cgroup: clarify cgroup_css_set_fork()
[linux-2.6-block.git] / kernel / cgroup / cgroup-v1.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
0a268dbd
TH
2#include "cgroup-internal.h"
3
1592c9b2 4#include <linux/ctype.h>
0a268dbd
TH
5#include <linux/kmod.h>
6#include <linux/sort.h>
1592c9b2 7#include <linux/delay.h>
0a268dbd 8#include <linux/mm.h>
c3edc401 9#include <linux/sched/signal.h>
56cd6973 10#include <linux/sched/task.h>
50ff9d13 11#include <linux/magic.h>
0a268dbd
TH
12#include <linux/slab.h>
13#include <linux/vmalloc.h>
14#include <linux/delayacct.h>
15#include <linux/pid_namespace.h>
16#include <linux/cgroupstats.h>
8d2451f4 17#include <linux/fs_parser.h>
0a268dbd
TH
18
19#include <trace/events/cgroup.h>
20
21/*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27#define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29/* Controllers blocked by the commandline in v1 */
30static u16 cgroup_no_v1_mask;
31
3fc9c12d
TH
32/* disable named v1 mounts */
33static bool cgroup_no_v1_named;
34
0a268dbd
TH
35/*
36 * pidlist destructions need to be flushed on cgroup destruction. Use a
37 * separate workqueue as flush domain.
38 */
39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40
e7b20d97 41/* protects cgroup_subsys->release_agent_path */
1592c9b2 42static DEFINE_SPINLOCK(release_agent_path_lock);
0a268dbd 43
d62beb7f 44bool cgroup1_ssid_disabled(int ssid)
0a268dbd
TH
45{
46 return cgroup_no_v1_mask & (1 << ssid);
47}
48
49/**
50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51 * @from: attach to all cgroups of a given task
52 * @tsk: the task to be attached
b4cc6196
RD
53 *
54 * Return: %0 on success or a negative errno code on failure
0a268dbd
TH
55 */
56int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
57{
58 struct cgroup_root *root;
59 int retval = 0;
60
61 mutex_lock(&cgroup_mutex);
62 percpu_down_write(&cgroup_threadgroup_rwsem);
63 for_each_root(root) {
64 struct cgroup *from_cgrp;
65
0a268dbd
TH
66 spin_lock_irq(&css_set_lock);
67 from_cgrp = task_cgroup_from_root(from, root);
68 spin_unlock_irq(&css_set_lock);
69
70 retval = cgroup_attach_task(from_cgrp, tsk, false);
71 if (retval)
72 break;
73 }
74 percpu_up_write(&cgroup_threadgroup_rwsem);
75 mutex_unlock(&cgroup_mutex);
76
77 return retval;
78}
79EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
80
81/**
b4cc6196 82 * cgroup_transfer_tasks - move tasks from one cgroup to another
0a268dbd
TH
83 * @to: cgroup to which the tasks will be moved
84 * @from: cgroup in which the tasks currently reside
85 *
86 * Locking rules between cgroup_post_fork() and the migration path
87 * guarantee that, if a task is forking while being migrated, the new child
88 * is guaranteed to be either visible in the source cgroup after the
89 * parent's migration is complete or put into the target cgroup. No task
90 * can slip out of migration through forking.
b4cc6196
RD
91 *
92 * Return: %0 on success or a negative errno code on failure
0a268dbd
TH
93 */
94int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
95{
e595cd70 96 DEFINE_CGROUP_MGCTX(mgctx);
0a268dbd
TH
97 struct cgrp_cset_link *link;
98 struct css_task_iter it;
99 struct task_struct *task;
100 int ret;
101
102 if (cgroup_on_dfl(to))
103 return -EINVAL;
104
8cfd8147
TH
105 ret = cgroup_migrate_vet_dst(to);
106 if (ret)
107 return ret;
0a268dbd
TH
108
109 mutex_lock(&cgroup_mutex);
110
111 percpu_down_write(&cgroup_threadgroup_rwsem);
112
113 /* all tasks in @from are being moved, all csets are source */
114 spin_lock_irq(&css_set_lock);
115 list_for_each_entry(link, &from->cset_links, cset_link)
e595cd70 116 cgroup_migrate_add_src(link->cset, to, &mgctx);
0a268dbd
TH
117 spin_unlock_irq(&css_set_lock);
118
e595cd70 119 ret = cgroup_migrate_prepare_dst(&mgctx);
0a268dbd
TH
120 if (ret)
121 goto out_err;
122
123 /*
124 * Migrate tasks one-by-one until @from is empty. This fails iff
125 * ->can_attach() fails.
126 */
127 do {
bc2fb7ed 128 css_task_iter_start(&from->self, 0, &it);
116d2f74
PS
129
130 do {
131 task = css_task_iter_next(&it);
132 } while (task && (task->flags & PF_EXITING));
133
0a268dbd
TH
134 if (task)
135 get_task_struct(task);
136 css_task_iter_end(&it);
137
138 if (task) {
bfc2cf6f 139 ret = cgroup_migrate(task, false, &mgctx);
0a268dbd 140 if (!ret)
e4f8d81c 141 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
0a268dbd
TH
142 put_task_struct(task);
143 }
144 } while (task && !ret);
145out_err:
e595cd70 146 cgroup_migrate_finish(&mgctx);
0a268dbd
TH
147 percpu_up_write(&cgroup_threadgroup_rwsem);
148 mutex_unlock(&cgroup_mutex);
149 return ret;
150}
151
152/*
153 * Stuff for reading the 'tasks'/'procs' files.
154 *
155 * Reading this file can return large amounts of data if a cgroup has
156 * *lots* of attached tasks. So it may need several calls to read(),
157 * but we cannot guarantee that the information we produce is correct
158 * unless we produce it entirely atomically.
159 *
160 */
161
162/* which pidlist file are we talking about? */
163enum cgroup_filetype {
164 CGROUP_FILE_PROCS,
165 CGROUP_FILE_TASKS,
166};
167
168/*
169 * A pidlist is a list of pids that virtually represents the contents of one
170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
172 * to the cgroup.
173 */
174struct cgroup_pidlist {
175 /*
176 * used to find which pidlist is wanted. doesn't change as long as
177 * this particular list stays in the list.
178 */
179 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
180 /* array of xids */
181 pid_t *list;
182 /* how many elements the above list has */
183 int length;
184 /* each of these stored in a list by its cgroup */
185 struct list_head links;
186 /* pointer to the cgroup we belong to, for list removal purposes */
187 struct cgroup *owner;
188 /* for delayed destruction */
189 struct delayed_work destroy_dwork;
190};
191
0a268dbd
TH
192/*
193 * Used to destroy all pidlists lingering waiting for destroy timer. None
194 * should be left afterwards.
195 */
d62beb7f 196void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
0a268dbd
TH
197{
198 struct cgroup_pidlist *l, *tmp_l;
199
200 mutex_lock(&cgrp->pidlist_mutex);
201 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
202 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
203 mutex_unlock(&cgrp->pidlist_mutex);
204
205 flush_workqueue(cgroup_pidlist_destroy_wq);
206 BUG_ON(!list_empty(&cgrp->pidlists));
207}
208
209static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
210{
211 struct delayed_work *dwork = to_delayed_work(work);
212 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
213 destroy_dwork);
214 struct cgroup_pidlist *tofree = NULL;
215
216 mutex_lock(&l->owner->pidlist_mutex);
217
218 /*
219 * Destroy iff we didn't get queued again. The state won't change
220 * as destroy_dwork can only be queued while locked.
221 */
222 if (!delayed_work_pending(dwork)) {
223 list_del(&l->links);
653a23ca 224 kvfree(l->list);
0a268dbd
TH
225 put_pid_ns(l->key.ns);
226 tofree = l;
227 }
228
229 mutex_unlock(&l->owner->pidlist_mutex);
230 kfree(tofree);
231}
232
233/*
234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
235 * Returns the number of unique elements.
236 */
237static int pidlist_uniq(pid_t *list, int length)
238{
239 int src, dest = 1;
240
241 /*
242 * we presume the 0th element is unique, so i starts at 1. trivial
243 * edge cases first; no work needs to be done for either
244 */
245 if (length == 0 || length == 1)
246 return length;
247 /* src and dest walk down the list; dest counts unique elements */
248 for (src = 1; src < length; src++) {
249 /* find next unique element */
250 while (list[src] == list[src-1]) {
251 src++;
252 if (src == length)
253 goto after;
254 }
255 /* dest always points to where the next unique element goes */
256 list[dest] = list[src];
257 dest++;
258 }
259after:
260 return dest;
261}
262
263/*
264 * The two pid files - task and cgroup.procs - guaranteed that the result
265 * is sorted, which forced this whole pidlist fiasco. As pid order is
266 * different per namespace, each namespace needs differently sorted list,
267 * making it impossible to use, for example, single rbtree of member tasks
268 * sorted by task pointer. As pidlists can be fairly large, allocating one
269 * per open file is dangerous, so cgroup had to implement shared pool of
270 * pidlists keyed by cgroup and namespace.
271 */
272static int cmppid(const void *a, const void *b)
273{
274 return *(pid_t *)a - *(pid_t *)b;
275}
276
277static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
278 enum cgroup_filetype type)
279{
280 struct cgroup_pidlist *l;
281 /* don't need task_nsproxy() if we're looking at ourself */
282 struct pid_namespace *ns = task_active_pid_ns(current);
283
284 lockdep_assert_held(&cgrp->pidlist_mutex);
285
286 list_for_each_entry(l, &cgrp->pidlists, links)
287 if (l->key.type == type && l->key.ns == ns)
288 return l;
289 return NULL;
290}
291
292/*
293 * find the appropriate pidlist for our purpose (given procs vs tasks)
294 * returns with the lock on that pidlist already held, and takes care
295 * of the use count, or returns NULL with no locks held if we're out of
296 * memory.
297 */
298static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
299 enum cgroup_filetype type)
300{
301 struct cgroup_pidlist *l;
302
303 lockdep_assert_held(&cgrp->pidlist_mutex);
304
305 l = cgroup_pidlist_find(cgrp, type);
306 if (l)
307 return l;
308
309 /* entry not found; create a new one */
310 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
311 if (!l)
312 return l;
313
314 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
315 l->key.type = type;
316 /* don't need task_nsproxy() if we're looking at ourself */
317 l->key.ns = get_pid_ns(task_active_pid_ns(current));
318 l->owner = cgrp;
319 list_add(&l->links, &cgrp->pidlists);
320 return l;
321}
322
0a268dbd
TH
323/*
324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
325 */
326static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
327 struct cgroup_pidlist **lp)
328{
329 pid_t *array;
330 int length;
331 int pid, n = 0; /* used for populating the array */
332 struct css_task_iter it;
333 struct task_struct *tsk;
334 struct cgroup_pidlist *l;
335
336 lockdep_assert_held(&cgrp->pidlist_mutex);
337
338 /*
339 * If cgroup gets more users after we read count, we won't have
340 * enough space - tough. This race is indistinguishable to the
341 * caller from the case that the additional cgroup users didn't
342 * show up until sometime later on.
343 */
344 length = cgroup_task_count(cgrp);
653a23ca 345 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
0a268dbd
TH
346 if (!array)
347 return -ENOMEM;
348 /* now, populate the array */
bc2fb7ed 349 css_task_iter_start(&cgrp->self, 0, &it);
0a268dbd
TH
350 while ((tsk = css_task_iter_next(&it))) {
351 if (unlikely(n == length))
352 break;
353 /* get tgid or pid for procs or tasks file respectively */
354 if (type == CGROUP_FILE_PROCS)
355 pid = task_tgid_vnr(tsk);
356 else
357 pid = task_pid_vnr(tsk);
358 if (pid > 0) /* make sure to only use valid results */
359 array[n++] = pid;
360 }
361 css_task_iter_end(&it);
362 length = n;
363 /* now sort & (if procs) strip out duplicates */
364 sort(array, length, sizeof(pid_t), cmppid, NULL);
365 if (type == CGROUP_FILE_PROCS)
366 length = pidlist_uniq(array, length);
367
368 l = cgroup_pidlist_find_create(cgrp, type);
369 if (!l) {
653a23ca 370 kvfree(array);
0a268dbd
TH
371 return -ENOMEM;
372 }
373
374 /* store array, freeing old if necessary */
653a23ca 375 kvfree(l->list);
0a268dbd
TH
376 l->list = array;
377 l->length = length;
378 *lp = l;
379 return 0;
380}
381
382/*
383 * seq_file methods for the tasks/procs files. The seq_file position is the
384 * next pid to display; the seq_file iterator is a pointer to the pid
385 * in the cgroup->l->list array.
386 */
387
388static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
389{
390 /*
391 * Initially we receive a position value that corresponds to
392 * one more than the last pid shown (or 0 on the first call or
393 * after a seek to the start). Use a binary-search to find the
394 * next pid to display, if any
395 */
396 struct kernfs_open_file *of = s->private;
0d2b5955 397 struct cgroup_file_ctx *ctx = of->priv;
0a268dbd
TH
398 struct cgroup *cgrp = seq_css(s)->cgroup;
399 struct cgroup_pidlist *l;
400 enum cgroup_filetype type = seq_cft(s)->private;
401 int index = 0, pid = *pos;
402 int *iter, ret;
403
404 mutex_lock(&cgrp->pidlist_mutex);
405
406 /*
0d2b5955
TH
407 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
408 * start() after open. If the matching pidlist is around, we can use
409 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
410 * directly. It could already have been destroyed.
0a268dbd 411 */
0d2b5955
TH
412 if (ctx->procs1.pidlist)
413 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
0a268dbd
TH
414
415 /*
416 * Either this is the first start() after open or the matching
417 * pidlist has been destroyed inbetween. Create a new one.
418 */
0d2b5955
TH
419 if (!ctx->procs1.pidlist) {
420 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
0a268dbd
TH
421 if (ret)
422 return ERR_PTR(ret);
423 }
0d2b5955 424 l = ctx->procs1.pidlist;
0a268dbd
TH
425
426 if (pid) {
427 int end = l->length;
428
429 while (index < end) {
430 int mid = (index + end) / 2;
431 if (l->list[mid] == pid) {
432 index = mid;
433 break;
434 } else if (l->list[mid] <= pid)
435 index = mid + 1;
436 else
437 end = mid;
438 }
439 }
440 /* If we're off the end of the array, we're done */
441 if (index >= l->length)
442 return NULL;
443 /* Update the abstract position to be the actual pid that we found */
444 iter = l->list + index;
445 *pos = *iter;
446 return iter;
447}
448
449static void cgroup_pidlist_stop(struct seq_file *s, void *v)
450{
451 struct kernfs_open_file *of = s->private;
0d2b5955
TH
452 struct cgroup_file_ctx *ctx = of->priv;
453 struct cgroup_pidlist *l = ctx->procs1.pidlist;
0a268dbd
TH
454
455 if (l)
456 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
457 CGROUP_PIDLIST_DESTROY_DELAY);
458 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
459}
460
461static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
462{
463 struct kernfs_open_file *of = s->private;
0d2b5955
TH
464 struct cgroup_file_ctx *ctx = of->priv;
465 struct cgroup_pidlist *l = ctx->procs1.pidlist;
0a268dbd
TH
466 pid_t *p = v;
467 pid_t *end = l->list + l->length;
468 /*
469 * Advance to the next pid in the array. If this goes off the
470 * end, we're done
471 */
472 p++;
473 if (p >= end) {
db8dd969 474 (*pos)++;
0a268dbd
TH
475 return NULL;
476 } else {
477 *pos = *p;
478 return p;
479 }
480}
481
482static int cgroup_pidlist_show(struct seq_file *s, void *v)
483{
484 seq_printf(s, "%d\n", *(int *)v);
485
486 return 0;
487}
488
715c809d
TH
489static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
490 char *buf, size_t nbytes, loff_t off,
491 bool threadgroup)
0a268dbd 492{
715c809d
TH
493 struct cgroup *cgrp;
494 struct task_struct *task;
495 const struct cred *cred, *tcred;
496 ssize_t ret;
9a3284fa 497 bool locked;
715c809d
TH
498
499 cgrp = cgroup_kn_lock_live(of->kn, false);
500 if (!cgrp)
501 return -ENODEV;
502
9a3284fa 503 task = cgroup_procs_write_start(buf, threadgroup, &locked);
715c809d
TH
504 ret = PTR_ERR_OR_ZERO(task);
505 if (ret)
506 goto out_unlock;
507
508 /*
1756d799
TH
509 * Even if we're attaching all tasks in the thread group, we only need
510 * to check permissions on one of them. Check permissions using the
511 * credentials from file open to protect against inherited fd attacks.
715c809d 512 */
1756d799 513 cred = of->file->f_cred;
715c809d
TH
514 tcred = get_task_cred(task);
515 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
516 !uid_eq(cred->euid, tcred->uid) &&
517 !uid_eq(cred->euid, tcred->suid))
518 ret = -EACCES;
519 put_cred(tcred);
520 if (ret)
521 goto out_finish;
522
523 ret = cgroup_attach_task(cgrp, task, threadgroup);
524
525out_finish:
9a3284fa 526 cgroup_procs_write_finish(task, locked);
715c809d
TH
527out_unlock:
528 cgroup_kn_unlock(of->kn);
529
530 return ret ?: nbytes;
531}
532
533static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
534 char *buf, size_t nbytes, loff_t off)
535{
536 return __cgroup1_procs_write(of, buf, nbytes, off, true);
537}
538
539static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
540 char *buf, size_t nbytes, loff_t off)
541{
542 return __cgroup1_procs_write(of, buf, nbytes, off, false);
0a268dbd
TH
543}
544
545static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
546 char *buf, size_t nbytes, loff_t off)
547{
548 struct cgroup *cgrp;
549
550 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
551
24f60085
EB
552 /*
553 * Release agent gets called with all capabilities,
554 * require capabilities to set release agent.
555 */
556 if ((of->file->f_cred->user_ns != &init_user_ns) ||
557 !capable(CAP_SYS_ADMIN))
558 return -EPERM;
559
0a268dbd
TH
560 cgrp = cgroup_kn_lock_live(of->kn, false);
561 if (!cgrp)
562 return -ENODEV;
563 spin_lock(&release_agent_path_lock);
564 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
565 sizeof(cgrp->root->release_agent_path));
566 spin_unlock(&release_agent_path_lock);
567 cgroup_kn_unlock(of->kn);
568 return nbytes;
569}
570
571static int cgroup_release_agent_show(struct seq_file *seq, void *v)
572{
573 struct cgroup *cgrp = seq_css(seq)->cgroup;
574
575 spin_lock(&release_agent_path_lock);
576 seq_puts(seq, cgrp->root->release_agent_path);
577 spin_unlock(&release_agent_path_lock);
578 seq_putc(seq, '\n');
579 return 0;
580}
581
582static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
583{
584 seq_puts(seq, "0\n");
585 return 0;
586}
587
588static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
589 struct cftype *cft)
590{
591 return notify_on_release(css->cgroup);
592}
593
594static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
595 struct cftype *cft, u64 val)
596{
597 if (val)
598 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
599 else
600 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
601 return 0;
602}
603
604static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
605 struct cftype *cft)
606{
607 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
608}
609
610static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
611 struct cftype *cft, u64 val)
612{
613 if (val)
614 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
615 else
616 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
617 return 0;
618}
619
620/* cgroup core interface files for the legacy hierarchies */
d62beb7f 621struct cftype cgroup1_base_files[] = {
0a268dbd
TH
622 {
623 .name = "cgroup.procs",
624 .seq_start = cgroup_pidlist_start,
625 .seq_next = cgroup_pidlist_next,
626 .seq_stop = cgroup_pidlist_stop,
627 .seq_show = cgroup_pidlist_show,
628 .private = CGROUP_FILE_PROCS,
715c809d 629 .write = cgroup1_procs_write,
0a268dbd
TH
630 },
631 {
632 .name = "cgroup.clone_children",
633 .read_u64 = cgroup_clone_children_read,
634 .write_u64 = cgroup_clone_children_write,
635 },
636 {
637 .name = "cgroup.sane_behavior",
638 .flags = CFTYPE_ONLY_ON_ROOT,
639 .seq_show = cgroup_sane_behavior_show,
640 },
641 {
642 .name = "tasks",
643 .seq_start = cgroup_pidlist_start,
644 .seq_next = cgroup_pidlist_next,
645 .seq_stop = cgroup_pidlist_stop,
646 .seq_show = cgroup_pidlist_show,
647 .private = CGROUP_FILE_TASKS,
715c809d 648 .write = cgroup1_tasks_write,
0a268dbd
TH
649 },
650 {
651 .name = "notify_on_release",
652 .read_u64 = cgroup_read_notify_on_release,
653 .write_u64 = cgroup_write_notify_on_release,
654 },
655 {
656 .name = "release_agent",
657 .flags = CFTYPE_ONLY_ON_ROOT,
658 .seq_show = cgroup_release_agent_show,
659 .write = cgroup_release_agent_write,
660 .max_write_len = PATH_MAX - 1,
661 },
662 { } /* terminate */
663};
664
665/* Display information about each subsystem and each hierarchy */
3f3942ac 666int proc_cgroupstats_show(struct seq_file *m, void *v)
0a268dbd
TH
667{
668 struct cgroup_subsys *ss;
669 int i;
670
671 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
672 /*
822bc9ba
SB
673 * Grab the subsystems state racily. No need to add avenue to
674 * cgroup_mutex contention.
0a268dbd 675 */
0a268dbd
TH
676
677 for_each_subsys(ss, i)
678 seq_printf(m, "%s\t%d\t%d\t%d\n",
679 ss->legacy_name, ss->root->hierarchy_id,
680 atomic_read(&ss->root->nr_cgrps),
681 cgroup_ssid_enabled(i));
682
0a268dbd
TH
683 return 0;
684}
685
0a268dbd
TH
686/**
687 * cgroupstats_build - build and fill cgroupstats
688 * @stats: cgroupstats to fill information into
689 * @dentry: A dentry entry belonging to the cgroup for which stats have
690 * been requested.
691 *
692 * Build and fill cgroupstats so that taskstats can export it to user
693 * space.
b4cc6196
RD
694 *
695 * Return: %0 on success or a negative errno code on failure
0a268dbd
TH
696 */
697int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
698{
699 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
700 struct cgroup *cgrp;
701 struct css_task_iter it;
702 struct task_struct *tsk;
703
704 /* it should be kernfs_node belonging to cgroupfs and is a directory */
705 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
706 kernfs_type(kn) != KERNFS_DIR)
707 return -EINVAL;
708
0a268dbd
TH
709 /*
710 * We aren't being called from kernfs and there's no guarantee on
711 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
712 * @kn->priv is RCU safe. Let's do the RCU dancing.
713 */
714 rcu_read_lock();
e0aed7c7 715 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
bb758421 716 if (!cgrp || !cgroup_tryget(cgrp)) {
0a268dbd 717 rcu_read_unlock();
0a268dbd
TH
718 return -ENOENT;
719 }
720 rcu_read_unlock();
721
bc2fb7ed 722 css_task_iter_start(&cgrp->self, 0, &it);
0a268dbd 723 while ((tsk = css_task_iter_next(&it))) {
2f064a59 724 switch (READ_ONCE(tsk->__state)) {
0a268dbd
TH
725 case TASK_RUNNING:
726 stats->nr_running++;
727 break;
728 case TASK_INTERRUPTIBLE:
729 stats->nr_sleeping++;
730 break;
731 case TASK_UNINTERRUPTIBLE:
732 stats->nr_uninterruptible++;
733 break;
734 case TASK_STOPPED:
735 stats->nr_stopped++;
736 break;
737 default:
ffeee417 738 if (tsk->in_iowait)
0a268dbd
TH
739 stats->nr_io_wait++;
740 break;
741 }
742 }
743 css_task_iter_end(&it);
744
bb758421 745 cgroup_put(cgrp);
0a268dbd
TH
746 return 0;
747}
748
d62beb7f 749void cgroup1_check_for_release(struct cgroup *cgrp)
0a268dbd
TH
750{
751 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
752 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
753 schedule_work(&cgrp->release_agent_work);
754}
755
756/*
757 * Notify userspace when a cgroup is released, by running the
758 * configured release agent with the name of the cgroup (path
759 * relative to the root of cgroup file system) as the argument.
760 *
761 * Most likely, this user command will try to rmdir this cgroup.
762 *
763 * This races with the possibility that some other task will be
764 * attached to this cgroup before it is removed, or that some other
765 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
766 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
767 * unused, and this cgroup will be reprieved from its death sentence,
768 * to continue to serve a useful existence. Next time it's released,
769 * we will get notified again, if it still has 'notify_on_release' set.
770 *
771 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
772 * means only wait until the task is successfully execve()'d. The
773 * separate release agent task is forked by call_usermodehelper(),
774 * then control in this thread returns here, without waiting for the
775 * release agent task. We don't bother to wait because the caller of
776 * this routine has no use for the exit status of the release agent
777 * task, so no sense holding our caller up for that.
778 */
d62beb7f 779void cgroup1_release_agent(struct work_struct *work)
0a268dbd
TH
780{
781 struct cgroup *cgrp =
782 container_of(work, struct cgroup, release_agent_work);
e7b20d97 783 char *pathbuf, *agentbuf;
0a268dbd
TH
784 char *argv[3], *envp[3];
785 int ret;
786
e7b20d97
TH
787 /* snoop agent path and exit early if empty */
788 if (!cgrp->root->release_agent_path[0])
789 return;
0a268dbd 790
e7b20d97 791 /* prepare argument buffers */
0a268dbd 792 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e7b20d97
TH
793 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
794 if (!pathbuf || !agentbuf)
795 goto out_free;
0a268dbd 796
e7b20d97
TH
797 spin_lock(&release_agent_path_lock);
798 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
799 spin_unlock(&release_agent_path_lock);
800 if (!agentbuf[0])
801 goto out_free;
802
803 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
0a268dbd 804 if (ret < 0 || ret >= PATH_MAX)
e7b20d97 805 goto out_free;
0a268dbd
TH
806
807 argv[0] = agentbuf;
808 argv[1] = pathbuf;
809 argv[2] = NULL;
810
811 /* minimal command environment */
812 envp[0] = "HOME=/";
813 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
814 envp[2] = NULL;
815
0a268dbd 816 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
0a268dbd
TH
817out_free:
818 kfree(agentbuf);
819 kfree(pathbuf);
820}
821
822/*
823 * cgroup_rename - Only allow simple rename of directories in place.
824 */
1592c9b2
TH
825static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
826 const char *new_name_str)
0a268dbd
TH
827{
828 struct cgroup *cgrp = kn->priv;
829 int ret;
830
b7e24eb1
AK
831 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
832 if (strchr(new_name_str, '\n'))
833 return -EINVAL;
834
0a268dbd
TH
835 if (kernfs_type(kn) != KERNFS_DIR)
836 return -ENOTDIR;
837 if (kn->parent != new_parent)
838 return -EIO;
839
0a268dbd
TH
840 /*
841 * We're gonna grab cgroup_mutex which nests outside kernfs
842 * active_ref. kernfs_rename() doesn't require active_ref
843 * protection. Break them before grabbing cgroup_mutex.
844 */
845 kernfs_break_active_protection(new_parent);
846 kernfs_break_active_protection(kn);
847
848 mutex_lock(&cgroup_mutex);
849
850 ret = kernfs_rename(kn, new_parent, new_name_str);
851 if (!ret)
e4f8d81c 852 TRACE_CGROUP_PATH(rename, cgrp);
0a268dbd
TH
853
854 mutex_unlock(&cgroup_mutex);
855
856 kernfs_unbreak_active_protection(kn);
857 kernfs_unbreak_active_protection(new_parent);
858 return ret;
859}
860
1592c9b2
TH
861static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
862{
863 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
864 struct cgroup_subsys *ss;
865 int ssid;
866
867 for_each_subsys(ss, ssid)
868 if (root->subsys_mask & (1 << ssid))
869 seq_show_option(seq, ss->legacy_name, NULL);
870 if (root->flags & CGRP_ROOT_NOPREFIX)
871 seq_puts(seq, ",noprefix");
872 if (root->flags & CGRP_ROOT_XATTR)
873 seq_puts(seq, ",xattr");
e1cba4b8
WL
874 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
875 seq_puts(seq, ",cpuset_v2_mode");
1592c9b2
TH
876
877 spin_lock(&release_agent_path_lock);
878 if (strlen(root->release_agent_path))
879 seq_show_option(seq, "release_agent",
880 root->release_agent_path);
881 spin_unlock(&release_agent_path_lock);
882
883 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
884 seq_puts(seq, ",clone_children");
885 if (strlen(root->name))
886 seq_show_option(seq, "name", root->name);
887 return 0;
888}
889
8d2451f4
AV
890enum cgroup1_param {
891 Opt_all,
892 Opt_clone_children,
893 Opt_cpuset_v2_mode,
894 Opt_name,
895 Opt_none,
896 Opt_noprefix,
897 Opt_release_agent,
898 Opt_xattr,
899};
1592c9b2 900
d7167b14 901const struct fs_parameter_spec cgroup1_fs_parameters[] = {
8d2451f4
AV
902 fsparam_flag ("all", Opt_all),
903 fsparam_flag ("clone_children", Opt_clone_children),
904 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
905 fsparam_string("name", Opt_name),
906 fsparam_flag ("none", Opt_none),
907 fsparam_flag ("noprefix", Opt_noprefix),
908 fsparam_string("release_agent", Opt_release_agent),
909 fsparam_flag ("xattr", Opt_xattr),
910 {}
911};
1592c9b2 912
8d2451f4
AV
913int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
914{
915 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
916 struct cgroup_subsys *ss;
917 struct fs_parse_result result;
918 int opt, i;
919
d7167b14 920 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
8d2451f4 921 if (opt == -ENOPARAM) {
d1d488d8
CB
922 int ret;
923
924 ret = vfs_parse_fs_param_source(fc, param);
925 if (ret != -ENOPARAM)
926 return ret;
1592c9b2 927 for_each_subsys(ss, i) {
8d2451f4 928 if (strcmp(param->key, ss->legacy_name))
1592c9b2 929 continue;
61e960b0
CZ
930 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
931 return invalfc(fc, "Disabled controller '%s'",
932 param->key);
f5dfb531 933 ctx->subsys_mask |= (1 << i);
8d2451f4 934 return 0;
1592c9b2 935 }
58c025f0 936 return invalfc(fc, "Unknown subsys name '%s'", param->key);
8d2451f4
AV
937 }
938 if (opt < 0)
939 return opt;
940
941 switch (opt) {
942 case Opt_none:
943 /* Explicitly have no subsystems */
944 ctx->none = true;
945 break;
946 case Opt_all:
947 ctx->all_ss = true;
948 break;
949 case Opt_noprefix:
950 ctx->flags |= CGRP_ROOT_NOPREFIX;
951 break;
952 case Opt_clone_children:
953 ctx->cpuset_clone_children = true;
954 break;
955 case Opt_cpuset_v2_mode:
956 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
957 break;
958 case Opt_xattr:
959 ctx->flags |= CGRP_ROOT_XATTR;
960 break;
961 case Opt_release_agent:
962 /* Specifying two release agents is forbidden */
963 if (ctx->release_agent)
58c025f0 964 return invalfc(fc, "release_agent respecified");
24f60085
EB
965 /*
966 * Release agent gets called with all capabilities,
967 * require capabilities to set release agent.
968 */
969 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
970 return invalfc(fc, "Setting release_agent not allowed");
8d2451f4
AV
971 ctx->release_agent = param->string;
972 param->string = NULL;
973 break;
974 case Opt_name:
975 /* blocked by boot param? */
976 if (cgroup_no_v1_named)
1592c9b2 977 return -ENOENT;
8d2451f4
AV
978 /* Can't specify an empty name */
979 if (!param->size)
58c025f0 980 return invalfc(fc, "Empty name");
8d2451f4 981 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
58c025f0 982 return invalfc(fc, "Name too long");
8d2451f4
AV
983 /* Must match [\w.-]+ */
984 for (i = 0; i < param->size; i++) {
985 char c = param->string[i];
986 if (isalnum(c))
987 continue;
988 if ((c == '.') || (c == '-') || (c == '_'))
989 continue;
58c025f0 990 return invalfc(fc, "Invalid name");
8d2451f4
AV
991 }
992 /* Specifying two names is forbidden */
993 if (ctx->name)
58c025f0 994 return invalfc(fc, "name respecified");
8d2451f4
AV
995 ctx->name = param->string;
996 param->string = NULL;
997 break;
1592c9b2 998 }
f5dfb531
AV
999 return 0;
1000}
1001
8d2451f4 1002static int check_cgroupfs_options(struct fs_context *fc)
f5dfb531 1003{
8d2451f4 1004 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
f5dfb531
AV
1005 u16 mask = U16_MAX;
1006 u16 enabled = 0;
1007 struct cgroup_subsys *ss;
1008 int i;
1009
1010#ifdef CONFIG_CPUSETS
1011 mask = ~((u16)1 << cpuset_cgrp_id);
1012#endif
1013 for_each_subsys(ss, i)
1014 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1015 enabled |= 1 << i;
1016
1017 ctx->subsys_mask &= enabled;
1592c9b2
TH
1018
1019 /*
08b2b6fd 1020 * In absence of 'none', 'name=' and subsystem name options,
f5dfb531 1021 * let's default to 'all'.
1592c9b2 1022 */
f5dfb531
AV
1023 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1024 ctx->all_ss = true;
1025
1026 if (ctx->all_ss) {
1027 /* Mutually exclusive option 'all' + subsystem name */
1028 if (ctx->subsys_mask)
58c025f0 1029 return invalfc(fc, "subsys name conflicts with all");
f5dfb531
AV
1030 /* 'all' => select all the subsystems */
1031 ctx->subsys_mask = enabled;
1032 }
1592c9b2
TH
1033
1034 /*
1035 * We either have to specify by name or by subsystems. (So all
1036 * empty hierarchies must have a name).
1037 */
f5dfb531 1038 if (!ctx->subsys_mask && !ctx->name)
58c025f0 1039 return invalfc(fc, "Need name or subsystem set");
1592c9b2
TH
1040
1041 /*
1042 * Option noprefix was introduced just for backward compatibility
1043 * with the old cpuset, so we allow noprefix only if mounting just
1044 * the cpuset subsystem.
1045 */
f5dfb531 1046 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
58c025f0 1047 return invalfc(fc, "noprefix used incorrectly");
1592c9b2
TH
1048
1049 /* Can't specify "none" and some subsystems */
f5dfb531 1050 if (ctx->subsys_mask && ctx->none)
58c025f0 1051 return invalfc(fc, "none used incorrectly");
1592c9b2
TH
1052
1053 return 0;
1054}
1055
90129625 1056int cgroup1_reconfigure(struct fs_context *fc)
1592c9b2 1057{
90129625
AV
1058 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1059 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1592c9b2 1060 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
90129625 1061 int ret = 0;
1592c9b2
TH
1062 u16 added_mask, removed_mask;
1063
1064 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1065
1066 /* See what subsystems are wanted */
8d2451f4 1067 ret = check_cgroupfs_options(fc);
1592c9b2
TH
1068 if (ret)
1069 goto out_unlock;
1070
f5dfb531 1071 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1592c9b2
TH
1072 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1073 task_tgid_nr(current), current->comm);
1074
f5dfb531
AV
1075 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1076 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1592c9b2
TH
1077
1078 /* Don't allow flags or name to change at remount */
f5dfb531
AV
1079 if ((ctx->flags ^ root->flags) ||
1080 (ctx->name && strcmp(ctx->name, root->name))) {
58c025f0 1081 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
f5dfb531 1082 ctx->flags, ctx->name ?: "", root->flags, root->name);
1592c9b2
TH
1083 ret = -EINVAL;
1084 goto out_unlock;
1085 }
1086
1087 /* remounting is not allowed for populated hierarchies */
1088 if (!list_empty(&root->cgrp.self.children)) {
1089 ret = -EBUSY;
1090 goto out_unlock;
1091 }
1092
1093 ret = rebind_subsystems(root, added_mask);
1094 if (ret)
1095 goto out_unlock;
1096
1097 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1098
f5dfb531 1099 if (ctx->release_agent) {
1592c9b2 1100 spin_lock(&release_agent_path_lock);
f5dfb531 1101 strcpy(root->release_agent_path, ctx->release_agent);
1592c9b2
TH
1102 spin_unlock(&release_agent_path_lock);
1103 }
1104
1105 trace_cgroup_remount(root);
1106
1107 out_unlock:
1592c9b2
TH
1108 mutex_unlock(&cgroup_mutex);
1109 return ret;
1110}
1111
1112struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1113 .rename = cgroup1_rename,
1114 .show_options = cgroup1_show_options,
1592c9b2
TH
1115 .mkdir = cgroup_mkdir,
1116 .rmdir = cgroup_rmdir,
1117 .show_path = cgroup_show_path,
1118};
1119
6678889f
AV
1120/*
1121 * The guts of cgroup1 mount - find or create cgroup_root to use.
1122 * Called with cgroup_mutex held; returns 0 on success, -E... on
1123 * error and positive - in case when the candidate is busy dying.
1124 * On success it stashes a reference to cgroup_root into given
1125 * cgroup_fs_context; that reference is *NOT* counting towards the
1126 * cgroup_root refcount.
1127 */
1128static int cgroup1_root_to_use(struct fs_context *fc)
1592c9b2 1129{
7feeef58 1130 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1592c9b2
TH
1131 struct cgroup_root *root;
1132 struct cgroup_subsys *ss;
1592c9b2
TH
1133 int i, ret;
1134
1592c9b2 1135 /* First find the desired set of subsystems */
8d2451f4 1136 ret = check_cgroupfs_options(fc);
1592c9b2 1137 if (ret)
6678889f 1138 return ret;
1592c9b2
TH
1139
1140 /*
1141 * Destruction of cgroup root is asynchronous, so subsystems may
1142 * still be dying after the previous unmount. Let's drain the
1143 * dying subsystems. We just need to ensure that the ones
1144 * unmounted previously finish dying and don't care about new ones
1145 * starting. Testing ref liveliness is good enough.
1146 */
1147 for_each_subsys(ss, i) {
f5dfb531 1148 if (!(ctx->subsys_mask & (1 << i)) ||
1592c9b2
TH
1149 ss->root == &cgrp_dfl_root)
1150 continue;
1151
6678889f
AV
1152 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1153 return 1; /* restart */
1592c9b2
TH
1154 cgroup_put(&ss->root->cgrp);
1155 }
1156
1157 for_each_root(root) {
1158 bool name_match = false;
1159
1160 if (root == &cgrp_dfl_root)
1161 continue;
1162
1163 /*
1164 * If we asked for a name then it must match. Also, if
1165 * name matches but sybsys_mask doesn't, we should fail.
1166 * Remember whether name matched.
1167 */
f5dfb531
AV
1168 if (ctx->name) {
1169 if (strcmp(ctx->name, root->name))
1592c9b2
TH
1170 continue;
1171 name_match = true;
1172 }
1173
1174 /*
1175 * If we asked for subsystems (or explicitly for no
1176 * subsystems) then they must match.
1177 */
f5dfb531
AV
1178 if ((ctx->subsys_mask || ctx->none) &&
1179 (ctx->subsys_mask != root->subsys_mask)) {
1592c9b2
TH
1180 if (!name_match)
1181 continue;
6678889f 1182 return -EBUSY;
1592c9b2
TH
1183 }
1184
f5dfb531 1185 if (root->flags ^ ctx->flags)
1592c9b2
TH
1186 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1187
cf6299b1 1188 ctx->root = root;
6678889f 1189 return 0;
1592c9b2
TH
1190 }
1191
1192 /*
1193 * No such thing, create a new one. name= matching without subsys
1194 * specification is allowed for already existing hierarchies but we
1195 * can't create new one without subsys specification.
1196 */
6678889f 1197 if (!ctx->subsys_mask && !ctx->none)
58c025f0 1198 return invalfc(fc, "No subsys list or none specified");
1592c9b2
TH
1199
1200 /* Hierarchies may only be created in the initial cgroup namespace. */
cca8f327 1201 if (ctx->ns != &init_cgroup_ns)
6678889f 1202 return -EPERM;
1592c9b2
TH
1203
1204 root = kzalloc(sizeof(*root), GFP_KERNEL);
6678889f
AV
1205 if (!root)
1206 return -ENOMEM;
1592c9b2 1207
cf6299b1
AV
1208 ctx->root = root;
1209 init_cgroup_root(ctx);
1592c9b2 1210
f5dfb531 1211 ret = cgroup_setup_root(root, ctx->subsys_mask);
1592c9b2
TH
1212 if (ret)
1213 cgroup_free_root(root);
6678889f
AV
1214 return ret;
1215}
1216
1217int cgroup1_get_tree(struct fs_context *fc)
1218{
6678889f
AV
1219 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1220 int ret;
1221
1222 /* Check if the caller has permission to mount. */
cca8f327 1223 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
6678889f
AV
1224 return -EPERM;
1225
1226 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1227
1228 ret = cgroup1_root_to_use(fc);
1229 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1230 ret = 1; /* restart */
1592c9b2 1231
1592c9b2 1232 mutex_unlock(&cgroup_mutex);
1592c9b2 1233
6678889f 1234 if (!ret)
cca8f327 1235 ret = cgroup_do_get_tree(fc);
6678889f
AV
1236
1237 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1e7107c5 1238 fc_drop_locked(fc);
6678889f
AV
1239 ret = 1;
1240 }
1241
1242 if (unlikely(ret > 0)) {
35ac1184 1243 msleep(10);
7feeef58 1244 return restart_syscall();
9732adc5 1245 }
71d883c3 1246 return ret;
1592c9b2
TH
1247}
1248
0a268dbd
TH
1249static int __init cgroup1_wq_init(void)
1250{
1251 /*
1252 * Used to destroy pidlists and separate to serve as flush domain.
1253 * Cap @max_active to 1 too.
1254 */
1255 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1256 0, 1);
1257 BUG_ON(!cgroup_pidlist_destroy_wq);
1258 return 0;
1259}
1260core_initcall(cgroup1_wq_init);
1261
1262static int __init cgroup_no_v1(char *str)
1263{
1264 struct cgroup_subsys *ss;
1265 char *token;
1266 int i;
1267
1268 while ((token = strsep(&str, ",")) != NULL) {
1269 if (!*token)
1270 continue;
1271
1272 if (!strcmp(token, "all")) {
1273 cgroup_no_v1_mask = U16_MAX;
3fc9c12d
TH
1274 continue;
1275 }
1276
1277 if (!strcmp(token, "named")) {
1278 cgroup_no_v1_named = true;
1279 continue;
0a268dbd
TH
1280 }
1281
1282 for_each_subsys(ss, i) {
1283 if (strcmp(token, ss->name) &&
1284 strcmp(token, ss->legacy_name))
1285 continue;
1286
1287 cgroup_no_v1_mask |= 1 << i;
1288 }
1289 }
1290 return 1;
1291}
1292__setup("cgroup_no_v1=", cgroup_no_v1);