 have_fork_callback __read_mostly;
212static u16 have_exit_callback __read_mostly;
213static u16 have_free_callback __read_mostly;
ddbcc7e8 214
7e47682e 215/* Ditto for the can_fork callback. */
6e5c8307 216static u16 have_canfork_callback __read_mostly;
7e47682e 217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
a14c6874
TH
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
628f7cd4 221
6e5c8307 222static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 223static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
ed27b9f7 224static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 225static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
226static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
227 struct cgroup_subsys *ss);
9d755d33 228static void css_release(struct percpu_ref *ref);
f8f22e53 229static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
230static int cgroup_addrm_files(struct cgroup_subsys_state *css,
231 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 232 bool is_add);
42809dd4 233
fc5ed1e9
TH
234/**
235 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
236 * @ssid: subsys ID of interest
237 *
238 * cgroup_subsys_enabled() can only be used with literal subsys names which
239 * is fine for individual subsystems but unsuitable for cgroup core. This
240 * is slower static_key_enabled() based test indexed by @ssid.
241 */
242static bool cgroup_ssid_enabled(int ssid)
243{
244 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
245}
246
223ffb29
JW
247static bool cgroup_ssid_no_v1(int ssid)
248{
249 return cgroup_no_v1_mask & (1 << ssid);
250}
251
9e10a130
TH
252/**
253 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
254 * @cgrp: the cgroup of interest
255 *
256 * The default hierarchy is the v2 interface of cgroup and this function
257 * can be used to test whether a cgroup is on the default hierarchy for
258 * cases where a subsystem should behave differnetly depending on the
259 * interface version.
260 *
261 * The set of behaviors which change on the default hierarchy are still
262 * being determined and the mount option is prefixed with __DEVEL__.
263 *
264 * List of changed behaviors:
265 *
266 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
267 * and "name" are disallowed.
268 *
269 * - When mounting an existing superblock, mount options should match.
270 *
271 * - Remount is disallowed.
272 *
273 * - rename(2) is disallowed.
274 *
275 * - "tasks" is removed. Everything should be at process granularity. Use
276 * "cgroup.procs" instead.
277 *
278 * - "cgroup.procs" is not sorted. pids will be unique unless they got
279 * recycled inbetween reads.
280 *
281 * - "release_agent" and "notify_on_release" are removed. Replacement
282 * notification mechanism will be implemented.
283 *
284 * - "cgroup.clone_children" is removed.
285 *
286 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
287 * and its descendants contain no task; otherwise, 1. The file also
288 * generates kernfs notification which can be monitored through poll and
289 * [di]notify when the value of the file changes.
290 *
291 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
292 * take masks of ancestors with non-empty cpus/mems, instead of being
293 * moved to an ancestor.
294 *
295 * - cpuset: a task can be moved into an empty cpuset, and again it takes
296 * masks of ancestors.
297 *
298 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
299 * is not created.
300 *
301 * - blkcg: blk-throttle becomes properly hierarchical.
302 *
303 * - debug: disallowed on the default hierarchy.
304 */
305static bool cgroup_on_dfl(const struct cgroup *cgrp)
306{
307 return cgrp->root == &cgrp_dfl_root;
308}
309
6fa4918d
TH
310/* IDR wrappers which synchronize using cgroup_idr_lock */
311static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
312 gfp_t gfp_mask)
313{
314 int ret;
315
316 idr_preload(gfp_mask);
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
d0164adc 318 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 idr_preload_end();
321 return ret;
322}
323
324static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
325{
326 void *ret;
327
54504e97 328 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 329 ret = idr_replace(idr, ptr, id);
54504e97 330 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
331 return ret;
332}
333
334static void cgroup_idr_remove(struct idr *idr, int id)
335{
54504e97 336 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 337 idr_remove(idr, id);
54504e97 338 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
339}
340
d51f39b0
TH
341static struct cgroup *cgroup_parent(struct cgroup *cgrp)
342{
343 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
344
345 if (parent_css)
346 return container_of(parent_css, struct cgroup, self);
347 return NULL;
348}
349
5531dc91
TH
350/* subsystems visibly enabled on a cgroup */
351static u16 cgroup_control(struct cgroup *cgrp)
352{
353 struct cgroup *parent = cgroup_parent(cgrp);
354 u16 root_ss_mask = cgrp->root->subsys_mask;
355
356 if (parent)
357 return parent->subtree_control;
358
359 if (cgroup_on_dfl(cgrp))
360 root_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
361
362 return root_ss_mask;
363}
364
365/* subsystems enabled on a cgroup */
366static u16 cgroup_ss_mask(struct cgroup *cgrp)
367{
368 struct cgroup *parent = cgroup_parent(cgrp);
369
370 if (parent)
371 return parent->subtree_ss_mask;
372
373 return cgrp->root->subsys_mask;
374}
375
95109b62
TH
376/**
377 * cgroup_css - obtain a cgroup's css for the specified subsystem
378 * @cgrp: the cgroup of interest
9d800df1 379 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 380 *
ca8bdcaf
TH
381 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
382 * function must be called either under cgroup_mutex or rcu_read_lock() and
383 * the caller is responsible for pinning the returned css if it wants to
384 * keep accessing it outside the said locks. This function may return
385 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
386 */
387static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 388 struct cgroup_subsys *ss)
95109b62 389{
ca8bdcaf 390 if (ss)
aec25020 391 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 392 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 393 else
9d800df1 394 return &cgrp->self;
95109b62 395}
42809dd4 396
aec3dfcb
TH
397/**
398 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
399 * @cgrp: the cgroup of interest
9d800df1 400 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 401 *
d0f702e6 402 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
403 * as the matching css of the nearest ancestor including self which has @ss
404 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
405 * function is guaranteed to return non-NULL css.
406 */
407static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
408 struct cgroup_subsys *ss)
409{
410 lockdep_assert_held(&cgroup_mutex);
411
412 if (!ss)
9d800df1 413 return &cgrp->self;
aec3dfcb 414
eeecbd19
TH
415 /*
416 * This function is used while updating css associations and thus
5531dc91 417 * can't test the csses directly. Test ss_mask.
eeecbd19 418 */
5531dc91 419 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 420 cgrp = cgroup_parent(cgrp);
5531dc91
TH
421 if (!cgrp)
422 return NULL;
423 }
aec3dfcb
TH
424
425 return cgroup_css(cgrp, ss);
95109b62 426}
42809dd4 427
eeecbd19
TH
428/**
429 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
430 * @cgrp: the cgroup of interest
431 * @ss: the subsystem of interest
432 *
433 * Find and get the effective css of @cgrp for @ss. The effective css is
434 * defined as the matching css of the nearest ancestor including self which
435 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
436 * the root css is returned, so this function always returns a valid css.
437 * The returned css must be put using css_put().
438 */
439struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
440 struct cgroup_subsys *ss)
441{
442 struct cgroup_subsys_state *css;
443
444 rcu_read_lock();
445
446 do {
447 css = cgroup_css(cgrp, ss);
448
449 if (css && css_tryget_online(css))
450 goto out_unlock;
451 cgrp = cgroup_parent(cgrp);
452 } while (cgrp);
453
454 css = init_css_set.subsys[ss->id];
455 css_get(css);
456out_unlock:
457 rcu_read_unlock();
458 return css;
459}
460
ddbcc7e8 461/* convenient tests for these bits */
54766d4a 462static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 463{
184faf32 464 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
465}
466
052c3f3a
TH
467static void cgroup_get(struct cgroup *cgrp)
468{
469 WARN_ON_ONCE(cgroup_is_dead(cgrp));
470 css_get(&cgrp->self);
471}
472
473static bool cgroup_tryget(struct cgroup *cgrp)
474{
475 return css_tryget(&cgrp->self);
476}
477
b4168640 478struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 479{
2bd59d48 480 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 481 struct cftype *cft = of_cft(of);
2bd59d48
TH
482
483 /*
484 * This is open and unprotected implementation of cgroup_css().
485 * seq_css() is only called from a kernfs file operation which has
486 * an active reference on the file. Because all the subsystem
487 * files are drained before a css is disassociated with a cgroup,
488 * the matching css from the cgroup's subsys table is guaranteed to
489 * be and stay valid until the enclosing operation is complete.
490 */
491 if (cft->ss)
492 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
493 else
9d800df1 494 return &cgrp->self;
59f5296b 495}
b4168640 496EXPORT_SYMBOL_GPL(of_css);
59f5296b 497
e9685a03 498static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 499{
bd89aabc 500 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
501}
502
1c6727af
TH
503/**
504 * for_each_css - iterate all css's of a cgroup
505 * @css: the iteration cursor
506 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
507 * @cgrp: the target cgroup to iterate css's of
508 *
aec3dfcb 509 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
510 */
511#define for_each_css(css, ssid, cgrp) \
512 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
513 if (!((css) = rcu_dereference_check( \
514 (cgrp)->subsys[(ssid)], \
515 lockdep_is_held(&cgroup_mutex)))) { } \
516 else
517
aec3dfcb
TH
518/**
519 * for_each_e_css - iterate all effective css's of a cgroup
520 * @css: the iteration cursor
521 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
522 * @cgrp: the target cgroup to iterate css's of
523 *
524 * Should be called under cgroup_[tree_]mutex.
525 */
526#define for_each_e_css(css, ssid, cgrp) \
527 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
528 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
529 ; \
530 else
531
30159ec7 532/**
3ed80a62 533 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 534 * @ss: the iteration cursor
780cd8b3 535 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 536 */
780cd8b3 537#define for_each_subsys(ss, ssid) \
3ed80a62
TH
538 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
539 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 540
cb4a3167 541/**
b4e0eeaf 542 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
543 * @ss: the iteration cursor
544 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 545 * @ss_mask: the bitmask
cb4a3167
AS
546 *
547 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 548 * @ss_mask is set.
cb4a3167 549 */
b4e0eeaf
TH
550#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
551 unsigned long __ss_mask = (ss_mask); \
552 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 553 (ssid) = 0; \
b4e0eeaf
TH
554 break; \
555 } \
556 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
557 (ss) = cgroup_subsys[ssid]; \
558 {
559
560#define while_each_subsys_mask() \
561 } \
562 } \
563} while (false)
cb4a3167 564
985ed670
TH
565/* iterate across the hierarchies */
566#define for_each_root(root) \
5549c497 567 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 568
f8f22e53
TH
569/* iterate over child cgrps, lock should be held throughout iteration */
570#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 571 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 572 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
573 cgroup_is_dead(child); })) \
574 ; \
575 else
7ae1bad9 576
ce3f1d9d
TH
577/* walk live descendants in preorder */
578#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
579 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
580 if (({ lockdep_assert_held(&cgroup_mutex); \
581 (dsct) = (d_css)->cgroup; \
582 cgroup_is_dead(dsct); })) \
583 ; \
584 else
585
586/* walk live descendants in postorder */
587#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
588 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
589 if (({ lockdep_assert_held(&cgroup_mutex); \
590 (dsct) = (d_css)->cgroup; \
591 cgroup_is_dead(dsct); })) \
592 ; \
593 else
594
81a6a5cd 595static void cgroup_release_agent(struct work_struct *work);
bd89aabc 596static void check_for_release(struct cgroup *cgrp);
81a6a5cd 597
69d0206c
TH
598/*
599 * A cgroup can be associated with multiple css_sets as different tasks may
600 * belong to different cgroups on different hierarchies. In the other
601 * direction, a css_set is naturally associated with multiple cgroups.
602 * This M:N relationship is represented by the following link structure
603 * which exists for each association and allows traversing the associations
604 * from both sides.
605 */
606struct cgrp_cset_link {
607 /* the cgroup and css_set this link associates */
608 struct cgroup *cgrp;
609 struct css_set *cset;
610
611 /* list of cgrp_cset_links anchored at cgrp->cset_links */
612 struct list_head cset_link;
613
614 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
615 struct list_head cgrp_link;
817929ec
PM
616};
617
172a2c06
TH
618/*
619 * The default css_set - used by init and its children prior to any
817929ec
PM
620 * hierarchies being mounted. It contains a pointer to the root state
621 * for each subsystem. Also used to anchor the list of css_sets. Not
622 * reference-counted, to improve performance when child cgroups
623 * haven't been created.
624 */
5024ae29 625struct css_set init_css_set = {
172a2c06
TH
626 .refcount = ATOMIC_INIT(1),
627 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
628 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
629 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
630 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
631 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 632 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 633};
817929ec 634
172a2c06 635static int css_set_count = 1; /* 1 for init_css_set */
817929ec 636
0de0942d
TH
637/**
638 * css_set_populated - does a css_set contain any tasks?
639 * @cset: target css_set
640 */
641static bool css_set_populated(struct css_set *cset)
642{
f0d9a5f1 643 lockdep_assert_held(&css_set_lock);
0de0942d
TH
644
645 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
646}
647
842b597e
TH
648/**
649 * cgroup_update_populated - updated populated count of a cgroup
650 * @cgrp: the target cgroup
651 * @populated: inc or dec populated count
652 *
0de0942d
TH
653 * One of the css_sets associated with @cgrp is either getting its first
654 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
655 * count is propagated towards root so that a given cgroup's populated_cnt
656 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
657 *
658 * @cgrp's interface file "cgroup.populated" is zero if
659 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
660 * changes from or to zero, userland is notified that the content of the
661 * interface file has changed. This can be used to detect when @cgrp and
662 * its descendants become populated or empty.
663 */
664static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
665{
f0d9a5f1 666 lockdep_assert_held(&css_set_lock);
842b597e
TH
667
668 do {
669 bool trigger;
670
671 if (populated)
672 trigger = !cgrp->populated_cnt++;
673 else
674 trigger = !--cgrp->populated_cnt;
675
676 if (!trigger)
677 break;
678
ad2ed2b3 679 check_for_release(cgrp);
6f60eade
TH
680 cgroup_file_notify(&cgrp->events_file);
681
d51f39b0 682 cgrp = cgroup_parent(cgrp);
842b597e
TH
683 } while (cgrp);
684}
685
0de0942d
TH
686/**
687 * css_set_update_populated - update populated state of a css_set
688 * @cset: target css_set
689 * @populated: whether @cset is populated or depopulated
690 *
691 * @cset is either getting the first task or losing the last. Update the
692 * ->populated_cnt of all associated cgroups accordingly.
693 */
694static void css_set_update_populated(struct css_set *cset, bool populated)
695{
696 struct cgrp_cset_link *link;
697
f0d9a5f1 698 lockdep_assert_held(&css_set_lock);
0de0942d
TH
699
700 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
701 cgroup_update_populated(link->cgrp, populated);
702}
703
f6d7d049
TH
704/**
705 * css_set_move_task - move a task from one css_set to another
706 * @task: task being moved
707 * @from_cset: css_set @task currently belongs to (may be NULL)
708 * @to_cset: new css_set @task is being moved to (may be NULL)
709 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
710 *
711 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
712 * css_set, @from_cset can be NULL. If @task is being disassociated
713 * instead of moved, @to_cset can be NULL.
714 *
ed27b9f7
TH
715 * This function automatically handles populated_cnt updates and
716 * css_task_iter adjustments but the caller is responsible for managing
717 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
718 */
719static void css_set_move_task(struct task_struct *task,
720 struct css_set *from_cset, struct css_set *to_cset,
721 bool use_mg_tasks)
722{
f0d9a5f1 723 lockdep_assert_held(&css_set_lock);
f6d7d049 724
20b454a6
TH
725 if (to_cset && !css_set_populated(to_cset))
726 css_set_update_populated(to_cset, true);
727
f6d7d049 728 if (from_cset) {
ed27b9f7
TH
729 struct css_task_iter *it, *pos;
730
f6d7d049 731 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
732
733 /*
734 * @task is leaving, advance task iterators which are
735 * pointing to it so that they can resume at the next
736 * position. Advancing an iterator might remove it from
737 * the list, use safe walk. See css_task_iter_advance*()
738 * for details.
739 */
740 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
741 iters_node)
742 if (it->task_pos == &task->cg_list)
743 css_task_iter_advance(it);
744
f6d7d049
TH
745 list_del_init(&task->cg_list);
746 if (!css_set_populated(from_cset))
747 css_set_update_populated(from_cset, false);
748 } else {
749 WARN_ON_ONCE(!list_empty(&task->cg_list));
750 }
751
752 if (to_cset) {
753 /*
754 * We are synchronized through cgroup_threadgroup_rwsem
755 * against PF_EXITING setting such that we can't race
756 * against cgroup_exit() changing the css_set to
757 * init_css_set and dropping the old one.
758 */
759 WARN_ON_ONCE(task->flags & PF_EXITING);
760
f6d7d049
TH
761 rcu_assign_pointer(task->cgroups, to_cset);
762 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
763 &to_cset->tasks);
764 }
765}
766
7717f7ba
PM
767/*
768 * hash table for cgroup groups. This improves the performance to find
769 * an existing css_set. This hash doesn't (currently) take into
770 * account cgroups in empty hierarchies.
771 */
472b1053 772#define CSS_SET_HASH_BITS 7
0ac801fe 773static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 774
0ac801fe 775static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 776{
0ac801fe 777 unsigned long key = 0UL;
30159ec7
TH
778 struct cgroup_subsys *ss;
779 int i;
472b1053 780
30159ec7 781 for_each_subsys(ss, i)
0ac801fe
LZ
782 key += (unsigned long)css[i];
783 key = (key >> 16) ^ key;
472b1053 784
0ac801fe 785 return key;
472b1053
LZ
786}
787
a25eb52e 788static void put_css_set_locked(struct css_set *cset)
b4f48b63 789{
69d0206c 790 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
791 struct cgroup_subsys *ss;
792 int ssid;
5abb8855 793
f0d9a5f1 794 lockdep_assert_held(&css_set_lock);
89c5509b
TH
795
796 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 797 return;
81a6a5cd 798
53254f90
TH
799 /* This css_set is dead. unlink it and release cgroup and css refs */
800 for_each_subsys(ss, ssid) {
2d8f243a 801 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
802 css_put(cset->subsys[ssid]);
803 }
5abb8855 804 hash_del(&cset->hlist);
2c6ab6d2
PM
805 css_set_count--;
806
69d0206c 807 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
808 list_del(&link->cset_link);
809 list_del(&link->cgrp_link);
2ceb231b
TH
810 if (cgroup_parent(link->cgrp))
811 cgroup_put(link->cgrp);
2c6ab6d2 812 kfree(link);
81a6a5cd 813 }
2c6ab6d2 814
5abb8855 815 kfree_rcu(cset, rcu_head);
b4f48b63
PM
816}
817
a25eb52e 818static void put_css_set(struct css_set *cset)
89c5509b
TH
819{
820 /*
821 * Ensure that the refcount doesn't hit zero while any readers
822 * can see it. Similar to atomic_dec_and_lock(), but for an
823 * rwlock
824 */
825 if (atomic_add_unless(&cset->refcount, -1, 1))
826 return;
827
f0d9a5f1 828 spin_lock_bh(&css_set_lock);
a25eb52e 829 put_css_set_locked(cset);
f0d9a5f1 830 spin_unlock_bh(&css_set_lock);
89c5509b
TH
831}
832
817929ec
PM
833/*
834 * refcounted get/put for css_set objects
835 */
5abb8855 836static inline void get_css_set(struct css_set *cset)
817929ec 837{
5abb8855 838 atomic_inc(&cset->refcount);
817929ec
PM
839}
840
b326f9d0 841/**
7717f7ba 842 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
843 * @cset: candidate css_set being tested
844 * @old_cset: existing css_set for a task
7717f7ba
PM
845 * @new_cgrp: cgroup that's being entered by the task
846 * @template: desired set of css pointers in css_set (pre-calculated)
847 *
6f4b7e63 848 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
849 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
850 */
5abb8855
TH
851static bool compare_css_sets(struct css_set *cset,
852 struct css_set *old_cset,
7717f7ba
PM
853 struct cgroup *new_cgrp,
854 struct cgroup_subsys_state *template[])
855{
856 struct list_head *l1, *l2;
857
aec3dfcb
TH
858 /*
859 * On the default hierarchy, there can be csets which are
860 * associated with the same set of cgroups but different csses.
861 * Let's first ensure that csses match.
862 */
863 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 864 return false;
7717f7ba
PM
865
866 /*
867 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
868 * different cgroups in hierarchies. As different cgroups may
869 * share the same effective css, this comparison is always
870 * necessary.
7717f7ba 871 */
69d0206c
TH
872 l1 = &cset->cgrp_links;
873 l2 = &old_cset->cgrp_links;
7717f7ba 874 while (1) {
69d0206c 875 struct cgrp_cset_link *link1, *link2;
5abb8855 876 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
877
878 l1 = l1->next;
879 l2 = l2->next;
880 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
881 if (l1 == &cset->cgrp_links) {
882 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
883 break;
884 } else {
69d0206c 885 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
886 }
887 /* Locate the cgroups associated with these links. */
69d0206c
TH
888 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
889 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
890 cgrp1 = link1->cgrp;
891 cgrp2 = link2->cgrp;
7717f7ba 892 /* Hierarchies should be linked in the same order. */
5abb8855 893 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
894
895 /*
896 * If this hierarchy is the hierarchy of the cgroup
897 * that's changing, then we need to check that this
898 * css_set points to the new cgroup; if it's any other
899 * hierarchy, then this css_set should point to the
900 * same cgroup as the old css_set.
901 */
5abb8855
TH
902 if (cgrp1->root == new_cgrp->root) {
903 if (cgrp1 != new_cgrp)
7717f7ba
PM
904 return false;
905 } else {
5abb8855 906 if (cgrp1 != cgrp2)
7717f7ba
PM
907 return false;
908 }
909 }
910 return true;
911}
912
b326f9d0
TH
913/**
914 * find_existing_css_set - init css array and find the matching css_set
915 * @old_cset: the css_set that we're using before the cgroup transition
916 * @cgrp: the cgroup that we're moving into
917 * @template: out param for the new set of csses, should be clear on entry
817929ec 918 */
5abb8855
TH
919static struct css_set *find_existing_css_set(struct css_set *old_cset,
920 struct cgroup *cgrp,
921 struct cgroup_subsys_state *template[])
b4f48b63 922{
3dd06ffa 923 struct cgroup_root *root = cgrp->root;
30159ec7 924 struct cgroup_subsys *ss;
5abb8855 925 struct css_set *cset;
0ac801fe 926 unsigned long key;
b326f9d0 927 int i;
817929ec 928
aae8aab4
BB
929 /*
930 * Build the set of subsystem state objects that we want to see in the
931 * new css_set. while subsystems can change globally, the entries here
932 * won't change, so no need for locking.
933 */
30159ec7 934 for_each_subsys(ss, i) {
f392e51c 935 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
936 /*
937 * @ss is in this hierarchy, so we want the
938 * effective css from @cgrp.
939 */
940 template[i] = cgroup_e_css(cgrp, ss);
817929ec 941 } else {
aec3dfcb
TH
942 /*
943 * @ss is not in this hierarchy, so we don't want
944 * to change the css.
945 */
5abb8855 946 template[i] = old_cset->subsys[i];
817929ec
PM
947 }
948 }
949
0ac801fe 950 key = css_set_hash(template);
5abb8855
TH
951 hash_for_each_possible(css_set_table, cset, hlist, key) {
952 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
953 continue;
954
955 /* This css_set matches what we need */
5abb8855 956 return cset;
472b1053 957 }
817929ec
PM
958
959 /* No existing cgroup group matched */
960 return NULL;
961}
962
69d0206c 963static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 964{
69d0206c 965 struct cgrp_cset_link *link, *tmp_link;
36553434 966
69d0206c
TH
967 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
968 list_del(&link->cset_link);
36553434
LZ
969 kfree(link);
970 }
971}
972
69d0206c
TH
973/**
974 * allocate_cgrp_cset_links - allocate cgrp_cset_links
975 * @count: the number of links to allocate
976 * @tmp_links: list_head the allocated links are put on
977 *
978 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
979 * through ->cset_link. Returns 0 on success or -errno.
817929ec 980 */
69d0206c 981static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 982{
69d0206c 983 struct cgrp_cset_link *link;
817929ec 984 int i;
69d0206c
TH
985
986 INIT_LIST_HEAD(tmp_links);
987
817929ec 988 for (i = 0; i < count; i++) {
f4f4be2b 989 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 990 if (!link) {
69d0206c 991 free_cgrp_cset_links(tmp_links);
817929ec
PM
992 return -ENOMEM;
993 }
69d0206c 994 list_add(&link->cset_link, tmp_links);
817929ec
PM
995 }
996 return 0;
997}
998
c12f65d4
LZ
999/**
1000 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1001 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1002 * @cset: the css_set to be linked
c12f65d4
LZ
1003 * @cgrp: the destination cgroup
1004 */
69d0206c
TH
1005static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1006 struct cgroup *cgrp)
c12f65d4 1007{
69d0206c 1008 struct cgrp_cset_link *link;
c12f65d4 1009
69d0206c 1010 BUG_ON(list_empty(tmp_links));
6803c006
TH
1011
1012 if (cgroup_on_dfl(cgrp))
1013 cset->dfl_cgrp = cgrp;
1014
69d0206c
TH
1015 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1016 link->cset = cset;
7717f7ba 1017 link->cgrp = cgrp;
842b597e 1018
7717f7ba 1019 /*
389b9c1b
TH
1020 * Always add links to the tail of the lists so that the lists are
1021 * in choronological order.
7717f7ba 1022 */
389b9c1b 1023 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1024 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1025
1026 if (cgroup_parent(cgrp))
1027 cgroup_get(cgrp);
c12f65d4
LZ
1028}
1029
b326f9d0
TH
1030/**
1031 * find_css_set - return a new css_set with one cgroup updated
1032 * @old_cset: the baseline css_set
1033 * @cgrp: the cgroup to be updated
1034 *
1035 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1036 * substituted into the appropriate hierarchy.
817929ec 1037 */
5abb8855
TH
1038static struct css_set *find_css_set(struct css_set *old_cset,
1039 struct cgroup *cgrp)
817929ec 1040{
b326f9d0 1041 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1042 struct css_set *cset;
69d0206c
TH
1043 struct list_head tmp_links;
1044 struct cgrp_cset_link *link;
2d8f243a 1045 struct cgroup_subsys *ss;
0ac801fe 1046 unsigned long key;
2d8f243a 1047 int ssid;
472b1053 1048
b326f9d0
TH
1049 lockdep_assert_held(&cgroup_mutex);
1050
817929ec
PM
1051 /* First see if we already have a cgroup group that matches
1052 * the desired set */
f0d9a5f1 1053 spin_lock_bh(&css_set_lock);
5abb8855
TH
1054 cset = find_existing_css_set(old_cset, cgrp, template);
1055 if (cset)
1056 get_css_set(cset);
f0d9a5f1 1057 spin_unlock_bh(&css_set_lock);
817929ec 1058
5abb8855
TH
1059 if (cset)
1060 return cset;
817929ec 1061
f4f4be2b 1062 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1063 if (!cset)
817929ec
PM
1064 return NULL;
1065
69d0206c 1066 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1067 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1068 kfree(cset);
817929ec
PM
1069 return NULL;
1070 }
1071
5abb8855 1072 atomic_set(&cset->refcount, 1);
69d0206c 1073 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1074 INIT_LIST_HEAD(&cset->tasks);
c7561128 1075 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1076 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1077 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1078 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1079 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1080
1081 /* Copy the set of subsystem state objects generated in
1082 * find_existing_css_set() */
5abb8855 1083 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1084
f0d9a5f1 1085 spin_lock_bh(&css_set_lock);
817929ec 1086 /* Add reference counts and links from the new css_set. */
69d0206c 1087 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1088 struct cgroup *c = link->cgrp;
69d0206c 1089
7717f7ba
PM
1090 if (c->root == cgrp->root)
1091 c = cgrp;
69d0206c 1092 link_css_set(&tmp_links, cset, c);
7717f7ba 1093 }
817929ec 1094
69d0206c 1095 BUG_ON(!list_empty(&tmp_links));
817929ec 1096
817929ec 1097 css_set_count++;
472b1053 1098
2d8f243a 1099 /* Add @cset to the hash table */
5abb8855
TH
1100 key = css_set_hash(cset->subsys);
1101 hash_add(css_set_table, &cset->hlist, key);
472b1053 1102
53254f90
TH
1103 for_each_subsys(ss, ssid) {
1104 struct cgroup_subsys_state *css = cset->subsys[ssid];
1105
2d8f243a 1106 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1107 &css->cgroup->e_csets[ssid]);
1108 css_get(css);
1109 }
2d8f243a 1110
f0d9a5f1 1111 spin_unlock_bh(&css_set_lock);
817929ec 1112
5abb8855 1113 return cset;
b4f48b63
PM
1114}
1115
3dd06ffa 1116static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1117{
3dd06ffa 1118 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1119
3dd06ffa 1120 return root_cgrp->root;
2bd59d48
TH
1121}
1122
3dd06ffa 1123static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1124{
1125 int id;
1126
1127 lockdep_assert_held(&cgroup_mutex);
1128
985ed670 1129 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1130 if (id < 0)
1131 return id;
1132
1133 root->hierarchy_id = id;
1134 return 0;
1135}
1136
3dd06ffa 1137static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1138{
1139 lockdep_assert_held(&cgroup_mutex);
1140
1141 if (root->hierarchy_id) {
1142 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1143 root->hierarchy_id = 0;
1144 }
1145}
1146
3dd06ffa 1147static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1148{
1149 if (root) {
d0f702e6 1150 /* hierarchy ID should already have been released */
f2e85d57
TH
1151 WARN_ON_ONCE(root->hierarchy_id);
1152
1153 idr_destroy(&root->cgroup_idr);
1154 kfree(root);
1155 }
1156}
1157
3dd06ffa 1158static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1159{
3dd06ffa 1160 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1161 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1162
2bd59d48 1163 mutex_lock(&cgroup_mutex);
f2e85d57 1164
776f02fa 1165 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1166 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1167
f2e85d57 1168 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1169 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1170
7717f7ba 1171 /*
f2e85d57
TH
1172 * Release all the links from cset_links to this hierarchy's
1173 * root cgroup
7717f7ba 1174 */
f0d9a5f1 1175 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1176
1177 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1178 list_del(&link->cset_link);
1179 list_del(&link->cgrp_link);
1180 kfree(link);
1181 }
f0d9a5f1
TH
1182
1183 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1184
1185 if (!list_empty(&root->root_list)) {
1186 list_del(&root->root_list);
1187 cgroup_root_count--;
1188 }
1189
1190 cgroup_exit_root_id(root);
1191
1192 mutex_unlock(&cgroup_mutex);
f2e85d57 1193
2bd59d48 1194 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1195 cgroup_free_root(root);
1196}
1197
ceb6a081
TH
1198/* look up cgroup associated with given css_set on the specified hierarchy */
1199static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1200 struct cgroup_root *root)
7717f7ba 1201{
7717f7ba
PM
1202 struct cgroup *res = NULL;
1203
96d365e0 1204 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1205 lockdep_assert_held(&css_set_lock);
96d365e0 1206
5abb8855 1207 if (cset == &init_css_set) {
3dd06ffa 1208 res = &root->cgrp;
7717f7ba 1209 } else {
69d0206c
TH
1210 struct cgrp_cset_link *link;
1211
1212 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1213 struct cgroup *c = link->cgrp;
69d0206c 1214
7717f7ba
PM
1215 if (c->root == root) {
1216 res = c;
1217 break;
1218 }
1219 }
1220 }
96d365e0 1221
7717f7ba
PM
1222 BUG_ON(!res);
1223 return res;
1224}
1225
ddbcc7e8 1226/*
ceb6a081 1227 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1228 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1229 */
1230static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1231 struct cgroup_root *root)
ceb6a081
TH
1232{
1233 /*
1234 * No need to lock the task - since we hold cgroup_mutex the
1235 * task can't change groups, so the only thing that can happen
1236 * is that it exits and its css is set back to init_css_set.
1237 */
1238 return cset_cgroup_from_root(task_css_set(task), root);
1239}
1240
ddbcc7e8 1241/*
ddbcc7e8
PM
1242 * A task must hold cgroup_mutex to modify cgroups.
1243 *
1244 * Any task can increment and decrement the count field without lock.
1245 * So in general, code holding cgroup_mutex can't rely on the count
1246 * field not changing. However, if the count goes to zero, then only
956db3ca 1247 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1248 * means that no tasks are currently attached, therefore there is no
1249 * way a task attached to that cgroup can fork (the other way to
1250 * increment the count). So code holding cgroup_mutex can safely
1251 * assume that if the count is zero, it will stay zero. Similarly, if
1252 * a task holds cgroup_mutex on a cgroup with zero count, it
1253 * knows that the cgroup won't be removed, as cgroup_rmdir()
1254 * needs that mutex.
1255 *
ddbcc7e8
PM
1256 * A cgroup can only be deleted if both its 'count' of using tasks
1257 * is zero, and its list of 'children' cgroups is empty. Since all
1258 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1259 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1260 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1261 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1262 *
1263 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1264 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1265 */
1266
2bd59d48 1267static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1268static const struct file_operations proc_cgroupstats_operations;
a424316c 1269
8d7e6fb0
TH
1270static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1271 char *buf)
ddbcc7e8 1272{
3e1d2eed
TH
1273 struct cgroup_subsys *ss = cft->ss;
1274
8d7e6fb0
TH
1275 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1276 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1277 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1278 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1279 cft->name);
8d7e6fb0
TH
1280 else
1281 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1282 return buf;
ddbcc7e8
PM
1283}
1284
f2e85d57
TH
1285/**
1286 * cgroup_file_mode - deduce file mode of a control file
1287 * @cft: the control file in question
1288 *
7dbdb199 1289 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1290 */
1291static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1292{
f2e85d57 1293 umode_t mode = 0;
65dff759 1294
f2e85d57
TH
1295 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1296 mode |= S_IRUGO;
1297
7dbdb199
TH
1298 if (cft->write_u64 || cft->write_s64 || cft->write) {
1299 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1300 mode |= S_IWUGO;
1301 else
1302 mode |= S_IWUSR;
1303 }
f2e85d57
TH
1304
1305 return mode;
65dff759
LZ
1306}
1307
af0ba678 1308/**
8699b776 1309 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
af0ba678 1310 * @cgrp: the target cgroup
0f060deb 1311 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1312 *
1313 * On the default hierarchy, a subsystem may request other subsystems to be
1314 * enabled together through its ->depends_on mask. In such cases, more
1315 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1316 *
0f060deb
TH
1317 * This function calculates which subsystems need to be enabled if
1318 * @subtree_control is to be applied to @cgrp. The returned mask is always
1319 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1320 */
6e5c8307 1321static u16 cgroup_calc_subtree_ss_mask(struct cgroup *cgrp, u16 subtree_control)
667c2491 1322{
6e5c8307 1323 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1324 struct cgroup_subsys *ss;
1325 int ssid;
1326
1327 lockdep_assert_held(&cgroup_mutex);
1328
0f060deb
TH
1329 if (!cgroup_on_dfl(cgrp))
1330 return cur_ss_mask;
af0ba678
TH
1331
1332 while (true) {
6e5c8307 1333 u16 new_ss_mask = cur_ss_mask;
af0ba678 1334
b4e0eeaf 1335 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1336 new_ss_mask |= ss->depends_on;
b4e0eeaf 1337 } while_each_subsys_mask();
af0ba678
TH
1338
1339 /*
1340 * Mask out subsystems which aren't available. This can
1341 * happen only if some depended-upon subsystems were bound
1342 * to non-default hierarchies.
1343 */
5531dc91 1344 new_ss_mask &= cgroup_ss_mask(cgrp);
af0ba678
TH
1345
1346 if (new_ss_mask == cur_ss_mask)
1347 break;
1348 cur_ss_mask = new_ss_mask;
1349 }
1350
0f060deb
TH
1351 return cur_ss_mask;
1352}
1353
1354/**
8699b776 1355 * cgroup_refresh_subtree_ss_mask - update subtree_ss_mask
0f060deb
TH
1356 * @cgrp: the target cgroup
1357 *
8699b776
TH
1358 * Update @cgrp->subtree_ss_mask according to the current
1359 * @cgrp->subtree_control using cgroup_calc_subtree_ss_mask().
0f060deb 1360 */
8699b776 1361static void cgroup_refresh_subtree_ss_mask(struct cgroup *cgrp)
0f060deb 1362{
8699b776
TH
1363 cgrp->subtree_ss_mask =
1364 cgroup_calc_subtree_ss_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1365}
1366
a9746d8d
TH
1367/**
1368 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1369 * @kn: the kernfs_node being serviced
1370 *
1371 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1372 * the method finishes if locking succeeded. Note that once this function
1373 * returns the cgroup returned by cgroup_kn_lock_live() may become
1374 * inaccessible any time. If the caller intends to continue to access the
1375 * cgroup, it should pin it before invoking this function.
1376 */
1377static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1378{
a9746d8d
TH
1379 struct cgroup *cgrp;
1380
1381 if (kernfs_type(kn) == KERNFS_DIR)
1382 cgrp = kn->priv;
1383 else
1384 cgrp = kn->parent->priv;
1385
1386 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1387
1388 kernfs_unbreak_active_protection(kn);
1389 cgroup_put(cgrp);
ddbcc7e8
PM
1390}
1391
a9746d8d
TH
1392/**
1393 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1394 * @kn: the kernfs_node being serviced
945ba199 1395 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1396 *
1397 * This helper is to be used by a cgroup kernfs method currently servicing
1398 * @kn. It breaks the active protection, performs cgroup locking and
1399 * verifies that the associated cgroup is alive. Returns the cgroup if
1400 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1401 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1402 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1403 *
1404 * Any cgroup kernfs method implementation which requires locking the
1405 * associated cgroup should use this helper. It avoids nesting cgroup
1406 * locking under kernfs active protection and allows all kernfs operations
1407 * including self-removal.
1408 */
945ba199
TH
1409static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1410 bool drain_offline)
05ef1d7c 1411{
a9746d8d
TH
1412 struct cgroup *cgrp;
1413
1414 if (kernfs_type(kn) == KERNFS_DIR)
1415 cgrp = kn->priv;
1416 else
1417 cgrp = kn->parent->priv;
05ef1d7c 1418
2739d3cc 1419 /*
01f6474c 1420 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1421 * active_ref. cgroup liveliness check alone provides enough
1422 * protection against removal. Ensure @cgrp stays accessible and
1423 * break the active_ref protection.
2739d3cc 1424 */
aa32362f
LZ
1425 if (!cgroup_tryget(cgrp))
1426 return NULL;
a9746d8d
TH
1427 kernfs_break_active_protection(kn);
1428
945ba199
TH
1429 if (drain_offline)
1430 cgroup_lock_and_drain_offline(cgrp);
1431 else
1432 mutex_lock(&cgroup_mutex);
05ef1d7c 1433
a9746d8d
TH
1434 if (!cgroup_is_dead(cgrp))
1435 return cgrp;
1436
1437 cgroup_kn_unlock(kn);
1438 return NULL;
ddbcc7e8 1439}
05ef1d7c 1440
2739d3cc 1441static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1442{
2bd59d48 1443 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1444
01f6474c 1445 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1446
1447 if (cft->file_offset) {
1448 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1449 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1450
1451 spin_lock_irq(&cgroup_file_kn_lock);
1452 cfile->kn = NULL;
1453 spin_unlock_irq(&cgroup_file_kn_lock);
1454 }
1455
2bd59d48 1456 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1457}
1458
13af07df 1459/**
4df8dc90
TH
1460 * css_clear_dir - remove subsys files in a cgroup directory
1461 * @css: taget css
1462 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1463 */
4df8dc90
TH
1464static void css_clear_dir(struct cgroup_subsys_state *css,
1465 struct cgroup *cgrp_override)
05ef1d7c 1466{
4df8dc90
TH
1467 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1468 struct cftype *cfts;
05ef1d7c 1469
88cb04b9
TH
1470 if (!(css->flags & CSS_VISIBLE))
1471 return;
1472
1473 css->flags &= ~CSS_VISIBLE;
1474
4df8dc90
TH
1475 list_for_each_entry(cfts, &css->ss->cfts, node)
1476 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1477}
1478
ccdca218 1479/**
4df8dc90
TH
1480 * css_populate_dir - create subsys files in a cgroup directory
1481 * @css: target css
1482 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1483 *
1484 * On failure, no file is added.
1485 */
4df8dc90
TH
1486static int css_populate_dir(struct cgroup_subsys_state *css,
1487 struct cgroup *cgrp_override)
ccdca218 1488{
4df8dc90
TH
1489 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1490 struct cftype *cfts, *failed_cfts;
1491 int ret;
ccdca218 1492
03970d3c 1493 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1494 return 0;
1495
4df8dc90
TH
1496 if (!css->ss) {
1497 if (cgroup_on_dfl(cgrp))
1498 cfts = cgroup_dfl_base_files;
1499 else
1500 cfts = cgroup_legacy_base_files;
ccdca218 1501
4df8dc90
TH
1502 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1503 }
ccdca218 1504
4df8dc90
TH
1505 list_for_each_entry(cfts, &css->ss->cfts, node) {
1506 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1507 if (ret < 0) {
1508 failed_cfts = cfts;
1509 goto err;
ccdca218
TH
1510 }
1511 }
88cb04b9
TH
1512
1513 css->flags |= CSS_VISIBLE;
1514
ccdca218
TH
1515 return 0;
1516err:
4df8dc90
TH
1517 list_for_each_entry(cfts, &css->ss->cfts, node) {
1518 if (cfts == failed_cfts)
1519 break;
1520 cgroup_addrm_files(css, cgrp, cfts, false);
1521 }
ccdca218
TH
1522 return ret;
1523}
1524
6e5c8307 1525static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1526{
1ada4838 1527 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1528 struct cgroup_subsys *ss;
6e5c8307 1529 u16 tmp_ss_mask;
2d8f243a 1530 int ssid, i, ret;
ddbcc7e8 1531
ace2bee8 1532 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1533
b4e0eeaf 1534 do_each_subsys_mask(ss, ssid, ss_mask) {
7fd8c565
TH
1535 /* if @ss has non-root csses attached to it, can't move */
1536 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1537 return -EBUSY;
1d5be6b2 1538
5df36032 1539 /* can't move between two non-dummy roots either */
7fd8c565 1540 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1541 return -EBUSY;
b4e0eeaf 1542 } while_each_subsys_mask();
ddbcc7e8 1543
5533e011
TH
1544 /* skip creating root files on dfl_root for inhibited subsystems */
1545 tmp_ss_mask = ss_mask;
1546 if (dst_root == &cgrp_dfl_root)
a7165264 1547 tmp_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
5533e011 1548
b4e0eeaf 1549 do_each_subsys_mask(ss, ssid, tmp_ss_mask) {
4df8dc90
TH
1550 struct cgroup *scgrp = &ss->root->cgrp;
1551 int tssid;
1552
1553 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1554 if (!ret)
1555 continue;
ddbcc7e8 1556
a2dd4247
TH
1557 /*
1558 * Rebinding back to the default root is not allowed to
1559 * fail. Using both default and non-default roots should
1560 * be rare. Moving subsystems back and forth even more so.
1561 * Just warn about it and continue.
1562 */
4df8dc90 1563 if (dst_root == &cgrp_dfl_root) {
a7165264 1564 if (cgrp_dfl_visible) {
6e5c8307 1565 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
4df8dc90
TH
1566 ret, ss_mask);
1567 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1568 }
1569 continue;
a2dd4247 1570 }
4df8dc90 1571
b4e0eeaf 1572 do_each_subsys_mask(ss, tssid, tmp_ss_mask) {
4df8dc90
TH
1573 if (tssid == ssid)
1574 break;
1575 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
b4e0eeaf 1576 } while_each_subsys_mask();
4df8dc90 1577 return ret;
b4e0eeaf 1578 } while_each_subsys_mask();
3126121f
TH
1579
1580 /*
1581 * Nothing can fail from this point on. Remove files for the
1582 * removed subsystems and rebind each subsystem.
1583 */
b4e0eeaf 1584 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1585 struct cgroup_root *src_root = ss->root;
1586 struct cgroup *scgrp = &src_root->cgrp;
1587 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1588 struct css_set *cset;
a8a648c4 1589
1ada4838 1590 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1591
4df8dc90
TH
1592 css_clear_dir(css, NULL);
1593
1ada4838
TH
1594 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1595 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1596 ss->root = dst_root;
1ada4838 1597 css->cgroup = dcgrp;
73e80ed8 1598
f0d9a5f1 1599 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1600 hash_for_each(css_set_table, i, cset, hlist)
1601 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1602 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1603 spin_unlock_bh(&css_set_lock);
2d8f243a 1604
f392e51c 1605 src_root->subsys_mask &= ~(1 << ssid);
1ada4838 1606 scgrp->subtree_control &= ~(1 << ssid);
8699b776 1607 cgroup_refresh_subtree_ss_mask(scgrp);
f392e51c 1608
bd53d617 1609 /* default hierarchy doesn't enable controllers by default */
f392e51c 1610 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1611 if (dst_root == &cgrp_dfl_root) {
1612 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1613 } else {
1ada4838 1614 dcgrp->subtree_control |= 1 << ssid;
8699b776 1615 cgroup_refresh_subtree_ss_mask(dcgrp);
49d1dc4b 1616 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1617 }
a8a648c4 1618
5df36032
TH
1619 if (ss->bind)
1620 ss->bind(css);
b4e0eeaf 1621 } while_each_subsys_mask();
ddbcc7e8 1622
1ada4838 1623 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1624 return 0;
1625}
1626
2bd59d48
TH
1627static int cgroup_show_options(struct seq_file *seq,
1628 struct kernfs_root *kf_root)
ddbcc7e8 1629{
3dd06ffa 1630 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1631 struct cgroup_subsys *ss;
b85d2040 1632 int ssid;
ddbcc7e8 1633
d98817d4
TH
1634 if (root != &cgrp_dfl_root)
1635 for_each_subsys(ss, ssid)
1636 if (root->subsys_mask & (1 << ssid))
61e57c0c 1637 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1638 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1639 seq_puts(seq, ",noprefix");
93438629 1640 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1641 seq_puts(seq, ",xattr");
69e943b7
TH
1642
1643 spin_lock(&release_agent_path_lock);
81a6a5cd 1644 if (strlen(root->release_agent_path))
a068acf2
KC
1645 seq_show_option(seq, "release_agent",
1646 root->release_agent_path);
69e943b7
TH
1647 spin_unlock(&release_agent_path_lock);
1648
3dd06ffa 1649 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1650 seq_puts(seq, ",clone_children");
c6d57f33 1651 if (strlen(root->name))
a068acf2 1652 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1653 return 0;
1654}
1655
1656struct cgroup_sb_opts {
6e5c8307 1657 u16 subsys_mask;
69dfa00c 1658 unsigned int flags;
81a6a5cd 1659 char *release_agent;
2260e7fc 1660 bool cpuset_clone_children;
c6d57f33 1661 char *name;
2c6ab6d2
PM
1662 /* User explicitly requested empty subsystem */
1663 bool none;
ddbcc7e8
PM
1664};
1665
cf5d5941 1666static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1667{
32a8cf23
DL
1668 char *token, *o = data;
1669 bool all_ss = false, one_ss = false;
6e5c8307 1670 u16 mask = U16_MAX;
30159ec7 1671 struct cgroup_subsys *ss;
7b9a6ba5 1672 int nr_opts = 0;
30159ec7 1673 int i;
f9ab5b5b
LZ
1674
1675#ifdef CONFIG_CPUSETS
6e5c8307 1676 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1677#endif
ddbcc7e8 1678
c6d57f33 1679 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1680
1681 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1682 nr_opts++;
1683
ddbcc7e8
PM
1684 if (!*token)
1685 return -EINVAL;
32a8cf23 1686 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1687 /* Explicitly have no subsystems */
1688 opts->none = true;
32a8cf23
DL
1689 continue;
1690 }
1691 if (!strcmp(token, "all")) {
1692 /* Mutually exclusive option 'all' + subsystem name */
1693 if (one_ss)
1694 return -EINVAL;
1695 all_ss = true;
1696 continue;
1697 }
1698 if (!strcmp(token, "noprefix")) {
93438629 1699 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1700 continue;
1701 }
1702 if (!strcmp(token, "clone_children")) {
2260e7fc 1703 opts->cpuset_clone_children = true;
32a8cf23
DL
1704 continue;
1705 }
03b1cde6 1706 if (!strcmp(token, "xattr")) {
93438629 1707 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1708 continue;
1709 }
32a8cf23 1710 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1711 /* Specifying two release agents is forbidden */
1712 if (opts->release_agent)
1713 return -EINVAL;
c6d57f33 1714 opts->release_agent =
e400c285 1715 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1716 if (!opts->release_agent)
1717 return -ENOMEM;
32a8cf23
DL
1718 continue;
1719 }
1720 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1721 const char *name = token + 5;
1722 /* Can't specify an empty name */
1723 if (!strlen(name))
1724 return -EINVAL;
1725 /* Must match [\w.-]+ */
1726 for (i = 0; i < strlen(name); i++) {
1727 char c = name[i];
1728 if (isalnum(c))
1729 continue;
1730 if ((c == '.') || (c == '-') || (c == '_'))
1731 continue;
1732 return -EINVAL;
1733 }
1734 /* Specifying two names is forbidden */
1735 if (opts->name)
1736 return -EINVAL;
1737 opts->name = kstrndup(name,
e400c285 1738 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1739 GFP_KERNEL);
1740 if (!opts->name)
1741 return -ENOMEM;
32a8cf23
DL
1742
1743 continue;
1744 }
1745
30159ec7 1746 for_each_subsys(ss, i) {
3e1d2eed 1747 if (strcmp(token, ss->legacy_name))
32a8cf23 1748 continue;
fc5ed1e9 1749 if (!cgroup_ssid_enabled(i))
32a8cf23 1750 continue;
223ffb29
JW
1751 if (cgroup_ssid_no_v1(i))
1752 continue;
32a8cf23
DL
1753
1754 /* Mutually exclusive option 'all' + subsystem name */
1755 if (all_ss)
1756 return -EINVAL;
69dfa00c 1757 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1758 one_ss = true;
1759
1760 break;
1761 }
1762 if (i == CGROUP_SUBSYS_COUNT)
1763 return -ENOENT;
1764 }
1765
7b9a6ba5
TH
1766 /*
1767 * If the 'all' option was specified select all the subsystems,
1768 * otherwise if 'none', 'name=' and a subsystem name options were
1769 * not specified, let's default to 'all'
1770 */
1771 if (all_ss || (!one_ss && !opts->none && !opts->name))
1772 for_each_subsys(ss, i)
223ffb29 1773 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1774 opts->subsys_mask |= (1 << i);
1775
1776 /*
1777 * We either have to specify by name or by subsystems. (So all
1778 * empty hierarchies must have a name).
1779 */
1780 if (!opts->subsys_mask && !opts->name)
1781 return -EINVAL;
1782
f9ab5b5b
LZ
1783 /*
1784 * Option noprefix was introduced just for backward compatibility
1785 * with the old cpuset, so we allow noprefix only if mounting just
1786 * the cpuset subsystem.
1787 */
93438629 1788 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1789 return -EINVAL;
1790
2c6ab6d2 1791 /* Can't specify "none" and some subsystems */
a1a71b45 1792 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1793 return -EINVAL;
1794
ddbcc7e8
PM
1795 return 0;
1796}
1797
2bd59d48 1798static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1799{
1800 int ret = 0;
3dd06ffa 1801 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1802 struct cgroup_sb_opts opts;
6e5c8307 1803 u16 added_mask, removed_mask;
ddbcc7e8 1804
aa6ec29b
TH
1805 if (root == &cgrp_dfl_root) {
1806 pr_err("remount is not allowed\n");
873fe09e
TH
1807 return -EINVAL;
1808 }
1809
ddbcc7e8
PM
1810 mutex_lock(&cgroup_mutex);
1811
1812 /* See what subsystems are wanted */
1813 ret = parse_cgroupfs_options(data, &opts);
1814 if (ret)
1815 goto out_unlock;
1816
f392e51c 1817 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1818 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1819 task_tgid_nr(current), current->comm);
8b5a5a9d 1820
f392e51c
TH
1821 added_mask = opts.subsys_mask & ~root->subsys_mask;
1822 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1823
cf5d5941 1824 /* Don't allow flags or name to change at remount */
7450e90b 1825 if ((opts.flags ^ root->flags) ||
cf5d5941 1826 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1827 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1828 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1829 ret = -EINVAL;
1830 goto out_unlock;
1831 }
1832
f172e67c 1833 /* remounting is not allowed for populated hierarchies */
d5c419b6 1834 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1835 ret = -EBUSY;
0670e08b 1836 goto out_unlock;
cf5d5941 1837 }
ddbcc7e8 1838
5df36032 1839 ret = rebind_subsystems(root, added_mask);
3126121f 1840 if (ret)
0670e08b 1841 goto out_unlock;
ddbcc7e8 1842
3dd06ffa 1843 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1844
69e943b7
TH
1845 if (opts.release_agent) {
1846 spin_lock(&release_agent_path_lock);
81a6a5cd 1847 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1848 spin_unlock(&release_agent_path_lock);
1849 }
ddbcc7e8 1850 out_unlock:
66bdc9cf 1851 kfree(opts.release_agent);
c6d57f33 1852 kfree(opts.name);
ddbcc7e8 1853 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1854 return ret;
1855}
1856
afeb0f9f
TH
1857/*
1858 * To reduce the fork() overhead for systems that are not actually using
1859 * their cgroups capability, we don't maintain the lists running through
1860 * each css_set to its tasks until we see the list actually used - in other
1861 * words after the first mount.
1862 */
1863static bool use_task_css_set_links __read_mostly;
1864
1865static void cgroup_enable_task_cg_lists(void)
1866{
1867 struct task_struct *p, *g;
1868
f0d9a5f1 1869 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1870
1871 if (use_task_css_set_links)
1872 goto out_unlock;
1873
1874 use_task_css_set_links = true;
1875
1876 /*
1877 * We need tasklist_lock because RCU is not safe against
1878 * while_each_thread(). Besides, a forking task that has passed
1879 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1880 * is not guaranteed to have its child immediately visible in the
1881 * tasklist if we walk through it with RCU.
1882 */
1883 read_lock(&tasklist_lock);
1884 do_each_thread(g, p) {
afeb0f9f
TH
1885 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1886 task_css_set(p) != &init_css_set);
1887
1888 /*
1889 * We should check if the process is exiting, otherwise
1890 * it will race with cgroup_exit() in that the list
1891 * entry won't be deleted though the process has exited.
f153ad11
TH
1892 * Do it while holding siglock so that we don't end up
1893 * racing against cgroup_exit().
afeb0f9f 1894 */
f153ad11 1895 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1896 if (!(p->flags & PF_EXITING)) {
1897 struct css_set *cset = task_css_set(p);
1898
0de0942d
TH
1899 if (!css_set_populated(cset))
1900 css_set_update_populated(cset, true);
389b9c1b 1901 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1902 get_css_set(cset);
1903 }
f153ad11 1904 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1905 } while_each_thread(g, p);
1906 read_unlock(&tasklist_lock);
1907out_unlock:
f0d9a5f1 1908 spin_unlock_bh(&css_set_lock);
afeb0f9f 1909}
ddbcc7e8 1910
cc31edce
PM
1911static void init_cgroup_housekeeping(struct cgroup *cgrp)
1912{
2d8f243a
TH
1913 struct cgroup_subsys *ss;
1914 int ssid;
1915
d5c419b6
TH
1916 INIT_LIST_HEAD(&cgrp->self.sibling);
1917 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1918 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1919 INIT_LIST_HEAD(&cgrp->pidlists);
1920 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1921 cgrp->self.cgroup = cgrp;
184faf32 1922 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1923
1924 for_each_subsys(ss, ssid)
1925 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1926
1927 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1928 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1929}
c6d57f33 1930
3dd06ffa 1931static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1932 struct cgroup_sb_opts *opts)
ddbcc7e8 1933{
3dd06ffa 1934 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1935
ddbcc7e8 1936 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1937 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1938 cgrp->root = root;
cc31edce 1939 init_cgroup_housekeeping(cgrp);
4e96ee8e 1940 idr_init(&root->cgroup_idr);
c6d57f33 1941
c6d57f33
PM
1942 root->flags = opts->flags;
1943 if (opts->release_agent)
1944 strcpy(root->release_agent_path, opts->release_agent);
1945 if (opts->name)
1946 strcpy(root->name, opts->name);
2260e7fc 1947 if (opts->cpuset_clone_children)
3dd06ffa 1948 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1949}
1950
6e5c8307 1951static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1952{
d427dfeb 1953 LIST_HEAD(tmp_links);
3dd06ffa 1954 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1955 struct css_set *cset;
d427dfeb 1956 int i, ret;
2c6ab6d2 1957
d427dfeb 1958 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1959
cf780b7d 1960 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1961 if (ret < 0)
2bd59d48 1962 goto out;
d427dfeb 1963 root_cgrp->id = ret;
b11cfb58 1964 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1965
2aad2a86
TH
1966 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1967 GFP_KERNEL);
9d755d33
TH
1968 if (ret)
1969 goto out;
1970
d427dfeb 1971 /*
f0d9a5f1 1972 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1973 * but that's OK - it can only be increased by someone holding
1974 * cgroup_lock, and that's us. The worst that can happen is that we
1975 * have some link structures left over
1976 */
1977 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1978 if (ret)
9d755d33 1979 goto cancel_ref;
ddbcc7e8 1980
985ed670 1981 ret = cgroup_init_root_id(root);
ddbcc7e8 1982 if (ret)
9d755d33 1983 goto cancel_ref;
ddbcc7e8 1984
2bd59d48
TH
1985 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1986 KERNFS_ROOT_CREATE_DEACTIVATED,
1987 root_cgrp);
1988 if (IS_ERR(root->kf_root)) {
1989 ret = PTR_ERR(root->kf_root);
1990 goto exit_root_id;
1991 }
1992 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1993
4df8dc90 1994 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1995 if (ret)
2bd59d48 1996 goto destroy_root;
ddbcc7e8 1997
5df36032 1998 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1999 if (ret)
2bd59d48 2000 goto destroy_root;
ddbcc7e8 2001
d427dfeb
TH
2002 /*
2003 * There must be no failure case after here, since rebinding takes
2004 * care of subsystems' refcounts, which are explicitly dropped in
2005 * the failure exit path.
2006 */
2007 list_add(&root->root_list, &cgroup_roots);
2008 cgroup_root_count++;
0df6a63f 2009
d427dfeb 2010 /*
3dd06ffa 2011 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2012 * objects.
2013 */
f0d9a5f1 2014 spin_lock_bh(&css_set_lock);
0de0942d 2015 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2016 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2017 if (css_set_populated(cset))
2018 cgroup_update_populated(root_cgrp, true);
2019 }
f0d9a5f1 2020 spin_unlock_bh(&css_set_lock);
ddbcc7e8 2021
d5c419b6 2022 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2023 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2024
2bd59d48 2025 kernfs_activate(root_cgrp->kn);
d427dfeb 2026 ret = 0;
2bd59d48 2027 goto out;
d427dfeb 2028
2bd59d48
TH
2029destroy_root:
2030 kernfs_destroy_root(root->kf_root);
2031 root->kf_root = NULL;
2032exit_root_id:
d427dfeb 2033 cgroup_exit_root_id(root);
9d755d33 2034cancel_ref:
9a1049da 2035 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2036out:
d427dfeb
TH
2037 free_cgrp_cset_links(&tmp_links);
2038 return ret;
ddbcc7e8
PM
2039}
2040
f7e83571 2041static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2042 int flags, const char *unused_dev_name,
f7e83571 2043 void *data)
ddbcc7e8 2044{
67e9c74b 2045 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2046 struct super_block *pinned_sb = NULL;
970317aa 2047 struct cgroup_subsys *ss;
3dd06ffa 2048 struct cgroup_root *root;
ddbcc7e8 2049 struct cgroup_sb_opts opts;
2bd59d48 2050 struct dentry *dentry;
8e30e2b8 2051 int ret;
970317aa 2052 int i;
c6b3d5bc 2053 bool new_sb;
ddbcc7e8 2054
56fde9e0
TH
2055 /*
2056 * The first time anyone tries to mount a cgroup, enable the list
2057 * linking each css_set to its tasks and fix up all existing tasks.
2058 */
2059 if (!use_task_css_set_links)
2060 cgroup_enable_task_cg_lists();
e37a06f1 2061
67e9c74b
TH
2062 if (is_v2) {
2063 if (data) {
2064 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2065 return ERR_PTR(-EINVAL);
2066 }
a7165264 2067 cgrp_dfl_visible = true;
67e9c74b
TH
2068 root = &cgrp_dfl_root;
2069 cgroup_get(&root->cgrp);
2070 goto out_mount;
2071 }
2072
aae8aab4 2073 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2074
2075 /* First find the desired set of subsystems */
ddbcc7e8 2076 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2077 if (ret)
8e30e2b8 2078 goto out_unlock;
a015edd2 2079
970317aa
LZ
2080 /*
2081 * Destruction of cgroup root is asynchronous, so subsystems may
2082 * still be dying after the previous unmount. Let's drain the
2083 * dying subsystems. We just need to ensure that the ones
2084 * unmounted previously finish dying and don't care about new ones
2085 * starting. Testing ref liveliness is good enough.
2086 */
2087 for_each_subsys(ss, i) {
2088 if (!(opts.subsys_mask & (1 << i)) ||
2089 ss->root == &cgrp_dfl_root)
2090 continue;
2091
2092 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2093 mutex_unlock(&cgroup_mutex);
2094 msleep(10);
2095 ret = restart_syscall();
2096 goto out_free;
2097 }
2098 cgroup_put(&ss->root->cgrp);
2099 }
2100
985ed670 2101 for_each_root(root) {
2bd59d48 2102 bool name_match = false;
3126121f 2103
3dd06ffa 2104 if (root == &cgrp_dfl_root)
985ed670 2105 continue;
3126121f 2106
cf5d5941 2107 /*
2bd59d48
TH
2108 * If we asked for a name then it must match. Also, if
2109 * name matches but sybsys_mask doesn't, we should fail.
2110 * Remember whether name matched.
cf5d5941 2111 */
2bd59d48
TH
2112 if (opts.name) {
2113 if (strcmp(opts.name, root->name))
2114 continue;
2115 name_match = true;
2116 }
ddbcc7e8 2117
c6d57f33 2118 /*
2bd59d48
TH
2119 * If we asked for subsystems (or explicitly for no
2120 * subsystems) then they must match.
c6d57f33 2121 */
2bd59d48 2122 if ((opts.subsys_mask || opts.none) &&
f392e51c 2123 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2124 if (!name_match)
2125 continue;
2126 ret = -EBUSY;
2127 goto out_unlock;
2128 }
873fe09e 2129
7b9a6ba5
TH
2130 if (root->flags ^ opts.flags)
2131 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2132
776f02fa 2133 /*
3a32bd72
LZ
2134 * We want to reuse @root whose lifetime is governed by its
2135 * ->cgrp. Let's check whether @root is alive and keep it
2136 * that way. As cgroup_kill_sb() can happen anytime, we
2137 * want to block it by pinning the sb so that @root doesn't
2138 * get killed before mount is complete.
2139 *
2140 * With the sb pinned, tryget_live can reliably indicate
2141 * whether @root can be reused. If it's being killed,
2142 * drain it. We can use wait_queue for the wait but this
2143 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2144 */
3a32bd72
LZ
2145 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2146 if (IS_ERR(pinned_sb) ||
2147 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2148 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2149 if (!IS_ERR_OR_NULL(pinned_sb))
2150 deactivate_super(pinned_sb);
776f02fa 2151 msleep(10);
a015edd2
TH
2152 ret = restart_syscall();
2153 goto out_free;
776f02fa 2154 }
ddbcc7e8 2155
776f02fa 2156 ret = 0;
2bd59d48 2157 goto out_unlock;
ddbcc7e8 2158 }
ddbcc7e8 2159
817929ec 2160 /*
172a2c06
TH
2161 * No such thing, create a new one. name= matching without subsys
2162 * specification is allowed for already existing hierarchies but we
2163 * can't create new one without subsys specification.
817929ec 2164 */
172a2c06
TH
2165 if (!opts.subsys_mask && !opts.none) {
2166 ret = -EINVAL;
2167 goto out_unlock;
817929ec 2168 }
817929ec 2169
172a2c06
TH
2170 root = kzalloc(sizeof(*root), GFP_KERNEL);
2171 if (!root) {
2172 ret = -ENOMEM;
2bd59d48 2173 goto out_unlock;
839ec545 2174 }
e5f6a860 2175
172a2c06
TH
2176 init_cgroup_root(root, &opts);
2177
35585573 2178 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2179 if (ret)
2180 cgroup_free_root(root);
fa3ca07e 2181
8e30e2b8 2182out_unlock:
ddbcc7e8 2183 mutex_unlock(&cgroup_mutex);
a015edd2 2184out_free:
c6d57f33
PM
2185 kfree(opts.release_agent);
2186 kfree(opts.name);
03b1cde6 2187
2bd59d48 2188 if (ret)
8e30e2b8 2189 return ERR_PTR(ret);
67e9c74b 2190out_mount:
c9482a5b 2191 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2192 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2193 &new_sb);
c6b3d5bc 2194 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2195 cgroup_put(&root->cgrp);
3a32bd72
LZ
2196
2197 /*
2198 * If @pinned_sb, we're reusing an existing root and holding an
2199 * extra ref on its sb. Mount is complete. Put the extra ref.
2200 */
2201 if (pinned_sb) {
2202 WARN_ON(new_sb);
2203 deactivate_super(pinned_sb);
2204 }
2205
2bd59d48
TH
2206 return dentry;
2207}
2208
2209static void cgroup_kill_sb(struct super_block *sb)
2210{
2211 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2212 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2213
9d755d33
TH
2214 /*
2215 * If @root doesn't have any mounts or children, start killing it.
2216 * This prevents new mounts by disabling percpu_ref_tryget_live().
2217 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2218 *
2219 * And don't kill the default root.
9d755d33 2220 */
3c606d35 2221 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2222 root == &cgrp_dfl_root)
9d755d33
TH
2223 cgroup_put(&root->cgrp);
2224 else
2225 percpu_ref_kill(&root->cgrp.self.refcnt);
2226
2bd59d48 2227 kernfs_kill_sb(sb);
ddbcc7e8
PM
2228}
2229
2230static struct file_system_type cgroup_fs_type = {
2231 .name = "cgroup",
f7e83571 2232 .mount = cgroup_mount,
ddbcc7e8
PM
2233 .kill_sb = cgroup_kill_sb,
2234};
2235
67e9c74b
TH
2236static struct file_system_type cgroup2_fs_type = {
2237 .name = "cgroup2",
2238 .mount = cgroup_mount,
2239 .kill_sb = cgroup_kill_sb,
2240};
2241
857a2beb 2242/**
913ffdb5 2243 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2244 * @task: target task
857a2beb
TH
2245 * @buf: the buffer to write the path into
2246 * @buflen: the length of the buffer
2247 *
913ffdb5
TH
2248 * Determine @task's cgroup on the first (the one with the lowest non-zero
2249 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2250 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2251 * cgroup controller callbacks.
2252 *
e61734c5 2253 * Return value is the same as kernfs_path().
857a2beb 2254 */
e61734c5 2255char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2256{
3dd06ffa 2257 struct cgroup_root *root;
913ffdb5 2258 struct cgroup *cgrp;
e61734c5
TH
2259 int hierarchy_id = 1;
2260 char *path = NULL;
857a2beb
TH
2261
2262 mutex_lock(&cgroup_mutex);
f0d9a5f1 2263 spin_lock_bh(&css_set_lock);
857a2beb 2264
913ffdb5
TH
2265 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2266
857a2beb
TH
2267 if (root) {
2268 cgrp = task_cgroup_from_root(task, root);
e61734c5 2269 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2270 } else {
2271 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2272 if (strlcpy(buf, "/", buflen) < buflen)
2273 path = buf;
857a2beb
TH
2274 }
2275
f0d9a5f1 2276 spin_unlock_bh(&css_set_lock);
857a2beb 2277 mutex_unlock(&cgroup_mutex);
e61734c5 2278 return path;
857a2beb 2279}
913ffdb5 2280EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2281
b3dc094e 2282/* used to track tasks and other necessary states during migration */
2f7ee569 2283struct cgroup_taskset {
b3dc094e
TH
2284 /* the src and dst cset list running through cset->mg_node */
2285 struct list_head src_csets;
2286 struct list_head dst_csets;
2287
1f7dd3e5
TH
2288 /* the subsys currently being processed */
2289 int ssid;
2290
b3dc094e
TH
2291 /*
2292 * Fields for cgroup_taskset_*() iteration.
2293 *
2294 * Before migration is committed, the target migration tasks are on
2295 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2296 * the csets on ->dst_csets. ->csets point to either ->src_csets
2297 * or ->dst_csets depending on whether migration is committed.
2298 *
2299 * ->cur_csets and ->cur_task point to the current task position
2300 * during iteration.
2301 */
2302 struct list_head *csets;
2303 struct css_set *cur_cset;
2304 struct task_struct *cur_task;
2f7ee569
TH
2305};
2306
adaae5dc
TH
2307#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2308 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2309 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2310 .csets = &tset.src_csets, \
2311}
2312
2313/**
2314 * cgroup_taskset_add - try to add a migration target task to a taskset
2315 * @task: target task
2316 * @tset: target taskset
2317 *
2318 * Add @task, which is a migration target, to @tset. This function becomes
2319 * noop if @task doesn't need to be migrated. @task's css_set should have
2320 * been added as a migration source and @task->cg_list will be moved from
2321 * the css_set's tasks list to mg_tasks one.
2322 */
2323static void cgroup_taskset_add(struct task_struct *task,
2324 struct cgroup_taskset *tset)
2325{
2326 struct css_set *cset;
2327
f0d9a5f1 2328 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2329
2330 /* @task either already exited or can't exit until the end */
2331 if (task->flags & PF_EXITING)
2332 return;
2333
2334 /* leave @task alone if post_fork() hasn't linked it yet */
2335 if (list_empty(&task->cg_list))
2336 return;
2337
2338 cset = task_css_set(task);
2339 if (!cset->mg_src_cgrp)
2340 return;
2341
2342 list_move_tail(&task->cg_list, &cset->mg_tasks);
2343 if (list_empty(&cset->mg_node))
2344 list_add_tail(&cset->mg_node, &tset->src_csets);
2345 if (list_empty(&cset->mg_dst_cset->mg_node))
2346 list_move_tail(&cset->mg_dst_cset->mg_node,
2347 &tset->dst_csets);
2348}
2349
2f7ee569
TH
2350/**
2351 * cgroup_taskset_first - reset taskset and return the first task
2352 * @tset: taskset of interest
1f7dd3e5 2353 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2354 *
2355 * @tset iteration is initialized and the first task is returned.
2356 */
1f7dd3e5
TH
2357struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2358 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2359{
b3dc094e
TH
2360 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2361 tset->cur_task = NULL;
2362
1f7dd3e5 2363 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2364}
2f7ee569
TH
2365
2366/**
2367 * cgroup_taskset_next - iterate to the next task in taskset
2368 * @tset: taskset of interest
1f7dd3e5 2369 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2370 *
2371 * Return the next task in @tset. Iteration must have been initialized
2372 * with cgroup_taskset_first().
2373 */
1f7dd3e5
TH
2374struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2375 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2376{
b3dc094e
TH
2377 struct css_set *cset = tset->cur_cset;
2378 struct task_struct *task = tset->cur_task;
2f7ee569 2379
b3dc094e
TH
2380 while (&cset->mg_node != tset->csets) {
2381 if (!task)
2382 task = list_first_entry(&cset->mg_tasks,
2383 struct task_struct, cg_list);
2384 else
2385 task = list_next_entry(task, cg_list);
2f7ee569 2386
b3dc094e
TH
2387 if (&task->cg_list != &cset->mg_tasks) {
2388 tset->cur_cset = cset;
2389 tset->cur_task = task;
1f7dd3e5
TH
2390
2391 /*
2392 * This function may be called both before and
2393 * after cgroup_taskset_migrate(). The two cases
2394 * can be distinguished by looking at whether @cset
2395 * has its ->mg_dst_cset set.
2396 */
2397 if (cset->mg_dst_cset)
2398 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2399 else
2400 *dst_cssp = cset->subsys[tset->ssid];
2401
b3dc094e
TH
2402 return task;
2403 }
2f7ee569 2404
b3dc094e
TH
2405 cset = list_next_entry(cset, mg_node);
2406 task = NULL;
2407 }
2f7ee569 2408
b3dc094e 2409 return NULL;
2f7ee569 2410}
2f7ee569 2411
adaae5dc
TH
2412/**
2413 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2414 * @tset: taget taskset
2415 * @dst_cgrp: destination cgroup
2416 *
2417 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2418 * ->can_attach callbacks fails and guarantees that either all or none of
2419 * the tasks in @tset are migrated. @tset is consumed regardless of
2420 * success.
2421 */
2422static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2423 struct cgroup *dst_cgrp)
2424{
2425 struct cgroup_subsys_state *css, *failed_css = NULL;
2426 struct task_struct *task, *tmp_task;
2427 struct css_set *cset, *tmp_cset;
2428 int i, ret;
2429
2430 /* methods shouldn't be called if no task is actually migrating */
2431 if (list_empty(&tset->src_csets))
2432 return 0;
2433
2434 /* check that we can legitimately attach to the cgroup */
2435 for_each_e_css(css, i, dst_cgrp) {
2436 if (css->ss->can_attach) {
1f7dd3e5
TH
2437 tset->ssid = i;
2438 ret = css->ss->can_attach(tset);
adaae5dc
TH
2439 if (ret) {
2440 failed_css = css;
2441 goto out_cancel_attach;
2442 }
2443 }
2444 }
2445
2446 /*
2447 * Now that we're guaranteed success, proceed to move all tasks to
2448 * the new cgroup. There are no failure cases after here, so this
2449 * is the commit point.
2450 */
f0d9a5f1 2451 spin_lock_bh(&css_set_lock);
adaae5dc 2452 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2453 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2454 struct css_set *from_cset = task_css_set(task);
2455 struct css_set *to_cset = cset->mg_dst_cset;
2456
2457 get_css_set(to_cset);
2458 css_set_move_task(task, from_cset, to_cset, true);
2459 put_css_set_locked(from_cset);
2460 }
adaae5dc 2461 }
f0d9a5f1 2462 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2463
2464 /*
2465 * Migration is committed, all target tasks are now on dst_csets.
2466 * Nothing is sensitive to fork() after this point. Notify
2467 * controllers that migration is complete.
2468 */
2469 tset->csets = &tset->dst_csets;
2470
1f7dd3e5
TH
2471 for_each_e_css(css, i, dst_cgrp) {
2472 if (css->ss->attach) {
2473 tset->ssid = i;
2474 css->ss->attach(tset);
2475 }
2476 }
adaae5dc
TH
2477
2478 ret = 0;
2479 goto out_release_tset;
2480
2481out_cancel_attach:
2482 for_each_e_css(css, i, dst_cgrp) {
2483 if (css == failed_css)
2484 break;
1f7dd3e5
TH
2485 if (css->ss->cancel_attach) {
2486 tset->ssid = i;
2487 css->ss->cancel_attach(tset);
2488 }
adaae5dc
TH
2489 }
2490out_release_tset:
f0d9a5f1 2491 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2492 list_splice_init(&tset->dst_csets, &tset->src_csets);
2493 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2494 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2495 list_del_init(&cset->mg_node);
2496 }
f0d9a5f1 2497 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2498 return ret;
2499}
2500
a043e3b2 2501/**
1958d2d5
TH
2502 * cgroup_migrate_finish - cleanup after attach
2503 * @preloaded_csets: list of preloaded css_sets
74a1166d 2504 *
1958d2d5
TH
2505 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2506 * those functions for details.
74a1166d 2507 */
1958d2d5 2508static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2509{
1958d2d5 2510 struct css_set *cset, *tmp_cset;
74a1166d 2511
1958d2d5
TH
2512 lockdep_assert_held(&cgroup_mutex);
2513
f0d9a5f1 2514 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2515 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2516 cset->mg_src_cgrp = NULL;
2517 cset->mg_dst_cset = NULL;
2518 list_del_init(&cset->mg_preload_node);
a25eb52e 2519 put_css_set_locked(cset);
1958d2d5 2520 }
f0d9a5f1 2521 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2522}
2523
2524/**
2525 * cgroup_migrate_add_src - add a migration source css_set
2526 * @src_cset: the source css_set to add
2527 * @dst_cgrp: the destination cgroup
2528 * @preloaded_csets: list of preloaded css_sets
2529 *
2530 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2531 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2532 * up by cgroup_migrate_finish().
2533 *
1ed13287
TH
2534 * This function may be called without holding cgroup_threadgroup_rwsem
2535 * even if the target is a process. Threads may be created and destroyed
2536 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2537 * into play and the preloaded css_sets are guaranteed to cover all
2538 * migrations.
1958d2d5
TH
2539 */
2540static void cgroup_migrate_add_src(struct css_set *src_cset,
2541 struct cgroup *dst_cgrp,
2542 struct list_head *preloaded_csets)
2543{
2544 struct cgroup *src_cgrp;
2545
2546 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2547 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2548
2549 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2550
1958d2d5
TH
2551 if (!list_empty(&src_cset->mg_preload_node))
2552 return;
2553
2554 WARN_ON(src_cset->mg_src_cgrp);
2555 WARN_ON(!list_empty(&src_cset->mg_tasks));
2556 WARN_ON(!list_empty(&src_cset->mg_node));
2557
2558 src_cset->mg_src_cgrp = src_cgrp;
2559 get_css_set(src_cset);
2560 list_add(&src_cset->mg_preload_node, preloaded_csets);
2561}
2562
2563/**
2564 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2565 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2566 * @preloaded_csets: list of preloaded source css_sets
2567 *
2568 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2569 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2570 * pins all destination css_sets, links each to its source, and append them
2571 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2572 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2573 *
2574 * This function must be called after cgroup_migrate_add_src() has been
2575 * called on each migration source css_set. After migration is performed
2576 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2577 * @preloaded_csets.
2578 */
2579static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2580 struct list_head *preloaded_csets)
2581{
2582 LIST_HEAD(csets);
f817de98 2583 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2584
2585 lockdep_assert_held(&cgroup_mutex);
2586
f8f22e53 2587 /*
62716ea0 2588 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2589 * with tasks so that child cgroups don't compete against tasks.
2590 */
d51f39b0 2591 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
62716ea0 2592 dst_cgrp->subtree_control)
f8f22e53
TH
2593 return -EBUSY;
2594
1958d2d5 2595 /* look up the dst cset for each src cset and link it to src */
f817de98 2596 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2597 struct css_set *dst_cset;
2598
f817de98
TH
2599 dst_cset = find_css_set(src_cset,
2600 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2601 if (!dst_cset)
2602 goto err;
2603
2604 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2605
2606 /*
2607 * If src cset equals dst, it's noop. Drop the src.
2608 * cgroup_migrate() will skip the cset too. Note that we
2609 * can't handle src == dst as some nodes are used by both.
2610 */
2611 if (src_cset == dst_cset) {
2612 src_cset->mg_src_cgrp = NULL;
2613 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2614 put_css_set(src_cset);
2615 put_css_set(dst_cset);
f817de98
TH
2616 continue;
2617 }
2618
1958d2d5
TH
2619 src_cset->mg_dst_cset = dst_cset;
2620
2621 if (list_empty(&dst_cset->mg_preload_node))
2622 list_add(&dst_cset->mg_preload_node, &csets);
2623 else
a25eb52e 2624 put_css_set(dst_cset);
1958d2d5
TH
2625 }
2626
f817de98 2627 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2628 return 0;
2629err:
2630 cgroup_migrate_finish(&csets);
2631 return -ENOMEM;
2632}
2633
2634/**
2635 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2636 * @leader: the leader of the process or the task to migrate
2637 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2638 * @cgrp: the destination cgroup
1958d2d5
TH
2639 *
2640 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2641 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2642 * caller is also responsible for invoking cgroup_migrate_add_src() and
2643 * cgroup_migrate_prepare_dst() on the targets before invoking this
2644 * function and following up with cgroup_migrate_finish().
2645 *
2646 * As long as a controller's ->can_attach() doesn't fail, this function is
2647 * guaranteed to succeed. This means that, excluding ->can_attach()
2648 * failure, when migrating multiple targets, the success or failure can be
2649 * decided for all targets by invoking group_migrate_prepare_dst() before
2650 * actually starting migrating.
2651 */
9af2ec45
TH
2652static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2653 struct cgroup *cgrp)
74a1166d 2654{
adaae5dc
TH
2655 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2656 struct task_struct *task;
74a1166d 2657
fb5d2b4c
MSB
2658 /*
2659 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2660 * already PF_EXITING could be freed from underneath us unless we
2661 * take an rcu_read_lock.
2662 */
f0d9a5f1 2663 spin_lock_bh(&css_set_lock);
fb5d2b4c 2664 rcu_read_lock();
9db8de37 2665 task = leader;
74a1166d 2666 do {
adaae5dc 2667 cgroup_taskset_add(task, &tset);
081aa458
LZ
2668 if (!threadgroup)
2669 break;
9db8de37 2670 } while_each_thread(leader, task);
fb5d2b4c 2671 rcu_read_unlock();
f0d9a5f1 2672 spin_unlock_bh(&css_set_lock);
74a1166d 2673
adaae5dc 2674 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2675}
2676
1958d2d5
TH
2677/**
2678 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2679 * @dst_cgrp: the cgroup to attach to
2680 * @leader: the task or the leader of the threadgroup to be attached
2681 * @threadgroup: attach the whole threadgroup?
2682 *
1ed13287 2683 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2684 */
2685static int cgroup_attach_task(struct cgroup *dst_cgrp,
2686 struct task_struct *leader, bool threadgroup)
2687{
2688 LIST_HEAD(preloaded_csets);
2689 struct task_struct *task;
2690 int ret;
2691
2692 /* look up all src csets */
f0d9a5f1 2693 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2694 rcu_read_lock();
2695 task = leader;
2696 do {
2697 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2698 &preloaded_csets);
2699 if (!threadgroup)
2700 break;
2701 } while_each_thread(leader, task);
2702 rcu_read_unlock();
f0d9a5f1 2703 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2704
2705 /* prepare dst csets and commit */
2706 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2707 if (!ret)
9af2ec45 2708 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2709
2710 cgroup_migrate_finish(&preloaded_csets);
2711 return ret;
74a1166d
BB
2712}
2713
187fe840
TH
2714static int cgroup_procs_write_permission(struct task_struct *task,
2715 struct cgroup *dst_cgrp,
2716 struct kernfs_open_file *of)
dedf22e9
TH
2717{
2718 const struct cred *cred = current_cred();
2719 const struct cred *tcred = get_task_cred(task);
2720 int ret = 0;
2721
2722 /*
2723 * even if we're attaching all tasks in the thread group, we only
2724 * need to check permissions on one of them.
2725 */
2726 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2727 !uid_eq(cred->euid, tcred->uid) &&
2728 !uid_eq(cred->euid, tcred->suid))
2729 ret = -EACCES;
2730
187fe840
TH
2731 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2732 struct super_block *sb = of->file->f_path.dentry->d_sb;
2733 struct cgroup *cgrp;
2734 struct inode *inode;
2735
f0d9a5f1 2736 spin_lock_bh(&css_set_lock);
187fe840 2737 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2738 spin_unlock_bh(&css_set_lock);
187fe840
TH
2739
2740 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2741 cgrp = cgroup_parent(cgrp);
2742
2743 ret = -ENOMEM;
6f60eade 2744 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2745 if (inode) {
2746 ret = inode_permission(inode, MAY_WRITE);
2747 iput(inode);
2748 }
2749 }
2750
dedf22e9
TH
2751 put_cred(tcred);
2752 return ret;
2753}
2754
74a1166d
BB
2755/*
2756 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2757 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2758 * cgroup_mutex and threadgroup.
bbcb81d0 2759 */
acbef755
TH
2760static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2761 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2762{
bbcb81d0 2763 struct task_struct *tsk;
e76ecaee 2764 struct cgroup *cgrp;
acbef755 2765 pid_t pid;
bbcb81d0
PM
2766 int ret;
2767
acbef755
TH
2768 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2769 return -EINVAL;
2770
945ba199 2771 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2772 if (!cgrp)
74a1166d
BB
2773 return -ENODEV;
2774
3014dde7 2775 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2776 rcu_read_lock();
bbcb81d0 2777 if (pid) {
73507f33 2778 tsk = find_task_by_vpid(pid);
74a1166d 2779 if (!tsk) {
dd4b0a46 2780 ret = -ESRCH;
3014dde7 2781 goto out_unlock_rcu;
bbcb81d0 2782 }
dedf22e9 2783 } else {
b78949eb 2784 tsk = current;
dedf22e9 2785 }
cd3d0952
TH
2786
2787 if (threadgroup)
b78949eb 2788 tsk = tsk->group_leader;
c4c27fbd
MG
2789
2790 /*
14a40ffc 2791 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2792 * trapped in a cpuset, or RT worker may be born in a cgroup
2793 * with no rt_runtime allocated. Just say no.
2794 */
14a40ffc 2795 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2796 ret = -EINVAL;
3014dde7 2797 goto out_unlock_rcu;
c4c27fbd
MG
2798 }
2799
b78949eb
MSB
2800 get_task_struct(tsk);
2801 rcu_read_unlock();
2802
187fe840 2803 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2804 if (!ret)
2805 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2806
f9f9e7b7 2807 put_task_struct(tsk);
3014dde7
TH
2808 goto out_unlock_threadgroup;
2809
2810out_unlock_rcu:
2811 rcu_read_unlock();
2812out_unlock_threadgroup:
2813 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2814 cgroup_kn_unlock(of->kn);
e93ad19d 2815 cpuset_post_attach_flush();
acbef755 2816 return ret ?: nbytes;
bbcb81d0
PM
2817}
2818
7ae1bad9
TH
2819/**
2820 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2821 * @from: attach to all cgroups of a given task
2822 * @tsk: the task to be attached
2823 */
2824int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2825{
3dd06ffa 2826 struct cgroup_root *root;
7ae1bad9
TH
2827 int retval = 0;
2828
47cfcd09 2829 mutex_lock(&cgroup_mutex);
985ed670 2830 for_each_root(root) {
96d365e0
TH
2831 struct cgroup *from_cgrp;
2832
3dd06ffa 2833 if (root == &cgrp_dfl_root)
985ed670
TH
2834 continue;
2835
f0d9a5f1 2836 spin_lock_bh(&css_set_lock);
96d365e0 2837 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2838 spin_unlock_bh(&css_set_lock);
7ae1bad9 2839
6f4b7e63 2840 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2841 if (retval)
2842 break;
2843 }
47cfcd09 2844 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2845
2846 return retval;
2847}
2848EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2849
acbef755
TH
2850static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2851 char *buf, size_t nbytes, loff_t off)
74a1166d 2852{
acbef755 2853 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2854}
2855
acbef755
TH
2856static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2857 char *buf, size_t nbytes, loff_t off)
af351026 2858{
acbef755 2859 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2860}
2861
451af504
TH
2862static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2863 char *buf, size_t nbytes, loff_t off)
e788e066 2864{
e76ecaee 2865 struct cgroup *cgrp;
5f469907 2866
e76ecaee 2867 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2868
945ba199 2869 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2870 if (!cgrp)
e788e066 2871 return -ENODEV;
69e943b7 2872 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2873 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2874 sizeof(cgrp->root->release_agent_path));
69e943b7 2875 spin_unlock(&release_agent_path_lock);
e76ecaee 2876 cgroup_kn_unlock(of->kn);
451af504 2877 return nbytes;
e788e066
PM
2878}
2879
2da8ca82 2880static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2881{
2da8ca82 2882 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2883
46cfeb04 2884 spin_lock(&release_agent_path_lock);
e788e066 2885 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2886 spin_unlock(&release_agent_path_lock);
e788e066 2887 seq_putc(seq, '\n');
e788e066
PM
2888 return 0;
2889}
2890
2da8ca82 2891static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2892{
c1d5d42e 2893 seq_puts(seq, "0\n");
e788e066
PM
2894 return 0;
2895}
2896
6e5c8307 2897static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2898{
f8f22e53
TH
2899 struct cgroup_subsys *ss;
2900 bool printed = false;
2901 int ssid;
a742c59d 2902
b4e0eeaf 2903 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2904 if (printed)
2905 seq_putc(seq, ' ');
2906 seq_printf(seq, "%s", ss->name);
2907 printed = true;
b4e0eeaf 2908 } while_each_subsys_mask();
f8f22e53
TH
2909 if (printed)
2910 seq_putc(seq, '\n');
355e0c48
PM
2911}
2912
f8f22e53
TH
2913/* show controllers which are enabled from the parent */
2914static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2915{
f8f22e53
TH
2916 struct cgroup *cgrp = seq_css(seq)->cgroup;
2917
5531dc91 2918 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2919 return 0;
ddbcc7e8
PM
2920}
2921
f8f22e53
TH
2922/* show controllers which are enabled for a given cgroup's children */
2923static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2924{
f8f22e53
TH
2925 struct cgroup *cgrp = seq_css(seq)->cgroup;
2926
667c2491 2927 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2928 return 0;
2929}
2930
2931/**
2932 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2933 * @cgrp: root of the subtree to update csses for
2934 *
8699b776 2935 * @cgrp's subtree_ss_mask has changed and its subtree's (self excluded)
f8f22e53
TH
2936 * css associations need to be updated accordingly. This function looks up
2937 * all css_sets which are attached to the subtree, creates the matching
2938 * updated css_sets and migrates the tasks to the new ones.
2939 */
2940static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2941{
2942 LIST_HEAD(preloaded_csets);
10265075 2943 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2944 struct cgroup_subsys_state *css;
2945 struct css_set *src_cset;
2946 int ret;
2947
f8f22e53
TH
2948 lockdep_assert_held(&cgroup_mutex);
2949
3014dde7
TH
2950 percpu_down_write(&cgroup_threadgroup_rwsem);
2951
f8f22e53 2952 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2953 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2954 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2955 struct cgrp_cset_link *link;
2956
8699b776 2957 /* self is not affected by subtree_ss_mask change */
f8f22e53
TH
2958 if (css->cgroup == cgrp)
2959 continue;
2960
2961 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2962 cgroup_migrate_add_src(link->cset, cgrp,
2963 &preloaded_csets);
2964 }
f0d9a5f1 2965 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2966
2967 /* NULL dst indicates self on default hierarchy */
2968 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2969 if (ret)
2970 goto out_finish;
2971
f0d9a5f1 2972 spin_lock_bh(&css_set_lock);
f8f22e53 2973 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2974 struct task_struct *task, *ntask;
f8f22e53
TH
2975
2976 /* src_csets precede dst_csets, break on the first dst_cset */
2977 if (!src_cset->mg_src_cgrp)
2978 break;
2979
10265075
TH
2980 /* all tasks in src_csets need to be migrated */
2981 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2982 cgroup_taskset_add(task, &tset);
f8f22e53 2983 }
f0d9a5f1 2984 spin_unlock_bh(&css_set_lock);
f8f22e53 2985
10265075 2986 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2987out_finish:
2988 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2989 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2990 return ret;
2991}
2992
1b9b96a1 2993/**
945ba199 2994 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 2995 * @cgrp: root of the target subtree
1b9b96a1
TH
2996 *
2997 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
2998 * controller while the previous css is still around. This function grabs
2999 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3000 */
945ba199
TH
3001static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3002 __acquires(&cgroup_mutex)
1b9b96a1
TH
3003{
3004 struct cgroup *dsct;
ce3f1d9d 3005 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3006 struct cgroup_subsys *ss;
3007 int ssid;
3008
945ba199
TH
3009restart:
3010 mutex_lock(&cgroup_mutex);
1b9b96a1 3011
ce3f1d9d 3012 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3013 for_each_subsys(ss, ssid) {
3014 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3015 DEFINE_WAIT(wait);
3016
ce3f1d9d 3017 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3018 continue;
3019
3020 cgroup_get(dsct);
3021 prepare_to_wait(&dsct->offline_waitq, &wait,
3022 TASK_UNINTERRUPTIBLE);
3023
3024 mutex_unlock(&cgroup_mutex);
3025 schedule();
3026 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3027
3028 cgroup_put(dsct);
945ba199 3029 goto restart;
1b9b96a1
TH
3030 }
3031 }
1b9b96a1
TH
3032}
3033
15a27c36
TH
3034/**
3035 * cgroup_save_control - save control masks of a subtree
3036 * @cgrp: root of the target subtree
3037 *
3038 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3039 * prefixed fields for @cgrp's subtree including @cgrp itself.
3040 */
3041static void cgroup_save_control(struct cgroup *cgrp)
3042{
3043 struct cgroup *dsct;
3044 struct cgroup_subsys_state *d_css;
3045
3046 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3047 dsct->old_subtree_control = dsct->subtree_control;
3048 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3049 }
3050}
3051
3052/**
3053 * cgroup_propagate_control - refresh control masks of a subtree
3054 * @cgrp: root of the target subtree
3055 *
3056 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3057 * ->subtree_control and propagate controller availability through the
3058 * subtree so that descendants don't have unavailable controllers enabled.
3059 */
3060static void cgroup_propagate_control(struct cgroup *cgrp)
3061{
3062 struct cgroup *dsct;
3063 struct cgroup_subsys_state *d_css;
3064
3065 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3066 dsct->subtree_control &= cgroup_control(dsct);
3067 dsct->subtree_ss_mask = cgroup_calc_subtree_ss_mask(dsct,
3068 dsct->subtree_control);
3069 }
3070}
3071
3072/**
3073 * cgroup_restore_control - restore control masks of a subtree
3074 * @cgrp: root of the target subtree
3075 *
3076 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3077 * prefixed fields for @cgrp's subtree including @cgrp itself.
3078 */
3079static void cgroup_restore_control(struct cgroup *cgrp)
3080{
3081 struct cgroup *dsct;
3082 struct cgroup_subsys_state *d_css;
3083
3084 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3085 dsct->subtree_control = dsct->old_subtree_control;
3086 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3087 }
3088}
3089
bdb53bd7
TH
3090/**
3091 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3092 * @cgrp: root of the target subtree
bdb53bd7 3093 *
ce3f1d9d 3094 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3095 * visible. A css is created invisible if it's being implicitly enabled
3096 * through dependency. An invisible css is made visible when the userland
3097 * explicitly enables it.
3098 *
3099 * Returns 0 on success, -errno on failure. On failure, csses which have
3100 * been processed already aren't cleaned up. The caller is responsible for
3101 * cleaning up with cgroup_apply_control_disble().
3102 */
3103static int cgroup_apply_control_enable(struct cgroup *cgrp)
3104{
3105 struct cgroup *dsct;
ce3f1d9d 3106 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3107 struct cgroup_subsys *ss;
3108 int ssid, ret;
3109
ce3f1d9d 3110 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3111 for_each_subsys(ss, ssid) {
3112 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3113
945ba199
TH
3114 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3115
bdb53bd7
TH
3116 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3117 continue;
3118
3119 if (!css) {
3120 css = css_create(dsct, ss);
3121 if (IS_ERR(css))
3122 return PTR_ERR(css);
3123 }
3124
3125 if (cgroup_control(dsct) & (1 << ss->id)) {
3126 ret = css_populate_dir(css, NULL);
3127 if (ret)
3128 return ret;
3129 }
3130 }
3131 }
3132
3133 return 0;
3134}
3135
12b3bb6a
TH
3136/**
3137 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3138 * @cgrp: root of the target subtree
12b3bb6a 3139 *
ce3f1d9d 3140 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3141 * cgroup_ss_mask() and cgroup_visible_mask().
3142 *
3143 * A css is hidden when the userland requests it to be disabled while other
3144 * subsystems are still depending on it. The css must not actively control
3145 * resources and be in the vanilla state if it's made visible again later.
3146 * Controllers which may be depended upon should provide ->css_reset() for
3147 * this purpose.
3148 */
3149static void cgroup_apply_control_disable(struct cgroup *cgrp)
3150{
3151 struct cgroup *dsct;
ce3f1d9d 3152 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3153 struct cgroup_subsys *ss;
3154 int ssid;
3155
ce3f1d9d 3156 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3157 for_each_subsys(ss, ssid) {
3158 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3159
945ba199
TH
3160 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3161
12b3bb6a
TH
3162 if (!css)
3163 continue;
3164
3165 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3166 kill_css(css);
3167 } else if (!(cgroup_control(dsct) & (1 << ss->id))) {
3168 css_clear_dir(css, NULL);
3169 if (ss->css_reset)
3170 ss->css_reset(css);
3171 }
3172 }
3173 }
3174}
3175
f7b2814b
TH
3176/**
3177 * cgroup_apply_control - apply control mask updates to the subtree
3178 * @cgrp: root of the target subtree
3179 *
3180 * subsystems can be enabled and disabled in a subtree using the following
3181 * steps.
3182 *
3183 * 1. Call cgroup_save_control() to stash the current state.
3184 * 2. Update ->subtree_control masks in the subtree as desired.
3185 * 3. Call cgroup_apply_control() to apply the changes.
3186 * 4. Optionally perform other related operations.
3187 * 5. Call cgroup_finalize_control() to finish up.
3188 *
3189 * This function implements step 3 and propagates the mask changes
3190 * throughout @cgrp's subtree, updates csses accordingly and perform
3191 * process migrations.
3192 */
3193static int cgroup_apply_control(struct cgroup *cgrp)
3194{
3195 int ret;
3196
3197 cgroup_propagate_control(cgrp);
3198
3199 ret = cgroup_apply_control_enable(cgrp);
3200 if (ret)
3201 return ret;
3202
3203 /*
3204 * At this point, cgroup_e_css() results reflect the new csses
3205 * making the following cgroup_update_dfl_csses() properly update
3206 * css associations of all tasks in the subtree.
3207 */
3208 ret = cgroup_update_dfl_csses(cgrp);
3209 if (ret)
3210 return ret;
3211
3212 return 0;
3213}
3214
3215/**
3216 * cgroup_finalize_control - finalize control mask update
3217 * @cgrp: root of the target subtree
3218 * @ret: the result of the update
3219 *
3220 * Finalize control mask update. See cgroup_apply_control() for more info.
3221 */
3222static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3223{
3224 if (ret) {
3225 cgroup_restore_control(cgrp);
3226 cgroup_propagate_control(cgrp);
3227 }
3228
3229 cgroup_apply_control_disable(cgrp);
3230}
3231
f8f22e53 3232/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3233static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3234 char *buf, size_t nbytes,
3235 loff_t off)
f8f22e53 3236{
6e5c8307 3237 u16 enable = 0, disable = 0;
a9746d8d 3238 struct cgroup *cgrp, *child;
f8f22e53 3239 struct cgroup_subsys *ss;
451af504 3240 char *tok;
f8f22e53
TH
3241 int ssid, ret;
3242
3243 /*
d37167ab
TH
3244 * Parse input - space separated list of subsystem names prefixed
3245 * with either + or -.
f8f22e53 3246 */
451af504
TH
3247 buf = strstrip(buf);
3248 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3249 if (tok[0] == '\0')
3250 continue;
a7165264 3251 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3252 if (!cgroup_ssid_enabled(ssid) ||
3253 strcmp(tok + 1, ss->name))
f8f22e53
TH
3254 continue;
3255
3256 if (*tok == '+') {
7d331fa9
TH
3257 enable |= 1 << ssid;
3258 disable &= ~(1 << ssid);
f8f22e53 3259 } else if (*tok == '-') {
7d331fa9
TH
3260 disable |= 1 << ssid;
3261 enable &= ~(1 << ssid);
f8f22e53
TH
3262 } else {
3263 return -EINVAL;
3264 }
3265 break;
b4e0eeaf 3266 } while_each_subsys_mask();
f8f22e53
TH
3267 if (ssid == CGROUP_SUBSYS_COUNT)
3268 return -EINVAL;
3269 }
3270
945ba199 3271 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3272 if (!cgrp)
3273 return -ENODEV;
f8f22e53
TH
3274
3275 for_each_subsys(ss, ssid) {
3276 if (enable & (1 << ssid)) {
667c2491 3277 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3278 enable &= ~(1 << ssid);
3279 continue;
3280 }
3281
5531dc91 3282 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3283 ret = -ENOENT;
3284 goto out_unlock;
3285 }
f8f22e53 3286 } else if (disable & (1 << ssid)) {
667c2491 3287 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3288 disable &= ~(1 << ssid);
3289 continue;
3290 }
3291
3292 /* a child has it enabled? */
3293 cgroup_for_each_live_child(child, cgrp) {
667c2491 3294 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3295 ret = -EBUSY;
ddab2b6e 3296 goto out_unlock;
f8f22e53
TH
3297 }
3298 }
3299 }
3300 }
3301
3302 if (!enable && !disable) {
3303 ret = 0;
ddab2b6e 3304 goto out_unlock;
f8f22e53
TH
3305 }
3306
3307 /*
667c2491 3308 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3309 * with tasks so that child cgroups don't compete against tasks.
3310 */
d51f39b0 3311 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3312 ret = -EBUSY;
3313 goto out_unlock;
3314 }
3315
15a27c36
TH
3316 /* save and update control masks and prepare csses */
3317 cgroup_save_control(cgrp);
f63070d3 3318
15a27c36
TH
3319 cgrp->subtree_control |= enable;
3320 cgrp->subtree_control &= ~disable;
c29adf24 3321
f7b2814b 3322 ret = cgroup_apply_control(cgrp);
f8f22e53 3323
f7b2814b 3324 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3325
3326 kernfs_activate(cgrp->kn);
3327 ret = 0;
3328out_unlock:
a9746d8d 3329 cgroup_kn_unlock(of->kn);
451af504 3330 return ret ?: nbytes;
f8f22e53
TH
3331}
3332
4a07c222 3333static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3334{
4a07c222 3335 seq_printf(seq, "populated %d\n",
27bd4dbb 3336 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3337 return 0;
3338}
3339
2bd59d48
TH
3340static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3341 size_t nbytes, loff_t off)
355e0c48 3342{
2bd59d48
TH
3343 struct cgroup *cgrp = of->kn->parent->priv;
3344 struct cftype *cft = of->kn->priv;
3345 struct cgroup_subsys_state *css;
a742c59d 3346 int ret;
355e0c48 3347
b4168640
TH
3348 if (cft->write)
3349 return cft->write(of, buf, nbytes, off);
3350
2bd59d48
TH
3351 /*
3352 * kernfs guarantees that a file isn't deleted with operations in
3353 * flight, which means that the matching css is and stays alive and
3354 * doesn't need to be pinned. The RCU locking is not necessary
3355 * either. It's just for the convenience of using cgroup_css().
3356 */
3357 rcu_read_lock();
3358 css = cgroup_css(cgrp, cft->ss);
3359 rcu_read_unlock();
a742c59d 3360
451af504 3361 if (cft->write_u64) {
a742c59d
TH
3362 unsigned long long v;
3363 ret = kstrtoull(buf, 0, &v);
3364 if (!ret)
3365 ret = cft->write_u64(css, cft, v);
3366 } else if (cft->write_s64) {
3367 long long v;
3368 ret = kstrtoll(buf, 0, &v);
3369 if (!ret)
3370 ret = cft->write_s64(css, cft, v);
e73d2c61 3371 } else {
a742c59d 3372 ret = -EINVAL;
e73d2c61 3373 }
2bd59d48 3374
a742c59d 3375 return ret ?: nbytes;
355e0c48
PM
3376}
3377
6612f05b 3378static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3379{
2bd59d48 3380 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3381}
3382
6612f05b 3383static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3384{
2bd59d48 3385 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3386}
3387
6612f05b 3388static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3389{
2bd59d48 3390 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3391}
3392
91796569 3393static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3394{
7da11279
TH
3395 struct cftype *cft = seq_cft(m);
3396 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3397
2da8ca82
TH
3398 if (cft->seq_show)
3399 return cft->seq_show(m, arg);
e73d2c61 3400
f4c753b7 3401 if (cft->read_u64)
896f5199
TH
3402 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3403 else if (cft->read_s64)
3404 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3405 else
3406 return -EINVAL;
3407 return 0;
91796569
PM
3408}
3409
2bd59d48
TH
3410static struct kernfs_ops cgroup_kf_single_ops = {
3411 .atomic_write_len = PAGE_SIZE,
3412 .write = cgroup_file_write,
3413 .seq_show = cgroup_seqfile_show,
91796569
PM
3414};
3415
2bd59d48
TH
3416static struct kernfs_ops cgroup_kf_ops = {
3417 .atomic_write_len = PAGE_SIZE,
3418 .write = cgroup_file_write,
3419 .seq_start = cgroup_seqfile_start,
3420 .seq_next = cgroup_seqfile_next,
3421 .seq_stop = cgroup_seqfile_stop,
3422 .seq_show = cgroup_seqfile_show,
3423};
ddbcc7e8
PM
3424
3425/*
3426 * cgroup_rename - Only allow simple rename of directories in place.
3427 */
2bd59d48
TH
3428static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3429 const char *new_name_str)
ddbcc7e8 3430{
2bd59d48 3431 struct cgroup *cgrp = kn->priv;
65dff759 3432 int ret;
65dff759 3433
2bd59d48 3434 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3435 return -ENOTDIR;
2bd59d48 3436 if (kn->parent != new_parent)
ddbcc7e8 3437 return -EIO;
65dff759 3438
6db8e85c
TH
3439 /*
3440 * This isn't a proper migration and its usefulness is very
aa6ec29b 3441 * limited. Disallow on the default hierarchy.
6db8e85c 3442 */
aa6ec29b 3443 if (cgroup_on_dfl(cgrp))
6db8e85c 3444 return -EPERM;
099fca32 3445
e1b2dc17 3446 /*
8353da1f 3447 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3448 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3449 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3450 */
3451 kernfs_break_active_protection(new_parent);
3452 kernfs_break_active_protection(kn);
099fca32 3453
2bd59d48 3454 mutex_lock(&cgroup_mutex);
099fca32 3455
2bd59d48 3456 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3457
2bd59d48 3458 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3459
3460 kernfs_unbreak_active_protection(kn);
3461 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3462 return ret;
099fca32
LZ
3463}
3464
49957f8e
TH
3465/* set uid and gid of cgroup dirs and files to that of the creator */
3466static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3467{
3468 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3469 .ia_uid = current_fsuid(),
3470 .ia_gid = current_fsgid(), };
3471
3472 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3473 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3474 return 0;
3475
3476 return kernfs_setattr(kn, &iattr);
3477}
3478
4df8dc90
TH
3479static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3480 struct cftype *cft)
ddbcc7e8 3481{
8d7e6fb0 3482 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3483 struct kernfs_node *kn;
3484 struct lock_class_key *key = NULL;
49957f8e 3485 int ret;
05ef1d7c 3486
2bd59d48
TH
3487#ifdef CONFIG_DEBUG_LOCK_ALLOC
3488 key = &cft->lockdep_key;
3489#endif
3490 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3491 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3492 NULL, key);
49957f8e
TH
3493 if (IS_ERR(kn))
3494 return PTR_ERR(kn);
3495
3496 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3497 if (ret) {
49957f8e 3498 kernfs_remove(kn);
f8f22e53
TH
3499 return ret;
3500 }
3501
6f60eade
TH
3502 if (cft->file_offset) {
3503 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3504
34c06254 3505 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3506 cfile->kn = kn;
34c06254 3507 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3508 }
3509
f8f22e53 3510 return 0;
ddbcc7e8
PM
3511}
3512
b1f28d31
TH
3513/**
3514 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3515 * @css: the target css
3516 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3517 * @cfts: array of cftypes to be added
3518 * @is_add: whether to add or remove
3519 *
3520 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3521 * For removals, this function never fails.
b1f28d31 3522 */
4df8dc90
TH
3523static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3524 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3525 bool is_add)
ddbcc7e8 3526{
6732ed85 3527 struct cftype *cft, *cft_end = NULL;
b598dde3 3528 int ret = 0;
b1f28d31 3529
01f6474c 3530 lockdep_assert_held(&cgroup_mutex);
db0416b6 3531
6732ed85
TH
3532restart:
3533 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3534 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3535 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3536 continue;
05ebb6e6 3537 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3538 continue;
d51f39b0 3539 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3540 continue;
d51f39b0 3541 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3542 continue;
3543
2739d3cc 3544 if (is_add) {
4df8dc90 3545 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3546 if (ret) {
ed3d261b
JP
3547 pr_warn("%s: failed to add %s, err=%d\n",
3548 __func__, cft->name, ret);
6732ed85
TH
3549 cft_end = cft;
3550 is_add = false;
3551 goto restart;
b1f28d31 3552 }
2739d3cc
LZ
3553 } else {
3554 cgroup_rm_file(cgrp, cft);
db0416b6 3555 }
ddbcc7e8 3556 }
b598dde3 3557 return ret;
ddbcc7e8
PM
3558}
3559
21a2d343 3560static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3561{
3562 LIST_HEAD(pending);
2bb566cb 3563 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3564 struct cgroup *root = &ss->root->cgrp;
492eb21b 3565 struct cgroup_subsys_state *css;
9ccece80 3566 int ret = 0;
8e3f6541 3567
01f6474c 3568 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3569
e8c82d20 3570 /* add/rm files for all cgroups created before */
ca8bdcaf 3571 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3572 struct cgroup *cgrp = css->cgroup;
3573
88cb04b9 3574 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3575 continue;
3576
4df8dc90 3577 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3578 if (ret)
3579 break;
8e3f6541 3580 }
21a2d343
TH
3581
3582 if (is_add && !ret)
3583 kernfs_activate(root->kn);
9ccece80 3584 return ret;
8e3f6541
TH
3585}
3586
2da440a2 3587static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3588{
2bb566cb 3589 struct cftype *cft;
8e3f6541 3590
2bd59d48
TH
3591 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3592 /* free copy for custom atomic_write_len, see init_cftypes() */
3593 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3594 kfree(cft->kf_ops);
3595 cft->kf_ops = NULL;
2da440a2 3596 cft->ss = NULL;
a8ddc821
TH
3597
3598 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3599 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3600 }
2da440a2
TH
3601}
3602
2bd59d48 3603static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3604{
3605 struct cftype *cft;
3606
2bd59d48
TH
3607 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3608 struct kernfs_ops *kf_ops;
3609
0adb0704
TH
3610 WARN_ON(cft->ss || cft->kf_ops);
3611
2bd59d48
TH
3612 if (cft->seq_start)
3613 kf_ops = &cgroup_kf_ops;
3614 else
3615 kf_ops = &cgroup_kf_single_ops;
3616
3617 /*
3618 * Ugh... if @cft wants a custom max_write_len, we need to
3619 * make a copy of kf_ops to set its atomic_write_len.
3620 */
3621 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3622 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3623 if (!kf_ops) {
3624 cgroup_exit_cftypes(cfts);
3625 return -ENOMEM;
3626 }
3627 kf_ops->atomic_write_len = cft->max_write_len;
3628 }
8e3f6541 3629
2bd59d48 3630 cft->kf_ops = kf_ops;
2bb566cb 3631 cft->ss = ss;
2bd59d48 3632 }
2bb566cb 3633
2bd59d48 3634 return 0;
2da440a2
TH
3635}
3636
21a2d343
TH
3637static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3638{
01f6474c 3639 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3640
3641 if (!cfts || !cfts[0].ss)
3642 return -ENOENT;
3643
3644 list_del(&cfts->node);
3645 cgroup_apply_cftypes(cfts, false);
3646 cgroup_exit_cftypes(cfts);
3647 return 0;
8e3f6541 3648}
8e3f6541 3649
79578621
TH
3650/**
3651 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3652 * @cfts: zero-length name terminated array of cftypes
3653 *
2bb566cb
TH
3654 * Unregister @cfts. Files described by @cfts are removed from all
3655 * existing cgroups and all future cgroups won't have them either. This
3656 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3657 *
3658 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3659 * registered.
79578621 3660 */
2bb566cb 3661int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3662{
21a2d343 3663 int ret;
79578621 3664
01f6474c 3665 mutex_lock(&cgroup_mutex);
21a2d343 3666 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3667 mutex_unlock(&cgroup_mutex);
21a2d343 3668 return ret;
80b13586
TH
3669}
3670
8e3f6541
TH
3671/**
3672 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3673 * @ss: target cgroup subsystem
3674 * @cfts: zero-length name terminated array of cftypes
3675 *
3676 * Register @cfts to @ss. Files described by @cfts are created for all
3677 * existing cgroups to which @ss is attached and all future cgroups will
3678 * have them too. This function can be called anytime whether @ss is
3679 * attached or not.
3680 *
3681 * Returns 0 on successful registration, -errno on failure. Note that this
3682 * function currently returns 0 as long as @cfts registration is successful
3683 * even if some file creation attempts on existing cgroups fail.
3684 */
2cf669a5 3685static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3686{
9ccece80 3687 int ret;
8e3f6541 3688
fc5ed1e9 3689 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3690 return 0;
3691
dc5736ed
LZ
3692 if (!cfts || cfts[0].name[0] == '\0')
3693 return 0;
2bb566cb 3694
2bd59d48
TH
3695 ret = cgroup_init_cftypes(ss, cfts);
3696 if (ret)
3697 return ret;
79578621 3698
01f6474c 3699 mutex_lock(&cgroup_mutex);
21a2d343 3700
0adb0704 3701 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3702 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3703 if (ret)
21a2d343 3704 cgroup_rm_cftypes_locked(cfts);
79578621 3705
01f6474c 3706 mutex_unlock(&cgroup_mutex);
9ccece80 3707 return ret;
79578621
TH
3708}
3709
a8ddc821
TH
3710/**
3711 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3712 * @ss: target cgroup subsystem
3713 * @cfts: zero-length name terminated array of cftypes
3714 *
3715 * Similar to cgroup_add_cftypes() but the added files are only used for
3716 * the default hierarchy.
3717 */
3718int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3719{
3720 struct cftype *cft;
3721
3722 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3723 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3724 return cgroup_add_cftypes(ss, cfts);
3725}
3726
3727/**
3728 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3729 * @ss: target cgroup subsystem
3730 * @cfts: zero-length name terminated array of cftypes
3731 *
3732 * Similar to cgroup_add_cftypes() but the added files are only used for
3733 * the legacy hierarchies.
3734 */
2cf669a5
TH
3735int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3736{
a8ddc821
TH
3737 struct cftype *cft;
3738
e4b7037c
TH
3739 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3740 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3741 return cgroup_add_cftypes(ss, cfts);
3742}
3743
34c06254
TH
3744/**
3745 * cgroup_file_notify - generate a file modified event for a cgroup_file
3746 * @cfile: target cgroup_file
3747 *
3748 * @cfile must have been obtained by setting cftype->file_offset.
3749 */
3750void cgroup_file_notify(struct cgroup_file *cfile)
3751{
3752 unsigned long flags;
3753
3754 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3755 if (cfile->kn)
3756 kernfs_notify(cfile->kn);
3757 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3758}
3759
a043e3b2
LZ
3760/**
3761 * cgroup_task_count - count the number of tasks in a cgroup.
3762 * @cgrp: the cgroup in question
3763 *
3764 * Return the number of tasks in the cgroup.
3765 */
07bc356e 3766static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3767{
3768 int count = 0;
69d0206c 3769 struct cgrp_cset_link *link;
817929ec 3770
f0d9a5f1 3771 spin_lock_bh(&css_set_lock);
69d0206c
TH
3772 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3773 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3774 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3775 return count;
3776}
3777
53fa5261 3778/**
492eb21b 3779 * css_next_child - find the next child of a given css
c2931b70
TH
3780 * @pos: the current position (%NULL to initiate traversal)
3781 * @parent: css whose children to walk
53fa5261 3782 *
c2931b70 3783 * This function returns the next child of @parent and should be called
87fb54f1 3784 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3785 * that @parent and @pos are accessible. The next sibling is guaranteed to
3786 * be returned regardless of their states.
3787 *
3788 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3789 * css which finished ->css_online() is guaranteed to be visible in the
3790 * future iterations and will stay visible until the last reference is put.
3791 * A css which hasn't finished ->css_online() or already finished
3792 * ->css_offline() may show up during traversal. It's each subsystem's
3793 * responsibility to synchronize against on/offlining.
53fa5261 3794 */
c2931b70
TH
3795struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3796 struct cgroup_subsys_state *parent)
53fa5261 3797{
c2931b70 3798 struct cgroup_subsys_state *next;
53fa5261 3799
8353da1f 3800 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3801
3802 /*
de3f0341
TH
3803 * @pos could already have been unlinked from the sibling list.
3804 * Once a cgroup is removed, its ->sibling.next is no longer
3805 * updated when its next sibling changes. CSS_RELEASED is set when
3806 * @pos is taken off list, at which time its next pointer is valid,
3807 * and, as releases are serialized, the one pointed to by the next
3808 * pointer is guaranteed to not have started release yet. This
3809 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3810 * critical section, the one pointed to by its next pointer is
3811 * guaranteed to not have finished its RCU grace period even if we
3812 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3813 *
de3f0341
TH
3814 * If @pos has CSS_RELEASED set, its next pointer can't be
3815 * dereferenced; however, as each css is given a monotonically
3816 * increasing unique serial number and always appended to the
3817 * sibling list, the next one can be found by walking the parent's
3818 * children until the first css with higher serial number than
3819 * @pos's. While this path can be slower, it happens iff iteration
3820 * races against release and the race window is very small.
53fa5261 3821 */
3b287a50 3822 if (!pos) {
c2931b70
TH
3823 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3824 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3825 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3826 } else {
c2931b70 3827 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3828 if (next->serial_nr > pos->serial_nr)
3829 break;
53fa5261
TH
3830 }
3831
3b281afb
TH
3832 /*
3833 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3834 * the next sibling.
3b281afb 3835 */
c2931b70
TH
3836 if (&next->sibling != &parent->children)
3837 return next;
3b281afb 3838 return NULL;
53fa5261 3839}
53fa5261 3840
574bd9f7 3841/**
492eb21b 3842 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3843 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3844 * @root: css whose descendants to walk
574bd9f7 3845 *
492eb21b 3846 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3847 * to visit for pre-order traversal of @root's descendants. @root is
3848 * included in the iteration and the first node to be visited.
75501a6d 3849 *
87fb54f1
TH
3850 * While this function requires cgroup_mutex or RCU read locking, it
3851 * doesn't require the whole traversal to be contained in a single critical
3852 * section. This function will return the correct next descendant as long
3853 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3854 *
3855 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3856 * css which finished ->css_online() is guaranteed to be visible in the
3857 * future iterations and will stay visible until the last reference is put.
3858 * A css which hasn't finished ->css_online() or already finished
3859 * ->css_offline() may show up during traversal. It's each subsystem's
3860 * responsibility to synchronize against on/offlining.
574bd9f7 3861 */
492eb21b
TH
3862struct cgroup_subsys_state *
3863css_next_descendant_pre(struct cgroup_subsys_state *pos,
3864 struct cgroup_subsys_state *root)
574bd9f7 3865{
492eb21b 3866 struct cgroup_subsys_state *next;
574bd9f7 3867
8353da1f 3868 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3869
bd8815a6 3870 /* if first iteration, visit @root */
7805d000 3871 if (!pos)
bd8815a6 3872 return root;
574bd9f7
TH
3873
3874 /* visit the first child if exists */
492eb21b 3875 next = css_next_child(NULL, pos);
574bd9f7
TH
3876 if (next)
3877 return next;
3878
3879 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3880 while (pos != root) {
5c9d535b 3881 next = css_next_child(pos, pos->parent);
75501a6d 3882 if (next)
574bd9f7 3883 return next;
5c9d535b 3884 pos = pos->parent;
7805d000 3885 }
574bd9f7
TH
3886
3887 return NULL;
3888}
574bd9f7 3889
12a9d2fe 3890/**
492eb21b
TH
3891 * css_rightmost_descendant - return the rightmost descendant of a css
3892 * @pos: css of interest
12a9d2fe 3893 *
492eb21b
TH
3894 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3895 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3896 * subtree of @pos.
75501a6d 3897 *
87fb54f1
TH
3898 * While this function requires cgroup_mutex or RCU read locking, it
3899 * doesn't require the whole traversal to be contained in a single critical
3900 * section. This function will return the correct rightmost descendant as
3901 * long as @pos is accessible.
12a9d2fe 3902 */
492eb21b
TH
3903struct cgroup_subsys_state *
3904css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3905{
492eb21b 3906 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3907
8353da1f 3908 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3909
3910 do {
3911 last = pos;
3912 /* ->prev isn't RCU safe, walk ->next till the end */
3913 pos = NULL;
492eb21b 3914 css_for_each_child(tmp, last)
12a9d2fe
TH
3915 pos = tmp;
3916 } while (pos);
3917
3918 return last;
3919}
12a9d2fe 3920
492eb21b
TH
3921static struct cgroup_subsys_state *
3922css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3923{
492eb21b 3924 struct cgroup_subsys_state *last;
574bd9f7
TH
3925
3926 do {
3927 last = pos;
492eb21b 3928 pos = css_next_child(NULL, pos);
574bd9f7
TH
3929 } while (pos);
3930
3931 return last;
3932}
3933
3934/**
492eb21b 3935 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3936 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3937 * @root: css whose descendants to walk
574bd9f7 3938 *
492eb21b 3939 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3940 * to visit for post-order traversal of @root's descendants. @root is
3941 * included in the iteration and the last node to be visited.
75501a6d 3942 *
87fb54f1
TH
3943 * While this function requires cgroup_mutex or RCU read locking, it
3944 * doesn't require the whole traversal to be contained in a single critical
3945 * section. This function will return the correct next descendant as long
3946 * as both @pos and @cgroup are accessible and @pos is a descendant of
3947 * @cgroup.
c2931b70
TH
3948 *
3949 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3950 * css which finished ->css_online() is guaranteed to be visible in the
3951 * future iterations and will stay visible until the last reference is put.
3952 * A css which hasn't finished ->css_online() or already finished
3953 * ->css_offline() may show up during traversal. It's each subsystem's
3954 * responsibility to synchronize against on/offlining.
574bd9f7 3955 */
492eb21b
TH
3956struct cgroup_subsys_state *
3957css_next_descendant_post(struct cgroup_subsys_state *pos,
3958 struct cgroup_subsys_state *root)
574bd9f7 3959{
492eb21b 3960 struct cgroup_subsys_state *next;
574bd9f7 3961
8353da1f 3962 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3963
58b79a91
TH
3964 /* if first iteration, visit leftmost descendant which may be @root */
3965 if (!pos)
3966 return css_leftmost_descendant(root);
574bd9f7 3967
bd8815a6
TH
3968 /* if we visited @root, we're done */
3969 if (pos == root)
3970 return NULL;
3971
574bd9f7 3972 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3973 next = css_next_child(pos, pos->parent);
75501a6d 3974 if (next)
492eb21b 3975 return css_leftmost_descendant(next);
574bd9f7
TH
3976
3977 /* no sibling left, visit parent */
5c9d535b 3978 return pos->parent;
574bd9f7 3979}
574bd9f7 3980
f3d46500
TH
3981/**
3982 * css_has_online_children - does a css have online children
3983 * @css: the target css
3984 *
3985 * Returns %true if @css has any online children; otherwise, %false. This
3986 * function can be called from any context but the caller is responsible
3987 * for synchronizing against on/offlining as necessary.
3988 */
3989bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3990{
f3d46500
TH
3991 struct cgroup_subsys_state *child;
3992 bool ret = false;
cbc125ef
TH
3993
3994 rcu_read_lock();
f3d46500 3995 css_for_each_child(child, css) {
99bae5f9 3996 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3997 ret = true;
3998 break;
cbc125ef
TH
3999 }
4000 }
4001 rcu_read_unlock();
f3d46500 4002 return ret;
574bd9f7 4003}
574bd9f7 4004
0942eeee 4005/**
ecb9d535 4006 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4007 * @it: the iterator to advance
4008 *
4009 * Advance @it to the next css_set to walk.
d515876e 4010 */
ecb9d535 4011static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4012{
0f0a2b4f 4013 struct list_head *l = it->cset_pos;
d515876e
TH
4014 struct cgrp_cset_link *link;
4015 struct css_set *cset;
4016
f0d9a5f1 4017 lockdep_assert_held(&css_set_lock);
ed27b9f7 4018
d515876e
TH
4019 /* Advance to the next non-empty css_set */
4020 do {
4021 l = l->next;
0f0a2b4f
TH
4022 if (l == it->cset_head) {
4023 it->cset_pos = NULL;
ecb9d535 4024 it->task_pos = NULL;
d515876e
TH
4025 return;
4026 }
3ebb2b6e
TH
4027
4028 if (it->ss) {
4029 cset = container_of(l, struct css_set,
4030 e_cset_node[it->ss->id]);
4031 } else {
4032 link = list_entry(l, struct cgrp_cset_link, cset_link);
4033 cset = link->cset;
4034 }
0de0942d 4035 } while (!css_set_populated(cset));
c7561128 4036
0f0a2b4f 4037 it->cset_pos = l;
c7561128
TH
4038
4039 if (!list_empty(&cset->tasks))
0f0a2b4f 4040 it->task_pos = cset->tasks.next;
c7561128 4041 else
0f0a2b4f
TH
4042 it->task_pos = cset->mg_tasks.next;
4043
4044 it->tasks_head = &cset->tasks;
4045 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4046
4047 /*
4048 * We don't keep css_sets locked across iteration steps and thus
4049 * need to take steps to ensure that iteration can be resumed after
4050 * the lock is re-acquired. Iteration is performed at two levels -
4051 * css_sets and tasks in them.
4052 *
4053 * Once created, a css_set never leaves its cgroup lists, so a
4054 * pinned css_set is guaranteed to stay put and we can resume
4055 * iteration afterwards.
4056 *
4057 * Tasks may leave @cset across iteration steps. This is resolved
4058 * by registering each iterator with the css_set currently being
4059 * walked and making css_set_move_task() advance iterators whose
4060 * next task is leaving.
4061 */
4062 if (it->cur_cset) {
4063 list_del(&it->iters_node);
4064 put_css_set_locked(it->cur_cset);
4065 }
4066 get_css_set(cset);
4067 it->cur_cset = cset;
4068 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4069}
4070
ecb9d535
TH
4071static void css_task_iter_advance(struct css_task_iter *it)
4072{
4073 struct list_head *l = it->task_pos;
4074
f0d9a5f1 4075 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4076 WARN_ON_ONCE(!l);
4077
4078 /*
4079 * Advance iterator to find next entry. cset->tasks is consumed
4080 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4081 * next cset.
4082 */
4083 l = l->next;
4084
4085 if (l == it->tasks_head)
4086 l = it->mg_tasks_head->next;
4087
4088 if (l == it->mg_tasks_head)
4089 css_task_iter_advance_css_set(it);
4090 else
4091 it->task_pos = l;
4092}
4093
0942eeee 4094/**
72ec7029
TH
4095 * css_task_iter_start - initiate task iteration
4096 * @css: the css to walk tasks of
0942eeee
TH
4097 * @it: the task iterator to use
4098 *
72ec7029
TH
4099 * Initiate iteration through the tasks of @css. The caller can call
4100 * css_task_iter_next() to walk through the tasks until the function
4101 * returns NULL. On completion of iteration, css_task_iter_end() must be
4102 * called.
0942eeee 4103 */
72ec7029
TH
4104void css_task_iter_start(struct cgroup_subsys_state *css,
4105 struct css_task_iter *it)
817929ec 4106{
56fde9e0
TH
4107 /* no one should try to iterate before mounting cgroups */
4108 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4109
ed27b9f7
TH
4110 memset(it, 0, sizeof(*it));
4111
f0d9a5f1 4112 spin_lock_bh(&css_set_lock);
c59cd3d8 4113
3ebb2b6e
TH
4114 it->ss = css->ss;
4115
4116 if (it->ss)
4117 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4118 else
4119 it->cset_pos = &css->cgroup->cset_links;
4120
0f0a2b4f 4121 it->cset_head = it->cset_pos;
c59cd3d8 4122
ecb9d535 4123 css_task_iter_advance_css_set(it);
ed27b9f7 4124
f0d9a5f1 4125 spin_unlock_bh(&css_set_lock);
817929ec
PM
4126}
4127
0942eeee 4128/**
72ec7029 4129 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4130 * @it: the task iterator being iterated
4131 *
4132 * The "next" function for task iteration. @it should have been
72ec7029
TH
4133 * initialized via css_task_iter_start(). Returns NULL when the iteration
4134 * reaches the end.
0942eeee 4135 */
72ec7029 4136struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4137{
d5745675 4138 if (it->cur_task) {
ed27b9f7 4139 put_task_struct(it->cur_task);
d5745675
TH
4140 it->cur_task = NULL;
4141 }
ed27b9f7 4142
f0d9a5f1 4143 spin_lock_bh(&css_set_lock);
ed27b9f7 4144
d5745675
TH
4145 if (it->task_pos) {
4146 it->cur_task = list_entry(it->task_pos, struct task_struct,
4147 cg_list);
4148 get_task_struct(it->cur_task);
4149 css_task_iter_advance(it);
4150 }
ed27b9f7 4151
f0d9a5f1 4152 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4153
4154 return it->cur_task;
817929ec
PM
4155}
4156
0942eeee 4157/**
72ec7029 4158 * css_task_iter_end - finish task iteration
0942eeee
TH
4159 * @it: the task iterator to finish
4160 *
72ec7029 4161 * Finish task iteration started by css_task_iter_start().
0942eeee 4162 */
72ec7029 4163void css_task_iter_end(struct css_task_iter *it)
31a7df01 4164{
ed27b9f7 4165 if (it->cur_cset) {
f0d9a5f1 4166 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4167 list_del(&it->iters_node);
4168 put_css_set_locked(it->cur_cset);
f0d9a5f1 4169 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4170 }
4171
4172 if (it->cur_task)
4173 put_task_struct(it->cur_task);
31a7df01
CW
4174}
4175
4176/**
8cc99345
TH
4177 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4178 * @to: cgroup to which the tasks will be moved
4179 * @from: cgroup in which the tasks currently reside
31a7df01 4180 *
eaf797ab
TH
4181 * Locking rules between cgroup_post_fork() and the migration path
4182 * guarantee that, if a task is forking while being migrated, the new child
4183 * is guaranteed to be either visible in the source cgroup after the
4184 * parent's migration is complete or put into the target cgroup. No task
4185 * can slip out of migration through forking.
31a7df01 4186 */
8cc99345 4187int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4188{
952aaa12
TH
4189 LIST_HEAD(preloaded_csets);
4190 struct cgrp_cset_link *link;
72ec7029 4191 struct css_task_iter it;
e406d1cf 4192 struct task_struct *task;
952aaa12 4193 int ret;
31a7df01 4194
952aaa12 4195 mutex_lock(&cgroup_mutex);
31a7df01 4196
952aaa12 4197 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4198 spin_lock_bh(&css_set_lock);
952aaa12
TH
4199 list_for_each_entry(link, &from->cset_links, cset_link)
4200 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4201 spin_unlock_bh(&css_set_lock);
31a7df01 4202
952aaa12
TH
4203 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4204 if (ret)
4205 goto out_err;
8cc99345 4206
952aaa12 4207 /*
2cfa2b19 4208 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4209 * ->can_attach() fails.
4210 */
e406d1cf 4211 do {
9d800df1 4212 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4213 task = css_task_iter_next(&it);
4214 if (task)
4215 get_task_struct(task);
4216 css_task_iter_end(&it);
4217
4218 if (task) {
9af2ec45 4219 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4220 put_task_struct(task);
4221 }
4222 } while (task && !ret);
952aaa12
TH
4223out_err:
4224 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4225 mutex_unlock(&cgroup_mutex);
e406d1cf 4226 return ret;
8cc99345
TH
4227}
4228
bbcb81d0 4229/*
102a775e 4230 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4231 *
4232 * Reading this file can return large amounts of data if a cgroup has
4233 * *lots* of attached tasks. So it may need several calls to read(),
4234 * but we cannot guarantee that the information we produce is correct
4235 * unless we produce it entirely atomically.
4236 *
bbcb81d0 4237 */
bbcb81d0 4238
24528255
LZ
4239/* which pidlist file are we talking about? */
4240enum cgroup_filetype {
4241 CGROUP_FILE_PROCS,
4242 CGROUP_FILE_TASKS,
4243};
4244
4245/*
4246 * A pidlist is a list of pids that virtually represents the contents of one
4247 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4248 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4249 * to the cgroup.
4250 */
4251struct cgroup_pidlist {
4252 /*
4253 * used to find which pidlist is wanted. doesn't change as long as
4254 * this particular list stays in the list.
4255 */
4256 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4257 /* array of xids */
4258 pid_t *list;
4259 /* how many elements the above list has */
4260 int length;
24528255
LZ
4261 /* each of these stored in a list by its cgroup */
4262 struct list_head links;
4263 /* pointer to the cgroup we belong to, for list removal purposes */
4264 struct cgroup *owner;
b1a21367
TH
4265 /* for delayed destruction */
4266 struct delayed_work destroy_dwork;
24528255
LZ
4267};
4268
d1d9fd33
BB
4269/*
4270 * The following two functions "fix" the issue where there are more pids
4271 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4272 * TODO: replace with a kernel-wide solution to this problem
4273 */
4274#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4275static void *pidlist_allocate(int count)
4276{
4277 if (PIDLIST_TOO_LARGE(count))
4278 return vmalloc(count * sizeof(pid_t));
4279 else
4280 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4281}
b1a21367 4282
d1d9fd33
BB
4283static void pidlist_free(void *p)
4284{
58794514 4285 kvfree(p);
d1d9fd33 4286}
d1d9fd33 4287
b1a21367
TH
4288/*
4289 * Used to destroy all pidlists lingering waiting for destroy timer. None
4290 * should be left afterwards.
4291 */
4292static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4293{
4294 struct cgroup_pidlist *l, *tmp_l;
4295
4296 mutex_lock(&cgrp->pidlist_mutex);
4297 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4298 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4299 mutex_unlock(&cgrp->pidlist_mutex);
4300
4301 flush_workqueue(cgroup_pidlist_destroy_wq);
4302 BUG_ON(!list_empty(&cgrp->pidlists));
4303}
4304
4305static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4306{
4307 struct delayed_work *dwork = to_delayed_work(work);
4308 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4309 destroy_dwork);
4310 struct cgroup_pidlist *tofree = NULL;
4311
4312 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4313
4314 /*
04502365
TH
4315 * Destroy iff we didn't get queued again. The state won't change
4316 * as destroy_dwork can only be queued while locked.
b1a21367 4317 */
04502365 4318 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4319 list_del(&l->links);
4320 pidlist_free(l->list);
4321 put_pid_ns(l->key.ns);
4322 tofree = l;
4323 }
4324
b1a21367
TH
4325 mutex_unlock(&l->owner->pidlist_mutex);
4326 kfree(tofree);
4327}
4328
bbcb81d0 4329/*
102a775e 4330 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4331 * Returns the number of unique elements.
bbcb81d0 4332 */
6ee211ad 4333static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4334{
102a775e 4335 int src, dest = 1;
102a775e
BB
4336
4337 /*
4338 * we presume the 0th element is unique, so i starts at 1. trivial
4339 * edge cases first; no work needs to be done for either
4340 */
4341 if (length == 0 || length == 1)
4342 return length;
4343 /* src and dest walk down the list; dest counts unique elements */
4344 for (src = 1; src < length; src++) {
4345 /* find next unique element */
4346 while (list[src] == list[src-1]) {
4347 src++;
4348 if (src == length)
4349 goto after;
4350 }
4351 /* dest always points to where the next unique element goes */
4352 list[dest] = list[src];
4353 dest++;
4354 }
4355after:
102a775e
BB
4356 return dest;
4357}
4358
afb2bc14
TH
4359/*
4360 * The two pid files - task and cgroup.procs - guaranteed that the result
4361 * is sorted, which forced this whole pidlist fiasco. As pid order is
4362 * different per namespace, each namespace needs differently sorted list,
4363 * making it impossible to use, for example, single rbtree of member tasks
4364 * sorted by task pointer. As pidlists can be fairly large, allocating one
4365 * per open file is dangerous, so cgroup had to implement shared pool of
4366 * pidlists keyed by cgroup and namespace.
4367 *
4368 * All this extra complexity was caused by the original implementation
4369 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4370 * want to do away with it. Explicitly scramble sort order if on the
4371 * default hierarchy so that no such expectation exists in the new
4372 * interface.
afb2bc14
TH
4373 *
4374 * Scrambling is done by swapping every two consecutive bits, which is
4375 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4376 */
4377static pid_t pid_fry(pid_t pid)
4378{
4379 unsigned a = pid & 0x55555555;
4380 unsigned b = pid & 0xAAAAAAAA;
4381
4382 return (a << 1) | (b >> 1);
4383}
4384
4385static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4386{
aa6ec29b 4387 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4388 return pid_fry(pid);
4389 else
4390 return pid;
4391}
4392
102a775e
BB
4393static int cmppid(const void *a, const void *b)
4394{
4395 return *(pid_t *)a - *(pid_t *)b;
4396}
4397
afb2bc14
TH
4398static int fried_cmppid(const void *a, const void *b)
4399{
4400 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4401}
4402
e6b81710
TH
4403static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4404 enum cgroup_filetype type)
4405{
4406 struct cgroup_pidlist *l;
4407 /* don't need task_nsproxy() if we're looking at ourself */
4408 struct pid_namespace *ns = task_active_pid_ns(current);
4409
4410 lockdep_assert_held(&cgrp->pidlist_mutex);
4411
4412 list_for_each_entry(l, &cgrp->pidlists, links)
4413 if (l->key.type == type && l->key.ns == ns)
4414 return l;
4415 return NULL;
4416}
4417
72a8cb30
BB
4418/*
4419 * find the appropriate pidlist for our purpose (given procs vs tasks)
4420 * returns with the lock on that pidlist already held, and takes care
4421 * of the use count, or returns NULL with no locks held if we're out of
4422 * memory.
4423 */
e6b81710
TH
4424static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4425 enum cgroup_filetype type)
72a8cb30
BB
4426{
4427 struct cgroup_pidlist *l;
b70cc5fd 4428
e6b81710
TH
4429 lockdep_assert_held(&cgrp->pidlist_mutex);
4430
4431 l = cgroup_pidlist_find(cgrp, type);
4432 if (l)
4433 return l;
4434
72a8cb30 4435 /* entry not found; create a new one */
f4f4be2b 4436 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4437 if (!l)
72a8cb30 4438 return l;
e6b81710 4439
b1a21367 4440 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4441 l->key.type = type;
e6b81710
TH
4442 /* don't need task_nsproxy() if we're looking at ourself */
4443 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4444 l->owner = cgrp;
4445 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4446 return l;
4447}
4448
102a775e
BB
4449/*
4450 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4451 */
72a8cb30
BB
4452static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4453 struct cgroup_pidlist **lp)
102a775e
BB
4454{
4455 pid_t *array;
4456 int length;
4457 int pid, n = 0; /* used for populating the array */
72ec7029 4458 struct css_task_iter it;
817929ec 4459 struct task_struct *tsk;
102a775e
BB
4460 struct cgroup_pidlist *l;
4461
4bac00d1
TH
4462 lockdep_assert_held(&cgrp->pidlist_mutex);
4463
102a775e
BB
4464 /*
4465 * If cgroup gets more users after we read count, we won't have
4466 * enough space - tough. This race is indistinguishable to the
4467 * caller from the case that the additional cgroup users didn't
4468 * show up until sometime later on.
4469 */
4470 length = cgroup_task_count(cgrp);
d1d9fd33 4471 array = pidlist_allocate(length);
102a775e
BB
4472 if (!array)
4473 return -ENOMEM;
4474 /* now, populate the array */
9d800df1 4475 css_task_iter_start(&cgrp->self, &it);
72ec7029 4476 while ((tsk = css_task_iter_next(&it))) {
102a775e 4477 if (unlikely(n == length))
817929ec 4478 break;
102a775e 4479 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4480 if (type == CGROUP_FILE_PROCS)
4481 pid = task_tgid_vnr(tsk);
4482 else
4483 pid = task_pid_vnr(tsk);
102a775e
BB
4484 if (pid > 0) /* make sure to only use valid results */
4485 array[n++] = pid;
817929ec 4486 }
72ec7029 4487 css_task_iter_end(&it);
102a775e
BB
4488 length = n;
4489 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4490 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4491 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4492 else
4493 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4494 if (type == CGROUP_FILE_PROCS)
6ee211ad 4495 length = pidlist_uniq(array, length);
e6b81710 4496
e6b81710 4497 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4498 if (!l) {
d1d9fd33 4499 pidlist_free(array);
72a8cb30 4500 return -ENOMEM;
102a775e 4501 }
e6b81710
TH
4502
4503 /* store array, freeing old if necessary */
d1d9fd33 4504 pidlist_free(l->list);
102a775e
BB
4505 l->list = array;
4506 l->length = length;
72a8cb30 4507 *lp = l;
102a775e 4508 return 0;
bbcb81d0
PM
4509}
4510
846c7bb0 4511/**
a043e3b2 4512 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4513 * @stats: cgroupstats to fill information into
4514 * @dentry: A dentry entry belonging to the cgroup for which stats have
4515 * been requested.
a043e3b2
LZ
4516 *
4517 * Build and fill cgroupstats so that taskstats can export it to user
4518 * space.
846c7bb0
BS
4519 */
4520int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4521{
2bd59d48 4522 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4523 struct cgroup *cgrp;
72ec7029 4524 struct css_task_iter it;
846c7bb0 4525 struct task_struct *tsk;
33d283be 4526
2bd59d48
TH
4527 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4528 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4529 kernfs_type(kn) != KERNFS_DIR)
4530 return -EINVAL;
4531
bad34660
LZ
4532 mutex_lock(&cgroup_mutex);
4533
846c7bb0 4534 /*
2bd59d48 4535 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4536 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4537 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4538 */
2bd59d48
TH
4539 rcu_read_lock();
4540 cgrp = rcu_dereference(kn->priv);
bad34660 4541 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4542 rcu_read_unlock();
bad34660 4543 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4544 return -ENOENT;
4545 }
bad34660 4546 rcu_read_unlock();
846c7bb0 4547
9d800df1 4548 css_task_iter_start(&cgrp->self, &it);
72ec7029 4549 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4550 switch (tsk->state) {
4551 case TASK_RUNNING:
4552 stats->nr_running++;
4553 break;
4554 case TASK_INTERRUPTIBLE:
4555 stats->nr_sleeping++;
4556 break;
4557 case TASK_UNINTERRUPTIBLE:
4558 stats->nr_uninterruptible++;
4559 break;
4560 case TASK_STOPPED:
4561 stats->nr_stopped++;
4562 break;
4563 default:
4564 if (delayacct_is_task_waiting_on_io(tsk))
4565 stats->nr_io_wait++;
4566 break;
4567 }
4568 }
72ec7029 4569 css_task_iter_end(&it);
846c7bb0 4570
bad34660 4571 mutex_unlock(&cgroup_mutex);
2bd59d48 4572 return 0;
846c7bb0
BS
4573}
4574
8f3ff208 4575
bbcb81d0 4576/*
102a775e 4577 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4578 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4579 * in the cgroup->l->list array.
bbcb81d0 4580 */
cc31edce 4581
102a775e 4582static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4583{
cc31edce
PM
4584 /*
4585 * Initially we receive a position value that corresponds to
4586 * one more than the last pid shown (or 0 on the first call or
4587 * after a seek to the start). Use a binary-search to find the
4588 * next pid to display, if any
4589 */
2bd59d48 4590 struct kernfs_open_file *of = s->private;
7da11279 4591 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4592 struct cgroup_pidlist *l;
7da11279 4593 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4594 int index = 0, pid = *pos;
4bac00d1
TH
4595 int *iter, ret;
4596
4597 mutex_lock(&cgrp->pidlist_mutex);
4598
4599 /*
5d22444f 4600 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4601 * after open. If the matching pidlist is around, we can use that.
5d22444f 4602 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4603 * could already have been destroyed.
4604 */
5d22444f
TH
4605 if (of->priv)
4606 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4607
4608 /*
4609 * Either this is the first start() after open or the matching
4610 * pidlist has been destroyed inbetween. Create a new one.
4611 */
5d22444f
TH
4612 if (!of->priv) {
4613 ret = pidlist_array_load(cgrp, type,
4614 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4615 if (ret)
4616 return ERR_PTR(ret);
4617 }
5d22444f 4618 l = of->priv;
cc31edce 4619
cc31edce 4620 if (pid) {
102a775e 4621 int end = l->length;
20777766 4622
cc31edce
PM
4623 while (index < end) {
4624 int mid = (index + end) / 2;
afb2bc14 4625 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4626 index = mid;
4627 break;
afb2bc14 4628 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4629 index = mid + 1;
4630 else
4631 end = mid;
4632 }
4633 }
4634 /* If we're off the end of the array, we're done */
102a775e 4635 if (index >= l->length)
cc31edce
PM
4636 return NULL;
4637 /* Update the abstract position to be the actual pid that we found */
102a775e 4638 iter = l->list + index;
afb2bc14 4639 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4640 return iter;
4641}
4642
102a775e 4643static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4644{
2bd59d48 4645 struct kernfs_open_file *of = s->private;
5d22444f 4646 struct cgroup_pidlist *l = of->priv;
62236858 4647
5d22444f
TH
4648 if (l)
4649 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4650 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4651 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4652}
4653
102a775e 4654static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4655{
2bd59d48 4656 struct kernfs_open_file *of = s->private;
5d22444f 4657 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4658 pid_t *p = v;
4659 pid_t *end = l->list + l->length;
cc31edce
PM
4660 /*
4661 * Advance to the next pid in the array. If this goes off the
4662 * end, we're done
4663 */
4664 p++;
4665 if (p >= end) {
4666 return NULL;
4667 } else {
7da11279 4668 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4669 return p;
4670 }
4671}
4672
102a775e 4673static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4674{
94ff212d
JP
4675 seq_printf(s, "%d\n", *(int *)v);
4676
4677 return 0;
cc31edce 4678}
bbcb81d0 4679
182446d0
TH
4680static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4681 struct cftype *cft)
81a6a5cd 4682{
182446d0 4683 return notify_on_release(css->cgroup);
81a6a5cd
PM
4684}
4685
182446d0
TH
4686static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4687 struct cftype *cft, u64 val)
6379c106 4688{
6379c106 4689 if (val)
182446d0 4690 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4691 else
182446d0 4692 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4693 return 0;
4694}
4695
182446d0
TH
4696static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4697 struct cftype *cft)
97978e6d 4698{
182446d0 4699 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4700}
4701
182446d0
TH
4702static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4703 struct cftype *cft, u64 val)
97978e6d
DL
4704{
4705 if (val)
182446d0 4706 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4707 else
182446d0 4708 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4709 return 0;
4710}
4711
a14c6874
TH
4712/* cgroup core interface files for the default hierarchy */
4713static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4714 {
d5c56ced 4715 .name = "cgroup.procs",
6f60eade 4716 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4717 .seq_start = cgroup_pidlist_start,
4718 .seq_next = cgroup_pidlist_next,
4719 .seq_stop = cgroup_pidlist_stop,
4720 .seq_show = cgroup_pidlist_show,
5d22444f 4721 .private = CGROUP_FILE_PROCS,
acbef755 4722 .write = cgroup_procs_write,
102a775e 4723 },
f8f22e53
TH
4724 {
4725 .name = "cgroup.controllers",
f8f22e53
TH
4726 .seq_show = cgroup_controllers_show,
4727 },
4728 {
4729 .name = "cgroup.subtree_control",
f8f22e53 4730 .seq_show = cgroup_subtree_control_show,
451af504 4731 .write = cgroup_subtree_control_write,
f8f22e53 4732 },
842b597e 4733 {
4a07c222 4734 .name = "cgroup.events",
a14c6874 4735 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4736 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4737 .seq_show = cgroup_events_show,
842b597e 4738 },
a14c6874
TH
4739 { } /* terminate */
4740};
d5c56ced 4741
a14c6874
TH
4742/* cgroup core interface files for the legacy hierarchies */
4743static struct cftype cgroup_legacy_base_files[] = {
4744 {
4745 .name = "cgroup.procs",
4746 .seq_start = cgroup_pidlist_start,
4747 .seq_next = cgroup_pidlist_next,
4748 .seq_stop = cgroup_pidlist_stop,
4749 .seq_show = cgroup_pidlist_show,
4750 .private = CGROUP_FILE_PROCS,
4751 .write = cgroup_procs_write,
a14c6874
TH
4752 },
4753 {
4754 .name = "cgroup.clone_children",
4755 .read_u64 = cgroup_clone_children_read,
4756 .write_u64 = cgroup_clone_children_write,
4757 },
4758 {
4759 .name = "cgroup.sane_behavior",
4760 .flags = CFTYPE_ONLY_ON_ROOT,
4761 .seq_show = cgroup_sane_behavior_show,
4762 },
d5c56ced
TH
4763 {
4764 .name = "tasks",
6612f05b
TH
4765 .seq_start = cgroup_pidlist_start,
4766 .seq_next = cgroup_pidlist_next,
4767 .seq_stop = cgroup_pidlist_stop,
4768 .seq_show = cgroup_pidlist_show,
5d22444f 4769 .private = CGROUP_FILE_TASKS,
acbef755 4770 .write = cgroup_tasks_write,
d5c56ced
TH
4771 },
4772 {
4773 .name = "notify_on_release",
d5c56ced
TH
4774 .read_u64 = cgroup_read_notify_on_release,
4775 .write_u64 = cgroup_write_notify_on_release,
4776 },
6e6ff25b
TH
4777 {
4778 .name = "release_agent",
a14c6874 4779 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4780 .seq_show = cgroup_release_agent_show,
451af504 4781 .write = cgroup_release_agent_write,
5f469907 4782 .max_write_len = PATH_MAX - 1,
6e6ff25b 4783 },
db0416b6 4784 { } /* terminate */
bbcb81d0
PM
4785};
4786
0c21ead1
TH
4787/*
4788 * css destruction is four-stage process.
4789 *
4790 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4791 * Implemented in kill_css().
4792 *
4793 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4794 * and thus css_tryget_online() is guaranteed to fail, the css can be
4795 * offlined by invoking offline_css(). After offlining, the base ref is
4796 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4797 *
4798 * 3. When the percpu_ref reaches zero, the only possible remaining
4799 * accessors are inside RCU read sections. css_release() schedules the
4800 * RCU callback.
4801 *
4802 * 4. After the grace period, the css can be freed. Implemented in
4803 * css_free_work_fn().
4804 *
4805 * It is actually hairier because both step 2 and 4 require process context
4806 * and thus involve punting to css->destroy_work adding two additional
4807 * steps to the already complex sequence.
4808 */
35ef10da 4809static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4810{
4811 struct cgroup_subsys_state *css =
35ef10da 4812 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4813 struct cgroup_subsys *ss = css->ss;
0c21ead1 4814 struct cgroup *cgrp = css->cgroup;
48ddbe19 4815
9a1049da
TH
4816 percpu_ref_exit(&css->refcnt);
4817
01e58659 4818 if (ss) {
9d755d33 4819 /* css free path */
8bb5ef79 4820 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4821 int id = css->id;
4822
01e58659
VD
4823 ss->css_free(css);
4824 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4825 cgroup_put(cgrp);
8bb5ef79
TH
4826
4827 if (parent)
4828 css_put(parent);
9d755d33
TH
4829 } else {
4830 /* cgroup free path */
4831 atomic_dec(&cgrp->root->nr_cgrps);
4832 cgroup_pidlist_destroy_all(cgrp);
971ff493 4833 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4834
d51f39b0 4835 if (cgroup_parent(cgrp)) {
9d755d33
TH
4836 /*
4837 * We get a ref to the parent, and put the ref when
4838 * this cgroup is being freed, so it's guaranteed
4839 * that the parent won't be destroyed before its
4840 * children.
4841 */
d51f39b0 4842 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4843 kernfs_put(cgrp->kn);
4844 kfree(cgrp);
4845 } else {
4846 /*
4847 * This is root cgroup's refcnt reaching zero,
4848 * which indicates that the root should be
4849 * released.
4850 */
4851 cgroup_destroy_root(cgrp->root);
4852 }
4853 }
48ddbe19
TH
4854}
4855
0c21ead1 4856static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4857{
4858 struct cgroup_subsys_state *css =
0c21ead1 4859 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4860
35ef10da 4861 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4862 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4863}
4864
25e15d83 4865static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4866{
4867 struct cgroup_subsys_state *css =
25e15d83 4868 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4869 struct cgroup_subsys *ss = css->ss;
9d755d33 4870 struct cgroup *cgrp = css->cgroup;
15a4c835 4871
1fed1b2e
TH
4872 mutex_lock(&cgroup_mutex);
4873
de3f0341 4874 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4875 list_del_rcu(&css->sibling);
4876
9d755d33
TH
4877 if (ss) {
4878 /* css release path */
01e58659 4879 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4880 if (ss->css_released)
4881 ss->css_released(css);
9d755d33
TH
4882 } else {
4883 /* cgroup release path */
9d755d33
TH
4884 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4885 cgrp->id = -1;
a4189487
LZ
4886
4887 /*
4888 * There are two control paths which try to determine
4889 * cgroup from dentry without going through kernfs -
4890 * cgroupstats_build() and css_tryget_online_from_dir().
4891 * Those are supported by RCU protecting clearing of
4892 * cgrp->kn->priv backpointer.
4893 */
6cd0f5bb
TH
4894 if (cgrp->kn)
4895 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4896 NULL);
9d755d33 4897 }
d3daf28d 4898
1fed1b2e
TH
4899 mutex_unlock(&cgroup_mutex);
4900
0c21ead1 4901 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4902}
4903
d3daf28d
TH
4904static void css_release(struct percpu_ref *ref)
4905{
4906 struct cgroup_subsys_state *css =
4907 container_of(ref, struct cgroup_subsys_state, refcnt);
4908
25e15d83
TH
4909 INIT_WORK(&css->destroy_work, css_release_work_fn);
4910 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4911}
4912
ddfcadab
TH
4913static void init_and_link_css(struct cgroup_subsys_state *css,
4914 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4915{
0cb51d71
TH
4916 lockdep_assert_held(&cgroup_mutex);
4917
ddfcadab
TH
4918 cgroup_get(cgrp);
4919
d5c419b6 4920 memset(css, 0, sizeof(*css));
bd89aabc 4921 css->cgroup = cgrp;
72c97e54 4922 css->ss = ss;
d5c419b6
TH
4923 INIT_LIST_HEAD(&css->sibling);
4924 INIT_LIST_HEAD(&css->children);
0cb51d71 4925 css->serial_nr = css_serial_nr_next++;
aa226ff4 4926 atomic_set(&css->online_cnt, 0);
0ae78e0b 4927
d51f39b0
TH
4928 if (cgroup_parent(cgrp)) {
4929 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4930 css_get(css->parent);
ddfcadab 4931 }
48ddbe19 4932
ca8bdcaf 4933 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4934}
4935
2a4ac633 4936/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4937static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4938{
623f926b 4939 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4940 int ret = 0;
4941
a31f2d3f
TH
4942 lockdep_assert_held(&cgroup_mutex);
4943
92fb9748 4944 if (ss->css_online)
eb95419b 4945 ret = ss->css_online(css);
ae7f164a 4946 if (!ret) {
eb95419b 4947 css->flags |= CSS_ONLINE;
aec25020 4948 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4949
4950 atomic_inc(&css->online_cnt);
4951 if (css->parent)
4952 atomic_inc(&css->parent->online_cnt);
ae7f164a 4953 }
b1929db4 4954 return ret;
a31f2d3f
TH
4955}
4956
2a4ac633 4957/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4958static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4959{
623f926b 4960 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4961
4962 lockdep_assert_held(&cgroup_mutex);
4963
4964 if (!(css->flags & CSS_ONLINE))
4965 return;
4966
fa06235b
VD
4967 if (ss->css_reset)
4968 ss->css_reset(css);
4969
d7eeac19 4970 if (ss->css_offline)
eb95419b 4971 ss->css_offline(css);
a31f2d3f 4972
eb95419b 4973 css->flags &= ~CSS_ONLINE;
e3297803 4974 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4975
4976 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4977}
4978
c81c925a 4979/**
6cd0f5bb 4980 * css_create - create a cgroup_subsys_state
c81c925a
TH
4981 * @cgrp: the cgroup new css will be associated with
4982 * @ss: the subsys of new css
4983 *
4984 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
4985 * css is online and installed in @cgrp. This function doesn't create the
4986 * interface files. Returns 0 on success, -errno on failure.
c81c925a 4987 */
6cd0f5bb
TH
4988static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4989 struct cgroup_subsys *ss)
c81c925a 4990{
d51f39b0 4991 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4992 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4993 struct cgroup_subsys_state *css;
4994 int err;
4995
c81c925a
TH
4996 lockdep_assert_held(&cgroup_mutex);
4997
1fed1b2e 4998 css = ss->css_alloc(parent_css);
c81c925a 4999 if (IS_ERR(css))
6cd0f5bb 5000 return css;
c81c925a 5001
ddfcadab 5002 init_and_link_css(css, ss, cgrp);
a2bed820 5003
2aad2a86 5004 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5005 if (err)
3eb59ec6 5006 goto err_free_css;
c81c925a 5007
cf780b7d 5008 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
5009 if (err < 0)
5010 goto err_free_percpu_ref;
5011 css->id = err;
c81c925a 5012
15a4c835 5013 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5014 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5015 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5016
5017 err = online_css(css);
5018 if (err)
1fed1b2e 5019 goto err_list_del;
94419627 5020
c81c925a 5021 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5022 cgroup_parent(parent)) {
ed3d261b 5023 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5024 current->comm, current->pid, ss->name);
c81c925a 5025 if (!strcmp(ss->name, "memory"))
ed3d261b 5026 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5027 ss->warned_broken_hierarchy = true;
5028 }
5029
6cd0f5bb 5030 return css;
c81c925a 5031
1fed1b2e
TH
5032err_list_del:
5033 list_del_rcu(&css->sibling);
15a4c835 5034 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 5035err_free_percpu_ref:
9a1049da 5036 percpu_ref_exit(&css->refcnt);
3eb59ec6 5037err_free_css:
a2bed820 5038 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5039 return ERR_PTR(err);
c81c925a
TH
5040}
5041
a5bca215 5042static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5043{
a5bca215 5044 struct cgroup_root *root = parent->root;
a5bca215
TH
5045 struct cgroup *cgrp, *tcgrp;
5046 int level = parent->level + 1;
03970d3c 5047 int ret;
ddbcc7e8 5048
0a950f65 5049 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5050 cgrp = kzalloc(sizeof(*cgrp) +
5051 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5052 if (!cgrp)
5053 return ERR_PTR(-ENOMEM);
0ab02ca8 5054
2aad2a86 5055 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5056 if (ret)
5057 goto out_free_cgrp;
5058
0ab02ca8
LZ
5059 /*
5060 * Temporarily set the pointer to NULL, so idr_find() won't return
5061 * a half-baked cgroup.
5062 */
cf780b7d 5063 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5064 if (cgrp->id < 0) {
ba0f4d76 5065 ret = -ENOMEM;
9d755d33 5066 goto out_cancel_ref;
976c06bc
TH
5067 }
5068
cc31edce 5069 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5070
9d800df1 5071 cgrp->self.parent = &parent->self;
ba0f4d76 5072 cgrp->root = root;
b11cfb58
TH
5073 cgrp->level = level;
5074
5075 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5076 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5077
b6abdb0e
LZ
5078 if (notify_on_release(parent))
5079 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5080
2260e7fc
TH
5081 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5082 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5083
0cb51d71 5084 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5085
4e139afc 5086 /* allocation complete, commit to creation */
d5c419b6 5087 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5088 atomic_inc(&root->nr_cgrps);
59f5296b 5089 cgroup_get(parent);
415cf07a 5090
0d80255e
TH
5091 /*
5092 * @cgrp is now fully operational. If something fails after this
5093 * point, it'll be released via the normal destruction path.
5094 */
6fa4918d 5095 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5096
bd53d617
TH
5097 /*
5098 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5099 * subtree_control from the parent. Each is configured manually.
bd53d617 5100 */
03970d3c 5101 if (!cgroup_on_dfl(cgrp))
5531dc91 5102 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5103
5104 cgroup_propagate_control(cgrp);
5105
5106 /* @cgrp doesn't have dir yet so the following will only create csses */
5107 ret = cgroup_apply_control_enable(cgrp);
5108 if (ret)
5109 goto out_destroy;
2bd59d48 5110
a5bca215
TH
5111 return cgrp;
5112
5113out_cancel_ref:
5114 percpu_ref_exit(&cgrp->self.refcnt);
5115out_free_cgrp:
5116 kfree(cgrp);
5117 return ERR_PTR(ret);
5118out_destroy:
5119 cgroup_destroy_locked(cgrp);
5120 return ERR_PTR(ret);
5121}
5122
5123static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5124 umode_t mode)
5125{
5126 struct cgroup *parent, *cgrp;
a5bca215 5127 struct kernfs_node *kn;
03970d3c 5128 int ret;
a5bca215
TH
5129
5130 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5131 if (strchr(name, '\n'))
5132 return -EINVAL;
5133
945ba199 5134 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5135 if (!parent)
5136 return -ENODEV;
5137
5138 cgrp = cgroup_create(parent);
5139 if (IS_ERR(cgrp)) {
5140 ret = PTR_ERR(cgrp);
5141 goto out_unlock;
5142 }
5143
195e9b6c
TH
5144 /* create the directory */
5145 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5146 if (IS_ERR(kn)) {
5147 ret = PTR_ERR(kn);
5148 goto out_destroy;
5149 }
5150 cgrp->kn = kn;
5151
5152 /*
5153 * This extra ref will be put in cgroup_free_fn() and guarantees
5154 * that @cgrp->kn is always accessible.
5155 */
5156 kernfs_get(kn);
5157
5158 ret = cgroup_kn_set_ugid(kn);
5159 if (ret)
5160 goto out_destroy;
5161
5162 ret = css_populate_dir(&cgrp->self, NULL);
5163 if (ret)
5164 goto out_destroy;
5165
03970d3c
TH
5166 ret = cgroup_apply_control_enable(cgrp);
5167 if (ret)
5168 goto out_destroy;
195e9b6c
TH
5169
5170 /* let's create and online css's */
2bd59d48 5171 kernfs_activate(kn);
ddbcc7e8 5172
ba0f4d76
TH
5173 ret = 0;
5174 goto out_unlock;
ddbcc7e8 5175
a5bca215
TH
5176out_destroy:
5177 cgroup_destroy_locked(cgrp);
ba0f4d76 5178out_unlock:
a9746d8d 5179 cgroup_kn_unlock(parent_kn);
ba0f4d76 5180 return ret;
ddbcc7e8
PM
5181}
5182
223dbc38
TH
5183/*
5184 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5185 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5186 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5187 */
5188static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5189{
223dbc38
TH
5190 struct cgroup_subsys_state *css =
5191 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5192
f20104de 5193 mutex_lock(&cgroup_mutex);
09a503ea 5194
aa226ff4
TH
5195 do {
5196 offline_css(css);
5197 css_put(css);
5198 /* @css can't go away while we're holding cgroup_mutex */
5199 css = css->parent;
5200 } while (css && atomic_dec_and_test(&css->online_cnt));
5201
5202 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5203}
5204
223dbc38
TH
5205/* css kill confirmation processing requires process context, bounce */
5206static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5207{
5208 struct cgroup_subsys_state *css =
5209 container_of(ref, struct cgroup_subsys_state, refcnt);
5210
aa226ff4
TH
5211 if (atomic_dec_and_test(&css->online_cnt)) {
5212 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5213 queue_work(cgroup_destroy_wq, &css->destroy_work);
5214 }
d3daf28d
TH
5215}
5216
f392e51c
TH
5217/**
5218 * kill_css - destroy a css
5219 * @css: css to destroy
5220 *
5221 * This function initiates destruction of @css by removing cgroup interface
5222 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5223 * asynchronously once css_tryget_online() is guaranteed to fail and when
5224 * the reference count reaches zero, @css will be released.
f392e51c
TH
5225 */
5226static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5227{
01f6474c 5228 lockdep_assert_held(&cgroup_mutex);
94419627 5229
2bd59d48
TH
5230 /*
5231 * This must happen before css is disassociated with its cgroup.
5232 * See seq_css() for details.
5233 */
4df8dc90 5234 css_clear_dir(css, NULL);
3c14f8b4 5235
edae0c33
TH
5236 /*
5237 * Killing would put the base ref, but we need to keep it alive
5238 * until after ->css_offline().
5239 */
5240 css_get(css);
5241
5242 /*
5243 * cgroup core guarantees that, by the time ->css_offline() is
5244 * invoked, no new css reference will be given out via
ec903c0c 5245 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5246 * proceed to offlining css's because percpu_ref_kill() doesn't
5247 * guarantee that the ref is seen as killed on all CPUs on return.
5248 *
5249 * Use percpu_ref_kill_and_confirm() to get notifications as each
5250 * css is confirmed to be seen as killed on all CPUs.
5251 */
5252 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5253}
5254
5255/**
5256 * cgroup_destroy_locked - the first stage of cgroup destruction
5257 * @cgrp: cgroup to be destroyed
5258 *
5259 * css's make use of percpu refcnts whose killing latency shouldn't be
5260 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5261 * guarantee that css_tryget_online() won't succeed by the time
5262 * ->css_offline() is invoked. To satisfy all the requirements,
5263 * destruction is implemented in the following two steps.
d3daf28d
TH
5264 *
5265 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5266 * userland visible parts and start killing the percpu refcnts of
5267 * css's. Set up so that the next stage will be kicked off once all
5268 * the percpu refcnts are confirmed to be killed.
5269 *
5270 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5271 * rest of destruction. Once all cgroup references are gone, the
5272 * cgroup is RCU-freed.
5273 *
5274 * This function implements s1. After this step, @cgrp is gone as far as
5275 * the userland is concerned and a new cgroup with the same name may be
5276 * created. As cgroup doesn't care about the names internally, this
5277 * doesn't cause any problem.
5278 */
42809dd4
TH
5279static int cgroup_destroy_locked(struct cgroup *cgrp)
5280 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5281{
2bd59d48 5282 struct cgroup_subsys_state *css;
1c6727af 5283 int ssid;
ddbcc7e8 5284
42809dd4
TH
5285 lockdep_assert_held(&cgroup_mutex);
5286
91486f61
TH
5287 /*
5288 * Only migration can raise populated from zero and we're already
5289 * holding cgroup_mutex.
5290 */
5291 if (cgroup_is_populated(cgrp))
ddbcc7e8 5292 return -EBUSY;
a043e3b2 5293
bb78a92f 5294 /*
d5c419b6
TH
5295 * Make sure there's no live children. We can't test emptiness of
5296 * ->self.children as dead children linger on it while being
5297 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5298 */
f3d46500 5299 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5300 return -EBUSY;
5301
455050d2
TH
5302 /*
5303 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5304 * creation by disabling cgroup_lock_live_group().
455050d2 5305 */
184faf32 5306 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5307
249f3468 5308 /* initiate massacre of all css's */
1c6727af
TH
5309 for_each_css(css, ssid, cgrp)
5310 kill_css(css);
455050d2 5311
455050d2 5312 /*
01f6474c
TH
5313 * Remove @cgrp directory along with the base files. @cgrp has an
5314 * extra ref on its kn.
f20104de 5315 */
01f6474c 5316 kernfs_remove(cgrp->kn);
f20104de 5317
d51f39b0 5318 check_for_release(cgroup_parent(cgrp));
2bd59d48 5319
249f3468 5320 /* put the base reference */
9d755d33 5321 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5322
ea15f8cc
TH
5323 return 0;
5324};
5325
2bd59d48 5326static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5327{
a9746d8d 5328 struct cgroup *cgrp;
2bd59d48 5329 int ret = 0;
42809dd4 5330
945ba199 5331 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5332 if (!cgrp)
5333 return 0;
42809dd4 5334
a9746d8d 5335 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5336
a9746d8d 5337 cgroup_kn_unlock(kn);
42809dd4 5338 return ret;
8e3f6541
TH
5339}
5340
2bd59d48
TH
5341static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5342 .remount_fs = cgroup_remount,
5343 .show_options = cgroup_show_options,
5344 .mkdir = cgroup_mkdir,
5345 .rmdir = cgroup_rmdir,
5346 .rename = cgroup_rename,
5347};
5348
15a4c835 5349static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5350{
ddbcc7e8 5351 struct cgroup_subsys_state *css;
cfe36bde 5352
a5ae9899 5353 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5354
648bb56d
TH
5355 mutex_lock(&cgroup_mutex);
5356
15a4c835 5357 idr_init(&ss->css_idr);
0adb0704 5358 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5359
3dd06ffa
TH
5360 /* Create the root cgroup state for this subsystem */
5361 ss->root = &cgrp_dfl_root;
5362 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5363 /* We don't handle early failures gracefully */
5364 BUG_ON(IS_ERR(css));
ddfcadab 5365 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5366
5367 /*
5368 * Root csses are never destroyed and we can't initialize
5369 * percpu_ref during early init. Disable refcnting.
5370 */
5371 css->flags |= CSS_NO_REF;
5372
15a4c835 5373 if (early) {
9395a450 5374 /* allocation can't be done safely during early init */
15a4c835
TH
5375 css->id = 1;
5376 } else {
5377 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5378 BUG_ON(css->id < 0);
5379 }
ddbcc7e8 5380
e8d55fde 5381 /* Update the init_css_set to contain a subsys
817929ec 5382 * pointer to this state - since the subsystem is
e8d55fde 5383 * newly registered, all tasks and hence the
3dd06ffa 5384 * init_css_set is in the subsystem's root cgroup. */
aec25020 5385 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5386
cb4a3167
AS
5387 have_fork_callback |= (bool)ss->fork << ss->id;
5388 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5389 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5390 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5391
e8d55fde
LZ
5392 /* At system boot, before all subsystems have been
5393 * registered, no tasks have been forked, so we don't
5394 * need to invoke fork callbacks here. */
5395 BUG_ON(!list_empty(&init_task.tasks));
5396
ae7f164a 5397 BUG_ON(online_css(css));
a8638030 5398
cf5d5941
BB
5399 mutex_unlock(&cgroup_mutex);
5400}
cf5d5941 5401
ddbcc7e8 5402/**
a043e3b2
LZ
5403 * cgroup_init_early - cgroup initialization at system boot
5404 *
5405 * Initialize cgroups at system boot, and initialize any
5406 * subsystems that request early init.
ddbcc7e8
PM
5407 */
5408int __init cgroup_init_early(void)
5409{
7b9a6ba5 5410 static struct cgroup_sb_opts __initdata opts;
30159ec7 5411 struct cgroup_subsys *ss;
ddbcc7e8 5412 int i;
30159ec7 5413
3dd06ffa 5414 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5415 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5416
a4ea1cc9 5417 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5418
3ed80a62 5419 for_each_subsys(ss, i) {
aec25020 5420 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5421 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5422 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5423 ss->id, ss->name);
073219e9
TH
5424 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5425 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5426
aec25020 5427 ss->id = i;
073219e9 5428 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5429 if (!ss->legacy_name)
5430 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5431
5432 if (ss->early_init)
15a4c835 5433 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5434 }
5435 return 0;
5436}
5437
6e5c8307 5438static u16 cgroup_disable_mask __initdata;
a3e72739 5439
ddbcc7e8 5440/**
a043e3b2
LZ
5441 * cgroup_init - cgroup initialization
5442 *
5443 * Register cgroup filesystem and /proc file, and initialize
5444 * any subsystems that didn't request early init.
ddbcc7e8
PM
5445 */
5446int __init cgroup_init(void)
5447{
30159ec7 5448 struct cgroup_subsys *ss;
035f4f51 5449 int ssid;
ddbcc7e8 5450
6e5c8307 5451 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5452 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5453 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5454 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5455
54e7b4eb 5456 mutex_lock(&cgroup_mutex);
54e7b4eb 5457
2378d8b8
TH
5458 /*
5459 * Add init_css_set to the hash table so that dfl_root can link to
5460 * it during init.
5461 */
5462 hash_add(css_set_table, &init_css_set.hlist,
5463 css_set_hash(init_css_set.subsys));
82fe9b0d 5464
3dd06ffa 5465 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5466
54e7b4eb
TH
5467 mutex_unlock(&cgroup_mutex);
5468
172a2c06 5469 for_each_subsys(ss, ssid) {
15a4c835
TH
5470 if (ss->early_init) {
5471 struct cgroup_subsys_state *css =
5472 init_css_set.subsys[ss->id];
5473
5474 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5475 GFP_KERNEL);
5476 BUG_ON(css->id < 0);
5477 } else {
5478 cgroup_init_subsys(ss, false);
5479 }
172a2c06 5480
2d8f243a
TH
5481 list_add_tail(&init_css_set.e_cset_node[ssid],
5482 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5483
5484 /*
c731ae1d
LZ
5485 * Setting dfl_root subsys_mask needs to consider the
5486 * disabled flag and cftype registration needs kmalloc,
5487 * both of which aren't available during early_init.
172a2c06 5488 */
a3e72739
TH
5489 if (cgroup_disable_mask & (1 << ssid)) {
5490 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5491 printk(KERN_INFO "Disabling %s control group subsystem\n",
5492 ss->name);
a8ddc821 5493 continue;
a3e72739 5494 }
a8ddc821 5495
223ffb29
JW
5496 if (cgroup_ssid_no_v1(ssid))
5497 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5498 ss->name);
5499
a8ddc821
TH
5500 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5501
5de4fa13 5502 if (!ss->dfl_cftypes)
a7165264 5503 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5504
a8ddc821
TH
5505 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5506 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5507 } else {
5508 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5509 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5510 }
295458e6
VD
5511
5512 if (ss->bind)
5513 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5514 }
5515
2378d8b8
TH
5516 /* init_css_set.subsys[] has been updated, re-hash */
5517 hash_del(&init_css_set.hlist);
5518 hash_add(css_set_table, &init_css_set.hlist,
5519 css_set_hash(init_css_set.subsys));
5520
035f4f51
TH
5521 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5522 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5523 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5524 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5525
2bd59d48 5526 return 0;
ddbcc7e8 5527}
b4f48b63 5528
e5fca243
TH
5529static int __init cgroup_wq_init(void)
5530{
5531 /*
5532 * There isn't much point in executing destruction path in
5533 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5534 * Use 1 for @max_active.
e5fca243
TH
5535 *
5536 * We would prefer to do this in cgroup_init() above, but that
5537 * is called before init_workqueues(): so leave this until after.
5538 */
1a11533f 5539 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5540 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5541
5542 /*
5543 * Used to destroy pidlists and separate to serve as flush domain.
5544 * Cap @max_active to 1 too.
5545 */
5546 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5547 0, 1);
5548 BUG_ON(!cgroup_pidlist_destroy_wq);
5549
e5fca243
TH
5550 return 0;
5551}
5552core_initcall(cgroup_wq_init);
5553
a424316c
PM
5554/*
5555 * proc_cgroup_show()
5556 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5557 * - Used for /proc/<pid>/cgroup.
a424316c 5558 */
006f4ac4
ZL
5559int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5560 struct pid *pid, struct task_struct *tsk)
a424316c 5561{
e61734c5 5562 char *buf, *path;
a424316c 5563 int retval;
3dd06ffa 5564 struct cgroup_root *root;
a424316c
PM
5565
5566 retval = -ENOMEM;
e61734c5 5567 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5568 if (!buf)
5569 goto out;
5570
a424316c 5571 mutex_lock(&cgroup_mutex);
f0d9a5f1 5572 spin_lock_bh(&css_set_lock);
a424316c 5573
985ed670 5574 for_each_root(root) {
a424316c 5575 struct cgroup_subsys *ss;
bd89aabc 5576 struct cgroup *cgrp;
b85d2040 5577 int ssid, count = 0;
a424316c 5578
a7165264 5579 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5580 continue;
5581
2c6ab6d2 5582 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5583 if (root != &cgrp_dfl_root)
5584 for_each_subsys(ss, ssid)
5585 if (root->subsys_mask & (1 << ssid))
5586 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5587 ss->legacy_name);
c6d57f33
PM
5588 if (strlen(root->name))
5589 seq_printf(m, "%sname=%s", count ? "," : "",
5590 root->name);
a424316c 5591 seq_putc(m, ':');
2e91fa7f 5592
7717f7ba 5593 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5594
5595 /*
5596 * On traditional hierarchies, all zombie tasks show up as
5597 * belonging to the root cgroup. On the default hierarchy,
5598 * while a zombie doesn't show up in "cgroup.procs" and
5599 * thus can't be migrated, its /proc/PID/cgroup keeps
5600 * reporting the cgroup it belonged to before exiting. If
5601 * the cgroup is removed before the zombie is reaped,
5602 * " (deleted)" is appended to the cgroup path.
5603 */
5604 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5605 path = cgroup_path(cgrp, buf, PATH_MAX);
5606 if (!path) {
5607 retval = -ENAMETOOLONG;
5608 goto out_unlock;
5609 }
5610 } else {
5611 path = "/";
e61734c5 5612 }
2e91fa7f 5613
e61734c5 5614 seq_puts(m, path);
2e91fa7f
TH
5615
5616 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5617 seq_puts(m, " (deleted)\n");
5618 else
5619 seq_putc(m, '\n');
a424316c
PM
5620 }
5621
006f4ac4 5622 retval = 0;
a424316c 5623out_unlock:
f0d9a5f1 5624 spin_unlock_bh(&css_set_lock);
a424316c 5625 mutex_unlock(&cgroup_mutex);
a424316c
PM
5626 kfree(buf);
5627out:
5628 return retval;
5629}
5630
a424316c
PM
5631/* Display information about each subsystem and each hierarchy */
5632static int proc_cgroupstats_show(struct seq_file *m, void *v)
5633{
30159ec7 5634 struct cgroup_subsys *ss;
a424316c 5635 int i;
a424316c 5636
8bab8dde 5637 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5638 /*
5639 * ideally we don't want subsystems moving around while we do this.
5640 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5641 * subsys/hierarchy state.
5642 */
a424316c 5643 mutex_lock(&cgroup_mutex);
30159ec7
TH
5644
5645 for_each_subsys(ss, i)
2c6ab6d2 5646 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5647 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5648 atomic_read(&ss->root->nr_cgrps),
5649 cgroup_ssid_enabled(i));
30159ec7 5650
a424316c
PM
5651 mutex_unlock(&cgroup_mutex);
5652 return 0;
5653}
5654
5655static int cgroupstats_open(struct inode *inode, struct file *file)
5656{
9dce07f1 5657 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5658}
5659
828c0950 5660static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5661 .open = cgroupstats_open,
5662 .read = seq_read,
5663 .llseek = seq_lseek,
5664 .release = single_release,
5665};
5666
b4f48b63 5667/**
eaf797ab 5668 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5669 * @child: pointer to task_struct of forking parent process.
b4f48b63 5670 *
eaf797ab
TH
5671 * A task is associated with the init_css_set until cgroup_post_fork()
5672 * attaches it to the parent's css_set. Empty cg_list indicates that
5673 * @child isn't holding reference to its css_set.
b4f48b63
PM
5674 */
5675void cgroup_fork(struct task_struct *child)
5676{
eaf797ab 5677 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5678 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5679}
5680
7e47682e
AS
5681/**
5682 * cgroup_can_fork - called on a new task before the process is exposed
5683 * @child: the task in question.
5684 *
5685 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5686 * returns an error, the fork aborts with that error code. This allows for
5687 * a cgroup subsystem to conditionally allow or deny new forks.
5688 */
b53202e6 5689int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5690{
5691 struct cgroup_subsys *ss;
5692 int i, j, ret;
5693
b4e0eeaf 5694 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5695 ret = ss->can_fork(child);
7e47682e
AS
5696 if (ret)
5697 goto out_revert;
b4e0eeaf 5698 } while_each_subsys_mask();
7e47682e
AS
5699
5700 return 0;
5701
5702out_revert:
5703 for_each_subsys(ss, j) {
5704 if (j >= i)
5705 break;
5706 if (ss->cancel_fork)
b53202e6 5707 ss->cancel_fork(child);
7e47682e
AS
5708 }
5709
5710 return ret;
5711}
5712
5713/**
5714 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5715 * @child: the task in question
5716 *
5717 * This calls the cancel_fork() callbacks if a fork failed *after*
5718 * cgroup_can_fork() succeded.
5719 */
b53202e6 5720void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5721{
5722 struct cgroup_subsys *ss;
5723 int i;
5724
5725 for_each_subsys(ss, i)
5726 if (ss->cancel_fork)
b53202e6 5727 ss->cancel_fork(child);
7e47682e
AS
5728}
5729
817929ec 5730/**
a043e3b2
LZ
5731 * cgroup_post_fork - called on a new task after adding it to the task list
5732 * @child: the task in question
5733 *
5edee61e
TH
5734 * Adds the task to the list running through its css_set if necessary and
5735 * call the subsystem fork() callbacks. Has to be after the task is
5736 * visible on the task list in case we race with the first call to
0942eeee 5737 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5738 * list.
a043e3b2 5739 */
b53202e6 5740void cgroup_post_fork(struct task_struct *child)
817929ec 5741{
30159ec7 5742 struct cgroup_subsys *ss;
5edee61e
TH
5743 int i;
5744
3ce3230a 5745 /*
251f8c03 5746 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5747 * function sets use_task_css_set_links before grabbing
5748 * tasklist_lock and we just went through tasklist_lock to add
5749 * @child, it's guaranteed that either we see the set
5750 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5751 * @child during its iteration.
5752 *
5753 * If we won the race, @child is associated with %current's
f0d9a5f1 5754 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5755 * association is stable, and, on completion of the parent's
5756 * migration, @child is visible in the source of migration or
5757 * already in the destination cgroup. This guarantee is necessary
5758 * when implementing operations which need to migrate all tasks of
5759 * a cgroup to another.
5760 *
251f8c03 5761 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5762 * will remain in init_css_set. This is safe because all tasks are
5763 * in the init_css_set before cg_links is enabled and there's no
5764 * operation which transfers all tasks out of init_css_set.
3ce3230a 5765 */
817929ec 5766 if (use_task_css_set_links) {
eaf797ab
TH
5767 struct css_set *cset;
5768
f0d9a5f1 5769 spin_lock_bh(&css_set_lock);
0e1d768f 5770 cset = task_css_set(current);
eaf797ab 5771 if (list_empty(&child->cg_list)) {
eaf797ab 5772 get_css_set(cset);
f6d7d049 5773 css_set_move_task(child, NULL, cset, false);
eaf797ab 5774 }
f0d9a5f1 5775 spin_unlock_bh(&css_set_lock);
817929ec 5776 }
5edee61e
TH
5777
5778 /*
5779 * Call ss->fork(). This must happen after @child is linked on
5780 * css_set; otherwise, @child might change state between ->fork()
5781 * and addition to css_set.
5782 */
b4e0eeaf 5783 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5784 ss->fork(child);
b4e0eeaf 5785 } while_each_subsys_mask();
817929ec 5786}
5edee61e 5787
b4f48b63
PM
5788/**
5789 * cgroup_exit - detach cgroup from exiting task
5790 * @tsk: pointer to task_struct of exiting process
5791 *
5792 * Description: Detach cgroup from @tsk and release it.
5793 *
5794 * Note that cgroups marked notify_on_release force every task in
5795 * them to take the global cgroup_mutex mutex when exiting.
5796 * This could impact scaling on very large systems. Be reluctant to
5797 * use notify_on_release cgroups where very high task exit scaling
5798 * is required on large systems.
5799 *
0e1d768f
TH
5800 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5801 * call cgroup_exit() while the task is still competent to handle
5802 * notify_on_release(), then leave the task attached to the root cgroup in
5803 * each hierarchy for the remainder of its exit. No need to bother with
5804 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5805 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5806 */
1ec41830 5807void cgroup_exit(struct task_struct *tsk)
b4f48b63 5808{
30159ec7 5809 struct cgroup_subsys *ss;
5abb8855 5810 struct css_set *cset;
d41d5a01 5811 int i;
817929ec
PM
5812
5813 /*
0e1d768f 5814 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5815 * with us, we can check css_set and cg_list without synchronization.
817929ec 5816 */
0de0942d
TH
5817 cset = task_css_set(tsk);
5818
817929ec 5819 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5820 spin_lock_bh(&css_set_lock);
f6d7d049 5821 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5822 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5823 } else {
5824 get_css_set(cset);
817929ec
PM
5825 }
5826
cb4a3167 5827 /* see cgroup_post_fork() for details */
b4e0eeaf 5828 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5829 ss->exit(tsk);
b4e0eeaf 5830 } while_each_subsys_mask();
2e91fa7f 5831}
30159ec7 5832
2e91fa7f
TH
5833void cgroup_free(struct task_struct *task)
5834{
5835 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5836 struct cgroup_subsys *ss;
5837 int ssid;
5838
b4e0eeaf 5839 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5840 ss->free(task);
b4e0eeaf 5841 } while_each_subsys_mask();
d41d5a01 5842
2e91fa7f 5843 put_css_set(cset);
b4f48b63 5844}
697f4161 5845
bd89aabc 5846static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5847{
27bd4dbb 5848 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5849 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5850 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5851}
5852
81a6a5cd
PM
5853/*
5854 * Notify userspace when a cgroup is released, by running the
5855 * configured release agent with the name of the cgroup (path
5856 * relative to the root of cgroup file system) as the argument.
5857 *
5858 * Most likely, this user command will try to rmdir this cgroup.
5859 *
5860 * This races with the possibility that some other task will be
5861 * attached to this cgroup before it is removed, or that some other
5862 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5863 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5864 * unused, and this cgroup will be reprieved from its death sentence,
5865 * to continue to serve a useful existence. Next time it's released,
5866 * we will get notified again, if it still has 'notify_on_release' set.
5867 *
5868 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5869 * means only wait until the task is successfully execve()'d. The
5870 * separate release agent task is forked by call_usermodehelper(),
5871 * then control in this thread returns here, without waiting for the
5872 * release agent task. We don't bother to wait because the caller of
5873 * this routine has no use for the exit status of the release agent
5874 * task, so no sense holding our caller up for that.
81a6a5cd 5875 */
81a6a5cd
PM
5876static void cgroup_release_agent(struct work_struct *work)
5877{
971ff493
ZL
5878 struct cgroup *cgrp =
5879 container_of(work, struct cgroup, release_agent_work);
5880 char *pathbuf = NULL, *agentbuf = NULL, *path;
5881 char *argv[3], *envp[3];
5882
81a6a5cd 5883 mutex_lock(&cgroup_mutex);
971ff493
ZL
5884
5885 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5886 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5887 if (!pathbuf || !agentbuf)
5888 goto out;
5889
5890 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5891 if (!path)
5892 goto out;
5893
5894 argv[0] = agentbuf;
5895 argv[1] = path;
5896 argv[2] = NULL;
5897
5898 /* minimal command environment */
5899 envp[0] = "HOME=/";
5900 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5901 envp[2] = NULL;
5902
81a6a5cd 5903 mutex_unlock(&cgroup_mutex);
971ff493 5904 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5905 goto out_free;
971ff493 5906out:
81a6a5cd 5907 mutex_unlock(&cgroup_mutex);
3e2cd91a 5908out_free:
971ff493
ZL
5909 kfree(agentbuf);
5910 kfree(pathbuf);
81a6a5cd 5911}
8bab8dde
PM
5912
5913static int __init cgroup_disable(char *str)
5914{
30159ec7 5915 struct cgroup_subsys *ss;
8bab8dde 5916 char *token;
30159ec7 5917 int i;
8bab8dde
PM
5918
5919 while ((token = strsep(&str, ",")) != NULL) {
5920 if (!*token)
5921 continue;
be45c900 5922
3ed80a62 5923 for_each_subsys(ss, i) {
3e1d2eed
TH
5924 if (strcmp(token, ss->name) &&
5925 strcmp(token, ss->legacy_name))
5926 continue;
a3e72739 5927 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5928 }
5929 }
5930 return 1;
5931}
5932__setup("cgroup_disable=", cgroup_disable);
38460b48 5933
223ffb29
JW
5934static int __init cgroup_no_v1(char *str)
5935{
5936 struct cgroup_subsys *ss;
5937 char *token;
5938 int i;
5939
5940 while ((token = strsep(&str, ",")) != NULL) {
5941 if (!*token)
5942 continue;
5943
5944 if (!strcmp(token, "all")) {
6e5c8307 5945 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
5946 break;
5947 }
5948
5949 for_each_subsys(ss, i) {
5950 if (strcmp(token, ss->name) &&
5951 strcmp(token, ss->legacy_name))
5952 continue;
5953
5954 cgroup_no_v1_mask |= 1 << i;
5955 }
5956 }
5957 return 1;
5958}
5959__setup("cgroup_no_v1=", cgroup_no_v1);
5960
b77d7b60 5961/**
ec903c0c 5962 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5963 * @dentry: directory dentry of interest
5964 * @ss: subsystem of interest
b77d7b60 5965 *
5a17f543
TH
5966 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5967 * to get the corresponding css and return it. If such css doesn't exist
5968 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5969 */
ec903c0c
TH
5970struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5971 struct cgroup_subsys *ss)
e5d1367f 5972{
2bd59d48 5973 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 5974 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 5975 struct cgroup_subsys_state *css = NULL;
e5d1367f 5976 struct cgroup *cgrp;
e5d1367f 5977
35cf0836 5978 /* is @dentry a cgroup dir? */
f17fc25f
TH
5979 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5980 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5981 return ERR_PTR(-EBADF);
5982
5a17f543
TH
5983 rcu_read_lock();
5984
2bd59d48
TH
5985 /*
5986 * This path doesn't originate from kernfs and @kn could already
5987 * have been or be removed at any point. @kn->priv is RCU
a4189487 5988 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5989 */
5990 cgrp = rcu_dereference(kn->priv);
5991 if (cgrp)
5992 css = cgroup_css(cgrp, ss);
5a17f543 5993
ec903c0c 5994 if (!css || !css_tryget_online(css))
5a17f543
TH
5995 css = ERR_PTR(-ENOENT);
5996
5997 rcu_read_unlock();
5998 return css;
e5d1367f 5999}
e5d1367f 6000
1cb650b9
LZ
6001/**
6002 * css_from_id - lookup css by id
6003 * @id: the cgroup id
6004 * @ss: cgroup subsys to be looked into
6005 *
6006 * Returns the css if there's valid one with @id, otherwise returns NULL.
6007 * Should be called under rcu_read_lock().
6008 */
6009struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6010{
6fa4918d 6011 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 6012 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
6013}
6014
16af4396
TH
6015/**
6016 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6017 * @path: path on the default hierarchy
6018 *
6019 * Find the cgroup at @path on the default hierarchy, increment its
6020 * reference count and return it. Returns pointer to the found cgroup on
6021 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6022 * if @path points to a non-directory.
6023 */
6024struct cgroup *cgroup_get_from_path(const char *path)
6025{
6026 struct kernfs_node *kn;
6027 struct cgroup *cgrp;
6028
6029 mutex_lock(&cgroup_mutex);
6030
6031 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6032 if (kn) {
6033 if (kernfs_type(kn) == KERNFS_DIR) {
6034 cgrp = kn->priv;
6035 cgroup_get(cgrp);
6036 } else {
6037 cgrp = ERR_PTR(-ENOTDIR);
6038 }
6039 kernfs_put(kn);
6040 } else {
6041 cgrp = ERR_PTR(-ENOENT);
6042 }
6043
6044 mutex_unlock(&cgroup_mutex);
6045 return cgrp;
6046}
6047EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6048
bd1060a1
TH
6049/*
6050 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6051 * definition in cgroup-defs.h.
6052 */
6053#ifdef CONFIG_SOCK_CGROUP_DATA
6054
6055#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6056
3fa4cc9c 6057DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6058static bool cgroup_sk_alloc_disabled __read_mostly;
6059
6060void cgroup_sk_alloc_disable(void)
6061{
6062 if (cgroup_sk_alloc_disabled)
6063 return;
6064 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6065 cgroup_sk_alloc_disabled = true;
6066}
6067
6068#else
6069
6070#define cgroup_sk_alloc_disabled false
6071
6072#endif
6073
6074void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6075{
6076 if (cgroup_sk_alloc_disabled)
6077 return;
6078
6079 rcu_read_lock();
6080
6081 while (true) {
6082 struct css_set *cset;
6083
6084 cset = task_css_set(current);
6085 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6086 skcd->val = (unsigned long)cset->dfl_cgrp;
6087 break;
6088 }
6089 cpu_relax();
6090 }
6091
6092 rcu_read_unlock();
6093}
6094
6095void cgroup_sk_free(struct sock_cgroup_data *skcd)
6096{
6097 cgroup_put(sock_cgroup_ptr(skcd));
6098}
6099
6100#endif /* CONFIG_SOCK_CGROUP_DATA */
6101
fe693435 6102#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6103static struct cgroup_subsys_state *
6104debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6105{
6106 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6107
6108 if (!css)
6109 return ERR_PTR(-ENOMEM);
6110
6111 return css;
6112}
6113
eb95419b 6114static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6115{
eb95419b 6116 kfree(css);
fe693435
PM
6117}
6118
182446d0
TH
6119static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6120 struct cftype *cft)
fe693435 6121{
182446d0 6122 return cgroup_task_count(css->cgroup);
fe693435
PM
6123}
6124
182446d0
TH
6125static u64 current_css_set_read(struct cgroup_subsys_state *css,
6126 struct cftype *cft)
fe693435
PM
6127{
6128 return (u64)(unsigned long)current->cgroups;
6129}
6130
182446d0 6131static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6132 struct cftype *cft)
fe693435
PM
6133{
6134 u64 count;
6135
6136 rcu_read_lock();
a8ad805c 6137 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6138 rcu_read_unlock();
6139 return count;
6140}
6141
2da8ca82 6142static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6143{
69d0206c 6144 struct cgrp_cset_link *link;
5abb8855 6145 struct css_set *cset;
e61734c5
TH
6146 char *name_buf;
6147
6148 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6149 if (!name_buf)
6150 return -ENOMEM;
7717f7ba 6151
f0d9a5f1 6152 spin_lock_bh(&css_set_lock);
7717f7ba 6153 rcu_read_lock();
5abb8855 6154 cset = rcu_dereference(current->cgroups);
69d0206c 6155 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6156 struct cgroup *c = link->cgrp;
7717f7ba 6157
a2dd4247 6158 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6159 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6160 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6161 }
6162 rcu_read_unlock();
f0d9a5f1 6163 spin_unlock_bh(&css_set_lock);
e61734c5 6164 kfree(name_buf);
7717f7ba
PM
6165 return 0;
6166}
6167
6168#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6169static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6170{
2da8ca82 6171 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6172 struct cgrp_cset_link *link;
7717f7ba 6173
f0d9a5f1 6174 spin_lock_bh(&css_set_lock);
182446d0 6175 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6176 struct css_set *cset = link->cset;
7717f7ba
PM
6177 struct task_struct *task;
6178 int count = 0;
c7561128 6179
5abb8855 6180 seq_printf(seq, "css_set %p\n", cset);
c7561128 6181
5abb8855 6182 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6183 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6184 goto overflow;
6185 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6186 }
6187
6188 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6189 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6190 goto overflow;
6191 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6192 }
c7561128
TH
6193 continue;
6194 overflow:
6195 seq_puts(seq, " ...\n");
7717f7ba 6196 }
f0d9a5f1 6197 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6198 return 0;
6199}
6200
182446d0 6201static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6202{
27bd4dbb 6203 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6204 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6205}
6206
6207static struct cftype debug_files[] = {
fe693435
PM
6208 {
6209 .name = "taskcount",
6210 .read_u64 = debug_taskcount_read,
6211 },
6212
6213 {
6214 .name = "current_css_set",
6215 .read_u64 = current_css_set_read,
6216 },
6217
6218 {
6219 .name = "current_css_set_refcount",
6220 .read_u64 = current_css_set_refcount_read,
6221 },
6222
7717f7ba
PM
6223 {
6224 .name = "current_css_set_cg_links",
2da8ca82 6225 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6226 },
6227
6228 {
6229 .name = "cgroup_css_links",
2da8ca82 6230 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6231 },
6232
fe693435
PM
6233 {
6234 .name = "releasable",
6235 .read_u64 = releasable_read,
6236 },
fe693435 6237
4baf6e33
TH
6238 { } /* terminate */
6239};
fe693435 6240
073219e9 6241struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6242 .css_alloc = debug_css_alloc,
6243 .css_free = debug_css_free,
5577964e 6244 .legacy_cftypes = debug_files,
fe693435
PM
6245};
6246#endif /* CONFIG_CGROUP_DEBUG */