xsk: Align XDP socket batch size with DPDK
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
5b497af4 1// SPDX-License-Identifier: GPL-2.0-only
51580e79 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 3 * Copyright (c) 2016 Facebook
fd978bf7 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
51580e79 5 */
838e9690 6#include <uapi/linux/btf.h>
51580e79
AS
7#include <linux/kernel.h>
8#include <linux/types.h>
9#include <linux/slab.h>
10#include <linux/bpf.h>
838e9690 11#include <linux/btf.h>
58e2af8b 12#include <linux/bpf_verifier.h>
51580e79
AS
13#include <linux/filter.h>
14#include <net/netlink.h>
15#include <linux/file.h>
16#include <linux/vmalloc.h>
ebb676da 17#include <linux/stringify.h>
cc8b0b92
AS
18#include <linux/bsearch.h>
19#include <linux/sort.h>
c195651e 20#include <linux/perf_event.h>
d9762e84 21#include <linux/ctype.h>
6ba43b76 22#include <linux/error-injection.h>
9e4e01df 23#include <linux/bpf_lsm.h>
1e6c62a8 24#include <linux/btf_ids.h>
51580e79 25
f4ac7e0b
JK
26#include "disasm.h"
27
00176a34 28static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
91cc1a99 29#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
00176a34
JK
30 [_id] = & _name ## _verifier_ops,
31#define BPF_MAP_TYPE(_id, _ops)
f2e10bff 32#define BPF_LINK_TYPE(_id, _name)
00176a34
JK
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
f2e10bff 36#undef BPF_LINK_TYPE
00176a34
JK
37};
38
51580e79
AS
39/* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
eba38a96 51 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
f1174f77 79 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 80 * means the register has some value, but it's not a valid pointer.
f1174f77 81 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
82 *
83 * When verifier sees load or store instructions the type of base register
c64b7983
JS
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
51580e79
AS
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
fd978bf7
JS
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
6acc9b43
JS
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
51580e79
AS
162 */
163
17a52670 164/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 165struct bpf_verifier_stack_elem {
17a52670
AS
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
58e2af8b 170 struct bpf_verifier_state st;
17a52670
AS
171 int insn_idx;
172 int prev_insn_idx;
58e2af8b 173 struct bpf_verifier_stack_elem *next;
6f8a57cc
AN
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
cbd35700
AS
176};
177
b285fcb7 178#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
ceefbc96 179#define BPF_COMPLEXITY_LIMIT_STATES 64
07016151 180
d2e4c1e6
DB
181#define BPF_MAP_KEY_POISON (1ULL << 63)
182#define BPF_MAP_KEY_SEEN (1ULL << 62)
183
c93552c4
DB
184#define BPF_MAP_PTR_UNPRIV 1UL
185#define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187#define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190{
d2e4c1e6 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
c93552c4
DB
192}
193
194static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195{
d2e4c1e6 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
c93552c4
DB
197}
198
199static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201{
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
d2e4c1e6
DB
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206}
207
208static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209{
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211}
212
213static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214{
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216}
217
218static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219{
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221}
222
223static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224{
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
c93552c4 229}
fad73a1a 230
23a2d70c
YS
231static bool bpf_pseudo_call(const struct bpf_insn *insn)
232{
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235}
236
e6ac2450
MKL
237static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238{
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241}
242
69c087ba
YS
243static bool bpf_pseudo_func(const struct bpf_insn *insn)
244{
245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 insn->src_reg == BPF_PSEUDO_FUNC;
247}
248
33ff9823
DB
249struct bpf_call_arg_meta {
250 struct bpf_map *map_ptr;
435faee1 251 bool raw_mode;
36bbef52 252 bool pkt_access;
435faee1
DB
253 int regno;
254 int access_size;
457f4436 255 int mem_size;
10060503 256 u64 msize_max_value;
1b986589 257 int ref_obj_id;
d83525ca 258 int func_id;
22dc4a0f 259 struct btf *btf;
eaa6bcb7 260 u32 btf_id;
22dc4a0f 261 struct btf *ret_btf;
eaa6bcb7 262 u32 ret_btf_id;
69c087ba 263 u32 subprogno;
33ff9823
DB
264};
265
8580ac94
AS
266struct btf *btf_vmlinux;
267
cbd35700
AS
268static DEFINE_MUTEX(bpf_verifier_lock);
269
d9762e84
MKL
270static const struct bpf_line_info *
271find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272{
273 const struct bpf_line_info *linfo;
274 const struct bpf_prog *prog;
275 u32 i, nr_linfo;
276
277 prog = env->prog;
278 nr_linfo = prog->aux->nr_linfo;
279
280 if (!nr_linfo || insn_off >= prog->len)
281 return NULL;
282
283 linfo = prog->aux->linfo;
284 for (i = 1; i < nr_linfo; i++)
285 if (insn_off < linfo[i].insn_off)
286 break;
287
288 return &linfo[i - 1];
289}
290
77d2e05a
MKL
291void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 va_list args)
cbd35700 293{
a2a7d570 294 unsigned int n;
cbd35700 295
a2a7d570 296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
297
298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 "verifier log line truncated - local buffer too short\n");
300
301 n = min(log->len_total - log->len_used - 1, n);
302 log->kbuf[n] = '\0';
303
8580ac94
AS
304 if (log->level == BPF_LOG_KERNEL) {
305 pr_err("BPF:%s\n", log->kbuf);
306 return;
307 }
a2a7d570
JK
308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 log->len_used += n;
310 else
311 log->ubuf = NULL;
cbd35700 312}
abe08840 313
6f8a57cc
AN
314static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315{
316 char zero = 0;
317
318 if (!bpf_verifier_log_needed(log))
319 return;
320
321 log->len_used = new_pos;
322 if (put_user(zero, log->ubuf + new_pos))
323 log->ubuf = NULL;
324}
325
abe08840
JO
326/* log_level controls verbosity level of eBPF verifier.
327 * bpf_verifier_log_write() is used to dump the verification trace to the log,
328 * so the user can figure out what's wrong with the program
430e68d1 329 */
abe08840
JO
330__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 const char *fmt, ...)
332{
333 va_list args;
334
77d2e05a
MKL
335 if (!bpf_verifier_log_needed(&env->log))
336 return;
337
abe08840 338 va_start(args, fmt);
77d2e05a 339 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
340 va_end(args);
341}
342EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343
344__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345{
77d2e05a 346 struct bpf_verifier_env *env = private_data;
abe08840
JO
347 va_list args;
348
77d2e05a
MKL
349 if (!bpf_verifier_log_needed(&env->log))
350 return;
351
abe08840 352 va_start(args, fmt);
77d2e05a 353 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
354 va_end(args);
355}
cbd35700 356
9e15db66
AS
357__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 const char *fmt, ...)
359{
360 va_list args;
361
362 if (!bpf_verifier_log_needed(log))
363 return;
364
365 va_start(args, fmt);
366 bpf_verifier_vlog(log, fmt, args);
367 va_end(args);
368}
369
d9762e84
MKL
370static const char *ltrim(const char *s)
371{
372 while (isspace(*s))
373 s++;
374
375 return s;
376}
377
378__printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 u32 insn_off,
380 const char *prefix_fmt, ...)
381{
382 const struct bpf_line_info *linfo;
383
384 if (!bpf_verifier_log_needed(&env->log))
385 return;
386
387 linfo = find_linfo(env, insn_off);
388 if (!linfo || linfo == env->prev_linfo)
389 return;
390
391 if (prefix_fmt) {
392 va_list args;
393
394 va_start(args, prefix_fmt);
395 bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 va_end(args);
397 }
398
399 verbose(env, "%s\n",
400 ltrim(btf_name_by_offset(env->prog->aux->btf,
401 linfo->line_off)));
402
403 env->prev_linfo = linfo;
404}
405
bc2591d6
YS
406static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 struct bpf_reg_state *reg,
408 struct tnum *range, const char *ctx,
409 const char *reg_name)
410{
411 char tn_buf[48];
412
413 verbose(env, "At %s the register %s ", ctx, reg_name);
414 if (!tnum_is_unknown(reg->var_off)) {
415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 verbose(env, "has value %s", tn_buf);
417 } else {
418 verbose(env, "has unknown scalar value");
419 }
420 tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 verbose(env, " should have been in %s\n", tn_buf);
422}
423
de8f3a83
DB
424static bool type_is_pkt_pointer(enum bpf_reg_type type)
425{
426 return type == PTR_TO_PACKET ||
427 type == PTR_TO_PACKET_META;
428}
429
46f8bc92
MKL
430static bool type_is_sk_pointer(enum bpf_reg_type type)
431{
432 return type == PTR_TO_SOCKET ||
655a51e5 433 type == PTR_TO_SOCK_COMMON ||
fada7fdc
JL
434 type == PTR_TO_TCP_SOCK ||
435 type == PTR_TO_XDP_SOCK;
46f8bc92
MKL
436}
437
cac616db
JF
438static bool reg_type_not_null(enum bpf_reg_type type)
439{
440 return type == PTR_TO_SOCKET ||
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_MAP_VALUE ||
69c087ba 443 type == PTR_TO_MAP_KEY ||
01c66c48 444 type == PTR_TO_SOCK_COMMON;
cac616db
JF
445}
446
840b9615
JS
447static bool reg_type_may_be_null(enum bpf_reg_type type)
448{
fd978bf7 449 return type == PTR_TO_MAP_VALUE_OR_NULL ||
46f8bc92 450 type == PTR_TO_SOCKET_OR_NULL ||
655a51e5 451 type == PTR_TO_SOCK_COMMON_OR_NULL ||
b121b341 452 type == PTR_TO_TCP_SOCK_OR_NULL ||
457f4436 453 type == PTR_TO_BTF_ID_OR_NULL ||
afbf21dc
YS
454 type == PTR_TO_MEM_OR_NULL ||
455 type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 type == PTR_TO_RDWR_BUF_OR_NULL;
fd978bf7
JS
457}
458
d83525ca
AS
459static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460{
461 return reg->type == PTR_TO_MAP_VALUE &&
462 map_value_has_spin_lock(reg->map_ptr);
463}
464
cba368c1
MKL
465static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466{
467 return type == PTR_TO_SOCKET ||
468 type == PTR_TO_SOCKET_OR_NULL ||
469 type == PTR_TO_TCP_SOCK ||
457f4436
AN
470 type == PTR_TO_TCP_SOCK_OR_NULL ||
471 type == PTR_TO_MEM ||
472 type == PTR_TO_MEM_OR_NULL;
cba368c1
MKL
473}
474
1b986589 475static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
fd978bf7 476{
1b986589 477 return type == ARG_PTR_TO_SOCK_COMMON;
fd978bf7
JS
478}
479
fd1b0d60
LB
480static bool arg_type_may_be_null(enum bpf_arg_type type)
481{
482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 type == ARG_PTR_TO_MEM_OR_NULL ||
484 type == ARG_PTR_TO_CTX_OR_NULL ||
485 type == ARG_PTR_TO_SOCKET_OR_NULL ||
69c087ba
YS
486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 type == ARG_PTR_TO_STACK_OR_NULL;
fd1b0d60
LB
488}
489
fd978bf7
JS
490/* Determine whether the function releases some resources allocated by another
491 * function call. The first reference type argument will be assumed to be
492 * released by release_reference().
493 */
494static bool is_release_function(enum bpf_func_id func_id)
495{
457f4436
AN
496 return func_id == BPF_FUNC_sk_release ||
497 func_id == BPF_FUNC_ringbuf_submit ||
498 func_id == BPF_FUNC_ringbuf_discard;
840b9615
JS
499}
500
64d85290 501static bool may_be_acquire_function(enum bpf_func_id func_id)
46f8bc92
MKL
502{
503 return func_id == BPF_FUNC_sk_lookup_tcp ||
edbf8c01 504 func_id == BPF_FUNC_sk_lookup_udp ||
64d85290 505 func_id == BPF_FUNC_skc_lookup_tcp ||
457f4436
AN
506 func_id == BPF_FUNC_map_lookup_elem ||
507 func_id == BPF_FUNC_ringbuf_reserve;
64d85290
JS
508}
509
510static bool is_acquire_function(enum bpf_func_id func_id,
511 const struct bpf_map *map)
512{
513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514
515 if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 func_id == BPF_FUNC_sk_lookup_udp ||
457f4436
AN
517 func_id == BPF_FUNC_skc_lookup_tcp ||
518 func_id == BPF_FUNC_ringbuf_reserve)
64d85290
JS
519 return true;
520
521 if (func_id == BPF_FUNC_map_lookup_elem &&
522 (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 map_type == BPF_MAP_TYPE_SOCKHASH))
524 return true;
525
526 return false;
46f8bc92
MKL
527}
528
1b986589
MKL
529static bool is_ptr_cast_function(enum bpf_func_id func_id)
530{
531 return func_id == BPF_FUNC_tcp_sock ||
1df8f55a
MKL
532 func_id == BPF_FUNC_sk_fullsock ||
533 func_id == BPF_FUNC_skc_to_tcp_sock ||
534 func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 func_id == BPF_FUNC_skc_to_udp6_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
1b986589
MKL
538}
539
39491867
BJ
540static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541{
542 return BPF_CLASS(insn->code) == BPF_STX &&
543 BPF_MODE(insn->code) == BPF_ATOMIC &&
544 insn->imm == BPF_CMPXCHG;
545}
546
17a52670
AS
547/* string representation of 'enum bpf_reg_type' */
548static const char * const reg_type_str[] = {
549 [NOT_INIT] = "?",
f1174f77 550 [SCALAR_VALUE] = "inv",
17a52670
AS
551 [PTR_TO_CTX] = "ctx",
552 [CONST_PTR_TO_MAP] = "map_ptr",
553 [PTR_TO_MAP_VALUE] = "map_value",
554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 555 [PTR_TO_STACK] = "fp",
969bf05e 556 [PTR_TO_PACKET] = "pkt",
de8f3a83 557 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 558 [PTR_TO_PACKET_END] = "pkt_end",
d58e468b 559 [PTR_TO_FLOW_KEYS] = "flow_keys",
c64b7983
JS
560 [PTR_TO_SOCKET] = "sock",
561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
46f8bc92
MKL
562 [PTR_TO_SOCK_COMMON] = "sock_common",
563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
655a51e5
MKL
564 [PTR_TO_TCP_SOCK] = "tcp_sock",
565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
9df1c28b 566 [PTR_TO_TP_BUFFER] = "tp_buffer",
fada7fdc 567 [PTR_TO_XDP_SOCK] = "xdp_sock",
9e15db66 568 [PTR_TO_BTF_ID] = "ptr_",
b121b341 569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
eaa6bcb7 570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
457f4436
AN
571 [PTR_TO_MEM] = "mem",
572 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
afbf21dc
YS
573 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 [PTR_TO_RDWR_BUF] = "rdwr_buf",
576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
69c087ba
YS
577 [PTR_TO_FUNC] = "func",
578 [PTR_TO_MAP_KEY] = "map_key",
17a52670
AS
579};
580
8efea21d
EC
581static char slot_type_char[] = {
582 [STACK_INVALID] = '?',
583 [STACK_SPILL] = 'r',
584 [STACK_MISC] = 'm',
585 [STACK_ZERO] = '0',
586};
587
4e92024a
AS
588static void print_liveness(struct bpf_verifier_env *env,
589 enum bpf_reg_liveness live)
590{
9242b5f5 591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
4e92024a
AS
592 verbose(env, "_");
593 if (live & REG_LIVE_READ)
594 verbose(env, "r");
595 if (live & REG_LIVE_WRITTEN)
596 verbose(env, "w");
9242b5f5
AS
597 if (live & REG_LIVE_DONE)
598 verbose(env, "D");
4e92024a
AS
599}
600
f4d7e40a
AS
601static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 const struct bpf_reg_state *reg)
603{
604 struct bpf_verifier_state *cur = env->cur_state;
605
606 return cur->frame[reg->frameno];
607}
608
22dc4a0f 609static const char *kernel_type_name(const struct btf* btf, u32 id)
9e15db66 610{
22dc4a0f 611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
9e15db66
AS
612}
613
61bd5218 614static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 615 const struct bpf_func_state *state)
17a52670 616{
f4d7e40a 617 const struct bpf_reg_state *reg;
17a52670
AS
618 enum bpf_reg_type t;
619 int i;
620
f4d7e40a
AS
621 if (state->frameno)
622 verbose(env, " frame%d:", state->frameno);
17a52670 623 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
624 reg = &state->regs[i];
625 t = reg->type;
17a52670
AS
626 if (t == NOT_INIT)
627 continue;
4e92024a
AS
628 verbose(env, " R%d", i);
629 print_liveness(env, reg->live);
630 verbose(env, "=%s", reg_type_str[t]);
b5dc0163
AS
631 if (t == SCALAR_VALUE && reg->precise)
632 verbose(env, "P");
f1174f77
EC
633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 tnum_is_const(reg->var_off)) {
635 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 636 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 637 } else {
eaa6bcb7
HL
638 if (t == PTR_TO_BTF_ID ||
639 t == PTR_TO_BTF_ID_OR_NULL ||
640 t == PTR_TO_PERCPU_BTF_ID)
22dc4a0f 641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
cba368c1
MKL
642 verbose(env, "(id=%d", reg->id);
643 if (reg_type_may_be_refcounted_or_null(t))
644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
f1174f77 645 if (t != SCALAR_VALUE)
61bd5218 646 verbose(env, ",off=%d", reg->off);
de8f3a83 647 if (type_is_pkt_pointer(t))
61bd5218 648 verbose(env, ",r=%d", reg->range);
f1174f77 649 else if (t == CONST_PTR_TO_MAP ||
69c087ba 650 t == PTR_TO_MAP_KEY ||
f1174f77
EC
651 t == PTR_TO_MAP_VALUE ||
652 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 653 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
654 reg->map_ptr->key_size,
655 reg->map_ptr->value_size);
7d1238f2
EC
656 if (tnum_is_const(reg->var_off)) {
657 /* Typically an immediate SCALAR_VALUE, but
658 * could be a pointer whose offset is too big
659 * for reg->off
660 */
61bd5218 661 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
662 } else {
663 if (reg->smin_value != reg->umin_value &&
664 reg->smin_value != S64_MIN)
61bd5218 665 verbose(env, ",smin_value=%lld",
7d1238f2
EC
666 (long long)reg->smin_value);
667 if (reg->smax_value != reg->umax_value &&
668 reg->smax_value != S64_MAX)
61bd5218 669 verbose(env, ",smax_value=%lld",
7d1238f2
EC
670 (long long)reg->smax_value);
671 if (reg->umin_value != 0)
61bd5218 672 verbose(env, ",umin_value=%llu",
7d1238f2
EC
673 (unsigned long long)reg->umin_value);
674 if (reg->umax_value != U64_MAX)
61bd5218 675 verbose(env, ",umax_value=%llu",
7d1238f2
EC
676 (unsigned long long)reg->umax_value);
677 if (!tnum_is_unknown(reg->var_off)) {
678 char tn_buf[48];
f1174f77 679
7d1238f2 680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 681 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 682 }
3f50f132
JF
683 if (reg->s32_min_value != reg->smin_value &&
684 reg->s32_min_value != S32_MIN)
685 verbose(env, ",s32_min_value=%d",
686 (int)(reg->s32_min_value));
687 if (reg->s32_max_value != reg->smax_value &&
688 reg->s32_max_value != S32_MAX)
689 verbose(env, ",s32_max_value=%d",
690 (int)(reg->s32_max_value));
691 if (reg->u32_min_value != reg->umin_value &&
692 reg->u32_min_value != U32_MIN)
693 verbose(env, ",u32_min_value=%d",
694 (int)(reg->u32_min_value));
695 if (reg->u32_max_value != reg->umax_value &&
696 reg->u32_max_value != U32_MAX)
697 verbose(env, ",u32_max_value=%d",
698 (int)(reg->u32_max_value));
f1174f77 699 }
61bd5218 700 verbose(env, ")");
f1174f77 701 }
17a52670 702 }
638f5b90 703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8efea21d
EC
704 char types_buf[BPF_REG_SIZE + 1];
705 bool valid = false;
706 int j;
707
708 for (j = 0; j < BPF_REG_SIZE; j++) {
709 if (state->stack[i].slot_type[j] != STACK_INVALID)
710 valid = true;
711 types_buf[j] = slot_type_char[
712 state->stack[i].slot_type[j]];
713 }
714 types_buf[BPF_REG_SIZE] = 0;
715 if (!valid)
716 continue;
717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 print_liveness(env, state->stack[i].spilled_ptr.live);
b5dc0163
AS
719 if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 reg = &state->stack[i].spilled_ptr;
721 t = reg->type;
722 verbose(env, "=%s", reg_type_str[t]);
723 if (t == SCALAR_VALUE && reg->precise)
724 verbose(env, "P");
725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 verbose(env, "%lld", reg->var_off.value + reg->off);
727 } else {
8efea21d 728 verbose(env, "=%s", types_buf);
b5dc0163 729 }
17a52670 730 }
fd978bf7
JS
731 if (state->acquired_refs && state->refs[0].id) {
732 verbose(env, " refs=%d", state->refs[0].id);
733 for (i = 1; i < state->acquired_refs; i++)
734 if (state->refs[i].id)
735 verbose(env, ",%d", state->refs[i].id);
736 }
61bd5218 737 verbose(env, "\n");
17a52670
AS
738}
739
84dbf350
JS
740#define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
741static int copy_##NAME##_state(struct bpf_func_state *dst, \
742 const struct bpf_func_state *src) \
743{ \
744 if (!src->FIELD) \
745 return 0; \
746 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
747 /* internal bug, make state invalid to reject the program */ \
748 memset(dst, 0, sizeof(*dst)); \
749 return -EFAULT; \
750 } \
751 memcpy(dst->FIELD, src->FIELD, \
752 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
753 return 0; \
638f5b90 754}
fd978bf7
JS
755/* copy_reference_state() */
756COPY_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
757/* copy_stack_state() */
758COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
759#undef COPY_STATE_FN
760
761#define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
762static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
763 bool copy_old) \
764{ \
765 u32 old_size = state->COUNT; \
766 struct bpf_##NAME##_state *new_##FIELD; \
767 int slot = size / SIZE; \
768 \
769 if (size <= old_size || !size) { \
770 if (copy_old) \
771 return 0; \
772 state->COUNT = slot * SIZE; \
773 if (!size && old_size) { \
774 kfree(state->FIELD); \
775 state->FIELD = NULL; \
776 } \
777 return 0; \
778 } \
779 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
780 GFP_KERNEL); \
781 if (!new_##FIELD) \
782 return -ENOMEM; \
783 if (copy_old) { \
784 if (state->FIELD) \
785 memcpy(new_##FIELD, state->FIELD, \
786 sizeof(*new_##FIELD) * (old_size / SIZE)); \
787 memset(new_##FIELD + old_size / SIZE, 0, \
788 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
789 } \
790 state->COUNT = slot * SIZE; \
791 kfree(state->FIELD); \
792 state->FIELD = new_##FIELD; \
793 return 0; \
794}
fd978bf7
JS
795/* realloc_reference_state() */
796REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
84dbf350
JS
797/* realloc_stack_state() */
798REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
799#undef REALLOC_STATE_FN
638f5b90
AS
800
801/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
802 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 803 * the program calls into realloc_func_state() to grow the stack size.
84dbf350
JS
804 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
805 * which realloc_stack_state() copies over. It points to previous
806 * bpf_verifier_state which is never reallocated.
638f5b90 807 */
fd978bf7
JS
808static int realloc_func_state(struct bpf_func_state *state, int stack_size,
809 int refs_size, bool copy_old)
638f5b90 810{
fd978bf7
JS
811 int err = realloc_reference_state(state, refs_size, copy_old);
812 if (err)
813 return err;
814 return realloc_stack_state(state, stack_size, copy_old);
815}
816
817/* Acquire a pointer id from the env and update the state->refs to include
818 * this new pointer reference.
819 * On success, returns a valid pointer id to associate with the register
820 * On failure, returns a negative errno.
638f5b90 821 */
fd978bf7 822static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
638f5b90 823{
fd978bf7
JS
824 struct bpf_func_state *state = cur_func(env);
825 int new_ofs = state->acquired_refs;
826 int id, err;
827
828 err = realloc_reference_state(state, state->acquired_refs + 1, true);
829 if (err)
830 return err;
831 id = ++env->id_gen;
832 state->refs[new_ofs].id = id;
833 state->refs[new_ofs].insn_idx = insn_idx;
638f5b90 834
fd978bf7
JS
835 return id;
836}
837
838/* release function corresponding to acquire_reference_state(). Idempotent. */
46f8bc92 839static int release_reference_state(struct bpf_func_state *state, int ptr_id)
fd978bf7
JS
840{
841 int i, last_idx;
842
fd978bf7
JS
843 last_idx = state->acquired_refs - 1;
844 for (i = 0; i < state->acquired_refs; i++) {
845 if (state->refs[i].id == ptr_id) {
846 if (last_idx && i != last_idx)
847 memcpy(&state->refs[i], &state->refs[last_idx],
848 sizeof(*state->refs));
849 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
850 state->acquired_refs--;
638f5b90 851 return 0;
638f5b90 852 }
638f5b90 853 }
46f8bc92 854 return -EINVAL;
fd978bf7
JS
855}
856
857static int transfer_reference_state(struct bpf_func_state *dst,
858 struct bpf_func_state *src)
859{
860 int err = realloc_reference_state(dst, src->acquired_refs, false);
861 if (err)
862 return err;
863 err = copy_reference_state(dst, src);
864 if (err)
865 return err;
638f5b90
AS
866 return 0;
867}
868
f4d7e40a
AS
869static void free_func_state(struct bpf_func_state *state)
870{
5896351e
AS
871 if (!state)
872 return;
fd978bf7 873 kfree(state->refs);
f4d7e40a
AS
874 kfree(state->stack);
875 kfree(state);
876}
877
b5dc0163
AS
878static void clear_jmp_history(struct bpf_verifier_state *state)
879{
880 kfree(state->jmp_history);
881 state->jmp_history = NULL;
882 state->jmp_history_cnt = 0;
883}
884
1969db47
AS
885static void free_verifier_state(struct bpf_verifier_state *state,
886 bool free_self)
638f5b90 887{
f4d7e40a
AS
888 int i;
889
890 for (i = 0; i <= state->curframe; i++) {
891 free_func_state(state->frame[i]);
892 state->frame[i] = NULL;
893 }
b5dc0163 894 clear_jmp_history(state);
1969db47
AS
895 if (free_self)
896 kfree(state);
638f5b90
AS
897}
898
899/* copy verifier state from src to dst growing dst stack space
900 * when necessary to accommodate larger src stack
901 */
f4d7e40a
AS
902static int copy_func_state(struct bpf_func_state *dst,
903 const struct bpf_func_state *src)
638f5b90
AS
904{
905 int err;
906
fd978bf7
JS
907 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
908 false);
909 if (err)
910 return err;
911 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
912 err = copy_reference_state(dst, src);
638f5b90
AS
913 if (err)
914 return err;
638f5b90
AS
915 return copy_stack_state(dst, src);
916}
917
f4d7e40a
AS
918static int copy_verifier_state(struct bpf_verifier_state *dst_state,
919 const struct bpf_verifier_state *src)
920{
921 struct bpf_func_state *dst;
b5dc0163 922 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
f4d7e40a
AS
923 int i, err;
924
b5dc0163
AS
925 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
926 kfree(dst_state->jmp_history);
927 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
928 if (!dst_state->jmp_history)
929 return -ENOMEM;
930 }
931 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
932 dst_state->jmp_history_cnt = src->jmp_history_cnt;
933
f4d7e40a
AS
934 /* if dst has more stack frames then src frame, free them */
935 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
936 free_func_state(dst_state->frame[i]);
937 dst_state->frame[i] = NULL;
938 }
979d63d5 939 dst_state->speculative = src->speculative;
f4d7e40a 940 dst_state->curframe = src->curframe;
d83525ca 941 dst_state->active_spin_lock = src->active_spin_lock;
2589726d
AS
942 dst_state->branches = src->branches;
943 dst_state->parent = src->parent;
b5dc0163
AS
944 dst_state->first_insn_idx = src->first_insn_idx;
945 dst_state->last_insn_idx = src->last_insn_idx;
f4d7e40a
AS
946 for (i = 0; i <= src->curframe; i++) {
947 dst = dst_state->frame[i];
948 if (!dst) {
949 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
950 if (!dst)
951 return -ENOMEM;
952 dst_state->frame[i] = dst;
953 }
954 err = copy_func_state(dst, src->frame[i]);
955 if (err)
956 return err;
957 }
958 return 0;
959}
960
2589726d
AS
961static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
962{
963 while (st) {
964 u32 br = --st->branches;
965
966 /* WARN_ON(br > 1) technically makes sense here,
967 * but see comment in push_stack(), hence:
968 */
969 WARN_ONCE((int)br < 0,
970 "BUG update_branch_counts:branches_to_explore=%d\n",
971 br);
972 if (br)
973 break;
974 st = st->parent;
975 }
976}
977
638f5b90 978static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
6f8a57cc 979 int *insn_idx, bool pop_log)
638f5b90
AS
980{
981 struct bpf_verifier_state *cur = env->cur_state;
982 struct bpf_verifier_stack_elem *elem, *head = env->head;
983 int err;
17a52670
AS
984
985 if (env->head == NULL)
638f5b90 986 return -ENOENT;
17a52670 987
638f5b90
AS
988 if (cur) {
989 err = copy_verifier_state(cur, &head->st);
990 if (err)
991 return err;
992 }
6f8a57cc
AN
993 if (pop_log)
994 bpf_vlog_reset(&env->log, head->log_pos);
638f5b90
AS
995 if (insn_idx)
996 *insn_idx = head->insn_idx;
17a52670 997 if (prev_insn_idx)
638f5b90
AS
998 *prev_insn_idx = head->prev_insn_idx;
999 elem = head->next;
1969db47 1000 free_verifier_state(&head->st, false);
638f5b90 1001 kfree(head);
17a52670
AS
1002 env->head = elem;
1003 env->stack_size--;
638f5b90 1004 return 0;
17a52670
AS
1005}
1006
58e2af8b 1007static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
979d63d5
DB
1008 int insn_idx, int prev_insn_idx,
1009 bool speculative)
17a52670 1010{
638f5b90 1011 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 1012 struct bpf_verifier_stack_elem *elem;
638f5b90 1013 int err;
17a52670 1014
638f5b90 1015 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
1016 if (!elem)
1017 goto err;
1018
17a52670
AS
1019 elem->insn_idx = insn_idx;
1020 elem->prev_insn_idx = prev_insn_idx;
1021 elem->next = env->head;
6f8a57cc 1022 elem->log_pos = env->log.len_used;
17a52670
AS
1023 env->head = elem;
1024 env->stack_size++;
1969db47
AS
1025 err = copy_verifier_state(&elem->st, cur);
1026 if (err)
1027 goto err;
979d63d5 1028 elem->st.speculative |= speculative;
b285fcb7
AS
1029 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1030 verbose(env, "The sequence of %d jumps is too complex.\n",
1031 env->stack_size);
17a52670
AS
1032 goto err;
1033 }
2589726d
AS
1034 if (elem->st.parent) {
1035 ++elem->st.parent->branches;
1036 /* WARN_ON(branches > 2) technically makes sense here,
1037 * but
1038 * 1. speculative states will bump 'branches' for non-branch
1039 * instructions
1040 * 2. is_state_visited() heuristics may decide not to create
1041 * a new state for a sequence of branches and all such current
1042 * and cloned states will be pointing to a single parent state
1043 * which might have large 'branches' count.
1044 */
1045 }
17a52670
AS
1046 return &elem->st;
1047err:
5896351e
AS
1048 free_verifier_state(env->cur_state, true);
1049 env->cur_state = NULL;
17a52670 1050 /* pop all elements and return */
6f8a57cc 1051 while (!pop_stack(env, NULL, NULL, false));
17a52670
AS
1052 return NULL;
1053}
1054
1055#define CALLER_SAVED_REGS 6
1056static const int caller_saved[CALLER_SAVED_REGS] = {
1057 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1058};
1059
f54c7898
DB
1060static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1061 struct bpf_reg_state *reg);
f1174f77 1062
e688c3db
AS
1063/* This helper doesn't clear reg->id */
1064static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
b03c9f9f 1065{
b03c9f9f
EC
1066 reg->var_off = tnum_const(imm);
1067 reg->smin_value = (s64)imm;
1068 reg->smax_value = (s64)imm;
1069 reg->umin_value = imm;
1070 reg->umax_value = imm;
3f50f132
JF
1071
1072 reg->s32_min_value = (s32)imm;
1073 reg->s32_max_value = (s32)imm;
1074 reg->u32_min_value = (u32)imm;
1075 reg->u32_max_value = (u32)imm;
1076}
1077
e688c3db
AS
1078/* Mark the unknown part of a register (variable offset or scalar value) as
1079 * known to have the value @imm.
1080 */
1081static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1082{
1083 /* Clear id, off, and union(map_ptr, range) */
1084 memset(((u8 *)reg) + sizeof(reg->type), 0,
1085 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1086 ___mark_reg_known(reg, imm);
1087}
1088
3f50f132
JF
1089static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1090{
1091 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1092 reg->s32_min_value = (s32)imm;
1093 reg->s32_max_value = (s32)imm;
1094 reg->u32_min_value = (u32)imm;
1095 reg->u32_max_value = (u32)imm;
b03c9f9f
EC
1096}
1097
f1174f77
EC
1098/* Mark the 'variable offset' part of a register as zero. This should be
1099 * used only on registers holding a pointer type.
1100 */
1101static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 1102{
b03c9f9f 1103 __mark_reg_known(reg, 0);
f1174f77 1104}
a9789ef9 1105
cc2b14d5
AS
1106static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1107{
1108 __mark_reg_known(reg, 0);
cc2b14d5
AS
1109 reg->type = SCALAR_VALUE;
1110}
1111
61bd5218
JK
1112static void mark_reg_known_zero(struct bpf_verifier_env *env,
1113 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1114{
1115 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1116 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
1117 /* Something bad happened, let's kill all regs */
1118 for (regno = 0; regno < MAX_BPF_REG; regno++)
f54c7898 1119 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1120 return;
1121 }
1122 __mark_reg_known_zero(regs + regno);
1123}
1124
4ddb7416
DB
1125static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1126{
1127 switch (reg->type) {
1128 case PTR_TO_MAP_VALUE_OR_NULL: {
1129 const struct bpf_map *map = reg->map_ptr;
1130
1131 if (map->inner_map_meta) {
1132 reg->type = CONST_PTR_TO_MAP;
1133 reg->map_ptr = map->inner_map_meta;
1134 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1135 reg->type = PTR_TO_XDP_SOCK;
1136 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1137 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1138 reg->type = PTR_TO_SOCKET;
1139 } else {
1140 reg->type = PTR_TO_MAP_VALUE;
1141 }
1142 break;
1143 }
1144 case PTR_TO_SOCKET_OR_NULL:
1145 reg->type = PTR_TO_SOCKET;
1146 break;
1147 case PTR_TO_SOCK_COMMON_OR_NULL:
1148 reg->type = PTR_TO_SOCK_COMMON;
1149 break;
1150 case PTR_TO_TCP_SOCK_OR_NULL:
1151 reg->type = PTR_TO_TCP_SOCK;
1152 break;
1153 case PTR_TO_BTF_ID_OR_NULL:
1154 reg->type = PTR_TO_BTF_ID;
1155 break;
1156 case PTR_TO_MEM_OR_NULL:
1157 reg->type = PTR_TO_MEM;
1158 break;
1159 case PTR_TO_RDONLY_BUF_OR_NULL:
1160 reg->type = PTR_TO_RDONLY_BUF;
1161 break;
1162 case PTR_TO_RDWR_BUF_OR_NULL:
1163 reg->type = PTR_TO_RDWR_BUF;
1164 break;
1165 default:
33ccec5f 1166 WARN_ONCE(1, "unknown nullable register type");
4ddb7416
DB
1167 }
1168}
1169
de8f3a83
DB
1170static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1171{
1172 return type_is_pkt_pointer(reg->type);
1173}
1174
1175static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1176{
1177 return reg_is_pkt_pointer(reg) ||
1178 reg->type == PTR_TO_PACKET_END;
1179}
1180
1181/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1182static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1183 enum bpf_reg_type which)
1184{
1185 /* The register can already have a range from prior markings.
1186 * This is fine as long as it hasn't been advanced from its
1187 * origin.
1188 */
1189 return reg->type == which &&
1190 reg->id == 0 &&
1191 reg->off == 0 &&
1192 tnum_equals_const(reg->var_off, 0);
1193}
1194
3f50f132
JF
1195/* Reset the min/max bounds of a register */
1196static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1197{
1198 reg->smin_value = S64_MIN;
1199 reg->smax_value = S64_MAX;
1200 reg->umin_value = 0;
1201 reg->umax_value = U64_MAX;
1202
1203 reg->s32_min_value = S32_MIN;
1204 reg->s32_max_value = S32_MAX;
1205 reg->u32_min_value = 0;
1206 reg->u32_max_value = U32_MAX;
1207}
1208
1209static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1210{
1211 reg->smin_value = S64_MIN;
1212 reg->smax_value = S64_MAX;
1213 reg->umin_value = 0;
1214 reg->umax_value = U64_MAX;
1215}
1216
1217static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1218{
1219 reg->s32_min_value = S32_MIN;
1220 reg->s32_max_value = S32_MAX;
1221 reg->u32_min_value = 0;
1222 reg->u32_max_value = U32_MAX;
1223}
1224
1225static void __update_reg32_bounds(struct bpf_reg_state *reg)
1226{
1227 struct tnum var32_off = tnum_subreg(reg->var_off);
1228
1229 /* min signed is max(sign bit) | min(other bits) */
1230 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1231 var32_off.value | (var32_off.mask & S32_MIN));
1232 /* max signed is min(sign bit) | max(other bits) */
1233 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1234 var32_off.value | (var32_off.mask & S32_MAX));
1235 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1236 reg->u32_max_value = min(reg->u32_max_value,
1237 (u32)(var32_off.value | var32_off.mask));
1238}
1239
1240static void __update_reg64_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1241{
1242 /* min signed is max(sign bit) | min(other bits) */
1243 reg->smin_value = max_t(s64, reg->smin_value,
1244 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1245 /* max signed is min(sign bit) | max(other bits) */
1246 reg->smax_value = min_t(s64, reg->smax_value,
1247 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1248 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1249 reg->umax_value = min(reg->umax_value,
1250 reg->var_off.value | reg->var_off.mask);
1251}
1252
3f50f132
JF
1253static void __update_reg_bounds(struct bpf_reg_state *reg)
1254{
1255 __update_reg32_bounds(reg);
1256 __update_reg64_bounds(reg);
1257}
1258
b03c9f9f 1259/* Uses signed min/max values to inform unsigned, and vice-versa */
3f50f132
JF
1260static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1261{
1262 /* Learn sign from signed bounds.
1263 * If we cannot cross the sign boundary, then signed and unsigned bounds
1264 * are the same, so combine. This works even in the negative case, e.g.
1265 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1266 */
1267 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1268 reg->s32_min_value = reg->u32_min_value =
1269 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1270 reg->s32_max_value = reg->u32_max_value =
1271 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1272 return;
1273 }
1274 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1275 * boundary, so we must be careful.
1276 */
1277 if ((s32)reg->u32_max_value >= 0) {
1278 /* Positive. We can't learn anything from the smin, but smax
1279 * is positive, hence safe.
1280 */
1281 reg->s32_min_value = reg->u32_min_value;
1282 reg->s32_max_value = reg->u32_max_value =
1283 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1284 } else if ((s32)reg->u32_min_value < 0) {
1285 /* Negative. We can't learn anything from the smax, but smin
1286 * is negative, hence safe.
1287 */
1288 reg->s32_min_value = reg->u32_min_value =
1289 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1290 reg->s32_max_value = reg->u32_max_value;
1291 }
1292}
1293
1294static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
b03c9f9f
EC
1295{
1296 /* Learn sign from signed bounds.
1297 * If we cannot cross the sign boundary, then signed and unsigned bounds
1298 * are the same, so combine. This works even in the negative case, e.g.
1299 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1300 */
1301 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1302 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1303 reg->umin_value);
1304 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1305 reg->umax_value);
1306 return;
1307 }
1308 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1309 * boundary, so we must be careful.
1310 */
1311 if ((s64)reg->umax_value >= 0) {
1312 /* Positive. We can't learn anything from the smin, but smax
1313 * is positive, hence safe.
1314 */
1315 reg->smin_value = reg->umin_value;
1316 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1317 reg->umax_value);
1318 } else if ((s64)reg->umin_value < 0) {
1319 /* Negative. We can't learn anything from the smax, but smin
1320 * is negative, hence safe.
1321 */
1322 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1323 reg->umin_value);
1324 reg->smax_value = reg->umax_value;
1325 }
1326}
1327
3f50f132
JF
1328static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1329{
1330 __reg32_deduce_bounds(reg);
1331 __reg64_deduce_bounds(reg);
1332}
1333
b03c9f9f
EC
1334/* Attempts to improve var_off based on unsigned min/max information */
1335static void __reg_bound_offset(struct bpf_reg_state *reg)
1336{
3f50f132
JF
1337 struct tnum var64_off = tnum_intersect(reg->var_off,
1338 tnum_range(reg->umin_value,
1339 reg->umax_value));
1340 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1341 tnum_range(reg->u32_min_value,
1342 reg->u32_max_value));
1343
1344 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
b03c9f9f
EC
1345}
1346
3f50f132 1347static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
b03c9f9f 1348{
3f50f132
JF
1349 reg->umin_value = reg->u32_min_value;
1350 reg->umax_value = reg->u32_max_value;
1351 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1352 * but must be positive otherwise set to worse case bounds
1353 * and refine later from tnum.
1354 */
3a71dc36 1355 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
3f50f132
JF
1356 reg->smax_value = reg->s32_max_value;
1357 else
1358 reg->smax_value = U32_MAX;
3a71dc36
JF
1359 if (reg->s32_min_value >= 0)
1360 reg->smin_value = reg->s32_min_value;
1361 else
1362 reg->smin_value = 0;
3f50f132
JF
1363}
1364
1365static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1366{
1367 /* special case when 64-bit register has upper 32-bit register
1368 * zeroed. Typically happens after zext or <<32, >>32 sequence
1369 * allowing us to use 32-bit bounds directly,
1370 */
1371 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1372 __reg_assign_32_into_64(reg);
1373 } else {
1374 /* Otherwise the best we can do is push lower 32bit known and
1375 * unknown bits into register (var_off set from jmp logic)
1376 * then learn as much as possible from the 64-bit tnum
1377 * known and unknown bits. The previous smin/smax bounds are
1378 * invalid here because of jmp32 compare so mark them unknown
1379 * so they do not impact tnum bounds calculation.
1380 */
1381 __mark_reg64_unbounded(reg);
1382 __update_reg_bounds(reg);
1383 }
1384
1385 /* Intersecting with the old var_off might have improved our bounds
1386 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1387 * then new var_off is (0; 0x7f...fc) which improves our umax.
1388 */
1389 __reg_deduce_bounds(reg);
1390 __reg_bound_offset(reg);
1391 __update_reg_bounds(reg);
1392}
1393
1394static bool __reg64_bound_s32(s64 a)
1395{
b0270958 1396 return a > S32_MIN && a < S32_MAX;
3f50f132
JF
1397}
1398
1399static bool __reg64_bound_u32(u64 a)
1400{
1401 if (a > U32_MIN && a < U32_MAX)
1402 return true;
1403 return false;
1404}
1405
1406static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1407{
1408 __mark_reg32_unbounded(reg);
1409
b0270958 1410 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
3f50f132 1411 reg->s32_min_value = (s32)reg->smin_value;
3f50f132 1412 reg->s32_max_value = (s32)reg->smax_value;
b0270958 1413 }
3f50f132
JF
1414 if (__reg64_bound_u32(reg->umin_value))
1415 reg->u32_min_value = (u32)reg->umin_value;
1416 if (__reg64_bound_u32(reg->umax_value))
1417 reg->u32_max_value = (u32)reg->umax_value;
1418
1419 /* Intersecting with the old var_off might have improved our bounds
1420 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1421 * then new var_off is (0; 0x7f...fc) which improves our umax.
1422 */
1423 __reg_deduce_bounds(reg);
1424 __reg_bound_offset(reg);
1425 __update_reg_bounds(reg);
b03c9f9f
EC
1426}
1427
f1174f77 1428/* Mark a register as having a completely unknown (scalar) value. */
f54c7898
DB
1429static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1430 struct bpf_reg_state *reg)
f1174f77 1431{
a9c676bc
AS
1432 /*
1433 * Clear type, id, off, and union(map_ptr, range) and
1434 * padding between 'type' and union
1435 */
1436 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
f1174f77 1437 reg->type = SCALAR_VALUE;
f1174f77 1438 reg->var_off = tnum_unknown;
f4d7e40a 1439 reg->frameno = 0;
2c78ee89 1440 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
b03c9f9f 1441 __mark_reg_unbounded(reg);
f1174f77
EC
1442}
1443
61bd5218
JK
1444static void mark_reg_unknown(struct bpf_verifier_env *env,
1445 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1446{
1447 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1448 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
1449 /* Something bad happened, let's kill all regs except FP */
1450 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1451 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1452 return;
1453 }
f54c7898 1454 __mark_reg_unknown(env, regs + regno);
f1174f77
EC
1455}
1456
f54c7898
DB
1457static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1458 struct bpf_reg_state *reg)
f1174f77 1459{
f54c7898 1460 __mark_reg_unknown(env, reg);
f1174f77
EC
1461 reg->type = NOT_INIT;
1462}
1463
61bd5218
JK
1464static void mark_reg_not_init(struct bpf_verifier_env *env,
1465 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
1466{
1467 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 1468 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
1469 /* Something bad happened, let's kill all regs except FP */
1470 for (regno = 0; regno < BPF_REG_FP; regno++)
f54c7898 1471 __mark_reg_not_init(env, regs + regno);
f1174f77
EC
1472 return;
1473 }
f54c7898 1474 __mark_reg_not_init(env, regs + regno);
a9789ef9
DB
1475}
1476
41c48f3a
AI
1477static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1478 struct bpf_reg_state *regs, u32 regno,
22dc4a0f
AN
1479 enum bpf_reg_type reg_type,
1480 struct btf *btf, u32 btf_id)
41c48f3a
AI
1481{
1482 if (reg_type == SCALAR_VALUE) {
1483 mark_reg_unknown(env, regs, regno);
1484 return;
1485 }
1486 mark_reg_known_zero(env, regs, regno);
1487 regs[regno].type = PTR_TO_BTF_ID;
22dc4a0f 1488 regs[regno].btf = btf;
41c48f3a
AI
1489 regs[regno].btf_id = btf_id;
1490}
1491
5327ed3d 1492#define DEF_NOT_SUBREG (0)
61bd5218 1493static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 1494 struct bpf_func_state *state)
17a52670 1495{
f4d7e40a 1496 struct bpf_reg_state *regs = state->regs;
17a52670
AS
1497 int i;
1498
dc503a8a 1499 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 1500 mark_reg_not_init(env, regs, i);
dc503a8a 1501 regs[i].live = REG_LIVE_NONE;
679c782d 1502 regs[i].parent = NULL;
5327ed3d 1503 regs[i].subreg_def = DEF_NOT_SUBREG;
dc503a8a 1504 }
17a52670
AS
1505
1506 /* frame pointer */
f1174f77 1507 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 1508 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 1509 regs[BPF_REG_FP].frameno = state->frameno;
6760bf2d
DB
1510}
1511
f4d7e40a
AS
1512#define BPF_MAIN_FUNC (-1)
1513static void init_func_state(struct bpf_verifier_env *env,
1514 struct bpf_func_state *state,
1515 int callsite, int frameno, int subprogno)
1516{
1517 state->callsite = callsite;
1518 state->frameno = frameno;
1519 state->subprogno = subprogno;
1520 init_reg_state(env, state);
1521}
1522
17a52670
AS
1523enum reg_arg_type {
1524 SRC_OP, /* register is used as source operand */
1525 DST_OP, /* register is used as destination operand */
1526 DST_OP_NO_MARK /* same as above, check only, don't mark */
1527};
1528
cc8b0b92
AS
1529static int cmp_subprogs(const void *a, const void *b)
1530{
9c8105bd
JW
1531 return ((struct bpf_subprog_info *)a)->start -
1532 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
1533}
1534
1535static int find_subprog(struct bpf_verifier_env *env, int off)
1536{
9c8105bd 1537 struct bpf_subprog_info *p;
cc8b0b92 1538
9c8105bd
JW
1539 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1540 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
1541 if (!p)
1542 return -ENOENT;
9c8105bd 1543 return p - env->subprog_info;
cc8b0b92
AS
1544
1545}
1546
1547static int add_subprog(struct bpf_verifier_env *env, int off)
1548{
1549 int insn_cnt = env->prog->len;
1550 int ret;
1551
1552 if (off >= insn_cnt || off < 0) {
1553 verbose(env, "call to invalid destination\n");
1554 return -EINVAL;
1555 }
1556 ret = find_subprog(env, off);
1557 if (ret >= 0)
282a0f46 1558 return ret;
4cb3d99c 1559 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
1560 verbose(env, "too many subprograms\n");
1561 return -E2BIG;
1562 }
e6ac2450 1563 /* determine subprog starts. The end is one before the next starts */
9c8105bd
JW
1564 env->subprog_info[env->subprog_cnt++].start = off;
1565 sort(env->subprog_info, env->subprog_cnt,
1566 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
282a0f46 1567 return env->subprog_cnt - 1;
cc8b0b92
AS
1568}
1569
e6ac2450
MKL
1570struct bpf_kfunc_desc {
1571 struct btf_func_model func_model;
1572 u32 func_id;
1573 s32 imm;
1574};
1575
1576#define MAX_KFUNC_DESCS 256
1577struct bpf_kfunc_desc_tab {
1578 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1579 u32 nr_descs;
1580};
1581
1582static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1583{
1584 const struct bpf_kfunc_desc *d0 = a;
1585 const struct bpf_kfunc_desc *d1 = b;
1586
1587 /* func_id is not greater than BTF_MAX_TYPE */
1588 return d0->func_id - d1->func_id;
1589}
1590
1591static const struct bpf_kfunc_desc *
1592find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1593{
1594 struct bpf_kfunc_desc desc = {
1595 .func_id = func_id,
1596 };
1597 struct bpf_kfunc_desc_tab *tab;
1598
1599 tab = prog->aux->kfunc_tab;
1600 return bsearch(&desc, tab->descs, tab->nr_descs,
1601 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1602}
1603
1604static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1605{
1606 const struct btf_type *func, *func_proto;
1607 struct bpf_kfunc_desc_tab *tab;
1608 struct bpf_prog_aux *prog_aux;
1609 struct bpf_kfunc_desc *desc;
1610 const char *func_name;
1611 unsigned long addr;
1612 int err;
1613
1614 prog_aux = env->prog->aux;
1615 tab = prog_aux->kfunc_tab;
1616 if (!tab) {
1617 if (!btf_vmlinux) {
1618 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1619 return -ENOTSUPP;
1620 }
1621
1622 if (!env->prog->jit_requested) {
1623 verbose(env, "JIT is required for calling kernel function\n");
1624 return -ENOTSUPP;
1625 }
1626
1627 if (!bpf_jit_supports_kfunc_call()) {
1628 verbose(env, "JIT does not support calling kernel function\n");
1629 return -ENOTSUPP;
1630 }
1631
1632 if (!env->prog->gpl_compatible) {
1633 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1634 return -EINVAL;
1635 }
1636
1637 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1638 if (!tab)
1639 return -ENOMEM;
1640 prog_aux->kfunc_tab = tab;
1641 }
1642
1643 if (find_kfunc_desc(env->prog, func_id))
1644 return 0;
1645
1646 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1647 verbose(env, "too many different kernel function calls\n");
1648 return -E2BIG;
1649 }
1650
1651 func = btf_type_by_id(btf_vmlinux, func_id);
1652 if (!func || !btf_type_is_func(func)) {
1653 verbose(env, "kernel btf_id %u is not a function\n",
1654 func_id);
1655 return -EINVAL;
1656 }
1657 func_proto = btf_type_by_id(btf_vmlinux, func->type);
1658 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1659 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1660 func_id);
1661 return -EINVAL;
1662 }
1663
1664 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1665 addr = kallsyms_lookup_name(func_name);
1666 if (!addr) {
1667 verbose(env, "cannot find address for kernel function %s\n",
1668 func_name);
1669 return -EINVAL;
1670 }
1671
1672 desc = &tab->descs[tab->nr_descs++];
1673 desc->func_id = func_id;
1674 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1675 err = btf_distill_func_proto(&env->log, btf_vmlinux,
1676 func_proto, func_name,
1677 &desc->func_model);
1678 if (!err)
1679 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1680 kfunc_desc_cmp_by_id, NULL);
1681 return err;
1682}
1683
1684static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1685{
1686 const struct bpf_kfunc_desc *d0 = a;
1687 const struct bpf_kfunc_desc *d1 = b;
1688
1689 if (d0->imm > d1->imm)
1690 return 1;
1691 else if (d0->imm < d1->imm)
1692 return -1;
1693 return 0;
1694}
1695
1696static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1697{
1698 struct bpf_kfunc_desc_tab *tab;
1699
1700 tab = prog->aux->kfunc_tab;
1701 if (!tab)
1702 return;
1703
1704 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1705 kfunc_desc_cmp_by_imm, NULL);
1706}
1707
1708bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1709{
1710 return !!prog->aux->kfunc_tab;
1711}
1712
1713const struct btf_func_model *
1714bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1715 const struct bpf_insn *insn)
1716{
1717 const struct bpf_kfunc_desc desc = {
1718 .imm = insn->imm,
1719 };
1720 const struct bpf_kfunc_desc *res;
1721 struct bpf_kfunc_desc_tab *tab;
1722
1723 tab = prog->aux->kfunc_tab;
1724 res = bsearch(&desc, tab->descs, tab->nr_descs,
1725 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1726
1727 return res ? &res->func_model : NULL;
1728}
1729
1730static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
cc8b0b92 1731{
9c8105bd 1732 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92 1733 struct bpf_insn *insn = env->prog->insnsi;
e6ac2450 1734 int i, ret, insn_cnt = env->prog->len;
cc8b0b92 1735
f910cefa
JW
1736 /* Add entry function. */
1737 ret = add_subprog(env, 0);
e6ac2450 1738 if (ret)
f910cefa
JW
1739 return ret;
1740
e6ac2450
MKL
1741 for (i = 0; i < insn_cnt; i++, insn++) {
1742 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1743 !bpf_pseudo_kfunc_call(insn))
cc8b0b92 1744 continue;
e6ac2450 1745
2c78ee89 1746 if (!env->bpf_capable) {
e6ac2450 1747 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
cc8b0b92
AS
1748 return -EPERM;
1749 }
e6ac2450
MKL
1750
1751 if (bpf_pseudo_func(insn)) {
1752 ret = add_subprog(env, i + insn->imm + 1);
1753 if (ret >= 0)
1754 /* remember subprog */
1755 insn[1].imm = ret;
1756 } else if (bpf_pseudo_call(insn)) {
1757 ret = add_subprog(env, i + insn->imm + 1);
1758 } else {
1759 ret = add_kfunc_call(env, insn->imm);
1760 }
1761
cc8b0b92
AS
1762 if (ret < 0)
1763 return ret;
1764 }
1765
4cb3d99c
JW
1766 /* Add a fake 'exit' subprog which could simplify subprog iteration
1767 * logic. 'subprog_cnt' should not be increased.
1768 */
1769 subprog[env->subprog_cnt].start = insn_cnt;
1770
06ee7115 1771 if (env->log.level & BPF_LOG_LEVEL2)
cc8b0b92 1772 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 1773 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92 1774
e6ac2450
MKL
1775 return 0;
1776}
1777
1778static int check_subprogs(struct bpf_verifier_env *env)
1779{
1780 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1781 struct bpf_subprog_info *subprog = env->subprog_info;
1782 struct bpf_insn *insn = env->prog->insnsi;
1783 int insn_cnt = env->prog->len;
1784
cc8b0b92 1785 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
1786 subprog_start = subprog[cur_subprog].start;
1787 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1788 for (i = 0; i < insn_cnt; i++) {
1789 u8 code = insn[i].code;
1790
7f6e4312
MF
1791 if (code == (BPF_JMP | BPF_CALL) &&
1792 insn[i].imm == BPF_FUNC_tail_call &&
1793 insn[i].src_reg != BPF_PSEUDO_CALL)
1794 subprog[cur_subprog].has_tail_call = true;
09b28d76
AS
1795 if (BPF_CLASS(code) == BPF_LD &&
1796 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1797 subprog[cur_subprog].has_ld_abs = true;
092ed096 1798 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
cc8b0b92
AS
1799 goto next;
1800 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1801 goto next;
1802 off = i + insn[i].off + 1;
1803 if (off < subprog_start || off >= subprog_end) {
1804 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1805 return -EINVAL;
1806 }
1807next:
1808 if (i == subprog_end - 1) {
1809 /* to avoid fall-through from one subprog into another
1810 * the last insn of the subprog should be either exit
1811 * or unconditional jump back
1812 */
1813 if (code != (BPF_JMP | BPF_EXIT) &&
1814 code != (BPF_JMP | BPF_JA)) {
1815 verbose(env, "last insn is not an exit or jmp\n");
1816 return -EINVAL;
1817 }
1818 subprog_start = subprog_end;
4cb3d99c
JW
1819 cur_subprog++;
1820 if (cur_subprog < env->subprog_cnt)
9c8105bd 1821 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
1822 }
1823 }
1824 return 0;
1825}
1826
679c782d
EC
1827/* Parentage chain of this register (or stack slot) should take care of all
1828 * issues like callee-saved registers, stack slot allocation time, etc.
1829 */
f4d7e40a 1830static int mark_reg_read(struct bpf_verifier_env *env,
679c782d 1831 const struct bpf_reg_state *state,
5327ed3d 1832 struct bpf_reg_state *parent, u8 flag)
f4d7e40a
AS
1833{
1834 bool writes = parent == state->parent; /* Observe write marks */
06ee7115 1835 int cnt = 0;
dc503a8a
EC
1836
1837 while (parent) {
1838 /* if read wasn't screened by an earlier write ... */
679c782d 1839 if (writes && state->live & REG_LIVE_WRITTEN)
dc503a8a 1840 break;
9242b5f5
AS
1841 if (parent->live & REG_LIVE_DONE) {
1842 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1843 reg_type_str[parent->type],
1844 parent->var_off.value, parent->off);
1845 return -EFAULT;
1846 }
5327ed3d
JW
1847 /* The first condition is more likely to be true than the
1848 * second, checked it first.
1849 */
1850 if ((parent->live & REG_LIVE_READ) == flag ||
1851 parent->live & REG_LIVE_READ64)
25af32da
AS
1852 /* The parentage chain never changes and
1853 * this parent was already marked as LIVE_READ.
1854 * There is no need to keep walking the chain again and
1855 * keep re-marking all parents as LIVE_READ.
1856 * This case happens when the same register is read
1857 * multiple times without writes into it in-between.
5327ed3d
JW
1858 * Also, if parent has the stronger REG_LIVE_READ64 set,
1859 * then no need to set the weak REG_LIVE_READ32.
25af32da
AS
1860 */
1861 break;
dc503a8a 1862 /* ... then we depend on parent's value */
5327ed3d
JW
1863 parent->live |= flag;
1864 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1865 if (flag == REG_LIVE_READ64)
1866 parent->live &= ~REG_LIVE_READ32;
dc503a8a
EC
1867 state = parent;
1868 parent = state->parent;
f4d7e40a 1869 writes = true;
06ee7115 1870 cnt++;
dc503a8a 1871 }
06ee7115
AS
1872
1873 if (env->longest_mark_read_walk < cnt)
1874 env->longest_mark_read_walk = cnt;
f4d7e40a 1875 return 0;
dc503a8a
EC
1876}
1877
5327ed3d
JW
1878/* This function is supposed to be used by the following 32-bit optimization
1879 * code only. It returns TRUE if the source or destination register operates
1880 * on 64-bit, otherwise return FALSE.
1881 */
1882static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1883 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1884{
1885 u8 code, class, op;
1886
1887 code = insn->code;
1888 class = BPF_CLASS(code);
1889 op = BPF_OP(code);
1890 if (class == BPF_JMP) {
1891 /* BPF_EXIT for "main" will reach here. Return TRUE
1892 * conservatively.
1893 */
1894 if (op == BPF_EXIT)
1895 return true;
1896 if (op == BPF_CALL) {
1897 /* BPF to BPF call will reach here because of marking
1898 * caller saved clobber with DST_OP_NO_MARK for which we
1899 * don't care the register def because they are anyway
1900 * marked as NOT_INIT already.
1901 */
1902 if (insn->src_reg == BPF_PSEUDO_CALL)
1903 return false;
1904 /* Helper call will reach here because of arg type
1905 * check, conservatively return TRUE.
1906 */
1907 if (t == SRC_OP)
1908 return true;
1909
1910 return false;
1911 }
1912 }
1913
1914 if (class == BPF_ALU64 || class == BPF_JMP ||
1915 /* BPF_END always use BPF_ALU class. */
1916 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1917 return true;
1918
1919 if (class == BPF_ALU || class == BPF_JMP32)
1920 return false;
1921
1922 if (class == BPF_LDX) {
1923 if (t != SRC_OP)
1924 return BPF_SIZE(code) == BPF_DW;
1925 /* LDX source must be ptr. */
1926 return true;
1927 }
1928
1929 if (class == BPF_STX) {
83a28819
IL
1930 /* BPF_STX (including atomic variants) has multiple source
1931 * operands, one of which is a ptr. Check whether the caller is
1932 * asking about it.
1933 */
1934 if (t == SRC_OP && reg->type != SCALAR_VALUE)
5327ed3d
JW
1935 return true;
1936 return BPF_SIZE(code) == BPF_DW;
1937 }
1938
1939 if (class == BPF_LD) {
1940 u8 mode = BPF_MODE(code);
1941
1942 /* LD_IMM64 */
1943 if (mode == BPF_IMM)
1944 return true;
1945
1946 /* Both LD_IND and LD_ABS return 32-bit data. */
1947 if (t != SRC_OP)
1948 return false;
1949
1950 /* Implicit ctx ptr. */
1951 if (regno == BPF_REG_6)
1952 return true;
1953
1954 /* Explicit source could be any width. */
1955 return true;
1956 }
1957
1958 if (class == BPF_ST)
1959 /* The only source register for BPF_ST is a ptr. */
1960 return true;
1961
1962 /* Conservatively return true at default. */
1963 return true;
1964}
1965
83a28819
IL
1966/* Return the regno defined by the insn, or -1. */
1967static int insn_def_regno(const struct bpf_insn *insn)
b325fbca 1968{
83a28819
IL
1969 switch (BPF_CLASS(insn->code)) {
1970 case BPF_JMP:
1971 case BPF_JMP32:
1972 case BPF_ST:
1973 return -1;
1974 case BPF_STX:
1975 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1976 (insn->imm & BPF_FETCH)) {
1977 if (insn->imm == BPF_CMPXCHG)
1978 return BPF_REG_0;
1979 else
1980 return insn->src_reg;
1981 } else {
1982 return -1;
1983 }
1984 default:
1985 return insn->dst_reg;
1986 }
b325fbca
JW
1987}
1988
1989/* Return TRUE if INSN has defined any 32-bit value explicitly. */
1990static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1991{
83a28819
IL
1992 int dst_reg = insn_def_regno(insn);
1993
1994 if (dst_reg == -1)
b325fbca
JW
1995 return false;
1996
83a28819 1997 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
b325fbca
JW
1998}
1999
5327ed3d
JW
2000static void mark_insn_zext(struct bpf_verifier_env *env,
2001 struct bpf_reg_state *reg)
2002{
2003 s32 def_idx = reg->subreg_def;
2004
2005 if (def_idx == DEF_NOT_SUBREG)
2006 return;
2007
2008 env->insn_aux_data[def_idx - 1].zext_dst = true;
2009 /* The dst will be zero extended, so won't be sub-register anymore. */
2010 reg->subreg_def = DEF_NOT_SUBREG;
2011}
2012
dc503a8a 2013static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
2014 enum reg_arg_type t)
2015{
f4d7e40a
AS
2016 struct bpf_verifier_state *vstate = env->cur_state;
2017 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5327ed3d 2018 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
c342dc10 2019 struct bpf_reg_state *reg, *regs = state->regs;
5327ed3d 2020 bool rw64;
dc503a8a 2021
17a52670 2022 if (regno >= MAX_BPF_REG) {
61bd5218 2023 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
2024 return -EINVAL;
2025 }
2026
c342dc10 2027 reg = &regs[regno];
5327ed3d 2028 rw64 = is_reg64(env, insn, regno, reg, t);
17a52670
AS
2029 if (t == SRC_OP) {
2030 /* check whether register used as source operand can be read */
c342dc10 2031 if (reg->type == NOT_INIT) {
61bd5218 2032 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
2033 return -EACCES;
2034 }
679c782d 2035 /* We don't need to worry about FP liveness because it's read-only */
c342dc10
JW
2036 if (regno == BPF_REG_FP)
2037 return 0;
2038
5327ed3d
JW
2039 if (rw64)
2040 mark_insn_zext(env, reg);
2041
2042 return mark_reg_read(env, reg, reg->parent,
2043 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
17a52670
AS
2044 } else {
2045 /* check whether register used as dest operand can be written to */
2046 if (regno == BPF_REG_FP) {
61bd5218 2047 verbose(env, "frame pointer is read only\n");
17a52670
AS
2048 return -EACCES;
2049 }
c342dc10 2050 reg->live |= REG_LIVE_WRITTEN;
5327ed3d 2051 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
17a52670 2052 if (t == DST_OP)
61bd5218 2053 mark_reg_unknown(env, regs, regno);
17a52670
AS
2054 }
2055 return 0;
2056}
2057
b5dc0163
AS
2058/* for any branch, call, exit record the history of jmps in the given state */
2059static int push_jmp_history(struct bpf_verifier_env *env,
2060 struct bpf_verifier_state *cur)
2061{
2062 u32 cnt = cur->jmp_history_cnt;
2063 struct bpf_idx_pair *p;
2064
2065 cnt++;
2066 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2067 if (!p)
2068 return -ENOMEM;
2069 p[cnt - 1].idx = env->insn_idx;
2070 p[cnt - 1].prev_idx = env->prev_insn_idx;
2071 cur->jmp_history = p;
2072 cur->jmp_history_cnt = cnt;
2073 return 0;
2074}
2075
2076/* Backtrack one insn at a time. If idx is not at the top of recorded
2077 * history then previous instruction came from straight line execution.
2078 */
2079static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2080 u32 *history)
2081{
2082 u32 cnt = *history;
2083
2084 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2085 i = st->jmp_history[cnt - 1].prev_idx;
2086 (*history)--;
2087 } else {
2088 i--;
2089 }
2090 return i;
2091}
2092
e6ac2450
MKL
2093static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2094{
2095 const struct btf_type *func;
2096
2097 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2098 return NULL;
2099
2100 func = btf_type_by_id(btf_vmlinux, insn->imm);
2101 return btf_name_by_offset(btf_vmlinux, func->name_off);
2102}
2103
b5dc0163
AS
2104/* For given verifier state backtrack_insn() is called from the last insn to
2105 * the first insn. Its purpose is to compute a bitmask of registers and
2106 * stack slots that needs precision in the parent verifier state.
2107 */
2108static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2109 u32 *reg_mask, u64 *stack_mask)
2110{
2111 const struct bpf_insn_cbs cbs = {
e6ac2450 2112 .cb_call = disasm_kfunc_name,
b5dc0163
AS
2113 .cb_print = verbose,
2114 .private_data = env,
2115 };
2116 struct bpf_insn *insn = env->prog->insnsi + idx;
2117 u8 class = BPF_CLASS(insn->code);
2118 u8 opcode = BPF_OP(insn->code);
2119 u8 mode = BPF_MODE(insn->code);
2120 u32 dreg = 1u << insn->dst_reg;
2121 u32 sreg = 1u << insn->src_reg;
2122 u32 spi;
2123
2124 if (insn->code == 0)
2125 return 0;
2126 if (env->log.level & BPF_LOG_LEVEL) {
2127 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2128 verbose(env, "%d: ", idx);
2129 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2130 }
2131
2132 if (class == BPF_ALU || class == BPF_ALU64) {
2133 if (!(*reg_mask & dreg))
2134 return 0;
2135 if (opcode == BPF_MOV) {
2136 if (BPF_SRC(insn->code) == BPF_X) {
2137 /* dreg = sreg
2138 * dreg needs precision after this insn
2139 * sreg needs precision before this insn
2140 */
2141 *reg_mask &= ~dreg;
2142 *reg_mask |= sreg;
2143 } else {
2144 /* dreg = K
2145 * dreg needs precision after this insn.
2146 * Corresponding register is already marked
2147 * as precise=true in this verifier state.
2148 * No further markings in parent are necessary
2149 */
2150 *reg_mask &= ~dreg;
2151 }
2152 } else {
2153 if (BPF_SRC(insn->code) == BPF_X) {
2154 /* dreg += sreg
2155 * both dreg and sreg need precision
2156 * before this insn
2157 */
2158 *reg_mask |= sreg;
2159 } /* else dreg += K
2160 * dreg still needs precision before this insn
2161 */
2162 }
2163 } else if (class == BPF_LDX) {
2164 if (!(*reg_mask & dreg))
2165 return 0;
2166 *reg_mask &= ~dreg;
2167
2168 /* scalars can only be spilled into stack w/o losing precision.
2169 * Load from any other memory can be zero extended.
2170 * The desire to keep that precision is already indicated
2171 * by 'precise' mark in corresponding register of this state.
2172 * No further tracking necessary.
2173 */
2174 if (insn->src_reg != BPF_REG_FP)
2175 return 0;
2176 if (BPF_SIZE(insn->code) != BPF_DW)
2177 return 0;
2178
2179 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2180 * that [fp - off] slot contains scalar that needs to be
2181 * tracked with precision
2182 */
2183 spi = (-insn->off - 1) / BPF_REG_SIZE;
2184 if (spi >= 64) {
2185 verbose(env, "BUG spi %d\n", spi);
2186 WARN_ONCE(1, "verifier backtracking bug");
2187 return -EFAULT;
2188 }
2189 *stack_mask |= 1ull << spi;
b3b50f05 2190 } else if (class == BPF_STX || class == BPF_ST) {
b5dc0163 2191 if (*reg_mask & dreg)
b3b50f05 2192 /* stx & st shouldn't be using _scalar_ dst_reg
b5dc0163
AS
2193 * to access memory. It means backtracking
2194 * encountered a case of pointer subtraction.
2195 */
2196 return -ENOTSUPP;
2197 /* scalars can only be spilled into stack */
2198 if (insn->dst_reg != BPF_REG_FP)
2199 return 0;
2200 if (BPF_SIZE(insn->code) != BPF_DW)
2201 return 0;
2202 spi = (-insn->off - 1) / BPF_REG_SIZE;
2203 if (spi >= 64) {
2204 verbose(env, "BUG spi %d\n", spi);
2205 WARN_ONCE(1, "verifier backtracking bug");
2206 return -EFAULT;
2207 }
2208 if (!(*stack_mask & (1ull << spi)))
2209 return 0;
2210 *stack_mask &= ~(1ull << spi);
b3b50f05
AN
2211 if (class == BPF_STX)
2212 *reg_mask |= sreg;
b5dc0163
AS
2213 } else if (class == BPF_JMP || class == BPF_JMP32) {
2214 if (opcode == BPF_CALL) {
2215 if (insn->src_reg == BPF_PSEUDO_CALL)
2216 return -ENOTSUPP;
2217 /* regular helper call sets R0 */
2218 *reg_mask &= ~1;
2219 if (*reg_mask & 0x3f) {
2220 /* if backtracing was looking for registers R1-R5
2221 * they should have been found already.
2222 */
2223 verbose(env, "BUG regs %x\n", *reg_mask);
2224 WARN_ONCE(1, "verifier backtracking bug");
2225 return -EFAULT;
2226 }
2227 } else if (opcode == BPF_EXIT) {
2228 return -ENOTSUPP;
2229 }
2230 } else if (class == BPF_LD) {
2231 if (!(*reg_mask & dreg))
2232 return 0;
2233 *reg_mask &= ~dreg;
2234 /* It's ld_imm64 or ld_abs or ld_ind.
2235 * For ld_imm64 no further tracking of precision
2236 * into parent is necessary
2237 */
2238 if (mode == BPF_IND || mode == BPF_ABS)
2239 /* to be analyzed */
2240 return -ENOTSUPP;
b5dc0163
AS
2241 }
2242 return 0;
2243}
2244
2245/* the scalar precision tracking algorithm:
2246 * . at the start all registers have precise=false.
2247 * . scalar ranges are tracked as normal through alu and jmp insns.
2248 * . once precise value of the scalar register is used in:
2249 * . ptr + scalar alu
2250 * . if (scalar cond K|scalar)
2251 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2252 * backtrack through the verifier states and mark all registers and
2253 * stack slots with spilled constants that these scalar regisers
2254 * should be precise.
2255 * . during state pruning two registers (or spilled stack slots)
2256 * are equivalent if both are not precise.
2257 *
2258 * Note the verifier cannot simply walk register parentage chain,
2259 * since many different registers and stack slots could have been
2260 * used to compute single precise scalar.
2261 *
2262 * The approach of starting with precise=true for all registers and then
2263 * backtrack to mark a register as not precise when the verifier detects
2264 * that program doesn't care about specific value (e.g., when helper
2265 * takes register as ARG_ANYTHING parameter) is not safe.
2266 *
2267 * It's ok to walk single parentage chain of the verifier states.
2268 * It's possible that this backtracking will go all the way till 1st insn.
2269 * All other branches will be explored for needing precision later.
2270 *
2271 * The backtracking needs to deal with cases like:
2272 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2273 * r9 -= r8
2274 * r5 = r9
2275 * if r5 > 0x79f goto pc+7
2276 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2277 * r5 += 1
2278 * ...
2279 * call bpf_perf_event_output#25
2280 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2281 *
2282 * and this case:
2283 * r6 = 1
2284 * call foo // uses callee's r6 inside to compute r0
2285 * r0 += r6
2286 * if r0 == 0 goto
2287 *
2288 * to track above reg_mask/stack_mask needs to be independent for each frame.
2289 *
2290 * Also if parent's curframe > frame where backtracking started,
2291 * the verifier need to mark registers in both frames, otherwise callees
2292 * may incorrectly prune callers. This is similar to
2293 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2294 *
2295 * For now backtracking falls back into conservative marking.
2296 */
2297static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2298 struct bpf_verifier_state *st)
2299{
2300 struct bpf_func_state *func;
2301 struct bpf_reg_state *reg;
2302 int i, j;
2303
2304 /* big hammer: mark all scalars precise in this path.
2305 * pop_stack may still get !precise scalars.
2306 */
2307 for (; st; st = st->parent)
2308 for (i = 0; i <= st->curframe; i++) {
2309 func = st->frame[i];
2310 for (j = 0; j < BPF_REG_FP; j++) {
2311 reg = &func->regs[j];
2312 if (reg->type != SCALAR_VALUE)
2313 continue;
2314 reg->precise = true;
2315 }
2316 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2317 if (func->stack[j].slot_type[0] != STACK_SPILL)
2318 continue;
2319 reg = &func->stack[j].spilled_ptr;
2320 if (reg->type != SCALAR_VALUE)
2321 continue;
2322 reg->precise = true;
2323 }
2324 }
2325}
2326
a3ce685d
AS
2327static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2328 int spi)
b5dc0163
AS
2329{
2330 struct bpf_verifier_state *st = env->cur_state;
2331 int first_idx = st->first_insn_idx;
2332 int last_idx = env->insn_idx;
2333 struct bpf_func_state *func;
2334 struct bpf_reg_state *reg;
a3ce685d
AS
2335 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2336 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
b5dc0163 2337 bool skip_first = true;
a3ce685d 2338 bool new_marks = false;
b5dc0163
AS
2339 int i, err;
2340
2c78ee89 2341 if (!env->bpf_capable)
b5dc0163
AS
2342 return 0;
2343
2344 func = st->frame[st->curframe];
a3ce685d
AS
2345 if (regno >= 0) {
2346 reg = &func->regs[regno];
2347 if (reg->type != SCALAR_VALUE) {
2348 WARN_ONCE(1, "backtracing misuse");
2349 return -EFAULT;
2350 }
2351 if (!reg->precise)
2352 new_marks = true;
2353 else
2354 reg_mask = 0;
2355 reg->precise = true;
b5dc0163 2356 }
b5dc0163 2357
a3ce685d
AS
2358 while (spi >= 0) {
2359 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2360 stack_mask = 0;
2361 break;
2362 }
2363 reg = &func->stack[spi].spilled_ptr;
2364 if (reg->type != SCALAR_VALUE) {
2365 stack_mask = 0;
2366 break;
2367 }
2368 if (!reg->precise)
2369 new_marks = true;
2370 else
2371 stack_mask = 0;
2372 reg->precise = true;
2373 break;
2374 }
2375
2376 if (!new_marks)
2377 return 0;
2378 if (!reg_mask && !stack_mask)
2379 return 0;
b5dc0163
AS
2380 for (;;) {
2381 DECLARE_BITMAP(mask, 64);
b5dc0163
AS
2382 u32 history = st->jmp_history_cnt;
2383
2384 if (env->log.level & BPF_LOG_LEVEL)
2385 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2386 for (i = last_idx;;) {
2387 if (skip_first) {
2388 err = 0;
2389 skip_first = false;
2390 } else {
2391 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2392 }
2393 if (err == -ENOTSUPP) {
2394 mark_all_scalars_precise(env, st);
2395 return 0;
2396 } else if (err) {
2397 return err;
2398 }
2399 if (!reg_mask && !stack_mask)
2400 /* Found assignment(s) into tracked register in this state.
2401 * Since this state is already marked, just return.
2402 * Nothing to be tracked further in the parent state.
2403 */
2404 return 0;
2405 if (i == first_idx)
2406 break;
2407 i = get_prev_insn_idx(st, i, &history);
2408 if (i >= env->prog->len) {
2409 /* This can happen if backtracking reached insn 0
2410 * and there are still reg_mask or stack_mask
2411 * to backtrack.
2412 * It means the backtracking missed the spot where
2413 * particular register was initialized with a constant.
2414 */
2415 verbose(env, "BUG backtracking idx %d\n", i);
2416 WARN_ONCE(1, "verifier backtracking bug");
2417 return -EFAULT;
2418 }
2419 }
2420 st = st->parent;
2421 if (!st)
2422 break;
2423
a3ce685d 2424 new_marks = false;
b5dc0163
AS
2425 func = st->frame[st->curframe];
2426 bitmap_from_u64(mask, reg_mask);
2427 for_each_set_bit(i, mask, 32) {
2428 reg = &func->regs[i];
a3ce685d
AS
2429 if (reg->type != SCALAR_VALUE) {
2430 reg_mask &= ~(1u << i);
b5dc0163 2431 continue;
a3ce685d 2432 }
b5dc0163
AS
2433 if (!reg->precise)
2434 new_marks = true;
2435 reg->precise = true;
2436 }
2437
2438 bitmap_from_u64(mask, stack_mask);
2439 for_each_set_bit(i, mask, 64) {
2440 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2339cd6c
AS
2441 /* the sequence of instructions:
2442 * 2: (bf) r3 = r10
2443 * 3: (7b) *(u64 *)(r3 -8) = r0
2444 * 4: (79) r4 = *(u64 *)(r10 -8)
2445 * doesn't contain jmps. It's backtracked
2446 * as a single block.
2447 * During backtracking insn 3 is not recognized as
2448 * stack access, so at the end of backtracking
2449 * stack slot fp-8 is still marked in stack_mask.
2450 * However the parent state may not have accessed
2451 * fp-8 and it's "unallocated" stack space.
2452 * In such case fallback to conservative.
b5dc0163 2453 */
2339cd6c
AS
2454 mark_all_scalars_precise(env, st);
2455 return 0;
b5dc0163
AS
2456 }
2457
a3ce685d
AS
2458 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2459 stack_mask &= ~(1ull << i);
b5dc0163 2460 continue;
a3ce685d 2461 }
b5dc0163 2462 reg = &func->stack[i].spilled_ptr;
a3ce685d
AS
2463 if (reg->type != SCALAR_VALUE) {
2464 stack_mask &= ~(1ull << i);
b5dc0163 2465 continue;
a3ce685d 2466 }
b5dc0163
AS
2467 if (!reg->precise)
2468 new_marks = true;
2469 reg->precise = true;
2470 }
2471 if (env->log.level & BPF_LOG_LEVEL) {
2472 print_verifier_state(env, func);
2473 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2474 new_marks ? "didn't have" : "already had",
2475 reg_mask, stack_mask);
2476 }
2477
a3ce685d
AS
2478 if (!reg_mask && !stack_mask)
2479 break;
b5dc0163
AS
2480 if (!new_marks)
2481 break;
2482
2483 last_idx = st->last_insn_idx;
2484 first_idx = st->first_insn_idx;
2485 }
2486 return 0;
2487}
2488
a3ce685d
AS
2489static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2490{
2491 return __mark_chain_precision(env, regno, -1);
2492}
2493
2494static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2495{
2496 return __mark_chain_precision(env, -1, spi);
2497}
b5dc0163 2498
1be7f75d
AS
2499static bool is_spillable_regtype(enum bpf_reg_type type)
2500{
2501 switch (type) {
2502 case PTR_TO_MAP_VALUE:
2503 case PTR_TO_MAP_VALUE_OR_NULL:
2504 case PTR_TO_STACK:
2505 case PTR_TO_CTX:
969bf05e 2506 case PTR_TO_PACKET:
de8f3a83 2507 case PTR_TO_PACKET_META:
969bf05e 2508 case PTR_TO_PACKET_END:
d58e468b 2509 case PTR_TO_FLOW_KEYS:
1be7f75d 2510 case CONST_PTR_TO_MAP:
c64b7983
JS
2511 case PTR_TO_SOCKET:
2512 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
2513 case PTR_TO_SOCK_COMMON:
2514 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
2515 case PTR_TO_TCP_SOCK:
2516 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 2517 case PTR_TO_XDP_SOCK:
65726b5b 2518 case PTR_TO_BTF_ID:
b121b341 2519 case PTR_TO_BTF_ID_OR_NULL:
afbf21dc
YS
2520 case PTR_TO_RDONLY_BUF:
2521 case PTR_TO_RDONLY_BUF_OR_NULL:
2522 case PTR_TO_RDWR_BUF:
2523 case PTR_TO_RDWR_BUF_OR_NULL:
eaa6bcb7 2524 case PTR_TO_PERCPU_BTF_ID:
744ea4e3
GR
2525 case PTR_TO_MEM:
2526 case PTR_TO_MEM_OR_NULL:
69c087ba
YS
2527 case PTR_TO_FUNC:
2528 case PTR_TO_MAP_KEY:
1be7f75d
AS
2529 return true;
2530 default:
2531 return false;
2532 }
2533}
2534
cc2b14d5
AS
2535/* Does this register contain a constant zero? */
2536static bool register_is_null(struct bpf_reg_state *reg)
2537{
2538 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2539}
2540
f7cf25b2
AS
2541static bool register_is_const(struct bpf_reg_state *reg)
2542{
2543 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2544}
2545
5689d49b
YS
2546static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2547{
2548 return tnum_is_unknown(reg->var_off) &&
2549 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2550 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2551 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2552 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2553}
2554
2555static bool register_is_bounded(struct bpf_reg_state *reg)
2556{
2557 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2558}
2559
6e7e63cb
JH
2560static bool __is_pointer_value(bool allow_ptr_leaks,
2561 const struct bpf_reg_state *reg)
2562{
2563 if (allow_ptr_leaks)
2564 return false;
2565
2566 return reg->type != SCALAR_VALUE;
2567}
2568
f7cf25b2
AS
2569static void save_register_state(struct bpf_func_state *state,
2570 int spi, struct bpf_reg_state *reg)
2571{
2572 int i;
2573
2574 state->stack[spi].spilled_ptr = *reg;
2575 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2576
2577 for (i = 0; i < BPF_REG_SIZE; i++)
2578 state->stack[spi].slot_type[i] = STACK_SPILL;
2579}
2580
01f810ac 2581/* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
17a52670
AS
2582 * stack boundary and alignment are checked in check_mem_access()
2583 */
01f810ac
AM
2584static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2585 /* stack frame we're writing to */
2586 struct bpf_func_state *state,
2587 int off, int size, int value_regno,
2588 int insn_idx)
17a52670 2589{
f4d7e40a 2590 struct bpf_func_state *cur; /* state of the current function */
638f5b90 2591 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
b5dc0163 2592 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
f7cf25b2 2593 struct bpf_reg_state *reg = NULL;
638f5b90 2594
f4d7e40a 2595 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
fd978bf7 2596 state->acquired_refs, true);
638f5b90
AS
2597 if (err)
2598 return err;
9c399760
AS
2599 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2600 * so it's aligned access and [off, off + size) are within stack limits
2601 */
638f5b90
AS
2602 if (!env->allow_ptr_leaks &&
2603 state->stack[spi].slot_type[0] == STACK_SPILL &&
2604 size != BPF_REG_SIZE) {
2605 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2606 return -EACCES;
2607 }
17a52670 2608
f4d7e40a 2609 cur = env->cur_state->frame[env->cur_state->curframe];
f7cf25b2
AS
2610 if (value_regno >= 0)
2611 reg = &cur->regs[value_regno];
17a52670 2612
5689d49b 2613 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2c78ee89 2614 !register_is_null(reg) && env->bpf_capable) {
b5dc0163
AS
2615 if (dst_reg != BPF_REG_FP) {
2616 /* The backtracking logic can only recognize explicit
2617 * stack slot address like [fp - 8]. Other spill of
2618 * scalar via different register has to be conervative.
2619 * Backtrack from here and mark all registers as precise
2620 * that contributed into 'reg' being a constant.
2621 */
2622 err = mark_chain_precision(env, value_regno);
2623 if (err)
2624 return err;
2625 }
f7cf25b2
AS
2626 save_register_state(state, spi, reg);
2627 } else if (reg && is_spillable_regtype(reg->type)) {
17a52670 2628 /* register containing pointer is being spilled into stack */
9c399760 2629 if (size != BPF_REG_SIZE) {
f7cf25b2 2630 verbose_linfo(env, insn_idx, "; ");
61bd5218 2631 verbose(env, "invalid size of register spill\n");
17a52670
AS
2632 return -EACCES;
2633 }
2634
f7cf25b2 2635 if (state != cur && reg->type == PTR_TO_STACK) {
f4d7e40a
AS
2636 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2637 return -EINVAL;
2638 }
2639
2c78ee89 2640 if (!env->bypass_spec_v4) {
f7cf25b2 2641 bool sanitize = false;
17a52670 2642
f7cf25b2
AS
2643 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2644 register_is_const(&state->stack[spi].spilled_ptr))
2645 sanitize = true;
2646 for (i = 0; i < BPF_REG_SIZE; i++)
2647 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2648 sanitize = true;
2649 break;
2650 }
2651 if (sanitize) {
af86ca4e
AS
2652 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2653 int soff = (-spi - 1) * BPF_REG_SIZE;
2654
2655 /* detected reuse of integer stack slot with a pointer
2656 * which means either llvm is reusing stack slot or
2657 * an attacker is trying to exploit CVE-2018-3639
2658 * (speculative store bypass)
2659 * Have to sanitize that slot with preemptive
2660 * store of zero.
2661 */
2662 if (*poff && *poff != soff) {
2663 /* disallow programs where single insn stores
2664 * into two different stack slots, since verifier
2665 * cannot sanitize them
2666 */
2667 verbose(env,
2668 "insn %d cannot access two stack slots fp%d and fp%d",
2669 insn_idx, *poff, soff);
2670 return -EINVAL;
2671 }
2672 *poff = soff;
2673 }
af86ca4e 2674 }
f7cf25b2 2675 save_register_state(state, spi, reg);
9c399760 2676 } else {
cc2b14d5
AS
2677 u8 type = STACK_MISC;
2678
679c782d
EC
2679 /* regular write of data into stack destroys any spilled ptr */
2680 state->stack[spi].spilled_ptr.type = NOT_INIT;
0bae2d4d
JW
2681 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2682 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2683 for (i = 0; i < BPF_REG_SIZE; i++)
2684 state->stack[spi].slot_type[i] = STACK_MISC;
9c399760 2685
cc2b14d5
AS
2686 /* only mark the slot as written if all 8 bytes were written
2687 * otherwise read propagation may incorrectly stop too soon
2688 * when stack slots are partially written.
2689 * This heuristic means that read propagation will be
2690 * conservative, since it will add reg_live_read marks
2691 * to stack slots all the way to first state when programs
2692 * writes+reads less than 8 bytes
2693 */
2694 if (size == BPF_REG_SIZE)
2695 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2696
2697 /* when we zero initialize stack slots mark them as such */
b5dc0163
AS
2698 if (reg && register_is_null(reg)) {
2699 /* backtracking doesn't work for STACK_ZERO yet. */
2700 err = mark_chain_precision(env, value_regno);
2701 if (err)
2702 return err;
cc2b14d5 2703 type = STACK_ZERO;
b5dc0163 2704 }
cc2b14d5 2705
0bae2d4d 2706 /* Mark slots affected by this stack write. */
9c399760 2707 for (i = 0; i < size; i++)
638f5b90 2708 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 2709 type;
17a52670
AS
2710 }
2711 return 0;
2712}
2713
01f810ac
AM
2714/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2715 * known to contain a variable offset.
2716 * This function checks whether the write is permitted and conservatively
2717 * tracks the effects of the write, considering that each stack slot in the
2718 * dynamic range is potentially written to.
2719 *
2720 * 'off' includes 'regno->off'.
2721 * 'value_regno' can be -1, meaning that an unknown value is being written to
2722 * the stack.
2723 *
2724 * Spilled pointers in range are not marked as written because we don't know
2725 * what's going to be actually written. This means that read propagation for
2726 * future reads cannot be terminated by this write.
2727 *
2728 * For privileged programs, uninitialized stack slots are considered
2729 * initialized by this write (even though we don't know exactly what offsets
2730 * are going to be written to). The idea is that we don't want the verifier to
2731 * reject future reads that access slots written to through variable offsets.
2732 */
2733static int check_stack_write_var_off(struct bpf_verifier_env *env,
2734 /* func where register points to */
2735 struct bpf_func_state *state,
2736 int ptr_regno, int off, int size,
2737 int value_regno, int insn_idx)
2738{
2739 struct bpf_func_state *cur; /* state of the current function */
2740 int min_off, max_off;
2741 int i, err;
2742 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2743 bool writing_zero = false;
2744 /* set if the fact that we're writing a zero is used to let any
2745 * stack slots remain STACK_ZERO
2746 */
2747 bool zero_used = false;
2748
2749 cur = env->cur_state->frame[env->cur_state->curframe];
2750 ptr_reg = &cur->regs[ptr_regno];
2751 min_off = ptr_reg->smin_value + off;
2752 max_off = ptr_reg->smax_value + off + size;
2753 if (value_regno >= 0)
2754 value_reg = &cur->regs[value_regno];
2755 if (value_reg && register_is_null(value_reg))
2756 writing_zero = true;
2757
2758 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2759 state->acquired_refs, true);
2760 if (err)
2761 return err;
2762
2763
2764 /* Variable offset writes destroy any spilled pointers in range. */
2765 for (i = min_off; i < max_off; i++) {
2766 u8 new_type, *stype;
2767 int slot, spi;
2768
2769 slot = -i - 1;
2770 spi = slot / BPF_REG_SIZE;
2771 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2772
2773 if (!env->allow_ptr_leaks
2774 && *stype != NOT_INIT
2775 && *stype != SCALAR_VALUE) {
2776 /* Reject the write if there's are spilled pointers in
2777 * range. If we didn't reject here, the ptr status
2778 * would be erased below (even though not all slots are
2779 * actually overwritten), possibly opening the door to
2780 * leaks.
2781 */
2782 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2783 insn_idx, i);
2784 return -EINVAL;
2785 }
2786
2787 /* Erase all spilled pointers. */
2788 state->stack[spi].spilled_ptr.type = NOT_INIT;
2789
2790 /* Update the slot type. */
2791 new_type = STACK_MISC;
2792 if (writing_zero && *stype == STACK_ZERO) {
2793 new_type = STACK_ZERO;
2794 zero_used = true;
2795 }
2796 /* If the slot is STACK_INVALID, we check whether it's OK to
2797 * pretend that it will be initialized by this write. The slot
2798 * might not actually be written to, and so if we mark it as
2799 * initialized future reads might leak uninitialized memory.
2800 * For privileged programs, we will accept such reads to slots
2801 * that may or may not be written because, if we're reject
2802 * them, the error would be too confusing.
2803 */
2804 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2805 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2806 insn_idx, i);
2807 return -EINVAL;
2808 }
2809 *stype = new_type;
2810 }
2811 if (zero_used) {
2812 /* backtracking doesn't work for STACK_ZERO yet. */
2813 err = mark_chain_precision(env, value_regno);
2814 if (err)
2815 return err;
2816 }
2817 return 0;
2818}
2819
2820/* When register 'dst_regno' is assigned some values from stack[min_off,
2821 * max_off), we set the register's type according to the types of the
2822 * respective stack slots. If all the stack values are known to be zeros, then
2823 * so is the destination reg. Otherwise, the register is considered to be
2824 * SCALAR. This function does not deal with register filling; the caller must
2825 * ensure that all spilled registers in the stack range have been marked as
2826 * read.
2827 */
2828static void mark_reg_stack_read(struct bpf_verifier_env *env,
2829 /* func where src register points to */
2830 struct bpf_func_state *ptr_state,
2831 int min_off, int max_off, int dst_regno)
2832{
2833 struct bpf_verifier_state *vstate = env->cur_state;
2834 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2835 int i, slot, spi;
2836 u8 *stype;
2837 int zeros = 0;
2838
2839 for (i = min_off; i < max_off; i++) {
2840 slot = -i - 1;
2841 spi = slot / BPF_REG_SIZE;
2842 stype = ptr_state->stack[spi].slot_type;
2843 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2844 break;
2845 zeros++;
2846 }
2847 if (zeros == max_off - min_off) {
2848 /* any access_size read into register is zero extended,
2849 * so the whole register == const_zero
2850 */
2851 __mark_reg_const_zero(&state->regs[dst_regno]);
2852 /* backtracking doesn't support STACK_ZERO yet,
2853 * so mark it precise here, so that later
2854 * backtracking can stop here.
2855 * Backtracking may not need this if this register
2856 * doesn't participate in pointer adjustment.
2857 * Forward propagation of precise flag is not
2858 * necessary either. This mark is only to stop
2859 * backtracking. Any register that contributed
2860 * to const 0 was marked precise before spill.
2861 */
2862 state->regs[dst_regno].precise = true;
2863 } else {
2864 /* have read misc data from the stack */
2865 mark_reg_unknown(env, state->regs, dst_regno);
2866 }
2867 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2868}
2869
2870/* Read the stack at 'off' and put the results into the register indicated by
2871 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2872 * spilled reg.
2873 *
2874 * 'dst_regno' can be -1, meaning that the read value is not going to a
2875 * register.
2876 *
2877 * The access is assumed to be within the current stack bounds.
2878 */
2879static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2880 /* func where src register points to */
2881 struct bpf_func_state *reg_state,
2882 int off, int size, int dst_regno)
17a52670 2883{
f4d7e40a
AS
2884 struct bpf_verifier_state *vstate = env->cur_state;
2885 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90 2886 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
f7cf25b2 2887 struct bpf_reg_state *reg;
638f5b90 2888 u8 *stype;
17a52670 2889
f4d7e40a 2890 stype = reg_state->stack[spi].slot_type;
f7cf25b2 2891 reg = &reg_state->stack[spi].spilled_ptr;
17a52670 2892
638f5b90 2893 if (stype[0] == STACK_SPILL) {
9c399760 2894 if (size != BPF_REG_SIZE) {
f7cf25b2
AS
2895 if (reg->type != SCALAR_VALUE) {
2896 verbose_linfo(env, env->insn_idx, "; ");
2897 verbose(env, "invalid size of register fill\n");
2898 return -EACCES;
2899 }
01f810ac
AM
2900 if (dst_regno >= 0) {
2901 mark_reg_unknown(env, state->regs, dst_regno);
2902 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
f7cf25b2
AS
2903 }
2904 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2905 return 0;
17a52670 2906 }
9c399760 2907 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 2908 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 2909 verbose(env, "corrupted spill memory\n");
17a52670
AS
2910 return -EACCES;
2911 }
2912 }
2913
01f810ac 2914 if (dst_regno >= 0) {
17a52670 2915 /* restore register state from stack */
01f810ac 2916 state->regs[dst_regno] = *reg;
2f18f62e
AS
2917 /* mark reg as written since spilled pointer state likely
2918 * has its liveness marks cleared by is_state_visited()
2919 * which resets stack/reg liveness for state transitions
2920 */
01f810ac 2921 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
6e7e63cb 2922 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
01f810ac 2923 /* If dst_regno==-1, the caller is asking us whether
6e7e63cb
JH
2924 * it is acceptable to use this value as a SCALAR_VALUE
2925 * (e.g. for XADD).
2926 * We must not allow unprivileged callers to do that
2927 * with spilled pointers.
2928 */
2929 verbose(env, "leaking pointer from stack off %d\n",
2930 off);
2931 return -EACCES;
dc503a8a 2932 }
f7cf25b2 2933 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
17a52670 2934 } else {
01f810ac 2935 u8 type;
cc2b14d5 2936
17a52670 2937 for (i = 0; i < size; i++) {
01f810ac
AM
2938 type = stype[(slot - i) % BPF_REG_SIZE];
2939 if (type == STACK_MISC)
cc2b14d5 2940 continue;
01f810ac 2941 if (type == STACK_ZERO)
cc2b14d5 2942 continue;
cc2b14d5
AS
2943 verbose(env, "invalid read from stack off %d+%d size %d\n",
2944 off, i, size);
2945 return -EACCES;
2946 }
f7cf25b2 2947 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
01f810ac
AM
2948 if (dst_regno >= 0)
2949 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
17a52670 2950 }
f7cf25b2 2951 return 0;
17a52670
AS
2952}
2953
01f810ac
AM
2954enum stack_access_src {
2955 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2956 ACCESS_HELPER = 2, /* the access is performed by a helper */
2957};
2958
2959static int check_stack_range_initialized(struct bpf_verifier_env *env,
2960 int regno, int off, int access_size,
2961 bool zero_size_allowed,
2962 enum stack_access_src type,
2963 struct bpf_call_arg_meta *meta);
2964
2965static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2966{
2967 return cur_regs(env) + regno;
2968}
2969
2970/* Read the stack at 'ptr_regno + off' and put the result into the register
2971 * 'dst_regno'.
2972 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2973 * but not its variable offset.
2974 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2975 *
2976 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2977 * filling registers (i.e. reads of spilled register cannot be detected when
2978 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2979 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2980 * offset; for a fixed offset check_stack_read_fixed_off should be used
2981 * instead.
2982 */
2983static int check_stack_read_var_off(struct bpf_verifier_env *env,
2984 int ptr_regno, int off, int size, int dst_regno)
e4298d25 2985{
01f810ac
AM
2986 /* The state of the source register. */
2987 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2988 struct bpf_func_state *ptr_state = func(env, reg);
2989 int err;
2990 int min_off, max_off;
2991
2992 /* Note that we pass a NULL meta, so raw access will not be permitted.
e4298d25 2993 */
01f810ac
AM
2994 err = check_stack_range_initialized(env, ptr_regno, off, size,
2995 false, ACCESS_DIRECT, NULL);
2996 if (err)
2997 return err;
2998
2999 min_off = reg->smin_value + off;
3000 max_off = reg->smax_value + off;
3001 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3002 return 0;
3003}
3004
3005/* check_stack_read dispatches to check_stack_read_fixed_off or
3006 * check_stack_read_var_off.
3007 *
3008 * The caller must ensure that the offset falls within the allocated stack
3009 * bounds.
3010 *
3011 * 'dst_regno' is a register which will receive the value from the stack. It
3012 * can be -1, meaning that the read value is not going to a register.
3013 */
3014static int check_stack_read(struct bpf_verifier_env *env,
3015 int ptr_regno, int off, int size,
3016 int dst_regno)
3017{
3018 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3019 struct bpf_func_state *state = func(env, reg);
3020 int err;
3021 /* Some accesses are only permitted with a static offset. */
3022 bool var_off = !tnum_is_const(reg->var_off);
3023
3024 /* The offset is required to be static when reads don't go to a
3025 * register, in order to not leak pointers (see
3026 * check_stack_read_fixed_off).
3027 */
3028 if (dst_regno < 0 && var_off) {
e4298d25
DB
3029 char tn_buf[48];
3030
3031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac 3032 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
e4298d25
DB
3033 tn_buf, off, size);
3034 return -EACCES;
3035 }
01f810ac
AM
3036 /* Variable offset is prohibited for unprivileged mode for simplicity
3037 * since it requires corresponding support in Spectre masking for stack
3038 * ALU. See also retrieve_ptr_limit().
3039 */
3040 if (!env->bypass_spec_v1 && var_off) {
3041 char tn_buf[48];
e4298d25 3042
01f810ac
AM
3043 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3044 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3045 ptr_regno, tn_buf);
e4298d25
DB
3046 return -EACCES;
3047 }
3048
01f810ac
AM
3049 if (!var_off) {
3050 off += reg->var_off.value;
3051 err = check_stack_read_fixed_off(env, state, off, size,
3052 dst_regno);
3053 } else {
3054 /* Variable offset stack reads need more conservative handling
3055 * than fixed offset ones. Note that dst_regno >= 0 on this
3056 * branch.
3057 */
3058 err = check_stack_read_var_off(env, ptr_regno, off, size,
3059 dst_regno);
3060 }
3061 return err;
3062}
3063
3064
3065/* check_stack_write dispatches to check_stack_write_fixed_off or
3066 * check_stack_write_var_off.
3067 *
3068 * 'ptr_regno' is the register used as a pointer into the stack.
3069 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3070 * 'value_regno' is the register whose value we're writing to the stack. It can
3071 * be -1, meaning that we're not writing from a register.
3072 *
3073 * The caller must ensure that the offset falls within the maximum stack size.
3074 */
3075static int check_stack_write(struct bpf_verifier_env *env,
3076 int ptr_regno, int off, int size,
3077 int value_regno, int insn_idx)
3078{
3079 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3080 struct bpf_func_state *state = func(env, reg);
3081 int err;
3082
3083 if (tnum_is_const(reg->var_off)) {
3084 off += reg->var_off.value;
3085 err = check_stack_write_fixed_off(env, state, off, size,
3086 value_regno, insn_idx);
3087 } else {
3088 /* Variable offset stack reads need more conservative handling
3089 * than fixed offset ones.
3090 */
3091 err = check_stack_write_var_off(env, state,
3092 ptr_regno, off, size,
3093 value_regno, insn_idx);
3094 }
3095 return err;
e4298d25
DB
3096}
3097
591fe988
DB
3098static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3099 int off, int size, enum bpf_access_type type)
3100{
3101 struct bpf_reg_state *regs = cur_regs(env);
3102 struct bpf_map *map = regs[regno].map_ptr;
3103 u32 cap = bpf_map_flags_to_cap(map);
3104
3105 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3106 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3107 map->value_size, off, size);
3108 return -EACCES;
3109 }
3110
3111 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3112 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3113 map->value_size, off, size);
3114 return -EACCES;
3115 }
3116
3117 return 0;
3118}
3119
457f4436
AN
3120/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3121static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3122 int off, int size, u32 mem_size,
3123 bool zero_size_allowed)
17a52670 3124{
457f4436
AN
3125 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3126 struct bpf_reg_state *reg;
3127
3128 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3129 return 0;
17a52670 3130
457f4436
AN
3131 reg = &cur_regs(env)[regno];
3132 switch (reg->type) {
69c087ba
YS
3133 case PTR_TO_MAP_KEY:
3134 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3135 mem_size, off, size);
3136 break;
457f4436 3137 case PTR_TO_MAP_VALUE:
61bd5218 3138 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
457f4436
AN
3139 mem_size, off, size);
3140 break;
3141 case PTR_TO_PACKET:
3142 case PTR_TO_PACKET_META:
3143 case PTR_TO_PACKET_END:
3144 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3145 off, size, regno, reg->id, off, mem_size);
3146 break;
3147 case PTR_TO_MEM:
3148 default:
3149 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3150 mem_size, off, size);
17a52670 3151 }
457f4436
AN
3152
3153 return -EACCES;
17a52670
AS
3154}
3155
457f4436
AN
3156/* check read/write into a memory region with possible variable offset */
3157static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3158 int off, int size, u32 mem_size,
3159 bool zero_size_allowed)
dbcfe5f7 3160{
f4d7e40a
AS
3161 struct bpf_verifier_state *vstate = env->cur_state;
3162 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
3163 struct bpf_reg_state *reg = &state->regs[regno];
3164 int err;
3165
457f4436 3166 /* We may have adjusted the register pointing to memory region, so we
f1174f77
EC
3167 * need to try adding each of min_value and max_value to off
3168 * to make sure our theoretical access will be safe.
dbcfe5f7 3169 */
06ee7115 3170 if (env->log.level & BPF_LOG_LEVEL)
61bd5218 3171 print_verifier_state(env, state);
b7137c4e 3172
dbcfe5f7
GB
3173 /* The minimum value is only important with signed
3174 * comparisons where we can't assume the floor of a
3175 * value is 0. If we are using signed variables for our
3176 * index'es we need to make sure that whatever we use
3177 * will have a set floor within our range.
3178 */
b7137c4e
DB
3179 if (reg->smin_value < 0 &&
3180 (reg->smin_value == S64_MIN ||
3181 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3182 reg->smin_value + off < 0)) {
61bd5218 3183 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
3184 regno);
3185 return -EACCES;
3186 }
457f4436
AN
3187 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3188 mem_size, zero_size_allowed);
dbcfe5f7 3189 if (err) {
457f4436 3190 verbose(env, "R%d min value is outside of the allowed memory range\n",
61bd5218 3191 regno);
dbcfe5f7
GB
3192 return err;
3193 }
3194
b03c9f9f
EC
3195 /* If we haven't set a max value then we need to bail since we can't be
3196 * sure we won't do bad things.
3197 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 3198 */
b03c9f9f 3199 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
457f4436 3200 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
dbcfe5f7
GB
3201 regno);
3202 return -EACCES;
3203 }
457f4436
AN
3204 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3205 mem_size, zero_size_allowed);
3206 if (err) {
3207 verbose(env, "R%d max value is outside of the allowed memory range\n",
61bd5218 3208 regno);
457f4436
AN
3209 return err;
3210 }
3211
3212 return 0;
3213}
d83525ca 3214
457f4436
AN
3215/* check read/write into a map element with possible variable offset */
3216static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3217 int off, int size, bool zero_size_allowed)
3218{
3219 struct bpf_verifier_state *vstate = env->cur_state;
3220 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3221 struct bpf_reg_state *reg = &state->regs[regno];
3222 struct bpf_map *map = reg->map_ptr;
3223 int err;
3224
3225 err = check_mem_region_access(env, regno, off, size, map->value_size,
3226 zero_size_allowed);
3227 if (err)
3228 return err;
3229
3230 if (map_value_has_spin_lock(map)) {
3231 u32 lock = map->spin_lock_off;
d83525ca
AS
3232
3233 /* if any part of struct bpf_spin_lock can be touched by
3234 * load/store reject this program.
3235 * To check that [x1, x2) overlaps with [y1, y2)
3236 * it is sufficient to check x1 < y2 && y1 < x2.
3237 */
3238 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3239 lock < reg->umax_value + off + size) {
3240 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3241 return -EACCES;
3242 }
3243 }
f1174f77 3244 return err;
dbcfe5f7
GB
3245}
3246
969bf05e
AS
3247#define MAX_PACKET_OFF 0xffff
3248
7e40781c
UP
3249static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3250{
3aac1ead 3251 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
7e40781c
UP
3252}
3253
58e2af8b 3254static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
3255 const struct bpf_call_arg_meta *meta,
3256 enum bpf_access_type t)
4acf6c0b 3257{
7e40781c
UP
3258 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3259
3260 switch (prog_type) {
5d66fa7d 3261 /* Program types only with direct read access go here! */
3a0af8fd
TG
3262 case BPF_PROG_TYPE_LWT_IN:
3263 case BPF_PROG_TYPE_LWT_OUT:
004d4b27 3264 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2dbb9b9e 3265 case BPF_PROG_TYPE_SK_REUSEPORT:
5d66fa7d 3266 case BPF_PROG_TYPE_FLOW_DISSECTOR:
d5563d36 3267 case BPF_PROG_TYPE_CGROUP_SKB:
3a0af8fd
TG
3268 if (t == BPF_WRITE)
3269 return false;
8731745e 3270 fallthrough;
5d66fa7d
DB
3271
3272 /* Program types with direct read + write access go here! */
36bbef52
DB
3273 case BPF_PROG_TYPE_SCHED_CLS:
3274 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 3275 case BPF_PROG_TYPE_XDP:
3a0af8fd 3276 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 3277 case BPF_PROG_TYPE_SK_SKB:
4f738adb 3278 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
3279 if (meta)
3280 return meta->pkt_access;
3281
3282 env->seen_direct_write = true;
4acf6c0b 3283 return true;
0d01da6a
SF
3284
3285 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3286 if (t == BPF_WRITE)
3287 env->seen_direct_write = true;
3288
3289 return true;
3290
4acf6c0b
BB
3291 default:
3292 return false;
3293 }
3294}
3295
f1174f77 3296static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 3297 int size, bool zero_size_allowed)
f1174f77 3298{
638f5b90 3299 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
3300 struct bpf_reg_state *reg = &regs[regno];
3301 int err;
3302
3303 /* We may have added a variable offset to the packet pointer; but any
3304 * reg->range we have comes after that. We are only checking the fixed
3305 * offset.
3306 */
3307
3308 /* We don't allow negative numbers, because we aren't tracking enough
3309 * detail to prove they're safe.
3310 */
b03c9f9f 3311 if (reg->smin_value < 0) {
61bd5218 3312 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
3313 regno);
3314 return -EACCES;
3315 }
6d94e741
AS
3316
3317 err = reg->range < 0 ? -EINVAL :
3318 __check_mem_access(env, regno, off, size, reg->range,
457f4436 3319 zero_size_allowed);
f1174f77 3320 if (err) {
61bd5218 3321 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
3322 return err;
3323 }
e647815a 3324
457f4436 3325 /* __check_mem_access has made sure "off + size - 1" is within u16.
e647815a
JW
3326 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3327 * otherwise find_good_pkt_pointers would have refused to set range info
457f4436 3328 * that __check_mem_access would have rejected this pkt access.
e647815a
JW
3329 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3330 */
3331 env->prog->aux->max_pkt_offset =
3332 max_t(u32, env->prog->aux->max_pkt_offset,
3333 off + reg->umax_value + size - 1);
3334
f1174f77
EC
3335 return err;
3336}
3337
3338/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 3339static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
9e15db66 3340 enum bpf_access_type t, enum bpf_reg_type *reg_type,
22dc4a0f 3341 struct btf **btf, u32 *btf_id)
17a52670 3342{
f96da094
DB
3343 struct bpf_insn_access_aux info = {
3344 .reg_type = *reg_type,
9e15db66 3345 .log = &env->log,
f96da094 3346 };
31fd8581 3347
4f9218aa 3348 if (env->ops->is_valid_access &&
5e43f899 3349 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
3350 /* A non zero info.ctx_field_size indicates that this field is a
3351 * candidate for later verifier transformation to load the whole
3352 * field and then apply a mask when accessed with a narrower
3353 * access than actual ctx access size. A zero info.ctx_field_size
3354 * will only allow for whole field access and rejects any other
3355 * type of narrower access.
31fd8581 3356 */
23994631 3357 *reg_type = info.reg_type;
31fd8581 3358
22dc4a0f
AN
3359 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3360 *btf = info.btf;
9e15db66 3361 *btf_id = info.btf_id;
22dc4a0f 3362 } else {
9e15db66 3363 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
22dc4a0f 3364 }
32bbe007
AS
3365 /* remember the offset of last byte accessed in ctx */
3366 if (env->prog->aux->max_ctx_offset < off + size)
3367 env->prog->aux->max_ctx_offset = off + size;
17a52670 3368 return 0;
32bbe007 3369 }
17a52670 3370
61bd5218 3371 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
3372 return -EACCES;
3373}
3374
d58e468b
PP
3375static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3376 int size)
3377{
3378 if (size < 0 || off < 0 ||
3379 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3380 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3381 off, size);
3382 return -EACCES;
3383 }
3384 return 0;
3385}
3386
5f456649
MKL
3387static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3388 u32 regno, int off, int size,
3389 enum bpf_access_type t)
c64b7983
JS
3390{
3391 struct bpf_reg_state *regs = cur_regs(env);
3392 struct bpf_reg_state *reg = &regs[regno];
5f456649 3393 struct bpf_insn_access_aux info = {};
46f8bc92 3394 bool valid;
c64b7983
JS
3395
3396 if (reg->smin_value < 0) {
3397 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3398 regno);
3399 return -EACCES;
3400 }
3401
46f8bc92
MKL
3402 switch (reg->type) {
3403 case PTR_TO_SOCK_COMMON:
3404 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3405 break;
3406 case PTR_TO_SOCKET:
3407 valid = bpf_sock_is_valid_access(off, size, t, &info);
3408 break;
655a51e5
MKL
3409 case PTR_TO_TCP_SOCK:
3410 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3411 break;
fada7fdc
JL
3412 case PTR_TO_XDP_SOCK:
3413 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3414 break;
46f8bc92
MKL
3415 default:
3416 valid = false;
c64b7983
JS
3417 }
3418
5f456649 3419
46f8bc92
MKL
3420 if (valid) {
3421 env->insn_aux_data[insn_idx].ctx_field_size =
3422 info.ctx_field_size;
3423 return 0;
3424 }
3425
3426 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3427 regno, reg_type_str[reg->type], off, size);
3428
3429 return -EACCES;
c64b7983
JS
3430}
3431
4cabc5b1
DB
3432static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3433{
2a159c6f 3434 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4cabc5b1
DB
3435}
3436
f37a8cb8
DB
3437static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3438{
2a159c6f 3439 const struct bpf_reg_state *reg = reg_state(env, regno);
f37a8cb8 3440
46f8bc92
MKL
3441 return reg->type == PTR_TO_CTX;
3442}
3443
3444static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3445{
3446 const struct bpf_reg_state *reg = reg_state(env, regno);
3447
3448 return type_is_sk_pointer(reg->type);
f37a8cb8
DB
3449}
3450
ca369602
DB
3451static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3452{
2a159c6f 3453 const struct bpf_reg_state *reg = reg_state(env, regno);
ca369602
DB
3454
3455 return type_is_pkt_pointer(reg->type);
3456}
3457
4b5defde
DB
3458static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3459{
3460 const struct bpf_reg_state *reg = reg_state(env, regno);
3461
3462 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3463 return reg->type == PTR_TO_FLOW_KEYS;
3464}
3465
61bd5218
JK
3466static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3467 const struct bpf_reg_state *reg,
d1174416 3468 int off, int size, bool strict)
969bf05e 3469{
f1174f77 3470 struct tnum reg_off;
e07b98d9 3471 int ip_align;
d1174416
DM
3472
3473 /* Byte size accesses are always allowed. */
3474 if (!strict || size == 1)
3475 return 0;
3476
e4eda884
DM
3477 /* For platforms that do not have a Kconfig enabling
3478 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3479 * NET_IP_ALIGN is universally set to '2'. And on platforms
3480 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3481 * to this code only in strict mode where we want to emulate
3482 * the NET_IP_ALIGN==2 checking. Therefore use an
3483 * unconditional IP align value of '2'.
e07b98d9 3484 */
e4eda884 3485 ip_align = 2;
f1174f77
EC
3486
3487 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3488 if (!tnum_is_aligned(reg_off, size)) {
3489 char tn_buf[48];
3490
3491 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
3492 verbose(env,
3493 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 3494 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
3495 return -EACCES;
3496 }
79adffcd 3497
969bf05e
AS
3498 return 0;
3499}
3500
61bd5218
JK
3501static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3502 const struct bpf_reg_state *reg,
f1174f77
EC
3503 const char *pointer_desc,
3504 int off, int size, bool strict)
79adffcd 3505{
f1174f77
EC
3506 struct tnum reg_off;
3507
3508 /* Byte size accesses are always allowed. */
3509 if (!strict || size == 1)
3510 return 0;
3511
3512 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3513 if (!tnum_is_aligned(reg_off, size)) {
3514 char tn_buf[48];
3515
3516 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3517 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 3518 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
3519 return -EACCES;
3520 }
3521
969bf05e
AS
3522 return 0;
3523}
3524
e07b98d9 3525static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
3526 const struct bpf_reg_state *reg, int off,
3527 int size, bool strict_alignment_once)
79adffcd 3528{
ca369602 3529 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 3530 const char *pointer_desc = "";
d1174416 3531
79adffcd
DB
3532 switch (reg->type) {
3533 case PTR_TO_PACKET:
de8f3a83
DB
3534 case PTR_TO_PACKET_META:
3535 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3536 * right in front, treat it the very same way.
3537 */
61bd5218 3538 return check_pkt_ptr_alignment(env, reg, off, size, strict);
d58e468b
PP
3539 case PTR_TO_FLOW_KEYS:
3540 pointer_desc = "flow keys ";
3541 break;
69c087ba
YS
3542 case PTR_TO_MAP_KEY:
3543 pointer_desc = "key ";
3544 break;
f1174f77
EC
3545 case PTR_TO_MAP_VALUE:
3546 pointer_desc = "value ";
3547 break;
3548 case PTR_TO_CTX:
3549 pointer_desc = "context ";
3550 break;
3551 case PTR_TO_STACK:
3552 pointer_desc = "stack ";
01f810ac
AM
3553 /* The stack spill tracking logic in check_stack_write_fixed_off()
3554 * and check_stack_read_fixed_off() relies on stack accesses being
a5ec6ae1
JH
3555 * aligned.
3556 */
3557 strict = true;
f1174f77 3558 break;
c64b7983
JS
3559 case PTR_TO_SOCKET:
3560 pointer_desc = "sock ";
3561 break;
46f8bc92
MKL
3562 case PTR_TO_SOCK_COMMON:
3563 pointer_desc = "sock_common ";
3564 break;
655a51e5
MKL
3565 case PTR_TO_TCP_SOCK:
3566 pointer_desc = "tcp_sock ";
3567 break;
fada7fdc
JL
3568 case PTR_TO_XDP_SOCK:
3569 pointer_desc = "xdp_sock ";
3570 break;
79adffcd 3571 default:
f1174f77 3572 break;
79adffcd 3573 }
61bd5218
JK
3574 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3575 strict);
79adffcd
DB
3576}
3577
f4d7e40a
AS
3578static int update_stack_depth(struct bpf_verifier_env *env,
3579 const struct bpf_func_state *func,
3580 int off)
3581{
9c8105bd 3582 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
3583
3584 if (stack >= -off)
3585 return 0;
3586
3587 /* update known max for given subprogram */
9c8105bd 3588 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
3589 return 0;
3590}
f4d7e40a 3591
70a87ffe
AS
3592/* starting from main bpf function walk all instructions of the function
3593 * and recursively walk all callees that given function can call.
3594 * Ignore jump and exit insns.
3595 * Since recursion is prevented by check_cfg() this algorithm
3596 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3597 */
3598static int check_max_stack_depth(struct bpf_verifier_env *env)
3599{
9c8105bd
JW
3600 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3601 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 3602 struct bpf_insn *insn = env->prog->insnsi;
ebf7d1f5 3603 bool tail_call_reachable = false;
70a87ffe
AS
3604 int ret_insn[MAX_CALL_FRAMES];
3605 int ret_prog[MAX_CALL_FRAMES];
ebf7d1f5 3606 int j;
f4d7e40a 3607
70a87ffe 3608process_func:
7f6e4312
MF
3609 /* protect against potential stack overflow that might happen when
3610 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3611 * depth for such case down to 256 so that the worst case scenario
3612 * would result in 8k stack size (32 which is tailcall limit * 256 =
3613 * 8k).
3614 *
3615 * To get the idea what might happen, see an example:
3616 * func1 -> sub rsp, 128
3617 * subfunc1 -> sub rsp, 256
3618 * tailcall1 -> add rsp, 256
3619 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3620 * subfunc2 -> sub rsp, 64
3621 * subfunc22 -> sub rsp, 128
3622 * tailcall2 -> add rsp, 128
3623 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3624 *
3625 * tailcall will unwind the current stack frame but it will not get rid
3626 * of caller's stack as shown on the example above.
3627 */
3628 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3629 verbose(env,
3630 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3631 depth);
3632 return -EACCES;
3633 }
70a87ffe
AS
3634 /* round up to 32-bytes, since this is granularity
3635 * of interpreter stack size
3636 */
9c8105bd 3637 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 3638 if (depth > MAX_BPF_STACK) {
f4d7e40a 3639 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 3640 frame + 1, depth);
f4d7e40a
AS
3641 return -EACCES;
3642 }
70a87ffe 3643continue_func:
4cb3d99c 3644 subprog_end = subprog[idx + 1].start;
70a87ffe 3645 for (; i < subprog_end; i++) {
69c087ba 3646 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
70a87ffe
AS
3647 continue;
3648 /* remember insn and function to return to */
3649 ret_insn[frame] = i + 1;
9c8105bd 3650 ret_prog[frame] = idx;
70a87ffe
AS
3651
3652 /* find the callee */
3653 i = i + insn[i].imm + 1;
9c8105bd
JW
3654 idx = find_subprog(env, i);
3655 if (idx < 0) {
70a87ffe
AS
3656 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3657 i);
3658 return -EFAULT;
3659 }
ebf7d1f5
MF
3660
3661 if (subprog[idx].has_tail_call)
3662 tail_call_reachable = true;
3663
70a87ffe
AS
3664 frame++;
3665 if (frame >= MAX_CALL_FRAMES) {
927cb781
PC
3666 verbose(env, "the call stack of %d frames is too deep !\n",
3667 frame);
3668 return -E2BIG;
70a87ffe
AS
3669 }
3670 goto process_func;
3671 }
ebf7d1f5
MF
3672 /* if tail call got detected across bpf2bpf calls then mark each of the
3673 * currently present subprog frames as tail call reachable subprogs;
3674 * this info will be utilized by JIT so that we will be preserving the
3675 * tail call counter throughout bpf2bpf calls combined with tailcalls
3676 */
3677 if (tail_call_reachable)
3678 for (j = 0; j < frame; j++)
3679 subprog[ret_prog[j]].tail_call_reachable = true;
3680
70a87ffe
AS
3681 /* end of for() loop means the last insn of the 'subprog'
3682 * was reached. Doesn't matter whether it was JA or EXIT
3683 */
3684 if (frame == 0)
3685 return 0;
9c8105bd 3686 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
3687 frame--;
3688 i = ret_insn[frame];
9c8105bd 3689 idx = ret_prog[frame];
70a87ffe 3690 goto continue_func;
f4d7e40a
AS
3691}
3692
19d28fbd 3693#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
3694static int get_callee_stack_depth(struct bpf_verifier_env *env,
3695 const struct bpf_insn *insn, int idx)
3696{
3697 int start = idx + insn->imm + 1, subprog;
3698
3699 subprog = find_subprog(env, start);
3700 if (subprog < 0) {
3701 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3702 start);
3703 return -EFAULT;
3704 }
9c8105bd 3705 return env->subprog_info[subprog].stack_depth;
1ea47e01 3706}
19d28fbd 3707#endif
1ea47e01 3708
51c39bb1
AS
3709int check_ctx_reg(struct bpf_verifier_env *env,
3710 const struct bpf_reg_state *reg, int regno)
58990d1f
DB
3711{
3712 /* Access to ctx or passing it to a helper is only allowed in
3713 * its original, unmodified form.
3714 */
3715
3716 if (reg->off) {
3717 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3718 regno, reg->off);
3719 return -EACCES;
3720 }
3721
3722 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3723 char tn_buf[48];
3724
3725 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3726 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3727 return -EACCES;
3728 }
3729
3730 return 0;
3731}
3732
afbf21dc
YS
3733static int __check_buffer_access(struct bpf_verifier_env *env,
3734 const char *buf_info,
3735 const struct bpf_reg_state *reg,
3736 int regno, int off, int size)
9df1c28b
MM
3737{
3738 if (off < 0) {
3739 verbose(env,
4fc00b79 3740 "R%d invalid %s buffer access: off=%d, size=%d\n",
afbf21dc 3741 regno, buf_info, off, size);
9df1c28b
MM
3742 return -EACCES;
3743 }
3744 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3745 char tn_buf[48];
3746
3747 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3748 verbose(env,
4fc00b79 3749 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
9df1c28b
MM
3750 regno, off, tn_buf);
3751 return -EACCES;
3752 }
afbf21dc
YS
3753
3754 return 0;
3755}
3756
3757static int check_tp_buffer_access(struct bpf_verifier_env *env,
3758 const struct bpf_reg_state *reg,
3759 int regno, int off, int size)
3760{
3761 int err;
3762
3763 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3764 if (err)
3765 return err;
3766
9df1c28b
MM
3767 if (off + size > env->prog->aux->max_tp_access)
3768 env->prog->aux->max_tp_access = off + size;
3769
3770 return 0;
3771}
3772
afbf21dc
YS
3773static int check_buffer_access(struct bpf_verifier_env *env,
3774 const struct bpf_reg_state *reg,
3775 int regno, int off, int size,
3776 bool zero_size_allowed,
3777 const char *buf_info,
3778 u32 *max_access)
3779{
3780 int err;
3781
3782 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3783 if (err)
3784 return err;
3785
3786 if (off + size > *max_access)
3787 *max_access = off + size;
3788
3789 return 0;
3790}
3791
3f50f132
JF
3792/* BPF architecture zero extends alu32 ops into 64-bit registesr */
3793static void zext_32_to_64(struct bpf_reg_state *reg)
3794{
3795 reg->var_off = tnum_subreg(reg->var_off);
3796 __reg_assign_32_into_64(reg);
3797}
9df1c28b 3798
0c17d1d2
JH
3799/* truncate register to smaller size (in bytes)
3800 * must be called with size < BPF_REG_SIZE
3801 */
3802static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3803{
3804 u64 mask;
3805
3806 /* clear high bits in bit representation */
3807 reg->var_off = tnum_cast(reg->var_off, size);
3808
3809 /* fix arithmetic bounds */
3810 mask = ((u64)1 << (size * 8)) - 1;
3811 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3812 reg->umin_value &= mask;
3813 reg->umax_value &= mask;
3814 } else {
3815 reg->umin_value = 0;
3816 reg->umax_value = mask;
3817 }
3818 reg->smin_value = reg->umin_value;
3819 reg->smax_value = reg->umax_value;
3f50f132
JF
3820
3821 /* If size is smaller than 32bit register the 32bit register
3822 * values are also truncated so we push 64-bit bounds into
3823 * 32-bit bounds. Above were truncated < 32-bits already.
3824 */
3825 if (size >= 4)
3826 return;
3827 __reg_combine_64_into_32(reg);
0c17d1d2
JH
3828}
3829
a23740ec
AN
3830static bool bpf_map_is_rdonly(const struct bpf_map *map)
3831{
3832 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3833}
3834
3835static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3836{
3837 void *ptr;
3838 u64 addr;
3839 int err;
3840
3841 err = map->ops->map_direct_value_addr(map, &addr, off);
3842 if (err)
3843 return err;
2dedd7d2 3844 ptr = (void *)(long)addr + off;
a23740ec
AN
3845
3846 switch (size) {
3847 case sizeof(u8):
3848 *val = (u64)*(u8 *)ptr;
3849 break;
3850 case sizeof(u16):
3851 *val = (u64)*(u16 *)ptr;
3852 break;
3853 case sizeof(u32):
3854 *val = (u64)*(u32 *)ptr;
3855 break;
3856 case sizeof(u64):
3857 *val = *(u64 *)ptr;
3858 break;
3859 default:
3860 return -EINVAL;
3861 }
3862 return 0;
3863}
3864
9e15db66
AS
3865static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3866 struct bpf_reg_state *regs,
3867 int regno, int off, int size,
3868 enum bpf_access_type atype,
3869 int value_regno)
3870{
3871 struct bpf_reg_state *reg = regs + regno;
22dc4a0f
AN
3872 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3873 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
9e15db66
AS
3874 u32 btf_id;
3875 int ret;
3876
9e15db66
AS
3877 if (off < 0) {
3878 verbose(env,
3879 "R%d is ptr_%s invalid negative access: off=%d\n",
3880 regno, tname, off);
3881 return -EACCES;
3882 }
3883 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3884 char tn_buf[48];
3885
3886 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3887 verbose(env,
3888 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3889 regno, tname, off, tn_buf);
3890 return -EACCES;
3891 }
3892
27ae7997 3893 if (env->ops->btf_struct_access) {
22dc4a0f
AN
3894 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3895 off, size, atype, &btf_id);
27ae7997
MKL
3896 } else {
3897 if (atype != BPF_READ) {
3898 verbose(env, "only read is supported\n");
3899 return -EACCES;
3900 }
3901
22dc4a0f
AN
3902 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3903 atype, &btf_id);
27ae7997
MKL
3904 }
3905
9e15db66
AS
3906 if (ret < 0)
3907 return ret;
3908
41c48f3a 3909 if (atype == BPF_READ && value_regno >= 0)
22dc4a0f 3910 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
41c48f3a
AI
3911
3912 return 0;
3913}
3914
3915static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3916 struct bpf_reg_state *regs,
3917 int regno, int off, int size,
3918 enum bpf_access_type atype,
3919 int value_regno)
3920{
3921 struct bpf_reg_state *reg = regs + regno;
3922 struct bpf_map *map = reg->map_ptr;
3923 const struct btf_type *t;
3924 const char *tname;
3925 u32 btf_id;
3926 int ret;
3927
3928 if (!btf_vmlinux) {
3929 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3930 return -ENOTSUPP;
3931 }
3932
3933 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3934 verbose(env, "map_ptr access not supported for map type %d\n",
3935 map->map_type);
3936 return -ENOTSUPP;
3937 }
3938
3939 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3940 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3941
3942 if (!env->allow_ptr_to_map_access) {
3943 verbose(env,
3944 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3945 tname);
3946 return -EPERM;
9e15db66 3947 }
27ae7997 3948
41c48f3a
AI
3949 if (off < 0) {
3950 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3951 regno, tname, off);
3952 return -EACCES;
3953 }
3954
3955 if (atype != BPF_READ) {
3956 verbose(env, "only read from %s is supported\n", tname);
3957 return -EACCES;
3958 }
3959
22dc4a0f 3960 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
41c48f3a
AI
3961 if (ret < 0)
3962 return ret;
3963
3964 if (value_regno >= 0)
22dc4a0f 3965 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
41c48f3a 3966
9e15db66
AS
3967 return 0;
3968}
3969
01f810ac
AM
3970/* Check that the stack access at the given offset is within bounds. The
3971 * maximum valid offset is -1.
3972 *
3973 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3974 * -state->allocated_stack for reads.
3975 */
3976static int check_stack_slot_within_bounds(int off,
3977 struct bpf_func_state *state,
3978 enum bpf_access_type t)
3979{
3980 int min_valid_off;
3981
3982 if (t == BPF_WRITE)
3983 min_valid_off = -MAX_BPF_STACK;
3984 else
3985 min_valid_off = -state->allocated_stack;
3986
3987 if (off < min_valid_off || off > -1)
3988 return -EACCES;
3989 return 0;
3990}
3991
3992/* Check that the stack access at 'regno + off' falls within the maximum stack
3993 * bounds.
3994 *
3995 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3996 */
3997static int check_stack_access_within_bounds(
3998 struct bpf_verifier_env *env,
3999 int regno, int off, int access_size,
4000 enum stack_access_src src, enum bpf_access_type type)
4001{
4002 struct bpf_reg_state *regs = cur_regs(env);
4003 struct bpf_reg_state *reg = regs + regno;
4004 struct bpf_func_state *state = func(env, reg);
4005 int min_off, max_off;
4006 int err;
4007 char *err_extra;
4008
4009 if (src == ACCESS_HELPER)
4010 /* We don't know if helpers are reading or writing (or both). */
4011 err_extra = " indirect access to";
4012 else if (type == BPF_READ)
4013 err_extra = " read from";
4014 else
4015 err_extra = " write to";
4016
4017 if (tnum_is_const(reg->var_off)) {
4018 min_off = reg->var_off.value + off;
4019 if (access_size > 0)
4020 max_off = min_off + access_size - 1;
4021 else
4022 max_off = min_off;
4023 } else {
4024 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4025 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4026 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4027 err_extra, regno);
4028 return -EACCES;
4029 }
4030 min_off = reg->smin_value + off;
4031 if (access_size > 0)
4032 max_off = reg->smax_value + off + access_size - 1;
4033 else
4034 max_off = min_off;
4035 }
4036
4037 err = check_stack_slot_within_bounds(min_off, state, type);
4038 if (!err)
4039 err = check_stack_slot_within_bounds(max_off, state, type);
4040
4041 if (err) {
4042 if (tnum_is_const(reg->var_off)) {
4043 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4044 err_extra, regno, off, access_size);
4045 } else {
4046 char tn_buf[48];
4047
4048 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4049 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4050 err_extra, regno, tn_buf, access_size);
4051 }
4052 }
4053 return err;
4054}
41c48f3a 4055
17a52670
AS
4056/* check whether memory at (regno + off) is accessible for t = (read | write)
4057 * if t==write, value_regno is a register which value is stored into memory
4058 * if t==read, value_regno is a register which will receive the value from memory
4059 * if t==write && value_regno==-1, some unknown value is stored into memory
4060 * if t==read && value_regno==-1, don't care what we read from memory
4061 */
ca369602
DB
4062static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4063 int off, int bpf_size, enum bpf_access_type t,
4064 int value_regno, bool strict_alignment_once)
17a52670 4065{
638f5b90
AS
4066 struct bpf_reg_state *regs = cur_regs(env);
4067 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 4068 struct bpf_func_state *state;
17a52670
AS
4069 int size, err = 0;
4070
4071 size = bpf_size_to_bytes(bpf_size);
4072 if (size < 0)
4073 return size;
4074
f1174f77 4075 /* alignment checks will add in reg->off themselves */
ca369602 4076 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
4077 if (err)
4078 return err;
17a52670 4079
f1174f77
EC
4080 /* for access checks, reg->off is just part of off */
4081 off += reg->off;
4082
69c087ba
YS
4083 if (reg->type == PTR_TO_MAP_KEY) {
4084 if (t == BPF_WRITE) {
4085 verbose(env, "write to change key R%d not allowed\n", regno);
4086 return -EACCES;
4087 }
4088
4089 err = check_mem_region_access(env, regno, off, size,
4090 reg->map_ptr->key_size, false);
4091 if (err)
4092 return err;
4093 if (value_regno >= 0)
4094 mark_reg_unknown(env, regs, value_regno);
4095 } else if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
4096 if (t == BPF_WRITE && value_regno >= 0 &&
4097 is_pointer_value(env, value_regno)) {
61bd5218 4098 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
4099 return -EACCES;
4100 }
591fe988
DB
4101 err = check_map_access_type(env, regno, off, size, t);
4102 if (err)
4103 return err;
9fd29c08 4104 err = check_map_access(env, regno, off, size, false);
a23740ec
AN
4105 if (!err && t == BPF_READ && value_regno >= 0) {
4106 struct bpf_map *map = reg->map_ptr;
4107
4108 /* if map is read-only, track its contents as scalars */
4109 if (tnum_is_const(reg->var_off) &&
4110 bpf_map_is_rdonly(map) &&
4111 map->ops->map_direct_value_addr) {
4112 int map_off = off + reg->var_off.value;
4113 u64 val = 0;
4114
4115 err = bpf_map_direct_read(map, map_off, size,
4116 &val);
4117 if (err)
4118 return err;
4119
4120 regs[value_regno].type = SCALAR_VALUE;
4121 __mark_reg_known(&regs[value_regno], val);
4122 } else {
4123 mark_reg_unknown(env, regs, value_regno);
4124 }
4125 }
457f4436
AN
4126 } else if (reg->type == PTR_TO_MEM) {
4127 if (t == BPF_WRITE && value_regno >= 0 &&
4128 is_pointer_value(env, value_regno)) {
4129 verbose(env, "R%d leaks addr into mem\n", value_regno);
4130 return -EACCES;
4131 }
4132 err = check_mem_region_access(env, regno, off, size,
4133 reg->mem_size, false);
4134 if (!err && t == BPF_READ && value_regno >= 0)
4135 mark_reg_unknown(env, regs, value_regno);
1a0dc1ac 4136 } else if (reg->type == PTR_TO_CTX) {
f1174f77 4137 enum bpf_reg_type reg_type = SCALAR_VALUE;
22dc4a0f 4138 struct btf *btf = NULL;
9e15db66 4139 u32 btf_id = 0;
19de99f7 4140
1be7f75d
AS
4141 if (t == BPF_WRITE && value_regno >= 0 &&
4142 is_pointer_value(env, value_regno)) {
61bd5218 4143 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
4144 return -EACCES;
4145 }
f1174f77 4146
58990d1f
DB
4147 err = check_ctx_reg(env, reg, regno);
4148 if (err < 0)
4149 return err;
4150
22dc4a0f 4151 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
9e15db66
AS
4152 if (err)
4153 verbose_linfo(env, insn_idx, "; ");
969bf05e 4154 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 4155 /* ctx access returns either a scalar, or a
de8f3a83
DB
4156 * PTR_TO_PACKET[_META,_END]. In the latter
4157 * case, we know the offset is zero.
f1174f77 4158 */
46f8bc92 4159 if (reg_type == SCALAR_VALUE) {
638f5b90 4160 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4161 } else {
638f5b90 4162 mark_reg_known_zero(env, regs,
61bd5218 4163 value_regno);
46f8bc92
MKL
4164 if (reg_type_may_be_null(reg_type))
4165 regs[value_regno].id = ++env->id_gen;
5327ed3d
JW
4166 /* A load of ctx field could have different
4167 * actual load size with the one encoded in the
4168 * insn. When the dst is PTR, it is for sure not
4169 * a sub-register.
4170 */
4171 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
b121b341 4172 if (reg_type == PTR_TO_BTF_ID ||
22dc4a0f
AN
4173 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4174 regs[value_regno].btf = btf;
9e15db66 4175 regs[value_regno].btf_id = btf_id;
22dc4a0f 4176 }
46f8bc92 4177 }
638f5b90 4178 regs[value_regno].type = reg_type;
969bf05e 4179 }
17a52670 4180
f1174f77 4181 } else if (reg->type == PTR_TO_STACK) {
01f810ac
AM
4182 /* Basic bounds checks. */
4183 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
e4298d25
DB
4184 if (err)
4185 return err;
8726679a 4186
f4d7e40a
AS
4187 state = func(env, reg);
4188 err = update_stack_depth(env, state, off);
4189 if (err)
4190 return err;
8726679a 4191
01f810ac
AM
4192 if (t == BPF_READ)
4193 err = check_stack_read(env, regno, off, size,
61bd5218 4194 value_regno);
01f810ac
AM
4195 else
4196 err = check_stack_write(env, regno, off, size,
4197 value_regno, insn_idx);
de8f3a83 4198 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 4199 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 4200 verbose(env, "cannot write into packet\n");
969bf05e
AS
4201 return -EACCES;
4202 }
4acf6c0b
BB
4203 if (t == BPF_WRITE && value_regno >= 0 &&
4204 is_pointer_value(env, value_regno)) {
61bd5218
JK
4205 verbose(env, "R%d leaks addr into packet\n",
4206 value_regno);
4acf6c0b
BB
4207 return -EACCES;
4208 }
9fd29c08 4209 err = check_packet_access(env, regno, off, size, false);
969bf05e 4210 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 4211 mark_reg_unknown(env, regs, value_regno);
d58e468b
PP
4212 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4213 if (t == BPF_WRITE && value_regno >= 0 &&
4214 is_pointer_value(env, value_regno)) {
4215 verbose(env, "R%d leaks addr into flow keys\n",
4216 value_regno);
4217 return -EACCES;
4218 }
4219
4220 err = check_flow_keys_access(env, off, size);
4221 if (!err && t == BPF_READ && value_regno >= 0)
4222 mark_reg_unknown(env, regs, value_regno);
46f8bc92 4223 } else if (type_is_sk_pointer(reg->type)) {
c64b7983 4224 if (t == BPF_WRITE) {
46f8bc92
MKL
4225 verbose(env, "R%d cannot write into %s\n",
4226 regno, reg_type_str[reg->type]);
c64b7983
JS
4227 return -EACCES;
4228 }
5f456649 4229 err = check_sock_access(env, insn_idx, regno, off, size, t);
c64b7983
JS
4230 if (!err && value_regno >= 0)
4231 mark_reg_unknown(env, regs, value_regno);
9df1c28b
MM
4232 } else if (reg->type == PTR_TO_TP_BUFFER) {
4233 err = check_tp_buffer_access(env, reg, regno, off, size);
4234 if (!err && t == BPF_READ && value_regno >= 0)
4235 mark_reg_unknown(env, regs, value_regno);
9e15db66
AS
4236 } else if (reg->type == PTR_TO_BTF_ID) {
4237 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4238 value_regno);
41c48f3a
AI
4239 } else if (reg->type == CONST_PTR_TO_MAP) {
4240 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4241 value_regno);
afbf21dc
YS
4242 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4243 if (t == BPF_WRITE) {
4244 verbose(env, "R%d cannot write into %s\n",
4245 regno, reg_type_str[reg->type]);
4246 return -EACCES;
4247 }
f6dfbe31
CIK
4248 err = check_buffer_access(env, reg, regno, off, size, false,
4249 "rdonly",
afbf21dc
YS
4250 &env->prog->aux->max_rdonly_access);
4251 if (!err && value_regno >= 0)
4252 mark_reg_unknown(env, regs, value_regno);
4253 } else if (reg->type == PTR_TO_RDWR_BUF) {
f6dfbe31
CIK
4254 err = check_buffer_access(env, reg, regno, off, size, false,
4255 "rdwr",
afbf21dc
YS
4256 &env->prog->aux->max_rdwr_access);
4257 if (!err && t == BPF_READ && value_regno >= 0)
4258 mark_reg_unknown(env, regs, value_regno);
17a52670 4259 } else {
61bd5218
JK
4260 verbose(env, "R%d invalid mem access '%s'\n", regno,
4261 reg_type_str[reg->type]);
17a52670
AS
4262 return -EACCES;
4263 }
969bf05e 4264
f1174f77 4265 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 4266 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 4267 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 4268 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 4269 }
17a52670
AS
4270 return err;
4271}
4272
91c960b0 4273static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 4274{
5ffa2550 4275 int load_reg;
17a52670
AS
4276 int err;
4277
5ca419f2
BJ
4278 switch (insn->imm) {
4279 case BPF_ADD:
4280 case BPF_ADD | BPF_FETCH:
981f94c3
BJ
4281 case BPF_AND:
4282 case BPF_AND | BPF_FETCH:
4283 case BPF_OR:
4284 case BPF_OR | BPF_FETCH:
4285 case BPF_XOR:
4286 case BPF_XOR | BPF_FETCH:
5ffa2550
BJ
4287 case BPF_XCHG:
4288 case BPF_CMPXCHG:
5ca419f2
BJ
4289 break;
4290 default:
91c960b0
BJ
4291 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4292 return -EINVAL;
4293 }
4294
4295 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4296 verbose(env, "invalid atomic operand size\n");
17a52670
AS
4297 return -EINVAL;
4298 }
4299
4300 /* check src1 operand */
dc503a8a 4301 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4302 if (err)
4303 return err;
4304
4305 /* check src2 operand */
dc503a8a 4306 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4307 if (err)
4308 return err;
4309
5ffa2550
BJ
4310 if (insn->imm == BPF_CMPXCHG) {
4311 /* Check comparison of R0 with memory location */
4312 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4313 if (err)
4314 return err;
4315 }
4316
6bdf6abc 4317 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 4318 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
4319 return -EACCES;
4320 }
4321
ca369602 4322 if (is_ctx_reg(env, insn->dst_reg) ||
4b5defde 4323 is_pkt_reg(env, insn->dst_reg) ||
46f8bc92
MKL
4324 is_flow_key_reg(env, insn->dst_reg) ||
4325 is_sk_reg(env, insn->dst_reg)) {
91c960b0 4326 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
2a159c6f
DB
4327 insn->dst_reg,
4328 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
4329 return -EACCES;
4330 }
4331
37086bfd
BJ
4332 if (insn->imm & BPF_FETCH) {
4333 if (insn->imm == BPF_CMPXCHG)
4334 load_reg = BPF_REG_0;
4335 else
4336 load_reg = insn->src_reg;
4337
4338 /* check and record load of old value */
4339 err = check_reg_arg(env, load_reg, DST_OP);
4340 if (err)
4341 return err;
4342 } else {
4343 /* This instruction accesses a memory location but doesn't
4344 * actually load it into a register.
4345 */
4346 load_reg = -1;
4347 }
4348
91c960b0 4349 /* check whether we can read the memory */
31fd8581 4350 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
37086bfd 4351 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
17a52670
AS
4352 if (err)
4353 return err;
4354
91c960b0 4355 /* check whether we can write into the same memory */
5ca419f2
BJ
4356 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4357 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4358 if (err)
4359 return err;
4360
5ca419f2 4361 return 0;
17a52670
AS
4362}
4363
01f810ac
AM
4364/* When register 'regno' is used to read the stack (either directly or through
4365 * a helper function) make sure that it's within stack boundary and, depending
4366 * on the access type, that all elements of the stack are initialized.
4367 *
4368 * 'off' includes 'regno->off', but not its dynamic part (if any).
4369 *
4370 * All registers that have been spilled on the stack in the slots within the
4371 * read offsets are marked as read.
4372 */
4373static int check_stack_range_initialized(
4374 struct bpf_verifier_env *env, int regno, int off,
4375 int access_size, bool zero_size_allowed,
4376 enum stack_access_src type, struct bpf_call_arg_meta *meta)
2011fccf
AI
4377{
4378 struct bpf_reg_state *reg = reg_state(env, regno);
01f810ac
AM
4379 struct bpf_func_state *state = func(env, reg);
4380 int err, min_off, max_off, i, j, slot, spi;
4381 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4382 enum bpf_access_type bounds_check_type;
4383 /* Some accesses can write anything into the stack, others are
4384 * read-only.
4385 */
4386 bool clobber = false;
2011fccf 4387
01f810ac
AM
4388 if (access_size == 0 && !zero_size_allowed) {
4389 verbose(env, "invalid zero-sized read\n");
2011fccf
AI
4390 return -EACCES;
4391 }
2011fccf 4392
01f810ac
AM
4393 if (type == ACCESS_HELPER) {
4394 /* The bounds checks for writes are more permissive than for
4395 * reads. However, if raw_mode is not set, we'll do extra
4396 * checks below.
4397 */
4398 bounds_check_type = BPF_WRITE;
4399 clobber = true;
4400 } else {
4401 bounds_check_type = BPF_READ;
4402 }
4403 err = check_stack_access_within_bounds(env, regno, off, access_size,
4404 type, bounds_check_type);
4405 if (err)
4406 return err;
4407
17a52670 4408
2011fccf 4409 if (tnum_is_const(reg->var_off)) {
01f810ac 4410 min_off = max_off = reg->var_off.value + off;
2011fccf 4411 } else {
088ec26d
AI
4412 /* Variable offset is prohibited for unprivileged mode for
4413 * simplicity since it requires corresponding support in
4414 * Spectre masking for stack ALU.
4415 * See also retrieve_ptr_limit().
4416 */
2c78ee89 4417 if (!env->bypass_spec_v1) {
088ec26d 4418 char tn_buf[48];
f1174f77 4419
088ec26d 4420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4421 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4422 regno, err_extra, tn_buf);
088ec26d
AI
4423 return -EACCES;
4424 }
f2bcd05e
AI
4425 /* Only initialized buffer on stack is allowed to be accessed
4426 * with variable offset. With uninitialized buffer it's hard to
4427 * guarantee that whole memory is marked as initialized on
4428 * helper return since specific bounds are unknown what may
4429 * cause uninitialized stack leaking.
4430 */
4431 if (meta && meta->raw_mode)
4432 meta = NULL;
4433
01f810ac
AM
4434 min_off = reg->smin_value + off;
4435 max_off = reg->smax_value + off;
17a52670
AS
4436 }
4437
435faee1
DB
4438 if (meta && meta->raw_mode) {
4439 meta->access_size = access_size;
4440 meta->regno = regno;
4441 return 0;
4442 }
4443
2011fccf 4444 for (i = min_off; i < max_off + access_size; i++) {
cc2b14d5
AS
4445 u8 *stype;
4446
2011fccf 4447 slot = -i - 1;
638f5b90 4448 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
4449 if (state->allocated_stack <= slot)
4450 goto err;
4451 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4452 if (*stype == STACK_MISC)
4453 goto mark;
4454 if (*stype == STACK_ZERO) {
01f810ac
AM
4455 if (clobber) {
4456 /* helper can write anything into the stack */
4457 *stype = STACK_MISC;
4458 }
cc2b14d5 4459 goto mark;
17a52670 4460 }
1d68f22b
YS
4461
4462 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4463 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4464 goto mark;
4465
f7cf25b2 4466 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
cd17d38f
YS
4467 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4468 env->allow_ptr_leaks)) {
01f810ac
AM
4469 if (clobber) {
4470 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4471 for (j = 0; j < BPF_REG_SIZE; j++)
4472 state->stack[spi].slot_type[j] = STACK_MISC;
4473 }
f7cf25b2
AS
4474 goto mark;
4475 }
4476
cc2b14d5 4477err:
2011fccf 4478 if (tnum_is_const(reg->var_off)) {
01f810ac
AM
4479 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4480 err_extra, regno, min_off, i - min_off, access_size);
2011fccf
AI
4481 } else {
4482 char tn_buf[48];
4483
4484 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
01f810ac
AM
4485 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4486 err_extra, regno, tn_buf, i - min_off, access_size);
2011fccf 4487 }
cc2b14d5
AS
4488 return -EACCES;
4489mark:
4490 /* reading any byte out of 8-byte 'spill_slot' will cause
4491 * the whole slot to be marked as 'read'
4492 */
679c782d 4493 mark_reg_read(env, &state->stack[spi].spilled_ptr,
5327ed3d
JW
4494 state->stack[spi].spilled_ptr.parent,
4495 REG_LIVE_READ64);
17a52670 4496 }
2011fccf 4497 return update_stack_depth(env, state, min_off);
17a52670
AS
4498}
4499
06c1c049
GB
4500static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4501 int access_size, bool zero_size_allowed,
4502 struct bpf_call_arg_meta *meta)
4503{
638f5b90 4504 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 4505
f1174f77 4506 switch (reg->type) {
06c1c049 4507 case PTR_TO_PACKET:
de8f3a83 4508 case PTR_TO_PACKET_META:
9fd29c08
YS
4509 return check_packet_access(env, regno, reg->off, access_size,
4510 zero_size_allowed);
69c087ba
YS
4511 case PTR_TO_MAP_KEY:
4512 return check_mem_region_access(env, regno, reg->off, access_size,
4513 reg->map_ptr->key_size, false);
06c1c049 4514 case PTR_TO_MAP_VALUE:
591fe988
DB
4515 if (check_map_access_type(env, regno, reg->off, access_size,
4516 meta && meta->raw_mode ? BPF_WRITE :
4517 BPF_READ))
4518 return -EACCES;
9fd29c08
YS
4519 return check_map_access(env, regno, reg->off, access_size,
4520 zero_size_allowed);
457f4436
AN
4521 case PTR_TO_MEM:
4522 return check_mem_region_access(env, regno, reg->off,
4523 access_size, reg->mem_size,
4524 zero_size_allowed);
afbf21dc
YS
4525 case PTR_TO_RDONLY_BUF:
4526 if (meta && meta->raw_mode)
4527 return -EACCES;
4528 return check_buffer_access(env, reg, regno, reg->off,
4529 access_size, zero_size_allowed,
4530 "rdonly",
4531 &env->prog->aux->max_rdonly_access);
4532 case PTR_TO_RDWR_BUF:
4533 return check_buffer_access(env, reg, regno, reg->off,
4534 access_size, zero_size_allowed,
4535 "rdwr",
4536 &env->prog->aux->max_rdwr_access);
0d004c02 4537 case PTR_TO_STACK:
01f810ac
AM
4538 return check_stack_range_initialized(
4539 env,
4540 regno, reg->off, access_size,
4541 zero_size_allowed, ACCESS_HELPER, meta);
0d004c02
LB
4542 default: /* scalar_value or invalid ptr */
4543 /* Allow zero-byte read from NULL, regardless of pointer type */
4544 if (zero_size_allowed && access_size == 0 &&
4545 register_is_null(reg))
4546 return 0;
4547
4548 verbose(env, "R%d type=%s expected=%s\n", regno,
4549 reg_type_str[reg->type],
4550 reg_type_str[PTR_TO_STACK]);
4551 return -EACCES;
06c1c049
GB
4552 }
4553}
4554
e5069b9c
DB
4555int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4556 u32 regno, u32 mem_size)
4557{
4558 if (register_is_null(reg))
4559 return 0;
4560
4561 if (reg_type_may_be_null(reg->type)) {
4562 /* Assuming that the register contains a value check if the memory
4563 * access is safe. Temporarily save and restore the register's state as
4564 * the conversion shouldn't be visible to a caller.
4565 */
4566 const struct bpf_reg_state saved_reg = *reg;
4567 int rv;
4568
4569 mark_ptr_not_null_reg(reg);
4570 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4571 *reg = saved_reg;
4572 return rv;
4573 }
4574
4575 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4576}
4577
d83525ca
AS
4578/* Implementation details:
4579 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4580 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4581 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4582 * value_or_null->value transition, since the verifier only cares about
4583 * the range of access to valid map value pointer and doesn't care about actual
4584 * address of the map element.
4585 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4586 * reg->id > 0 after value_or_null->value transition. By doing so
4587 * two bpf_map_lookups will be considered two different pointers that
4588 * point to different bpf_spin_locks.
4589 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4590 * dead-locks.
4591 * Since only one bpf_spin_lock is allowed the checks are simpler than
4592 * reg_is_refcounted() logic. The verifier needs to remember only
4593 * one spin_lock instead of array of acquired_refs.
4594 * cur_state->active_spin_lock remembers which map value element got locked
4595 * and clears it after bpf_spin_unlock.
4596 */
4597static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4598 bool is_lock)
4599{
4600 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4601 struct bpf_verifier_state *cur = env->cur_state;
4602 bool is_const = tnum_is_const(reg->var_off);
4603 struct bpf_map *map = reg->map_ptr;
4604 u64 val = reg->var_off.value;
4605
d83525ca
AS
4606 if (!is_const) {
4607 verbose(env,
4608 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4609 regno);
4610 return -EINVAL;
4611 }
4612 if (!map->btf) {
4613 verbose(env,
4614 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4615 map->name);
4616 return -EINVAL;
4617 }
4618 if (!map_value_has_spin_lock(map)) {
4619 if (map->spin_lock_off == -E2BIG)
4620 verbose(env,
4621 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4622 map->name);
4623 else if (map->spin_lock_off == -ENOENT)
4624 verbose(env,
4625 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4626 map->name);
4627 else
4628 verbose(env,
4629 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4630 map->name);
4631 return -EINVAL;
4632 }
4633 if (map->spin_lock_off != val + reg->off) {
4634 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4635 val + reg->off);
4636 return -EINVAL;
4637 }
4638 if (is_lock) {
4639 if (cur->active_spin_lock) {
4640 verbose(env,
4641 "Locking two bpf_spin_locks are not allowed\n");
4642 return -EINVAL;
4643 }
4644 cur->active_spin_lock = reg->id;
4645 } else {
4646 if (!cur->active_spin_lock) {
4647 verbose(env, "bpf_spin_unlock without taking a lock\n");
4648 return -EINVAL;
4649 }
4650 if (cur->active_spin_lock != reg->id) {
4651 verbose(env, "bpf_spin_unlock of different lock\n");
4652 return -EINVAL;
4653 }
4654 cur->active_spin_lock = 0;
4655 }
4656 return 0;
4657}
4658
90133415
DB
4659static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4660{
4661 return type == ARG_PTR_TO_MEM ||
4662 type == ARG_PTR_TO_MEM_OR_NULL ||
4663 type == ARG_PTR_TO_UNINIT_MEM;
4664}
4665
4666static bool arg_type_is_mem_size(enum bpf_arg_type type)
4667{
4668 return type == ARG_CONST_SIZE ||
4669 type == ARG_CONST_SIZE_OR_ZERO;
4670}
4671
457f4436
AN
4672static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4673{
4674 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4675}
4676
57c3bb72
AI
4677static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4678{
4679 return type == ARG_PTR_TO_INT ||
4680 type == ARG_PTR_TO_LONG;
4681}
4682
4683static int int_ptr_type_to_size(enum bpf_arg_type type)
4684{
4685 if (type == ARG_PTR_TO_INT)
4686 return sizeof(u32);
4687 else if (type == ARG_PTR_TO_LONG)
4688 return sizeof(u64);
4689
4690 return -EINVAL;
4691}
4692
912f442c
LB
4693static int resolve_map_arg_type(struct bpf_verifier_env *env,
4694 const struct bpf_call_arg_meta *meta,
4695 enum bpf_arg_type *arg_type)
4696{
4697 if (!meta->map_ptr) {
4698 /* kernel subsystem misconfigured verifier */
4699 verbose(env, "invalid map_ptr to access map->type\n");
4700 return -EACCES;
4701 }
4702
4703 switch (meta->map_ptr->map_type) {
4704 case BPF_MAP_TYPE_SOCKMAP:
4705 case BPF_MAP_TYPE_SOCKHASH:
4706 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
6550f2dd 4707 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
912f442c
LB
4708 } else {
4709 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4710 return -EINVAL;
4711 }
4712 break;
4713
4714 default:
4715 break;
4716 }
4717 return 0;
4718}
4719
f79e7ea5
LB
4720struct bpf_reg_types {
4721 const enum bpf_reg_type types[10];
1df8f55a 4722 u32 *btf_id;
f79e7ea5
LB
4723};
4724
4725static const struct bpf_reg_types map_key_value_types = {
4726 .types = {
4727 PTR_TO_STACK,
4728 PTR_TO_PACKET,
4729 PTR_TO_PACKET_META,
69c087ba 4730 PTR_TO_MAP_KEY,
f79e7ea5
LB
4731 PTR_TO_MAP_VALUE,
4732 },
4733};
4734
4735static const struct bpf_reg_types sock_types = {
4736 .types = {
4737 PTR_TO_SOCK_COMMON,
4738 PTR_TO_SOCKET,
4739 PTR_TO_TCP_SOCK,
4740 PTR_TO_XDP_SOCK,
4741 },
4742};
4743
49a2a4d4 4744#ifdef CONFIG_NET
1df8f55a
MKL
4745static const struct bpf_reg_types btf_id_sock_common_types = {
4746 .types = {
4747 PTR_TO_SOCK_COMMON,
4748 PTR_TO_SOCKET,
4749 PTR_TO_TCP_SOCK,
4750 PTR_TO_XDP_SOCK,
4751 PTR_TO_BTF_ID,
4752 },
4753 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4754};
49a2a4d4 4755#endif
1df8f55a 4756
f79e7ea5
LB
4757static const struct bpf_reg_types mem_types = {
4758 .types = {
4759 PTR_TO_STACK,
4760 PTR_TO_PACKET,
4761 PTR_TO_PACKET_META,
69c087ba 4762 PTR_TO_MAP_KEY,
f79e7ea5
LB
4763 PTR_TO_MAP_VALUE,
4764 PTR_TO_MEM,
4765 PTR_TO_RDONLY_BUF,
4766 PTR_TO_RDWR_BUF,
4767 },
4768};
4769
4770static const struct bpf_reg_types int_ptr_types = {
4771 .types = {
4772 PTR_TO_STACK,
4773 PTR_TO_PACKET,
4774 PTR_TO_PACKET_META,
69c087ba 4775 PTR_TO_MAP_KEY,
f79e7ea5
LB
4776 PTR_TO_MAP_VALUE,
4777 },
4778};
4779
4780static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4781static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4782static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4783static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4784static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4785static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4786static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
eaa6bcb7 4787static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
69c087ba
YS
4788static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4789static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
fff13c4b 4790static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
f79e7ea5 4791
0789e13b 4792static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
f79e7ea5
LB
4793 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4794 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4795 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4796 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4797 [ARG_CONST_SIZE] = &scalar_types,
4798 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4799 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4800 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4801 [ARG_PTR_TO_CTX] = &context_types,
4802 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4803 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
49a2a4d4 4804#ifdef CONFIG_NET
1df8f55a 4805 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
49a2a4d4 4806#endif
f79e7ea5
LB
4807 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4808 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4809 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4810 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4811 [ARG_PTR_TO_MEM] = &mem_types,
4812 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4813 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4814 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4815 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4816 [ARG_PTR_TO_INT] = &int_ptr_types,
4817 [ARG_PTR_TO_LONG] = &int_ptr_types,
eaa6bcb7 4818 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
69c087ba
YS
4819 [ARG_PTR_TO_FUNC] = &func_ptr_types,
4820 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
fff13c4b 4821 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
f79e7ea5
LB
4822};
4823
4824static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
a968d5e2
MKL
4825 enum bpf_arg_type arg_type,
4826 const u32 *arg_btf_id)
f79e7ea5
LB
4827{
4828 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4829 enum bpf_reg_type expected, type = reg->type;
a968d5e2 4830 const struct bpf_reg_types *compatible;
f79e7ea5
LB
4831 int i, j;
4832
a968d5e2
MKL
4833 compatible = compatible_reg_types[arg_type];
4834 if (!compatible) {
4835 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4836 return -EFAULT;
4837 }
4838
f79e7ea5
LB
4839 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4840 expected = compatible->types[i];
4841 if (expected == NOT_INIT)
4842 break;
4843
4844 if (type == expected)
a968d5e2 4845 goto found;
f79e7ea5
LB
4846 }
4847
4848 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4849 for (j = 0; j + 1 < i; j++)
4850 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4851 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4852 return -EACCES;
a968d5e2
MKL
4853
4854found:
4855 if (type == PTR_TO_BTF_ID) {
1df8f55a
MKL
4856 if (!arg_btf_id) {
4857 if (!compatible->btf_id) {
4858 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4859 return -EFAULT;
4860 }
4861 arg_btf_id = compatible->btf_id;
4862 }
4863
22dc4a0f
AN
4864 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4865 btf_vmlinux, *arg_btf_id)) {
a968d5e2 4866 verbose(env, "R%d is of type %s but %s is expected\n",
22dc4a0f
AN
4867 regno, kernel_type_name(reg->btf, reg->btf_id),
4868 kernel_type_name(btf_vmlinux, *arg_btf_id));
a968d5e2
MKL
4869 return -EACCES;
4870 }
4871
4872 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4873 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4874 regno);
4875 return -EACCES;
4876 }
4877 }
4878
4879 return 0;
f79e7ea5
LB
4880}
4881
af7ec138
YS
4882static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4883 struct bpf_call_arg_meta *meta,
4884 const struct bpf_func_proto *fn)
17a52670 4885{
af7ec138 4886 u32 regno = BPF_REG_1 + arg;
638f5b90 4887 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
af7ec138 4888 enum bpf_arg_type arg_type = fn->arg_type[arg];
f79e7ea5 4889 enum bpf_reg_type type = reg->type;
17a52670
AS
4890 int err = 0;
4891
80f1d68c 4892 if (arg_type == ARG_DONTCARE)
17a52670
AS
4893 return 0;
4894
dc503a8a
EC
4895 err = check_reg_arg(env, regno, SRC_OP);
4896 if (err)
4897 return err;
17a52670 4898
1be7f75d
AS
4899 if (arg_type == ARG_ANYTHING) {
4900 if (is_pointer_value(env, regno)) {
61bd5218
JK
4901 verbose(env, "R%d leaks addr into helper function\n",
4902 regno);
1be7f75d
AS
4903 return -EACCES;
4904 }
80f1d68c 4905 return 0;
1be7f75d 4906 }
80f1d68c 4907
de8f3a83 4908 if (type_is_pkt_pointer(type) &&
3a0af8fd 4909 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 4910 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
4911 return -EACCES;
4912 }
4913
912f442c
LB
4914 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4915 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4916 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4917 err = resolve_map_arg_type(env, meta, &arg_type);
4918 if (err)
4919 return err;
4920 }
4921
fd1b0d60
LB
4922 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4923 /* A NULL register has a SCALAR_VALUE type, so skip
4924 * type checking.
4925 */
4926 goto skip_type_check;
4927
a968d5e2 4928 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
f79e7ea5
LB
4929 if (err)
4930 return err;
4931
a968d5e2 4932 if (type == PTR_TO_CTX) {
feec7040
LB
4933 err = check_ctx_reg(env, reg, regno);
4934 if (err < 0)
4935 return err;
d7b9454a
LB
4936 }
4937
fd1b0d60 4938skip_type_check:
02f7c958 4939 if (reg->ref_obj_id) {
457f4436
AN
4940 if (meta->ref_obj_id) {
4941 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4942 regno, reg->ref_obj_id,
4943 meta->ref_obj_id);
4944 return -EFAULT;
4945 }
4946 meta->ref_obj_id = reg->ref_obj_id;
17a52670
AS
4947 }
4948
17a52670
AS
4949 if (arg_type == ARG_CONST_MAP_PTR) {
4950 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 4951 meta->map_ptr = reg->map_ptr;
17a52670
AS
4952 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4953 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4954 * check that [key, key + map->key_size) are within
4955 * stack limits and initialized
4956 */
33ff9823 4957 if (!meta->map_ptr) {
17a52670
AS
4958 /* in function declaration map_ptr must come before
4959 * map_key, so that it's verified and known before
4960 * we have to check map_key here. Otherwise it means
4961 * that kernel subsystem misconfigured verifier
4962 */
61bd5218 4963 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
4964 return -EACCES;
4965 }
d71962f3
PC
4966 err = check_helper_mem_access(env, regno,
4967 meta->map_ptr->key_size, false,
4968 NULL);
2ea864c5 4969 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
6ac99e8f
MKL
4970 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4971 !register_is_null(reg)) ||
2ea864c5 4972 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
17a52670
AS
4973 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4974 * check [value, value + map->value_size) validity
4975 */
33ff9823 4976 if (!meta->map_ptr) {
17a52670 4977 /* kernel subsystem misconfigured verifier */
61bd5218 4978 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
4979 return -EACCES;
4980 }
2ea864c5 4981 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
d71962f3
PC
4982 err = check_helper_mem_access(env, regno,
4983 meta->map_ptr->value_size, false,
2ea864c5 4984 meta);
eaa6bcb7
HL
4985 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4986 if (!reg->btf_id) {
4987 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4988 return -EACCES;
4989 }
22dc4a0f 4990 meta->ret_btf = reg->btf;
eaa6bcb7 4991 meta->ret_btf_id = reg->btf_id;
c18f0b6a
LB
4992 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4993 if (meta->func_id == BPF_FUNC_spin_lock) {
4994 if (process_spin_lock(env, regno, true))
4995 return -EACCES;
4996 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4997 if (process_spin_lock(env, regno, false))
4998 return -EACCES;
4999 } else {
5000 verbose(env, "verifier internal error\n");
5001 return -EFAULT;
5002 }
69c087ba
YS
5003 } else if (arg_type == ARG_PTR_TO_FUNC) {
5004 meta->subprogno = reg->subprogno;
a2bbe7cc
LB
5005 } else if (arg_type_is_mem_ptr(arg_type)) {
5006 /* The access to this pointer is only checked when we hit the
5007 * next is_mem_size argument below.
5008 */
5009 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
90133415 5010 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 5011 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 5012
10060503
JF
5013 /* This is used to refine r0 return value bounds for helpers
5014 * that enforce this value as an upper bound on return values.
5015 * See do_refine_retval_range() for helpers that can refine
5016 * the return value. C type of helper is u32 so we pull register
5017 * bound from umax_value however, if negative verifier errors
5018 * out. Only upper bounds can be learned because retval is an
5019 * int type and negative retvals are allowed.
849fa506 5020 */
10060503 5021 meta->msize_max_value = reg->umax_value;
849fa506 5022
f1174f77
EC
5023 /* The register is SCALAR_VALUE; the access check
5024 * happens using its boundaries.
06c1c049 5025 */
f1174f77 5026 if (!tnum_is_const(reg->var_off))
06c1c049
GB
5027 /* For unprivileged variable accesses, disable raw
5028 * mode so that the program is required to
5029 * initialize all the memory that the helper could
5030 * just partially fill up.
5031 */
5032 meta = NULL;
5033
b03c9f9f 5034 if (reg->smin_value < 0) {
61bd5218 5035 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
5036 regno);
5037 return -EACCES;
5038 }
06c1c049 5039
b03c9f9f 5040 if (reg->umin_value == 0) {
f1174f77
EC
5041 err = check_helper_mem_access(env, regno - 1, 0,
5042 zero_size_allowed,
5043 meta);
06c1c049
GB
5044 if (err)
5045 return err;
06c1c049 5046 }
f1174f77 5047
b03c9f9f 5048 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 5049 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
5050 regno);
5051 return -EACCES;
5052 }
5053 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 5054 reg->umax_value,
f1174f77 5055 zero_size_allowed, meta);
b5dc0163
AS
5056 if (!err)
5057 err = mark_chain_precision(env, regno);
457f4436
AN
5058 } else if (arg_type_is_alloc_size(arg_type)) {
5059 if (!tnum_is_const(reg->var_off)) {
28a8add6 5060 verbose(env, "R%d is not a known constant'\n",
457f4436
AN
5061 regno);
5062 return -EACCES;
5063 }
5064 meta->mem_size = reg->var_off.value;
57c3bb72
AI
5065 } else if (arg_type_is_int_ptr(arg_type)) {
5066 int size = int_ptr_type_to_size(arg_type);
5067
5068 err = check_helper_mem_access(env, regno, size, false, meta);
5069 if (err)
5070 return err;
5071 err = check_ptr_alignment(env, reg, 0, size, true);
fff13c4b
FR
5072 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5073 struct bpf_map *map = reg->map_ptr;
5074 int map_off;
5075 u64 map_addr;
5076 char *str_ptr;
5077
5078 if (reg->type != PTR_TO_MAP_VALUE || !map ||
5079 !bpf_map_is_rdonly(map)) {
5080 verbose(env, "R%d does not point to a readonly map'\n", regno);
5081 return -EACCES;
5082 }
5083
5084 if (!tnum_is_const(reg->var_off)) {
5085 verbose(env, "R%d is not a constant address'\n", regno);
5086 return -EACCES;
5087 }
5088
5089 if (!map->ops->map_direct_value_addr) {
5090 verbose(env, "no direct value access support for this map type\n");
5091 return -EACCES;
5092 }
5093
5094 err = check_map_access(env, regno, reg->off,
5095 map->value_size - reg->off, false);
5096 if (err)
5097 return err;
5098
5099 map_off = reg->off + reg->var_off.value;
5100 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5101 if (err) {
5102 verbose(env, "direct value access on string failed\n");
5103 return err;
5104 }
5105
5106 str_ptr = (char *)(long)(map_addr);
5107 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5108 verbose(env, "string is not zero-terminated\n");
5109 return -EINVAL;
5110 }
17a52670
AS
5111 }
5112
5113 return err;
5114}
5115
0126240f
LB
5116static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5117{
5118 enum bpf_attach_type eatype = env->prog->expected_attach_type;
7e40781c 5119 enum bpf_prog_type type = resolve_prog_type(env->prog);
0126240f
LB
5120
5121 if (func_id != BPF_FUNC_map_update_elem)
5122 return false;
5123
5124 /* It's not possible to get access to a locked struct sock in these
5125 * contexts, so updating is safe.
5126 */
5127 switch (type) {
5128 case BPF_PROG_TYPE_TRACING:
5129 if (eatype == BPF_TRACE_ITER)
5130 return true;
5131 break;
5132 case BPF_PROG_TYPE_SOCKET_FILTER:
5133 case BPF_PROG_TYPE_SCHED_CLS:
5134 case BPF_PROG_TYPE_SCHED_ACT:
5135 case BPF_PROG_TYPE_XDP:
5136 case BPF_PROG_TYPE_SK_REUSEPORT:
5137 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5138 case BPF_PROG_TYPE_SK_LOOKUP:
5139 return true;
5140 default:
5141 break;
5142 }
5143
5144 verbose(env, "cannot update sockmap in this context\n");
5145 return false;
5146}
5147
e411901c
MF
5148static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5149{
5150 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5151}
5152
61bd5218
JK
5153static int check_map_func_compatibility(struct bpf_verifier_env *env,
5154 struct bpf_map *map, int func_id)
35578d79 5155{
35578d79
KX
5156 if (!map)
5157 return 0;
5158
6aff67c8
AS
5159 /* We need a two way check, first is from map perspective ... */
5160 switch (map->map_type) {
5161 case BPF_MAP_TYPE_PROG_ARRAY:
5162 if (func_id != BPF_FUNC_tail_call)
5163 goto error;
5164 break;
5165 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5166 if (func_id != BPF_FUNC_perf_event_read &&
908432ca 5167 func_id != BPF_FUNC_perf_event_output &&
a7658e1a 5168 func_id != BPF_FUNC_skb_output &&
d831ee84
EC
5169 func_id != BPF_FUNC_perf_event_read_value &&
5170 func_id != BPF_FUNC_xdp_output)
6aff67c8
AS
5171 goto error;
5172 break;
457f4436
AN
5173 case BPF_MAP_TYPE_RINGBUF:
5174 if (func_id != BPF_FUNC_ringbuf_output &&
5175 func_id != BPF_FUNC_ringbuf_reserve &&
5176 func_id != BPF_FUNC_ringbuf_submit &&
5177 func_id != BPF_FUNC_ringbuf_discard &&
5178 func_id != BPF_FUNC_ringbuf_query)
5179 goto error;
5180 break;
6aff67c8
AS
5181 case BPF_MAP_TYPE_STACK_TRACE:
5182 if (func_id != BPF_FUNC_get_stackid)
5183 goto error;
5184 break;
4ed8ec52 5185 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 5186 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 5187 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
5188 goto error;
5189 break;
cd339431 5190 case BPF_MAP_TYPE_CGROUP_STORAGE:
b741f163 5191 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
cd339431
RG
5192 if (func_id != BPF_FUNC_get_local_storage)
5193 goto error;
5194 break;
546ac1ff 5195 case BPF_MAP_TYPE_DEVMAP:
6f9d451a 5196 case BPF_MAP_TYPE_DEVMAP_HASH:
0cdbb4b0
THJ
5197 if (func_id != BPF_FUNC_redirect_map &&
5198 func_id != BPF_FUNC_map_lookup_elem)
546ac1ff
JF
5199 goto error;
5200 break;
fbfc504a
BT
5201 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5202 * appear.
5203 */
6710e112
JDB
5204 case BPF_MAP_TYPE_CPUMAP:
5205 if (func_id != BPF_FUNC_redirect_map)
5206 goto error;
5207 break;
fada7fdc
JL
5208 case BPF_MAP_TYPE_XSKMAP:
5209 if (func_id != BPF_FUNC_redirect_map &&
5210 func_id != BPF_FUNC_map_lookup_elem)
5211 goto error;
5212 break;
56f668df 5213 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 5214 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
5215 if (func_id != BPF_FUNC_map_lookup_elem)
5216 goto error;
16a43625 5217 break;
174a79ff
JF
5218 case BPF_MAP_TYPE_SOCKMAP:
5219 if (func_id != BPF_FUNC_sk_redirect_map &&
5220 func_id != BPF_FUNC_sock_map_update &&
4f738adb 5221 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5222 func_id != BPF_FUNC_msg_redirect_map &&
64d85290 5223 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5224 func_id != BPF_FUNC_map_lookup_elem &&
5225 !may_update_sockmap(env, func_id))
174a79ff
JF
5226 goto error;
5227 break;
81110384
JF
5228 case BPF_MAP_TYPE_SOCKHASH:
5229 if (func_id != BPF_FUNC_sk_redirect_hash &&
5230 func_id != BPF_FUNC_sock_hash_update &&
5231 func_id != BPF_FUNC_map_delete_elem &&
9fed9000 5232 func_id != BPF_FUNC_msg_redirect_hash &&
64d85290 5233 func_id != BPF_FUNC_sk_select_reuseport &&
0126240f
LB
5234 func_id != BPF_FUNC_map_lookup_elem &&
5235 !may_update_sockmap(env, func_id))
81110384
JF
5236 goto error;
5237 break;
2dbb9b9e
MKL
5238 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5239 if (func_id != BPF_FUNC_sk_select_reuseport)
5240 goto error;
5241 break;
f1a2e44a
MV
5242 case BPF_MAP_TYPE_QUEUE:
5243 case BPF_MAP_TYPE_STACK:
5244 if (func_id != BPF_FUNC_map_peek_elem &&
5245 func_id != BPF_FUNC_map_pop_elem &&
5246 func_id != BPF_FUNC_map_push_elem)
5247 goto error;
5248 break;
6ac99e8f
MKL
5249 case BPF_MAP_TYPE_SK_STORAGE:
5250 if (func_id != BPF_FUNC_sk_storage_get &&
5251 func_id != BPF_FUNC_sk_storage_delete)
5252 goto error;
5253 break;
8ea63684
KS
5254 case BPF_MAP_TYPE_INODE_STORAGE:
5255 if (func_id != BPF_FUNC_inode_storage_get &&
5256 func_id != BPF_FUNC_inode_storage_delete)
5257 goto error;
5258 break;
4cf1bc1f
KS
5259 case BPF_MAP_TYPE_TASK_STORAGE:
5260 if (func_id != BPF_FUNC_task_storage_get &&
5261 func_id != BPF_FUNC_task_storage_delete)
5262 goto error;
5263 break;
6aff67c8
AS
5264 default:
5265 break;
5266 }
5267
5268 /* ... and second from the function itself. */
5269 switch (func_id) {
5270 case BPF_FUNC_tail_call:
5271 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5272 goto error;
e411901c
MF
5273 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5274 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
f4d7e40a
AS
5275 return -EINVAL;
5276 }
6aff67c8
AS
5277 break;
5278 case BPF_FUNC_perf_event_read:
5279 case BPF_FUNC_perf_event_output:
908432ca 5280 case BPF_FUNC_perf_event_read_value:
a7658e1a 5281 case BPF_FUNC_skb_output:
d831ee84 5282 case BPF_FUNC_xdp_output:
6aff67c8
AS
5283 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5284 goto error;
5285 break;
5286 case BPF_FUNC_get_stackid:
5287 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5288 goto error;
5289 break;
60d20f91 5290 case BPF_FUNC_current_task_under_cgroup:
747ea55e 5291 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
5292 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5293 goto error;
5294 break;
97f91a7c 5295 case BPF_FUNC_redirect_map:
9c270af3 5296 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6f9d451a 5297 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
fbfc504a
BT
5298 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5299 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
5300 goto error;
5301 break;
174a79ff 5302 case BPF_FUNC_sk_redirect_map:
4f738adb 5303 case BPF_FUNC_msg_redirect_map:
81110384 5304 case BPF_FUNC_sock_map_update:
174a79ff
JF
5305 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5306 goto error;
5307 break;
81110384
JF
5308 case BPF_FUNC_sk_redirect_hash:
5309 case BPF_FUNC_msg_redirect_hash:
5310 case BPF_FUNC_sock_hash_update:
5311 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
174a79ff
JF
5312 goto error;
5313 break;
cd339431 5314 case BPF_FUNC_get_local_storage:
b741f163
RG
5315 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5316 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
cd339431
RG
5317 goto error;
5318 break;
2dbb9b9e 5319 case BPF_FUNC_sk_select_reuseport:
9fed9000
JS
5320 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5321 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5322 map->map_type != BPF_MAP_TYPE_SOCKHASH)
2dbb9b9e
MKL
5323 goto error;
5324 break;
f1a2e44a
MV
5325 case BPF_FUNC_map_peek_elem:
5326 case BPF_FUNC_map_pop_elem:
5327 case BPF_FUNC_map_push_elem:
5328 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5329 map->map_type != BPF_MAP_TYPE_STACK)
5330 goto error;
5331 break;
6ac99e8f
MKL
5332 case BPF_FUNC_sk_storage_get:
5333 case BPF_FUNC_sk_storage_delete:
5334 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5335 goto error;
5336 break;
8ea63684
KS
5337 case BPF_FUNC_inode_storage_get:
5338 case BPF_FUNC_inode_storage_delete:
5339 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5340 goto error;
5341 break;
4cf1bc1f
KS
5342 case BPF_FUNC_task_storage_get:
5343 case BPF_FUNC_task_storage_delete:
5344 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5345 goto error;
5346 break;
6aff67c8
AS
5347 default:
5348 break;
35578d79
KX
5349 }
5350
5351 return 0;
6aff67c8 5352error:
61bd5218 5353 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 5354 map->map_type, func_id_name(func_id), func_id);
6aff67c8 5355 return -EINVAL;
35578d79
KX
5356}
5357
90133415 5358static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
5359{
5360 int count = 0;
5361
39f19ebb 5362 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5363 count++;
39f19ebb 5364 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5365 count++;
39f19ebb 5366 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5367 count++;
39f19ebb 5368 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 5369 count++;
39f19ebb 5370 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
5371 count++;
5372
90133415
DB
5373 /* We only support one arg being in raw mode at the moment,
5374 * which is sufficient for the helper functions we have
5375 * right now.
5376 */
5377 return count <= 1;
5378}
5379
5380static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5381 enum bpf_arg_type arg_next)
5382{
5383 return (arg_type_is_mem_ptr(arg_curr) &&
5384 !arg_type_is_mem_size(arg_next)) ||
5385 (!arg_type_is_mem_ptr(arg_curr) &&
5386 arg_type_is_mem_size(arg_next));
5387}
5388
5389static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5390{
5391 /* bpf_xxx(..., buf, len) call will access 'len'
5392 * bytes from memory 'buf'. Both arg types need
5393 * to be paired, so make sure there's no buggy
5394 * helper function specification.
5395 */
5396 if (arg_type_is_mem_size(fn->arg1_type) ||
5397 arg_type_is_mem_ptr(fn->arg5_type) ||
5398 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5399 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5400 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5401 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5402 return false;
5403
5404 return true;
5405}
5406
1b986589 5407static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
fd978bf7
JS
5408{
5409 int count = 0;
5410
1b986589 5411 if (arg_type_may_be_refcounted(fn->arg1_type))
fd978bf7 5412 count++;
1b986589 5413 if (arg_type_may_be_refcounted(fn->arg2_type))
fd978bf7 5414 count++;
1b986589 5415 if (arg_type_may_be_refcounted(fn->arg3_type))
fd978bf7 5416 count++;
1b986589 5417 if (arg_type_may_be_refcounted(fn->arg4_type))
fd978bf7 5418 count++;
1b986589 5419 if (arg_type_may_be_refcounted(fn->arg5_type))
fd978bf7
JS
5420 count++;
5421
1b986589
MKL
5422 /* A reference acquiring function cannot acquire
5423 * another refcounted ptr.
5424 */
64d85290 5425 if (may_be_acquire_function(func_id) && count)
1b986589
MKL
5426 return false;
5427
fd978bf7
JS
5428 /* We only support one arg being unreferenced at the moment,
5429 * which is sufficient for the helper functions we have right now.
5430 */
5431 return count <= 1;
5432}
5433
9436ef6e
LB
5434static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5435{
5436 int i;
5437
1df8f55a 5438 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9436ef6e
LB
5439 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5440 return false;
5441
1df8f55a
MKL
5442 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5443 return false;
5444 }
5445
9436ef6e
LB
5446 return true;
5447}
5448
1b986589 5449static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
90133415
DB
5450{
5451 return check_raw_mode_ok(fn) &&
fd978bf7 5452 check_arg_pair_ok(fn) &&
9436ef6e 5453 check_btf_id_ok(fn) &&
1b986589 5454 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
435faee1
DB
5455}
5456
de8f3a83
DB
5457/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5458 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 5459 */
f4d7e40a
AS
5460static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5461 struct bpf_func_state *state)
969bf05e 5462{
58e2af8b 5463 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
5464 int i;
5465
5466 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 5467 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 5468 mark_reg_unknown(env, regs, i);
969bf05e 5469
f3709f69
JS
5470 bpf_for_each_spilled_reg(i, state, reg) {
5471 if (!reg)
969bf05e 5472 continue;
de8f3a83 5473 if (reg_is_pkt_pointer_any(reg))
f54c7898 5474 __mark_reg_unknown(env, reg);
969bf05e
AS
5475 }
5476}
5477
f4d7e40a
AS
5478static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5479{
5480 struct bpf_verifier_state *vstate = env->cur_state;
5481 int i;
5482
5483 for (i = 0; i <= vstate->curframe; i++)
5484 __clear_all_pkt_pointers(env, vstate->frame[i]);
5485}
5486
6d94e741
AS
5487enum {
5488 AT_PKT_END = -1,
5489 BEYOND_PKT_END = -2,
5490};
5491
5492static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5493{
5494 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5495 struct bpf_reg_state *reg = &state->regs[regn];
5496
5497 if (reg->type != PTR_TO_PACKET)
5498 /* PTR_TO_PACKET_META is not supported yet */
5499 return;
5500
5501 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5502 * How far beyond pkt_end it goes is unknown.
5503 * if (!range_open) it's the case of pkt >= pkt_end
5504 * if (range_open) it's the case of pkt > pkt_end
5505 * hence this pointer is at least 1 byte bigger than pkt_end
5506 */
5507 if (range_open)
5508 reg->range = BEYOND_PKT_END;
5509 else
5510 reg->range = AT_PKT_END;
5511}
5512
fd978bf7 5513static void release_reg_references(struct bpf_verifier_env *env,
1b986589
MKL
5514 struct bpf_func_state *state,
5515 int ref_obj_id)
fd978bf7
JS
5516{
5517 struct bpf_reg_state *regs = state->regs, *reg;
5518 int i;
5519
5520 for (i = 0; i < MAX_BPF_REG; i++)
1b986589 5521 if (regs[i].ref_obj_id == ref_obj_id)
fd978bf7
JS
5522 mark_reg_unknown(env, regs, i);
5523
5524 bpf_for_each_spilled_reg(i, state, reg) {
5525 if (!reg)
5526 continue;
1b986589 5527 if (reg->ref_obj_id == ref_obj_id)
f54c7898 5528 __mark_reg_unknown(env, reg);
fd978bf7
JS
5529 }
5530}
5531
5532/* The pointer with the specified id has released its reference to kernel
5533 * resources. Identify all copies of the same pointer and clear the reference.
5534 */
5535static int release_reference(struct bpf_verifier_env *env,
1b986589 5536 int ref_obj_id)
fd978bf7
JS
5537{
5538 struct bpf_verifier_state *vstate = env->cur_state;
1b986589 5539 int err;
fd978bf7
JS
5540 int i;
5541
1b986589
MKL
5542 err = release_reference_state(cur_func(env), ref_obj_id);
5543 if (err)
5544 return err;
5545
fd978bf7 5546 for (i = 0; i <= vstate->curframe; i++)
1b986589 5547 release_reg_references(env, vstate->frame[i], ref_obj_id);
fd978bf7 5548
1b986589 5549 return 0;
fd978bf7
JS
5550}
5551
51c39bb1
AS
5552static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5553 struct bpf_reg_state *regs)
5554{
5555 int i;
5556
5557 /* after the call registers r0 - r5 were scratched */
5558 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5559 mark_reg_not_init(env, regs, caller_saved[i]);
5560 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5561 }
5562}
5563
14351375
YS
5564typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5565 struct bpf_func_state *caller,
5566 struct bpf_func_state *callee,
5567 int insn_idx);
5568
5569static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5570 int *insn_idx, int subprog,
5571 set_callee_state_fn set_callee_state_cb)
f4d7e40a
AS
5572{
5573 struct bpf_verifier_state *state = env->cur_state;
51c39bb1 5574 struct bpf_func_info_aux *func_info_aux;
f4d7e40a 5575 struct bpf_func_state *caller, *callee;
14351375 5576 int err;
51c39bb1 5577 bool is_global = false;
f4d7e40a 5578
aada9ce6 5579 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 5580 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 5581 state->curframe + 2);
f4d7e40a
AS
5582 return -E2BIG;
5583 }
5584
f4d7e40a
AS
5585 caller = state->frame[state->curframe];
5586 if (state->frame[state->curframe + 1]) {
5587 verbose(env, "verifier bug. Frame %d already allocated\n",
5588 state->curframe + 1);
5589 return -EFAULT;
5590 }
5591
51c39bb1
AS
5592 func_info_aux = env->prog->aux->func_info_aux;
5593 if (func_info_aux)
5594 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
34747c41 5595 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
51c39bb1
AS
5596 if (err == -EFAULT)
5597 return err;
5598 if (is_global) {
5599 if (err) {
5600 verbose(env, "Caller passes invalid args into func#%d\n",
5601 subprog);
5602 return err;
5603 } else {
5604 if (env->log.level & BPF_LOG_LEVEL)
5605 verbose(env,
5606 "Func#%d is global and valid. Skipping.\n",
5607 subprog);
5608 clear_caller_saved_regs(env, caller->regs);
5609
45159b27 5610 /* All global functions return a 64-bit SCALAR_VALUE */
51c39bb1 5611 mark_reg_unknown(env, caller->regs, BPF_REG_0);
45159b27 5612 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
51c39bb1
AS
5613
5614 /* continue with next insn after call */
5615 return 0;
5616 }
5617 }
5618
f4d7e40a
AS
5619 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5620 if (!callee)
5621 return -ENOMEM;
5622 state->frame[state->curframe + 1] = callee;
5623
5624 /* callee cannot access r0, r6 - r9 for reading and has to write
5625 * into its own stack before reading from it.
5626 * callee can read/write into caller's stack
5627 */
5628 init_func_state(env, callee,
5629 /* remember the callsite, it will be used by bpf_exit */
5630 *insn_idx /* callsite */,
5631 state->curframe + 1 /* frameno within this callchain */,
f910cefa 5632 subprog /* subprog number within this prog */);
f4d7e40a 5633
fd978bf7
JS
5634 /* Transfer references to the callee */
5635 err = transfer_reference_state(callee, caller);
5636 if (err)
5637 return err;
5638
14351375
YS
5639 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5640 if (err)
5641 return err;
f4d7e40a 5642
51c39bb1 5643 clear_caller_saved_regs(env, caller->regs);
f4d7e40a
AS
5644
5645 /* only increment it after check_reg_arg() finished */
5646 state->curframe++;
5647
5648 /* and go analyze first insn of the callee */
14351375 5649 *insn_idx = env->subprog_info[subprog].start - 1;
f4d7e40a 5650
06ee7115 5651 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
5652 verbose(env, "caller:\n");
5653 print_verifier_state(env, caller);
5654 verbose(env, "callee:\n");
5655 print_verifier_state(env, callee);
5656 }
5657 return 0;
5658}
5659
314ee05e
YS
5660int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5661 struct bpf_func_state *caller,
5662 struct bpf_func_state *callee)
5663{
5664 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5665 * void *callback_ctx, u64 flags);
5666 * callback_fn(struct bpf_map *map, void *key, void *value,
5667 * void *callback_ctx);
5668 */
5669 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5670
5671 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5672 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5673 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5674
5675 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5676 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5677 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5678
5679 /* pointer to stack or null */
5680 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5681
5682 /* unused */
5683 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5684 return 0;
5685}
5686
14351375
YS
5687static int set_callee_state(struct bpf_verifier_env *env,
5688 struct bpf_func_state *caller,
5689 struct bpf_func_state *callee, int insn_idx)
5690{
5691 int i;
5692
5693 /* copy r1 - r5 args that callee can access. The copy includes parent
5694 * pointers, which connects us up to the liveness chain
5695 */
5696 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5697 callee->regs[i] = caller->regs[i];
5698 return 0;
5699}
5700
5701static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5702 int *insn_idx)
5703{
5704 int subprog, target_insn;
5705
5706 target_insn = *insn_idx + insn->imm + 1;
5707 subprog = find_subprog(env, target_insn);
5708 if (subprog < 0) {
5709 verbose(env, "verifier bug. No program starts at insn %d\n",
5710 target_insn);
5711 return -EFAULT;
5712 }
5713
5714 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5715}
5716
69c087ba
YS
5717static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5718 struct bpf_func_state *caller,
5719 struct bpf_func_state *callee,
5720 int insn_idx)
5721{
5722 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5723 struct bpf_map *map;
5724 int err;
5725
5726 if (bpf_map_ptr_poisoned(insn_aux)) {
5727 verbose(env, "tail_call abusing map_ptr\n");
5728 return -EINVAL;
5729 }
5730
5731 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5732 if (!map->ops->map_set_for_each_callback_args ||
5733 !map->ops->map_for_each_callback) {
5734 verbose(env, "callback function not allowed for map\n");
5735 return -ENOTSUPP;
5736 }
5737
5738 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5739 if (err)
5740 return err;
5741
5742 callee->in_callback_fn = true;
5743 return 0;
5744}
5745
f4d7e40a
AS
5746static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5747{
5748 struct bpf_verifier_state *state = env->cur_state;
5749 struct bpf_func_state *caller, *callee;
5750 struct bpf_reg_state *r0;
fd978bf7 5751 int err;
f4d7e40a
AS
5752
5753 callee = state->frame[state->curframe];
5754 r0 = &callee->regs[BPF_REG_0];
5755 if (r0->type == PTR_TO_STACK) {
5756 /* technically it's ok to return caller's stack pointer
5757 * (or caller's caller's pointer) back to the caller,
5758 * since these pointers are valid. Only current stack
5759 * pointer will be invalid as soon as function exits,
5760 * but let's be conservative
5761 */
5762 verbose(env, "cannot return stack pointer to the caller\n");
5763 return -EINVAL;
5764 }
5765
5766 state->curframe--;
5767 caller = state->frame[state->curframe];
69c087ba
YS
5768 if (callee->in_callback_fn) {
5769 /* enforce R0 return value range [0, 1]. */
5770 struct tnum range = tnum_range(0, 1);
5771
5772 if (r0->type != SCALAR_VALUE) {
5773 verbose(env, "R0 not a scalar value\n");
5774 return -EACCES;
5775 }
5776 if (!tnum_in(range, r0->var_off)) {
5777 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5778 return -EINVAL;
5779 }
5780 } else {
5781 /* return to the caller whatever r0 had in the callee */
5782 caller->regs[BPF_REG_0] = *r0;
5783 }
f4d7e40a 5784
fd978bf7
JS
5785 /* Transfer references to the caller */
5786 err = transfer_reference_state(caller, callee);
5787 if (err)
5788 return err;
5789
f4d7e40a 5790 *insn_idx = callee->callsite + 1;
06ee7115 5791 if (env->log.level & BPF_LOG_LEVEL) {
f4d7e40a
AS
5792 verbose(env, "returning from callee:\n");
5793 print_verifier_state(env, callee);
5794 verbose(env, "to caller at %d:\n", *insn_idx);
5795 print_verifier_state(env, caller);
5796 }
5797 /* clear everything in the callee */
5798 free_func_state(callee);
5799 state->frame[state->curframe + 1] = NULL;
5800 return 0;
5801}
5802
849fa506
YS
5803static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5804 int func_id,
5805 struct bpf_call_arg_meta *meta)
5806{
5807 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5808
5809 if (ret_type != RET_INTEGER ||
5810 (func_id != BPF_FUNC_get_stack &&
fd0b88f7 5811 func_id != BPF_FUNC_get_task_stack &&
47cc0ed5
DB
5812 func_id != BPF_FUNC_probe_read_str &&
5813 func_id != BPF_FUNC_probe_read_kernel_str &&
5814 func_id != BPF_FUNC_probe_read_user_str))
849fa506
YS
5815 return;
5816
10060503 5817 ret_reg->smax_value = meta->msize_max_value;
fa123ac0 5818 ret_reg->s32_max_value = meta->msize_max_value;
b0270958
AS
5819 ret_reg->smin_value = -MAX_ERRNO;
5820 ret_reg->s32_min_value = -MAX_ERRNO;
849fa506
YS
5821 __reg_deduce_bounds(ret_reg);
5822 __reg_bound_offset(ret_reg);
10060503 5823 __update_reg_bounds(ret_reg);
849fa506
YS
5824}
5825
c93552c4
DB
5826static int
5827record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5828 int func_id, int insn_idx)
5829{
5830 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
591fe988 5831 struct bpf_map *map = meta->map_ptr;
c93552c4
DB
5832
5833 if (func_id != BPF_FUNC_tail_call &&
09772d92
DB
5834 func_id != BPF_FUNC_map_lookup_elem &&
5835 func_id != BPF_FUNC_map_update_elem &&
f1a2e44a
MV
5836 func_id != BPF_FUNC_map_delete_elem &&
5837 func_id != BPF_FUNC_map_push_elem &&
5838 func_id != BPF_FUNC_map_pop_elem &&
69c087ba 5839 func_id != BPF_FUNC_map_peek_elem &&
e6a4750f
BT
5840 func_id != BPF_FUNC_for_each_map_elem &&
5841 func_id != BPF_FUNC_redirect_map)
c93552c4 5842 return 0;
09772d92 5843
591fe988 5844 if (map == NULL) {
c93552c4
DB
5845 verbose(env, "kernel subsystem misconfigured verifier\n");
5846 return -EINVAL;
5847 }
5848
591fe988
DB
5849 /* In case of read-only, some additional restrictions
5850 * need to be applied in order to prevent altering the
5851 * state of the map from program side.
5852 */
5853 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5854 (func_id == BPF_FUNC_map_delete_elem ||
5855 func_id == BPF_FUNC_map_update_elem ||
5856 func_id == BPF_FUNC_map_push_elem ||
5857 func_id == BPF_FUNC_map_pop_elem)) {
5858 verbose(env, "write into map forbidden\n");
5859 return -EACCES;
5860 }
5861
d2e4c1e6 5862 if (!BPF_MAP_PTR(aux->map_ptr_state))
c93552c4 5863 bpf_map_ptr_store(aux, meta->map_ptr,
2c78ee89 5864 !meta->map_ptr->bypass_spec_v1);
d2e4c1e6 5865 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
c93552c4 5866 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2c78ee89 5867 !meta->map_ptr->bypass_spec_v1);
c93552c4
DB
5868 return 0;
5869}
5870
d2e4c1e6
DB
5871static int
5872record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5873 int func_id, int insn_idx)
5874{
5875 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5876 struct bpf_reg_state *regs = cur_regs(env), *reg;
5877 struct bpf_map *map = meta->map_ptr;
5878 struct tnum range;
5879 u64 val;
cc52d914 5880 int err;
d2e4c1e6
DB
5881
5882 if (func_id != BPF_FUNC_tail_call)
5883 return 0;
5884 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5885 verbose(env, "kernel subsystem misconfigured verifier\n");
5886 return -EINVAL;
5887 }
5888
5889 range = tnum_range(0, map->max_entries - 1);
5890 reg = &regs[BPF_REG_3];
5891
5892 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5893 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5894 return 0;
5895 }
5896
cc52d914
DB
5897 err = mark_chain_precision(env, BPF_REG_3);
5898 if (err)
5899 return err;
5900
d2e4c1e6
DB
5901 val = reg->var_off.value;
5902 if (bpf_map_key_unseen(aux))
5903 bpf_map_key_store(aux, val);
5904 else if (!bpf_map_key_poisoned(aux) &&
5905 bpf_map_key_immediate(aux) != val)
5906 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5907 return 0;
5908}
5909
fd978bf7
JS
5910static int check_reference_leak(struct bpf_verifier_env *env)
5911{
5912 struct bpf_func_state *state = cur_func(env);
5913 int i;
5914
5915 for (i = 0; i < state->acquired_refs; i++) {
5916 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5917 state->refs[i].id, state->refs[i].insn_idx);
5918 }
5919 return state->acquired_refs ? -EINVAL : 0;
5920}
5921
7b15523a
FR
5922static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5923 struct bpf_reg_state *regs)
5924{
5925 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5926 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5927 struct bpf_map *fmt_map = fmt_reg->map_ptr;
5928 int err, fmt_map_off, num_args;
5929 u64 fmt_addr;
5930 char *fmt;
5931
5932 /* data must be an array of u64 */
5933 if (data_len_reg->var_off.value % 8)
5934 return -EINVAL;
5935 num_args = data_len_reg->var_off.value / 8;
5936
5937 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5938 * and map_direct_value_addr is set.
5939 */
5940 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5941 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5942 fmt_map_off);
5943 if (err)
5944 return err;
5945 fmt = (char *)(long)fmt_addr + fmt_map_off;
5946
5947 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5948 * can focus on validating the format specifiers.
5949 */
5950 err = bpf_printf_prepare(fmt, UINT_MAX, NULL, NULL, NULL, num_args);
5951 if (err < 0)
5952 verbose(env, "Invalid format string\n");
5953
5954 return err;
5955}
5956
69c087ba
YS
5957static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5958 int *insn_idx_p)
17a52670 5959{
17a52670 5960 const struct bpf_func_proto *fn = NULL;
638f5b90 5961 struct bpf_reg_state *regs;
33ff9823 5962 struct bpf_call_arg_meta meta;
69c087ba 5963 int insn_idx = *insn_idx_p;
969bf05e 5964 bool changes_data;
69c087ba 5965 int i, err, func_id;
17a52670
AS
5966
5967 /* find function prototype */
69c087ba 5968 func_id = insn->imm;
17a52670 5969 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
5970 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5971 func_id);
17a52670
AS
5972 return -EINVAL;
5973 }
5974
00176a34 5975 if (env->ops->get_func_proto)
5e43f899 5976 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 5977 if (!fn) {
61bd5218
JK
5978 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5979 func_id);
17a52670
AS
5980 return -EINVAL;
5981 }
5982
5983 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 5984 if (!env->prog->gpl_compatible && fn->gpl_only) {
3fe2867c 5985 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
17a52670
AS
5986 return -EINVAL;
5987 }
5988
eae2e83e
JO
5989 if (fn->allowed && !fn->allowed(env->prog)) {
5990 verbose(env, "helper call is not allowed in probe\n");
5991 return -EINVAL;
5992 }
5993
04514d13 5994 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 5995 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
5996 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5997 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5998 func_id_name(func_id), func_id);
5999 return -EINVAL;
6000 }
969bf05e 6001
33ff9823 6002 memset(&meta, 0, sizeof(meta));
36bbef52 6003 meta.pkt_access = fn->pkt_access;
33ff9823 6004
1b986589 6005 err = check_func_proto(fn, func_id);
435faee1 6006 if (err) {
61bd5218 6007 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 6008 func_id_name(func_id), func_id);
435faee1
DB
6009 return err;
6010 }
6011
d83525ca 6012 meta.func_id = func_id;
17a52670 6013 /* check args */
523a4cf4 6014 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
af7ec138 6015 err = check_func_arg(env, i, &meta, fn);
a7658e1a
AS
6016 if (err)
6017 return err;
6018 }
17a52670 6019
c93552c4
DB
6020 err = record_func_map(env, &meta, func_id, insn_idx);
6021 if (err)
6022 return err;
6023
d2e4c1e6
DB
6024 err = record_func_key(env, &meta, func_id, insn_idx);
6025 if (err)
6026 return err;
6027
435faee1
DB
6028 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6029 * is inferred from register state.
6030 */
6031 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
6032 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6033 BPF_WRITE, -1, false);
435faee1
DB
6034 if (err)
6035 return err;
6036 }
6037
fd978bf7
JS
6038 if (func_id == BPF_FUNC_tail_call) {
6039 err = check_reference_leak(env);
6040 if (err) {
6041 verbose(env, "tail_call would lead to reference leak\n");
6042 return err;
6043 }
6044 } else if (is_release_function(func_id)) {
1b986589 6045 err = release_reference(env, meta.ref_obj_id);
46f8bc92
MKL
6046 if (err) {
6047 verbose(env, "func %s#%d reference has not been acquired before\n",
6048 func_id_name(func_id), func_id);
fd978bf7 6049 return err;
46f8bc92 6050 }
fd978bf7
JS
6051 }
6052
638f5b90 6053 regs = cur_regs(env);
cd339431
RG
6054
6055 /* check that flags argument in get_local_storage(map, flags) is 0,
6056 * this is required because get_local_storage() can't return an error.
6057 */
6058 if (func_id == BPF_FUNC_get_local_storage &&
6059 !register_is_null(&regs[BPF_REG_2])) {
6060 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6061 return -EINVAL;
6062 }
6063
69c087ba
YS
6064 if (func_id == BPF_FUNC_for_each_map_elem) {
6065 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6066 set_map_elem_callback_state);
6067 if (err < 0)
6068 return -EINVAL;
6069 }
6070
7b15523a
FR
6071 if (func_id == BPF_FUNC_snprintf) {
6072 err = check_bpf_snprintf_call(env, regs);
6073 if (err < 0)
6074 return err;
6075 }
6076
17a52670 6077 /* reset caller saved regs */
dc503a8a 6078 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 6079 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
6080 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6081 }
17a52670 6082
5327ed3d
JW
6083 /* helper call returns 64-bit value. */
6084 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6085
dc503a8a 6086 /* update return register (already marked as written above) */
17a52670 6087 if (fn->ret_type == RET_INTEGER) {
f1174f77 6088 /* sets type to SCALAR_VALUE */
61bd5218 6089 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
6090 } else if (fn->ret_type == RET_VOID) {
6091 regs[BPF_REG_0].type = NOT_INIT;
3e6a4b3e
RG
6092 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6093 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
f1174f77 6094 /* There is no offset yet applied, variable or fixed */
61bd5218 6095 mark_reg_known_zero(env, regs, BPF_REG_0);
17a52670
AS
6096 /* remember map_ptr, so that check_map_access()
6097 * can check 'value_size' boundary of memory access
6098 * to map element returned from bpf_map_lookup_elem()
6099 */
33ff9823 6100 if (meta.map_ptr == NULL) {
61bd5218
JK
6101 verbose(env,
6102 "kernel subsystem misconfigured verifier\n");
17a52670
AS
6103 return -EINVAL;
6104 }
33ff9823 6105 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4d31f301
DB
6106 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6107 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
e16d2f1a
AS
6108 if (map_value_has_spin_lock(meta.map_ptr))
6109 regs[BPF_REG_0].id = ++env->id_gen;
4d31f301
DB
6110 } else {
6111 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4d31f301 6112 }
c64b7983
JS
6113 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6114 mark_reg_known_zero(env, regs, BPF_REG_0);
6115 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
85a51f8c
LB
6116 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6117 mark_reg_known_zero(env, regs, BPF_REG_0);
6118 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
655a51e5
MKL
6119 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6120 mark_reg_known_zero(env, regs, BPF_REG_0);
6121 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
457f4436
AN
6122 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6123 mark_reg_known_zero(env, regs, BPF_REG_0);
6124 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
457f4436 6125 regs[BPF_REG_0].mem_size = meta.mem_size;
63d9b80d
HL
6126 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6127 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
eaa6bcb7
HL
6128 const struct btf_type *t;
6129
6130 mark_reg_known_zero(env, regs, BPF_REG_0);
22dc4a0f 6131 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
eaa6bcb7
HL
6132 if (!btf_type_is_struct(t)) {
6133 u32 tsize;
6134 const struct btf_type *ret;
6135 const char *tname;
6136
6137 /* resolve the type size of ksym. */
22dc4a0f 6138 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
eaa6bcb7 6139 if (IS_ERR(ret)) {
22dc4a0f 6140 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
eaa6bcb7
HL
6141 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6142 tname, PTR_ERR(ret));
6143 return -EINVAL;
6144 }
63d9b80d
HL
6145 regs[BPF_REG_0].type =
6146 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6147 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
eaa6bcb7
HL
6148 regs[BPF_REG_0].mem_size = tsize;
6149 } else {
63d9b80d
HL
6150 regs[BPF_REG_0].type =
6151 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6152 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
22dc4a0f 6153 regs[BPF_REG_0].btf = meta.ret_btf;
eaa6bcb7
HL
6154 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6155 }
3ca1032a
KS
6156 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6157 fn->ret_type == RET_PTR_TO_BTF_ID) {
af7ec138
YS
6158 int ret_btf_id;
6159
6160 mark_reg_known_zero(env, regs, BPF_REG_0);
3ca1032a
KS
6161 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6162 PTR_TO_BTF_ID :
6163 PTR_TO_BTF_ID_OR_NULL;
af7ec138
YS
6164 ret_btf_id = *fn->ret_btf_id;
6165 if (ret_btf_id == 0) {
6166 verbose(env, "invalid return type %d of func %s#%d\n",
6167 fn->ret_type, func_id_name(func_id), func_id);
6168 return -EINVAL;
6169 }
22dc4a0f
AN
6170 /* current BPF helper definitions are only coming from
6171 * built-in code with type IDs from vmlinux BTF
6172 */
6173 regs[BPF_REG_0].btf = btf_vmlinux;
af7ec138 6174 regs[BPF_REG_0].btf_id = ret_btf_id;
17a52670 6175 } else {
61bd5218 6176 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 6177 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
6178 return -EINVAL;
6179 }
04fd61ab 6180
93c230e3
MKL
6181 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6182 regs[BPF_REG_0].id = ++env->id_gen;
6183
0f3adc28 6184 if (is_ptr_cast_function(func_id)) {
1b986589
MKL
6185 /* For release_reference() */
6186 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
64d85290 6187 } else if (is_acquire_function(func_id, meta.map_ptr)) {
0f3adc28
LB
6188 int id = acquire_reference_state(env, insn_idx);
6189
6190 if (id < 0)
6191 return id;
6192 /* For mark_ptr_or_null_reg() */
6193 regs[BPF_REG_0].id = id;
6194 /* For release_reference() */
6195 regs[BPF_REG_0].ref_obj_id = id;
6196 }
1b986589 6197
849fa506
YS
6198 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6199
61bd5218 6200 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
6201 if (err)
6202 return err;
04fd61ab 6203
fa28dcb8
SL
6204 if ((func_id == BPF_FUNC_get_stack ||
6205 func_id == BPF_FUNC_get_task_stack) &&
6206 !env->prog->has_callchain_buf) {
c195651e
YS
6207 const char *err_str;
6208
6209#ifdef CONFIG_PERF_EVENTS
6210 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6211 err_str = "cannot get callchain buffer for func %s#%d\n";
6212#else
6213 err = -ENOTSUPP;
6214 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6215#endif
6216 if (err) {
6217 verbose(env, err_str, func_id_name(func_id), func_id);
6218 return err;
6219 }
6220
6221 env->prog->has_callchain_buf = true;
6222 }
6223
5d99cb2c
SL
6224 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6225 env->prog->call_get_stack = true;
6226
969bf05e
AS
6227 if (changes_data)
6228 clear_all_pkt_pointers(env);
6229 return 0;
6230}
6231
e6ac2450
MKL
6232/* mark_btf_func_reg_size() is used when the reg size is determined by
6233 * the BTF func_proto's return value size and argument.
6234 */
6235static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6236 size_t reg_size)
6237{
6238 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6239
6240 if (regno == BPF_REG_0) {
6241 /* Function return value */
6242 reg->live |= REG_LIVE_WRITTEN;
6243 reg->subreg_def = reg_size == sizeof(u64) ?
6244 DEF_NOT_SUBREG : env->insn_idx + 1;
6245 } else {
6246 /* Function argument */
6247 if (reg_size == sizeof(u64)) {
6248 mark_insn_zext(env, reg);
6249 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6250 } else {
6251 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6252 }
6253 }
6254}
6255
6256static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6257{
6258 const struct btf_type *t, *func, *func_proto, *ptr_type;
6259 struct bpf_reg_state *regs = cur_regs(env);
6260 const char *func_name, *ptr_type_name;
6261 u32 i, nargs, func_id, ptr_type_id;
6262 const struct btf_param *args;
6263 int err;
6264
6265 func_id = insn->imm;
6266 func = btf_type_by_id(btf_vmlinux, func_id);
6267 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6268 func_proto = btf_type_by_id(btf_vmlinux, func->type);
6269
6270 if (!env->ops->check_kfunc_call ||
6271 !env->ops->check_kfunc_call(func_id)) {
6272 verbose(env, "calling kernel function %s is not allowed\n",
6273 func_name);
6274 return -EACCES;
6275 }
6276
6277 /* Check the arguments */
6278 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6279 if (err)
6280 return err;
6281
6282 for (i = 0; i < CALLER_SAVED_REGS; i++)
6283 mark_reg_not_init(env, regs, caller_saved[i]);
6284
6285 /* Check return type */
6286 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6287 if (btf_type_is_scalar(t)) {
6288 mark_reg_unknown(env, regs, BPF_REG_0);
6289 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6290 } else if (btf_type_is_ptr(t)) {
6291 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6292 &ptr_type_id);
6293 if (!btf_type_is_struct(ptr_type)) {
6294 ptr_type_name = btf_name_by_offset(btf_vmlinux,
6295 ptr_type->name_off);
6296 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6297 func_name, btf_type_str(ptr_type),
6298 ptr_type_name);
6299 return -EINVAL;
6300 }
6301 mark_reg_known_zero(env, regs, BPF_REG_0);
6302 regs[BPF_REG_0].btf = btf_vmlinux;
6303 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6304 regs[BPF_REG_0].btf_id = ptr_type_id;
6305 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6306 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6307
6308 nargs = btf_type_vlen(func_proto);
6309 args = (const struct btf_param *)(func_proto + 1);
6310 for (i = 0; i < nargs; i++) {
6311 u32 regno = i + 1;
6312
6313 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6314 if (btf_type_is_ptr(t))
6315 mark_btf_func_reg_size(env, regno, sizeof(void *));
6316 else
6317 /* scalar. ensured by btf_check_kfunc_arg_match() */
6318 mark_btf_func_reg_size(env, regno, t->size);
6319 }
6320
6321 return 0;
6322}
6323
b03c9f9f
EC
6324static bool signed_add_overflows(s64 a, s64 b)
6325{
6326 /* Do the add in u64, where overflow is well-defined */
6327 s64 res = (s64)((u64)a + (u64)b);
6328
6329 if (b < 0)
6330 return res > a;
6331 return res < a;
6332}
6333
bc895e8b 6334static bool signed_add32_overflows(s32 a, s32 b)
3f50f132
JF
6335{
6336 /* Do the add in u32, where overflow is well-defined */
6337 s32 res = (s32)((u32)a + (u32)b);
6338
6339 if (b < 0)
6340 return res > a;
6341 return res < a;
6342}
6343
bc895e8b 6344static bool signed_sub_overflows(s64 a, s64 b)
b03c9f9f
EC
6345{
6346 /* Do the sub in u64, where overflow is well-defined */
6347 s64 res = (s64)((u64)a - (u64)b);
6348
6349 if (b < 0)
6350 return res < a;
6351 return res > a;
969bf05e
AS
6352}
6353
3f50f132
JF
6354static bool signed_sub32_overflows(s32 a, s32 b)
6355{
bc895e8b 6356 /* Do the sub in u32, where overflow is well-defined */
3f50f132
JF
6357 s32 res = (s32)((u32)a - (u32)b);
6358
6359 if (b < 0)
6360 return res < a;
6361 return res > a;
6362}
6363
bb7f0f98
AS
6364static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6365 const struct bpf_reg_state *reg,
6366 enum bpf_reg_type type)
6367{
6368 bool known = tnum_is_const(reg->var_off);
6369 s64 val = reg->var_off.value;
6370 s64 smin = reg->smin_value;
6371
6372 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6373 verbose(env, "math between %s pointer and %lld is not allowed\n",
6374 reg_type_str[type], val);
6375 return false;
6376 }
6377
6378 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6379 verbose(env, "%s pointer offset %d is not allowed\n",
6380 reg_type_str[type], reg->off);
6381 return false;
6382 }
6383
6384 if (smin == S64_MIN) {
6385 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6386 reg_type_str[type]);
6387 return false;
6388 }
6389
6390 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6391 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6392 smin, reg_type_str[type]);
6393 return false;
6394 }
6395
6396 return true;
6397}
6398
979d63d5
DB
6399static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6400{
6401 return &env->insn_aux_data[env->insn_idx];
6402}
6403
6404static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6405 u32 *ptr_limit, u8 opcode, bool off_is_neg)
6406{
6407 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6408 (opcode == BPF_SUB && !off_is_neg);
1b1597e6 6409 u32 off, max;
979d63d5
DB
6410
6411 switch (ptr_reg->type) {
6412 case PTR_TO_STACK:
1b1597e6
PK
6413 /* Offset 0 is out-of-bounds, but acceptable start for the
6414 * left direction, see BPF_REG_FP.
6415 */
6416 max = MAX_BPF_STACK + mask_to_left;
088ec26d
AI
6417 /* Indirect variable offset stack access is prohibited in
6418 * unprivileged mode so it's not handled here.
6419 */
979d63d5
DB
6420 off = ptr_reg->off + ptr_reg->var_off.value;
6421 if (mask_to_left)
6422 *ptr_limit = MAX_BPF_STACK + off;
6423 else
b5871dca 6424 *ptr_limit = -off - 1;
1b1597e6 6425 return *ptr_limit >= max ? -ERANGE : 0;
979d63d5 6426 case PTR_TO_MAP_VALUE:
1b1597e6 6427 max = ptr_reg->map_ptr->value_size;
979d63d5
DB
6428 if (mask_to_left) {
6429 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
6430 } else {
6431 off = ptr_reg->smin_value + ptr_reg->off;
b5871dca 6432 *ptr_limit = ptr_reg->map_ptr->value_size - off - 1;
979d63d5 6433 }
1b1597e6 6434 return *ptr_limit >= max ? -ERANGE : 0;
979d63d5
DB
6435 default:
6436 return -EINVAL;
6437 }
6438}
6439
d3bd7413
DB
6440static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6441 const struct bpf_insn *insn)
6442{
2c78ee89 6443 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
d3bd7413
DB
6444}
6445
6446static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6447 u32 alu_state, u32 alu_limit)
6448{
6449 /* If we arrived here from different branches with different
6450 * state or limits to sanitize, then this won't work.
6451 */
6452 if (aux->alu_state &&
6453 (aux->alu_state != alu_state ||
6454 aux->alu_limit != alu_limit))
6455 return -EACCES;
6456
e6ac5933 6457 /* Corresponding fixup done in do_misc_fixups(). */
d3bd7413
DB
6458 aux->alu_state = alu_state;
6459 aux->alu_limit = alu_limit;
6460 return 0;
6461}
6462
6463static int sanitize_val_alu(struct bpf_verifier_env *env,
6464 struct bpf_insn *insn)
6465{
6466 struct bpf_insn_aux_data *aux = cur_aux(env);
6467
6468 if (can_skip_alu_sanitation(env, insn))
6469 return 0;
6470
6471 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6472}
6473
979d63d5
DB
6474static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6475 struct bpf_insn *insn,
6476 const struct bpf_reg_state *ptr_reg,
6477 struct bpf_reg_state *dst_reg,
6478 bool off_is_neg)
6479{
6480 struct bpf_verifier_state *vstate = env->cur_state;
6481 struct bpf_insn_aux_data *aux = cur_aux(env);
6482 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6483 u8 opcode = BPF_OP(insn->code);
6484 u32 alu_state, alu_limit;
6485 struct bpf_reg_state tmp;
6486 bool ret;
f232326f 6487 int err;
979d63d5 6488
d3bd7413 6489 if (can_skip_alu_sanitation(env, insn))
979d63d5
DB
6490 return 0;
6491
6492 /* We already marked aux for masking from non-speculative
6493 * paths, thus we got here in the first place. We only care
6494 * to explore bad access from here.
6495 */
6496 if (vstate->speculative)
6497 goto do_sim;
6498
6499 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6500 alu_state |= ptr_is_dst_reg ?
6501 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6502
f232326f
PK
6503 err = retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg);
6504 if (err < 0)
6505 return err;
6506
6507 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6508 if (err < 0)
6509 return err;
979d63d5
DB
6510do_sim:
6511 /* Simulate and find potential out-of-bounds access under
6512 * speculative execution from truncation as a result of
6513 * masking when off was not within expected range. If off
6514 * sits in dst, then we temporarily need to move ptr there
6515 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6516 * for cases where we use K-based arithmetic in one direction
6517 * and truncated reg-based in the other in order to explore
6518 * bad access.
6519 */
6520 if (!ptr_is_dst_reg) {
6521 tmp = *dst_reg;
6522 *dst_reg = *ptr_reg;
6523 }
6524 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
0803278b 6525 if (!ptr_is_dst_reg && ret)
979d63d5
DB
6526 *dst_reg = tmp;
6527 return !ret ? -EFAULT : 0;
6528}
6529
01f810ac
AM
6530/* check that stack access falls within stack limits and that 'reg' doesn't
6531 * have a variable offset.
6532 *
6533 * Variable offset is prohibited for unprivileged mode for simplicity since it
6534 * requires corresponding support in Spectre masking for stack ALU. See also
6535 * retrieve_ptr_limit().
6536 *
6537 *
6538 * 'off' includes 'reg->off'.
6539 */
6540static int check_stack_access_for_ptr_arithmetic(
6541 struct bpf_verifier_env *env,
6542 int regno,
6543 const struct bpf_reg_state *reg,
6544 int off)
6545{
6546 if (!tnum_is_const(reg->var_off)) {
6547 char tn_buf[48];
6548
6549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6550 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6551 regno, tn_buf, off);
6552 return -EACCES;
6553 }
6554
6555 if (off >= 0 || off < -MAX_BPF_STACK) {
6556 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6557 "prohibited for !root; off=%d\n", regno, off);
6558 return -EACCES;
6559 }
6560
6561 return 0;
6562}
6563
6564
f1174f77 6565/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
6566 * Caller should also handle BPF_MOV case separately.
6567 * If we return -EACCES, caller may want to try again treating pointer as a
6568 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6569 */
6570static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6571 struct bpf_insn *insn,
6572 const struct bpf_reg_state *ptr_reg,
6573 const struct bpf_reg_state *off_reg)
969bf05e 6574{
f4d7e40a
AS
6575 struct bpf_verifier_state *vstate = env->cur_state;
6576 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6577 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 6578 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
6579 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6580 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6581 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6582 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
9d7eceed 6583 u32 dst = insn->dst_reg, src = insn->src_reg;
969bf05e 6584 u8 opcode = BPF_OP(insn->code);
979d63d5 6585 int ret;
969bf05e 6586
f1174f77 6587 dst_reg = &regs[dst];
969bf05e 6588
6f16101e
DB
6589 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6590 smin_val > smax_val || umin_val > umax_val) {
6591 /* Taint dst register if offset had invalid bounds derived from
6592 * e.g. dead branches.
6593 */
f54c7898 6594 __mark_reg_unknown(env, dst_reg);
6f16101e 6595 return 0;
f1174f77
EC
6596 }
6597
6598 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6599 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6c693541
YS
6600 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6601 __mark_reg_unknown(env, dst_reg);
6602 return 0;
6603 }
6604
82abbf8d
AS
6605 verbose(env,
6606 "R%d 32-bit pointer arithmetic prohibited\n",
6607 dst);
f1174f77 6608 return -EACCES;
969bf05e
AS
6609 }
6610
aad2eeaf
JS
6611 switch (ptr_reg->type) {
6612 case PTR_TO_MAP_VALUE_OR_NULL:
6613 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6614 dst, reg_type_str[ptr_reg->type]);
f1174f77 6615 return -EACCES;
aad2eeaf 6616 case CONST_PTR_TO_MAP:
7c696732
YS
6617 /* smin_val represents the known value */
6618 if (known && smin_val == 0 && opcode == BPF_ADD)
6619 break;
8731745e 6620 fallthrough;
aad2eeaf 6621 case PTR_TO_PACKET_END:
c64b7983
JS
6622 case PTR_TO_SOCKET:
6623 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
6624 case PTR_TO_SOCK_COMMON:
6625 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
6626 case PTR_TO_TCP_SOCK:
6627 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 6628 case PTR_TO_XDP_SOCK:
aad2eeaf
JS
6629 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6630 dst, reg_type_str[ptr_reg->type]);
f1174f77 6631 return -EACCES;
9d7eceed
DB
6632 case PTR_TO_MAP_VALUE:
6633 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
6634 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
6635 off_reg == dst_reg ? dst : src);
6636 return -EACCES;
6637 }
df561f66 6638 fallthrough;
aad2eeaf
JS
6639 default:
6640 break;
f1174f77
EC
6641 }
6642
6643 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6644 * The id may be overwritten later if we create a new variable offset.
969bf05e 6645 */
f1174f77
EC
6646 dst_reg->type = ptr_reg->type;
6647 dst_reg->id = ptr_reg->id;
969bf05e 6648
bb7f0f98
AS
6649 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6650 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6651 return -EINVAL;
6652
3f50f132
JF
6653 /* pointer types do not carry 32-bit bounds at the moment. */
6654 __mark_reg32_unbounded(dst_reg);
6655
f1174f77
EC
6656 switch (opcode) {
6657 case BPF_ADD:
979d63d5
DB
6658 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6659 if (ret < 0) {
f232326f 6660 verbose(env, "R%d tried to add from different maps, paths, or prohibited types\n", dst);
979d63d5
DB
6661 return ret;
6662 }
f1174f77
EC
6663 /* We can take a fixed offset as long as it doesn't overflow
6664 * the s32 'off' field
969bf05e 6665 */
b03c9f9f
EC
6666 if (known && (ptr_reg->off + smin_val ==
6667 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 6668 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
6669 dst_reg->smin_value = smin_ptr;
6670 dst_reg->smax_value = smax_ptr;
6671 dst_reg->umin_value = umin_ptr;
6672 dst_reg->umax_value = umax_ptr;
f1174f77 6673 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 6674 dst_reg->off = ptr_reg->off + smin_val;
0962590e 6675 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
6676 break;
6677 }
f1174f77
EC
6678 /* A new variable offset is created. Note that off_reg->off
6679 * == 0, since it's a scalar.
6680 * dst_reg gets the pointer type and since some positive
6681 * integer value was added to the pointer, give it a new 'id'
6682 * if it's a PTR_TO_PACKET.
6683 * this creates a new 'base' pointer, off_reg (variable) gets
6684 * added into the variable offset, and we copy the fixed offset
6685 * from ptr_reg.
969bf05e 6686 */
b03c9f9f
EC
6687 if (signed_add_overflows(smin_ptr, smin_val) ||
6688 signed_add_overflows(smax_ptr, smax_val)) {
6689 dst_reg->smin_value = S64_MIN;
6690 dst_reg->smax_value = S64_MAX;
6691 } else {
6692 dst_reg->smin_value = smin_ptr + smin_val;
6693 dst_reg->smax_value = smax_ptr + smax_val;
6694 }
6695 if (umin_ptr + umin_val < umin_ptr ||
6696 umax_ptr + umax_val < umax_ptr) {
6697 dst_reg->umin_value = 0;
6698 dst_reg->umax_value = U64_MAX;
6699 } else {
6700 dst_reg->umin_value = umin_ptr + umin_val;
6701 dst_reg->umax_value = umax_ptr + umax_val;
6702 }
f1174f77
EC
6703 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6704 dst_reg->off = ptr_reg->off;
0962590e 6705 dst_reg->raw = ptr_reg->raw;
de8f3a83 6706 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
6707 dst_reg->id = ++env->id_gen;
6708 /* something was added to pkt_ptr, set range to zero */
22dc4a0f 6709 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
f1174f77
EC
6710 }
6711 break;
6712 case BPF_SUB:
979d63d5
DB
6713 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6714 if (ret < 0) {
f232326f 6715 verbose(env, "R%d tried to sub from different maps, paths, or prohibited types\n", dst);
979d63d5
DB
6716 return ret;
6717 }
f1174f77
EC
6718 if (dst_reg == off_reg) {
6719 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
6720 verbose(env, "R%d tried to subtract pointer from scalar\n",
6721 dst);
f1174f77
EC
6722 return -EACCES;
6723 }
6724 /* We don't allow subtraction from FP, because (according to
6725 * test_verifier.c test "invalid fp arithmetic", JITs might not
6726 * be able to deal with it.
969bf05e 6727 */
f1174f77 6728 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
6729 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6730 dst);
f1174f77
EC
6731 return -EACCES;
6732 }
b03c9f9f
EC
6733 if (known && (ptr_reg->off - smin_val ==
6734 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 6735 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
6736 dst_reg->smin_value = smin_ptr;
6737 dst_reg->smax_value = smax_ptr;
6738 dst_reg->umin_value = umin_ptr;
6739 dst_reg->umax_value = umax_ptr;
f1174f77
EC
6740 dst_reg->var_off = ptr_reg->var_off;
6741 dst_reg->id = ptr_reg->id;
b03c9f9f 6742 dst_reg->off = ptr_reg->off - smin_val;
0962590e 6743 dst_reg->raw = ptr_reg->raw;
f1174f77
EC
6744 break;
6745 }
f1174f77
EC
6746 /* A new variable offset is created. If the subtrahend is known
6747 * nonnegative, then any reg->range we had before is still good.
969bf05e 6748 */
b03c9f9f
EC
6749 if (signed_sub_overflows(smin_ptr, smax_val) ||
6750 signed_sub_overflows(smax_ptr, smin_val)) {
6751 /* Overflow possible, we know nothing */
6752 dst_reg->smin_value = S64_MIN;
6753 dst_reg->smax_value = S64_MAX;
6754 } else {
6755 dst_reg->smin_value = smin_ptr - smax_val;
6756 dst_reg->smax_value = smax_ptr - smin_val;
6757 }
6758 if (umin_ptr < umax_val) {
6759 /* Overflow possible, we know nothing */
6760 dst_reg->umin_value = 0;
6761 dst_reg->umax_value = U64_MAX;
6762 } else {
6763 /* Cannot overflow (as long as bounds are consistent) */
6764 dst_reg->umin_value = umin_ptr - umax_val;
6765 dst_reg->umax_value = umax_ptr - umin_val;
6766 }
f1174f77
EC
6767 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6768 dst_reg->off = ptr_reg->off;
0962590e 6769 dst_reg->raw = ptr_reg->raw;
de8f3a83 6770 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
6771 dst_reg->id = ++env->id_gen;
6772 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 6773 if (smin_val < 0)
22dc4a0f 6774 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
43188702 6775 }
f1174f77
EC
6776 break;
6777 case BPF_AND:
6778 case BPF_OR:
6779 case BPF_XOR:
82abbf8d
AS
6780 /* bitwise ops on pointers are troublesome, prohibit. */
6781 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6782 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
6783 return -EACCES;
6784 default:
6785 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
6786 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6787 dst, bpf_alu_string[opcode >> 4]);
f1174f77 6788 return -EACCES;
43188702
JF
6789 }
6790
bb7f0f98
AS
6791 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6792 return -EINVAL;
6793
b03c9f9f
EC
6794 __update_reg_bounds(dst_reg);
6795 __reg_deduce_bounds(dst_reg);
6796 __reg_bound_offset(dst_reg);
0d6303db
DB
6797
6798 /* For unprivileged we require that resulting offset must be in bounds
6799 * in order to be able to sanitize access later on.
6800 */
2c78ee89 6801 if (!env->bypass_spec_v1) {
e4298d25
DB
6802 if (dst_reg->type == PTR_TO_MAP_VALUE &&
6803 check_map_access(env, dst, dst_reg->off, 1, false)) {
6804 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6805 "prohibited for !root\n", dst);
6806 return -EACCES;
6807 } else if (dst_reg->type == PTR_TO_STACK &&
01f810ac
AM
6808 check_stack_access_for_ptr_arithmetic(
6809 env, dst, dst_reg, dst_reg->off +
6810 dst_reg->var_off.value)) {
e4298d25
DB
6811 return -EACCES;
6812 }
0d6303db
DB
6813 }
6814
43188702
JF
6815 return 0;
6816}
6817
3f50f132
JF
6818static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6819 struct bpf_reg_state *src_reg)
6820{
6821 s32 smin_val = src_reg->s32_min_value;
6822 s32 smax_val = src_reg->s32_max_value;
6823 u32 umin_val = src_reg->u32_min_value;
6824 u32 umax_val = src_reg->u32_max_value;
6825
6826 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6827 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6828 dst_reg->s32_min_value = S32_MIN;
6829 dst_reg->s32_max_value = S32_MAX;
6830 } else {
6831 dst_reg->s32_min_value += smin_val;
6832 dst_reg->s32_max_value += smax_val;
6833 }
6834 if (dst_reg->u32_min_value + umin_val < umin_val ||
6835 dst_reg->u32_max_value + umax_val < umax_val) {
6836 dst_reg->u32_min_value = 0;
6837 dst_reg->u32_max_value = U32_MAX;
6838 } else {
6839 dst_reg->u32_min_value += umin_val;
6840 dst_reg->u32_max_value += umax_val;
6841 }
6842}
6843
07cd2631
JF
6844static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6845 struct bpf_reg_state *src_reg)
6846{
6847 s64 smin_val = src_reg->smin_value;
6848 s64 smax_val = src_reg->smax_value;
6849 u64 umin_val = src_reg->umin_value;
6850 u64 umax_val = src_reg->umax_value;
6851
6852 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6853 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6854 dst_reg->smin_value = S64_MIN;
6855 dst_reg->smax_value = S64_MAX;
6856 } else {
6857 dst_reg->smin_value += smin_val;
6858 dst_reg->smax_value += smax_val;
6859 }
6860 if (dst_reg->umin_value + umin_val < umin_val ||
6861 dst_reg->umax_value + umax_val < umax_val) {
6862 dst_reg->umin_value = 0;
6863 dst_reg->umax_value = U64_MAX;
6864 } else {
6865 dst_reg->umin_value += umin_val;
6866 dst_reg->umax_value += umax_val;
6867 }
3f50f132
JF
6868}
6869
6870static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6871 struct bpf_reg_state *src_reg)
6872{
6873 s32 smin_val = src_reg->s32_min_value;
6874 s32 smax_val = src_reg->s32_max_value;
6875 u32 umin_val = src_reg->u32_min_value;
6876 u32 umax_val = src_reg->u32_max_value;
6877
6878 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6879 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6880 /* Overflow possible, we know nothing */
6881 dst_reg->s32_min_value = S32_MIN;
6882 dst_reg->s32_max_value = S32_MAX;
6883 } else {
6884 dst_reg->s32_min_value -= smax_val;
6885 dst_reg->s32_max_value -= smin_val;
6886 }
6887 if (dst_reg->u32_min_value < umax_val) {
6888 /* Overflow possible, we know nothing */
6889 dst_reg->u32_min_value = 0;
6890 dst_reg->u32_max_value = U32_MAX;
6891 } else {
6892 /* Cannot overflow (as long as bounds are consistent) */
6893 dst_reg->u32_min_value -= umax_val;
6894 dst_reg->u32_max_value -= umin_val;
6895 }
07cd2631
JF
6896}
6897
6898static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6899 struct bpf_reg_state *src_reg)
6900{
6901 s64 smin_val = src_reg->smin_value;
6902 s64 smax_val = src_reg->smax_value;
6903 u64 umin_val = src_reg->umin_value;
6904 u64 umax_val = src_reg->umax_value;
6905
6906 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6907 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6908 /* Overflow possible, we know nothing */
6909 dst_reg->smin_value = S64_MIN;
6910 dst_reg->smax_value = S64_MAX;
6911 } else {
6912 dst_reg->smin_value -= smax_val;
6913 dst_reg->smax_value -= smin_val;
6914 }
6915 if (dst_reg->umin_value < umax_val) {
6916 /* Overflow possible, we know nothing */
6917 dst_reg->umin_value = 0;
6918 dst_reg->umax_value = U64_MAX;
6919 } else {
6920 /* Cannot overflow (as long as bounds are consistent) */
6921 dst_reg->umin_value -= umax_val;
6922 dst_reg->umax_value -= umin_val;
6923 }
3f50f132
JF
6924}
6925
6926static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6927 struct bpf_reg_state *src_reg)
6928{
6929 s32 smin_val = src_reg->s32_min_value;
6930 u32 umin_val = src_reg->u32_min_value;
6931 u32 umax_val = src_reg->u32_max_value;
6932
6933 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6934 /* Ain't nobody got time to multiply that sign */
6935 __mark_reg32_unbounded(dst_reg);
6936 return;
6937 }
6938 /* Both values are positive, so we can work with unsigned and
6939 * copy the result to signed (unless it exceeds S32_MAX).
6940 */
6941 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6942 /* Potential overflow, we know nothing */
6943 __mark_reg32_unbounded(dst_reg);
6944 return;
6945 }
6946 dst_reg->u32_min_value *= umin_val;
6947 dst_reg->u32_max_value *= umax_val;
6948 if (dst_reg->u32_max_value > S32_MAX) {
6949 /* Overflow possible, we know nothing */
6950 dst_reg->s32_min_value = S32_MIN;
6951 dst_reg->s32_max_value = S32_MAX;
6952 } else {
6953 dst_reg->s32_min_value = dst_reg->u32_min_value;
6954 dst_reg->s32_max_value = dst_reg->u32_max_value;
6955 }
07cd2631
JF
6956}
6957
6958static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6959 struct bpf_reg_state *src_reg)
6960{
6961 s64 smin_val = src_reg->smin_value;
6962 u64 umin_val = src_reg->umin_value;
6963 u64 umax_val = src_reg->umax_value;
6964
07cd2631
JF
6965 if (smin_val < 0 || dst_reg->smin_value < 0) {
6966 /* Ain't nobody got time to multiply that sign */
3f50f132 6967 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
6968 return;
6969 }
6970 /* Both values are positive, so we can work with unsigned and
6971 * copy the result to signed (unless it exceeds S64_MAX).
6972 */
6973 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6974 /* Potential overflow, we know nothing */
3f50f132 6975 __mark_reg64_unbounded(dst_reg);
07cd2631
JF
6976 return;
6977 }
6978 dst_reg->umin_value *= umin_val;
6979 dst_reg->umax_value *= umax_val;
6980 if (dst_reg->umax_value > S64_MAX) {
6981 /* Overflow possible, we know nothing */
6982 dst_reg->smin_value = S64_MIN;
6983 dst_reg->smax_value = S64_MAX;
6984 } else {
6985 dst_reg->smin_value = dst_reg->umin_value;
6986 dst_reg->smax_value = dst_reg->umax_value;
6987 }
6988}
6989
3f50f132
JF
6990static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6991 struct bpf_reg_state *src_reg)
6992{
6993 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6994 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6995 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6996 s32 smin_val = src_reg->s32_min_value;
6997 u32 umax_val = src_reg->u32_max_value;
6998
6999 /* Assuming scalar64_min_max_and will be called so its safe
7000 * to skip updating register for known 32-bit case.
7001 */
7002 if (src_known && dst_known)
7003 return;
7004
7005 /* We get our minimum from the var_off, since that's inherently
7006 * bitwise. Our maximum is the minimum of the operands' maxima.
7007 */
7008 dst_reg->u32_min_value = var32_off.value;
7009 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7010 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7011 /* Lose signed bounds when ANDing negative numbers,
7012 * ain't nobody got time for that.
7013 */
7014 dst_reg->s32_min_value = S32_MIN;
7015 dst_reg->s32_max_value = S32_MAX;
7016 } else {
7017 /* ANDing two positives gives a positive, so safe to
7018 * cast result into s64.
7019 */
7020 dst_reg->s32_min_value = dst_reg->u32_min_value;
7021 dst_reg->s32_max_value = dst_reg->u32_max_value;
7022 }
7023
7024}
7025
07cd2631
JF
7026static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7027 struct bpf_reg_state *src_reg)
7028{
3f50f132
JF
7029 bool src_known = tnum_is_const(src_reg->var_off);
7030 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7031 s64 smin_val = src_reg->smin_value;
7032 u64 umax_val = src_reg->umax_value;
7033
3f50f132 7034 if (src_known && dst_known) {
4fbb38a3 7035 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7036 return;
7037 }
7038
07cd2631
JF
7039 /* We get our minimum from the var_off, since that's inherently
7040 * bitwise. Our maximum is the minimum of the operands' maxima.
7041 */
07cd2631
JF
7042 dst_reg->umin_value = dst_reg->var_off.value;
7043 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7044 if (dst_reg->smin_value < 0 || smin_val < 0) {
7045 /* Lose signed bounds when ANDing negative numbers,
7046 * ain't nobody got time for that.
7047 */
7048 dst_reg->smin_value = S64_MIN;
7049 dst_reg->smax_value = S64_MAX;
7050 } else {
7051 /* ANDing two positives gives a positive, so safe to
7052 * cast result into s64.
7053 */
7054 dst_reg->smin_value = dst_reg->umin_value;
7055 dst_reg->smax_value = dst_reg->umax_value;
7056 }
7057 /* We may learn something more from the var_off */
7058 __update_reg_bounds(dst_reg);
7059}
7060
3f50f132
JF
7061static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7062 struct bpf_reg_state *src_reg)
7063{
7064 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7065 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7066 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5b9fbeb7
DB
7067 s32 smin_val = src_reg->s32_min_value;
7068 u32 umin_val = src_reg->u32_min_value;
3f50f132
JF
7069
7070 /* Assuming scalar64_min_max_or will be called so it is safe
7071 * to skip updating register for known case.
7072 */
7073 if (src_known && dst_known)
7074 return;
7075
7076 /* We get our maximum from the var_off, and our minimum is the
7077 * maximum of the operands' minima
7078 */
7079 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7080 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7081 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7082 /* Lose signed bounds when ORing negative numbers,
7083 * ain't nobody got time for that.
7084 */
7085 dst_reg->s32_min_value = S32_MIN;
7086 dst_reg->s32_max_value = S32_MAX;
7087 } else {
7088 /* ORing two positives gives a positive, so safe to
7089 * cast result into s64.
7090 */
5b9fbeb7
DB
7091 dst_reg->s32_min_value = dst_reg->u32_min_value;
7092 dst_reg->s32_max_value = dst_reg->u32_max_value;
3f50f132
JF
7093 }
7094}
7095
07cd2631
JF
7096static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7097 struct bpf_reg_state *src_reg)
7098{
3f50f132
JF
7099 bool src_known = tnum_is_const(src_reg->var_off);
7100 bool dst_known = tnum_is_const(dst_reg->var_off);
07cd2631
JF
7101 s64 smin_val = src_reg->smin_value;
7102 u64 umin_val = src_reg->umin_value;
7103
3f50f132 7104 if (src_known && dst_known) {
4fbb38a3 7105 __mark_reg_known(dst_reg, dst_reg->var_off.value);
3f50f132
JF
7106 return;
7107 }
7108
07cd2631
JF
7109 /* We get our maximum from the var_off, and our minimum is the
7110 * maximum of the operands' minima
7111 */
07cd2631
JF
7112 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7113 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7114 if (dst_reg->smin_value < 0 || smin_val < 0) {
7115 /* Lose signed bounds when ORing negative numbers,
7116 * ain't nobody got time for that.
7117 */
7118 dst_reg->smin_value = S64_MIN;
7119 dst_reg->smax_value = S64_MAX;
7120 } else {
7121 /* ORing two positives gives a positive, so safe to
7122 * cast result into s64.
7123 */
7124 dst_reg->smin_value = dst_reg->umin_value;
7125 dst_reg->smax_value = dst_reg->umax_value;
7126 }
7127 /* We may learn something more from the var_off */
7128 __update_reg_bounds(dst_reg);
7129}
7130
2921c90d
YS
7131static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7132 struct bpf_reg_state *src_reg)
7133{
7134 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7135 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7136 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7137 s32 smin_val = src_reg->s32_min_value;
7138
7139 /* Assuming scalar64_min_max_xor will be called so it is safe
7140 * to skip updating register for known case.
7141 */
7142 if (src_known && dst_known)
7143 return;
7144
7145 /* We get both minimum and maximum from the var32_off. */
7146 dst_reg->u32_min_value = var32_off.value;
7147 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7148
7149 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7150 /* XORing two positive sign numbers gives a positive,
7151 * so safe to cast u32 result into s32.
7152 */
7153 dst_reg->s32_min_value = dst_reg->u32_min_value;
7154 dst_reg->s32_max_value = dst_reg->u32_max_value;
7155 } else {
7156 dst_reg->s32_min_value = S32_MIN;
7157 dst_reg->s32_max_value = S32_MAX;
7158 }
7159}
7160
7161static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7162 struct bpf_reg_state *src_reg)
7163{
7164 bool src_known = tnum_is_const(src_reg->var_off);
7165 bool dst_known = tnum_is_const(dst_reg->var_off);
7166 s64 smin_val = src_reg->smin_value;
7167
7168 if (src_known && dst_known) {
7169 /* dst_reg->var_off.value has been updated earlier */
7170 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7171 return;
7172 }
7173
7174 /* We get both minimum and maximum from the var_off. */
7175 dst_reg->umin_value = dst_reg->var_off.value;
7176 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7177
7178 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7179 /* XORing two positive sign numbers gives a positive,
7180 * so safe to cast u64 result into s64.
7181 */
7182 dst_reg->smin_value = dst_reg->umin_value;
7183 dst_reg->smax_value = dst_reg->umax_value;
7184 } else {
7185 dst_reg->smin_value = S64_MIN;
7186 dst_reg->smax_value = S64_MAX;
7187 }
7188
7189 __update_reg_bounds(dst_reg);
7190}
7191
3f50f132
JF
7192static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7193 u64 umin_val, u64 umax_val)
07cd2631 7194{
07cd2631
JF
7195 /* We lose all sign bit information (except what we can pick
7196 * up from var_off)
7197 */
3f50f132
JF
7198 dst_reg->s32_min_value = S32_MIN;
7199 dst_reg->s32_max_value = S32_MAX;
7200 /* If we might shift our top bit out, then we know nothing */
7201 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7202 dst_reg->u32_min_value = 0;
7203 dst_reg->u32_max_value = U32_MAX;
7204 } else {
7205 dst_reg->u32_min_value <<= umin_val;
7206 dst_reg->u32_max_value <<= umax_val;
7207 }
7208}
7209
7210static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7211 struct bpf_reg_state *src_reg)
7212{
7213 u32 umax_val = src_reg->u32_max_value;
7214 u32 umin_val = src_reg->u32_min_value;
7215 /* u32 alu operation will zext upper bits */
7216 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7217
7218 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7219 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7220 /* Not required but being careful mark reg64 bounds as unknown so
7221 * that we are forced to pick them up from tnum and zext later and
7222 * if some path skips this step we are still safe.
7223 */
7224 __mark_reg64_unbounded(dst_reg);
7225 __update_reg32_bounds(dst_reg);
7226}
7227
7228static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7229 u64 umin_val, u64 umax_val)
7230{
7231 /* Special case <<32 because it is a common compiler pattern to sign
7232 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7233 * positive we know this shift will also be positive so we can track
7234 * bounds correctly. Otherwise we lose all sign bit information except
7235 * what we can pick up from var_off. Perhaps we can generalize this
7236 * later to shifts of any length.
7237 */
7238 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7239 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7240 else
7241 dst_reg->smax_value = S64_MAX;
7242
7243 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7244 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7245 else
7246 dst_reg->smin_value = S64_MIN;
7247
07cd2631
JF
7248 /* If we might shift our top bit out, then we know nothing */
7249 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7250 dst_reg->umin_value = 0;
7251 dst_reg->umax_value = U64_MAX;
7252 } else {
7253 dst_reg->umin_value <<= umin_val;
7254 dst_reg->umax_value <<= umax_val;
7255 }
3f50f132
JF
7256}
7257
7258static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7259 struct bpf_reg_state *src_reg)
7260{
7261 u64 umax_val = src_reg->umax_value;
7262 u64 umin_val = src_reg->umin_value;
7263
7264 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7265 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7266 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7267
07cd2631
JF
7268 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7269 /* We may learn something more from the var_off */
7270 __update_reg_bounds(dst_reg);
7271}
7272
3f50f132
JF
7273static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7274 struct bpf_reg_state *src_reg)
7275{
7276 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7277 u32 umax_val = src_reg->u32_max_value;
7278 u32 umin_val = src_reg->u32_min_value;
7279
7280 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7281 * be negative, then either:
7282 * 1) src_reg might be zero, so the sign bit of the result is
7283 * unknown, so we lose our signed bounds
7284 * 2) it's known negative, thus the unsigned bounds capture the
7285 * signed bounds
7286 * 3) the signed bounds cross zero, so they tell us nothing
7287 * about the result
7288 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7289 * unsigned bounds capture the signed bounds.
3f50f132
JF
7290 * Thus, in all cases it suffices to blow away our signed bounds
7291 * and rely on inferring new ones from the unsigned bounds and
7292 * var_off of the result.
7293 */
7294 dst_reg->s32_min_value = S32_MIN;
7295 dst_reg->s32_max_value = S32_MAX;
7296
7297 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7298 dst_reg->u32_min_value >>= umax_val;
7299 dst_reg->u32_max_value >>= umin_val;
7300
7301 __mark_reg64_unbounded(dst_reg);
7302 __update_reg32_bounds(dst_reg);
7303}
7304
07cd2631
JF
7305static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7306 struct bpf_reg_state *src_reg)
7307{
7308 u64 umax_val = src_reg->umax_value;
7309 u64 umin_val = src_reg->umin_value;
7310
7311 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7312 * be negative, then either:
7313 * 1) src_reg might be zero, so the sign bit of the result is
7314 * unknown, so we lose our signed bounds
7315 * 2) it's known negative, thus the unsigned bounds capture the
7316 * signed bounds
7317 * 3) the signed bounds cross zero, so they tell us nothing
7318 * about the result
7319 * If the value in dst_reg is known nonnegative, then again the
18b24d78 7320 * unsigned bounds capture the signed bounds.
07cd2631
JF
7321 * Thus, in all cases it suffices to blow away our signed bounds
7322 * and rely on inferring new ones from the unsigned bounds and
7323 * var_off of the result.
7324 */
7325 dst_reg->smin_value = S64_MIN;
7326 dst_reg->smax_value = S64_MAX;
7327 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7328 dst_reg->umin_value >>= umax_val;
7329 dst_reg->umax_value >>= umin_val;
3f50f132
JF
7330
7331 /* Its not easy to operate on alu32 bounds here because it depends
7332 * on bits being shifted in. Take easy way out and mark unbounded
7333 * so we can recalculate later from tnum.
7334 */
7335 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7336 __update_reg_bounds(dst_reg);
7337}
7338
3f50f132
JF
7339static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7340 struct bpf_reg_state *src_reg)
07cd2631 7341{
3f50f132 7342 u64 umin_val = src_reg->u32_min_value;
07cd2631
JF
7343
7344 /* Upon reaching here, src_known is true and
7345 * umax_val is equal to umin_val.
7346 */
3f50f132
JF
7347 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7348 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
07cd2631 7349
3f50f132
JF
7350 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7351
7352 /* blow away the dst_reg umin_value/umax_value and rely on
7353 * dst_reg var_off to refine the result.
7354 */
7355 dst_reg->u32_min_value = 0;
7356 dst_reg->u32_max_value = U32_MAX;
7357
7358 __mark_reg64_unbounded(dst_reg);
7359 __update_reg32_bounds(dst_reg);
7360}
7361
7362static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7363 struct bpf_reg_state *src_reg)
7364{
7365 u64 umin_val = src_reg->umin_value;
7366
7367 /* Upon reaching here, src_known is true and umax_val is equal
7368 * to umin_val.
7369 */
7370 dst_reg->smin_value >>= umin_val;
7371 dst_reg->smax_value >>= umin_val;
7372
7373 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
07cd2631
JF
7374
7375 /* blow away the dst_reg umin_value/umax_value and rely on
7376 * dst_reg var_off to refine the result.
7377 */
7378 dst_reg->umin_value = 0;
7379 dst_reg->umax_value = U64_MAX;
3f50f132
JF
7380
7381 /* Its not easy to operate on alu32 bounds here because it depends
7382 * on bits being shifted in from upper 32-bits. Take easy way out
7383 * and mark unbounded so we can recalculate later from tnum.
7384 */
7385 __mark_reg32_unbounded(dst_reg);
07cd2631
JF
7386 __update_reg_bounds(dst_reg);
7387}
7388
468f6eaf
JH
7389/* WARNING: This function does calculations on 64-bit values, but the actual
7390 * execution may occur on 32-bit values. Therefore, things like bitshifts
7391 * need extra checks in the 32-bit case.
7392 */
f1174f77
EC
7393static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7394 struct bpf_insn *insn,
7395 struct bpf_reg_state *dst_reg,
7396 struct bpf_reg_state src_reg)
969bf05e 7397{
638f5b90 7398 struct bpf_reg_state *regs = cur_regs(env);
48461135 7399 u8 opcode = BPF_OP(insn->code);
b0b3fb67 7400 bool src_known;
b03c9f9f
EC
7401 s64 smin_val, smax_val;
7402 u64 umin_val, umax_val;
3f50f132
JF
7403 s32 s32_min_val, s32_max_val;
7404 u32 u32_min_val, u32_max_val;
468f6eaf 7405 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
d3bd7413
DB
7406 u32 dst = insn->dst_reg;
7407 int ret;
3f50f132 7408 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
b799207e 7409
b03c9f9f
EC
7410 smin_val = src_reg.smin_value;
7411 smax_val = src_reg.smax_value;
7412 umin_val = src_reg.umin_value;
7413 umax_val = src_reg.umax_value;
f23cc643 7414
3f50f132
JF
7415 s32_min_val = src_reg.s32_min_value;
7416 s32_max_val = src_reg.s32_max_value;
7417 u32_min_val = src_reg.u32_min_value;
7418 u32_max_val = src_reg.u32_max_value;
7419
7420 if (alu32) {
7421 src_known = tnum_subreg_is_const(src_reg.var_off);
3f50f132
JF
7422 if ((src_known &&
7423 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7424 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7425 /* Taint dst register if offset had invalid bounds
7426 * derived from e.g. dead branches.
7427 */
7428 __mark_reg_unknown(env, dst_reg);
7429 return 0;
7430 }
7431 } else {
7432 src_known = tnum_is_const(src_reg.var_off);
3f50f132
JF
7433 if ((src_known &&
7434 (smin_val != smax_val || umin_val != umax_val)) ||
7435 smin_val > smax_val || umin_val > umax_val) {
7436 /* Taint dst register if offset had invalid bounds
7437 * derived from e.g. dead branches.
7438 */
7439 __mark_reg_unknown(env, dst_reg);
7440 return 0;
7441 }
6f16101e
DB
7442 }
7443
bb7f0f98
AS
7444 if (!src_known &&
7445 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
f54c7898 7446 __mark_reg_unknown(env, dst_reg);
bb7f0f98
AS
7447 return 0;
7448 }
7449
3f50f132
JF
7450 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7451 * There are two classes of instructions: The first class we track both
7452 * alu32 and alu64 sign/unsigned bounds independently this provides the
7453 * greatest amount of precision when alu operations are mixed with jmp32
7454 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7455 * and BPF_OR. This is possible because these ops have fairly easy to
7456 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7457 * See alu32 verifier tests for examples. The second class of
7458 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7459 * with regards to tracking sign/unsigned bounds because the bits may
7460 * cross subreg boundaries in the alu64 case. When this happens we mark
7461 * the reg unbounded in the subreg bound space and use the resulting
7462 * tnum to calculate an approximation of the sign/unsigned bounds.
7463 */
48461135
JB
7464 switch (opcode) {
7465 case BPF_ADD:
d3bd7413
DB
7466 ret = sanitize_val_alu(env, insn);
7467 if (ret < 0) {
7468 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
7469 return ret;
7470 }
3f50f132 7471 scalar32_min_max_add(dst_reg, &src_reg);
07cd2631 7472 scalar_min_max_add(dst_reg, &src_reg);
3f50f132 7473 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
7474 break;
7475 case BPF_SUB:
d3bd7413
DB
7476 ret = sanitize_val_alu(env, insn);
7477 if (ret < 0) {
7478 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
7479 return ret;
7480 }
3f50f132 7481 scalar32_min_max_sub(dst_reg, &src_reg);
07cd2631 7482 scalar_min_max_sub(dst_reg, &src_reg);
3f50f132 7483 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
7484 break;
7485 case BPF_MUL:
3f50f132
JF
7486 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7487 scalar32_min_max_mul(dst_reg, &src_reg);
07cd2631 7488 scalar_min_max_mul(dst_reg, &src_reg);
48461135
JB
7489 break;
7490 case BPF_AND:
3f50f132
JF
7491 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7492 scalar32_min_max_and(dst_reg, &src_reg);
07cd2631 7493 scalar_min_max_and(dst_reg, &src_reg);
f1174f77
EC
7494 break;
7495 case BPF_OR:
3f50f132
JF
7496 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7497 scalar32_min_max_or(dst_reg, &src_reg);
07cd2631 7498 scalar_min_max_or(dst_reg, &src_reg);
48461135 7499 break;
2921c90d
YS
7500 case BPF_XOR:
7501 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7502 scalar32_min_max_xor(dst_reg, &src_reg);
7503 scalar_min_max_xor(dst_reg, &src_reg);
7504 break;
48461135 7505 case BPF_LSH:
468f6eaf
JH
7506 if (umax_val >= insn_bitness) {
7507 /* Shifts greater than 31 or 63 are undefined.
7508 * This includes shifts by a negative number.
b03c9f9f 7509 */
61bd5218 7510 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
7511 break;
7512 }
3f50f132
JF
7513 if (alu32)
7514 scalar32_min_max_lsh(dst_reg, &src_reg);
7515 else
7516 scalar_min_max_lsh(dst_reg, &src_reg);
48461135
JB
7517 break;
7518 case BPF_RSH:
468f6eaf
JH
7519 if (umax_val >= insn_bitness) {
7520 /* Shifts greater than 31 or 63 are undefined.
7521 * This includes shifts by a negative number.
b03c9f9f 7522 */
61bd5218 7523 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
7524 break;
7525 }
3f50f132
JF
7526 if (alu32)
7527 scalar32_min_max_rsh(dst_reg, &src_reg);
7528 else
7529 scalar_min_max_rsh(dst_reg, &src_reg);
48461135 7530 break;
9cbe1f5a
YS
7531 case BPF_ARSH:
7532 if (umax_val >= insn_bitness) {
7533 /* Shifts greater than 31 or 63 are undefined.
7534 * This includes shifts by a negative number.
7535 */
7536 mark_reg_unknown(env, regs, insn->dst_reg);
7537 break;
7538 }
3f50f132
JF
7539 if (alu32)
7540 scalar32_min_max_arsh(dst_reg, &src_reg);
7541 else
7542 scalar_min_max_arsh(dst_reg, &src_reg);
9cbe1f5a 7543 break;
48461135 7544 default:
61bd5218 7545 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
7546 break;
7547 }
7548
3f50f132
JF
7549 /* ALU32 ops are zero extended into 64bit register */
7550 if (alu32)
7551 zext_32_to_64(dst_reg);
468f6eaf 7552
294f2fc6 7553 __update_reg_bounds(dst_reg);
b03c9f9f
EC
7554 __reg_deduce_bounds(dst_reg);
7555 __reg_bound_offset(dst_reg);
f1174f77
EC
7556 return 0;
7557}
7558
7559/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7560 * and var_off.
7561 */
7562static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7563 struct bpf_insn *insn)
7564{
f4d7e40a
AS
7565 struct bpf_verifier_state *vstate = env->cur_state;
7566 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7567 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
7568 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7569 u8 opcode = BPF_OP(insn->code);
b5dc0163 7570 int err;
f1174f77
EC
7571
7572 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
7573 src_reg = NULL;
7574 if (dst_reg->type != SCALAR_VALUE)
7575 ptr_reg = dst_reg;
75748837
AS
7576 else
7577 /* Make sure ID is cleared otherwise dst_reg min/max could be
7578 * incorrectly propagated into other registers by find_equal_scalars()
7579 */
7580 dst_reg->id = 0;
f1174f77
EC
7581 if (BPF_SRC(insn->code) == BPF_X) {
7582 src_reg = &regs[insn->src_reg];
f1174f77
EC
7583 if (src_reg->type != SCALAR_VALUE) {
7584 if (dst_reg->type != SCALAR_VALUE) {
7585 /* Combining two pointers by any ALU op yields
82abbf8d
AS
7586 * an arbitrary scalar. Disallow all math except
7587 * pointer subtraction
f1174f77 7588 */
dd066823 7589 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
82abbf8d
AS
7590 mark_reg_unknown(env, regs, insn->dst_reg);
7591 return 0;
f1174f77 7592 }
82abbf8d
AS
7593 verbose(env, "R%d pointer %s pointer prohibited\n",
7594 insn->dst_reg,
7595 bpf_alu_string[opcode >> 4]);
7596 return -EACCES;
f1174f77
EC
7597 } else {
7598 /* scalar += pointer
7599 * This is legal, but we have to reverse our
7600 * src/dest handling in computing the range
7601 */
b5dc0163
AS
7602 err = mark_chain_precision(env, insn->dst_reg);
7603 if (err)
7604 return err;
82abbf8d
AS
7605 return adjust_ptr_min_max_vals(env, insn,
7606 src_reg, dst_reg);
f1174f77
EC
7607 }
7608 } else if (ptr_reg) {
7609 /* pointer += scalar */
b5dc0163
AS
7610 err = mark_chain_precision(env, insn->src_reg);
7611 if (err)
7612 return err;
82abbf8d
AS
7613 return adjust_ptr_min_max_vals(env, insn,
7614 dst_reg, src_reg);
f1174f77
EC
7615 }
7616 } else {
7617 /* Pretend the src is a reg with a known value, since we only
7618 * need to be able to read from this state.
7619 */
7620 off_reg.type = SCALAR_VALUE;
b03c9f9f 7621 __mark_reg_known(&off_reg, insn->imm);
f1174f77 7622 src_reg = &off_reg;
82abbf8d
AS
7623 if (ptr_reg) /* pointer += K */
7624 return adjust_ptr_min_max_vals(env, insn,
7625 ptr_reg, src_reg);
f1174f77
EC
7626 }
7627
7628 /* Got here implies adding two SCALAR_VALUEs */
7629 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 7630 print_verifier_state(env, state);
61bd5218 7631 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
7632 return -EINVAL;
7633 }
7634 if (WARN_ON(!src_reg)) {
f4d7e40a 7635 print_verifier_state(env, state);
61bd5218 7636 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
7637 return -EINVAL;
7638 }
7639 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
7640}
7641
17a52670 7642/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 7643static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 7644{
638f5b90 7645 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
7646 u8 opcode = BPF_OP(insn->code);
7647 int err;
7648
7649 if (opcode == BPF_END || opcode == BPF_NEG) {
7650 if (opcode == BPF_NEG) {
7651 if (BPF_SRC(insn->code) != 0 ||
7652 insn->src_reg != BPF_REG_0 ||
7653 insn->off != 0 || insn->imm != 0) {
61bd5218 7654 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
7655 return -EINVAL;
7656 }
7657 } else {
7658 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
7659 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7660 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 7661 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
7662 return -EINVAL;
7663 }
7664 }
7665
7666 /* check src operand */
dc503a8a 7667 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7668 if (err)
7669 return err;
7670
1be7f75d 7671 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 7672 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
7673 insn->dst_reg);
7674 return -EACCES;
7675 }
7676
17a52670 7677 /* check dest operand */
dc503a8a 7678 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
7679 if (err)
7680 return err;
7681
7682 } else if (opcode == BPF_MOV) {
7683
7684 if (BPF_SRC(insn->code) == BPF_X) {
7685 if (insn->imm != 0 || insn->off != 0) {
61bd5218 7686 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
7687 return -EINVAL;
7688 }
7689
7690 /* check src operand */
dc503a8a 7691 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7692 if (err)
7693 return err;
7694 } else {
7695 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 7696 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
7697 return -EINVAL;
7698 }
7699 }
7700
fbeb1603
AF
7701 /* check dest operand, mark as required later */
7702 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
7703 if (err)
7704 return err;
7705
7706 if (BPF_SRC(insn->code) == BPF_X) {
e434b8cd
JW
7707 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7708 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7709
17a52670
AS
7710 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7711 /* case: R1 = R2
7712 * copy register state to dest reg
7713 */
75748837
AS
7714 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7715 /* Assign src and dst registers the same ID
7716 * that will be used by find_equal_scalars()
7717 * to propagate min/max range.
7718 */
7719 src_reg->id = ++env->id_gen;
e434b8cd
JW
7720 *dst_reg = *src_reg;
7721 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 7722 dst_reg->subreg_def = DEF_NOT_SUBREG;
17a52670 7723 } else {
f1174f77 7724 /* R1 = (u32) R2 */
1be7f75d 7725 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
7726 verbose(env,
7727 "R%d partial copy of pointer\n",
1be7f75d
AS
7728 insn->src_reg);
7729 return -EACCES;
e434b8cd
JW
7730 } else if (src_reg->type == SCALAR_VALUE) {
7731 *dst_reg = *src_reg;
75748837
AS
7732 /* Make sure ID is cleared otherwise
7733 * dst_reg min/max could be incorrectly
7734 * propagated into src_reg by find_equal_scalars()
7735 */
7736 dst_reg->id = 0;
e434b8cd 7737 dst_reg->live |= REG_LIVE_WRITTEN;
5327ed3d 7738 dst_reg->subreg_def = env->insn_idx + 1;
e434b8cd
JW
7739 } else {
7740 mark_reg_unknown(env, regs,
7741 insn->dst_reg);
1be7f75d 7742 }
3f50f132 7743 zext_32_to_64(dst_reg);
17a52670
AS
7744 }
7745 } else {
7746 /* case: R = imm
7747 * remember the value we stored into this reg
7748 */
fbeb1603
AF
7749 /* clear any state __mark_reg_known doesn't set */
7750 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77 7751 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
7752 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7753 __mark_reg_known(regs + insn->dst_reg,
7754 insn->imm);
7755 } else {
7756 __mark_reg_known(regs + insn->dst_reg,
7757 (u32)insn->imm);
7758 }
17a52670
AS
7759 }
7760
7761 } else if (opcode > BPF_END) {
61bd5218 7762 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
7763 return -EINVAL;
7764
7765 } else { /* all other ALU ops: and, sub, xor, add, ... */
7766
17a52670
AS
7767 if (BPF_SRC(insn->code) == BPF_X) {
7768 if (insn->imm != 0 || insn->off != 0) {
61bd5218 7769 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
7770 return -EINVAL;
7771 }
7772 /* check src1 operand */
dc503a8a 7773 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
7774 if (err)
7775 return err;
7776 } else {
7777 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 7778 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
7779 return -EINVAL;
7780 }
7781 }
7782
7783 /* check src2 operand */
dc503a8a 7784 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
7785 if (err)
7786 return err;
7787
7788 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7789 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 7790 verbose(env, "div by zero\n");
17a52670
AS
7791 return -EINVAL;
7792 }
7793
229394e8
RV
7794 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7795 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7796 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7797
7798 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 7799 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
7800 return -EINVAL;
7801 }
7802 }
7803
1a0dc1ac 7804 /* check dest operand */
dc503a8a 7805 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
7806 if (err)
7807 return err;
7808
f1174f77 7809 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
7810 }
7811
7812 return 0;
7813}
7814
c6a9efa1
PC
7815static void __find_good_pkt_pointers(struct bpf_func_state *state,
7816 struct bpf_reg_state *dst_reg,
6d94e741 7817 enum bpf_reg_type type, int new_range)
c6a9efa1
PC
7818{
7819 struct bpf_reg_state *reg;
7820 int i;
7821
7822 for (i = 0; i < MAX_BPF_REG; i++) {
7823 reg = &state->regs[i];
7824 if (reg->type == type && reg->id == dst_reg->id)
7825 /* keep the maximum range already checked */
7826 reg->range = max(reg->range, new_range);
7827 }
7828
7829 bpf_for_each_spilled_reg(i, state, reg) {
7830 if (!reg)
7831 continue;
7832 if (reg->type == type && reg->id == dst_reg->id)
7833 reg->range = max(reg->range, new_range);
7834 }
7835}
7836
f4d7e40a 7837static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 7838 struct bpf_reg_state *dst_reg,
f8ddadc4 7839 enum bpf_reg_type type,
fb2a311a 7840 bool range_right_open)
969bf05e 7841{
6d94e741 7842 int new_range, i;
2d2be8ca 7843
fb2a311a
DB
7844 if (dst_reg->off < 0 ||
7845 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
7846 /* This doesn't give us any range */
7847 return;
7848
b03c9f9f
EC
7849 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7850 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
7851 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7852 * than pkt_end, but that's because it's also less than pkt.
7853 */
7854 return;
7855
fb2a311a
DB
7856 new_range = dst_reg->off;
7857 if (range_right_open)
7858 new_range--;
7859
7860 /* Examples for register markings:
2d2be8ca 7861 *
fb2a311a 7862 * pkt_data in dst register:
2d2be8ca
DB
7863 *
7864 * r2 = r3;
7865 * r2 += 8;
7866 * if (r2 > pkt_end) goto <handle exception>
7867 * <access okay>
7868 *
b4e432f1
DB
7869 * r2 = r3;
7870 * r2 += 8;
7871 * if (r2 < pkt_end) goto <access okay>
7872 * <handle exception>
7873 *
2d2be8ca
DB
7874 * Where:
7875 * r2 == dst_reg, pkt_end == src_reg
7876 * r2=pkt(id=n,off=8,r=0)
7877 * r3=pkt(id=n,off=0,r=0)
7878 *
fb2a311a 7879 * pkt_data in src register:
2d2be8ca
DB
7880 *
7881 * r2 = r3;
7882 * r2 += 8;
7883 * if (pkt_end >= r2) goto <access okay>
7884 * <handle exception>
7885 *
b4e432f1
DB
7886 * r2 = r3;
7887 * r2 += 8;
7888 * if (pkt_end <= r2) goto <handle exception>
7889 * <access okay>
7890 *
2d2be8ca
DB
7891 * Where:
7892 * pkt_end == dst_reg, r2 == src_reg
7893 * r2=pkt(id=n,off=8,r=0)
7894 * r3=pkt(id=n,off=0,r=0)
7895 *
7896 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
7897 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7898 * and [r3, r3 + 8-1) respectively is safe to access depending on
7899 * the check.
969bf05e 7900 */
2d2be8ca 7901
f1174f77
EC
7902 /* If our ids match, then we must have the same max_value. And we
7903 * don't care about the other reg's fixed offset, since if it's too big
7904 * the range won't allow anything.
7905 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7906 */
c6a9efa1
PC
7907 for (i = 0; i <= vstate->curframe; i++)
7908 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7909 new_range);
969bf05e
AS
7910}
7911
3f50f132 7912static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
4f7b3e82 7913{
3f50f132
JF
7914 struct tnum subreg = tnum_subreg(reg->var_off);
7915 s32 sval = (s32)val;
a72dafaf 7916
3f50f132
JF
7917 switch (opcode) {
7918 case BPF_JEQ:
7919 if (tnum_is_const(subreg))
7920 return !!tnum_equals_const(subreg, val);
7921 break;
7922 case BPF_JNE:
7923 if (tnum_is_const(subreg))
7924 return !tnum_equals_const(subreg, val);
7925 break;
7926 case BPF_JSET:
7927 if ((~subreg.mask & subreg.value) & val)
7928 return 1;
7929 if (!((subreg.mask | subreg.value) & val))
7930 return 0;
7931 break;
7932 case BPF_JGT:
7933 if (reg->u32_min_value > val)
7934 return 1;
7935 else if (reg->u32_max_value <= val)
7936 return 0;
7937 break;
7938 case BPF_JSGT:
7939 if (reg->s32_min_value > sval)
7940 return 1;
ee114dd6 7941 else if (reg->s32_max_value <= sval)
3f50f132
JF
7942 return 0;
7943 break;
7944 case BPF_JLT:
7945 if (reg->u32_max_value < val)
7946 return 1;
7947 else if (reg->u32_min_value >= val)
7948 return 0;
7949 break;
7950 case BPF_JSLT:
7951 if (reg->s32_max_value < sval)
7952 return 1;
7953 else if (reg->s32_min_value >= sval)
7954 return 0;
7955 break;
7956 case BPF_JGE:
7957 if (reg->u32_min_value >= val)
7958 return 1;
7959 else if (reg->u32_max_value < val)
7960 return 0;
7961 break;
7962 case BPF_JSGE:
7963 if (reg->s32_min_value >= sval)
7964 return 1;
7965 else if (reg->s32_max_value < sval)
7966 return 0;
7967 break;
7968 case BPF_JLE:
7969 if (reg->u32_max_value <= val)
7970 return 1;
7971 else if (reg->u32_min_value > val)
7972 return 0;
7973 break;
7974 case BPF_JSLE:
7975 if (reg->s32_max_value <= sval)
7976 return 1;
7977 else if (reg->s32_min_value > sval)
7978 return 0;
7979 break;
7980 }
4f7b3e82 7981
3f50f132
JF
7982 return -1;
7983}
092ed096 7984
3f50f132
JF
7985
7986static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7987{
7988 s64 sval = (s64)val;
a72dafaf 7989
4f7b3e82
AS
7990 switch (opcode) {
7991 case BPF_JEQ:
7992 if (tnum_is_const(reg->var_off))
7993 return !!tnum_equals_const(reg->var_off, val);
7994 break;
7995 case BPF_JNE:
7996 if (tnum_is_const(reg->var_off))
7997 return !tnum_equals_const(reg->var_off, val);
7998 break;
960ea056
JK
7999 case BPF_JSET:
8000 if ((~reg->var_off.mask & reg->var_off.value) & val)
8001 return 1;
8002 if (!((reg->var_off.mask | reg->var_off.value) & val))
8003 return 0;
8004 break;
4f7b3e82
AS
8005 case BPF_JGT:
8006 if (reg->umin_value > val)
8007 return 1;
8008 else if (reg->umax_value <= val)
8009 return 0;
8010 break;
8011 case BPF_JSGT:
a72dafaf 8012 if (reg->smin_value > sval)
4f7b3e82 8013 return 1;
ee114dd6 8014 else if (reg->smax_value <= sval)
4f7b3e82
AS
8015 return 0;
8016 break;
8017 case BPF_JLT:
8018 if (reg->umax_value < val)
8019 return 1;
8020 else if (reg->umin_value >= val)
8021 return 0;
8022 break;
8023 case BPF_JSLT:
a72dafaf 8024 if (reg->smax_value < sval)
4f7b3e82 8025 return 1;
a72dafaf 8026 else if (reg->smin_value >= sval)
4f7b3e82
AS
8027 return 0;
8028 break;
8029 case BPF_JGE:
8030 if (reg->umin_value >= val)
8031 return 1;
8032 else if (reg->umax_value < val)
8033 return 0;
8034 break;
8035 case BPF_JSGE:
a72dafaf 8036 if (reg->smin_value >= sval)
4f7b3e82 8037 return 1;
a72dafaf 8038 else if (reg->smax_value < sval)
4f7b3e82
AS
8039 return 0;
8040 break;
8041 case BPF_JLE:
8042 if (reg->umax_value <= val)
8043 return 1;
8044 else if (reg->umin_value > val)
8045 return 0;
8046 break;
8047 case BPF_JSLE:
a72dafaf 8048 if (reg->smax_value <= sval)
4f7b3e82 8049 return 1;
a72dafaf 8050 else if (reg->smin_value > sval)
4f7b3e82
AS
8051 return 0;
8052 break;
8053 }
8054
8055 return -1;
8056}
8057
3f50f132
JF
8058/* compute branch direction of the expression "if (reg opcode val) goto target;"
8059 * and return:
8060 * 1 - branch will be taken and "goto target" will be executed
8061 * 0 - branch will not be taken and fall-through to next insn
8062 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8063 * range [0,10]
604dca5e 8064 */
3f50f132
JF
8065static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8066 bool is_jmp32)
604dca5e 8067{
cac616db
JF
8068 if (__is_pointer_value(false, reg)) {
8069 if (!reg_type_not_null(reg->type))
8070 return -1;
8071
8072 /* If pointer is valid tests against zero will fail so we can
8073 * use this to direct branch taken.
8074 */
8075 if (val != 0)
8076 return -1;
8077
8078 switch (opcode) {
8079 case BPF_JEQ:
8080 return 0;
8081 case BPF_JNE:
8082 return 1;
8083 default:
8084 return -1;
8085 }
8086 }
604dca5e 8087
3f50f132
JF
8088 if (is_jmp32)
8089 return is_branch32_taken(reg, val, opcode);
8090 return is_branch64_taken(reg, val, opcode);
604dca5e
JH
8091}
8092
6d94e741
AS
8093static int flip_opcode(u32 opcode)
8094{
8095 /* How can we transform "a <op> b" into "b <op> a"? */
8096 static const u8 opcode_flip[16] = {
8097 /* these stay the same */
8098 [BPF_JEQ >> 4] = BPF_JEQ,
8099 [BPF_JNE >> 4] = BPF_JNE,
8100 [BPF_JSET >> 4] = BPF_JSET,
8101 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8102 [BPF_JGE >> 4] = BPF_JLE,
8103 [BPF_JGT >> 4] = BPF_JLT,
8104 [BPF_JLE >> 4] = BPF_JGE,
8105 [BPF_JLT >> 4] = BPF_JGT,
8106 [BPF_JSGE >> 4] = BPF_JSLE,
8107 [BPF_JSGT >> 4] = BPF_JSLT,
8108 [BPF_JSLE >> 4] = BPF_JSGE,
8109 [BPF_JSLT >> 4] = BPF_JSGT
8110 };
8111 return opcode_flip[opcode >> 4];
8112}
8113
8114static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8115 struct bpf_reg_state *src_reg,
8116 u8 opcode)
8117{
8118 struct bpf_reg_state *pkt;
8119
8120 if (src_reg->type == PTR_TO_PACKET_END) {
8121 pkt = dst_reg;
8122 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8123 pkt = src_reg;
8124 opcode = flip_opcode(opcode);
8125 } else {
8126 return -1;
8127 }
8128
8129 if (pkt->range >= 0)
8130 return -1;
8131
8132 switch (opcode) {
8133 case BPF_JLE:
8134 /* pkt <= pkt_end */
8135 fallthrough;
8136 case BPF_JGT:
8137 /* pkt > pkt_end */
8138 if (pkt->range == BEYOND_PKT_END)
8139 /* pkt has at last one extra byte beyond pkt_end */
8140 return opcode == BPF_JGT;
8141 break;
8142 case BPF_JLT:
8143 /* pkt < pkt_end */
8144 fallthrough;
8145 case BPF_JGE:
8146 /* pkt >= pkt_end */
8147 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8148 return opcode == BPF_JGE;
8149 break;
8150 }
8151 return -1;
8152}
8153
48461135
JB
8154/* Adjusts the register min/max values in the case that the dst_reg is the
8155 * variable register that we are working on, and src_reg is a constant or we're
8156 * simply doing a BPF_K check.
f1174f77 8157 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
8158 */
8159static void reg_set_min_max(struct bpf_reg_state *true_reg,
3f50f132
JF
8160 struct bpf_reg_state *false_reg,
8161 u64 val, u32 val32,
092ed096 8162 u8 opcode, bool is_jmp32)
48461135 8163{
3f50f132
JF
8164 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8165 struct tnum false_64off = false_reg->var_off;
8166 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8167 struct tnum true_64off = true_reg->var_off;
8168 s64 sval = (s64)val;
8169 s32 sval32 = (s32)val32;
a72dafaf 8170
f1174f77
EC
8171 /* If the dst_reg is a pointer, we can't learn anything about its
8172 * variable offset from the compare (unless src_reg were a pointer into
8173 * the same object, but we don't bother with that.
8174 * Since false_reg and true_reg have the same type by construction, we
8175 * only need to check one of them for pointerness.
8176 */
8177 if (__is_pointer_value(false, false_reg))
8178 return;
4cabc5b1 8179
48461135
JB
8180 switch (opcode) {
8181 case BPF_JEQ:
48461135 8182 case BPF_JNE:
a72dafaf
JW
8183 {
8184 struct bpf_reg_state *reg =
8185 opcode == BPF_JEQ ? true_reg : false_reg;
8186
e688c3db
AS
8187 /* JEQ/JNE comparison doesn't change the register equivalence.
8188 * r1 = r2;
8189 * if (r1 == 42) goto label;
8190 * ...
8191 * label: // here both r1 and r2 are known to be 42.
8192 *
8193 * Hence when marking register as known preserve it's ID.
48461135 8194 */
3f50f132
JF
8195 if (is_jmp32)
8196 __mark_reg32_known(reg, val32);
8197 else
e688c3db 8198 ___mark_reg_known(reg, val);
48461135 8199 break;
a72dafaf 8200 }
960ea056 8201 case BPF_JSET:
3f50f132
JF
8202 if (is_jmp32) {
8203 false_32off = tnum_and(false_32off, tnum_const(~val32));
8204 if (is_power_of_2(val32))
8205 true_32off = tnum_or(true_32off,
8206 tnum_const(val32));
8207 } else {
8208 false_64off = tnum_and(false_64off, tnum_const(~val));
8209 if (is_power_of_2(val))
8210 true_64off = tnum_or(true_64off,
8211 tnum_const(val));
8212 }
960ea056 8213 break;
48461135 8214 case BPF_JGE:
a72dafaf
JW
8215 case BPF_JGT:
8216 {
3f50f132
JF
8217 if (is_jmp32) {
8218 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8219 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8220
8221 false_reg->u32_max_value = min(false_reg->u32_max_value,
8222 false_umax);
8223 true_reg->u32_min_value = max(true_reg->u32_min_value,
8224 true_umin);
8225 } else {
8226 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8227 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8228
8229 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8230 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8231 }
b03c9f9f 8232 break;
a72dafaf 8233 }
48461135 8234 case BPF_JSGE:
a72dafaf
JW
8235 case BPF_JSGT:
8236 {
3f50f132
JF
8237 if (is_jmp32) {
8238 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8239 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
a72dafaf 8240
3f50f132
JF
8241 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8242 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8243 } else {
8244 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8245 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8246
8247 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8248 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8249 }
48461135 8250 break;
a72dafaf 8251 }
b4e432f1 8252 case BPF_JLE:
a72dafaf
JW
8253 case BPF_JLT:
8254 {
3f50f132
JF
8255 if (is_jmp32) {
8256 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8257 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8258
8259 false_reg->u32_min_value = max(false_reg->u32_min_value,
8260 false_umin);
8261 true_reg->u32_max_value = min(true_reg->u32_max_value,
8262 true_umax);
8263 } else {
8264 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8265 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8266
8267 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8268 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8269 }
b4e432f1 8270 break;
a72dafaf 8271 }
b4e432f1 8272 case BPF_JSLE:
a72dafaf
JW
8273 case BPF_JSLT:
8274 {
3f50f132
JF
8275 if (is_jmp32) {
8276 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8277 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
a72dafaf 8278
3f50f132
JF
8279 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8280 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8281 } else {
8282 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8283 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8284
8285 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8286 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8287 }
b4e432f1 8288 break;
a72dafaf 8289 }
48461135 8290 default:
0fc31b10 8291 return;
48461135
JB
8292 }
8293
3f50f132
JF
8294 if (is_jmp32) {
8295 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8296 tnum_subreg(false_32off));
8297 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8298 tnum_subreg(true_32off));
8299 __reg_combine_32_into_64(false_reg);
8300 __reg_combine_32_into_64(true_reg);
8301 } else {
8302 false_reg->var_off = false_64off;
8303 true_reg->var_off = true_64off;
8304 __reg_combine_64_into_32(false_reg);
8305 __reg_combine_64_into_32(true_reg);
8306 }
48461135
JB
8307}
8308
f1174f77
EC
8309/* Same as above, but for the case that dst_reg holds a constant and src_reg is
8310 * the variable reg.
48461135
JB
8311 */
8312static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3f50f132
JF
8313 struct bpf_reg_state *false_reg,
8314 u64 val, u32 val32,
092ed096 8315 u8 opcode, bool is_jmp32)
48461135 8316{
6d94e741 8317 opcode = flip_opcode(opcode);
0fc31b10
JH
8318 /* This uses zero as "not present in table"; luckily the zero opcode,
8319 * BPF_JA, can't get here.
b03c9f9f 8320 */
0fc31b10 8321 if (opcode)
3f50f132 8322 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
f1174f77
EC
8323}
8324
8325/* Regs are known to be equal, so intersect their min/max/var_off */
8326static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8327 struct bpf_reg_state *dst_reg)
8328{
b03c9f9f
EC
8329 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8330 dst_reg->umin_value);
8331 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8332 dst_reg->umax_value);
8333 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8334 dst_reg->smin_value);
8335 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8336 dst_reg->smax_value);
f1174f77
EC
8337 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8338 dst_reg->var_off);
b03c9f9f
EC
8339 /* We might have learned new bounds from the var_off. */
8340 __update_reg_bounds(src_reg);
8341 __update_reg_bounds(dst_reg);
8342 /* We might have learned something about the sign bit. */
8343 __reg_deduce_bounds(src_reg);
8344 __reg_deduce_bounds(dst_reg);
8345 /* We might have learned some bits from the bounds. */
8346 __reg_bound_offset(src_reg);
8347 __reg_bound_offset(dst_reg);
8348 /* Intersecting with the old var_off might have improved our bounds
8349 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8350 * then new var_off is (0; 0x7f...fc) which improves our umax.
8351 */
8352 __update_reg_bounds(src_reg);
8353 __update_reg_bounds(dst_reg);
f1174f77
EC
8354}
8355
8356static void reg_combine_min_max(struct bpf_reg_state *true_src,
8357 struct bpf_reg_state *true_dst,
8358 struct bpf_reg_state *false_src,
8359 struct bpf_reg_state *false_dst,
8360 u8 opcode)
8361{
8362 switch (opcode) {
8363 case BPF_JEQ:
8364 __reg_combine_min_max(true_src, true_dst);
8365 break;
8366 case BPF_JNE:
8367 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 8368 break;
4cabc5b1 8369 }
48461135
JB
8370}
8371
fd978bf7
JS
8372static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8373 struct bpf_reg_state *reg, u32 id,
840b9615 8374 bool is_null)
57a09bf0 8375{
93c230e3
MKL
8376 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8377 !WARN_ON_ONCE(!reg->id)) {
f1174f77
EC
8378 /* Old offset (both fixed and variable parts) should
8379 * have been known-zero, because we don't allow pointer
8380 * arithmetic on pointers that might be NULL.
8381 */
b03c9f9f
EC
8382 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8383 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 8384 reg->off)) {
b03c9f9f
EC
8385 __mark_reg_known_zero(reg);
8386 reg->off = 0;
f1174f77
EC
8387 }
8388 if (is_null) {
8389 reg->type = SCALAR_VALUE;
1b986589
MKL
8390 /* We don't need id and ref_obj_id from this point
8391 * onwards anymore, thus we should better reset it,
8392 * so that state pruning has chances to take effect.
8393 */
8394 reg->id = 0;
8395 reg->ref_obj_id = 0;
4ddb7416
DB
8396
8397 return;
8398 }
8399
8400 mark_ptr_not_null_reg(reg);
8401
8402 if (!reg_may_point_to_spin_lock(reg)) {
1b986589
MKL
8403 /* For not-NULL ptr, reg->ref_obj_id will be reset
8404 * in release_reg_references().
8405 *
8406 * reg->id is still used by spin_lock ptr. Other
8407 * than spin_lock ptr type, reg->id can be reset.
fd978bf7
JS
8408 */
8409 reg->id = 0;
56f668df 8410 }
57a09bf0
TG
8411 }
8412}
8413
c6a9efa1
PC
8414static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8415 bool is_null)
8416{
8417 struct bpf_reg_state *reg;
8418 int i;
8419
8420 for (i = 0; i < MAX_BPF_REG; i++)
8421 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8422
8423 bpf_for_each_spilled_reg(i, state, reg) {
8424 if (!reg)
8425 continue;
8426 mark_ptr_or_null_reg(state, reg, id, is_null);
8427 }
8428}
8429
57a09bf0
TG
8430/* The logic is similar to find_good_pkt_pointers(), both could eventually
8431 * be folded together at some point.
8432 */
840b9615
JS
8433static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8434 bool is_null)
57a09bf0 8435{
f4d7e40a 8436 struct bpf_func_state *state = vstate->frame[vstate->curframe];
c6a9efa1 8437 struct bpf_reg_state *regs = state->regs;
1b986589 8438 u32 ref_obj_id = regs[regno].ref_obj_id;
a08dd0da 8439 u32 id = regs[regno].id;
c6a9efa1 8440 int i;
57a09bf0 8441
1b986589
MKL
8442 if (ref_obj_id && ref_obj_id == id && is_null)
8443 /* regs[regno] is in the " == NULL" branch.
8444 * No one could have freed the reference state before
8445 * doing the NULL check.
8446 */
8447 WARN_ON_ONCE(release_reference_state(state, id));
fd978bf7 8448
c6a9efa1
PC
8449 for (i = 0; i <= vstate->curframe; i++)
8450 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
57a09bf0
TG
8451}
8452
5beca081
DB
8453static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8454 struct bpf_reg_state *dst_reg,
8455 struct bpf_reg_state *src_reg,
8456 struct bpf_verifier_state *this_branch,
8457 struct bpf_verifier_state *other_branch)
8458{
8459 if (BPF_SRC(insn->code) != BPF_X)
8460 return false;
8461
092ed096
JW
8462 /* Pointers are always 64-bit. */
8463 if (BPF_CLASS(insn->code) == BPF_JMP32)
8464 return false;
8465
5beca081
DB
8466 switch (BPF_OP(insn->code)) {
8467 case BPF_JGT:
8468 if ((dst_reg->type == PTR_TO_PACKET &&
8469 src_reg->type == PTR_TO_PACKET_END) ||
8470 (dst_reg->type == PTR_TO_PACKET_META &&
8471 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8472 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8473 find_good_pkt_pointers(this_branch, dst_reg,
8474 dst_reg->type, false);
6d94e741 8475 mark_pkt_end(other_branch, insn->dst_reg, true);
5beca081
DB
8476 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8477 src_reg->type == PTR_TO_PACKET) ||
8478 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8479 src_reg->type == PTR_TO_PACKET_META)) {
8480 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
8481 find_good_pkt_pointers(other_branch, src_reg,
8482 src_reg->type, true);
6d94e741 8483 mark_pkt_end(this_branch, insn->src_reg, false);
5beca081
DB
8484 } else {
8485 return false;
8486 }
8487 break;
8488 case BPF_JLT:
8489 if ((dst_reg->type == PTR_TO_PACKET &&
8490 src_reg->type == PTR_TO_PACKET_END) ||
8491 (dst_reg->type == PTR_TO_PACKET_META &&
8492 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8493 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8494 find_good_pkt_pointers(other_branch, dst_reg,
8495 dst_reg->type, true);
6d94e741 8496 mark_pkt_end(this_branch, insn->dst_reg, false);
5beca081
DB
8497 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8498 src_reg->type == PTR_TO_PACKET) ||
8499 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8500 src_reg->type == PTR_TO_PACKET_META)) {
8501 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
8502 find_good_pkt_pointers(this_branch, src_reg,
8503 src_reg->type, false);
6d94e741 8504 mark_pkt_end(other_branch, insn->src_reg, true);
5beca081
DB
8505 } else {
8506 return false;
8507 }
8508 break;
8509 case BPF_JGE:
8510 if ((dst_reg->type == PTR_TO_PACKET &&
8511 src_reg->type == PTR_TO_PACKET_END) ||
8512 (dst_reg->type == PTR_TO_PACKET_META &&
8513 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8514 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8515 find_good_pkt_pointers(this_branch, dst_reg,
8516 dst_reg->type, true);
6d94e741 8517 mark_pkt_end(other_branch, insn->dst_reg, false);
5beca081
DB
8518 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8519 src_reg->type == PTR_TO_PACKET) ||
8520 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8521 src_reg->type == PTR_TO_PACKET_META)) {
8522 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8523 find_good_pkt_pointers(other_branch, src_reg,
8524 src_reg->type, false);
6d94e741 8525 mark_pkt_end(this_branch, insn->src_reg, true);
5beca081
DB
8526 } else {
8527 return false;
8528 }
8529 break;
8530 case BPF_JLE:
8531 if ((dst_reg->type == PTR_TO_PACKET &&
8532 src_reg->type == PTR_TO_PACKET_END) ||
8533 (dst_reg->type == PTR_TO_PACKET_META &&
8534 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8535 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8536 find_good_pkt_pointers(other_branch, dst_reg,
8537 dst_reg->type, false);
6d94e741 8538 mark_pkt_end(this_branch, insn->dst_reg, true);
5beca081
DB
8539 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8540 src_reg->type == PTR_TO_PACKET) ||
8541 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8542 src_reg->type == PTR_TO_PACKET_META)) {
8543 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8544 find_good_pkt_pointers(this_branch, src_reg,
8545 src_reg->type, true);
6d94e741 8546 mark_pkt_end(other_branch, insn->src_reg, false);
5beca081
DB
8547 } else {
8548 return false;
8549 }
8550 break;
8551 default:
8552 return false;
8553 }
8554
8555 return true;
8556}
8557
75748837
AS
8558static void find_equal_scalars(struct bpf_verifier_state *vstate,
8559 struct bpf_reg_state *known_reg)
8560{
8561 struct bpf_func_state *state;
8562 struct bpf_reg_state *reg;
8563 int i, j;
8564
8565 for (i = 0; i <= vstate->curframe; i++) {
8566 state = vstate->frame[i];
8567 for (j = 0; j < MAX_BPF_REG; j++) {
8568 reg = &state->regs[j];
8569 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8570 *reg = *known_reg;
8571 }
8572
8573 bpf_for_each_spilled_reg(j, state, reg) {
8574 if (!reg)
8575 continue;
8576 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8577 *reg = *known_reg;
8578 }
8579 }
8580}
8581
58e2af8b 8582static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
8583 struct bpf_insn *insn, int *insn_idx)
8584{
f4d7e40a
AS
8585 struct bpf_verifier_state *this_branch = env->cur_state;
8586 struct bpf_verifier_state *other_branch;
8587 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
fb8d251e 8588 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
17a52670 8589 u8 opcode = BPF_OP(insn->code);
092ed096 8590 bool is_jmp32;
fb8d251e 8591 int pred = -1;
17a52670
AS
8592 int err;
8593
092ed096
JW
8594 /* Only conditional jumps are expected to reach here. */
8595 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8596 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
17a52670
AS
8597 return -EINVAL;
8598 }
8599
8600 if (BPF_SRC(insn->code) == BPF_X) {
8601 if (insn->imm != 0) {
092ed096 8602 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
8603 return -EINVAL;
8604 }
8605
8606 /* check src1 operand */
dc503a8a 8607 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
8608 if (err)
8609 return err;
1be7f75d
AS
8610
8611 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 8612 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
8613 insn->src_reg);
8614 return -EACCES;
8615 }
fb8d251e 8616 src_reg = &regs[insn->src_reg];
17a52670
AS
8617 } else {
8618 if (insn->src_reg != BPF_REG_0) {
092ed096 8619 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
17a52670
AS
8620 return -EINVAL;
8621 }
8622 }
8623
8624 /* check src2 operand */
dc503a8a 8625 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
8626 if (err)
8627 return err;
8628
1a0dc1ac 8629 dst_reg = &regs[insn->dst_reg];
092ed096 8630 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1a0dc1ac 8631
3f50f132
JF
8632 if (BPF_SRC(insn->code) == BPF_K) {
8633 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8634 } else if (src_reg->type == SCALAR_VALUE &&
8635 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8636 pred = is_branch_taken(dst_reg,
8637 tnum_subreg(src_reg->var_off).value,
8638 opcode,
8639 is_jmp32);
8640 } else if (src_reg->type == SCALAR_VALUE &&
8641 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8642 pred = is_branch_taken(dst_reg,
8643 src_reg->var_off.value,
8644 opcode,
8645 is_jmp32);
6d94e741
AS
8646 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8647 reg_is_pkt_pointer_any(src_reg) &&
8648 !is_jmp32) {
8649 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
3f50f132
JF
8650 }
8651
b5dc0163 8652 if (pred >= 0) {
cac616db
JF
8653 /* If we get here with a dst_reg pointer type it is because
8654 * above is_branch_taken() special cased the 0 comparison.
8655 */
8656 if (!__is_pointer_value(false, dst_reg))
8657 err = mark_chain_precision(env, insn->dst_reg);
6d94e741
AS
8658 if (BPF_SRC(insn->code) == BPF_X && !err &&
8659 !__is_pointer_value(false, src_reg))
b5dc0163
AS
8660 err = mark_chain_precision(env, insn->src_reg);
8661 if (err)
8662 return err;
8663 }
fb8d251e
AS
8664 if (pred == 1) {
8665 /* only follow the goto, ignore fall-through */
8666 *insn_idx += insn->off;
8667 return 0;
8668 } else if (pred == 0) {
8669 /* only follow fall-through branch, since
8670 * that's where the program will go
8671 */
8672 return 0;
17a52670
AS
8673 }
8674
979d63d5
DB
8675 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8676 false);
17a52670
AS
8677 if (!other_branch)
8678 return -EFAULT;
f4d7e40a 8679 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 8680
48461135
JB
8681 /* detect if we are comparing against a constant value so we can adjust
8682 * our min/max values for our dst register.
f1174f77
EC
8683 * this is only legit if both are scalars (or pointers to the same
8684 * object, I suppose, but we don't support that right now), because
8685 * otherwise the different base pointers mean the offsets aren't
8686 * comparable.
48461135
JB
8687 */
8688 if (BPF_SRC(insn->code) == BPF_X) {
092ed096 8689 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
092ed096 8690
f1174f77 8691 if (dst_reg->type == SCALAR_VALUE &&
092ed096
JW
8692 src_reg->type == SCALAR_VALUE) {
8693 if (tnum_is_const(src_reg->var_off) ||
3f50f132
JF
8694 (is_jmp32 &&
8695 tnum_is_const(tnum_subreg(src_reg->var_off))))
f4d7e40a 8696 reg_set_min_max(&other_branch_regs[insn->dst_reg],
092ed096 8697 dst_reg,
3f50f132
JF
8698 src_reg->var_off.value,
8699 tnum_subreg(src_reg->var_off).value,
092ed096
JW
8700 opcode, is_jmp32);
8701 else if (tnum_is_const(dst_reg->var_off) ||
3f50f132
JF
8702 (is_jmp32 &&
8703 tnum_is_const(tnum_subreg(dst_reg->var_off))))
f4d7e40a 8704 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
092ed096 8705 src_reg,
3f50f132
JF
8706 dst_reg->var_off.value,
8707 tnum_subreg(dst_reg->var_off).value,
092ed096
JW
8708 opcode, is_jmp32);
8709 else if (!is_jmp32 &&
8710 (opcode == BPF_JEQ || opcode == BPF_JNE))
f1174f77 8711 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
8712 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8713 &other_branch_regs[insn->dst_reg],
092ed096 8714 src_reg, dst_reg, opcode);
e688c3db
AS
8715 if (src_reg->id &&
8716 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
75748837
AS
8717 find_equal_scalars(this_branch, src_reg);
8718 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8719 }
8720
f1174f77
EC
8721 }
8722 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 8723 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3f50f132
JF
8724 dst_reg, insn->imm, (u32)insn->imm,
8725 opcode, is_jmp32);
48461135
JB
8726 }
8727
e688c3db
AS
8728 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8729 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
75748837
AS
8730 find_equal_scalars(this_branch, dst_reg);
8731 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8732 }
8733
092ed096
JW
8734 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8735 * NOTE: these optimizations below are related with pointer comparison
8736 * which will never be JMP32.
8737 */
8738 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac 8739 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
840b9615
JS
8740 reg_type_may_be_null(dst_reg->type)) {
8741 /* Mark all identical registers in each branch as either
57a09bf0
TG
8742 * safe or unknown depending R == 0 or R != 0 conditional.
8743 */
840b9615
JS
8744 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8745 opcode == BPF_JNE);
8746 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8747 opcode == BPF_JEQ);
5beca081
DB
8748 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8749 this_branch, other_branch) &&
8750 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
8751 verbose(env, "R%d pointer comparison prohibited\n",
8752 insn->dst_reg);
1be7f75d 8753 return -EACCES;
17a52670 8754 }
06ee7115 8755 if (env->log.level & BPF_LOG_LEVEL)
f4d7e40a 8756 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
8757 return 0;
8758}
8759
17a52670 8760/* verify BPF_LD_IMM64 instruction */
58e2af8b 8761static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 8762{
d8eca5bb 8763 struct bpf_insn_aux_data *aux = cur_aux(env);
638f5b90 8764 struct bpf_reg_state *regs = cur_regs(env);
4976b718 8765 struct bpf_reg_state *dst_reg;
d8eca5bb 8766 struct bpf_map *map;
17a52670
AS
8767 int err;
8768
8769 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 8770 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
8771 return -EINVAL;
8772 }
8773 if (insn->off != 0) {
61bd5218 8774 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
8775 return -EINVAL;
8776 }
8777
dc503a8a 8778 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
8779 if (err)
8780 return err;
8781
4976b718 8782 dst_reg = &regs[insn->dst_reg];
6b173873 8783 if (insn->src_reg == 0) {
6b173873
JK
8784 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8785
4976b718 8786 dst_reg->type = SCALAR_VALUE;
b03c9f9f 8787 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 8788 return 0;
6b173873 8789 }
17a52670 8790
4976b718
HL
8791 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8792 mark_reg_known_zero(env, regs, insn->dst_reg);
8793
8794 dst_reg->type = aux->btf_var.reg_type;
8795 switch (dst_reg->type) {
8796 case PTR_TO_MEM:
8797 dst_reg->mem_size = aux->btf_var.mem_size;
8798 break;
8799 case PTR_TO_BTF_ID:
eaa6bcb7 8800 case PTR_TO_PERCPU_BTF_ID:
22dc4a0f 8801 dst_reg->btf = aux->btf_var.btf;
4976b718
HL
8802 dst_reg->btf_id = aux->btf_var.btf_id;
8803 break;
8804 default:
8805 verbose(env, "bpf verifier is misconfigured\n");
8806 return -EFAULT;
8807 }
8808 return 0;
8809 }
8810
69c087ba
YS
8811 if (insn->src_reg == BPF_PSEUDO_FUNC) {
8812 struct bpf_prog_aux *aux = env->prog->aux;
8813 u32 subprogno = insn[1].imm;
8814
8815 if (!aux->func_info) {
8816 verbose(env, "missing btf func_info\n");
8817 return -EINVAL;
8818 }
8819 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8820 verbose(env, "callback function not static\n");
8821 return -EINVAL;
8822 }
8823
8824 dst_reg->type = PTR_TO_FUNC;
8825 dst_reg->subprogno = subprogno;
8826 return 0;
8827 }
8828
d8eca5bb
DB
8829 map = env->used_maps[aux->map_index];
8830 mark_reg_known_zero(env, regs, insn->dst_reg);
4976b718 8831 dst_reg->map_ptr = map;
d8eca5bb
DB
8832
8833 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
4976b718
HL
8834 dst_reg->type = PTR_TO_MAP_VALUE;
8835 dst_reg->off = aux->map_off;
d8eca5bb 8836 if (map_value_has_spin_lock(map))
4976b718 8837 dst_reg->id = ++env->id_gen;
d8eca5bb 8838 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
4976b718 8839 dst_reg->type = CONST_PTR_TO_MAP;
d8eca5bb
DB
8840 } else {
8841 verbose(env, "bpf verifier is misconfigured\n");
8842 return -EINVAL;
8843 }
17a52670 8844
17a52670
AS
8845 return 0;
8846}
8847
96be4325
DB
8848static bool may_access_skb(enum bpf_prog_type type)
8849{
8850 switch (type) {
8851 case BPF_PROG_TYPE_SOCKET_FILTER:
8852 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 8853 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
8854 return true;
8855 default:
8856 return false;
8857 }
8858}
8859
ddd872bc
AS
8860/* verify safety of LD_ABS|LD_IND instructions:
8861 * - they can only appear in the programs where ctx == skb
8862 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8863 * preserve R6-R9, and store return value into R0
8864 *
8865 * Implicit input:
8866 * ctx == skb == R6 == CTX
8867 *
8868 * Explicit input:
8869 * SRC == any register
8870 * IMM == 32-bit immediate
8871 *
8872 * Output:
8873 * R0 - 8/16/32-bit skb data converted to cpu endianness
8874 */
58e2af8b 8875static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 8876{
638f5b90 8877 struct bpf_reg_state *regs = cur_regs(env);
6d4f151a 8878 static const int ctx_reg = BPF_REG_6;
ddd872bc 8879 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
8880 int i, err;
8881
7e40781c 8882 if (!may_access_skb(resolve_prog_type(env->prog))) {
61bd5218 8883 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
8884 return -EINVAL;
8885 }
8886
e0cea7ce
DB
8887 if (!env->ops->gen_ld_abs) {
8888 verbose(env, "bpf verifier is misconfigured\n");
8889 return -EINVAL;
8890 }
8891
ddd872bc 8892 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 8893 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 8894 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 8895 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
8896 return -EINVAL;
8897 }
8898
8899 /* check whether implicit source operand (register R6) is readable */
6d4f151a 8900 err = check_reg_arg(env, ctx_reg, SRC_OP);
ddd872bc
AS
8901 if (err)
8902 return err;
8903
fd978bf7
JS
8904 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8905 * gen_ld_abs() may terminate the program at runtime, leading to
8906 * reference leak.
8907 */
8908 err = check_reference_leak(env);
8909 if (err) {
8910 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8911 return err;
8912 }
8913
d83525ca
AS
8914 if (env->cur_state->active_spin_lock) {
8915 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8916 return -EINVAL;
8917 }
8918
6d4f151a 8919 if (regs[ctx_reg].type != PTR_TO_CTX) {
61bd5218
JK
8920 verbose(env,
8921 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
8922 return -EINVAL;
8923 }
8924
8925 if (mode == BPF_IND) {
8926 /* check explicit source operand */
dc503a8a 8927 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
8928 if (err)
8929 return err;
8930 }
8931
6d4f151a
DB
8932 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8933 if (err < 0)
8934 return err;
8935
ddd872bc 8936 /* reset caller saved regs to unreadable */
dc503a8a 8937 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 8938 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
8939 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8940 }
ddd872bc
AS
8941
8942 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
8943 * the value fetched from the packet.
8944 * Already marked as written above.
ddd872bc 8945 */
61bd5218 8946 mark_reg_unknown(env, regs, BPF_REG_0);
5327ed3d
JW
8947 /* ld_abs load up to 32-bit skb data. */
8948 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
ddd872bc
AS
8949 return 0;
8950}
8951
390ee7e2
AS
8952static int check_return_code(struct bpf_verifier_env *env)
8953{
5cf1e914 8954 struct tnum enforce_attach_type_range = tnum_unknown;
27ae7997 8955 const struct bpf_prog *prog = env->prog;
390ee7e2
AS
8956 struct bpf_reg_state *reg;
8957 struct tnum range = tnum_range(0, 1);
7e40781c 8958 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
27ae7997 8959 int err;
f782e2c3 8960 const bool is_subprog = env->cur_state->frame[0]->subprogno;
27ae7997 8961
9e4e01df 8962 /* LSM and struct_ops func-ptr's return type could be "void" */
f782e2c3
DB
8963 if (!is_subprog &&
8964 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7e40781c 8965 prog_type == BPF_PROG_TYPE_LSM) &&
27ae7997
MKL
8966 !prog->aux->attach_func_proto->type)
8967 return 0;
8968
8969 /* eBPF calling convetion is such that R0 is used
8970 * to return the value from eBPF program.
8971 * Make sure that it's readable at this time
8972 * of bpf_exit, which means that program wrote
8973 * something into it earlier
8974 */
8975 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8976 if (err)
8977 return err;
8978
8979 if (is_pointer_value(env, BPF_REG_0)) {
8980 verbose(env, "R0 leaks addr as return value\n");
8981 return -EACCES;
8982 }
390ee7e2 8983
f782e2c3
DB
8984 reg = cur_regs(env) + BPF_REG_0;
8985 if (is_subprog) {
8986 if (reg->type != SCALAR_VALUE) {
8987 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8988 reg_type_str[reg->type]);
8989 return -EINVAL;
8990 }
8991 return 0;
8992 }
8993
7e40781c 8994 switch (prog_type) {
983695fa
DB
8995 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8996 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
1b66d253
DB
8997 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8998 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8999 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9000 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9001 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
983695fa 9002 range = tnum_range(1, 1);
77241217
SF
9003 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9004 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9005 range = tnum_range(0, 3);
ed4ed404 9006 break;
390ee7e2 9007 case BPF_PROG_TYPE_CGROUP_SKB:
5cf1e914 9008 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9009 range = tnum_range(0, 3);
9010 enforce_attach_type_range = tnum_range(2, 3);
9011 }
ed4ed404 9012 break;
390ee7e2
AS
9013 case BPF_PROG_TYPE_CGROUP_SOCK:
9014 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 9015 case BPF_PROG_TYPE_CGROUP_DEVICE:
7b146ceb 9016 case BPF_PROG_TYPE_CGROUP_SYSCTL:
0d01da6a 9017 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
390ee7e2 9018 break;
15ab09bd
AS
9019 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9020 if (!env->prog->aux->attach_btf_id)
9021 return 0;
9022 range = tnum_const(0);
9023 break;
15d83c4d 9024 case BPF_PROG_TYPE_TRACING:
e92888c7
YS
9025 switch (env->prog->expected_attach_type) {
9026 case BPF_TRACE_FENTRY:
9027 case BPF_TRACE_FEXIT:
9028 range = tnum_const(0);
9029 break;
9030 case BPF_TRACE_RAW_TP:
9031 case BPF_MODIFY_RETURN:
15d83c4d 9032 return 0;
2ec0616e
DB
9033 case BPF_TRACE_ITER:
9034 break;
e92888c7
YS
9035 default:
9036 return -ENOTSUPP;
9037 }
15d83c4d 9038 break;
e9ddbb77
JS
9039 case BPF_PROG_TYPE_SK_LOOKUP:
9040 range = tnum_range(SK_DROP, SK_PASS);
9041 break;
e92888c7
YS
9042 case BPF_PROG_TYPE_EXT:
9043 /* freplace program can return anything as its return value
9044 * depends on the to-be-replaced kernel func or bpf program.
9045 */
390ee7e2
AS
9046 default:
9047 return 0;
9048 }
9049
390ee7e2 9050 if (reg->type != SCALAR_VALUE) {
61bd5218 9051 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
9052 reg_type_str[reg->type]);
9053 return -EINVAL;
9054 }
9055
9056 if (!tnum_in(range, reg->var_off)) {
bc2591d6 9057 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
390ee7e2
AS
9058 return -EINVAL;
9059 }
5cf1e914 9060
9061 if (!tnum_is_unknown(enforce_attach_type_range) &&
9062 tnum_in(enforce_attach_type_range, reg->var_off))
9063 env->prog->enforce_expected_attach_type = 1;
390ee7e2
AS
9064 return 0;
9065}
9066
475fb78f
AS
9067/* non-recursive DFS pseudo code
9068 * 1 procedure DFS-iterative(G,v):
9069 * 2 label v as discovered
9070 * 3 let S be a stack
9071 * 4 S.push(v)
9072 * 5 while S is not empty
9073 * 6 t <- S.pop()
9074 * 7 if t is what we're looking for:
9075 * 8 return t
9076 * 9 for all edges e in G.adjacentEdges(t) do
9077 * 10 if edge e is already labelled
9078 * 11 continue with the next edge
9079 * 12 w <- G.adjacentVertex(t,e)
9080 * 13 if vertex w is not discovered and not explored
9081 * 14 label e as tree-edge
9082 * 15 label w as discovered
9083 * 16 S.push(w)
9084 * 17 continue at 5
9085 * 18 else if vertex w is discovered
9086 * 19 label e as back-edge
9087 * 20 else
9088 * 21 // vertex w is explored
9089 * 22 label e as forward- or cross-edge
9090 * 23 label t as explored
9091 * 24 S.pop()
9092 *
9093 * convention:
9094 * 0x10 - discovered
9095 * 0x11 - discovered and fall-through edge labelled
9096 * 0x12 - discovered and fall-through and branch edges labelled
9097 * 0x20 - explored
9098 */
9099
9100enum {
9101 DISCOVERED = 0x10,
9102 EXPLORED = 0x20,
9103 FALLTHROUGH = 1,
9104 BRANCH = 2,
9105};
9106
dc2a4ebc
AS
9107static u32 state_htab_size(struct bpf_verifier_env *env)
9108{
9109 return env->prog->len;
9110}
9111
5d839021
AS
9112static struct bpf_verifier_state_list **explored_state(
9113 struct bpf_verifier_env *env,
9114 int idx)
9115{
dc2a4ebc
AS
9116 struct bpf_verifier_state *cur = env->cur_state;
9117 struct bpf_func_state *state = cur->frame[cur->curframe];
9118
9119 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
5d839021
AS
9120}
9121
9122static void init_explored_state(struct bpf_verifier_env *env, int idx)
9123{
a8f500af 9124 env->insn_aux_data[idx].prune_point = true;
5d839021 9125}
f1bca824 9126
59e2e27d
WAF
9127enum {
9128 DONE_EXPLORING = 0,
9129 KEEP_EXPLORING = 1,
9130};
9131
475fb78f
AS
9132/* t, w, e - match pseudo-code above:
9133 * t - index of current instruction
9134 * w - next instruction
9135 * e - edge
9136 */
2589726d
AS
9137static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9138 bool loop_ok)
475fb78f 9139{
7df737e9
AS
9140 int *insn_stack = env->cfg.insn_stack;
9141 int *insn_state = env->cfg.insn_state;
9142
475fb78f 9143 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
59e2e27d 9144 return DONE_EXPLORING;
475fb78f
AS
9145
9146 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
59e2e27d 9147 return DONE_EXPLORING;
475fb78f
AS
9148
9149 if (w < 0 || w >= env->prog->len) {
d9762e84 9150 verbose_linfo(env, t, "%d: ", t);
61bd5218 9151 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
9152 return -EINVAL;
9153 }
9154
f1bca824
AS
9155 if (e == BRANCH)
9156 /* mark branch target for state pruning */
5d839021 9157 init_explored_state(env, w);
f1bca824 9158
475fb78f
AS
9159 if (insn_state[w] == 0) {
9160 /* tree-edge */
9161 insn_state[t] = DISCOVERED | e;
9162 insn_state[w] = DISCOVERED;
7df737e9 9163 if (env->cfg.cur_stack >= env->prog->len)
475fb78f 9164 return -E2BIG;
7df737e9 9165 insn_stack[env->cfg.cur_stack++] = w;
59e2e27d 9166 return KEEP_EXPLORING;
475fb78f 9167 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2c78ee89 9168 if (loop_ok && env->bpf_capable)
59e2e27d 9169 return DONE_EXPLORING;
d9762e84
MKL
9170 verbose_linfo(env, t, "%d: ", t);
9171 verbose_linfo(env, w, "%d: ", w);
61bd5218 9172 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
9173 return -EINVAL;
9174 } else if (insn_state[w] == EXPLORED) {
9175 /* forward- or cross-edge */
9176 insn_state[t] = DISCOVERED | e;
9177 } else {
61bd5218 9178 verbose(env, "insn state internal bug\n");
475fb78f
AS
9179 return -EFAULT;
9180 }
59e2e27d
WAF
9181 return DONE_EXPLORING;
9182}
9183
efdb22de
YS
9184static int visit_func_call_insn(int t, int insn_cnt,
9185 struct bpf_insn *insns,
9186 struct bpf_verifier_env *env,
9187 bool visit_callee)
9188{
9189 int ret;
9190
9191 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9192 if (ret)
9193 return ret;
9194
9195 if (t + 1 < insn_cnt)
9196 init_explored_state(env, t + 1);
9197 if (visit_callee) {
9198 init_explored_state(env, t);
9199 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9200 env, false);
9201 }
9202 return ret;
9203}
9204
59e2e27d
WAF
9205/* Visits the instruction at index t and returns one of the following:
9206 * < 0 - an error occurred
9207 * DONE_EXPLORING - the instruction was fully explored
9208 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9209 */
9210static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9211{
9212 struct bpf_insn *insns = env->prog->insnsi;
9213 int ret;
9214
69c087ba
YS
9215 if (bpf_pseudo_func(insns + t))
9216 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9217
59e2e27d
WAF
9218 /* All non-branch instructions have a single fall-through edge. */
9219 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9220 BPF_CLASS(insns[t].code) != BPF_JMP32)
9221 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9222
9223 switch (BPF_OP(insns[t].code)) {
9224 case BPF_EXIT:
9225 return DONE_EXPLORING;
9226
9227 case BPF_CALL:
efdb22de
YS
9228 return visit_func_call_insn(t, insn_cnt, insns, env,
9229 insns[t].src_reg == BPF_PSEUDO_CALL);
59e2e27d
WAF
9230
9231 case BPF_JA:
9232 if (BPF_SRC(insns[t].code) != BPF_K)
9233 return -EINVAL;
9234
9235 /* unconditional jump with single edge */
9236 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9237 true);
9238 if (ret)
9239 return ret;
9240
9241 /* unconditional jmp is not a good pruning point,
9242 * but it's marked, since backtracking needs
9243 * to record jmp history in is_state_visited().
9244 */
9245 init_explored_state(env, t + insns[t].off + 1);
9246 /* tell verifier to check for equivalent states
9247 * after every call and jump
9248 */
9249 if (t + 1 < insn_cnt)
9250 init_explored_state(env, t + 1);
9251
9252 return ret;
9253
9254 default:
9255 /* conditional jump with two edges */
9256 init_explored_state(env, t);
9257 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9258 if (ret)
9259 return ret;
9260
9261 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9262 }
475fb78f
AS
9263}
9264
9265/* non-recursive depth-first-search to detect loops in BPF program
9266 * loop == back-edge in directed graph
9267 */
58e2af8b 9268static int check_cfg(struct bpf_verifier_env *env)
475fb78f 9269{
475fb78f 9270 int insn_cnt = env->prog->len;
7df737e9 9271 int *insn_stack, *insn_state;
475fb78f 9272 int ret = 0;
59e2e27d 9273 int i;
475fb78f 9274
7df737e9 9275 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f
AS
9276 if (!insn_state)
9277 return -ENOMEM;
9278
7df737e9 9279 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
475fb78f 9280 if (!insn_stack) {
71dde681 9281 kvfree(insn_state);
475fb78f
AS
9282 return -ENOMEM;
9283 }
9284
9285 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9286 insn_stack[0] = 0; /* 0 is the first instruction */
7df737e9 9287 env->cfg.cur_stack = 1;
475fb78f 9288
59e2e27d
WAF
9289 while (env->cfg.cur_stack > 0) {
9290 int t = insn_stack[env->cfg.cur_stack - 1];
475fb78f 9291
59e2e27d
WAF
9292 ret = visit_insn(t, insn_cnt, env);
9293 switch (ret) {
9294 case DONE_EXPLORING:
9295 insn_state[t] = EXPLORED;
9296 env->cfg.cur_stack--;
9297 break;
9298 case KEEP_EXPLORING:
9299 break;
9300 default:
9301 if (ret > 0) {
9302 verbose(env, "visit_insn internal bug\n");
9303 ret = -EFAULT;
475fb78f 9304 }
475fb78f 9305 goto err_free;
59e2e27d 9306 }
475fb78f
AS
9307 }
9308
59e2e27d 9309 if (env->cfg.cur_stack < 0) {
61bd5218 9310 verbose(env, "pop stack internal bug\n");
475fb78f
AS
9311 ret = -EFAULT;
9312 goto err_free;
9313 }
475fb78f 9314
475fb78f
AS
9315 for (i = 0; i < insn_cnt; i++) {
9316 if (insn_state[i] != EXPLORED) {
61bd5218 9317 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
9318 ret = -EINVAL;
9319 goto err_free;
9320 }
9321 }
9322 ret = 0; /* cfg looks good */
9323
9324err_free:
71dde681
AS
9325 kvfree(insn_state);
9326 kvfree(insn_stack);
7df737e9 9327 env->cfg.insn_state = env->cfg.insn_stack = NULL;
475fb78f
AS
9328 return ret;
9329}
9330
09b28d76
AS
9331static int check_abnormal_return(struct bpf_verifier_env *env)
9332{
9333 int i;
9334
9335 for (i = 1; i < env->subprog_cnt; i++) {
9336 if (env->subprog_info[i].has_ld_abs) {
9337 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9338 return -EINVAL;
9339 }
9340 if (env->subprog_info[i].has_tail_call) {
9341 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9342 return -EINVAL;
9343 }
9344 }
9345 return 0;
9346}
9347
838e9690
YS
9348/* The minimum supported BTF func info size */
9349#define MIN_BPF_FUNCINFO_SIZE 8
9350#define MAX_FUNCINFO_REC_SIZE 252
9351
c454a46b
MKL
9352static int check_btf_func(struct bpf_verifier_env *env,
9353 const union bpf_attr *attr,
9354 union bpf_attr __user *uattr)
838e9690 9355{
09b28d76 9356 const struct btf_type *type, *func_proto, *ret_type;
d0b2818e 9357 u32 i, nfuncs, urec_size, min_size;
838e9690 9358 u32 krec_size = sizeof(struct bpf_func_info);
c454a46b 9359 struct bpf_func_info *krecord;
8c1b6e69 9360 struct bpf_func_info_aux *info_aux = NULL;
c454a46b
MKL
9361 struct bpf_prog *prog;
9362 const struct btf *btf;
838e9690 9363 void __user *urecord;
d0b2818e 9364 u32 prev_offset = 0;
09b28d76 9365 bool scalar_return;
e7ed83d6 9366 int ret = -ENOMEM;
838e9690
YS
9367
9368 nfuncs = attr->func_info_cnt;
09b28d76
AS
9369 if (!nfuncs) {
9370 if (check_abnormal_return(env))
9371 return -EINVAL;
838e9690 9372 return 0;
09b28d76 9373 }
838e9690
YS
9374
9375 if (nfuncs != env->subprog_cnt) {
9376 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9377 return -EINVAL;
9378 }
9379
9380 urec_size = attr->func_info_rec_size;
9381 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9382 urec_size > MAX_FUNCINFO_REC_SIZE ||
9383 urec_size % sizeof(u32)) {
9384 verbose(env, "invalid func info rec size %u\n", urec_size);
9385 return -EINVAL;
9386 }
9387
c454a46b
MKL
9388 prog = env->prog;
9389 btf = prog->aux->btf;
838e9690
YS
9390
9391 urecord = u64_to_user_ptr(attr->func_info);
9392 min_size = min_t(u32, krec_size, urec_size);
9393
ba64e7d8 9394 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
c454a46b
MKL
9395 if (!krecord)
9396 return -ENOMEM;
8c1b6e69
AS
9397 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9398 if (!info_aux)
9399 goto err_free;
ba64e7d8 9400
838e9690
YS
9401 for (i = 0; i < nfuncs; i++) {
9402 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9403 if (ret) {
9404 if (ret == -E2BIG) {
9405 verbose(env, "nonzero tailing record in func info");
9406 /* set the size kernel expects so loader can zero
9407 * out the rest of the record.
9408 */
9409 if (put_user(min_size, &uattr->func_info_rec_size))
9410 ret = -EFAULT;
9411 }
c454a46b 9412 goto err_free;
838e9690
YS
9413 }
9414
ba64e7d8 9415 if (copy_from_user(&krecord[i], urecord, min_size)) {
838e9690 9416 ret = -EFAULT;
c454a46b 9417 goto err_free;
838e9690
YS
9418 }
9419
d30d42e0 9420 /* check insn_off */
09b28d76 9421 ret = -EINVAL;
838e9690 9422 if (i == 0) {
d30d42e0 9423 if (krecord[i].insn_off) {
838e9690 9424 verbose(env,
d30d42e0
MKL
9425 "nonzero insn_off %u for the first func info record",
9426 krecord[i].insn_off);
c454a46b 9427 goto err_free;
838e9690 9428 }
d30d42e0 9429 } else if (krecord[i].insn_off <= prev_offset) {
838e9690
YS
9430 verbose(env,
9431 "same or smaller insn offset (%u) than previous func info record (%u)",
d30d42e0 9432 krecord[i].insn_off, prev_offset);
c454a46b 9433 goto err_free;
838e9690
YS
9434 }
9435
d30d42e0 9436 if (env->subprog_info[i].start != krecord[i].insn_off) {
838e9690 9437 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
c454a46b 9438 goto err_free;
838e9690
YS
9439 }
9440
9441 /* check type_id */
ba64e7d8 9442 type = btf_type_by_id(btf, krecord[i].type_id);
51c39bb1 9443 if (!type || !btf_type_is_func(type)) {
838e9690 9444 verbose(env, "invalid type id %d in func info",
ba64e7d8 9445 krecord[i].type_id);
c454a46b 9446 goto err_free;
838e9690 9447 }
51c39bb1 9448 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
09b28d76
AS
9449
9450 func_proto = btf_type_by_id(btf, type->type);
9451 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9452 /* btf_func_check() already verified it during BTF load */
9453 goto err_free;
9454 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9455 scalar_return =
9456 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9457 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9458 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9459 goto err_free;
9460 }
9461 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9462 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9463 goto err_free;
9464 }
9465
d30d42e0 9466 prev_offset = krecord[i].insn_off;
838e9690
YS
9467 urecord += urec_size;
9468 }
9469
ba64e7d8
YS
9470 prog->aux->func_info = krecord;
9471 prog->aux->func_info_cnt = nfuncs;
8c1b6e69 9472 prog->aux->func_info_aux = info_aux;
838e9690
YS
9473 return 0;
9474
c454a46b 9475err_free:
ba64e7d8 9476 kvfree(krecord);
8c1b6e69 9477 kfree(info_aux);
838e9690
YS
9478 return ret;
9479}
9480
ba64e7d8
YS
9481static void adjust_btf_func(struct bpf_verifier_env *env)
9482{
8c1b6e69 9483 struct bpf_prog_aux *aux = env->prog->aux;
ba64e7d8
YS
9484 int i;
9485
8c1b6e69 9486 if (!aux->func_info)
ba64e7d8
YS
9487 return;
9488
9489 for (i = 0; i < env->subprog_cnt; i++)
8c1b6e69 9490 aux->func_info[i].insn_off = env->subprog_info[i].start;
ba64e7d8
YS
9491}
9492
c454a46b
MKL
9493#define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
9494 sizeof(((struct bpf_line_info *)(0))->line_col))
9495#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
9496
9497static int check_btf_line(struct bpf_verifier_env *env,
9498 const union bpf_attr *attr,
9499 union bpf_attr __user *uattr)
9500{
9501 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9502 struct bpf_subprog_info *sub;
9503 struct bpf_line_info *linfo;
9504 struct bpf_prog *prog;
9505 const struct btf *btf;
9506 void __user *ulinfo;
9507 int err;
9508
9509 nr_linfo = attr->line_info_cnt;
9510 if (!nr_linfo)
9511 return 0;
9512
9513 rec_size = attr->line_info_rec_size;
9514 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9515 rec_size > MAX_LINEINFO_REC_SIZE ||
9516 rec_size & (sizeof(u32) - 1))
9517 return -EINVAL;
9518
9519 /* Need to zero it in case the userspace may
9520 * pass in a smaller bpf_line_info object.
9521 */
9522 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9523 GFP_KERNEL | __GFP_NOWARN);
9524 if (!linfo)
9525 return -ENOMEM;
9526
9527 prog = env->prog;
9528 btf = prog->aux->btf;
9529
9530 s = 0;
9531 sub = env->subprog_info;
9532 ulinfo = u64_to_user_ptr(attr->line_info);
9533 expected_size = sizeof(struct bpf_line_info);
9534 ncopy = min_t(u32, expected_size, rec_size);
9535 for (i = 0; i < nr_linfo; i++) {
9536 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9537 if (err) {
9538 if (err == -E2BIG) {
9539 verbose(env, "nonzero tailing record in line_info");
9540 if (put_user(expected_size,
9541 &uattr->line_info_rec_size))
9542 err = -EFAULT;
9543 }
9544 goto err_free;
9545 }
9546
9547 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9548 err = -EFAULT;
9549 goto err_free;
9550 }
9551
9552 /*
9553 * Check insn_off to ensure
9554 * 1) strictly increasing AND
9555 * 2) bounded by prog->len
9556 *
9557 * The linfo[0].insn_off == 0 check logically falls into
9558 * the later "missing bpf_line_info for func..." case
9559 * because the first linfo[0].insn_off must be the
9560 * first sub also and the first sub must have
9561 * subprog_info[0].start == 0.
9562 */
9563 if ((i && linfo[i].insn_off <= prev_offset) ||
9564 linfo[i].insn_off >= prog->len) {
9565 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9566 i, linfo[i].insn_off, prev_offset,
9567 prog->len);
9568 err = -EINVAL;
9569 goto err_free;
9570 }
9571
fdbaa0be
MKL
9572 if (!prog->insnsi[linfo[i].insn_off].code) {
9573 verbose(env,
9574 "Invalid insn code at line_info[%u].insn_off\n",
9575 i);
9576 err = -EINVAL;
9577 goto err_free;
9578 }
9579
23127b33
MKL
9580 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9581 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
c454a46b
MKL
9582 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9583 err = -EINVAL;
9584 goto err_free;
9585 }
9586
9587 if (s != env->subprog_cnt) {
9588 if (linfo[i].insn_off == sub[s].start) {
9589 sub[s].linfo_idx = i;
9590 s++;
9591 } else if (sub[s].start < linfo[i].insn_off) {
9592 verbose(env, "missing bpf_line_info for func#%u\n", s);
9593 err = -EINVAL;
9594 goto err_free;
9595 }
9596 }
9597
9598 prev_offset = linfo[i].insn_off;
9599 ulinfo += rec_size;
9600 }
9601
9602 if (s != env->subprog_cnt) {
9603 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9604 env->subprog_cnt - s, s);
9605 err = -EINVAL;
9606 goto err_free;
9607 }
9608
9609 prog->aux->linfo = linfo;
9610 prog->aux->nr_linfo = nr_linfo;
9611
9612 return 0;
9613
9614err_free:
9615 kvfree(linfo);
9616 return err;
9617}
9618
9619static int check_btf_info(struct bpf_verifier_env *env,
9620 const union bpf_attr *attr,
9621 union bpf_attr __user *uattr)
9622{
9623 struct btf *btf;
9624 int err;
9625
09b28d76
AS
9626 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9627 if (check_abnormal_return(env))
9628 return -EINVAL;
c454a46b 9629 return 0;
09b28d76 9630 }
c454a46b
MKL
9631
9632 btf = btf_get_by_fd(attr->prog_btf_fd);
9633 if (IS_ERR(btf))
9634 return PTR_ERR(btf);
350a5c4d
AS
9635 if (btf_is_kernel(btf)) {
9636 btf_put(btf);
9637 return -EACCES;
9638 }
c454a46b
MKL
9639 env->prog->aux->btf = btf;
9640
9641 err = check_btf_func(env, attr, uattr);
9642 if (err)
9643 return err;
9644
9645 err = check_btf_line(env, attr, uattr);
9646 if (err)
9647 return err;
9648
9649 return 0;
ba64e7d8
YS
9650}
9651
f1174f77
EC
9652/* check %cur's range satisfies %old's */
9653static bool range_within(struct bpf_reg_state *old,
9654 struct bpf_reg_state *cur)
9655{
b03c9f9f
EC
9656 return old->umin_value <= cur->umin_value &&
9657 old->umax_value >= cur->umax_value &&
9658 old->smin_value <= cur->smin_value &&
fd675184
DB
9659 old->smax_value >= cur->smax_value &&
9660 old->u32_min_value <= cur->u32_min_value &&
9661 old->u32_max_value >= cur->u32_max_value &&
9662 old->s32_min_value <= cur->s32_min_value &&
9663 old->s32_max_value >= cur->s32_max_value;
f1174f77
EC
9664}
9665
9666/* Maximum number of register states that can exist at once */
9667#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9668struct idpair {
9669 u32 old;
9670 u32 cur;
9671};
9672
9673/* If in the old state two registers had the same id, then they need to have
9674 * the same id in the new state as well. But that id could be different from
9675 * the old state, so we need to track the mapping from old to new ids.
9676 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9677 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9678 * regs with a different old id could still have new id 9, we don't care about
9679 * that.
9680 * So we look through our idmap to see if this old id has been seen before. If
9681 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 9682 */
f1174f77 9683static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 9684{
f1174f77 9685 unsigned int i;
969bf05e 9686
f1174f77
EC
9687 for (i = 0; i < ID_MAP_SIZE; i++) {
9688 if (!idmap[i].old) {
9689 /* Reached an empty slot; haven't seen this id before */
9690 idmap[i].old = old_id;
9691 idmap[i].cur = cur_id;
9692 return true;
9693 }
9694 if (idmap[i].old == old_id)
9695 return idmap[i].cur == cur_id;
9696 }
9697 /* We ran out of idmap slots, which should be impossible */
9698 WARN_ON_ONCE(1);
9699 return false;
9700}
9701
9242b5f5
AS
9702static void clean_func_state(struct bpf_verifier_env *env,
9703 struct bpf_func_state *st)
9704{
9705 enum bpf_reg_liveness live;
9706 int i, j;
9707
9708 for (i = 0; i < BPF_REG_FP; i++) {
9709 live = st->regs[i].live;
9710 /* liveness must not touch this register anymore */
9711 st->regs[i].live |= REG_LIVE_DONE;
9712 if (!(live & REG_LIVE_READ))
9713 /* since the register is unused, clear its state
9714 * to make further comparison simpler
9715 */
f54c7898 9716 __mark_reg_not_init(env, &st->regs[i]);
9242b5f5
AS
9717 }
9718
9719 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9720 live = st->stack[i].spilled_ptr.live;
9721 /* liveness must not touch this stack slot anymore */
9722 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9723 if (!(live & REG_LIVE_READ)) {
f54c7898 9724 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9242b5f5
AS
9725 for (j = 0; j < BPF_REG_SIZE; j++)
9726 st->stack[i].slot_type[j] = STACK_INVALID;
9727 }
9728 }
9729}
9730
9731static void clean_verifier_state(struct bpf_verifier_env *env,
9732 struct bpf_verifier_state *st)
9733{
9734 int i;
9735
9736 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9737 /* all regs in this state in all frames were already marked */
9738 return;
9739
9740 for (i = 0; i <= st->curframe; i++)
9741 clean_func_state(env, st->frame[i]);
9742}
9743
9744/* the parentage chains form a tree.
9745 * the verifier states are added to state lists at given insn and
9746 * pushed into state stack for future exploration.
9747 * when the verifier reaches bpf_exit insn some of the verifer states
9748 * stored in the state lists have their final liveness state already,
9749 * but a lot of states will get revised from liveness point of view when
9750 * the verifier explores other branches.
9751 * Example:
9752 * 1: r0 = 1
9753 * 2: if r1 == 100 goto pc+1
9754 * 3: r0 = 2
9755 * 4: exit
9756 * when the verifier reaches exit insn the register r0 in the state list of
9757 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9758 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9759 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9760 *
9761 * Since the verifier pushes the branch states as it sees them while exploring
9762 * the program the condition of walking the branch instruction for the second
9763 * time means that all states below this branch were already explored and
9764 * their final liveness markes are already propagated.
9765 * Hence when the verifier completes the search of state list in is_state_visited()
9766 * we can call this clean_live_states() function to mark all liveness states
9767 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9768 * will not be used.
9769 * This function also clears the registers and stack for states that !READ
9770 * to simplify state merging.
9771 *
9772 * Important note here that walking the same branch instruction in the callee
9773 * doesn't meant that the states are DONE. The verifier has to compare
9774 * the callsites
9775 */
9776static void clean_live_states(struct bpf_verifier_env *env, int insn,
9777 struct bpf_verifier_state *cur)
9778{
9779 struct bpf_verifier_state_list *sl;
9780 int i;
9781
5d839021 9782 sl = *explored_state(env, insn);
a8f500af 9783 while (sl) {
2589726d
AS
9784 if (sl->state.branches)
9785 goto next;
dc2a4ebc
AS
9786 if (sl->state.insn_idx != insn ||
9787 sl->state.curframe != cur->curframe)
9242b5f5
AS
9788 goto next;
9789 for (i = 0; i <= cur->curframe; i++)
9790 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9791 goto next;
9792 clean_verifier_state(env, &sl->state);
9793next:
9794 sl = sl->next;
9795 }
9796}
9797
f1174f77 9798/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
9799static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9800 struct idpair *idmap)
f1174f77 9801{
f4d7e40a
AS
9802 bool equal;
9803
dc503a8a
EC
9804 if (!(rold->live & REG_LIVE_READ))
9805 /* explored state didn't use this */
9806 return true;
9807
679c782d 9808 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
f4d7e40a
AS
9809
9810 if (rold->type == PTR_TO_STACK)
9811 /* two stack pointers are equal only if they're pointing to
9812 * the same stack frame, since fp-8 in foo != fp-8 in bar
9813 */
9814 return equal && rold->frameno == rcur->frameno;
9815
9816 if (equal)
969bf05e
AS
9817 return true;
9818
f1174f77
EC
9819 if (rold->type == NOT_INIT)
9820 /* explored state can't have used this */
969bf05e 9821 return true;
f1174f77
EC
9822 if (rcur->type == NOT_INIT)
9823 return false;
9824 switch (rold->type) {
9825 case SCALAR_VALUE:
9826 if (rcur->type == SCALAR_VALUE) {
b5dc0163
AS
9827 if (!rold->precise && !rcur->precise)
9828 return true;
f1174f77
EC
9829 /* new val must satisfy old val knowledge */
9830 return range_within(rold, rcur) &&
9831 tnum_in(rold->var_off, rcur->var_off);
9832 } else {
179d1c56
JH
9833 /* We're trying to use a pointer in place of a scalar.
9834 * Even if the scalar was unbounded, this could lead to
9835 * pointer leaks because scalars are allowed to leak
9836 * while pointers are not. We could make this safe in
9837 * special cases if root is calling us, but it's
9838 * probably not worth the hassle.
f1174f77 9839 */
179d1c56 9840 return false;
f1174f77 9841 }
69c087ba 9842 case PTR_TO_MAP_KEY:
f1174f77 9843 case PTR_TO_MAP_VALUE:
1b688a19
EC
9844 /* If the new min/max/var_off satisfy the old ones and
9845 * everything else matches, we are OK.
d83525ca
AS
9846 * 'id' is not compared, since it's only used for maps with
9847 * bpf_spin_lock inside map element and in such cases if
9848 * the rest of the prog is valid for one map element then
9849 * it's valid for all map elements regardless of the key
9850 * used in bpf_map_lookup()
1b688a19
EC
9851 */
9852 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9853 range_within(rold, rcur) &&
9854 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
9855 case PTR_TO_MAP_VALUE_OR_NULL:
9856 /* a PTR_TO_MAP_VALUE could be safe to use as a
9857 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9858 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9859 * checked, doing so could have affected others with the same
9860 * id, and we can't check for that because we lost the id when
9861 * we converted to a PTR_TO_MAP_VALUE.
9862 */
9863 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9864 return false;
9865 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9866 return false;
9867 /* Check our ids match any regs they're supposed to */
9868 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 9869 case PTR_TO_PACKET_META:
f1174f77 9870 case PTR_TO_PACKET:
de8f3a83 9871 if (rcur->type != rold->type)
f1174f77
EC
9872 return false;
9873 /* We must have at least as much range as the old ptr
9874 * did, so that any accesses which were safe before are
9875 * still safe. This is true even if old range < old off,
9876 * since someone could have accessed through (ptr - k), or
9877 * even done ptr -= k in a register, to get a safe access.
9878 */
9879 if (rold->range > rcur->range)
9880 return false;
9881 /* If the offsets don't match, we can't trust our alignment;
9882 * nor can we be sure that we won't fall out of range.
9883 */
9884 if (rold->off != rcur->off)
9885 return false;
9886 /* id relations must be preserved */
9887 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9888 return false;
9889 /* new val must satisfy old val knowledge */
9890 return range_within(rold, rcur) &&
9891 tnum_in(rold->var_off, rcur->var_off);
9892 case PTR_TO_CTX:
9893 case CONST_PTR_TO_MAP:
f1174f77 9894 case PTR_TO_PACKET_END:
d58e468b 9895 case PTR_TO_FLOW_KEYS:
c64b7983
JS
9896 case PTR_TO_SOCKET:
9897 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
9898 case PTR_TO_SOCK_COMMON:
9899 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
9900 case PTR_TO_TCP_SOCK:
9901 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 9902 case PTR_TO_XDP_SOCK:
f1174f77
EC
9903 /* Only valid matches are exact, which memcmp() above
9904 * would have accepted
9905 */
9906 default:
9907 /* Don't know what's going on, just say it's not safe */
9908 return false;
9909 }
969bf05e 9910
f1174f77
EC
9911 /* Shouldn't get here; if we do, say it's not safe */
9912 WARN_ON_ONCE(1);
969bf05e
AS
9913 return false;
9914}
9915
f4d7e40a
AS
9916static bool stacksafe(struct bpf_func_state *old,
9917 struct bpf_func_state *cur,
638f5b90
AS
9918 struct idpair *idmap)
9919{
9920 int i, spi;
9921
638f5b90
AS
9922 /* walk slots of the explored stack and ignore any additional
9923 * slots in the current stack, since explored(safe) state
9924 * didn't use them
9925 */
9926 for (i = 0; i < old->allocated_stack; i++) {
9927 spi = i / BPF_REG_SIZE;
9928
b233920c
AS
9929 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9930 i += BPF_REG_SIZE - 1;
cc2b14d5 9931 /* explored state didn't use this */
fd05e57b 9932 continue;
b233920c 9933 }
cc2b14d5 9934
638f5b90
AS
9935 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9936 continue;
19e2dbb7
AS
9937
9938 /* explored stack has more populated slots than current stack
9939 * and these slots were used
9940 */
9941 if (i >= cur->allocated_stack)
9942 return false;
9943
cc2b14d5
AS
9944 /* if old state was safe with misc data in the stack
9945 * it will be safe with zero-initialized stack.
9946 * The opposite is not true
9947 */
9948 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9949 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9950 continue;
638f5b90
AS
9951 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9952 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9953 /* Ex: old explored (safe) state has STACK_SPILL in
b8c1a309 9954 * this stack slot, but current has STACK_MISC ->
638f5b90
AS
9955 * this verifier states are not equivalent,
9956 * return false to continue verification of this path
9957 */
9958 return false;
9959 if (i % BPF_REG_SIZE)
9960 continue;
9961 if (old->stack[spi].slot_type[0] != STACK_SPILL)
9962 continue;
9963 if (!regsafe(&old->stack[spi].spilled_ptr,
9964 &cur->stack[spi].spilled_ptr,
9965 idmap))
9966 /* when explored and current stack slot are both storing
9967 * spilled registers, check that stored pointers types
9968 * are the same as well.
9969 * Ex: explored safe path could have stored
9970 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9971 * but current path has stored:
9972 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9973 * such verifier states are not equivalent.
9974 * return false to continue verification of this path
9975 */
9976 return false;
9977 }
9978 return true;
9979}
9980
fd978bf7
JS
9981static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9982{
9983 if (old->acquired_refs != cur->acquired_refs)
9984 return false;
9985 return !memcmp(old->refs, cur->refs,
9986 sizeof(*old->refs) * old->acquired_refs);
9987}
9988
f1bca824
AS
9989/* compare two verifier states
9990 *
9991 * all states stored in state_list are known to be valid, since
9992 * verifier reached 'bpf_exit' instruction through them
9993 *
9994 * this function is called when verifier exploring different branches of
9995 * execution popped from the state stack. If it sees an old state that has
9996 * more strict register state and more strict stack state then this execution
9997 * branch doesn't need to be explored further, since verifier already
9998 * concluded that more strict state leads to valid finish.
9999 *
10000 * Therefore two states are equivalent if register state is more conservative
10001 * and explored stack state is more conservative than the current one.
10002 * Example:
10003 * explored current
10004 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10005 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10006 *
10007 * In other words if current stack state (one being explored) has more
10008 * valid slots than old one that already passed validation, it means
10009 * the verifier can stop exploring and conclude that current state is valid too
10010 *
10011 * Similarly with registers. If explored state has register type as invalid
10012 * whereas register type in current state is meaningful, it means that
10013 * the current state will reach 'bpf_exit' instruction safely
10014 */
f4d7e40a
AS
10015static bool func_states_equal(struct bpf_func_state *old,
10016 struct bpf_func_state *cur)
f1bca824 10017{
f1174f77
EC
10018 struct idpair *idmap;
10019 bool ret = false;
f1bca824
AS
10020 int i;
10021
f1174f77
EC
10022 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
10023 /* If we failed to allocate the idmap, just say it's not safe */
10024 if (!idmap)
1a0dc1ac 10025 return false;
f1174f77
EC
10026
10027 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 10028 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 10029 goto out_free;
f1bca824
AS
10030 }
10031
638f5b90
AS
10032 if (!stacksafe(old, cur, idmap))
10033 goto out_free;
fd978bf7
JS
10034
10035 if (!refsafe(old, cur))
10036 goto out_free;
f1174f77
EC
10037 ret = true;
10038out_free:
10039 kfree(idmap);
10040 return ret;
f1bca824
AS
10041}
10042
f4d7e40a
AS
10043static bool states_equal(struct bpf_verifier_env *env,
10044 struct bpf_verifier_state *old,
10045 struct bpf_verifier_state *cur)
10046{
10047 int i;
10048
10049 if (old->curframe != cur->curframe)
10050 return false;
10051
979d63d5
DB
10052 /* Verification state from speculative execution simulation
10053 * must never prune a non-speculative execution one.
10054 */
10055 if (old->speculative && !cur->speculative)
10056 return false;
10057
d83525ca
AS
10058 if (old->active_spin_lock != cur->active_spin_lock)
10059 return false;
10060
f4d7e40a
AS
10061 /* for states to be equal callsites have to be the same
10062 * and all frame states need to be equivalent
10063 */
10064 for (i = 0; i <= old->curframe; i++) {
10065 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10066 return false;
10067 if (!func_states_equal(old->frame[i], cur->frame[i]))
10068 return false;
10069 }
10070 return true;
10071}
10072
5327ed3d
JW
10073/* Return 0 if no propagation happened. Return negative error code if error
10074 * happened. Otherwise, return the propagated bit.
10075 */
55e7f3b5
JW
10076static int propagate_liveness_reg(struct bpf_verifier_env *env,
10077 struct bpf_reg_state *reg,
10078 struct bpf_reg_state *parent_reg)
10079{
5327ed3d
JW
10080 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10081 u8 flag = reg->live & REG_LIVE_READ;
55e7f3b5
JW
10082 int err;
10083
5327ed3d
JW
10084 /* When comes here, read flags of PARENT_REG or REG could be any of
10085 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10086 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10087 */
10088 if (parent_flag == REG_LIVE_READ64 ||
10089 /* Or if there is no read flag from REG. */
10090 !flag ||
10091 /* Or if the read flag from REG is the same as PARENT_REG. */
10092 parent_flag == flag)
55e7f3b5
JW
10093 return 0;
10094
5327ed3d 10095 err = mark_reg_read(env, reg, parent_reg, flag);
55e7f3b5
JW
10096 if (err)
10097 return err;
10098
5327ed3d 10099 return flag;
55e7f3b5
JW
10100}
10101
8e9cd9ce 10102/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
10103 * straight-line code between a state and its parent. When we arrive at an
10104 * equivalent state (jump target or such) we didn't arrive by the straight-line
10105 * code, so read marks in the state must propagate to the parent regardless
10106 * of the state's write marks. That's what 'parent == state->parent' comparison
679c782d 10107 * in mark_reg_read() is for.
8e9cd9ce 10108 */
f4d7e40a
AS
10109static int propagate_liveness(struct bpf_verifier_env *env,
10110 const struct bpf_verifier_state *vstate,
10111 struct bpf_verifier_state *vparent)
dc503a8a 10112{
3f8cafa4 10113 struct bpf_reg_state *state_reg, *parent_reg;
f4d7e40a 10114 struct bpf_func_state *state, *parent;
3f8cafa4 10115 int i, frame, err = 0;
dc503a8a 10116
f4d7e40a
AS
10117 if (vparent->curframe != vstate->curframe) {
10118 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10119 vparent->curframe, vstate->curframe);
10120 return -EFAULT;
10121 }
dc503a8a
EC
10122 /* Propagate read liveness of registers... */
10123 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
83d16312 10124 for (frame = 0; frame <= vstate->curframe; frame++) {
3f8cafa4
JW
10125 parent = vparent->frame[frame];
10126 state = vstate->frame[frame];
10127 parent_reg = parent->regs;
10128 state_reg = state->regs;
83d16312
JK
10129 /* We don't need to worry about FP liveness, it's read-only */
10130 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
55e7f3b5
JW
10131 err = propagate_liveness_reg(env, &state_reg[i],
10132 &parent_reg[i]);
5327ed3d 10133 if (err < 0)
3f8cafa4 10134 return err;
5327ed3d
JW
10135 if (err == REG_LIVE_READ64)
10136 mark_insn_zext(env, &parent_reg[i]);
dc503a8a 10137 }
f4d7e40a 10138
1b04aee7 10139 /* Propagate stack slots. */
f4d7e40a
AS
10140 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10141 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3f8cafa4
JW
10142 parent_reg = &parent->stack[i].spilled_ptr;
10143 state_reg = &state->stack[i].spilled_ptr;
55e7f3b5
JW
10144 err = propagate_liveness_reg(env, state_reg,
10145 parent_reg);
5327ed3d 10146 if (err < 0)
3f8cafa4 10147 return err;
dc503a8a
EC
10148 }
10149 }
5327ed3d 10150 return 0;
dc503a8a
EC
10151}
10152
a3ce685d
AS
10153/* find precise scalars in the previous equivalent state and
10154 * propagate them into the current state
10155 */
10156static int propagate_precision(struct bpf_verifier_env *env,
10157 const struct bpf_verifier_state *old)
10158{
10159 struct bpf_reg_state *state_reg;
10160 struct bpf_func_state *state;
10161 int i, err = 0;
10162
10163 state = old->frame[old->curframe];
10164 state_reg = state->regs;
10165 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10166 if (state_reg->type != SCALAR_VALUE ||
10167 !state_reg->precise)
10168 continue;
10169 if (env->log.level & BPF_LOG_LEVEL2)
10170 verbose(env, "propagating r%d\n", i);
10171 err = mark_chain_precision(env, i);
10172 if (err < 0)
10173 return err;
10174 }
10175
10176 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10177 if (state->stack[i].slot_type[0] != STACK_SPILL)
10178 continue;
10179 state_reg = &state->stack[i].spilled_ptr;
10180 if (state_reg->type != SCALAR_VALUE ||
10181 !state_reg->precise)
10182 continue;
10183 if (env->log.level & BPF_LOG_LEVEL2)
10184 verbose(env, "propagating fp%d\n",
10185 (-i - 1) * BPF_REG_SIZE);
10186 err = mark_chain_precision_stack(env, i);
10187 if (err < 0)
10188 return err;
10189 }
10190 return 0;
10191}
10192
2589726d
AS
10193static bool states_maybe_looping(struct bpf_verifier_state *old,
10194 struct bpf_verifier_state *cur)
10195{
10196 struct bpf_func_state *fold, *fcur;
10197 int i, fr = cur->curframe;
10198
10199 if (old->curframe != fr)
10200 return false;
10201
10202 fold = old->frame[fr];
10203 fcur = cur->frame[fr];
10204 for (i = 0; i < MAX_BPF_REG; i++)
10205 if (memcmp(&fold->regs[i], &fcur->regs[i],
10206 offsetof(struct bpf_reg_state, parent)))
10207 return false;
10208 return true;
10209}
10210
10211
58e2af8b 10212static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 10213{
58e2af8b 10214 struct bpf_verifier_state_list *new_sl;
9f4686c4 10215 struct bpf_verifier_state_list *sl, **pprev;
679c782d 10216 struct bpf_verifier_state *cur = env->cur_state, *new;
ceefbc96 10217 int i, j, err, states_cnt = 0;
10d274e8 10218 bool add_new_state = env->test_state_freq ? true : false;
f1bca824 10219
b5dc0163 10220 cur->last_insn_idx = env->prev_insn_idx;
a8f500af 10221 if (!env->insn_aux_data[insn_idx].prune_point)
f1bca824
AS
10222 /* this 'insn_idx' instruction wasn't marked, so we will not
10223 * be doing state search here
10224 */
10225 return 0;
10226
2589726d
AS
10227 /* bpf progs typically have pruning point every 4 instructions
10228 * http://vger.kernel.org/bpfconf2019.html#session-1
10229 * Do not add new state for future pruning if the verifier hasn't seen
10230 * at least 2 jumps and at least 8 instructions.
10231 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10232 * In tests that amounts to up to 50% reduction into total verifier
10233 * memory consumption and 20% verifier time speedup.
10234 */
10235 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10236 env->insn_processed - env->prev_insn_processed >= 8)
10237 add_new_state = true;
10238
a8f500af
AS
10239 pprev = explored_state(env, insn_idx);
10240 sl = *pprev;
10241
9242b5f5
AS
10242 clean_live_states(env, insn_idx, cur);
10243
a8f500af 10244 while (sl) {
dc2a4ebc
AS
10245 states_cnt++;
10246 if (sl->state.insn_idx != insn_idx)
10247 goto next;
2589726d
AS
10248 if (sl->state.branches) {
10249 if (states_maybe_looping(&sl->state, cur) &&
10250 states_equal(env, &sl->state, cur)) {
10251 verbose_linfo(env, insn_idx, "; ");
10252 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10253 return -EINVAL;
10254 }
10255 /* if the verifier is processing a loop, avoid adding new state
10256 * too often, since different loop iterations have distinct
10257 * states and may not help future pruning.
10258 * This threshold shouldn't be too low to make sure that
10259 * a loop with large bound will be rejected quickly.
10260 * The most abusive loop will be:
10261 * r1 += 1
10262 * if r1 < 1000000 goto pc-2
10263 * 1M insn_procssed limit / 100 == 10k peak states.
10264 * This threshold shouldn't be too high either, since states
10265 * at the end of the loop are likely to be useful in pruning.
10266 */
10267 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10268 env->insn_processed - env->prev_insn_processed < 100)
10269 add_new_state = false;
10270 goto miss;
10271 }
638f5b90 10272 if (states_equal(env, &sl->state, cur)) {
9f4686c4 10273 sl->hit_cnt++;
f1bca824 10274 /* reached equivalent register/stack state,
dc503a8a
EC
10275 * prune the search.
10276 * Registers read by the continuation are read by us.
8e9cd9ce
EC
10277 * If we have any write marks in env->cur_state, they
10278 * will prevent corresponding reads in the continuation
10279 * from reaching our parent (an explored_state). Our
10280 * own state will get the read marks recorded, but
10281 * they'll be immediately forgotten as we're pruning
10282 * this state and will pop a new one.
f1bca824 10283 */
f4d7e40a 10284 err = propagate_liveness(env, &sl->state, cur);
a3ce685d
AS
10285
10286 /* if previous state reached the exit with precision and
10287 * current state is equivalent to it (except precsion marks)
10288 * the precision needs to be propagated back in
10289 * the current state.
10290 */
10291 err = err ? : push_jmp_history(env, cur);
10292 err = err ? : propagate_precision(env, &sl->state);
f4d7e40a
AS
10293 if (err)
10294 return err;
f1bca824 10295 return 1;
dc503a8a 10296 }
2589726d
AS
10297miss:
10298 /* when new state is not going to be added do not increase miss count.
10299 * Otherwise several loop iterations will remove the state
10300 * recorded earlier. The goal of these heuristics is to have
10301 * states from some iterations of the loop (some in the beginning
10302 * and some at the end) to help pruning.
10303 */
10304 if (add_new_state)
10305 sl->miss_cnt++;
9f4686c4
AS
10306 /* heuristic to determine whether this state is beneficial
10307 * to keep checking from state equivalence point of view.
10308 * Higher numbers increase max_states_per_insn and verification time,
10309 * but do not meaningfully decrease insn_processed.
10310 */
10311 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10312 /* the state is unlikely to be useful. Remove it to
10313 * speed up verification
10314 */
10315 *pprev = sl->next;
10316 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
2589726d
AS
10317 u32 br = sl->state.branches;
10318
10319 WARN_ONCE(br,
10320 "BUG live_done but branches_to_explore %d\n",
10321 br);
9f4686c4
AS
10322 free_verifier_state(&sl->state, false);
10323 kfree(sl);
10324 env->peak_states--;
10325 } else {
10326 /* cannot free this state, since parentage chain may
10327 * walk it later. Add it for free_list instead to
10328 * be freed at the end of verification
10329 */
10330 sl->next = env->free_list;
10331 env->free_list = sl;
10332 }
10333 sl = *pprev;
10334 continue;
10335 }
dc2a4ebc 10336next:
9f4686c4
AS
10337 pprev = &sl->next;
10338 sl = *pprev;
f1bca824
AS
10339 }
10340
06ee7115
AS
10341 if (env->max_states_per_insn < states_cnt)
10342 env->max_states_per_insn = states_cnt;
10343
2c78ee89 10344 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
b5dc0163 10345 return push_jmp_history(env, cur);
ceefbc96 10346
2589726d 10347 if (!add_new_state)
b5dc0163 10348 return push_jmp_history(env, cur);
ceefbc96 10349
2589726d
AS
10350 /* There were no equivalent states, remember the current one.
10351 * Technically the current state is not proven to be safe yet,
f4d7e40a 10352 * but it will either reach outer most bpf_exit (which means it's safe)
2589726d 10353 * or it will be rejected. When there are no loops the verifier won't be
f4d7e40a 10354 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
2589726d
AS
10355 * again on the way to bpf_exit.
10356 * When looping the sl->state.branches will be > 0 and this state
10357 * will not be considered for equivalence until branches == 0.
f1bca824 10358 */
638f5b90 10359 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
10360 if (!new_sl)
10361 return -ENOMEM;
06ee7115
AS
10362 env->total_states++;
10363 env->peak_states++;
2589726d
AS
10364 env->prev_jmps_processed = env->jmps_processed;
10365 env->prev_insn_processed = env->insn_processed;
f1bca824
AS
10366
10367 /* add new state to the head of linked list */
679c782d
EC
10368 new = &new_sl->state;
10369 err = copy_verifier_state(new, cur);
1969db47 10370 if (err) {
679c782d 10371 free_verifier_state(new, false);
1969db47
AS
10372 kfree(new_sl);
10373 return err;
10374 }
dc2a4ebc 10375 new->insn_idx = insn_idx;
2589726d
AS
10376 WARN_ONCE(new->branches != 1,
10377 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
b5dc0163 10378
2589726d 10379 cur->parent = new;
b5dc0163
AS
10380 cur->first_insn_idx = insn_idx;
10381 clear_jmp_history(cur);
5d839021
AS
10382 new_sl->next = *explored_state(env, insn_idx);
10383 *explored_state(env, insn_idx) = new_sl;
7640ead9
JK
10384 /* connect new state to parentage chain. Current frame needs all
10385 * registers connected. Only r6 - r9 of the callers are alive (pushed
10386 * to the stack implicitly by JITs) so in callers' frames connect just
10387 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10388 * the state of the call instruction (with WRITTEN set), and r0 comes
10389 * from callee with its full parentage chain, anyway.
10390 */
8e9cd9ce
EC
10391 /* clear write marks in current state: the writes we did are not writes
10392 * our child did, so they don't screen off its reads from us.
10393 * (There are no read marks in current state, because reads always mark
10394 * their parent and current state never has children yet. Only
10395 * explored_states can get read marks.)
10396 */
eea1c227
AS
10397 for (j = 0; j <= cur->curframe; j++) {
10398 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10399 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10400 for (i = 0; i < BPF_REG_FP; i++)
10401 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10402 }
f4d7e40a
AS
10403
10404 /* all stack frames are accessible from callee, clear them all */
10405 for (j = 0; j <= cur->curframe; j++) {
10406 struct bpf_func_state *frame = cur->frame[j];
679c782d 10407 struct bpf_func_state *newframe = new->frame[j];
f4d7e40a 10408
679c782d 10409 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
cc2b14d5 10410 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
679c782d
EC
10411 frame->stack[i].spilled_ptr.parent =
10412 &newframe->stack[i].spilled_ptr;
10413 }
f4d7e40a 10414 }
f1bca824
AS
10415 return 0;
10416}
10417
c64b7983
JS
10418/* Return true if it's OK to have the same insn return a different type. */
10419static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10420{
10421 switch (type) {
10422 case PTR_TO_CTX:
10423 case PTR_TO_SOCKET:
10424 case PTR_TO_SOCKET_OR_NULL:
46f8bc92
MKL
10425 case PTR_TO_SOCK_COMMON:
10426 case PTR_TO_SOCK_COMMON_OR_NULL:
655a51e5
MKL
10427 case PTR_TO_TCP_SOCK:
10428 case PTR_TO_TCP_SOCK_OR_NULL:
fada7fdc 10429 case PTR_TO_XDP_SOCK:
2a02759e 10430 case PTR_TO_BTF_ID:
b121b341 10431 case PTR_TO_BTF_ID_OR_NULL:
c64b7983
JS
10432 return false;
10433 default:
10434 return true;
10435 }
10436}
10437
10438/* If an instruction was previously used with particular pointer types, then we
10439 * need to be careful to avoid cases such as the below, where it may be ok
10440 * for one branch accessing the pointer, but not ok for the other branch:
10441 *
10442 * R1 = sock_ptr
10443 * goto X;
10444 * ...
10445 * R1 = some_other_valid_ptr;
10446 * goto X;
10447 * ...
10448 * R2 = *(u32 *)(R1 + 0);
10449 */
10450static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10451{
10452 return src != prev && (!reg_type_mismatch_ok(src) ||
10453 !reg_type_mismatch_ok(prev));
10454}
10455
58e2af8b 10456static int do_check(struct bpf_verifier_env *env)
17a52670 10457{
6f8a57cc 10458 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1 10459 struct bpf_verifier_state *state = env->cur_state;
17a52670 10460 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 10461 struct bpf_reg_state *regs;
06ee7115 10462 int insn_cnt = env->prog->len;
17a52670 10463 bool do_print_state = false;
b5dc0163 10464 int prev_insn_idx = -1;
17a52670 10465
17a52670
AS
10466 for (;;) {
10467 struct bpf_insn *insn;
10468 u8 class;
10469 int err;
10470
b5dc0163 10471 env->prev_insn_idx = prev_insn_idx;
c08435ec 10472 if (env->insn_idx >= insn_cnt) {
61bd5218 10473 verbose(env, "invalid insn idx %d insn_cnt %d\n",
c08435ec 10474 env->insn_idx, insn_cnt);
17a52670
AS
10475 return -EFAULT;
10476 }
10477
c08435ec 10478 insn = &insns[env->insn_idx];
17a52670
AS
10479 class = BPF_CLASS(insn->code);
10480
06ee7115 10481 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
10482 verbose(env,
10483 "BPF program is too large. Processed %d insn\n",
06ee7115 10484 env->insn_processed);
17a52670
AS
10485 return -E2BIG;
10486 }
10487
c08435ec 10488 err = is_state_visited(env, env->insn_idx);
f1bca824
AS
10489 if (err < 0)
10490 return err;
10491 if (err == 1) {
10492 /* found equivalent state, can prune the search */
06ee7115 10493 if (env->log.level & BPF_LOG_LEVEL) {
f1bca824 10494 if (do_print_state)
979d63d5
DB
10495 verbose(env, "\nfrom %d to %d%s: safe\n",
10496 env->prev_insn_idx, env->insn_idx,
10497 env->cur_state->speculative ?
10498 " (speculative execution)" : "");
f1bca824 10499 else
c08435ec 10500 verbose(env, "%d: safe\n", env->insn_idx);
f1bca824
AS
10501 }
10502 goto process_bpf_exit;
10503 }
10504
c3494801
AS
10505 if (signal_pending(current))
10506 return -EAGAIN;
10507
3c2ce60b
DB
10508 if (need_resched())
10509 cond_resched();
10510
06ee7115
AS
10511 if (env->log.level & BPF_LOG_LEVEL2 ||
10512 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10513 if (env->log.level & BPF_LOG_LEVEL2)
c08435ec 10514 verbose(env, "%d:", env->insn_idx);
c5fc9692 10515 else
979d63d5
DB
10516 verbose(env, "\nfrom %d to %d%s:",
10517 env->prev_insn_idx, env->insn_idx,
10518 env->cur_state->speculative ?
10519 " (speculative execution)" : "");
f4d7e40a 10520 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
10521 do_print_state = false;
10522 }
10523
06ee7115 10524 if (env->log.level & BPF_LOG_LEVEL) {
7105e828 10525 const struct bpf_insn_cbs cbs = {
e6ac2450 10526 .cb_call = disasm_kfunc_name,
7105e828 10527 .cb_print = verbose,
abe08840 10528 .private_data = env,
7105e828
DB
10529 };
10530
c08435ec
DB
10531 verbose_linfo(env, env->insn_idx, "; ");
10532 verbose(env, "%d: ", env->insn_idx);
abe08840 10533 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
10534 }
10535
cae1927c 10536 if (bpf_prog_is_dev_bound(env->prog->aux)) {
c08435ec
DB
10537 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10538 env->prev_insn_idx);
cae1927c
JK
10539 if (err)
10540 return err;
10541 }
13a27dfc 10542
638f5b90 10543 regs = cur_regs(env);
51c39bb1 10544 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
b5dc0163 10545 prev_insn_idx = env->insn_idx;
fd978bf7 10546
17a52670 10547 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 10548 err = check_alu_op(env, insn);
17a52670
AS
10549 if (err)
10550 return err;
10551
10552 } else if (class == BPF_LDX) {
3df126f3 10553 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
10554
10555 /* check for reserved fields is already done */
10556
17a52670 10557 /* check src operand */
dc503a8a 10558 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10559 if (err)
10560 return err;
10561
dc503a8a 10562 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
10563 if (err)
10564 return err;
10565
725f9dcd
AS
10566 src_reg_type = regs[insn->src_reg].type;
10567
17a52670
AS
10568 /* check that memory (src_reg + off) is readable,
10569 * the state of dst_reg will be updated by this func
10570 */
c08435ec
DB
10571 err = check_mem_access(env, env->insn_idx, insn->src_reg,
10572 insn->off, BPF_SIZE(insn->code),
10573 BPF_READ, insn->dst_reg, false);
17a52670
AS
10574 if (err)
10575 return err;
10576
c08435ec 10577 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
10578
10579 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
10580 /* saw a valid insn
10581 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 10582 * save type to validate intersecting paths
9bac3d6d 10583 */
3df126f3 10584 *prev_src_type = src_reg_type;
9bac3d6d 10585
c64b7983 10586 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9bac3d6d
AS
10587 /* ABuser program is trying to use the same insn
10588 * dst_reg = *(u32*) (src_reg + off)
10589 * with different pointer types:
10590 * src_reg == ctx in one branch and
10591 * src_reg == stack|map in some other branch.
10592 * Reject it.
10593 */
61bd5218 10594 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
10595 return -EINVAL;
10596 }
10597
17a52670 10598 } else if (class == BPF_STX) {
3df126f3 10599 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 10600
91c960b0
BJ
10601 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10602 err = check_atomic(env, env->insn_idx, insn);
17a52670
AS
10603 if (err)
10604 return err;
c08435ec 10605 env->insn_idx++;
17a52670
AS
10606 continue;
10607 }
10608
5ca419f2
BJ
10609 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10610 verbose(env, "BPF_STX uses reserved fields\n");
10611 return -EINVAL;
10612 }
10613
17a52670 10614 /* check src1 operand */
dc503a8a 10615 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
10616 if (err)
10617 return err;
10618 /* check src2 operand */
dc503a8a 10619 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10620 if (err)
10621 return err;
10622
d691f9e8
AS
10623 dst_reg_type = regs[insn->dst_reg].type;
10624
17a52670 10625 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
10626 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10627 insn->off, BPF_SIZE(insn->code),
10628 BPF_WRITE, insn->src_reg, false);
17a52670
AS
10629 if (err)
10630 return err;
10631
c08435ec 10632 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
3df126f3
JK
10633
10634 if (*prev_dst_type == NOT_INIT) {
10635 *prev_dst_type = dst_reg_type;
c64b7983 10636 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
61bd5218 10637 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
10638 return -EINVAL;
10639 }
10640
17a52670
AS
10641 } else if (class == BPF_ST) {
10642 if (BPF_MODE(insn->code) != BPF_MEM ||
10643 insn->src_reg != BPF_REG_0) {
61bd5218 10644 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
10645 return -EINVAL;
10646 }
10647 /* check src operand */
dc503a8a 10648 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
10649 if (err)
10650 return err;
10651
f37a8cb8 10652 if (is_ctx_reg(env, insn->dst_reg)) {
9d2be44a 10653 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
2a159c6f
DB
10654 insn->dst_reg,
10655 reg_type_str[reg_state(env, insn->dst_reg)->type]);
f37a8cb8
DB
10656 return -EACCES;
10657 }
10658
17a52670 10659 /* check that memory (dst_reg + off) is writeable */
c08435ec
DB
10660 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10661 insn->off, BPF_SIZE(insn->code),
10662 BPF_WRITE, -1, false);
17a52670
AS
10663 if (err)
10664 return err;
10665
092ed096 10666 } else if (class == BPF_JMP || class == BPF_JMP32) {
17a52670
AS
10667 u8 opcode = BPF_OP(insn->code);
10668
2589726d 10669 env->jmps_processed++;
17a52670
AS
10670 if (opcode == BPF_CALL) {
10671 if (BPF_SRC(insn->code) != BPF_K ||
10672 insn->off != 0 ||
f4d7e40a 10673 (insn->src_reg != BPF_REG_0 &&
e6ac2450
MKL
10674 insn->src_reg != BPF_PSEUDO_CALL &&
10675 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
092ed096
JW
10676 insn->dst_reg != BPF_REG_0 ||
10677 class == BPF_JMP32) {
61bd5218 10678 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
10679 return -EINVAL;
10680 }
10681
d83525ca
AS
10682 if (env->cur_state->active_spin_lock &&
10683 (insn->src_reg == BPF_PSEUDO_CALL ||
10684 insn->imm != BPF_FUNC_spin_unlock)) {
10685 verbose(env, "function calls are not allowed while holding a lock\n");
10686 return -EINVAL;
10687 }
f4d7e40a 10688 if (insn->src_reg == BPF_PSEUDO_CALL)
c08435ec 10689 err = check_func_call(env, insn, &env->insn_idx);
e6ac2450
MKL
10690 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10691 err = check_kfunc_call(env, insn);
f4d7e40a 10692 else
69c087ba 10693 err = check_helper_call(env, insn, &env->insn_idx);
17a52670
AS
10694 if (err)
10695 return err;
17a52670
AS
10696 } else if (opcode == BPF_JA) {
10697 if (BPF_SRC(insn->code) != BPF_K ||
10698 insn->imm != 0 ||
10699 insn->src_reg != BPF_REG_0 ||
092ed096
JW
10700 insn->dst_reg != BPF_REG_0 ||
10701 class == BPF_JMP32) {
61bd5218 10702 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
10703 return -EINVAL;
10704 }
10705
c08435ec 10706 env->insn_idx += insn->off + 1;
17a52670
AS
10707 continue;
10708
10709 } else if (opcode == BPF_EXIT) {
10710 if (BPF_SRC(insn->code) != BPF_K ||
10711 insn->imm != 0 ||
10712 insn->src_reg != BPF_REG_0 ||
092ed096
JW
10713 insn->dst_reg != BPF_REG_0 ||
10714 class == BPF_JMP32) {
61bd5218 10715 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
10716 return -EINVAL;
10717 }
10718
d83525ca
AS
10719 if (env->cur_state->active_spin_lock) {
10720 verbose(env, "bpf_spin_unlock is missing\n");
10721 return -EINVAL;
10722 }
10723
f4d7e40a
AS
10724 if (state->curframe) {
10725 /* exit from nested function */
c08435ec 10726 err = prepare_func_exit(env, &env->insn_idx);
f4d7e40a
AS
10727 if (err)
10728 return err;
10729 do_print_state = true;
10730 continue;
10731 }
10732
fd978bf7
JS
10733 err = check_reference_leak(env);
10734 if (err)
10735 return err;
10736
390ee7e2
AS
10737 err = check_return_code(env);
10738 if (err)
10739 return err;
f1bca824 10740process_bpf_exit:
2589726d 10741 update_branch_counts(env, env->cur_state);
b5dc0163 10742 err = pop_stack(env, &prev_insn_idx,
6f8a57cc 10743 &env->insn_idx, pop_log);
638f5b90
AS
10744 if (err < 0) {
10745 if (err != -ENOENT)
10746 return err;
17a52670
AS
10747 break;
10748 } else {
10749 do_print_state = true;
10750 continue;
10751 }
10752 } else {
c08435ec 10753 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17a52670
AS
10754 if (err)
10755 return err;
10756 }
10757 } else if (class == BPF_LD) {
10758 u8 mode = BPF_MODE(insn->code);
10759
10760 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
10761 err = check_ld_abs(env, insn);
10762 if (err)
10763 return err;
10764
17a52670
AS
10765 } else if (mode == BPF_IMM) {
10766 err = check_ld_imm(env, insn);
10767 if (err)
10768 return err;
10769
c08435ec 10770 env->insn_idx++;
51c39bb1 10771 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
17a52670 10772 } else {
61bd5218 10773 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
10774 return -EINVAL;
10775 }
10776 } else {
61bd5218 10777 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
10778 return -EINVAL;
10779 }
10780
c08435ec 10781 env->insn_idx++;
17a52670
AS
10782 }
10783
10784 return 0;
10785}
10786
541c3bad
AN
10787static int find_btf_percpu_datasec(struct btf *btf)
10788{
10789 const struct btf_type *t;
10790 const char *tname;
10791 int i, n;
10792
10793 /*
10794 * Both vmlinux and module each have their own ".data..percpu"
10795 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10796 * types to look at only module's own BTF types.
10797 */
10798 n = btf_nr_types(btf);
10799 if (btf_is_module(btf))
10800 i = btf_nr_types(btf_vmlinux);
10801 else
10802 i = 1;
10803
10804 for(; i < n; i++) {
10805 t = btf_type_by_id(btf, i);
10806 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10807 continue;
10808
10809 tname = btf_name_by_offset(btf, t->name_off);
10810 if (!strcmp(tname, ".data..percpu"))
10811 return i;
10812 }
10813
10814 return -ENOENT;
10815}
10816
4976b718
HL
10817/* replace pseudo btf_id with kernel symbol address */
10818static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10819 struct bpf_insn *insn,
10820 struct bpf_insn_aux_data *aux)
10821{
eaa6bcb7
HL
10822 const struct btf_var_secinfo *vsi;
10823 const struct btf_type *datasec;
541c3bad 10824 struct btf_mod_pair *btf_mod;
4976b718
HL
10825 const struct btf_type *t;
10826 const char *sym_name;
eaa6bcb7 10827 bool percpu = false;
f16e6313 10828 u32 type, id = insn->imm;
541c3bad 10829 struct btf *btf;
f16e6313 10830 s32 datasec_id;
4976b718 10831 u64 addr;
541c3bad 10832 int i, btf_fd, err;
4976b718 10833
541c3bad
AN
10834 btf_fd = insn[1].imm;
10835 if (btf_fd) {
10836 btf = btf_get_by_fd(btf_fd);
10837 if (IS_ERR(btf)) {
10838 verbose(env, "invalid module BTF object FD specified.\n");
10839 return -EINVAL;
10840 }
10841 } else {
10842 if (!btf_vmlinux) {
10843 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10844 return -EINVAL;
10845 }
10846 btf = btf_vmlinux;
10847 btf_get(btf);
4976b718
HL
10848 }
10849
541c3bad 10850 t = btf_type_by_id(btf, id);
4976b718
HL
10851 if (!t) {
10852 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
541c3bad
AN
10853 err = -ENOENT;
10854 goto err_put;
4976b718
HL
10855 }
10856
10857 if (!btf_type_is_var(t)) {
541c3bad
AN
10858 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10859 err = -EINVAL;
10860 goto err_put;
4976b718
HL
10861 }
10862
541c3bad 10863 sym_name = btf_name_by_offset(btf, t->name_off);
4976b718
HL
10864 addr = kallsyms_lookup_name(sym_name);
10865 if (!addr) {
10866 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10867 sym_name);
541c3bad
AN
10868 err = -ENOENT;
10869 goto err_put;
4976b718
HL
10870 }
10871
541c3bad 10872 datasec_id = find_btf_percpu_datasec(btf);
eaa6bcb7 10873 if (datasec_id > 0) {
541c3bad 10874 datasec = btf_type_by_id(btf, datasec_id);
eaa6bcb7
HL
10875 for_each_vsi(i, datasec, vsi) {
10876 if (vsi->type == id) {
10877 percpu = true;
10878 break;
10879 }
10880 }
10881 }
10882
4976b718
HL
10883 insn[0].imm = (u32)addr;
10884 insn[1].imm = addr >> 32;
10885
10886 type = t->type;
541c3bad 10887 t = btf_type_skip_modifiers(btf, type, NULL);
eaa6bcb7
HL
10888 if (percpu) {
10889 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
541c3bad 10890 aux->btf_var.btf = btf;
eaa6bcb7
HL
10891 aux->btf_var.btf_id = type;
10892 } else if (!btf_type_is_struct(t)) {
4976b718
HL
10893 const struct btf_type *ret;
10894 const char *tname;
10895 u32 tsize;
10896
10897 /* resolve the type size of ksym. */
541c3bad 10898 ret = btf_resolve_size(btf, t, &tsize);
4976b718 10899 if (IS_ERR(ret)) {
541c3bad 10900 tname = btf_name_by_offset(btf, t->name_off);
4976b718
HL
10901 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10902 tname, PTR_ERR(ret));
541c3bad
AN
10903 err = -EINVAL;
10904 goto err_put;
4976b718
HL
10905 }
10906 aux->btf_var.reg_type = PTR_TO_MEM;
10907 aux->btf_var.mem_size = tsize;
10908 } else {
10909 aux->btf_var.reg_type = PTR_TO_BTF_ID;
541c3bad 10910 aux->btf_var.btf = btf;
4976b718
HL
10911 aux->btf_var.btf_id = type;
10912 }
541c3bad
AN
10913
10914 /* check whether we recorded this BTF (and maybe module) already */
10915 for (i = 0; i < env->used_btf_cnt; i++) {
10916 if (env->used_btfs[i].btf == btf) {
10917 btf_put(btf);
10918 return 0;
10919 }
10920 }
10921
10922 if (env->used_btf_cnt >= MAX_USED_BTFS) {
10923 err = -E2BIG;
10924 goto err_put;
10925 }
10926
10927 btf_mod = &env->used_btfs[env->used_btf_cnt];
10928 btf_mod->btf = btf;
10929 btf_mod->module = NULL;
10930
10931 /* if we reference variables from kernel module, bump its refcount */
10932 if (btf_is_module(btf)) {
10933 btf_mod->module = btf_try_get_module(btf);
10934 if (!btf_mod->module) {
10935 err = -ENXIO;
10936 goto err_put;
10937 }
10938 }
10939
10940 env->used_btf_cnt++;
10941
4976b718 10942 return 0;
541c3bad
AN
10943err_put:
10944 btf_put(btf);
10945 return err;
4976b718
HL
10946}
10947
56f668df
MKL
10948static int check_map_prealloc(struct bpf_map *map)
10949{
10950 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
10951 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10952 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
10953 !(map->map_flags & BPF_F_NO_PREALLOC);
10954}
10955
d83525ca
AS
10956static bool is_tracing_prog_type(enum bpf_prog_type type)
10957{
10958 switch (type) {
10959 case BPF_PROG_TYPE_KPROBE:
10960 case BPF_PROG_TYPE_TRACEPOINT:
10961 case BPF_PROG_TYPE_PERF_EVENT:
10962 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10963 return true;
10964 default:
10965 return false;
10966 }
10967}
10968
94dacdbd
TG
10969static bool is_preallocated_map(struct bpf_map *map)
10970{
10971 if (!check_map_prealloc(map))
10972 return false;
10973 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10974 return false;
10975 return true;
10976}
10977
61bd5218
JK
10978static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10979 struct bpf_map *map,
fdc15d38
AS
10980 struct bpf_prog *prog)
10981
10982{
7e40781c 10983 enum bpf_prog_type prog_type = resolve_prog_type(prog);
94dacdbd
TG
10984 /*
10985 * Validate that trace type programs use preallocated hash maps.
10986 *
10987 * For programs attached to PERF events this is mandatory as the
10988 * perf NMI can hit any arbitrary code sequence.
10989 *
10990 * All other trace types using preallocated hash maps are unsafe as
10991 * well because tracepoint or kprobes can be inside locked regions
10992 * of the memory allocator or at a place where a recursion into the
10993 * memory allocator would see inconsistent state.
10994 *
2ed905c5
TG
10995 * On RT enabled kernels run-time allocation of all trace type
10996 * programs is strictly prohibited due to lock type constraints. On
10997 * !RT kernels it is allowed for backwards compatibility reasons for
10998 * now, but warnings are emitted so developers are made aware of
10999 * the unsafety and can fix their programs before this is enforced.
56f668df 11000 */
7e40781c
UP
11001 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11002 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
61bd5218 11003 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
11004 return -EINVAL;
11005 }
2ed905c5
TG
11006 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11007 verbose(env, "trace type programs can only use preallocated hash map\n");
11008 return -EINVAL;
11009 }
94dacdbd
TG
11010 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11011 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
fdc15d38 11012 }
a3884572 11013
9e7a4d98
KS
11014 if (map_value_has_spin_lock(map)) {
11015 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11016 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11017 return -EINVAL;
11018 }
11019
11020 if (is_tracing_prog_type(prog_type)) {
11021 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11022 return -EINVAL;
11023 }
11024
11025 if (prog->aux->sleepable) {
11026 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11027 return -EINVAL;
11028 }
d83525ca
AS
11029 }
11030
a3884572 11031 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
09728266 11032 !bpf_offload_prog_map_match(prog, map)) {
a3884572
JK
11033 verbose(env, "offload device mismatch between prog and map\n");
11034 return -EINVAL;
11035 }
11036
85d33df3
MKL
11037 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11038 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11039 return -EINVAL;
11040 }
11041
1e6c62a8
AS
11042 if (prog->aux->sleepable)
11043 switch (map->map_type) {
11044 case BPF_MAP_TYPE_HASH:
11045 case BPF_MAP_TYPE_LRU_HASH:
11046 case BPF_MAP_TYPE_ARRAY:
638e4b82
AS
11047 case BPF_MAP_TYPE_PERCPU_HASH:
11048 case BPF_MAP_TYPE_PERCPU_ARRAY:
11049 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11050 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11051 case BPF_MAP_TYPE_HASH_OF_MAPS:
1e6c62a8
AS
11052 if (!is_preallocated_map(map)) {
11053 verbose(env,
638e4b82 11054 "Sleepable programs can only use preallocated maps\n");
1e6c62a8
AS
11055 return -EINVAL;
11056 }
11057 break;
ba90c2cc
KS
11058 case BPF_MAP_TYPE_RINGBUF:
11059 break;
1e6c62a8
AS
11060 default:
11061 verbose(env,
ba90c2cc 11062 "Sleepable programs can only use array, hash, and ringbuf maps\n");
1e6c62a8
AS
11063 return -EINVAL;
11064 }
11065
fdc15d38
AS
11066 return 0;
11067}
11068
b741f163
RG
11069static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11070{
11071 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11072 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11073}
11074
4976b718
HL
11075/* find and rewrite pseudo imm in ld_imm64 instructions:
11076 *
11077 * 1. if it accesses map FD, replace it with actual map pointer.
11078 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11079 *
11080 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
0246e64d 11081 */
4976b718 11082static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
0246e64d
AS
11083{
11084 struct bpf_insn *insn = env->prog->insnsi;
11085 int insn_cnt = env->prog->len;
fdc15d38 11086 int i, j, err;
0246e64d 11087
f1f7714e 11088 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
11089 if (err)
11090 return err;
11091
0246e64d 11092 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 11093 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 11094 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 11095 verbose(env, "BPF_LDX uses reserved fields\n");
d691f9e8
AS
11096 return -EINVAL;
11097 }
11098
0246e64d 11099 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
d8eca5bb 11100 struct bpf_insn_aux_data *aux;
0246e64d
AS
11101 struct bpf_map *map;
11102 struct fd f;
d8eca5bb 11103 u64 addr;
0246e64d
AS
11104
11105 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11106 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11107 insn[1].off != 0) {
61bd5218 11108 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
11109 return -EINVAL;
11110 }
11111
d8eca5bb 11112 if (insn[0].src_reg == 0)
0246e64d
AS
11113 /* valid generic load 64-bit imm */
11114 goto next_insn;
11115
4976b718
HL
11116 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11117 aux = &env->insn_aux_data[i];
11118 err = check_pseudo_btf_id(env, insn, aux);
11119 if (err)
11120 return err;
11121 goto next_insn;
11122 }
11123
69c087ba
YS
11124 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11125 aux = &env->insn_aux_data[i];
11126 aux->ptr_type = PTR_TO_FUNC;
11127 goto next_insn;
11128 }
11129
d8eca5bb
DB
11130 /* In final convert_pseudo_ld_imm64() step, this is
11131 * converted into regular 64-bit imm load insn.
11132 */
11133 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
11134 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
11135 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
11136 insn[1].imm != 0)) {
11137 verbose(env,
11138 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
11139 return -EINVAL;
11140 }
11141
20182390 11142 f = fdget(insn[0].imm);
c2101297 11143 map = __bpf_map_get(f);
0246e64d 11144 if (IS_ERR(map)) {
61bd5218 11145 verbose(env, "fd %d is not pointing to valid bpf_map\n",
20182390 11146 insn[0].imm);
0246e64d
AS
11147 return PTR_ERR(map);
11148 }
11149
61bd5218 11150 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
11151 if (err) {
11152 fdput(f);
11153 return err;
11154 }
11155
d8eca5bb
DB
11156 aux = &env->insn_aux_data[i];
11157 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
11158 addr = (unsigned long)map;
11159 } else {
11160 u32 off = insn[1].imm;
11161
11162 if (off >= BPF_MAX_VAR_OFF) {
11163 verbose(env, "direct value offset of %u is not allowed\n", off);
11164 fdput(f);
11165 return -EINVAL;
11166 }
11167
11168 if (!map->ops->map_direct_value_addr) {
11169 verbose(env, "no direct value access support for this map type\n");
11170 fdput(f);
11171 return -EINVAL;
11172 }
11173
11174 err = map->ops->map_direct_value_addr(map, &addr, off);
11175 if (err) {
11176 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11177 map->value_size, off);
11178 fdput(f);
11179 return err;
11180 }
11181
11182 aux->map_off = off;
11183 addr += off;
11184 }
11185
11186 insn[0].imm = (u32)addr;
11187 insn[1].imm = addr >> 32;
0246e64d
AS
11188
11189 /* check whether we recorded this map already */
d8eca5bb 11190 for (j = 0; j < env->used_map_cnt; j++) {
0246e64d 11191 if (env->used_maps[j] == map) {
d8eca5bb 11192 aux->map_index = j;
0246e64d
AS
11193 fdput(f);
11194 goto next_insn;
11195 }
d8eca5bb 11196 }
0246e64d
AS
11197
11198 if (env->used_map_cnt >= MAX_USED_MAPS) {
11199 fdput(f);
11200 return -E2BIG;
11201 }
11202
0246e64d
AS
11203 /* hold the map. If the program is rejected by verifier,
11204 * the map will be released by release_maps() or it
11205 * will be used by the valid program until it's unloaded
ab7f5bf0 11206 * and all maps are released in free_used_maps()
0246e64d 11207 */
1e0bd5a0 11208 bpf_map_inc(map);
d8eca5bb
DB
11209
11210 aux->map_index = env->used_map_cnt;
92117d84
AS
11211 env->used_maps[env->used_map_cnt++] = map;
11212
b741f163 11213 if (bpf_map_is_cgroup_storage(map) &&
e4730423 11214 bpf_cgroup_storage_assign(env->prog->aux, map)) {
b741f163 11215 verbose(env, "only one cgroup storage of each type is allowed\n");
de9cbbaa
RG
11216 fdput(f);
11217 return -EBUSY;
11218 }
11219
0246e64d
AS
11220 fdput(f);
11221next_insn:
11222 insn++;
11223 i++;
5e581dad
DB
11224 continue;
11225 }
11226
11227 /* Basic sanity check before we invest more work here. */
11228 if (!bpf_opcode_in_insntable(insn->code)) {
11229 verbose(env, "unknown opcode %02x\n", insn->code);
11230 return -EINVAL;
0246e64d
AS
11231 }
11232 }
11233
11234 /* now all pseudo BPF_LD_IMM64 instructions load valid
11235 * 'struct bpf_map *' into a register instead of user map_fd.
11236 * These pointers will be used later by verifier to validate map access.
11237 */
11238 return 0;
11239}
11240
11241/* drop refcnt of maps used by the rejected program */
58e2af8b 11242static void release_maps(struct bpf_verifier_env *env)
0246e64d 11243{
a2ea0746
DB
11244 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11245 env->used_map_cnt);
0246e64d
AS
11246}
11247
541c3bad
AN
11248/* drop refcnt of maps used by the rejected program */
11249static void release_btfs(struct bpf_verifier_env *env)
11250{
11251 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11252 env->used_btf_cnt);
11253}
11254
0246e64d 11255/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 11256static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
11257{
11258 struct bpf_insn *insn = env->prog->insnsi;
11259 int insn_cnt = env->prog->len;
11260 int i;
11261
69c087ba
YS
11262 for (i = 0; i < insn_cnt; i++, insn++) {
11263 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11264 continue;
11265 if (insn->src_reg == BPF_PSEUDO_FUNC)
11266 continue;
11267 insn->src_reg = 0;
11268 }
0246e64d
AS
11269}
11270
8041902d
AS
11271/* single env->prog->insni[off] instruction was replaced with the range
11272 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11273 * [0, off) and [off, end) to new locations, so the patched range stays zero
11274 */
b325fbca
JW
11275static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11276 struct bpf_prog *new_prog, u32 off, u32 cnt)
8041902d
AS
11277{
11278 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
b325fbca
JW
11279 struct bpf_insn *insn = new_prog->insnsi;
11280 u32 prog_len;
c131187d 11281 int i;
8041902d 11282
b325fbca
JW
11283 /* aux info at OFF always needs adjustment, no matter fast path
11284 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11285 * original insn at old prog.
11286 */
11287 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11288
8041902d
AS
11289 if (cnt == 1)
11290 return 0;
b325fbca 11291 prog_len = new_prog->len;
fad953ce
KC
11292 new_data = vzalloc(array_size(prog_len,
11293 sizeof(struct bpf_insn_aux_data)));
8041902d
AS
11294 if (!new_data)
11295 return -ENOMEM;
11296 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11297 memcpy(new_data + off + cnt - 1, old_data + off,
11298 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
b325fbca 11299 for (i = off; i < off + cnt - 1; i++) {
51c39bb1 11300 new_data[i].seen = env->pass_cnt;
b325fbca
JW
11301 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11302 }
8041902d
AS
11303 env->insn_aux_data = new_data;
11304 vfree(old_data);
11305 return 0;
11306}
11307
cc8b0b92
AS
11308static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11309{
11310 int i;
11311
11312 if (len == 1)
11313 return;
4cb3d99c
JW
11314 /* NOTE: fake 'exit' subprog should be updated as well. */
11315 for (i = 0; i <= env->subprog_cnt; i++) {
afd59424 11316 if (env->subprog_info[i].start <= off)
cc8b0b92 11317 continue;
9c8105bd 11318 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
11319 }
11320}
11321
a748c697
MF
11322static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
11323{
11324 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11325 int i, sz = prog->aux->size_poke_tab;
11326 struct bpf_jit_poke_descriptor *desc;
11327
11328 for (i = 0; i < sz; i++) {
11329 desc = &tab[i];
11330 desc->insn_idx += len - 1;
11331 }
11332}
11333
8041902d
AS
11334static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11335 const struct bpf_insn *patch, u32 len)
11336{
11337 struct bpf_prog *new_prog;
11338
11339 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4f73379e
AS
11340 if (IS_ERR(new_prog)) {
11341 if (PTR_ERR(new_prog) == -ERANGE)
11342 verbose(env,
11343 "insn %d cannot be patched due to 16-bit range\n",
11344 env->insn_aux_data[off].orig_idx);
8041902d 11345 return NULL;
4f73379e 11346 }
b325fbca 11347 if (adjust_insn_aux_data(env, new_prog, off, len))
8041902d 11348 return NULL;
cc8b0b92 11349 adjust_subprog_starts(env, off, len);
a748c697 11350 adjust_poke_descs(new_prog, len);
8041902d
AS
11351 return new_prog;
11352}
11353
52875a04
JK
11354static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11355 u32 off, u32 cnt)
11356{
11357 int i, j;
11358
11359 /* find first prog starting at or after off (first to remove) */
11360 for (i = 0; i < env->subprog_cnt; i++)
11361 if (env->subprog_info[i].start >= off)
11362 break;
11363 /* find first prog starting at or after off + cnt (first to stay) */
11364 for (j = i; j < env->subprog_cnt; j++)
11365 if (env->subprog_info[j].start >= off + cnt)
11366 break;
11367 /* if j doesn't start exactly at off + cnt, we are just removing
11368 * the front of previous prog
11369 */
11370 if (env->subprog_info[j].start != off + cnt)
11371 j--;
11372
11373 if (j > i) {
11374 struct bpf_prog_aux *aux = env->prog->aux;
11375 int move;
11376
11377 /* move fake 'exit' subprog as well */
11378 move = env->subprog_cnt + 1 - j;
11379
11380 memmove(env->subprog_info + i,
11381 env->subprog_info + j,
11382 sizeof(*env->subprog_info) * move);
11383 env->subprog_cnt -= j - i;
11384
11385 /* remove func_info */
11386 if (aux->func_info) {
11387 move = aux->func_info_cnt - j;
11388
11389 memmove(aux->func_info + i,
11390 aux->func_info + j,
11391 sizeof(*aux->func_info) * move);
11392 aux->func_info_cnt -= j - i;
11393 /* func_info->insn_off is set after all code rewrites,
11394 * in adjust_btf_func() - no need to adjust
11395 */
11396 }
11397 } else {
11398 /* convert i from "first prog to remove" to "first to adjust" */
11399 if (env->subprog_info[i].start == off)
11400 i++;
11401 }
11402
11403 /* update fake 'exit' subprog as well */
11404 for (; i <= env->subprog_cnt; i++)
11405 env->subprog_info[i].start -= cnt;
11406
11407 return 0;
11408}
11409
11410static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11411 u32 cnt)
11412{
11413 struct bpf_prog *prog = env->prog;
11414 u32 i, l_off, l_cnt, nr_linfo;
11415 struct bpf_line_info *linfo;
11416
11417 nr_linfo = prog->aux->nr_linfo;
11418 if (!nr_linfo)
11419 return 0;
11420
11421 linfo = prog->aux->linfo;
11422
11423 /* find first line info to remove, count lines to be removed */
11424 for (i = 0; i < nr_linfo; i++)
11425 if (linfo[i].insn_off >= off)
11426 break;
11427
11428 l_off = i;
11429 l_cnt = 0;
11430 for (; i < nr_linfo; i++)
11431 if (linfo[i].insn_off < off + cnt)
11432 l_cnt++;
11433 else
11434 break;
11435
11436 /* First live insn doesn't match first live linfo, it needs to "inherit"
11437 * last removed linfo. prog is already modified, so prog->len == off
11438 * means no live instructions after (tail of the program was removed).
11439 */
11440 if (prog->len != off && l_cnt &&
11441 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11442 l_cnt--;
11443 linfo[--i].insn_off = off + cnt;
11444 }
11445
11446 /* remove the line info which refer to the removed instructions */
11447 if (l_cnt) {
11448 memmove(linfo + l_off, linfo + i,
11449 sizeof(*linfo) * (nr_linfo - i));
11450
11451 prog->aux->nr_linfo -= l_cnt;
11452 nr_linfo = prog->aux->nr_linfo;
11453 }
11454
11455 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
11456 for (i = l_off; i < nr_linfo; i++)
11457 linfo[i].insn_off -= cnt;
11458
11459 /* fix up all subprogs (incl. 'exit') which start >= off */
11460 for (i = 0; i <= env->subprog_cnt; i++)
11461 if (env->subprog_info[i].linfo_idx > l_off) {
11462 /* program may have started in the removed region but
11463 * may not be fully removed
11464 */
11465 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11466 env->subprog_info[i].linfo_idx -= l_cnt;
11467 else
11468 env->subprog_info[i].linfo_idx = l_off;
11469 }
11470
11471 return 0;
11472}
11473
11474static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11475{
11476 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11477 unsigned int orig_prog_len = env->prog->len;
11478 int err;
11479
08ca90af
JK
11480 if (bpf_prog_is_dev_bound(env->prog->aux))
11481 bpf_prog_offload_remove_insns(env, off, cnt);
11482
52875a04
JK
11483 err = bpf_remove_insns(env->prog, off, cnt);
11484 if (err)
11485 return err;
11486
11487 err = adjust_subprog_starts_after_remove(env, off, cnt);
11488 if (err)
11489 return err;
11490
11491 err = bpf_adj_linfo_after_remove(env, off, cnt);
11492 if (err)
11493 return err;
11494
11495 memmove(aux_data + off, aux_data + off + cnt,
11496 sizeof(*aux_data) * (orig_prog_len - off - cnt));
11497
11498 return 0;
11499}
11500
2a5418a1
DB
11501/* The verifier does more data flow analysis than llvm and will not
11502 * explore branches that are dead at run time. Malicious programs can
11503 * have dead code too. Therefore replace all dead at-run-time code
11504 * with 'ja -1'.
11505 *
11506 * Just nops are not optimal, e.g. if they would sit at the end of the
11507 * program and through another bug we would manage to jump there, then
11508 * we'd execute beyond program memory otherwise. Returning exception
11509 * code also wouldn't work since we can have subprogs where the dead
11510 * code could be located.
c131187d
AS
11511 */
11512static void sanitize_dead_code(struct bpf_verifier_env *env)
11513{
11514 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 11515 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
11516 struct bpf_insn *insn = env->prog->insnsi;
11517 const int insn_cnt = env->prog->len;
11518 int i;
11519
11520 for (i = 0; i < insn_cnt; i++) {
11521 if (aux_data[i].seen)
11522 continue;
2a5418a1 11523 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
11524 }
11525}
11526
e2ae4ca2
JK
11527static bool insn_is_cond_jump(u8 code)
11528{
11529 u8 op;
11530
092ed096
JW
11531 if (BPF_CLASS(code) == BPF_JMP32)
11532 return true;
11533
e2ae4ca2
JK
11534 if (BPF_CLASS(code) != BPF_JMP)
11535 return false;
11536
11537 op = BPF_OP(code);
11538 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11539}
11540
11541static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11542{
11543 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11544 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11545 struct bpf_insn *insn = env->prog->insnsi;
11546 const int insn_cnt = env->prog->len;
11547 int i;
11548
11549 for (i = 0; i < insn_cnt; i++, insn++) {
11550 if (!insn_is_cond_jump(insn->code))
11551 continue;
11552
11553 if (!aux_data[i + 1].seen)
11554 ja.off = insn->off;
11555 else if (!aux_data[i + 1 + insn->off].seen)
11556 ja.off = 0;
11557 else
11558 continue;
11559
08ca90af
JK
11560 if (bpf_prog_is_dev_bound(env->prog->aux))
11561 bpf_prog_offload_replace_insn(env, i, &ja);
11562
e2ae4ca2
JK
11563 memcpy(insn, &ja, sizeof(ja));
11564 }
11565}
11566
52875a04
JK
11567static int opt_remove_dead_code(struct bpf_verifier_env *env)
11568{
11569 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11570 int insn_cnt = env->prog->len;
11571 int i, err;
11572
11573 for (i = 0; i < insn_cnt; i++) {
11574 int j;
11575
11576 j = 0;
11577 while (i + j < insn_cnt && !aux_data[i + j].seen)
11578 j++;
11579 if (!j)
11580 continue;
11581
11582 err = verifier_remove_insns(env, i, j);
11583 if (err)
11584 return err;
11585 insn_cnt = env->prog->len;
11586 }
11587
11588 return 0;
11589}
11590
a1b14abc
JK
11591static int opt_remove_nops(struct bpf_verifier_env *env)
11592{
11593 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11594 struct bpf_insn *insn = env->prog->insnsi;
11595 int insn_cnt = env->prog->len;
11596 int i, err;
11597
11598 for (i = 0; i < insn_cnt; i++) {
11599 if (memcmp(&insn[i], &ja, sizeof(ja)))
11600 continue;
11601
11602 err = verifier_remove_insns(env, i, 1);
11603 if (err)
11604 return err;
11605 insn_cnt--;
11606 i--;
11607 }
11608
11609 return 0;
11610}
11611
d6c2308c
JW
11612static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11613 const union bpf_attr *attr)
a4b1d3c1 11614{
d6c2308c 11615 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
a4b1d3c1 11616 struct bpf_insn_aux_data *aux = env->insn_aux_data;
d6c2308c 11617 int i, patch_len, delta = 0, len = env->prog->len;
a4b1d3c1 11618 struct bpf_insn *insns = env->prog->insnsi;
a4b1d3c1 11619 struct bpf_prog *new_prog;
d6c2308c 11620 bool rnd_hi32;
a4b1d3c1 11621
d6c2308c 11622 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
a4b1d3c1 11623 zext_patch[1] = BPF_ZEXT_REG(0);
d6c2308c
JW
11624 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11625 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11626 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
a4b1d3c1
JW
11627 for (i = 0; i < len; i++) {
11628 int adj_idx = i + delta;
11629 struct bpf_insn insn;
83a28819 11630 int load_reg;
a4b1d3c1 11631
d6c2308c 11632 insn = insns[adj_idx];
83a28819 11633 load_reg = insn_def_regno(&insn);
d6c2308c
JW
11634 if (!aux[adj_idx].zext_dst) {
11635 u8 code, class;
11636 u32 imm_rnd;
11637
11638 if (!rnd_hi32)
11639 continue;
11640
11641 code = insn.code;
11642 class = BPF_CLASS(code);
83a28819 11643 if (load_reg == -1)
d6c2308c
JW
11644 continue;
11645
11646 /* NOTE: arg "reg" (the fourth one) is only used for
83a28819
IL
11647 * BPF_STX + SRC_OP, so it is safe to pass NULL
11648 * here.
d6c2308c 11649 */
83a28819 11650 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
d6c2308c
JW
11651 if (class == BPF_LD &&
11652 BPF_MODE(code) == BPF_IMM)
11653 i++;
11654 continue;
11655 }
11656
11657 /* ctx load could be transformed into wider load. */
11658 if (class == BPF_LDX &&
11659 aux[adj_idx].ptr_type == PTR_TO_CTX)
11660 continue;
11661
11662 imm_rnd = get_random_int();
11663 rnd_hi32_patch[0] = insn;
11664 rnd_hi32_patch[1].imm = imm_rnd;
83a28819 11665 rnd_hi32_patch[3].dst_reg = load_reg;
d6c2308c
JW
11666 patch = rnd_hi32_patch;
11667 patch_len = 4;
11668 goto apply_patch_buffer;
11669 }
11670
39491867
BJ
11671 /* Add in an zero-extend instruction if a) the JIT has requested
11672 * it or b) it's a CMPXCHG.
11673 *
11674 * The latter is because: BPF_CMPXCHG always loads a value into
11675 * R0, therefore always zero-extends. However some archs'
11676 * equivalent instruction only does this load when the
11677 * comparison is successful. This detail of CMPXCHG is
11678 * orthogonal to the general zero-extension behaviour of the
11679 * CPU, so it's treated independently of bpf_jit_needs_zext.
11680 */
11681 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
a4b1d3c1
JW
11682 continue;
11683
83a28819
IL
11684 if (WARN_ON(load_reg == -1)) {
11685 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11686 return -EFAULT;
b2e37a71
IL
11687 }
11688
a4b1d3c1 11689 zext_patch[0] = insn;
b2e37a71
IL
11690 zext_patch[1].dst_reg = load_reg;
11691 zext_patch[1].src_reg = load_reg;
d6c2308c
JW
11692 patch = zext_patch;
11693 patch_len = 2;
11694apply_patch_buffer:
11695 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
a4b1d3c1
JW
11696 if (!new_prog)
11697 return -ENOMEM;
11698 env->prog = new_prog;
11699 insns = new_prog->insnsi;
11700 aux = env->insn_aux_data;
d6c2308c 11701 delta += patch_len - 1;
a4b1d3c1
JW
11702 }
11703
11704 return 0;
11705}
11706
c64b7983
JS
11707/* convert load instructions that access fields of a context type into a
11708 * sequence of instructions that access fields of the underlying structure:
11709 * struct __sk_buff -> struct sk_buff
11710 * struct bpf_sock_ops -> struct sock
9bac3d6d 11711 */
58e2af8b 11712static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 11713{
00176a34 11714 const struct bpf_verifier_ops *ops = env->ops;
f96da094 11715 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 11716 const int insn_cnt = env->prog->len;
36bbef52 11717 struct bpf_insn insn_buf[16], *insn;
46f53a65 11718 u32 target_size, size_default, off;
9bac3d6d 11719 struct bpf_prog *new_prog;
d691f9e8 11720 enum bpf_access_type type;
f96da094 11721 bool is_narrower_load;
9bac3d6d 11722
b09928b9
DB
11723 if (ops->gen_prologue || env->seen_direct_write) {
11724 if (!ops->gen_prologue) {
11725 verbose(env, "bpf verifier is misconfigured\n");
11726 return -EINVAL;
11727 }
36bbef52
DB
11728 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11729 env->prog);
11730 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 11731 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
11732 return -EINVAL;
11733 } else if (cnt) {
8041902d 11734 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
11735 if (!new_prog)
11736 return -ENOMEM;
8041902d 11737
36bbef52 11738 env->prog = new_prog;
3df126f3 11739 delta += cnt - 1;
36bbef52
DB
11740 }
11741 }
11742
c64b7983 11743 if (bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
11744 return 0;
11745
3df126f3 11746 insn = env->prog->insnsi + delta;
36bbef52 11747
9bac3d6d 11748 for (i = 0; i < insn_cnt; i++, insn++) {
c64b7983
JS
11749 bpf_convert_ctx_access_t convert_ctx_access;
11750
62c7989b
DB
11751 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11752 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11753 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 11754 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 11755 type = BPF_READ;
62c7989b
DB
11756 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11757 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11758 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 11759 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
11760 type = BPF_WRITE;
11761 else
9bac3d6d
AS
11762 continue;
11763
af86ca4e
AS
11764 if (type == BPF_WRITE &&
11765 env->insn_aux_data[i + delta].sanitize_stack_off) {
11766 struct bpf_insn patch[] = {
11767 /* Sanitize suspicious stack slot with zero.
11768 * There are no memory dependencies for this store,
11769 * since it's only using frame pointer and immediate
11770 * constant of zero
11771 */
11772 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11773 env->insn_aux_data[i + delta].sanitize_stack_off,
11774 0),
11775 /* the original STX instruction will immediately
11776 * overwrite the same stack slot with appropriate value
11777 */
11778 *insn,
11779 };
11780
11781 cnt = ARRAY_SIZE(patch);
11782 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11783 if (!new_prog)
11784 return -ENOMEM;
11785
11786 delta += cnt - 1;
11787 env->prog = new_prog;
11788 insn = new_prog->insnsi + i + delta;
11789 continue;
11790 }
11791
c64b7983
JS
11792 switch (env->insn_aux_data[i + delta].ptr_type) {
11793 case PTR_TO_CTX:
11794 if (!ops->convert_ctx_access)
11795 continue;
11796 convert_ctx_access = ops->convert_ctx_access;
11797 break;
11798 case PTR_TO_SOCKET:
46f8bc92 11799 case PTR_TO_SOCK_COMMON:
c64b7983
JS
11800 convert_ctx_access = bpf_sock_convert_ctx_access;
11801 break;
655a51e5
MKL
11802 case PTR_TO_TCP_SOCK:
11803 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11804 break;
fada7fdc
JL
11805 case PTR_TO_XDP_SOCK:
11806 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11807 break;
2a02759e 11808 case PTR_TO_BTF_ID:
27ae7997
MKL
11809 if (type == BPF_READ) {
11810 insn->code = BPF_LDX | BPF_PROBE_MEM |
11811 BPF_SIZE((insn)->code);
11812 env->prog->aux->num_exentries++;
7e40781c 11813 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
2a02759e
AS
11814 verbose(env, "Writes through BTF pointers are not allowed\n");
11815 return -EINVAL;
11816 }
2a02759e 11817 continue;
c64b7983 11818 default:
9bac3d6d 11819 continue;
c64b7983 11820 }
9bac3d6d 11821
31fd8581 11822 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 11823 size = BPF_LDST_BYTES(insn);
31fd8581
YS
11824
11825 /* If the read access is a narrower load of the field,
11826 * convert to a 4/8-byte load, to minimum program type specific
11827 * convert_ctx_access changes. If conversion is successful,
11828 * we will apply proper mask to the result.
11829 */
f96da094 11830 is_narrower_load = size < ctx_field_size;
46f53a65
AI
11831 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11832 off = insn->off;
31fd8581 11833 if (is_narrower_load) {
f96da094
DB
11834 u8 size_code;
11835
11836 if (type == BPF_WRITE) {
61bd5218 11837 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
11838 return -EINVAL;
11839 }
31fd8581 11840
f96da094 11841 size_code = BPF_H;
31fd8581
YS
11842 if (ctx_field_size == 4)
11843 size_code = BPF_W;
11844 else if (ctx_field_size == 8)
11845 size_code = BPF_DW;
f96da094 11846
bc23105c 11847 insn->off = off & ~(size_default - 1);
31fd8581
YS
11848 insn->code = BPF_LDX | BPF_MEM | size_code;
11849 }
f96da094
DB
11850
11851 target_size = 0;
c64b7983
JS
11852 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11853 &target_size);
f96da094
DB
11854 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11855 (ctx_field_size && !target_size)) {
61bd5218 11856 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
11857 return -EINVAL;
11858 }
f96da094
DB
11859
11860 if (is_narrower_load && size < target_size) {
d895a0f1
IL
11861 u8 shift = bpf_ctx_narrow_access_offset(
11862 off, size, size_default) * 8;
46f53a65
AI
11863 if (ctx_field_size <= 4) {
11864 if (shift)
11865 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11866 insn->dst_reg,
11867 shift);
31fd8581 11868 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 11869 (1 << size * 8) - 1);
46f53a65
AI
11870 } else {
11871 if (shift)
11872 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11873 insn->dst_reg,
11874 shift);
31fd8581 11875 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
e2f7fc0a 11876 (1ULL << size * 8) - 1);
46f53a65 11877 }
31fd8581 11878 }
9bac3d6d 11879
8041902d 11880 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
11881 if (!new_prog)
11882 return -ENOMEM;
11883
3df126f3 11884 delta += cnt - 1;
9bac3d6d
AS
11885
11886 /* keep walking new program and skip insns we just inserted */
11887 env->prog = new_prog;
3df126f3 11888 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
11889 }
11890
11891 return 0;
11892}
11893
1c2a088a
AS
11894static int jit_subprogs(struct bpf_verifier_env *env)
11895{
11896 struct bpf_prog *prog = env->prog, **func, *tmp;
11897 int i, j, subprog_start, subprog_end = 0, len, subprog;
a748c697 11898 struct bpf_map *map_ptr;
7105e828 11899 struct bpf_insn *insn;
1c2a088a 11900 void *old_bpf_func;
c4c0bdc0 11901 int err, num_exentries;
1c2a088a 11902
f910cefa 11903 if (env->subprog_cnt <= 1)
1c2a088a
AS
11904 return 0;
11905
7105e828 11906 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
11907 if (bpf_pseudo_func(insn)) {
11908 env->insn_aux_data[i].call_imm = insn->imm;
11909 /* subprog is encoded in insn[1].imm */
11910 continue;
11911 }
11912
23a2d70c 11913 if (!bpf_pseudo_call(insn))
1c2a088a 11914 continue;
c7a89784
DB
11915 /* Upon error here we cannot fall back to interpreter but
11916 * need a hard reject of the program. Thus -EFAULT is
11917 * propagated in any case.
11918 */
1c2a088a
AS
11919 subprog = find_subprog(env, i + insn->imm + 1);
11920 if (subprog < 0) {
11921 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11922 i + insn->imm + 1);
11923 return -EFAULT;
11924 }
11925 /* temporarily remember subprog id inside insn instead of
11926 * aux_data, since next loop will split up all insns into funcs
11927 */
f910cefa 11928 insn->off = subprog;
1c2a088a
AS
11929 /* remember original imm in case JIT fails and fallback
11930 * to interpreter will be needed
11931 */
11932 env->insn_aux_data[i].call_imm = insn->imm;
11933 /* point imm to __bpf_call_base+1 from JITs point of view */
11934 insn->imm = 1;
11935 }
11936
c454a46b
MKL
11937 err = bpf_prog_alloc_jited_linfo(prog);
11938 if (err)
11939 goto out_undo_insn;
11940
11941 err = -ENOMEM;
6396bb22 11942 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
1c2a088a 11943 if (!func)
c7a89784 11944 goto out_undo_insn;
1c2a088a 11945
f910cefa 11946 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 11947 subprog_start = subprog_end;
4cb3d99c 11948 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
11949
11950 len = subprog_end - subprog_start;
492ecee8
AS
11951 /* BPF_PROG_RUN doesn't call subprogs directly,
11952 * hence main prog stats include the runtime of subprogs.
11953 * subprogs don't have IDs and not reachable via prog_get_next_id
700d4796 11954 * func[i]->stats will never be accessed and stays NULL
492ecee8
AS
11955 */
11956 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
1c2a088a
AS
11957 if (!func[i])
11958 goto out_free;
11959 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11960 len * sizeof(struct bpf_insn));
4f74d809 11961 func[i]->type = prog->type;
1c2a088a 11962 func[i]->len = len;
4f74d809
DB
11963 if (bpf_prog_calc_tag(func[i]))
11964 goto out_free;
1c2a088a 11965 func[i]->is_func = 1;
ba64e7d8
YS
11966 func[i]->aux->func_idx = i;
11967 /* the btf and func_info will be freed only at prog->aux */
11968 func[i]->aux->btf = prog->aux->btf;
11969 func[i]->aux->func_info = prog->aux->func_info;
11970
a748c697
MF
11971 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11972 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11973 int ret;
11974
11975 if (!(insn_idx >= subprog_start &&
11976 insn_idx <= subprog_end))
11977 continue;
11978
11979 ret = bpf_jit_add_poke_descriptor(func[i],
11980 &prog->aux->poke_tab[j]);
11981 if (ret < 0) {
11982 verbose(env, "adding tail call poke descriptor failed\n");
11983 goto out_free;
11984 }
11985
11986 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11987
11988 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11989 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11990 if (ret < 0) {
11991 verbose(env, "tracking tail call prog failed\n");
11992 goto out_free;
11993 }
11994 }
11995
1c2a088a
AS
11996 /* Use bpf_prog_F_tag to indicate functions in stack traces.
11997 * Long term would need debug info to populate names
11998 */
11999 func[i]->aux->name[0] = 'F';
9c8105bd 12000 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a 12001 func[i]->jit_requested = 1;
e6ac2450 12002 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
c454a46b
MKL
12003 func[i]->aux->linfo = prog->aux->linfo;
12004 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12005 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12006 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
c4c0bdc0
YS
12007 num_exentries = 0;
12008 insn = func[i]->insnsi;
12009 for (j = 0; j < func[i]->len; j++, insn++) {
12010 if (BPF_CLASS(insn->code) == BPF_LDX &&
12011 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12012 num_exentries++;
12013 }
12014 func[i]->aux->num_exentries = num_exentries;
ebf7d1f5 12015 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
1c2a088a
AS
12016 func[i] = bpf_int_jit_compile(func[i]);
12017 if (!func[i]->jited) {
12018 err = -ENOTSUPP;
12019 goto out_free;
12020 }
12021 cond_resched();
12022 }
a748c697
MF
12023
12024 /* Untrack main program's aux structs so that during map_poke_run()
12025 * we will not stumble upon the unfilled poke descriptors; each
12026 * of the main program's poke descs got distributed across subprogs
12027 * and got tracked onto map, so we are sure that none of them will
12028 * be missed after the operation below
12029 */
12030 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12031 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12032
12033 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12034 }
12035
1c2a088a
AS
12036 /* at this point all bpf functions were successfully JITed
12037 * now populate all bpf_calls with correct addresses and
12038 * run last pass of JIT
12039 */
f910cefa 12040 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12041 insn = func[i]->insnsi;
12042 for (j = 0; j < func[i]->len; j++, insn++) {
69c087ba
YS
12043 if (bpf_pseudo_func(insn)) {
12044 subprog = insn[1].imm;
12045 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12046 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12047 continue;
12048 }
23a2d70c 12049 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12050 continue;
12051 subprog = insn->off;
0d306c31
PB
12052 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12053 __bpf_call_base;
1c2a088a 12054 }
2162fed4
SD
12055
12056 /* we use the aux data to keep a list of the start addresses
12057 * of the JITed images for each function in the program
12058 *
12059 * for some architectures, such as powerpc64, the imm field
12060 * might not be large enough to hold the offset of the start
12061 * address of the callee's JITed image from __bpf_call_base
12062 *
12063 * in such cases, we can lookup the start address of a callee
12064 * by using its subprog id, available from the off field of
12065 * the call instruction, as an index for this list
12066 */
12067 func[i]->aux->func = func;
12068 func[i]->aux->func_cnt = env->subprog_cnt;
1c2a088a 12069 }
f910cefa 12070 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12071 old_bpf_func = func[i]->bpf_func;
12072 tmp = bpf_int_jit_compile(func[i]);
12073 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12074 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
c7a89784 12075 err = -ENOTSUPP;
1c2a088a
AS
12076 goto out_free;
12077 }
12078 cond_resched();
12079 }
12080
12081 /* finally lock prog and jit images for all functions and
12082 * populate kallsysm
12083 */
f910cefa 12084 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
12085 bpf_prog_lock_ro(func[i]);
12086 bpf_prog_kallsyms_add(func[i]);
12087 }
7105e828
DB
12088
12089 /* Last step: make now unused interpreter insns from main
12090 * prog consistent for later dump requests, so they can
12091 * later look the same as if they were interpreted only.
12092 */
12093 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
69c087ba
YS
12094 if (bpf_pseudo_func(insn)) {
12095 insn[0].imm = env->insn_aux_data[i].call_imm;
12096 insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12097 continue;
12098 }
23a2d70c 12099 if (!bpf_pseudo_call(insn))
7105e828
DB
12100 continue;
12101 insn->off = env->insn_aux_data[i].call_imm;
12102 subprog = find_subprog(env, i + insn->off + 1);
dbecd738 12103 insn->imm = subprog;
7105e828
DB
12104 }
12105
1c2a088a
AS
12106 prog->jited = 1;
12107 prog->bpf_func = func[0]->bpf_func;
12108 prog->aux->func = func;
f910cefa 12109 prog->aux->func_cnt = env->subprog_cnt;
e16301fb 12110 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12111 return 0;
12112out_free:
a748c697
MF
12113 for (i = 0; i < env->subprog_cnt; i++) {
12114 if (!func[i])
12115 continue;
12116
12117 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
12118 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
12119 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
12120 }
12121 bpf_jit_free(func[i]);
12122 }
1c2a088a 12123 kfree(func);
c7a89784 12124out_undo_insn:
1c2a088a
AS
12125 /* cleanup main prog to be interpreted */
12126 prog->jit_requested = 0;
12127 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
23a2d70c 12128 if (!bpf_pseudo_call(insn))
1c2a088a
AS
12129 continue;
12130 insn->off = 0;
12131 insn->imm = env->insn_aux_data[i].call_imm;
12132 }
e16301fb 12133 bpf_prog_jit_attempt_done(prog);
1c2a088a
AS
12134 return err;
12135}
12136
1ea47e01
AS
12137static int fixup_call_args(struct bpf_verifier_env *env)
12138{
19d28fbd 12139#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
12140 struct bpf_prog *prog = env->prog;
12141 struct bpf_insn *insn = prog->insnsi;
e6ac2450 12142 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
1ea47e01 12143 int i, depth;
19d28fbd 12144#endif
e4052d06 12145 int err = 0;
1ea47e01 12146
e4052d06
QM
12147 if (env->prog->jit_requested &&
12148 !bpf_prog_is_dev_bound(env->prog->aux)) {
19d28fbd
DM
12149 err = jit_subprogs(env);
12150 if (err == 0)
1c2a088a 12151 return 0;
c7a89784
DB
12152 if (err == -EFAULT)
12153 return err;
19d28fbd
DM
12154 }
12155#ifndef CONFIG_BPF_JIT_ALWAYS_ON
e6ac2450
MKL
12156 if (has_kfunc_call) {
12157 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12158 return -EINVAL;
12159 }
e411901c
MF
12160 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12161 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12162 * have to be rejected, since interpreter doesn't support them yet.
12163 */
12164 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12165 return -EINVAL;
12166 }
1ea47e01 12167 for (i = 0; i < prog->len; i++, insn++) {
69c087ba
YS
12168 if (bpf_pseudo_func(insn)) {
12169 /* When JIT fails the progs with callback calls
12170 * have to be rejected, since interpreter doesn't support them yet.
12171 */
12172 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12173 return -EINVAL;
12174 }
12175
23a2d70c 12176 if (!bpf_pseudo_call(insn))
1ea47e01
AS
12177 continue;
12178 depth = get_callee_stack_depth(env, insn, i);
12179 if (depth < 0)
12180 return depth;
12181 bpf_patch_call_args(insn, depth);
12182 }
19d28fbd
DM
12183 err = 0;
12184#endif
12185 return err;
1ea47e01
AS
12186}
12187
e6ac2450
MKL
12188static int fixup_kfunc_call(struct bpf_verifier_env *env,
12189 struct bpf_insn *insn)
12190{
12191 const struct bpf_kfunc_desc *desc;
12192
12193 /* insn->imm has the btf func_id. Replace it with
12194 * an address (relative to __bpf_base_call).
12195 */
12196 desc = find_kfunc_desc(env->prog, insn->imm);
12197 if (!desc) {
12198 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12199 insn->imm);
12200 return -EFAULT;
12201 }
12202
12203 insn->imm = desc->imm;
12204
12205 return 0;
12206}
12207
e6ac5933
BJ
12208/* Do various post-verification rewrites in a single program pass.
12209 * These rewrites simplify JIT and interpreter implementations.
e245c5c6 12210 */
e6ac5933 12211static int do_misc_fixups(struct bpf_verifier_env *env)
e245c5c6 12212{
79741b3b 12213 struct bpf_prog *prog = env->prog;
d2e4c1e6 12214 bool expect_blinding = bpf_jit_blinding_enabled(prog);
79741b3b 12215 struct bpf_insn *insn = prog->insnsi;
e245c5c6 12216 const struct bpf_func_proto *fn;
79741b3b 12217 const int insn_cnt = prog->len;
09772d92 12218 const struct bpf_map_ops *ops;
c93552c4 12219 struct bpf_insn_aux_data *aux;
81ed18ab
AS
12220 struct bpf_insn insn_buf[16];
12221 struct bpf_prog *new_prog;
12222 struct bpf_map *map_ptr;
d2e4c1e6 12223 int i, ret, cnt, delta = 0;
e245c5c6 12224
79741b3b 12225 for (i = 0; i < insn_cnt; i++, insn++) {
e6ac5933 12226 /* Make divide-by-zero exceptions impossible. */
f6b1b3bf
DB
12227 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12228 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12229 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 12230 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf 12231 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
e88b2c6e
DB
12232 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12233 struct bpf_insn *patchlet;
12234 struct bpf_insn chk_and_div[] = {
9b00f1b7 12235 /* [R,W]x div 0 -> 0 */
e88b2c6e
DB
12236 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12237 BPF_JNE | BPF_K, insn->src_reg,
12238 0, 2, 0),
f6b1b3bf
DB
12239 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12240 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12241 *insn,
12242 };
e88b2c6e 12243 struct bpf_insn chk_and_mod[] = {
9b00f1b7 12244 /* [R,W]x mod 0 -> [R,W]x */
e88b2c6e
DB
12245 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12246 BPF_JEQ | BPF_K, insn->src_reg,
9b00f1b7 12247 0, 1 + (is64 ? 0 : 1), 0),
f6b1b3bf 12248 *insn,
9b00f1b7
DB
12249 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12250 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
f6b1b3bf 12251 };
f6b1b3bf 12252
e88b2c6e
DB
12253 patchlet = isdiv ? chk_and_div : chk_and_mod;
12254 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9b00f1b7 12255 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
f6b1b3bf
DB
12256
12257 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
12258 if (!new_prog)
12259 return -ENOMEM;
12260
12261 delta += cnt - 1;
12262 env->prog = prog = new_prog;
12263 insn = new_prog->insnsi + i + delta;
12264 continue;
12265 }
12266
e6ac5933 12267 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
e0cea7ce
DB
12268 if (BPF_CLASS(insn->code) == BPF_LD &&
12269 (BPF_MODE(insn->code) == BPF_ABS ||
12270 BPF_MODE(insn->code) == BPF_IND)) {
12271 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12272 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12273 verbose(env, "bpf verifier is misconfigured\n");
12274 return -EINVAL;
12275 }
12276
12277 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12278 if (!new_prog)
12279 return -ENOMEM;
12280
12281 delta += cnt - 1;
12282 env->prog = prog = new_prog;
12283 insn = new_prog->insnsi + i + delta;
12284 continue;
12285 }
12286
e6ac5933 12287 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
979d63d5
DB
12288 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12289 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12290 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12291 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
979d63d5
DB
12292 struct bpf_insn *patch = &insn_buf[0];
12293 bool issrc, isneg;
12294 u32 off_reg;
12295
12296 aux = &env->insn_aux_data[i + delta];
3612af78
DB
12297 if (!aux->alu_state ||
12298 aux->alu_state == BPF_ALU_NON_POINTER)
979d63d5
DB
12299 continue;
12300
12301 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12302 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12303 BPF_ALU_SANITIZE_SRC;
12304
12305 off_reg = issrc ? insn->src_reg : insn->dst_reg;
12306 if (isneg)
12307 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
b5871dca 12308 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
979d63d5
DB
12309 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12310 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12311 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12312 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12313 if (issrc) {
12314 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
12315 off_reg);
12316 insn->src_reg = BPF_REG_AX;
12317 } else {
12318 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
12319 BPF_REG_AX);
12320 }
12321 if (isneg)
12322 insn->code = insn->code == code_add ?
12323 code_sub : code_add;
12324 *patch++ = *insn;
12325 if (issrc && isneg)
12326 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12327 cnt = patch - insn_buf;
12328
12329 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12330 if (!new_prog)
12331 return -ENOMEM;
12332
12333 delta += cnt - 1;
12334 env->prog = prog = new_prog;
12335 insn = new_prog->insnsi + i + delta;
12336 continue;
12337 }
12338
79741b3b
AS
12339 if (insn->code != (BPF_JMP | BPF_CALL))
12340 continue;
cc8b0b92
AS
12341 if (insn->src_reg == BPF_PSEUDO_CALL)
12342 continue;
e6ac2450
MKL
12343 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12344 ret = fixup_kfunc_call(env, insn);
12345 if (ret)
12346 return ret;
12347 continue;
12348 }
e245c5c6 12349
79741b3b
AS
12350 if (insn->imm == BPF_FUNC_get_route_realm)
12351 prog->dst_needed = 1;
12352 if (insn->imm == BPF_FUNC_get_prandom_u32)
12353 bpf_user_rnd_init_once();
9802d865
JB
12354 if (insn->imm == BPF_FUNC_override_return)
12355 prog->kprobe_override = 1;
79741b3b 12356 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
12357 /* If we tail call into other programs, we
12358 * cannot make any assumptions since they can
12359 * be replaced dynamically during runtime in
12360 * the program array.
12361 */
12362 prog->cb_access = 1;
e411901c
MF
12363 if (!allow_tail_call_in_subprogs(env))
12364 prog->aux->stack_depth = MAX_BPF_STACK;
12365 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7b9f6da1 12366
79741b3b
AS
12367 /* mark bpf_tail_call as different opcode to avoid
12368 * conditional branch in the interpeter for every normal
12369 * call and to prevent accidental JITing by JIT compiler
12370 * that doesn't support bpf_tail_call yet
e245c5c6 12371 */
79741b3b 12372 insn->imm = 0;
71189fa9 12373 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399 12374
c93552c4 12375 aux = &env->insn_aux_data[i + delta];
2c78ee89 12376 if (env->bpf_capable && !expect_blinding &&
cc52d914 12377 prog->jit_requested &&
d2e4c1e6
DB
12378 !bpf_map_key_poisoned(aux) &&
12379 !bpf_map_ptr_poisoned(aux) &&
12380 !bpf_map_ptr_unpriv(aux)) {
12381 struct bpf_jit_poke_descriptor desc = {
12382 .reason = BPF_POKE_REASON_TAIL_CALL,
12383 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12384 .tail_call.key = bpf_map_key_immediate(aux),
a748c697 12385 .insn_idx = i + delta,
d2e4c1e6
DB
12386 };
12387
12388 ret = bpf_jit_add_poke_descriptor(prog, &desc);
12389 if (ret < 0) {
12390 verbose(env, "adding tail call poke descriptor failed\n");
12391 return ret;
12392 }
12393
12394 insn->imm = ret + 1;
12395 continue;
12396 }
12397
c93552c4
DB
12398 if (!bpf_map_ptr_unpriv(aux))
12399 continue;
12400
b2157399
AS
12401 /* instead of changing every JIT dealing with tail_call
12402 * emit two extra insns:
12403 * if (index >= max_entries) goto out;
12404 * index &= array->index_mask;
12405 * to avoid out-of-bounds cpu speculation
12406 */
c93552c4 12407 if (bpf_map_ptr_poisoned(aux)) {
40950343 12408 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
12409 return -EINVAL;
12410 }
c93552c4 12411
d2e4c1e6 12412 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
b2157399
AS
12413 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12414 map_ptr->max_entries, 2);
12415 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12416 container_of(map_ptr,
12417 struct bpf_array,
12418 map)->index_mask);
12419 insn_buf[2] = *insn;
12420 cnt = 3;
12421 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12422 if (!new_prog)
12423 return -ENOMEM;
12424
12425 delta += cnt - 1;
12426 env->prog = prog = new_prog;
12427 insn = new_prog->insnsi + i + delta;
79741b3b
AS
12428 continue;
12429 }
e245c5c6 12430
89c63074 12431 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
09772d92
DB
12432 * and other inlining handlers are currently limited to 64 bit
12433 * only.
89c63074 12434 */
60b58afc 12435 if (prog->jit_requested && BITS_PER_LONG == 64 &&
09772d92
DB
12436 (insn->imm == BPF_FUNC_map_lookup_elem ||
12437 insn->imm == BPF_FUNC_map_update_elem ||
84430d42
DB
12438 insn->imm == BPF_FUNC_map_delete_elem ||
12439 insn->imm == BPF_FUNC_map_push_elem ||
12440 insn->imm == BPF_FUNC_map_pop_elem ||
e6a4750f
BT
12441 insn->imm == BPF_FUNC_map_peek_elem ||
12442 insn->imm == BPF_FUNC_redirect_map)) {
c93552c4
DB
12443 aux = &env->insn_aux_data[i + delta];
12444 if (bpf_map_ptr_poisoned(aux))
12445 goto patch_call_imm;
12446
d2e4c1e6 12447 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
09772d92
DB
12448 ops = map_ptr->ops;
12449 if (insn->imm == BPF_FUNC_map_lookup_elem &&
12450 ops->map_gen_lookup) {
12451 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
4a8f87e6
DB
12452 if (cnt == -EOPNOTSUPP)
12453 goto patch_map_ops_generic;
12454 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
09772d92
DB
12455 verbose(env, "bpf verifier is misconfigured\n");
12456 return -EINVAL;
12457 }
81ed18ab 12458
09772d92
DB
12459 new_prog = bpf_patch_insn_data(env, i + delta,
12460 insn_buf, cnt);
12461 if (!new_prog)
12462 return -ENOMEM;
81ed18ab 12463
09772d92
DB
12464 delta += cnt - 1;
12465 env->prog = prog = new_prog;
12466 insn = new_prog->insnsi + i + delta;
12467 continue;
12468 }
81ed18ab 12469
09772d92
DB
12470 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12471 (void *(*)(struct bpf_map *map, void *key))NULL));
12472 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12473 (int (*)(struct bpf_map *map, void *key))NULL));
12474 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12475 (int (*)(struct bpf_map *map, void *key, void *value,
12476 u64 flags))NULL));
84430d42
DB
12477 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12478 (int (*)(struct bpf_map *map, void *value,
12479 u64 flags))NULL));
12480 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12481 (int (*)(struct bpf_map *map, void *value))NULL));
12482 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12483 (int (*)(struct bpf_map *map, void *value))NULL));
e6a4750f
BT
12484 BUILD_BUG_ON(!__same_type(ops->map_redirect,
12485 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12486
4a8f87e6 12487patch_map_ops_generic:
09772d92
DB
12488 switch (insn->imm) {
12489 case BPF_FUNC_map_lookup_elem:
12490 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12491 __bpf_call_base;
12492 continue;
12493 case BPF_FUNC_map_update_elem:
12494 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12495 __bpf_call_base;
12496 continue;
12497 case BPF_FUNC_map_delete_elem:
12498 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12499 __bpf_call_base;
12500 continue;
84430d42
DB
12501 case BPF_FUNC_map_push_elem:
12502 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12503 __bpf_call_base;
12504 continue;
12505 case BPF_FUNC_map_pop_elem:
12506 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12507 __bpf_call_base;
12508 continue;
12509 case BPF_FUNC_map_peek_elem:
12510 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12511 __bpf_call_base;
12512 continue;
e6a4750f
BT
12513 case BPF_FUNC_redirect_map:
12514 insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12515 __bpf_call_base;
12516 continue;
09772d92 12517 }
81ed18ab 12518
09772d92 12519 goto patch_call_imm;
81ed18ab
AS
12520 }
12521
e6ac5933 12522 /* Implement bpf_jiffies64 inline. */
5576b991
MKL
12523 if (prog->jit_requested && BITS_PER_LONG == 64 &&
12524 insn->imm == BPF_FUNC_jiffies64) {
12525 struct bpf_insn ld_jiffies_addr[2] = {
12526 BPF_LD_IMM64(BPF_REG_0,
12527 (unsigned long)&jiffies),
12528 };
12529
12530 insn_buf[0] = ld_jiffies_addr[0];
12531 insn_buf[1] = ld_jiffies_addr[1];
12532 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12533 BPF_REG_0, 0);
12534 cnt = 3;
12535
12536 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12537 cnt);
12538 if (!new_prog)
12539 return -ENOMEM;
12540
12541 delta += cnt - 1;
12542 env->prog = prog = new_prog;
12543 insn = new_prog->insnsi + i + delta;
12544 continue;
12545 }
12546
81ed18ab 12547patch_call_imm:
5e43f899 12548 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
12549 /* all functions that have prototype and verifier allowed
12550 * programs to call them, must be real in-kernel functions
12551 */
12552 if (!fn->func) {
61bd5218
JK
12553 verbose(env,
12554 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
12555 func_id_name(insn->imm), insn->imm);
12556 return -EFAULT;
e245c5c6 12557 }
79741b3b 12558 insn->imm = fn->func - __bpf_call_base;
e245c5c6 12559 }
e245c5c6 12560
d2e4c1e6
DB
12561 /* Since poke tab is now finalized, publish aux to tracker. */
12562 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12563 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12564 if (!map_ptr->ops->map_poke_track ||
12565 !map_ptr->ops->map_poke_untrack ||
12566 !map_ptr->ops->map_poke_run) {
12567 verbose(env, "bpf verifier is misconfigured\n");
12568 return -EINVAL;
12569 }
12570
12571 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12572 if (ret < 0) {
12573 verbose(env, "tracking tail call prog failed\n");
12574 return ret;
12575 }
12576 }
12577
e6ac2450
MKL
12578 sort_kfunc_descs_by_imm(env->prog);
12579
79741b3b
AS
12580 return 0;
12581}
e245c5c6 12582
58e2af8b 12583static void free_states(struct bpf_verifier_env *env)
f1bca824 12584{
58e2af8b 12585 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
12586 int i;
12587
9f4686c4
AS
12588 sl = env->free_list;
12589 while (sl) {
12590 sln = sl->next;
12591 free_verifier_state(&sl->state, false);
12592 kfree(sl);
12593 sl = sln;
12594 }
51c39bb1 12595 env->free_list = NULL;
9f4686c4 12596
f1bca824
AS
12597 if (!env->explored_states)
12598 return;
12599
dc2a4ebc 12600 for (i = 0; i < state_htab_size(env); i++) {
f1bca824
AS
12601 sl = env->explored_states[i];
12602
a8f500af
AS
12603 while (sl) {
12604 sln = sl->next;
12605 free_verifier_state(&sl->state, false);
12606 kfree(sl);
12607 sl = sln;
12608 }
51c39bb1 12609 env->explored_states[i] = NULL;
f1bca824 12610 }
51c39bb1 12611}
f1bca824 12612
51c39bb1
AS
12613/* The verifier is using insn_aux_data[] to store temporary data during
12614 * verification and to store information for passes that run after the
12615 * verification like dead code sanitization. do_check_common() for subprogram N
12616 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12617 * temporary data after do_check_common() finds that subprogram N cannot be
12618 * verified independently. pass_cnt counts the number of times
12619 * do_check_common() was run and insn->aux->seen tells the pass number
12620 * insn_aux_data was touched. These variables are compared to clear temporary
12621 * data from failed pass. For testing and experiments do_check_common() can be
12622 * run multiple times even when prior attempt to verify is unsuccessful.
12623 */
12624static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12625{
12626 struct bpf_insn *insn = env->prog->insnsi;
12627 struct bpf_insn_aux_data *aux;
12628 int i, class;
12629
12630 for (i = 0; i < env->prog->len; i++) {
12631 class = BPF_CLASS(insn[i].code);
12632 if (class != BPF_LDX && class != BPF_STX)
12633 continue;
12634 aux = &env->insn_aux_data[i];
12635 if (aux->seen != env->pass_cnt)
12636 continue;
12637 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12638 }
f1bca824
AS
12639}
12640
51c39bb1
AS
12641static int do_check_common(struct bpf_verifier_env *env, int subprog)
12642{
6f8a57cc 12643 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
51c39bb1
AS
12644 struct bpf_verifier_state *state;
12645 struct bpf_reg_state *regs;
12646 int ret, i;
12647
12648 env->prev_linfo = NULL;
12649 env->pass_cnt++;
12650
12651 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12652 if (!state)
12653 return -ENOMEM;
12654 state->curframe = 0;
12655 state->speculative = false;
12656 state->branches = 1;
12657 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12658 if (!state->frame[0]) {
12659 kfree(state);
12660 return -ENOMEM;
12661 }
12662 env->cur_state = state;
12663 init_func_state(env, state->frame[0],
12664 BPF_MAIN_FUNC /* callsite */,
12665 0 /* frameno */,
12666 subprog);
12667
12668 regs = state->frame[state->curframe]->regs;
be8704ff 12669 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
51c39bb1
AS
12670 ret = btf_prepare_func_args(env, subprog, regs);
12671 if (ret)
12672 goto out;
12673 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12674 if (regs[i].type == PTR_TO_CTX)
12675 mark_reg_known_zero(env, regs, i);
12676 else if (regs[i].type == SCALAR_VALUE)
12677 mark_reg_unknown(env, regs, i);
e5069b9c
DB
12678 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12679 const u32 mem_size = regs[i].mem_size;
12680
12681 mark_reg_known_zero(env, regs, i);
12682 regs[i].mem_size = mem_size;
12683 regs[i].id = ++env->id_gen;
12684 }
51c39bb1
AS
12685 }
12686 } else {
12687 /* 1st arg to a function */
12688 regs[BPF_REG_1].type = PTR_TO_CTX;
12689 mark_reg_known_zero(env, regs, BPF_REG_1);
34747c41 12690 ret = btf_check_subprog_arg_match(env, subprog, regs);
51c39bb1
AS
12691 if (ret == -EFAULT)
12692 /* unlikely verifier bug. abort.
12693 * ret == 0 and ret < 0 are sadly acceptable for
12694 * main() function due to backward compatibility.
12695 * Like socket filter program may be written as:
12696 * int bpf_prog(struct pt_regs *ctx)
12697 * and never dereference that ctx in the program.
12698 * 'struct pt_regs' is a type mismatch for socket
12699 * filter that should be using 'struct __sk_buff'.
12700 */
12701 goto out;
12702 }
12703
12704 ret = do_check(env);
12705out:
f59bbfc2
AS
12706 /* check for NULL is necessary, since cur_state can be freed inside
12707 * do_check() under memory pressure.
12708 */
12709 if (env->cur_state) {
12710 free_verifier_state(env->cur_state, true);
12711 env->cur_state = NULL;
12712 }
6f8a57cc
AN
12713 while (!pop_stack(env, NULL, NULL, false));
12714 if (!ret && pop_log)
12715 bpf_vlog_reset(&env->log, 0);
51c39bb1
AS
12716 free_states(env);
12717 if (ret)
12718 /* clean aux data in case subprog was rejected */
12719 sanitize_insn_aux_data(env);
12720 return ret;
12721}
12722
12723/* Verify all global functions in a BPF program one by one based on their BTF.
12724 * All global functions must pass verification. Otherwise the whole program is rejected.
12725 * Consider:
12726 * int bar(int);
12727 * int foo(int f)
12728 * {
12729 * return bar(f);
12730 * }
12731 * int bar(int b)
12732 * {
12733 * ...
12734 * }
12735 * foo() will be verified first for R1=any_scalar_value. During verification it
12736 * will be assumed that bar() already verified successfully and call to bar()
12737 * from foo() will be checked for type match only. Later bar() will be verified
12738 * independently to check that it's safe for R1=any_scalar_value.
12739 */
12740static int do_check_subprogs(struct bpf_verifier_env *env)
12741{
12742 struct bpf_prog_aux *aux = env->prog->aux;
12743 int i, ret;
12744
12745 if (!aux->func_info)
12746 return 0;
12747
12748 for (i = 1; i < env->subprog_cnt; i++) {
12749 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12750 continue;
12751 env->insn_idx = env->subprog_info[i].start;
12752 WARN_ON_ONCE(env->insn_idx == 0);
12753 ret = do_check_common(env, i);
12754 if (ret) {
12755 return ret;
12756 } else if (env->log.level & BPF_LOG_LEVEL) {
12757 verbose(env,
12758 "Func#%d is safe for any args that match its prototype\n",
12759 i);
12760 }
12761 }
12762 return 0;
12763}
12764
12765static int do_check_main(struct bpf_verifier_env *env)
12766{
12767 int ret;
12768
12769 env->insn_idx = 0;
12770 ret = do_check_common(env, 0);
12771 if (!ret)
12772 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12773 return ret;
12774}
12775
12776
06ee7115
AS
12777static void print_verification_stats(struct bpf_verifier_env *env)
12778{
12779 int i;
12780
12781 if (env->log.level & BPF_LOG_STATS) {
12782 verbose(env, "verification time %lld usec\n",
12783 div_u64(env->verification_time, 1000));
12784 verbose(env, "stack depth ");
12785 for (i = 0; i < env->subprog_cnt; i++) {
12786 u32 depth = env->subprog_info[i].stack_depth;
12787
12788 verbose(env, "%d", depth);
12789 if (i + 1 < env->subprog_cnt)
12790 verbose(env, "+");
12791 }
12792 verbose(env, "\n");
12793 }
12794 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12795 "total_states %d peak_states %d mark_read %d\n",
12796 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12797 env->max_states_per_insn, env->total_states,
12798 env->peak_states, env->longest_mark_read_walk);
f1bca824
AS
12799}
12800
27ae7997
MKL
12801static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12802{
12803 const struct btf_type *t, *func_proto;
12804 const struct bpf_struct_ops *st_ops;
12805 const struct btf_member *member;
12806 struct bpf_prog *prog = env->prog;
12807 u32 btf_id, member_idx;
12808 const char *mname;
12809
12810 btf_id = prog->aux->attach_btf_id;
12811 st_ops = bpf_struct_ops_find(btf_id);
12812 if (!st_ops) {
12813 verbose(env, "attach_btf_id %u is not a supported struct\n",
12814 btf_id);
12815 return -ENOTSUPP;
12816 }
12817
12818 t = st_ops->type;
12819 member_idx = prog->expected_attach_type;
12820 if (member_idx >= btf_type_vlen(t)) {
12821 verbose(env, "attach to invalid member idx %u of struct %s\n",
12822 member_idx, st_ops->name);
12823 return -EINVAL;
12824 }
12825
12826 member = &btf_type_member(t)[member_idx];
12827 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12828 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12829 NULL);
12830 if (!func_proto) {
12831 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12832 mname, member_idx, st_ops->name);
12833 return -EINVAL;
12834 }
12835
12836 if (st_ops->check_member) {
12837 int err = st_ops->check_member(t, member);
12838
12839 if (err) {
12840 verbose(env, "attach to unsupported member %s of struct %s\n",
12841 mname, st_ops->name);
12842 return err;
12843 }
12844 }
12845
12846 prog->aux->attach_func_proto = func_proto;
12847 prog->aux->attach_func_name = mname;
12848 env->ops = st_ops->verifier_ops;
12849
12850 return 0;
12851}
6ba43b76
KS
12852#define SECURITY_PREFIX "security_"
12853
f7b12b6f 12854static int check_attach_modify_return(unsigned long addr, const char *func_name)
6ba43b76 12855{
69191754 12856 if (within_error_injection_list(addr) ||
f7b12b6f 12857 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
6ba43b76 12858 return 0;
6ba43b76 12859
6ba43b76
KS
12860 return -EINVAL;
12861}
27ae7997 12862
1e6c62a8
AS
12863/* list of non-sleepable functions that are otherwise on
12864 * ALLOW_ERROR_INJECTION list
12865 */
12866BTF_SET_START(btf_non_sleepable_error_inject)
12867/* Three functions below can be called from sleepable and non-sleepable context.
12868 * Assume non-sleepable from bpf safety point of view.
12869 */
12870BTF_ID(func, __add_to_page_cache_locked)
12871BTF_ID(func, should_fail_alloc_page)
12872BTF_ID(func, should_failslab)
12873BTF_SET_END(btf_non_sleepable_error_inject)
12874
12875static int check_non_sleepable_error_inject(u32 btf_id)
12876{
12877 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12878}
12879
f7b12b6f
THJ
12880int bpf_check_attach_target(struct bpf_verifier_log *log,
12881 const struct bpf_prog *prog,
12882 const struct bpf_prog *tgt_prog,
12883 u32 btf_id,
12884 struct bpf_attach_target_info *tgt_info)
38207291 12885{
be8704ff 12886 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
f1b9509c 12887 const char prefix[] = "btf_trace_";
5b92a28a 12888 int ret = 0, subprog = -1, i;
38207291 12889 const struct btf_type *t;
5b92a28a 12890 bool conservative = true;
38207291 12891 const char *tname;
5b92a28a 12892 struct btf *btf;
f7b12b6f 12893 long addr = 0;
38207291 12894
f1b9509c 12895 if (!btf_id) {
efc68158 12896 bpf_log(log, "Tracing programs must provide btf_id\n");
f1b9509c
AS
12897 return -EINVAL;
12898 }
22dc4a0f 12899 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
5b92a28a 12900 if (!btf) {
efc68158 12901 bpf_log(log,
5b92a28a
AS
12902 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12903 return -EINVAL;
12904 }
12905 t = btf_type_by_id(btf, btf_id);
f1b9509c 12906 if (!t) {
efc68158 12907 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
f1b9509c
AS
12908 return -EINVAL;
12909 }
5b92a28a 12910 tname = btf_name_by_offset(btf, t->name_off);
f1b9509c 12911 if (!tname) {
efc68158 12912 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
f1b9509c
AS
12913 return -EINVAL;
12914 }
5b92a28a
AS
12915 if (tgt_prog) {
12916 struct bpf_prog_aux *aux = tgt_prog->aux;
12917
12918 for (i = 0; i < aux->func_info_cnt; i++)
12919 if (aux->func_info[i].type_id == btf_id) {
12920 subprog = i;
12921 break;
12922 }
12923 if (subprog == -1) {
efc68158 12924 bpf_log(log, "Subprog %s doesn't exist\n", tname);
5b92a28a
AS
12925 return -EINVAL;
12926 }
12927 conservative = aux->func_info_aux[subprog].unreliable;
be8704ff
AS
12928 if (prog_extension) {
12929 if (conservative) {
efc68158 12930 bpf_log(log,
be8704ff
AS
12931 "Cannot replace static functions\n");
12932 return -EINVAL;
12933 }
12934 if (!prog->jit_requested) {
efc68158 12935 bpf_log(log,
be8704ff
AS
12936 "Extension programs should be JITed\n");
12937 return -EINVAL;
12938 }
be8704ff
AS
12939 }
12940 if (!tgt_prog->jited) {
efc68158 12941 bpf_log(log, "Can attach to only JITed progs\n");
be8704ff
AS
12942 return -EINVAL;
12943 }
12944 if (tgt_prog->type == prog->type) {
12945 /* Cannot fentry/fexit another fentry/fexit program.
12946 * Cannot attach program extension to another extension.
12947 * It's ok to attach fentry/fexit to extension program.
12948 */
efc68158 12949 bpf_log(log, "Cannot recursively attach\n");
be8704ff
AS
12950 return -EINVAL;
12951 }
12952 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12953 prog_extension &&
12954 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12955 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12956 /* Program extensions can extend all program types
12957 * except fentry/fexit. The reason is the following.
12958 * The fentry/fexit programs are used for performance
12959 * analysis, stats and can be attached to any program
12960 * type except themselves. When extension program is
12961 * replacing XDP function it is necessary to allow
12962 * performance analysis of all functions. Both original
12963 * XDP program and its program extension. Hence
12964 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12965 * allowed. If extending of fentry/fexit was allowed it
12966 * would be possible to create long call chain
12967 * fentry->extension->fentry->extension beyond
12968 * reasonable stack size. Hence extending fentry is not
12969 * allowed.
12970 */
efc68158 12971 bpf_log(log, "Cannot extend fentry/fexit\n");
be8704ff
AS
12972 return -EINVAL;
12973 }
5b92a28a 12974 } else {
be8704ff 12975 if (prog_extension) {
efc68158 12976 bpf_log(log, "Cannot replace kernel functions\n");
be8704ff
AS
12977 return -EINVAL;
12978 }
5b92a28a 12979 }
f1b9509c
AS
12980
12981 switch (prog->expected_attach_type) {
12982 case BPF_TRACE_RAW_TP:
5b92a28a 12983 if (tgt_prog) {
efc68158 12984 bpf_log(log,
5b92a28a
AS
12985 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12986 return -EINVAL;
12987 }
38207291 12988 if (!btf_type_is_typedef(t)) {
efc68158 12989 bpf_log(log, "attach_btf_id %u is not a typedef\n",
38207291
MKL
12990 btf_id);
12991 return -EINVAL;
12992 }
f1b9509c 12993 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
efc68158 12994 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
38207291
MKL
12995 btf_id, tname);
12996 return -EINVAL;
12997 }
12998 tname += sizeof(prefix) - 1;
5b92a28a 12999 t = btf_type_by_id(btf, t->type);
38207291
MKL
13000 if (!btf_type_is_ptr(t))
13001 /* should never happen in valid vmlinux build */
13002 return -EINVAL;
5b92a28a 13003 t = btf_type_by_id(btf, t->type);
38207291
MKL
13004 if (!btf_type_is_func_proto(t))
13005 /* should never happen in valid vmlinux build */
13006 return -EINVAL;
13007
f7b12b6f 13008 break;
15d83c4d
YS
13009 case BPF_TRACE_ITER:
13010 if (!btf_type_is_func(t)) {
efc68158 13011 bpf_log(log, "attach_btf_id %u is not a function\n",
15d83c4d
YS
13012 btf_id);
13013 return -EINVAL;
13014 }
13015 t = btf_type_by_id(btf, t->type);
13016 if (!btf_type_is_func_proto(t))
13017 return -EINVAL;
f7b12b6f
THJ
13018 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13019 if (ret)
13020 return ret;
13021 break;
be8704ff
AS
13022 default:
13023 if (!prog_extension)
13024 return -EINVAL;
df561f66 13025 fallthrough;
ae240823 13026 case BPF_MODIFY_RETURN:
9e4e01df 13027 case BPF_LSM_MAC:
fec56f58
AS
13028 case BPF_TRACE_FENTRY:
13029 case BPF_TRACE_FEXIT:
13030 if (!btf_type_is_func(t)) {
efc68158 13031 bpf_log(log, "attach_btf_id %u is not a function\n",
fec56f58
AS
13032 btf_id);
13033 return -EINVAL;
13034 }
be8704ff 13035 if (prog_extension &&
efc68158 13036 btf_check_type_match(log, prog, btf, t))
be8704ff 13037 return -EINVAL;
5b92a28a 13038 t = btf_type_by_id(btf, t->type);
fec56f58
AS
13039 if (!btf_type_is_func_proto(t))
13040 return -EINVAL;
f7b12b6f 13041
4a1e7c0c
THJ
13042 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13043 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13044 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13045 return -EINVAL;
13046
f7b12b6f 13047 if (tgt_prog && conservative)
5b92a28a 13048 t = NULL;
f7b12b6f
THJ
13049
13050 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
fec56f58 13051 if (ret < 0)
f7b12b6f
THJ
13052 return ret;
13053
5b92a28a 13054 if (tgt_prog) {
e9eeec58
YS
13055 if (subprog == 0)
13056 addr = (long) tgt_prog->bpf_func;
13057 else
13058 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
5b92a28a
AS
13059 } else {
13060 addr = kallsyms_lookup_name(tname);
13061 if (!addr) {
efc68158 13062 bpf_log(log,
5b92a28a
AS
13063 "The address of function %s cannot be found\n",
13064 tname);
f7b12b6f 13065 return -ENOENT;
5b92a28a 13066 }
fec56f58 13067 }
18644cec 13068
1e6c62a8
AS
13069 if (prog->aux->sleepable) {
13070 ret = -EINVAL;
13071 switch (prog->type) {
13072 case BPF_PROG_TYPE_TRACING:
13073 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13074 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13075 */
13076 if (!check_non_sleepable_error_inject(btf_id) &&
13077 within_error_injection_list(addr))
13078 ret = 0;
13079 break;
13080 case BPF_PROG_TYPE_LSM:
13081 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13082 * Only some of them are sleepable.
13083 */
423f1610 13084 if (bpf_lsm_is_sleepable_hook(btf_id))
1e6c62a8
AS
13085 ret = 0;
13086 break;
13087 default:
13088 break;
13089 }
f7b12b6f
THJ
13090 if (ret) {
13091 bpf_log(log, "%s is not sleepable\n", tname);
13092 return ret;
13093 }
1e6c62a8 13094 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
1af9270e 13095 if (tgt_prog) {
efc68158 13096 bpf_log(log, "can't modify return codes of BPF programs\n");
f7b12b6f
THJ
13097 return -EINVAL;
13098 }
13099 ret = check_attach_modify_return(addr, tname);
13100 if (ret) {
13101 bpf_log(log, "%s() is not modifiable\n", tname);
13102 return ret;
1af9270e 13103 }
18644cec 13104 }
f7b12b6f
THJ
13105
13106 break;
13107 }
13108 tgt_info->tgt_addr = addr;
13109 tgt_info->tgt_name = tname;
13110 tgt_info->tgt_type = t;
13111 return 0;
13112}
13113
13114static int check_attach_btf_id(struct bpf_verifier_env *env)
13115{
13116 struct bpf_prog *prog = env->prog;
3aac1ead 13117 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
f7b12b6f
THJ
13118 struct bpf_attach_target_info tgt_info = {};
13119 u32 btf_id = prog->aux->attach_btf_id;
13120 struct bpf_trampoline *tr;
13121 int ret;
13122 u64 key;
13123
13124 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13125 prog->type != BPF_PROG_TYPE_LSM) {
13126 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13127 return -EINVAL;
13128 }
13129
13130 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13131 return check_struct_ops_btf_id(env);
13132
13133 if (prog->type != BPF_PROG_TYPE_TRACING &&
13134 prog->type != BPF_PROG_TYPE_LSM &&
13135 prog->type != BPF_PROG_TYPE_EXT)
13136 return 0;
13137
13138 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13139 if (ret)
fec56f58 13140 return ret;
f7b12b6f
THJ
13141
13142 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
3aac1ead
THJ
13143 /* to make freplace equivalent to their targets, they need to
13144 * inherit env->ops and expected_attach_type for the rest of the
13145 * verification
13146 */
f7b12b6f
THJ
13147 env->ops = bpf_verifier_ops[tgt_prog->type];
13148 prog->expected_attach_type = tgt_prog->expected_attach_type;
13149 }
13150
13151 /* store info about the attachment target that will be used later */
13152 prog->aux->attach_func_proto = tgt_info.tgt_type;
13153 prog->aux->attach_func_name = tgt_info.tgt_name;
13154
4a1e7c0c
THJ
13155 if (tgt_prog) {
13156 prog->aux->saved_dst_prog_type = tgt_prog->type;
13157 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13158 }
13159
f7b12b6f
THJ
13160 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13161 prog->aux->attach_btf_trace = true;
13162 return 0;
13163 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13164 if (!bpf_iter_prog_supported(prog))
13165 return -EINVAL;
13166 return 0;
13167 }
13168
13169 if (prog->type == BPF_PROG_TYPE_LSM) {
13170 ret = bpf_lsm_verify_prog(&env->log, prog);
13171 if (ret < 0)
13172 return ret;
38207291 13173 }
f7b12b6f 13174
22dc4a0f 13175 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
f7b12b6f
THJ
13176 tr = bpf_trampoline_get(key, &tgt_info);
13177 if (!tr)
13178 return -ENOMEM;
13179
3aac1ead 13180 prog->aux->dst_trampoline = tr;
f7b12b6f 13181 return 0;
38207291
MKL
13182}
13183
76654e67
AM
13184struct btf *bpf_get_btf_vmlinux(void)
13185{
13186 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13187 mutex_lock(&bpf_verifier_lock);
13188 if (!btf_vmlinux)
13189 btf_vmlinux = btf_parse_vmlinux();
13190 mutex_unlock(&bpf_verifier_lock);
13191 }
13192 return btf_vmlinux;
13193}
13194
838e9690
YS
13195int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
13196 union bpf_attr __user *uattr)
51580e79 13197{
06ee7115 13198 u64 start_time = ktime_get_ns();
58e2af8b 13199 struct bpf_verifier_env *env;
b9193c1b 13200 struct bpf_verifier_log *log;
9e4c24e7 13201 int i, len, ret = -EINVAL;
e2ae4ca2 13202 bool is_priv;
51580e79 13203
eba0c929
AB
13204 /* no program is valid */
13205 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13206 return -EINVAL;
13207
58e2af8b 13208 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
13209 * allocate/free it every time bpf_check() is called
13210 */
58e2af8b 13211 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
13212 if (!env)
13213 return -ENOMEM;
61bd5218 13214 log = &env->log;
cbd35700 13215
9e4c24e7 13216 len = (*prog)->len;
fad953ce 13217 env->insn_aux_data =
9e4c24e7 13218 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
3df126f3
JK
13219 ret = -ENOMEM;
13220 if (!env->insn_aux_data)
13221 goto err_free_env;
9e4c24e7
JK
13222 for (i = 0; i < len; i++)
13223 env->insn_aux_data[i].orig_idx = i;
9bac3d6d 13224 env->prog = *prog;
00176a34 13225 env->ops = bpf_verifier_ops[env->prog->type];
2c78ee89 13226 is_priv = bpf_capable();
0246e64d 13227
76654e67 13228 bpf_get_btf_vmlinux();
8580ac94 13229
cbd35700 13230 /* grab the mutex to protect few globals used by verifier */
45a73c17
AS
13231 if (!is_priv)
13232 mutex_lock(&bpf_verifier_lock);
cbd35700
AS
13233
13234 if (attr->log_level || attr->log_buf || attr->log_size) {
13235 /* user requested verbose verifier output
13236 * and supplied buffer to store the verification trace
13237 */
e7bf8249
JK
13238 log->level = attr->log_level;
13239 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13240 log->len_total = attr->log_size;
cbd35700
AS
13241
13242 ret = -EINVAL;
e7bf8249 13243 /* log attributes have to be sane */
7a9f5c65 13244 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
06ee7115 13245 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
3df126f3 13246 goto err_unlock;
cbd35700 13247 }
1ad2f583 13248
8580ac94
AS
13249 if (IS_ERR(btf_vmlinux)) {
13250 /* Either gcc or pahole or kernel are broken. */
13251 verbose(env, "in-kernel BTF is malformed\n");
13252 ret = PTR_ERR(btf_vmlinux);
38207291 13253 goto skip_full_check;
8580ac94
AS
13254 }
13255
1ad2f583
DB
13256 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13257 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 13258 env->strict_alignment = true;
e9ee9efc
DM
13259 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13260 env->strict_alignment = false;
cbd35700 13261
2c78ee89 13262 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
01f810ac 13263 env->allow_uninit_stack = bpf_allow_uninit_stack();
41c48f3a 13264 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
2c78ee89
AS
13265 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13266 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13267 env->bpf_capable = bpf_capable();
e2ae4ca2 13268
10d274e8
AS
13269 if (is_priv)
13270 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13271
cae1927c 13272 if (bpf_prog_is_dev_bound(env->prog->aux)) {
a40a2632 13273 ret = bpf_prog_offload_verifier_prep(env->prog);
ab3f0063 13274 if (ret)
f4e3ec0d 13275 goto skip_full_check;
ab3f0063
JK
13276 }
13277
dc2a4ebc 13278 env->explored_states = kvcalloc(state_htab_size(env),
58e2af8b 13279 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
13280 GFP_USER);
13281 ret = -ENOMEM;
13282 if (!env->explored_states)
13283 goto skip_full_check;
13284
e6ac2450
MKL
13285 ret = add_subprog_and_kfunc(env);
13286 if (ret < 0)
13287 goto skip_full_check;
13288
d9762e84 13289 ret = check_subprogs(env);
475fb78f
AS
13290 if (ret < 0)
13291 goto skip_full_check;
13292
c454a46b 13293 ret = check_btf_info(env, attr, uattr);
838e9690
YS
13294 if (ret < 0)
13295 goto skip_full_check;
13296
be8704ff
AS
13297 ret = check_attach_btf_id(env);
13298 if (ret)
13299 goto skip_full_check;
13300
4976b718
HL
13301 ret = resolve_pseudo_ldimm64(env);
13302 if (ret < 0)
13303 goto skip_full_check;
13304
d9762e84
MKL
13305 ret = check_cfg(env);
13306 if (ret < 0)
13307 goto skip_full_check;
13308
51c39bb1
AS
13309 ret = do_check_subprogs(env);
13310 ret = ret ?: do_check_main(env);
cbd35700 13311
c941ce9c
QM
13312 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13313 ret = bpf_prog_offload_finalize(env);
13314
0246e64d 13315skip_full_check:
51c39bb1 13316 kvfree(env->explored_states);
0246e64d 13317
c131187d 13318 if (ret == 0)
9b38c405 13319 ret = check_max_stack_depth(env);
c131187d 13320
9b38c405 13321 /* instruction rewrites happen after this point */
e2ae4ca2
JK
13322 if (is_priv) {
13323 if (ret == 0)
13324 opt_hard_wire_dead_code_branches(env);
52875a04
JK
13325 if (ret == 0)
13326 ret = opt_remove_dead_code(env);
a1b14abc
JK
13327 if (ret == 0)
13328 ret = opt_remove_nops(env);
52875a04
JK
13329 } else {
13330 if (ret == 0)
13331 sanitize_dead_code(env);
e2ae4ca2
JK
13332 }
13333
9bac3d6d
AS
13334 if (ret == 0)
13335 /* program is valid, convert *(u32*)(ctx + off) accesses */
13336 ret = convert_ctx_accesses(env);
13337
e245c5c6 13338 if (ret == 0)
e6ac5933 13339 ret = do_misc_fixups(env);
e245c5c6 13340
a4b1d3c1
JW
13341 /* do 32-bit optimization after insn patching has done so those patched
13342 * insns could be handled correctly.
13343 */
d6c2308c
JW
13344 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13345 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13346 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13347 : false;
a4b1d3c1
JW
13348 }
13349
1ea47e01
AS
13350 if (ret == 0)
13351 ret = fixup_call_args(env);
13352
06ee7115
AS
13353 env->verification_time = ktime_get_ns() - start_time;
13354 print_verification_stats(env);
13355
a2a7d570 13356 if (log->level && bpf_verifier_log_full(log))
cbd35700 13357 ret = -ENOSPC;
a2a7d570 13358 if (log->level && !log->ubuf) {
cbd35700 13359 ret = -EFAULT;
a2a7d570 13360 goto err_release_maps;
cbd35700
AS
13361 }
13362
541c3bad
AN
13363 if (ret)
13364 goto err_release_maps;
13365
13366 if (env->used_map_cnt) {
0246e64d 13367 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
13368 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13369 sizeof(env->used_maps[0]),
13370 GFP_KERNEL);
0246e64d 13371
9bac3d6d 13372 if (!env->prog->aux->used_maps) {
0246e64d 13373 ret = -ENOMEM;
a2a7d570 13374 goto err_release_maps;
0246e64d
AS
13375 }
13376
9bac3d6d 13377 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 13378 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 13379 env->prog->aux->used_map_cnt = env->used_map_cnt;
541c3bad
AN
13380 }
13381 if (env->used_btf_cnt) {
13382 /* if program passed verifier, update used_btfs in bpf_prog_aux */
13383 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13384 sizeof(env->used_btfs[0]),
13385 GFP_KERNEL);
13386 if (!env->prog->aux->used_btfs) {
13387 ret = -ENOMEM;
13388 goto err_release_maps;
13389 }
0246e64d 13390
541c3bad
AN
13391 memcpy(env->prog->aux->used_btfs, env->used_btfs,
13392 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13393 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13394 }
13395 if (env->used_map_cnt || env->used_btf_cnt) {
0246e64d
AS
13396 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
13397 * bpf_ld_imm64 instructions
13398 */
13399 convert_pseudo_ld_imm64(env);
13400 }
cbd35700 13401
541c3bad 13402 adjust_btf_func(env);
ba64e7d8 13403
a2a7d570 13404err_release_maps:
9bac3d6d 13405 if (!env->prog->aux->used_maps)
0246e64d 13406 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 13407 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
13408 */
13409 release_maps(env);
541c3bad
AN
13410 if (!env->prog->aux->used_btfs)
13411 release_btfs(env);
03f87c0b
THJ
13412
13413 /* extension progs temporarily inherit the attach_type of their targets
13414 for verification purposes, so set it back to zero before returning
13415 */
13416 if (env->prog->type == BPF_PROG_TYPE_EXT)
13417 env->prog->expected_attach_type = 0;
13418
9bac3d6d 13419 *prog = env->prog;
3df126f3 13420err_unlock:
45a73c17
AS
13421 if (!is_priv)
13422 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
13423 vfree(env->insn_aux_data);
13424err_free_env:
13425 kfree(env);
51580e79
AS
13426 return ret;
13427}