bpf: sockmap, refactor sockmap routines to work with hashmap
[linux-block.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
cc8b0b92
AS
23#include <linux/bsearch.h>
24#include <linux/sort.h>
c195651e 25#include <linux/perf_event.h>
51580e79 26
f4ac7e0b
JK
27#include "disasm.h"
28
00176a34
JK
29static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30#define BPF_PROG_TYPE(_id, _name) \
31 [_id] = & _name ## _verifier_ops,
32#define BPF_MAP_TYPE(_id, _ops)
33#include <linux/bpf_types.h>
34#undef BPF_PROG_TYPE
35#undef BPF_MAP_TYPE
36};
37
51580e79
AS
38/* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
eba38a96 50 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
f1174f77 78 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 79 * means the register has some value, but it's not a valid pointer.
f1174f77 80 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
81 *
82 * When verifier sees load or store instructions the type of base register
f1174f77 83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
84 * types recognized by check_mem_access() function.
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
143 */
144
17a52670 145/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 146struct bpf_verifier_stack_elem {
17a52670
AS
147 /* verifer state is 'st'
148 * before processing instruction 'insn_idx'
149 * and after processing instruction 'prev_insn_idx'
150 */
58e2af8b 151 struct bpf_verifier_state st;
17a52670
AS
152 int insn_idx;
153 int prev_insn_idx;
58e2af8b 154 struct bpf_verifier_stack_elem *next;
cbd35700
AS
155};
156
8e17c1b1 157#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
158#define BPF_COMPLEXITY_LIMIT_STACK 1024
159
fad73a1a
MKL
160#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161
33ff9823
DB
162struct bpf_call_arg_meta {
163 struct bpf_map *map_ptr;
435faee1 164 bool raw_mode;
36bbef52 165 bool pkt_access;
435faee1
DB
166 int regno;
167 int access_size;
849fa506
YS
168 s64 msize_smax_value;
169 u64 msize_umax_value;
33ff9823
DB
170};
171
cbd35700
AS
172static DEFINE_MUTEX(bpf_verifier_lock);
173
77d2e05a
MKL
174void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
175 va_list args)
cbd35700 176{
a2a7d570 177 unsigned int n;
cbd35700 178
a2a7d570 179 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
a2a7d570
JK
180
181 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
182 "verifier log line truncated - local buffer too short\n");
183
184 n = min(log->len_total - log->len_used - 1, n);
185 log->kbuf[n] = '\0';
186
187 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
188 log->len_used += n;
189 else
190 log->ubuf = NULL;
cbd35700 191}
abe08840
JO
192
193/* log_level controls verbosity level of eBPF verifier.
194 * bpf_verifier_log_write() is used to dump the verification trace to the log,
195 * so the user can figure out what's wrong with the program
430e68d1 196 */
abe08840
JO
197__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
198 const char *fmt, ...)
199{
200 va_list args;
201
77d2e05a
MKL
202 if (!bpf_verifier_log_needed(&env->log))
203 return;
204
abe08840 205 va_start(args, fmt);
77d2e05a 206 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
207 va_end(args);
208}
209EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
210
211__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
212{
77d2e05a 213 struct bpf_verifier_env *env = private_data;
abe08840
JO
214 va_list args;
215
77d2e05a
MKL
216 if (!bpf_verifier_log_needed(&env->log))
217 return;
218
abe08840 219 va_start(args, fmt);
77d2e05a 220 bpf_verifier_vlog(&env->log, fmt, args);
abe08840
JO
221 va_end(args);
222}
cbd35700 223
de8f3a83
DB
224static bool type_is_pkt_pointer(enum bpf_reg_type type)
225{
226 return type == PTR_TO_PACKET ||
227 type == PTR_TO_PACKET_META;
228}
229
17a52670
AS
230/* string representation of 'enum bpf_reg_type' */
231static const char * const reg_type_str[] = {
232 [NOT_INIT] = "?",
f1174f77 233 [SCALAR_VALUE] = "inv",
17a52670
AS
234 [PTR_TO_CTX] = "ctx",
235 [CONST_PTR_TO_MAP] = "map_ptr",
236 [PTR_TO_MAP_VALUE] = "map_value",
237 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 238 [PTR_TO_STACK] = "fp",
969bf05e 239 [PTR_TO_PACKET] = "pkt",
de8f3a83 240 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 241 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
242};
243
4e92024a
AS
244static void print_liveness(struct bpf_verifier_env *env,
245 enum bpf_reg_liveness live)
246{
247 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
248 verbose(env, "_");
249 if (live & REG_LIVE_READ)
250 verbose(env, "r");
251 if (live & REG_LIVE_WRITTEN)
252 verbose(env, "w");
253}
254
f4d7e40a
AS
255static struct bpf_func_state *func(struct bpf_verifier_env *env,
256 const struct bpf_reg_state *reg)
257{
258 struct bpf_verifier_state *cur = env->cur_state;
259
260 return cur->frame[reg->frameno];
261}
262
61bd5218 263static void print_verifier_state(struct bpf_verifier_env *env,
f4d7e40a 264 const struct bpf_func_state *state)
17a52670 265{
f4d7e40a 266 const struct bpf_reg_state *reg;
17a52670
AS
267 enum bpf_reg_type t;
268 int i;
269
f4d7e40a
AS
270 if (state->frameno)
271 verbose(env, " frame%d:", state->frameno);
17a52670 272 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
273 reg = &state->regs[i];
274 t = reg->type;
17a52670
AS
275 if (t == NOT_INIT)
276 continue;
4e92024a
AS
277 verbose(env, " R%d", i);
278 print_liveness(env, reg->live);
279 verbose(env, "=%s", reg_type_str[t]);
f1174f77
EC
280 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
281 tnum_is_const(reg->var_off)) {
282 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 283 verbose(env, "%lld", reg->var_off.value + reg->off);
f4d7e40a
AS
284 if (t == PTR_TO_STACK)
285 verbose(env, ",call_%d", func(env, reg)->callsite);
f1174f77 286 } else {
61bd5218 287 verbose(env, "(id=%d", reg->id);
f1174f77 288 if (t != SCALAR_VALUE)
61bd5218 289 verbose(env, ",off=%d", reg->off);
de8f3a83 290 if (type_is_pkt_pointer(t))
61bd5218 291 verbose(env, ",r=%d", reg->range);
f1174f77
EC
292 else if (t == CONST_PTR_TO_MAP ||
293 t == PTR_TO_MAP_VALUE ||
294 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 295 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
296 reg->map_ptr->key_size,
297 reg->map_ptr->value_size);
7d1238f2
EC
298 if (tnum_is_const(reg->var_off)) {
299 /* Typically an immediate SCALAR_VALUE, but
300 * could be a pointer whose offset is too big
301 * for reg->off
302 */
61bd5218 303 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
304 } else {
305 if (reg->smin_value != reg->umin_value &&
306 reg->smin_value != S64_MIN)
61bd5218 307 verbose(env, ",smin_value=%lld",
7d1238f2
EC
308 (long long)reg->smin_value);
309 if (reg->smax_value != reg->umax_value &&
310 reg->smax_value != S64_MAX)
61bd5218 311 verbose(env, ",smax_value=%lld",
7d1238f2
EC
312 (long long)reg->smax_value);
313 if (reg->umin_value != 0)
61bd5218 314 verbose(env, ",umin_value=%llu",
7d1238f2
EC
315 (unsigned long long)reg->umin_value);
316 if (reg->umax_value != U64_MAX)
61bd5218 317 verbose(env, ",umax_value=%llu",
7d1238f2
EC
318 (unsigned long long)reg->umax_value);
319 if (!tnum_is_unknown(reg->var_off)) {
320 char tn_buf[48];
f1174f77 321
7d1238f2 322 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 323 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 324 }
f1174f77 325 }
61bd5218 326 verbose(env, ")");
f1174f77 327 }
17a52670 328 }
638f5b90 329 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
4e92024a
AS
330 if (state->stack[i].slot_type[0] == STACK_SPILL) {
331 verbose(env, " fp%d",
332 (-i - 1) * BPF_REG_SIZE);
333 print_liveness(env, state->stack[i].spilled_ptr.live);
334 verbose(env, "=%s",
638f5b90 335 reg_type_str[state->stack[i].spilled_ptr.type]);
4e92024a 336 }
cc2b14d5
AS
337 if (state->stack[i].slot_type[0] == STACK_ZERO)
338 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
17a52670 339 }
61bd5218 340 verbose(env, "\n");
17a52670
AS
341}
342
f4d7e40a
AS
343static int copy_stack_state(struct bpf_func_state *dst,
344 const struct bpf_func_state *src)
17a52670 345{
638f5b90
AS
346 if (!src->stack)
347 return 0;
348 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
349 /* internal bug, make state invalid to reject the program */
350 memset(dst, 0, sizeof(*dst));
351 return -EFAULT;
352 }
353 memcpy(dst->stack, src->stack,
354 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
355 return 0;
356}
357
358/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
359 * make it consume minimal amount of memory. check_stack_write() access from
f4d7e40a 360 * the program calls into realloc_func_state() to grow the stack size.
638f5b90
AS
361 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
362 * which this function copies over. It points to previous bpf_verifier_state
363 * which is never reallocated
364 */
f4d7e40a
AS
365static int realloc_func_state(struct bpf_func_state *state, int size,
366 bool copy_old)
638f5b90
AS
367{
368 u32 old_size = state->allocated_stack;
369 struct bpf_stack_state *new_stack;
370 int slot = size / BPF_REG_SIZE;
371
372 if (size <= old_size || !size) {
373 if (copy_old)
374 return 0;
375 state->allocated_stack = slot * BPF_REG_SIZE;
376 if (!size && old_size) {
377 kfree(state->stack);
378 state->stack = NULL;
379 }
380 return 0;
381 }
382 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
383 GFP_KERNEL);
384 if (!new_stack)
385 return -ENOMEM;
386 if (copy_old) {
387 if (state->stack)
388 memcpy(new_stack, state->stack,
389 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
390 memset(new_stack + old_size / BPF_REG_SIZE, 0,
391 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
392 }
393 state->allocated_stack = slot * BPF_REG_SIZE;
394 kfree(state->stack);
395 state->stack = new_stack;
396 return 0;
397}
398
f4d7e40a
AS
399static void free_func_state(struct bpf_func_state *state)
400{
5896351e
AS
401 if (!state)
402 return;
f4d7e40a
AS
403 kfree(state->stack);
404 kfree(state);
405}
406
1969db47
AS
407static void free_verifier_state(struct bpf_verifier_state *state,
408 bool free_self)
638f5b90 409{
f4d7e40a
AS
410 int i;
411
412 for (i = 0; i <= state->curframe; i++) {
413 free_func_state(state->frame[i]);
414 state->frame[i] = NULL;
415 }
1969db47
AS
416 if (free_self)
417 kfree(state);
638f5b90
AS
418}
419
420/* copy verifier state from src to dst growing dst stack space
421 * when necessary to accommodate larger src stack
422 */
f4d7e40a
AS
423static int copy_func_state(struct bpf_func_state *dst,
424 const struct bpf_func_state *src)
638f5b90
AS
425{
426 int err;
427
f4d7e40a 428 err = realloc_func_state(dst, src->allocated_stack, false);
638f5b90
AS
429 if (err)
430 return err;
f4d7e40a 431 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
638f5b90
AS
432 return copy_stack_state(dst, src);
433}
434
f4d7e40a
AS
435static int copy_verifier_state(struct bpf_verifier_state *dst_state,
436 const struct bpf_verifier_state *src)
437{
438 struct bpf_func_state *dst;
439 int i, err;
440
441 /* if dst has more stack frames then src frame, free them */
442 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
443 free_func_state(dst_state->frame[i]);
444 dst_state->frame[i] = NULL;
445 }
446 dst_state->curframe = src->curframe;
447 dst_state->parent = src->parent;
448 for (i = 0; i <= src->curframe; i++) {
449 dst = dst_state->frame[i];
450 if (!dst) {
451 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
452 if (!dst)
453 return -ENOMEM;
454 dst_state->frame[i] = dst;
455 }
456 err = copy_func_state(dst, src->frame[i]);
457 if (err)
458 return err;
459 }
460 return 0;
461}
462
638f5b90
AS
463static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
464 int *insn_idx)
465{
466 struct bpf_verifier_state *cur = env->cur_state;
467 struct bpf_verifier_stack_elem *elem, *head = env->head;
468 int err;
17a52670
AS
469
470 if (env->head == NULL)
638f5b90 471 return -ENOENT;
17a52670 472
638f5b90
AS
473 if (cur) {
474 err = copy_verifier_state(cur, &head->st);
475 if (err)
476 return err;
477 }
478 if (insn_idx)
479 *insn_idx = head->insn_idx;
17a52670 480 if (prev_insn_idx)
638f5b90
AS
481 *prev_insn_idx = head->prev_insn_idx;
482 elem = head->next;
1969db47 483 free_verifier_state(&head->st, false);
638f5b90 484 kfree(head);
17a52670
AS
485 env->head = elem;
486 env->stack_size--;
638f5b90 487 return 0;
17a52670
AS
488}
489
58e2af8b
JK
490static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
491 int insn_idx, int prev_insn_idx)
17a52670 492{
638f5b90 493 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 494 struct bpf_verifier_stack_elem *elem;
638f5b90 495 int err;
17a52670 496
638f5b90 497 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
498 if (!elem)
499 goto err;
500
17a52670
AS
501 elem->insn_idx = insn_idx;
502 elem->prev_insn_idx = prev_insn_idx;
503 elem->next = env->head;
504 env->head = elem;
505 env->stack_size++;
1969db47
AS
506 err = copy_verifier_state(&elem->st, cur);
507 if (err)
508 goto err;
07016151 509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 510 verbose(env, "BPF program is too complex\n");
17a52670
AS
511 goto err;
512 }
513 return &elem->st;
514err:
5896351e
AS
515 free_verifier_state(env->cur_state, true);
516 env->cur_state = NULL;
17a52670 517 /* pop all elements and return */
638f5b90 518 while (!pop_stack(env, NULL, NULL));
17a52670
AS
519 return NULL;
520}
521
522#define CALLER_SAVED_REGS 6
523static const int caller_saved[CALLER_SAVED_REGS] = {
524 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
525};
526
f1174f77
EC
527static void __mark_reg_not_init(struct bpf_reg_state *reg);
528
b03c9f9f
EC
529/* Mark the unknown part of a register (variable offset or scalar value) as
530 * known to have the value @imm.
531 */
532static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
533{
534 reg->id = 0;
535 reg->var_off = tnum_const(imm);
536 reg->smin_value = (s64)imm;
537 reg->smax_value = (s64)imm;
538 reg->umin_value = imm;
539 reg->umax_value = imm;
540}
541
f1174f77
EC
542/* Mark the 'variable offset' part of a register as zero. This should be
543 * used only on registers holding a pointer type.
544 */
545static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 546{
b03c9f9f 547 __mark_reg_known(reg, 0);
f1174f77 548}
a9789ef9 549
cc2b14d5
AS
550static void __mark_reg_const_zero(struct bpf_reg_state *reg)
551{
552 __mark_reg_known(reg, 0);
553 reg->off = 0;
554 reg->type = SCALAR_VALUE;
555}
556
61bd5218
JK
557static void mark_reg_known_zero(struct bpf_verifier_env *env,
558 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
559{
560 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 561 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
562 /* Something bad happened, let's kill all regs */
563 for (regno = 0; regno < MAX_BPF_REG; regno++)
564 __mark_reg_not_init(regs + regno);
565 return;
566 }
567 __mark_reg_known_zero(regs + regno);
568}
569
de8f3a83
DB
570static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
571{
572 return type_is_pkt_pointer(reg->type);
573}
574
575static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
576{
577 return reg_is_pkt_pointer(reg) ||
578 reg->type == PTR_TO_PACKET_END;
579}
580
581/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
582static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
583 enum bpf_reg_type which)
584{
585 /* The register can already have a range from prior markings.
586 * This is fine as long as it hasn't been advanced from its
587 * origin.
588 */
589 return reg->type == which &&
590 reg->id == 0 &&
591 reg->off == 0 &&
592 tnum_equals_const(reg->var_off, 0);
593}
594
b03c9f9f
EC
595/* Attempts to improve min/max values based on var_off information */
596static void __update_reg_bounds(struct bpf_reg_state *reg)
597{
598 /* min signed is max(sign bit) | min(other bits) */
599 reg->smin_value = max_t(s64, reg->smin_value,
600 reg->var_off.value | (reg->var_off.mask & S64_MIN));
601 /* max signed is min(sign bit) | max(other bits) */
602 reg->smax_value = min_t(s64, reg->smax_value,
603 reg->var_off.value | (reg->var_off.mask & S64_MAX));
604 reg->umin_value = max(reg->umin_value, reg->var_off.value);
605 reg->umax_value = min(reg->umax_value,
606 reg->var_off.value | reg->var_off.mask);
607}
608
609/* Uses signed min/max values to inform unsigned, and vice-versa */
610static void __reg_deduce_bounds(struct bpf_reg_state *reg)
611{
612 /* Learn sign from signed bounds.
613 * If we cannot cross the sign boundary, then signed and unsigned bounds
614 * are the same, so combine. This works even in the negative case, e.g.
615 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
616 */
617 if (reg->smin_value >= 0 || reg->smax_value < 0) {
618 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
619 reg->umin_value);
620 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
621 reg->umax_value);
622 return;
623 }
624 /* Learn sign from unsigned bounds. Signed bounds cross the sign
625 * boundary, so we must be careful.
626 */
627 if ((s64)reg->umax_value >= 0) {
628 /* Positive. We can't learn anything from the smin, but smax
629 * is positive, hence safe.
630 */
631 reg->smin_value = reg->umin_value;
632 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
633 reg->umax_value);
634 } else if ((s64)reg->umin_value < 0) {
635 /* Negative. We can't learn anything from the smax, but smin
636 * is negative, hence safe.
637 */
638 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
639 reg->umin_value);
640 reg->smax_value = reg->umax_value;
641 }
642}
643
644/* Attempts to improve var_off based on unsigned min/max information */
645static void __reg_bound_offset(struct bpf_reg_state *reg)
646{
647 reg->var_off = tnum_intersect(reg->var_off,
648 tnum_range(reg->umin_value,
649 reg->umax_value));
650}
651
652/* Reset the min/max bounds of a register */
653static void __mark_reg_unbounded(struct bpf_reg_state *reg)
654{
655 reg->smin_value = S64_MIN;
656 reg->smax_value = S64_MAX;
657 reg->umin_value = 0;
658 reg->umax_value = U64_MAX;
659}
660
f1174f77
EC
661/* Mark a register as having a completely unknown (scalar) value. */
662static void __mark_reg_unknown(struct bpf_reg_state *reg)
663{
664 reg->type = SCALAR_VALUE;
665 reg->id = 0;
666 reg->off = 0;
667 reg->var_off = tnum_unknown;
f4d7e40a 668 reg->frameno = 0;
b03c9f9f 669 __mark_reg_unbounded(reg);
f1174f77
EC
670}
671
61bd5218
JK
672static void mark_reg_unknown(struct bpf_verifier_env *env,
673 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
674{
675 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 676 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
19ceb417
AS
677 /* Something bad happened, let's kill all regs except FP */
678 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
679 __mark_reg_not_init(regs + regno);
680 return;
681 }
682 __mark_reg_unknown(regs + regno);
683}
684
685static void __mark_reg_not_init(struct bpf_reg_state *reg)
686{
687 __mark_reg_unknown(reg);
688 reg->type = NOT_INIT;
689}
690
61bd5218
JK
691static void mark_reg_not_init(struct bpf_verifier_env *env,
692 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
693{
694 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 695 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
19ceb417
AS
696 /* Something bad happened, let's kill all regs except FP */
697 for (regno = 0; regno < BPF_REG_FP; regno++)
f1174f77
EC
698 __mark_reg_not_init(regs + regno);
699 return;
700 }
701 __mark_reg_not_init(regs + regno);
a9789ef9
DB
702}
703
61bd5218 704static void init_reg_state(struct bpf_verifier_env *env,
f4d7e40a 705 struct bpf_func_state *state)
17a52670 706{
f4d7e40a 707 struct bpf_reg_state *regs = state->regs;
17a52670
AS
708 int i;
709
dc503a8a 710 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 711 mark_reg_not_init(env, regs, i);
dc503a8a
EC
712 regs[i].live = REG_LIVE_NONE;
713 }
17a52670
AS
714
715 /* frame pointer */
f1174f77 716 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 717 mark_reg_known_zero(env, regs, BPF_REG_FP);
f4d7e40a 718 regs[BPF_REG_FP].frameno = state->frameno;
17a52670
AS
719
720 /* 1st arg to a function */
721 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 722 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
723}
724
f4d7e40a
AS
725#define BPF_MAIN_FUNC (-1)
726static void init_func_state(struct bpf_verifier_env *env,
727 struct bpf_func_state *state,
728 int callsite, int frameno, int subprogno)
729{
730 state->callsite = callsite;
731 state->frameno = frameno;
732 state->subprogno = subprogno;
733 init_reg_state(env, state);
734}
735
17a52670
AS
736enum reg_arg_type {
737 SRC_OP, /* register is used as source operand */
738 DST_OP, /* register is used as destination operand */
739 DST_OP_NO_MARK /* same as above, check only, don't mark */
740};
741
cc8b0b92
AS
742static int cmp_subprogs(const void *a, const void *b)
743{
9c8105bd
JW
744 return ((struct bpf_subprog_info *)a)->start -
745 ((struct bpf_subprog_info *)b)->start;
cc8b0b92
AS
746}
747
748static int find_subprog(struct bpf_verifier_env *env, int off)
749{
9c8105bd 750 struct bpf_subprog_info *p;
cc8b0b92 751
9c8105bd
JW
752 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
753 sizeof(env->subprog_info[0]), cmp_subprogs);
cc8b0b92
AS
754 if (!p)
755 return -ENOENT;
9c8105bd 756 return p - env->subprog_info;
cc8b0b92
AS
757
758}
759
760static int add_subprog(struct bpf_verifier_env *env, int off)
761{
762 int insn_cnt = env->prog->len;
763 int ret;
764
765 if (off >= insn_cnt || off < 0) {
766 verbose(env, "call to invalid destination\n");
767 return -EINVAL;
768 }
769 ret = find_subprog(env, off);
770 if (ret >= 0)
771 return 0;
4cb3d99c 772 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
cc8b0b92
AS
773 verbose(env, "too many subprograms\n");
774 return -E2BIG;
775 }
9c8105bd
JW
776 env->subprog_info[env->subprog_cnt++].start = off;
777 sort(env->subprog_info, env->subprog_cnt,
778 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
cc8b0b92
AS
779 return 0;
780}
781
782static int check_subprogs(struct bpf_verifier_env *env)
783{
784 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
9c8105bd 785 struct bpf_subprog_info *subprog = env->subprog_info;
cc8b0b92
AS
786 struct bpf_insn *insn = env->prog->insnsi;
787 int insn_cnt = env->prog->len;
788
f910cefa
JW
789 /* Add entry function. */
790 ret = add_subprog(env, 0);
791 if (ret < 0)
792 return ret;
793
cc8b0b92
AS
794 /* determine subprog starts. The end is one before the next starts */
795 for (i = 0; i < insn_cnt; i++) {
796 if (insn[i].code != (BPF_JMP | BPF_CALL))
797 continue;
798 if (insn[i].src_reg != BPF_PSEUDO_CALL)
799 continue;
800 if (!env->allow_ptr_leaks) {
801 verbose(env, "function calls to other bpf functions are allowed for root only\n");
802 return -EPERM;
803 }
804 if (bpf_prog_is_dev_bound(env->prog->aux)) {
e90004d5 805 verbose(env, "function calls in offloaded programs are not supported yet\n");
cc8b0b92
AS
806 return -EINVAL;
807 }
808 ret = add_subprog(env, i + insn[i].imm + 1);
809 if (ret < 0)
810 return ret;
811 }
812
4cb3d99c
JW
813 /* Add a fake 'exit' subprog which could simplify subprog iteration
814 * logic. 'subprog_cnt' should not be increased.
815 */
816 subprog[env->subprog_cnt].start = insn_cnt;
817
cc8b0b92
AS
818 if (env->log.level > 1)
819 for (i = 0; i < env->subprog_cnt; i++)
9c8105bd 820 verbose(env, "func#%d @%d\n", i, subprog[i].start);
cc8b0b92
AS
821
822 /* now check that all jumps are within the same subprog */
4cb3d99c
JW
823 subprog_start = subprog[cur_subprog].start;
824 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
825 for (i = 0; i < insn_cnt; i++) {
826 u8 code = insn[i].code;
827
828 if (BPF_CLASS(code) != BPF_JMP)
829 goto next;
830 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
831 goto next;
832 off = i + insn[i].off + 1;
833 if (off < subprog_start || off >= subprog_end) {
834 verbose(env, "jump out of range from insn %d to %d\n", i, off);
835 return -EINVAL;
836 }
837next:
838 if (i == subprog_end - 1) {
839 /* to avoid fall-through from one subprog into another
840 * the last insn of the subprog should be either exit
841 * or unconditional jump back
842 */
843 if (code != (BPF_JMP | BPF_EXIT) &&
844 code != (BPF_JMP | BPF_JA)) {
845 verbose(env, "last insn is not an exit or jmp\n");
846 return -EINVAL;
847 }
848 subprog_start = subprog_end;
4cb3d99c
JW
849 cur_subprog++;
850 if (cur_subprog < env->subprog_cnt)
9c8105bd 851 subprog_end = subprog[cur_subprog + 1].start;
cc8b0b92
AS
852 }
853 }
854 return 0;
855}
856
fa2d41ad 857static
f4d7e40a
AS
858struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
859 const struct bpf_verifier_state *state,
860 struct bpf_verifier_state *parent,
861 u32 regno)
dc503a8a 862{
f4d7e40a
AS
863 struct bpf_verifier_state *tmp = NULL;
864
865 /* 'parent' could be a state of caller and
866 * 'state' could be a state of callee. In such case
867 * parent->curframe < state->curframe
868 * and it's ok for r1 - r5 registers
869 *
870 * 'parent' could be a callee's state after it bpf_exit-ed.
871 * In such case parent->curframe > state->curframe
872 * and it's ok for r0 only
873 */
874 if (parent->curframe == state->curframe ||
875 (parent->curframe < state->curframe &&
876 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
877 (parent->curframe > state->curframe &&
878 regno == BPF_REG_0))
879 return parent;
880
881 if (parent->curframe > state->curframe &&
882 regno >= BPF_REG_6) {
883 /* for callee saved regs we have to skip the whole chain
884 * of states that belong to callee and mark as LIVE_READ
885 * the registers before the call
886 */
887 tmp = parent;
888 while (tmp && tmp->curframe != state->curframe) {
889 tmp = tmp->parent;
890 }
891 if (!tmp)
892 goto bug;
893 parent = tmp;
894 } else {
895 goto bug;
896 }
897 return parent;
898bug:
899 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
900 verbose(env, "regno %d parent frame %d current frame %d\n",
901 regno, parent->curframe, state->curframe);
fa2d41ad 902 return NULL;
f4d7e40a
AS
903}
904
905static int mark_reg_read(struct bpf_verifier_env *env,
906 const struct bpf_verifier_state *state,
907 struct bpf_verifier_state *parent,
908 u32 regno)
909{
910 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a 911
8fe2d6cc
AS
912 if (regno == BPF_REG_FP)
913 /* We don't need to worry about FP liveness because it's read-only */
f4d7e40a 914 return 0;
8fe2d6cc 915
dc503a8a
EC
916 while (parent) {
917 /* if read wasn't screened by an earlier write ... */
f4d7e40a 918 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
dc503a8a 919 break;
f4d7e40a
AS
920 parent = skip_callee(env, state, parent, regno);
921 if (!parent)
922 return -EFAULT;
dc503a8a 923 /* ... then we depend on parent's value */
f4d7e40a 924 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
dc503a8a
EC
925 state = parent;
926 parent = state->parent;
f4d7e40a 927 writes = true;
dc503a8a 928 }
f4d7e40a 929 return 0;
dc503a8a
EC
930}
931
932static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
933 enum reg_arg_type t)
934{
f4d7e40a
AS
935 struct bpf_verifier_state *vstate = env->cur_state;
936 struct bpf_func_state *state = vstate->frame[vstate->curframe];
937 struct bpf_reg_state *regs = state->regs;
dc503a8a 938
17a52670 939 if (regno >= MAX_BPF_REG) {
61bd5218 940 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
941 return -EINVAL;
942 }
943
944 if (t == SRC_OP) {
945 /* check whether register used as source operand can be read */
946 if (regs[regno].type == NOT_INIT) {
61bd5218 947 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
948 return -EACCES;
949 }
f4d7e40a 950 return mark_reg_read(env, vstate, vstate->parent, regno);
17a52670
AS
951 } else {
952 /* check whether register used as dest operand can be written to */
953 if (regno == BPF_REG_FP) {
61bd5218 954 verbose(env, "frame pointer is read only\n");
17a52670
AS
955 return -EACCES;
956 }
dc503a8a 957 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 958 if (t == DST_OP)
61bd5218 959 mark_reg_unknown(env, regs, regno);
17a52670
AS
960 }
961 return 0;
962}
963
1be7f75d
AS
964static bool is_spillable_regtype(enum bpf_reg_type type)
965{
966 switch (type) {
967 case PTR_TO_MAP_VALUE:
968 case PTR_TO_MAP_VALUE_OR_NULL:
969 case PTR_TO_STACK:
970 case PTR_TO_CTX:
969bf05e 971 case PTR_TO_PACKET:
de8f3a83 972 case PTR_TO_PACKET_META:
969bf05e 973 case PTR_TO_PACKET_END:
1be7f75d
AS
974 case CONST_PTR_TO_MAP:
975 return true;
976 default:
977 return false;
978 }
979}
980
cc2b14d5
AS
981/* Does this register contain a constant zero? */
982static bool register_is_null(struct bpf_reg_state *reg)
983{
984 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
985}
986
17a52670
AS
987/* check_stack_read/write functions track spill/fill of registers,
988 * stack boundary and alignment are checked in check_mem_access()
989 */
61bd5218 990static int check_stack_write(struct bpf_verifier_env *env,
f4d7e40a
AS
991 struct bpf_func_state *state, /* func where register points to */
992 int off, int size, int value_regno)
17a52670 993{
f4d7e40a 994 struct bpf_func_state *cur; /* state of the current function */
638f5b90 995 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
f4d7e40a 996 enum bpf_reg_type type;
638f5b90 997
f4d7e40a
AS
998 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
999 true);
638f5b90
AS
1000 if (err)
1001 return err;
9c399760
AS
1002 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1003 * so it's aligned access and [off, off + size) are within stack limits
1004 */
638f5b90
AS
1005 if (!env->allow_ptr_leaks &&
1006 state->stack[spi].slot_type[0] == STACK_SPILL &&
1007 size != BPF_REG_SIZE) {
1008 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1009 return -EACCES;
1010 }
17a52670 1011
f4d7e40a 1012 cur = env->cur_state->frame[env->cur_state->curframe];
17a52670 1013 if (value_regno >= 0 &&
f4d7e40a 1014 is_spillable_regtype((type = cur->regs[value_regno].type))) {
17a52670
AS
1015
1016 /* register containing pointer is being spilled into stack */
9c399760 1017 if (size != BPF_REG_SIZE) {
61bd5218 1018 verbose(env, "invalid size of register spill\n");
17a52670
AS
1019 return -EACCES;
1020 }
1021
f4d7e40a
AS
1022 if (state != cur && type == PTR_TO_STACK) {
1023 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1024 return -EINVAL;
1025 }
1026
17a52670 1027 /* save register state */
f4d7e40a 1028 state->stack[spi].spilled_ptr = cur->regs[value_regno];
638f5b90 1029 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 1030
9c399760 1031 for (i = 0; i < BPF_REG_SIZE; i++)
638f5b90 1032 state->stack[spi].slot_type[i] = STACK_SPILL;
9c399760 1033 } else {
cc2b14d5
AS
1034 u8 type = STACK_MISC;
1035
17a52670 1036 /* regular write of data into stack */
638f5b90 1037 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760 1038
cc2b14d5
AS
1039 /* only mark the slot as written if all 8 bytes were written
1040 * otherwise read propagation may incorrectly stop too soon
1041 * when stack slots are partially written.
1042 * This heuristic means that read propagation will be
1043 * conservative, since it will add reg_live_read marks
1044 * to stack slots all the way to first state when programs
1045 * writes+reads less than 8 bytes
1046 */
1047 if (size == BPF_REG_SIZE)
1048 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1049
1050 /* when we zero initialize stack slots mark them as such */
1051 if (value_regno >= 0 &&
1052 register_is_null(&cur->regs[value_regno]))
1053 type = STACK_ZERO;
1054
9c399760 1055 for (i = 0; i < size; i++)
638f5b90 1056 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
cc2b14d5 1057 type;
17a52670
AS
1058 }
1059 return 0;
1060}
1061
f4d7e40a
AS
1062/* registers of every function are unique and mark_reg_read() propagates
1063 * the liveness in the following cases:
1064 * - from callee into caller for R1 - R5 that were used as arguments
1065 * - from caller into callee for R0 that used as result of the call
1066 * - from caller to the same caller skipping states of the callee for R6 - R9,
1067 * since R6 - R9 are callee saved by implicit function prologue and
1068 * caller's R6 != callee's R6, so when we propagate liveness up to
1069 * parent states we need to skip callee states for R6 - R9.
1070 *
1071 * stack slot marking is different, since stacks of caller and callee are
1072 * accessible in both (since caller can pass a pointer to caller's stack to
1073 * callee which can pass it to another function), hence mark_stack_slot_read()
1074 * has to propagate the stack liveness to all parent states at given frame number.
1075 * Consider code:
1076 * f1() {
1077 * ptr = fp - 8;
1078 * *ptr = ctx;
1079 * call f2 {
1080 * .. = *ptr;
1081 * }
1082 * .. = *ptr;
1083 * }
1084 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1085 * to mark liveness at the f1's frame and not f2's frame.
1086 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1087 * to propagate liveness to f2 states at f1's frame level and further into
1088 * f1 states at f1's frame level until write into that stack slot
1089 */
1090static void mark_stack_slot_read(struct bpf_verifier_env *env,
1091 const struct bpf_verifier_state *state,
1092 struct bpf_verifier_state *parent,
1093 int slot, int frameno)
dc503a8a 1094{
f4d7e40a 1095 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
1096
1097 while (parent) {
cc2b14d5
AS
1098 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1099 /* since LIVE_WRITTEN mark is only done for full 8-byte
1100 * write the read marks are conservative and parent
1101 * state may not even have the stack allocated. In such case
1102 * end the propagation, since the loop reached beginning
1103 * of the function
1104 */
1105 break;
dc503a8a 1106 /* if read wasn't screened by an earlier write ... */
f4d7e40a 1107 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
1108 break;
1109 /* ... then we depend on parent's value */
f4d7e40a 1110 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
1111 state = parent;
1112 parent = state->parent;
f4d7e40a 1113 writes = true;
dc503a8a
EC
1114 }
1115}
1116
61bd5218 1117static int check_stack_read(struct bpf_verifier_env *env,
f4d7e40a
AS
1118 struct bpf_func_state *reg_state /* func where register points to */,
1119 int off, int size, int value_regno)
17a52670 1120{
f4d7e40a
AS
1121 struct bpf_verifier_state *vstate = env->cur_state;
1122 struct bpf_func_state *state = vstate->frame[vstate->curframe];
638f5b90
AS
1123 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1124 u8 *stype;
17a52670 1125
f4d7e40a 1126 if (reg_state->allocated_stack <= slot) {
638f5b90
AS
1127 verbose(env, "invalid read from stack off %d+0 size %d\n",
1128 off, size);
1129 return -EACCES;
1130 }
f4d7e40a 1131 stype = reg_state->stack[spi].slot_type;
17a52670 1132
638f5b90 1133 if (stype[0] == STACK_SPILL) {
9c399760 1134 if (size != BPF_REG_SIZE) {
61bd5218 1135 verbose(env, "invalid size of register spill\n");
17a52670
AS
1136 return -EACCES;
1137 }
9c399760 1138 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 1139 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 1140 verbose(env, "corrupted spill memory\n");
17a52670
AS
1141 return -EACCES;
1142 }
1143 }
1144
dc503a8a 1145 if (value_regno >= 0) {
17a52670 1146 /* restore register state from stack */
f4d7e40a 1147 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
2f18f62e
AS
1148 /* mark reg as written since spilled pointer state likely
1149 * has its liveness marks cleared by is_state_visited()
1150 * which resets stack/reg liveness for state transitions
1151 */
1152 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
dc503a8a 1153 }
cc2b14d5
AS
1154 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1155 reg_state->frameno);
17a52670
AS
1156 return 0;
1157 } else {
cc2b14d5
AS
1158 int zeros = 0;
1159
17a52670 1160 for (i = 0; i < size; i++) {
cc2b14d5
AS
1161 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1162 continue;
1163 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1164 zeros++;
1165 continue;
17a52670 1166 }
cc2b14d5
AS
1167 verbose(env, "invalid read from stack off %d+%d size %d\n",
1168 off, i, size);
1169 return -EACCES;
1170 }
1171 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1172 reg_state->frameno);
1173 if (value_regno >= 0) {
1174 if (zeros == size) {
1175 /* any size read into register is zero extended,
1176 * so the whole register == const_zero
1177 */
1178 __mark_reg_const_zero(&state->regs[value_regno]);
1179 } else {
1180 /* have read misc data from the stack */
1181 mark_reg_unknown(env, state->regs, value_regno);
1182 }
1183 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
17a52670 1184 }
17a52670
AS
1185 return 0;
1186 }
1187}
1188
1189/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 1190static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1191 int size, bool zero_size_allowed)
17a52670 1192{
638f5b90
AS
1193 struct bpf_reg_state *regs = cur_regs(env);
1194 struct bpf_map *map = regs[regno].map_ptr;
17a52670 1195
9fd29c08
YS
1196 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1197 off + size > map->value_size) {
61bd5218 1198 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
1199 map->value_size, off, size);
1200 return -EACCES;
1201 }
1202 return 0;
1203}
1204
f1174f77
EC
1205/* check read/write into a map element with possible variable offset */
1206static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1207 int off, int size, bool zero_size_allowed)
dbcfe5f7 1208{
f4d7e40a
AS
1209 struct bpf_verifier_state *vstate = env->cur_state;
1210 struct bpf_func_state *state = vstate->frame[vstate->curframe];
dbcfe5f7
GB
1211 struct bpf_reg_state *reg = &state->regs[regno];
1212 int err;
1213
f1174f77
EC
1214 /* We may have adjusted the register to this map value, so we
1215 * need to try adding each of min_value and max_value to off
1216 * to make sure our theoretical access will be safe.
dbcfe5f7 1217 */
61bd5218
JK
1218 if (env->log.level)
1219 print_verifier_state(env, state);
dbcfe5f7
GB
1220 /* The minimum value is only important with signed
1221 * comparisons where we can't assume the floor of a
1222 * value is 0. If we are using signed variables for our
1223 * index'es we need to make sure that whatever we use
1224 * will have a set floor within our range.
1225 */
b03c9f9f 1226 if (reg->smin_value < 0) {
61bd5218 1227 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
1228 regno);
1229 return -EACCES;
1230 }
9fd29c08
YS
1231 err = __check_map_access(env, regno, reg->smin_value + off, size,
1232 zero_size_allowed);
dbcfe5f7 1233 if (err) {
61bd5218
JK
1234 verbose(env, "R%d min value is outside of the array range\n",
1235 regno);
dbcfe5f7
GB
1236 return err;
1237 }
1238
b03c9f9f
EC
1239 /* If we haven't set a max value then we need to bail since we can't be
1240 * sure we won't do bad things.
1241 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 1242 */
b03c9f9f 1243 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 1244 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
1245 regno);
1246 return -EACCES;
1247 }
9fd29c08
YS
1248 err = __check_map_access(env, regno, reg->umax_value + off, size,
1249 zero_size_allowed);
f1174f77 1250 if (err)
61bd5218
JK
1251 verbose(env, "R%d max value is outside of the array range\n",
1252 regno);
f1174f77 1253 return err;
dbcfe5f7
GB
1254}
1255
969bf05e
AS
1256#define MAX_PACKET_OFF 0xffff
1257
58e2af8b 1258static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
1259 const struct bpf_call_arg_meta *meta,
1260 enum bpf_access_type t)
4acf6c0b 1261{
36bbef52 1262 switch (env->prog->type) {
3a0af8fd
TG
1263 case BPF_PROG_TYPE_LWT_IN:
1264 case BPF_PROG_TYPE_LWT_OUT:
1265 /* dst_input() and dst_output() can't write for now */
1266 if (t == BPF_WRITE)
1267 return false;
7e57fbb2 1268 /* fallthrough */
36bbef52
DB
1269 case BPF_PROG_TYPE_SCHED_CLS:
1270 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 1271 case BPF_PROG_TYPE_XDP:
3a0af8fd 1272 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 1273 case BPF_PROG_TYPE_SK_SKB:
4f738adb 1274 case BPF_PROG_TYPE_SK_MSG:
36bbef52
DB
1275 if (meta)
1276 return meta->pkt_access;
1277
1278 env->seen_direct_write = true;
4acf6c0b
BB
1279 return true;
1280 default:
1281 return false;
1282 }
1283}
1284
f1174f77 1285static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 1286 int off, int size, bool zero_size_allowed)
969bf05e 1287{
638f5b90 1288 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 1289 struct bpf_reg_state *reg = &regs[regno];
969bf05e 1290
9fd29c08
YS
1291 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1292 (u64)off + size > reg->range) {
61bd5218 1293 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 1294 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
1295 return -EACCES;
1296 }
1297 return 0;
1298}
1299
f1174f77 1300static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 1301 int size, bool zero_size_allowed)
f1174f77 1302{
638f5b90 1303 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
1304 struct bpf_reg_state *reg = &regs[regno];
1305 int err;
1306
1307 /* We may have added a variable offset to the packet pointer; but any
1308 * reg->range we have comes after that. We are only checking the fixed
1309 * offset.
1310 */
1311
1312 /* We don't allow negative numbers, because we aren't tracking enough
1313 * detail to prove they're safe.
1314 */
b03c9f9f 1315 if (reg->smin_value < 0) {
61bd5218 1316 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
1317 regno);
1318 return -EACCES;
1319 }
9fd29c08 1320 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 1321 if (err) {
61bd5218 1322 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
1323 return err;
1324 }
1325 return err;
1326}
1327
1328/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 1329static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 1330 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 1331{
f96da094
DB
1332 struct bpf_insn_access_aux info = {
1333 .reg_type = *reg_type,
1334 };
31fd8581 1335
4f9218aa 1336 if (env->ops->is_valid_access &&
5e43f899 1337 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
f96da094
DB
1338 /* A non zero info.ctx_field_size indicates that this field is a
1339 * candidate for later verifier transformation to load the whole
1340 * field and then apply a mask when accessed with a narrower
1341 * access than actual ctx access size. A zero info.ctx_field_size
1342 * will only allow for whole field access and rejects any other
1343 * type of narrower access.
31fd8581 1344 */
23994631 1345 *reg_type = info.reg_type;
31fd8581 1346
4f9218aa 1347 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
1348 /* remember the offset of last byte accessed in ctx */
1349 if (env->prog->aux->max_ctx_offset < off + size)
1350 env->prog->aux->max_ctx_offset = off + size;
17a52670 1351 return 0;
32bbe007 1352 }
17a52670 1353
61bd5218 1354 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
1355 return -EACCES;
1356}
1357
4cabc5b1
DB
1358static bool __is_pointer_value(bool allow_ptr_leaks,
1359 const struct bpf_reg_state *reg)
1be7f75d 1360{
4cabc5b1 1361 if (allow_ptr_leaks)
1be7f75d
AS
1362 return false;
1363
f1174f77 1364 return reg->type != SCALAR_VALUE;
1be7f75d
AS
1365}
1366
4cabc5b1
DB
1367static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1368{
638f5b90 1369 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1370}
1371
f37a8cb8
DB
1372static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1373{
1374 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1375
1376 return reg->type == PTR_TO_CTX;
1377}
1378
ca369602
DB
1379static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1380{
1381 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1382
1383 return type_is_pkt_pointer(reg->type);
1384}
1385
61bd5218
JK
1386static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1387 const struct bpf_reg_state *reg,
d1174416 1388 int off, int size, bool strict)
969bf05e 1389{
f1174f77 1390 struct tnum reg_off;
e07b98d9 1391 int ip_align;
d1174416
DM
1392
1393 /* Byte size accesses are always allowed. */
1394 if (!strict || size == 1)
1395 return 0;
1396
e4eda884
DM
1397 /* For platforms that do not have a Kconfig enabling
1398 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1399 * NET_IP_ALIGN is universally set to '2'. And on platforms
1400 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1401 * to this code only in strict mode where we want to emulate
1402 * the NET_IP_ALIGN==2 checking. Therefore use an
1403 * unconditional IP align value of '2'.
e07b98d9 1404 */
e4eda884 1405 ip_align = 2;
f1174f77
EC
1406
1407 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1408 if (!tnum_is_aligned(reg_off, size)) {
1409 char tn_buf[48];
1410
1411 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1412 verbose(env,
1413 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1414 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1415 return -EACCES;
1416 }
79adffcd 1417
969bf05e
AS
1418 return 0;
1419}
1420
61bd5218
JK
1421static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1422 const struct bpf_reg_state *reg,
f1174f77
EC
1423 const char *pointer_desc,
1424 int off, int size, bool strict)
79adffcd 1425{
f1174f77
EC
1426 struct tnum reg_off;
1427
1428 /* Byte size accesses are always allowed. */
1429 if (!strict || size == 1)
1430 return 0;
1431
1432 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1433 if (!tnum_is_aligned(reg_off, size)) {
1434 char tn_buf[48];
1435
1436 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1437 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1438 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1439 return -EACCES;
1440 }
1441
969bf05e
AS
1442 return 0;
1443}
1444
e07b98d9 1445static int check_ptr_alignment(struct bpf_verifier_env *env,
ca369602
DB
1446 const struct bpf_reg_state *reg, int off,
1447 int size, bool strict_alignment_once)
79adffcd 1448{
ca369602 1449 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1450 const char *pointer_desc = "";
d1174416 1451
79adffcd
DB
1452 switch (reg->type) {
1453 case PTR_TO_PACKET:
de8f3a83
DB
1454 case PTR_TO_PACKET_META:
1455 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1456 * right in front, treat it the very same way.
1457 */
61bd5218 1458 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1459 case PTR_TO_MAP_VALUE:
1460 pointer_desc = "value ";
1461 break;
1462 case PTR_TO_CTX:
1463 pointer_desc = "context ";
1464 break;
1465 case PTR_TO_STACK:
1466 pointer_desc = "stack ";
a5ec6ae1
JH
1467 /* The stack spill tracking logic in check_stack_write()
1468 * and check_stack_read() relies on stack accesses being
1469 * aligned.
1470 */
1471 strict = true;
f1174f77 1472 break;
79adffcd 1473 default:
f1174f77 1474 break;
79adffcd 1475 }
61bd5218
JK
1476 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1477 strict);
79adffcd
DB
1478}
1479
f4d7e40a
AS
1480static int update_stack_depth(struct bpf_verifier_env *env,
1481 const struct bpf_func_state *func,
1482 int off)
1483{
9c8105bd 1484 u16 stack = env->subprog_info[func->subprogno].stack_depth;
f4d7e40a
AS
1485
1486 if (stack >= -off)
1487 return 0;
1488
1489 /* update known max for given subprogram */
9c8105bd 1490 env->subprog_info[func->subprogno].stack_depth = -off;
70a87ffe
AS
1491 return 0;
1492}
f4d7e40a 1493
70a87ffe
AS
1494/* starting from main bpf function walk all instructions of the function
1495 * and recursively walk all callees that given function can call.
1496 * Ignore jump and exit insns.
1497 * Since recursion is prevented by check_cfg() this algorithm
1498 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1499 */
1500static int check_max_stack_depth(struct bpf_verifier_env *env)
1501{
9c8105bd
JW
1502 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1503 struct bpf_subprog_info *subprog = env->subprog_info;
70a87ffe 1504 struct bpf_insn *insn = env->prog->insnsi;
70a87ffe
AS
1505 int ret_insn[MAX_CALL_FRAMES];
1506 int ret_prog[MAX_CALL_FRAMES];
f4d7e40a 1507
70a87ffe
AS
1508process_func:
1509 /* round up to 32-bytes, since this is granularity
1510 * of interpreter stack size
1511 */
9c8105bd 1512 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe 1513 if (depth > MAX_BPF_STACK) {
f4d7e40a 1514 verbose(env, "combined stack size of %d calls is %d. Too large\n",
70a87ffe 1515 frame + 1, depth);
f4d7e40a
AS
1516 return -EACCES;
1517 }
70a87ffe 1518continue_func:
4cb3d99c 1519 subprog_end = subprog[idx + 1].start;
70a87ffe
AS
1520 for (; i < subprog_end; i++) {
1521 if (insn[i].code != (BPF_JMP | BPF_CALL))
1522 continue;
1523 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1524 continue;
1525 /* remember insn and function to return to */
1526 ret_insn[frame] = i + 1;
9c8105bd 1527 ret_prog[frame] = idx;
70a87ffe
AS
1528
1529 /* find the callee */
1530 i = i + insn[i].imm + 1;
9c8105bd
JW
1531 idx = find_subprog(env, i);
1532 if (idx < 0) {
70a87ffe
AS
1533 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1534 i);
1535 return -EFAULT;
1536 }
70a87ffe
AS
1537 frame++;
1538 if (frame >= MAX_CALL_FRAMES) {
1539 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1540 return -EFAULT;
1541 }
1542 goto process_func;
1543 }
1544 /* end of for() loop means the last insn of the 'subprog'
1545 * was reached. Doesn't matter whether it was JA or EXIT
1546 */
1547 if (frame == 0)
1548 return 0;
9c8105bd 1549 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
70a87ffe
AS
1550 frame--;
1551 i = ret_insn[frame];
9c8105bd 1552 idx = ret_prog[frame];
70a87ffe 1553 goto continue_func;
f4d7e40a
AS
1554}
1555
19d28fbd 1556#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
1557static int get_callee_stack_depth(struct bpf_verifier_env *env,
1558 const struct bpf_insn *insn, int idx)
1559{
1560 int start = idx + insn->imm + 1, subprog;
1561
1562 subprog = find_subprog(env, start);
1563 if (subprog < 0) {
1564 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1565 start);
1566 return -EFAULT;
1567 }
9c8105bd 1568 return env->subprog_info[subprog].stack_depth;
1ea47e01 1569}
19d28fbd 1570#endif
1ea47e01 1571
0c17d1d2
JH
1572/* truncate register to smaller size (in bytes)
1573 * must be called with size < BPF_REG_SIZE
1574 */
1575static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1576{
1577 u64 mask;
1578
1579 /* clear high bits in bit representation */
1580 reg->var_off = tnum_cast(reg->var_off, size);
1581
1582 /* fix arithmetic bounds */
1583 mask = ((u64)1 << (size * 8)) - 1;
1584 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1585 reg->umin_value &= mask;
1586 reg->umax_value &= mask;
1587 } else {
1588 reg->umin_value = 0;
1589 reg->umax_value = mask;
1590 }
1591 reg->smin_value = reg->umin_value;
1592 reg->smax_value = reg->umax_value;
1593}
1594
17a52670
AS
1595/* check whether memory at (regno + off) is accessible for t = (read | write)
1596 * if t==write, value_regno is a register which value is stored into memory
1597 * if t==read, value_regno is a register which will receive the value from memory
1598 * if t==write && value_regno==-1, some unknown value is stored into memory
1599 * if t==read && value_regno==-1, don't care what we read from memory
1600 */
ca369602
DB
1601static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1602 int off, int bpf_size, enum bpf_access_type t,
1603 int value_regno, bool strict_alignment_once)
17a52670 1604{
638f5b90
AS
1605 struct bpf_reg_state *regs = cur_regs(env);
1606 struct bpf_reg_state *reg = regs + regno;
f4d7e40a 1607 struct bpf_func_state *state;
17a52670
AS
1608 int size, err = 0;
1609
1610 size = bpf_size_to_bytes(bpf_size);
1611 if (size < 0)
1612 return size;
1613
f1174f77 1614 /* alignment checks will add in reg->off themselves */
ca369602 1615 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1616 if (err)
1617 return err;
17a52670 1618
f1174f77
EC
1619 /* for access checks, reg->off is just part of off */
1620 off += reg->off;
1621
1622 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1623 if (t == BPF_WRITE && value_regno >= 0 &&
1624 is_pointer_value(env, value_regno)) {
61bd5218 1625 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1626 return -EACCES;
1627 }
48461135 1628
9fd29c08 1629 err = check_map_access(env, regno, off, size, false);
17a52670 1630 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1631 mark_reg_unknown(env, regs, value_regno);
17a52670 1632
1a0dc1ac 1633 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1634 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1635
1be7f75d
AS
1636 if (t == BPF_WRITE && value_regno >= 0 &&
1637 is_pointer_value(env, value_regno)) {
61bd5218 1638 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1639 return -EACCES;
1640 }
f1174f77
EC
1641 /* ctx accesses must be at a fixed offset, so that we can
1642 * determine what type of data were returned.
1643 */
28e33f9d 1644 if (reg->off) {
f8ddadc4
DM
1645 verbose(env,
1646 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1647 regno, reg->off, off - reg->off);
1648 return -EACCES;
1649 }
1650 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1651 char tn_buf[48];
1652
1653 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1654 verbose(env,
1655 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1656 tn_buf, off, size);
1657 return -EACCES;
1658 }
31fd8581 1659 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1660 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1661 /* ctx access returns either a scalar, or a
de8f3a83
DB
1662 * PTR_TO_PACKET[_META,_END]. In the latter
1663 * case, we know the offset is zero.
f1174f77
EC
1664 */
1665 if (reg_type == SCALAR_VALUE)
638f5b90 1666 mark_reg_unknown(env, regs, value_regno);
f1174f77 1667 else
638f5b90 1668 mark_reg_known_zero(env, regs,
61bd5218 1669 value_regno);
638f5b90
AS
1670 regs[value_regno].id = 0;
1671 regs[value_regno].off = 0;
1672 regs[value_regno].range = 0;
1673 regs[value_regno].type = reg_type;
969bf05e 1674 }
17a52670 1675
f1174f77
EC
1676 } else if (reg->type == PTR_TO_STACK) {
1677 /* stack accesses must be at a fixed offset, so that we can
1678 * determine what type of data were returned.
1679 * See check_stack_read().
1680 */
1681 if (!tnum_is_const(reg->var_off)) {
1682 char tn_buf[48];
1683
1684 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1685 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1686 tn_buf, off, size);
1687 return -EACCES;
1688 }
1689 off += reg->var_off.value;
17a52670 1690 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1691 verbose(env, "invalid stack off=%d size=%d\n", off,
1692 size);
17a52670
AS
1693 return -EACCES;
1694 }
8726679a 1695
f4d7e40a
AS
1696 state = func(env, reg);
1697 err = update_stack_depth(env, state, off);
1698 if (err)
1699 return err;
8726679a 1700
638f5b90 1701 if (t == BPF_WRITE)
61bd5218
JK
1702 err = check_stack_write(env, state, off, size,
1703 value_regno);
638f5b90 1704 else
61bd5218
JK
1705 err = check_stack_read(env, state, off, size,
1706 value_regno);
de8f3a83 1707 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1708 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1709 verbose(env, "cannot write into packet\n");
969bf05e
AS
1710 return -EACCES;
1711 }
4acf6c0b
BB
1712 if (t == BPF_WRITE && value_regno >= 0 &&
1713 is_pointer_value(env, value_regno)) {
61bd5218
JK
1714 verbose(env, "R%d leaks addr into packet\n",
1715 value_regno);
4acf6c0b
BB
1716 return -EACCES;
1717 }
9fd29c08 1718 err = check_packet_access(env, regno, off, size, false);
969bf05e 1719 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1720 mark_reg_unknown(env, regs, value_regno);
17a52670 1721 } else {
61bd5218
JK
1722 verbose(env, "R%d invalid mem access '%s'\n", regno,
1723 reg_type_str[reg->type]);
17a52670
AS
1724 return -EACCES;
1725 }
969bf05e 1726
f1174f77 1727 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1728 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1729 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1730 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1731 }
17a52670
AS
1732 return err;
1733}
1734
31fd8581 1735static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1736{
17a52670
AS
1737 int err;
1738
1739 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1740 insn->imm != 0) {
61bd5218 1741 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1742 return -EINVAL;
1743 }
1744
1745 /* check src1 operand */
dc503a8a 1746 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1747 if (err)
1748 return err;
1749
1750 /* check src2 operand */
dc503a8a 1751 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1752 if (err)
1753 return err;
1754
6bdf6abc 1755 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1756 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1757 return -EACCES;
1758 }
1759
ca369602
DB
1760 if (is_ctx_reg(env, insn->dst_reg) ||
1761 is_pkt_reg(env, insn->dst_reg)) {
1762 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1763 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1764 "context" : "packet");
f37a8cb8
DB
1765 return -EACCES;
1766 }
1767
17a52670 1768 /* check whether atomic_add can read the memory */
31fd8581 1769 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1770 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1771 if (err)
1772 return err;
1773
1774 /* check whether atomic_add can write into the same memory */
31fd8581 1775 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
ca369602 1776 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1777}
1778
1779/* when register 'regno' is passed into function that will read 'access_size'
1780 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1781 * and all elements of stack are initialized.
1782 * Unlike most pointer bounds-checking functions, this one doesn't take an
1783 * 'off' argument, so it has to add in reg->off itself.
17a52670 1784 */
58e2af8b 1785static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1786 int access_size, bool zero_size_allowed,
1787 struct bpf_call_arg_meta *meta)
17a52670 1788{
914cb781 1789 struct bpf_reg_state *reg = cur_regs(env) + regno;
f4d7e40a 1790 struct bpf_func_state *state = func(env, reg);
638f5b90 1791 int off, i, slot, spi;
17a52670 1792
914cb781 1793 if (reg->type != PTR_TO_STACK) {
f1174f77 1794 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1795 if (zero_size_allowed && access_size == 0 &&
914cb781 1796 register_is_null(reg))
8e2fe1d9
DB
1797 return 0;
1798
61bd5218 1799 verbose(env, "R%d type=%s expected=%s\n", regno,
914cb781 1800 reg_type_str[reg->type],
8e2fe1d9 1801 reg_type_str[PTR_TO_STACK]);
17a52670 1802 return -EACCES;
8e2fe1d9 1803 }
17a52670 1804
f1174f77 1805 /* Only allow fixed-offset stack reads */
914cb781 1806 if (!tnum_is_const(reg->var_off)) {
f1174f77
EC
1807 char tn_buf[48];
1808
914cb781 1809 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1810 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1811 regno, tn_buf);
ea25f914 1812 return -EACCES;
f1174f77 1813 }
914cb781 1814 off = reg->off + reg->var_off.value;
17a52670 1815 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1816 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1817 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1818 regno, off, access_size);
1819 return -EACCES;
1820 }
1821
435faee1
DB
1822 if (meta && meta->raw_mode) {
1823 meta->access_size = access_size;
1824 meta->regno = regno;
1825 return 0;
1826 }
1827
17a52670 1828 for (i = 0; i < access_size; i++) {
cc2b14d5
AS
1829 u8 *stype;
1830
638f5b90
AS
1831 slot = -(off + i) - 1;
1832 spi = slot / BPF_REG_SIZE;
cc2b14d5
AS
1833 if (state->allocated_stack <= slot)
1834 goto err;
1835 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1836 if (*stype == STACK_MISC)
1837 goto mark;
1838 if (*stype == STACK_ZERO) {
1839 /* helper can write anything into the stack */
1840 *stype = STACK_MISC;
1841 goto mark;
17a52670 1842 }
cc2b14d5
AS
1843err:
1844 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1845 off, i, access_size);
1846 return -EACCES;
1847mark:
1848 /* reading any byte out of 8-byte 'spill_slot' will cause
1849 * the whole slot to be marked as 'read'
1850 */
1851 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1852 spi, state->frameno);
17a52670 1853 }
f4d7e40a 1854 return update_stack_depth(env, state, off);
17a52670
AS
1855}
1856
06c1c049
GB
1857static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1858 int access_size, bool zero_size_allowed,
1859 struct bpf_call_arg_meta *meta)
1860{
638f5b90 1861 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1862
f1174f77 1863 switch (reg->type) {
06c1c049 1864 case PTR_TO_PACKET:
de8f3a83 1865 case PTR_TO_PACKET_META:
9fd29c08
YS
1866 return check_packet_access(env, regno, reg->off, access_size,
1867 zero_size_allowed);
06c1c049 1868 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1869 return check_map_access(env, regno, reg->off, access_size,
1870 zero_size_allowed);
f1174f77 1871 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1872 return check_stack_boundary(env, regno, access_size,
1873 zero_size_allowed, meta);
1874 }
1875}
1876
90133415
DB
1877static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1878{
1879 return type == ARG_PTR_TO_MEM ||
1880 type == ARG_PTR_TO_MEM_OR_NULL ||
1881 type == ARG_PTR_TO_UNINIT_MEM;
1882}
1883
1884static bool arg_type_is_mem_size(enum bpf_arg_type type)
1885{
1886 return type == ARG_CONST_SIZE ||
1887 type == ARG_CONST_SIZE_OR_ZERO;
1888}
1889
58e2af8b 1890static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1891 enum bpf_arg_type arg_type,
1892 struct bpf_call_arg_meta *meta)
17a52670 1893{
638f5b90 1894 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1895 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1896 int err = 0;
1897
80f1d68c 1898 if (arg_type == ARG_DONTCARE)
17a52670
AS
1899 return 0;
1900
dc503a8a
EC
1901 err = check_reg_arg(env, regno, SRC_OP);
1902 if (err)
1903 return err;
17a52670 1904
1be7f75d
AS
1905 if (arg_type == ARG_ANYTHING) {
1906 if (is_pointer_value(env, regno)) {
61bd5218
JK
1907 verbose(env, "R%d leaks addr into helper function\n",
1908 regno);
1be7f75d
AS
1909 return -EACCES;
1910 }
80f1d68c 1911 return 0;
1be7f75d 1912 }
80f1d68c 1913
de8f3a83 1914 if (type_is_pkt_pointer(type) &&
3a0af8fd 1915 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1916 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1917 return -EACCES;
1918 }
1919
8e2fe1d9 1920 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1921 arg_type == ARG_PTR_TO_MAP_VALUE) {
1922 expected_type = PTR_TO_STACK;
d71962f3 1923 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
de8f3a83 1924 type != expected_type)
6841de8b 1925 goto err_type;
39f19ebb
AS
1926 } else if (arg_type == ARG_CONST_SIZE ||
1927 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1928 expected_type = SCALAR_VALUE;
1929 if (type != expected_type)
6841de8b 1930 goto err_type;
17a52670
AS
1931 } else if (arg_type == ARG_CONST_MAP_PTR) {
1932 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1933 if (type != expected_type)
1934 goto err_type;
608cd71a
AS
1935 } else if (arg_type == ARG_PTR_TO_CTX) {
1936 expected_type = PTR_TO_CTX;
6841de8b
AS
1937 if (type != expected_type)
1938 goto err_type;
90133415 1939 } else if (arg_type_is_mem_ptr(arg_type)) {
8e2fe1d9
DB
1940 expected_type = PTR_TO_STACK;
1941 /* One exception here. In case function allows for NULL to be
f1174f77 1942 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1943 * happens during stack boundary checking.
1944 */
914cb781 1945 if (register_is_null(reg) &&
db1ac496 1946 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1947 /* final test in check_stack_boundary() */;
de8f3a83
DB
1948 else if (!type_is_pkt_pointer(type) &&
1949 type != PTR_TO_MAP_VALUE &&
f1174f77 1950 type != expected_type)
6841de8b 1951 goto err_type;
39f19ebb 1952 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1953 } else {
61bd5218 1954 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1955 return -EFAULT;
1956 }
1957
17a52670
AS
1958 if (arg_type == ARG_CONST_MAP_PTR) {
1959 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1960 meta->map_ptr = reg->map_ptr;
17a52670
AS
1961 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1962 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1963 * check that [key, key + map->key_size) are within
1964 * stack limits and initialized
1965 */
33ff9823 1966 if (!meta->map_ptr) {
17a52670
AS
1967 /* in function declaration map_ptr must come before
1968 * map_key, so that it's verified and known before
1969 * we have to check map_key here. Otherwise it means
1970 * that kernel subsystem misconfigured verifier
1971 */
61bd5218 1972 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1973 return -EACCES;
1974 }
d71962f3
PC
1975 err = check_helper_mem_access(env, regno,
1976 meta->map_ptr->key_size, false,
1977 NULL);
17a52670
AS
1978 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1979 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1980 * check [value, value + map->value_size) validity
1981 */
33ff9823 1982 if (!meta->map_ptr) {
17a52670 1983 /* kernel subsystem misconfigured verifier */
61bd5218 1984 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1985 return -EACCES;
1986 }
d71962f3
PC
1987 err = check_helper_mem_access(env, regno,
1988 meta->map_ptr->value_size, false,
1989 NULL);
90133415 1990 } else if (arg_type_is_mem_size(arg_type)) {
39f19ebb 1991 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1992
849fa506
YS
1993 /* remember the mem_size which may be used later
1994 * to refine return values.
1995 */
1996 meta->msize_smax_value = reg->smax_value;
1997 meta->msize_umax_value = reg->umax_value;
1998
f1174f77
EC
1999 /* The register is SCALAR_VALUE; the access check
2000 * happens using its boundaries.
06c1c049 2001 */
f1174f77 2002 if (!tnum_is_const(reg->var_off))
06c1c049
GB
2003 /* For unprivileged variable accesses, disable raw
2004 * mode so that the program is required to
2005 * initialize all the memory that the helper could
2006 * just partially fill up.
2007 */
2008 meta = NULL;
2009
b03c9f9f 2010 if (reg->smin_value < 0) {
61bd5218 2011 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
2012 regno);
2013 return -EACCES;
2014 }
06c1c049 2015
b03c9f9f 2016 if (reg->umin_value == 0) {
f1174f77
EC
2017 err = check_helper_mem_access(env, regno - 1, 0,
2018 zero_size_allowed,
2019 meta);
06c1c049
GB
2020 if (err)
2021 return err;
06c1c049 2022 }
f1174f77 2023
b03c9f9f 2024 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 2025 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
2026 regno);
2027 return -EACCES;
2028 }
2029 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 2030 reg->umax_value,
f1174f77 2031 zero_size_allowed, meta);
17a52670
AS
2032 }
2033
2034 return err;
6841de8b 2035err_type:
61bd5218 2036 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
2037 reg_type_str[type], reg_type_str[expected_type]);
2038 return -EACCES;
17a52670
AS
2039}
2040
61bd5218
JK
2041static int check_map_func_compatibility(struct bpf_verifier_env *env,
2042 struct bpf_map *map, int func_id)
35578d79 2043{
35578d79
KX
2044 if (!map)
2045 return 0;
2046
6aff67c8
AS
2047 /* We need a two way check, first is from map perspective ... */
2048 switch (map->map_type) {
2049 case BPF_MAP_TYPE_PROG_ARRAY:
2050 if (func_id != BPF_FUNC_tail_call)
2051 goto error;
2052 break;
2053 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2054 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
2055 func_id != BPF_FUNC_perf_event_output &&
2056 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
2057 goto error;
2058 break;
2059 case BPF_MAP_TYPE_STACK_TRACE:
2060 if (func_id != BPF_FUNC_get_stackid)
2061 goto error;
2062 break;
4ed8ec52 2063 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 2064 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 2065 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
2066 goto error;
2067 break;
546ac1ff
JF
2068 /* devmap returns a pointer to a live net_device ifindex that we cannot
2069 * allow to be modified from bpf side. So do not allow lookup elements
2070 * for now.
2071 */
2072 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 2073 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
2074 goto error;
2075 break;
fbfc504a
BT
2076 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2077 * appear.
2078 */
6710e112 2079 case BPF_MAP_TYPE_CPUMAP:
fbfc504a 2080 case BPF_MAP_TYPE_XSKMAP:
6710e112
JDB
2081 if (func_id != BPF_FUNC_redirect_map)
2082 goto error;
2083 break;
56f668df 2084 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 2085 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
2086 if (func_id != BPF_FUNC_map_lookup_elem)
2087 goto error;
16a43625 2088 break;
174a79ff
JF
2089 case BPF_MAP_TYPE_SOCKMAP:
2090 if (func_id != BPF_FUNC_sk_redirect_map &&
2091 func_id != BPF_FUNC_sock_map_update &&
4f738adb
JF
2092 func_id != BPF_FUNC_map_delete_elem &&
2093 func_id != BPF_FUNC_msg_redirect_map)
174a79ff
JF
2094 goto error;
2095 break;
6aff67c8
AS
2096 default:
2097 break;
2098 }
2099
2100 /* ... and second from the function itself. */
2101 switch (func_id) {
2102 case BPF_FUNC_tail_call:
2103 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2104 goto error;
f910cefa 2105 if (env->subprog_cnt > 1) {
f4d7e40a
AS
2106 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2107 return -EINVAL;
2108 }
6aff67c8
AS
2109 break;
2110 case BPF_FUNC_perf_event_read:
2111 case BPF_FUNC_perf_event_output:
908432ca 2112 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
2113 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2114 goto error;
2115 break;
2116 case BPF_FUNC_get_stackid:
2117 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2118 goto error;
2119 break;
60d20f91 2120 case BPF_FUNC_current_task_under_cgroup:
747ea55e 2121 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
2122 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2123 goto error;
2124 break;
97f91a7c 2125 case BPF_FUNC_redirect_map:
9c270af3 2126 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
fbfc504a
BT
2127 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2128 map->map_type != BPF_MAP_TYPE_XSKMAP)
97f91a7c
JF
2129 goto error;
2130 break;
174a79ff 2131 case BPF_FUNC_sk_redirect_map:
4f738adb 2132 case BPF_FUNC_msg_redirect_map:
174a79ff
JF
2133 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2134 goto error;
2135 break;
2136 case BPF_FUNC_sock_map_update:
2137 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2138 goto error;
2139 break;
6aff67c8
AS
2140 default:
2141 break;
35578d79
KX
2142 }
2143
2144 return 0;
6aff67c8 2145error:
61bd5218 2146 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 2147 map->map_type, func_id_name(func_id), func_id);
6aff67c8 2148 return -EINVAL;
35578d79
KX
2149}
2150
90133415 2151static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
435faee1
DB
2152{
2153 int count = 0;
2154
39f19ebb 2155 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2156 count++;
39f19ebb 2157 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2158 count++;
39f19ebb 2159 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2160 count++;
39f19ebb 2161 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 2162 count++;
39f19ebb 2163 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
2164 count++;
2165
90133415
DB
2166 /* We only support one arg being in raw mode at the moment,
2167 * which is sufficient for the helper functions we have
2168 * right now.
2169 */
2170 return count <= 1;
2171}
2172
2173static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2174 enum bpf_arg_type arg_next)
2175{
2176 return (arg_type_is_mem_ptr(arg_curr) &&
2177 !arg_type_is_mem_size(arg_next)) ||
2178 (!arg_type_is_mem_ptr(arg_curr) &&
2179 arg_type_is_mem_size(arg_next));
2180}
2181
2182static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2183{
2184 /* bpf_xxx(..., buf, len) call will access 'len'
2185 * bytes from memory 'buf'. Both arg types need
2186 * to be paired, so make sure there's no buggy
2187 * helper function specification.
2188 */
2189 if (arg_type_is_mem_size(fn->arg1_type) ||
2190 arg_type_is_mem_ptr(fn->arg5_type) ||
2191 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2192 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2193 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2194 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2195 return false;
2196
2197 return true;
2198}
2199
2200static int check_func_proto(const struct bpf_func_proto *fn)
2201{
2202 return check_raw_mode_ok(fn) &&
2203 check_arg_pair_ok(fn) ? 0 : -EINVAL;
435faee1
DB
2204}
2205
de8f3a83
DB
2206/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2207 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 2208 */
f4d7e40a
AS
2209static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2210 struct bpf_func_state *state)
969bf05e 2211{
58e2af8b 2212 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
2213 int i;
2214
2215 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2216 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 2217 mark_reg_unknown(env, regs, i);
969bf05e 2218
638f5b90
AS
2219 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2220 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2221 continue;
638f5b90 2222 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
2223 if (reg_is_pkt_pointer_any(reg))
2224 __mark_reg_unknown(reg);
969bf05e
AS
2225 }
2226}
2227
f4d7e40a
AS
2228static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2229{
2230 struct bpf_verifier_state *vstate = env->cur_state;
2231 int i;
2232
2233 for (i = 0; i <= vstate->curframe; i++)
2234 __clear_all_pkt_pointers(env, vstate->frame[i]);
2235}
2236
2237static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2238 int *insn_idx)
2239{
2240 struct bpf_verifier_state *state = env->cur_state;
2241 struct bpf_func_state *caller, *callee;
2242 int i, subprog, target_insn;
2243
aada9ce6 2244 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
f4d7e40a 2245 verbose(env, "the call stack of %d frames is too deep\n",
aada9ce6 2246 state->curframe + 2);
f4d7e40a
AS
2247 return -E2BIG;
2248 }
2249
2250 target_insn = *insn_idx + insn->imm;
2251 subprog = find_subprog(env, target_insn + 1);
2252 if (subprog < 0) {
2253 verbose(env, "verifier bug. No program starts at insn %d\n",
2254 target_insn + 1);
2255 return -EFAULT;
2256 }
2257
2258 caller = state->frame[state->curframe];
2259 if (state->frame[state->curframe + 1]) {
2260 verbose(env, "verifier bug. Frame %d already allocated\n",
2261 state->curframe + 1);
2262 return -EFAULT;
2263 }
2264
2265 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2266 if (!callee)
2267 return -ENOMEM;
2268 state->frame[state->curframe + 1] = callee;
2269
2270 /* callee cannot access r0, r6 - r9 for reading and has to write
2271 * into its own stack before reading from it.
2272 * callee can read/write into caller's stack
2273 */
2274 init_func_state(env, callee,
2275 /* remember the callsite, it will be used by bpf_exit */
2276 *insn_idx /* callsite */,
2277 state->curframe + 1 /* frameno within this callchain */,
f910cefa 2278 subprog /* subprog number within this prog */);
f4d7e40a
AS
2279
2280 /* copy r1 - r5 args that callee can access */
2281 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2282 callee->regs[i] = caller->regs[i];
2283
2284 /* after the call regsiters r0 - r5 were scratched */
2285 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2286 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2287 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2288 }
2289
2290 /* only increment it after check_reg_arg() finished */
2291 state->curframe++;
2292
2293 /* and go analyze first insn of the callee */
2294 *insn_idx = target_insn;
2295
2296 if (env->log.level) {
2297 verbose(env, "caller:\n");
2298 print_verifier_state(env, caller);
2299 verbose(env, "callee:\n");
2300 print_verifier_state(env, callee);
2301 }
2302 return 0;
2303}
2304
2305static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2306{
2307 struct bpf_verifier_state *state = env->cur_state;
2308 struct bpf_func_state *caller, *callee;
2309 struct bpf_reg_state *r0;
2310
2311 callee = state->frame[state->curframe];
2312 r0 = &callee->regs[BPF_REG_0];
2313 if (r0->type == PTR_TO_STACK) {
2314 /* technically it's ok to return caller's stack pointer
2315 * (or caller's caller's pointer) back to the caller,
2316 * since these pointers are valid. Only current stack
2317 * pointer will be invalid as soon as function exits,
2318 * but let's be conservative
2319 */
2320 verbose(env, "cannot return stack pointer to the caller\n");
2321 return -EINVAL;
2322 }
2323
2324 state->curframe--;
2325 caller = state->frame[state->curframe];
2326 /* return to the caller whatever r0 had in the callee */
2327 caller->regs[BPF_REG_0] = *r0;
2328
2329 *insn_idx = callee->callsite + 1;
2330 if (env->log.level) {
2331 verbose(env, "returning from callee:\n");
2332 print_verifier_state(env, callee);
2333 verbose(env, "to caller at %d:\n", *insn_idx);
2334 print_verifier_state(env, caller);
2335 }
2336 /* clear everything in the callee */
2337 free_func_state(callee);
2338 state->frame[state->curframe + 1] = NULL;
2339 return 0;
2340}
2341
849fa506
YS
2342static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2343 int func_id,
2344 struct bpf_call_arg_meta *meta)
2345{
2346 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2347
2348 if (ret_type != RET_INTEGER ||
2349 (func_id != BPF_FUNC_get_stack &&
2350 func_id != BPF_FUNC_probe_read_str))
2351 return;
2352
2353 ret_reg->smax_value = meta->msize_smax_value;
2354 ret_reg->umax_value = meta->msize_umax_value;
2355 __reg_deduce_bounds(ret_reg);
2356 __reg_bound_offset(ret_reg);
2357}
2358
f4d7e40a 2359static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 2360{
17a52670 2361 const struct bpf_func_proto *fn = NULL;
638f5b90 2362 struct bpf_reg_state *regs;
33ff9823 2363 struct bpf_call_arg_meta meta;
969bf05e 2364 bool changes_data;
17a52670
AS
2365 int i, err;
2366
2367 /* find function prototype */
2368 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
2369 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2370 func_id);
17a52670
AS
2371 return -EINVAL;
2372 }
2373
00176a34 2374 if (env->ops->get_func_proto)
5e43f899 2375 fn = env->ops->get_func_proto(func_id, env->prog);
17a52670 2376 if (!fn) {
61bd5218
JK
2377 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2378 func_id);
17a52670
AS
2379 return -EINVAL;
2380 }
2381
2382 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 2383 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 2384 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
2385 return -EINVAL;
2386 }
2387
04514d13 2388 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 2389 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
2390 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2391 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2392 func_id_name(func_id), func_id);
2393 return -EINVAL;
2394 }
969bf05e 2395
33ff9823 2396 memset(&meta, 0, sizeof(meta));
36bbef52 2397 meta.pkt_access = fn->pkt_access;
33ff9823 2398
90133415 2399 err = check_func_proto(fn);
435faee1 2400 if (err) {
61bd5218 2401 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 2402 func_id_name(func_id), func_id);
435faee1
DB
2403 return err;
2404 }
2405
17a52670 2406 /* check args */
33ff9823 2407 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
2408 if (err)
2409 return err;
33ff9823 2410 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
2411 if (err)
2412 return err;
b2157399
AS
2413 if (func_id == BPF_FUNC_tail_call) {
2414 if (meta.map_ptr == NULL) {
2415 verbose(env, "verifier bug\n");
2416 return -EINVAL;
2417 }
2418 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2419 }
33ff9823 2420 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
2421 if (err)
2422 return err;
33ff9823 2423 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
2424 if (err)
2425 return err;
33ff9823 2426 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
2427 if (err)
2428 return err;
2429
435faee1
DB
2430 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2431 * is inferred from register state.
2432 */
2433 for (i = 0; i < meta.access_size; i++) {
ca369602
DB
2434 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2435 BPF_WRITE, -1, false);
435faee1
DB
2436 if (err)
2437 return err;
2438 }
2439
638f5b90 2440 regs = cur_regs(env);
17a52670 2441 /* reset caller saved regs */
dc503a8a 2442 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 2443 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
2444 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2445 }
17a52670 2446
dc503a8a 2447 /* update return register (already marked as written above) */
17a52670 2448 if (fn->ret_type == RET_INTEGER) {
f1174f77 2449 /* sets type to SCALAR_VALUE */
61bd5218 2450 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
2451 } else if (fn->ret_type == RET_VOID) {
2452 regs[BPF_REG_0].type = NOT_INIT;
2453 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
2454 struct bpf_insn_aux_data *insn_aux;
2455
17a52670 2456 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 2457 /* There is no offset yet applied, variable or fixed */
61bd5218 2458 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 2459 regs[BPF_REG_0].off = 0;
17a52670
AS
2460 /* remember map_ptr, so that check_map_access()
2461 * can check 'value_size' boundary of memory access
2462 * to map element returned from bpf_map_lookup_elem()
2463 */
33ff9823 2464 if (meta.map_ptr == NULL) {
61bd5218
JK
2465 verbose(env,
2466 "kernel subsystem misconfigured verifier\n");
17a52670
AS
2467 return -EINVAL;
2468 }
33ff9823 2469 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 2470 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
2471 insn_aux = &env->insn_aux_data[insn_idx];
2472 if (!insn_aux->map_ptr)
2473 insn_aux->map_ptr = meta.map_ptr;
2474 else if (insn_aux->map_ptr != meta.map_ptr)
2475 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 2476 } else {
61bd5218 2477 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 2478 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
2479 return -EINVAL;
2480 }
04fd61ab 2481
849fa506
YS
2482 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2483
61bd5218 2484 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
2485 if (err)
2486 return err;
04fd61ab 2487
c195651e
YS
2488 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2489 const char *err_str;
2490
2491#ifdef CONFIG_PERF_EVENTS
2492 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2493 err_str = "cannot get callchain buffer for func %s#%d\n";
2494#else
2495 err = -ENOTSUPP;
2496 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2497#endif
2498 if (err) {
2499 verbose(env, err_str, func_id_name(func_id), func_id);
2500 return err;
2501 }
2502
2503 env->prog->has_callchain_buf = true;
2504 }
2505
969bf05e
AS
2506 if (changes_data)
2507 clear_all_pkt_pointers(env);
2508 return 0;
2509}
2510
b03c9f9f
EC
2511static bool signed_add_overflows(s64 a, s64 b)
2512{
2513 /* Do the add in u64, where overflow is well-defined */
2514 s64 res = (s64)((u64)a + (u64)b);
2515
2516 if (b < 0)
2517 return res > a;
2518 return res < a;
2519}
2520
2521static bool signed_sub_overflows(s64 a, s64 b)
2522{
2523 /* Do the sub in u64, where overflow is well-defined */
2524 s64 res = (s64)((u64)a - (u64)b);
2525
2526 if (b < 0)
2527 return res < a;
2528 return res > a;
969bf05e
AS
2529}
2530
bb7f0f98
AS
2531static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2532 const struct bpf_reg_state *reg,
2533 enum bpf_reg_type type)
2534{
2535 bool known = tnum_is_const(reg->var_off);
2536 s64 val = reg->var_off.value;
2537 s64 smin = reg->smin_value;
2538
2539 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2540 verbose(env, "math between %s pointer and %lld is not allowed\n",
2541 reg_type_str[type], val);
2542 return false;
2543 }
2544
2545 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2546 verbose(env, "%s pointer offset %d is not allowed\n",
2547 reg_type_str[type], reg->off);
2548 return false;
2549 }
2550
2551 if (smin == S64_MIN) {
2552 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2553 reg_type_str[type]);
2554 return false;
2555 }
2556
2557 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2558 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2559 smin, reg_type_str[type]);
2560 return false;
2561 }
2562
2563 return true;
2564}
2565
f1174f77 2566/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
2567 * Caller should also handle BPF_MOV case separately.
2568 * If we return -EACCES, caller may want to try again treating pointer as a
2569 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2570 */
2571static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2572 struct bpf_insn *insn,
2573 const struct bpf_reg_state *ptr_reg,
2574 const struct bpf_reg_state *off_reg)
969bf05e 2575{
f4d7e40a
AS
2576 struct bpf_verifier_state *vstate = env->cur_state;
2577 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2578 struct bpf_reg_state *regs = state->regs, *dst_reg;
f1174f77 2579 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
2580 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2581 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2582 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2583 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 2584 u8 opcode = BPF_OP(insn->code);
f1174f77 2585 u32 dst = insn->dst_reg;
969bf05e 2586
f1174f77 2587 dst_reg = &regs[dst];
969bf05e 2588
6f16101e
DB
2589 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2590 smin_val > smax_val || umin_val > umax_val) {
2591 /* Taint dst register if offset had invalid bounds derived from
2592 * e.g. dead branches.
2593 */
2594 __mark_reg_unknown(dst_reg);
2595 return 0;
f1174f77
EC
2596 }
2597
2598 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2599 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
2600 verbose(env,
2601 "R%d 32-bit pointer arithmetic prohibited\n",
2602 dst);
f1174f77 2603 return -EACCES;
969bf05e
AS
2604 }
2605
f1174f77 2606 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
2607 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2608 dst);
f1174f77
EC
2609 return -EACCES;
2610 }
2611 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
2612 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2613 dst);
f1174f77
EC
2614 return -EACCES;
2615 }
2616 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
2617 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2618 dst);
f1174f77
EC
2619 return -EACCES;
2620 }
2621
2622 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2623 * The id may be overwritten later if we create a new variable offset.
969bf05e 2624 */
f1174f77
EC
2625 dst_reg->type = ptr_reg->type;
2626 dst_reg->id = ptr_reg->id;
969bf05e 2627
bb7f0f98
AS
2628 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2629 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2630 return -EINVAL;
2631
f1174f77
EC
2632 switch (opcode) {
2633 case BPF_ADD:
2634 /* We can take a fixed offset as long as it doesn't overflow
2635 * the s32 'off' field
969bf05e 2636 */
b03c9f9f
EC
2637 if (known && (ptr_reg->off + smin_val ==
2638 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 2639 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
2640 dst_reg->smin_value = smin_ptr;
2641 dst_reg->smax_value = smax_ptr;
2642 dst_reg->umin_value = umin_ptr;
2643 dst_reg->umax_value = umax_ptr;
f1174f77 2644 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 2645 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
2646 dst_reg->range = ptr_reg->range;
2647 break;
2648 }
f1174f77
EC
2649 /* A new variable offset is created. Note that off_reg->off
2650 * == 0, since it's a scalar.
2651 * dst_reg gets the pointer type and since some positive
2652 * integer value was added to the pointer, give it a new 'id'
2653 * if it's a PTR_TO_PACKET.
2654 * this creates a new 'base' pointer, off_reg (variable) gets
2655 * added into the variable offset, and we copy the fixed offset
2656 * from ptr_reg.
969bf05e 2657 */
b03c9f9f
EC
2658 if (signed_add_overflows(smin_ptr, smin_val) ||
2659 signed_add_overflows(smax_ptr, smax_val)) {
2660 dst_reg->smin_value = S64_MIN;
2661 dst_reg->smax_value = S64_MAX;
2662 } else {
2663 dst_reg->smin_value = smin_ptr + smin_val;
2664 dst_reg->smax_value = smax_ptr + smax_val;
2665 }
2666 if (umin_ptr + umin_val < umin_ptr ||
2667 umax_ptr + umax_val < umax_ptr) {
2668 dst_reg->umin_value = 0;
2669 dst_reg->umax_value = U64_MAX;
2670 } else {
2671 dst_reg->umin_value = umin_ptr + umin_val;
2672 dst_reg->umax_value = umax_ptr + umax_val;
2673 }
f1174f77
EC
2674 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2675 dst_reg->off = ptr_reg->off;
de8f3a83 2676 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2677 dst_reg->id = ++env->id_gen;
2678 /* something was added to pkt_ptr, set range to zero */
2679 dst_reg->range = 0;
2680 }
2681 break;
2682 case BPF_SUB:
2683 if (dst_reg == off_reg) {
2684 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2685 verbose(env, "R%d tried to subtract pointer from scalar\n",
2686 dst);
f1174f77
EC
2687 return -EACCES;
2688 }
2689 /* We don't allow subtraction from FP, because (according to
2690 * test_verifier.c test "invalid fp arithmetic", JITs might not
2691 * be able to deal with it.
969bf05e 2692 */
f1174f77 2693 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2694 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2695 dst);
f1174f77
EC
2696 return -EACCES;
2697 }
b03c9f9f
EC
2698 if (known && (ptr_reg->off - smin_val ==
2699 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2700 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2701 dst_reg->smin_value = smin_ptr;
2702 dst_reg->smax_value = smax_ptr;
2703 dst_reg->umin_value = umin_ptr;
2704 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2705 dst_reg->var_off = ptr_reg->var_off;
2706 dst_reg->id = ptr_reg->id;
b03c9f9f 2707 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2708 dst_reg->range = ptr_reg->range;
2709 break;
2710 }
f1174f77
EC
2711 /* A new variable offset is created. If the subtrahend is known
2712 * nonnegative, then any reg->range we had before is still good.
969bf05e 2713 */
b03c9f9f
EC
2714 if (signed_sub_overflows(smin_ptr, smax_val) ||
2715 signed_sub_overflows(smax_ptr, smin_val)) {
2716 /* Overflow possible, we know nothing */
2717 dst_reg->smin_value = S64_MIN;
2718 dst_reg->smax_value = S64_MAX;
2719 } else {
2720 dst_reg->smin_value = smin_ptr - smax_val;
2721 dst_reg->smax_value = smax_ptr - smin_val;
2722 }
2723 if (umin_ptr < umax_val) {
2724 /* Overflow possible, we know nothing */
2725 dst_reg->umin_value = 0;
2726 dst_reg->umax_value = U64_MAX;
2727 } else {
2728 /* Cannot overflow (as long as bounds are consistent) */
2729 dst_reg->umin_value = umin_ptr - umax_val;
2730 dst_reg->umax_value = umax_ptr - umin_val;
2731 }
f1174f77
EC
2732 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2733 dst_reg->off = ptr_reg->off;
de8f3a83 2734 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2735 dst_reg->id = ++env->id_gen;
2736 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2737 if (smin_val < 0)
f1174f77 2738 dst_reg->range = 0;
43188702 2739 }
f1174f77
EC
2740 break;
2741 case BPF_AND:
2742 case BPF_OR:
2743 case BPF_XOR:
82abbf8d
AS
2744 /* bitwise ops on pointers are troublesome, prohibit. */
2745 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2746 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2747 return -EACCES;
2748 default:
2749 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2750 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2751 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2752 return -EACCES;
43188702
JF
2753 }
2754
bb7f0f98
AS
2755 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2756 return -EINVAL;
2757
b03c9f9f
EC
2758 __update_reg_bounds(dst_reg);
2759 __reg_deduce_bounds(dst_reg);
2760 __reg_bound_offset(dst_reg);
43188702
JF
2761 return 0;
2762}
2763
468f6eaf
JH
2764/* WARNING: This function does calculations on 64-bit values, but the actual
2765 * execution may occur on 32-bit values. Therefore, things like bitshifts
2766 * need extra checks in the 32-bit case.
2767 */
f1174f77
EC
2768static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2769 struct bpf_insn *insn,
2770 struct bpf_reg_state *dst_reg,
2771 struct bpf_reg_state src_reg)
969bf05e 2772{
638f5b90 2773 struct bpf_reg_state *regs = cur_regs(env);
48461135 2774 u8 opcode = BPF_OP(insn->code);
f1174f77 2775 bool src_known, dst_known;
b03c9f9f
EC
2776 s64 smin_val, smax_val;
2777 u64 umin_val, umax_val;
468f6eaf 2778 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2779
b03c9f9f
EC
2780 smin_val = src_reg.smin_value;
2781 smax_val = src_reg.smax_value;
2782 umin_val = src_reg.umin_value;
2783 umax_val = src_reg.umax_value;
f1174f77
EC
2784 src_known = tnum_is_const(src_reg.var_off);
2785 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2786
6f16101e
DB
2787 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2788 smin_val > smax_val || umin_val > umax_val) {
2789 /* Taint dst register if offset had invalid bounds derived from
2790 * e.g. dead branches.
2791 */
2792 __mark_reg_unknown(dst_reg);
2793 return 0;
2794 }
2795
bb7f0f98
AS
2796 if (!src_known &&
2797 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2798 __mark_reg_unknown(dst_reg);
2799 return 0;
2800 }
2801
48461135
JB
2802 switch (opcode) {
2803 case BPF_ADD:
b03c9f9f
EC
2804 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2805 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2806 dst_reg->smin_value = S64_MIN;
2807 dst_reg->smax_value = S64_MAX;
2808 } else {
2809 dst_reg->smin_value += smin_val;
2810 dst_reg->smax_value += smax_val;
2811 }
2812 if (dst_reg->umin_value + umin_val < umin_val ||
2813 dst_reg->umax_value + umax_val < umax_val) {
2814 dst_reg->umin_value = 0;
2815 dst_reg->umax_value = U64_MAX;
2816 } else {
2817 dst_reg->umin_value += umin_val;
2818 dst_reg->umax_value += umax_val;
2819 }
f1174f77 2820 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2821 break;
2822 case BPF_SUB:
b03c9f9f
EC
2823 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2824 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2825 /* Overflow possible, we know nothing */
2826 dst_reg->smin_value = S64_MIN;
2827 dst_reg->smax_value = S64_MAX;
2828 } else {
2829 dst_reg->smin_value -= smax_val;
2830 dst_reg->smax_value -= smin_val;
2831 }
2832 if (dst_reg->umin_value < umax_val) {
2833 /* Overflow possible, we know nothing */
2834 dst_reg->umin_value = 0;
2835 dst_reg->umax_value = U64_MAX;
2836 } else {
2837 /* Cannot overflow (as long as bounds are consistent) */
2838 dst_reg->umin_value -= umax_val;
2839 dst_reg->umax_value -= umin_val;
2840 }
f1174f77 2841 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2842 break;
2843 case BPF_MUL:
b03c9f9f
EC
2844 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2845 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2846 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2847 __mark_reg_unbounded(dst_reg);
2848 __update_reg_bounds(dst_reg);
f1174f77
EC
2849 break;
2850 }
b03c9f9f
EC
2851 /* Both values are positive, so we can work with unsigned and
2852 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2853 */
b03c9f9f
EC
2854 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2855 /* Potential overflow, we know nothing */
2856 __mark_reg_unbounded(dst_reg);
2857 /* (except what we can learn from the var_off) */
2858 __update_reg_bounds(dst_reg);
2859 break;
2860 }
2861 dst_reg->umin_value *= umin_val;
2862 dst_reg->umax_value *= umax_val;
2863 if (dst_reg->umax_value > S64_MAX) {
2864 /* Overflow possible, we know nothing */
2865 dst_reg->smin_value = S64_MIN;
2866 dst_reg->smax_value = S64_MAX;
2867 } else {
2868 dst_reg->smin_value = dst_reg->umin_value;
2869 dst_reg->smax_value = dst_reg->umax_value;
2870 }
48461135
JB
2871 break;
2872 case BPF_AND:
f1174f77 2873 if (src_known && dst_known) {
b03c9f9f
EC
2874 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2875 src_reg.var_off.value);
f1174f77
EC
2876 break;
2877 }
b03c9f9f
EC
2878 /* We get our minimum from the var_off, since that's inherently
2879 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2880 */
f1174f77 2881 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2882 dst_reg->umin_value = dst_reg->var_off.value;
2883 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2884 if (dst_reg->smin_value < 0 || smin_val < 0) {
2885 /* Lose signed bounds when ANDing negative numbers,
2886 * ain't nobody got time for that.
2887 */
2888 dst_reg->smin_value = S64_MIN;
2889 dst_reg->smax_value = S64_MAX;
2890 } else {
2891 /* ANDing two positives gives a positive, so safe to
2892 * cast result into s64.
2893 */
2894 dst_reg->smin_value = dst_reg->umin_value;
2895 dst_reg->smax_value = dst_reg->umax_value;
2896 }
2897 /* We may learn something more from the var_off */
2898 __update_reg_bounds(dst_reg);
f1174f77
EC
2899 break;
2900 case BPF_OR:
2901 if (src_known && dst_known) {
b03c9f9f
EC
2902 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2903 src_reg.var_off.value);
f1174f77
EC
2904 break;
2905 }
b03c9f9f
EC
2906 /* We get our maximum from the var_off, and our minimum is the
2907 * maximum of the operands' minima
f1174f77
EC
2908 */
2909 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2910 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2911 dst_reg->umax_value = dst_reg->var_off.value |
2912 dst_reg->var_off.mask;
2913 if (dst_reg->smin_value < 0 || smin_val < 0) {
2914 /* Lose signed bounds when ORing negative numbers,
2915 * ain't nobody got time for that.
2916 */
2917 dst_reg->smin_value = S64_MIN;
2918 dst_reg->smax_value = S64_MAX;
f1174f77 2919 } else {
b03c9f9f
EC
2920 /* ORing two positives gives a positive, so safe to
2921 * cast result into s64.
2922 */
2923 dst_reg->smin_value = dst_reg->umin_value;
2924 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2925 }
b03c9f9f
EC
2926 /* We may learn something more from the var_off */
2927 __update_reg_bounds(dst_reg);
48461135
JB
2928 break;
2929 case BPF_LSH:
468f6eaf
JH
2930 if (umax_val >= insn_bitness) {
2931 /* Shifts greater than 31 or 63 are undefined.
2932 * This includes shifts by a negative number.
b03c9f9f 2933 */
61bd5218 2934 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2935 break;
2936 }
b03c9f9f
EC
2937 /* We lose all sign bit information (except what we can pick
2938 * up from var_off)
48461135 2939 */
b03c9f9f
EC
2940 dst_reg->smin_value = S64_MIN;
2941 dst_reg->smax_value = S64_MAX;
2942 /* If we might shift our top bit out, then we know nothing */
2943 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2944 dst_reg->umin_value = 0;
2945 dst_reg->umax_value = U64_MAX;
d1174416 2946 } else {
b03c9f9f
EC
2947 dst_reg->umin_value <<= umin_val;
2948 dst_reg->umax_value <<= umax_val;
d1174416 2949 }
afbe1a5b 2950 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
2951 /* We may learn something more from the var_off */
2952 __update_reg_bounds(dst_reg);
48461135
JB
2953 break;
2954 case BPF_RSH:
468f6eaf
JH
2955 if (umax_val >= insn_bitness) {
2956 /* Shifts greater than 31 or 63 are undefined.
2957 * This includes shifts by a negative number.
b03c9f9f 2958 */
61bd5218 2959 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2960 break;
2961 }
4374f256
EC
2962 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2963 * be negative, then either:
2964 * 1) src_reg might be zero, so the sign bit of the result is
2965 * unknown, so we lose our signed bounds
2966 * 2) it's known negative, thus the unsigned bounds capture the
2967 * signed bounds
2968 * 3) the signed bounds cross zero, so they tell us nothing
2969 * about the result
2970 * If the value in dst_reg is known nonnegative, then again the
2971 * unsigned bounts capture the signed bounds.
2972 * Thus, in all cases it suffices to blow away our signed bounds
2973 * and rely on inferring new ones from the unsigned bounds and
2974 * var_off of the result.
2975 */
2976 dst_reg->smin_value = S64_MIN;
2977 dst_reg->smax_value = S64_MAX;
afbe1a5b 2978 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
b03c9f9f
EC
2979 dst_reg->umin_value >>= umax_val;
2980 dst_reg->umax_value >>= umin_val;
2981 /* We may learn something more from the var_off */
2982 __update_reg_bounds(dst_reg);
48461135 2983 break;
9cbe1f5a
YS
2984 case BPF_ARSH:
2985 if (umax_val >= insn_bitness) {
2986 /* Shifts greater than 31 or 63 are undefined.
2987 * This includes shifts by a negative number.
2988 */
2989 mark_reg_unknown(env, regs, insn->dst_reg);
2990 break;
2991 }
2992
2993 /* Upon reaching here, src_known is true and
2994 * umax_val is equal to umin_val.
2995 */
2996 dst_reg->smin_value >>= umin_val;
2997 dst_reg->smax_value >>= umin_val;
2998 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
2999
3000 /* blow away the dst_reg umin_value/umax_value and rely on
3001 * dst_reg var_off to refine the result.
3002 */
3003 dst_reg->umin_value = 0;
3004 dst_reg->umax_value = U64_MAX;
3005 __update_reg_bounds(dst_reg);
3006 break;
48461135 3007 default:
61bd5218 3008 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
3009 break;
3010 }
3011
468f6eaf
JH
3012 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3013 /* 32-bit ALU ops are (32,32)->32 */
3014 coerce_reg_to_size(dst_reg, 4);
3015 coerce_reg_to_size(&src_reg, 4);
3016 }
3017
b03c9f9f
EC
3018 __reg_deduce_bounds(dst_reg);
3019 __reg_bound_offset(dst_reg);
f1174f77
EC
3020 return 0;
3021}
3022
3023/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3024 * and var_off.
3025 */
3026static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3027 struct bpf_insn *insn)
3028{
f4d7e40a
AS
3029 struct bpf_verifier_state *vstate = env->cur_state;
3030 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3031 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
f1174f77
EC
3032 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3033 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
3034
3035 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
3036 src_reg = NULL;
3037 if (dst_reg->type != SCALAR_VALUE)
3038 ptr_reg = dst_reg;
3039 if (BPF_SRC(insn->code) == BPF_X) {
3040 src_reg = &regs[insn->src_reg];
f1174f77
EC
3041 if (src_reg->type != SCALAR_VALUE) {
3042 if (dst_reg->type != SCALAR_VALUE) {
3043 /* Combining two pointers by any ALU op yields
82abbf8d
AS
3044 * an arbitrary scalar. Disallow all math except
3045 * pointer subtraction
f1174f77 3046 */
82abbf8d
AS
3047 if (opcode == BPF_SUB){
3048 mark_reg_unknown(env, regs, insn->dst_reg);
3049 return 0;
f1174f77 3050 }
82abbf8d
AS
3051 verbose(env, "R%d pointer %s pointer prohibited\n",
3052 insn->dst_reg,
3053 bpf_alu_string[opcode >> 4]);
3054 return -EACCES;
f1174f77
EC
3055 } else {
3056 /* scalar += pointer
3057 * This is legal, but we have to reverse our
3058 * src/dest handling in computing the range
3059 */
82abbf8d
AS
3060 return adjust_ptr_min_max_vals(env, insn,
3061 src_reg, dst_reg);
f1174f77
EC
3062 }
3063 } else if (ptr_reg) {
3064 /* pointer += scalar */
82abbf8d
AS
3065 return adjust_ptr_min_max_vals(env, insn,
3066 dst_reg, src_reg);
f1174f77
EC
3067 }
3068 } else {
3069 /* Pretend the src is a reg with a known value, since we only
3070 * need to be able to read from this state.
3071 */
3072 off_reg.type = SCALAR_VALUE;
b03c9f9f 3073 __mark_reg_known(&off_reg, insn->imm);
f1174f77 3074 src_reg = &off_reg;
82abbf8d
AS
3075 if (ptr_reg) /* pointer += K */
3076 return adjust_ptr_min_max_vals(env, insn,
3077 ptr_reg, src_reg);
f1174f77
EC
3078 }
3079
3080 /* Got here implies adding two SCALAR_VALUEs */
3081 if (WARN_ON_ONCE(ptr_reg)) {
f4d7e40a 3082 print_verifier_state(env, state);
61bd5218 3083 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
3084 return -EINVAL;
3085 }
3086 if (WARN_ON(!src_reg)) {
f4d7e40a 3087 print_verifier_state(env, state);
61bd5218 3088 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
3089 return -EINVAL;
3090 }
3091 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
3092}
3093
17a52670 3094/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 3095static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3096{
638f5b90 3097 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3098 u8 opcode = BPF_OP(insn->code);
3099 int err;
3100
3101 if (opcode == BPF_END || opcode == BPF_NEG) {
3102 if (opcode == BPF_NEG) {
3103 if (BPF_SRC(insn->code) != 0 ||
3104 insn->src_reg != BPF_REG_0 ||
3105 insn->off != 0 || insn->imm != 0) {
61bd5218 3106 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
3107 return -EINVAL;
3108 }
3109 } else {
3110 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
3111 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3112 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 3113 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
3114 return -EINVAL;
3115 }
3116 }
3117
3118 /* check src operand */
dc503a8a 3119 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3120 if (err)
3121 return err;
3122
1be7f75d 3123 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 3124 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
3125 insn->dst_reg);
3126 return -EACCES;
3127 }
3128
17a52670 3129 /* check dest operand */
dc503a8a 3130 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3131 if (err)
3132 return err;
3133
3134 } else if (opcode == BPF_MOV) {
3135
3136 if (BPF_SRC(insn->code) == BPF_X) {
3137 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3138 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3139 return -EINVAL;
3140 }
3141
3142 /* check src operand */
dc503a8a 3143 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3144 if (err)
3145 return err;
3146 } else {
3147 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3148 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
3149 return -EINVAL;
3150 }
3151 }
3152
3153 /* check dest operand */
dc503a8a 3154 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3155 if (err)
3156 return err;
3157
3158 if (BPF_SRC(insn->code) == BPF_X) {
3159 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3160 /* case: R1 = R2
3161 * copy register state to dest reg
3162 */
3163 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 3164 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 3165 } else {
f1174f77 3166 /* R1 = (u32) R2 */
1be7f75d 3167 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
3168 verbose(env,
3169 "R%d partial copy of pointer\n",
1be7f75d
AS
3170 insn->src_reg);
3171 return -EACCES;
3172 }
61bd5218 3173 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 3174 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
3175 }
3176 } else {
3177 /* case: R = imm
3178 * remember the value we stored into this reg
3179 */
f1174f77 3180 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
3181 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3182 __mark_reg_known(regs + insn->dst_reg,
3183 insn->imm);
3184 } else {
3185 __mark_reg_known(regs + insn->dst_reg,
3186 (u32)insn->imm);
3187 }
17a52670
AS
3188 }
3189
3190 } else if (opcode > BPF_END) {
61bd5218 3191 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
3192 return -EINVAL;
3193
3194 } else { /* all other ALU ops: and, sub, xor, add, ... */
3195
17a52670
AS
3196 if (BPF_SRC(insn->code) == BPF_X) {
3197 if (insn->imm != 0 || insn->off != 0) {
61bd5218 3198 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3199 return -EINVAL;
3200 }
3201 /* check src1 operand */
dc503a8a 3202 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3203 if (err)
3204 return err;
3205 } else {
3206 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 3207 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
3208 return -EINVAL;
3209 }
3210 }
3211
3212 /* check src2 operand */
dc503a8a 3213 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3214 if (err)
3215 return err;
3216
3217 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3218 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 3219 verbose(env, "div by zero\n");
17a52670
AS
3220 return -EINVAL;
3221 }
3222
7891a87e
DB
3223 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3224 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3225 return -EINVAL;
3226 }
3227
229394e8
RV
3228 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3229 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3230 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3231
3232 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 3233 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
3234 return -EINVAL;
3235 }
3236 }
3237
1a0dc1ac 3238 /* check dest operand */
dc503a8a 3239 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
3240 if (err)
3241 return err;
3242
f1174f77 3243 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
3244 }
3245
3246 return 0;
3247}
3248
f4d7e40a 3249static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
de8f3a83 3250 struct bpf_reg_state *dst_reg,
f8ddadc4 3251 enum bpf_reg_type type,
fb2a311a 3252 bool range_right_open)
969bf05e 3253{
f4d7e40a 3254 struct bpf_func_state *state = vstate->frame[vstate->curframe];
58e2af8b 3255 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 3256 u16 new_range;
f4d7e40a 3257 int i, j;
2d2be8ca 3258
fb2a311a
DB
3259 if (dst_reg->off < 0 ||
3260 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
3261 /* This doesn't give us any range */
3262 return;
3263
b03c9f9f
EC
3264 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3265 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
3266 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3267 * than pkt_end, but that's because it's also less than pkt.
3268 */
3269 return;
3270
fb2a311a
DB
3271 new_range = dst_reg->off;
3272 if (range_right_open)
3273 new_range--;
3274
3275 /* Examples for register markings:
2d2be8ca 3276 *
fb2a311a 3277 * pkt_data in dst register:
2d2be8ca
DB
3278 *
3279 * r2 = r3;
3280 * r2 += 8;
3281 * if (r2 > pkt_end) goto <handle exception>
3282 * <access okay>
3283 *
b4e432f1
DB
3284 * r2 = r3;
3285 * r2 += 8;
3286 * if (r2 < pkt_end) goto <access okay>
3287 * <handle exception>
3288 *
2d2be8ca
DB
3289 * Where:
3290 * r2 == dst_reg, pkt_end == src_reg
3291 * r2=pkt(id=n,off=8,r=0)
3292 * r3=pkt(id=n,off=0,r=0)
3293 *
fb2a311a 3294 * pkt_data in src register:
2d2be8ca
DB
3295 *
3296 * r2 = r3;
3297 * r2 += 8;
3298 * if (pkt_end >= r2) goto <access okay>
3299 * <handle exception>
3300 *
b4e432f1
DB
3301 * r2 = r3;
3302 * r2 += 8;
3303 * if (pkt_end <= r2) goto <handle exception>
3304 * <access okay>
3305 *
2d2be8ca
DB
3306 * Where:
3307 * pkt_end == dst_reg, r2 == src_reg
3308 * r2=pkt(id=n,off=8,r=0)
3309 * r3=pkt(id=n,off=0,r=0)
3310 *
3311 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
3312 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3313 * and [r3, r3 + 8-1) respectively is safe to access depending on
3314 * the check.
969bf05e 3315 */
2d2be8ca 3316
f1174f77
EC
3317 /* If our ids match, then we must have the same max_value. And we
3318 * don't care about the other reg's fixed offset, since if it's too big
3319 * the range won't allow anything.
3320 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3321 */
969bf05e 3322 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 3323 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 3324 /* keep the maximum range already checked */
fb2a311a 3325 regs[i].range = max(regs[i].range, new_range);
969bf05e 3326
f4d7e40a
AS
3327 for (j = 0; j <= vstate->curframe; j++) {
3328 state = vstate->frame[j];
3329 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3330 if (state->stack[i].slot_type[0] != STACK_SPILL)
3331 continue;
3332 reg = &state->stack[i].spilled_ptr;
3333 if (reg->type == type && reg->id == dst_reg->id)
3334 reg->range = max(reg->range, new_range);
3335 }
969bf05e
AS
3336 }
3337}
3338
48461135
JB
3339/* Adjusts the register min/max values in the case that the dst_reg is the
3340 * variable register that we are working on, and src_reg is a constant or we're
3341 * simply doing a BPF_K check.
f1174f77 3342 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
3343 */
3344static void reg_set_min_max(struct bpf_reg_state *true_reg,
3345 struct bpf_reg_state *false_reg, u64 val,
3346 u8 opcode)
3347{
f1174f77
EC
3348 /* If the dst_reg is a pointer, we can't learn anything about its
3349 * variable offset from the compare (unless src_reg were a pointer into
3350 * the same object, but we don't bother with that.
3351 * Since false_reg and true_reg have the same type by construction, we
3352 * only need to check one of them for pointerness.
3353 */
3354 if (__is_pointer_value(false, false_reg))
3355 return;
4cabc5b1 3356
48461135
JB
3357 switch (opcode) {
3358 case BPF_JEQ:
3359 /* If this is false then we know nothing Jon Snow, but if it is
3360 * true then we know for sure.
3361 */
b03c9f9f 3362 __mark_reg_known(true_reg, val);
48461135
JB
3363 break;
3364 case BPF_JNE:
3365 /* If this is true we know nothing Jon Snow, but if it is false
3366 * we know the value for sure;
3367 */
b03c9f9f 3368 __mark_reg_known(false_reg, val);
48461135
JB
3369 break;
3370 case BPF_JGT:
b03c9f9f
EC
3371 false_reg->umax_value = min(false_reg->umax_value, val);
3372 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3373 break;
48461135 3374 case BPF_JSGT:
b03c9f9f
EC
3375 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3376 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 3377 break;
b4e432f1
DB
3378 case BPF_JLT:
3379 false_reg->umin_value = max(false_reg->umin_value, val);
3380 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3381 break;
3382 case BPF_JSLT:
3383 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3384 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3385 break;
48461135 3386 case BPF_JGE:
b03c9f9f
EC
3387 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3388 true_reg->umin_value = max(true_reg->umin_value, val);
3389 break;
48461135 3390 case BPF_JSGE:
b03c9f9f
EC
3391 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3392 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 3393 break;
b4e432f1
DB
3394 case BPF_JLE:
3395 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3396 true_reg->umax_value = min(true_reg->umax_value, val);
3397 break;
3398 case BPF_JSLE:
3399 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3400 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3401 break;
48461135
JB
3402 default:
3403 break;
3404 }
3405
b03c9f9f
EC
3406 __reg_deduce_bounds(false_reg);
3407 __reg_deduce_bounds(true_reg);
3408 /* We might have learned some bits from the bounds. */
3409 __reg_bound_offset(false_reg);
3410 __reg_bound_offset(true_reg);
3411 /* Intersecting with the old var_off might have improved our bounds
3412 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3413 * then new var_off is (0; 0x7f...fc) which improves our umax.
3414 */
3415 __update_reg_bounds(false_reg);
3416 __update_reg_bounds(true_reg);
48461135
JB
3417}
3418
f1174f77
EC
3419/* Same as above, but for the case that dst_reg holds a constant and src_reg is
3420 * the variable reg.
48461135
JB
3421 */
3422static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3423 struct bpf_reg_state *false_reg, u64 val,
3424 u8 opcode)
3425{
f1174f77
EC
3426 if (__is_pointer_value(false, false_reg))
3427 return;
4cabc5b1 3428
48461135
JB
3429 switch (opcode) {
3430 case BPF_JEQ:
3431 /* If this is false then we know nothing Jon Snow, but if it is
3432 * true then we know for sure.
3433 */
b03c9f9f 3434 __mark_reg_known(true_reg, val);
48461135
JB
3435 break;
3436 case BPF_JNE:
3437 /* If this is true we know nothing Jon Snow, but if it is false
3438 * we know the value for sure;
3439 */
b03c9f9f 3440 __mark_reg_known(false_reg, val);
48461135
JB
3441 break;
3442 case BPF_JGT:
b03c9f9f
EC
3443 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3444 false_reg->umin_value = max(false_reg->umin_value, val);
3445 break;
48461135 3446 case BPF_JSGT:
b03c9f9f
EC
3447 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3448 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 3449 break;
b4e432f1
DB
3450 case BPF_JLT:
3451 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3452 false_reg->umax_value = min(false_reg->umax_value, val);
3453 break;
3454 case BPF_JSLT:
3455 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3456 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3457 break;
48461135 3458 case BPF_JGE:
b03c9f9f
EC
3459 true_reg->umax_value = min(true_reg->umax_value, val);
3460 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3461 break;
48461135 3462 case BPF_JSGE:
b03c9f9f
EC
3463 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3464 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 3465 break;
b4e432f1
DB
3466 case BPF_JLE:
3467 true_reg->umin_value = max(true_reg->umin_value, val);
3468 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3469 break;
3470 case BPF_JSLE:
3471 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3472 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3473 break;
48461135
JB
3474 default:
3475 break;
3476 }
3477
b03c9f9f
EC
3478 __reg_deduce_bounds(false_reg);
3479 __reg_deduce_bounds(true_reg);
3480 /* We might have learned some bits from the bounds. */
3481 __reg_bound_offset(false_reg);
3482 __reg_bound_offset(true_reg);
3483 /* Intersecting with the old var_off might have improved our bounds
3484 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3485 * then new var_off is (0; 0x7f...fc) which improves our umax.
3486 */
3487 __update_reg_bounds(false_reg);
3488 __update_reg_bounds(true_reg);
f1174f77
EC
3489}
3490
3491/* Regs are known to be equal, so intersect their min/max/var_off */
3492static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3493 struct bpf_reg_state *dst_reg)
3494{
b03c9f9f
EC
3495 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3496 dst_reg->umin_value);
3497 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3498 dst_reg->umax_value);
3499 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3500 dst_reg->smin_value);
3501 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3502 dst_reg->smax_value);
f1174f77
EC
3503 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3504 dst_reg->var_off);
b03c9f9f
EC
3505 /* We might have learned new bounds from the var_off. */
3506 __update_reg_bounds(src_reg);
3507 __update_reg_bounds(dst_reg);
3508 /* We might have learned something about the sign bit. */
3509 __reg_deduce_bounds(src_reg);
3510 __reg_deduce_bounds(dst_reg);
3511 /* We might have learned some bits from the bounds. */
3512 __reg_bound_offset(src_reg);
3513 __reg_bound_offset(dst_reg);
3514 /* Intersecting with the old var_off might have improved our bounds
3515 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3516 * then new var_off is (0; 0x7f...fc) which improves our umax.
3517 */
3518 __update_reg_bounds(src_reg);
3519 __update_reg_bounds(dst_reg);
f1174f77
EC
3520}
3521
3522static void reg_combine_min_max(struct bpf_reg_state *true_src,
3523 struct bpf_reg_state *true_dst,
3524 struct bpf_reg_state *false_src,
3525 struct bpf_reg_state *false_dst,
3526 u8 opcode)
3527{
3528 switch (opcode) {
3529 case BPF_JEQ:
3530 __reg_combine_min_max(true_src, true_dst);
3531 break;
3532 case BPF_JNE:
3533 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 3534 break;
4cabc5b1 3535 }
48461135
JB
3536}
3537
57a09bf0 3538static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 3539 bool is_null)
57a09bf0
TG
3540{
3541 struct bpf_reg_state *reg = &regs[regno];
3542
3543 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
3544 /* Old offset (both fixed and variable parts) should
3545 * have been known-zero, because we don't allow pointer
3546 * arithmetic on pointers that might be NULL.
3547 */
b03c9f9f
EC
3548 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3549 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 3550 reg->off)) {
b03c9f9f
EC
3551 __mark_reg_known_zero(reg);
3552 reg->off = 0;
f1174f77
EC
3553 }
3554 if (is_null) {
3555 reg->type = SCALAR_VALUE;
56f668df
MKL
3556 } else if (reg->map_ptr->inner_map_meta) {
3557 reg->type = CONST_PTR_TO_MAP;
3558 reg->map_ptr = reg->map_ptr->inner_map_meta;
3559 } else {
f1174f77 3560 reg->type = PTR_TO_MAP_VALUE;
56f668df 3561 }
a08dd0da
DB
3562 /* We don't need id from this point onwards anymore, thus we
3563 * should better reset it, so that state pruning has chances
3564 * to take effect.
3565 */
3566 reg->id = 0;
57a09bf0
TG
3567 }
3568}
3569
3570/* The logic is similar to find_good_pkt_pointers(), both could eventually
3571 * be folded together at some point.
3572 */
f4d7e40a 3573static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
f1174f77 3574 bool is_null)
57a09bf0 3575{
f4d7e40a 3576 struct bpf_func_state *state = vstate->frame[vstate->curframe];
57a09bf0 3577 struct bpf_reg_state *regs = state->regs;
a08dd0da 3578 u32 id = regs[regno].id;
f4d7e40a 3579 int i, j;
57a09bf0
TG
3580
3581 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 3582 mark_map_reg(regs, i, id, is_null);
57a09bf0 3583
f4d7e40a
AS
3584 for (j = 0; j <= vstate->curframe; j++) {
3585 state = vstate->frame[j];
3586 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3587 if (state->stack[i].slot_type[0] != STACK_SPILL)
3588 continue;
3589 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3590 }
57a09bf0
TG
3591 }
3592}
3593
5beca081
DB
3594static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3595 struct bpf_reg_state *dst_reg,
3596 struct bpf_reg_state *src_reg,
3597 struct bpf_verifier_state *this_branch,
3598 struct bpf_verifier_state *other_branch)
3599{
3600 if (BPF_SRC(insn->code) != BPF_X)
3601 return false;
3602
3603 switch (BPF_OP(insn->code)) {
3604 case BPF_JGT:
3605 if ((dst_reg->type == PTR_TO_PACKET &&
3606 src_reg->type == PTR_TO_PACKET_END) ||
3607 (dst_reg->type == PTR_TO_PACKET_META &&
3608 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3609 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3610 find_good_pkt_pointers(this_branch, dst_reg,
3611 dst_reg->type, false);
3612 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3613 src_reg->type == PTR_TO_PACKET) ||
3614 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3615 src_reg->type == PTR_TO_PACKET_META)) {
3616 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3617 find_good_pkt_pointers(other_branch, src_reg,
3618 src_reg->type, true);
3619 } else {
3620 return false;
3621 }
3622 break;
3623 case BPF_JLT:
3624 if ((dst_reg->type == PTR_TO_PACKET &&
3625 src_reg->type == PTR_TO_PACKET_END) ||
3626 (dst_reg->type == PTR_TO_PACKET_META &&
3627 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3628 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3629 find_good_pkt_pointers(other_branch, dst_reg,
3630 dst_reg->type, true);
3631 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3632 src_reg->type == PTR_TO_PACKET) ||
3633 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3634 src_reg->type == PTR_TO_PACKET_META)) {
3635 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3636 find_good_pkt_pointers(this_branch, src_reg,
3637 src_reg->type, false);
3638 } else {
3639 return false;
3640 }
3641 break;
3642 case BPF_JGE:
3643 if ((dst_reg->type == PTR_TO_PACKET &&
3644 src_reg->type == PTR_TO_PACKET_END) ||
3645 (dst_reg->type == PTR_TO_PACKET_META &&
3646 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3647 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3648 find_good_pkt_pointers(this_branch, dst_reg,
3649 dst_reg->type, true);
3650 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3651 src_reg->type == PTR_TO_PACKET) ||
3652 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3653 src_reg->type == PTR_TO_PACKET_META)) {
3654 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3655 find_good_pkt_pointers(other_branch, src_reg,
3656 src_reg->type, false);
3657 } else {
3658 return false;
3659 }
3660 break;
3661 case BPF_JLE:
3662 if ((dst_reg->type == PTR_TO_PACKET &&
3663 src_reg->type == PTR_TO_PACKET_END) ||
3664 (dst_reg->type == PTR_TO_PACKET_META &&
3665 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3666 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3667 find_good_pkt_pointers(other_branch, dst_reg,
3668 dst_reg->type, false);
3669 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3670 src_reg->type == PTR_TO_PACKET) ||
3671 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3672 src_reg->type == PTR_TO_PACKET_META)) {
3673 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3674 find_good_pkt_pointers(this_branch, src_reg,
3675 src_reg->type, true);
3676 } else {
3677 return false;
3678 }
3679 break;
3680 default:
3681 return false;
3682 }
3683
3684 return true;
3685}
3686
58e2af8b 3687static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
3688 struct bpf_insn *insn, int *insn_idx)
3689{
f4d7e40a
AS
3690 struct bpf_verifier_state *this_branch = env->cur_state;
3691 struct bpf_verifier_state *other_branch;
3692 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3693 struct bpf_reg_state *dst_reg, *other_branch_regs;
17a52670
AS
3694 u8 opcode = BPF_OP(insn->code);
3695 int err;
3696
b4e432f1 3697 if (opcode > BPF_JSLE) {
61bd5218 3698 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
3699 return -EINVAL;
3700 }
3701
3702 if (BPF_SRC(insn->code) == BPF_X) {
3703 if (insn->imm != 0) {
61bd5218 3704 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3705 return -EINVAL;
3706 }
3707
3708 /* check src1 operand */
dc503a8a 3709 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3710 if (err)
3711 return err;
1be7f75d
AS
3712
3713 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3714 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3715 insn->src_reg);
3716 return -EACCES;
3717 }
17a52670
AS
3718 } else {
3719 if (insn->src_reg != BPF_REG_0) {
61bd5218 3720 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3721 return -EINVAL;
3722 }
3723 }
3724
3725 /* check src2 operand */
dc503a8a 3726 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3727 if (err)
3728 return err;
3729
1a0dc1ac
AS
3730 dst_reg = &regs[insn->dst_reg];
3731
17a52670
AS
3732 /* detect if R == 0 where R was initialized to zero earlier */
3733 if (BPF_SRC(insn->code) == BPF_K &&
3734 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77 3735 dst_reg->type == SCALAR_VALUE &&
3bf15921
AS
3736 tnum_is_const(dst_reg->var_off)) {
3737 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3738 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
17a52670
AS
3739 /* if (imm == imm) goto pc+off;
3740 * only follow the goto, ignore fall-through
3741 */
3742 *insn_idx += insn->off;
3743 return 0;
3744 } else {
3745 /* if (imm != imm) goto pc+off;
3746 * only follow fall-through branch, since
3747 * that's where the program will go
3748 */
3749 return 0;
3750 }
3751 }
3752
3753 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3754 if (!other_branch)
3755 return -EFAULT;
f4d7e40a 3756 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
17a52670 3757
48461135
JB
3758 /* detect if we are comparing against a constant value so we can adjust
3759 * our min/max values for our dst register.
f1174f77
EC
3760 * this is only legit if both are scalars (or pointers to the same
3761 * object, I suppose, but we don't support that right now), because
3762 * otherwise the different base pointers mean the offsets aren't
3763 * comparable.
48461135
JB
3764 */
3765 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3766 if (dst_reg->type == SCALAR_VALUE &&
3767 regs[insn->src_reg].type == SCALAR_VALUE) {
3768 if (tnum_is_const(regs[insn->src_reg].var_off))
f4d7e40a 3769 reg_set_min_max(&other_branch_regs[insn->dst_reg],
f1174f77
EC
3770 dst_reg, regs[insn->src_reg].var_off.value,
3771 opcode);
3772 else if (tnum_is_const(dst_reg->var_off))
f4d7e40a 3773 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
f1174f77
EC
3774 &regs[insn->src_reg],
3775 dst_reg->var_off.value, opcode);
3776 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3777 /* Comparing for equality, we can combine knowledge */
f4d7e40a
AS
3778 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3779 &other_branch_regs[insn->dst_reg],
f1174f77
EC
3780 &regs[insn->src_reg],
3781 &regs[insn->dst_reg], opcode);
3782 }
3783 } else if (dst_reg->type == SCALAR_VALUE) {
f4d7e40a 3784 reg_set_min_max(&other_branch_regs[insn->dst_reg],
48461135
JB
3785 dst_reg, insn->imm, opcode);
3786 }
3787
58e2af8b 3788 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3789 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3790 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3791 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3792 /* Mark all identical map registers in each branch as either
3793 * safe or unknown depending R == 0 or R != 0 conditional.
3794 */
f1174f77
EC
3795 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3796 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3797 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3798 this_branch, other_branch) &&
3799 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3800 verbose(env, "R%d pointer comparison prohibited\n",
3801 insn->dst_reg);
1be7f75d 3802 return -EACCES;
17a52670 3803 }
61bd5218 3804 if (env->log.level)
f4d7e40a 3805 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
17a52670
AS
3806 return 0;
3807}
3808
0246e64d
AS
3809/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3810static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3811{
3812 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3813
3814 return (struct bpf_map *) (unsigned long) imm64;
3815}
3816
17a52670 3817/* verify BPF_LD_IMM64 instruction */
58e2af8b 3818static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3819{
638f5b90 3820 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3821 int err;
3822
3823 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3824 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3825 return -EINVAL;
3826 }
3827 if (insn->off != 0) {
61bd5218 3828 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3829 return -EINVAL;
3830 }
3831
dc503a8a 3832 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3833 if (err)
3834 return err;
3835
6b173873 3836 if (insn->src_reg == 0) {
6b173873
JK
3837 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3838
f1174f77 3839 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3840 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3841 return 0;
6b173873 3842 }
17a52670
AS
3843
3844 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3845 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3846
3847 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3848 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3849 return 0;
3850}
3851
96be4325
DB
3852static bool may_access_skb(enum bpf_prog_type type)
3853{
3854 switch (type) {
3855 case BPF_PROG_TYPE_SOCKET_FILTER:
3856 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3857 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3858 return true;
3859 default:
3860 return false;
3861 }
3862}
3863
ddd872bc
AS
3864/* verify safety of LD_ABS|LD_IND instructions:
3865 * - they can only appear in the programs where ctx == skb
3866 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3867 * preserve R6-R9, and store return value into R0
3868 *
3869 * Implicit input:
3870 * ctx == skb == R6 == CTX
3871 *
3872 * Explicit input:
3873 * SRC == any register
3874 * IMM == 32-bit immediate
3875 *
3876 * Output:
3877 * R0 - 8/16/32-bit skb data converted to cpu endianness
3878 */
58e2af8b 3879static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3880{
638f5b90 3881 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3882 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3883 int i, err;
3884
24701ece 3885 if (!may_access_skb(env->prog->type)) {
61bd5218 3886 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3887 return -EINVAL;
3888 }
3889
e0cea7ce
DB
3890 if (!env->ops->gen_ld_abs) {
3891 verbose(env, "bpf verifier is misconfigured\n");
3892 return -EINVAL;
3893 }
3894
f910cefa 3895 if (env->subprog_cnt > 1) {
f4d7e40a
AS
3896 /* when program has LD_ABS insn JITs and interpreter assume
3897 * that r1 == ctx == skb which is not the case for callees
3898 * that can have arbitrary arguments. It's problematic
3899 * for main prog as well since JITs would need to analyze
3900 * all functions in order to make proper register save/restore
3901 * decisions in the main prog. Hence disallow LD_ABS with calls
3902 */
3903 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3904 return -EINVAL;
3905 }
3906
ddd872bc 3907 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3908 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3909 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3910 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3911 return -EINVAL;
3912 }
3913
3914 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3915 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3916 if (err)
3917 return err;
3918
3919 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3920 verbose(env,
3921 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3922 return -EINVAL;
3923 }
3924
3925 if (mode == BPF_IND) {
3926 /* check explicit source operand */
dc503a8a 3927 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3928 if (err)
3929 return err;
3930 }
3931
3932 /* reset caller saved regs to unreadable */
dc503a8a 3933 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3934 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3935 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3936 }
ddd872bc
AS
3937
3938 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3939 * the value fetched from the packet.
3940 * Already marked as written above.
ddd872bc 3941 */
61bd5218 3942 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3943 return 0;
3944}
3945
390ee7e2
AS
3946static int check_return_code(struct bpf_verifier_env *env)
3947{
3948 struct bpf_reg_state *reg;
3949 struct tnum range = tnum_range(0, 1);
3950
3951 switch (env->prog->type) {
3952 case BPF_PROG_TYPE_CGROUP_SKB:
3953 case BPF_PROG_TYPE_CGROUP_SOCK:
4fbac77d 3954 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
390ee7e2 3955 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3956 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3957 break;
3958 default:
3959 return 0;
3960 }
3961
638f5b90 3962 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3963 if (reg->type != SCALAR_VALUE) {
61bd5218 3964 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3965 reg_type_str[reg->type]);
3966 return -EINVAL;
3967 }
3968
3969 if (!tnum_in(range, reg->var_off)) {
61bd5218 3970 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3971 if (!tnum_is_unknown(reg->var_off)) {
3972 char tn_buf[48];
3973
3974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3975 verbose(env, "has value %s", tn_buf);
390ee7e2 3976 } else {
61bd5218 3977 verbose(env, "has unknown scalar value");
390ee7e2 3978 }
61bd5218 3979 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3980 return -EINVAL;
3981 }
3982 return 0;
3983}
3984
475fb78f
AS
3985/* non-recursive DFS pseudo code
3986 * 1 procedure DFS-iterative(G,v):
3987 * 2 label v as discovered
3988 * 3 let S be a stack
3989 * 4 S.push(v)
3990 * 5 while S is not empty
3991 * 6 t <- S.pop()
3992 * 7 if t is what we're looking for:
3993 * 8 return t
3994 * 9 for all edges e in G.adjacentEdges(t) do
3995 * 10 if edge e is already labelled
3996 * 11 continue with the next edge
3997 * 12 w <- G.adjacentVertex(t,e)
3998 * 13 if vertex w is not discovered and not explored
3999 * 14 label e as tree-edge
4000 * 15 label w as discovered
4001 * 16 S.push(w)
4002 * 17 continue at 5
4003 * 18 else if vertex w is discovered
4004 * 19 label e as back-edge
4005 * 20 else
4006 * 21 // vertex w is explored
4007 * 22 label e as forward- or cross-edge
4008 * 23 label t as explored
4009 * 24 S.pop()
4010 *
4011 * convention:
4012 * 0x10 - discovered
4013 * 0x11 - discovered and fall-through edge labelled
4014 * 0x12 - discovered and fall-through and branch edges labelled
4015 * 0x20 - explored
4016 */
4017
4018enum {
4019 DISCOVERED = 0x10,
4020 EXPLORED = 0x20,
4021 FALLTHROUGH = 1,
4022 BRANCH = 2,
4023};
4024
58e2af8b 4025#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 4026
475fb78f
AS
4027static int *insn_stack; /* stack of insns to process */
4028static int cur_stack; /* current stack index */
4029static int *insn_state;
4030
4031/* t, w, e - match pseudo-code above:
4032 * t - index of current instruction
4033 * w - next instruction
4034 * e - edge
4035 */
58e2af8b 4036static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
4037{
4038 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4039 return 0;
4040
4041 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4042 return 0;
4043
4044 if (w < 0 || w >= env->prog->len) {
61bd5218 4045 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
4046 return -EINVAL;
4047 }
4048
f1bca824
AS
4049 if (e == BRANCH)
4050 /* mark branch target for state pruning */
4051 env->explored_states[w] = STATE_LIST_MARK;
4052
475fb78f
AS
4053 if (insn_state[w] == 0) {
4054 /* tree-edge */
4055 insn_state[t] = DISCOVERED | e;
4056 insn_state[w] = DISCOVERED;
4057 if (cur_stack >= env->prog->len)
4058 return -E2BIG;
4059 insn_stack[cur_stack++] = w;
4060 return 1;
4061 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 4062 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
4063 return -EINVAL;
4064 } else if (insn_state[w] == EXPLORED) {
4065 /* forward- or cross-edge */
4066 insn_state[t] = DISCOVERED | e;
4067 } else {
61bd5218 4068 verbose(env, "insn state internal bug\n");
475fb78f
AS
4069 return -EFAULT;
4070 }
4071 return 0;
4072}
4073
4074/* non-recursive depth-first-search to detect loops in BPF program
4075 * loop == back-edge in directed graph
4076 */
58e2af8b 4077static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
4078{
4079 struct bpf_insn *insns = env->prog->insnsi;
4080 int insn_cnt = env->prog->len;
4081 int ret = 0;
4082 int i, t;
4083
cc8b0b92
AS
4084 ret = check_subprogs(env);
4085 if (ret < 0)
4086 return ret;
4087
475fb78f
AS
4088 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4089 if (!insn_state)
4090 return -ENOMEM;
4091
4092 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4093 if (!insn_stack) {
4094 kfree(insn_state);
4095 return -ENOMEM;
4096 }
4097
4098 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4099 insn_stack[0] = 0; /* 0 is the first instruction */
4100 cur_stack = 1;
4101
4102peek_stack:
4103 if (cur_stack == 0)
4104 goto check_state;
4105 t = insn_stack[cur_stack - 1];
4106
4107 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4108 u8 opcode = BPF_OP(insns[t].code);
4109
4110 if (opcode == BPF_EXIT) {
4111 goto mark_explored;
4112 } else if (opcode == BPF_CALL) {
4113 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4114 if (ret == 1)
4115 goto peek_stack;
4116 else if (ret < 0)
4117 goto err_free;
07016151
DB
4118 if (t + 1 < insn_cnt)
4119 env->explored_states[t + 1] = STATE_LIST_MARK;
cc8b0b92
AS
4120 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4121 env->explored_states[t] = STATE_LIST_MARK;
4122 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4123 if (ret == 1)
4124 goto peek_stack;
4125 else if (ret < 0)
4126 goto err_free;
4127 }
475fb78f
AS
4128 } else if (opcode == BPF_JA) {
4129 if (BPF_SRC(insns[t].code) != BPF_K) {
4130 ret = -EINVAL;
4131 goto err_free;
4132 }
4133 /* unconditional jump with single edge */
4134 ret = push_insn(t, t + insns[t].off + 1,
4135 FALLTHROUGH, env);
4136 if (ret == 1)
4137 goto peek_stack;
4138 else if (ret < 0)
4139 goto err_free;
f1bca824
AS
4140 /* tell verifier to check for equivalent states
4141 * after every call and jump
4142 */
c3de6317
AS
4143 if (t + 1 < insn_cnt)
4144 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
4145 } else {
4146 /* conditional jump with two edges */
3c2ce60b 4147 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
4148 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4149 if (ret == 1)
4150 goto peek_stack;
4151 else if (ret < 0)
4152 goto err_free;
4153
4154 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4155 if (ret == 1)
4156 goto peek_stack;
4157 else if (ret < 0)
4158 goto err_free;
4159 }
4160 } else {
4161 /* all other non-branch instructions with single
4162 * fall-through edge
4163 */
4164 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4165 if (ret == 1)
4166 goto peek_stack;
4167 else if (ret < 0)
4168 goto err_free;
4169 }
4170
4171mark_explored:
4172 insn_state[t] = EXPLORED;
4173 if (cur_stack-- <= 0) {
61bd5218 4174 verbose(env, "pop stack internal bug\n");
475fb78f
AS
4175 ret = -EFAULT;
4176 goto err_free;
4177 }
4178 goto peek_stack;
4179
4180check_state:
4181 for (i = 0; i < insn_cnt; i++) {
4182 if (insn_state[i] != EXPLORED) {
61bd5218 4183 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
4184 ret = -EINVAL;
4185 goto err_free;
4186 }
4187 }
4188 ret = 0; /* cfg looks good */
4189
4190err_free:
4191 kfree(insn_state);
4192 kfree(insn_stack);
4193 return ret;
4194}
4195
f1174f77
EC
4196/* check %cur's range satisfies %old's */
4197static bool range_within(struct bpf_reg_state *old,
4198 struct bpf_reg_state *cur)
4199{
b03c9f9f
EC
4200 return old->umin_value <= cur->umin_value &&
4201 old->umax_value >= cur->umax_value &&
4202 old->smin_value <= cur->smin_value &&
4203 old->smax_value >= cur->smax_value;
f1174f77
EC
4204}
4205
4206/* Maximum number of register states that can exist at once */
4207#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4208struct idpair {
4209 u32 old;
4210 u32 cur;
4211};
4212
4213/* If in the old state two registers had the same id, then they need to have
4214 * the same id in the new state as well. But that id could be different from
4215 * the old state, so we need to track the mapping from old to new ids.
4216 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4217 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4218 * regs with a different old id could still have new id 9, we don't care about
4219 * that.
4220 * So we look through our idmap to see if this old id has been seen before. If
4221 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 4222 */
f1174f77 4223static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 4224{
f1174f77 4225 unsigned int i;
969bf05e 4226
f1174f77
EC
4227 for (i = 0; i < ID_MAP_SIZE; i++) {
4228 if (!idmap[i].old) {
4229 /* Reached an empty slot; haven't seen this id before */
4230 idmap[i].old = old_id;
4231 idmap[i].cur = cur_id;
4232 return true;
4233 }
4234 if (idmap[i].old == old_id)
4235 return idmap[i].cur == cur_id;
4236 }
4237 /* We ran out of idmap slots, which should be impossible */
4238 WARN_ON_ONCE(1);
4239 return false;
4240}
4241
4242/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
4243static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4244 struct idpair *idmap)
f1174f77 4245{
f4d7e40a
AS
4246 bool equal;
4247
dc503a8a
EC
4248 if (!(rold->live & REG_LIVE_READ))
4249 /* explored state didn't use this */
4250 return true;
4251
f4d7e40a
AS
4252 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4253
4254 if (rold->type == PTR_TO_STACK)
4255 /* two stack pointers are equal only if they're pointing to
4256 * the same stack frame, since fp-8 in foo != fp-8 in bar
4257 */
4258 return equal && rold->frameno == rcur->frameno;
4259
4260 if (equal)
969bf05e
AS
4261 return true;
4262
f1174f77
EC
4263 if (rold->type == NOT_INIT)
4264 /* explored state can't have used this */
969bf05e 4265 return true;
f1174f77
EC
4266 if (rcur->type == NOT_INIT)
4267 return false;
4268 switch (rold->type) {
4269 case SCALAR_VALUE:
4270 if (rcur->type == SCALAR_VALUE) {
4271 /* new val must satisfy old val knowledge */
4272 return range_within(rold, rcur) &&
4273 tnum_in(rold->var_off, rcur->var_off);
4274 } else {
179d1c56
JH
4275 /* We're trying to use a pointer in place of a scalar.
4276 * Even if the scalar was unbounded, this could lead to
4277 * pointer leaks because scalars are allowed to leak
4278 * while pointers are not. We could make this safe in
4279 * special cases if root is calling us, but it's
4280 * probably not worth the hassle.
f1174f77 4281 */
179d1c56 4282 return false;
f1174f77
EC
4283 }
4284 case PTR_TO_MAP_VALUE:
1b688a19
EC
4285 /* If the new min/max/var_off satisfy the old ones and
4286 * everything else matches, we are OK.
4287 * We don't care about the 'id' value, because nothing
4288 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4289 */
4290 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4291 range_within(rold, rcur) &&
4292 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
4293 case PTR_TO_MAP_VALUE_OR_NULL:
4294 /* a PTR_TO_MAP_VALUE could be safe to use as a
4295 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4296 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4297 * checked, doing so could have affected others with the same
4298 * id, and we can't check for that because we lost the id when
4299 * we converted to a PTR_TO_MAP_VALUE.
4300 */
4301 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4302 return false;
4303 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4304 return false;
4305 /* Check our ids match any regs they're supposed to */
4306 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 4307 case PTR_TO_PACKET_META:
f1174f77 4308 case PTR_TO_PACKET:
de8f3a83 4309 if (rcur->type != rold->type)
f1174f77
EC
4310 return false;
4311 /* We must have at least as much range as the old ptr
4312 * did, so that any accesses which were safe before are
4313 * still safe. This is true even if old range < old off,
4314 * since someone could have accessed through (ptr - k), or
4315 * even done ptr -= k in a register, to get a safe access.
4316 */
4317 if (rold->range > rcur->range)
4318 return false;
4319 /* If the offsets don't match, we can't trust our alignment;
4320 * nor can we be sure that we won't fall out of range.
4321 */
4322 if (rold->off != rcur->off)
4323 return false;
4324 /* id relations must be preserved */
4325 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4326 return false;
4327 /* new val must satisfy old val knowledge */
4328 return range_within(rold, rcur) &&
4329 tnum_in(rold->var_off, rcur->var_off);
4330 case PTR_TO_CTX:
4331 case CONST_PTR_TO_MAP:
f1174f77
EC
4332 case PTR_TO_PACKET_END:
4333 /* Only valid matches are exact, which memcmp() above
4334 * would have accepted
4335 */
4336 default:
4337 /* Don't know what's going on, just say it's not safe */
4338 return false;
4339 }
969bf05e 4340
f1174f77
EC
4341 /* Shouldn't get here; if we do, say it's not safe */
4342 WARN_ON_ONCE(1);
969bf05e
AS
4343 return false;
4344}
4345
f4d7e40a
AS
4346static bool stacksafe(struct bpf_func_state *old,
4347 struct bpf_func_state *cur,
638f5b90
AS
4348 struct idpair *idmap)
4349{
4350 int i, spi;
4351
4352 /* if explored stack has more populated slots than current stack
4353 * such stacks are not equivalent
4354 */
4355 if (old->allocated_stack > cur->allocated_stack)
4356 return false;
4357
4358 /* walk slots of the explored stack and ignore any additional
4359 * slots in the current stack, since explored(safe) state
4360 * didn't use them
4361 */
4362 for (i = 0; i < old->allocated_stack; i++) {
4363 spi = i / BPF_REG_SIZE;
4364
cc2b14d5
AS
4365 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4366 /* explored state didn't use this */
fd05e57b 4367 continue;
cc2b14d5 4368
638f5b90
AS
4369 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4370 continue;
cc2b14d5
AS
4371 /* if old state was safe with misc data in the stack
4372 * it will be safe with zero-initialized stack.
4373 * The opposite is not true
4374 */
4375 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4376 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4377 continue;
638f5b90
AS
4378 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4379 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4380 /* Ex: old explored (safe) state has STACK_SPILL in
4381 * this stack slot, but current has has STACK_MISC ->
4382 * this verifier states are not equivalent,
4383 * return false to continue verification of this path
4384 */
4385 return false;
4386 if (i % BPF_REG_SIZE)
4387 continue;
4388 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4389 continue;
4390 if (!regsafe(&old->stack[spi].spilled_ptr,
4391 &cur->stack[spi].spilled_ptr,
4392 idmap))
4393 /* when explored and current stack slot are both storing
4394 * spilled registers, check that stored pointers types
4395 * are the same as well.
4396 * Ex: explored safe path could have stored
4397 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4398 * but current path has stored:
4399 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4400 * such verifier states are not equivalent.
4401 * return false to continue verification of this path
4402 */
4403 return false;
4404 }
4405 return true;
4406}
4407
f1bca824
AS
4408/* compare two verifier states
4409 *
4410 * all states stored in state_list are known to be valid, since
4411 * verifier reached 'bpf_exit' instruction through them
4412 *
4413 * this function is called when verifier exploring different branches of
4414 * execution popped from the state stack. If it sees an old state that has
4415 * more strict register state and more strict stack state then this execution
4416 * branch doesn't need to be explored further, since verifier already
4417 * concluded that more strict state leads to valid finish.
4418 *
4419 * Therefore two states are equivalent if register state is more conservative
4420 * and explored stack state is more conservative than the current one.
4421 * Example:
4422 * explored current
4423 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4424 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4425 *
4426 * In other words if current stack state (one being explored) has more
4427 * valid slots than old one that already passed validation, it means
4428 * the verifier can stop exploring and conclude that current state is valid too
4429 *
4430 * Similarly with registers. If explored state has register type as invalid
4431 * whereas register type in current state is meaningful, it means that
4432 * the current state will reach 'bpf_exit' instruction safely
4433 */
f4d7e40a
AS
4434static bool func_states_equal(struct bpf_func_state *old,
4435 struct bpf_func_state *cur)
f1bca824 4436{
f1174f77
EC
4437 struct idpair *idmap;
4438 bool ret = false;
f1bca824
AS
4439 int i;
4440
f1174f77
EC
4441 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4442 /* If we failed to allocate the idmap, just say it's not safe */
4443 if (!idmap)
1a0dc1ac 4444 return false;
f1174f77
EC
4445
4446 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 4447 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 4448 goto out_free;
f1bca824
AS
4449 }
4450
638f5b90
AS
4451 if (!stacksafe(old, cur, idmap))
4452 goto out_free;
f1174f77
EC
4453 ret = true;
4454out_free:
4455 kfree(idmap);
4456 return ret;
f1bca824
AS
4457}
4458
f4d7e40a
AS
4459static bool states_equal(struct bpf_verifier_env *env,
4460 struct bpf_verifier_state *old,
4461 struct bpf_verifier_state *cur)
4462{
4463 int i;
4464
4465 if (old->curframe != cur->curframe)
4466 return false;
4467
4468 /* for states to be equal callsites have to be the same
4469 * and all frame states need to be equivalent
4470 */
4471 for (i = 0; i <= old->curframe; i++) {
4472 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4473 return false;
4474 if (!func_states_equal(old->frame[i], cur->frame[i]))
4475 return false;
4476 }
4477 return true;
4478}
4479
8e9cd9ce 4480/* A write screens off any subsequent reads; but write marks come from the
f4d7e40a
AS
4481 * straight-line code between a state and its parent. When we arrive at an
4482 * equivalent state (jump target or such) we didn't arrive by the straight-line
4483 * code, so read marks in the state must propagate to the parent regardless
4484 * of the state's write marks. That's what 'parent == state->parent' comparison
4485 * in mark_reg_read() and mark_stack_slot_read() is for.
8e9cd9ce 4486 */
f4d7e40a
AS
4487static int propagate_liveness(struct bpf_verifier_env *env,
4488 const struct bpf_verifier_state *vstate,
4489 struct bpf_verifier_state *vparent)
dc503a8a 4490{
f4d7e40a
AS
4491 int i, frame, err = 0;
4492 struct bpf_func_state *state, *parent;
dc503a8a 4493
f4d7e40a
AS
4494 if (vparent->curframe != vstate->curframe) {
4495 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4496 vparent->curframe, vstate->curframe);
4497 return -EFAULT;
4498 }
dc503a8a
EC
4499 /* Propagate read liveness of registers... */
4500 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4501 /* We don't need to worry about FP liveness because it's read-only */
4502 for (i = 0; i < BPF_REG_FP; i++) {
f4d7e40a 4503 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
63f45f84 4504 continue;
f4d7e40a
AS
4505 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4506 err = mark_reg_read(env, vstate, vparent, i);
4507 if (err)
4508 return err;
dc503a8a
EC
4509 }
4510 }
f4d7e40a 4511
dc503a8a 4512 /* ... and stack slots */
f4d7e40a
AS
4513 for (frame = 0; frame <= vstate->curframe; frame++) {
4514 state = vstate->frame[frame];
4515 parent = vparent->frame[frame];
4516 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4517 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
f4d7e40a
AS
4518 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4519 continue;
4520 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4521 mark_stack_slot_read(env, vstate, vparent, i, frame);
dc503a8a
EC
4522 }
4523 }
f4d7e40a 4524 return err;
dc503a8a
EC
4525}
4526
58e2af8b 4527static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 4528{
58e2af8b
JK
4529 struct bpf_verifier_state_list *new_sl;
4530 struct bpf_verifier_state_list *sl;
638f5b90 4531 struct bpf_verifier_state *cur = env->cur_state;
f4d7e40a 4532 int i, j, err;
f1bca824
AS
4533
4534 sl = env->explored_states[insn_idx];
4535 if (!sl)
4536 /* this 'insn_idx' instruction wasn't marked, so we will not
4537 * be doing state search here
4538 */
4539 return 0;
4540
4541 while (sl != STATE_LIST_MARK) {
638f5b90 4542 if (states_equal(env, &sl->state, cur)) {
f1bca824 4543 /* reached equivalent register/stack state,
dc503a8a
EC
4544 * prune the search.
4545 * Registers read by the continuation are read by us.
8e9cd9ce
EC
4546 * If we have any write marks in env->cur_state, they
4547 * will prevent corresponding reads in the continuation
4548 * from reaching our parent (an explored_state). Our
4549 * own state will get the read marks recorded, but
4550 * they'll be immediately forgotten as we're pruning
4551 * this state and will pop a new one.
f1bca824 4552 */
f4d7e40a
AS
4553 err = propagate_liveness(env, &sl->state, cur);
4554 if (err)
4555 return err;
f1bca824 4556 return 1;
dc503a8a 4557 }
f1bca824
AS
4558 sl = sl->next;
4559 }
4560
4561 /* there were no equivalent states, remember current one.
4562 * technically the current state is not proven to be safe yet,
f4d7e40a
AS
4563 * but it will either reach outer most bpf_exit (which means it's safe)
4564 * or it will be rejected. Since there are no loops, we won't be
4565 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4566 * again on the way to bpf_exit
f1bca824 4567 */
638f5b90 4568 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
4569 if (!new_sl)
4570 return -ENOMEM;
4571
4572 /* add new state to the head of linked list */
1969db47
AS
4573 err = copy_verifier_state(&new_sl->state, cur);
4574 if (err) {
4575 free_verifier_state(&new_sl->state, false);
4576 kfree(new_sl);
4577 return err;
4578 }
f1bca824
AS
4579 new_sl->next = env->explored_states[insn_idx];
4580 env->explored_states[insn_idx] = new_sl;
dc503a8a 4581 /* connect new state to parentage chain */
638f5b90 4582 cur->parent = &new_sl->state;
8e9cd9ce
EC
4583 /* clear write marks in current state: the writes we did are not writes
4584 * our child did, so they don't screen off its reads from us.
4585 * (There are no read marks in current state, because reads always mark
4586 * their parent and current state never has children yet. Only
4587 * explored_states can get read marks.)
4588 */
dc503a8a 4589 for (i = 0; i < BPF_REG_FP; i++)
f4d7e40a
AS
4590 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4591
4592 /* all stack frames are accessible from callee, clear them all */
4593 for (j = 0; j <= cur->curframe; j++) {
4594 struct bpf_func_state *frame = cur->frame[j];
4595
4596 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
cc2b14d5 4597 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f4d7e40a 4598 }
f1bca824
AS
4599 return 0;
4600}
4601
58e2af8b 4602static int do_check(struct bpf_verifier_env *env)
17a52670 4603{
638f5b90 4604 struct bpf_verifier_state *state;
17a52670 4605 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 4606 struct bpf_reg_state *regs;
f4d7e40a 4607 int insn_cnt = env->prog->len, i;
17a52670
AS
4608 int insn_idx, prev_insn_idx = 0;
4609 int insn_processed = 0;
4610 bool do_print_state = false;
4611
638f5b90
AS
4612 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4613 if (!state)
4614 return -ENOMEM;
f4d7e40a 4615 state->curframe = 0;
dc503a8a 4616 state->parent = NULL;
f4d7e40a
AS
4617 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4618 if (!state->frame[0]) {
4619 kfree(state);
4620 return -ENOMEM;
4621 }
4622 env->cur_state = state;
4623 init_func_state(env, state->frame[0],
4624 BPF_MAIN_FUNC /* callsite */,
4625 0 /* frameno */,
4626 0 /* subprogno, zero == main subprog */);
17a52670
AS
4627 insn_idx = 0;
4628 for (;;) {
4629 struct bpf_insn *insn;
4630 u8 class;
4631 int err;
4632
4633 if (insn_idx >= insn_cnt) {
61bd5218 4634 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
4635 insn_idx, insn_cnt);
4636 return -EFAULT;
4637 }
4638
4639 insn = &insns[insn_idx];
4640 class = BPF_CLASS(insn->code);
4641
07016151 4642 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
4643 verbose(env,
4644 "BPF program is too large. Processed %d insn\n",
17a52670
AS
4645 insn_processed);
4646 return -E2BIG;
4647 }
4648
f1bca824
AS
4649 err = is_state_visited(env, insn_idx);
4650 if (err < 0)
4651 return err;
4652 if (err == 1) {
4653 /* found equivalent state, can prune the search */
61bd5218 4654 if (env->log.level) {
f1bca824 4655 if (do_print_state)
61bd5218 4656 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
4657 prev_insn_idx, insn_idx);
4658 else
61bd5218 4659 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
4660 }
4661 goto process_bpf_exit;
4662 }
4663
3c2ce60b
DB
4664 if (need_resched())
4665 cond_resched();
4666
61bd5218
JK
4667 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4668 if (env->log.level > 1)
4669 verbose(env, "%d:", insn_idx);
c5fc9692 4670 else
61bd5218 4671 verbose(env, "\nfrom %d to %d:",
c5fc9692 4672 prev_insn_idx, insn_idx);
f4d7e40a 4673 print_verifier_state(env, state->frame[state->curframe]);
17a52670
AS
4674 do_print_state = false;
4675 }
4676
61bd5218 4677 if (env->log.level) {
7105e828
DB
4678 const struct bpf_insn_cbs cbs = {
4679 .cb_print = verbose,
abe08840 4680 .private_data = env,
7105e828
DB
4681 };
4682
61bd5218 4683 verbose(env, "%d: ", insn_idx);
abe08840 4684 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17a52670
AS
4685 }
4686
cae1927c
JK
4687 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4688 err = bpf_prog_offload_verify_insn(env, insn_idx,
4689 prev_insn_idx);
4690 if (err)
4691 return err;
4692 }
13a27dfc 4693
638f5b90 4694 regs = cur_regs(env);
c131187d 4695 env->insn_aux_data[insn_idx].seen = true;
17a52670 4696 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 4697 err = check_alu_op(env, insn);
17a52670
AS
4698 if (err)
4699 return err;
4700
4701 } else if (class == BPF_LDX) {
3df126f3 4702 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
4703
4704 /* check for reserved fields is already done */
4705
17a52670 4706 /* check src operand */
dc503a8a 4707 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4708 if (err)
4709 return err;
4710
dc503a8a 4711 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
4712 if (err)
4713 return err;
4714
725f9dcd
AS
4715 src_reg_type = regs[insn->src_reg].type;
4716
17a52670
AS
4717 /* check that memory (src_reg + off) is readable,
4718 * the state of dst_reg will be updated by this func
4719 */
31fd8581 4720 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 4721 BPF_SIZE(insn->code), BPF_READ,
ca369602 4722 insn->dst_reg, false);
17a52670
AS
4723 if (err)
4724 return err;
4725
3df126f3
JK
4726 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4727
4728 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
4729 /* saw a valid insn
4730 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 4731 * save type to validate intersecting paths
9bac3d6d 4732 */
3df126f3 4733 *prev_src_type = src_reg_type;
9bac3d6d 4734
3df126f3 4735 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 4736 (src_reg_type == PTR_TO_CTX ||
3df126f3 4737 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
4738 /* ABuser program is trying to use the same insn
4739 * dst_reg = *(u32*) (src_reg + off)
4740 * with different pointer types:
4741 * src_reg == ctx in one branch and
4742 * src_reg == stack|map in some other branch.
4743 * Reject it.
4744 */
61bd5218 4745 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
4746 return -EINVAL;
4747 }
4748
17a52670 4749 } else if (class == BPF_STX) {
3df126f3 4750 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 4751
17a52670 4752 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 4753 err = check_xadd(env, insn_idx, insn);
17a52670
AS
4754 if (err)
4755 return err;
4756 insn_idx++;
4757 continue;
4758 }
4759
17a52670 4760 /* check src1 operand */
dc503a8a 4761 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4762 if (err)
4763 return err;
4764 /* check src2 operand */
dc503a8a 4765 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4766 if (err)
4767 return err;
4768
d691f9e8
AS
4769 dst_reg_type = regs[insn->dst_reg].type;
4770
17a52670 4771 /* check that memory (dst_reg + off) is writeable */
31fd8581 4772 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4773 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4774 insn->src_reg, false);
17a52670
AS
4775 if (err)
4776 return err;
4777
3df126f3
JK
4778 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4779
4780 if (*prev_dst_type == NOT_INIT) {
4781 *prev_dst_type = dst_reg_type;
4782 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 4783 (dst_reg_type == PTR_TO_CTX ||
3df126f3 4784 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 4785 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4786 return -EINVAL;
4787 }
4788
17a52670
AS
4789 } else if (class == BPF_ST) {
4790 if (BPF_MODE(insn->code) != BPF_MEM ||
4791 insn->src_reg != BPF_REG_0) {
61bd5218 4792 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4793 return -EINVAL;
4794 }
4795 /* check src operand */
dc503a8a 4796 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4797 if (err)
4798 return err;
4799
f37a8cb8
DB
4800 if (is_ctx_reg(env, insn->dst_reg)) {
4801 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4802 insn->dst_reg);
4803 return -EACCES;
4804 }
4805
17a52670 4806 /* check that memory (dst_reg + off) is writeable */
31fd8581 4807 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4808 BPF_SIZE(insn->code), BPF_WRITE,
ca369602 4809 -1, false);
17a52670
AS
4810 if (err)
4811 return err;
4812
4813 } else if (class == BPF_JMP) {
4814 u8 opcode = BPF_OP(insn->code);
4815
4816 if (opcode == BPF_CALL) {
4817 if (BPF_SRC(insn->code) != BPF_K ||
4818 insn->off != 0 ||
f4d7e40a
AS
4819 (insn->src_reg != BPF_REG_0 &&
4820 insn->src_reg != BPF_PSEUDO_CALL) ||
17a52670 4821 insn->dst_reg != BPF_REG_0) {
61bd5218 4822 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4823 return -EINVAL;
4824 }
4825
f4d7e40a
AS
4826 if (insn->src_reg == BPF_PSEUDO_CALL)
4827 err = check_func_call(env, insn, &insn_idx);
4828 else
4829 err = check_helper_call(env, insn->imm, insn_idx);
17a52670
AS
4830 if (err)
4831 return err;
4832
4833 } else if (opcode == BPF_JA) {
4834 if (BPF_SRC(insn->code) != BPF_K ||
4835 insn->imm != 0 ||
4836 insn->src_reg != BPF_REG_0 ||
4837 insn->dst_reg != BPF_REG_0) {
61bd5218 4838 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4839 return -EINVAL;
4840 }
4841
4842 insn_idx += insn->off + 1;
4843 continue;
4844
4845 } else if (opcode == BPF_EXIT) {
4846 if (BPF_SRC(insn->code) != BPF_K ||
4847 insn->imm != 0 ||
4848 insn->src_reg != BPF_REG_0 ||
4849 insn->dst_reg != BPF_REG_0) {
61bd5218 4850 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4851 return -EINVAL;
4852 }
4853
f4d7e40a
AS
4854 if (state->curframe) {
4855 /* exit from nested function */
4856 prev_insn_idx = insn_idx;
4857 err = prepare_func_exit(env, &insn_idx);
4858 if (err)
4859 return err;
4860 do_print_state = true;
4861 continue;
4862 }
4863
17a52670
AS
4864 /* eBPF calling convetion is such that R0 is used
4865 * to return the value from eBPF program.
4866 * Make sure that it's readable at this time
4867 * of bpf_exit, which means that program wrote
4868 * something into it earlier
4869 */
dc503a8a 4870 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4871 if (err)
4872 return err;
4873
1be7f75d 4874 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4875 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4876 return -EACCES;
4877 }
4878
390ee7e2
AS
4879 err = check_return_code(env);
4880 if (err)
4881 return err;
f1bca824 4882process_bpf_exit:
638f5b90
AS
4883 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4884 if (err < 0) {
4885 if (err != -ENOENT)
4886 return err;
17a52670
AS
4887 break;
4888 } else {
4889 do_print_state = true;
4890 continue;
4891 }
4892 } else {
4893 err = check_cond_jmp_op(env, insn, &insn_idx);
4894 if (err)
4895 return err;
4896 }
4897 } else if (class == BPF_LD) {
4898 u8 mode = BPF_MODE(insn->code);
4899
4900 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4901 err = check_ld_abs(env, insn);
4902 if (err)
4903 return err;
4904
17a52670
AS
4905 } else if (mode == BPF_IMM) {
4906 err = check_ld_imm(env, insn);
4907 if (err)
4908 return err;
4909
4910 insn_idx++;
c131187d 4911 env->insn_aux_data[insn_idx].seen = true;
17a52670 4912 } else {
61bd5218 4913 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4914 return -EINVAL;
4915 }
4916 } else {
61bd5218 4917 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4918 return -EINVAL;
4919 }
4920
4921 insn_idx++;
4922 }
4923
4bd95f4b
DB
4924 verbose(env, "processed %d insns (limit %d), stack depth ",
4925 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
f910cefa 4926 for (i = 0; i < env->subprog_cnt; i++) {
9c8105bd 4927 u32 depth = env->subprog_info[i].stack_depth;
f4d7e40a
AS
4928
4929 verbose(env, "%d", depth);
f910cefa 4930 if (i + 1 < env->subprog_cnt)
f4d7e40a
AS
4931 verbose(env, "+");
4932 }
4933 verbose(env, "\n");
9c8105bd 4934 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
17a52670
AS
4935 return 0;
4936}
4937
56f668df
MKL
4938static int check_map_prealloc(struct bpf_map *map)
4939{
4940 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4941 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4942 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4943 !(map->map_flags & BPF_F_NO_PREALLOC);
4944}
4945
61bd5218
JK
4946static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4947 struct bpf_map *map,
fdc15d38
AS
4948 struct bpf_prog *prog)
4949
4950{
56f668df
MKL
4951 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4952 * preallocated hash maps, since doing memory allocation
4953 * in overflow_handler can crash depending on where nmi got
4954 * triggered.
4955 */
4956 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4957 if (!check_map_prealloc(map)) {
61bd5218 4958 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4959 return -EINVAL;
4960 }
4961 if (map->inner_map_meta &&
4962 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4963 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4964 return -EINVAL;
4965 }
fdc15d38 4966 }
a3884572
JK
4967
4968 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4969 !bpf_offload_dev_match(prog, map)) {
4970 verbose(env, "offload device mismatch between prog and map\n");
4971 return -EINVAL;
4972 }
4973
fdc15d38
AS
4974 return 0;
4975}
4976
0246e64d
AS
4977/* look for pseudo eBPF instructions that access map FDs and
4978 * replace them with actual map pointers
4979 */
58e2af8b 4980static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4981{
4982 struct bpf_insn *insn = env->prog->insnsi;
4983 int insn_cnt = env->prog->len;
fdc15d38 4984 int i, j, err;
0246e64d 4985
f1f7714e 4986 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4987 if (err)
4988 return err;
4989
0246e64d 4990 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4991 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4992 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4993 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4994 return -EINVAL;
4995 }
4996
d691f9e8
AS
4997 if (BPF_CLASS(insn->code) == BPF_STX &&
4998 ((BPF_MODE(insn->code) != BPF_MEM &&
4999 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 5000 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
5001 return -EINVAL;
5002 }
5003
0246e64d
AS
5004 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5005 struct bpf_map *map;
5006 struct fd f;
5007
5008 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5009 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5010 insn[1].off != 0) {
61bd5218 5011 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
5012 return -EINVAL;
5013 }
5014
5015 if (insn->src_reg == 0)
5016 /* valid generic load 64-bit imm */
5017 goto next_insn;
5018
5019 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
5020 verbose(env,
5021 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
5022 return -EINVAL;
5023 }
5024
5025 f = fdget(insn->imm);
c2101297 5026 map = __bpf_map_get(f);
0246e64d 5027 if (IS_ERR(map)) {
61bd5218 5028 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 5029 insn->imm);
0246e64d
AS
5030 return PTR_ERR(map);
5031 }
5032
61bd5218 5033 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
5034 if (err) {
5035 fdput(f);
5036 return err;
5037 }
5038
0246e64d
AS
5039 /* store map pointer inside BPF_LD_IMM64 instruction */
5040 insn[0].imm = (u32) (unsigned long) map;
5041 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5042
5043 /* check whether we recorded this map already */
5044 for (j = 0; j < env->used_map_cnt; j++)
5045 if (env->used_maps[j] == map) {
5046 fdput(f);
5047 goto next_insn;
5048 }
5049
5050 if (env->used_map_cnt >= MAX_USED_MAPS) {
5051 fdput(f);
5052 return -E2BIG;
5053 }
5054
0246e64d
AS
5055 /* hold the map. If the program is rejected by verifier,
5056 * the map will be released by release_maps() or it
5057 * will be used by the valid program until it's unloaded
ab7f5bf0 5058 * and all maps are released in free_used_maps()
0246e64d 5059 */
92117d84
AS
5060 map = bpf_map_inc(map, false);
5061 if (IS_ERR(map)) {
5062 fdput(f);
5063 return PTR_ERR(map);
5064 }
5065 env->used_maps[env->used_map_cnt++] = map;
5066
0246e64d
AS
5067 fdput(f);
5068next_insn:
5069 insn++;
5070 i++;
5e581dad
DB
5071 continue;
5072 }
5073
5074 /* Basic sanity check before we invest more work here. */
5075 if (!bpf_opcode_in_insntable(insn->code)) {
5076 verbose(env, "unknown opcode %02x\n", insn->code);
5077 return -EINVAL;
0246e64d
AS
5078 }
5079 }
5080
5081 /* now all pseudo BPF_LD_IMM64 instructions load valid
5082 * 'struct bpf_map *' into a register instead of user map_fd.
5083 * These pointers will be used later by verifier to validate map access.
5084 */
5085 return 0;
5086}
5087
5088/* drop refcnt of maps used by the rejected program */
58e2af8b 5089static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
5090{
5091 int i;
5092
5093 for (i = 0; i < env->used_map_cnt; i++)
5094 bpf_map_put(env->used_maps[i]);
5095}
5096
5097/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 5098static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
5099{
5100 struct bpf_insn *insn = env->prog->insnsi;
5101 int insn_cnt = env->prog->len;
5102 int i;
5103
5104 for (i = 0; i < insn_cnt; i++, insn++)
5105 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5106 insn->src_reg = 0;
5107}
5108
8041902d
AS
5109/* single env->prog->insni[off] instruction was replaced with the range
5110 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5111 * [0, off) and [off, end) to new locations, so the patched range stays zero
5112 */
5113static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5114 u32 off, u32 cnt)
5115{
5116 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 5117 int i;
8041902d
AS
5118
5119 if (cnt == 1)
5120 return 0;
5121 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5122 if (!new_data)
5123 return -ENOMEM;
5124 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5125 memcpy(new_data + off + cnt - 1, old_data + off,
5126 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
5127 for (i = off; i < off + cnt - 1; i++)
5128 new_data[i].seen = true;
8041902d
AS
5129 env->insn_aux_data = new_data;
5130 vfree(old_data);
5131 return 0;
5132}
5133
cc8b0b92
AS
5134static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5135{
5136 int i;
5137
5138 if (len == 1)
5139 return;
4cb3d99c
JW
5140 /* NOTE: fake 'exit' subprog should be updated as well. */
5141 for (i = 0; i <= env->subprog_cnt; i++) {
9c8105bd 5142 if (env->subprog_info[i].start < off)
cc8b0b92 5143 continue;
9c8105bd 5144 env->subprog_info[i].start += len - 1;
cc8b0b92
AS
5145 }
5146}
5147
8041902d
AS
5148static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5149 const struct bpf_insn *patch, u32 len)
5150{
5151 struct bpf_prog *new_prog;
5152
5153 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5154 if (!new_prog)
5155 return NULL;
5156 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5157 return NULL;
cc8b0b92 5158 adjust_subprog_starts(env, off, len);
8041902d
AS
5159 return new_prog;
5160}
5161
2a5418a1
DB
5162/* The verifier does more data flow analysis than llvm and will not
5163 * explore branches that are dead at run time. Malicious programs can
5164 * have dead code too. Therefore replace all dead at-run-time code
5165 * with 'ja -1'.
5166 *
5167 * Just nops are not optimal, e.g. if they would sit at the end of the
5168 * program and through another bug we would manage to jump there, then
5169 * we'd execute beyond program memory otherwise. Returning exception
5170 * code also wouldn't work since we can have subprogs where the dead
5171 * code could be located.
c131187d
AS
5172 */
5173static void sanitize_dead_code(struct bpf_verifier_env *env)
5174{
5175 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
2a5418a1 5176 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
c131187d
AS
5177 struct bpf_insn *insn = env->prog->insnsi;
5178 const int insn_cnt = env->prog->len;
5179 int i;
5180
5181 for (i = 0; i < insn_cnt; i++) {
5182 if (aux_data[i].seen)
5183 continue;
2a5418a1 5184 memcpy(insn + i, &trap, sizeof(trap));
c131187d
AS
5185 }
5186}
5187
9bac3d6d
AS
5188/* convert load instructions that access fields of 'struct __sk_buff'
5189 * into sequence of instructions that access fields of 'struct sk_buff'
5190 */
58e2af8b 5191static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 5192{
00176a34 5193 const struct bpf_verifier_ops *ops = env->ops;
f96da094 5194 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 5195 const int insn_cnt = env->prog->len;
36bbef52 5196 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 5197 struct bpf_prog *new_prog;
d691f9e8 5198 enum bpf_access_type type;
f96da094
DB
5199 bool is_narrower_load;
5200 u32 target_size;
9bac3d6d 5201
36bbef52
DB
5202 if (ops->gen_prologue) {
5203 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5204 env->prog);
5205 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5206 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
5207 return -EINVAL;
5208 } else if (cnt) {
8041902d 5209 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
5210 if (!new_prog)
5211 return -ENOMEM;
8041902d 5212
36bbef52 5213 env->prog = new_prog;
3df126f3 5214 delta += cnt - 1;
36bbef52
DB
5215 }
5216 }
5217
0d830032 5218 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
9bac3d6d
AS
5219 return 0;
5220
3df126f3 5221 insn = env->prog->insnsi + delta;
36bbef52 5222
9bac3d6d 5223 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
5224 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5225 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5226 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 5227 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 5228 type = BPF_READ;
62c7989b
DB
5229 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5230 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5231 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 5232 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
5233 type = BPF_WRITE;
5234 else
9bac3d6d
AS
5235 continue;
5236
8041902d 5237 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 5238 continue;
9bac3d6d 5239
31fd8581 5240 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 5241 size = BPF_LDST_BYTES(insn);
31fd8581
YS
5242
5243 /* If the read access is a narrower load of the field,
5244 * convert to a 4/8-byte load, to minimum program type specific
5245 * convert_ctx_access changes. If conversion is successful,
5246 * we will apply proper mask to the result.
5247 */
f96da094 5248 is_narrower_load = size < ctx_field_size;
31fd8581 5249 if (is_narrower_load) {
f96da094
DB
5250 u32 off = insn->off;
5251 u8 size_code;
5252
5253 if (type == BPF_WRITE) {
61bd5218 5254 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
5255 return -EINVAL;
5256 }
31fd8581 5257
f96da094 5258 size_code = BPF_H;
31fd8581
YS
5259 if (ctx_field_size == 4)
5260 size_code = BPF_W;
5261 else if (ctx_field_size == 8)
5262 size_code = BPF_DW;
f96da094 5263
31fd8581
YS
5264 insn->off = off & ~(ctx_field_size - 1);
5265 insn->code = BPF_LDX | BPF_MEM | size_code;
5266 }
f96da094
DB
5267
5268 target_size = 0;
5269 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5270 &target_size);
5271 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5272 (ctx_field_size && !target_size)) {
61bd5218 5273 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
5274 return -EINVAL;
5275 }
f96da094
DB
5276
5277 if (is_narrower_load && size < target_size) {
31fd8581
YS
5278 if (ctx_field_size <= 4)
5279 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 5280 (1 << size * 8) - 1);
31fd8581
YS
5281 else
5282 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 5283 (1 << size * 8) - 1);
31fd8581 5284 }
9bac3d6d 5285
8041902d 5286 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
5287 if (!new_prog)
5288 return -ENOMEM;
5289
3df126f3 5290 delta += cnt - 1;
9bac3d6d
AS
5291
5292 /* keep walking new program and skip insns we just inserted */
5293 env->prog = new_prog;
3df126f3 5294 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
5295 }
5296
5297 return 0;
5298}
5299
1c2a088a
AS
5300static int jit_subprogs(struct bpf_verifier_env *env)
5301{
5302 struct bpf_prog *prog = env->prog, **func, *tmp;
5303 int i, j, subprog_start, subprog_end = 0, len, subprog;
7105e828 5304 struct bpf_insn *insn;
1c2a088a
AS
5305 void *old_bpf_func;
5306 int err = -ENOMEM;
5307
f910cefa 5308 if (env->subprog_cnt <= 1)
1c2a088a
AS
5309 return 0;
5310
7105e828 5311 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
1c2a088a
AS
5312 if (insn->code != (BPF_JMP | BPF_CALL) ||
5313 insn->src_reg != BPF_PSEUDO_CALL)
5314 continue;
5315 subprog = find_subprog(env, i + insn->imm + 1);
5316 if (subprog < 0) {
5317 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5318 i + insn->imm + 1);
5319 return -EFAULT;
5320 }
5321 /* temporarily remember subprog id inside insn instead of
5322 * aux_data, since next loop will split up all insns into funcs
5323 */
f910cefa 5324 insn->off = subprog;
1c2a088a
AS
5325 /* remember original imm in case JIT fails and fallback
5326 * to interpreter will be needed
5327 */
5328 env->insn_aux_data[i].call_imm = insn->imm;
5329 /* point imm to __bpf_call_base+1 from JITs point of view */
5330 insn->imm = 1;
5331 }
5332
f910cefa 5333 func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
1c2a088a
AS
5334 if (!func)
5335 return -ENOMEM;
5336
f910cefa 5337 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a 5338 subprog_start = subprog_end;
4cb3d99c 5339 subprog_end = env->subprog_info[i + 1].start;
1c2a088a
AS
5340
5341 len = subprog_end - subprog_start;
5342 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5343 if (!func[i])
5344 goto out_free;
5345 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5346 len * sizeof(struct bpf_insn));
4f74d809 5347 func[i]->type = prog->type;
1c2a088a 5348 func[i]->len = len;
4f74d809
DB
5349 if (bpf_prog_calc_tag(func[i]))
5350 goto out_free;
1c2a088a
AS
5351 func[i]->is_func = 1;
5352 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5353 * Long term would need debug info to populate names
5354 */
5355 func[i]->aux->name[0] = 'F';
9c8105bd 5356 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
1c2a088a
AS
5357 func[i]->jit_requested = 1;
5358 func[i] = bpf_int_jit_compile(func[i]);
5359 if (!func[i]->jited) {
5360 err = -ENOTSUPP;
5361 goto out_free;
5362 }
5363 cond_resched();
5364 }
5365 /* at this point all bpf functions were successfully JITed
5366 * now populate all bpf_calls with correct addresses and
5367 * run last pass of JIT
5368 */
f910cefa 5369 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5370 insn = func[i]->insnsi;
5371 for (j = 0; j < func[i]->len; j++, insn++) {
5372 if (insn->code != (BPF_JMP | BPF_CALL) ||
5373 insn->src_reg != BPF_PSEUDO_CALL)
5374 continue;
5375 subprog = insn->off;
5376 insn->off = 0;
5377 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5378 func[subprog]->bpf_func -
5379 __bpf_call_base;
5380 }
5381 }
f910cefa 5382 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5383 old_bpf_func = func[i]->bpf_func;
5384 tmp = bpf_int_jit_compile(func[i]);
5385 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5386 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5387 err = -EFAULT;
5388 goto out_free;
5389 }
5390 cond_resched();
5391 }
5392
5393 /* finally lock prog and jit images for all functions and
5394 * populate kallsysm
5395 */
f910cefa 5396 for (i = 0; i < env->subprog_cnt; i++) {
1c2a088a
AS
5397 bpf_prog_lock_ro(func[i]);
5398 bpf_prog_kallsyms_add(func[i]);
5399 }
7105e828
DB
5400
5401 /* Last step: make now unused interpreter insns from main
5402 * prog consistent for later dump requests, so they can
5403 * later look the same as if they were interpreted only.
5404 */
5405 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5406 unsigned long addr;
5407
5408 if (insn->code != (BPF_JMP | BPF_CALL) ||
5409 insn->src_reg != BPF_PSEUDO_CALL)
5410 continue;
5411 insn->off = env->insn_aux_data[i].call_imm;
5412 subprog = find_subprog(env, i + insn->off + 1);
f910cefa 5413 addr = (unsigned long)func[subprog]->bpf_func;
7105e828
DB
5414 addr &= PAGE_MASK;
5415 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5416 addr - __bpf_call_base;
5417 }
5418
1c2a088a
AS
5419 prog->jited = 1;
5420 prog->bpf_func = func[0]->bpf_func;
5421 prog->aux->func = func;
f910cefa 5422 prog->aux->func_cnt = env->subprog_cnt;
1c2a088a
AS
5423 return 0;
5424out_free:
f910cefa 5425 for (i = 0; i < env->subprog_cnt; i++)
1c2a088a
AS
5426 if (func[i])
5427 bpf_jit_free(func[i]);
5428 kfree(func);
5429 /* cleanup main prog to be interpreted */
5430 prog->jit_requested = 0;
5431 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5432 if (insn->code != (BPF_JMP | BPF_CALL) ||
5433 insn->src_reg != BPF_PSEUDO_CALL)
5434 continue;
5435 insn->off = 0;
5436 insn->imm = env->insn_aux_data[i].call_imm;
5437 }
5438 return err;
5439}
5440
1ea47e01
AS
5441static int fixup_call_args(struct bpf_verifier_env *env)
5442{
19d28fbd 5443#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5444 struct bpf_prog *prog = env->prog;
5445 struct bpf_insn *insn = prog->insnsi;
5446 int i, depth;
19d28fbd
DM
5447#endif
5448 int err;
1ea47e01 5449
19d28fbd
DM
5450 err = 0;
5451 if (env->prog->jit_requested) {
5452 err = jit_subprogs(env);
5453 if (err == 0)
1c2a088a 5454 return 0;
19d28fbd
DM
5455 }
5456#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1ea47e01
AS
5457 for (i = 0; i < prog->len; i++, insn++) {
5458 if (insn->code != (BPF_JMP | BPF_CALL) ||
5459 insn->src_reg != BPF_PSEUDO_CALL)
5460 continue;
5461 depth = get_callee_stack_depth(env, insn, i);
5462 if (depth < 0)
5463 return depth;
5464 bpf_patch_call_args(insn, depth);
5465 }
19d28fbd
DM
5466 err = 0;
5467#endif
5468 return err;
1ea47e01
AS
5469}
5470
79741b3b 5471/* fixup insn->imm field of bpf_call instructions
81ed18ab 5472 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
5473 *
5474 * this function is called after eBPF program passed verification
5475 */
79741b3b 5476static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 5477{
79741b3b
AS
5478 struct bpf_prog *prog = env->prog;
5479 struct bpf_insn *insn = prog->insnsi;
e245c5c6 5480 const struct bpf_func_proto *fn;
79741b3b 5481 const int insn_cnt = prog->len;
81ed18ab
AS
5482 struct bpf_insn insn_buf[16];
5483 struct bpf_prog *new_prog;
5484 struct bpf_map *map_ptr;
5485 int i, cnt, delta = 0;
e245c5c6 5486
79741b3b 5487 for (i = 0; i < insn_cnt; i++, insn++) {
f6b1b3bf
DB
5488 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5489 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5490 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
68fda450 5491 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
f6b1b3bf
DB
5492 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5493 struct bpf_insn mask_and_div[] = {
5494 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5495 /* Rx div 0 -> 0 */
5496 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5497 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5498 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5499 *insn,
5500 };
5501 struct bpf_insn mask_and_mod[] = {
5502 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5503 /* Rx mod 0 -> Rx */
5504 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5505 *insn,
5506 };
5507 struct bpf_insn *patchlet;
5508
5509 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5510 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5511 patchlet = mask_and_div + (is64 ? 1 : 0);
5512 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5513 } else {
5514 patchlet = mask_and_mod + (is64 ? 1 : 0);
5515 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5516 }
5517
5518 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
68fda450
AS
5519 if (!new_prog)
5520 return -ENOMEM;
5521
5522 delta += cnt - 1;
5523 env->prog = prog = new_prog;
5524 insn = new_prog->insnsi + i + delta;
5525 continue;
5526 }
5527
e0cea7ce
DB
5528 if (BPF_CLASS(insn->code) == BPF_LD &&
5529 (BPF_MODE(insn->code) == BPF_ABS ||
5530 BPF_MODE(insn->code) == BPF_IND)) {
5531 cnt = env->ops->gen_ld_abs(insn, insn_buf);
5532 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5533 verbose(env, "bpf verifier is misconfigured\n");
5534 return -EINVAL;
5535 }
5536
5537 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5538 if (!new_prog)
5539 return -ENOMEM;
5540
5541 delta += cnt - 1;
5542 env->prog = prog = new_prog;
5543 insn = new_prog->insnsi + i + delta;
5544 continue;
5545 }
5546
79741b3b
AS
5547 if (insn->code != (BPF_JMP | BPF_CALL))
5548 continue;
cc8b0b92
AS
5549 if (insn->src_reg == BPF_PSEUDO_CALL)
5550 continue;
e245c5c6 5551
79741b3b
AS
5552 if (insn->imm == BPF_FUNC_get_route_realm)
5553 prog->dst_needed = 1;
5554 if (insn->imm == BPF_FUNC_get_prandom_u32)
5555 bpf_user_rnd_init_once();
9802d865
JB
5556 if (insn->imm == BPF_FUNC_override_return)
5557 prog->kprobe_override = 1;
79741b3b 5558 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
5559 /* If we tail call into other programs, we
5560 * cannot make any assumptions since they can
5561 * be replaced dynamically during runtime in
5562 * the program array.
5563 */
5564 prog->cb_access = 1;
80a58d02 5565 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 5566
79741b3b
AS
5567 /* mark bpf_tail_call as different opcode to avoid
5568 * conditional branch in the interpeter for every normal
5569 * call and to prevent accidental JITing by JIT compiler
5570 * that doesn't support bpf_tail_call yet
e245c5c6 5571 */
79741b3b 5572 insn->imm = 0;
71189fa9 5573 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399
AS
5574
5575 /* instead of changing every JIT dealing with tail_call
5576 * emit two extra insns:
5577 * if (index >= max_entries) goto out;
5578 * index &= array->index_mask;
5579 * to avoid out-of-bounds cpu speculation
5580 */
5581 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5582 if (map_ptr == BPF_MAP_PTR_POISON) {
40950343 5583 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
5584 return -EINVAL;
5585 }
5586 if (!map_ptr->unpriv_array)
5587 continue;
5588 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5589 map_ptr->max_entries, 2);
5590 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5591 container_of(map_ptr,
5592 struct bpf_array,
5593 map)->index_mask);
5594 insn_buf[2] = *insn;
5595 cnt = 3;
5596 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5597 if (!new_prog)
5598 return -ENOMEM;
5599
5600 delta += cnt - 1;
5601 env->prog = prog = new_prog;
5602 insn = new_prog->insnsi + i + delta;
79741b3b
AS
5603 continue;
5604 }
e245c5c6 5605
89c63074
DB
5606 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5607 * handlers are currently limited to 64 bit only.
5608 */
60b58afc 5609 if (prog->jit_requested && BITS_PER_LONG == 64 &&
89c63074 5610 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 5611 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
5612 if (map_ptr == BPF_MAP_PTR_POISON ||
5613 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
5614 goto patch_call_imm;
5615
5616 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5617 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 5618 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
5619 return -EINVAL;
5620 }
5621
5622 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5623 cnt);
5624 if (!new_prog)
5625 return -ENOMEM;
5626
5627 delta += cnt - 1;
5628
5629 /* keep walking new program and skip insns we just inserted */
5630 env->prog = prog = new_prog;
5631 insn = new_prog->insnsi + i + delta;
5632 continue;
5633 }
5634
109980b8 5635 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
5636 /* Note, we cannot use prog directly as imm as subsequent
5637 * rewrites would still change the prog pointer. The only
5638 * stable address we can use is aux, which also works with
5639 * prog clones during blinding.
5640 */
5641 u64 addr = (unsigned long)prog->aux;
109980b8
DB
5642 struct bpf_insn r4_ld[] = {
5643 BPF_LD_IMM64(BPF_REG_4, addr),
5644 *insn,
5645 };
5646 cnt = ARRAY_SIZE(r4_ld);
5647
5648 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5649 if (!new_prog)
5650 return -ENOMEM;
5651
5652 delta += cnt - 1;
5653 env->prog = prog = new_prog;
5654 insn = new_prog->insnsi + i + delta;
5655 }
81ed18ab 5656patch_call_imm:
5e43f899 5657 fn = env->ops->get_func_proto(insn->imm, env->prog);
79741b3b
AS
5658 /* all functions that have prototype and verifier allowed
5659 * programs to call them, must be real in-kernel functions
5660 */
5661 if (!fn->func) {
61bd5218
JK
5662 verbose(env,
5663 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
5664 func_id_name(insn->imm), insn->imm);
5665 return -EFAULT;
e245c5c6 5666 }
79741b3b 5667 insn->imm = fn->func - __bpf_call_base;
e245c5c6 5668 }
e245c5c6 5669
79741b3b
AS
5670 return 0;
5671}
e245c5c6 5672
58e2af8b 5673static void free_states(struct bpf_verifier_env *env)
f1bca824 5674{
58e2af8b 5675 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
5676 int i;
5677
5678 if (!env->explored_states)
5679 return;
5680
5681 for (i = 0; i < env->prog->len; i++) {
5682 sl = env->explored_states[i];
5683
5684 if (sl)
5685 while (sl != STATE_LIST_MARK) {
5686 sln = sl->next;
1969db47 5687 free_verifier_state(&sl->state, false);
f1bca824
AS
5688 kfree(sl);
5689 sl = sln;
5690 }
5691 }
5692
5693 kfree(env->explored_states);
5694}
5695
9bac3d6d 5696int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 5697{
58e2af8b 5698 struct bpf_verifier_env *env;
b9193c1b 5699 struct bpf_verifier_log *log;
51580e79
AS
5700 int ret = -EINVAL;
5701
eba0c929
AB
5702 /* no program is valid */
5703 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5704 return -EINVAL;
5705
58e2af8b 5706 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
5707 * allocate/free it every time bpf_check() is called
5708 */
58e2af8b 5709 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
5710 if (!env)
5711 return -ENOMEM;
61bd5218 5712 log = &env->log;
cbd35700 5713
3df126f3
JK
5714 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5715 (*prog)->len);
5716 ret = -ENOMEM;
5717 if (!env->insn_aux_data)
5718 goto err_free_env;
9bac3d6d 5719 env->prog = *prog;
00176a34 5720 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 5721
cbd35700
AS
5722 /* grab the mutex to protect few globals used by verifier */
5723 mutex_lock(&bpf_verifier_lock);
5724
5725 if (attr->log_level || attr->log_buf || attr->log_size) {
5726 /* user requested verbose verifier output
5727 * and supplied buffer to store the verification trace
5728 */
e7bf8249
JK
5729 log->level = attr->log_level;
5730 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5731 log->len_total = attr->log_size;
cbd35700
AS
5732
5733 ret = -EINVAL;
e7bf8249
JK
5734 /* log attributes have to be sane */
5735 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5736 !log->level || !log->ubuf)
3df126f3 5737 goto err_unlock;
cbd35700 5738 }
1ad2f583
DB
5739
5740 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5741 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 5742 env->strict_alignment = true;
cbd35700 5743
f4e3ec0d
JK
5744 ret = replace_map_fd_with_map_ptr(env);
5745 if (ret < 0)
5746 goto skip_full_check;
5747
cae1927c 5748 if (bpf_prog_is_dev_bound(env->prog->aux)) {
ab3f0063
JK
5749 ret = bpf_prog_offload_verifier_prep(env);
5750 if (ret)
f4e3ec0d 5751 goto skip_full_check;
ab3f0063
JK
5752 }
5753
9bac3d6d 5754 env->explored_states = kcalloc(env->prog->len,
58e2af8b 5755 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
5756 GFP_USER);
5757 ret = -ENOMEM;
5758 if (!env->explored_states)
5759 goto skip_full_check;
5760
cc8b0b92
AS
5761 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5762
475fb78f
AS
5763 ret = check_cfg(env);
5764 if (ret < 0)
5765 goto skip_full_check;
5766
17a52670 5767 ret = do_check(env);
8c01c4f8
CG
5768 if (env->cur_state) {
5769 free_verifier_state(env->cur_state, true);
5770 env->cur_state = NULL;
5771 }
cbd35700 5772
0246e64d 5773skip_full_check:
638f5b90 5774 while (!pop_stack(env, NULL, NULL));
f1bca824 5775 free_states(env);
0246e64d 5776
c131187d
AS
5777 if (ret == 0)
5778 sanitize_dead_code(env);
5779
70a87ffe
AS
5780 if (ret == 0)
5781 ret = check_max_stack_depth(env);
5782
9bac3d6d
AS
5783 if (ret == 0)
5784 /* program is valid, convert *(u32*)(ctx + off) accesses */
5785 ret = convert_ctx_accesses(env);
5786
e245c5c6 5787 if (ret == 0)
79741b3b 5788 ret = fixup_bpf_calls(env);
e245c5c6 5789
1ea47e01
AS
5790 if (ret == 0)
5791 ret = fixup_call_args(env);
5792
a2a7d570 5793 if (log->level && bpf_verifier_log_full(log))
cbd35700 5794 ret = -ENOSPC;
a2a7d570 5795 if (log->level && !log->ubuf) {
cbd35700 5796 ret = -EFAULT;
a2a7d570 5797 goto err_release_maps;
cbd35700
AS
5798 }
5799
0246e64d
AS
5800 if (ret == 0 && env->used_map_cnt) {
5801 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
5802 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5803 sizeof(env->used_maps[0]),
5804 GFP_KERNEL);
0246e64d 5805
9bac3d6d 5806 if (!env->prog->aux->used_maps) {
0246e64d 5807 ret = -ENOMEM;
a2a7d570 5808 goto err_release_maps;
0246e64d
AS
5809 }
5810
9bac3d6d 5811 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 5812 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 5813 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
5814
5815 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5816 * bpf_ld_imm64 instructions
5817 */
5818 convert_pseudo_ld_imm64(env);
5819 }
cbd35700 5820
a2a7d570 5821err_release_maps:
9bac3d6d 5822 if (!env->prog->aux->used_maps)
0246e64d 5823 /* if we didn't copy map pointers into bpf_prog_info, release
ab7f5bf0 5824 * them now. Otherwise free_used_maps() will release them.
0246e64d
AS
5825 */
5826 release_maps(env);
9bac3d6d 5827 *prog = env->prog;
3df126f3 5828err_unlock:
cbd35700 5829 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
5830 vfree(env->insn_aux_data);
5831err_free_env:
5832 kfree(env);
51580e79
AS
5833 return ret;
5834}