cgroup: remove cgroup_mutex from cgroupstats_build
[linux-2.6-block.git] / kernel / cgroup / cgroup-v1.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
0a268dbd
TH
2#include "cgroup-internal.h"
3
1592c9b2 4#include <linux/ctype.h>
0a268dbd
TH
5#include <linux/kmod.h>
6#include <linux/sort.h>
1592c9b2 7#include <linux/delay.h>
0a268dbd 8#include <linux/mm.h>
c3edc401 9#include <linux/sched/signal.h>
56cd6973 10#include <linux/sched/task.h>
50ff9d13 11#include <linux/magic.h>
0a268dbd
TH
12#include <linux/slab.h>
13#include <linux/vmalloc.h>
14#include <linux/delayacct.h>
15#include <linux/pid_namespace.h>
16#include <linux/cgroupstats.h>
8d2451f4 17#include <linux/fs_parser.h>
0a268dbd
TH
18
19#include <trace/events/cgroup.h>
20
21/*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27#define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29/* Controllers blocked by the commandline in v1 */
30static u16 cgroup_no_v1_mask;
31
3fc9c12d
TH
32/* disable named v1 mounts */
33static bool cgroup_no_v1_named;
34
0a268dbd
TH
35/*
36 * pidlist destructions need to be flushed on cgroup destruction. Use a
37 * separate workqueue as flush domain.
38 */
39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40
e7b20d97 41/* protects cgroup_subsys->release_agent_path */
1592c9b2 42static DEFINE_SPINLOCK(release_agent_path_lock);
0a268dbd 43
d62beb7f 44bool cgroup1_ssid_disabled(int ssid)
0a268dbd
TH
45{
46 return cgroup_no_v1_mask & (1 << ssid);
47}
48
49/**
50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51 * @from: attach to all cgroups of a given task
52 * @tsk: the task to be attached
b4cc6196
RD
53 *
54 * Return: %0 on success or a negative errno code on failure
0a268dbd
TH
55 */
56int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
57{
58 struct cgroup_root *root;
59 int retval = 0;
60
61 mutex_lock(&cgroup_mutex);
62 percpu_down_write(&cgroup_threadgroup_rwsem);
63 for_each_root(root) {
64 struct cgroup *from_cgrp;
65
0a268dbd
TH
66 spin_lock_irq(&css_set_lock);
67 from_cgrp = task_cgroup_from_root(from, root);
68 spin_unlock_irq(&css_set_lock);
69
70 retval = cgroup_attach_task(from_cgrp, tsk, false);
71 if (retval)
72 break;
73 }
74 percpu_up_write(&cgroup_threadgroup_rwsem);
75 mutex_unlock(&cgroup_mutex);
76
77 return retval;
78}
79EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
80
81/**
b4cc6196 82 * cgroup_transfer_tasks - move tasks from one cgroup to another
0a268dbd
TH
83 * @to: cgroup to which the tasks will be moved
84 * @from: cgroup in which the tasks currently reside
85 *
86 * Locking rules between cgroup_post_fork() and the migration path
87 * guarantee that, if a task is forking while being migrated, the new child
88 * is guaranteed to be either visible in the source cgroup after the
89 * parent's migration is complete or put into the target cgroup. No task
90 * can slip out of migration through forking.
b4cc6196
RD
91 *
92 * Return: %0 on success or a negative errno code on failure
0a268dbd
TH
93 */
94int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
95{
e595cd70 96 DEFINE_CGROUP_MGCTX(mgctx);
0a268dbd
TH
97 struct cgrp_cset_link *link;
98 struct css_task_iter it;
99 struct task_struct *task;
100 int ret;
101
102 if (cgroup_on_dfl(to))
103 return -EINVAL;
104
8cfd8147
TH
105 ret = cgroup_migrate_vet_dst(to);
106 if (ret)
107 return ret;
0a268dbd
TH
108
109 mutex_lock(&cgroup_mutex);
110
111 percpu_down_write(&cgroup_threadgroup_rwsem);
112
113 /* all tasks in @from are being moved, all csets are source */
114 spin_lock_irq(&css_set_lock);
115 list_for_each_entry(link, &from->cset_links, cset_link)
e595cd70 116 cgroup_migrate_add_src(link->cset, to, &mgctx);
0a268dbd
TH
117 spin_unlock_irq(&css_set_lock);
118
e595cd70 119 ret = cgroup_migrate_prepare_dst(&mgctx);
0a268dbd
TH
120 if (ret)
121 goto out_err;
122
123 /*
124 * Migrate tasks one-by-one until @from is empty. This fails iff
125 * ->can_attach() fails.
126 */
127 do {
bc2fb7ed 128 css_task_iter_start(&from->self, 0, &it);
116d2f74
PS
129
130 do {
131 task = css_task_iter_next(&it);
132 } while (task && (task->flags & PF_EXITING));
133
0a268dbd
TH
134 if (task)
135 get_task_struct(task);
136 css_task_iter_end(&it);
137
138 if (task) {
bfc2cf6f 139 ret = cgroup_migrate(task, false, &mgctx);
0a268dbd 140 if (!ret)
e4f8d81c 141 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
0a268dbd
TH
142 put_task_struct(task);
143 }
144 } while (task && !ret);
145out_err:
e595cd70 146 cgroup_migrate_finish(&mgctx);
0a268dbd
TH
147 percpu_up_write(&cgroup_threadgroup_rwsem);
148 mutex_unlock(&cgroup_mutex);
149 return ret;
150}
151
152/*
153 * Stuff for reading the 'tasks'/'procs' files.
154 *
155 * Reading this file can return large amounts of data if a cgroup has
156 * *lots* of attached tasks. So it may need several calls to read(),
157 * but we cannot guarantee that the information we produce is correct
158 * unless we produce it entirely atomically.
159 *
160 */
161
162/* which pidlist file are we talking about? */
163enum cgroup_filetype {
164 CGROUP_FILE_PROCS,
165 CGROUP_FILE_TASKS,
166};
167
168/*
169 * A pidlist is a list of pids that virtually represents the contents of one
170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
172 * to the cgroup.
173 */
174struct cgroup_pidlist {
175 /*
176 * used to find which pidlist is wanted. doesn't change as long as
177 * this particular list stays in the list.
178 */
179 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
180 /* array of xids */
181 pid_t *list;
182 /* how many elements the above list has */
183 int length;
184 /* each of these stored in a list by its cgroup */
185 struct list_head links;
186 /* pointer to the cgroup we belong to, for list removal purposes */
187 struct cgroup *owner;
188 /* for delayed destruction */
189 struct delayed_work destroy_dwork;
190};
191
0a268dbd
TH
192/*
193 * Used to destroy all pidlists lingering waiting for destroy timer. None
194 * should be left afterwards.
195 */
d62beb7f 196void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
0a268dbd
TH
197{
198 struct cgroup_pidlist *l, *tmp_l;
199
200 mutex_lock(&cgrp->pidlist_mutex);
201 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
202 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
203 mutex_unlock(&cgrp->pidlist_mutex);
204
205 flush_workqueue(cgroup_pidlist_destroy_wq);
206 BUG_ON(!list_empty(&cgrp->pidlists));
207}
208
209static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
210{
211 struct delayed_work *dwork = to_delayed_work(work);
212 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
213 destroy_dwork);
214 struct cgroup_pidlist *tofree = NULL;
215
216 mutex_lock(&l->owner->pidlist_mutex);
217
218 /*
219 * Destroy iff we didn't get queued again. The state won't change
220 * as destroy_dwork can only be queued while locked.
221 */
222 if (!delayed_work_pending(dwork)) {
223 list_del(&l->links);
653a23ca 224 kvfree(l->list);
0a268dbd
TH
225 put_pid_ns(l->key.ns);
226 tofree = l;
227 }
228
229 mutex_unlock(&l->owner->pidlist_mutex);
230 kfree(tofree);
231}
232
233/*
234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
235 * Returns the number of unique elements.
236 */
237static int pidlist_uniq(pid_t *list, int length)
238{
239 int src, dest = 1;
240
241 /*
242 * we presume the 0th element is unique, so i starts at 1. trivial
243 * edge cases first; no work needs to be done for either
244 */
245 if (length == 0 || length == 1)
246 return length;
247 /* src and dest walk down the list; dest counts unique elements */
248 for (src = 1; src < length; src++) {
249 /* find next unique element */
250 while (list[src] == list[src-1]) {
251 src++;
252 if (src == length)
253 goto after;
254 }
255 /* dest always points to where the next unique element goes */
256 list[dest] = list[src];
257 dest++;
258 }
259after:
260 return dest;
261}
262
263/*
264 * The two pid files - task and cgroup.procs - guaranteed that the result
265 * is sorted, which forced this whole pidlist fiasco. As pid order is
266 * different per namespace, each namespace needs differently sorted list,
267 * making it impossible to use, for example, single rbtree of member tasks
268 * sorted by task pointer. As pidlists can be fairly large, allocating one
269 * per open file is dangerous, so cgroup had to implement shared pool of
270 * pidlists keyed by cgroup and namespace.
271 */
272static int cmppid(const void *a, const void *b)
273{
274 return *(pid_t *)a - *(pid_t *)b;
275}
276
277static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
278 enum cgroup_filetype type)
279{
280 struct cgroup_pidlist *l;
281 /* don't need task_nsproxy() if we're looking at ourself */
282 struct pid_namespace *ns = task_active_pid_ns(current);
283
284 lockdep_assert_held(&cgrp->pidlist_mutex);
285
286 list_for_each_entry(l, &cgrp->pidlists, links)
287 if (l->key.type == type && l->key.ns == ns)
288 return l;
289 return NULL;
290}
291
292/*
293 * find the appropriate pidlist for our purpose (given procs vs tasks)
294 * returns with the lock on that pidlist already held, and takes care
295 * of the use count, or returns NULL with no locks held if we're out of
296 * memory.
297 */
298static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
299 enum cgroup_filetype type)
300{
301 struct cgroup_pidlist *l;
302
303 lockdep_assert_held(&cgrp->pidlist_mutex);
304
305 l = cgroup_pidlist_find(cgrp, type);
306 if (l)
307 return l;
308
309 /* entry not found; create a new one */
310 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
311 if (!l)
312 return l;
313
314 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
315 l->key.type = type;
316 /* don't need task_nsproxy() if we're looking at ourself */
317 l->key.ns = get_pid_ns(task_active_pid_ns(current));
318 l->owner = cgrp;
319 list_add(&l->links, &cgrp->pidlists);
320 return l;
321}
322
0a268dbd
TH
323/*
324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
325 */
326static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
327 struct cgroup_pidlist **lp)
328{
329 pid_t *array;
330 int length;
331 int pid, n = 0; /* used for populating the array */
332 struct css_task_iter it;
333 struct task_struct *tsk;
334 struct cgroup_pidlist *l;
335
336 lockdep_assert_held(&cgrp->pidlist_mutex);
337
338 /*
339 * If cgroup gets more users after we read count, we won't have
340 * enough space - tough. This race is indistinguishable to the
341 * caller from the case that the additional cgroup users didn't
342 * show up until sometime later on.
343 */
344 length = cgroup_task_count(cgrp);
653a23ca 345 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
0a268dbd
TH
346 if (!array)
347 return -ENOMEM;
348 /* now, populate the array */
bc2fb7ed 349 css_task_iter_start(&cgrp->self, 0, &it);
0a268dbd
TH
350 while ((tsk = css_task_iter_next(&it))) {
351 if (unlikely(n == length))
352 break;
353 /* get tgid or pid for procs or tasks file respectively */
354 if (type == CGROUP_FILE_PROCS)
355 pid = task_tgid_vnr(tsk);
356 else
357 pid = task_pid_vnr(tsk);
358 if (pid > 0) /* make sure to only use valid results */
359 array[n++] = pid;
360 }
361 css_task_iter_end(&it);
362 length = n;
363 /* now sort & (if procs) strip out duplicates */
364 sort(array, length, sizeof(pid_t), cmppid, NULL);
365 if (type == CGROUP_FILE_PROCS)
366 length = pidlist_uniq(array, length);
367
368 l = cgroup_pidlist_find_create(cgrp, type);
369 if (!l) {
653a23ca 370 kvfree(array);
0a268dbd
TH
371 return -ENOMEM;
372 }
373
374 /* store array, freeing old if necessary */
653a23ca 375 kvfree(l->list);
0a268dbd
TH
376 l->list = array;
377 l->length = length;
378 *lp = l;
379 return 0;
380}
381
382/*
383 * seq_file methods for the tasks/procs files. The seq_file position is the
384 * next pid to display; the seq_file iterator is a pointer to the pid
385 * in the cgroup->l->list array.
386 */
387
388static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
389{
390 /*
391 * Initially we receive a position value that corresponds to
392 * one more than the last pid shown (or 0 on the first call or
393 * after a seek to the start). Use a binary-search to find the
394 * next pid to display, if any
395 */
396 struct kernfs_open_file *of = s->private;
397 struct cgroup *cgrp = seq_css(s)->cgroup;
398 struct cgroup_pidlist *l;
399 enum cgroup_filetype type = seq_cft(s)->private;
400 int index = 0, pid = *pos;
401 int *iter, ret;
402
403 mutex_lock(&cgrp->pidlist_mutex);
404
405 /*
406 * !NULL @of->priv indicates that this isn't the first start()
407 * after open. If the matching pidlist is around, we can use that.
408 * Look for it. Note that @of->priv can't be used directly. It
409 * could already have been destroyed.
410 */
411 if (of->priv)
412 of->priv = cgroup_pidlist_find(cgrp, type);
413
414 /*
415 * Either this is the first start() after open or the matching
416 * pidlist has been destroyed inbetween. Create a new one.
417 */
418 if (!of->priv) {
419 ret = pidlist_array_load(cgrp, type,
420 (struct cgroup_pidlist **)&of->priv);
421 if (ret)
422 return ERR_PTR(ret);
423 }
424 l = of->priv;
425
426 if (pid) {
427 int end = l->length;
428
429 while (index < end) {
430 int mid = (index + end) / 2;
431 if (l->list[mid] == pid) {
432 index = mid;
433 break;
434 } else if (l->list[mid] <= pid)
435 index = mid + 1;
436 else
437 end = mid;
438 }
439 }
440 /* If we're off the end of the array, we're done */
441 if (index >= l->length)
442 return NULL;
443 /* Update the abstract position to be the actual pid that we found */
444 iter = l->list + index;
445 *pos = *iter;
446 return iter;
447}
448
449static void cgroup_pidlist_stop(struct seq_file *s, void *v)
450{
451 struct kernfs_open_file *of = s->private;
452 struct cgroup_pidlist *l = of->priv;
453
454 if (l)
455 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
456 CGROUP_PIDLIST_DESTROY_DELAY);
457 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
458}
459
460static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
461{
462 struct kernfs_open_file *of = s->private;
463 struct cgroup_pidlist *l = of->priv;
464 pid_t *p = v;
465 pid_t *end = l->list + l->length;
466 /*
467 * Advance to the next pid in the array. If this goes off the
468 * end, we're done
469 */
470 p++;
471 if (p >= end) {
db8dd969 472 (*pos)++;
0a268dbd
TH
473 return NULL;
474 } else {
475 *pos = *p;
476 return p;
477 }
478}
479
480static int cgroup_pidlist_show(struct seq_file *s, void *v)
481{
482 seq_printf(s, "%d\n", *(int *)v);
483
484 return 0;
485}
486
715c809d
TH
487static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
488 char *buf, size_t nbytes, loff_t off,
489 bool threadgroup)
0a268dbd 490{
715c809d
TH
491 struct cgroup *cgrp;
492 struct task_struct *task;
493 const struct cred *cred, *tcred;
494 ssize_t ret;
9a3284fa 495 bool locked;
715c809d
TH
496
497 cgrp = cgroup_kn_lock_live(of->kn, false);
498 if (!cgrp)
499 return -ENODEV;
500
9a3284fa 501 task = cgroup_procs_write_start(buf, threadgroup, &locked);
715c809d
TH
502 ret = PTR_ERR_OR_ZERO(task);
503 if (ret)
504 goto out_unlock;
505
506 /*
507 * Even if we're attaching all tasks in the thread group, we only
508 * need to check permissions on one of them.
509 */
510 cred = current_cred();
511 tcred = get_task_cred(task);
512 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
513 !uid_eq(cred->euid, tcred->uid) &&
514 !uid_eq(cred->euid, tcred->suid))
515 ret = -EACCES;
516 put_cred(tcred);
517 if (ret)
518 goto out_finish;
519
520 ret = cgroup_attach_task(cgrp, task, threadgroup);
521
522out_finish:
9a3284fa 523 cgroup_procs_write_finish(task, locked);
715c809d
TH
524out_unlock:
525 cgroup_kn_unlock(of->kn);
526
527 return ret ?: nbytes;
528}
529
530static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
531 char *buf, size_t nbytes, loff_t off)
532{
533 return __cgroup1_procs_write(of, buf, nbytes, off, true);
534}
535
536static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
537 char *buf, size_t nbytes, loff_t off)
538{
539 return __cgroup1_procs_write(of, buf, nbytes, off, false);
0a268dbd
TH
540}
541
542static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
543 char *buf, size_t nbytes, loff_t off)
544{
545 struct cgroup *cgrp;
546
547 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
548
549 cgrp = cgroup_kn_lock_live(of->kn, false);
550 if (!cgrp)
551 return -ENODEV;
552 spin_lock(&release_agent_path_lock);
553 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
554 sizeof(cgrp->root->release_agent_path));
555 spin_unlock(&release_agent_path_lock);
556 cgroup_kn_unlock(of->kn);
557 return nbytes;
558}
559
560static int cgroup_release_agent_show(struct seq_file *seq, void *v)
561{
562 struct cgroup *cgrp = seq_css(seq)->cgroup;
563
564 spin_lock(&release_agent_path_lock);
565 seq_puts(seq, cgrp->root->release_agent_path);
566 spin_unlock(&release_agent_path_lock);
567 seq_putc(seq, '\n');
568 return 0;
569}
570
571static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
572{
573 seq_puts(seq, "0\n");
574 return 0;
575}
576
577static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
578 struct cftype *cft)
579{
580 return notify_on_release(css->cgroup);
581}
582
583static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
584 struct cftype *cft, u64 val)
585{
586 if (val)
587 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
588 else
589 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
590 return 0;
591}
592
593static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
594 struct cftype *cft)
595{
596 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
597}
598
599static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
600 struct cftype *cft, u64 val)
601{
602 if (val)
603 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
604 else
605 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
606 return 0;
607}
608
609/* cgroup core interface files for the legacy hierarchies */
d62beb7f 610struct cftype cgroup1_base_files[] = {
0a268dbd
TH
611 {
612 .name = "cgroup.procs",
613 .seq_start = cgroup_pidlist_start,
614 .seq_next = cgroup_pidlist_next,
615 .seq_stop = cgroup_pidlist_stop,
616 .seq_show = cgroup_pidlist_show,
617 .private = CGROUP_FILE_PROCS,
715c809d 618 .write = cgroup1_procs_write,
0a268dbd
TH
619 },
620 {
621 .name = "cgroup.clone_children",
622 .read_u64 = cgroup_clone_children_read,
623 .write_u64 = cgroup_clone_children_write,
624 },
625 {
626 .name = "cgroup.sane_behavior",
627 .flags = CFTYPE_ONLY_ON_ROOT,
628 .seq_show = cgroup_sane_behavior_show,
629 },
630 {
631 .name = "tasks",
632 .seq_start = cgroup_pidlist_start,
633 .seq_next = cgroup_pidlist_next,
634 .seq_stop = cgroup_pidlist_stop,
635 .seq_show = cgroup_pidlist_show,
636 .private = CGROUP_FILE_TASKS,
715c809d 637 .write = cgroup1_tasks_write,
0a268dbd
TH
638 },
639 {
640 .name = "notify_on_release",
641 .read_u64 = cgroup_read_notify_on_release,
642 .write_u64 = cgroup_write_notify_on_release,
643 },
644 {
645 .name = "release_agent",
646 .flags = CFTYPE_ONLY_ON_ROOT,
647 .seq_show = cgroup_release_agent_show,
648 .write = cgroup_release_agent_write,
649 .max_write_len = PATH_MAX - 1,
650 },
651 { } /* terminate */
652};
653
654/* Display information about each subsystem and each hierarchy */
3f3942ac 655int proc_cgroupstats_show(struct seq_file *m, void *v)
0a268dbd
TH
656{
657 struct cgroup_subsys *ss;
658 int i;
659
660 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
661 /*
662 * ideally we don't want subsystems moving around while we do this.
663 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
664 * subsys/hierarchy state.
665 */
666 mutex_lock(&cgroup_mutex);
667
668 for_each_subsys(ss, i)
669 seq_printf(m, "%s\t%d\t%d\t%d\n",
670 ss->legacy_name, ss->root->hierarchy_id,
671 atomic_read(&ss->root->nr_cgrps),
672 cgroup_ssid_enabled(i));
673
674 mutex_unlock(&cgroup_mutex);
675 return 0;
676}
677
0a268dbd
TH
678/**
679 * cgroupstats_build - build and fill cgroupstats
680 * @stats: cgroupstats to fill information into
681 * @dentry: A dentry entry belonging to the cgroup for which stats have
682 * been requested.
683 *
684 * Build and fill cgroupstats so that taskstats can export it to user
685 * space.
b4cc6196
RD
686 *
687 * Return: %0 on success or a negative errno code on failure
0a268dbd
TH
688 */
689int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
690{
691 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
692 struct cgroup *cgrp;
693 struct css_task_iter it;
694 struct task_struct *tsk;
695
696 /* it should be kernfs_node belonging to cgroupfs and is a directory */
697 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
698 kernfs_type(kn) != KERNFS_DIR)
699 return -EINVAL;
700
0a268dbd
TH
701 /*
702 * We aren't being called from kernfs and there's no guarantee on
703 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
704 * @kn->priv is RCU safe. Let's do the RCU dancing.
705 */
706 rcu_read_lock();
e0aed7c7 707 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
bb758421 708 if (!cgrp || !cgroup_tryget(cgrp)) {
0a268dbd 709 rcu_read_unlock();
0a268dbd
TH
710 return -ENOENT;
711 }
712 rcu_read_unlock();
713
bc2fb7ed 714 css_task_iter_start(&cgrp->self, 0, &it);
0a268dbd 715 while ((tsk = css_task_iter_next(&it))) {
2f064a59 716 switch (READ_ONCE(tsk->__state)) {
0a268dbd
TH
717 case TASK_RUNNING:
718 stats->nr_running++;
719 break;
720 case TASK_INTERRUPTIBLE:
721 stats->nr_sleeping++;
722 break;
723 case TASK_UNINTERRUPTIBLE:
724 stats->nr_uninterruptible++;
725 break;
726 case TASK_STOPPED:
727 stats->nr_stopped++;
728 break;
729 default:
ffeee417 730 if (tsk->in_iowait)
0a268dbd
TH
731 stats->nr_io_wait++;
732 break;
733 }
734 }
735 css_task_iter_end(&it);
736
bb758421 737 cgroup_put(cgrp);
0a268dbd
TH
738 return 0;
739}
740
d62beb7f 741void cgroup1_check_for_release(struct cgroup *cgrp)
0a268dbd
TH
742{
743 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
744 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
745 schedule_work(&cgrp->release_agent_work);
746}
747
748/*
749 * Notify userspace when a cgroup is released, by running the
750 * configured release agent with the name of the cgroup (path
751 * relative to the root of cgroup file system) as the argument.
752 *
753 * Most likely, this user command will try to rmdir this cgroup.
754 *
755 * This races with the possibility that some other task will be
756 * attached to this cgroup before it is removed, or that some other
757 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
758 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
759 * unused, and this cgroup will be reprieved from its death sentence,
760 * to continue to serve a useful existence. Next time it's released,
761 * we will get notified again, if it still has 'notify_on_release' set.
762 *
763 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
764 * means only wait until the task is successfully execve()'d. The
765 * separate release agent task is forked by call_usermodehelper(),
766 * then control in this thread returns here, without waiting for the
767 * release agent task. We don't bother to wait because the caller of
768 * this routine has no use for the exit status of the release agent
769 * task, so no sense holding our caller up for that.
770 */
d62beb7f 771void cgroup1_release_agent(struct work_struct *work)
0a268dbd
TH
772{
773 struct cgroup *cgrp =
774 container_of(work, struct cgroup, release_agent_work);
e7b20d97 775 char *pathbuf, *agentbuf;
0a268dbd
TH
776 char *argv[3], *envp[3];
777 int ret;
778
e7b20d97
TH
779 /* snoop agent path and exit early if empty */
780 if (!cgrp->root->release_agent_path[0])
781 return;
0a268dbd 782
e7b20d97 783 /* prepare argument buffers */
0a268dbd 784 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e7b20d97
TH
785 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
786 if (!pathbuf || !agentbuf)
787 goto out_free;
0a268dbd 788
e7b20d97
TH
789 spin_lock(&release_agent_path_lock);
790 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
791 spin_unlock(&release_agent_path_lock);
792 if (!agentbuf[0])
793 goto out_free;
794
795 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
0a268dbd 796 if (ret < 0 || ret >= PATH_MAX)
e7b20d97 797 goto out_free;
0a268dbd
TH
798
799 argv[0] = agentbuf;
800 argv[1] = pathbuf;
801 argv[2] = NULL;
802
803 /* minimal command environment */
804 envp[0] = "HOME=/";
805 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
806 envp[2] = NULL;
807
0a268dbd 808 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
0a268dbd
TH
809out_free:
810 kfree(agentbuf);
811 kfree(pathbuf);
812}
813
814/*
815 * cgroup_rename - Only allow simple rename of directories in place.
816 */
1592c9b2
TH
817static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
818 const char *new_name_str)
0a268dbd
TH
819{
820 struct cgroup *cgrp = kn->priv;
821 int ret;
822
b7e24eb1
AK
823 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
824 if (strchr(new_name_str, '\n'))
825 return -EINVAL;
826
0a268dbd
TH
827 if (kernfs_type(kn) != KERNFS_DIR)
828 return -ENOTDIR;
829 if (kn->parent != new_parent)
830 return -EIO;
831
0a268dbd
TH
832 /*
833 * We're gonna grab cgroup_mutex which nests outside kernfs
834 * active_ref. kernfs_rename() doesn't require active_ref
835 * protection. Break them before grabbing cgroup_mutex.
836 */
837 kernfs_break_active_protection(new_parent);
838 kernfs_break_active_protection(kn);
839
840 mutex_lock(&cgroup_mutex);
841
842 ret = kernfs_rename(kn, new_parent, new_name_str);
843 if (!ret)
e4f8d81c 844 TRACE_CGROUP_PATH(rename, cgrp);
0a268dbd
TH
845
846 mutex_unlock(&cgroup_mutex);
847
848 kernfs_unbreak_active_protection(kn);
849 kernfs_unbreak_active_protection(new_parent);
850 return ret;
851}
852
1592c9b2
TH
853static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
854{
855 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
856 struct cgroup_subsys *ss;
857 int ssid;
858
859 for_each_subsys(ss, ssid)
860 if (root->subsys_mask & (1 << ssid))
861 seq_show_option(seq, ss->legacy_name, NULL);
862 if (root->flags & CGRP_ROOT_NOPREFIX)
863 seq_puts(seq, ",noprefix");
864 if (root->flags & CGRP_ROOT_XATTR)
865 seq_puts(seq, ",xattr");
e1cba4b8
WL
866 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
867 seq_puts(seq, ",cpuset_v2_mode");
1592c9b2
TH
868
869 spin_lock(&release_agent_path_lock);
870 if (strlen(root->release_agent_path))
871 seq_show_option(seq, "release_agent",
872 root->release_agent_path);
873 spin_unlock(&release_agent_path_lock);
874
875 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
876 seq_puts(seq, ",clone_children");
877 if (strlen(root->name))
878 seq_show_option(seq, "name", root->name);
879 return 0;
880}
881
8d2451f4
AV
882enum cgroup1_param {
883 Opt_all,
884 Opt_clone_children,
885 Opt_cpuset_v2_mode,
886 Opt_name,
887 Opt_none,
888 Opt_noprefix,
889 Opt_release_agent,
890 Opt_xattr,
891};
1592c9b2 892
d7167b14 893const struct fs_parameter_spec cgroup1_fs_parameters[] = {
8d2451f4
AV
894 fsparam_flag ("all", Opt_all),
895 fsparam_flag ("clone_children", Opt_clone_children),
896 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
897 fsparam_string("name", Opt_name),
898 fsparam_flag ("none", Opt_none),
899 fsparam_flag ("noprefix", Opt_noprefix),
900 fsparam_string("release_agent", Opt_release_agent),
901 fsparam_flag ("xattr", Opt_xattr),
902 {}
903};
1592c9b2 904
8d2451f4
AV
905int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
906{
907 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
908 struct cgroup_subsys *ss;
909 struct fs_parse_result result;
910 int opt, i;
911
d7167b14 912 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
8d2451f4 913 if (opt == -ENOPARAM) {
d1d488d8
CB
914 int ret;
915
916 ret = vfs_parse_fs_param_source(fc, param);
917 if (ret != -ENOPARAM)
918 return ret;
1592c9b2 919 for_each_subsys(ss, i) {
8d2451f4 920 if (strcmp(param->key, ss->legacy_name))
1592c9b2 921 continue;
61e960b0
CZ
922 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
923 return invalfc(fc, "Disabled controller '%s'",
924 param->key);
f5dfb531 925 ctx->subsys_mask |= (1 << i);
8d2451f4 926 return 0;
1592c9b2 927 }
58c025f0 928 return invalfc(fc, "Unknown subsys name '%s'", param->key);
8d2451f4
AV
929 }
930 if (opt < 0)
931 return opt;
932
933 switch (opt) {
934 case Opt_none:
935 /* Explicitly have no subsystems */
936 ctx->none = true;
937 break;
938 case Opt_all:
939 ctx->all_ss = true;
940 break;
941 case Opt_noprefix:
942 ctx->flags |= CGRP_ROOT_NOPREFIX;
943 break;
944 case Opt_clone_children:
945 ctx->cpuset_clone_children = true;
946 break;
947 case Opt_cpuset_v2_mode:
948 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
949 break;
950 case Opt_xattr:
951 ctx->flags |= CGRP_ROOT_XATTR;
952 break;
953 case Opt_release_agent:
954 /* Specifying two release agents is forbidden */
955 if (ctx->release_agent)
58c025f0 956 return invalfc(fc, "release_agent respecified");
8d2451f4
AV
957 ctx->release_agent = param->string;
958 param->string = NULL;
959 break;
960 case Opt_name:
961 /* blocked by boot param? */
962 if (cgroup_no_v1_named)
1592c9b2 963 return -ENOENT;
8d2451f4
AV
964 /* Can't specify an empty name */
965 if (!param->size)
58c025f0 966 return invalfc(fc, "Empty name");
8d2451f4 967 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
58c025f0 968 return invalfc(fc, "Name too long");
8d2451f4
AV
969 /* Must match [\w.-]+ */
970 for (i = 0; i < param->size; i++) {
971 char c = param->string[i];
972 if (isalnum(c))
973 continue;
974 if ((c == '.') || (c == '-') || (c == '_'))
975 continue;
58c025f0 976 return invalfc(fc, "Invalid name");
8d2451f4
AV
977 }
978 /* Specifying two names is forbidden */
979 if (ctx->name)
58c025f0 980 return invalfc(fc, "name respecified");
8d2451f4
AV
981 ctx->name = param->string;
982 param->string = NULL;
983 break;
1592c9b2 984 }
f5dfb531
AV
985 return 0;
986}
987
8d2451f4 988static int check_cgroupfs_options(struct fs_context *fc)
f5dfb531 989{
8d2451f4 990 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
f5dfb531
AV
991 u16 mask = U16_MAX;
992 u16 enabled = 0;
993 struct cgroup_subsys *ss;
994 int i;
995
996#ifdef CONFIG_CPUSETS
997 mask = ~((u16)1 << cpuset_cgrp_id);
998#endif
999 for_each_subsys(ss, i)
1000 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1001 enabled |= 1 << i;
1002
1003 ctx->subsys_mask &= enabled;
1592c9b2
TH
1004
1005 /*
08b2b6fd 1006 * In absence of 'none', 'name=' and subsystem name options,
f5dfb531 1007 * let's default to 'all'.
1592c9b2 1008 */
f5dfb531
AV
1009 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1010 ctx->all_ss = true;
1011
1012 if (ctx->all_ss) {
1013 /* Mutually exclusive option 'all' + subsystem name */
1014 if (ctx->subsys_mask)
58c025f0 1015 return invalfc(fc, "subsys name conflicts with all");
f5dfb531
AV
1016 /* 'all' => select all the subsystems */
1017 ctx->subsys_mask = enabled;
1018 }
1592c9b2
TH
1019
1020 /*
1021 * We either have to specify by name or by subsystems. (So all
1022 * empty hierarchies must have a name).
1023 */
f5dfb531 1024 if (!ctx->subsys_mask && !ctx->name)
58c025f0 1025 return invalfc(fc, "Need name or subsystem set");
1592c9b2
TH
1026
1027 /*
1028 * Option noprefix was introduced just for backward compatibility
1029 * with the old cpuset, so we allow noprefix only if mounting just
1030 * the cpuset subsystem.
1031 */
f5dfb531 1032 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
58c025f0 1033 return invalfc(fc, "noprefix used incorrectly");
1592c9b2
TH
1034
1035 /* Can't specify "none" and some subsystems */
f5dfb531 1036 if (ctx->subsys_mask && ctx->none)
58c025f0 1037 return invalfc(fc, "none used incorrectly");
1592c9b2
TH
1038
1039 return 0;
1040}
1041
90129625 1042int cgroup1_reconfigure(struct fs_context *fc)
1592c9b2 1043{
90129625
AV
1044 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1045 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1592c9b2 1046 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
90129625 1047 int ret = 0;
1592c9b2
TH
1048 u16 added_mask, removed_mask;
1049
1050 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1051
1052 /* See what subsystems are wanted */
8d2451f4 1053 ret = check_cgroupfs_options(fc);
1592c9b2
TH
1054 if (ret)
1055 goto out_unlock;
1056
f5dfb531 1057 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1592c9b2
TH
1058 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1059 task_tgid_nr(current), current->comm);
1060
f5dfb531
AV
1061 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1062 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1592c9b2
TH
1063
1064 /* Don't allow flags or name to change at remount */
f5dfb531
AV
1065 if ((ctx->flags ^ root->flags) ||
1066 (ctx->name && strcmp(ctx->name, root->name))) {
58c025f0 1067 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
f5dfb531 1068 ctx->flags, ctx->name ?: "", root->flags, root->name);
1592c9b2
TH
1069 ret = -EINVAL;
1070 goto out_unlock;
1071 }
1072
1073 /* remounting is not allowed for populated hierarchies */
1074 if (!list_empty(&root->cgrp.self.children)) {
1075 ret = -EBUSY;
1076 goto out_unlock;
1077 }
1078
1079 ret = rebind_subsystems(root, added_mask);
1080 if (ret)
1081 goto out_unlock;
1082
1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1084
f5dfb531 1085 if (ctx->release_agent) {
1592c9b2 1086 spin_lock(&release_agent_path_lock);
f5dfb531 1087 strcpy(root->release_agent_path, ctx->release_agent);
1592c9b2
TH
1088 spin_unlock(&release_agent_path_lock);
1089 }
1090
1091 trace_cgroup_remount(root);
1092
1093 out_unlock:
1592c9b2
TH
1094 mutex_unlock(&cgroup_mutex);
1095 return ret;
1096}
1097
1098struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1099 .rename = cgroup1_rename,
1100 .show_options = cgroup1_show_options,
1592c9b2
TH
1101 .mkdir = cgroup_mkdir,
1102 .rmdir = cgroup_rmdir,
1103 .show_path = cgroup_show_path,
1104};
1105
6678889f
AV
1106/*
1107 * The guts of cgroup1 mount - find or create cgroup_root to use.
1108 * Called with cgroup_mutex held; returns 0 on success, -E... on
1109 * error and positive - in case when the candidate is busy dying.
1110 * On success it stashes a reference to cgroup_root into given
1111 * cgroup_fs_context; that reference is *NOT* counting towards the
1112 * cgroup_root refcount.
1113 */
1114static int cgroup1_root_to_use(struct fs_context *fc)
1592c9b2 1115{
7feeef58 1116 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1592c9b2
TH
1117 struct cgroup_root *root;
1118 struct cgroup_subsys *ss;
1592c9b2
TH
1119 int i, ret;
1120
1592c9b2 1121 /* First find the desired set of subsystems */
8d2451f4 1122 ret = check_cgroupfs_options(fc);
1592c9b2 1123 if (ret)
6678889f 1124 return ret;
1592c9b2
TH
1125
1126 /*
1127 * Destruction of cgroup root is asynchronous, so subsystems may
1128 * still be dying after the previous unmount. Let's drain the
1129 * dying subsystems. We just need to ensure that the ones
1130 * unmounted previously finish dying and don't care about new ones
1131 * starting. Testing ref liveliness is good enough.
1132 */
1133 for_each_subsys(ss, i) {
f5dfb531 1134 if (!(ctx->subsys_mask & (1 << i)) ||
1592c9b2
TH
1135 ss->root == &cgrp_dfl_root)
1136 continue;
1137
6678889f
AV
1138 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1139 return 1; /* restart */
1592c9b2
TH
1140 cgroup_put(&ss->root->cgrp);
1141 }
1142
1143 for_each_root(root) {
1144 bool name_match = false;
1145
1146 if (root == &cgrp_dfl_root)
1147 continue;
1148
1149 /*
1150 * If we asked for a name then it must match. Also, if
1151 * name matches but sybsys_mask doesn't, we should fail.
1152 * Remember whether name matched.
1153 */
f5dfb531
AV
1154 if (ctx->name) {
1155 if (strcmp(ctx->name, root->name))
1592c9b2
TH
1156 continue;
1157 name_match = true;
1158 }
1159
1160 /*
1161 * If we asked for subsystems (or explicitly for no
1162 * subsystems) then they must match.
1163 */
f5dfb531
AV
1164 if ((ctx->subsys_mask || ctx->none) &&
1165 (ctx->subsys_mask != root->subsys_mask)) {
1592c9b2
TH
1166 if (!name_match)
1167 continue;
6678889f 1168 return -EBUSY;
1592c9b2
TH
1169 }
1170
f5dfb531 1171 if (root->flags ^ ctx->flags)
1592c9b2
TH
1172 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1173
cf6299b1 1174 ctx->root = root;
6678889f 1175 return 0;
1592c9b2
TH
1176 }
1177
1178 /*
1179 * No such thing, create a new one. name= matching without subsys
1180 * specification is allowed for already existing hierarchies but we
1181 * can't create new one without subsys specification.
1182 */
6678889f 1183 if (!ctx->subsys_mask && !ctx->none)
58c025f0 1184 return invalfc(fc, "No subsys list or none specified");
1592c9b2
TH
1185
1186 /* Hierarchies may only be created in the initial cgroup namespace. */
cca8f327 1187 if (ctx->ns != &init_cgroup_ns)
6678889f 1188 return -EPERM;
1592c9b2
TH
1189
1190 root = kzalloc(sizeof(*root), GFP_KERNEL);
6678889f
AV
1191 if (!root)
1192 return -ENOMEM;
1592c9b2 1193
cf6299b1
AV
1194 ctx->root = root;
1195 init_cgroup_root(ctx);
1592c9b2 1196
f5dfb531 1197 ret = cgroup_setup_root(root, ctx->subsys_mask);
1592c9b2
TH
1198 if (ret)
1199 cgroup_free_root(root);
6678889f
AV
1200 return ret;
1201}
1202
1203int cgroup1_get_tree(struct fs_context *fc)
1204{
6678889f
AV
1205 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1206 int ret;
1207
1208 /* Check if the caller has permission to mount. */
cca8f327 1209 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
6678889f
AV
1210 return -EPERM;
1211
1212 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1213
1214 ret = cgroup1_root_to_use(fc);
1215 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1216 ret = 1; /* restart */
1592c9b2 1217
1592c9b2 1218 mutex_unlock(&cgroup_mutex);
1592c9b2 1219
6678889f 1220 if (!ret)
cca8f327 1221 ret = cgroup_do_get_tree(fc);
6678889f
AV
1222
1223 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1e7107c5 1224 fc_drop_locked(fc);
6678889f
AV
1225 ret = 1;
1226 }
1227
1228 if (unlikely(ret > 0)) {
35ac1184 1229 msleep(10);
7feeef58 1230 return restart_syscall();
9732adc5 1231 }
71d883c3 1232 return ret;
1592c9b2
TH
1233}
1234
0a268dbd
TH
1235static int __init cgroup1_wq_init(void)
1236{
1237 /*
1238 * Used to destroy pidlists and separate to serve as flush domain.
1239 * Cap @max_active to 1 too.
1240 */
1241 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1242 0, 1);
1243 BUG_ON(!cgroup_pidlist_destroy_wq);
1244 return 0;
1245}
1246core_initcall(cgroup1_wq_init);
1247
1248static int __init cgroup_no_v1(char *str)
1249{
1250 struct cgroup_subsys *ss;
1251 char *token;
1252 int i;
1253
1254 while ((token = strsep(&str, ",")) != NULL) {
1255 if (!*token)
1256 continue;
1257
1258 if (!strcmp(token, "all")) {
1259 cgroup_no_v1_mask = U16_MAX;
3fc9c12d
TH
1260 continue;
1261 }
1262
1263 if (!strcmp(token, "named")) {
1264 cgroup_no_v1_named = true;
1265 continue;
0a268dbd
TH
1266 }
1267
1268 for_each_subsys(ss, i) {
1269 if (strcmp(token, ss->name) &&
1270 strcmp(token, ss->legacy_name))
1271 continue;
1272
1273 cgroup_no_v1_mask |= 1 << i;
1274 }
1275 }
1276 return 1;
1277}
1278__setup("cgroup_no_v1=", cgroup_no_v1);