perf/core: fix MAX_ORDER usage in rb_alloc_aux_page()
[linux-2.6-block.git] / kernel / cgroup / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
0a268dbd
TH
31#include "cgroup-internal.h"
32
aef2feda 33#include <linux/bpf-cgroup.h>
2ce9738b 34#include <linux/cred.h>
ddbcc7e8 35#include <linux/errno.h>
2ce9738b 36#include <linux/init_task.h>
ddbcc7e8 37#include <linux/kernel.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mutex.h>
40#include <linux/mount.h>
41#include <linux/pagemap.h>
a424316c 42#include <linux/proc_fs.h>
ddbcc7e8
PM
43#include <linux/rcupdate.h>
44#include <linux/sched.h>
29930025 45#include <linux/sched/task.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
0ac801fe 50#include <linux/hashtable.h>
2c6ab6d2 51#include <linux/idr.h>
c4c27fbd 52#include <linux/kthread.h>
60063497 53#include <linux/atomic.h>
e93ad19d 54#include <linux/cpuset.h>
a79a908f
AK
55#include <linux/proc_ns.h>
56#include <linux/nsproxy.h>
1f3fe7eb 57#include <linux/file.h>
e34a98d5 58#include <linux/fs_parser.h>
d4ff749b 59#include <linux/sched/cputime.h>
2ce7135a 60#include <linux/psi.h>
bd1060a1 61#include <net/sock.h>
ddbcc7e8 62
ed1777de
TH
63#define CREATE_TRACE_POINTS
64#include <trace/events/cgroup.h>
65
8d7e6fb0
TH
66#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 MAX_CFTYPE_NAME + 2)
b12e3583
TH
68/* let's not notify more than 100 times per second */
69#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
8d7e6fb0 70
d20d30eb
KC
71/*
72 * To avoid confusing the compiler (and generating warnings) with code
73 * that attempts to access what would be a 0-element array (i.e. sized
74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75 * constant expression can be added.
76 */
77#define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
78
e25e2cbb
TH
79/*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
82 *
f0d9a5f1 83 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 84 * objects, and the chain of tasks off each css_set.
e25e2cbb 85 *
0e1d768f
TH
86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87 * cgroup.h can use them for lockdep annotations.
e25e2cbb 88 */
2219449a 89DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 90DEFINE_SPINLOCK(css_set_lock);
0a268dbd
TH
91
92#ifdef CONFIG_PROVE_RCU
0e1d768f 93EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 94EXPORT_SYMBOL_GPL(css_set_lock);
2219449a
TH
95#endif
96
e4f8d81c
SRV
97DEFINE_SPINLOCK(trace_cgroup_path_lock);
98char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
29ed1738 99static bool cgroup_debug __read_mostly;
e4f8d81c 100
6fa4918d 101/*
15a4c835
TH
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
6fa4918d
TH
104 */
105static DEFINE_SPINLOCK(cgroup_idr_lock);
106
34c06254
TH
107/*
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
110 */
111static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112
3f2947b7 113DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
1ed13287 114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
0a268dbd 130struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
c58632b3 163static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
041cd640 164
6b6ebb34 165/* the default hierarchy */
c58632b3 166struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
d0ec4230 167EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 168
a2dd4247
TH
169/*
170 * The default hierarchy always exists but is hidden until mounted for the
171 * first time. This is for backward compatibility.
172 */
a7165264 173static bool cgrp_dfl_visible;
ddbcc7e8 174
5533e011 175/* some controllers are not supported in the default hierarchy */
a7165264 176static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 177
f6d635ad 178/* some controllers are implicitly enabled on the default hierarchy */
b807421a 179static u16 cgrp_dfl_implicit_ss_mask;
f6d635ad 180
8cfd8147
TH
181/* some controllers can be threaded on the default hierarchy */
182static u16 cgrp_dfl_threaded_ss_mask;
183
ddbcc7e8 184/* The list of hierarchy roots */
0a268dbd 185LIST_HEAD(cgroup_roots);
9871bf95 186static int cgroup_root_count;
ddbcc7e8 187
3417ae1f 188/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 189static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 190
794611a1 191/*
0cb51d71
TH
192 * Assign a monotonically increasing serial number to csses. It guarantees
193 * cgroups with bigger numbers are newer than those with smaller numbers.
194 * Also, as csses are always appended to the parent's ->children list, it
195 * guarantees that sibling csses are always sorted in the ascending serial
196 * number order on the list. Protected by cgroup_mutex.
794611a1 197 */
0cb51d71 198static u64 css_serial_nr_next = 1;
794611a1 199
cb4a3167 200/*
b807421a
TH
201 * These bitmasks identify subsystems with specific features to avoid
202 * having to do iterative checks repeatedly.
ddbcc7e8 203 */
6e5c8307
TH
204static u16 have_fork_callback __read_mostly;
205static u16 have_exit_callback __read_mostly;
51bee5ab 206static u16 have_release_callback __read_mostly;
b807421a 207static u16 have_canfork_callback __read_mostly;
ddbcc7e8 208
a79a908f
AK
209/* cgroup namespace for init task */
210struct cgroup_namespace init_cgroup_ns = {
f387882d 211 .ns.count = REFCOUNT_INIT(2),
a79a908f
AK
212 .user_ns = &init_user_ns,
213 .ns.ops = &cgroupns_operations,
214 .ns.inum = PROC_CGROUP_INIT_INO,
215 .root_cset = &init_css_set,
216};
217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
d62beb7f 219static struct cftype cgroup_base_files[];
8a693f77 220static struct cftype cgroup_psi_files[];
628f7cd4 221
3958e2d0
SB
222/* cgroup optional features */
223enum cgroup_opt_features {
224#ifdef CONFIG_PSI
225 OPT_FEATURE_PRESSURE,
226#endif
227 OPT_FEATURE_COUNT
228};
229
230static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
231#ifdef CONFIG_PSI
232 "pressure",
233#endif
234};
235
236static u16 cgroup_feature_disable_mask __read_mostly;
237
334c3679
TH
238static int cgroup_apply_control(struct cgroup *cgrp);
239static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
b636fd38
TH
240static void css_task_iter_skip(struct css_task_iter *it,
241 struct task_struct *task);
42809dd4 242static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
9d755d33 245static void css_release(struct percpu_ref *ref);
f8f22e53 246static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 249 bool is_add);
42809dd4 250
6ab42860
TH
251#ifdef CONFIG_DEBUG_CGROUP_REF
252#define CGROUP_REF_FN_ATTRS noinline
79a7f41f 253#define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
6ab42860
TH
254#include <linux/cgroup_refcnt.h>
255#endif
256
fc5ed1e9
TH
257/**
258 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
259 * @ssid: subsys ID of interest
260 *
261 * cgroup_subsys_enabled() can only be used with literal subsys names which
262 * is fine for individual subsystems but unsuitable for cgroup core. This
263 * is slower static_key_enabled() based test indexed by @ssid.
264 */
0a268dbd 265bool cgroup_ssid_enabled(int ssid)
fc5ed1e9 266{
d20d30eb 267 if (!CGROUP_HAS_SUBSYS_CONFIG)
cfe02a8a
AB
268 return false;
269
fc5ed1e9
TH
270 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
271}
272
9e10a130
TH
273/**
274 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
275 * @cgrp: the cgroup of interest
276 *
277 * The default hierarchy is the v2 interface of cgroup and this function
278 * can be used to test whether a cgroup is on the default hierarchy for
58315c96 279 * cases where a subsystem should behave differently depending on the
9e10a130
TH
280 * interface version.
281 *
9e10a130
TH
282 * List of changed behaviors:
283 *
284 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
285 * and "name" are disallowed.
286 *
287 * - When mounting an existing superblock, mount options should match.
288 *
9e10a130
TH
289 * - rename(2) is disallowed.
290 *
291 * - "tasks" is removed. Everything should be at process granularity. Use
292 * "cgroup.procs" instead.
293 *
294 * - "cgroup.procs" is not sorted. pids will be unique unless they got
58315c96 295 * recycled in-between reads.
9e10a130
TH
296 *
297 * - "release_agent" and "notify_on_release" are removed. Replacement
298 * notification mechanism will be implemented.
299 *
300 * - "cgroup.clone_children" is removed.
301 *
302 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
303 * and its descendants contain no task; otherwise, 1. The file also
304 * generates kernfs notification which can be monitored through poll and
305 * [di]notify when the value of the file changes.
306 *
307 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
308 * take masks of ancestors with non-empty cpus/mems, instead of being
309 * moved to an ancestor.
310 *
311 * - cpuset: a task can be moved into an empty cpuset, and again it takes
312 * masks of ancestors.
313 *
9e10a130
TH
314 * - blkcg: blk-throttle becomes properly hierarchical.
315 *
316 * - debug: disallowed on the default hierarchy.
317 */
0a268dbd 318bool cgroup_on_dfl(const struct cgroup *cgrp)
9e10a130
TH
319{
320 return cgrp->root == &cgrp_dfl_root;
321}
322
6fa4918d
TH
323/* IDR wrappers which synchronize using cgroup_idr_lock */
324static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
325 gfp_t gfp_mask)
326{
327 int ret;
328
329 idr_preload(gfp_mask);
54504e97 330 spin_lock_bh(&cgroup_idr_lock);
d0164adc 331 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 332 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
333 idr_preload_end();
334 return ret;
335}
336
337static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
338{
339 void *ret;
340
54504e97 341 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 342 ret = idr_replace(idr, ptr, id);
54504e97 343 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
344 return ret;
345}
346
347static void cgroup_idr_remove(struct idr *idr, int id)
348{
54504e97 349 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 350 idr_remove(idr, id);
54504e97 351 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
352}
353
27f26753 354static bool cgroup_has_tasks(struct cgroup *cgrp)
d51f39b0 355{
27f26753
TH
356 return cgrp->nr_populated_csets;
357}
d51f39b0 358
7a0cf0e7 359bool cgroup_is_threaded(struct cgroup *cgrp)
454000ad
TH
360{
361 return cgrp->dom_cgrp != cgrp;
362}
363
8cfd8147
TH
364/* can @cgrp host both domain and threaded children? */
365static bool cgroup_is_mixable(struct cgroup *cgrp)
366{
367 /*
368 * Root isn't under domain level resource control exempting it from
369 * the no-internal-process constraint, so it can serve as a thread
370 * root and a parent of resource domains at the same time.
371 */
372 return !cgroup_parent(cgrp);
373}
374
58315c96 375/* can @cgrp become a thread root? Should always be true for a thread root */
8cfd8147
TH
376static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
377{
378 /* mixables don't care */
379 if (cgroup_is_mixable(cgrp))
380 return true;
381
382 /* domain roots can't be nested under threaded */
383 if (cgroup_is_threaded(cgrp))
384 return false;
385
386 /* can only have either domain or threaded children */
387 if (cgrp->nr_populated_domain_children)
388 return false;
389
390 /* and no domain controllers can be enabled */
391 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
392 return false;
393
394 return true;
395}
396
397/* is @cgrp root of a threaded subtree? */
7a0cf0e7 398bool cgroup_is_thread_root(struct cgroup *cgrp)
8cfd8147
TH
399{
400 /* thread root should be a domain */
401 if (cgroup_is_threaded(cgrp))
402 return false;
403
404 /* a domain w/ threaded children is a thread root */
405 if (cgrp->nr_threaded_children)
406 return true;
407
408 /*
409 * A domain which has tasks and explicit threaded controllers
410 * enabled is a thread root.
411 */
412 if (cgroup_has_tasks(cgrp) &&
413 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
414 return true;
415
416 return false;
417}
418
419/* a domain which isn't connected to the root w/o brekage can't be used */
420static bool cgroup_is_valid_domain(struct cgroup *cgrp)
421{
422 /* the cgroup itself can be a thread root */
423 if (cgroup_is_threaded(cgrp))
424 return false;
425
426 /* but the ancestors can't be unless mixable */
427 while ((cgrp = cgroup_parent(cgrp))) {
428 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
429 return false;
430 if (cgroup_is_threaded(cgrp))
431 return false;
432 }
433
434 return true;
d51f39b0
TH
435}
436
5531dc91
TH
437/* subsystems visibly enabled on a cgroup */
438static u16 cgroup_control(struct cgroup *cgrp)
439{
440 struct cgroup *parent = cgroup_parent(cgrp);
441 u16 root_ss_mask = cgrp->root->subsys_mask;
442
8cfd8147
TH
443 if (parent) {
444 u16 ss_mask = parent->subtree_control;
445
446 /* threaded cgroups can only have threaded controllers */
447 if (cgroup_is_threaded(cgrp))
448 ss_mask &= cgrp_dfl_threaded_ss_mask;
449 return ss_mask;
450 }
5531dc91
TH
451
452 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
453 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
454 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
455 return root_ss_mask;
456}
457
458/* subsystems enabled on a cgroup */
459static u16 cgroup_ss_mask(struct cgroup *cgrp)
460{
461 struct cgroup *parent = cgroup_parent(cgrp);
462
8cfd8147
TH
463 if (parent) {
464 u16 ss_mask = parent->subtree_ss_mask;
465
466 /* threaded cgroups can only have threaded controllers */
467 if (cgroup_is_threaded(cgrp))
468 ss_mask &= cgrp_dfl_threaded_ss_mask;
469 return ss_mask;
470 }
5531dc91
TH
471
472 return cgrp->root->subsys_mask;
473}
474
95109b62
TH
475/**
476 * cgroup_css - obtain a cgroup's css for the specified subsystem
477 * @cgrp: the cgroup of interest
9d800df1 478 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 479 *
ca8bdcaf
TH
480 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
481 * function must be called either under cgroup_mutex or rcu_read_lock() and
482 * the caller is responsible for pinning the returned css if it wants to
483 * keep accessing it outside the said locks. This function may return
484 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
485 */
486static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 487 struct cgroup_subsys *ss)
95109b62 488{
d20d30eb 489 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
aec25020 490 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 491 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 492 else
9d800df1 493 return &cgrp->self;
95109b62 494}
42809dd4 495
d41bf8c9
TH
496/**
497 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
498 * @cgrp: the cgroup of interest
499 * @ss: the subsystem of interest
500 *
08b2b6fd 501 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
d41bf8c9
TH
502 * or is offline, %NULL is returned.
503 */
504static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
505 struct cgroup_subsys *ss)
506{
507 struct cgroup_subsys_state *css;
508
509 rcu_read_lock();
510 css = cgroup_css(cgrp, ss);
a581563f 511 if (css && !css_tryget_online(css))
d41bf8c9
TH
512 css = NULL;
513 rcu_read_unlock();
514
515 return css;
516}
517
aec3dfcb 518/**
fc5a828b 519 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
aec3dfcb 520 * @cgrp: the cgroup of interest
9d800df1 521 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 522 *
d0f702e6 523 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
524 * as the matching css of the nearest ancestor including self which has @ss
525 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
526 * function is guaranteed to return non-NULL css.
527 */
fc5a828b
DZ
528static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
529 struct cgroup_subsys *ss)
aec3dfcb
TH
530{
531 lockdep_assert_held(&cgroup_mutex);
532
533 if (!ss)
9d800df1 534 return &cgrp->self;
aec3dfcb 535
eeecbd19
TH
536 /*
537 * This function is used while updating css associations and thus
5531dc91 538 * can't test the csses directly. Test ss_mask.
eeecbd19 539 */
5531dc91 540 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 541 cgrp = cgroup_parent(cgrp);
5531dc91
TH
542 if (!cgrp)
543 return NULL;
544 }
aec3dfcb
TH
545
546 return cgroup_css(cgrp, ss);
95109b62 547}
42809dd4 548
fc5a828b
DZ
549/**
550 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
551 * @cgrp: the cgroup of interest
552 * @ss: the subsystem of interest
553 *
554 * Find and get the effective css of @cgrp for @ss. The effective css is
555 * defined as the matching css of the nearest ancestor including self which
556 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
557 * the root css is returned, so this function always returns a valid css.
558 *
559 * The returned css is not guaranteed to be online, and therefore it is the
58315c96 560 * callers responsibility to try get a reference for it.
fc5a828b
DZ
561 */
562struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
563 struct cgroup_subsys *ss)
564{
565 struct cgroup_subsys_state *css;
566
d20d30eb
KC
567 if (!CGROUP_HAS_SUBSYS_CONFIG)
568 return NULL;
569
fc5a828b
DZ
570 do {
571 css = cgroup_css(cgrp, ss);
572
573 if (css)
574 return css;
575 cgrp = cgroup_parent(cgrp);
576 } while (cgrp);
577
578 return init_css_set.subsys[ss->id];
579}
580
eeecbd19
TH
581/**
582 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
583 * @cgrp: the cgroup of interest
584 * @ss: the subsystem of interest
585 *
586 * Find and get the effective css of @cgrp for @ss. The effective css is
587 * defined as the matching css of the nearest ancestor including self which
588 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
589 * the root css is returned, so this function always returns a valid css.
590 * The returned css must be put using css_put().
591 */
592struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
593 struct cgroup_subsys *ss)
594{
595 struct cgroup_subsys_state *css;
596
d20d30eb
KC
597 if (!CGROUP_HAS_SUBSYS_CONFIG)
598 return NULL;
599
eeecbd19
TH
600 rcu_read_lock();
601
602 do {
603 css = cgroup_css(cgrp, ss);
604
605 if (css && css_tryget_online(css))
606 goto out_unlock;
607 cgrp = cgroup_parent(cgrp);
608 } while (cgrp);
609
610 css = init_css_set.subsys[ss->id];
611 css_get(css);
612out_unlock:
613 rcu_read_unlock();
614 return css;
615}
c74d40e8 616EXPORT_SYMBOL_GPL(cgroup_get_e_css);
eeecbd19 617
a590b90d 618static void cgroup_get_live(struct cgroup *cgrp)
052c3f3a
TH
619{
620 WARN_ON_ONCE(cgroup_is_dead(cgrp));
621 css_get(&cgrp->self);
622}
623
aade7f9e
RG
624/**
625 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
626 * is responsible for taking the css_set_lock.
627 * @cgrp: the cgroup in question
628 */
629int __cgroup_task_count(const struct cgroup *cgrp)
630{
631 int count = 0;
632 struct cgrp_cset_link *link;
633
634 lockdep_assert_held(&css_set_lock);
635
636 list_for_each_entry(link, &cgrp->cset_links, cset_link)
637 count += link->cset->nr_tasks;
638
639 return count;
640}
641
642/**
643 * cgroup_task_count - count the number of tasks in a cgroup.
644 * @cgrp: the cgroup in question
645 */
646int cgroup_task_count(const struct cgroup *cgrp)
647{
648 int count;
649
650 spin_lock_irq(&css_set_lock);
651 count = __cgroup_task_count(cgrp);
652 spin_unlock_irq(&css_set_lock);
653
654 return count;
655}
656
b4168640 657struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 658{
2bd59d48 659 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 660 struct cftype *cft = of_cft(of);
2bd59d48
TH
661
662 /*
663 * This is open and unprotected implementation of cgroup_css().
664 * seq_css() is only called from a kernfs file operation which has
665 * an active reference on the file. Because all the subsystem
666 * files are drained before a css is disassociated with a cgroup,
667 * the matching css from the cgroup's subsys table is guaranteed to
668 * be and stay valid until the enclosing operation is complete.
669 */
d20d30eb 670 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
2bd59d48
TH
671 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
672 else
9d800df1 673 return &cgrp->self;
59f5296b 674}
b4168640 675EXPORT_SYMBOL_GPL(of_css);
59f5296b 676
1c6727af
TH
677/**
678 * for_each_css - iterate all css's of a cgroup
679 * @css: the iteration cursor
680 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
681 * @cgrp: the target cgroup to iterate css's of
682 *
aec3dfcb 683 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
684 */
685#define for_each_css(css, ssid, cgrp) \
686 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
687 if (!((css) = rcu_dereference_check( \
688 (cgrp)->subsys[(ssid)], \
689 lockdep_is_held(&cgroup_mutex)))) { } \
690 else
691
aec3dfcb
TH
692/**
693 * for_each_e_css - iterate all effective css's of a cgroup
694 * @css: the iteration cursor
695 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
696 * @cgrp: the target cgroup to iterate css's of
697 *
698 * Should be called under cgroup_[tree_]mutex.
699 */
fc5a828b
DZ
700#define for_each_e_css(css, ssid, cgrp) \
701 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
702 if (!((css) = cgroup_e_css_by_mask(cgrp, \
703 cgroup_subsys[(ssid)]))) \
704 ; \
aec3dfcb
TH
705 else
706
cb4a3167 707/**
b4e0eeaf 708 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
709 * @ss: the iteration cursor
710 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 711 * @ss_mask: the bitmask
cb4a3167
AS
712 *
713 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 714 * @ss_mask is set.
cb4a3167 715 */
b4e0eeaf
TH
716#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
717 unsigned long __ss_mask = (ss_mask); \
d20d30eb 718 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
4a705c5c 719 (ssid) = 0; \
b4e0eeaf
TH
720 break; \
721 } \
722 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
723 (ss) = cgroup_subsys[ssid]; \
724 {
725
726#define while_each_subsys_mask() \
727 } \
728 } \
729} while (false)
cb4a3167 730
f8f22e53
TH
731/* iterate over child cgrps, lock should be held throughout iteration */
732#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 733 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 734 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
735 cgroup_is_dead(child); })) \
736 ; \
737 else
7ae1bad9 738
58315c96 739/* walk live descendants in pre order */
ce3f1d9d
TH
740#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
741 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
742 if (({ lockdep_assert_held(&cgroup_mutex); \
743 (dsct) = (d_css)->cgroup; \
744 cgroup_is_dead(dsct); })) \
745 ; \
746 else
747
748/* walk live descendants in postorder */
749#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
750 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
751 if (({ lockdep_assert_held(&cgroup_mutex); \
752 (dsct) = (d_css)->cgroup; \
753 cgroup_is_dead(dsct); })) \
754 ; \
755 else
756
172a2c06
TH
757/*
758 * The default css_set - used by init and its children prior to any
817929ec
PM
759 * hierarchies being mounted. It contains a pointer to the root state
760 * for each subsystem. Also used to anchor the list of css_sets. Not
761 * reference-counted, to improve performance when child cgroups
762 * haven't been created.
763 */
5024ae29 764struct css_set init_css_set = {
4b9502e6 765 .refcount = REFCOUNT_INIT(1),
454000ad 766 .dom_cset = &init_css_set,
172a2c06
TH
767 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
768 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
c03cd773 769 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
5f617ebb 770 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
454000ad 771 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
5f617ebb 772 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
07fd5b6c
TH
773 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
774 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
172a2c06 775 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
38683148
TH
776
777 /*
778 * The following field is re-initialized when this cset gets linked
779 * in cgroup_init(). However, let's initialize the field
780 * statically too so that the default cgroup can be accessed safely
781 * early during boot.
782 */
783 .dfl_cgrp = &cgrp_dfl_root.cgrp,
172a2c06 784};
817929ec 785
172a2c06 786static int css_set_count = 1; /* 1 for init_css_set */
817929ec 787
454000ad
TH
788static bool css_set_threaded(struct css_set *cset)
789{
790 return cset->dom_cset != cset;
791}
792
0de0942d
TH
793/**
794 * css_set_populated - does a css_set contain any tasks?
795 * @cset: target css_set
73a7242a
WL
796 *
797 * css_set_populated() should be the same as !!cset->nr_tasks at steady
798 * state. However, css_set_populated() can be called while a task is being
799 * added to or removed from the linked list before the nr_tasks is
800 * properly updated. Hence, we can't just look at ->nr_tasks here.
0de0942d
TH
801 */
802static bool css_set_populated(struct css_set *cset)
803{
f0d9a5f1 804 lockdep_assert_held(&css_set_lock);
0de0942d
TH
805
806 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
807}
808
842b597e 809/**
788b950c 810 * cgroup_update_populated - update the populated count of a cgroup
842b597e
TH
811 * @cgrp: the target cgroup
812 * @populated: inc or dec populated count
813 *
0de0942d 814 * One of the css_sets associated with @cgrp is either getting its first
788b950c
TH
815 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
816 * count is propagated towards root so that a given cgroup's
817 * nr_populated_children is zero iff none of its descendants contain any
818 * tasks.
842b597e 819 *
788b950c
TH
820 * @cgrp's interface file "cgroup.populated" is zero if both
821 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
822 * 1 otherwise. When the sum changes from or to zero, userland is notified
823 * that the content of the interface file has changed. This can be used to
824 * detect when @cgrp and its descendants become populated or empty.
842b597e
TH
825 */
826static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
827{
788b950c
TH
828 struct cgroup *child = NULL;
829 int adj = populated ? 1 : -1;
830
f0d9a5f1 831 lockdep_assert_held(&css_set_lock);
842b597e
TH
832
833 do {
788b950c 834 bool was_populated = cgroup_is_populated(cgrp);
842b597e 835
454000ad 836 if (!child) {
788b950c 837 cgrp->nr_populated_csets += adj;
454000ad
TH
838 } else {
839 if (cgroup_is_threaded(child))
840 cgrp->nr_populated_threaded_children += adj;
841 else
842 cgrp->nr_populated_domain_children += adj;
843 }
842b597e 844
788b950c 845 if (was_populated == cgroup_is_populated(cgrp))
842b597e
TH
846 break;
847
d62beb7f 848 cgroup1_check_for_release(cgrp);
4c476d8c
RG
849 TRACE_CGROUP_PATH(notify_populated, cgrp,
850 cgroup_is_populated(cgrp));
6f60eade
TH
851 cgroup_file_notify(&cgrp->events_file);
852
788b950c 853 child = cgrp;
d51f39b0 854 cgrp = cgroup_parent(cgrp);
842b597e
TH
855 } while (cgrp);
856}
857
0de0942d
TH
858/**
859 * css_set_update_populated - update populated state of a css_set
860 * @cset: target css_set
861 * @populated: whether @cset is populated or depopulated
862 *
863 * @cset is either getting the first task or losing the last. Update the
788b950c 864 * populated counters of all associated cgroups accordingly.
0de0942d
TH
865 */
866static void css_set_update_populated(struct css_set *cset, bool populated)
867{
868 struct cgrp_cset_link *link;
869
f0d9a5f1 870 lockdep_assert_held(&css_set_lock);
0de0942d
TH
871
872 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
873 cgroup_update_populated(link->cgrp, populated);
874}
875
b636fd38
TH
876/*
877 * @task is leaving, advance task iterators which are pointing to it so
878 * that they can resume at the next position. Advancing an iterator might
879 * remove it from the list, use safe walk. See css_task_iter_skip() for
880 * details.
881 */
882static void css_set_skip_task_iters(struct css_set *cset,
883 struct task_struct *task)
884{
885 struct css_task_iter *it, *pos;
886
887 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
888 css_task_iter_skip(it, task);
889}
890
f6d7d049
TH
891/**
892 * css_set_move_task - move a task from one css_set to another
893 * @task: task being moved
894 * @from_cset: css_set @task currently belongs to (may be NULL)
895 * @to_cset: new css_set @task is being moved to (may be NULL)
896 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
897 *
898 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
899 * css_set, @from_cset can be NULL. If @task is being disassociated
900 * instead of moved, @to_cset can be NULL.
901 *
788b950c 902 * This function automatically handles populated counter updates and
ed27b9f7
TH
903 * css_task_iter adjustments but the caller is responsible for managing
904 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
905 */
906static void css_set_move_task(struct task_struct *task,
907 struct css_set *from_cset, struct css_set *to_cset,
908 bool use_mg_tasks)
909{
f0d9a5f1 910 lockdep_assert_held(&css_set_lock);
f6d7d049 911
20b454a6
TH
912 if (to_cset && !css_set_populated(to_cset))
913 css_set_update_populated(to_cset, true);
914
f6d7d049
TH
915 if (from_cset) {
916 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7 917
b636fd38 918 css_set_skip_task_iters(from_cset, task);
f6d7d049
TH
919 list_del_init(&task->cg_list);
920 if (!css_set_populated(from_cset))
921 css_set_update_populated(from_cset, false);
922 } else {
923 WARN_ON_ONCE(!list_empty(&task->cg_list));
924 }
925
926 if (to_cset) {
927 /*
928 * We are synchronized through cgroup_threadgroup_rwsem
929 * against PF_EXITING setting such that we can't race
e7c7b1d8 930 * against cgroup_exit()/cgroup_free() dropping the css_set.
f6d7d049
TH
931 */
932 WARN_ON_ONCE(task->flags & PF_EXITING);
933
2ce7135a 934 cgroup_move_task(task, to_cset);
f6d7d049
TH
935 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
936 &to_cset->tasks);
937 }
938}
939
7717f7ba
PM
940/*
941 * hash table for cgroup groups. This improves the performance to find
942 * an existing css_set. This hash doesn't (currently) take into
943 * account cgroups in empty hierarchies.
944 */
472b1053 945#define CSS_SET_HASH_BITS 7
0ac801fe 946static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 947
0ac801fe 948static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 949{
0ac801fe 950 unsigned long key = 0UL;
30159ec7
TH
951 struct cgroup_subsys *ss;
952 int i;
472b1053 953
30159ec7 954 for_each_subsys(ss, i)
0ac801fe
LZ
955 key += (unsigned long)css[i];
956 key = (key >> 16) ^ key;
472b1053 957
0ac801fe 958 return key;
472b1053
LZ
959}
960
dcfe149b 961void put_css_set_locked(struct css_set *cset)
b4f48b63 962{
69d0206c 963 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
964 struct cgroup_subsys *ss;
965 int ssid;
5abb8855 966
f0d9a5f1 967 lockdep_assert_held(&css_set_lock);
89c5509b 968
4b9502e6 969 if (!refcount_dec_and_test(&cset->refcount))
146aa1bd 970 return;
81a6a5cd 971
454000ad
TH
972 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
973
58315c96 974 /* This css_set is dead. Unlink it and release cgroup and css refs */
53254f90 975 for_each_subsys(ss, ssid) {
2d8f243a 976 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
977 css_put(cset->subsys[ssid]);
978 }
5abb8855 979 hash_del(&cset->hlist);
2c6ab6d2
PM
980 css_set_count--;
981
69d0206c 982 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
983 list_del(&link->cset_link);
984 list_del(&link->cgrp_link);
2ceb231b
TH
985 if (cgroup_parent(link->cgrp))
986 cgroup_put(link->cgrp);
2c6ab6d2 987 kfree(link);
81a6a5cd 988 }
2c6ab6d2 989
454000ad
TH
990 if (css_set_threaded(cset)) {
991 list_del(&cset->threaded_csets_node);
992 put_css_set_locked(cset->dom_cset);
993 }
994
5abb8855 995 kfree_rcu(cset, rcu_head);
b4f48b63
PM
996}
997
b326f9d0 998/**
7717f7ba 999 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
1000 * @cset: candidate css_set being tested
1001 * @old_cset: existing css_set for a task
7717f7ba
PM
1002 * @new_cgrp: cgroup that's being entered by the task
1003 * @template: desired set of css pointers in css_set (pre-calculated)
1004 *
6f4b7e63 1005 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
1006 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1007 */
5abb8855
TH
1008static bool compare_css_sets(struct css_set *cset,
1009 struct css_set *old_cset,
7717f7ba
PM
1010 struct cgroup *new_cgrp,
1011 struct cgroup_subsys_state *template[])
1012{
454000ad 1013 struct cgroup *new_dfl_cgrp;
7717f7ba
PM
1014 struct list_head *l1, *l2;
1015
aec3dfcb
TH
1016 /*
1017 * On the default hierarchy, there can be csets which are
1018 * associated with the same set of cgroups but different csses.
1019 * Let's first ensure that csses match.
1020 */
1021 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 1022 return false;
7717f7ba 1023
454000ad
TH
1024
1025 /* @cset's domain should match the default cgroup's */
1026 if (cgroup_on_dfl(new_cgrp))
1027 new_dfl_cgrp = new_cgrp;
1028 else
1029 new_dfl_cgrp = old_cset->dfl_cgrp;
1030
1031 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1032 return false;
1033
7717f7ba
PM
1034 /*
1035 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
1036 * different cgroups in hierarchies. As different cgroups may
1037 * share the same effective css, this comparison is always
1038 * necessary.
7717f7ba 1039 */
69d0206c
TH
1040 l1 = &cset->cgrp_links;
1041 l2 = &old_cset->cgrp_links;
7717f7ba 1042 while (1) {
69d0206c 1043 struct cgrp_cset_link *link1, *link2;
5abb8855 1044 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
1045
1046 l1 = l1->next;
1047 l2 = l2->next;
1048 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
1049 if (l1 == &cset->cgrp_links) {
1050 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
1051 break;
1052 } else {
69d0206c 1053 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
1054 }
1055 /* Locate the cgroups associated with these links. */
69d0206c
TH
1056 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1057 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1058 cgrp1 = link1->cgrp;
1059 cgrp2 = link2->cgrp;
7717f7ba 1060 /* Hierarchies should be linked in the same order. */
5abb8855 1061 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
1062
1063 /*
1064 * If this hierarchy is the hierarchy of the cgroup
1065 * that's changing, then we need to check that this
1066 * css_set points to the new cgroup; if it's any other
1067 * hierarchy, then this css_set should point to the
1068 * same cgroup as the old css_set.
1069 */
5abb8855
TH
1070 if (cgrp1->root == new_cgrp->root) {
1071 if (cgrp1 != new_cgrp)
7717f7ba
PM
1072 return false;
1073 } else {
5abb8855 1074 if (cgrp1 != cgrp2)
7717f7ba
PM
1075 return false;
1076 }
1077 }
1078 return true;
1079}
1080
b326f9d0
TH
1081/**
1082 * find_existing_css_set - init css array and find the matching css_set
1083 * @old_cset: the css_set that we're using before the cgroup transition
1084 * @cgrp: the cgroup that we're moving into
1085 * @template: out param for the new set of csses, should be clear on entry
817929ec 1086 */
5abb8855
TH
1087static struct css_set *find_existing_css_set(struct css_set *old_cset,
1088 struct cgroup *cgrp,
1089 struct cgroup_subsys_state *template[])
b4f48b63 1090{
3dd06ffa 1091 struct cgroup_root *root = cgrp->root;
30159ec7 1092 struct cgroup_subsys *ss;
5abb8855 1093 struct css_set *cset;
0ac801fe 1094 unsigned long key;
b326f9d0 1095 int i;
817929ec 1096
aae8aab4
BB
1097 /*
1098 * Build the set of subsystem state objects that we want to see in the
58315c96 1099 * new css_set. While subsystems can change globally, the entries here
aae8aab4
BB
1100 * won't change, so no need for locking.
1101 */
30159ec7 1102 for_each_subsys(ss, i) {
f392e51c 1103 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
1104 /*
1105 * @ss is in this hierarchy, so we want the
1106 * effective css from @cgrp.
1107 */
fc5a828b 1108 template[i] = cgroup_e_css_by_mask(cgrp, ss);
817929ec 1109 } else {
aec3dfcb
TH
1110 /*
1111 * @ss is not in this hierarchy, so we don't want
1112 * to change the css.
1113 */
5abb8855 1114 template[i] = old_cset->subsys[i];
817929ec
PM
1115 }
1116 }
1117
0ac801fe 1118 key = css_set_hash(template);
5abb8855
TH
1119 hash_for_each_possible(css_set_table, cset, hlist, key) {
1120 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
1121 continue;
1122
1123 /* This css_set matches what we need */
5abb8855 1124 return cset;
472b1053 1125 }
817929ec
PM
1126
1127 /* No existing cgroup group matched */
1128 return NULL;
1129}
1130
69d0206c 1131static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 1132{
69d0206c 1133 struct cgrp_cset_link *link, *tmp_link;
36553434 1134
69d0206c
TH
1135 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1136 list_del(&link->cset_link);
36553434
LZ
1137 kfree(link);
1138 }
1139}
1140
69d0206c
TH
1141/**
1142 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1143 * @count: the number of links to allocate
1144 * @tmp_links: list_head the allocated links are put on
1145 *
1146 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1147 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1148 */
69d0206c 1149static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1150{
69d0206c 1151 struct cgrp_cset_link *link;
817929ec 1152 int i;
69d0206c
TH
1153
1154 INIT_LIST_HEAD(tmp_links);
1155
817929ec 1156 for (i = 0; i < count; i++) {
f4f4be2b 1157 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1158 if (!link) {
69d0206c 1159 free_cgrp_cset_links(tmp_links);
817929ec
PM
1160 return -ENOMEM;
1161 }
69d0206c 1162 list_add(&link->cset_link, tmp_links);
817929ec
PM
1163 }
1164 return 0;
1165}
1166
c12f65d4
LZ
1167/**
1168 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1169 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1170 * @cset: the css_set to be linked
c12f65d4
LZ
1171 * @cgrp: the destination cgroup
1172 */
69d0206c
TH
1173static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1174 struct cgroup *cgrp)
c12f65d4 1175{
69d0206c 1176 struct cgrp_cset_link *link;
c12f65d4 1177
69d0206c 1178 BUG_ON(list_empty(tmp_links));
6803c006
TH
1179
1180 if (cgroup_on_dfl(cgrp))
1181 cset->dfl_cgrp = cgrp;
1182
69d0206c
TH
1183 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1184 link->cset = cset;
7717f7ba 1185 link->cgrp = cgrp;
842b597e 1186
7717f7ba 1187 /*
389b9c1b 1188 * Always add links to the tail of the lists so that the lists are
58315c96 1189 * in chronological order.
7717f7ba 1190 */
389b9c1b 1191 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1192 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1193
1194 if (cgroup_parent(cgrp))
a590b90d 1195 cgroup_get_live(cgrp);
c12f65d4
LZ
1196}
1197
b326f9d0
TH
1198/**
1199 * find_css_set - return a new css_set with one cgroup updated
1200 * @old_cset: the baseline css_set
1201 * @cgrp: the cgroup to be updated
1202 *
1203 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1204 * substituted into the appropriate hierarchy.
817929ec 1205 */
5abb8855
TH
1206static struct css_set *find_css_set(struct css_set *old_cset,
1207 struct cgroup *cgrp)
817929ec 1208{
b326f9d0 1209 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1210 struct css_set *cset;
69d0206c
TH
1211 struct list_head tmp_links;
1212 struct cgrp_cset_link *link;
2d8f243a 1213 struct cgroup_subsys *ss;
0ac801fe 1214 unsigned long key;
2d8f243a 1215 int ssid;
472b1053 1216
b326f9d0
TH
1217 lockdep_assert_held(&cgroup_mutex);
1218
817929ec
PM
1219 /* First see if we already have a cgroup group that matches
1220 * the desired set */
82d6489d 1221 spin_lock_irq(&css_set_lock);
5abb8855
TH
1222 cset = find_existing_css_set(old_cset, cgrp, template);
1223 if (cset)
1224 get_css_set(cset);
82d6489d 1225 spin_unlock_irq(&css_set_lock);
817929ec 1226
5abb8855
TH
1227 if (cset)
1228 return cset;
817929ec 1229
f4f4be2b 1230 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1231 if (!cset)
817929ec
PM
1232 return NULL;
1233
69d0206c 1234 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1235 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1236 kfree(cset);
817929ec
PM
1237 return NULL;
1238 }
1239
4b9502e6 1240 refcount_set(&cset->refcount, 1);
454000ad 1241 cset->dom_cset = cset;
5abb8855 1242 INIT_LIST_HEAD(&cset->tasks);
c7561128 1243 INIT_LIST_HEAD(&cset->mg_tasks);
c03cd773 1244 INIT_LIST_HEAD(&cset->dying_tasks);
ed27b9f7 1245 INIT_LIST_HEAD(&cset->task_iters);
454000ad 1246 INIT_LIST_HEAD(&cset->threaded_csets);
5abb8855 1247 INIT_HLIST_NODE(&cset->hlist);
5f617ebb 1248 INIT_LIST_HEAD(&cset->cgrp_links);
07fd5b6c
TH
1249 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1250 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
5f617ebb 1251 INIT_LIST_HEAD(&cset->mg_node);
817929ec
PM
1252
1253 /* Copy the set of subsystem state objects generated in
1254 * find_existing_css_set() */
5abb8855 1255 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1256
82d6489d 1257 spin_lock_irq(&css_set_lock);
817929ec 1258 /* Add reference counts and links from the new css_set. */
69d0206c 1259 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1260 struct cgroup *c = link->cgrp;
69d0206c 1261
7717f7ba
PM
1262 if (c->root == cgrp->root)
1263 c = cgrp;
69d0206c 1264 link_css_set(&tmp_links, cset, c);
7717f7ba 1265 }
817929ec 1266
69d0206c 1267 BUG_ON(!list_empty(&tmp_links));
817929ec 1268
817929ec 1269 css_set_count++;
472b1053 1270
2d8f243a 1271 /* Add @cset to the hash table */
5abb8855
TH
1272 key = css_set_hash(cset->subsys);
1273 hash_add(css_set_table, &cset->hlist, key);
472b1053 1274
53254f90
TH
1275 for_each_subsys(ss, ssid) {
1276 struct cgroup_subsys_state *css = cset->subsys[ssid];
1277
2d8f243a 1278 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1279 &css->cgroup->e_csets[ssid]);
1280 css_get(css);
1281 }
2d8f243a 1282
82d6489d 1283 spin_unlock_irq(&css_set_lock);
817929ec 1284
454000ad
TH
1285 /*
1286 * If @cset should be threaded, look up the matching dom_cset and
1287 * link them up. We first fully initialize @cset then look for the
1288 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1289 * to stay empty until we return.
1290 */
1291 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1292 struct css_set *dcset;
1293
1294 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1295 if (!dcset) {
1296 put_css_set(cset);
1297 return NULL;
1298 }
1299
1300 spin_lock_irq(&css_set_lock);
1301 cset->dom_cset = dcset;
1302 list_add_tail(&cset->threaded_csets_node,
1303 &dcset->threaded_csets);
1304 spin_unlock_irq(&css_set_lock);
1305 }
1306
5abb8855 1307 return cset;
b4f48b63
PM
1308}
1309
0a268dbd 1310struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1311{
f2eb478f 1312 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
2bd59d48 1313
3dd06ffa 1314 return root_cgrp->root;
2bd59d48
TH
1315}
1316
6a010a49
TH
1317void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1318{
1319 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1320
1321 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1322 if (favor && !favoring) {
1323 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1324 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1325 } else if (!favor && favoring) {
1326 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1327 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1328 }
1329}
1330
3dd06ffa 1331static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1332{
1333 int id;
1334
1335 lockdep_assert_held(&cgroup_mutex);
1336
985ed670 1337 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1338 if (id < 0)
1339 return id;
1340
1341 root->hierarchy_id = id;
1342 return 0;
1343}
1344
3dd06ffa 1345static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1346{
1347 lockdep_assert_held(&cgroup_mutex);
1348
8c8a5502 1349 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
f2e85d57
TH
1350}
1351
1592c9b2 1352void cgroup_free_root(struct cgroup_root *root)
f2e85d57 1353{
74321038 1354 kfree(root);
f2e85d57
TH
1355}
1356
3dd06ffa 1357static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1358{
3dd06ffa 1359 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1360 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1361
ed1777de
TH
1362 trace_cgroup_destroy_root(root);
1363
334c3679 1364 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1365
776f02fa 1366 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1367 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1368
f2e85d57 1369 /* Rebind all subsystems back to the default hierarchy */
334c3679 1370 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1371
7717f7ba 1372 /*
f2e85d57
TH
1373 * Release all the links from cset_links to this hierarchy's
1374 * root cgroup
7717f7ba 1375 */
82d6489d 1376 spin_lock_irq(&css_set_lock);
f2e85d57
TH
1377
1378 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1379 list_del(&link->cset_link);
1380 list_del(&link->cgrp_link);
1381 kfree(link);
1382 }
f0d9a5f1 1383
82d6489d 1384 spin_unlock_irq(&css_set_lock);
f2e85d57
TH
1385
1386 if (!list_empty(&root->root_list)) {
1387 list_del(&root->root_list);
1388 cgroup_root_count--;
1389 }
1390
6a010a49 1391 cgroup_favor_dynmods(root, false);
f2e85d57
TH
1392 cgroup_exit_root_id(root);
1393
1394 mutex_unlock(&cgroup_mutex);
f2e85d57 1395
a7df69b8 1396 cgroup_rstat_exit(cgrp);
2bd59d48 1397 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1398 cgroup_free_root(root);
1399}
1400
46307fd6
MK
1401/*
1402 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1403 */
e210a89f
LF
1404static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1405 struct cgroup_root *root)
1406{
1407 struct cgroup *res_cgroup = NULL;
1408
1409 if (cset == &init_css_set) {
1410 res_cgroup = &root->cgrp;
1411 } else if (root == &cgrp_dfl_root) {
1412 res_cgroup = cset->dfl_cgrp;
1413 } else {
1414 struct cgrp_cset_link *link;
46307fd6 1415 lockdep_assert_held(&css_set_lock);
e210a89f
LF
1416
1417 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1418 struct cgroup *c = link->cgrp;
1419
1420 if (c->root == root) {
1421 res_cgroup = c;
1422 break;
1423 }
1424 }
1425 }
1426
46307fd6 1427 BUG_ON(!res_cgroup);
e210a89f
LF
1428 return res_cgroup;
1429}
1430
4f41fc59
SH
1431/*
1432 * look up cgroup associated with current task's cgroup namespace on the
1433 * specified hierarchy
1434 */
1435static struct cgroup *
1436current_cgns_cgroup_from_root(struct cgroup_root *root)
1437{
1438 struct cgroup *res = NULL;
1439 struct css_set *cset;
1440
1441 lockdep_assert_held(&css_set_lock);
1442
1443 rcu_read_lock();
1444
1445 cset = current->nsproxy->cgroup_ns->root_cset;
e210a89f 1446 res = __cset_cgroup_from_root(cset, root);
4f41fc59 1447
4f41fc59
SH
1448 rcu_read_unlock();
1449
4f41fc59
SH
1450 return res;
1451}
1452
46307fd6
MK
1453/*
1454 * Look up cgroup associated with current task's cgroup namespace on the default
1455 * hierarchy.
1456 *
1457 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1458 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1459 * pointers.
1460 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1461 * - As a bonus returned cgrp is pinned with the current because it cannot
1462 * switch cgroup_ns asynchronously.
1463 */
1464static struct cgroup *current_cgns_cgroup_dfl(void)
1465{
1466 struct css_set *cset;
1467
1468 cset = current->nsproxy->cgroup_ns->root_cset;
1469 return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1470}
1471
ceb6a081
TH
1472/* look up cgroup associated with given css_set on the specified hierarchy */
1473static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1474 struct cgroup_root *root)
7717f7ba 1475{
96d365e0 1476 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1477 lockdep_assert_held(&css_set_lock);
96d365e0 1478
46307fd6 1479 return __cset_cgroup_from_root(cset, root);
7717f7ba
PM
1480}
1481
ddbcc7e8 1482/*
ceb6a081 1483 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1484 * called with cgroup_mutex and css_set_lock held.
ceb6a081 1485 */
0a268dbd
TH
1486struct cgroup *task_cgroup_from_root(struct task_struct *task,
1487 struct cgroup_root *root)
ceb6a081
TH
1488{
1489 /*
e7c7b1d8
MK
1490 * No need to lock the task - since we hold css_set_lock the
1491 * task can't change groups.
ceb6a081
TH
1492 */
1493 return cset_cgroup_from_root(task_css_set(task), root);
1494}
1495
ddbcc7e8 1496/*
ddbcc7e8
PM
1497 * A task must hold cgroup_mutex to modify cgroups.
1498 *
1499 * Any task can increment and decrement the count field without lock.
1500 * So in general, code holding cgroup_mutex can't rely on the count
1501 * field not changing. However, if the count goes to zero, then only
956db3ca 1502 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1503 * means that no tasks are currently attached, therefore there is no
1504 * way a task attached to that cgroup can fork (the other way to
1505 * increment the count). So code holding cgroup_mutex can safely
1506 * assume that if the count is zero, it will stay zero. Similarly, if
1507 * a task holds cgroup_mutex on a cgroup with zero count, it
1508 * knows that the cgroup won't be removed, as cgroup_rmdir()
1509 * needs that mutex.
1510 *
ddbcc7e8
PM
1511 * A cgroup can only be deleted if both its 'count' of using tasks
1512 * is zero, and its list of 'children' cgroups is empty. Since all
1513 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1514 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1515 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1516 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1517 *
1518 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1519 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1520 */
1521
2bd59d48 1522static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
a424316c 1523
cf892988
JA
1524static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1525 char *buf)
ddbcc7e8 1526{
3e1d2eed
TH
1527 struct cgroup_subsys *ss = cft->ss;
1528
8d7e6fb0 1529 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
c1bbd933
TH
1530 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1531 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1532
1533 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1534 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
cf892988 1535 cft->name);
c1bbd933 1536 } else {
cf892988 1537 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
c1bbd933 1538 }
8d7e6fb0 1539 return buf;
ddbcc7e8
PM
1540}
1541
f2e85d57
TH
1542/**
1543 * cgroup_file_mode - deduce file mode of a control file
1544 * @cft: the control file in question
1545 *
7dbdb199 1546 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1547 */
1548static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1549{
f2e85d57 1550 umode_t mode = 0;
65dff759 1551
f2e85d57
TH
1552 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1553 mode |= S_IRUGO;
1554
7dbdb199
TH
1555 if (cft->write_u64 || cft->write_s64 || cft->write) {
1556 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1557 mode |= S_IWUGO;
1558 else
1559 mode |= S_IWUSR;
1560 }
f2e85d57
TH
1561
1562 return mode;
65dff759
LZ
1563}
1564
af0ba678 1565/**
8699b776 1566 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1567 * @subtree_control: the new subtree_control mask to consider
5ced2518 1568 * @this_ss_mask: available subsystems
af0ba678
TH
1569 *
1570 * On the default hierarchy, a subsystem may request other subsystems to be
1571 * enabled together through its ->depends_on mask. In such cases, more
1572 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1573 *
0f060deb 1574 * This function calculates which subsystems need to be enabled if
5ced2518 1575 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1576 */
5ced2518 1577static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1578{
6e5c8307 1579 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1580 struct cgroup_subsys *ss;
1581 int ssid;
1582
1583 lockdep_assert_held(&cgroup_mutex);
1584
f6d635ad
TH
1585 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1586
af0ba678 1587 while (true) {
6e5c8307 1588 u16 new_ss_mask = cur_ss_mask;
af0ba678 1589
b4e0eeaf 1590 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1591 new_ss_mask |= ss->depends_on;
b4e0eeaf 1592 } while_each_subsys_mask();
af0ba678
TH
1593
1594 /*
1595 * Mask out subsystems which aren't available. This can
1596 * happen only if some depended-upon subsystems were bound
1597 * to non-default hierarchies.
1598 */
5ced2518 1599 new_ss_mask &= this_ss_mask;
af0ba678
TH
1600
1601 if (new_ss_mask == cur_ss_mask)
1602 break;
1603 cur_ss_mask = new_ss_mask;
1604 }
1605
0f060deb
TH
1606 return cur_ss_mask;
1607}
1608
a9746d8d
TH
1609/**
1610 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1611 * @kn: the kernfs_node being serviced
1612 *
1613 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1614 * the method finishes if locking succeeded. Note that once this function
1615 * returns the cgroup returned by cgroup_kn_lock_live() may become
1616 * inaccessible any time. If the caller intends to continue to access the
1617 * cgroup, it should pin it before invoking this function.
1618 */
0a268dbd 1619void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1620{
a9746d8d
TH
1621 struct cgroup *cgrp;
1622
1623 if (kernfs_type(kn) == KERNFS_DIR)
1624 cgrp = kn->priv;
1625 else
1626 cgrp = kn->parent->priv;
1627
1628 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1629
1630 kernfs_unbreak_active_protection(kn);
1631 cgroup_put(cgrp);
ddbcc7e8
PM
1632}
1633
a9746d8d
TH
1634/**
1635 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1636 * @kn: the kernfs_node being serviced
945ba199 1637 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1638 *
1639 * This helper is to be used by a cgroup kernfs method currently servicing
1640 * @kn. It breaks the active protection, performs cgroup locking and
1641 * verifies that the associated cgroup is alive. Returns the cgroup if
1642 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1643 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1644 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1645 *
1646 * Any cgroup kernfs method implementation which requires locking the
1647 * associated cgroup should use this helper. It avoids nesting cgroup
1648 * locking under kernfs active protection and allows all kernfs operations
1649 * including self-removal.
1650 */
0a268dbd 1651struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
05ef1d7c 1652{
a9746d8d
TH
1653 struct cgroup *cgrp;
1654
1655 if (kernfs_type(kn) == KERNFS_DIR)
1656 cgrp = kn->priv;
1657 else
1658 cgrp = kn->parent->priv;
05ef1d7c 1659
2739d3cc 1660 /*
01f6474c 1661 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1662 * active_ref. cgroup liveliness check alone provides enough
1663 * protection against removal. Ensure @cgrp stays accessible and
1664 * break the active_ref protection.
2739d3cc 1665 */
aa32362f
LZ
1666 if (!cgroup_tryget(cgrp))
1667 return NULL;
a9746d8d
TH
1668 kernfs_break_active_protection(kn);
1669
945ba199
TH
1670 if (drain_offline)
1671 cgroup_lock_and_drain_offline(cgrp);
1672 else
1673 mutex_lock(&cgroup_mutex);
05ef1d7c 1674
a9746d8d
TH
1675 if (!cgroup_is_dead(cgrp))
1676 return cgrp;
1677
1678 cgroup_kn_unlock(kn);
1679 return NULL;
ddbcc7e8 1680}
05ef1d7c 1681
2739d3cc 1682static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1683{
2bd59d48 1684 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1685
01f6474c 1686 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1687
1688 if (cft->file_offset) {
1689 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1690 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1691
1692 spin_lock_irq(&cgroup_file_kn_lock);
1693 cfile->kn = NULL;
1694 spin_unlock_irq(&cgroup_file_kn_lock);
b12e3583
TH
1695
1696 del_timer_sync(&cfile->notify_timer);
34c06254
TH
1697 }
1698
2bd59d48 1699 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1700}
1701
13af07df 1702/**
4df8dc90 1703 * css_clear_dir - remove subsys files in a cgroup directory
08b2b6fd 1704 * @css: target css
13af07df 1705 */
334c3679 1706static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1707{
334c3679 1708 struct cgroup *cgrp = css->cgroup;
4df8dc90 1709 struct cftype *cfts;
05ef1d7c 1710
88cb04b9
TH
1711 if (!(css->flags & CSS_VISIBLE))
1712 return;
1713
1714 css->flags &= ~CSS_VISIBLE;
1715
5faaf05f 1716 if (!css->ss) {
8a693f77
TH
1717 if (cgroup_on_dfl(cgrp)) {
1718 cgroup_addrm_files(css, cgrp,
1719 cgroup_base_files, false);
1720 if (cgroup_psi_enabled())
1721 cgroup_addrm_files(css, cgrp,
1722 cgroup_psi_files, false);
1723 } else {
1724 cgroup_addrm_files(css, cgrp,
1725 cgroup1_base_files, false);
1726 }
5faaf05f
TH
1727 } else {
1728 list_for_each_entry(cfts, &css->ss->cfts, node)
1729 cgroup_addrm_files(css, cgrp, cfts, false);
1730 }
ddbcc7e8
PM
1731}
1732
ccdca218 1733/**
4df8dc90
TH
1734 * css_populate_dir - create subsys files in a cgroup directory
1735 * @css: target css
ccdca218
TH
1736 *
1737 * On failure, no file is added.
1738 */
334c3679 1739static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1740{
334c3679 1741 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1742 struct cftype *cfts, *failed_cfts;
1743 int ret;
ccdca218 1744
03970d3c 1745 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1746 return 0;
1747
4df8dc90 1748 if (!css->ss) {
8a693f77
TH
1749 if (cgroup_on_dfl(cgrp)) {
1750 ret = cgroup_addrm_files(&cgrp->self, cgrp,
1751 cgroup_base_files, true);
1752 if (ret < 0)
1753 return ret;
1754
1755 if (cgroup_psi_enabled()) {
1756 ret = cgroup_addrm_files(&cgrp->self, cgrp,
1757 cgroup_psi_files, true);
1758 if (ret < 0)
1759 return ret;
1760 }
1761 } else {
1762 cgroup_addrm_files(css, cgrp,
1763 cgroup1_base_files, true);
1764 }
5faaf05f
TH
1765 } else {
1766 list_for_each_entry(cfts, &css->ss->cfts, node) {
1767 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1768 if (ret < 0) {
1769 failed_cfts = cfts;
1770 goto err;
1771 }
ccdca218
TH
1772 }
1773 }
88cb04b9
TH
1774
1775 css->flags |= CSS_VISIBLE;
1776
ccdca218
TH
1777 return 0;
1778err:
4df8dc90
TH
1779 list_for_each_entry(cfts, &css->ss->cfts, node) {
1780 if (cfts == failed_cfts)
1781 break;
1782 cgroup_addrm_files(css, cgrp, cfts, false);
1783 }
ccdca218
TH
1784 return ret;
1785}
1786
0a268dbd 1787int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1788{
1ada4838 1789 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1790 struct cgroup_subsys *ss;
2d8f243a 1791 int ssid, i, ret;
7ee28539 1792 u16 dfl_disable_ss_mask = 0;
ddbcc7e8 1793
ace2bee8 1794 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1795
b4e0eeaf 1796 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1797 /*
1798 * If @ss has non-root csses attached to it, can't move.
1799 * If @ss is an implicit controller, it is exempt from this
1800 * rule and can be stolen.
1801 */
1802 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1803 !ss->implicit_on_dfl)
3ed80a62 1804 return -EBUSY;
1d5be6b2 1805
5df36032 1806 /* can't move between two non-dummy roots either */
7fd8c565 1807 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1808 return -EBUSY;
7ee28539
WL
1809
1810 /*
1811 * Collect ssid's that need to be disabled from default
1812 * hierarchy.
1813 */
1814 if (ss->root == &cgrp_dfl_root)
1815 dfl_disable_ss_mask |= 1 << ssid;
1816
b4e0eeaf 1817 } while_each_subsys_mask();
ddbcc7e8 1818
7ee28539
WL
1819 if (dfl_disable_ss_mask) {
1820 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1821
1822 /*
1823 * Controllers from default hierarchy that need to be rebound
1824 * are all disabled together in one go.
1825 */
1826 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1827 WARN_ON(cgroup_apply_control(scgrp));
1828 cgroup_finalize_control(scgrp, 0);
1829 }
1830
b4e0eeaf 1831 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1832 struct cgroup_root *src_root = ss->root;
1833 struct cgroup *scgrp = &src_root->cgrp;
1834 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1835 struct css_set *cset;
a8a648c4 1836
1ada4838 1837 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1838
7ee28539
WL
1839 if (src_root != &cgrp_dfl_root) {
1840 /* disable from the source */
1841 src_root->subsys_mask &= ~(1 << ssid);
1842 WARN_ON(cgroup_apply_control(scgrp));
1843 cgroup_finalize_control(scgrp, 0);
1844 }
4df8dc90 1845
334c3679 1846 /* rebind */
1ada4838
TH
1847 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1848 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1849 ss->root = dst_root;
1ada4838 1850 css->cgroup = dcgrp;
73e80ed8 1851
82d6489d 1852 spin_lock_irq(&css_set_lock);
2d8f243a
TH
1853 hash_for_each(css_set_table, i, cset, hlist)
1854 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1855 &dcgrp->e_csets[ss->id]);
82d6489d 1856 spin_unlock_irq(&css_set_lock);
2d8f243a 1857
a7df69b8
JW
1858 if (ss->css_rstat_flush) {
1859 list_del_rcu(&css->rstat_css_node);
763f4fb7 1860 synchronize_rcu();
a7df69b8
JW
1861 list_add_rcu(&css->rstat_css_node,
1862 &dcgrp->rstat_css_list);
1863 }
1864
bd53d617 1865 /* default hierarchy doesn't enable controllers by default */
f392e51c 1866 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1867 if (dst_root == &cgrp_dfl_root) {
1868 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1869 } else {
1ada4838 1870 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1871 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1872 }
a8a648c4 1873
334c3679
TH
1874 ret = cgroup_apply_control(dcgrp);
1875 if (ret)
1876 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1877 ss->name, ret);
1878
5df36032
TH
1879 if (ss->bind)
1880 ss->bind(css);
b4e0eeaf 1881 } while_each_subsys_mask();
ddbcc7e8 1882
1ada4838 1883 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1884 return 0;
1885}
1886
1592c9b2
TH
1887int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1888 struct kernfs_root *kf_root)
4f41fc59 1889{
09be4c82 1890 int len = 0;
4f41fc59
SH
1891 char *buf = NULL;
1892 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1893 struct cgroup *ns_cgroup;
1894
1895 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1896 if (!buf)
1897 return -ENOMEM;
1898
82d6489d 1899 spin_lock_irq(&css_set_lock);
4f41fc59
SH
1900 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1901 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
82d6489d 1902 spin_unlock_irq(&css_set_lock);
4f41fc59
SH
1903
1904 if (len >= PATH_MAX)
1905 len = -ERANGE;
1906 else if (len > 0) {
1907 seq_escape(sf, buf, " \t\n\\");
1908 len = 0;
1909 }
1910 kfree(buf);
1911 return len;
1912}
1913
e34a98d5
AV
1914enum cgroup2_param {
1915 Opt_nsdelegate,
c808f463 1916 Opt_favordynmods,
9852ae3f 1917 Opt_memory_localevents,
8a931f80 1918 Opt_memory_recursiveprot,
e34a98d5
AV
1919 nr__cgroup2_params
1920};
5136f636 1921
d7167b14 1922static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
9852ae3f 1923 fsparam_flag("nsdelegate", Opt_nsdelegate),
6a010a49 1924 fsparam_flag("favordynmods", Opt_favordynmods),
9852ae3f 1925 fsparam_flag("memory_localevents", Opt_memory_localevents),
8a931f80 1926 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
e34a98d5
AV
1927 {}
1928};
5136f636 1929
e34a98d5
AV
1930static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1931{
1932 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1933 struct fs_parse_result result;
1934 int opt;
5136f636 1935
d7167b14 1936 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
e34a98d5
AV
1937 if (opt < 0)
1938 return opt;
5136f636 1939
e34a98d5
AV
1940 switch (opt) {
1941 case Opt_nsdelegate:
1942 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1943 return 0;
6a010a49
TH
1944 case Opt_favordynmods:
1945 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1946 return 0;
9852ae3f
CD
1947 case Opt_memory_localevents:
1948 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1949 return 0;
8a931f80
JW
1950 case Opt_memory_recursiveprot:
1951 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1952 return 0;
e34a98d5
AV
1953 }
1954 return -EINVAL;
5136f636
TH
1955}
1956
1957static void apply_cgroup_root_flags(unsigned int root_flags)
1958{
1959 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1960 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1961 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1962 else
1963 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
9852ae3f 1964
6a010a49
TH
1965 cgroup_favor_dynmods(&cgrp_dfl_root,
1966 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1967
9852ae3f
CD
1968 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1969 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1970 else
1971 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
8a931f80
JW
1972
1973 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1974 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1975 else
1976 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
5136f636
TH
1977 }
1978}
1979
1980static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1981{
1982 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1983 seq_puts(seq, ",nsdelegate");
6a010a49
TH
1984 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1985 seq_puts(seq, ",favordynmods");
9852ae3f
CD
1986 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1987 seq_puts(seq, ",memory_localevents");
8a931f80
JW
1988 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1989 seq_puts(seq, ",memory_recursiveprot");
5136f636
TH
1990 return 0;
1991}
1992
90129625 1993static int cgroup_reconfigure(struct fs_context *fc)
ddbcc7e8 1994{
90129625 1995 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
5136f636 1996
f5dfb531 1997 apply_cgroup_root_flags(ctx->flags);
5136f636 1998 return 0;
ddbcc7e8
PM
1999}
2000
cc31edce
PM
2001static void init_cgroup_housekeeping(struct cgroup *cgrp)
2002{
2d8f243a
TH
2003 struct cgroup_subsys *ss;
2004 int ssid;
2005
d5c419b6
TH
2006 INIT_LIST_HEAD(&cgrp->self.sibling);
2007 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 2008 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
2009 INIT_LIST_HEAD(&cgrp->pidlists);
2010 mutex_init(&cgrp->pidlist_mutex);
9d800df1 2011 cgrp->self.cgroup = cgrp;
184faf32 2012 cgrp->self.flags |= CSS_ONLINE;
454000ad 2013 cgrp->dom_cgrp = cgrp;
1a926e0b
RG
2014 cgrp->max_descendants = INT_MAX;
2015 cgrp->max_depth = INT_MAX;
8f53470b 2016 INIT_LIST_HEAD(&cgrp->rstat_css_list);
d4ff749b 2017 prev_cputime_init(&cgrp->prev_cputime);
2d8f243a
TH
2018
2019 for_each_subsys(ss, ssid)
2020 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
2021
2022 init_waitqueue_head(&cgrp->offline_waitq);
d62beb7f 2023 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
cc31edce 2024}
c6d57f33 2025
cf6299b1 2026void init_cgroup_root(struct cgroup_fs_context *ctx)
ddbcc7e8 2027{
cf6299b1 2028 struct cgroup_root *root = ctx->root;
3dd06ffa 2029 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 2030
ddbcc7e8 2031 INIT_LIST_HEAD(&root->root_list);
3c9c825b 2032 atomic_set(&root->nr_cgrps, 1);
bd89aabc 2033 cgrp->root = root;
cc31edce 2034 init_cgroup_housekeeping(cgrp);
c6d57f33 2035
6a010a49
TH
2036 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2037 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
f5dfb531
AV
2038 if (ctx->release_agent)
2039 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2040 if (ctx->name)
2041 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2042 if (ctx->cpuset_clone_children)
3dd06ffa 2043 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
2044}
2045
35ac1184 2046int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 2047{
d427dfeb 2048 LIST_HEAD(tmp_links);
3dd06ffa 2049 struct cgroup *root_cgrp = &root->cgrp;
fa069904 2050 struct kernfs_syscall_ops *kf_sops;
d427dfeb 2051 struct css_set *cset;
d427dfeb 2052 int i, ret;
2c6ab6d2 2053
d427dfeb 2054 lockdep_assert_held(&cgroup_mutex);
c6d57f33 2055
9732adc5 2056 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
35ac1184 2057 0, GFP_KERNEL);
9d755d33
TH
2058 if (ret)
2059 goto out;
2060
d427dfeb 2061 /*
f0d9a5f1 2062 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 2063 * but that's OK - it can only be increased by someone holding
04313591
TH
2064 * cgroup_lock, and that's us. Later rebinding may disable
2065 * controllers on the default hierarchy and thus create new csets,
2066 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 2067 */
04313591 2068 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 2069 if (ret)
9d755d33 2070 goto cancel_ref;
ddbcc7e8 2071
985ed670 2072 ret = cgroup_init_root_id(root);
ddbcc7e8 2073 if (ret)
9d755d33 2074 goto cancel_ref;
ddbcc7e8 2075
fa069904
TH
2076 kf_sops = root == &cgrp_dfl_root ?
2077 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2078
2079 root->kf_root = kernfs_create_root(kf_sops,
aa818825 2080 KERNFS_ROOT_CREATE_DEACTIVATED |
38aca307
DX
2081 KERNFS_ROOT_SUPPORT_EXPORTOP |
2082 KERNFS_ROOT_SUPPORT_USER_XATTR,
2bd59d48
TH
2083 root_cgrp);
2084 if (IS_ERR(root->kf_root)) {
2085 ret = PTR_ERR(root->kf_root);
2086 goto exit_root_id;
2087 }
f2eb478f 2088 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
d7495343 2089 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
7f203bc8 2090 root_cgrp->ancestors[0] = root_cgrp;
ddbcc7e8 2091
334c3679 2092 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 2093 if (ret)
2bd59d48 2094 goto destroy_root;
ddbcc7e8 2095
a7df69b8 2096 ret = cgroup_rstat_init(root_cgrp);
d427dfeb 2097 if (ret)
2bd59d48 2098 goto destroy_root;
ddbcc7e8 2099
a7df69b8
JW
2100 ret = rebind_subsystems(root, ss_mask);
2101 if (ret)
2102 goto exit_stats;
2103
324bda9e
AS
2104 ret = cgroup_bpf_inherit(root_cgrp);
2105 WARN_ON_ONCE(ret);
2106
ed1777de
TH
2107 trace_cgroup_setup_root(root);
2108
d427dfeb
TH
2109 /*
2110 * There must be no failure case after here, since rebinding takes
2111 * care of subsystems' refcounts, which are explicitly dropped in
2112 * the failure exit path.
2113 */
2114 list_add(&root->root_list, &cgroup_roots);
2115 cgroup_root_count++;
0df6a63f 2116
d427dfeb 2117 /*
3dd06ffa 2118 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2119 * objects.
2120 */
82d6489d 2121 spin_lock_irq(&css_set_lock);
0de0942d 2122 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2123 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2124 if (css_set_populated(cset))
2125 cgroup_update_populated(root_cgrp, true);
2126 }
82d6489d 2127 spin_unlock_irq(&css_set_lock);
ddbcc7e8 2128
d5c419b6 2129 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2130 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2131
d427dfeb 2132 ret = 0;
2bd59d48 2133 goto out;
d427dfeb 2134
a7df69b8
JW
2135exit_stats:
2136 cgroup_rstat_exit(root_cgrp);
2bd59d48
TH
2137destroy_root:
2138 kernfs_destroy_root(root->kf_root);
2139 root->kf_root = NULL;
2140exit_root_id:
d427dfeb 2141 cgroup_exit_root_id(root);
9d755d33 2142cancel_ref:
9a1049da 2143 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2144out:
d427dfeb
TH
2145 free_cgrp_cset_links(&tmp_links);
2146 return ret;
ddbcc7e8
PM
2147}
2148
cca8f327 2149int cgroup_do_get_tree(struct fs_context *fc)
ddbcc7e8 2150{
71d883c3 2151 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
23bf1b6b 2152 int ret;
ddbcc7e8 2153
23bf1b6b 2154 ctx->kfc.root = ctx->root->kf_root;
cca8f327 2155 if (fc->fs_type == &cgroup2_fs_type)
23bf1b6b 2156 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
cca8f327 2157 else
23bf1b6b
DH
2158 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2159 ret = kernfs_get_tree(fc);
ed82571b 2160
56fde9e0 2161 /*
633feee3
TH
2162 * In non-init cgroup namespace, instead of root cgroup's dentry,
2163 * we return the dentry corresponding to the cgroupns->root_cgrp.
56fde9e0 2164 */
cca8f327 2165 if (!ret && ctx->ns != &init_cgroup_ns) {
633feee3 2166 struct dentry *nsdentry;
71d883c3 2167 struct super_block *sb = fc->root->d_sb;
633feee3 2168 struct cgroup *cgrp;
e37a06f1 2169
633feee3
TH
2170 mutex_lock(&cgroup_mutex);
2171 spin_lock_irq(&css_set_lock);
2172
cca8f327 2173 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
633feee3
TH
2174
2175 spin_unlock_irq(&css_set_lock);
2176 mutex_unlock(&cgroup_mutex);
2177
399504e2 2178 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
71d883c3 2179 dput(fc->root);
71d883c3 2180 if (IS_ERR(nsdentry)) {
399504e2 2181 deactivate_locked_super(sb);
630faf81
AV
2182 ret = PTR_ERR(nsdentry);
2183 nsdentry = NULL;
71d883c3 2184 }
630faf81 2185 fc->root = nsdentry;
67e9c74b
TH
2186 }
2187
23bf1b6b 2188 if (!ctx->kfc.new_sb_created)
71d883c3 2189 cgroup_put(&ctx->root->cgrp);
633feee3 2190
71d883c3 2191 return ret;
633feee3
TH
2192}
2193
90129625
AV
2194/*
2195 * Destroy a cgroup filesystem context.
2196 */
2197static void cgroup_fs_context_free(struct fs_context *fc)
ddbcc7e8 2198{
90129625
AV
2199 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2200
f5dfb531
AV
2201 kfree(ctx->name);
2202 kfree(ctx->release_agent);
cca8f327 2203 put_cgroup_ns(ctx->ns);
23bf1b6b 2204 kernfs_free_fs_context(fc);
90129625
AV
2205 kfree(ctx);
2206}
2207
90129625 2208static int cgroup_get_tree(struct fs_context *fc)
ddbcc7e8 2209{
90129625 2210 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
5136f636 2211 int ret;
ddbcc7e8 2212
dc79ec1b 2213 WRITE_ONCE(cgrp_dfl_visible, true);
90129625 2214 cgroup_get_live(&cgrp_dfl_root.cgrp);
cf6299b1 2215 ctx->root = &cgrp_dfl_root;
ed82571b 2216
cca8f327 2217 ret = cgroup_do_get_tree(fc);
71d883c3
AV
2218 if (!ret)
2219 apply_cgroup_root_flags(ctx->flags);
2220 return ret;
90129625
AV
2221}
2222
90129625
AV
2223static const struct fs_context_operations cgroup_fs_context_ops = {
2224 .free = cgroup_fs_context_free,
e34a98d5 2225 .parse_param = cgroup2_parse_param,
90129625
AV
2226 .get_tree = cgroup_get_tree,
2227 .reconfigure = cgroup_reconfigure,
2228};
2229
2230static const struct fs_context_operations cgroup1_fs_context_ops = {
2231 .free = cgroup_fs_context_free,
8d2451f4 2232 .parse_param = cgroup1_parse_param,
90129625
AV
2233 .get_tree = cgroup1_get_tree,
2234 .reconfigure = cgroup1_reconfigure,
2235};
2236
2237/*
23bf1b6b
DH
2238 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2239 * we select the namespace we're going to use.
90129625
AV
2240 */
2241static int cgroup_init_fs_context(struct fs_context *fc)
2242{
2243 struct cgroup_fs_context *ctx;
2244
2245 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2246 if (!ctx)
2247 return -ENOMEM;
ed82571b 2248
cca8f327
AV
2249 ctx->ns = current->nsproxy->cgroup_ns;
2250 get_cgroup_ns(ctx->ns);
23bf1b6b 2251 fc->fs_private = &ctx->kfc;
90129625
AV
2252 if (fc->fs_type == &cgroup2_fs_type)
2253 fc->ops = &cgroup_fs_context_ops;
2254 else
2255 fc->ops = &cgroup1_fs_context_ops;
f7a99451 2256 put_user_ns(fc->user_ns);
23bf1b6b
DH
2257 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2258 fc->global = true;
6a010a49
TH
2259
2260#ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2261 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2262#endif
90129625 2263 return 0;
2bd59d48 2264}
8e30e2b8 2265
2bd59d48
TH
2266static void cgroup_kill_sb(struct super_block *sb)
2267{
2268 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2269 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
a015edd2 2270
970317aa 2271 /*
35ac1184 2272 * If @root doesn't have any children, start killing it.
9d755d33 2273 * This prevents new mounts by disabling percpu_ref_tryget_live().
1f779fb2
LZ
2274 *
2275 * And don't kill the default root.
970317aa 2276 */
35ac1184 2277 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
04f8ef56
QW
2278 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2279 cgroup_bpf_offline(&root->cgrp);
9d755d33 2280 percpu_ref_kill(&root->cgrp.self.refcnt);
04f8ef56 2281 }
35ac1184 2282 cgroup_put(&root->cgrp);
2bd59d48 2283 kernfs_kill_sb(sb);
ddbcc7e8 2284}
970317aa 2285
0a268dbd 2286struct file_system_type cgroup_fs_type = {
8d2451f4
AV
2287 .name = "cgroup",
2288 .init_fs_context = cgroup_init_fs_context,
d7167b14 2289 .parameters = cgroup1_fs_parameters,
8d2451f4
AV
2290 .kill_sb = cgroup_kill_sb,
2291 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8 2292};
3126121f 2293
67e9c74b 2294static struct file_system_type cgroup2_fs_type = {
e34a98d5
AV
2295 .name = "cgroup2",
2296 .init_fs_context = cgroup_init_fs_context,
d7167b14 2297 .parameters = cgroup2_fs_parameters,
e34a98d5
AV
2298 .kill_sb = cgroup_kill_sb,
2299 .fs_flags = FS_USERNS_MOUNT,
67e9c74b 2300};
3126121f 2301
d5f68d33
AV
2302#ifdef CONFIG_CPUSETS
2303static const struct fs_context_operations cpuset_fs_context_ops = {
2304 .get_tree = cgroup1_get_tree,
2305 .free = cgroup_fs_context_free,
2306};
2307
2308/*
2309 * This is ugly, but preserves the userspace API for existing cpuset
2310 * users. If someone tries to mount the "cpuset" filesystem, we
2311 * silently switch it to mount "cgroup" instead
2312 */
2313static int cpuset_init_fs_context(struct fs_context *fc)
2314{
2315 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2316 struct cgroup_fs_context *ctx;
2317 int err;
2318
2319 err = cgroup_init_fs_context(fc);
2320 if (err) {
2321 kfree(agent);
2322 return err;
2323 }
2324
2325 fc->ops = &cpuset_fs_context_ops;
2326
2327 ctx = cgroup_fc2context(fc);
2328 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2329 ctx->flags |= CGRP_ROOT_NOPREFIX;
2330 ctx->release_agent = agent;
2331
2332 get_filesystem(&cgroup_fs_type);
2333 put_filesystem(fc->fs_type);
2334 fc->fs_type = &cgroup_fs_type;
2335
2336 return 0;
2337}
2338
2339static struct file_system_type cpuset_fs_type = {
2340 .name = "cpuset",
2341 .init_fs_context = cpuset_init_fs_context,
2342 .fs_flags = FS_USERNS_MOUNT,
2343};
2344#endif
2345
0a268dbd
TH
2346int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2347 struct cgroup_namespace *ns)
a79a908f
AK
2348{
2349 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
a79a908f 2350
4c737b41 2351 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
a79a908f
AK
2352}
2353
4c737b41
TH
2354int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2355 struct cgroup_namespace *ns)
a79a908f 2356{
4c737b41 2357 int ret;
a79a908f
AK
2358
2359 mutex_lock(&cgroup_mutex);
82d6489d 2360 spin_lock_irq(&css_set_lock);
a79a908f
AK
2361
2362 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2363
82d6489d 2364 spin_unlock_irq(&css_set_lock);
a79a908f
AK
2365 mutex_unlock(&cgroup_mutex);
2366
2367 return ret;
2368}
2369EXPORT_SYMBOL_GPL(cgroup_path_ns);
2370
857a2beb 2371/**
913ffdb5 2372 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2373 * @task: target task
857a2beb
TH
2374 * @buf: the buffer to write the path into
2375 * @buflen: the length of the buffer
2376 *
913ffdb5
TH
2377 * Determine @task's cgroup on the first (the one with the lowest non-zero
2378 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2379 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2380 * cgroup controller callbacks.
2381 *
e61734c5 2382 * Return value is the same as kernfs_path().
857a2beb 2383 */
4c737b41 2384int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2385{
3dd06ffa 2386 struct cgroup_root *root;
913ffdb5 2387 struct cgroup *cgrp;
e61734c5 2388 int hierarchy_id = 1;
4c737b41 2389 int ret;
857a2beb
TH
2390
2391 mutex_lock(&cgroup_mutex);
82d6489d 2392 spin_lock_irq(&css_set_lock);
857a2beb 2393
913ffdb5
TH
2394 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2395
857a2beb
TH
2396 if (root) {
2397 cgrp = task_cgroup_from_root(task, root);
4c737b41 2398 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2399 } else {
2400 /* if no hierarchy exists, everyone is in "/" */
8619e94d 2401 ret = strscpy(buf, "/", buflen);
857a2beb
TH
2402 }
2403
82d6489d 2404 spin_unlock_irq(&css_set_lock);
857a2beb 2405 mutex_unlock(&cgroup_mutex);
4c737b41 2406 return ret;
857a2beb 2407}
913ffdb5 2408EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2409
4f7e7236
TH
2410/**
2411 * cgroup_attach_lock - Lock for ->attach()
2412 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2413 *
2414 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2415 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2416 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2417 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2418 * lead to deadlocks.
2419 *
2420 * Bringing up a CPU may involve creating and destroying tasks which requires
2421 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2422 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2423 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2424 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2425 * the threadgroup_rwsem to be released to create new tasks. For more details:
2426 *
2427 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2428 *
2429 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2430 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2431 * CPU hotplug is disabled on entry.
2432 */
075b593f 2433void cgroup_attach_lock(bool lock_threadgroup)
4f7e7236
TH
2434{
2435 cpus_read_lock();
2436 if (lock_threadgroup)
2437 percpu_down_write(&cgroup_threadgroup_rwsem);
2438}
2439
2440/**
2441 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2442 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2443 */
075b593f 2444void cgroup_attach_unlock(bool lock_threadgroup)
4f7e7236
TH
2445{
2446 if (lock_threadgroup)
2447 percpu_up_write(&cgroup_threadgroup_rwsem);
2448 cpus_read_unlock();
2449}
2450
adaae5dc 2451/**
e595cd70 2452 * cgroup_migrate_add_task - add a migration target task to a migration context
adaae5dc 2453 * @task: target task
e595cd70 2454 * @mgctx: target migration context
adaae5dc 2455 *
e595cd70
TH
2456 * Add @task, which is a migration target, to @mgctx->tset. This function
2457 * becomes noop if @task doesn't need to be migrated. @task's css_set
2458 * should have been added as a migration source and @task->cg_list will be
2459 * moved from the css_set's tasks list to mg_tasks one.
adaae5dc 2460 */
e595cd70
TH
2461static void cgroup_migrate_add_task(struct task_struct *task,
2462 struct cgroup_mgctx *mgctx)
adaae5dc
TH
2463{
2464 struct css_set *cset;
2465
f0d9a5f1 2466 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2467
2468 /* @task either already exited or can't exit until the end */
2469 if (task->flags & PF_EXITING)
2470 return;
2471
5153faac
TH
2472 /* cgroup_threadgroup_rwsem protects racing against forks */
2473 WARN_ON_ONCE(list_empty(&task->cg_list));
adaae5dc
TH
2474
2475 cset = task_css_set(task);
2476 if (!cset->mg_src_cgrp)
2477 return;
2478
61046727
TH
2479 mgctx->tset.nr_tasks++;
2480
adaae5dc
TH
2481 list_move_tail(&task->cg_list, &cset->mg_tasks);
2482 if (list_empty(&cset->mg_node))
e595cd70
TH
2483 list_add_tail(&cset->mg_node,
2484 &mgctx->tset.src_csets);
adaae5dc 2485 if (list_empty(&cset->mg_dst_cset->mg_node))
d8ebf519 2486 list_add_tail(&cset->mg_dst_cset->mg_node,
e595cd70 2487 &mgctx->tset.dst_csets);
adaae5dc
TH
2488}
2489
2f7ee569
TH
2490/**
2491 * cgroup_taskset_first - reset taskset and return the first task
2492 * @tset: taskset of interest
1f7dd3e5 2493 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2494 *
2495 * @tset iteration is initialized and the first task is returned.
2496 */
1f7dd3e5
TH
2497struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2498 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2499{
b3dc094e
TH
2500 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2501 tset->cur_task = NULL;
2502
1f7dd3e5 2503 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2504}
2f7ee569
TH
2505
2506/**
2507 * cgroup_taskset_next - iterate to the next task in taskset
2508 * @tset: taskset of interest
1f7dd3e5 2509 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2510 *
2511 * Return the next task in @tset. Iteration must have been initialized
2512 * with cgroup_taskset_first().
2513 */
1f7dd3e5
TH
2514struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2515 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2516{
b3dc094e
TH
2517 struct css_set *cset = tset->cur_cset;
2518 struct task_struct *task = tset->cur_task;
2f7ee569 2519
d20d30eb 2520 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
b3dc094e
TH
2521 if (!task)
2522 task = list_first_entry(&cset->mg_tasks,
2523 struct task_struct, cg_list);
2524 else
2525 task = list_next_entry(task, cg_list);
2f7ee569 2526
b3dc094e
TH
2527 if (&task->cg_list != &cset->mg_tasks) {
2528 tset->cur_cset = cset;
2529 tset->cur_task = task;
1f7dd3e5
TH
2530
2531 /*
2532 * This function may be called both before and
2533 * after cgroup_taskset_migrate(). The two cases
2534 * can be distinguished by looking at whether @cset
2535 * has its ->mg_dst_cset set.
2536 */
2537 if (cset->mg_dst_cset)
2538 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2539 else
2540 *dst_cssp = cset->subsys[tset->ssid];
2541
b3dc094e
TH
2542 return task;
2543 }
2f7ee569 2544
b3dc094e
TH
2545 cset = list_next_entry(cset, mg_node);
2546 task = NULL;
2547 }
2f7ee569 2548
b3dc094e 2549 return NULL;
2f7ee569 2550}
2f7ee569 2551
adaae5dc 2552/**
2ca11b0e 2553 * cgroup_migrate_execute - migrate a taskset
e595cd70 2554 * @mgctx: migration context
adaae5dc 2555 *
e595cd70 2556 * Migrate tasks in @mgctx as setup by migration preparation functions.
37ff9f8f 2557 * This function fails iff one of the ->can_attach callbacks fails and
e595cd70
TH
2558 * guarantees that either all or none of the tasks in @mgctx are migrated.
2559 * @mgctx is consumed regardless of success.
adaae5dc 2560 */
bfc2cf6f 2561static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
adaae5dc 2562{
e595cd70 2563 struct cgroup_taskset *tset = &mgctx->tset;
37ff9f8f 2564 struct cgroup_subsys *ss;
adaae5dc
TH
2565 struct task_struct *task, *tmp_task;
2566 struct css_set *cset, *tmp_cset;
37ff9f8f 2567 int ssid, failed_ssid, ret;
adaae5dc 2568
adaae5dc 2569 /* check that we can legitimately attach to the cgroup */
61046727
TH
2570 if (tset->nr_tasks) {
2571 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2572 if (ss->can_attach) {
2573 tset->ssid = ssid;
2574 ret = ss->can_attach(tset);
2575 if (ret) {
2576 failed_ssid = ssid;
2577 goto out_cancel_attach;
2578 }
adaae5dc 2579 }
61046727
TH
2580 } while_each_subsys_mask();
2581 }
adaae5dc
TH
2582
2583 /*
2584 * Now that we're guaranteed success, proceed to move all tasks to
2585 * the new cgroup. There are no failure cases after here, so this
2586 * is the commit point.
2587 */
82d6489d 2588 spin_lock_irq(&css_set_lock);
adaae5dc 2589 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2590 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2591 struct css_set *from_cset = task_css_set(task);
2592 struct css_set *to_cset = cset->mg_dst_cset;
2593
2594 get_css_set(to_cset);
73a7242a 2595 to_cset->nr_tasks++;
f6d7d049 2596 css_set_move_task(task, from_cset, to_cset, true);
73a7242a 2597 from_cset->nr_tasks--;
76f969e8
RG
2598 /*
2599 * If the source or destination cgroup is frozen,
2600 * the task might require to change its state.
2601 */
2602 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2603 to_cset->dfl_cgrp);
2604 put_css_set_locked(from_cset);
2605
f6d7d049 2606 }
adaae5dc 2607 }
82d6489d 2608 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2609
2610 /*
2611 * Migration is committed, all target tasks are now on dst_csets.
2612 * Nothing is sensitive to fork() after this point. Notify
2613 * controllers that migration is complete.
2614 */
2615 tset->csets = &tset->dst_csets;
2616
61046727
TH
2617 if (tset->nr_tasks) {
2618 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2619 if (ss->attach) {
2620 tset->ssid = ssid;
2621 ss->attach(tset);
2622 }
2623 } while_each_subsys_mask();
2624 }
adaae5dc
TH
2625
2626 ret = 0;
2627 goto out_release_tset;
2628
2629out_cancel_attach:
61046727
TH
2630 if (tset->nr_tasks) {
2631 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2632 if (ssid == failed_ssid)
2633 break;
2634 if (ss->cancel_attach) {
2635 tset->ssid = ssid;
2636 ss->cancel_attach(tset);
2637 }
2638 } while_each_subsys_mask();
2639 }
adaae5dc 2640out_release_tset:
82d6489d 2641 spin_lock_irq(&css_set_lock);
adaae5dc
TH
2642 list_splice_init(&tset->dst_csets, &tset->src_csets);
2643 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2644 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2645 list_del_init(&cset->mg_node);
2646 }
82d6489d 2647 spin_unlock_irq(&css_set_lock);
c4fa6c43
WL
2648
2649 /*
2650 * Re-initialize the cgroup_taskset structure in case it is reused
2651 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2652 * iteration.
2653 */
2654 tset->nr_tasks = 0;
2655 tset->csets = &tset->src_csets;
adaae5dc
TH
2656 return ret;
2657}
2658
6c694c88 2659/**
8cfd8147 2660 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
6c694c88
TH
2661 * @dst_cgrp: destination cgroup to test
2662 *
8cfd8147
TH
2663 * On the default hierarchy, except for the mixable, (possible) thread root
2664 * and threaded cgroups, subtree_control must be zero for migration
2665 * destination cgroups with tasks so that child cgroups don't compete
2666 * against tasks.
6c694c88 2667 */
8cfd8147 2668int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
6c694c88 2669{
8cfd8147
TH
2670 /* v1 doesn't have any restriction */
2671 if (!cgroup_on_dfl(dst_cgrp))
2672 return 0;
2673
2674 /* verify @dst_cgrp can host resources */
2675 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2676 return -EOPNOTSUPP;
2677
8cfd8147
TH
2678 /*
2679 * If @dst_cgrp is already or can become a thread root or is
2680 * threaded, it doesn't matter.
2681 */
2682 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2683 return 0;
2684
2685 /* apply no-internal-process constraint */
2686 if (dst_cgrp->subtree_control)
2687 return -EBUSY;
2688
2689 return 0;
6c694c88
TH
2690}
2691
a043e3b2 2692/**
1958d2d5 2693 * cgroup_migrate_finish - cleanup after attach
e595cd70 2694 * @mgctx: migration context
74a1166d 2695 *
1958d2d5
TH
2696 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2697 * those functions for details.
74a1166d 2698 */
e595cd70 2699void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
74a1166d 2700{
1958d2d5 2701 struct css_set *cset, *tmp_cset;
74a1166d 2702
1958d2d5
TH
2703 lockdep_assert_held(&cgroup_mutex);
2704
82d6489d 2705 spin_lock_irq(&css_set_lock);
e595cd70 2706
07fd5b6c
TH
2707 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2708 mg_src_preload_node) {
2709 cset->mg_src_cgrp = NULL;
2710 cset->mg_dst_cgrp = NULL;
2711 cset->mg_dst_cset = NULL;
2712 list_del_init(&cset->mg_src_preload_node);
2713 put_css_set_locked(cset);
2714 }
e595cd70 2715
07fd5b6c
TH
2716 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2717 mg_dst_preload_node) {
1958d2d5 2718 cset->mg_src_cgrp = NULL;
e4857982 2719 cset->mg_dst_cgrp = NULL;
1958d2d5 2720 cset->mg_dst_cset = NULL;
07fd5b6c 2721 list_del_init(&cset->mg_dst_preload_node);
a25eb52e 2722 put_css_set_locked(cset);
1958d2d5 2723 }
e595cd70 2724
82d6489d 2725 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2726}
2727
2728/**
2729 * cgroup_migrate_add_src - add a migration source css_set
2730 * @src_cset: the source css_set to add
2731 * @dst_cgrp: the destination cgroup
e595cd70 2732 * @mgctx: migration context
1958d2d5
TH
2733 *
2734 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
e595cd70 2735 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
1958d2d5
TH
2736 * up by cgroup_migrate_finish().
2737 *
1ed13287
TH
2738 * This function may be called without holding cgroup_threadgroup_rwsem
2739 * even if the target is a process. Threads may be created and destroyed
2740 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2741 * into play and the preloaded css_sets are guaranteed to cover all
2742 * migrations.
1958d2d5 2743 */
0a268dbd
TH
2744void cgroup_migrate_add_src(struct css_set *src_cset,
2745 struct cgroup *dst_cgrp,
e595cd70 2746 struct cgroup_mgctx *mgctx)
1958d2d5
TH
2747{
2748 struct cgroup *src_cgrp;
2749
2750 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2751 lockdep_assert_held(&css_set_lock);
1958d2d5 2752
2b021cbf
TH
2753 /*
2754 * If ->dead, @src_set is associated with one or more dead cgroups
2755 * and doesn't contain any migratable tasks. Ignore it early so
2756 * that the rest of migration path doesn't get confused by it.
2757 */
2758 if (src_cset->dead)
2759 return;
2760
07fd5b6c 2761 if (!list_empty(&src_cset->mg_src_preload_node))
1958d2d5
TH
2762 return;
2763
1815775e
WY
2764 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2765
1958d2d5 2766 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2767 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2768 WARN_ON(!list_empty(&src_cset->mg_tasks));
2769 WARN_ON(!list_empty(&src_cset->mg_node));
2770
2771 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2772 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5 2773 get_css_set(src_cset);
07fd5b6c 2774 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
1958d2d5
TH
2775}
2776
2777/**
2778 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
e595cd70 2779 * @mgctx: migration context
1958d2d5 2780 *
e4857982 2781 * Tasks are about to be moved and all the source css_sets have been
e595cd70
TH
2782 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2783 * pins all destination css_sets, links each to its source, and append them
2784 * to @mgctx->preloaded_dst_csets.
1958d2d5
TH
2785 *
2786 * This function must be called after cgroup_migrate_add_src() has been
2787 * called on each migration source css_set. After migration is performed
2788 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
e595cd70 2789 * @mgctx.
1958d2d5 2790 */
e595cd70 2791int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
1958d2d5 2792{
f817de98 2793 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2794
2795 lockdep_assert_held(&cgroup_mutex);
2796
2797 /* look up the dst cset for each src cset and link it to src */
e595cd70 2798 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
07fd5b6c 2799 mg_src_preload_node) {
1958d2d5 2800 struct css_set *dst_cset;
bfc2cf6f
TH
2801 struct cgroup_subsys *ss;
2802 int ssid;
1958d2d5 2803
e4857982 2804 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5 2805 if (!dst_cset)
d6e486ee 2806 return -ENOMEM;
1958d2d5
TH
2807
2808 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2809
2810 /*
2811 * If src cset equals dst, it's noop. Drop the src.
2812 * cgroup_migrate() will skip the cset too. Note that we
2813 * can't handle src == dst as some nodes are used by both.
2814 */
2815 if (src_cset == dst_cset) {
2816 src_cset->mg_src_cgrp = NULL;
e4857982 2817 src_cset->mg_dst_cgrp = NULL;
07fd5b6c 2818 list_del_init(&src_cset->mg_src_preload_node);
a25eb52e
ZL
2819 put_css_set(src_cset);
2820 put_css_set(dst_cset);
f817de98
TH
2821 continue;
2822 }
2823
1958d2d5
TH
2824 src_cset->mg_dst_cset = dst_cset;
2825
07fd5b6c
TH
2826 if (list_empty(&dst_cset->mg_dst_preload_node))
2827 list_add_tail(&dst_cset->mg_dst_preload_node,
e595cd70 2828 &mgctx->preloaded_dst_csets);
1958d2d5 2829 else
a25eb52e 2830 put_css_set(dst_cset);
bfc2cf6f
TH
2831
2832 for_each_subsys(ss, ssid)
2833 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2834 mgctx->ss_mask |= 1 << ssid;
1958d2d5
TH
2835 }
2836
1958d2d5 2837 return 0;
1958d2d5
TH
2838}
2839
2840/**
2841 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2842 * @leader: the leader of the process or the task to migrate
2843 * @threadgroup: whether @leader points to the whole process or a single task
e595cd70 2844 * @mgctx: migration context
1958d2d5 2845 *
37ff9f8f
TH
2846 * Migrate a process or task denoted by @leader. If migrating a process,
2847 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2848 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2849 * cgroup_migrate_prepare_dst() on the targets before invoking this
2850 * function and following up with cgroup_migrate_finish().
2851 *
2852 * As long as a controller's ->can_attach() doesn't fail, this function is
2853 * guaranteed to succeed. This means that, excluding ->can_attach()
2854 * failure, when migrating multiple targets, the success or failure can be
2855 * decided for all targets by invoking group_migrate_prepare_dst() before
2856 * actually starting migrating.
2857 */
0a268dbd 2858int cgroup_migrate(struct task_struct *leader, bool threadgroup,
bfc2cf6f 2859 struct cgroup_mgctx *mgctx)
74a1166d 2860{
adaae5dc 2861 struct task_struct *task;
74a1166d 2862
fb5d2b4c
MSB
2863 /*
2864 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2865 * already PF_EXITING could be freed from underneath us unless we
2866 * take an rcu_read_lock.
2867 */
82d6489d 2868 spin_lock_irq(&css_set_lock);
9db8de37 2869 task = leader;
74a1166d 2870 do {
e595cd70 2871 cgroup_migrate_add_task(task, mgctx);
081aa458
LZ
2872 if (!threadgroup)
2873 break;
9db8de37 2874 } while_each_thread(leader, task);
82d6489d 2875 spin_unlock_irq(&css_set_lock);
74a1166d 2876
bfc2cf6f 2877 return cgroup_migrate_execute(mgctx);
74a1166d
BB
2878}
2879
1958d2d5
TH
2880/**
2881 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2882 * @dst_cgrp: the cgroup to attach to
2883 * @leader: the task or the leader of the threadgroup to be attached
2884 * @threadgroup: attach the whole threadgroup?
2885 *
1ed13287 2886 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5 2887 */
0a268dbd
TH
2888int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2889 bool threadgroup)
1958d2d5 2890{
e595cd70 2891 DEFINE_CGROUP_MGCTX(mgctx);
1958d2d5 2892 struct task_struct *task;
6df970e4 2893 int ret = 0;
6c694c88 2894
1958d2d5 2895 /* look up all src csets */
82d6489d 2896 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2897 rcu_read_lock();
2898 task = leader;
2899 do {
e595cd70 2900 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
1958d2d5
TH
2901 if (!threadgroup)
2902 break;
2903 } while_each_thread(leader, task);
2904 rcu_read_unlock();
82d6489d 2905 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2906
2907 /* prepare dst csets and commit */
e595cd70 2908 ret = cgroup_migrate_prepare_dst(&mgctx);
1958d2d5 2909 if (!ret)
bfc2cf6f 2910 ret = cgroup_migrate(leader, threadgroup, &mgctx);
1958d2d5 2911
e595cd70 2912 cgroup_migrate_finish(&mgctx);
ed1777de
TH
2913
2914 if (!ret)
e4f8d81c 2915 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
ed1777de 2916
1958d2d5 2917 return ret;
74a1166d
BB
2918}
2919
9a3284fa 2920struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
4f7e7236 2921 bool *threadgroup_locked)
bbcb81d0 2922{
bbcb81d0 2923 struct task_struct *tsk;
acbef755 2924 pid_t pid;
bbcb81d0 2925
acbef755 2926 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
715c809d 2927 return ERR_PTR(-EINVAL);
74a1166d 2928
9a3284fa
MK
2929 /*
2930 * If we migrate a single thread, we don't care about threadgroup
2931 * stability. If the thread is `current`, it won't exit(2) under our
2932 * hands or change PID through exec(2). We exclude
2933 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2934 * callers by cgroup_mutex.
2935 * Therefore, we can skip the global lock.
2936 */
2937 lockdep_assert_held(&cgroup_mutex);
4f7e7236
TH
2938 *threadgroup_locked = pid || threadgroup;
2939 cgroup_attach_lock(*threadgroup_locked);
715c809d 2940
b78949eb 2941 rcu_read_lock();
bbcb81d0 2942 if (pid) {
73507f33 2943 tsk = find_task_by_vpid(pid);
74a1166d 2944 if (!tsk) {
715c809d
TH
2945 tsk = ERR_PTR(-ESRCH);
2946 goto out_unlock_threadgroup;
bbcb81d0 2947 }
dedf22e9 2948 } else {
b78949eb 2949 tsk = current;
dedf22e9 2950 }
cd3d0952
TH
2951
2952 if (threadgroup)
b78949eb 2953 tsk = tsk->group_leader;
c4c27fbd
MG
2954
2955 /*
77f88796
TH
2956 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2957 * If userland migrates such a kthread to a non-root cgroup, it can
2958 * become trapped in a cpuset, or RT kthread may be born in a
2959 * cgroup with no rt_runtime allocated. Just say no.
c4c27fbd 2960 */
77f88796 2961 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
715c809d
TH
2962 tsk = ERR_PTR(-EINVAL);
2963 goto out_unlock_threadgroup;
c4c27fbd
MG
2964 }
2965
b78949eb 2966 get_task_struct(tsk);
715c809d
TH
2967 goto out_unlock_rcu;
2968
2969out_unlock_threadgroup:
4f7e7236
TH
2970 cgroup_attach_unlock(*threadgroup_locked);
2971 *threadgroup_locked = false;
715c809d 2972out_unlock_rcu:
b78949eb 2973 rcu_read_unlock();
715c809d
TH
2974 return tsk;
2975}
b78949eb 2976
4f7e7236 2977void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
715c809d
TH
2978{
2979 struct cgroup_subsys *ss;
2980 int ssid;
081aa458 2981
715c809d
TH
2982 /* release reference from cgroup_procs_write_start() */
2983 put_task_struct(task);
3014dde7 2984
4f7e7236
TH
2985 cgroup_attach_unlock(threadgroup_locked);
2986
5cf1cacb
TH
2987 for_each_subsys(ss, ssid)
2988 if (ss->post_attach)
2989 ss->post_attach();
af351026
PM
2990}
2991
6e5c8307 2992static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2993{
f8f22e53
TH
2994 struct cgroup_subsys *ss;
2995 bool printed = false;
2996 int ssid;
a742c59d 2997
b4e0eeaf 2998 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2999 if (printed)
3000 seq_putc(seq, ' ');
85db0023 3001 seq_puts(seq, ss->name);
a966a4ed 3002 printed = true;
b4e0eeaf 3003 } while_each_subsys_mask();
f8f22e53
TH
3004 if (printed)
3005 seq_putc(seq, '\n');
355e0c48
PM
3006}
3007
f8f22e53
TH
3008/* show controllers which are enabled from the parent */
3009static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 3010{
f8f22e53
TH
3011 struct cgroup *cgrp = seq_css(seq)->cgroup;
3012
5531dc91 3013 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 3014 return 0;
ddbcc7e8
PM
3015}
3016
f8f22e53
TH
3017/* show controllers which are enabled for a given cgroup's children */
3018static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 3019{
f8f22e53
TH
3020 struct cgroup *cgrp = seq_css(seq)->cgroup;
3021
667c2491 3022 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
3023 return 0;
3024}
3025
3026/**
3027 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3028 * @cgrp: root of the subtree to update csses for
3029 *
54962604
TH
3030 * @cgrp's control masks have changed and its subtree's css associations
3031 * need to be updated accordingly. This function looks up all css_sets
3032 * which are attached to the subtree, creates the matching updated css_sets
3033 * and migrates the tasks to the new ones.
f8f22e53
TH
3034 */
3035static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3036{
e595cd70 3037 DEFINE_CGROUP_MGCTX(mgctx);
54962604
TH
3038 struct cgroup_subsys_state *d_css;
3039 struct cgroup *dsct;
f8f22e53 3040 struct css_set *src_cset;
671c11f0 3041 bool has_tasks;
f8f22e53
TH
3042 int ret;
3043
f8f22e53
TH
3044 lockdep_assert_held(&cgroup_mutex);
3045
3046 /* look up all csses currently attached to @cgrp's subtree */
82d6489d 3047 spin_lock_irq(&css_set_lock);
54962604 3048 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
3049 struct cgrp_cset_link *link;
3050
265792d0
WL
3051 /*
3052 * As cgroup_update_dfl_csses() is only called by
3053 * cgroup_apply_control(). The csses associated with the
3054 * given cgrp will not be affected by changes made to
3055 * its subtree_control file. We can skip them.
3056 */
3057 if (dsct == cgrp)
3058 continue;
3059
54962604 3060 list_for_each_entry(link, &dsct->cset_links, cset_link)
e595cd70 3061 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
f8f22e53 3062 }
82d6489d 3063 spin_unlock_irq(&css_set_lock);
f8f22e53 3064
671c11f0
TH
3065 /*
3066 * We need to write-lock threadgroup_rwsem while migrating tasks.
3067 * However, if there are no source csets for @cgrp, changing its
3068 * controllers isn't gonna produce any task migrations and the
3069 * write-locking can be skipped safely.
3070 */
3071 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
4f7e7236 3072 cgroup_attach_lock(has_tasks);
671c11f0 3073
f8f22e53 3074 /* NULL dst indicates self on default hierarchy */
e595cd70 3075 ret = cgroup_migrate_prepare_dst(&mgctx);
f8f22e53
TH
3076 if (ret)
3077 goto out_finish;
3078
82d6489d 3079 spin_lock_irq(&css_set_lock);
07fd5b6c
TH
3080 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3081 mg_src_preload_node) {
10265075 3082 struct task_struct *task, *ntask;
f8f22e53 3083
10265075
TH
3084 /* all tasks in src_csets need to be migrated */
3085 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
e595cd70 3086 cgroup_migrate_add_task(task, &mgctx);
f8f22e53 3087 }
82d6489d 3088 spin_unlock_irq(&css_set_lock);
f8f22e53 3089
bfc2cf6f 3090 ret = cgroup_migrate_execute(&mgctx);
f8f22e53 3091out_finish:
e595cd70 3092 cgroup_migrate_finish(&mgctx);
4f7e7236 3093 cgroup_attach_unlock(has_tasks);
f8f22e53
TH
3094 return ret;
3095}
3096
1b9b96a1 3097/**
945ba199 3098 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 3099 * @cgrp: root of the target subtree
1b9b96a1
TH
3100 *
3101 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
3102 * controller while the previous css is still around. This function grabs
3103 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3104 */
0a268dbd 3105void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
945ba199 3106 __acquires(&cgroup_mutex)
1b9b96a1
TH
3107{
3108 struct cgroup *dsct;
ce3f1d9d 3109 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3110 struct cgroup_subsys *ss;
3111 int ssid;
3112
945ba199
TH
3113restart:
3114 mutex_lock(&cgroup_mutex);
1b9b96a1 3115
ce3f1d9d 3116 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3117 for_each_subsys(ss, ssid) {
3118 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3119 DEFINE_WAIT(wait);
3120
ce3f1d9d 3121 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3122 continue;
3123
a590b90d 3124 cgroup_get_live(dsct);
1b9b96a1
TH
3125 prepare_to_wait(&dsct->offline_waitq, &wait,
3126 TASK_UNINTERRUPTIBLE);
3127
3128 mutex_unlock(&cgroup_mutex);
3129 schedule();
3130 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3131
3132 cgroup_put(dsct);
945ba199 3133 goto restart;
1b9b96a1
TH
3134 }
3135 }
1b9b96a1
TH
3136}
3137
15a27c36 3138/**
479adb89 3139 * cgroup_save_control - save control masks and dom_cgrp of a subtree
15a27c36
TH
3140 * @cgrp: root of the target subtree
3141 *
479adb89
TH
3142 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3143 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3144 * itself.
15a27c36
TH
3145 */
3146static void cgroup_save_control(struct cgroup *cgrp)
3147{
3148 struct cgroup *dsct;
3149 struct cgroup_subsys_state *d_css;
3150
3151 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3152 dsct->old_subtree_control = dsct->subtree_control;
3153 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
479adb89 3154 dsct->old_dom_cgrp = dsct->dom_cgrp;
15a27c36
TH
3155 }
3156}
3157
3158/**
3159 * cgroup_propagate_control - refresh control masks of a subtree
3160 * @cgrp: root of the target subtree
3161 *
3162 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3163 * ->subtree_control and propagate controller availability through the
3164 * subtree so that descendants don't have unavailable controllers enabled.
3165 */
3166static void cgroup_propagate_control(struct cgroup *cgrp)
3167{
3168 struct cgroup *dsct;
3169 struct cgroup_subsys_state *d_css;
3170
3171 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3172 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3173 dsct->subtree_ss_mask =
3174 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3175 cgroup_ss_mask(dsct));
15a27c36
TH
3176 }
3177}
3178
3179/**
479adb89 3180 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
15a27c36
TH
3181 * @cgrp: root of the target subtree
3182 *
479adb89
TH
3183 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3184 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3185 * itself.
15a27c36
TH
3186 */
3187static void cgroup_restore_control(struct cgroup *cgrp)
3188{
3189 struct cgroup *dsct;
3190 struct cgroup_subsys_state *d_css;
3191
3192 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3193 dsct->subtree_control = dsct->old_subtree_control;
3194 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
479adb89 3195 dsct->dom_cgrp = dsct->old_dom_cgrp;
15a27c36
TH
3196 }
3197}
3198
f6d635ad
TH
3199static bool css_visible(struct cgroup_subsys_state *css)
3200{
3201 struct cgroup_subsys *ss = css->ss;
3202 struct cgroup *cgrp = css->cgroup;
3203
3204 if (cgroup_control(cgrp) & (1 << ss->id))
3205 return true;
3206 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3207 return false;
3208 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3209}
3210
bdb53bd7
TH
3211/**
3212 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3213 * @cgrp: root of the target subtree
bdb53bd7 3214 *
ce3f1d9d 3215 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3216 * visible. A css is created invisible if it's being implicitly enabled
3217 * through dependency. An invisible css is made visible when the userland
3218 * explicitly enables it.
3219 *
3220 * Returns 0 on success, -errno on failure. On failure, csses which have
3221 * been processed already aren't cleaned up. The caller is responsible for
8a1115ff 3222 * cleaning up with cgroup_apply_control_disable().
bdb53bd7
TH
3223 */
3224static int cgroup_apply_control_enable(struct cgroup *cgrp)
3225{
3226 struct cgroup *dsct;
ce3f1d9d 3227 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3228 struct cgroup_subsys *ss;
3229 int ssid, ret;
3230
ce3f1d9d 3231 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3232 for_each_subsys(ss, ssid) {
3233 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3234
3235 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3236 continue;
3237
3238 if (!css) {
3239 css = css_create(dsct, ss);
3240 if (IS_ERR(css))
3241 return PTR_ERR(css);
3242 }
3243
3bc0bb36
MK
3244 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3245
f6d635ad 3246 if (css_visible(css)) {
334c3679 3247 ret = css_populate_dir(css);
bdb53bd7
TH
3248 if (ret)
3249 return ret;
3250 }
3251 }
3252 }
3253
3254 return 0;
3255}
3256
12b3bb6a
TH
3257/**
3258 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3259 * @cgrp: root of the target subtree
12b3bb6a 3260 *
ce3f1d9d 3261 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3262 * cgroup_ss_mask() and cgroup_visible_mask().
3263 *
3264 * A css is hidden when the userland requests it to be disabled while other
3265 * subsystems are still depending on it. The css must not actively control
3266 * resources and be in the vanilla state if it's made visible again later.
3267 * Controllers which may be depended upon should provide ->css_reset() for
3268 * this purpose.
3269 */
3270static void cgroup_apply_control_disable(struct cgroup *cgrp)
3271{
3272 struct cgroup *dsct;
ce3f1d9d 3273 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3274 struct cgroup_subsys *ss;
3275 int ssid;
3276
ce3f1d9d 3277 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3278 for_each_subsys(ss, ssid) {
3279 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3280
3281 if (!css)
3282 continue;
3283
3bc0bb36
MK
3284 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3285
334c3679
TH
3286 if (css->parent &&
3287 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3288 kill_css(css);
f6d635ad 3289 } else if (!css_visible(css)) {
334c3679 3290 css_clear_dir(css);
12b3bb6a
TH
3291 if (ss->css_reset)
3292 ss->css_reset(css);
3293 }
3294 }
3295 }
3296}
3297
f7b2814b
TH
3298/**
3299 * cgroup_apply_control - apply control mask updates to the subtree
3300 * @cgrp: root of the target subtree
3301 *
3302 * subsystems can be enabled and disabled in a subtree using the following
3303 * steps.
3304 *
3305 * 1. Call cgroup_save_control() to stash the current state.
3306 * 2. Update ->subtree_control masks in the subtree as desired.
3307 * 3. Call cgroup_apply_control() to apply the changes.
3308 * 4. Optionally perform other related operations.
3309 * 5. Call cgroup_finalize_control() to finish up.
3310 *
3311 * This function implements step 3 and propagates the mask changes
3312 * throughout @cgrp's subtree, updates csses accordingly and perform
3313 * process migrations.
3314 */
3315static int cgroup_apply_control(struct cgroup *cgrp)
3316{
3317 int ret;
3318
3319 cgroup_propagate_control(cgrp);
3320
3321 ret = cgroup_apply_control_enable(cgrp);
3322 if (ret)
3323 return ret;
3324
3325 /*
fc5a828b 3326 * At this point, cgroup_e_css_by_mask() results reflect the new csses
f7b2814b
TH
3327 * making the following cgroup_update_dfl_csses() properly update
3328 * css associations of all tasks in the subtree.
3329 */
61c41711 3330 return cgroup_update_dfl_csses(cgrp);
f7b2814b
TH
3331}
3332
3333/**
3334 * cgroup_finalize_control - finalize control mask update
3335 * @cgrp: root of the target subtree
3336 * @ret: the result of the update
3337 *
3338 * Finalize control mask update. See cgroup_apply_control() for more info.
3339 */
3340static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3341{
3342 if (ret) {
3343 cgroup_restore_control(cgrp);
3344 cgroup_propagate_control(cgrp);
3345 }
3346
3347 cgroup_apply_control_disable(cgrp);
3348}
3349
8cfd8147
TH
3350static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3351{
3352 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3353
3354 /* if nothing is getting enabled, nothing to worry about */
3355 if (!enable)
3356 return 0;
3357
3358 /* can @cgrp host any resources? */
3359 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3360 return -EOPNOTSUPP;
3361
3362 /* mixables don't care */
3363 if (cgroup_is_mixable(cgrp))
3364 return 0;
3365
3366 if (domain_enable) {
3367 /* can't enable domain controllers inside a thread subtree */
3368 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3369 return -EOPNOTSUPP;
3370 } else {
3371 /*
3372 * Threaded controllers can handle internal competitions
3373 * and are always allowed inside a (prospective) thread
3374 * subtree.
3375 */
3376 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3377 return 0;
3378 }
3379
3380 /*
3381 * Controllers can't be enabled for a cgroup with tasks to avoid
3382 * child cgroups competing against tasks.
3383 */
3384 if (cgroup_has_tasks(cgrp))
3385 return -EBUSY;
3386
3387 return 0;
3388}
3389
f8f22e53 3390/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3391static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3392 char *buf, size_t nbytes,
3393 loff_t off)
f8f22e53 3394{
6e5c8307 3395 u16 enable = 0, disable = 0;
a9746d8d 3396 struct cgroup *cgrp, *child;
f8f22e53 3397 struct cgroup_subsys *ss;
451af504 3398 char *tok;
f8f22e53
TH
3399 int ssid, ret;
3400
3401 /*
d37167ab
TH
3402 * Parse input - space separated list of subsystem names prefixed
3403 * with either + or -.
f8f22e53 3404 */
451af504
TH
3405 buf = strstrip(buf);
3406 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3407 if (tok[0] == '\0')
3408 continue;
a7165264 3409 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3410 if (!cgroup_ssid_enabled(ssid) ||
3411 strcmp(tok + 1, ss->name))
f8f22e53
TH
3412 continue;
3413
3414 if (*tok == '+') {
7d331fa9
TH
3415 enable |= 1 << ssid;
3416 disable &= ~(1 << ssid);
f8f22e53 3417 } else if (*tok == '-') {
7d331fa9
TH
3418 disable |= 1 << ssid;
3419 enable &= ~(1 << ssid);
f8f22e53
TH
3420 } else {
3421 return -EINVAL;
3422 }
3423 break;
b4e0eeaf 3424 } while_each_subsys_mask();
f8f22e53
TH
3425 if (ssid == CGROUP_SUBSYS_COUNT)
3426 return -EINVAL;
3427 }
3428
945ba199 3429 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3430 if (!cgrp)
3431 return -ENODEV;
f8f22e53
TH
3432
3433 for_each_subsys(ss, ssid) {
3434 if (enable & (1 << ssid)) {
667c2491 3435 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3436 enable &= ~(1 << ssid);
3437 continue;
3438 }
3439
5531dc91 3440 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3441 ret = -ENOENT;
3442 goto out_unlock;
3443 }
f8f22e53 3444 } else if (disable & (1 << ssid)) {
667c2491 3445 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3446 disable &= ~(1 << ssid);
3447 continue;
3448 }
3449
3450 /* a child has it enabled? */
3451 cgroup_for_each_live_child(child, cgrp) {
667c2491 3452 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3453 ret = -EBUSY;
ddab2b6e 3454 goto out_unlock;
f8f22e53
TH
3455 }
3456 }
3457 }
3458 }
3459
3460 if (!enable && !disable) {
3461 ret = 0;
ddab2b6e 3462 goto out_unlock;
f8f22e53
TH
3463 }
3464
8cfd8147
TH
3465 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3466 if (ret)
27f26753 3467 goto out_unlock;
f8f22e53 3468
15a27c36
TH
3469 /* save and update control masks and prepare csses */
3470 cgroup_save_control(cgrp);
f63070d3 3471
15a27c36
TH
3472 cgrp->subtree_control |= enable;
3473 cgrp->subtree_control &= ~disable;
c29adf24 3474
f7b2814b 3475 ret = cgroup_apply_control(cgrp);
f7b2814b 3476 cgroup_finalize_control(cgrp, ret);
3c745417
TH
3477 if (ret)
3478 goto out_unlock;
f8f22e53
TH
3479
3480 kernfs_activate(cgrp->kn);
f8f22e53 3481out_unlock:
a9746d8d 3482 cgroup_kn_unlock(of->kn);
451af504 3483 return ret ?: nbytes;
f8f22e53
TH
3484}
3485
c705a00d
TH
3486/**
3487 * cgroup_enable_threaded - make @cgrp threaded
3488 * @cgrp: the target cgroup
3489 *
3490 * Called when "threaded" is written to the cgroup.type interface file and
3491 * tries to make @cgrp threaded and join the parent's resource domain.
3492 * This function is never called on the root cgroup as cgroup.type doesn't
3493 * exist on it.
3494 */
8cfd8147
TH
3495static int cgroup_enable_threaded(struct cgroup *cgrp)
3496{
3497 struct cgroup *parent = cgroup_parent(cgrp);
3498 struct cgroup *dom_cgrp = parent->dom_cgrp;
479adb89
TH
3499 struct cgroup *dsct;
3500 struct cgroup_subsys_state *d_css;
8cfd8147
TH
3501 int ret;
3502
3503 lockdep_assert_held(&cgroup_mutex);
3504
3505 /* noop if already threaded */
3506 if (cgroup_is_threaded(cgrp))
3507 return 0;
3508
d1897c95
TH
3509 /*
3510 * If @cgroup is populated or has domain controllers enabled, it
3511 * can't be switched. While the below cgroup_can_be_thread_root()
3512 * test can catch the same conditions, that's only when @parent is
3513 * not mixable, so let's check it explicitly.
3514 */
3515 if (cgroup_is_populated(cgrp) ||
3516 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3517 return -EOPNOTSUPP;
3518
8cfd8147
TH
3519 /* we're joining the parent's domain, ensure its validity */
3520 if (!cgroup_is_valid_domain(dom_cgrp) ||
3521 !cgroup_can_be_thread_root(dom_cgrp))
3522 return -EOPNOTSUPP;
3523
8cfd8147
TH
3524 /*
3525 * The following shouldn't cause actual migrations and should
3526 * always succeed.
3527 */
3528 cgroup_save_control(cgrp);
3529
479adb89
TH
3530 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3531 if (dsct == cgrp || cgroup_is_threaded(dsct))
3532 dsct->dom_cgrp = dom_cgrp;
3533
8cfd8147
TH
3534 ret = cgroup_apply_control(cgrp);
3535 if (!ret)
3536 parent->nr_threaded_children++;
8cfd8147
TH
3537
3538 cgroup_finalize_control(cgrp, ret);
3539 return ret;
3540}
3541
3542static int cgroup_type_show(struct seq_file *seq, void *v)
3543{
3544 struct cgroup *cgrp = seq_css(seq)->cgroup;
3545
3546 if (cgroup_is_threaded(cgrp))
3547 seq_puts(seq, "threaded\n");
3548 else if (!cgroup_is_valid_domain(cgrp))
3549 seq_puts(seq, "domain invalid\n");
3550 else if (cgroup_is_thread_root(cgrp))
3551 seq_puts(seq, "domain threaded\n");
3552 else
3553 seq_puts(seq, "domain\n");
3554
3555 return 0;
3556}
3557
3558static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3559 size_t nbytes, loff_t off)
3560{
3561 struct cgroup *cgrp;
3562 int ret;
3563
3564 /* only switching to threaded mode is supported */
3565 if (strcmp(strstrip(buf), "threaded"))
3566 return -EINVAL;
3567
3bc0bb36
MK
3568 /* drain dying csses before we re-apply (threaded) subtree control */
3569 cgrp = cgroup_kn_lock_live(of->kn, true);
8cfd8147
TH
3570 if (!cgrp)
3571 return -ENOENT;
3572
3573 /* threaded can only be enabled */
3574 ret = cgroup_enable_threaded(cgrp);
3575
3576 cgroup_kn_unlock(of->kn);
3577 return ret ?: nbytes;
3578}
3579
1a926e0b
RG
3580static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3581{
3582 struct cgroup *cgrp = seq_css(seq)->cgroup;
3583 int descendants = READ_ONCE(cgrp->max_descendants);
3584
3585 if (descendants == INT_MAX)
3586 seq_puts(seq, "max\n");
3587 else
3588 seq_printf(seq, "%d\n", descendants);
3589
3590 return 0;
3591}
3592
3593static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3594 char *buf, size_t nbytes, loff_t off)
3595{
3596 struct cgroup *cgrp;
3597 int descendants;
3598 ssize_t ret;
3599
3600 buf = strstrip(buf);
3601 if (!strcmp(buf, "max")) {
3602 descendants = INT_MAX;
3603 } else {
3604 ret = kstrtoint(buf, 0, &descendants);
3605 if (ret)
3606 return ret;
3607 }
3608
696b98f2 3609 if (descendants < 0)
1a926e0b
RG
3610 return -ERANGE;
3611
3612 cgrp = cgroup_kn_lock_live(of->kn, false);
3613 if (!cgrp)
3614 return -ENOENT;
3615
3616 cgrp->max_descendants = descendants;
3617
3618 cgroup_kn_unlock(of->kn);
3619
3620 return nbytes;
3621}
3622
3623static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3624{
3625 struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 int depth = READ_ONCE(cgrp->max_depth);
3627
3628 if (depth == INT_MAX)
3629 seq_puts(seq, "max\n");
3630 else
3631 seq_printf(seq, "%d\n", depth);
3632
3633 return 0;
3634}
3635
3636static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3637 char *buf, size_t nbytes, loff_t off)
3638{
3639 struct cgroup *cgrp;
3640 ssize_t ret;
3641 int depth;
3642
3643 buf = strstrip(buf);
3644 if (!strcmp(buf, "max")) {
3645 depth = INT_MAX;
3646 } else {
3647 ret = kstrtoint(buf, 0, &depth);
3648 if (ret)
3649 return ret;
3650 }
3651
696b98f2 3652 if (depth < 0)
1a926e0b
RG
3653 return -ERANGE;
3654
3655 cgrp = cgroup_kn_lock_live(of->kn, false);
3656 if (!cgrp)
3657 return -ENOENT;
3658
3659 cgrp->max_depth = depth;
3660
3661 cgroup_kn_unlock(of->kn);
3662
3663 return nbytes;
3664}
3665
4a07c222 3666static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3667{
76f969e8
RG
3668 struct cgroup *cgrp = seq_css(seq)->cgroup;
3669
3670 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3671 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3672
842b597e
TH
3673 return 0;
3674}
3675
3e48930c 3676static int cgroup_stat_show(struct seq_file *seq, void *v)
ec39225c
RG
3677{
3678 struct cgroup *cgroup = seq_css(seq)->cgroup;
3679
3680 seq_printf(seq, "nr_descendants %d\n",
3681 cgroup->nr_descendants);
3682 seq_printf(seq, "nr_dying_descendants %d\n",
3683 cgroup->nr_dying_descendants);
3684
3685 return 0;
3686}
3687
d41bf8c9
TH
3688static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3689 struct cgroup *cgrp, int ssid)
3690{
3691 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3692 struct cgroup_subsys_state *css;
3693 int ret;
3694
3695 if (!ss->css_extra_stat_show)
3696 return 0;
3697
3698 css = cgroup_tryget_css(cgrp, ss);
3699 if (!css)
3700 return 0;
3701
3702 ret = ss->css_extra_stat_show(seq, css);
3703 css_put(css);
3704 return ret;
3705}
3706
3707static int cpu_stat_show(struct seq_file *seq, void *v)
3708{
c3ba1329 3709 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
d41bf8c9
TH
3710 int ret = 0;
3711
d4ff749b 3712 cgroup_base_stat_cputime_show(seq);
d41bf8c9
TH
3713#ifdef CONFIG_CGROUP_SCHED
3714 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3715#endif
3716 return ret;
3717}
3718
2ce7135a
JW
3719#ifdef CONFIG_PSI
3720static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3721{
74321038 3722 struct cgroup *cgrp = seq_css(seq)->cgroup;
57899a66 3723 struct psi_group *psi = cgroup_psi(cgrp);
df5ba5be
DS
3724
3725 return psi_show(seq, psi, PSI_IO);
2ce7135a
JW
3726}
3727static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3728{
74321038 3729 struct cgroup *cgrp = seq_css(seq)->cgroup;
57899a66 3730 struct psi_group *psi = cgroup_psi(cgrp);
df5ba5be
DS
3731
3732 return psi_show(seq, psi, PSI_MEM);
2ce7135a
JW
3733}
3734static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3735{
74321038 3736 struct cgroup *cgrp = seq_css(seq)->cgroup;
57899a66 3737 struct psi_group *psi = cgroup_psi(cgrp);
df5ba5be
DS
3738
3739 return psi_show(seq, psi, PSI_CPU);
2ce7135a 3740}
0e94682b 3741
34f26a15
CZ
3742static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3743 size_t nbytes, enum psi_res res)
0e94682b 3744{
0d2b5955 3745 struct cgroup_file_ctx *ctx = of->priv;
0e94682b
SB
3746 struct psi_trigger *new;
3747 struct cgroup *cgrp;
385aac15 3748 struct psi_group *psi;
0e94682b
SB
3749
3750 cgrp = cgroup_kn_lock_live(of->kn, false);
3751 if (!cgrp)
3752 return -ENODEV;
3753
3754 cgroup_get(cgrp);
3755 cgroup_kn_unlock(of->kn);
3756
a06247c6
SB
3757 /* Allow only one trigger per file descriptor */
3758 if (ctx->psi.trigger) {
3759 cgroup_put(cgrp);
3760 return -EBUSY;
3761 }
3762
57899a66 3763 psi = cgroup_psi(cgrp);
76b079ef 3764 new = psi_trigger_create(psi, buf, res);
0e94682b
SB
3765 if (IS_ERR(new)) {
3766 cgroup_put(cgrp);
3767 return PTR_ERR(new);
3768 }
3769
a06247c6 3770 smp_store_release(&ctx->psi.trigger, new);
0e94682b
SB
3771 cgroup_put(cgrp);
3772
3773 return nbytes;
3774}
3775
3776static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes,
3778 loff_t off)
3779{
34f26a15 3780 return pressure_write(of, buf, nbytes, PSI_IO);
0e94682b
SB
3781}
3782
3783static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3784 char *buf, size_t nbytes,
3785 loff_t off)
3786{
34f26a15 3787 return pressure_write(of, buf, nbytes, PSI_MEM);
0e94682b
SB
3788}
3789
3790static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3791 char *buf, size_t nbytes,
3792 loff_t off)
3793{
34f26a15 3794 return pressure_write(of, buf, nbytes, PSI_CPU);
0e94682b
SB
3795}
3796
52b1364b
CZ
3797#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3798static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3799{
3800 struct cgroup *cgrp = seq_css(seq)->cgroup;
57899a66 3801 struct psi_group *psi = cgroup_psi(cgrp);
52b1364b
CZ
3802
3803 return psi_show(seq, psi, PSI_IRQ);
3804}
3805
3806static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3807 char *buf, size_t nbytes,
3808 loff_t off)
3809{
34f26a15 3810 return pressure_write(of, buf, nbytes, PSI_IRQ);
52b1364b
CZ
3811}
3812#endif
3813
34f26a15
CZ
3814static int cgroup_pressure_show(struct seq_file *seq, void *v)
3815{
3816 struct cgroup *cgrp = seq_css(seq)->cgroup;
3817 struct psi_group *psi = cgroup_psi(cgrp);
3818
3819 seq_printf(seq, "%d\n", psi->enabled);
3820
3821 return 0;
3822}
3823
3824static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3825 char *buf, size_t nbytes,
3826 loff_t off)
3827{
3828 ssize_t ret;
3829 int enable;
3830 struct cgroup *cgrp;
3831 struct psi_group *psi;
3832
3833 ret = kstrtoint(strstrip(buf), 0, &enable);
3834 if (ret)
3835 return ret;
3836
3837 if (enable < 0 || enable > 1)
3838 return -ERANGE;
3839
3840 cgrp = cgroup_kn_lock_live(of->kn, false);
3841 if (!cgrp)
3842 return -ENOENT;
3843
3844 psi = cgroup_psi(cgrp);
3845 if (psi->enabled != enable) {
3846 int i;
3847
3848 /* show or hide {cpu,memory,io,irq}.pressure files */
3849 for (i = 0; i < NR_PSI_RESOURCES; i++)
3850 cgroup_file_show(&cgrp->psi_files[i], enable);
3851
3852 psi->enabled = enable;
3853 if (enable)
3854 psi_cgroup_restart(psi);
3855 }
3856
3857 cgroup_kn_unlock(of->kn);
3858
3859 return nbytes;
0e94682b
SB
3860}
3861
3862static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3863 poll_table *pt)
3864{
0d2b5955
TH
3865 struct cgroup_file_ctx *ctx = of->priv;
3866
3867 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
0e94682b
SB
3868}
3869
3870static void cgroup_pressure_release(struct kernfs_open_file *of)
3871{
0d2b5955
TH
3872 struct cgroup_file_ctx *ctx = of->priv;
3873
a06247c6 3874 psi_trigger_destroy(ctx->psi.trigger);
0e94682b 3875}
3958e2d0
SB
3876
3877bool cgroup_psi_enabled(void)
3878{
58d8c258
CZ
3879 if (static_branch_likely(&psi_disabled))
3880 return false;
3881
3958e2d0
SB
3882 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3883}
3884
3885#else /* CONFIG_PSI */
3886bool cgroup_psi_enabled(void)
3887{
3888 return false;
3889}
3890
0e94682b 3891#endif /* CONFIG_PSI */
2ce7135a 3892
76f969e8
RG
3893static int cgroup_freeze_show(struct seq_file *seq, void *v)
3894{
3895 struct cgroup *cgrp = seq_css(seq)->cgroup;
3896
3897 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3898
3899 return 0;
3900}
3901
3902static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3903 char *buf, size_t nbytes, loff_t off)
3904{
3905 struct cgroup *cgrp;
3906 ssize_t ret;
3907 int freeze;
3908
3909 ret = kstrtoint(strstrip(buf), 0, &freeze);
3910 if (ret)
3911 return ret;
3912
3913 if (freeze < 0 || freeze > 1)
3914 return -ERANGE;
3915
3916 cgrp = cgroup_kn_lock_live(of->kn, false);
3917 if (!cgrp)
3918 return -ENOENT;
3919
3920 cgroup_freeze(cgrp, freeze);
3921
3922 cgroup_kn_unlock(of->kn);
3923
3924 return nbytes;
3925}
3926
661ee628
CB
3927static void __cgroup_kill(struct cgroup *cgrp)
3928{
3929 struct css_task_iter it;
3930 struct task_struct *task;
3931
3932 lockdep_assert_held(&cgroup_mutex);
3933
3934 spin_lock_irq(&css_set_lock);
3935 set_bit(CGRP_KILL, &cgrp->flags);
3936 spin_unlock_irq(&css_set_lock);
3937
3938 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3939 while ((task = css_task_iter_next(&it))) {
3940 /* Ignore kernel threads here. */
3941 if (task->flags & PF_KTHREAD)
3942 continue;
3943
3944 /* Skip tasks that are already dying. */
3945 if (__fatal_signal_pending(task))
3946 continue;
3947
3948 send_sig(SIGKILL, task, 0);
3949 }
3950 css_task_iter_end(&it);
3951
3952 spin_lock_irq(&css_set_lock);
3953 clear_bit(CGRP_KILL, &cgrp->flags);
3954 spin_unlock_irq(&css_set_lock);
3955}
3956
3957static void cgroup_kill(struct cgroup *cgrp)
3958{
3959 struct cgroup_subsys_state *css;
3960 struct cgroup *dsct;
3961
3962 lockdep_assert_held(&cgroup_mutex);
3963
3964 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3965 __cgroup_kill(dsct);
3966}
3967
3968static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3969 size_t nbytes, loff_t off)
3970{
3971 ssize_t ret = 0;
3972 int kill;
3973 struct cgroup *cgrp;
3974
3975 ret = kstrtoint(strstrip(buf), 0, &kill);
3976 if (ret)
3977 return ret;
3978
3979 if (kill != 1)
3980 return -ERANGE;
3981
3982 cgrp = cgroup_kn_lock_live(of->kn, false);
3983 if (!cgrp)
3984 return -ENOENT;
3985
3986 /*
3987 * Killing is a process directed operation, i.e. the whole thread-group
3988 * is taken down so act like we do for cgroup.procs and only make this
3989 * writable in non-threaded cgroups.
3990 */
3991 if (cgroup_is_threaded(cgrp))
3992 ret = -EOPNOTSUPP;
3993 else
3994 cgroup_kill(cgrp);
3995
3996 cgroup_kn_unlock(of->kn);
3997
3998 return ret ?: nbytes;
3999}
4000
e90cbebc
TH
4001static int cgroup_file_open(struct kernfs_open_file *of)
4002{
5a7b5f32 4003 struct cftype *cft = of_cft(of);
0d2b5955
TH
4004 struct cgroup_file_ctx *ctx;
4005 int ret;
e90cbebc 4006
0d2b5955
TH
4007 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4008 if (!ctx)
4009 return -ENOMEM;
e5745764
TH
4010
4011 ctx->ns = current->nsproxy->cgroup_ns;
4012 get_cgroup_ns(ctx->ns);
0d2b5955
TH
4013 of->priv = ctx;
4014
4015 if (!cft->open)
4016 return 0;
4017
4018 ret = cft->open(of);
e5745764
TH
4019 if (ret) {
4020 put_cgroup_ns(ctx->ns);
0d2b5955 4021 kfree(ctx);
e5745764 4022 }
0d2b5955 4023 return ret;
e90cbebc
TH
4024}
4025
4026static void cgroup_file_release(struct kernfs_open_file *of)
4027{
5a7b5f32 4028 struct cftype *cft = of_cft(of);
0d2b5955 4029 struct cgroup_file_ctx *ctx = of->priv;
e90cbebc
TH
4030
4031 if (cft->release)
4032 cft->release(of);
e5745764 4033 put_cgroup_ns(ctx->ns);
0d2b5955 4034 kfree(ctx);
e90cbebc
TH
4035}
4036
2bd59d48
TH
4037static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4038 size_t nbytes, loff_t off)
355e0c48 4039{
e5745764 4040 struct cgroup_file_ctx *ctx = of->priv;
2bd59d48 4041 struct cgroup *cgrp = of->kn->parent->priv;
5a7b5f32 4042 struct cftype *cft = of_cft(of);
2bd59d48 4043 struct cgroup_subsys_state *css;
a742c59d 4044 int ret;
355e0c48 4045
65026da5
JR
4046 if (!nbytes)
4047 return 0;
4048
5136f636
TH
4049 /*
4050 * If namespaces are delegation boundaries, disallow writes to
4051 * files in an non-init namespace root from inside the namespace
4052 * except for the files explicitly marked delegatable -
4053 * cgroup.procs and cgroup.subtree_control.
4054 */
4055 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4056 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
e5745764 4057 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
5136f636
TH
4058 return -EPERM;
4059
b4168640
TH
4060 if (cft->write)
4061 return cft->write(of, buf, nbytes, off);
4062
2bd59d48
TH
4063 /*
4064 * kernfs guarantees that a file isn't deleted with operations in
4065 * flight, which means that the matching css is and stays alive and
4066 * doesn't need to be pinned. The RCU locking is not necessary
4067 * either. It's just for the convenience of using cgroup_css().
4068 */
4069 rcu_read_lock();
4070 css = cgroup_css(cgrp, cft->ss);
4071 rcu_read_unlock();
a742c59d 4072
451af504 4073 if (cft->write_u64) {
a742c59d
TH
4074 unsigned long long v;
4075 ret = kstrtoull(buf, 0, &v);
4076 if (!ret)
4077 ret = cft->write_u64(css, cft, v);
4078 } else if (cft->write_s64) {
4079 long long v;
4080 ret = kstrtoll(buf, 0, &v);
4081 if (!ret)
4082 ret = cft->write_s64(css, cft, v);
e73d2c61 4083 } else {
a742c59d 4084 ret = -EINVAL;
e73d2c61 4085 }
2bd59d48 4086
a742c59d 4087 return ret ?: nbytes;
355e0c48
PM
4088}
4089
dc50537b
JW
4090static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4091{
5a7b5f32 4092 struct cftype *cft = of_cft(of);
dc50537b
JW
4093
4094 if (cft->poll)
4095 return cft->poll(of, pt);
4096
4097 return kernfs_generic_poll(of, pt);
4098}
4099
6612f05b 4100static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 4101{
2bd59d48 4102 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
4103}
4104
6612f05b 4105static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 4106{
2bd59d48 4107 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
4108}
4109
6612f05b 4110static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 4111{
e90cbebc
TH
4112 if (seq_cft(seq)->seq_stop)
4113 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
4114}
4115
91796569 4116static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 4117{
7da11279
TH
4118 struct cftype *cft = seq_cft(m);
4119 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 4120
2da8ca82
TH
4121 if (cft->seq_show)
4122 return cft->seq_show(m, arg);
e73d2c61 4123
f4c753b7 4124 if (cft->read_u64)
896f5199
TH
4125 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4126 else if (cft->read_s64)
4127 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4128 else
4129 return -EINVAL;
4130 return 0;
91796569
PM
4131}
4132
2bd59d48
TH
4133static struct kernfs_ops cgroup_kf_single_ops = {
4134 .atomic_write_len = PAGE_SIZE,
e90cbebc
TH
4135 .open = cgroup_file_open,
4136 .release = cgroup_file_release,
2bd59d48 4137 .write = cgroup_file_write,
dc50537b 4138 .poll = cgroup_file_poll,
2bd59d48 4139 .seq_show = cgroup_seqfile_show,
91796569
PM
4140};
4141
2bd59d48
TH
4142static struct kernfs_ops cgroup_kf_ops = {
4143 .atomic_write_len = PAGE_SIZE,
e90cbebc
TH
4144 .open = cgroup_file_open,
4145 .release = cgroup_file_release,
2bd59d48 4146 .write = cgroup_file_write,
dc50537b 4147 .poll = cgroup_file_poll,
2bd59d48
TH
4148 .seq_start = cgroup_seqfile_start,
4149 .seq_next = cgroup_seqfile_next,
4150 .seq_stop = cgroup_seqfile_stop,
4151 .seq_show = cgroup_seqfile_show,
4152};
ddbcc7e8 4153
49957f8e
TH
4154/* set uid and gid of cgroup dirs and files to that of the creator */
4155static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4156{
4157 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4158 .ia_uid = current_fsuid(),
4159 .ia_gid = current_fsgid(), };
4160
4161 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4162 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4163 return 0;
4164
4165 return kernfs_setattr(kn, &iattr);
4166}
4167
b12e3583
TH
4168static void cgroup_file_notify_timer(struct timer_list *timer)
4169{
4170 cgroup_file_notify(container_of(timer, struct cgroup_file,
4171 notify_timer));
4172}
4173
4df8dc90
TH
4174static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4175 struct cftype *cft)
ddbcc7e8 4176{
8d7e6fb0 4177 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
4178 struct kernfs_node *kn;
4179 struct lock_class_key *key = NULL;
49957f8e 4180 int ret;
05ef1d7c 4181
2bd59d48
TH
4182#ifdef CONFIG_DEBUG_LOCK_ALLOC
4183 key = &cft->lockdep_key;
4184#endif
4185 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
488dee96
DT
4186 cgroup_file_mode(cft),
4187 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4188 0, cft->kf_ops, cft,
dfeb0750 4189 NULL, key);
49957f8e
TH
4190 if (IS_ERR(kn))
4191 return PTR_ERR(kn);
4192
4193 ret = cgroup_kn_set_ugid(kn);
f8f22e53 4194 if (ret) {
49957f8e 4195 kernfs_remove(kn);
f8f22e53
TH
4196 return ret;
4197 }
4198
6f60eade
TH
4199 if (cft->file_offset) {
4200 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4201
b12e3583
TH
4202 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4203
34c06254 4204 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 4205 cfile->kn = kn;
34c06254 4206 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
4207 }
4208
f8f22e53 4209 return 0;
ddbcc7e8
PM
4210}
4211
b1f28d31
TH
4212/**
4213 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
4214 * @css: the target css
4215 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
4216 * @cfts: array of cftypes to be added
4217 * @is_add: whether to add or remove
4218 *
4219 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 4220 * For removals, this function never fails.
b1f28d31 4221 */
4df8dc90
TH
4222static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4223 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 4224 bool is_add)
ddbcc7e8 4225{
6732ed85 4226 struct cftype *cft, *cft_end = NULL;
b598dde3 4227 int ret = 0;
b1f28d31 4228
01f6474c 4229 lockdep_assert_held(&cgroup_mutex);
db0416b6 4230
6732ed85
TH
4231restart:
4232 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 4233 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 4234 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 4235 continue;
05ebb6e6 4236 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 4237 continue;
d51f39b0 4238 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 4239 continue;
d51f39b0 4240 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2 4241 continue;
5cf8114d
WL
4242 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4243 continue;
2739d3cc 4244 if (is_add) {
4df8dc90 4245 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 4246 if (ret) {
ed3d261b
JP
4247 pr_warn("%s: failed to add %s, err=%d\n",
4248 __func__, cft->name, ret);
6732ed85
TH
4249 cft_end = cft;
4250 is_add = false;
4251 goto restart;
b1f28d31 4252 }
2739d3cc
LZ
4253 } else {
4254 cgroup_rm_file(cgrp, cft);
db0416b6 4255 }
ddbcc7e8 4256 }
b598dde3 4257 return ret;
ddbcc7e8
PM
4258}
4259
21a2d343 4260static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541 4261{
2bb566cb 4262 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 4263 struct cgroup *root = &ss->root->cgrp;
492eb21b 4264 struct cgroup_subsys_state *css;
9ccece80 4265 int ret = 0;
8e3f6541 4266
01f6474c 4267 lockdep_assert_held(&cgroup_mutex);
e8c82d20 4268
e8c82d20 4269 /* add/rm files for all cgroups created before */
ca8bdcaf 4270 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
4271 struct cgroup *cgrp = css->cgroup;
4272
88cb04b9 4273 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
4274 continue;
4275
4df8dc90 4276 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
4277 if (ret)
4278 break;
8e3f6541 4279 }
21a2d343
TH
4280
4281 if (is_add && !ret)
4282 kernfs_activate(root->kn);
9ccece80 4283 return ret;
8e3f6541
TH
4284}
4285
2da440a2 4286static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 4287{
2bb566cb 4288 struct cftype *cft;
8e3f6541 4289
2bd59d48
TH
4290 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4291 /* free copy for custom atomic_write_len, see init_cftypes() */
4292 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4293 kfree(cft->kf_ops);
4294 cft->kf_ops = NULL;
2da440a2 4295 cft->ss = NULL;
a8ddc821
TH
4296
4297 /* revert flags set by cgroup core while adding @cfts */
0083d27b
TH
4298 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4299 __CFTYPE_ADDED);
2bd59d48 4300 }
2da440a2
TH
4301}
4302
2bd59d48 4303static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
4304{
4305 struct cftype *cft;
0083d27b 4306 int ret = 0;
2da440a2 4307
2bd59d48
TH
4308 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4309 struct kernfs_ops *kf_ops;
4310
0adb0704
TH
4311 WARN_ON(cft->ss || cft->kf_ops);
4312
0083d27b
TH
4313 if (cft->flags & __CFTYPE_ADDED) {
4314 ret = -EBUSY;
4315 break;
4316 }
3958e2d0 4317
2bd59d48
TH
4318 if (cft->seq_start)
4319 kf_ops = &cgroup_kf_ops;
4320 else
4321 kf_ops = &cgroup_kf_single_ops;
4322
4323 /*
4324 * Ugh... if @cft wants a custom max_write_len, we need to
4325 * make a copy of kf_ops to set its atomic_write_len.
4326 */
4327 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4328 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4329 if (!kf_ops) {
0083d27b
TH
4330 ret = -ENOMEM;
4331 break;
2bd59d48
TH
4332 }
4333 kf_ops->atomic_write_len = cft->max_write_len;
4334 }
8e3f6541 4335
2bd59d48 4336 cft->kf_ops = kf_ops;
2bb566cb 4337 cft->ss = ss;
0083d27b 4338 cft->flags |= __CFTYPE_ADDED;
2bd59d48 4339 }
2bb566cb 4340
0083d27b
TH
4341 if (ret)
4342 cgroup_exit_cftypes(cfts);
4343 return ret;
2da440a2
TH
4344}
4345
21a2d343
TH
4346static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4347{
01f6474c 4348 lockdep_assert_held(&cgroup_mutex);
21a2d343 4349
21a2d343
TH
4350 list_del(&cfts->node);
4351 cgroup_apply_cftypes(cfts, false);
4352 cgroup_exit_cftypes(cfts);
4353 return 0;
8e3f6541 4354}
8e3f6541 4355
79578621
TH
4356/**
4357 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
4358 * @cfts: zero-length name terminated array of cftypes
4359 *
2bb566cb
TH
4360 * Unregister @cfts. Files described by @cfts are removed from all
4361 * existing cgroups and all future cgroups won't have them either. This
4362 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
4363 *
4364 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 4365 * registered.
79578621 4366 */
2bb566cb 4367int cgroup_rm_cftypes(struct cftype *cfts)
79578621 4368{
21a2d343 4369 int ret;
79578621 4370
0083d27b
TH
4371 if (!cfts || cfts[0].name[0] == '\0')
4372 return 0;
4373
4374 if (!(cfts[0].flags & __CFTYPE_ADDED))
4375 return -ENOENT;
4376
01f6474c 4377 mutex_lock(&cgroup_mutex);
21a2d343 4378 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 4379 mutex_unlock(&cgroup_mutex);
21a2d343 4380 return ret;
80b13586
TH
4381}
4382
8e3f6541
TH
4383/**
4384 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4385 * @ss: target cgroup subsystem
4386 * @cfts: zero-length name terminated array of cftypes
4387 *
4388 * Register @cfts to @ss. Files described by @cfts are created for all
4389 * existing cgroups to which @ss is attached and all future cgroups will
4390 * have them too. This function can be called anytime whether @ss is
4391 * attached or not.
4392 *
4393 * Returns 0 on successful registration, -errno on failure. Note that this
4394 * function currently returns 0 as long as @cfts registration is successful
4395 * even if some file creation attempts on existing cgroups fail.
4396 */
2cf669a5 4397static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 4398{
9ccece80 4399 int ret;
8e3f6541 4400
fc5ed1e9 4401 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
4402 return 0;
4403
dc5736ed
LZ
4404 if (!cfts || cfts[0].name[0] == '\0')
4405 return 0;
2bb566cb 4406
2bd59d48
TH
4407 ret = cgroup_init_cftypes(ss, cfts);
4408 if (ret)
4409 return ret;
79578621 4410
01f6474c 4411 mutex_lock(&cgroup_mutex);
21a2d343 4412
0adb0704 4413 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 4414 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 4415 if (ret)
21a2d343 4416 cgroup_rm_cftypes_locked(cfts);
79578621 4417
01f6474c 4418 mutex_unlock(&cgroup_mutex);
9ccece80 4419 return ret;
79578621
TH
4420}
4421
a8ddc821
TH
4422/**
4423 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4424 * @ss: target cgroup subsystem
4425 * @cfts: zero-length name terminated array of cftypes
4426 *
4427 * Similar to cgroup_add_cftypes() but the added files are only used for
4428 * the default hierarchy.
4429 */
4430int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4431{
4432 struct cftype *cft;
4433
4434 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 4435 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
4436 return cgroup_add_cftypes(ss, cfts);
4437}
4438
4439/**
4440 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4441 * @ss: target cgroup subsystem
4442 * @cfts: zero-length name terminated array of cftypes
4443 *
4444 * Similar to cgroup_add_cftypes() but the added files are only used for
4445 * the legacy hierarchies.
4446 */
2cf669a5
TH
4447int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4448{
a8ddc821
TH
4449 struct cftype *cft;
4450
e4b7037c
TH
4451 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4452 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
4453 return cgroup_add_cftypes(ss, cfts);
4454}
4455
34c06254
TH
4456/**
4457 * cgroup_file_notify - generate a file modified event for a cgroup_file
4458 * @cfile: target cgroup_file
4459 *
4460 * @cfile must have been obtained by setting cftype->file_offset.
4461 */
4462void cgroup_file_notify(struct cgroup_file *cfile)
4463{
4464 unsigned long flags;
4465
4466 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
b12e3583
TH
4467 if (cfile->kn) {
4468 unsigned long last = cfile->notified_at;
4469 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4470
4471 if (time_in_range(jiffies, last, next)) {
4472 timer_reduce(&cfile->notify_timer, next);
4473 } else {
4474 kernfs_notify(cfile->kn);
4475 cfile->notified_at = jiffies;
4476 }
4477 }
34c06254
TH
4478 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4479}
4480
e2691f6b
TH
4481/**
4482 * cgroup_file_show - show or hide a hidden cgroup file
4483 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4484 * @show: whether to show or hide
4485 */
4486void cgroup_file_show(struct cgroup_file *cfile, bool show)
4487{
4488 struct kernfs_node *kn;
4489
4490 spin_lock_irq(&cgroup_file_kn_lock);
4491 kn = cfile->kn;
4492 kernfs_get(kn);
4493 spin_unlock_irq(&cgroup_file_kn_lock);
4494
4495 if (kn)
4496 kernfs_show(kn, show);
4497
4498 kernfs_put(kn);
4499}
4500
53fa5261 4501/**
492eb21b 4502 * css_next_child - find the next child of a given css
c2931b70
TH
4503 * @pos: the current position (%NULL to initiate traversal)
4504 * @parent: css whose children to walk
53fa5261 4505 *
c2931b70 4506 * This function returns the next child of @parent and should be called
87fb54f1 4507 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
4508 * that @parent and @pos are accessible. The next sibling is guaranteed to
4509 * be returned regardless of their states.
4510 *
4511 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4512 * css which finished ->css_online() is guaranteed to be visible in the
4513 * future iterations and will stay visible until the last reference is put.
4514 * A css which hasn't finished ->css_online() or already finished
4515 * ->css_offline() may show up during traversal. It's each subsystem's
4516 * responsibility to synchronize against on/offlining.
53fa5261 4517 */
c2931b70
TH
4518struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4519 struct cgroup_subsys_state *parent)
53fa5261 4520{
c2931b70 4521 struct cgroup_subsys_state *next;
53fa5261 4522
8353da1f 4523 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
4524
4525 /*
de3f0341
TH
4526 * @pos could already have been unlinked from the sibling list.
4527 * Once a cgroup is removed, its ->sibling.next is no longer
4528 * updated when its next sibling changes. CSS_RELEASED is set when
4529 * @pos is taken off list, at which time its next pointer is valid,
4530 * and, as releases are serialized, the one pointed to by the next
4531 * pointer is guaranteed to not have started release yet. This
4532 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4533 * critical section, the one pointed to by its next pointer is
4534 * guaranteed to not have finished its RCU grace period even if we
58315c96 4535 * have dropped rcu_read_lock() in-between iterations.
3b287a50 4536 *
de3f0341
TH
4537 * If @pos has CSS_RELEASED set, its next pointer can't be
4538 * dereferenced; however, as each css is given a monotonically
4539 * increasing unique serial number and always appended to the
4540 * sibling list, the next one can be found by walking the parent's
4541 * children until the first css with higher serial number than
4542 * @pos's. While this path can be slower, it happens iff iteration
4543 * races against release and the race window is very small.
53fa5261 4544 */
3b287a50 4545 if (!pos) {
c2931b70
TH
4546 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4547 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4548 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 4549 } else {
3010c5b9
MB
4550 list_for_each_entry_rcu(next, &parent->children, sibling,
4551 lockdep_is_held(&cgroup_mutex))
3b287a50
TH
4552 if (next->serial_nr > pos->serial_nr)
4553 break;
53fa5261
TH
4554 }
4555
3b281afb
TH
4556 /*
4557 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 4558 * the next sibling.
3b281afb 4559 */
c2931b70
TH
4560 if (&next->sibling != &parent->children)
4561 return next;
3b281afb 4562 return NULL;
53fa5261 4563}
53fa5261 4564
574bd9f7 4565/**
492eb21b 4566 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 4567 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4568 * @root: css whose descendants to walk
574bd9f7 4569 *
492eb21b 4570 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
4571 * to visit for pre-order traversal of @root's descendants. @root is
4572 * included in the iteration and the first node to be visited.
75501a6d 4573 *
87fb54f1
TH
4574 * While this function requires cgroup_mutex or RCU read locking, it
4575 * doesn't require the whole traversal to be contained in a single critical
4576 * section. This function will return the correct next descendant as long
4577 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
4578 *
4579 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4580 * css which finished ->css_online() is guaranteed to be visible in the
4581 * future iterations and will stay visible until the last reference is put.
4582 * A css which hasn't finished ->css_online() or already finished
4583 * ->css_offline() may show up during traversal. It's each subsystem's
4584 * responsibility to synchronize against on/offlining.
574bd9f7 4585 */
492eb21b
TH
4586struct cgroup_subsys_state *
4587css_next_descendant_pre(struct cgroup_subsys_state *pos,
4588 struct cgroup_subsys_state *root)
574bd9f7 4589{
492eb21b 4590 struct cgroup_subsys_state *next;
574bd9f7 4591
8353da1f 4592 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4593
bd8815a6 4594 /* if first iteration, visit @root */
7805d000 4595 if (!pos)
bd8815a6 4596 return root;
574bd9f7
TH
4597
4598 /* visit the first child if exists */
492eb21b 4599 next = css_next_child(NULL, pos);
574bd9f7
TH
4600 if (next)
4601 return next;
4602
4603 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 4604 while (pos != root) {
5c9d535b 4605 next = css_next_child(pos, pos->parent);
75501a6d 4606 if (next)
574bd9f7 4607 return next;
5c9d535b 4608 pos = pos->parent;
7805d000 4609 }
574bd9f7
TH
4610
4611 return NULL;
4612}
474a2800 4613EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 4614
12a9d2fe 4615/**
492eb21b
TH
4616 * css_rightmost_descendant - return the rightmost descendant of a css
4617 * @pos: css of interest
12a9d2fe 4618 *
492eb21b
TH
4619 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4620 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 4621 * subtree of @pos.
75501a6d 4622 *
87fb54f1
TH
4623 * While this function requires cgroup_mutex or RCU read locking, it
4624 * doesn't require the whole traversal to be contained in a single critical
4625 * section. This function will return the correct rightmost descendant as
4626 * long as @pos is accessible.
12a9d2fe 4627 */
492eb21b
TH
4628struct cgroup_subsys_state *
4629css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 4630{
492eb21b 4631 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 4632
8353da1f 4633 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
4634
4635 do {
4636 last = pos;
4637 /* ->prev isn't RCU safe, walk ->next till the end */
4638 pos = NULL;
492eb21b 4639 css_for_each_child(tmp, last)
12a9d2fe
TH
4640 pos = tmp;
4641 } while (pos);
4642
4643 return last;
4644}
12a9d2fe 4645
492eb21b
TH
4646static struct cgroup_subsys_state *
4647css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4648{
492eb21b 4649 struct cgroup_subsys_state *last;
574bd9f7
TH
4650
4651 do {
4652 last = pos;
492eb21b 4653 pos = css_next_child(NULL, pos);
574bd9f7
TH
4654 } while (pos);
4655
4656 return last;
4657}
4658
4659/**
492eb21b 4660 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4661 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4662 * @root: css whose descendants to walk
574bd9f7 4663 *
492eb21b 4664 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4665 * to visit for post-order traversal of @root's descendants. @root is
4666 * included in the iteration and the last node to be visited.
75501a6d 4667 *
87fb54f1
TH
4668 * While this function requires cgroup_mutex or RCU read locking, it
4669 * doesn't require the whole traversal to be contained in a single critical
4670 * section. This function will return the correct next descendant as long
4671 * as both @pos and @cgroup are accessible and @pos is a descendant of
4672 * @cgroup.
c2931b70
TH
4673 *
4674 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4675 * css which finished ->css_online() is guaranteed to be visible in the
4676 * future iterations and will stay visible until the last reference is put.
4677 * A css which hasn't finished ->css_online() or already finished
4678 * ->css_offline() may show up during traversal. It's each subsystem's
4679 * responsibility to synchronize against on/offlining.
574bd9f7 4680 */
492eb21b
TH
4681struct cgroup_subsys_state *
4682css_next_descendant_post(struct cgroup_subsys_state *pos,
4683 struct cgroup_subsys_state *root)
574bd9f7 4684{
492eb21b 4685 struct cgroup_subsys_state *next;
574bd9f7 4686
8353da1f 4687 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4688
58b79a91
TH
4689 /* if first iteration, visit leftmost descendant which may be @root */
4690 if (!pos)
4691 return css_leftmost_descendant(root);
574bd9f7 4692
bd8815a6
TH
4693 /* if we visited @root, we're done */
4694 if (pos == root)
4695 return NULL;
4696
574bd9f7 4697 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4698 next = css_next_child(pos, pos->parent);
75501a6d 4699 if (next)
492eb21b 4700 return css_leftmost_descendant(next);
574bd9f7
TH
4701
4702 /* no sibling left, visit parent */
5c9d535b 4703 return pos->parent;
574bd9f7 4704}
574bd9f7 4705
f3d46500
TH
4706/**
4707 * css_has_online_children - does a css have online children
4708 * @css: the target css
4709 *
4710 * Returns %true if @css has any online children; otherwise, %false. This
4711 * function can be called from any context but the caller is responsible
4712 * for synchronizing against on/offlining as necessary.
4713 */
4714bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4715{
f3d46500
TH
4716 struct cgroup_subsys_state *child;
4717 bool ret = false;
cbc125ef
TH
4718
4719 rcu_read_lock();
f3d46500 4720 css_for_each_child(child, css) {
99bae5f9 4721 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4722 ret = true;
4723 break;
cbc125ef
TH
4724 }
4725 }
4726 rcu_read_unlock();
f3d46500 4727 return ret;
574bd9f7 4728}
574bd9f7 4729
450ee0c1
TH
4730static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4731{
4732 struct list_head *l;
4733 struct cgrp_cset_link *link;
4734 struct css_set *cset;
4735
4736 lockdep_assert_held(&css_set_lock);
4737
4738 /* find the next threaded cset */
4739 if (it->tcset_pos) {
4740 l = it->tcset_pos->next;
4741
4742 if (l != it->tcset_head) {
4743 it->tcset_pos = l;
4744 return container_of(l, struct css_set,
4745 threaded_csets_node);
4746 }
4747
4748 it->tcset_pos = NULL;
4749 }
4750
4751 /* find the next cset */
4752 l = it->cset_pos;
4753 l = l->next;
4754 if (l == it->cset_head) {
4755 it->cset_pos = NULL;
4756 return NULL;
4757 }
4758
4759 if (it->ss) {
4760 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4761 } else {
4762 link = list_entry(l, struct cgrp_cset_link, cset_link);
4763 cset = link->cset;
4764 }
4765
4766 it->cset_pos = l;
4767
4768 /* initialize threaded css_set walking */
4769 if (it->flags & CSS_TASK_ITER_THREADED) {
4770 if (it->cur_dcset)
4771 put_css_set_locked(it->cur_dcset);
4772 it->cur_dcset = cset;
4773 get_css_set(cset);
4774
4775 it->tcset_head = &cset->threaded_csets;
4776 it->tcset_pos = &cset->threaded_csets;
4777 }
4778
4779 return cset;
4780}
4781
0942eeee 4782/**
58315c96 4783 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
0942eeee
TH
4784 * @it: the iterator to advance
4785 *
4786 * Advance @it to the next css_set to walk.
d515876e 4787 */
ecb9d535 4788static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4789{
d515876e
TH
4790 struct css_set *cset;
4791
f0d9a5f1 4792 lockdep_assert_held(&css_set_lock);
ed27b9f7 4793
f43caa2a
MK
4794 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4795 while ((cset = css_task_iter_next_css_set(it))) {
4796 if (!list_empty(&cset->tasks)) {
4797 it->cur_tasks_head = &cset->tasks;
4798 break;
4799 } else if (!list_empty(&cset->mg_tasks)) {
4800 it->cur_tasks_head = &cset->mg_tasks;
4801 break;
4802 } else if (!list_empty(&cset->dying_tasks)) {
4803 it->cur_tasks_head = &cset->dying_tasks;
4804 break;
d515876e 4805 }
9c974c77 4806 }
f43caa2a
MK
4807 if (!cset) {
4808 it->task_pos = NULL;
4809 return;
4810 }
4811 it->task_pos = it->cur_tasks_head->next;
ed27b9f7
TH
4812
4813 /*
4814 * We don't keep css_sets locked across iteration steps and thus
4815 * need to take steps to ensure that iteration can be resumed after
4816 * the lock is re-acquired. Iteration is performed at two levels -
4817 * css_sets and tasks in them.
4818 *
4819 * Once created, a css_set never leaves its cgroup lists, so a
4820 * pinned css_set is guaranteed to stay put and we can resume
4821 * iteration afterwards.
4822 *
4823 * Tasks may leave @cset across iteration steps. This is resolved
4824 * by registering each iterator with the css_set currently being
4825 * walked and making css_set_move_task() advance iterators whose
4826 * next task is leaving.
4827 */
4828 if (it->cur_cset) {
4829 list_del(&it->iters_node);
4830 put_css_set_locked(it->cur_cset);
4831 }
4832 get_css_set(cset);
4833 it->cur_cset = cset;
4834 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4835}
4836
b636fd38
TH
4837static void css_task_iter_skip(struct css_task_iter *it,
4838 struct task_struct *task)
ecb9d535 4839{
b636fd38
TH
4840 lockdep_assert_held(&css_set_lock);
4841
4842 if (it->task_pos == &task->cg_list) {
4843 it->task_pos = it->task_pos->next;
4844 it->flags |= CSS_TASK_ITER_SKIPPED;
4845 }
4846}
ecb9d535 4847
ecb9d535
TH
4848static void css_task_iter_advance(struct css_task_iter *it)
4849{
c03cd773 4850 struct task_struct *task;
ecb9d535 4851
f0d9a5f1 4852 lockdep_assert_held(&css_set_lock);
bc2fb7ed 4853repeat:
e9d81a1b
TH
4854 if (it->task_pos) {
4855 /*
f43caa2a
MK
4856 * Advance iterator to find next entry. We go through cset
4857 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4858 * the next cset.
e9d81a1b 4859 */
b636fd38
TH
4860 if (it->flags & CSS_TASK_ITER_SKIPPED)
4861 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4862 else
4863 it->task_pos = it->task_pos->next;
ecb9d535 4864
f43caa2a
MK
4865 if (it->task_pos == &it->cur_cset->tasks) {
4866 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4867 it->task_pos = it->cur_tasks_head->next;
9c974c77 4868 }
f43caa2a
MK
4869 if (it->task_pos == &it->cur_cset->mg_tasks) {
4870 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4871 it->task_pos = it->cur_tasks_head->next;
9c974c77 4872 }
f43caa2a 4873 if (it->task_pos == &it->cur_cset->dying_tasks)
e9d81a1b 4874 css_task_iter_advance_css_set(it);
e9d81a1b
TH
4875 } else {
4876 /* called from start, proceed to the first cset */
ecb9d535 4877 css_task_iter_advance_css_set(it);
e9d81a1b 4878 }
bc2fb7ed 4879
c03cd773
TH
4880 if (!it->task_pos)
4881 return;
4882
4883 task = list_entry(it->task_pos, struct task_struct, cg_list);
4884
4885 if (it->flags & CSS_TASK_ITER_PROCS) {
4886 /* if PROCS, skip over tasks which aren't group leaders */
4887 if (!thread_group_leader(task))
4888 goto repeat;
4889
4890 /* and dying leaders w/o live member threads */
f43caa2a 4891 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
9c974c77 4892 !atomic_read(&task->signal->live))
c03cd773
TH
4893 goto repeat;
4894 } else {
4895 /* skip all dying ones */
f43caa2a 4896 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
c03cd773
TH
4897 goto repeat;
4898 }
ecb9d535
TH
4899}
4900
0942eeee 4901/**
72ec7029
TH
4902 * css_task_iter_start - initiate task iteration
4903 * @css: the css to walk tasks of
bc2fb7ed 4904 * @flags: CSS_TASK_ITER_* flags
0942eeee
TH
4905 * @it: the task iterator to use
4906 *
72ec7029
TH
4907 * Initiate iteration through the tasks of @css. The caller can call
4908 * css_task_iter_next() to walk through the tasks until the function
4909 * returns NULL. On completion of iteration, css_task_iter_end() must be
4910 * called.
0942eeee 4911 */
bc2fb7ed 4912void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
72ec7029 4913 struct css_task_iter *it)
817929ec 4914{
ed27b9f7
TH
4915 memset(it, 0, sizeof(*it));
4916
82d6489d 4917 spin_lock_irq(&css_set_lock);
c59cd3d8 4918
3ebb2b6e 4919 it->ss = css->ss;
bc2fb7ed 4920 it->flags = flags;
3ebb2b6e 4921
d20d30eb 4922 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
3ebb2b6e
TH
4923 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4924 else
4925 it->cset_pos = &css->cgroup->cset_links;
4926
0f0a2b4f 4927 it->cset_head = it->cset_pos;
c59cd3d8 4928
e9d81a1b 4929 css_task_iter_advance(it);
ed27b9f7 4930
82d6489d 4931 spin_unlock_irq(&css_set_lock);
817929ec
PM
4932}
4933
0942eeee 4934/**
72ec7029 4935 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4936 * @it: the task iterator being iterated
4937 *
4938 * The "next" function for task iteration. @it should have been
72ec7029
TH
4939 * initialized via css_task_iter_start(). Returns NULL when the iteration
4940 * reaches the end.
0942eeee 4941 */
72ec7029 4942struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4943{
d5745675 4944 if (it->cur_task) {
ed27b9f7 4945 put_task_struct(it->cur_task);
d5745675
TH
4946 it->cur_task = NULL;
4947 }
ed27b9f7 4948
82d6489d 4949 spin_lock_irq(&css_set_lock);
ed27b9f7 4950
cee0c33c
TH
4951 /* @it may be half-advanced by skips, finish advancing */
4952 if (it->flags & CSS_TASK_ITER_SKIPPED)
4953 css_task_iter_advance(it);
4954
d5745675
TH
4955 if (it->task_pos) {
4956 it->cur_task = list_entry(it->task_pos, struct task_struct,
4957 cg_list);
4958 get_task_struct(it->cur_task);
4959 css_task_iter_advance(it);
4960 }
ed27b9f7 4961
82d6489d 4962 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4963
4964 return it->cur_task;
817929ec
PM
4965}
4966
0942eeee 4967/**
72ec7029 4968 * css_task_iter_end - finish task iteration
0942eeee
TH
4969 * @it: the task iterator to finish
4970 *
72ec7029 4971 * Finish task iteration started by css_task_iter_start().
0942eeee 4972 */
72ec7029 4973void css_task_iter_end(struct css_task_iter *it)
31a7df01 4974{
ed27b9f7 4975 if (it->cur_cset) {
82d6489d 4976 spin_lock_irq(&css_set_lock);
ed27b9f7
TH
4977 list_del(&it->iters_node);
4978 put_css_set_locked(it->cur_cset);
82d6489d 4979 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4980 }
4981
450ee0c1
TH
4982 if (it->cur_dcset)
4983 put_css_set(it->cur_dcset);
4984
ed27b9f7
TH
4985 if (it->cur_task)
4986 put_task_struct(it->cur_task);
31a7df01
CW
4987}
4988
b4b90a8e 4989static void cgroup_procs_release(struct kernfs_open_file *of)
31a7df01 4990{
0d2b5955
TH
4991 struct cgroup_file_ctx *ctx = of->priv;
4992
4993 if (ctx->procs.started)
4994 css_task_iter_end(&ctx->procs.iter);
b4b90a8e 4995}
6c694c88 4996
b4b90a8e
TH
4997static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4998{
4999 struct kernfs_open_file *of = s->private;
0d2b5955 5000 struct cgroup_file_ctx *ctx = of->priv;
31a7df01 5001
2d4ecb03
VA
5002 if (pos)
5003 (*pos)++;
5004
0d2b5955 5005 return css_task_iter_next(&ctx->procs.iter);
b4b90a8e 5006}
31a7df01 5007
8cfd8147
TH
5008static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5009 unsigned int iter_flags)
b4b90a8e
TH
5010{
5011 struct kernfs_open_file *of = s->private;
5012 struct cgroup *cgrp = seq_css(s)->cgroup;
0d2b5955
TH
5013 struct cgroup_file_ctx *ctx = of->priv;
5014 struct css_task_iter *it = &ctx->procs.iter;
8cc99345 5015
952aaa12 5016 /*
b4b90a8e
TH
5017 * When a seq_file is seeked, it's always traversed sequentially
5018 * from position 0, so we can simply keep iterating on !0 *pos.
952aaa12 5019 */
0d2b5955 5020 if (!ctx->procs.started) {
2d4ecb03 5021 if (WARN_ON_ONCE((*pos)))
b4b90a8e 5022 return ERR_PTR(-EINVAL);
450ee0c1 5023 css_task_iter_start(&cgrp->self, iter_flags, it);
0d2b5955 5024 ctx->procs.started = true;
2d4ecb03 5025 } else if (!(*pos)) {
b4b90a8e 5026 css_task_iter_end(it);
450ee0c1 5027 css_task_iter_start(&cgrp->self, iter_flags, it);
2d4ecb03
VA
5028 } else
5029 return it->cur_task;
bbcb81d0 5030
b4b90a8e
TH
5031 return cgroup_procs_next(s, NULL, NULL);
5032}
24528255 5033
8cfd8147
TH
5034static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5035{
5036 struct cgroup *cgrp = seq_css(s)->cgroup;
5037
5038 /*
5039 * All processes of a threaded subtree belong to the domain cgroup
5040 * of the subtree. Only threads can be distributed across the
5041 * subtree. Reject reads on cgroup.procs in the subtree proper.
5042 * They're always empty anyway.
5043 */
5044 if (cgroup_is_threaded(cgrp))
5045 return ERR_PTR(-EOPNOTSUPP);
5046
5047 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5048 CSS_TASK_ITER_THREADED);
5049}
5050
b4b90a8e 5051static int cgroup_procs_show(struct seq_file *s, void *v)
bbcb81d0 5052{
bc2fb7ed 5053 seq_printf(s, "%d\n", task_pid_vnr(v));
97978e6d
DL
5054 return 0;
5055}
5056
f3553220
CB
5057static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5058{
5059 int ret;
5060 struct inode *inode;
5061
5062 lockdep_assert_held(&cgroup_mutex);
5063
5064 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5065 if (!inode)
5066 return -ENOMEM;
5067
4609e1f1 5068 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
f3553220
CB
5069 iput(inode);
5070 return ret;
5071}
5072
715c809d
TH
5073static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5074 struct cgroup *dst_cgrp,
e5745764
TH
5075 struct super_block *sb,
5076 struct cgroup_namespace *ns)
715c809d 5077{
715c809d 5078 struct cgroup *com_cgrp = src_cgrp;
715c809d
TH
5079 int ret;
5080
5081 lockdep_assert_held(&cgroup_mutex);
5082
5083 /* find the common ancestor */
5084 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5085 com_cgrp = cgroup_parent(com_cgrp);
5086
5087 /* %current should be authorized to migrate to the common ancestor */
f3553220 5088 ret = cgroup_may_write(com_cgrp, sb);
715c809d
TH
5089 if (ret)
5090 return ret;
5091
5092 /*
5093 * If namespaces are delegation boundaries, %current must be able
5094 * to see both source and destination cgroups from its namespace.
5095 */
5096 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5097 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5098 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5099 return -ENOENT;
5100
5101 return 0;
5102}
5103
6df970e4
CB
5104static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5105 struct cgroup *dst_cgrp,
e5745764
TH
5106 struct super_block *sb, bool threadgroup,
5107 struct cgroup_namespace *ns)
6df970e4
CB
5108{
5109 int ret = 0;
5110
e5745764 5111 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
6df970e4
CB
5112 if (ret)
5113 return ret;
5114
5115 ret = cgroup_migrate_vet_dst(dst_cgrp);
5116 if (ret)
5117 return ret;
5118
5119 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5120 ret = -EOPNOTSUPP;
5121
5122 return ret;
5123}
5124
da70862e
MK
5125static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5126 bool threadgroup)
715c809d 5127{
e5745764 5128 struct cgroup_file_ctx *ctx = of->priv;
715c809d
TH
5129 struct cgroup *src_cgrp, *dst_cgrp;
5130 struct task_struct *task;
1756d799 5131 const struct cred *saved_cred;
715c809d 5132 ssize_t ret;
4f7e7236 5133 bool threadgroup_locked;
715c809d
TH
5134
5135 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5136 if (!dst_cgrp)
5137 return -ENODEV;
5138
4f7e7236 5139 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
715c809d
TH
5140 ret = PTR_ERR_OR_ZERO(task);
5141 if (ret)
5142 goto out_unlock;
5143
5144 /* find the source cgroup */
5145 spin_lock_irq(&css_set_lock);
5146 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5147 spin_unlock_irq(&css_set_lock);
5148
1756d799
TH
5149 /*
5150 * Process and thread migrations follow same delegation rule. Check
5151 * permissions using the credentials from file open to protect against
5152 * inherited fd attacks.
5153 */
5154 saved_cred = override_creds(of->file->f_cred);
6df970e4 5155 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
e5745764
TH
5156 of->file->f_path.dentry->d_sb,
5157 threadgroup, ctx->ns);
1756d799 5158 revert_creds(saved_cred);
715c809d
TH
5159 if (ret)
5160 goto out_finish;
5161
da70862e 5162 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
715c809d
TH
5163
5164out_finish:
4f7e7236 5165 cgroup_procs_write_finish(task, threadgroup_locked);
715c809d
TH
5166out_unlock:
5167 cgroup_kn_unlock(of->kn);
5168
da70862e
MK
5169 return ret;
5170}
5171
5172static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5173 char *buf, size_t nbytes, loff_t off)
5174{
5175 return __cgroup_procs_write(of, buf, true) ?: nbytes;
715c809d
TH
5176}
5177
8cfd8147
TH
5178static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5179{
5180 return __cgroup_procs_start(s, pos, 0);
5181}
5182
5183static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5184 char *buf, size_t nbytes, loff_t off)
5185{
da70862e 5186 return __cgroup_procs_write(of, buf, false) ?: nbytes;
8cfd8147
TH
5187}
5188
a14c6874 5189/* cgroup core interface files for the default hierarchy */
d62beb7f 5190static struct cftype cgroup_base_files[] = {
8cfd8147
TH
5191 {
5192 .name = "cgroup.type",
5193 .flags = CFTYPE_NOT_ON_ROOT,
5194 .seq_show = cgroup_type_show,
5195 .write = cgroup_type_write,
5196 },
81a6a5cd 5197 {
d5c56ced 5198 .name = "cgroup.procs",
5136f636 5199 .flags = CFTYPE_NS_DELEGATABLE,
6f60eade 5200 .file_offset = offsetof(struct cgroup, procs_file),
b4b90a8e
TH
5201 .release = cgroup_procs_release,
5202 .seq_start = cgroup_procs_start,
5203 .seq_next = cgroup_procs_next,
5204 .seq_show = cgroup_procs_show,
acbef755 5205 .write = cgroup_procs_write,
102a775e 5206 },
8cfd8147
TH
5207 {
5208 .name = "cgroup.threads",
4f58424d 5209 .flags = CFTYPE_NS_DELEGATABLE,
8cfd8147
TH
5210 .release = cgroup_procs_release,
5211 .seq_start = cgroup_threads_start,
5212 .seq_next = cgroup_procs_next,
5213 .seq_show = cgroup_procs_show,
5214 .write = cgroup_threads_write,
5215 },
f8f22e53
TH
5216 {
5217 .name = "cgroup.controllers",
f8f22e53
TH
5218 .seq_show = cgroup_controllers_show,
5219 },
5220 {
5221 .name = "cgroup.subtree_control",
5136f636 5222 .flags = CFTYPE_NS_DELEGATABLE,
f8f22e53 5223 .seq_show = cgroup_subtree_control_show,
451af504 5224 .write = cgroup_subtree_control_write,
f8f22e53 5225 },
842b597e 5226 {
4a07c222 5227 .name = "cgroup.events",
a14c6874 5228 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 5229 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 5230 .seq_show = cgroup_events_show,
842b597e 5231 },
1a926e0b
RG
5232 {
5233 .name = "cgroup.max.descendants",
5234 .seq_show = cgroup_max_descendants_show,
5235 .write = cgroup_max_descendants_write,
5236 },
5237 {
5238 .name = "cgroup.max.depth",
5239 .seq_show = cgroup_max_depth_show,
5240 .write = cgroup_max_depth_write,
5241 },
ec39225c
RG
5242 {
5243 .name = "cgroup.stat",
3e48930c 5244 .seq_show = cgroup_stat_show,
ec39225c 5245 },
76f969e8
RG
5246 {
5247 .name = "cgroup.freeze",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = cgroup_freeze_show,
5250 .write = cgroup_freeze_write,
5251 },
661ee628
CB
5252 {
5253 .name = "cgroup.kill",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .write = cgroup_kill_write,
5256 },
d41bf8c9
TH
5257 {
5258 .name = "cpu.stat",
d41bf8c9
TH
5259 .seq_show = cpu_stat_show,
5260 },
8a693f77
TH
5261 { } /* terminate */
5262};
5263
5264static struct cftype cgroup_psi_files[] = {
2ce7135a
JW
5265#ifdef CONFIG_PSI
5266 {
5267 .name = "io.pressure",
34f26a15 5268 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
2ce7135a 5269 .seq_show = cgroup_io_pressure_show,
0e94682b
SB
5270 .write = cgroup_io_pressure_write,
5271 .poll = cgroup_pressure_poll,
5272 .release = cgroup_pressure_release,
2ce7135a
JW
5273 },
5274 {
5275 .name = "memory.pressure",
34f26a15 5276 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
2ce7135a 5277 .seq_show = cgroup_memory_pressure_show,
0e94682b
SB
5278 .write = cgroup_memory_pressure_write,
5279 .poll = cgroup_pressure_poll,
5280 .release = cgroup_pressure_release,
2ce7135a
JW
5281 },
5282 {
5283 .name = "cpu.pressure",
34f26a15 5284 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
2ce7135a 5285 .seq_show = cgroup_cpu_pressure_show,
0e94682b
SB
5286 .write = cgroup_cpu_pressure_write,
5287 .poll = cgroup_pressure_poll,
5288 .release = cgroup_pressure_release,
2ce7135a 5289 },
52b1364b
CZ
5290#ifdef CONFIG_IRQ_TIME_ACCOUNTING
5291 {
5292 .name = "irq.pressure",
34f26a15 5293 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
52b1364b
CZ
5294 .seq_show = cgroup_irq_pressure_show,
5295 .write = cgroup_irq_pressure_write,
5296 .poll = cgroup_pressure_poll,
5297 .release = cgroup_pressure_release,
5298 },
5299#endif
34f26a15
CZ
5300 {
5301 .name = "cgroup.pressure",
34f26a15
CZ
5302 .seq_show = cgroup_pressure_show,
5303 .write = cgroup_pressure_write,
5304 },
0e94682b 5305#endif /* CONFIG_PSI */
a14c6874
TH
5306 { } /* terminate */
5307};
d5c56ced 5308
0c21ead1
TH
5309/*
5310 * css destruction is four-stage process.
5311 *
5312 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5313 * Implemented in kill_css().
5314 *
5315 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
5316 * and thus css_tryget_online() is guaranteed to fail, the css can be
5317 * offlined by invoking offline_css(). After offlining, the base ref is
5318 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
5319 *
5320 * 3. When the percpu_ref reaches zero, the only possible remaining
5321 * accessors are inside RCU read sections. css_release() schedules the
5322 * RCU callback.
5323 *
5324 * 4. After the grace period, the css can be freed. Implemented in
5325 * css_free_work_fn().
5326 *
5327 * It is actually hairier because both step 2 and 4 require process context
5328 * and thus involve punting to css->destroy_work adding two additional
5329 * steps to the already complex sequence.
5330 */
8f36aaec 5331static void css_free_rwork_fn(struct work_struct *work)
48ddbe19 5332{
8f36aaec
TH
5333 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5334 struct cgroup_subsys_state, destroy_rwork);
01e58659 5335 struct cgroup_subsys *ss = css->ss;
0c21ead1 5336 struct cgroup *cgrp = css->cgroup;
48ddbe19 5337
9a1049da
TH
5338 percpu_ref_exit(&css->refcnt);
5339
01e58659 5340 if (ss) {
9d755d33 5341 /* css free path */
8bb5ef79 5342 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
5343 int id = css->id;
5344
01e58659
VD
5345 ss->css_free(css);
5346 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 5347 cgroup_put(cgrp);
8bb5ef79
TH
5348
5349 if (parent)
5350 css_put(parent);
9d755d33
TH
5351 } else {
5352 /* cgroup free path */
5353 atomic_dec(&cgrp->root->nr_cgrps);
d62beb7f 5354 cgroup1_pidlist_destroy_all(cgrp);
971ff493 5355 cancel_work_sync(&cgrp->release_agent_work);
c4bcfb38 5356 bpf_cgrp_storage_free(cgrp);
9d755d33 5357
d51f39b0 5358 if (cgroup_parent(cgrp)) {
9d755d33
TH
5359 /*
5360 * We get a ref to the parent, and put the ref when
5361 * this cgroup is being freed, so it's guaranteed
5362 * that the parent won't be destroyed before its
5363 * children.
5364 */
d51f39b0 5365 cgroup_put(cgroup_parent(cgrp));
9d755d33 5366 kernfs_put(cgrp->kn);
2ce7135a 5367 psi_cgroup_free(cgrp);
a7df69b8 5368 cgroup_rstat_exit(cgrp);
9d755d33
TH
5369 kfree(cgrp);
5370 } else {
5371 /*
5372 * This is root cgroup's refcnt reaching zero,
5373 * which indicates that the root should be
5374 * released.
5375 */
5376 cgroup_destroy_root(cgrp->root);
5377 }
5378 }
48ddbe19
TH
5379}
5380
25e15d83 5381static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
5382{
5383 struct cgroup_subsys_state *css =
25e15d83 5384 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 5385 struct cgroup_subsys *ss = css->ss;
9d755d33 5386 struct cgroup *cgrp = css->cgroup;
15a4c835 5387
1fed1b2e
TH
5388 mutex_lock(&cgroup_mutex);
5389
de3f0341 5390 css->flags |= CSS_RELEASED;
1fed1b2e
TH
5391 list_del_rcu(&css->sibling);
5392
9d755d33
TH
5393 if (ss) {
5394 /* css release path */
8f53470b
TH
5395 if (!list_empty(&css->rstat_css_node)) {
5396 cgroup_rstat_flush(cgrp);
5397 list_del_rcu(&css->rstat_css_node);
5398 }
5399
01e58659 5400 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
5401 if (ss->css_released)
5402 ss->css_released(css);
9d755d33 5403 } else {
0679dee0
RG
5404 struct cgroup *tcgrp;
5405
9d755d33 5406 /* cgroup release path */
e4f8d81c 5407 TRACE_CGROUP_PATH(release, cgrp);
ed1777de 5408
a7df69b8 5409 cgroup_rstat_flush(cgrp);
041cd640 5410
4dcabece 5411 spin_lock_irq(&css_set_lock);
0679dee0
RG
5412 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5413 tcgrp = cgroup_parent(tcgrp))
5414 tcgrp->nr_dying_descendants--;
4dcabece 5415 spin_unlock_irq(&css_set_lock);
0679dee0 5416
a4189487
LZ
5417 /*
5418 * There are two control paths which try to determine
5419 * cgroup from dentry without going through kernfs -
5420 * cgroupstats_build() and css_tryget_online_from_dir().
5421 * Those are supported by RCU protecting clearing of
5422 * cgrp->kn->priv backpointer.
5423 */
6cd0f5bb
TH
5424 if (cgrp->kn)
5425 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5426 NULL);
9d755d33 5427 }
d3daf28d 5428
1fed1b2e
TH
5429 mutex_unlock(&cgroup_mutex);
5430
8f36aaec
TH
5431 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5432 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
d3daf28d
TH
5433}
5434
d3daf28d
TH
5435static void css_release(struct percpu_ref *ref)
5436{
5437 struct cgroup_subsys_state *css =
5438 container_of(ref, struct cgroup_subsys_state, refcnt);
5439
25e15d83
TH
5440 INIT_WORK(&css->destroy_work, css_release_work_fn);
5441 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5442}
5443
ddfcadab
TH
5444static void init_and_link_css(struct cgroup_subsys_state *css,
5445 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 5446{
0cb51d71
TH
5447 lockdep_assert_held(&cgroup_mutex);
5448
a590b90d 5449 cgroup_get_live(cgrp);
ddfcadab 5450
d5c419b6 5451 memset(css, 0, sizeof(*css));
bd89aabc 5452 css->cgroup = cgrp;
72c97e54 5453 css->ss = ss;
8fa3b8d6 5454 css->id = -1;
d5c419b6
TH
5455 INIT_LIST_HEAD(&css->sibling);
5456 INIT_LIST_HEAD(&css->children);
8f53470b 5457 INIT_LIST_HEAD(&css->rstat_css_node);
0cb51d71 5458 css->serial_nr = css_serial_nr_next++;
aa226ff4 5459 atomic_set(&css->online_cnt, 0);
0ae78e0b 5460
d51f39b0
TH
5461 if (cgroup_parent(cgrp)) {
5462 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5463 css_get(css->parent);
ddfcadab 5464 }
48ddbe19 5465
a7df69b8 5466 if (ss->css_rstat_flush)
8f53470b
TH
5467 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5468
ca8bdcaf 5469 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5470}
5471
2a4ac633 5472/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5473static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5474{
623f926b 5475 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5476 int ret = 0;
5477
a31f2d3f
TH
5478 lockdep_assert_held(&cgroup_mutex);
5479
92fb9748 5480 if (ss->css_online)
eb95419b 5481 ret = ss->css_online(css);
ae7f164a 5482 if (!ret) {
eb95419b 5483 css->flags |= CSS_ONLINE;
aec25020 5484 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5485
5486 atomic_inc(&css->online_cnt);
5487 if (css->parent)
5488 atomic_inc(&css->parent->online_cnt);
ae7f164a 5489 }
b1929db4 5490 return ret;
a31f2d3f
TH
5491}
5492
2a4ac633 5493/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5494static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5495{
623f926b 5496 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5497
5498 lockdep_assert_held(&cgroup_mutex);
5499
5500 if (!(css->flags & CSS_ONLINE))
5501 return;
5502
d7eeac19 5503 if (ss->css_offline)
eb95419b 5504 ss->css_offline(css);
a31f2d3f 5505
eb95419b 5506 css->flags &= ~CSS_ONLINE;
e3297803 5507 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5508
5509 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5510}
5511
c81c925a 5512/**
6cd0f5bb 5513 * css_create - create a cgroup_subsys_state
c81c925a
TH
5514 * @cgrp: the cgroup new css will be associated with
5515 * @ss: the subsys of new css
5516 *
5517 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5518 * css is online and installed in @cgrp. This function doesn't create the
5519 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5520 */
6cd0f5bb
TH
5521static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5522 struct cgroup_subsys *ss)
c81c925a 5523{
d51f39b0 5524 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5525 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5526 struct cgroup_subsys_state *css;
5527 int err;
5528
c81c925a
TH
5529 lockdep_assert_held(&cgroup_mutex);
5530
1fed1b2e 5531 css = ss->css_alloc(parent_css);
e7e15b87
TH
5532 if (!css)
5533 css = ERR_PTR(-ENOMEM);
c81c925a 5534 if (IS_ERR(css))
6cd0f5bb 5535 return css;
c81c925a 5536
ddfcadab 5537 init_and_link_css(css, ss, cgrp);
a2bed820 5538
2aad2a86 5539 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5540 if (err)
3eb59ec6 5541 goto err_free_css;
c81c925a 5542
cf780b7d 5543 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835 5544 if (err < 0)
b00c52da 5545 goto err_free_css;
15a4c835 5546 css->id = err;
c81c925a 5547
15a4c835 5548 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5549 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5550 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5551
5552 err = online_css(css);
5553 if (err)
1fed1b2e 5554 goto err_list_del;
94419627 5555
6cd0f5bb 5556 return css;
c81c925a 5557
1fed1b2e
TH
5558err_list_del:
5559 list_del_rcu(&css->sibling);
3eb59ec6 5560err_free_css:
8f53470b 5561 list_del_rcu(&css->rstat_css_node);
8f36aaec
TH
5562 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5563 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
6cd0f5bb 5564 return ERR_PTR(err);
c81c925a
TH
5565}
5566
07cd1294
TH
5567/*
5568 * The returned cgroup is fully initialized including its control mask, but
5569 * it isn't associated with its kernfs_node and doesn't have the control
5570 * mask applied.
5571 */
74321038
TH
5572static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5573 umode_t mode)
ddbcc7e8 5574{
a5bca215 5575 struct cgroup_root *root = parent->root;
a5bca215 5576 struct cgroup *cgrp, *tcgrp;
74321038 5577 struct kernfs_node *kn;
a5bca215 5578 int level = parent->level + 1;
03970d3c 5579 int ret;
ddbcc7e8 5580
0a950f65 5581 /* allocate the cgroup and its ID, 0 is reserved for the root */
7f203bc8 5582 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
a5bca215
TH
5583 if (!cgrp)
5584 return ERR_PTR(-ENOMEM);
0ab02ca8 5585
2aad2a86 5586 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5587 if (ret)
5588 goto out_free_cgrp;
5589
a7df69b8
JW
5590 ret = cgroup_rstat_init(cgrp);
5591 if (ret)
5592 goto out_cancel_ref;
041cd640 5593
74321038
TH
5594 /* create the directory */
5595 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5596 if (IS_ERR(kn)) {
5597 ret = PTR_ERR(kn);
041cd640 5598 goto out_stat_exit;
976c06bc 5599 }
74321038 5600 cgrp->kn = kn;
976c06bc 5601
cc31edce 5602 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5603
9d800df1 5604 cgrp->self.parent = &parent->self;
ba0f4d76 5605 cgrp->root = root;
b11cfb58 5606 cgrp->level = level;
2ce7135a
JW
5607
5608 ret = psi_cgroup_alloc(cgrp);
324bda9e 5609 if (ret)
74321038 5610 goto out_kernfs_remove;
b11cfb58 5611
2ce7135a
JW
5612 ret = cgroup_bpf_inherit(cgrp);
5613 if (ret)
5614 goto out_psi_free;
5615
76f969e8
RG
5616 /*
5617 * New cgroup inherits effective freeze counter, and
5618 * if the parent has to be frozen, the child has too.
5619 */
5620 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
97a61369
RG
5621 if (cgrp->freezer.e_freeze) {
5622 /*
5623 * Set the CGRP_FREEZE flag, so when a process will be
5624 * attached to the child cgroup, it will become frozen.
5625 * At this point the new cgroup is unpopulated, so we can
5626 * consider it frozen immediately.
5627 */
5628 set_bit(CGRP_FREEZE, &cgrp->flags);
76f969e8 5629 set_bit(CGRP_FROZEN, &cgrp->flags);
97a61369 5630 }
76f969e8 5631
4dcabece 5632 spin_lock_irq(&css_set_lock);
0679dee0 5633 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
7f203bc8 5634 cgrp->ancestors[tcgrp->level] = tcgrp;
ddbcc7e8 5635
76f969e8 5636 if (tcgrp != cgrp) {
0679dee0 5637 tcgrp->nr_descendants++;
76f969e8
RG
5638
5639 /*
5640 * If the new cgroup is frozen, all ancestor cgroups
5641 * get a new frozen descendant, but their state can't
5642 * change because of this.
5643 */
5644 if (cgrp->freezer.e_freeze)
5645 tcgrp->freezer.nr_frozen_descendants++;
5646 }
0679dee0 5647 }
4dcabece 5648 spin_unlock_irq(&css_set_lock);
0679dee0 5649
b6abdb0e
LZ
5650 if (notify_on_release(parent))
5651 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5652
2260e7fc
TH
5653 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5654 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5655
0cb51d71 5656 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5657
4e139afc 5658 /* allocation complete, commit to creation */
d5c419b6 5659 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5660 atomic_inc(&root->nr_cgrps);
a590b90d 5661 cgroup_get_live(parent);
415cf07a 5662
bd53d617
TH
5663 /*
5664 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5665 * subtree_control from the parent. Each is configured manually.
bd53d617 5666 */
03970d3c 5667 if (!cgroup_on_dfl(cgrp))
5531dc91 5668 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5669
5670 cgroup_propagate_control(cgrp);
5671
a5bca215
TH
5672 return cgrp;
5673
2ce7135a
JW
5674out_psi_free:
5675 psi_cgroup_free(cgrp);
74321038
TH
5676out_kernfs_remove:
5677 kernfs_remove(cgrp->kn);
041cd640 5678out_stat_exit:
a7df69b8 5679 cgroup_rstat_exit(cgrp);
a5bca215
TH
5680out_cancel_ref:
5681 percpu_ref_exit(&cgrp->self.refcnt);
5682out_free_cgrp:
5683 kfree(cgrp);
5684 return ERR_PTR(ret);
a5bca215
TH
5685}
5686
1a926e0b
RG
5687static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5688{
5689 struct cgroup *cgroup;
5690 int ret = false;
5691 int level = 1;
5692
5693 lockdep_assert_held(&cgroup_mutex);
5694
5695 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5696 if (cgroup->nr_descendants >= cgroup->max_descendants)
5697 goto fail;
5698
5699 if (level > cgroup->max_depth)
5700 goto fail;
5701
5702 level++;
5703 }
5704
5705 ret = true;
5706fail:
5707 return ret;
5708}
5709
1592c9b2 5710int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
a5bca215
TH
5711{
5712 struct cgroup *parent, *cgrp;
03970d3c 5713 int ret;
a5bca215
TH
5714
5715 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5716 if (strchr(name, '\n'))
5717 return -EINVAL;
5718
945ba199 5719 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5720 if (!parent)
5721 return -ENODEV;
5722
1a926e0b
RG
5723 if (!cgroup_check_hierarchy_limits(parent)) {
5724 ret = -EAGAIN;
5725 goto out_unlock;
5726 }
5727
74321038 5728 cgrp = cgroup_create(parent, name, mode);
a5bca215
TH
5729 if (IS_ERR(cgrp)) {
5730 ret = PTR_ERR(cgrp);
5731 goto out_unlock;
5732 }
5733
195e9b6c
TH
5734 /*
5735 * This extra ref will be put in cgroup_free_fn() and guarantees
5736 * that @cgrp->kn is always accessible.
5737 */
74321038 5738 kernfs_get(cgrp->kn);
195e9b6c 5739
74321038 5740 ret = cgroup_kn_set_ugid(cgrp->kn);
195e9b6c
TH
5741 if (ret)
5742 goto out_destroy;
5743
334c3679 5744 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5745 if (ret)
5746 goto out_destroy;
5747
03970d3c
TH
5748 ret = cgroup_apply_control_enable(cgrp);
5749 if (ret)
5750 goto out_destroy;
195e9b6c 5751
e4f8d81c 5752 TRACE_CGROUP_PATH(mkdir, cgrp);
ed1777de 5753
195e9b6c 5754 /* let's create and online css's */
74321038 5755 kernfs_activate(cgrp->kn);
ddbcc7e8 5756
ba0f4d76
TH
5757 ret = 0;
5758 goto out_unlock;
ddbcc7e8 5759
a5bca215
TH
5760out_destroy:
5761 cgroup_destroy_locked(cgrp);
ba0f4d76 5762out_unlock:
a9746d8d 5763 cgroup_kn_unlock(parent_kn);
ba0f4d76 5764 return ret;
ddbcc7e8
PM
5765}
5766
223dbc38
TH
5767/*
5768 * This is called when the refcnt of a css is confirmed to be killed.
249f3468 5769 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
08b2b6fd 5770 * initiate destruction and put the css ref from kill_css().
223dbc38
TH
5771 */
5772static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5773{
223dbc38
TH
5774 struct cgroup_subsys_state *css =
5775 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5776
f20104de 5777 mutex_lock(&cgroup_mutex);
09a503ea 5778
aa226ff4
TH
5779 do {
5780 offline_css(css);
5781 css_put(css);
5782 /* @css can't go away while we're holding cgroup_mutex */
5783 css = css->parent;
5784 } while (css && atomic_dec_and_test(&css->online_cnt));
5785
5786 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5787}
5788
223dbc38
TH
5789/* css kill confirmation processing requires process context, bounce */
5790static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5791{
5792 struct cgroup_subsys_state *css =
5793 container_of(ref, struct cgroup_subsys_state, refcnt);
5794
aa226ff4
TH
5795 if (atomic_dec_and_test(&css->online_cnt)) {
5796 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5797 queue_work(cgroup_destroy_wq, &css->destroy_work);
5798 }
d3daf28d
TH
5799}
5800
f392e51c
TH
5801/**
5802 * kill_css - destroy a css
5803 * @css: css to destroy
5804 *
5805 * This function initiates destruction of @css by removing cgroup interface
5806 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5807 * asynchronously once css_tryget_online() is guaranteed to fail and when
5808 * the reference count reaches zero, @css will be released.
f392e51c
TH
5809 */
5810static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5811{
01f6474c 5812 lockdep_assert_held(&cgroup_mutex);
94419627 5813
33c35aa4
WL
5814 if (css->flags & CSS_DYING)
5815 return;
5816
5817 css->flags |= CSS_DYING;
5818
2bd59d48
TH
5819 /*
5820 * This must happen before css is disassociated with its cgroup.
5821 * See seq_css() for details.
5822 */
334c3679 5823 css_clear_dir(css);
3c14f8b4 5824
edae0c33
TH
5825 /*
5826 * Killing would put the base ref, but we need to keep it alive
5827 * until after ->css_offline().
5828 */
5829 css_get(css);
5830
5831 /*
5832 * cgroup core guarantees that, by the time ->css_offline() is
5833 * invoked, no new css reference will be given out via
ec903c0c 5834 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5835 * proceed to offlining css's because percpu_ref_kill() doesn't
5836 * guarantee that the ref is seen as killed on all CPUs on return.
5837 *
5838 * Use percpu_ref_kill_and_confirm() to get notifications as each
5839 * css is confirmed to be seen as killed on all CPUs.
5840 */
5841 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5842}
5843
5844/**
5845 * cgroup_destroy_locked - the first stage of cgroup destruction
5846 * @cgrp: cgroup to be destroyed
5847 *
5848 * css's make use of percpu refcnts whose killing latency shouldn't be
5849 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5850 * guarantee that css_tryget_online() won't succeed by the time
5851 * ->css_offline() is invoked. To satisfy all the requirements,
5852 * destruction is implemented in the following two steps.
d3daf28d
TH
5853 *
5854 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5855 * userland visible parts and start killing the percpu refcnts of
5856 * css's. Set up so that the next stage will be kicked off once all
5857 * the percpu refcnts are confirmed to be killed.
5858 *
5859 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5860 * rest of destruction. Once all cgroup references are gone, the
5861 * cgroup is RCU-freed.
5862 *
5863 * This function implements s1. After this step, @cgrp is gone as far as
5864 * the userland is concerned and a new cgroup with the same name may be
5865 * created. As cgroup doesn't care about the names internally, this
5866 * doesn't cause any problem.
5867 */
42809dd4
TH
5868static int cgroup_destroy_locked(struct cgroup *cgrp)
5869 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5870{
0679dee0 5871 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
2bd59d48 5872 struct cgroup_subsys_state *css;
2b021cbf 5873 struct cgrp_cset_link *link;
1c6727af 5874 int ssid;
ddbcc7e8 5875
42809dd4
TH
5876 lockdep_assert_held(&cgroup_mutex);
5877
91486f61
TH
5878 /*
5879 * Only migration can raise populated from zero and we're already
5880 * holding cgroup_mutex.
5881 */
5882 if (cgroup_is_populated(cgrp))
ddbcc7e8 5883 return -EBUSY;
a043e3b2 5884
bb78a92f 5885 /*
d5c419b6
TH
5886 * Make sure there's no live children. We can't test emptiness of
5887 * ->self.children as dead children linger on it while being
5888 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5889 */
f3d46500 5890 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5891 return -EBUSY;
5892
455050d2 5893 /*
2b021cbf
TH
5894 * Mark @cgrp and the associated csets dead. The former prevents
5895 * further task migration and child creation by disabling
5896 * cgroup_lock_live_group(). The latter makes the csets ignored by
5897 * the migration path.
455050d2 5898 */
184faf32 5899 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5900
82d6489d 5901 spin_lock_irq(&css_set_lock);
2b021cbf
TH
5902 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5903 link->cset->dead = true;
82d6489d 5904 spin_unlock_irq(&css_set_lock);
2b021cbf 5905
249f3468 5906 /* initiate massacre of all css's */
1c6727af
TH
5907 for_each_css(css, ssid, cgrp)
5908 kill_css(css);
455050d2 5909
5faaf05f
TH
5910 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5911 css_clear_dir(&cgrp->self);
01f6474c 5912 kernfs_remove(cgrp->kn);
f20104de 5913
b154a017 5914 if (cgroup_is_threaded(cgrp))
454000ad
TH
5915 parent->nr_threaded_children--;
5916
4dcabece 5917 spin_lock_irq(&css_set_lock);
0679dee0
RG
5918 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5919 tcgrp->nr_descendants--;
5920 tcgrp->nr_dying_descendants++;
76f969e8
RG
5921 /*
5922 * If the dying cgroup is frozen, decrease frozen descendants
5923 * counters of ancestor cgroups.
5924 */
5925 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5926 tcgrp->freezer.nr_frozen_descendants--;
0679dee0 5927 }
4dcabece 5928 spin_unlock_irq(&css_set_lock);
0679dee0 5929
5a621e6c 5930 cgroup1_check_for_release(parent);
2bd59d48 5931
4bfc0bb2
RG
5932 cgroup_bpf_offline(cgrp);
5933
249f3468 5934 /* put the base reference */
9d755d33 5935 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5936
ea15f8cc
TH
5937 return 0;
5938};
5939
1592c9b2 5940int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5941{
a9746d8d 5942 struct cgroup *cgrp;
2bd59d48 5943 int ret = 0;
42809dd4 5944
945ba199 5945 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5946 if (!cgrp)
5947 return 0;
42809dd4 5948
a9746d8d 5949 ret = cgroup_destroy_locked(cgrp);
ed1777de 5950 if (!ret)
e4f8d81c 5951 TRACE_CGROUP_PATH(rmdir, cgrp);
ed1777de 5952
a9746d8d 5953 cgroup_kn_unlock(kn);
42809dd4 5954 return ret;
8e3f6541
TH
5955}
5956
2bd59d48 5957static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5136f636 5958 .show_options = cgroup_show_options,
2bd59d48
TH
5959 .mkdir = cgroup_mkdir,
5960 .rmdir = cgroup_rmdir,
4f41fc59 5961 .show_path = cgroup_show_path,
2bd59d48
TH
5962};
5963
15a4c835 5964static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5965{
ddbcc7e8 5966 struct cgroup_subsys_state *css;
cfe36bde 5967
a5ae9899 5968 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5969
648bb56d
TH
5970 mutex_lock(&cgroup_mutex);
5971
15a4c835 5972 idr_init(&ss->css_idr);
0adb0704 5973 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5974
3dd06ffa
TH
5975 /* Create the root cgroup state for this subsystem */
5976 ss->root = &cgrp_dfl_root;
8291471e 5977 css = ss->css_alloc(NULL);
ddbcc7e8
PM
5978 /* We don't handle early failures gracefully */
5979 BUG_ON(IS_ERR(css));
ddfcadab 5980 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5981
5982 /*
5983 * Root csses are never destroyed and we can't initialize
5984 * percpu_ref during early init. Disable refcnting.
5985 */
5986 css->flags |= CSS_NO_REF;
5987
15a4c835 5988 if (early) {
9395a450 5989 /* allocation can't be done safely during early init */
15a4c835
TH
5990 css->id = 1;
5991 } else {
5992 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5993 BUG_ON(css->id < 0);
5994 }
ddbcc7e8 5995
e8d55fde 5996 /* Update the init_css_set to contain a subsys
817929ec 5997 * pointer to this state - since the subsystem is
e8d55fde 5998 * newly registered, all tasks and hence the
3dd06ffa 5999 * init_css_set is in the subsystem's root cgroup. */
aec25020 6000 init_css_set.subsys[ss->id] = css;
ddbcc7e8 6001
cb4a3167
AS
6002 have_fork_callback |= (bool)ss->fork << ss->id;
6003 have_exit_callback |= (bool)ss->exit << ss->id;
51bee5ab 6004 have_release_callback |= (bool)ss->release << ss->id;
7e47682e 6005 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 6006
e8d55fde
LZ
6007 /* At system boot, before all subsystems have been
6008 * registered, no tasks have been forked, so we don't
6009 * need to invoke fork callbacks here. */
6010 BUG_ON(!list_empty(&init_task.tasks));
6011
ae7f164a 6012 BUG_ON(online_css(css));
a8638030 6013
cf5d5941
BB
6014 mutex_unlock(&cgroup_mutex);
6015}
cf5d5941 6016
ddbcc7e8 6017/**
a043e3b2
LZ
6018 * cgroup_init_early - cgroup initialization at system boot
6019 *
6020 * Initialize cgroups at system boot, and initialize any
6021 * subsystems that request early init.
ddbcc7e8
PM
6022 */
6023int __init cgroup_init_early(void)
6024{
f5dfb531 6025 static struct cgroup_fs_context __initdata ctx;
30159ec7 6026 struct cgroup_subsys *ss;
ddbcc7e8 6027 int i;
30159ec7 6028
cf6299b1
AV
6029 ctx.root = &cgrp_dfl_root;
6030 init_cgroup_root(&ctx);
3b514d24
TH
6031 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6032
a4ea1cc9 6033 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 6034
3ed80a62 6035 for_each_subsys(ss, i) {
aec25020 6036 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 6037 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 6038 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 6039 ss->id, ss->name);
073219e9
TH
6040 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6041 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6042
aec25020 6043 ss->id = i;
073219e9 6044 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
6045 if (!ss->legacy_name)
6046 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
6047
6048 if (ss->early_init)
15a4c835 6049 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
6050 }
6051 return 0;
6052}
6053
6054/**
a043e3b2
LZ
6055 * cgroup_init - cgroup initialization
6056 *
6057 * Register cgroup filesystem and /proc file, and initialize
6058 * any subsystems that didn't request early init.
ddbcc7e8
PM
6059 */
6060int __init cgroup_init(void)
6061{
30159ec7 6062 struct cgroup_subsys *ss;
035f4f51 6063 int ssid;
ddbcc7e8 6064
6e5c8307 6065 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
d62beb7f 6066 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
8a693f77 6067 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
d62beb7f 6068 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
ddbcc7e8 6069
c58632b3 6070 cgroup_rstat_boot();
041cd640 6071
a79a908f
AK
6072 get_user_ns(init_cgroup_ns.user_ns);
6073
54e7b4eb 6074 mutex_lock(&cgroup_mutex);
54e7b4eb 6075
2378d8b8
TH
6076 /*
6077 * Add init_css_set to the hash table so that dfl_root can link to
6078 * it during init.
6079 */
6080 hash_add(css_set_table, &init_css_set.hlist,
6081 css_set_hash(init_css_set.subsys));
82fe9b0d 6082
35ac1184 6083 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 6084
54e7b4eb
TH
6085 mutex_unlock(&cgroup_mutex);
6086
172a2c06 6087 for_each_subsys(ss, ssid) {
15a4c835
TH
6088 if (ss->early_init) {
6089 struct cgroup_subsys_state *css =
6090 init_css_set.subsys[ss->id];
6091
6092 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6093 GFP_KERNEL);
6094 BUG_ON(css->id < 0);
6095 } else {
6096 cgroup_init_subsys(ss, false);
6097 }
172a2c06 6098
2d8f243a
TH
6099 list_add_tail(&init_css_set.e_cset_node[ssid],
6100 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
6101
6102 /*
c731ae1d
LZ
6103 * Setting dfl_root subsys_mask needs to consider the
6104 * disabled flag and cftype registration needs kmalloc,
6105 * both of which aren't available during early_init.
172a2c06 6106 */
45e1ba40 6107 if (!cgroup_ssid_enabled(ssid))
a8ddc821
TH
6108 continue;
6109
d62beb7f 6110 if (cgroup1_ssid_disabled(ssid))
223ffb29
JW
6111 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
6112 ss->name);
6113
a8ddc821
TH
6114 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6115
8cfd8147
TH
6116 /* implicit controllers must be threaded too */
6117 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6118
f6d635ad
TH
6119 if (ss->implicit_on_dfl)
6120 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6121 else if (!ss->dfl_cftypes)
a7165264 6122 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 6123
8cfd8147
TH
6124 if (ss->threaded)
6125 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6126
a8ddc821
TH
6127 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6128 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6129 } else {
6130 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6131 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 6132 }
295458e6
VD
6133
6134 if (ss->bind)
6135 ss->bind(init_css_set.subsys[ssid]);
7af608e4
TH
6136
6137 mutex_lock(&cgroup_mutex);
6138 css_populate_dir(init_css_set.subsys[ssid]);
6139 mutex_unlock(&cgroup_mutex);
676db4af
GK
6140 }
6141
2378d8b8
TH
6142 /* init_css_set.subsys[] has been updated, re-hash */
6143 hash_del(&init_css_set.hlist);
6144 hash_add(css_set_table, &init_css_set.hlist,
6145 css_set_hash(init_css_set.subsys));
6146
035f4f51
TH
6147 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6148 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 6149 WARN_ON(register_filesystem(&cgroup2_fs_type));
3f3942ac 6150 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
d5f68d33
AV
6151#ifdef CONFIG_CPUSETS
6152 WARN_ON(register_filesystem(&cpuset_fs_type));
6153#endif
ddbcc7e8 6154
2bd59d48 6155 return 0;
ddbcc7e8 6156}
b4f48b63 6157
e5fca243
TH
6158static int __init cgroup_wq_init(void)
6159{
6160 /*
6161 * There isn't much point in executing destruction path in
6162 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 6163 * Use 1 for @max_active.
e5fca243
TH
6164 *
6165 * We would prefer to do this in cgroup_init() above, but that
6166 * is called before init_workqueues(): so leave this until after.
6167 */
1a11533f 6168 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243
TH
6169 BUG_ON(!cgroup_destroy_wq);
6170 return 0;
6171}
6172core_initcall(cgroup_wq_init);
6173
67c0496e 6174void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
69fd5c39
SL
6175{
6176 struct kernfs_node *kn;
6177
fe0f726c 6178 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
69fd5c39
SL
6179 if (!kn)
6180 return;
6181 kernfs_path(kn, buf, buflen);
6182 kernfs_put(kn);
6183}
6184
6b658c48
MK
6185/*
6186 * cgroup_get_from_id : get the cgroup associated with cgroup id
6187 * @id: cgroup id
fa7e439c 6188 * On success return the cgrp or ERR_PTR on failure
4534dee9 6189 * Only cgroups within current task's cgroup NS are valid.
6b658c48
MK
6190 */
6191struct cgroup *cgroup_get_from_id(u64 id)
6192{
6193 struct kernfs_node *kn;
7e1eb543 6194 struct cgroup *cgrp, *root_cgrp;
6b658c48 6195
6b658c48
MK
6196 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6197 if (!kn)
7e1eb543 6198 return ERR_PTR(-ENOENT);
6b658c48 6199
7e1eb543
TH
6200 if (kernfs_type(kn) != KERNFS_DIR) {
6201 kernfs_put(kn);
6202 return ERR_PTR(-ENOENT);
6203 }
df02452f 6204
be288169 6205 rcu_read_lock();
6b658c48 6206
be288169
SB
6207 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6208 if (cgrp && !cgroup_tryget(cgrp))
6b658c48 6209 cgrp = NULL;
be288169
SB
6210
6211 rcu_read_unlock();
6b658c48 6212 kernfs_put(kn);
4534dee9
MK
6213
6214 if (!cgrp)
7e1eb543 6215 return ERR_PTR(-ENOENT);
4534dee9 6216
46307fd6 6217 root_cgrp = current_cgns_cgroup_dfl();
4534dee9
MK
6218 if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6219 cgroup_put(cgrp);
7e1eb543 6220 return ERR_PTR(-ENOENT);
4534dee9 6221 }
7e1eb543 6222
6b658c48
MK
6223 return cgrp;
6224}
6225EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6226
a424316c
PM
6227/*
6228 * proc_cgroup_show()
6229 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6230 * - Used for /proc/<pid>/cgroup.
a424316c 6231 */
006f4ac4
ZL
6232int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6233 struct pid *pid, struct task_struct *tsk)
a424316c 6234{
4c737b41 6235 char *buf;
a424316c 6236 int retval;
3dd06ffa 6237 struct cgroup_root *root;
a424316c
PM
6238
6239 retval = -ENOMEM;
e61734c5 6240 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
6241 if (!buf)
6242 goto out;
6243
a424316c 6244 mutex_lock(&cgroup_mutex);
82d6489d 6245 spin_lock_irq(&css_set_lock);
a424316c 6246
985ed670 6247 for_each_root(root) {
a424316c 6248 struct cgroup_subsys *ss;
bd89aabc 6249 struct cgroup *cgrp;
b85d2040 6250 int ssid, count = 0;
a424316c 6251
dc79ec1b 6252 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
985ed670
TH
6253 continue;
6254
2c6ab6d2 6255 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
6256 if (root != &cgrp_dfl_root)
6257 for_each_subsys(ss, ssid)
6258 if (root->subsys_mask & (1 << ssid))
6259 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 6260 ss->legacy_name);
c6d57f33
PM
6261 if (strlen(root->name))
6262 seq_printf(m, "%sname=%s", count ? "," : "",
6263 root->name);
a424316c 6264 seq_putc(m, ':');
2e91fa7f 6265
7717f7ba 6266 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
6267
6268 /*
6269 * On traditional hierarchies, all zombie tasks show up as
6270 * belonging to the root cgroup. On the default hierarchy,
6271 * while a zombie doesn't show up in "cgroup.procs" and
6272 * thus can't be migrated, its /proc/PID/cgroup keeps
6273 * reporting the cgroup it belonged to before exiting. If
6274 * the cgroup is removed before the zombie is reaped,
6275 * " (deleted)" is appended to the cgroup path.
6276 */
6277 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
4c737b41 6278 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
a79a908f 6279 current->nsproxy->cgroup_ns);
e0223003 6280 if (retval >= PATH_MAX)
2e91fa7f 6281 retval = -ENAMETOOLONG;
e0223003 6282 if (retval < 0)
2e91fa7f 6283 goto out_unlock;
4c737b41
TH
6284
6285 seq_puts(m, buf);
2e91fa7f 6286 } else {
4c737b41 6287 seq_puts(m, "/");
e61734c5 6288 }
2e91fa7f 6289
2e91fa7f
TH
6290 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6291 seq_puts(m, " (deleted)\n");
6292 else
6293 seq_putc(m, '\n');
a424316c
PM
6294 }
6295
006f4ac4 6296 retval = 0;
a424316c 6297out_unlock:
82d6489d 6298 spin_unlock_irq(&css_set_lock);
a424316c 6299 mutex_unlock(&cgroup_mutex);
a424316c
PM
6300 kfree(buf);
6301out:
6302 return retval;
6303}
6304
b4f48b63 6305/**
eaf797ab 6306 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 6307 * @child: pointer to task_struct of forking parent process.
b4f48b63 6308 *
eaf797ab 6309 * A task is associated with the init_css_set until cgroup_post_fork()
ef2c41cf 6310 * attaches it to the target css_set.
b4f48b63
PM
6311 */
6312void cgroup_fork(struct task_struct *child)
6313{
eaf797ab 6314 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 6315 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
6316}
6317
a6d1ce59
YA
6318/**
6319 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6320 * @f: file corresponding to cgroup_dir
6321 *
6322 * Find the cgroup from a file pointer associated with a cgroup directory.
6323 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6324 * cgroup cannot be found.
6325 */
6326static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
17703097
CB
6327{
6328 struct cgroup_subsys_state *css;
17703097
CB
6329
6330 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6331 if (IS_ERR(css))
6332 return ERR_CAST(css);
6333
a6d1ce59
YA
6334 return css->cgroup;
6335}
6336
6337/**
6338 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6339 * cgroup2.
b675d4bd 6340 * @f: file corresponding to cgroup2_dir
a6d1ce59
YA
6341 */
6342static struct cgroup *cgroup_get_from_file(struct file *f)
6343{
6344 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6345
6346 if (IS_ERR(cgrp))
6347 return ERR_CAST(cgrp);
6348
03db7716
TH
6349 if (!cgroup_on_dfl(cgrp)) {
6350 cgroup_put(cgrp);
6351 return ERR_PTR(-EBADF);
6352 }
6353
17703097
CB
6354 return cgrp;
6355}
6356
ef2c41cf
CB
6357/**
6358 * cgroup_css_set_fork - find or create a css_set for a child process
6359 * @kargs: the arguments passed to create the child process
6360 *
6361 * This functions finds or creates a new css_set which the child
6362 * process will be attached to in cgroup_post_fork(). By default,
6363 * the child process will be given the same css_set as its parent.
6364 *
6365 * If CLONE_INTO_CGROUP is specified this function will try to find an
6366 * existing css_set which includes the requested cgroup and if not create
6367 * a new css_set that the child will be attached to later. If this function
6368 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6369 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6370 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6371 * to the target cgroup.
6372 */
6373static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6374 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6375{
6376 int ret;
6377 struct cgroup *dst_cgrp = NULL;
6378 struct css_set *cset;
6379 struct super_block *sb;
6380 struct file *f;
6381
6382 if (kargs->flags & CLONE_INTO_CGROUP)
6383 mutex_lock(&cgroup_mutex);
6384
6385 cgroup_threadgroup_change_begin(current);
6386
6387 spin_lock_irq(&css_set_lock);
6388 cset = task_css_set(current);
6389 get_css_set(cset);
6390 spin_unlock_irq(&css_set_lock);
6391
6392 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6393 kargs->cset = cset;
6394 return 0;
6395 }
6396
6397 f = fget_raw(kargs->cgroup);
6398 if (!f) {
6399 ret = -EBADF;
6400 goto err;
6401 }
6402 sb = f->f_path.dentry->d_sb;
6403
6404 dst_cgrp = cgroup_get_from_file(f);
6405 if (IS_ERR(dst_cgrp)) {
6406 ret = PTR_ERR(dst_cgrp);
6407 dst_cgrp = NULL;
6408 goto err;
6409 }
6410
6411 if (cgroup_is_dead(dst_cgrp)) {
6412 ret = -ENODEV;
6413 goto err;
6414 }
6415
6416 /*
6417 * Verify that we the target cgroup is writable for us. This is
6418 * usually done by the vfs layer but since we're not going through
6419 * the vfs layer here we need to do it "manually".
6420 */
6421 ret = cgroup_may_write(dst_cgrp, sb);
6422 if (ret)
6423 goto err;
6424
6d3971da
CB
6425 /*
6426 * Spawning a task directly into a cgroup works by passing a file
6427 * descriptor to the target cgroup directory. This can even be an O_PATH
6428 * file descriptor. But it can never be a cgroup.procs file descriptor.
6429 * This was done on purpose so spawning into a cgroup could be
6430 * conceptualized as an atomic
6431 *
6432 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6433 * write(fd, <child-pid>, ...);
6434 *
6435 * sequence, i.e. it's a shorthand for the caller opening and writing
6436 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6437 * to always use the caller's credentials.
6438 */
ef2c41cf 6439 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
e5745764
TH
6440 !(kargs->flags & CLONE_THREAD),
6441 current->nsproxy->cgroup_ns);
ef2c41cf
CB
6442 if (ret)
6443 goto err;
6444
6445 kargs->cset = find_css_set(cset, dst_cgrp);
6446 if (!kargs->cset) {
6447 ret = -ENOMEM;
6448 goto err;
6449 }
6450
6451 put_css_set(cset);
6452 fput(f);
6453 kargs->cgrp = dst_cgrp;
6454 return ret;
6455
6456err:
6457 cgroup_threadgroup_change_end(current);
6458 mutex_unlock(&cgroup_mutex);
6459 if (f)
6460 fput(f);
6461 if (dst_cgrp)
6462 cgroup_put(dst_cgrp);
6463 put_css_set(cset);
6464 if (kargs->cset)
6465 put_css_set(kargs->cset);
6466 return ret;
6467}
6468
6469/**
6470 * cgroup_css_set_put_fork - drop references we took during fork
6471 * @kargs: the arguments passed to create the child process
6472 *
6473 * Drop references to the prepared css_set and target cgroup if
6474 * CLONE_INTO_CGROUP was requested.
6475 */
6476static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6477 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6478{
6479 cgroup_threadgroup_change_end(current);
6480
6481 if (kargs->flags & CLONE_INTO_CGROUP) {
6482 struct cgroup *cgrp = kargs->cgrp;
6483 struct css_set *cset = kargs->cset;
6484
6485 mutex_unlock(&cgroup_mutex);
6486
6487 if (cset) {
6488 put_css_set(cset);
6489 kargs->cset = NULL;
6490 }
6491
6492 if (cgrp) {
6493 cgroup_put(cgrp);
6494 kargs->cgrp = NULL;
6495 }
6496 }
6497}
6498
7e47682e
AS
6499/**
6500 * cgroup_can_fork - called on a new task before the process is exposed
5a5cf5cb 6501 * @child: the child process
ffacbd11 6502 * @kargs: the arguments passed to create the child process
7e47682e 6503 *
ef2c41cf
CB
6504 * This prepares a new css_set for the child process which the child will
6505 * be attached to in cgroup_post_fork().
5a5cf5cb
CB
6506 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6507 * callback returns an error, the fork aborts with that error code. This
6508 * allows for a cgroup subsystem to conditionally allow or deny new forks.
7e47682e 6509 */
ef2c41cf 6510int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
7e47682e
AS
6511{
6512 struct cgroup_subsys *ss;
6513 int i, j, ret;
6514
ef2c41cf
CB
6515 ret = cgroup_css_set_fork(kargs);
6516 if (ret)
6517 return ret;
5a5cf5cb 6518
b4e0eeaf 6519 do_each_subsys_mask(ss, i, have_canfork_callback) {
ef2c41cf 6520 ret = ss->can_fork(child, kargs->cset);
7e47682e
AS
6521 if (ret)
6522 goto out_revert;
b4e0eeaf 6523 } while_each_subsys_mask();
7e47682e
AS
6524
6525 return 0;
6526
6527out_revert:
6528 for_each_subsys(ss, j) {
6529 if (j >= i)
6530 break;
6531 if (ss->cancel_fork)
ef2c41cf 6532 ss->cancel_fork(child, kargs->cset);
7e47682e
AS
6533 }
6534
ef2c41cf 6535 cgroup_css_set_put_fork(kargs);
5a5cf5cb 6536
7e47682e
AS
6537 return ret;
6538}
6539
6540/**
6541 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
ef2c41cf
CB
6542 * @child: the child process
6543 * @kargs: the arguments passed to create the child process
7e47682e
AS
6544 *
6545 * This calls the cancel_fork() callbacks if a fork failed *after*
08b2b6fd 6546 * cgroup_can_fork() succeeded and cleans up references we took to
ef2c41cf 6547 * prepare a new css_set for the child process in cgroup_can_fork().
7e47682e 6548 */
ef2c41cf
CB
6549void cgroup_cancel_fork(struct task_struct *child,
6550 struct kernel_clone_args *kargs)
7e47682e
AS
6551{
6552 struct cgroup_subsys *ss;
6553 int i;
6554
6555 for_each_subsys(ss, i)
6556 if (ss->cancel_fork)
ef2c41cf 6557 ss->cancel_fork(child, kargs->cset);
5a5cf5cb 6558
ef2c41cf 6559 cgroup_css_set_put_fork(kargs);
7e47682e
AS
6560}
6561
817929ec 6562/**
5a5cf5cb
CB
6563 * cgroup_post_fork - finalize cgroup setup for the child process
6564 * @child: the child process
ffacbd11 6565 * @kargs: the arguments passed to create the child process
a043e3b2 6566 *
5a5cf5cb
CB
6567 * Attach the child process to its css_set calling the subsystem fork()
6568 * callbacks.
a043e3b2 6569 */
ef2c41cf
CB
6570void cgroup_post_fork(struct task_struct *child,
6571 struct kernel_clone_args *kargs)
6572 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
817929ec 6573{
661ee628
CB
6574 unsigned long cgrp_flags = 0;
6575 bool kill = false;
30159ec7 6576 struct cgroup_subsys *ss;
5153faac 6577 struct css_set *cset;
5edee61e
TH
6578 int i;
6579
ef2c41cf
CB
6580 cset = kargs->cset;
6581 kargs->cset = NULL;
6582
5153faac
TH
6583 spin_lock_irq(&css_set_lock);
6584
0cd9d33a
TH
6585 /* init tasks are special, only link regular threads */
6586 if (likely(child->pid)) {
661ee628
CB
6587 if (kargs->cgrp)
6588 cgrp_flags = kargs->cgrp->flags;
6589 else
6590 cgrp_flags = cset->dfl_cgrp->flags;
6591
0cd9d33a 6592 WARN_ON_ONCE(!list_empty(&child->cg_list));
0cd9d33a
TH
6593 cset->nr_tasks++;
6594 css_set_move_task(child, NULL, cset, false);
ef2c41cf
CB
6595 } else {
6596 put_css_set(cset);
6597 cset = NULL;
0cd9d33a 6598 }
5153faac 6599
661ee628
CB
6600 if (!(child->flags & PF_KTHREAD)) {
6601 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6602 /*
6603 * If the cgroup has to be frozen, the new task has
6604 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6605 * get the task into the frozen state.
6606 */
6607 spin_lock(&child->sighand->siglock);
6608 WARN_ON_ONCE(child->frozen);
6609 child->jobctl |= JOBCTL_TRAP_FREEZE;
6610 spin_unlock(&child->sighand->siglock);
6611
6612 /*
6613 * Calling cgroup_update_frozen() isn't required here,
6614 * because it will be called anyway a bit later from
6615 * do_freezer_trap(). So we avoid cgroup's transient
6616 * switch from the frozen state and back.
6617 */
6618 }
76f969e8
RG
6619
6620 /*
661ee628
CB
6621 * If the cgroup is to be killed notice it now and take the
6622 * child down right after we finished preparing it for
6623 * userspace.
76f969e8 6624 */
661ee628 6625 kill = test_bit(CGRP_KILL, &cgrp_flags);
817929ec 6626 }
5edee61e 6627
5153faac
TH
6628 spin_unlock_irq(&css_set_lock);
6629
5edee61e
TH
6630 /*
6631 * Call ss->fork(). This must happen after @child is linked on
6632 * css_set; otherwise, @child might change state between ->fork()
6633 * and addition to css_set.
6634 */
b4e0eeaf 6635 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 6636 ss->fork(child);
b4e0eeaf 6637 } while_each_subsys_mask();
5a5cf5cb 6638
ef2c41cf
CB
6639 /* Make the new cset the root_cset of the new cgroup namespace. */
6640 if (kargs->flags & CLONE_NEWCGROUP) {
6641 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6642
6643 get_css_set(cset);
6644 child->nsproxy->cgroup_ns->root_cset = cset;
6645 put_css_set(rcset);
6646 }
6647
661ee628
CB
6648 /* Cgroup has to be killed so take down child immediately. */
6649 if (unlikely(kill))
6650 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6651
ef2c41cf 6652 cgroup_css_set_put_fork(kargs);
817929ec 6653}
5edee61e 6654
b4f48b63
PM
6655/**
6656 * cgroup_exit - detach cgroup from exiting task
6657 * @tsk: pointer to task_struct of exiting process
6658 *
e7c7b1d8 6659 * Description: Detach cgroup from @tsk.
b4f48b63 6660 *
b4f48b63 6661 */
1ec41830 6662void cgroup_exit(struct task_struct *tsk)
b4f48b63 6663{
30159ec7 6664 struct cgroup_subsys *ss;
5abb8855 6665 struct css_set *cset;
d41d5a01 6666 int i;
817929ec 6667
5153faac 6668 spin_lock_irq(&css_set_lock);
0de0942d 6669
5153faac
TH
6670 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6671 cset = task_css_set(tsk);
6672 css_set_move_task(tsk, cset, NULL, false);
6673 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6674 cset->nr_tasks--;
76f969e8 6675
5153faac 6676 WARN_ON_ONCE(cgroup_task_frozen(tsk));
f4f809f6
RG
6677 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6678 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
5153faac 6679 cgroup_update_frozen(task_dfl_cgroup(tsk));
76f969e8 6680
5153faac 6681 spin_unlock_irq(&css_set_lock);
817929ec 6682
cb4a3167 6683 /* see cgroup_post_fork() for details */
b4e0eeaf 6684 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 6685 ss->exit(tsk);
b4e0eeaf 6686 } while_each_subsys_mask();
2e91fa7f 6687}
30159ec7 6688
51bee5ab 6689void cgroup_release(struct task_struct *task)
2e91fa7f 6690{
afcf6c8b
TH
6691 struct cgroup_subsys *ss;
6692 int ssid;
6693
51bee5ab
ON
6694 do_each_subsys_mask(ss, ssid, have_release_callback) {
6695 ss->release(task);
b4e0eeaf 6696 } while_each_subsys_mask();
c03cd773 6697
5153faac
TH
6698 spin_lock_irq(&css_set_lock);
6699 css_set_skip_task_iters(task_css_set(task), task);
6700 list_del_init(&task->cg_list);
6701 spin_unlock_irq(&css_set_lock);
51bee5ab 6702}
d41d5a01 6703
51bee5ab
ON
6704void cgroup_free(struct task_struct *task)
6705{
6706 struct css_set *cset = task_css_set(task);
2e91fa7f 6707 put_css_set(cset);
b4f48b63 6708}
697f4161 6709
8bab8dde
PM
6710static int __init cgroup_disable(char *str)
6711{
30159ec7 6712 struct cgroup_subsys *ss;
8bab8dde 6713 char *token;
30159ec7 6714 int i;
8bab8dde
PM
6715
6716 while ((token = strsep(&str, ",")) != NULL) {
6717 if (!*token)
6718 continue;
be45c900 6719
3ed80a62 6720 for_each_subsys(ss, i) {
3e1d2eed
TH
6721 if (strcmp(token, ss->name) &&
6722 strcmp(token, ss->legacy_name))
6723 continue;
45e1ba40
SB
6724
6725 static_branch_disable(cgroup_subsys_enabled_key[i]);
6726 pr_info("Disabling %s control group subsystem\n",
6727 ss->name);
8bab8dde 6728 }
3958e2d0
SB
6729
6730 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6731 if (strcmp(token, cgroup_opt_feature_names[i]))
6732 continue;
6733 cgroup_feature_disable_mask |= 1 << i;
6734 pr_info("Disabling %s control group feature\n",
6735 cgroup_opt_feature_names[i]);
6736 break;
6737 }
8bab8dde
PM
6738 }
6739 return 1;
6740}
6741__setup("cgroup_disable=", cgroup_disable);
38460b48 6742
5cf8114d
WL
6743void __init __weak enable_debug_cgroup(void) { }
6744
6745static int __init enable_cgroup_debug(char *str)
6746{
6747 cgroup_debug = true;
6748 enable_debug_cgroup();
6749 return 1;
6750}
6751__setup("cgroup_debug", enable_cgroup_debug);
6752
b77d7b60 6753/**
ec903c0c 6754 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6755 * @dentry: directory dentry of interest
6756 * @ss: subsystem of interest
b77d7b60 6757 *
5a17f543
TH
6758 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6759 * to get the corresponding css and return it. If such css doesn't exist
6760 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6761 */
ec903c0c
TH
6762struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6763 struct cgroup_subsys *ss)
e5d1367f 6764{
2bd59d48 6765 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6766 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6767 struct cgroup_subsys_state *css = NULL;
e5d1367f 6768 struct cgroup *cgrp;
e5d1367f 6769
35cf0836 6770 /* is @dentry a cgroup dir? */
f17fc25f
TH
6771 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6772 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6773 return ERR_PTR(-EBADF);
6774
5a17f543
TH
6775 rcu_read_lock();
6776
2bd59d48
TH
6777 /*
6778 * This path doesn't originate from kernfs and @kn could already
6779 * have been or be removed at any point. @kn->priv is RCU
a4189487 6780 * protected for this access. See css_release_work_fn() for details.
2bd59d48 6781 */
e0aed7c7 6782 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
2bd59d48
TH
6783 if (cgrp)
6784 css = cgroup_css(cgrp, ss);
5a17f543 6785
ec903c0c 6786 if (!css || !css_tryget_online(css))
5a17f543
TH
6787 css = ERR_PTR(-ENOENT);
6788
6789 rcu_read_unlock();
6790 return css;
e5d1367f 6791}
e5d1367f 6792
1cb650b9
LZ
6793/**
6794 * css_from_id - lookup css by id
6795 * @id: the cgroup id
6796 * @ss: cgroup subsys to be looked into
6797 *
6798 * Returns the css if there's valid one with @id, otherwise returns NULL.
6799 * Should be called under rcu_read_lock().
6800 */
6801struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6802{
6fa4918d 6803 WARN_ON_ONCE(!rcu_read_lock_held());
d6ccc55e 6804 return idr_find(&ss->css_idr, id);
e5d1367f
SE
6805}
6806
16af4396
TH
6807/**
6808 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6809 * @path: path on the default hierarchy
6810 *
6811 * Find the cgroup at @path on the default hierarchy, increment its
6812 * reference count and return it. Returns pointer to the found cgroup on
be288169
SB
6813 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6814 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
16af4396
TH
6815 */
6816struct cgroup *cgroup_get_from_path(const char *path)
6817{
6818 struct kernfs_node *kn;
be288169 6819 struct cgroup *cgrp = ERR_PTR(-ENOENT);
74e4b956 6820 struct cgroup *root_cgrp;
16af4396 6821
46307fd6 6822 root_cgrp = current_cgns_cgroup_dfl();
74e4b956 6823 kn = kernfs_walk_and_get(root_cgrp->kn, path);
be288169
SB
6824 if (!kn)
6825 goto out;
6826
6827 if (kernfs_type(kn) != KERNFS_DIR) {
6828 cgrp = ERR_PTR(-ENOTDIR);
6829 goto out_kernfs;
16af4396
TH
6830 }
6831
be288169
SB
6832 rcu_read_lock();
6833
6834 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6835 if (!cgrp || !cgroup_tryget(cgrp))
6836 cgrp = ERR_PTR(-ENOENT);
6837
6838 rcu_read_unlock();
6839
6840out_kernfs:
6841 kernfs_put(kn);
6842out:
16af4396
TH
6843 return cgrp;
6844}
6845EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6846
1f3fe7eb 6847/**
b675d4bd 6848 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
a6d1ce59 6849 * @fd: fd obtained by open(cgroup_dir)
1f3fe7eb
MKL
6850 *
6851 * Find the cgroup from a fd which should be obtained
6852 * by opening a cgroup directory. Returns a pointer to the
6853 * cgroup on success. ERR_PTR is returned if the cgroup
6854 * cannot be found.
6855 */
a6d1ce59 6856struct cgroup *cgroup_v1v2_get_from_fd(int fd)
1f3fe7eb 6857{
1f3fe7eb
MKL
6858 struct cgroup *cgrp;
6859 struct file *f;
6860
6861 f = fget_raw(fd);
6862 if (!f)
6863 return ERR_PTR(-EBADF);
6864
a6d1ce59 6865 cgrp = cgroup_v1v2_get_from_file(f);
1f3fe7eb 6866 fput(f);
1f3fe7eb
MKL
6867 return cgrp;
6868}
a6d1ce59
YA
6869
6870/**
6871 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6872 * cgroup2.
b675d4bd 6873 * @fd: fd obtained by open(cgroup2_dir)
a6d1ce59
YA
6874 */
6875struct cgroup *cgroup_get_from_fd(int fd)
6876{
6877 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6878
6879 if (IS_ERR(cgrp))
6880 return ERR_CAST(cgrp);
6881
6882 if (!cgroup_on_dfl(cgrp)) {
6883 cgroup_put(cgrp);
6884 return ERR_PTR(-EBADF);
6885 }
6886 return cgrp;
6887}
1f3fe7eb
MKL
6888EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6889
38cf3a68
TH
6890static u64 power_of_ten(int power)
6891{
6892 u64 v = 1;
6893 while (power--)
6894 v *= 10;
6895 return v;
6896}
6897
6898/**
6899 * cgroup_parse_float - parse a floating number
6900 * @input: input string
6901 * @dec_shift: number of decimal digits to shift
6902 * @v: output
6903 *
6904 * Parse a decimal floating point number in @input and store the result in
6905 * @v with decimal point right shifted @dec_shift times. For example, if
6906 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6907 * Returns 0 on success, -errno otherwise.
6908 *
6909 * There's nothing cgroup specific about this function except that it's
6910 * currently the only user.
6911 */
6912int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6913{
6914 s64 whole, frac = 0;
6915 int fstart = 0, fend = 0, flen;
6916
6917 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6918 return -EINVAL;
6919 if (frac < 0)
6920 return -EINVAL;
6921
6922 flen = fend > fstart ? fend - fstart : 0;
6923 if (flen < dec_shift)
6924 frac *= power_of_ten(dec_shift - flen);
6925 else
6926 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6927
6928 *v = whole * power_of_ten(dec_shift) + frac;
6929 return 0;
6930}
6931
bd1060a1
TH
6932/*
6933 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6934 * definition in cgroup-defs.h.
6935 */
6936#ifdef CONFIG_SOCK_CGROUP_DATA
6937
bd1060a1
TH
6938void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6939{
78cc316e 6940 struct cgroup *cgroup;
e876ecc6 6941
bd1060a1 6942 rcu_read_lock();
78cc316e
DB
6943 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6944 if (in_interrupt()) {
6945 cgroup = &cgrp_dfl_root.cgrp;
6946 cgroup_get(cgroup);
6947 goto out;
6948 }
6949
bd1060a1
TH
6950 while (true) {
6951 struct css_set *cset;
6952
6953 cset = task_css_set(current);
6954 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
78cc316e 6955 cgroup = cset->dfl_cgrp;
bd1060a1
TH
6956 break;
6957 }
6958 cpu_relax();
6959 }
78cc316e
DB
6960out:
6961 skcd->cgroup = cgroup;
6962 cgroup_bpf_get(cgroup);
bd1060a1
TH
6963 rcu_read_unlock();
6964}
6965
ad0f75e5
CW
6966void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6967{
8520e224
DB
6968 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6969
6970 /*
6971 * We might be cloning a socket which is left in an empty
6972 * cgroup and the cgroup might have already been rmdir'd.
6973 * Don't use cgroup_get_live().
6974 */
6975 cgroup_get(cgrp);
6976 cgroup_bpf_get(cgrp);
ad0f75e5
CW
6977}
6978
bd1060a1
TH
6979void cgroup_sk_free(struct sock_cgroup_data *skcd)
6980{
4bfc0bb2
RG
6981 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6982
6983 cgroup_bpf_put(cgrp);
6984 cgroup_put(cgrp);
bd1060a1
TH
6985}
6986
6987#endif /* CONFIG_SOCK_CGROUP_DATA */
6988
01ee6cfb
RG
6989#ifdef CONFIG_SYSFS
6990static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6991 ssize_t size, const char *prefix)
6992{
6993 struct cftype *cft;
6994 ssize_t ret = 0;
6995
6996 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6997 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6998 continue;
6999
7000 if (prefix)
7001 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7002
7003 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7004
4d9ebbe2 7005 if (WARN_ON(ret >= size))
01ee6cfb 7006 break;
01ee6cfb
RG
7007 }
7008
7009 return ret;
7010}
7011
7012static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7013 char *buf)
7014{
7015 struct cgroup_subsys *ss;
7016 int ssid;
7017 ssize_t ret = 0;
7018
8a693f77
TH
7019 ret = show_delegatable_files(cgroup_base_files, buf + ret,
7020 PAGE_SIZE - ret, NULL);
7021 if (cgroup_psi_enabled())
7022 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7023 PAGE_SIZE - ret, NULL);
01ee6cfb
RG
7024
7025 for_each_subsys(ss, ssid)
7026 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7027 PAGE_SIZE - ret,
7028 cgroup_subsys_name[ssid]);
7029
7030 return ret;
7031}
7032static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7033
5f2e6734
RG
7034static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7035 char *buf)
7036{
8a931f80
JW
7037 return snprintf(buf, PAGE_SIZE,
7038 "nsdelegate\n"
6a010a49 7039 "favordynmods\n"
8a931f80
JW
7040 "memory_localevents\n"
7041 "memory_recursiveprot\n");
5f2e6734
RG
7042}
7043static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7044
01ee6cfb
RG
7045static struct attribute *cgroup_sysfs_attrs[] = {
7046 &cgroup_delegate_attr.attr,
5f2e6734 7047 &cgroup_features_attr.attr,
01ee6cfb
RG
7048 NULL,
7049};
7050
7051static const struct attribute_group cgroup_sysfs_attr_group = {
7052 .attrs = cgroup_sysfs_attrs,
7053 .name = "cgroup",
7054};
7055
7056static int __init cgroup_sysfs_init(void)
7057{
7058 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7059}
7060subsys_initcall(cgroup_sysfs_init);
a5e112e6 7061
01ee6cfb 7062#endif /* CONFIG_SYSFS */