bpf: Add reference tracking to verifier
[linux-2.6-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
fd978bf7 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79
AS
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
14#include <linux/kernel.h>
15#include <linux/types.h>
16#include <linux/slab.h>
17#include <linux/bpf.h>
58e2af8b 18#include <linux/bpf_verifier.h>
51580e79
AS
19#include <linux/filter.h>
20#include <net/netlink.h>
21#include <linux/file.h>
22#include <linux/vmalloc.h>
ebb676da 23#include <linux/stringify.h>
cc8b0b92
AS
24#include <linux/bsearch.h>
25#include <linux/sort.h>
c195651e 26#include <linux/perf_event.h>
51580e79 27
f4ac7e0b
JK
28#include "disasm.h"
29
00176a34
JK
30static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
31#define BPF_PROG_TYPE(_id, _name) \
32 [_id] = & _name ## _verifier_ops,
33#define BPF_MAP_TYPE(_id, _ops)
34#include <linux/bpf_types.h>
35#undef BPF_PROG_TYPE
36#undef BPF_MAP_TYPE
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
51580e79
AS
156 */
157
17a52670 158/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 159struct bpf_verifier_stack_elem {
17a52670
AS
160 /* verifer state is 'st'
161 * before processing instruction 'insn_idx'
162 * and after processing instruction 'prev_insn_idx'
163 */
58e2af8b 164 struct bpf_verifier_state st;
17a52670
AS
165 int insn_idx;
166 int prev_insn_idx;
58e2af8b 167 struct bpf_verifier_stack_elem *next;
cbd35700
AS
168};
169
8e17c1b1 170#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
171#define BPF_COMPLEXITY_LIMIT_STACK 1024
172
c93552c4
DB
173#define BPF_MAP_PTR_UNPRIV 1UL
174#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
175 POISON_POINTER_DELTA))
176#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
177
178static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
179{
180 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
181}
182
183static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
184{
185 return aux->map_state & BPF_MAP_PTR_UNPRIV;
186}
187
188static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
189 const struct bpf_map *map, bool unpriv)
190{
191 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
192 unpriv |= bpf_map_ptr_unpriv(aux);
193 aux->map_state = (unsigned long)map |
194 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
195}
fad73a1a 196
33ff9823
DB
197struct bpf_call_arg_meta {
198 struct bpf_map *map_ptr;
435faee1 199 bool raw_mode;
36bbef52 200 bool pkt_access;
435faee1
DB
201 int regno;
202 int access_size;
849fa506
YS
203 s64 msize_smax_value;
204 u64 msize_umax_value;
fd978bf7 205 int ptr_id;
33ff9823
DB
206};
207
cbd35700
AS
208static DEFINE_MUTEX(bpf_verifier_lock);
209
77d2e05a
MKL
210void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
211 va_list args)
cbd35700 212{
a2a7d570 213 unsigned int n;
cbd35700 214
a2a7d570 215 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
216
217 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
218 "verifier log line truncated - local buffer too short\n");
219
220 n = min(log->len_total - log->len_used - 1, n);
221 log->kbuf[n] = '\0';
222
223 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
224 log->len_used += n;
225 else
226 log->ubuf = NULL;
cbd35700 227}
abe08840
JO
228
229/* log_level controls verbosity level of eBPF verifier.
230 * bpf_verifier_log_write() is used to dump the verification trace to the log,
231 * so the user can figure out what's wrong with the program
430e68d1 232 */
abe08840
JO
233__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
234 const char *fmt, ...)
235{
236 va_list args;
237
77d2e05a
MKL
238 if (!bpf_verifier_log_needed(&env->log))
239 return;
240
abe08840 241 va_start(args, fmt);
77d2e05a 242 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
243 va_end(args);
244}
245EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
246
247__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
248{
77d2e05a 249 struct bpf_verifier_env *env = private_data;
abe08840
JO
250 va_list args;
251
77d2e05a
MKL
252 if (!bpf_verifier_log_needed(&env->log))
253 return;
254
abe08840 255 va_start(args, fmt);
77d2e05a 256 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
257 va_end(args);
258}
cbd35700 259
de8f3a83
DB
260static bool type_is_pkt_pointer(enum bpf_reg_type type)
261{
262 return type == PTR_TO_PACKET ||
263 type == PTR_TO_PACKET_META;
264}
265
840b9615
JS
266static bool reg_type_may_be_null(enum bpf_reg_type type)
267{
fd978bf7
JS
268 return type == PTR_TO_MAP_VALUE_OR_NULL ||
269 type == PTR_TO_SOCKET_OR_NULL;
270}
271
272static bool type_is_refcounted(enum bpf_reg_type type)
273{
274 return type == PTR_TO_SOCKET;
275}
276
277static bool type_is_refcounted_or_null(enum bpf_reg_type type)
278{
279 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL;
280}
281
282static bool reg_is_refcounted(const struct bpf_reg_state *reg)
283{
284 return type_is_refcounted(reg->type);
285}
286
287static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg)
288{
289 return type_is_refcounted_or_null(reg->type);
290}
291
292static bool arg_type_is_refcounted(enum bpf_arg_type type)
293{
294 return type == ARG_PTR_TO_SOCKET;
295}
296
297/* Determine whether the function releases some resources allocated by another
298 * function call. The first reference type argument will be assumed to be
299 * released by release_reference().
300 */
301static bool is_release_function(enum bpf_func_id func_id)
302{
303 return false;
840b9615
JS
304}
305
17a52670
AS
306/* string representation of 'enum bpf_reg_type' */
307static const char * const reg_type_str[] = {
308 [NOT_INIT] = "?",
f1174f77 309 [SCALAR_VALUE] = "inv",
17a52670
AS
310 [PTR_TO_CTX] = "ctx",
311 [CONST_PTR_TO_MAP] = "map_ptr",
312 [PTR_TO_MAP_VALUE] = "map_value",
313 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 314 [PTR_TO_STACK] = "fp",
969bf05e 315 [PTR_TO_PACKET] = "pkt",
de8f3a83 316 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 317 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 318 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
319 [PTR_TO_SOCKET] = "sock",
320 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
17a52670
AS
321};
322
8efea21d
EC
323static char slot_type_char[] = {
324 [STACK_INVALID] = '?',
325 [STACK_SPILL] = 'r',
326 [STACK_MISC] = 'm',
327 [STACK_ZERO] = '0',
328};
329
4e92024a
AS
330static void print_liveness(struct bpf_verifier_env *env,
331 enum bpf_reg_liveness live)
332{
333 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
334 verbose(env, "_");
335 if (live & REG_LIVE_READ)
336 verbose(env, "r");
337 if (live & REG_LIVE_WRITTEN)
338 verbose(env, "w");
339}
340
f4d7e40a
AS
341static struct bpf_func_state *func(struct bpf_verifier_env *env,
342 const struct bpf_reg_state *reg)
343{
344 struct bpf_verifier_state *cur = env->cur_state;
345
346 return cur->frame[reg->frameno];
347}
348
61bd5218 349static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 350 const struct bpf_func_state *state)
17a52670 351{
f4d7e40a 352 const struct bpf_reg_state *reg;
17a52670
AS
353 enum bpf_reg_type t;
354 int i;
355
f4d7e40a
AS
356 if (state->frameno)
357 verbose(env, " frame%d:", state->frameno);
17a52670 358 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
359 reg = &state->regs[i];
360 t = reg->type;
17a52670
AS
361 if (t == NOT_INIT)
362 continue;
4e92024a
AS
363 verbose(env, " R%d", i);
364 print_liveness(env, reg->live);
365 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
367 tnum_is_const(reg->var_off)) {
368 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 369 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
370 if (t == PTR_TO_STACK)
371 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 372 } else {
61bd5218 373 verbose(env, "(id=%d", reg->id);
f1174f77 374 if (t != SCALAR_VALUE)
61bd5218 375 verbose(env, ",off=%d", reg->off);
de8f3a83 376 if (type_is_pkt_pointer(t))
61bd5218 377 verbose(env, ",r=%d", reg->range);
f1174f77
EC
378 else if (t == CONST_PTR_TO_MAP ||
379 t == PTR_TO_MAP_VALUE ||
380 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 381 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
382 reg->map_ptr->key_size,
383 reg->map_ptr->value_size);
7d1238f2
EC
384 if (tnum_is_const(reg->var_off)) {
385 /* Typically an immediate SCALAR_VALUE, but
386 * could be a pointer whose offset is too big
387 * for reg->off
388 */
61bd5218 389 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
390 } else {
391 if (reg->smin_value != reg->umin_value &&
392 reg->smin_value != S64_MIN)
61bd5218 393 verbose(env, ",smin_value=%lld",
7d1238f2
EC
394 (long long)reg->smin_value);
395 if (reg->smax_value != reg->umax_value &&
396 reg->smax_value != S64_MAX)
61bd5218 397 verbose(env, ",smax_value=%lld",
7d1238f2
EC
398 (long long)reg->smax_value);
399 if (reg->umin_value != 0)
61bd5218 400 verbose(env, ",umin_value=%llu",
7d1238f2
EC
401 (unsigned long long)reg->umin_value);
402 if (reg->umax_value != U64_MAX)
61bd5218 403 verbose(env, ",umax_value=%llu",
7d1238f2
EC
404 (unsigned long long)reg->umax_value);
405 if (!tnum_is_unknown(reg->var_off)) {
406 char tn_buf[48];
f1174f77 407
7d1238f2 408 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 409 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 410 }
f1174f77 411 }
61bd5218 412 verbose(env, ")");
f1174f77 413 }
17a52670 414 }
638f5b90 415 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
416 char types_buf[BPF_REG_SIZE + 1];
417 bool valid = false;
418 int j;
419
420 for (j = 0; j < BPF_REG_SIZE; j++) {
421 if (state->stack[i].slot_type[j] != STACK_INVALID)
422 valid = true;
423 types_buf[j] = slot_type_char[
424 state->stack[i].slot_type[j]];
425 }
426 types_buf[BPF_REG_SIZE] = 0;
427 if (!valid)
428 continue;
429 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
430 print_liveness(env, state->stack[i].spilled_ptr.live);
431 if (state->stack[i].slot_type[0] == STACK_SPILL)
4e92024a 432 verbose(env, "=%s",
638f5b90 433 reg_type_str[state->stack[i].spilled_ptr.type]);
8efea21d
EC
434 else
435 verbose(env, "=%s", types_buf);
17a52670 436 }
fd978bf7
JS
437 if (state->acquired_refs && state->refs[0].id) {
438 verbose(env, " refs=%d", state->refs[0].id);
439 for (i = 1; i < state->acquired_refs; i++)
440 if (state->refs[i].id)
441 verbose(env, ",%d", state->refs[i].id);
442 }
61bd5218 443 verbose(env, "\n");
17a52670
AS
444}
445
84dbf350
JS
446#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
447static int copy_##NAME##_state(struct bpf_func_state *dst, \
448 const struct bpf_func_state *src) \
449{ \
450 if (!src->FIELD) \
451 return 0; \
452 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
453 /* internal bug, make state invalid to reject the program */ \
454 memset(dst, 0, sizeof(*dst)); \
455 return -EFAULT; \
456 } \
457 memcpy(dst->FIELD, src->FIELD, \
458 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
459 return 0; \
638f5b90 460}
fd978bf7
JS
461/* copy_reference_state() */
462COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
463/* copy_stack_state() */
464COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
465#undef COPY_STATE_FN
466
467#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
468static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
469 bool copy_old) \
470{ \
471 u32 old_size = state->COUNT; \
472 struct bpf_##NAME##_state *new_##FIELD; \
473 int slot = size / SIZE; \
474 \
475 if (size <= old_size || !size) { \
476 if (copy_old) \
477 return 0; \
478 state->COUNT = slot * SIZE; \
479 if (!size && old_size) { \
480 kfree(state->FIELD); \
481 state->FIELD = NULL; \
482 } \
483 return 0; \
484 } \
485 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
486 GFP_KERNEL); \
487 if (!new_##FIELD) \
488 return -ENOMEM; \
489 if (copy_old) { \
490 if (state->FIELD) \
491 memcpy(new_##FIELD, state->FIELD, \
492 sizeof(*new_##FIELD) * (old_size / SIZE)); \
493 memset(new_##FIELD + old_size / SIZE, 0, \
494 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
495 } \
496 state->COUNT = slot * SIZE; \
497 kfree(state->FIELD); \
498 state->FIELD = new_##FIELD; \
499 return 0; \
500}
fd978bf7
JS
501/* realloc_reference_state() */
502REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
503/* realloc_stack_state() */
504REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
505#undef REALLOC_STATE_FN
638f5b90
AS
506
507/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
508 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 509 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
510 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
511 * which realloc_stack_state() copies over. It points to previous
512 * bpf_verifier_state which is never reallocated.
638f5b90 513 */
fd978bf7
JS
514static int realloc_func_state(struct bpf_func_state *state, int stack_size,
515 int refs_size, bool copy_old)
638f5b90 516{
fd978bf7
JS
517 int err = realloc_reference_state(state, refs_size, copy_old);
518 if (err)
519 return err;
520 return realloc_stack_state(state, stack_size, copy_old);
521}
522
523/* Acquire a pointer id from the env and update the state->refs to include
524 * this new pointer reference.
525 * On success, returns a valid pointer id to associate with the register
526 * On failure, returns a negative errno.
527 */
528static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
529{
530 struct bpf_func_state *state = cur_func(env);
531 int new_ofs = state->acquired_refs;
532 int id, err;
533
534 err = realloc_reference_state(state, state->acquired_refs + 1, true);
535 if (err)
536 return err;
537 id = ++env->id_gen;
538 state->refs[new_ofs].id = id;
539 state->refs[new_ofs].insn_idx = insn_idx;
540
541 return id;
542}
543
544/* release function corresponding to acquire_reference_state(). Idempotent. */
545static int __release_reference_state(struct bpf_func_state *state, int ptr_id)
546{
547 int i, last_idx;
548
549 if (!ptr_id)
550 return -EFAULT;
551
552 last_idx = state->acquired_refs - 1;
553 for (i = 0; i < state->acquired_refs; i++) {
554 if (state->refs[i].id == ptr_id) {
555 if (last_idx && i != last_idx)
556 memcpy(&state->refs[i], &state->refs[last_idx],
557 sizeof(*state->refs));
558 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
559 state->acquired_refs--;
560 return 0;
561 }
562 }
563 return -EFAULT;
564}
565
566/* variation on the above for cases where we expect that there must be an
567 * outstanding reference for the specified ptr_id.
568 */
569static int release_reference_state(struct bpf_verifier_env *env, int ptr_id)
570{
571 struct bpf_func_state *state = cur_func(env);
572 int err;
573
574 err = __release_reference_state(state, ptr_id);
575 if (WARN_ON_ONCE(err != 0))
576 verbose(env, "verifier internal error: can't release reference\n");
577 return err;
578}
579
580static int transfer_reference_state(struct bpf_func_state *dst,
581 struct bpf_func_state *src)
582{
583 int err = realloc_reference_state(dst, src->acquired_refs, false);
584 if (err)
585 return err;
586 err = copy_reference_state(dst, src);
587 if (err)
588 return err;
589 return 0;
638f5b90
AS
590}
591
f4d7e40a
AS
592static void free_func_state(struct bpf_func_state *state)
593{
5896351e
AS
594 if (!state)
595 return;
fd978bf7 596 kfree(state->refs);
f4d7e40a
AS
597 kfree(state->stack);
598 kfree(state);
599}
600
1969db47
AS
601static void free_verifier_state(struct bpf_verifier_state *state,
602 bool free_self)
638f5b90 603{
f4d7e40a
AS
604 int i;
605
606 for (i = 0; i <= state->curframe; i++) {
607 free_func_state(state->frame[i]);
608 state->frame[i] = NULL;
609 }
1969db47
AS
610 if (free_self)
611 kfree(state);
638f5b90
AS
612}
613
614/* copy verifier state from src to dst growing dst stack space
615 * when necessary to accommodate larger src stack
616 */
f4d7e40a
AS
617static int copy_func_state(struct bpf_func_state *dst,
618 const struct bpf_func_state *src)
638f5b90
AS
619{
620 int err;
621
fd978bf7
JS
622 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
623 false);
624 if (err)
625 return err;
626 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
627 err = copy_reference_state(dst, src);
638f5b90
AS
628 if (err)
629 return err;
638f5b90
AS
630 return copy_stack_state(dst, src);
631}
632
f4d7e40a
AS
633static int copy_verifier_state(struct bpf_verifier_state *dst_state,
634 const struct bpf_verifier_state *src)
635{
636 struct bpf_func_state *dst;
637 int i, err;
638
639 /* if dst has more stack frames then src frame, free them */
640 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
641 free_func_state(dst_state->frame[i]);
642 dst_state->frame[i] = NULL;
643 }
644 dst_state->curframe = src->curframe;
f4d7e40a
AS
645 for (i = 0; i <= src->curframe; i++) {
646 dst = dst_state->frame[i];
647 if (!dst) {
648 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
649 if (!dst)
650 return -ENOMEM;
651 dst_state->frame[i] = dst;
652 }
653 err = copy_func_state(dst, src->frame[i]);
654 if (err)
655 return err;
656 }
657 return 0;
658}
659
638f5b90
AS
660static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
661 int *insn_idx)
662{
663 struct bpf_verifier_state *cur = env->cur_state;
664 struct bpf_verifier_stack_elem *elem, *head = env->head;
665 int err;
17a52670
AS
666
667 if (env->head == NULL)
638f5b90 668 return -ENOENT;
17a52670 669
638f5b90
AS
670 if (cur) {
671 err = copy_verifier_state(cur, &head->st);
672 if (err)
673 return err;
674 }
675 if (insn_idx)
676 *insn_idx = head->insn_idx;
17a52670 677 if (prev_insn_idx)
638f5b90
AS
678 *prev_insn_idx = head->prev_insn_idx;
679 elem = head->next;
1969db47 680 free_verifier_state(&head->st, false);
638f5b90 681 kfree(head);
17a52670
AS
682 env->head = elem;
683 env->stack_size--;
638f5b90 684 return 0;
17a52670
AS
685}
686
58e2af8b
JK
687static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
688 int insn_idx, int prev_insn_idx)
17a52670 689{
638f5b90 690 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 691 struct bpf_verifier_stack_elem *elem;
638f5b90 692 int err;
17a52670 693
638f5b90 694 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
695 if (!elem)
696 goto err;
697
17a52670
AS
698 elem->insn_idx = insn_idx;
699 elem->prev_insn_idx = prev_insn_idx;
700 elem->next = env->head;
701 env->head = elem;
702 env->stack_size++;
1969db47
AS
703 err = copy_verifier_state(&elem->st, cur);
704 if (err)
705 goto err;
07016151 706 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 707 verbose(env, "BPF program is too complex\n");
17a52670
AS
708 goto err;
709 }
710 return &elem->st;
711err:
5896351e
AS
712 free_verifier_state(env->cur_state, true);
713 env->cur_state = NULL;
17a52670 714 /* pop all elements and return */
638f5b90 715 while (!pop_stack(env, NULL, NULL));
17a52670
AS
716 return NULL;
717}
718
719#define CALLER_SAVED_REGS 6
720static const int caller_saved[CALLER_SAVED_REGS] = {
721 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
722};
723
f1174f77
EC
724static void __mark_reg_not_init(struct bpf_reg_state *reg);
725
b03c9f9f
EC
726/* Mark the unknown part of a register (variable offset or scalar value) as
727 * known to have the value @imm.
728 */
729static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
730{
a9c676bc
AS
731 /* Clear id, off, and union(map_ptr, range) */
732 memset(((u8 *)reg) + sizeof(reg->type), 0,
733 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
b03c9f9f
EC
734 reg->var_off = tnum_const(imm);
735 reg->smin_value = (s64)imm;
736 reg->smax_value = (s64)imm;
737 reg->umin_value = imm;
738 reg->umax_value = imm;
739}
740
f1174f77
EC
741/* Mark the 'variable offset' part of a register as zero. This should be
742 * used only on registers holding a pointer type.
743 */
744static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 745{
b03c9f9f 746 __mark_reg_known(reg, 0);
f1174f77 747}
a9789ef9 748
cc2b14d5
AS
749static void __mark_reg_const_zero(struct bpf_reg_state *reg)
750{
751 __mark_reg_known(reg, 0);
cc2b14d5
AS
752 reg->type = SCALAR_VALUE;
753}
754
61bd5218
JK
755static void mark_reg_known_zero(struct bpf_verifier_env *env,
756 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
757{
758 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 759 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
760 /* Something bad happened, let's kill all regs */
761 for (regno = 0; regno < MAX_BPF_REG; regno++)
762 __mark_reg_not_init(regs + regno);
763 return;
764 }
765 __mark_reg_known_zero(regs + regno);
766}
767
de8f3a83
DB
768static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
769{
770 return type_is_pkt_pointer(reg->type);
771}
772
773static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
774{
775 return reg_is_pkt_pointer(reg) ||
776 reg->type == PTR_TO_PACKET_END;
777}
778
779/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
780static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
781 enum bpf_reg_type which)
782{
783 /* The register can already have a range from prior markings.
784 * This is fine as long as it hasn't been advanced from its
785 * origin.
786 */
787 return reg->type == which &&
788 reg->id == 0 &&
789 reg->off == 0 &&
790 tnum_equals_const(reg->var_off, 0);
791}
792
b03c9f9f
EC
793/* Attempts to improve min/max values based on var_off information */
794static void __update_reg_bounds(struct bpf_reg_state *reg)
795{
796 /* min signed is max(sign bit) | min(other bits) */
797 reg->smin_value = max_t(s64, reg->smin_value,
798 reg->var_off.value | (reg->var_off.mask & S64_MIN));
799 /* max signed is min(sign bit) | max(other bits) */
800 reg->smax_value = min_t(s64, reg->smax_value,
801 reg->var_off.value | (reg->var_off.mask & S64_MAX));
802 reg->umin_value = max(reg->umin_value, reg->var_off.value);
803 reg->umax_value = min(reg->umax_value,
804 reg->var_off.value | reg->var_off.mask);
805}
806
807/* Uses signed min/max values to inform unsigned, and vice-versa */
808static void __reg_deduce_bounds(struct bpf_reg_state *reg)
809{
810 /* Learn sign from signed bounds.
811 * If we cannot cross the sign boundary, then signed and unsigned bounds
812 * are the same, so combine. This works even in the negative case, e.g.
813 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
814 */
815 if (reg->smin_value >= 0 || reg->smax_value < 0) {
816 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
817 reg->umin_value);
818 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
819 reg->umax_value);
820 return;
821 }
822 /* Learn sign from unsigned bounds. Signed bounds cross the sign
823 * boundary, so we must be careful.
824 */
825 if ((s64)reg->umax_value >= 0) {
826 /* Positive. We can't learn anything from the smin, but smax
827 * is positive, hence safe.
828 */
829 reg->smin_value = reg->umin_value;
830 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
831 reg->umax_value);
832 } else if ((s64)reg->umin_value < 0) {
833 /* Negative. We can't learn anything from the smax, but smin
834 * is negative, hence safe.
835 */
836 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
837 reg->umin_value);
838 reg->smax_value = reg->umax_value;
839 }
840}
841
842/* Attempts to improve var_off based on unsigned min/max information */
843static void __reg_bound_offset(struct bpf_reg_state *reg)
844{
845 reg->var_off = tnum_intersect(reg->var_off,
846 tnum_range(reg->umin_value,
847 reg->umax_value));
848}
849
850/* Reset the min/max bounds of a register */
851static void __mark_reg_unbounded(struct bpf_reg_state *reg)
852{
853 reg->smin_value = S64_MIN;
854 reg->smax_value = S64_MAX;
855 reg->umin_value = 0;
856 reg->umax_value = U64_MAX;
857}
858
f1174f77
EC
859/* Mark a register as having a completely unknown (scalar) value. */
860static void __mark_reg_unknown(struct bpf_reg_state *reg)
861{
a9c676bc
AS
862 /*
863 * Clear type, id, off, and union(map_ptr, range) and
864 * padding between 'type' and union
865 */
866 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 867 reg->type = SCALAR_VALUE;
f1174f77 868 reg->var_off = tnum_unknown;
f4d7e40a 869 reg->frameno = 0;
b03c9f9f 870 __mark_reg_unbounded(reg);
f1174f77
EC
871}
872
61bd5218
JK
873static void mark_reg_unknown(struct bpf_verifier_env *env,
874 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
875{
876 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 877 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
878 /* Something bad happened, let's kill all regs except FP */
879 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
880 __mark_reg_not_init(regs + regno);
881 return;
882 }
883 __mark_reg_unknown(regs + regno);
884}
885
886static void __mark_reg_not_init(struct bpf_reg_state *reg)
887{
888 __mark_reg_unknown(reg);
889 reg->type = NOT_INIT;
890}
891
61bd5218
JK
892static void mark_reg_not_init(struct bpf_verifier_env *env,
893 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
894{
895 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 896 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
897 /* Something bad happened, let's kill all regs except FP */
898 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
899 __mark_reg_not_init(regs + regno);
900 return;
901 }
902 __mark_reg_not_init(regs + regno);
a9789ef9
DB
903}
904
61bd5218 905static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 906 struct bpf_func_state *state)
17a52670 907{
f4d7e40a 908 struct bpf_reg_state *regs = state->regs;
17a52670
AS
909 int i;
910
dc503a8a 911 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 912 mark_reg_not_init(env, regs, i);
dc503a8a 913 regs[i].live = REG_LIVE_NONE;
679c782d 914 regs[i].parent = NULL;
dc503a8a 915 }
17a52670
AS
916
917 /* frame pointer */
f1174f77 918 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 919 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 920 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
921
922 /* 1st arg to a function */
923 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 924 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
925}
926
f4d7e40a
AS
927#define BPF_MAIN_FUNC (-1)
928static void init_func_state(struct bpf_verifier_env *env,
929 struct bpf_func_state *state,
930 int callsite, int frameno, int subprogno)
931{
932 state->callsite = callsite;
933 state->frameno = frameno;
934 state->subprogno = subprogno;
935 init_reg_state(env, state);
936}
937
17a52670
AS
938enum reg_arg_type {
939 SRC_OP, /* register is used as source operand */
940 DST_OP, /* register is used as destination operand */
941 DST_OP_NO_MARK /* same as above, check only, don't mark */
942};
943
cc8b0b92
AS
944static int cmp_subprogs(const void *a, const void *b)
945{
9c8105bd
JW
946 return ((struct bpf_subprog_info *)a)->start -
947 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
948}
949
950static int find_subprog(struct bpf_verifier_env *env, int off)
951{
9c8105bd 952 struct bpf_subprog_info *p;
cc8b0b92 953
9c8105bd
JW
954 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
955 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
956 if (!p)
957 return -ENOENT;
9c8105bd 958 return p - env->subprog_info;
cc8b0b92
AS
959
960}
961
962static int add_subprog(struct bpf_verifier_env *env, int off)
963{
964 int insn_cnt = env->prog->len;
965 int ret;
966
967 if (off >= insn_cnt || off < 0) {
968 verbose(env, "call to invalid destination\n");
969 return -EINVAL;
970 }
971 ret = find_subprog(env, off);
972 if (ret >= 0)
973 return 0;
4cb3d99c 974 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
975 verbose(env, "too many subprograms\n");
976 return -E2BIG;
977 }
9c8105bd
JW
978 env->subprog_info[env->subprog_cnt++].start = off;
979 sort(env->subprog_info, env->subprog_cnt,
980 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
981 return 0;
982}
983
984static int check_subprogs(struct bpf_verifier_env *env)
985{
986 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 987 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
988 struct bpf_insn *insn = env->prog->insnsi;
989 int insn_cnt = env->prog->len;
990
f910cefa
JW
991 /* Add entry function. */
992 ret = add_subprog(env, 0);
993 if (ret < 0)
994 return ret;
995
cc8b0b92
AS
996 /* determine subprog starts. The end is one before the next starts */
997 for (i = 0; i < insn_cnt; i++) {
998 if (insn[i].code != (BPF_JMP | BPF_CALL))
999 continue;
1000 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1001 continue;
1002 if (!env->allow_ptr_leaks) {
1003 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1004 return -EPERM;
1005 }
1006 if (bpf_prog_is_dev_bound(env->prog->aux)) {
e90004d5 1007 verbose(env, "function calls in offloaded programs are not supported yet\n");
cc8b0b92
AS
1008 return -EINVAL;
1009 }
1010 ret = add_subprog(env, i + insn[i].imm + 1);
1011 if (ret < 0)
1012 return ret;
1013 }
1014
4cb3d99c
JW
1015 /* Add a fake 'exit' subprog which could simplify subprog iteration
1016 * logic. 'subprog_cnt' should not be increased.
1017 */
1018 subprog[env->subprog_cnt].start = insn_cnt;
1019
cc8b0b92
AS
1020 if (env->log.level > 1)
1021 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1022 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
1023
1024 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1025 subprog_start = subprog[cur_subprog].start;
1026 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1027 for (i = 0; i < insn_cnt; i++) {
1028 u8 code = insn[i].code;
1029
1030 if (BPF_CLASS(code) != BPF_JMP)
1031 goto next;
1032 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1033 goto next;
1034 off = i + insn[i].off + 1;
1035 if (off < subprog_start || off >= subprog_end) {
1036 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1037 return -EINVAL;
1038 }
1039next:
1040 if (i == subprog_end - 1) {
1041 /* to avoid fall-through from one subprog into another
1042 * the last insn of the subprog should be either exit
1043 * or unconditional jump back
1044 */
1045 if (code != (BPF_JMP | BPF_EXIT) &&
1046 code != (BPF_JMP | BPF_JA)) {
1047 verbose(env, "last insn is not an exit or jmp\n");
1048 return -EINVAL;
1049 }
1050 subprog_start = subprog_end;
4cb3d99c
JW
1051 cur_subprog++;
1052 if (cur_subprog < env->subprog_cnt)
9c8105bd 1053 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1054 }
1055 }
1056 return 0;
1057}
1058
679c782d
EC
1059/* Parentage chain of this register (or stack slot) should take care of all
1060 * issues like callee-saved registers, stack slot allocation time, etc.
1061 */
f4d7e40a 1062static int mark_reg_read(struct bpf_verifier_env *env,
679c782d
EC
1063 const struct bpf_reg_state *state,
1064 struct bpf_reg_state *parent)
f4d7e40a
AS
1065{
1066 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1067
1068 while (parent) {
1069 /* if read wasn't screened by an earlier write ... */
679c782d 1070 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a
EC
1071 break;
1072 /* ... then we depend on parent's value */
679c782d 1073 parent->live |= REG_LIVE_READ;
dc503a8a
EC
1074 state = parent;
1075 parent = state->parent;
f4d7e40a 1076 writes = true;
dc503a8a 1077 }
f4d7e40a 1078 return 0;
dc503a8a
EC
1079}
1080
1081static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
1082 enum reg_arg_type t)
1083{
f4d7e40a
AS
1084 struct bpf_verifier_state *vstate = env->cur_state;
1085 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1086 struct bpf_reg_state *regs = state->regs;
dc503a8a 1087
17a52670 1088 if (regno >= MAX_BPF_REG) {
61bd5218 1089 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
1090 return -EINVAL;
1091 }
1092
1093 if (t == SRC_OP) {
1094 /* check whether register used as source operand can be read */
1095 if (regs[regno].type == NOT_INIT) {
61bd5218 1096 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
1097 return -EACCES;
1098 }
679c782d
EC
1099 /* We don't need to worry about FP liveness because it's read-only */
1100 if (regno != BPF_REG_FP)
1101 return mark_reg_read(env, &regs[regno],
1102 regs[regno].parent);
17a52670
AS
1103 } else {
1104 /* check whether register used as dest operand can be written to */
1105 if (regno == BPF_REG_FP) {
61bd5218 1106 verbose(env, "frame pointer is read only\n");
17a52670
AS
1107 return -EACCES;
1108 }
dc503a8a 1109 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 1110 if (t == DST_OP)
61bd5218 1111 mark_reg_unknown(env, regs, regno);
17a52670
AS
1112 }
1113 return 0;
1114}
1115
1be7f75d
AS
1116static bool is_spillable_regtype(enum bpf_reg_type type)
1117{
1118 switch (type) {
1119 case PTR_TO_MAP_VALUE:
1120 case PTR_TO_MAP_VALUE_OR_NULL:
1121 case PTR_TO_STACK:
1122 case PTR_TO_CTX:
969bf05e 1123 case PTR_TO_PACKET:
de8f3a83 1124 case PTR_TO_PACKET_META:
969bf05e 1125 case PTR_TO_PACKET_END:
d58e468b 1126 case PTR_TO_FLOW_KEYS:
1be7f75d 1127 case CONST_PTR_TO_MAP:
c64b7983
JS
1128 case PTR_TO_SOCKET:
1129 case PTR_TO_SOCKET_OR_NULL:
1be7f75d
AS
1130 return true;
1131 default:
1132 return false;
1133 }
1134}
1135
cc2b14d5
AS
1136/* Does this register contain a constant zero? */
1137static bool register_is_null(struct bpf_reg_state *reg)
1138{
1139 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1140}
1141
17a52670
AS
1142/* check_stack_read/write functions track spill/fill of registers,
1143 * stack boundary and alignment are checked in check_mem_access()
1144 */
61bd5218 1145static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a 1146 struct bpf_func_state *state, /* func where register points to */
af86ca4e 1147 int off, int size, int value_regno, int insn_idx)
17a52670 1148{
f4d7e40a 1149 struct bpf_func_state *cur; /* state of the current function */
638f5b90 1150 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 1151 enum bpf_reg_type type;
638f5b90 1152
f4d7e40a 1153 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 1154 state->acquired_refs, true);
638f5b90
AS
1155 if (err)
1156 return err;
9c399760
AS
1157 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1158 * so it's aligned access and [off, off + size) are within stack limits
1159 */
638f5b90
AS
1160 if (!env->allow_ptr_leaks &&
1161 state->stack[spi].slot_type[0] == STACK_SPILL &&
1162 size != BPF_REG_SIZE) {
1163 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1164 return -EACCES;
1165 }
17a52670 1166
f4d7e40a 1167 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1168 if (value_regno >= 0 &&
f4d7e40a 1169 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1170
1171 /* register containing pointer is being spilled into stack */
9c399760 1172 if (size != BPF_REG_SIZE) {
61bd5218 1173 verbose(env, "invalid size of register spill\n");
17a52670
AS
1174 return -EACCES;
1175 }
1176
f4d7e40a
AS
1177 if (state != cur && type == PTR_TO_STACK) {
1178 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1179 return -EINVAL;
1180 }
1181
17a52670 1182 /* save register state */
f4d7e40a 1183 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1184 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1185
af86ca4e
AS
1186 for (i = 0; i < BPF_REG_SIZE; i++) {
1187 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1188 !env->allow_ptr_leaks) {
1189 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1190 int soff = (-spi - 1) * BPF_REG_SIZE;
1191
1192 /* detected reuse of integer stack slot with a pointer
1193 * which means either llvm is reusing stack slot or
1194 * an attacker is trying to exploit CVE-2018-3639
1195 * (speculative store bypass)
1196 * Have to sanitize that slot with preemptive
1197 * store of zero.
1198 */
1199 if (*poff && *poff != soff) {
1200 /* disallow programs where single insn stores
1201 * into two different stack slots, since verifier
1202 * cannot sanitize them
1203 */
1204 verbose(env,
1205 "insn %d cannot access two stack slots fp%d and fp%d",
1206 insn_idx, *poff, soff);
1207 return -EINVAL;
1208 }
1209 *poff = soff;
1210 }
638f5b90 1211 state->stack[spi].slot_type[i] = STACK_SPILL;
af86ca4e 1212 }
9c399760 1213 } else {
cc2b14d5
AS
1214 u8 type = STACK_MISC;
1215
679c782d
EC
1216 /* regular write of data into stack destroys any spilled ptr */
1217 state->stack[spi].spilled_ptr.type = NOT_INIT;
9c399760 1218
cc2b14d5
AS
1219 /* only mark the slot as written if all 8 bytes were written
1220 * otherwise read propagation may incorrectly stop too soon
1221 * when stack slots are partially written.
1222 * This heuristic means that read propagation will be
1223 * conservative, since it will add reg_live_read marks
1224 * to stack slots all the way to first state when programs
1225 * writes+reads less than 8 bytes
1226 */
1227 if (size == BPF_REG_SIZE)
1228 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1229
1230 /* when we zero initialize stack slots mark them as such */
1231 if (value_regno >= 0 &&
1232 register_is_null(&cur->regs[value_regno]))
1233 type = STACK_ZERO;
1234
9c399760 1235 for (i = 0; i < size; i++)
638f5b90 1236 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1237 type;
17a52670
AS
1238 }
1239 return 0;
1240}
1241
61bd5218 1242static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1243 struct bpf_func_state *reg_state /* func where register points to */,
1244 int off, int size, int value_regno)
17a52670 1245{
f4d7e40a
AS
1246 struct bpf_verifier_state *vstate = env->cur_state;
1247 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1248 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1249 u8 *stype;
17a52670 1250
f4d7e40a 1251 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1252 verbose(env, "invalid read from stack off %d+0 size %d\n",
1253 off, size);
1254 return -EACCES;
1255 }
f4d7e40a 1256 stype = reg_state->stack[spi].slot_type;
17a52670 1257
638f5b90 1258 if (stype[0] == STACK_SPILL) {
9c399760 1259 if (size != BPF_REG_SIZE) {
61bd5218 1260 verbose(env, "invalid size of register spill\n");
17a52670
AS
1261 return -EACCES;
1262 }
9c399760 1263 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1264 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1265 verbose(env, "corrupted spill memory\n");
17a52670
AS
1266 return -EACCES;
1267 }
1268 }
1269
dc503a8a 1270 if (value_regno >= 0) {
17a52670 1271 /* restore register state from stack */
f4d7e40a 1272 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1273 /* mark reg as written since spilled pointer state likely
1274 * has its liveness marks cleared by is_state_visited()
1275 * which resets stack/reg liveness for state transitions
1276 */
1277 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1278 }
679c782d
EC
1279 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1280 reg_state->stack[spi].spilled_ptr.parent);
17a52670
AS
1281 return 0;
1282 } else {
cc2b14d5
AS
1283 int zeros = 0;
1284
17a52670 1285 for (i = 0; i < size; i++) {
cc2b14d5
AS
1286 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1287 continue;
1288 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1289 zeros++;
1290 continue;
17a52670 1291 }
cc2b14d5
AS
1292 verbose(env, "invalid read from stack off %d+%d size %d\n",
1293 off, i, size);
1294 return -EACCES;
1295 }
679c782d
EC
1296 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1297 reg_state->stack[spi].spilled_ptr.parent);
cc2b14d5
AS
1298 if (value_regno >= 0) {
1299 if (zeros == size) {
1300 /* any size read into register is zero extended,
1301 * so the whole register == const_zero
1302 */
1303 __mark_reg_const_zero(&state->regs[value_regno]);
1304 } else {
1305 /* have read misc data from the stack */
1306 mark_reg_unknown(env, state->regs, value_regno);
1307 }
1308 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1309 }
17a52670
AS
1310 return 0;
1311 }
1312}
1313
1314/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1315static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1316 int size, bool zero_size_allowed)
17a52670 1317{
638f5b90
AS
1318 struct bpf_reg_state *regs = cur_regs(env);
1319 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1320
9fd29c08
YS
1321 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1322 off + size > map->value_size) {
61bd5218 1323 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1324 map->value_size, off, size);
1325 return -EACCES;
1326 }
1327 return 0;
1328}
1329
f1174f77
EC
1330/* check read/write into a map element with possible variable offset */
1331static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1332 int off, int size, bool zero_size_allowed)
dbcfe5f7 1333{
f4d7e40a
AS
1334 struct bpf_verifier_state *vstate = env->cur_state;
1335 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1336 struct bpf_reg_state *reg = &state->regs[regno];
1337 int err;
1338
f1174f77
EC
1339 /* We may have adjusted the register to this map value, so we
1340 * need to try adding each of min_value and max_value to off
1341 * to make sure our theoretical access will be safe.
dbcfe5f7 1342 */
61bd5218
JK
1343 if (env->log.level)
1344 print_verifier_state(env, state);
dbcfe5f7
GB
1345 /* The minimum value is only important with signed
1346 * comparisons where we can't assume the floor of a
1347 * value is 0. If we are using signed variables for our
1348 * index'es we need to make sure that whatever we use
1349 * will have a set floor within our range.
1350 */
b03c9f9f 1351 if (reg->smin_value < 0) {
61bd5218 1352 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1353 regno);
1354 return -EACCES;
1355 }
9fd29c08
YS
1356 err = __check_map_access(env, regno, reg->smin_value + off, size,
1357 zero_size_allowed);
dbcfe5f7 1358 if (err) {
61bd5218
JK
1359 verbose(env, "R%d min value is outside of the array range\n",
1360 regno);
dbcfe5f7
GB
1361 return err;
1362 }
1363
b03c9f9f
EC
1364 /* If we haven't set a max value then we need to bail since we can't be
1365 * sure we won't do bad things.
1366 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1367 */
b03c9f9f 1368 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1369 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1370 regno);
1371 return -EACCES;
1372 }
9fd29c08
YS
1373 err = __check_map_access(env, regno, reg->umax_value + off, size,
1374 zero_size_allowed);
f1174f77 1375 if (err)
61bd5218
JK
1376 verbose(env, "R%d max value is outside of the array range\n",
1377 regno);
f1174f77 1378 return err;
dbcfe5f7
GB
1379}
1380
969bf05e
AS
1381#define MAX_PACKET_OFF 0xffff
1382
58e2af8b 1383static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1384 const struct bpf_call_arg_meta *meta,
1385 enum bpf_access_type t)
4acf6c0b 1386{
36bbef52 1387 switch (env->prog->type) {
3a0af8fd
TG
1388 case BPF_PROG_TYPE_LWT_IN:
1389 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 1390 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 1391 case BPF_PROG_TYPE_SK_REUSEPORT:
3a0af8fd
TG
1392 /* dst_input() and dst_output() can't write for now */
1393 if (t == BPF_WRITE)
1394 return false;
7e57fbb2 1395 /* fallthrough */
36bbef52
DB
1396 case BPF_PROG_TYPE_SCHED_CLS:
1397 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1398 case BPF_PROG_TYPE_XDP:
3a0af8fd 1399 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1400 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1401 case BPF_PROG_TYPE_SK_MSG:
d58e468b 1402 case BPF_PROG_TYPE_FLOW_DISSECTOR:
36bbef52
DB
1403 if (meta)
1404 return meta->pkt_access;
1405
1406 env->seen_direct_write = true;
4acf6c0b
BB
1407 return true;
1408 default:
1409 return false;
1410 }
1411}
1412
f1174f77 1413static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1414 int off, int size, bool zero_size_allowed)
969bf05e 1415{
638f5b90 1416 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1417 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1418
9fd29c08
YS
1419 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1420 (u64)off + size > reg->range) {
61bd5218 1421 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1422 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1423 return -EACCES;
1424 }
1425 return 0;
1426}
1427
f1174f77 1428static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1429 int size, bool zero_size_allowed)
f1174f77 1430{
638f5b90 1431 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1432 struct bpf_reg_state *reg = &regs[regno];
1433 int err;
1434
1435 /* We may have added a variable offset to the packet pointer; but any
1436 * reg->range we have comes after that. We are only checking the fixed
1437 * offset.
1438 */
1439
1440 /* We don't allow negative numbers, because we aren't tracking enough
1441 * detail to prove they're safe.
1442 */
b03c9f9f 1443 if (reg->smin_value < 0) {
61bd5218 1444 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1445 regno);
1446 return -EACCES;
1447 }
9fd29c08 1448 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1449 if (err) {
61bd5218 1450 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1451 return err;
1452 }
1453 return err;
1454}
1455
1456/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1457static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1458 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1459{
f96da094
DB
1460 struct bpf_insn_access_aux info = {
1461 .reg_type = *reg_type,
1462 };
31fd8581 1463
4f9218aa 1464 if (env->ops->is_valid_access &&
5e43f899 1465 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1466 /* A non zero info.ctx_field_size indicates that this field is a
1467 * candidate for later verifier transformation to load the whole
1468 * field and then apply a mask when accessed with a narrower
1469 * access than actual ctx access size. A zero info.ctx_field_size
1470 * will only allow for whole field access and rejects any other
1471 * type of narrower access.
31fd8581 1472 */
23994631 1473 *reg_type = info.reg_type;
31fd8581 1474
4f9218aa 1475 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1476 /* remember the offset of last byte accessed in ctx */
1477 if (env->prog->aux->max_ctx_offset < off + size)
1478 env->prog->aux->max_ctx_offset = off + size;
17a52670 1479 return 0;
32bbe007 1480 }
17a52670 1481
61bd5218 1482 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1483 return -EACCES;
1484}
1485
d58e468b
PP
1486static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1487 int size)
1488{
1489 if (size < 0 || off < 0 ||
1490 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1491 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1492 off, size);
1493 return -EACCES;
1494 }
1495 return 0;
1496}
1497
c64b7983
JS
1498static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off,
1499 int size, enum bpf_access_type t)
1500{
1501 struct bpf_reg_state *regs = cur_regs(env);
1502 struct bpf_reg_state *reg = &regs[regno];
1503 struct bpf_insn_access_aux info;
1504
1505 if (reg->smin_value < 0) {
1506 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1507 regno);
1508 return -EACCES;
1509 }
1510
1511 if (!bpf_sock_is_valid_access(off, size, t, &info)) {
1512 verbose(env, "invalid bpf_sock access off=%d size=%d\n",
1513 off, size);
1514 return -EACCES;
1515 }
1516
1517 return 0;
1518}
1519
4cabc5b1
DB
1520static bool __is_pointer_value(bool allow_ptr_leaks,
1521 const struct bpf_reg_state *reg)
1be7f75d 1522{
4cabc5b1 1523 if (allow_ptr_leaks)
1be7f75d
AS
1524 return false;
1525
f1174f77 1526 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1527}
1528
4cabc5b1
DB
1529static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1530{
638f5b90 1531 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1532}
1533
f37a8cb8
DB
1534static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1535{
1536 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1537
fd978bf7
JS
1538 return reg->type == PTR_TO_CTX ||
1539 reg->type == PTR_TO_SOCKET;
f37a8cb8
DB
1540}
1541
ca369602
DB
1542static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1543{
1544 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1545
1546 return type_is_pkt_pointer(reg->type);
1547}
1548
61bd5218
JK
1549static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1550 const struct bpf_reg_state *reg,
d1174416 1551 int off, int size, bool strict)
969bf05e 1552{
f1174f77 1553 struct tnum reg_off;
e07b98d9 1554 int ip_align;
d1174416
DM
1555
1556 /* Byte size accesses are always allowed. */
1557 if (!strict || size == 1)
1558 return 0;
1559
e4eda884
DM
1560 /* For platforms that do not have a Kconfig enabling
1561 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1562 * NET_IP_ALIGN is universally set to '2'. And on platforms
1563 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1564 * to this code only in strict mode where we want to emulate
1565 * the NET_IP_ALIGN==2 checking. Therefore use an
1566 * unconditional IP align value of '2'.
e07b98d9 1567 */
e4eda884 1568 ip_align = 2;
f1174f77
EC
1569
1570 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1571 if (!tnum_is_aligned(reg_off, size)) {
1572 char tn_buf[48];
1573
1574 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1575 verbose(env,
1576 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1577 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1578 return -EACCES;
1579 }
79adffcd 1580
969bf05e
AS
1581 return 0;
1582}
1583
61bd5218
JK
1584static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1585 const struct bpf_reg_state *reg,
f1174f77
EC
1586 const char *pointer_desc,
1587 int off, int size, bool strict)
79adffcd 1588{
f1174f77
EC
1589 struct tnum reg_off;
1590
1591 /* Byte size accesses are always allowed. */
1592 if (!strict || size == 1)
1593 return 0;
1594
1595 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1596 if (!tnum_is_aligned(reg_off, size)) {
1597 char tn_buf[48];
1598
1599 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1600 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1601 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1602 return -EACCES;
1603 }
1604
969bf05e
AS
1605 return 0;
1606}
1607
e07b98d9 1608static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1609 const struct bpf_reg_state *reg, int off,
1610 int size, bool strict_alignment_once)
79adffcd 1611{
ca369602 1612 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1613 const char *pointer_desc = "";
d1174416 1614
79adffcd
DB
1615 switch (reg->type) {
1616 case PTR_TO_PACKET:
de8f3a83
DB
1617 case PTR_TO_PACKET_META:
1618 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1619 * right in front, treat it the very same way.
1620 */
61bd5218 1621 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
1622 case PTR_TO_FLOW_KEYS:
1623 pointer_desc = "flow keys ";
1624 break;
f1174f77
EC
1625 case PTR_TO_MAP_VALUE:
1626 pointer_desc = "value ";
1627 break;
1628 case PTR_TO_CTX:
1629 pointer_desc = "context ";
1630 break;
1631 case PTR_TO_STACK:
1632 pointer_desc = "stack ";
a5ec6ae1
JH
1633 /* The stack spill tracking logic in check_stack_write()
1634 * and check_stack_read() relies on stack accesses being
1635 * aligned.
1636 */
1637 strict = true;
f1174f77 1638 break;
c64b7983
JS
1639 case PTR_TO_SOCKET:
1640 pointer_desc = "sock ";
1641 break;
79adffcd 1642 default:
f1174f77 1643 break;
79adffcd 1644 }
61bd5218
JK
1645 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1646 strict);
79adffcd
DB
1647}
1648
f4d7e40a
AS
1649static int update_stack_depth(struct bpf_verifier_env *env,
1650 const struct bpf_func_state *func,
1651 int off)
1652{
9c8105bd 1653 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1654
1655 if (stack >= -off)
1656 return 0;
1657
1658 /* update known max for given subprogram */
9c8105bd 1659 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1660 return 0;
1661}
f4d7e40a 1662
70a87ffe
AS
1663/* starting from main bpf function walk all instructions of the function
1664 * and recursively walk all callees that given function can call.
1665 * Ignore jump and exit insns.
1666 * Since recursion is prevented by check_cfg() this algorithm
1667 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1668 */
1669static int check_max_stack_depth(struct bpf_verifier_env *env)
1670{
9c8105bd
JW
1671 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1672 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1673 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1674 int ret_insn[MAX_CALL_FRAMES];
1675 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1676
70a87ffe
AS
1677process_func:
1678 /* round up to 32-bytes, since this is granularity
1679 * of interpreter stack size
1680 */
9c8105bd 1681 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1682 if (depth > MAX_BPF_STACK) {
f4d7e40a 1683 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1684 frame + 1, depth);
f4d7e40a
AS
1685 return -EACCES;
1686 }
70a87ffe 1687continue_func:
4cb3d99c 1688 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1689 for (; i < subprog_end; i++) {
1690 if (insn[i].code != (BPF_JMP | BPF_CALL))
1691 continue;
1692 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1693 continue;
1694 /* remember insn and function to return to */
1695 ret_insn[frame] = i + 1;
9c8105bd 1696 ret_prog[frame] = idx;
70a87ffe
AS
1697
1698 /* find the callee */
1699 i = i + insn[i].imm + 1;
9c8105bd
JW
1700 idx = find_subprog(env, i);
1701 if (idx < 0) {
70a87ffe
AS
1702 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1703 i);
1704 return -EFAULT;
1705 }
70a87ffe
AS
1706 frame++;
1707 if (frame >= MAX_CALL_FRAMES) {
1708 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1709 return -EFAULT;
1710 }
1711 goto process_func;
1712 }
1713 /* end of for() loop means the last insn of the 'subprog'
1714 * was reached. Doesn't matter whether it was JA or EXIT
1715 */
1716 if (frame == 0)
1717 return 0;
9c8105bd 1718 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1719 frame--;
1720 i = ret_insn[frame];
9c8105bd 1721 idx = ret_prog[frame];
70a87ffe 1722 goto continue_func;
f4d7e40a
AS
1723}
1724
19d28fbd 1725#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1726static int get_callee_stack_depth(struct bpf_verifier_env *env,
1727 const struct bpf_insn *insn, int idx)
1728{
1729 int start = idx + insn->imm + 1, subprog;
1730
1731 subprog = find_subprog(env, start);
1732 if (subprog < 0) {
1733 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1734 start);
1735 return -EFAULT;
1736 }
9c8105bd 1737 return env->subprog_info[subprog].stack_depth;
1ea47e01 1738}
19d28fbd 1739#endif
1ea47e01 1740
58990d1f
DB
1741static int check_ctx_reg(struct bpf_verifier_env *env,
1742 const struct bpf_reg_state *reg, int regno)
1743{
1744 /* Access to ctx or passing it to a helper is only allowed in
1745 * its original, unmodified form.
1746 */
1747
1748 if (reg->off) {
1749 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1750 regno, reg->off);
1751 return -EACCES;
1752 }
1753
1754 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1755 char tn_buf[48];
1756
1757 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1758 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1759 return -EACCES;
1760 }
1761
1762 return 0;
1763}
1764
0c17d1d2
JH
1765/* truncate register to smaller size (in bytes)
1766 * must be called with size < BPF_REG_SIZE
1767 */
1768static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1769{
1770 u64 mask;
1771
1772 /* clear high bits in bit representation */
1773 reg->var_off = tnum_cast(reg->var_off, size);
1774
1775 /* fix arithmetic bounds */
1776 mask = ((u64)1 << (size * 8)) - 1;
1777 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1778 reg->umin_value &= mask;
1779 reg->umax_value &= mask;
1780 } else {
1781 reg->umin_value = 0;
1782 reg->umax_value = mask;
1783 }
1784 reg->smin_value = reg->umin_value;
1785 reg->smax_value = reg->umax_value;
1786}
1787
17a52670
AS
1788/* check whether memory at (regno + off) is accessible for t = (read | write)
1789 * if t==write, value_regno is a register which value is stored into memory
1790 * if t==read, value_regno is a register which will receive the value from memory
1791 * if t==write && value_regno==-1, some unknown value is stored into memory
1792 * if t==read && value_regno==-1, don't care what we read from memory
1793 */
ca369602
DB
1794static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1795 int off, int bpf_size, enum bpf_access_type t,
1796 int value_regno, bool strict_alignment_once)
17a52670 1797{
638f5b90
AS
1798 struct bpf_reg_state *regs = cur_regs(env);
1799 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1800 struct bpf_func_state *state;
17a52670
AS
1801 int size, err = 0;
1802
1803 size = bpf_size_to_bytes(bpf_size);
1804 if (size < 0)
1805 return size;
1806
f1174f77 1807 /* alignment checks will add in reg->off themselves */
ca369602 1808 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1809 if (err)
1810 return err;
17a52670 1811
f1174f77
EC
1812 /* for access checks, reg->off is just part of off */
1813 off += reg->off;
1814
1815 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1816 if (t == BPF_WRITE && value_regno >= 0 &&
1817 is_pointer_value(env, value_regno)) {
61bd5218 1818 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1819 return -EACCES;
1820 }
48461135 1821
9fd29c08 1822 err = check_map_access(env, regno, off, size, false);
17a52670 1823 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1824 mark_reg_unknown(env, regs, value_regno);
17a52670 1825
1a0dc1ac 1826 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1827 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1828
1be7f75d
AS
1829 if (t == BPF_WRITE && value_regno >= 0 &&
1830 is_pointer_value(env, value_regno)) {
61bd5218 1831 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1832 return -EACCES;
1833 }
f1174f77 1834
58990d1f
DB
1835 err = check_ctx_reg(env, reg, regno);
1836 if (err < 0)
1837 return err;
1838
31fd8581 1839 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1840 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1841 /* ctx access returns either a scalar, or a
de8f3a83
DB
1842 * PTR_TO_PACKET[_META,_END]. In the latter
1843 * case, we know the offset is zero.
f1174f77
EC
1844 */
1845 if (reg_type == SCALAR_VALUE)
638f5b90 1846 mark_reg_unknown(env, regs, value_regno);
f1174f77 1847 else
638f5b90 1848 mark_reg_known_zero(env, regs,
61bd5218 1849 value_regno);
638f5b90 1850 regs[value_regno].type = reg_type;
969bf05e 1851 }
17a52670 1852
f1174f77
EC
1853 } else if (reg->type == PTR_TO_STACK) {
1854 /* stack accesses must be at a fixed offset, so that we can
1855 * determine what type of data were returned.
1856 * See check_stack_read().
1857 */
1858 if (!tnum_is_const(reg->var_off)) {
1859 char tn_buf[48];
1860
1861 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1862 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1863 tn_buf, off, size);
1864 return -EACCES;
1865 }
1866 off += reg->var_off.value;
17a52670 1867 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1868 verbose(env, "invalid stack off=%d size=%d\n", off,
1869 size);
17a52670
AS
1870 return -EACCES;
1871 }
8726679a 1872
f4d7e40a
AS
1873 state = func(env, reg);
1874 err = update_stack_depth(env, state, off);
1875 if (err)
1876 return err;
8726679a 1877
638f5b90 1878 if (t == BPF_WRITE)
61bd5218 1879 err = check_stack_write(env, state, off, size,
af86ca4e 1880 value_regno, insn_idx);
638f5b90 1881 else
61bd5218
JK
1882 err = check_stack_read(env, state, off, size,
1883 value_regno);
de8f3a83 1884 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1885 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1886 verbose(env, "cannot write into packet\n");
969bf05e
AS
1887 return -EACCES;
1888 }
4acf6c0b
BB
1889 if (t == BPF_WRITE && value_regno >= 0 &&
1890 is_pointer_value(env, value_regno)) {
61bd5218
JK
1891 verbose(env, "R%d leaks addr into packet\n",
1892 value_regno);
4acf6c0b
BB
1893 return -EACCES;
1894 }
9fd29c08 1895 err = check_packet_access(env, regno, off, size, false);
969bf05e 1896 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1897 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
1898 } else if (reg->type == PTR_TO_FLOW_KEYS) {
1899 if (t == BPF_WRITE && value_regno >= 0 &&
1900 is_pointer_value(env, value_regno)) {
1901 verbose(env, "R%d leaks addr into flow keys\n",
1902 value_regno);
1903 return -EACCES;
1904 }
1905
1906 err = check_flow_keys_access(env, off, size);
1907 if (!err && t == BPF_READ && value_regno >= 0)
1908 mark_reg_unknown(env, regs, value_regno);
c64b7983
JS
1909 } else if (reg->type == PTR_TO_SOCKET) {
1910 if (t == BPF_WRITE) {
1911 verbose(env, "cannot write into socket\n");
1912 return -EACCES;
1913 }
1914 err = check_sock_access(env, regno, off, size, t);
1915 if (!err && value_regno >= 0)
1916 mark_reg_unknown(env, regs, value_regno);
17a52670 1917 } else {
61bd5218
JK
1918 verbose(env, "R%d invalid mem access '%s'\n", regno,
1919 reg_type_str[reg->type]);
17a52670
AS
1920 return -EACCES;
1921 }
969bf05e 1922
f1174f77 1923 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1924 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1925 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1926 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1927 }
17a52670
AS
1928 return err;
1929}
1930
31fd8581 1931static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1932{
17a52670
AS
1933 int err;
1934
1935 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1936 insn->imm != 0) {
61bd5218 1937 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1938 return -EINVAL;
1939 }
1940
1941 /* check src1 operand */
dc503a8a 1942 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1943 if (err)
1944 return err;
1945
1946 /* check src2 operand */
dc503a8a 1947 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1948 if (err)
1949 return err;
1950
6bdf6abc 1951 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1952 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1953 return -EACCES;
1954 }
1955
ca369602
DB
1956 if (is_ctx_reg(env, insn->dst_reg) ||
1957 is_pkt_reg(env, insn->dst_reg)) {
1958 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
9d2be44a 1959 insn->dst_reg, reg_type_str[insn->dst_reg]);
f37a8cb8
DB
1960 return -EACCES;
1961 }
1962
17a52670 1963 /* check whether atomic_add can read the memory */
31fd8581 1964 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1965 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1966 if (err)
1967 return err;
1968
1969 /* check whether atomic_add can write into the same memory */
31fd8581 1970 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1971 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1972}
1973
1974/* when register 'regno' is passed into function that will read 'access_size'
1975 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1976 * and all elements of stack are initialized.
1977 * Unlike most pointer bounds-checking functions, this one doesn't take an
1978 * 'off' argument, so it has to add in reg->off itself.
17a52670 1979 */
58e2af8b 1980static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1981 int access_size, bool zero_size_allowed,
1982 struct bpf_call_arg_meta *meta)
17a52670 1983{
914cb781 1984 struct bpf_reg_state *reg = cur_regs(env) + regno;
f4d7e40a 1985 struct bpf_func_state *state = func(env, reg);
638f5b90 1986 int off, i, slot, spi;
17a52670 1987
914cb781 1988 if (reg->type != PTR_TO_STACK) {
f1174f77 1989 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1990 if (zero_size_allowed && access_size == 0 &&
914cb781 1991 register_is_null(reg))
8e2fe1d9
DB
1992 return 0;
1993
61bd5218 1994 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 1995 reg_type_str[reg->type],
8e2fe1d9 1996 reg_type_str[PTR_TO_STACK]);
17a52670 1997 return -EACCES;
8e2fe1d9 1998 }
17a52670 1999
f1174f77 2000 /* Only allow fixed-offset stack reads */
914cb781 2001 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
2002 char tn_buf[48];
2003
914cb781 2004 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 2005 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 2006 regno, tn_buf);
ea25f914 2007 return -EACCES;
f1174f77 2008 }
914cb781 2009 off = reg->off + reg->var_off.value;
17a52670 2010 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 2011 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 2012 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
2013 regno, off, access_size);
2014 return -EACCES;
2015 }
2016
435faee1
DB
2017 if (meta && meta->raw_mode) {
2018 meta->access_size = access_size;
2019 meta->regno = regno;
2020 return 0;
2021 }
2022
17a52670 2023 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
2024 u8 *stype;
2025
638f5b90
AS
2026 slot = -(off + i) - 1;
2027 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
2028 if (state->allocated_stack <= slot)
2029 goto err;
2030 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2031 if (*stype == STACK_MISC)
2032 goto mark;
2033 if (*stype == STACK_ZERO) {
2034 /* helper can write anything into the stack */
2035 *stype = STACK_MISC;
2036 goto mark;
17a52670 2037 }
cc2b14d5
AS
2038err:
2039 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2040 off, i, access_size);
2041 return -EACCES;
2042mark:
2043 /* reading any byte out of 8-byte 'spill_slot' will cause
2044 * the whole slot to be marked as 'read'
2045 */
679c782d
EC
2046 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2047 state->stack[spi].spilled_ptr.parent);
17a52670 2048 }
f4d7e40a 2049 return update_stack_depth(env, state, off);
17a52670
AS
2050}
2051
06c1c049
GB
2052static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2053 int access_size, bool zero_size_allowed,
2054 struct bpf_call_arg_meta *meta)
2055{
638f5b90 2056 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 2057
f1174f77 2058 switch (reg->type) {
06c1c049 2059 case PTR_TO_PACKET:
de8f3a83 2060 case PTR_TO_PACKET_META:
9fd29c08
YS
2061 return check_packet_access(env, regno, reg->off, access_size,
2062 zero_size_allowed);
d58e468b
PP
2063 case PTR_TO_FLOW_KEYS:
2064 return check_flow_keys_access(env, reg->off, access_size);
06c1c049 2065 case PTR_TO_MAP_VALUE:
9fd29c08
YS
2066 return check_map_access(env, regno, reg->off, access_size,
2067 zero_size_allowed);
f1174f77 2068 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
2069 return check_stack_boundary(env, regno, access_size,
2070 zero_size_allowed, meta);
2071 }
2072}
2073
90133415
DB
2074static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2075{
2076 return type == ARG_PTR_TO_MEM ||
2077 type == ARG_PTR_TO_MEM_OR_NULL ||
2078 type == ARG_PTR_TO_UNINIT_MEM;
2079}
2080
2081static bool arg_type_is_mem_size(enum bpf_arg_type type)
2082{
2083 return type == ARG_CONST_SIZE ||
2084 type == ARG_CONST_SIZE_OR_ZERO;
2085}
2086
58e2af8b 2087static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
2088 enum bpf_arg_type arg_type,
2089 struct bpf_call_arg_meta *meta)
17a52670 2090{
638f5b90 2091 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 2092 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
2093 int err = 0;
2094
80f1d68c 2095 if (arg_type == ARG_DONTCARE)
17a52670
AS
2096 return 0;
2097
dc503a8a
EC
2098 err = check_reg_arg(env, regno, SRC_OP);
2099 if (err)
2100 return err;
17a52670 2101
1be7f75d
AS
2102 if (arg_type == ARG_ANYTHING) {
2103 if (is_pointer_value(env, regno)) {
61bd5218
JK
2104 verbose(env, "R%d leaks addr into helper function\n",
2105 regno);
1be7f75d
AS
2106 return -EACCES;
2107 }
80f1d68c 2108 return 0;
1be7f75d 2109 }
80f1d68c 2110
de8f3a83 2111 if (type_is_pkt_pointer(type) &&
3a0af8fd 2112 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 2113 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
2114 return -EACCES;
2115 }
2116
8e2fe1d9 2117 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
2118 arg_type == ARG_PTR_TO_MAP_VALUE) {
2119 expected_type = PTR_TO_STACK;
d71962f3 2120 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 2121 type != expected_type)
6841de8b 2122 goto err_type;
39f19ebb
AS
2123 } else if (arg_type == ARG_CONST_SIZE ||
2124 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
2125 expected_type = SCALAR_VALUE;
2126 if (type != expected_type)
6841de8b 2127 goto err_type;
17a52670
AS
2128 } else if (arg_type == ARG_CONST_MAP_PTR) {
2129 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
2130 if (type != expected_type)
2131 goto err_type;
608cd71a
AS
2132 } else if (arg_type == ARG_PTR_TO_CTX) {
2133 expected_type = PTR_TO_CTX;
6841de8b
AS
2134 if (type != expected_type)
2135 goto err_type;
58990d1f
DB
2136 err = check_ctx_reg(env, reg, regno);
2137 if (err < 0)
2138 return err;
c64b7983
JS
2139 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2140 expected_type = PTR_TO_SOCKET;
2141 if (type != expected_type)
2142 goto err_type;
fd978bf7
JS
2143 if (meta->ptr_id || !reg->id) {
2144 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n",
2145 meta->ptr_id, reg->id);
2146 return -EFAULT;
2147 }
2148 meta->ptr_id = reg->id;
90133415 2149 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
2150 expected_type = PTR_TO_STACK;
2151 /* One exception here. In case function allows for NULL to be
f1174f77 2152 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
2153 * happens during stack boundary checking.
2154 */
914cb781 2155 if (register_is_null(reg) &&
db1ac496 2156 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 2157 /* final test in check_stack_boundary() */;
de8f3a83
DB
2158 else if (!type_is_pkt_pointer(type) &&
2159 type != PTR_TO_MAP_VALUE &&
f1174f77 2160 type != expected_type)
6841de8b 2161 goto err_type;
39f19ebb 2162 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 2163 } else {
61bd5218 2164 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
2165 return -EFAULT;
2166 }
2167
17a52670
AS
2168 if (arg_type == ARG_CONST_MAP_PTR) {
2169 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 2170 meta->map_ptr = reg->map_ptr;
17a52670
AS
2171 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2172 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2173 * check that [key, key + map->key_size) are within
2174 * stack limits and initialized
2175 */
33ff9823 2176 if (!meta->map_ptr) {
17a52670
AS
2177 /* in function declaration map_ptr must come before
2178 * map_key, so that it's verified and known before
2179 * we have to check map_key here. Otherwise it means
2180 * that kernel subsystem misconfigured verifier
2181 */
61bd5218 2182 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
2183 return -EACCES;
2184 }
d71962f3
PC
2185 err = check_helper_mem_access(env, regno,
2186 meta->map_ptr->key_size, false,
2187 NULL);
17a52670
AS
2188 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
2189 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2190 * check [value, value + map->value_size) validity
2191 */
33ff9823 2192 if (!meta->map_ptr) {
17a52670 2193 /* kernel subsystem misconfigured verifier */
61bd5218 2194 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
2195 return -EACCES;
2196 }
d71962f3
PC
2197 err = check_helper_mem_access(env, regno,
2198 meta->map_ptr->value_size, false,
2199 NULL);
90133415 2200 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 2201 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 2202
849fa506
YS
2203 /* remember the mem_size which may be used later
2204 * to refine return values.
2205 */
2206 meta->msize_smax_value = reg->smax_value;
2207 meta->msize_umax_value = reg->umax_value;
2208
f1174f77
EC
2209 /* The register is SCALAR_VALUE; the access check
2210 * happens using its boundaries.
06c1c049 2211 */
f1174f77 2212 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2213 /* For unprivileged variable accesses, disable raw
2214 * mode so that the program is required to
2215 * initialize all the memory that the helper could
2216 * just partially fill up.
2217 */
2218 meta = NULL;
2219
b03c9f9f 2220 if (reg->smin_value < 0) {
61bd5218 2221 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2222 regno);
2223 return -EACCES;
2224 }
06c1c049 2225
b03c9f9f 2226 if (reg->umin_value == 0) {
f1174f77
EC
2227 err = check_helper_mem_access(env, regno - 1, 0,
2228 zero_size_allowed,
2229 meta);
06c1c049
GB
2230 if (err)
2231 return err;
06c1c049 2232 }
f1174f77 2233
b03c9f9f 2234 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2235 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2236 regno);
2237 return -EACCES;
2238 }
2239 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2240 reg->umax_value,
f1174f77 2241 zero_size_allowed, meta);
17a52670
AS
2242 }
2243
2244 return err;
6841de8b 2245err_type:
61bd5218 2246 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2247 reg_type_str[type], reg_type_str[expected_type]);
2248 return -EACCES;
17a52670
AS
2249}
2250
61bd5218
JK
2251static int check_map_func_compatibility(struct bpf_verifier_env *env,
2252 struct bpf_map *map, int func_id)
35578d79 2253{
35578d79
KX
2254 if (!map)
2255 return 0;
2256
6aff67c8
AS
2257 /* We need a two way check, first is from map perspective ... */
2258 switch (map->map_type) {
2259 case BPF_MAP_TYPE_PROG_ARRAY:
2260 if (func_id != BPF_FUNC_tail_call)
2261 goto error;
2262 break;
2263 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2264 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2265 func_id != BPF_FUNC_perf_event_output &&
2266 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2267 goto error;
2268 break;
2269 case BPF_MAP_TYPE_STACK_TRACE:
2270 if (func_id != BPF_FUNC_get_stackid)
2271 goto error;
2272 break;
4ed8ec52 2273 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2274 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2275 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2276 goto error;
2277 break;
cd339431 2278 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 2279 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
2280 if (func_id != BPF_FUNC_get_local_storage)
2281 goto error;
2282 break;
546ac1ff
JF
2283 /* devmap returns a pointer to a live net_device ifindex that we cannot
2284 * allow to be modified from bpf side. So do not allow lookup elements
2285 * for now.
2286 */
2287 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2288 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2289 goto error;
2290 break;
fbfc504a
BT
2291 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2292 * appear.
2293 */
6710e112 2294 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2295 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2296 if (func_id != BPF_FUNC_redirect_map)
2297 goto error;
2298 break;
56f668df 2299 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2300 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2301 if (func_id != BPF_FUNC_map_lookup_elem)
2302 goto error;
16a43625 2303 break;
174a79ff
JF
2304 case BPF_MAP_TYPE_SOCKMAP:
2305 if (func_id != BPF_FUNC_sk_redirect_map &&
2306 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2307 func_id != BPF_FUNC_map_delete_elem &&
2308 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2309 goto error;
2310 break;
81110384
JF
2311 case BPF_MAP_TYPE_SOCKHASH:
2312 if (func_id != BPF_FUNC_sk_redirect_hash &&
2313 func_id != BPF_FUNC_sock_hash_update &&
2314 func_id != BPF_FUNC_map_delete_elem &&
2315 func_id != BPF_FUNC_msg_redirect_hash)
2316 goto error;
2317 break;
2dbb9b9e
MKL
2318 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2319 if (func_id != BPF_FUNC_sk_select_reuseport)
2320 goto error;
2321 break;
6aff67c8
AS
2322 default:
2323 break;
2324 }
2325
2326 /* ... and second from the function itself. */
2327 switch (func_id) {
2328 case BPF_FUNC_tail_call:
2329 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2330 goto error;
f910cefa 2331 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2332 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2333 return -EINVAL;
2334 }
6aff67c8
AS
2335 break;
2336 case BPF_FUNC_perf_event_read:
2337 case BPF_FUNC_perf_event_output:
908432ca 2338 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2339 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2340 goto error;
2341 break;
2342 case BPF_FUNC_get_stackid:
2343 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2344 goto error;
2345 break;
60d20f91 2346 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2347 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2348 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2349 goto error;
2350 break;
97f91a7c 2351 case BPF_FUNC_redirect_map:
9c270af3 2352 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2353 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2354 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2355 goto error;
2356 break;
174a79ff 2357 case BPF_FUNC_sk_redirect_map:
4f738adb 2358 case BPF_FUNC_msg_redirect_map:
81110384 2359 case BPF_FUNC_sock_map_update:
174a79ff
JF
2360 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2361 goto error;
2362 break;
81110384
JF
2363 case BPF_FUNC_sk_redirect_hash:
2364 case BPF_FUNC_msg_redirect_hash:
2365 case BPF_FUNC_sock_hash_update:
2366 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
2367 goto error;
2368 break;
cd339431 2369 case BPF_FUNC_get_local_storage:
b741f163
RG
2370 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2371 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
2372 goto error;
2373 break;
2dbb9b9e
MKL
2374 case BPF_FUNC_sk_select_reuseport:
2375 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2376 goto error;
2377 break;
6aff67c8
AS
2378 default:
2379 break;
35578d79
KX
2380 }
2381
2382 return 0;
6aff67c8 2383error:
61bd5218 2384 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2385 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2386 return -EINVAL;
35578d79
KX
2387}
2388
90133415 2389static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2390{
2391 int count = 0;
2392
39f19ebb 2393 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2394 count++;
39f19ebb 2395 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2396 count++;
39f19ebb 2397 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2398 count++;
39f19ebb 2399 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2400 count++;
39f19ebb 2401 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2402 count++;
2403
90133415
DB
2404 /* We only support one arg being in raw mode at the moment,
2405 * which is sufficient for the helper functions we have
2406 * right now.
2407 */
2408 return count <= 1;
2409}
2410
2411static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2412 enum bpf_arg_type arg_next)
2413{
2414 return (arg_type_is_mem_ptr(arg_curr) &&
2415 !arg_type_is_mem_size(arg_next)) ||
2416 (!arg_type_is_mem_ptr(arg_curr) &&
2417 arg_type_is_mem_size(arg_next));
2418}
2419
2420static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2421{
2422 /* bpf_xxx(..., buf, len) call will access 'len'
2423 * bytes from memory 'buf'. Both arg types need
2424 * to be paired, so make sure there's no buggy
2425 * helper function specification.
2426 */
2427 if (arg_type_is_mem_size(fn->arg1_type) ||
2428 arg_type_is_mem_ptr(fn->arg5_type) ||
2429 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2430 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2431 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2432 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2433 return false;
2434
2435 return true;
2436}
2437
fd978bf7
JS
2438static bool check_refcount_ok(const struct bpf_func_proto *fn)
2439{
2440 int count = 0;
2441
2442 if (arg_type_is_refcounted(fn->arg1_type))
2443 count++;
2444 if (arg_type_is_refcounted(fn->arg2_type))
2445 count++;
2446 if (arg_type_is_refcounted(fn->arg3_type))
2447 count++;
2448 if (arg_type_is_refcounted(fn->arg4_type))
2449 count++;
2450 if (arg_type_is_refcounted(fn->arg5_type))
2451 count++;
2452
2453 /* We only support one arg being unreferenced at the moment,
2454 * which is sufficient for the helper functions we have right now.
2455 */
2456 return count <= 1;
2457}
2458
90133415
DB
2459static int check_func_proto(const struct bpf_func_proto *fn)
2460{
2461 return check_raw_mode_ok(fn) &&
fd978bf7
JS
2462 check_arg_pair_ok(fn) &&
2463 check_refcount_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2464}
2465
de8f3a83
DB
2466/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2467 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2468 */
f4d7e40a
AS
2469static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2470 struct bpf_func_state *state)
969bf05e 2471{
58e2af8b 2472 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2473 int i;
2474
2475 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2476 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2477 mark_reg_unknown(env, regs, i);
969bf05e 2478
f3709f69
JS
2479 bpf_for_each_spilled_reg(i, state, reg) {
2480 if (!reg)
969bf05e 2481 continue;
de8f3a83
DB
2482 if (reg_is_pkt_pointer_any(reg))
2483 __mark_reg_unknown(reg);
969bf05e
AS
2484 }
2485}
2486
f4d7e40a
AS
2487static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2488{
2489 struct bpf_verifier_state *vstate = env->cur_state;
2490 int i;
2491
2492 for (i = 0; i <= vstate->curframe; i++)
2493 __clear_all_pkt_pointers(env, vstate->frame[i]);
2494}
2495
fd978bf7
JS
2496static void release_reg_references(struct bpf_verifier_env *env,
2497 struct bpf_func_state *state, int id)
2498{
2499 struct bpf_reg_state *regs = state->regs, *reg;
2500 int i;
2501
2502 for (i = 0; i < MAX_BPF_REG; i++)
2503 if (regs[i].id == id)
2504 mark_reg_unknown(env, regs, i);
2505
2506 bpf_for_each_spilled_reg(i, state, reg) {
2507 if (!reg)
2508 continue;
2509 if (reg_is_refcounted(reg) && reg->id == id)
2510 __mark_reg_unknown(reg);
2511 }
2512}
2513
2514/* The pointer with the specified id has released its reference to kernel
2515 * resources. Identify all copies of the same pointer and clear the reference.
2516 */
2517static int release_reference(struct bpf_verifier_env *env,
2518 struct bpf_call_arg_meta *meta)
2519{
2520 struct bpf_verifier_state *vstate = env->cur_state;
2521 int i;
2522
2523 for (i = 0; i <= vstate->curframe; i++)
2524 release_reg_references(env, vstate->frame[i], meta->ptr_id);
2525
2526 return release_reference_state(env, meta->ptr_id);
2527}
2528
f4d7e40a
AS
2529static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2530 int *insn_idx)
2531{
2532 struct bpf_verifier_state *state = env->cur_state;
2533 struct bpf_func_state *caller, *callee;
fd978bf7 2534 int i, err, subprog, target_insn;
f4d7e40a 2535
aada9ce6 2536 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2537 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2538 state->curframe + 2);
f4d7e40a
AS
2539 return -E2BIG;
2540 }
2541
2542 target_insn = *insn_idx + insn->imm;
2543 subprog = find_subprog(env, target_insn + 1);
2544 if (subprog < 0) {
2545 verbose(env, "verifier bug. No program starts at insn %d\n",
2546 target_insn + 1);
2547 return -EFAULT;
2548 }
2549
2550 caller = state->frame[state->curframe];
2551 if (state->frame[state->curframe + 1]) {
2552 verbose(env, "verifier bug. Frame %d already allocated\n",
2553 state->curframe + 1);
2554 return -EFAULT;
2555 }
2556
2557 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2558 if (!callee)
2559 return -ENOMEM;
2560 state->frame[state->curframe + 1] = callee;
2561
2562 /* callee cannot access r0, r6 - r9 for reading and has to write
2563 * into its own stack before reading from it.
2564 * callee can read/write into caller's stack
2565 */
2566 init_func_state(env, callee,
2567 /* remember the callsite, it will be used by bpf_exit */
2568 *insn_idx /* callsite */,
2569 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2570 subprog /* subprog number within this prog */);
f4d7e40a 2571
fd978bf7
JS
2572 /* Transfer references to the callee */
2573 err = transfer_reference_state(callee, caller);
2574 if (err)
2575 return err;
2576
679c782d
EC
2577 /* copy r1 - r5 args that callee can access. The copy includes parent
2578 * pointers, which connects us up to the liveness chain
2579 */
f4d7e40a
AS
2580 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2581 callee->regs[i] = caller->regs[i];
2582
679c782d 2583 /* after the call registers r0 - r5 were scratched */
f4d7e40a
AS
2584 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2585 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2586 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2587 }
2588
2589 /* only increment it after check_reg_arg() finished */
2590 state->curframe++;
2591
2592 /* and go analyze first insn of the callee */
2593 *insn_idx = target_insn;
2594
2595 if (env->log.level) {
2596 verbose(env, "caller:\n");
2597 print_verifier_state(env, caller);
2598 verbose(env, "callee:\n");
2599 print_verifier_state(env, callee);
2600 }
2601 return 0;
2602}
2603
2604static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2605{
2606 struct bpf_verifier_state *state = env->cur_state;
2607 struct bpf_func_state *caller, *callee;
2608 struct bpf_reg_state *r0;
fd978bf7 2609 int err;
f4d7e40a
AS
2610
2611 callee = state->frame[state->curframe];
2612 r0 = &callee->regs[BPF_REG_0];
2613 if (r0->type == PTR_TO_STACK) {
2614 /* technically it's ok to return caller's stack pointer
2615 * (or caller's caller's pointer) back to the caller,
2616 * since these pointers are valid. Only current stack
2617 * pointer will be invalid as soon as function exits,
2618 * but let's be conservative
2619 */
2620 verbose(env, "cannot return stack pointer to the caller\n");
2621 return -EINVAL;
2622 }
2623
2624 state->curframe--;
2625 caller = state->frame[state->curframe];
2626 /* return to the caller whatever r0 had in the callee */
2627 caller->regs[BPF_REG_0] = *r0;
2628
fd978bf7
JS
2629 /* Transfer references to the caller */
2630 err = transfer_reference_state(caller, callee);
2631 if (err)
2632 return err;
2633
f4d7e40a
AS
2634 *insn_idx = callee->callsite + 1;
2635 if (env->log.level) {
2636 verbose(env, "returning from callee:\n");
2637 print_verifier_state(env, callee);
2638 verbose(env, "to caller at %d:\n", *insn_idx);
2639 print_verifier_state(env, caller);
2640 }
2641 /* clear everything in the callee */
2642 free_func_state(callee);
2643 state->frame[state->curframe + 1] = NULL;
2644 return 0;
2645}
2646
849fa506
YS
2647static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2648 int func_id,
2649 struct bpf_call_arg_meta *meta)
2650{
2651 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2652
2653 if (ret_type != RET_INTEGER ||
2654 (func_id != BPF_FUNC_get_stack &&
2655 func_id != BPF_FUNC_probe_read_str))
2656 return;
2657
2658 ret_reg->smax_value = meta->msize_smax_value;
2659 ret_reg->umax_value = meta->msize_umax_value;
2660 __reg_deduce_bounds(ret_reg);
2661 __reg_bound_offset(ret_reg);
2662}
2663
c93552c4
DB
2664static int
2665record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2666 int func_id, int insn_idx)
2667{
2668 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2669
2670 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
2671 func_id != BPF_FUNC_map_lookup_elem &&
2672 func_id != BPF_FUNC_map_update_elem &&
2673 func_id != BPF_FUNC_map_delete_elem)
c93552c4 2674 return 0;
09772d92 2675
c93552c4
DB
2676 if (meta->map_ptr == NULL) {
2677 verbose(env, "kernel subsystem misconfigured verifier\n");
2678 return -EINVAL;
2679 }
2680
2681 if (!BPF_MAP_PTR(aux->map_state))
2682 bpf_map_ptr_store(aux, meta->map_ptr,
2683 meta->map_ptr->unpriv_array);
2684 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2685 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2686 meta->map_ptr->unpriv_array);
2687 return 0;
2688}
2689
fd978bf7
JS
2690static int check_reference_leak(struct bpf_verifier_env *env)
2691{
2692 struct bpf_func_state *state = cur_func(env);
2693 int i;
2694
2695 for (i = 0; i < state->acquired_refs; i++) {
2696 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
2697 state->refs[i].id, state->refs[i].insn_idx);
2698 }
2699 return state->acquired_refs ? -EINVAL : 0;
2700}
2701
f4d7e40a 2702static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2703{
17a52670 2704 const struct bpf_func_proto *fn = NULL;
638f5b90 2705 struct bpf_reg_state *regs;
33ff9823 2706 struct bpf_call_arg_meta meta;
969bf05e 2707 bool changes_data;
17a52670
AS
2708 int i, err;
2709
2710 /* find function prototype */
2711 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2712 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2713 func_id);
17a52670
AS
2714 return -EINVAL;
2715 }
2716
00176a34 2717 if (env->ops->get_func_proto)
5e43f899 2718 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2719 if (!fn) {
61bd5218
JK
2720 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2721 func_id);
17a52670
AS
2722 return -EINVAL;
2723 }
2724
2725 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2726 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 2727 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
2728 return -EINVAL;
2729 }
2730
04514d13 2731 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2732 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2733 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2734 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2735 func_id_name(func_id), func_id);
2736 return -EINVAL;
2737 }
969bf05e 2738
33ff9823 2739 memset(&meta, 0, sizeof(meta));
36bbef52 2740 meta.pkt_access = fn->pkt_access;
33ff9823 2741
90133415 2742 err = check_func_proto(fn);
435faee1 2743 if (err) {
61bd5218 2744 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2745 func_id_name(func_id), func_id);
435faee1
DB
2746 return err;
2747 }
2748
17a52670 2749 /* check args */
33ff9823 2750 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2751 if (err)
2752 return err;
33ff9823 2753 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2754 if (err)
2755 return err;
33ff9823 2756 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2757 if (err)
2758 return err;
33ff9823 2759 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2760 if (err)
2761 return err;
33ff9823 2762 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2763 if (err)
2764 return err;
2765
c93552c4
DB
2766 err = record_func_map(env, &meta, func_id, insn_idx);
2767 if (err)
2768 return err;
2769
435faee1
DB
2770 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2771 * is inferred from register state.
2772 */
2773 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2774 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2775 BPF_WRITE, -1, false);
435faee1
DB
2776 if (err)
2777 return err;
2778 }
2779
fd978bf7
JS
2780 if (func_id == BPF_FUNC_tail_call) {
2781 err = check_reference_leak(env);
2782 if (err) {
2783 verbose(env, "tail_call would lead to reference leak\n");
2784 return err;
2785 }
2786 } else if (is_release_function(func_id)) {
2787 err = release_reference(env, &meta);
2788 if (err)
2789 return err;
2790 }
2791
638f5b90 2792 regs = cur_regs(env);
cd339431
RG
2793
2794 /* check that flags argument in get_local_storage(map, flags) is 0,
2795 * this is required because get_local_storage() can't return an error.
2796 */
2797 if (func_id == BPF_FUNC_get_local_storage &&
2798 !register_is_null(&regs[BPF_REG_2])) {
2799 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
2800 return -EINVAL;
2801 }
2802
17a52670 2803 /* reset caller saved regs */
dc503a8a 2804 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2805 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2806 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2807 }
17a52670 2808
dc503a8a 2809 /* update return register (already marked as written above) */
17a52670 2810 if (fn->ret_type == RET_INTEGER) {
f1174f77 2811 /* sets type to SCALAR_VALUE */
61bd5218 2812 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2813 } else if (fn->ret_type == RET_VOID) {
2814 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
2815 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
2816 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
2817 if (fn->ret_type == RET_PTR_TO_MAP_VALUE)
2818 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
2819 else
2820 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 2821 /* There is no offset yet applied, variable or fixed */
61bd5218 2822 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
2823 /* remember map_ptr, so that check_map_access()
2824 * can check 'value_size' boundary of memory access
2825 * to map element returned from bpf_map_lookup_elem()
2826 */
33ff9823 2827 if (meta.map_ptr == NULL) {
61bd5218
JK
2828 verbose(env,
2829 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2830 return -EINVAL;
2831 }
33ff9823 2832 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 2833 regs[BPF_REG_0].id = ++env->id_gen;
c64b7983 2834 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
fd978bf7
JS
2835 int id = acquire_reference_state(env, insn_idx);
2836 if (id < 0)
2837 return id;
c64b7983
JS
2838 mark_reg_known_zero(env, regs, BPF_REG_0);
2839 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
fd978bf7 2840 regs[BPF_REG_0].id = id;
17a52670 2841 } else {
61bd5218 2842 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2843 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2844 return -EINVAL;
2845 }
04fd61ab 2846
849fa506
YS
2847 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2848
61bd5218 2849 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2850 if (err)
2851 return err;
04fd61ab 2852
c195651e
YS
2853 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2854 const char *err_str;
2855
2856#ifdef CONFIG_PERF_EVENTS
2857 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2858 err_str = "cannot get callchain buffer for func %s#%d\n";
2859#else
2860 err = -ENOTSUPP;
2861 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2862#endif
2863 if (err) {
2864 verbose(env, err_str, func_id_name(func_id), func_id);
2865 return err;
2866 }
2867
2868 env->prog->has_callchain_buf = true;
2869 }
2870
969bf05e
AS
2871 if (changes_data)
2872 clear_all_pkt_pointers(env);
2873 return 0;
2874}
2875
b03c9f9f
EC
2876static bool signed_add_overflows(s64 a, s64 b)
2877{
2878 /* Do the add in u64, where overflow is well-defined */
2879 s64 res = (s64)((u64)a + (u64)b);
2880
2881 if (b < 0)
2882 return res > a;
2883 return res < a;
2884}
2885
2886static bool signed_sub_overflows(s64 a, s64 b)
2887{
2888 /* Do the sub in u64, where overflow is well-defined */
2889 s64 res = (s64)((u64)a - (u64)b);
2890
2891 if (b < 0)
2892 return res < a;
2893 return res > a;
969bf05e
AS
2894}
2895
bb7f0f98
AS
2896static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2897 const struct bpf_reg_state *reg,
2898 enum bpf_reg_type type)
2899{
2900 bool known = tnum_is_const(reg->var_off);
2901 s64 val = reg->var_off.value;
2902 s64 smin = reg->smin_value;
2903
2904 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2905 verbose(env, "math between %s pointer and %lld is not allowed\n",
2906 reg_type_str[type], val);
2907 return false;
2908 }
2909
2910 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2911 verbose(env, "%s pointer offset %d is not allowed\n",
2912 reg_type_str[type], reg->off);
2913 return false;
2914 }
2915
2916 if (smin == S64_MIN) {
2917 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2918 reg_type_str[type]);
2919 return false;
2920 }
2921
2922 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2923 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2924 smin, reg_type_str[type]);
2925 return false;
2926 }
2927
2928 return true;
2929}
2930
f1174f77 2931/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2932 * Caller should also handle BPF_MOV case separately.
2933 * If we return -EACCES, caller may want to try again treating pointer as a
2934 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2935 */
2936static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2937 struct bpf_insn *insn,
2938 const struct bpf_reg_state *ptr_reg,
2939 const struct bpf_reg_state *off_reg)
969bf05e 2940{
f4d7e40a
AS
2941 struct bpf_verifier_state *vstate = env->cur_state;
2942 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2943 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2944 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2945 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2946 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2947 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2948 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2949 u8 opcode = BPF_OP(insn->code);
f1174f77 2950 u32 dst = insn->dst_reg;
969bf05e 2951
f1174f77 2952 dst_reg = &regs[dst];
969bf05e 2953
6f16101e
DB
2954 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2955 smin_val > smax_val || umin_val > umax_val) {
2956 /* Taint dst register if offset had invalid bounds derived from
2957 * e.g. dead branches.
2958 */
2959 __mark_reg_unknown(dst_reg);
2960 return 0;
f1174f77
EC
2961 }
2962
2963 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2964 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
2965 verbose(env,
2966 "R%d 32-bit pointer arithmetic prohibited\n",
2967 dst);
f1174f77 2968 return -EACCES;
969bf05e
AS
2969 }
2970
aad2eeaf
JS
2971 switch (ptr_reg->type) {
2972 case PTR_TO_MAP_VALUE_OR_NULL:
2973 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
2974 dst, reg_type_str[ptr_reg->type]);
f1174f77 2975 return -EACCES;
aad2eeaf
JS
2976 case CONST_PTR_TO_MAP:
2977 case PTR_TO_PACKET_END:
c64b7983
JS
2978 case PTR_TO_SOCKET:
2979 case PTR_TO_SOCKET_OR_NULL:
aad2eeaf
JS
2980 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
2981 dst, reg_type_str[ptr_reg->type]);
f1174f77 2982 return -EACCES;
aad2eeaf
JS
2983 default:
2984 break;
f1174f77
EC
2985 }
2986
2987 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2988 * The id may be overwritten later if we create a new variable offset.
969bf05e 2989 */
f1174f77
EC
2990 dst_reg->type = ptr_reg->type;
2991 dst_reg->id = ptr_reg->id;
969bf05e 2992
bb7f0f98
AS
2993 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2994 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2995 return -EINVAL;
2996
f1174f77
EC
2997 switch (opcode) {
2998 case BPF_ADD:
2999 /* We can take a fixed offset as long as it doesn't overflow
3000 * the s32 'off' field
969bf05e 3001 */
b03c9f9f
EC
3002 if (known && (ptr_reg->off + smin_val ==
3003 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 3004 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
3005 dst_reg->smin_value = smin_ptr;
3006 dst_reg->smax_value = smax_ptr;
3007 dst_reg->umin_value = umin_ptr;
3008 dst_reg->umax_value = umax_ptr;
f1174f77 3009 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 3010 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
3011 dst_reg->range = ptr_reg->range;
3012 break;
3013 }
f1174f77
EC
3014 /* A new variable offset is created. Note that off_reg->off
3015 * == 0, since it's a scalar.
3016 * dst_reg gets the pointer type and since some positive
3017 * integer value was added to the pointer, give it a new 'id'
3018 * if it's a PTR_TO_PACKET.
3019 * this creates a new 'base' pointer, off_reg (variable) gets
3020 * added into the variable offset, and we copy the fixed offset
3021 * from ptr_reg.
969bf05e 3022 */
b03c9f9f
EC
3023 if (signed_add_overflows(smin_ptr, smin_val) ||
3024 signed_add_overflows(smax_ptr, smax_val)) {
3025 dst_reg->smin_value = S64_MIN;
3026 dst_reg->smax_value = S64_MAX;
3027 } else {
3028 dst_reg->smin_value = smin_ptr + smin_val;
3029 dst_reg->smax_value = smax_ptr + smax_val;
3030 }
3031 if (umin_ptr + umin_val < umin_ptr ||
3032 umax_ptr + umax_val < umax_ptr) {
3033 dst_reg->umin_value = 0;
3034 dst_reg->umax_value = U64_MAX;
3035 } else {
3036 dst_reg->umin_value = umin_ptr + umin_val;
3037 dst_reg->umax_value = umax_ptr + umax_val;
3038 }
f1174f77
EC
3039 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3040 dst_reg->off = ptr_reg->off;
de8f3a83 3041 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3042 dst_reg->id = ++env->id_gen;
3043 /* something was added to pkt_ptr, set range to zero */
3044 dst_reg->range = 0;
3045 }
3046 break;
3047 case BPF_SUB:
3048 if (dst_reg == off_reg) {
3049 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
3050 verbose(env, "R%d tried to subtract pointer from scalar\n",
3051 dst);
f1174f77
EC
3052 return -EACCES;
3053 }
3054 /* We don't allow subtraction from FP, because (according to
3055 * test_verifier.c test "invalid fp arithmetic", JITs might not
3056 * be able to deal with it.
969bf05e 3057 */
f1174f77 3058 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
3059 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3060 dst);
f1174f77
EC
3061 return -EACCES;
3062 }
b03c9f9f
EC
3063 if (known && (ptr_reg->off - smin_val ==
3064 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 3065 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
3066 dst_reg->smin_value = smin_ptr;
3067 dst_reg->smax_value = smax_ptr;
3068 dst_reg->umin_value = umin_ptr;
3069 dst_reg->umax_value = umax_ptr;
f1174f77
EC
3070 dst_reg->var_off = ptr_reg->var_off;
3071 dst_reg->id = ptr_reg->id;
b03c9f9f 3072 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
3073 dst_reg->range = ptr_reg->range;
3074 break;
3075 }
f1174f77
EC
3076 /* A new variable offset is created. If the subtrahend is known
3077 * nonnegative, then any reg->range we had before is still good.
969bf05e 3078 */
b03c9f9f
EC
3079 if (signed_sub_overflows(smin_ptr, smax_val) ||
3080 signed_sub_overflows(smax_ptr, smin_val)) {
3081 /* Overflow possible, we know nothing */
3082 dst_reg->smin_value = S64_MIN;
3083 dst_reg->smax_value = S64_MAX;
3084 } else {
3085 dst_reg->smin_value = smin_ptr - smax_val;
3086 dst_reg->smax_value = smax_ptr - smin_val;
3087 }
3088 if (umin_ptr < umax_val) {
3089 /* Overflow possible, we know nothing */
3090 dst_reg->umin_value = 0;
3091 dst_reg->umax_value = U64_MAX;
3092 } else {
3093 /* Cannot overflow (as long as bounds are consistent) */
3094 dst_reg->umin_value = umin_ptr - umax_val;
3095 dst_reg->umax_value = umax_ptr - umin_val;
3096 }
f1174f77
EC
3097 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3098 dst_reg->off = ptr_reg->off;
de8f3a83 3099 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
3100 dst_reg->id = ++env->id_gen;
3101 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 3102 if (smin_val < 0)
f1174f77 3103 dst_reg->range = 0;
43188702 3104 }
f1174f77
EC
3105 break;
3106 case BPF_AND:
3107 case BPF_OR:
3108 case BPF_XOR:
82abbf8d
AS
3109 /* bitwise ops on pointers are troublesome, prohibit. */
3110 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3111 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
3112 return -EACCES;
3113 default:
3114 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
3115 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3116 dst, bpf_alu_string[opcode >> 4]);
f1174f77 3117 return -EACCES;
43188702
JF
3118 }
3119
bb7f0f98
AS
3120 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3121 return -EINVAL;
3122
b03c9f9f
EC
3123 __update_reg_bounds(dst_reg);
3124 __reg_deduce_bounds(dst_reg);
3125 __reg_bound_offset(dst_reg);
43188702
JF
3126 return 0;
3127}
3128
468f6eaf
JH
3129/* WARNING: This function does calculations on 64-bit values, but the actual
3130 * execution may occur on 32-bit values. Therefore, things like bitshifts
3131 * need extra checks in the 32-bit case.
3132 */
f1174f77
EC
3133static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3134 struct bpf_insn *insn,
3135 struct bpf_reg_state *dst_reg,
3136 struct bpf_reg_state src_reg)
969bf05e 3137{
638f5b90 3138 struct bpf_reg_state *regs = cur_regs(env);
48461135 3139 u8 opcode = BPF_OP(insn->code);
f1174f77 3140 bool src_known, dst_known;
b03c9f9f
EC
3141 s64 smin_val, smax_val;
3142 u64 umin_val, umax_val;
468f6eaf 3143 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 3144
b03c9f9f
EC
3145 smin_val = src_reg.smin_value;
3146 smax_val = src_reg.smax_value;
3147 umin_val = src_reg.umin_value;
3148 umax_val = src_reg.umax_value;
f1174f77
EC
3149 src_known = tnum_is_const(src_reg.var_off);
3150 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 3151
6f16101e
DB
3152 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3153 smin_val > smax_val || umin_val > umax_val) {
3154 /* Taint dst register if offset had invalid bounds derived from
3155 * e.g. dead branches.
3156 */
3157 __mark_reg_unknown(dst_reg);
3158 return 0;
3159 }
3160
bb7f0f98
AS
3161 if (!src_known &&
3162 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3163 __mark_reg_unknown(dst_reg);
3164 return 0;
3165 }
3166
48461135
JB
3167 switch (opcode) {
3168 case BPF_ADD:
b03c9f9f
EC
3169 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3170 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3171 dst_reg->smin_value = S64_MIN;
3172 dst_reg->smax_value = S64_MAX;
3173 } else {
3174 dst_reg->smin_value += smin_val;
3175 dst_reg->smax_value += smax_val;
3176 }
3177 if (dst_reg->umin_value + umin_val < umin_val ||
3178 dst_reg->umax_value + umax_val < umax_val) {
3179 dst_reg->umin_value = 0;
3180 dst_reg->umax_value = U64_MAX;
3181 } else {
3182 dst_reg->umin_value += umin_val;
3183 dst_reg->umax_value += umax_val;
3184 }
f1174f77 3185 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
3186 break;
3187 case BPF_SUB:
b03c9f9f
EC
3188 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3189 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3190 /* Overflow possible, we know nothing */
3191 dst_reg->smin_value = S64_MIN;
3192 dst_reg->smax_value = S64_MAX;
3193 } else {
3194 dst_reg->smin_value -= smax_val;
3195 dst_reg->smax_value -= smin_val;
3196 }
3197 if (dst_reg->umin_value < umax_val) {
3198 /* Overflow possible, we know nothing */
3199 dst_reg->umin_value = 0;
3200 dst_reg->umax_value = U64_MAX;
3201 } else {
3202 /* Cannot overflow (as long as bounds are consistent) */
3203 dst_reg->umin_value -= umax_val;
3204 dst_reg->umax_value -= umin_val;
3205 }
f1174f77 3206 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
3207 break;
3208 case BPF_MUL:
b03c9f9f
EC
3209 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3210 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 3211 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
3212 __mark_reg_unbounded(dst_reg);
3213 __update_reg_bounds(dst_reg);
f1174f77
EC
3214 break;
3215 }
b03c9f9f
EC
3216 /* Both values are positive, so we can work with unsigned and
3217 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 3218 */
b03c9f9f
EC
3219 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3220 /* Potential overflow, we know nothing */
3221 __mark_reg_unbounded(dst_reg);
3222 /* (except what we can learn from the var_off) */
3223 __update_reg_bounds(dst_reg);
3224 break;
3225 }
3226 dst_reg->umin_value *= umin_val;
3227 dst_reg->umax_value *= umax_val;
3228 if (dst_reg->umax_value > S64_MAX) {
3229 /* Overflow possible, we know nothing */
3230 dst_reg->smin_value = S64_MIN;
3231 dst_reg->smax_value = S64_MAX;
3232 } else {
3233 dst_reg->smin_value = dst_reg->umin_value;
3234 dst_reg->smax_value = dst_reg->umax_value;
3235 }
48461135
JB
3236 break;
3237 case BPF_AND:
f1174f77 3238 if (src_known && dst_known) {
b03c9f9f
EC
3239 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3240 src_reg.var_off.value);
f1174f77
EC
3241 break;
3242 }
b03c9f9f
EC
3243 /* We get our minimum from the var_off, since that's inherently
3244 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 3245 */
f1174f77 3246 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3247 dst_reg->umin_value = dst_reg->var_off.value;
3248 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3249 if (dst_reg->smin_value < 0 || smin_val < 0) {
3250 /* Lose signed bounds when ANDing negative numbers,
3251 * ain't nobody got time for that.
3252 */
3253 dst_reg->smin_value = S64_MIN;
3254 dst_reg->smax_value = S64_MAX;
3255 } else {
3256 /* ANDing two positives gives a positive, so safe to
3257 * cast result into s64.
3258 */
3259 dst_reg->smin_value = dst_reg->umin_value;
3260 dst_reg->smax_value = dst_reg->umax_value;
3261 }
3262 /* We may learn something more from the var_off */
3263 __update_reg_bounds(dst_reg);
f1174f77
EC
3264 break;
3265 case BPF_OR:
3266 if (src_known && dst_known) {
b03c9f9f
EC
3267 __mark_reg_known(dst_reg, dst_reg->var_off.value |
3268 src_reg.var_off.value);
f1174f77
EC
3269 break;
3270 }
b03c9f9f
EC
3271 /* We get our maximum from the var_off, and our minimum is the
3272 * maximum of the operands' minima
f1174f77
EC
3273 */
3274 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
3275 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3276 dst_reg->umax_value = dst_reg->var_off.value |
3277 dst_reg->var_off.mask;
3278 if (dst_reg->smin_value < 0 || smin_val < 0) {
3279 /* Lose signed bounds when ORing negative numbers,
3280 * ain't nobody got time for that.
3281 */
3282 dst_reg->smin_value = S64_MIN;
3283 dst_reg->smax_value = S64_MAX;
f1174f77 3284 } else {
b03c9f9f
EC
3285 /* ORing two positives gives a positive, so safe to
3286 * cast result into s64.
3287 */
3288 dst_reg->smin_value = dst_reg->umin_value;
3289 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 3290 }
b03c9f9f
EC
3291 /* We may learn something more from the var_off */
3292 __update_reg_bounds(dst_reg);
48461135
JB
3293 break;
3294 case BPF_LSH:
468f6eaf
JH
3295 if (umax_val >= insn_bitness) {
3296 /* Shifts greater than 31 or 63 are undefined.
3297 * This includes shifts by a negative number.
b03c9f9f 3298 */
61bd5218 3299 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3300 break;
3301 }
b03c9f9f
EC
3302 /* We lose all sign bit information (except what we can pick
3303 * up from var_off)
48461135 3304 */
b03c9f9f
EC
3305 dst_reg->smin_value = S64_MIN;
3306 dst_reg->smax_value = S64_MAX;
3307 /* If we might shift our top bit out, then we know nothing */
3308 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3309 dst_reg->umin_value = 0;
3310 dst_reg->umax_value = U64_MAX;
d1174416 3311 } else {
b03c9f9f
EC
3312 dst_reg->umin_value <<= umin_val;
3313 dst_reg->umax_value <<= umax_val;
d1174416 3314 }
afbe1a5b 3315 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3316 /* We may learn something more from the var_off */
3317 __update_reg_bounds(dst_reg);
48461135
JB
3318 break;
3319 case BPF_RSH:
468f6eaf
JH
3320 if (umax_val >= insn_bitness) {
3321 /* Shifts greater than 31 or 63 are undefined.
3322 * This includes shifts by a negative number.
b03c9f9f 3323 */
61bd5218 3324 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
3325 break;
3326 }
4374f256
EC
3327 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3328 * be negative, then either:
3329 * 1) src_reg might be zero, so the sign bit of the result is
3330 * unknown, so we lose our signed bounds
3331 * 2) it's known negative, thus the unsigned bounds capture the
3332 * signed bounds
3333 * 3) the signed bounds cross zero, so they tell us nothing
3334 * about the result
3335 * If the value in dst_reg is known nonnegative, then again the
3336 * unsigned bounts capture the signed bounds.
3337 * Thus, in all cases it suffices to blow away our signed bounds
3338 * and rely on inferring new ones from the unsigned bounds and
3339 * var_off of the result.
3340 */
3341 dst_reg->smin_value = S64_MIN;
3342 dst_reg->smax_value = S64_MAX;
afbe1a5b 3343 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
3344 dst_reg->umin_value >>= umax_val;
3345 dst_reg->umax_value >>= umin_val;
3346 /* We may learn something more from the var_off */
3347 __update_reg_bounds(dst_reg);
48461135 3348 break;
9cbe1f5a
YS
3349 case BPF_ARSH:
3350 if (umax_val >= insn_bitness) {
3351 /* Shifts greater than 31 or 63 are undefined.
3352 * This includes shifts by a negative number.
3353 */
3354 mark_reg_unknown(env, regs, insn->dst_reg);
3355 break;
3356 }
3357
3358 /* Upon reaching here, src_known is true and
3359 * umax_val is equal to umin_val.
3360 */
3361 dst_reg->smin_value >>= umin_val;
3362 dst_reg->smax_value >>= umin_val;
3363 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3364
3365 /* blow away the dst_reg umin_value/umax_value and rely on
3366 * dst_reg var_off to refine the result.
3367 */
3368 dst_reg->umin_value = 0;
3369 dst_reg->umax_value = U64_MAX;
3370 __update_reg_bounds(dst_reg);
3371 break;
48461135 3372 default:
61bd5218 3373 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3374 break;
3375 }
3376
468f6eaf
JH
3377 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3378 /* 32-bit ALU ops are (32,32)->32 */
3379 coerce_reg_to_size(dst_reg, 4);
3380 coerce_reg_to_size(&src_reg, 4);
3381 }
3382
b03c9f9f
EC
3383 __reg_deduce_bounds(dst_reg);
3384 __reg_bound_offset(dst_reg);
f1174f77
EC
3385 return 0;
3386}
3387
3388/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3389 * and var_off.
3390 */
3391static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3392 struct bpf_insn *insn)
3393{
f4d7e40a
AS
3394 struct bpf_verifier_state *vstate = env->cur_state;
3395 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3396 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3397 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3398 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3399
3400 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3401 src_reg = NULL;
3402 if (dst_reg->type != SCALAR_VALUE)
3403 ptr_reg = dst_reg;
3404 if (BPF_SRC(insn->code) == BPF_X) {
3405 src_reg = &regs[insn->src_reg];
f1174f77
EC
3406 if (src_reg->type != SCALAR_VALUE) {
3407 if (dst_reg->type != SCALAR_VALUE) {
3408 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3409 * an arbitrary scalar. Disallow all math except
3410 * pointer subtraction
f1174f77 3411 */
dd066823 3412 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
3413 mark_reg_unknown(env, regs, insn->dst_reg);
3414 return 0;
f1174f77 3415 }
82abbf8d
AS
3416 verbose(env, "R%d pointer %s pointer prohibited\n",
3417 insn->dst_reg,
3418 bpf_alu_string[opcode >> 4]);
3419 return -EACCES;
f1174f77
EC
3420 } else {
3421 /* scalar += pointer
3422 * This is legal, but we have to reverse our
3423 * src/dest handling in computing the range
3424 */
82abbf8d
AS
3425 return adjust_ptr_min_max_vals(env, insn,
3426 src_reg, dst_reg);
f1174f77
EC
3427 }
3428 } else if (ptr_reg) {
3429 /* pointer += scalar */
82abbf8d
AS
3430 return adjust_ptr_min_max_vals(env, insn,
3431 dst_reg, src_reg);
f1174f77
EC
3432 }
3433 } else {
3434 /* Pretend the src is a reg with a known value, since we only
3435 * need to be able to read from this state.
3436 */
3437 off_reg.type = SCALAR_VALUE;
b03c9f9f 3438 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3439 src_reg = &off_reg;
82abbf8d
AS
3440 if (ptr_reg) /* pointer += K */
3441 return adjust_ptr_min_max_vals(env, insn,
3442 ptr_reg, src_reg);
f1174f77
EC
3443 }
3444
3445 /* Got here implies adding two SCALAR_VALUEs */
3446 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3447 print_verifier_state(env, state);
61bd5218 3448 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3449 return -EINVAL;
3450 }
3451 if (WARN_ON(!src_reg)) {
f4d7e40a 3452 print_verifier_state(env, state);
61bd5218 3453 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3454 return -EINVAL;
3455 }
3456 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3457}
3458
17a52670 3459/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3460static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3461{
638f5b90 3462 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3463 u8 opcode = BPF_OP(insn->code);
3464 int err;
3465
3466 if (opcode == BPF_END || opcode == BPF_NEG) {
3467 if (opcode == BPF_NEG) {
3468 if (BPF_SRC(insn->code) != 0 ||
3469 insn->src_reg != BPF_REG_0 ||
3470 insn->off != 0 || insn->imm != 0) {
61bd5218 3471 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3472 return -EINVAL;
3473 }
3474 } else {
3475 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3476 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3477 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3478 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3479 return -EINVAL;
3480 }
3481 }
3482
3483 /* check src operand */
dc503a8a 3484 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3485 if (err)
3486 return err;
3487
1be7f75d 3488 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3489 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3490 insn->dst_reg);
3491 return -EACCES;
3492 }
3493
17a52670 3494 /* check dest operand */
dc503a8a 3495 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3496 if (err)
3497 return err;
3498
3499 } else if (opcode == BPF_MOV) {
3500
3501 if (BPF_SRC(insn->code) == BPF_X) {
3502 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3503 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3504 return -EINVAL;
3505 }
3506
3507 /* check src operand */
dc503a8a 3508 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3509 if (err)
3510 return err;
3511 } else {
3512 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3513 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3514 return -EINVAL;
3515 }
3516 }
3517
fbeb1603
AF
3518 /* check dest operand, mark as required later */
3519 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3520 if (err)
3521 return err;
3522
3523 if (BPF_SRC(insn->code) == BPF_X) {
3524 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3525 /* case: R1 = R2
3526 * copy register state to dest reg
3527 */
3528 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3529 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3530 } else {
f1174f77 3531 /* R1 = (u32) R2 */
1be7f75d 3532 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3533 verbose(env,
3534 "R%d partial copy of pointer\n",
1be7f75d
AS
3535 insn->src_reg);
3536 return -EACCES;
3537 }
61bd5218 3538 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3539 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3540 }
3541 } else {
3542 /* case: R = imm
3543 * remember the value we stored into this reg
3544 */
fbeb1603
AF
3545 /* clear any state __mark_reg_known doesn't set */
3546 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 3547 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3548 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3549 __mark_reg_known(regs + insn->dst_reg,
3550 insn->imm);
3551 } else {
3552 __mark_reg_known(regs + insn->dst_reg,
3553 (u32)insn->imm);
3554 }
17a52670
AS
3555 }
3556
3557 } else if (opcode > BPF_END) {
61bd5218 3558 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3559 return -EINVAL;
3560
3561 } else { /* all other ALU ops: and, sub, xor, add, ... */
3562
17a52670
AS
3563 if (BPF_SRC(insn->code) == BPF_X) {
3564 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3565 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3566 return -EINVAL;
3567 }
3568 /* check src1 operand */
dc503a8a 3569 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3570 if (err)
3571 return err;
3572 } else {
3573 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3574 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3575 return -EINVAL;
3576 }
3577 }
3578
3579 /* check src2 operand */
dc503a8a 3580 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3581 if (err)
3582 return err;
3583
3584 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3585 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3586 verbose(env, "div by zero\n");
17a52670
AS
3587 return -EINVAL;
3588 }
3589
7891a87e
DB
3590 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3591 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3592 return -EINVAL;
3593 }
3594
229394e8
RV
3595 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3596 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3597 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3598
3599 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3600 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3601 return -EINVAL;
3602 }
3603 }
3604
1a0dc1ac 3605 /* check dest operand */
dc503a8a 3606 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3607 if (err)
3608 return err;
3609
f1174f77 3610 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3611 }
3612
3613 return 0;
3614}
3615
f4d7e40a 3616static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3617 struct bpf_reg_state *dst_reg,
f8ddadc4 3618 enum bpf_reg_type type,
fb2a311a 3619 bool range_right_open)
969bf05e 3620{
f4d7e40a 3621 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3622 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3623 u16 new_range;
f4d7e40a 3624 int i, j;
2d2be8ca 3625
fb2a311a
DB
3626 if (dst_reg->off < 0 ||
3627 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3628 /* This doesn't give us any range */
3629 return;
3630
b03c9f9f
EC
3631 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3632 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3633 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3634 * than pkt_end, but that's because it's also less than pkt.
3635 */
3636 return;
3637
fb2a311a
DB
3638 new_range = dst_reg->off;
3639 if (range_right_open)
3640 new_range--;
3641
3642 /* Examples for register markings:
2d2be8ca 3643 *
fb2a311a 3644 * pkt_data in dst register:
2d2be8ca
DB
3645 *
3646 * r2 = r3;
3647 * r2 += 8;
3648 * if (r2 > pkt_end) goto <handle exception>
3649 * <access okay>
3650 *
b4e432f1
DB
3651 * r2 = r3;
3652 * r2 += 8;
3653 * if (r2 < pkt_end) goto <access okay>
3654 * <handle exception>
3655 *
2d2be8ca
DB
3656 * Where:
3657 * r2 == dst_reg, pkt_end == src_reg
3658 * r2=pkt(id=n,off=8,r=0)
3659 * r3=pkt(id=n,off=0,r=0)
3660 *
fb2a311a 3661 * pkt_data in src register:
2d2be8ca
DB
3662 *
3663 * r2 = r3;
3664 * r2 += 8;
3665 * if (pkt_end >= r2) goto <access okay>
3666 * <handle exception>
3667 *
b4e432f1
DB
3668 * r2 = r3;
3669 * r2 += 8;
3670 * if (pkt_end <= r2) goto <handle exception>
3671 * <access okay>
3672 *
2d2be8ca
DB
3673 * Where:
3674 * pkt_end == dst_reg, r2 == src_reg
3675 * r2=pkt(id=n,off=8,r=0)
3676 * r3=pkt(id=n,off=0,r=0)
3677 *
3678 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3679 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3680 * and [r3, r3 + 8-1) respectively is safe to access depending on
3681 * the check.
969bf05e 3682 */
2d2be8ca 3683
f1174f77
EC
3684 /* If our ids match, then we must have the same max_value. And we
3685 * don't care about the other reg's fixed offset, since if it's too big
3686 * the range won't allow anything.
3687 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3688 */
969bf05e 3689 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3690 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3691 /* keep the maximum range already checked */
fb2a311a 3692 regs[i].range = max(regs[i].range, new_range);
969bf05e 3693
f4d7e40a
AS
3694 for (j = 0; j <= vstate->curframe; j++) {
3695 state = vstate->frame[j];
f3709f69
JS
3696 bpf_for_each_spilled_reg(i, state, reg) {
3697 if (!reg)
f4d7e40a 3698 continue;
f4d7e40a
AS
3699 if (reg->type == type && reg->id == dst_reg->id)
3700 reg->range = max(reg->range, new_range);
3701 }
969bf05e
AS
3702 }
3703}
3704
48461135
JB
3705/* Adjusts the register min/max values in the case that the dst_reg is the
3706 * variable register that we are working on, and src_reg is a constant or we're
3707 * simply doing a BPF_K check.
f1174f77 3708 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3709 */
3710static void reg_set_min_max(struct bpf_reg_state *true_reg,
3711 struct bpf_reg_state *false_reg, u64 val,
3712 u8 opcode)
3713{
f1174f77
EC
3714 /* If the dst_reg is a pointer, we can't learn anything about its
3715 * variable offset from the compare (unless src_reg were a pointer into
3716 * the same object, but we don't bother with that.
3717 * Since false_reg and true_reg have the same type by construction, we
3718 * only need to check one of them for pointerness.
3719 */
3720 if (__is_pointer_value(false, false_reg))
3721 return;
4cabc5b1 3722
48461135
JB
3723 switch (opcode) {
3724 case BPF_JEQ:
3725 /* If this is false then we know nothing Jon Snow, but if it is
3726 * true then we know for sure.
3727 */
b03c9f9f 3728 __mark_reg_known(true_reg, val);
48461135
JB
3729 break;
3730 case BPF_JNE:
3731 /* If this is true we know nothing Jon Snow, but if it is false
3732 * we know the value for sure;
3733 */
b03c9f9f 3734 __mark_reg_known(false_reg, val);
48461135
JB
3735 break;
3736 case BPF_JGT:
b03c9f9f
EC
3737 false_reg->umax_value = min(false_reg->umax_value, val);
3738 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3739 break;
48461135 3740 case BPF_JSGT:
b03c9f9f
EC
3741 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3742 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3743 break;
b4e432f1
DB
3744 case BPF_JLT:
3745 false_reg->umin_value = max(false_reg->umin_value, val);
3746 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3747 break;
3748 case BPF_JSLT:
3749 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3750 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3751 break;
48461135 3752 case BPF_JGE:
b03c9f9f
EC
3753 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3754 true_reg->umin_value = max(true_reg->umin_value, val);
3755 break;
48461135 3756 case BPF_JSGE:
b03c9f9f
EC
3757 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3758 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3759 break;
b4e432f1
DB
3760 case BPF_JLE:
3761 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3762 true_reg->umax_value = min(true_reg->umax_value, val);
3763 break;
3764 case BPF_JSLE:
3765 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3766 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3767 break;
48461135
JB
3768 default:
3769 break;
3770 }
3771
b03c9f9f
EC
3772 __reg_deduce_bounds(false_reg);
3773 __reg_deduce_bounds(true_reg);
3774 /* We might have learned some bits from the bounds. */
3775 __reg_bound_offset(false_reg);
3776 __reg_bound_offset(true_reg);
3777 /* Intersecting with the old var_off might have improved our bounds
3778 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3779 * then new var_off is (0; 0x7f...fc) which improves our umax.
3780 */
3781 __update_reg_bounds(false_reg);
3782 __update_reg_bounds(true_reg);
48461135
JB
3783}
3784
f1174f77
EC
3785/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3786 * the variable reg.
48461135
JB
3787 */
3788static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3789 struct bpf_reg_state *false_reg, u64 val,
3790 u8 opcode)
3791{
f1174f77
EC
3792 if (__is_pointer_value(false, false_reg))
3793 return;
4cabc5b1 3794
48461135
JB
3795 switch (opcode) {
3796 case BPF_JEQ:
3797 /* If this is false then we know nothing Jon Snow, but if it is
3798 * true then we know for sure.
3799 */
b03c9f9f 3800 __mark_reg_known(true_reg, val);
48461135
JB
3801 break;
3802 case BPF_JNE:
3803 /* If this is true we know nothing Jon Snow, but if it is false
3804 * we know the value for sure;
3805 */
b03c9f9f 3806 __mark_reg_known(false_reg, val);
48461135
JB
3807 break;
3808 case BPF_JGT:
b03c9f9f
EC
3809 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3810 false_reg->umin_value = max(false_reg->umin_value, val);
3811 break;
48461135 3812 case BPF_JSGT:
b03c9f9f
EC
3813 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3814 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3815 break;
b4e432f1
DB
3816 case BPF_JLT:
3817 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3818 false_reg->umax_value = min(false_reg->umax_value, val);
3819 break;
3820 case BPF_JSLT:
3821 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3822 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3823 break;
48461135 3824 case BPF_JGE:
b03c9f9f
EC
3825 true_reg->umax_value = min(true_reg->umax_value, val);
3826 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3827 break;
48461135 3828 case BPF_JSGE:
b03c9f9f
EC
3829 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3830 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3831 break;
b4e432f1
DB
3832 case BPF_JLE:
3833 true_reg->umin_value = max(true_reg->umin_value, val);
3834 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3835 break;
3836 case BPF_JSLE:
3837 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3838 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3839 break;
48461135
JB
3840 default:
3841 break;
3842 }
3843
b03c9f9f
EC
3844 __reg_deduce_bounds(false_reg);
3845 __reg_deduce_bounds(true_reg);
3846 /* We might have learned some bits from the bounds. */
3847 __reg_bound_offset(false_reg);
3848 __reg_bound_offset(true_reg);
3849 /* Intersecting with the old var_off might have improved our bounds
3850 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3851 * then new var_off is (0; 0x7f...fc) which improves our umax.
3852 */
3853 __update_reg_bounds(false_reg);
3854 __update_reg_bounds(true_reg);
f1174f77
EC
3855}
3856
3857/* Regs are known to be equal, so intersect their min/max/var_off */
3858static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3859 struct bpf_reg_state *dst_reg)
3860{
b03c9f9f
EC
3861 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3862 dst_reg->umin_value);
3863 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3864 dst_reg->umax_value);
3865 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3866 dst_reg->smin_value);
3867 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3868 dst_reg->smax_value);
f1174f77
EC
3869 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3870 dst_reg->var_off);
b03c9f9f
EC
3871 /* We might have learned new bounds from the var_off. */
3872 __update_reg_bounds(src_reg);
3873 __update_reg_bounds(dst_reg);
3874 /* We might have learned something about the sign bit. */
3875 __reg_deduce_bounds(src_reg);
3876 __reg_deduce_bounds(dst_reg);
3877 /* We might have learned some bits from the bounds. */
3878 __reg_bound_offset(src_reg);
3879 __reg_bound_offset(dst_reg);
3880 /* Intersecting with the old var_off might have improved our bounds
3881 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3882 * then new var_off is (0; 0x7f...fc) which improves our umax.
3883 */
3884 __update_reg_bounds(src_reg);
3885 __update_reg_bounds(dst_reg);
f1174f77
EC
3886}
3887
3888static void reg_combine_min_max(struct bpf_reg_state *true_src,
3889 struct bpf_reg_state *true_dst,
3890 struct bpf_reg_state *false_src,
3891 struct bpf_reg_state *false_dst,
3892 u8 opcode)
3893{
3894 switch (opcode) {
3895 case BPF_JEQ:
3896 __reg_combine_min_max(true_src, true_dst);
3897 break;
3898 case BPF_JNE:
3899 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 3900 break;
4cabc5b1 3901 }
48461135
JB
3902}
3903
fd978bf7
JS
3904static void mark_ptr_or_null_reg(struct bpf_func_state *state,
3905 struct bpf_reg_state *reg, u32 id,
840b9615 3906 bool is_null)
57a09bf0 3907{
840b9615 3908 if (reg_type_may_be_null(reg->type) && reg->id == id) {
f1174f77
EC
3909 /* Old offset (both fixed and variable parts) should
3910 * have been known-zero, because we don't allow pointer
3911 * arithmetic on pointers that might be NULL.
3912 */
b03c9f9f
EC
3913 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3914 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 3915 reg->off)) {
b03c9f9f
EC
3916 __mark_reg_known_zero(reg);
3917 reg->off = 0;
f1174f77
EC
3918 }
3919 if (is_null) {
3920 reg->type = SCALAR_VALUE;
840b9615
JS
3921 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3922 if (reg->map_ptr->inner_map_meta) {
3923 reg->type = CONST_PTR_TO_MAP;
3924 reg->map_ptr = reg->map_ptr->inner_map_meta;
3925 } else {
3926 reg->type = PTR_TO_MAP_VALUE;
3927 }
c64b7983
JS
3928 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
3929 reg->type = PTR_TO_SOCKET;
56f668df 3930 }
fd978bf7
JS
3931 if (is_null || !reg_is_refcounted(reg)) {
3932 /* We don't need id from this point onwards anymore,
3933 * thus we should better reset it, so that state
3934 * pruning has chances to take effect.
3935 */
3936 reg->id = 0;
3937 }
57a09bf0
TG
3938 }
3939}
3940
3941/* The logic is similar to find_good_pkt_pointers(), both could eventually
3942 * be folded together at some point.
3943 */
840b9615
JS
3944static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
3945 bool is_null)
57a09bf0 3946{
f4d7e40a 3947 struct bpf_func_state *state = vstate->frame[vstate->curframe];
f3709f69 3948 struct bpf_reg_state *reg, *regs = state->regs;
a08dd0da 3949 u32 id = regs[regno].id;
f4d7e40a 3950 int i, j;
57a09bf0 3951
fd978bf7
JS
3952 if (reg_is_refcounted_or_null(&regs[regno]) && is_null)
3953 __release_reference_state(state, id);
3954
57a09bf0 3955 for (i = 0; i < MAX_BPF_REG; i++)
fd978bf7 3956 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
57a09bf0 3957
f4d7e40a
AS
3958 for (j = 0; j <= vstate->curframe; j++) {
3959 state = vstate->frame[j];
f3709f69
JS
3960 bpf_for_each_spilled_reg(i, state, reg) {
3961 if (!reg)
f4d7e40a 3962 continue;
fd978bf7 3963 mark_ptr_or_null_reg(state, reg, id, is_null);
f4d7e40a 3964 }
57a09bf0
TG
3965 }
3966}
3967
5beca081
DB
3968static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3969 struct bpf_reg_state *dst_reg,
3970 struct bpf_reg_state *src_reg,
3971 struct bpf_verifier_state *this_branch,
3972 struct bpf_verifier_state *other_branch)
3973{
3974 if (BPF_SRC(insn->code) != BPF_X)
3975 return false;
3976
3977 switch (BPF_OP(insn->code)) {
3978 case BPF_JGT:
3979 if ((dst_reg->type == PTR_TO_PACKET &&
3980 src_reg->type == PTR_TO_PACKET_END) ||
3981 (dst_reg->type == PTR_TO_PACKET_META &&
3982 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3983 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3984 find_good_pkt_pointers(this_branch, dst_reg,
3985 dst_reg->type, false);
3986 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3987 src_reg->type == PTR_TO_PACKET) ||
3988 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3989 src_reg->type == PTR_TO_PACKET_META)) {
3990 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3991 find_good_pkt_pointers(other_branch, src_reg,
3992 src_reg->type, true);
3993 } else {
3994 return false;
3995 }
3996 break;
3997 case BPF_JLT:
3998 if ((dst_reg->type == PTR_TO_PACKET &&
3999 src_reg->type == PTR_TO_PACKET_END) ||
4000 (dst_reg->type == PTR_TO_PACKET_META &&
4001 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4002 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4003 find_good_pkt_pointers(other_branch, dst_reg,
4004 dst_reg->type, true);
4005 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4006 src_reg->type == PTR_TO_PACKET) ||
4007 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4008 src_reg->type == PTR_TO_PACKET_META)) {
4009 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4010 find_good_pkt_pointers(this_branch, src_reg,
4011 src_reg->type, false);
4012 } else {
4013 return false;
4014 }
4015 break;
4016 case BPF_JGE:
4017 if ((dst_reg->type == PTR_TO_PACKET &&
4018 src_reg->type == PTR_TO_PACKET_END) ||
4019 (dst_reg->type == PTR_TO_PACKET_META &&
4020 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4021 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4022 find_good_pkt_pointers(this_branch, dst_reg,
4023 dst_reg->type, true);
4024 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4025 src_reg->type == PTR_TO_PACKET) ||
4026 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4027 src_reg->type == PTR_TO_PACKET_META)) {
4028 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4029 find_good_pkt_pointers(other_branch, src_reg,
4030 src_reg->type, false);
4031 } else {
4032 return false;
4033 }
4034 break;
4035 case BPF_JLE:
4036 if ((dst_reg->type == PTR_TO_PACKET &&
4037 src_reg->type == PTR_TO_PACKET_END) ||
4038 (dst_reg->type == PTR_TO_PACKET_META &&
4039 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4040 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4041 find_good_pkt_pointers(other_branch, dst_reg,
4042 dst_reg->type, false);
4043 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4044 src_reg->type == PTR_TO_PACKET) ||
4045 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4046 src_reg->type == PTR_TO_PACKET_META)) {
4047 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4048 find_good_pkt_pointers(this_branch, src_reg,
4049 src_reg->type, true);
4050 } else {
4051 return false;
4052 }
4053 break;
4054 default:
4055 return false;
4056 }
4057
4058 return true;
4059}
4060
58e2af8b 4061static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
4062 struct bpf_insn *insn, int *insn_idx)
4063{
f4d7e40a
AS
4064 struct bpf_verifier_state *this_branch = env->cur_state;
4065 struct bpf_verifier_state *other_branch;
4066 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4067 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
4068 u8 opcode = BPF_OP(insn->code);
4069 int err;
4070
b4e432f1 4071 if (opcode > BPF_JSLE) {
61bd5218 4072 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
4073 return -EINVAL;
4074 }
4075
4076 if (BPF_SRC(insn->code) == BPF_X) {
4077 if (insn->imm != 0) {
61bd5218 4078 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4079 return -EINVAL;
4080 }
4081
4082 /* check src1 operand */
dc503a8a 4083 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4084 if (err)
4085 return err;
1be7f75d
AS
4086
4087 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4088 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
4089 insn->src_reg);
4090 return -EACCES;
4091 }
17a52670
AS
4092 } else {
4093 if (insn->src_reg != BPF_REG_0) {
61bd5218 4094 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
4095 return -EINVAL;
4096 }
4097 }
4098
4099 /* check src2 operand */
dc503a8a 4100 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4101 if (err)
4102 return err;
4103
1a0dc1ac
AS
4104 dst_reg = &regs[insn->dst_reg];
4105
17a52670
AS
4106 /* detect if R == 0 where R was initialized to zero earlier */
4107 if (BPF_SRC(insn->code) == BPF_K &&
4108 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77 4109 dst_reg->type == SCALAR_VALUE &&
3bf15921
AS
4110 tnum_is_const(dst_reg->var_off)) {
4111 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
4112 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
17a52670
AS
4113 /* if (imm == imm) goto pc+off;
4114 * only follow the goto, ignore fall-through
4115 */
4116 *insn_idx += insn->off;
4117 return 0;
4118 } else {
4119 /* if (imm != imm) goto pc+off;
4120 * only follow fall-through branch, since
4121 * that's where the program will go
4122 */
4123 return 0;
4124 }
4125 }
4126
4127 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
4128 if (!other_branch)
4129 return -EFAULT;
f4d7e40a 4130 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 4131
48461135
JB
4132 /* detect if we are comparing against a constant value so we can adjust
4133 * our min/max values for our dst register.
f1174f77
EC
4134 * this is only legit if both are scalars (or pointers to the same
4135 * object, I suppose, but we don't support that right now), because
4136 * otherwise the different base pointers mean the offsets aren't
4137 * comparable.
48461135
JB
4138 */
4139 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
4140 if (dst_reg->type == SCALAR_VALUE &&
4141 regs[insn->src_reg].type == SCALAR_VALUE) {
4142 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 4143 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
4144 dst_reg, regs[insn->src_reg].var_off.value,
4145 opcode);
4146 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 4147 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
4148 &regs[insn->src_reg],
4149 dst_reg->var_off.value, opcode);
4150 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
4151 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
4152 reg_combine_min_max(&other_branch_regs[insn->src_reg],
4153 &other_branch_regs[insn->dst_reg],
f1174f77
EC
4154 &regs[insn->src_reg],
4155 &regs[insn->dst_reg], opcode);
4156 }
4157 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 4158 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
4159 dst_reg, insn->imm, opcode);
4160 }
4161
58e2af8b 4162 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 4163 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 4164 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
4165 reg_type_may_be_null(dst_reg->type)) {
4166 /* Mark all identical registers in each branch as either
57a09bf0
TG
4167 * safe or unknown depending R == 0 or R != 0 conditional.
4168 */
840b9615
JS
4169 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4170 opcode == BPF_JNE);
4171 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4172 opcode == BPF_JEQ);
5beca081
DB
4173 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4174 this_branch, other_branch) &&
4175 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
4176 verbose(env, "R%d pointer comparison prohibited\n",
4177 insn->dst_reg);
1be7f75d 4178 return -EACCES;
17a52670 4179 }
61bd5218 4180 if (env->log.level)
f4d7e40a 4181 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
4182 return 0;
4183}
4184
0246e64d
AS
4185/* return the map pointer stored inside BPF_LD_IMM64 instruction */
4186static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4187{
4188 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4189
4190 return (struct bpf_map *) (unsigned long) imm64;
4191}
4192
17a52670 4193/* verify BPF_LD_IMM64 instruction */
58e2af8b 4194static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 4195{
638f5b90 4196 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
4197 int err;
4198
4199 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 4200 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
4201 return -EINVAL;
4202 }
4203 if (insn->off != 0) {
61bd5218 4204 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
4205 return -EINVAL;
4206 }
4207
dc503a8a 4208 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
4209 if (err)
4210 return err;
4211
6b173873 4212 if (insn->src_reg == 0) {
6b173873
JK
4213 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
4214
f1174f77 4215 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 4216 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 4217 return 0;
6b173873 4218 }
17a52670
AS
4219
4220 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
4221 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
4222
4223 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
4224 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
4225 return 0;
4226}
4227
96be4325
DB
4228static bool may_access_skb(enum bpf_prog_type type)
4229{
4230 switch (type) {
4231 case BPF_PROG_TYPE_SOCKET_FILTER:
4232 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 4233 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
4234 return true;
4235 default:
4236 return false;
4237 }
4238}
4239
ddd872bc
AS
4240/* verify safety of LD_ABS|LD_IND instructions:
4241 * - they can only appear in the programs where ctx == skb
4242 * - since they are wrappers of function calls, they scratch R1-R5 registers,
4243 * preserve R6-R9, and store return value into R0
4244 *
4245 * Implicit input:
4246 * ctx == skb == R6 == CTX
4247 *
4248 * Explicit input:
4249 * SRC == any register
4250 * IMM == 32-bit immediate
4251 *
4252 * Output:
4253 * R0 - 8/16/32-bit skb data converted to cpu endianness
4254 */
58e2af8b 4255static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 4256{
638f5b90 4257 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 4258 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
4259 int i, err;
4260
24701ece 4261 if (!may_access_skb(env->prog->type)) {
61bd5218 4262 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
4263 return -EINVAL;
4264 }
4265
e0cea7ce
DB
4266 if (!env->ops->gen_ld_abs) {
4267 verbose(env, "bpf verifier is misconfigured\n");
4268 return -EINVAL;
4269 }
4270
f910cefa 4271 if (env->subprog_cnt > 1) {
f4d7e40a
AS
4272 /* when program has LD_ABS insn JITs and interpreter assume
4273 * that r1 == ctx == skb which is not the case for callees
4274 * that can have arbitrary arguments. It's problematic
4275 * for main prog as well since JITs would need to analyze
4276 * all functions in order to make proper register save/restore
4277 * decisions in the main prog. Hence disallow LD_ABS with calls
4278 */
4279 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
4280 return -EINVAL;
4281 }
4282
ddd872bc 4283 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 4284 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 4285 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 4286 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
4287 return -EINVAL;
4288 }
4289
4290 /* check whether implicit source operand (register R6) is readable */
dc503a8a 4291 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
4292 if (err)
4293 return err;
4294
fd978bf7
JS
4295 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
4296 * gen_ld_abs() may terminate the program at runtime, leading to
4297 * reference leak.
4298 */
4299 err = check_reference_leak(env);
4300 if (err) {
4301 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
4302 return err;
4303 }
4304
ddd872bc 4305 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
4306 verbose(env,
4307 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
4308 return -EINVAL;
4309 }
4310
4311 if (mode == BPF_IND) {
4312 /* check explicit source operand */
dc503a8a 4313 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
4314 if (err)
4315 return err;
4316 }
4317
4318 /* reset caller saved regs to unreadable */
dc503a8a 4319 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 4320 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
4321 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4322 }
ddd872bc
AS
4323
4324 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
4325 * the value fetched from the packet.
4326 * Already marked as written above.
ddd872bc 4327 */
61bd5218 4328 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
4329 return 0;
4330}
4331
390ee7e2
AS
4332static int check_return_code(struct bpf_verifier_env *env)
4333{
4334 struct bpf_reg_state *reg;
4335 struct tnum range = tnum_range(0, 1);
4336
4337 switch (env->prog->type) {
4338 case BPF_PROG_TYPE_CGROUP_SKB:
4339 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 4340 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 4341 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 4342 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
4343 break;
4344 default:
4345 return 0;
4346 }
4347
638f5b90 4348 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 4349 if (reg->type != SCALAR_VALUE) {
61bd5218 4350 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
4351 reg_type_str[reg->type]);
4352 return -EINVAL;
4353 }
4354
4355 if (!tnum_in(range, reg->var_off)) {
61bd5218 4356 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
4357 if (!tnum_is_unknown(reg->var_off)) {
4358 char tn_buf[48];
4359
4360 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 4361 verbose(env, "has value %s", tn_buf);
390ee7e2 4362 } else {
61bd5218 4363 verbose(env, "has unknown scalar value");
390ee7e2 4364 }
61bd5218 4365 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
4366 return -EINVAL;
4367 }
4368 return 0;
4369}
4370
475fb78f
AS
4371/* non-recursive DFS pseudo code
4372 * 1 procedure DFS-iterative(G,v):
4373 * 2 label v as discovered
4374 * 3 let S be a stack
4375 * 4 S.push(v)
4376 * 5 while S is not empty
4377 * 6 t <- S.pop()
4378 * 7 if t is what we're looking for:
4379 * 8 return t
4380 * 9 for all edges e in G.adjacentEdges(t) do
4381 * 10 if edge e is already labelled
4382 * 11 continue with the next edge
4383 * 12 w <- G.adjacentVertex(t,e)
4384 * 13 if vertex w is not discovered and not explored
4385 * 14 label e as tree-edge
4386 * 15 label w as discovered
4387 * 16 S.push(w)
4388 * 17 continue at 5
4389 * 18 else if vertex w is discovered
4390 * 19 label e as back-edge
4391 * 20 else
4392 * 21 // vertex w is explored
4393 * 22 label e as forward- or cross-edge
4394 * 23 label t as explored
4395 * 24 S.pop()
4396 *
4397 * convention:
4398 * 0x10 - discovered
4399 * 0x11 - discovered and fall-through edge labelled
4400 * 0x12 - discovered and fall-through and branch edges labelled
4401 * 0x20 - explored
4402 */
4403
4404enum {
4405 DISCOVERED = 0x10,
4406 EXPLORED = 0x20,
4407 FALLTHROUGH = 1,
4408 BRANCH = 2,
4409};
4410
58e2af8b 4411#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4412
475fb78f
AS
4413static int *insn_stack; /* stack of insns to process */
4414static int cur_stack; /* current stack index */
4415static int *insn_state;
4416
4417/* t, w, e - match pseudo-code above:
4418 * t - index of current instruction
4419 * w - next instruction
4420 * e - edge
4421 */
58e2af8b 4422static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4423{
4424 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4425 return 0;
4426
4427 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4428 return 0;
4429
4430 if (w < 0 || w >= env->prog->len) {
61bd5218 4431 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4432 return -EINVAL;
4433 }
4434
f1bca824
AS
4435 if (e == BRANCH)
4436 /* mark branch target for state pruning */
4437 env->explored_states[w] = STATE_LIST_MARK;
4438
475fb78f
AS
4439 if (insn_state[w] == 0) {
4440 /* tree-edge */
4441 insn_state[t] = DISCOVERED | e;
4442 insn_state[w] = DISCOVERED;
4443 if (cur_stack >= env->prog->len)
4444 return -E2BIG;
4445 insn_stack[cur_stack++] = w;
4446 return 1;
4447 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 4448 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4449 return -EINVAL;
4450 } else if (insn_state[w] == EXPLORED) {
4451 /* forward- or cross-edge */
4452 insn_state[t] = DISCOVERED | e;
4453 } else {
61bd5218 4454 verbose(env, "insn state internal bug\n");
475fb78f
AS
4455 return -EFAULT;
4456 }
4457 return 0;
4458}
4459
4460/* non-recursive depth-first-search to detect loops in BPF program
4461 * loop == back-edge in directed graph
4462 */
58e2af8b 4463static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4464{
4465 struct bpf_insn *insns = env->prog->insnsi;
4466 int insn_cnt = env->prog->len;
4467 int ret = 0;
4468 int i, t;
4469
cc8b0b92
AS
4470 ret = check_subprogs(env);
4471 if (ret < 0)
4472 return ret;
4473
475fb78f
AS
4474 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4475 if (!insn_state)
4476 return -ENOMEM;
4477
4478 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4479 if (!insn_stack) {
4480 kfree(insn_state);
4481 return -ENOMEM;
4482 }
4483
4484 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4485 insn_stack[0] = 0; /* 0 is the first instruction */
4486 cur_stack = 1;
4487
4488peek_stack:
4489 if (cur_stack == 0)
4490 goto check_state;
4491 t = insn_stack[cur_stack - 1];
4492
4493 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4494 u8 opcode = BPF_OP(insns[t].code);
4495
4496 if (opcode == BPF_EXIT) {
4497 goto mark_explored;
4498 } else if (opcode == BPF_CALL) {
4499 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4500 if (ret == 1)
4501 goto peek_stack;
4502 else if (ret < 0)
4503 goto err_free;
07016151
DB
4504 if (t + 1 < insn_cnt)
4505 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4506 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4507 env->explored_states[t] = STATE_LIST_MARK;
4508 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4509 if (ret == 1)
4510 goto peek_stack;
4511 else if (ret < 0)
4512 goto err_free;
4513 }
475fb78f
AS
4514 } else if (opcode == BPF_JA) {
4515 if (BPF_SRC(insns[t].code) != BPF_K) {
4516 ret = -EINVAL;
4517 goto err_free;
4518 }
4519 /* unconditional jump with single edge */
4520 ret = push_insn(t, t + insns[t].off + 1,
4521 FALLTHROUGH, env);
4522 if (ret == 1)
4523 goto peek_stack;
4524 else if (ret < 0)
4525 goto err_free;
f1bca824
AS
4526 /* tell verifier to check for equivalent states
4527 * after every call and jump
4528 */
c3de6317
AS
4529 if (t + 1 < insn_cnt)
4530 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4531 } else {
4532 /* conditional jump with two edges */
3c2ce60b 4533 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4534 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4535 if (ret == 1)
4536 goto peek_stack;
4537 else if (ret < 0)
4538 goto err_free;
4539
4540 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4541 if (ret == 1)
4542 goto peek_stack;
4543 else if (ret < 0)
4544 goto err_free;
4545 }
4546 } else {
4547 /* all other non-branch instructions with single
4548 * fall-through edge
4549 */
4550 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4551 if (ret == 1)
4552 goto peek_stack;
4553 else if (ret < 0)
4554 goto err_free;
4555 }
4556
4557mark_explored:
4558 insn_state[t] = EXPLORED;
4559 if (cur_stack-- <= 0) {
61bd5218 4560 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4561 ret = -EFAULT;
4562 goto err_free;
4563 }
4564 goto peek_stack;
4565
4566check_state:
4567 for (i = 0; i < insn_cnt; i++) {
4568 if (insn_state[i] != EXPLORED) {
61bd5218 4569 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4570 ret = -EINVAL;
4571 goto err_free;
4572 }
4573 }
4574 ret = 0; /* cfg looks good */
4575
4576err_free:
4577 kfree(insn_state);
4578 kfree(insn_stack);
4579 return ret;
4580}
4581
f1174f77
EC
4582/* check %cur's range satisfies %old's */
4583static bool range_within(struct bpf_reg_state *old,
4584 struct bpf_reg_state *cur)
4585{
b03c9f9f
EC
4586 return old->umin_value <= cur->umin_value &&
4587 old->umax_value >= cur->umax_value &&
4588 old->smin_value <= cur->smin_value &&
4589 old->smax_value >= cur->smax_value;
f1174f77
EC
4590}
4591
4592/* Maximum number of register states that can exist at once */
4593#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4594struct idpair {
4595 u32 old;
4596 u32 cur;
4597};
4598
4599/* If in the old state two registers had the same id, then they need to have
4600 * the same id in the new state as well. But that id could be different from
4601 * the old state, so we need to track the mapping from old to new ids.
4602 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4603 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4604 * regs with a different old id could still have new id 9, we don't care about
4605 * that.
4606 * So we look through our idmap to see if this old id has been seen before. If
4607 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4608 */
f1174f77 4609static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4610{
f1174f77 4611 unsigned int i;
969bf05e 4612
f1174f77
EC
4613 for (i = 0; i < ID_MAP_SIZE; i++) {
4614 if (!idmap[i].old) {
4615 /* Reached an empty slot; haven't seen this id before */
4616 idmap[i].old = old_id;
4617 idmap[i].cur = cur_id;
4618 return true;
4619 }
4620 if (idmap[i].old == old_id)
4621 return idmap[i].cur == cur_id;
4622 }
4623 /* We ran out of idmap slots, which should be impossible */
4624 WARN_ON_ONCE(1);
4625 return false;
4626}
4627
4628/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4629static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4630 struct idpair *idmap)
f1174f77 4631{
f4d7e40a
AS
4632 bool equal;
4633
dc503a8a
EC
4634 if (!(rold->live & REG_LIVE_READ))
4635 /* explored state didn't use this */
4636 return true;
4637
679c782d 4638 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
4639
4640 if (rold->type == PTR_TO_STACK)
4641 /* two stack pointers are equal only if they're pointing to
4642 * the same stack frame, since fp-8 in foo != fp-8 in bar
4643 */
4644 return equal && rold->frameno == rcur->frameno;
4645
4646 if (equal)
969bf05e
AS
4647 return true;
4648
f1174f77
EC
4649 if (rold->type == NOT_INIT)
4650 /* explored state can't have used this */
969bf05e 4651 return true;
f1174f77
EC
4652 if (rcur->type == NOT_INIT)
4653 return false;
4654 switch (rold->type) {
4655 case SCALAR_VALUE:
4656 if (rcur->type == SCALAR_VALUE) {
4657 /* new val must satisfy old val knowledge */
4658 return range_within(rold, rcur) &&
4659 tnum_in(rold->var_off, rcur->var_off);
4660 } else {
179d1c56
JH
4661 /* We're trying to use a pointer in place of a scalar.
4662 * Even if the scalar was unbounded, this could lead to
4663 * pointer leaks because scalars are allowed to leak
4664 * while pointers are not. We could make this safe in
4665 * special cases if root is calling us, but it's
4666 * probably not worth the hassle.
f1174f77 4667 */
179d1c56 4668 return false;
f1174f77
EC
4669 }
4670 case PTR_TO_MAP_VALUE:
1b688a19
EC
4671 /* If the new min/max/var_off satisfy the old ones and
4672 * everything else matches, we are OK.
4673 * We don't care about the 'id' value, because nothing
4674 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4675 */
4676 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4677 range_within(rold, rcur) &&
4678 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4679 case PTR_TO_MAP_VALUE_OR_NULL:
4680 /* a PTR_TO_MAP_VALUE could be safe to use as a
4681 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4682 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4683 * checked, doing so could have affected others with the same
4684 * id, and we can't check for that because we lost the id when
4685 * we converted to a PTR_TO_MAP_VALUE.
4686 */
4687 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4688 return false;
4689 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4690 return false;
4691 /* Check our ids match any regs they're supposed to */
4692 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4693 case PTR_TO_PACKET_META:
f1174f77 4694 case PTR_TO_PACKET:
de8f3a83 4695 if (rcur->type != rold->type)
f1174f77
EC
4696 return false;
4697 /* We must have at least as much range as the old ptr
4698 * did, so that any accesses which were safe before are
4699 * still safe. This is true even if old range < old off,
4700 * since someone could have accessed through (ptr - k), or
4701 * even done ptr -= k in a register, to get a safe access.
4702 */
4703 if (rold->range > rcur->range)
4704 return false;
4705 /* If the offsets don't match, we can't trust our alignment;
4706 * nor can we be sure that we won't fall out of range.
4707 */
4708 if (rold->off != rcur->off)
4709 return false;
4710 /* id relations must be preserved */
4711 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4712 return false;
4713 /* new val must satisfy old val knowledge */
4714 return range_within(rold, rcur) &&
4715 tnum_in(rold->var_off, rcur->var_off);
4716 case PTR_TO_CTX:
4717 case CONST_PTR_TO_MAP:
f1174f77 4718 case PTR_TO_PACKET_END:
d58e468b 4719 case PTR_TO_FLOW_KEYS:
c64b7983
JS
4720 case PTR_TO_SOCKET:
4721 case PTR_TO_SOCKET_OR_NULL:
f1174f77
EC
4722 /* Only valid matches are exact, which memcmp() above
4723 * would have accepted
4724 */
4725 default:
4726 /* Don't know what's going on, just say it's not safe */
4727 return false;
4728 }
969bf05e 4729
f1174f77
EC
4730 /* Shouldn't get here; if we do, say it's not safe */
4731 WARN_ON_ONCE(1);
969bf05e
AS
4732 return false;
4733}
4734
f4d7e40a
AS
4735static bool stacksafe(struct bpf_func_state *old,
4736 struct bpf_func_state *cur,
638f5b90
AS
4737 struct idpair *idmap)
4738{
4739 int i, spi;
4740
4741 /* if explored stack has more populated slots than current stack
4742 * such stacks are not equivalent
4743 */
4744 if (old->allocated_stack > cur->allocated_stack)
4745 return false;
4746
4747 /* walk slots of the explored stack and ignore any additional
4748 * slots in the current stack, since explored(safe) state
4749 * didn't use them
4750 */
4751 for (i = 0; i < old->allocated_stack; i++) {
4752 spi = i / BPF_REG_SIZE;
4753
cc2b14d5
AS
4754 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4755 /* explored state didn't use this */
fd05e57b 4756 continue;
cc2b14d5 4757
638f5b90
AS
4758 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4759 continue;
cc2b14d5
AS
4760 /* if old state was safe with misc data in the stack
4761 * it will be safe with zero-initialized stack.
4762 * The opposite is not true
4763 */
4764 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4765 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4766 continue;
638f5b90
AS
4767 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4768 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4769 /* Ex: old explored (safe) state has STACK_SPILL in
4770 * this stack slot, but current has has STACK_MISC ->
4771 * this verifier states are not equivalent,
4772 * return false to continue verification of this path
4773 */
4774 return false;
4775 if (i % BPF_REG_SIZE)
4776 continue;
4777 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4778 continue;
4779 if (!regsafe(&old->stack[spi].spilled_ptr,
4780 &cur->stack[spi].spilled_ptr,
4781 idmap))
4782 /* when explored and current stack slot are both storing
4783 * spilled registers, check that stored pointers types
4784 * are the same as well.
4785 * Ex: explored safe path could have stored
4786 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4787 * but current path has stored:
4788 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4789 * such verifier states are not equivalent.
4790 * return false to continue verification of this path
4791 */
4792 return false;
4793 }
4794 return true;
4795}
4796
fd978bf7
JS
4797static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
4798{
4799 if (old->acquired_refs != cur->acquired_refs)
4800 return false;
4801 return !memcmp(old->refs, cur->refs,
4802 sizeof(*old->refs) * old->acquired_refs);
4803}
4804
f1bca824
AS
4805/* compare two verifier states
4806 *
4807 * all states stored in state_list are known to be valid, since
4808 * verifier reached 'bpf_exit' instruction through them
4809 *
4810 * this function is called when verifier exploring different branches of
4811 * execution popped from the state stack. If it sees an old state that has
4812 * more strict register state and more strict stack state then this execution
4813 * branch doesn't need to be explored further, since verifier already
4814 * concluded that more strict state leads to valid finish.
4815 *
4816 * Therefore two states are equivalent if register state is more conservative
4817 * and explored stack state is more conservative than the current one.
4818 * Example:
4819 * explored current
4820 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4821 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4822 *
4823 * In other words if current stack state (one being explored) has more
4824 * valid slots than old one that already passed validation, it means
4825 * the verifier can stop exploring and conclude that current state is valid too
4826 *
4827 * Similarly with registers. If explored state has register type as invalid
4828 * whereas register type in current state is meaningful, it means that
4829 * the current state will reach 'bpf_exit' instruction safely
4830 */
f4d7e40a
AS
4831static bool func_states_equal(struct bpf_func_state *old,
4832 struct bpf_func_state *cur)
f1bca824 4833{
f1174f77
EC
4834 struct idpair *idmap;
4835 bool ret = false;
f1bca824
AS
4836 int i;
4837
f1174f77
EC
4838 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4839 /* If we failed to allocate the idmap, just say it's not safe */
4840 if (!idmap)
1a0dc1ac 4841 return false;
f1174f77
EC
4842
4843 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4844 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4845 goto out_free;
f1bca824
AS
4846 }
4847
638f5b90
AS
4848 if (!stacksafe(old, cur, idmap))
4849 goto out_free;
fd978bf7
JS
4850
4851 if (!refsafe(old, cur))
4852 goto out_free;
f1174f77
EC
4853 ret = true;
4854out_free:
4855 kfree(idmap);
4856 return ret;
f1bca824
AS
4857}
4858
f4d7e40a
AS
4859static bool states_equal(struct bpf_verifier_env *env,
4860 struct bpf_verifier_state *old,
4861 struct bpf_verifier_state *cur)
4862{
4863 int i;
4864
4865 if (old->curframe != cur->curframe)
4866 return false;
4867
4868 /* for states to be equal callsites have to be the same
4869 * and all frame states need to be equivalent
4870 */
4871 for (i = 0; i <= old->curframe; i++) {
4872 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4873 return false;
4874 if (!func_states_equal(old->frame[i], cur->frame[i]))
4875 return false;
4876 }
4877 return true;
4878}
4879
8e9cd9ce 4880/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4881 * straight-line code between a state and its parent. When we arrive at an
4882 * equivalent state (jump target or such) we didn't arrive by the straight-line
4883 * code, so read marks in the state must propagate to the parent regardless
4884 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 4885 * in mark_reg_read() is for.
8e9cd9ce 4886 */
f4d7e40a
AS
4887static int propagate_liveness(struct bpf_verifier_env *env,
4888 const struct bpf_verifier_state *vstate,
4889 struct bpf_verifier_state *vparent)
dc503a8a 4890{
f4d7e40a
AS
4891 int i, frame, err = 0;
4892 struct bpf_func_state *state, *parent;
dc503a8a 4893
f4d7e40a
AS
4894 if (vparent->curframe != vstate->curframe) {
4895 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4896 vparent->curframe, vstate->curframe);
4897 return -EFAULT;
4898 }
dc503a8a
EC
4899 /* Propagate read liveness of registers... */
4900 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4901 /* We don't need to worry about FP liveness because it's read-only */
4902 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 4903 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 4904 continue;
f4d7e40a 4905 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
679c782d
EC
4906 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i],
4907 &vparent->frame[vstate->curframe]->regs[i]);
f4d7e40a
AS
4908 if (err)
4909 return err;
dc503a8a
EC
4910 }
4911 }
f4d7e40a 4912
dc503a8a 4913 /* ... and stack slots */
f4d7e40a
AS
4914 for (frame = 0; frame <= vstate->curframe; frame++) {
4915 state = vstate->frame[frame];
4916 parent = vparent->frame[frame];
4917 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4918 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
4919 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4920 continue;
4921 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
679c782d
EC
4922 mark_reg_read(env, &state->stack[i].spilled_ptr,
4923 &parent->stack[i].spilled_ptr);
dc503a8a
EC
4924 }
4925 }
f4d7e40a 4926 return err;
dc503a8a
EC
4927}
4928
58e2af8b 4929static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 4930{
58e2af8b
JK
4931 struct bpf_verifier_state_list *new_sl;
4932 struct bpf_verifier_state_list *sl;
679c782d 4933 struct bpf_verifier_state *cur = env->cur_state, *new;
f4d7e40a 4934 int i, j, err;
f1bca824
AS
4935
4936 sl = env->explored_states[insn_idx];
4937 if (!sl)
4938 /* this 'insn_idx' instruction wasn't marked, so we will not
4939 * be doing state search here
4940 */
4941 return 0;
4942
4943 while (sl != STATE_LIST_MARK) {
638f5b90 4944 if (states_equal(env, &sl->state, cur)) {
f1bca824 4945 /* reached equivalent register/stack state,
dc503a8a
EC
4946 * prune the search.
4947 * Registers read by the continuation are read by us.
8e9cd9ce
EC
4948 * If we have any write marks in env->cur_state, they
4949 * will prevent corresponding reads in the continuation
4950 * from reaching our parent (an explored_state). Our
4951 * own state will get the read marks recorded, but
4952 * they'll be immediately forgotten as we're pruning
4953 * this state and will pop a new one.
f1bca824 4954 */
f4d7e40a
AS
4955 err = propagate_liveness(env, &sl->state, cur);
4956 if (err)
4957 return err;
f1bca824 4958 return 1;
dc503a8a 4959 }
f1bca824
AS
4960 sl = sl->next;
4961 }
4962
4963 /* there were no equivalent states, remember current one.
4964 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
4965 * but it will either reach outer most bpf_exit (which means it's safe)
4966 * or it will be rejected. Since there are no loops, we won't be
4967 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4968 * again on the way to bpf_exit
f1bca824 4969 */
638f5b90 4970 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
4971 if (!new_sl)
4972 return -ENOMEM;
4973
4974 /* add new state to the head of linked list */
679c782d
EC
4975 new = &new_sl->state;
4976 err = copy_verifier_state(new, cur);
1969db47 4977 if (err) {
679c782d 4978 free_verifier_state(new, false);
1969db47
AS
4979 kfree(new_sl);
4980 return err;
4981 }
f1bca824
AS
4982 new_sl->next = env->explored_states[insn_idx];
4983 env->explored_states[insn_idx] = new_sl;
dc503a8a 4984 /* connect new state to parentage chain */
679c782d
EC
4985 for (i = 0; i < BPF_REG_FP; i++)
4986 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i];
8e9cd9ce
EC
4987 /* clear write marks in current state: the writes we did are not writes
4988 * our child did, so they don't screen off its reads from us.
4989 * (There are no read marks in current state, because reads always mark
4990 * their parent and current state never has children yet. Only
4991 * explored_states can get read marks.)
4992 */
dc503a8a 4993 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
4994 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4995
4996 /* all stack frames are accessible from callee, clear them all */
4997 for (j = 0; j <= cur->curframe; j++) {
4998 struct bpf_func_state *frame = cur->frame[j];
679c782d 4999 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 5000
679c782d 5001 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 5002 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
5003 frame->stack[i].spilled_ptr.parent =
5004 &newframe->stack[i].spilled_ptr;
5005 }
f4d7e40a 5006 }
f1bca824
AS
5007 return 0;
5008}
5009
c64b7983
JS
5010/* Return true if it's OK to have the same insn return a different type. */
5011static bool reg_type_mismatch_ok(enum bpf_reg_type type)
5012{
5013 switch (type) {
5014 case PTR_TO_CTX:
5015 case PTR_TO_SOCKET:
5016 case PTR_TO_SOCKET_OR_NULL:
5017 return false;
5018 default:
5019 return true;
5020 }
5021}
5022
5023/* If an instruction was previously used with particular pointer types, then we
5024 * need to be careful to avoid cases such as the below, where it may be ok
5025 * for one branch accessing the pointer, but not ok for the other branch:
5026 *
5027 * R1 = sock_ptr
5028 * goto X;
5029 * ...
5030 * R1 = some_other_valid_ptr;
5031 * goto X;
5032 * ...
5033 * R2 = *(u32 *)(R1 + 0);
5034 */
5035static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
5036{
5037 return src != prev && (!reg_type_mismatch_ok(src) ||
5038 !reg_type_mismatch_ok(prev));
5039}
5040
58e2af8b 5041static int do_check(struct bpf_verifier_env *env)
17a52670 5042{
638f5b90 5043 struct bpf_verifier_state *state;
17a52670 5044 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 5045 struct bpf_reg_state *regs;
f4d7e40a 5046 int insn_cnt = env->prog->len, i;
17a52670
AS
5047 int insn_idx, prev_insn_idx = 0;
5048 int insn_processed = 0;
5049 bool do_print_state = false;
5050
638f5b90
AS
5051 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
5052 if (!state)
5053 return -ENOMEM;
f4d7e40a 5054 state->curframe = 0;
f4d7e40a
AS
5055 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
5056 if (!state->frame[0]) {
5057 kfree(state);
5058 return -ENOMEM;
5059 }
5060 env->cur_state = state;
5061 init_func_state(env, state->frame[0],
5062 BPF_MAIN_FUNC /* callsite */,
5063 0 /* frameno */,
5064 0 /* subprogno, zero == main subprog */);
17a52670
AS
5065 insn_idx = 0;
5066 for (;;) {
5067 struct bpf_insn *insn;
5068 u8 class;
5069 int err;
5070
5071 if (insn_idx >= insn_cnt) {
61bd5218 5072 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
5073 insn_idx, insn_cnt);
5074 return -EFAULT;
5075 }
5076
5077 insn = &insns[insn_idx];
5078 class = BPF_CLASS(insn->code);
5079
07016151 5080 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
5081 verbose(env,
5082 "BPF program is too large. Processed %d insn\n",
17a52670
AS
5083 insn_processed);
5084 return -E2BIG;
5085 }
5086
f1bca824
AS
5087 err = is_state_visited(env, insn_idx);
5088 if (err < 0)
5089 return err;
5090 if (err == 1) {
5091 /* found equivalent state, can prune the search */
61bd5218 5092 if (env->log.level) {
f1bca824 5093 if (do_print_state)
61bd5218 5094 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
5095 prev_insn_idx, insn_idx);
5096 else
61bd5218 5097 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
5098 }
5099 goto process_bpf_exit;
5100 }
5101
3c2ce60b
DB
5102 if (need_resched())
5103 cond_resched();
5104
61bd5218
JK
5105 if (env->log.level > 1 || (env->log.level && do_print_state)) {
5106 if (env->log.level > 1)
5107 verbose(env, "%d:", insn_idx);
c5fc9692 5108 else
61bd5218 5109 verbose(env, "\nfrom %d to %d:",
c5fc9692 5110 prev_insn_idx, insn_idx);
f4d7e40a 5111 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
5112 do_print_state = false;
5113 }
5114
61bd5218 5115 if (env->log.level) {
7105e828
DB
5116 const struct bpf_insn_cbs cbs = {
5117 .cb_print = verbose,
abe08840 5118 .private_data = env,
7105e828
DB
5119 };
5120
61bd5218 5121 verbose(env, "%d: ", insn_idx);
abe08840 5122 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
5123 }
5124
cae1927c
JK
5125 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5126 err = bpf_prog_offload_verify_insn(env, insn_idx,
5127 prev_insn_idx);
5128 if (err)
5129 return err;
5130 }
13a27dfc 5131
638f5b90 5132 regs = cur_regs(env);
c131187d 5133 env->insn_aux_data[insn_idx].seen = true;
fd978bf7 5134
17a52670 5135 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 5136 err = check_alu_op(env, insn);
17a52670
AS
5137 if (err)
5138 return err;
5139
5140 } else if (class == BPF_LDX) {
3df126f3 5141 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
5142
5143 /* check for reserved fields is already done */
5144
17a52670 5145 /* check src operand */
dc503a8a 5146 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5147 if (err)
5148 return err;
5149
dc503a8a 5150 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
5151 if (err)
5152 return err;
5153
725f9dcd
AS
5154 src_reg_type = regs[insn->src_reg].type;
5155
17a52670
AS
5156 /* check that memory (src_reg + off) is readable,
5157 * the state of dst_reg will be updated by this func
5158 */
31fd8581 5159 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 5160 BPF_SIZE(insn->code), BPF_READ,
ca369602 5161 insn->dst_reg, false);
17a52670
AS
5162 if (err)
5163 return err;
5164
3df126f3
JK
5165 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
5166
5167 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
5168 /* saw a valid insn
5169 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 5170 * save type to validate intersecting paths
9bac3d6d 5171 */
3df126f3 5172 *prev_src_type = src_reg_type;
9bac3d6d 5173
c64b7983 5174 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
5175 /* ABuser program is trying to use the same insn
5176 * dst_reg = *(u32*) (src_reg + off)
5177 * with different pointer types:
5178 * src_reg == ctx in one branch and
5179 * src_reg == stack|map in some other branch.
5180 * Reject it.
5181 */
61bd5218 5182 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
5183 return -EINVAL;
5184 }
5185
17a52670 5186 } else if (class == BPF_STX) {
3df126f3 5187 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 5188
17a52670 5189 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 5190 err = check_xadd(env, insn_idx, insn);
17a52670
AS
5191 if (err)
5192 return err;
5193 insn_idx++;
5194 continue;
5195 }
5196
17a52670 5197 /* check src1 operand */
dc503a8a 5198 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
5199 if (err)
5200 return err;
5201 /* check src2 operand */
dc503a8a 5202 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5203 if (err)
5204 return err;
5205
d691f9e8
AS
5206 dst_reg_type = regs[insn->dst_reg].type;
5207
17a52670 5208 /* check that memory (dst_reg + off) is writeable */
31fd8581 5209 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5210 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5211 insn->src_reg, false);
17a52670
AS
5212 if (err)
5213 return err;
5214
3df126f3
JK
5215 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
5216
5217 if (*prev_dst_type == NOT_INIT) {
5218 *prev_dst_type = dst_reg_type;
c64b7983 5219 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 5220 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
5221 return -EINVAL;
5222 }
5223
17a52670
AS
5224 } else if (class == BPF_ST) {
5225 if (BPF_MODE(insn->code) != BPF_MEM ||
5226 insn->src_reg != BPF_REG_0) {
61bd5218 5227 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
5228 return -EINVAL;
5229 }
5230 /* check src operand */
dc503a8a 5231 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
5232 if (err)
5233 return err;
5234
f37a8cb8 5235 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a
JS
5236 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
5237 insn->dst_reg, reg_type_str[insn->dst_reg]);
f37a8cb8
DB
5238 return -EACCES;
5239 }
5240
17a52670 5241 /* check that memory (dst_reg + off) is writeable */
31fd8581 5242 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 5243 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 5244 -1, false);
17a52670
AS
5245 if (err)
5246 return err;
5247
5248 } else if (class == BPF_JMP) {
5249 u8 opcode = BPF_OP(insn->code);
5250
5251 if (opcode == BPF_CALL) {
5252 if (BPF_SRC(insn->code) != BPF_K ||
5253 insn->off != 0 ||
f4d7e40a
AS
5254 (insn->src_reg != BPF_REG_0 &&
5255 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 5256 insn->dst_reg != BPF_REG_0) {
61bd5218 5257 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
5258 return -EINVAL;
5259 }
5260
f4d7e40a
AS
5261 if (insn->src_reg == BPF_PSEUDO_CALL)
5262 err = check_func_call(env, insn, &insn_idx);
5263 else
5264 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
5265 if (err)
5266 return err;
5267
5268 } else if (opcode == BPF_JA) {
5269 if (BPF_SRC(insn->code) != BPF_K ||
5270 insn->imm != 0 ||
5271 insn->src_reg != BPF_REG_0 ||
5272 insn->dst_reg != BPF_REG_0) {
61bd5218 5273 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
5274 return -EINVAL;
5275 }
5276
5277 insn_idx += insn->off + 1;
5278 continue;
5279
5280 } else if (opcode == BPF_EXIT) {
5281 if (BPF_SRC(insn->code) != BPF_K ||
5282 insn->imm != 0 ||
5283 insn->src_reg != BPF_REG_0 ||
5284 insn->dst_reg != BPF_REG_0) {
61bd5218 5285 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
5286 return -EINVAL;
5287 }
5288
f4d7e40a
AS
5289 if (state->curframe) {
5290 /* exit from nested function */
5291 prev_insn_idx = insn_idx;
5292 err = prepare_func_exit(env, &insn_idx);
5293 if (err)
5294 return err;
5295 do_print_state = true;
5296 continue;
5297 }
5298
fd978bf7
JS
5299 err = check_reference_leak(env);
5300 if (err)
5301 return err;
5302
17a52670
AS
5303 /* eBPF calling convetion is such that R0 is used
5304 * to return the value from eBPF program.
5305 * Make sure that it's readable at this time
5306 * of bpf_exit, which means that program wrote
5307 * something into it earlier
5308 */
dc503a8a 5309 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
5310 if (err)
5311 return err;
5312
1be7f75d 5313 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 5314 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
5315 return -EACCES;
5316 }
5317
390ee7e2
AS
5318 err = check_return_code(env);
5319 if (err)
5320 return err;
f1bca824 5321process_bpf_exit:
638f5b90
AS
5322 err = pop_stack(env, &prev_insn_idx, &insn_idx);
5323 if (err < 0) {
5324 if (err != -ENOENT)
5325 return err;
17a52670
AS
5326 break;
5327 } else {
5328 do_print_state = true;
5329 continue;
5330 }
5331 } else {
5332 err = check_cond_jmp_op(env, insn, &insn_idx);
5333 if (err)
5334 return err;
5335 }
5336 } else if (class == BPF_LD) {
5337 u8 mode = BPF_MODE(insn->code);
5338
5339 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
5340 err = check_ld_abs(env, insn);
5341 if (err)
5342 return err;
5343
17a52670
AS
5344 } else if (mode == BPF_IMM) {
5345 err = check_ld_imm(env, insn);
5346 if (err)
5347 return err;
5348
5349 insn_idx++;
c131187d 5350 env->insn_aux_data[insn_idx].seen = true;
17a52670 5351 } else {
61bd5218 5352 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
5353 return -EINVAL;
5354 }
5355 } else {
61bd5218 5356 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
5357 return -EINVAL;
5358 }
5359
5360 insn_idx++;
5361 }
5362
4bd95f4b
DB
5363 verbose(env, "processed %d insns (limit %d), stack depth ",
5364 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 5365 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 5366 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
5367
5368 verbose(env, "%d", depth);
f910cefa 5369 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
5370 verbose(env, "+");
5371 }
5372 verbose(env, "\n");
9c8105bd 5373 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
5374 return 0;
5375}
5376
56f668df
MKL
5377static int check_map_prealloc(struct bpf_map *map)
5378{
5379 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
5380 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5381 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
5382 !(map->map_flags & BPF_F_NO_PREALLOC);
5383}
5384
61bd5218
JK
5385static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5386 struct bpf_map *map,
fdc15d38
AS
5387 struct bpf_prog *prog)
5388
5389{
56f668df
MKL
5390 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5391 * preallocated hash maps, since doing memory allocation
5392 * in overflow_handler can crash depending on where nmi got
5393 * triggered.
5394 */
5395 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5396 if (!check_map_prealloc(map)) {
61bd5218 5397 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
5398 return -EINVAL;
5399 }
5400 if (map->inner_map_meta &&
5401 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 5402 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
5403 return -EINVAL;
5404 }
fdc15d38 5405 }
a3884572
JK
5406
5407 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 5408 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
5409 verbose(env, "offload device mismatch between prog and map\n");
5410 return -EINVAL;
5411 }
5412
fdc15d38
AS
5413 return 0;
5414}
5415
b741f163
RG
5416static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
5417{
5418 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
5419 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
5420}
5421
0246e64d
AS
5422/* look for pseudo eBPF instructions that access map FDs and
5423 * replace them with actual map pointers
5424 */
58e2af8b 5425static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
5426{
5427 struct bpf_insn *insn = env->prog->insnsi;
5428 int insn_cnt = env->prog->len;
fdc15d38 5429 int i, j, err;
0246e64d 5430
f1f7714e 5431 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
5432 if (err)
5433 return err;
5434
0246e64d 5435 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 5436 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 5437 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 5438 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
5439 return -EINVAL;
5440 }
5441
d691f9e8
AS
5442 if (BPF_CLASS(insn->code) == BPF_STX &&
5443 ((BPF_MODE(insn->code) != BPF_MEM &&
5444 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5445 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5446 return -EINVAL;
5447 }
5448
0246e64d
AS
5449 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5450 struct bpf_map *map;
5451 struct fd f;
5452
5453 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5454 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5455 insn[1].off != 0) {
61bd5218 5456 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5457 return -EINVAL;
5458 }
5459
5460 if (insn->src_reg == 0)
5461 /* valid generic load 64-bit imm */
5462 goto next_insn;
5463
5464 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5465 verbose(env,
5466 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5467 return -EINVAL;
5468 }
5469
5470 f = fdget(insn->imm);
c2101297 5471 map = __bpf_map_get(f);
0246e64d 5472 if (IS_ERR(map)) {
61bd5218 5473 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5474 insn->imm);
0246e64d
AS
5475 return PTR_ERR(map);
5476 }
5477
61bd5218 5478 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5479 if (err) {
5480 fdput(f);
5481 return err;
5482 }
5483
0246e64d
AS
5484 /* store map pointer inside BPF_LD_IMM64 instruction */
5485 insn[0].imm = (u32) (unsigned long) map;
5486 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5487
5488 /* check whether we recorded this map already */
5489 for (j = 0; j < env->used_map_cnt; j++)
5490 if (env->used_maps[j] == map) {
5491 fdput(f);
5492 goto next_insn;
5493 }
5494
5495 if (env->used_map_cnt >= MAX_USED_MAPS) {
5496 fdput(f);
5497 return -E2BIG;
5498 }
5499
0246e64d
AS
5500 /* hold the map. If the program is rejected by verifier,
5501 * the map will be released by release_maps() or it
5502 * will be used by the valid program until it's unloaded
ab7f5bf0 5503 * and all maps are released in free_used_maps()
0246e64d 5504 */
92117d84
AS
5505 map = bpf_map_inc(map, false);
5506 if (IS_ERR(map)) {
5507 fdput(f);
5508 return PTR_ERR(map);
5509 }
5510 env->used_maps[env->used_map_cnt++] = map;
5511
b741f163 5512 if (bpf_map_is_cgroup_storage(map) &&
de9cbbaa 5513 bpf_cgroup_storage_assign(env->prog, map)) {
b741f163 5514 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
5515 fdput(f);
5516 return -EBUSY;
5517 }
5518
0246e64d
AS
5519 fdput(f);
5520next_insn:
5521 insn++;
5522 i++;
5e581dad
DB
5523 continue;
5524 }
5525
5526 /* Basic sanity check before we invest more work here. */
5527 if (!bpf_opcode_in_insntable(insn->code)) {
5528 verbose(env, "unknown opcode %02x\n", insn->code);
5529 return -EINVAL;
0246e64d
AS
5530 }
5531 }
5532
5533 /* now all pseudo BPF_LD_IMM64 instructions load valid
5534 * 'struct bpf_map *' into a register instead of user map_fd.
5535 * These pointers will be used later by verifier to validate map access.
5536 */
5537 return 0;
5538}
5539
5540/* drop refcnt of maps used by the rejected program */
58e2af8b 5541static void release_maps(struct bpf_verifier_env *env)
0246e64d 5542{
8bad74f9 5543 enum bpf_cgroup_storage_type stype;
0246e64d
AS
5544 int i;
5545
8bad74f9
RG
5546 for_each_cgroup_storage_type(stype) {
5547 if (!env->prog->aux->cgroup_storage[stype])
5548 continue;
de9cbbaa 5549 bpf_cgroup_storage_release(env->prog,
8bad74f9
RG
5550 env->prog->aux->cgroup_storage[stype]);
5551 }
de9cbbaa 5552
0246e64d
AS
5553 for (i = 0; i < env->used_map_cnt; i++)
5554 bpf_map_put(env->used_maps[i]);
5555}
5556
5557/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 5558static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
5559{
5560 struct bpf_insn *insn = env->prog->insnsi;
5561 int insn_cnt = env->prog->len;
5562 int i;
5563
5564 for (i = 0; i < insn_cnt; i++, insn++)
5565 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5566 insn->src_reg = 0;
5567}
5568
8041902d
AS
5569/* single env->prog->insni[off] instruction was replaced with the range
5570 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5571 * [0, off) and [off, end) to new locations, so the patched range stays zero
5572 */
5573static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5574 u32 off, u32 cnt)
5575{
5576 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 5577 int i;
8041902d
AS
5578
5579 if (cnt == 1)
5580 return 0;
fad953ce
KC
5581 new_data = vzalloc(array_size(prog_len,
5582 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
5583 if (!new_data)
5584 return -ENOMEM;
5585 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5586 memcpy(new_data + off + cnt - 1, old_data + off,
5587 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
5588 for (i = off; i < off + cnt - 1; i++)
5589 new_data[i].seen = true;
8041902d
AS
5590 env->insn_aux_data = new_data;
5591 vfree(old_data);
5592 return 0;
5593}
5594
cc8b0b92
AS
5595static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5596{
5597 int i;
5598
5599 if (len == 1)
5600 return;
4cb3d99c
JW
5601 /* NOTE: fake 'exit' subprog should be updated as well. */
5602 for (i = 0; i <= env->subprog_cnt; i++) {
9c8105bd 5603 if (env->subprog_info[i].start < off)
cc8b0b92 5604 continue;
9c8105bd 5605 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
5606 }
5607}
5608
8041902d
AS
5609static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5610 const struct bpf_insn *patch, u32 len)
5611{
5612 struct bpf_prog *new_prog;
5613
5614 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5615 if (!new_prog)
5616 return NULL;
5617 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5618 return NULL;
cc8b0b92 5619 adjust_subprog_starts(env, off, len);
8041902d
AS
5620 return new_prog;
5621}
5622
2a5418a1
DB
5623/* The verifier does more data flow analysis than llvm and will not
5624 * explore branches that are dead at run time. Malicious programs can
5625 * have dead code too. Therefore replace all dead at-run-time code
5626 * with 'ja -1'.
5627 *
5628 * Just nops are not optimal, e.g. if they would sit at the end of the
5629 * program and through another bug we would manage to jump there, then
5630 * we'd execute beyond program memory otherwise. Returning exception
5631 * code also wouldn't work since we can have subprogs where the dead
5632 * code could be located.
c131187d
AS
5633 */
5634static void sanitize_dead_code(struct bpf_verifier_env *env)
5635{
5636 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 5637 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
5638 struct bpf_insn *insn = env->prog->insnsi;
5639 const int insn_cnt = env->prog->len;
5640 int i;
5641
5642 for (i = 0; i < insn_cnt; i++) {
5643 if (aux_data[i].seen)
5644 continue;
2a5418a1 5645 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
5646 }
5647}
5648
c64b7983
JS
5649/* convert load instructions that access fields of a context type into a
5650 * sequence of instructions that access fields of the underlying structure:
5651 * struct __sk_buff -> struct sk_buff
5652 * struct bpf_sock_ops -> struct sock
9bac3d6d 5653 */
58e2af8b 5654static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5655{
00176a34 5656 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5657 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5658 const int insn_cnt = env->prog->len;
36bbef52 5659 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 5660 struct bpf_prog *new_prog;
d691f9e8 5661 enum bpf_access_type type;
f96da094
DB
5662 bool is_narrower_load;
5663 u32 target_size;
9bac3d6d 5664
36bbef52
DB
5665 if (ops->gen_prologue) {
5666 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5667 env->prog);
5668 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5669 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5670 return -EINVAL;
5671 } else if (cnt) {
8041902d 5672 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5673 if (!new_prog)
5674 return -ENOMEM;
8041902d 5675
36bbef52 5676 env->prog = new_prog;
3df126f3 5677 delta += cnt - 1;
36bbef52
DB
5678 }
5679 }
5680
c64b7983 5681 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
5682 return 0;
5683
3df126f3 5684 insn = env->prog->insnsi + delta;
36bbef52 5685
9bac3d6d 5686 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
5687 bpf_convert_ctx_access_t convert_ctx_access;
5688
62c7989b
DB
5689 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5690 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5691 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5692 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5693 type = BPF_READ;
62c7989b
DB
5694 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5695 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5696 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5697 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5698 type = BPF_WRITE;
5699 else
9bac3d6d
AS
5700 continue;
5701
af86ca4e
AS
5702 if (type == BPF_WRITE &&
5703 env->insn_aux_data[i + delta].sanitize_stack_off) {
5704 struct bpf_insn patch[] = {
5705 /* Sanitize suspicious stack slot with zero.
5706 * There are no memory dependencies for this store,
5707 * since it's only using frame pointer and immediate
5708 * constant of zero
5709 */
5710 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5711 env->insn_aux_data[i + delta].sanitize_stack_off,
5712 0),
5713 /* the original STX instruction will immediately
5714 * overwrite the same stack slot with appropriate value
5715 */
5716 *insn,
5717 };
5718
5719 cnt = ARRAY_SIZE(patch);
5720 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5721 if (!new_prog)
5722 return -ENOMEM;
5723
5724 delta += cnt - 1;
5725 env->prog = new_prog;
5726 insn = new_prog->insnsi + i + delta;
5727 continue;
5728 }
5729
c64b7983
JS
5730 switch (env->insn_aux_data[i + delta].ptr_type) {
5731 case PTR_TO_CTX:
5732 if (!ops->convert_ctx_access)
5733 continue;
5734 convert_ctx_access = ops->convert_ctx_access;
5735 break;
5736 case PTR_TO_SOCKET:
5737 convert_ctx_access = bpf_sock_convert_ctx_access;
5738 break;
5739 default:
9bac3d6d 5740 continue;
c64b7983 5741 }
9bac3d6d 5742
31fd8581 5743 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5744 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5745
5746 /* If the read access is a narrower load of the field,
5747 * convert to a 4/8-byte load, to minimum program type specific
5748 * convert_ctx_access changes. If conversion is successful,
5749 * we will apply proper mask to the result.
5750 */
f96da094 5751 is_narrower_load = size < ctx_field_size;
31fd8581 5752 if (is_narrower_load) {
bc23105c 5753 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
f96da094
DB
5754 u32 off = insn->off;
5755 u8 size_code;
5756
5757 if (type == BPF_WRITE) {
61bd5218 5758 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5759 return -EINVAL;
5760 }
31fd8581 5761
f96da094 5762 size_code = BPF_H;
31fd8581
YS
5763 if (ctx_field_size == 4)
5764 size_code = BPF_W;
5765 else if (ctx_field_size == 8)
5766 size_code = BPF_DW;
f96da094 5767
bc23105c 5768 insn->off = off & ~(size_default - 1);
31fd8581
YS
5769 insn->code = BPF_LDX | BPF_MEM | size_code;
5770 }
f96da094
DB
5771
5772 target_size = 0;
c64b7983
JS
5773 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
5774 &target_size);
f96da094
DB
5775 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5776 (ctx_field_size && !target_size)) {
61bd5218 5777 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5778 return -EINVAL;
5779 }
f96da094
DB
5780
5781 if (is_narrower_load && size < target_size) {
31fd8581
YS
5782 if (ctx_field_size <= 4)
5783 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5784 (1 << size * 8) - 1);
31fd8581
YS
5785 else
5786 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5787 (1 << size * 8) - 1);
31fd8581 5788 }
9bac3d6d 5789
8041902d 5790 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5791 if (!new_prog)
5792 return -ENOMEM;
5793
3df126f3 5794 delta += cnt - 1;
9bac3d6d
AS
5795
5796 /* keep walking new program and skip insns we just inserted */
5797 env->prog = new_prog;
3df126f3 5798 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5799 }
5800
5801 return 0;
5802}
5803
1c2a088a
AS
5804static int jit_subprogs(struct bpf_verifier_env *env)
5805{
5806 struct bpf_prog *prog = env->prog, **func, *tmp;
5807 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5808 struct bpf_insn *insn;
1c2a088a
AS
5809 void *old_bpf_func;
5810 int err = -ENOMEM;
5811
f910cefa 5812 if (env->subprog_cnt <= 1)
1c2a088a
AS
5813 return 0;
5814
7105e828 5815 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5816 if (insn->code != (BPF_JMP | BPF_CALL) ||
5817 insn->src_reg != BPF_PSEUDO_CALL)
5818 continue;
c7a89784
DB
5819 /* Upon error here we cannot fall back to interpreter but
5820 * need a hard reject of the program. Thus -EFAULT is
5821 * propagated in any case.
5822 */
1c2a088a
AS
5823 subprog = find_subprog(env, i + insn->imm + 1);
5824 if (subprog < 0) {
5825 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5826 i + insn->imm + 1);
5827 return -EFAULT;
5828 }
5829 /* temporarily remember subprog id inside insn instead of
5830 * aux_data, since next loop will split up all insns into funcs
5831 */
f910cefa 5832 insn->off = subprog;
1c2a088a
AS
5833 /* remember original imm in case JIT fails and fallback
5834 * to interpreter will be needed
5835 */
5836 env->insn_aux_data[i].call_imm = insn->imm;
5837 /* point imm to __bpf_call_base+1 from JITs point of view */
5838 insn->imm = 1;
5839 }
5840
6396bb22 5841 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 5842 if (!func)
c7a89784 5843 goto out_undo_insn;
1c2a088a 5844
f910cefa 5845 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 5846 subprog_start = subprog_end;
4cb3d99c 5847 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
5848
5849 len = subprog_end - subprog_start;
5850 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5851 if (!func[i])
5852 goto out_free;
5853 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5854 len * sizeof(struct bpf_insn));
4f74d809 5855 func[i]->type = prog->type;
1c2a088a 5856 func[i]->len = len;
4f74d809
DB
5857 if (bpf_prog_calc_tag(func[i]))
5858 goto out_free;
1c2a088a
AS
5859 func[i]->is_func = 1;
5860 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5861 * Long term would need debug info to populate names
5862 */
5863 func[i]->aux->name[0] = 'F';
9c8105bd 5864 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a
AS
5865 func[i]->jit_requested = 1;
5866 func[i] = bpf_int_jit_compile(func[i]);
5867 if (!func[i]->jited) {
5868 err = -ENOTSUPP;
5869 goto out_free;
5870 }
5871 cond_resched();
5872 }
5873 /* at this point all bpf functions were successfully JITed
5874 * now populate all bpf_calls with correct addresses and
5875 * run last pass of JIT
5876 */
f910cefa 5877 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5878 insn = func[i]->insnsi;
5879 for (j = 0; j < func[i]->len; j++, insn++) {
5880 if (insn->code != (BPF_JMP | BPF_CALL) ||
5881 insn->src_reg != BPF_PSEUDO_CALL)
5882 continue;
5883 subprog = insn->off;
1c2a088a
AS
5884 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5885 func[subprog]->bpf_func -
5886 __bpf_call_base;
5887 }
2162fed4
SD
5888
5889 /* we use the aux data to keep a list of the start addresses
5890 * of the JITed images for each function in the program
5891 *
5892 * for some architectures, such as powerpc64, the imm field
5893 * might not be large enough to hold the offset of the start
5894 * address of the callee's JITed image from __bpf_call_base
5895 *
5896 * in such cases, we can lookup the start address of a callee
5897 * by using its subprog id, available from the off field of
5898 * the call instruction, as an index for this list
5899 */
5900 func[i]->aux->func = func;
5901 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 5902 }
f910cefa 5903 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5904 old_bpf_func = func[i]->bpf_func;
5905 tmp = bpf_int_jit_compile(func[i]);
5906 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5907 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 5908 err = -ENOTSUPP;
1c2a088a
AS
5909 goto out_free;
5910 }
5911 cond_resched();
5912 }
5913
5914 /* finally lock prog and jit images for all functions and
5915 * populate kallsysm
5916 */
f910cefa 5917 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5918 bpf_prog_lock_ro(func[i]);
5919 bpf_prog_kallsyms_add(func[i]);
5920 }
7105e828
DB
5921
5922 /* Last step: make now unused interpreter insns from main
5923 * prog consistent for later dump requests, so they can
5924 * later look the same as if they were interpreted only.
5925 */
5926 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7105e828
DB
5927 if (insn->code != (BPF_JMP | BPF_CALL) ||
5928 insn->src_reg != BPF_PSEUDO_CALL)
5929 continue;
5930 insn->off = env->insn_aux_data[i].call_imm;
5931 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 5932 insn->imm = subprog;
7105e828
DB
5933 }
5934
1c2a088a
AS
5935 prog->jited = 1;
5936 prog->bpf_func = func[0]->bpf_func;
5937 prog->aux->func = func;
f910cefa 5938 prog->aux->func_cnt = env->subprog_cnt;
1c2a088a
AS
5939 return 0;
5940out_free:
f910cefa 5941 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
5942 if (func[i])
5943 bpf_jit_free(func[i]);
5944 kfree(func);
c7a89784 5945out_undo_insn:
1c2a088a
AS
5946 /* cleanup main prog to be interpreted */
5947 prog->jit_requested = 0;
5948 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5949 if (insn->code != (BPF_JMP | BPF_CALL) ||
5950 insn->src_reg != BPF_PSEUDO_CALL)
5951 continue;
5952 insn->off = 0;
5953 insn->imm = env->insn_aux_data[i].call_imm;
5954 }
5955 return err;
5956}
5957
1ea47e01
AS
5958static int fixup_call_args(struct bpf_verifier_env *env)
5959{
19d28fbd 5960#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5961 struct bpf_prog *prog = env->prog;
5962 struct bpf_insn *insn = prog->insnsi;
5963 int i, depth;
19d28fbd
DM
5964#endif
5965 int err;
1ea47e01 5966
19d28fbd
DM
5967 err = 0;
5968 if (env->prog->jit_requested) {
5969 err = jit_subprogs(env);
5970 if (err == 0)
1c2a088a 5971 return 0;
c7a89784
DB
5972 if (err == -EFAULT)
5973 return err;
19d28fbd
DM
5974 }
5975#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5976 for (i = 0; i < prog->len; i++, insn++) {
5977 if (insn->code != (BPF_JMP | BPF_CALL) ||
5978 insn->src_reg != BPF_PSEUDO_CALL)
5979 continue;
5980 depth = get_callee_stack_depth(env, insn, i);
5981 if (depth < 0)
5982 return depth;
5983 bpf_patch_call_args(insn, depth);
5984 }
19d28fbd
DM
5985 err = 0;
5986#endif
5987 return err;
1ea47e01
AS
5988}
5989
79741b3b 5990/* fixup insn->imm field of bpf_call instructions
81ed18ab 5991 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
5992 *
5993 * this function is called after eBPF program passed verification
5994 */
79741b3b 5995static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 5996{
79741b3b
AS
5997 struct bpf_prog *prog = env->prog;
5998 struct bpf_insn *insn = prog->insnsi;
e245c5c6 5999 const struct bpf_func_proto *fn;
79741b3b 6000 const int insn_cnt = prog->len;
09772d92 6001 const struct bpf_map_ops *ops;
c93552c4 6002 struct bpf_insn_aux_data *aux;
81ed18ab
AS
6003 struct bpf_insn insn_buf[16];
6004 struct bpf_prog *new_prog;
6005 struct bpf_map *map_ptr;
6006 int i, cnt, delta = 0;
e245c5c6 6007
79741b3b 6008 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
6009 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
6010 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6011 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 6012 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
6013 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
6014 struct bpf_insn mask_and_div[] = {
6015 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6016 /* Rx div 0 -> 0 */
6017 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
6018 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
6019 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
6020 *insn,
6021 };
6022 struct bpf_insn mask_and_mod[] = {
6023 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
6024 /* Rx mod 0 -> Rx */
6025 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
6026 *insn,
6027 };
6028 struct bpf_insn *patchlet;
6029
6030 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
6031 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
6032 patchlet = mask_and_div + (is64 ? 1 : 0);
6033 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
6034 } else {
6035 patchlet = mask_and_mod + (is64 ? 1 : 0);
6036 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
6037 }
6038
6039 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
6040 if (!new_prog)
6041 return -ENOMEM;
6042
6043 delta += cnt - 1;
6044 env->prog = prog = new_prog;
6045 insn = new_prog->insnsi + i + delta;
6046 continue;
6047 }
6048
e0cea7ce
DB
6049 if (BPF_CLASS(insn->code) == BPF_LD &&
6050 (BPF_MODE(insn->code) == BPF_ABS ||
6051 BPF_MODE(insn->code) == BPF_IND)) {
6052 cnt = env->ops->gen_ld_abs(insn, insn_buf);
6053 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6054 verbose(env, "bpf verifier is misconfigured\n");
6055 return -EINVAL;
6056 }
6057
6058 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6059 if (!new_prog)
6060 return -ENOMEM;
6061
6062 delta += cnt - 1;
6063 env->prog = prog = new_prog;
6064 insn = new_prog->insnsi + i + delta;
6065 continue;
6066 }
6067
79741b3b
AS
6068 if (insn->code != (BPF_JMP | BPF_CALL))
6069 continue;
cc8b0b92
AS
6070 if (insn->src_reg == BPF_PSEUDO_CALL)
6071 continue;
e245c5c6 6072
79741b3b
AS
6073 if (insn->imm == BPF_FUNC_get_route_realm)
6074 prog->dst_needed = 1;
6075 if (insn->imm == BPF_FUNC_get_prandom_u32)
6076 bpf_user_rnd_init_once();
9802d865
JB
6077 if (insn->imm == BPF_FUNC_override_return)
6078 prog->kprobe_override = 1;
79741b3b 6079 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
6080 /* If we tail call into other programs, we
6081 * cannot make any assumptions since they can
6082 * be replaced dynamically during runtime in
6083 * the program array.
6084 */
6085 prog->cb_access = 1;
80a58d02 6086 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 6087
79741b3b
AS
6088 /* mark bpf_tail_call as different opcode to avoid
6089 * conditional branch in the interpeter for every normal
6090 * call and to prevent accidental JITing by JIT compiler
6091 * that doesn't support bpf_tail_call yet
e245c5c6 6092 */
79741b3b 6093 insn->imm = 0;
71189fa9 6094 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 6095
c93552c4
DB
6096 aux = &env->insn_aux_data[i + delta];
6097 if (!bpf_map_ptr_unpriv(aux))
6098 continue;
6099
b2157399
AS
6100 /* instead of changing every JIT dealing with tail_call
6101 * emit two extra insns:
6102 * if (index >= max_entries) goto out;
6103 * index &= array->index_mask;
6104 * to avoid out-of-bounds cpu speculation
6105 */
c93552c4 6106 if (bpf_map_ptr_poisoned(aux)) {
40950343 6107 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
6108 return -EINVAL;
6109 }
c93552c4
DB
6110
6111 map_ptr = BPF_MAP_PTR(aux->map_state);
b2157399
AS
6112 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
6113 map_ptr->max_entries, 2);
6114 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
6115 container_of(map_ptr,
6116 struct bpf_array,
6117 map)->index_mask);
6118 insn_buf[2] = *insn;
6119 cnt = 3;
6120 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
6121 if (!new_prog)
6122 return -ENOMEM;
6123
6124 delta += cnt - 1;
6125 env->prog = prog = new_prog;
6126 insn = new_prog->insnsi + i + delta;
79741b3b
AS
6127 continue;
6128 }
e245c5c6 6129
89c63074 6130 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
6131 * and other inlining handlers are currently limited to 64 bit
6132 * only.
89c63074 6133 */
60b58afc 6134 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
6135 (insn->imm == BPF_FUNC_map_lookup_elem ||
6136 insn->imm == BPF_FUNC_map_update_elem ||
6137 insn->imm == BPF_FUNC_map_delete_elem)) {
c93552c4
DB
6138 aux = &env->insn_aux_data[i + delta];
6139 if (bpf_map_ptr_poisoned(aux))
6140 goto patch_call_imm;
6141
6142 map_ptr = BPF_MAP_PTR(aux->map_state);
09772d92
DB
6143 ops = map_ptr->ops;
6144 if (insn->imm == BPF_FUNC_map_lookup_elem &&
6145 ops->map_gen_lookup) {
6146 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
6147 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
6148 verbose(env, "bpf verifier is misconfigured\n");
6149 return -EINVAL;
6150 }
81ed18ab 6151
09772d92
DB
6152 new_prog = bpf_patch_insn_data(env, i + delta,
6153 insn_buf, cnt);
6154 if (!new_prog)
6155 return -ENOMEM;
81ed18ab 6156
09772d92
DB
6157 delta += cnt - 1;
6158 env->prog = prog = new_prog;
6159 insn = new_prog->insnsi + i + delta;
6160 continue;
6161 }
81ed18ab 6162
09772d92
DB
6163 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
6164 (void *(*)(struct bpf_map *map, void *key))NULL));
6165 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
6166 (int (*)(struct bpf_map *map, void *key))NULL));
6167 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
6168 (int (*)(struct bpf_map *map, void *key, void *value,
6169 u64 flags))NULL));
6170 switch (insn->imm) {
6171 case BPF_FUNC_map_lookup_elem:
6172 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
6173 __bpf_call_base;
6174 continue;
6175 case BPF_FUNC_map_update_elem:
6176 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
6177 __bpf_call_base;
6178 continue;
6179 case BPF_FUNC_map_delete_elem:
6180 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
6181 __bpf_call_base;
6182 continue;
6183 }
81ed18ab 6184
09772d92 6185 goto patch_call_imm;
81ed18ab
AS
6186 }
6187
6188patch_call_imm:
5e43f899 6189 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
6190 /* all functions that have prototype and verifier allowed
6191 * programs to call them, must be real in-kernel functions
6192 */
6193 if (!fn->func) {
61bd5218
JK
6194 verbose(env,
6195 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
6196 func_id_name(insn->imm), insn->imm);
6197 return -EFAULT;
e245c5c6 6198 }
79741b3b 6199 insn->imm = fn->func - __bpf_call_base;
e245c5c6 6200 }
e245c5c6 6201
79741b3b
AS
6202 return 0;
6203}
e245c5c6 6204
58e2af8b 6205static void free_states(struct bpf_verifier_env *env)
f1bca824 6206{
58e2af8b 6207 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
6208 int i;
6209
6210 if (!env->explored_states)
6211 return;
6212
6213 for (i = 0; i < env->prog->len; i++) {
6214 sl = env->explored_states[i];
6215
6216 if (sl)
6217 while (sl != STATE_LIST_MARK) {
6218 sln = sl->next;
1969db47 6219 free_verifier_state(&sl->state, false);
f1bca824
AS
6220 kfree(sl);
6221 sl = sln;
6222 }
6223 }
6224
6225 kfree(env->explored_states);
6226}
6227
9bac3d6d 6228int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 6229{
58e2af8b 6230 struct bpf_verifier_env *env;
b9193c1b 6231 struct bpf_verifier_log *log;
51580e79
AS
6232 int ret = -EINVAL;
6233
eba0c929
AB
6234 /* no program is valid */
6235 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
6236 return -EINVAL;
6237
58e2af8b 6238 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
6239 * allocate/free it every time bpf_check() is called
6240 */
58e2af8b 6241 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
6242 if (!env)
6243 return -ENOMEM;
61bd5218 6244 log = &env->log;
cbd35700 6245
fad953ce
KC
6246 env->insn_aux_data =
6247 vzalloc(array_size(sizeof(struct bpf_insn_aux_data),
6248 (*prog)->len));
3df126f3
JK
6249 ret = -ENOMEM;
6250 if (!env->insn_aux_data)
6251 goto err_free_env;
9bac3d6d 6252 env->prog = *prog;
00176a34 6253 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 6254
cbd35700
AS
6255 /* grab the mutex to protect few globals used by verifier */
6256 mutex_lock(&bpf_verifier_lock);
6257
6258 if (attr->log_level || attr->log_buf || attr->log_size) {
6259 /* user requested verbose verifier output
6260 * and supplied buffer to store the verification trace
6261 */
e7bf8249
JK
6262 log->level = attr->log_level;
6263 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
6264 log->len_total = attr->log_size;
cbd35700
AS
6265
6266 ret = -EINVAL;
e7bf8249
JK
6267 /* log attributes have to be sane */
6268 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
6269 !log->level || !log->ubuf)
3df126f3 6270 goto err_unlock;
cbd35700 6271 }
1ad2f583
DB
6272
6273 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
6274 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 6275 env->strict_alignment = true;
cbd35700 6276
f4e3ec0d
JK
6277 ret = replace_map_fd_with_map_ptr(env);
6278 if (ret < 0)
6279 goto skip_full_check;
6280
cae1927c 6281 if (bpf_prog_is_dev_bound(env->prog->aux)) {
ab3f0063
JK
6282 ret = bpf_prog_offload_verifier_prep(env);
6283 if (ret)
f4e3ec0d 6284 goto skip_full_check;
ab3f0063
JK
6285 }
6286
9bac3d6d 6287 env->explored_states = kcalloc(env->prog->len,
58e2af8b 6288 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
6289 GFP_USER);
6290 ret = -ENOMEM;
6291 if (!env->explored_states)
6292 goto skip_full_check;
6293
cc8b0b92
AS
6294 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
6295
475fb78f
AS
6296 ret = check_cfg(env);
6297 if (ret < 0)
6298 goto skip_full_check;
6299
17a52670 6300 ret = do_check(env);
8c01c4f8
CG
6301 if (env->cur_state) {
6302 free_verifier_state(env->cur_state, true);
6303 env->cur_state = NULL;
6304 }
cbd35700 6305
0246e64d 6306skip_full_check:
638f5b90 6307 while (!pop_stack(env, NULL, NULL));
f1bca824 6308 free_states(env);
0246e64d 6309
c131187d
AS
6310 if (ret == 0)
6311 sanitize_dead_code(env);
6312
70a87ffe
AS
6313 if (ret == 0)
6314 ret = check_max_stack_depth(env);
6315
9bac3d6d
AS
6316 if (ret == 0)
6317 /* program is valid, convert *(u32*)(ctx + off) accesses */
6318 ret = convert_ctx_accesses(env);
6319
e245c5c6 6320 if (ret == 0)
79741b3b 6321 ret = fixup_bpf_calls(env);
e245c5c6 6322
1ea47e01
AS
6323 if (ret == 0)
6324 ret = fixup_call_args(env);
6325
a2a7d570 6326 if (log->level && bpf_verifier_log_full(log))
cbd35700 6327 ret = -ENOSPC;
a2a7d570 6328 if (log->level && !log->ubuf) {
cbd35700 6329 ret = -EFAULT;
a2a7d570 6330 goto err_release_maps;
cbd35700
AS
6331 }
6332
0246e64d
AS
6333 if (ret == 0 && env->used_map_cnt) {
6334 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
6335 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
6336 sizeof(env->used_maps[0]),
6337 GFP_KERNEL);
0246e64d 6338
9bac3d6d 6339 if (!env->prog->aux->used_maps) {
0246e64d 6340 ret = -ENOMEM;
a2a7d570 6341 goto err_release_maps;
0246e64d
AS
6342 }
6343
9bac3d6d 6344 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 6345 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 6346 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
6347
6348 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
6349 * bpf_ld_imm64 instructions
6350 */
6351 convert_pseudo_ld_imm64(env);
6352 }
cbd35700 6353
a2a7d570 6354err_release_maps:
9bac3d6d 6355 if (!env->prog->aux->used_maps)
0246e64d 6356 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 6357 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
6358 */
6359 release_maps(env);
9bac3d6d 6360 *prog = env->prog;
3df126f3 6361err_unlock:
cbd35700 6362 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
6363 vfree(env->insn_aux_data);
6364err_free_env:
6365 kfree(env);
51580e79
AS
6366 return ret;
6367}